Science.gov

Sample records for 5-ht2a receptor expression

  1. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  2. Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors.

    PubMed

    Santana, Noemí; Mengod, Guadalupe; Artigas, Francesc

    2013-06-01

    The prefrontal cortex (PFC) is involved in behavioural control and cognitive processes that are altered in schizophrenia. The brainstem monoaminergic systems control PFC function, yet the cells/networks involved are not fully known. Serotonin (5-HT) and norepinephrine (NE) increase PFC neuronal activity through the activation of α(1)-adrenergic receptors (α(1)ARs) and 5-HT(2A) receptors (5-HT(2A)Rs), respectively. Neurochemical and behavioural interactions between these receptors have been reported. Further, classical and atypical antipsychotic drugs share nm in vitro affinity for α(1)ARs while having preferential affinity for D(2) and 5-HT(2A)Rs, respectively. Using double in situ hybridization we examined the cellular expression of α(1)ARs in pyramidal (vGluT1-positive) and GABAergic (GAD(65/67)-positive) neurons in rat PFC and their co-localization with 5-HT(2A)Rs. α(1)ARs are expressed by a high proportion of pyramidal (59-85%) and GABAergic (52-79%) neurons. The expression in pyramidal neurons exhibited a dorsoventral gradient, with a lower percentage of α(1)AR-positive neurons in infralimbic cortex compared to anterior cingulate and prelimbic cortex. The expression of α(1A), α(1B) and α(1D) adrenergic receptors was segregated in different layers and subdivisions. In all them there is a high co-expression with 5-HT(2A)Rs (∼80%). These observations indicate that NE controls the activity of most PFC pyramidal neurons via α(1)ARs, either directly or indirectly, via GABAergic interneurons. Antipsychotic drugs can thus modulate the activity of PFC via α(1)AR blockade. The high co-expression with 5-HT(2A)Rs indicates a convergence of excitatory serotonergic and noradrenergic inputs onto the same neuronal populations. Moreover, atypical antipsychotics may exert a more powerful control of PFC function through the simultaneous blockade of α(1)ARs and 5-HT(2A)Rs.

  3. Expression of 5-HT2A receptors in prefrontal cortex pyramidal neurons projecting to nucleus accumbens. Potential relevance for atypical antipsychotic action.

    PubMed

    Mocci, Giuseppe; Jiménez-Sánchez, Laura; Adell, Albert; Cortés, Roser; Artigas, Francesc

    2014-04-01

    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotic drugs modulate information processing in cortico-limbic circuits via dopamine D2 receptor blockade in nucleus accumbens (NAc) whereas atypical antipsychotic drugs preferentially target cortical serotonin (5-HT) receptors. The brain networks involved in the therapeutic action of atypical drugs are not fully understood. Previous work indicated that medial PFC (mPFC) pyramidal neurons projecting to ventral tegmental area express 5-HT2A receptors suggesting that atypical antipsychotic drugs modulate dopaminergic activity distally, via 5-HT2A receptor (5-HT2A-R) blockade in PFC. Since the mPFC also projects heavily to NAc, we examined whether NAc-projecting pyramidal neurons also express 5-HT2A-R. Using a combination of retrograde tracing experiments and in situ hybridization we report that a substantial proportion of mPFC-NAc pyramidal neurons in rat brain express 5-HT2A-R mRNA in a layer- and area-specific manner (up to 68% in layer V of contralateral cingulate). The functional relevance of 5-HT2A-R to modulate mPFC-NAc projections was examined in dual-probe microdialysis experiments. The application of the preferential 5-HT2A-R agonist DOI into mPFC enhanced glutamate release locally (+66 ± 18%) and in NAc (+74 ± 12%) indicating that cortical 5-HT2A-R activation augments glutamatergic transmission in NAc. Since NAc integrates glutamatergic and dopaminergic inputs, blockade of 5-HT2A-R by atypical drugs may reduce cortical excitatory inputs onto GABAergic neurons of NAc, adding to dopamine D2 receptor blockade. Together with previous observations, the present results suggest that atypical antipsychotic drugs may control the activity of the mesolimbic pathway at cell body and terminal level.

  4. Differential regulation of 5-HT2A receptor mRNA expression following withdrawal from a chronic escalating dose regimen of D-amphetamine.

    PubMed

    Horner, Kristen A; Gilbert, Yamiece E; Noble, Erika S

    2011-05-16

    Several lines of evidence indicate that psychostimulant withdrawal can induce negative emotional symptoms, such as anhedonia and dysphoria, which may be due in part, to dysfunction of the serotonin (5-HT) system, including alterations in 5-HT receptors. For example, changes in 5-HT(2A) receptor function in prefrontal cortex (PFC) have been reported in association with psychostimulant withdrawal. However, it is not known if alterations in 5-HT(2A) receptor mRNA expression occur in the PFC or other limbic-associated areas following withdrawal from chronic psychostimulant treatment. The goal of the current study was to determine the effects of chronic, escalating doses of D-amphetamine (D-AMPH) and withdrawal on the expression of 5-HT(2A) receptors in the cortex, caudate putamen, NAc and hippocampus of rat brain. Animals were treated three times a day for 4 days with escalating doses of D-AMPH (1-10 mg/kg). Twenty-four hours after the final dose of D-AMPH, animals were sacrificed and the tissue processed for in situ hybridization histochemistry. Chronic, escalating doses of D-AMPH, followed by a 24 h withdrawal period, significantly decreased 5-HT(2A) receptor mRNA expression in the prefrontal, motor and cingulate cortices, while 5-HT(2A) receptor mRNA expression in the NAc, caudal CPu and hippocampus were significantly increased. These data indicate that region-specific changes in 5-HT(2A) receptor mRNA expression occur in limbic system and associated areas following chronic D-AMPH treatment, supporting the notion that alterations in the 5-HT system may contribute to the negative emotional aspects of psychostimulant withdrawal.

  5. Cerebral metabolic responses to 5-HT2A/C receptor activation in mice with genetically modified serotonin transporter (SERT) expression.

    PubMed

    Dawson, Neil; Ferrington, Linda; Lesch, Klaus-Peter; Kelly, Paul A T

    2011-01-01

    Variation in the human serotonin transporter gene (hSERT; 5-HTT) resulting in a life-long alteration in SERT function influences anxiety and the risk of developing affective disorders. The mechanisms underlying the influence of the hSERT gene on these phenotypes remain unclear but may involve altered 5-HT receptor function. Here we characterise the cerebral metabolic response to 5-HT(2A/C) receptor activation in two transgenic mouse models of altered SERT function, SERT knock-out (SERT KO) and hSERT over-expressing (hSERT OE) mice, to test the hypothesis that genetically mediated variability in SERT expression alters 5-HT(2A/C) function. We found that a constitutive increase in SERT expression (hSERT OE) enhanced, whereas a constitutive decrease in SERT expression (SERT KO) attenuated, 5-HT(2A/C) function. Therefore, altered 5-HT(2A/C) receptor functioning in response to hSERT gene variation may contribute to its influence on affective phenotypes.

  6. Repeated administration of Yokukansan inhibits DOI-induced head-twitch response and decreases expression of 5-hydroxytryptamine (5-HT)2A receptors in the prefrontal cortex.

    PubMed

    Egashira, Nobuaki; Iwasaki, Katsunori; Ishibashi, Ayumi; Hayakawa, Kazuhide; Okuno, Ryoko; Abe, Moe; Uchida, Naoki; Mishima, Kenichi; Takasaki, Kotaro; Nishimura, Ryoji; Oishi, Ryozo; Fujiwara, Michihiro

    2008-08-01

    Behavioral and psychological symptoms of dementia (BPSD) are commonly seen in patients with Alzheimer's disease (AD) and other forms of senile dementia. BPSD have a serious impact on the quality of life of dementia patients, as well as their caregivers. However, an effective drug therapy for BPSD has not been established. Recently, the traditional Japanese medicine Yokukansan (YKS, Yi-gan san in Chinese) has been reported to improve BPSD in a randomized, single-blind, placebo-controlled study. Moreover, abnormalities of the serotonin (5-HT) system such as 5-HT2A receptors have been reported to be associated with BPSD of AD patients. In the present study, we investigated the effect of YKS on head-twitch response induced by 2,5-dimethoxy-4-iodoamphetamine (DOI, 5 mg/kg, i.p.) in mice, a behavioral response that is mediated, in part, by 5-HT2A receptors. Acute treatment with YKS (100 and 300 mg/kg, p.o.) had no effect on the DOI-induced head-twitch response, whilst 14 days repeated treatment with YKS (300 mg/kg, p.o.) significantly inhibited this response. Moreover, repeated treatment with YKS (300 mg/kg, p.o.) decreased expression of 5-HT2A receptors in the prefrontal cortex, which is part of the circuitry mediating the head-twitch response. These findings suggest that the inhibition of DOI-induced head-twitch response by YKS may be mediated, in part, by altered expression of 5-HT2A receptors in the prefrontal cortex, which suggests the involvement of the 5-HT system in psychopharmacological effects of YKS.

  7. A Model of Post-Infection Fatigue Is Associated with Increased TNF and 5-HT2A Receptor Expression in Mice

    PubMed Central

    Couch, Yvonne; Xie, Qin; Lundberg, Louise; Sharp, Trevor; Anthony, Daniel C.

    2015-01-01

    It is well documented that serotonin (5-HT) plays an important role in psychiatric illness. For example, myalgic encephalomyelitis (ME/CFS), which is often provoked by infection, is a disabling illness with an unknown aetiology and diagnosis is based on symptom-specific criteria. However, 5-HT2A receptor expression and peripheral cytokines are known to be upregulated in ME. We sought to examine the relationship between the 5-HT system and cytokine expression following systemic bacterial endotoxin challenge (LPS, 0.5mg/kg i.p.), at a time when the acute sickness behaviours have largely resolved. At 24 hours post-injection mice exhibit no overt changes in locomotor behaviour, but do show increased immobility in a forced swim test, as well as decreased sucrose preference and reduced marble burying activity, indicating a depressive-like state. While peripheral IDO activity was increased after LPS challenge, central activity levels remained stable and there was no change in total brain 5-HT levels or 5-HIAA/5-HT. However, within the brain, levels of TNF and 5-HT2A receptor mRNA within various regions increased significantly. This increase in receptor expression is reflected by an increase in the functional response of the 5-HT2A receptor to agonist, DOI. These data suggest that regulation of fatigue and depressive-like moods after episodes of systemic inflammation may be regulated by changes in 5-HT receptor expression, rather than by levels of enzyme activity or cytokine expression in the CNS. PMID:26147001

  8. Differences in 5-HT2A and mGlu2 Receptor Expression Levels and Repressive Epigenetic Modifications at the 5-HT2A Promoter Region in the Roman Low- (RLA-I) and High- (RHA-I) Avoidance Rat Strains.

    PubMed

    Fomsgaard, Luna; Moreno, Jose L; de la Fuente Revenga, Mario; Brudek, Tomasz; Adamsen, Dea; Rio-Alamos, Cristobal; Saunders, Justin; Klein, Anders Bue; Oliveras, Ignasi; Cañete, Toni; Blazquez, Gloria; Tobeña, Adolf; Fernandez-Teruel, Albert; Gonzalez-Maeso, Javier; Aznar, Susana

    2017-03-06

    The serotonin 2A (5-HT2A) and metabotropic glutamate 2 (mGlu2) receptors regulate each other and are associated with schizophrenia. The Roman high- (RHA-I) and the Roman low- (RLA-I) avoidance rat strains present well-differentiated behavioral profiles, with the RHA-I strain emerging as a putative genetic rat model of schizophrenia-related features. The RHA-I strain shows increased 5-HT2A and decreased mGlu2 receptor binding levels in prefrontal cortex (PFC). Here, we looked for differences in gene expression and transcriptional regulation of these receptors. The striatum (STR) was included in the analysis. 5-HT2A, 5-HT1A, and mGlu2 mRNA and [(3)H]ketanserin binding levels were measured in brain homogenates. As expected, 5-HT2A binding was significantly increased in PFC in the RHA-I rats, while no difference in binding was observed in STR. Surprisingly, 5-HT2A gene expression was unchanged in PFC but significantly decreased in STR. mGlu2 receptor gene expression was significantly decreased in both PFC and STR. No differences were observed for the 5-HT1A receptor. Chromatin immunoprecipitation assay revealed increased trimethylation of histone 3 at lysine 27 (H3K27me3) at the promoter region of the HTR2A gene in the STR. We further looked at the Akt/GSK3 signaling pathway, a downstream point of convergence of the serotonin and glutamate system, and found increased phosphorylation levels of GSK3β at tyrosine 216 and increased β-catenin levels in the PFC of the RHA-I rats. These results reveal region-specific regulation of the 5-HT2A receptor in the RHA-I rats probably due to absence of mGlu2 receptor that may result in differential regulation of downstream pathways.

  9. 5-HT2A receptor gene polymorphisms in Croatian subjects with autistic disorder.

    PubMed

    Hranilovic, Dubravka; Blazevic, Sofia; Babic, Marina; Smurinic, Maja; Bujas-Petkovic, Zorana; Jernej, Branimir

    2010-08-15

    Disturbances in the expression/function of the 5-HT2A receptor are implicated in autism. The association of the 5-HT2A receptor gene with autism was studied in the Croatian population. Distribution frequencies for alleles, genotypes and haplotypes of -1438 A/G and His452Tyr polymorphisms were compared in samples of 103 autistic and 214 control subjects. Significant overrepresentation of the G allele and the GG genotype of the -1438 A/G polymorphism was observed in group of autistic subjects, supporting the possible involvement of the 5-HT2A receptor in the development of autism.

  10. Effects of imipramine and bupropion on the duration of immobility of ACTH-treated rats in the forced swim test: involvement of the expression of 5-HT2A receptor mRNA.

    PubMed

    Kitamura, Yoshihisa; Fujitani, Yoshika; Kitagawa, Kouhei; Miyazaki, Toshiaki; Sagara, Hidenori; Kawasaki, Hiromu; Shibata, Kazuhiko; Sendo, Toshiaki; Gomita, Yutaka

    2008-02-01

    We examined the effect of chronic administration of imipramine and bupropion, monoamine reuptake inhibitors, on the duration of immobility in the forced swim test and serotonin (5-HT)(2A) receptor function in the form of 5-HT(2A) receptor mRNA levels in rats chronically treated with adrenocorticotropic hormone (ACTH). The immobility-decreasing effect of bupropion without imipramine did not influence the chronic ACTH treatment. The effect on the expression of 5-HT(2A) receptor mRNA of chronic ACTH treatment was decreased by bupropion, but not imipramine. These results suggest that bupropion has the effect of reducing immobility time in the forced swim test in the tricyclic antidepressant-resistant depressive model induced by chronic ACTH treatment in rats, and that decreased 5-HT(2A) receptor mRNA levels may be involved in this phenomenon.

  11. Stress and withdrawal from d-amphetamine alter 5-HT2A receptor mRNA expression in the prefrontal cortex.

    PubMed

    Murray, Ryan C; Hebbard, John C; Logan, Anna S; Vanchipurakel, Golda A; Gilbert, Yamiece E; Horner, Kristen A

    2014-01-24

    Psychostimulant withdrawal results in emotional, behavioral, and cognitive impairments, which may be exacerbated by stress. However, little is known about the neurochemical changes that occur when these two conditions are experienced concomitantly. 5-HT2A receptor (5-HT2AR) mRNA expression in the prefrontal cortex (PFC) is diminished following withdrawal from d-amphetamine (AMPH) and may underlie the emotional and cognitive impairments observed in psychostimulant withdrawal, but whether stress affects 5-HT2AR mRNA expression during psychostimulant withdrawal is unknown. The goal of this study was to examine the impact of forced swim test (FST) exposure during AMPH withdrawal on 5-HT2AR mRNA expression in PFC. Animals were treated 3 times a day for 4 days with escalating doses of AMPH (1-10mg/kg) and 24h or 4 days after the final injection, animals were subjected to FST. At 24h of withdrawal, AMPH-treated animals showed greater immobility in FST and at 4 days of withdrawal, AMPH-treated animals did not show immobility. At 24h of withdrawal, animals showed lower 5-HT2AR mRNA expression in the PFC relative to saline-treated animals, and exposure to FST did not further decrease expression in these animals. At 4 days of withdrawal, AMPH-treated animals showed greater 5-HT2AR mRNA expression relative to saline-treated animals in the PFC, an effect that was diminished by exposure to FST. These data indicate that stress and short-term AMPH withdrawal affect prefrontal 5-HT2AR mRNA expression to a similar degree, and stress experienced during long-term AMPH withdrawal can diminish the recovery of 5-HT2AR mRNA expression. Together, these data suggest that exposure to stress during extended AMPH withdrawal could prolong withdrawal-induced, 5-HT2AR mRNA expression which could be related to 5-HT2AR mediated deficits.

  12. Insights into the regulation of 5-HT2A serotonin receptors by scaffolding proteins and kinases.

    PubMed

    Allen, John A; Yadav, Prem N; Roth, Bryan L

    2008-11-01

    5-HT(2A) serotonin receptors are essential molecular targets for the actions of LSD-like hallucinogens and atypical antipsychotic drugs. 5-HT(2A) serotonin receptors also mediate a variety of physiological processes in peripheral and central nervous systems including platelet aggregation, smooth muscle contraction, and the modulation of mood and perception. Scaffolding proteins have emerged as important regulators of 5-HT(2A) receptors and our recent studies suggest multiple scaffolds exist for 5-HT(2A) receptors including PSD95, arrestin, and caveolin. In addition, a novel interaction has emerged between p90 ribosomal S6 kinase and 5-HT(2A) receptors which attenuates receptor signaling. This article reviews our recent studies and emphasizes the role of scaffolding proteins and kinases in the regulation of 5-HT(2A) trafficking, targeting and signaling.

  13. Functions of 5-HT2A receptor and its antagonists in the cardiovascular system.

    PubMed

    Nagatomo, Takafumi; Rashid, Mamunur; Abul Muntasir, Habib; Komiyama, Tadazumi

    2004-10-01

    The serotonin (5-hydroxytryptamine, 5-HT) receptors have conventionally been divided into seven subfamilies, most of which have several subtypes. Among them, 5-HT(2A) receptor is associated with the contraction of vascular smooth muscle, platelet aggregation and thrombus formation and coronary artery spasms. Accordingly, selective 5-HT(2A) antagonists may have potential in the treatment of cardiovascular diseases. Sarpogrelate, a selective 5-HT(2A) antagonist, has been introduced clinically as a therapeutic agent for the treatment of ischemic diseases associated with thrombosis. Molecular modeling studies also suggest that sarpogrelate is a 5-HT(2A) selective antagonist and is likely to have pharmacological effects beneficial in the treatment of cardiovascular diseases. This review describes the above findings as well as the signaling linkages of the 5-HT(2A) receptors and the mode of agonist binding to 5-HT(2A) receptor using data derived from molecular modeling and site-directed mutagenesis.

  14. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected.

  15. 5-HT2A Serotonin Receptor Density in Adult Male Rats’ Hippocampus after Morphine-based Conditioned Place Preference

    PubMed Central

    Mohammadi, Rabie; Jahanshahi, Mehrdad; Jameie, Seyed Behnamedin

    2016-01-01

    Introduction: A close interaction exists between the brain opioid and serotonin (5-HT) neurotransmitter systems. Brain neurotransmitter 5-HT plays an important role in the regulation of reward-related processing. However, a few studies have investigated the potential role of 5-HT2A receptors in this behavior. Therefore, the aim of the present study was to assess the influence of morphine and Conditioned Place Preference (CPP) on the density of 5-HT2A receptor in neurons of rat hippocampal formation. Methods: Morphine (10 mg/kg, IP) was injected in male Wistar rats for 7 consecutive days (intervention group), but control rats received just normal saline (1 mL/kg, IP). We used a hotplate test of analgesia to assess induction of tolerance to analgesic effects of morphine on days 1 and 8 of injections. Later, two groups of rats were sacrificed one day after 7 days of injections, their whole brains removed, and the striatum and PFC immediately dissected. Then, the NR1 gene expression was examined with a semi-quantitative RT-PCR method. Results: Our data showed that the maximum response was obtained with 2.5 mg/kg of morphine. The density of 5-HT2A receptor in different areas of the hippocampus increased significantly at sham-morphine and CPP groups (P<0.05). On the other hand, the CPP groups had more 5-HT2A receptors than sham-morphine groups and also the sham-morphine groups had more 5-HT2A receptors than the control groups. Conclusion: We concluded that the phenomenon of conditioned place preference induced by morphine can cause a significant increase in the number of serotonin 5-HT2A receptors in neurons of all areas of hippocampus. PMID:27563418

  16. Long-lasting alterations in 5-HT2A receptor after a binge regimen of methamphetamine in mice.

    PubMed

    Chiu, Hong-Yi; Chan, Ming-Huan; Lee, Mei-Yi; Chen, Shao-Tsu; Zhan, Zih-Yi; Chen, Hwei-Hsien

    2014-10-01

    The repeated administration of methamphetamine (MA) to animals in a single-day 'binge' dosing regimen produces damage to dopamine and serotonin terminals and psychosis-like behaviours similar to those observed in MA abusers. The present study aimed to examine the effects of MA binge exposure on 5-HT2A receptors, the subtype of serotonin receptors putatively involved in psychosis. ICR male mice were treated with MA (4 × 5 mg/kg) or saline at 2 h intervals. Recognition memory and social behaviours were sequentially evaluated by a novel location recognition test, a novel object recognition test, a social interaction and a nest-building test to confirm the persistent cognitive and behavioural impairments after this dosing regimen. Subsequently, a hallucinogenic 5-HT2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI)-induced head-twitch, molecular and electrophysiological responses were monitored. Finally, the levels of 5-HT2C, 5-HT1A, 5-HT2A and mGlu2 receptors in the medial prefrontal cortex were determined. MA binge exposure produced recognition memory impairment, reduced social behaviours, and increased DOI-induced head-twitch response, c-Fos and Egr-2 expression and field potentials in the medial prefrontal cortex. Furthermore, MA binge exposure increased 5-HT2A and decreased mGlu2 receptor expression in the medial frontal cortex, whereas 5-HT2C and 5-HT1A receptors were unaffected. These data reveal that the increased behavioural, molecular and electrophysiological responses to DOI might be associated with an up-regulation of 5-HT2A receptors in the medial prefrontal cortex after MA binge exposure. Identifying the biochemical alterations that parallel the behavioural changes in a mouse model of MA binge exposure may facilitate targeting therapies for treatment of MA-related psychiatric disorders.

  17. 5-HT2A SEROTONIN RECEPTOR BIOLOGY: Interacting proteins, kinases and paradoxical regulation

    PubMed Central

    Roth, Bryan L

    2011-01-01

    5-hydroxytryptamine2A (5-HT2A) serotonin receptors are important pharmacological targets for a large number of central nervous system and peripheral serotonergic medications. In this review article I summarize work mainly from my lab regarding serotonin receptor anatomy, pharmacology, signaling and regulation. I highlight the role of serotonin receptor interacting proteins and the emerging paradigm of G-protein coupled receptor functional selectivity. PMID:21288474

  18. The antidepressant 5-HT2A receptor antagonists pizotifen and cyproheptadine inhibit serotonin-enhanced platelet function.

    PubMed

    Lin, Olivia A; Karim, Zubair A; Vemana, Hari Priya; Espinosa, Enma V P; Khasawneh, Fadi T

    2014-01-01

    There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR) expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS) exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and EMD 281014, their

  19. 5-HT2A/C receptors mediate the antipsychotic-like effects of alstonine.

    PubMed

    Linck, V M; Bessa, M M; Herrmann, A P; Iwu, M M; Okunji, C O; Elisabetsky, E

    2012-01-10

    The purpose of this study was to determine the effects of alstonine, an indole alkaloid with putative antipsychotic effects, on working memory by using the step-down inhibitory avoidance paradigm and MK801-induced working memory deficits in mice. Additionally, the role of serotonin 5-HT2A/C receptors in the effects of alstonine on mouse models associated with positive (MK801-induced hyperlocomotion), negative (MK801-induced social interaction deficit), and cognitive (MK801-induced working memory deficit) schizophrenia symptoms was examined. Treatment with alstonine was able to prevent MK801-induced working memory deficit, indicating its potential benefit for cognitive deficits now seen as a core symptom in the disease. Corroborating previously reported data, alstonine was also effective in counteracting MK801-induced hyperlocomotion and social interaction deficit. Ritanserin, a 5-HT2A/C receptor antagonist, prevented alstonine's effects on these three behavioral parameters. This study presents additional evidence that 5-HT2A/C receptors are central to the antipsychotic-like effects of alstonine, consistently seen in mouse models relevant to the three dimensions of schizophrenia symptoms.

  20. Effects of Constant Flickering Light on Refractive Status, 5-HT and 5-HT2A Receptor in Guinea Pigs

    PubMed Central

    Li, Tao; Zheng, Changyue; Ji, Shunmei; Ma, Yuanyuan; Zhang, Shuangshuang; Zhou, Xiaodong

    2016-01-01

    Purpose To investigate the effects of constant flickering light on refractive development, the role of serotonin (i.e.5-hydroxytryptamine, 5-HT)and 5-HT2A receptor in myopia induced by flickering light in guinea pigs. Methods Forty-five guinea pigs were randomly divided into three groups: control, form deprivation myopia (FDM) and flickering light induced myopia (FLM) groups(n = 15 for each group). The right eyes of the FDM group were covered with semitransparent hemispherical plastic shells serving as eye diffusers. Guinea pigs in FLM group were raised with illumination of a duty cycle of 50% at a flash frequency of 0.5Hz. The refractive status, axial length (AL), corneal radius of curvature(CRC) were measured by streak retinoscope, A-scan ultrasonography and keratometer, respectively. Ultramicroscopy images were taken by electron microscopy. The concentrations of 5-HTin the retina, vitreous body and retinal pigment epithelium (RPE) were assessed by high performance liquid chromatography, the retinal 5-HT2A receptor expression was evaluated by immunohistofluorescence and western blot. Results The refraction of FDM and FLM eyes became myopic from some time point (the 4th week and the 6th week, respectively) in the course of the experiment, which was indicated by significantly decreased refraction and longer AL when compared with the controls (p<0.05). The concentrations of 5-HT in the retina, vitreous body and RPE of FDM and FLM eyes were significantly increased in comparison with those of control eyes (both p<0.05). Similar to FDM eyes, the expression of retinal 5-HT2A receptor in FLM eyes was significantly up-regulated compared to that of control eyes (both p<0.05). Western blot analysis showed that retinal 5-HT2A receptor level elevated less in the FLM eyes than that in the FDM eyes. Moreover, the levels of norepinephrine and epinephrine in FDM and FLM groups generally decreased when compared with control groups (all p<0.05). Conclusions Constant flickering

  1. 5-HT2A receptor activation is necessary for CO2-induced arousal

    PubMed Central

    Smith, Haleigh R.; MacAskill, Amanda; Richerson, George B.

    2015-01-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT2A receptors dose-dependently blocked CO2-induced arousal. The 5-HT2C receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1bf/f/p) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT2A, but not 5-HT2C, receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT2A receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  2. (±)-Nantenine analogs as antagonists at human 5-HT2A receptors: C1 and flexible congeners

    PubMed Central

    Chaudhary, Sandeep; Pecic, Stevan; LeGendre, Onica; Navarro, Hérnan A.; Harding, Wayne W.

    2009-01-01

    C1 and flexible analogs of (±)-nantenine were synthesized and evaluated for antagonist activity at human 5-HT2A receptors in a calcium mobilization assay. This work has resulted in the identification of the most potent 5-HT2A antagonist known based on an aporphine. Our results also suggest that the C1 position may be a key site for increasing 5-HT2A antagonist activity in this compound series. In addition, the structural rigidity of the aporphine core appears to be required for nantenine to function as a 5-HT2A antagonist. PMID:19328689

  3. 5-HT2A receptor antagonist M100907 reduces serotonin synthesis: An autoradiographic study

    PubMed Central

    Hasegawa, Shu; Fikre-Merid, Maraki; Diksic, Mirko

    2013-01-01

    The effects of the administration of the serotonin (5-HT)2A antagonist, M100907, on 5-HT synthesis rates, were evaluated using the α-[14C]methyl-L-tryptophan (α-MTrp) autoradiographic method. In the treatment study, M100907 (10 mg/kg) was injected intraperitoneally 30 min before the α-MTrp injection (30 μCi over 2 min). A single dose of M100907 caused a significant decrease in the synthesis in the anterior olfactory nucleus, accumbens nucleus, frontal cortex, sensory-motor cortex, cingulate cortex, medial caudate-putamen, dorsal thalamus, substantia nigra, inferior collicus, raphe magnus nucleus, superior olive, and raphe pallidus nucleus. These data suggest that the terminal 5-HT2A receptors are involved in the regulation of 5-HT synthesis in the entire brain. Further, 5-HT synthesis is likely regulated by the 5-HT2A antagonistic property of M100907 in the cortices, anterior olfactory nucleus, caudate putamen, and nucleus accumbens. PMID:22056993

  4. Chronic treatment with LY341495 decreases 5-HT(2A) receptor binding and hallucinogenic effects of LSD in mice.

    PubMed

    Moreno, José L; Holloway, Terrell; Rayannavar, Vinayak; Sealfon, Stuart C; González-Maeso, Javier

    2013-03-01

    Hallucinogenic drugs, such as lysergic acid diethylamide (LSD), mescaline and psilocybin, alter perception and cognitive processes. All hallucinogenic drugs have in common a high affinity for the serotonin 5-HT(2A) receptor. Metabotropic glutamate 2/3 (mGlu2/3) receptor ligands show efficacy in modulating the cellular and behavioral responses induced by hallucinogenic drugs. Here, we explored the effect of chronic treatment with the mGlu2/3 receptor antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)-propionic acid (LY341495) on the hallucinogenic-like effects induced by LSD (0.24mg/kg). Mice were chronically (21 days) treated with LY341495 (1.5mg/kg), or vehicle, and experiments were carried out one day after the last injection. Chronic treatment with LY341495 down-regulated [(3)H]ketanserin binding in somatosensory cortex of wild-type, but not mGlu2 knockout (KO), mice. Head-twitch behavior, and expression of c-fos, egr-1 and egr-2, which are responses induced by hallucinogenic 5-HT(2A) agonists, were found to be significantly decreased by chronic treatment with LY341495. These findings suggest that repeated blockade of the mGlu2 receptor by LY341495 results in reduced 5-HT(2A) receptor-dependent hallucinogenic effects of LSD.

  5. 5-HT2A receptors are involved in cognitive but not antidepressant effects of fluoxetine.

    PubMed

    Castañé, Anna; Kargieman, Lucila; Celada, Pau; Bortolozzi, Analía; Artigas, Francesc

    2015-08-01

    The prefrontal cortex (PFC) plays a crucial role in cognitive and affective functions. It contains a rich serotonergic (serotonin, 5-HT) innervation and a high density of 5-HT receptors. Endogenous 5-HT exerts robust actions on the activity of pyramidal neurons in medial PFC (mPFC) via excitatory 5-HT2A and inhibitory 5-HT1A receptors, suggesting the involvement of 5-HT neurotransmission in cortical functions. However, the underlying mechanisms must be elucidated. Here we examine the role of 5-HT2A receptors in the processing of emotional and cognitive signals evoked by increasing the 5-HT tone after acute blockade of the 5-HT transporter. Fluoxetine (5-20mg/kg i.p.) dose-dependently reduced the immobility time in the tail-suspension test in wild-type (WT) and 5-HT2Aknockout (KO2A) mice, with non-significant differences between genotypes. Fluoxetine (10mg/kg i.p.) significantly impaired mice performance in the novel object recognition test 24h post-administration in WT, but not in KO2A mice. The comparable effect of fluoxetine on extracellular 5-HT in the mPFC of both genotypes suggests that presynaptic differences are not accountable. In contrast, single unit recordings of mPFC putative pyramidal neurons showed that fluoxetine (1.8-7.2mg/kg i.v.) significantly increased neuronal discharge in KO2A but not in WT mice. This effect is possibly mediated by an altered excitatory/inhibitory balance in the PFC in KO2A mice. Overall, the present results suggest that 5-HT2A receptors play a detrimental role in long-term memory deficits mediated by an excess 5-HT in PFC.

  6. Selective 5HT2A and 5HT6 Receptor Antagonists Promote Sleep in Rats

    PubMed Central

    Morairty, Stephen R.; Hedley, Linda; Flores, Judith; Martin, Renee; Kilduff, Thomas S.

    2008-01-01

    Study Objectives: Serotonin (5-HT) has long been implicated in the control of sleep and wakefulness. This study evaluated the hypnotic efficacy of the 5-HT6 antagonist RO4368554 (RO) and the 5-HT2A receptor antagonist MDL100907 (MDL) relative to zolpidem. Design: A randomized, repeated-measures design was utilized in which Wistar rats received intraperitoneal injections of RO (1.0, 3.0, and 10 mg/kg), MDL (0.1, 1.0 and 3.0 mg/kg), zolpidem (10 mg/kg), or vehicle in the middle of the dark (active) period. Electroencephalogram, electromyogram, body temperature (Tb) and locomotor activity were analyzed for 6 hours after injection. Measurements and Results: RO, MDL, and zolpidem all produced significant increases in sleep and decreases in waking, compared with vehicle control. All 3 doses of MDL produced more consolidated sleep, increased non-rapid eye movement sleep (NREM) sleep, and increased electroencephalographic delta power during NREM sleep. The highest dose of RO (10.0 mg/kg) produced significant increases in sleep and decreases in waking during hour 2 following dosing. These increases in sleep duration were associated with greater delta power during NREM sleep. ZO Zolpidem induced sleep with the shortest latency and significantly increased NREM sleep and delta power but also suppressed rapid eye movement sleep sleep; in contrast, neither RO nor MDL affected rapid eye movement sleep. Whereas RO did not affect Tb, both zolpidem and MDL reduced Tb relative to vehicle-injected controls. Conclusions: These results support a role for 5-HT2A receptor modulation in NREM sleep and suggest a previously unrecognized role for 5-HT6 receptors in sleep-wake regulation. Citation: Morairty SR; Hedley L; Flores J; Martin R; Kilduff TS. Selective 5HT2A and 5HT6 receptor antagonists promote sleep in rats. SLEEP 2008;31(1):34-44. PMID:18220076

  7. Disrupting 5-HT2A Receptor/PDZ Protein Interactions Reduces Hyperalgesia and Enhances SSRI Efficacy in Neuropathic Pain

    PubMed Central

    Pichon, Xavier; Wattiez, Anne S; Becamel, Carine; Ehrlich, Ingrid; Bockaert, Joel; Eschalier, Alain; Marin, Philippe; Courteix, Christine

    2010-01-01

    Antidepressants are one of the first-line treatments for neuropathic pain. Despite the influence of serotonin (5-hydroxytryptamine, 5-HT) in pain modulation, selective serotonin reuptake inhibitors (SSRIs) are less effective than tricyclic antidepressants. Here, we show, in diabetic neuropathic rats, an alteration of the antihyperalgesic effect induced by stimulation of 5-HT2A receptors, which are known to mediate SSRI-induced analgesia. 5-HT2A receptor density was not changed in the spinal cord of diabetic rats, whereas postsynaptic density protein-95 (PSD-95), one of the PSD-95/disc large suppressor/zonula occludens-1 (PDZ) domain containing proteins interacting with these receptors, was upregulated. Intrathecal injection of a cell-penetrating peptidyl mimetic of the 5-HT2A receptor C-terminus, which disrupts 5-HT2A receptor–PDZ protein interactions, induced an antihyperalgesic effect in diabetic rats, which results from activation of 5-HT2A receptors by endogenous 5-HT. The peptide also enhanced antihyperalgesia induced by the SSRI fluoxetine. Its effects likely resulted from an increase in receptor responsiveness, because it revealed functional 5-HT2A receptor-operated Ca2+ responses in neurons, an effect mimicked by knockdown of PSD-95. Hence, 5-HT2A receptor/PDZ protein interactions might contribute to the resistance to SSRI-induced analgesia in painful diabetic neuropathy. Disruption of these interactions might be a valuable strategy to design novel treatments for neuropathic pain and to increase the effectiveness of SSRIs. PMID:20531396

  8. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice: A Postmortem Study.

    PubMed

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Brudek, Tomasz; Plenge, Per; Klein, Anders Bue; Westin, Jenny E; Fog, Karina; Wörtwein, Gitta; Aznar, Susana

    2016-01-01

    The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [(3)H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression.

  9. The role of serotonin 5-HT2A receptors in memory and cognition

    PubMed Central

    Zhang, Gongliang; Stackman, Robert W.

    2015-01-01

    Serotonin 5-HT2A receptors (5-HT2ARs) are widely distributed in the central nervous system, especially in brain region essential for learning and cognition. In addition to endogenous 5-HT, several hallucinogens, antipsychotics, and antidepressants function by targeting 5-HT2ARs. Preclinical studies show that 5-HT2AR antagonists have antipsychotic and antidepressant properties, whereas agonist ligands possess cognition-enhancing and hallucinogenic properties. Abnormal 5-HT2AR activity is associated with a number of psychiatric disorders and conditions, including depression, schizophrenia, and drug addiction. In addition to its traditional activity as a G protein-coupled receptor (GPCR), recent studies have defined novel operations of 5-HT2ARs. Here we review progress in the (1) receptor anatomy and biology: distribution, signaling, polymerization and allosteric modulation; and (2) receptor functions: learning and memory, hallucination and spatial cognition, and mental disorders. Based on the recent progress in basic research on the 5-HT2AR, it appears that post-training 5-HT2AR activation enhances non-spatial memory consolidation, while pre-training 5-HT2AR activation facilitates fear extinction. Further, the potential influence that 5-HT2AR-elicited visual hallucinations may have on visual cue (i.e., landmark) guided spatial cognition is discussed. We conclude that the development of selective 5-HT2AR modulators to target distinct signaling pathways and neural circuits represents a new possibility for treating emotional, neuropsychiatric, and neurodegenerative disorders. PMID:26500553

  10. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease.

    PubMed

    Ferguson, Marcus C; Nayyar, Tultul; Deutch, Ariel Y; Ansah, Twum A

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT(2A/C) receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT(2A) receptor antagonist M100907 and the selective 5-HT(2C) receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT(2A/C) antagonist ritanserin and the selective 5-HT(2A) antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT(2A) receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease.

  11. Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors.

    PubMed

    Smith, R L; Canton, H; Barrett, R J; Sanders-Bush, E

    1998-11-01

    Extensive behavioral and biochemical evidence suggests an agonist role at the 5-HT2A receptor, and perhaps the 5-HT2C receptor, in the mechanism of action of hallucinogenic drugs. However the published in vitro pharmacological properties of N,N-dimethyltryptamine (DMT), an hallucinogenic tryptamine analog, are not consistent with this hypothesis. We, therefore, undertook an extensive investigation into the properties of DMT at 5-HT2A and 5-HT2C receptors. In fibroblasts transfected with the 5-HT2A receptor or the 5-HT2C receptor, DMT activated the major intracellular signaling pathway (phosphoinositide hydrolysis) to an extent comparable to that produced by serotonin. Because drug efficacy changes with receptor density and cellular microenvironment, we also examined the properties of DMT in native preparations using a behavioral and biochemical approach. Rats were trained to discriminate an antagonist ketanserin from an agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in a two-lever choice paradigm. Pharmacological studies showed that responding on the DOI and ketanserin lever reflected agonist and antagonist activity at 5-HT2A receptors, and hence, was a suitable model for evaluating the in vivo functional properties of DMT. Like other 5-HT2A receptor agonists, DMT substituted fully for DOI. Intact choroid plexus was used to evaluate the agonist properties at endogenous 5-HT2C receptors; DMT was a partial agonist at 5-HT2C receptors in this native preparation. Thus, we conclude that DMT behaves as an agonist at both 5-HT2A and 5-HT2A receptors. One difference was evident in that the 5-HT2C, but not the 5-HT2A, receptor showed a profound desensitization to DMT over time. This difference is interesting in light of the recent report that the hallucinogenic activity of DMT does not tolerate in humans and suggests the 5-HT2C receptor plays a less prominent role in the action of DMT.

  12. The selective 5-HT2A receptor antagonist M100907 enhances antidepressant-like behavioral effects of the SSRI fluoxetine.

    PubMed

    Marek, Gerard J; Martin-Ruiz, Raul; Abo, Allyson; Artigas, Francesc

    2005-12-01

    The addition of low doses of atypical antipsychotic drugs, which saturate 5-HT(2A) receptors, enhances the therapeutic effect of selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitors (SSRIs) in patients with major depression as well as treatment-refractory obsessive-compulsive disorder. The purpose of the present studies was to test the effects of combined treatment with a low dose of a highly selective 5-HT(2A) receptor antagonist (M100907; formerly MDL 100,907) and low doses of a SSRI using a behavioral screen in rodents (the differential-reinforcement-of low rate 72-s schedule of reinforcement; DRL 72-s) which previously has been shown to be sensitive both to 5-HT(2) antagonists and SSRIs. M100907 has a approximately 100-fold or greater selectivity at 5-HT(2A) receptors vs other 5-HT receptor subtypes, and would not be expected to appreciably occupy non-5-HT(2A) receptors at doses below 100 microg/kg. M100907 increased the reinforcement rate, decreased the response rate, and shifted the inter-response time distributions to the right in a pattern characteristic of antidepressant drugs. In addition, a positive synergistic interaction occurred when testing low doses of the 5-HT(2A) receptor antagonist (6.25-12.5 microg/kg) with clinically relevant doses of the SSRI fluoxetine (2.5-5 mg/kg), which both exerted minimal antidepressant-like effects by themselves. In vivo microdialysis study revealed that a low dose of M100907 (12.5 microg/kg) did not elevate extracellular 5-HT levels in the prefrontal cortex over those observed with fluoxetine alone (5 mg/kg). These results will be discussed in the context that the combined blockade of 5-HT(2A) receptors and serotonin transporters (SERT) may result in greater efficacy in treating neuropsychiatric syndromes than blocking either site alone.

  13. Role of serotonin 5-HT2A receptors in the development of cardiac hypertrophy in response to aortic constriction in mice.

    PubMed

    Lairez, O; Cognet, T; Schaak, S; Calise, D; Guilbeau-Frugier, C; Parini, A; Mialet-Perez, J

    2013-06-01

    Serotonin, in addition to its fundamental role as a neurotransmitter, plays a critical role in the cardiovascular system, where it is thought to be involved in the development of cardiac hypertrophy and failure. Indeed, we recently found that mice with deletion of monoamine oxidase A had enhanced levels of blood and cardiac 5-HT, which contributed to exacerbation of hypertrophy in a model of experimental pressure overload. 5-HT2A receptors are expressed in the heart and mediate a hypertrophic response to 5-HT in cardiac cells. However, their role in cardiac remodeling in vivo and the signaling pathways associated are not well understood. In the present study, we evaluated the effect of a selective 5-HT2A receptor antagonist, M100907, on the development of cardiac hypertrophy induced by transverse aortic constriction (TAC). Cardiac 5-HT2A receptor expression was transiently increased after TAC, and was recapitulated in cardiomyocytes, as observed with 5-HT2A in situ labeling by immunohistochemistry. Selective blockade of 5-HT2A receptors prevented the development of cardiac hypertrophy, as measured by echocardiography, cardiomyocyte area and heart weight-to-body weight ratio. Interestingly, activation of calmodulin kinase (CamKII), which is a core mechanism in cardiac hypertrophy, was reduced in cardiac samples from M100907-treated TAC mice compared to vehicle-treated mice. In addition, phosphorylation of histone deacetylase 4 (HDAC4), a downstream partner of CamKII was significantly diminished in M100907-treated TAC mice. Thus, our results show that selective blockade of 5-HT2A receptors has beneficial effect in the development of cardiac hypertrophy through inhibition of the CamKII/HDAC4 pathway.

  14. Amelioration of hypoxia-induced striatal 5-HT(2A) receptor, 5-HT transporter and HIF1 alterations by glucose, oxygen and epinephrine in neonatal rats.

    PubMed

    Anju, T R; Paulose, C S

    2011-09-20

    Alterations in neurotransmitters and its receptors expression induce brain injury during neonatal hypoxic insult. Molecular processes regulating the serotonergic receptors play an important role in the control of respiration under hypoxic insult. The present study focused on the serotonergic regulation of neonatal hypoxia and its resuscitation methods. Receptor binding assays and gene expression studies were done to evaluate the changes in 5HT(2A) receptors and its transporter in the corpus striatum of hypoxic neonatal rats and hypoxic rats resuscitated with glucose, oxygen and epinephrine. Total 5HT and 5HT(2A) receptor number was increased in hypoxic neonates along with an up regulation of 5HT(2A) receptor and 5HT transporter gene. The enhanced striatal 5HT(2A) receptors modulate the ventilatory response to hypoxia. Immediate glucose resuscitation was found to ameliorate the receptor and transporter alterations. Hypoxia induced ATP depletion mediated reduction in blood glucose levels can be encountered by glucose administration and oxygenation helps in overcoming the anaerobic condition. The adverse effect of immediate oxygenation and epinephrine supplementation was also reported. This has immense clinical significance in establishing a proper resuscitation for the management of neonatal hypoxia.

  15. Internalization and recycling of 5-HT2A receptors activated by serotonin and protein kinase C-mediated mechanisms

    PubMed Central

    Bhattacharyya, Samarjit; Puri, Sapna; Miledi, Ricardo; Panicker, Mitradas M.

    2002-01-01

    Serotonin (5-HT), a major neurotransmitter, has a large number of G protein-coupled receptors in mammals. On activation by exposure to their ligand, 5-HT2 receptor subtypes increase IP3 levels and undergo desensitization and internalization. To visualize the receptor in cells during these processes, we have constructed a 5-HT2A-enhanced GFP (SR2-GFP) fusion receptor. We show that this fusion receptor undergoes internalization on exposure to its natural ligand, 5-HT. Because 5-HT2A receptors activate the phospholipase C pathway, we studied the effect of protein kinase C (PKC) on the internalization process and found that activation of PKC by its specific activator phorbol 12-myristate 13-acetate, in the absence of 5-HT, leads to internalization of the receptor. Moreover, inhibition of PKC by its inhibitor sphingosine in the presence of 5-HT prevents the internalization process, suggesting that activation of PKC is sufficient and necessary for the internalization of 5-HT2A receptors. We also show that SR2-GFP recycles back to the plasma membrane after 5-HT-dependent internalization, suggesting a mechanism for resensitization. In addition, receptors that have been internalized on addition of phorbol 12-myristate 13-acetate in the absence of 5-HT also recycle to the surface, with a time course similar to that seen after activation of the receptors by 5-HT. Our study suggests that 5-HT2A receptors internalize and return to the surface after both serotonin- and PKC-mediated processes. This study reveals a role for PKC in receptor internalization and also shows that 5-HT2A receptors are recycled. PMID:12388782

  16. Emotional management and 5-HT2A receptor gene variance in patients with schizophrenia.

    PubMed

    Lo, Chi-Hsuan; Tsai, Guochuan E; Liao, Chun-Hui; Wang, Ming-Yu; Chang, Jane Pei-Chen; Tsuang, Hui-Chun; Lane, Hsien-Yuan

    2010-02-01

    Individuals with schizophrenia exhibit impaired social cognitive functions, particularly emotion management. Emotion management may be partially regulated by the serotoninergic system; the -1438 A/G polymorphism in the promoter region of the 5-HT2A gene can modulate 5-HT2A activity and is linked to certain emotional traits and anger- and aggression-related behaviors. The current study aimed to investigate whether this 5-HT2A genetic variance is associated with social cognitive function, particularly the management of emotions. One hundred and fifteen patients with chronic schizophrenia were stabilized with an optimal-dose of antipsychotic treatment. All were genotyped for the -1438 A/G polymorphism and assessed with symptom rating scales, neurocognitive instruments, and the "Managing Emotions" section of Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Multiple regression showed that patients with the A/G genotype performed better than those with G/G in managing emotion (p=0.018) but did not differ from those with the A/A genotype. Regarding the two subtasks of the Managing Emotions section, the A/G heterozygotes also performed better than the G/G homozygotes in the emotion management (p=0.026) and emotional relations (p=0.027) subtasks. The results suggest that variability in the 5-HT2A gene may influence emotion management in patients with schizophrenia.

  17. Biochemical profile of YM992, a novel selective serotonin reuptake inhibitor with 5-HT2A receptor antagonistic activity.

    PubMed

    Hatanaka, K; Nomura, T; Hidaka, K; Takeuchi, H; Yatsugi, S; Fujii, M; Yamaguchi, T

    1996-01-01

    YM992, (S)-2-[[(7-fluoro-4-indanyl)oxy]methyl]morpholine monohydrochloride, exhibited the biochemical profile of a selective serotonin (5-HT) reuptake inhibitor (SSRI) with 5-HT2A receptor antagonistic activity. YM922 showed the same high affinity as fluoxetine against the 5-HT reuptake site (Ki = 21 nM) and a similar affinity to that of crazodone against the 5-HT2A receptor (Ki = 86 nM). In other receptor binding studies, an affinity for the adrenergic alpha 1 receptor (Ki = 200 nM) and 5-HT2C receptor (Ki = 680 nM) was observed. In a monoamine uptake study, YM992 showed a selective 5-HT uptake inhibition (IC50 = 0.15 microM), but only very weakly inhibited both noradrenaline (NA) and dopamine (DA) uptake (IC50 = 3.1 microM (NA), > 10 microM (DA)). YM992 was also found to potently inhibit the aggregation of human platelets (IC50 = 1.9 microM), revealing antagonistic activity for the 5-HT2A receptor in vitro. Enhanced serotonergic neurotransmission, in particular that mediated by the 5-HT1A receptor, has recently been reported to be important in the long-term treatment of depressive disorders with antidepressants. In addition, some 5-HT1A receptor-mediated responses are known to be potentiated by co-administration of 5-HT2A receptor antagonists. Thus, YM992, having both selective 5-HT reuptake inhibition and 5-HT2A antagonistic activity, might show potent therapeutic activity as a novel antidepressant in comparison with conventional SSRIs.

  18. Molecular dynamics of 5-HT1A and 5-HT2A serotonin receptors with methylated buspirone analogues

    NASA Astrophysics Data System (ADS)

    Bronowska, Agnieszka; Chilmonczyk, Zdzisław; Leś, Andrzej; Edvardsen, Øyvind; Østensen, Roy; Sylte, Ingebrigt

    2001-11-01

    In the present study experimentally determined ligand selectivity of three methylated buspirone analogues (denoted as MM2, MM5 and P55) towards 5-HT1A and 5-HT2A serotonin receptors was theoretically investigated on a molecular level. The relationships between the ligand structure and 5-HT1A and 5-HT2A receptor affinities were studied and the results were found to be in agreement with the available site-directed mutagenesis and binding affinity data. Molecular dynamics (MD) simulations of ligand-receptor complexes were performed for each investigated analogue, docked twice into the central cavity of 5-HT1A/5-HT2A, each time in a different orientation. Present results were compared with our previous theoretical results, obtained for buspirone and its non-methylated analogues. It was found that due to the presence of the methyl group in the piperazine ring the ligand position alters and the structure of the ligand-receptor complex is modified. Further, the positions of derivatives with pyrimidinyl aromatic moiety and quinolinyl moiety are significantly different at the 5-HT2A receptor. Thus, methylation of such derivatives alters the 3D structures of ligand-receptor complexes in different ways. The ligand-induced changes of the receptor structures were also analysed. The obtained results suggest, that helical domains of both receptors have different dynamical behaviour. Moreover, both location and topography of putative binding sites for buspirone analogues are different at 5-HT1A and 5-HT2A receptors.

  19. Serotonin 5-HT2A receptor gene variants influence antidepressant response to repeated total sleep deprivation in bipolar depression.

    PubMed

    Benedetti, Francesco; Barbini, Barbara; Bernasconi, Alessandro; Fulgosi, Mara Cigala; Colombo, Cristina; Dallaspezia, Sara; Gavinelli, Chiara; Marino, Elena; Pirovano, Adele; Radaelli, Daniele; Smeraldi, Enrico

    2008-12-12

    5-HT2A receptor density in prefrontal cortex was associated with depression and suicide. 5-HT2A receptor gene polymorphism rs6313 was associated with 5-HT2A receptor binding potential, with the ability of individuals to use environmental support in order to prevent depression, and with sleep improvement after antidepressant treatment with mirtazapine. Studies on response to antidepressant drugs gave inconsistent results. Here we studied the effect of rs6313 on response to repeated total sleep deprivation (TSD) in 80 bipolar depressed inpatients treated with three consecutive TSD cycles (each one made of 36 h awake followed by a night of undisturbed sleep). All genotype groups showed comparable acute effects of the first TSD, but patients homozygotes for the T variant had better perceived and observed benefits from treatment than carriers of the C allele. These effects became significant after the first recovery night and during the following days, leading to a 36% higher final response rate (Hamilton depression rating<8). The higher density of postsynaptic excitatory 5-HT2A receptors in T/T homozygotes could have led to higher behavioural effects of increased 5-HT neurotransmission due to repeated TSD. Other possible mechanisms involve allostatic/homeostatic adaptation to sleep loss, and a different effect of the allele variants on epigenetic influences. Results confirm the interest for individual gene variants of the serotonin pathway in shaping clinical characteristics of depression and antidepressant response.

  20. Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia

    PubMed Central

    Moreno, José L.; Miranda-Azpiazu, Patricia; García-Bea, Aintzane; Younkin, Jason; Cui, Meng; Kozlenkov, Alexey; Ben-Ezra, Ariel; Voloudakis, Georgios; Fakira, Amanda K.; Baki, Lia; Ge, Yongchao; Georgakopoulos, Anastasios; Morón, José A.; Milligan, Graeme; López-Giménez, Juan F.; Robakis, Nikolaos K.; Logothetis, Diomedes E.; Meana, J. Javier; González-Maeso, Javier

    2016-01-01

    Heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors (GPCRs) can form multiprotein complexes (heteromers), which can alter the pharmacology and functions of the constituent receptors. Previous findings demonstrated that the Gq/11-coupled serotonin 5-HT2A receptor and the Gi/o-coupled metabotropic glutamate 2 (mGlu2) receptor—GPCRs that are involved in signaling alterations associated with psychosis—assemble into a heteromeric complex in the mammalian brain. In single-cell experiments with various mutant versions of the mGlu2 receptor, we showed that stimulation of cells expressing mGlu2–5-HT2A heteromers with an mGlu2 agonist led to activation of Gq/11 proteins by the 5-HT2A receptors. For this crosstalk to occur, one of the mGlu2 subunits had to couple to Gi/o proteins, and we determined the relative location of the Gi/o-contacting subunit within the mGlu2 homodimer of the heteromeric complex. Additionally, mGlu2-dependent activation of Gq/11, but not Gi/o, was reduced in the frontal cortex of 5-HT2A knockout mice and was reduced in the frontal cortex of postmortem brains from schizophrenic patients. These findings offer structural insights into this important target in molecular psychiatry. PMID:26758213

  1. MDMA Increases Excitability in the Dentate Gyrus: Role of 5HT2A Receptor Induced PGE2 Signaling

    PubMed Central

    Collins, Stuart A.; Huff, Courtney; Chiaia, Nicolas; Gudelsky, Gary A.; Yamamoto, Bryan K.

    2015-01-01

    MDMA is a widely abused psychostimulant which causes release of serotonin in various forebrain regions. Recently, we reported that MDMA increases extracellular glutamate concentrations in the dentate gyrus, via activation of 5HT2A receptors. We examined the role of prostaglandin signaling in mediating the effects of 5HT2A receptor activation on the increases in extracellular glutamate and the subsequent long-term loss of parvalbumin interneurons in the dentate gyrus caused by MDMA. Administration of MDMA into the dentate gyrus of rats increased PGE2 concentrations which was prevented by coadministration of MDL100907, a 5HT2A receptor antagonist. MDMA-induced increases in extracellular glutamate were inhibited by local administration of SC-51089, an inhibitor of the EP1 prostaglandin receptor. Systemic administration of SC-51089 during injections of MDMA prevented the decreases in parvalbumin interneurons observed 10 days later. The loss of parvalbumin immunoreactivity after MDMA exposure coincided with a decrease in paired-pulse inhibition and afterdischarge threshold in the dentate gyrus. These changes were prevented by inhibition of EP1 and 5HT2A receptors during MDMA. Additional experiments revealed an increased susceptibility to kainic acid-induced seizures in MDMA treated rats which could be prevented with SC51089 treatments during MDMA exposure. Overall, these findings suggest that 5HT2A receptors mediate MDMA-induced PGE2 signaling and subsequent increases in glutamate. This signaling mediates parvalbumin cell losses as well as physiologic changes in the dentate gyrus, suggesting that the lack of the inhibition provided by these neurons increases the excitability within the dentate gyrus of MDMA treated rats. PMID:26670377

  2. Detection of new biased agonists for the serotonin 5-HT2A receptor: modeling and experimental validation.

    PubMed

    Martí-Solano, Maria; Iglesias, Alba; de Fabritiis, Gianni; Sanz, Ferran; Brea, José; Loza, M Isabel; Pastor, Manuel; Selent, Jana

    2015-04-01

    Detection of biased agonists for the serotonin 5-HT2A receptor can guide the discovery of safer and more efficient antipsychotic drugs. However, the rational design of such drugs has been hampered by the difficulty detecting the impact of small structural changes on signaling bias. To overcome these difficulties, we characterized the dynamics of ligand-receptor interactions of known biased and balanced agonists using molecular dynamics simulations. Our analysis revealed that interactions with residues S5.46 and N6.55 discriminate compounds with different functional selectivity. Based on our computational predictions, we selected three derivatives of the natural balanced ligand serotonin and experimentally validated their ability to act as biased agonists. Remarkably, our approach yielded compounds promoting an unprecedented level of signaling bias at the 5-HT2A receptor, which could help interrogate the importance of particular pathways in conditions like schizophrenia.

  3. Cartography of 5-HT1A and 5-HT2A Receptor Subtypes in Prefrontal Cortex and Its Projections.

    PubMed

    Mengod, Guadalupe; Palacios, José M; Cortés, Roser

    2015-07-15

    Since the development of chemical neuroanatomical tools in the 1960s, a tremendous wealth of information has been generated on the anatomical components of the serotonergic system, at the microscopic level in the brain including the prefrontal cortex (PFC). The PFC receives a widespread distribution of serotonin (5-hydroxytryptamine, 5-HT) terminals from the median and dorsal raphe nuclei. 5-HT receptors were first visualized using radioligand autoradiography in the late 1980s and early 1990s and showed, in contrast to 5-HT innervation, a differential distribution of binding sites associated with different 5-HT receptor subtypes. Due to the cloning of the different 5-HT receptor subtype genes in the late 1980s and early 1990s, it was possible, using in situ hybridization histochemistry, to localize cells expressing mRNA for these receptors. Double in situ hybridization histochemistry and immunohistochemistry allowed for the chemical characterization of the phenotype of cells expressing 5-HT receptors. Tract tracing technology allowed a detailed cartography of the neuronal connections of PFC and other brain areas. Based on these data, maps have been constructed that reflect our current understanding of the different circuits where 5-HT receptors can modulate the electrophysiological, pharmacological, and behavioral functions of the PFC. We will review current knowledge regarding the cellular localization of 5-HT1A and 5-HT2A receptors in mammalian PFC and their possible functions in the neuronal circuits of the PFC. We will discuss data generated in our laboratory as well as in others, focusing on localization in the pyramidal and GABAergic neuronal cell populations in different mammalian species using molecular neuroanatomy and on the connections with other brain regions.

  4. Differential involvement of 5-HT(2A) receptors in the discriminative-stimulus effects of cocaine and methamphetamine.

    PubMed

    Munzar, Patrik; Justinova, Zuzana; Kutkat, Scott W; Goldberg, Steven R

    2002-02-01

    Involvement of 5-HT(2A) receptors in the discriminative-stimulus effects of cocaine versus methamphetamine was studied in Sprague Dawley rats (n=10) trained to discriminate 10 mg/kg cocaine, i.p., from saline under a fixed-ratio 10 (FR10) schedule of food presentation. The ability of (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT(2A) receptor agonist, and ketanserin, a 5-HT(2A) receptor antagonist, to either substitute for or block the discriminative-stimulus effects of cocaine, or to shift the cocaine dose-response curve, was evaluated. DOI (0.18-1.0 mg/kg) partially substituted for the training dose of 10 mg/kg cocaine, but only at doses that decreased rates of responding. At the highest dose of DOI tested (1.0 mg/kg), there was about 65% cocaine-appropriate responding. Substitution of DOI for cocaine and DOI-induced decreases in rates of responding were completely reversed by ketanserin (3.0 mg/kg). Ketanserin (3.0 mg/kg) also produced a significant shift to the right of the cocaine dose-response curve and antagonized increases in rates of responding produced by lower doses of cocaine. Ketanserin (1.0-10.0 mg/kg), however, did not block the discriminative-stimulus effects of the training dose of cocaine. When DOI (0.3 mg/kg) was co-administered with different doses of cocaine, there was a slight leftward shift in the cocaine dose-response curve, which was not significant and appeared to reflect simple additive effects of DOI and cocaine. In contrast, the same dose of DOI (0.3 mg/kg) produced a marked and highly significant shift to the left of the methamphetamine (0.18-1.0 mg/kg) dose-response curve in the same subjects and the effects of DOI and methamphetamine were clearly more than additive. The present findings provide new evidence that there is some serotonergic modulation of cocaine's discriminative-stimulus actions, which appears to involve stimulation of 5-HT(2A) receptors. However, involvement of 5-HT(2A) receptor activity in the

  5. Involvement of 5-HT(2A/2B/2C) receptors on memory formation: simple agonism, antagonism, or inverse agonism?

    PubMed

    Meneses, Alfredo

    2002-12-01

    1. The 5-HT2 receptors subdivision into the 5-HT(2A/2B/2C) subtypes along with the advent of the selective antagonists has allowed a more detailed investigation on the role and therapeutic significance of these subtypes in cognitive functions. The present study further analyzed the 5-HT2 receptors role on memory consolidation. 2. The SB-200646 (a selective 5-HT(2B/2C) receptor antagonist) and LY215840 (a nonselective 5-HT(2/7) receptor antagonist) posttraining administration had no effect on an autoshaped memory consolidation. However, both drugs significantly and differentially antagonized the memory impairments induced by 1-(3-chlorophenyl)piperazine (mCPP), 1-naphtyl-piperazine (1-NP), mesulergine, or N-(3-trifluoromethylphenyl) piperazine (TFMPP). 3. In contrast, SB-200646 failed to modify the facilitatory procognitive effect produced by (+/-)-2.5-dimethoxy-4-iodoamphetamine (DOI) or ketanserin, which were sensitive to MDL100907 (a selective 5-HT2A receptor antagonist) and to a LY215840 high dose. 4. Finally, SB-200646 reversed the learning deficit induced by dizocilpine, but not that by scopolamine: while SB-200646 and MDL100907 coadministration reversed memory deficits induced by both drugs. 5. It is suggested that 5-HT(2B/2C) receptors might be involved on memory formation probably mediating a suppressive or constraining action. Whether the drug-induced memory impairments in this study are explained by simple agonism, antagonism, or inverse agonism at 5-HT2 receptors remains unclear at this time. 6. Notably, the 5-HT2 receptor subtypes blockade may provide some benefit to reverse poor memory consolidation conditions associated with decreasedcholinergic, glutamatergic, and/or serotonergic neurotransmission.

  6. Blockade of Serotonin 5-HT2A Receptors Suppresses Behavioral Sensitization and Naloxone-Precipitated Withdrawal Symptoms in Morphine-Treated Mice

    PubMed Central

    Pang, Gang; Wu, Xian; Tao, Xinrong; Mao, Ruoying; Liu, Xueke; Zhang, Yong-Mei; Li, Guangwu; Stackman, Robert W.; Dong, Liuyi; Zhang, Gongliang

    2016-01-01

    The increasing prescription of opioids is fueling an epidemic of addiction and overdose deaths. Morphine is a highly addictive drug characterized by a high relapse rate – even after a long period of abstinence. Serotonin (5-HT) neurotransmission participates in the development of morphine dependence, as well as the expression of morphine withdrawal. In this study, we examined the effect of blockade of 5-HT2A receptors (5-HT2ARs) on morphine-induced behavioral sensitization and withdrawal in male mice. 5-HT2AR antagonist MDL 11,939 (0.5 mg/kg, i.p.) suppressed acute morphine (5.0 mg/kg, s.c.)-induced increase in locomotor activity. Mice received morphine (10 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of morphine (10 mg/kg) was administered to induce the expression of behavioral sensitization. MDL 11,939 (0.5 mg/kg, i.p.) pretreatment suppressed the expression of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. MDL 11,939 (0.5 mg/kg, i.p.) prevented naloxone-precipitated withdrawal in morphine-dependent mice on day 7. Moreover, chronic morphine treatment increased 5-HT2AR protein level and decreased the phosphorylation of extracellular signal-regulated kinases in the prefrontal cortex. Together, these results by the first time demonstrate that 5-HT2ARs modulate opioid dependence and blockade of 5-HT2AR may represent a novel strategy for the treatment of morphine use disorders. Highlights (i) Blockade of 5-HT2A receptors suppresses the expression of morphine-induced behavioral sensitization. (ii) Blockade of 5-HT2A receptors suppresses naloxone-precipitated withdrawal in morphine-treated mice. (iii) Chronic morphine exposure induces an increase in 5-HT2A receptor protein level and a decrease in ERK protein phosphorylation in prefrontal cortex. PMID:28082900

  7. Long-term estrogen therapy and 5-HT(2A) receptor binding in postmenopausal women; a single photon emission tomography (SPET) study.

    PubMed

    Compton, J; Travis, M J; Norbury, R; Erlandsson, K; van Amelsvoort, T; Daly, E; Waddington, W; Matthiasson, P; Eersels, J L H; Whitehead, M; Kerwin, R W; Ell, P J; Murphy, D G M

    2008-01-01

    Variation in estrogen level is reported by some to affect brain maturation and memory. The neurobiological basis for this may include modulation of the serotonergic system. No neuroimaging studies have directly examined the effect of extended estrogen therapy (ET), on the 5-HT(2A) receptor in human brain. We investigated the effect of long-term ET on cortical 5-HT(2A) receptor availability in postmenopausal women. In a cross-sectional study, we compared cortical 5-HT(2A) receptor availability in 17 postmenopausal ERT-naive women and 17 long-term oophorectomised estrogen-users, age- and IQ-matched using single photon emission tomography and the selective 5-HT(2A) receptor ligand (123)I-5-I-R91150. Also, we used the Revised Wechsler Memory Scale to relate memory function to 5-HT(2A) receptor availability. Never-users had significantly higher 5-HT(2A) receptor availability than estrogen-users in hippocampus (1.17 vs. 1.11, respectively, p=0.02), although this did not remain significant after correction for multiple comparisons. Hippocampal 5-HT(2A) receptor availability correlated negatively with verbal and general memory and delayed recall (r=-0.45, p=0.01; r=-0.40, p=0.02; r=-0.36, p=0.04). Right superior temporal 5-HT(2A) receptor availability correlated negatively with verbal memory (r=-0.36, p=0.04). In estrogen-users, receptor availability correlated negatively with verbal and general memory (r=-0.70, p=0.002; r=-0.69, p=0.002); and in never-users, receptor availability negatively correlated with attention and concentration (r=-0.54, p=0.02). Long-term ET may be associated with lower 5-HT(2A) receptor availability in hippocampus. This may reflect increased activity within the serotonergic pathway leading to down-regulation of post-synaptic receptor. Also, increased availability of the 5-HT(2A) receptor in hippocampus is associated with poorer memory function.

  8. Discovering the mechanisms underlying serotonin (5-HT)2A and 5-HT2C receptor regulation following nicotine withdrawal in rats.

    PubMed

    Zaniewska, Magdalena; Alenina, Natalia; Wydra, Karolina; Fröhler, Sebastian; Kuśmider, Maciej; McCreary, Andrew C; Chen, Wei; Bader, Michael; Filip, Małgorzata

    2015-08-01

    We have previously demonstrated that nicotine withdrawal produces depression-like behavior and that serotonin (5-HT)2A/2C receptor ligands modulate that mood-like state. In the present study we aimed to identify the mechanisms (changes in radioligand binding, transcription or RNA-editing) related to such a behavioral outcome. Rats received vehicle or nicotine (0.4 mg/kg, s.c.) for 5 days in home cages. Brain 5-HT2A/2C receptors were analyzed on day 3 of nicotine withdrawal. Nicotine withdrawal increased [(3)H]ketanserin binding to 5-HT2A receptors in the ventral tegmental area and ventral dentate gyrus, yet decreased binding in the nucleus accumbens shell. Reduction in [(3)H]mesulergine binding to 5-HT2C receptors was seen in the ventral dentate gyrus. Profound decrease in the 5-HT2A receptor transcript level was noted in the hippocampus and ventral tegmental area. Out of five 5-HT2C receptor mRNA editing sites, deep sequencing data showed a reduction in editing at the E site and a trend toward reduction at the C site in the hippocampus. In the ventral tegmental area, a reduction for the frequency of CD 5-HT2C receptor transcript was seen. These results show that the reduction in the 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor density in the hippocampus and ventral tegmental area during nicotine withdrawal, while decreased 5-HT2C receptor mRNA editing may explain the reduction in receptor labeling in the hippocampus. Serotonin (5-HT)2A/2C receptor ligands alleviate depression-like state in nicotine-withdrawn rats. Here, we show that the reduction in 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor number in the hippocampus and ventral tegmental area during nicotine withdrawal, while attenuated 5-HT2C receptor mRNA editing in the hippocampus might explain reduced inverse agonist binding to 5-HT2C receptor and suggest a shift toward a population of more active receptors. 5

  9. Psychological, neuroimaging, and biochemical studies on functional association between impulsive behavior and the 5-HT2A receptor gene polymorphism in humans.

    PubMed

    Nomura, Michio; Nomura, Yasuyuki

    2006-11-01

    It has been suggested that impulsive behavior is caused by dysfunctional serotonergic 5-HT neurotransmission in the central nervous system (CNS). Brain neuroimaging studies have shown that behavioral inhibition is linked to the activation of cortex sites such as the ventral frontal cortex. Positron emission tomography (PET) imaging with [(18)F]altanserin to characterize 5-HT(2A) receptor binding revealed a reduction in 5-HT(2A) binding in the ventral frontal cortex in women who had recovered from impulsive diseases. These clinical, neuroimaging, and pharmacological studies appear to support the hypothesis that functional alteration of neurotransmission due to genetic polymorphisms of the 5-HT receptors may be involved in impulsive behavior modulation. Following evaluation by a self-reporting measure, it was proposed that a polymorphism in the promoter of the 5-HT(2A) receptor gene is the underlying cause of impulsive behavior; however, this hypothesis is not convincing. We examined whether the polymorphism in the 5-HT(2A) receptor gene promoter is involved in impulsive aggression by evaluating a behavioral task (Go/No-go task) in normal volunteers. The polymorphism of the 5-HT(2A) receptor gene promoter in lymphocytes from 71 volunteers was analyzed by using PCR. Impulsivity was defined as the number of commission errors (responding when one should not) recorded during a Go/No-go task; a larger number of commission errors indicate greater difficulty in inhibiting impulsive behavior. The subjects of the A-1438A allele group for the 5-HT(2A) receptor gene made more commission errors under the punishment-reward (PR)condition in a Go/No-go task than those in the G-1438G group. In the present review, we discuss and suggest the possible involvement of the A-1438A polymorphism of the 5HT2A receptor gene promoter in impulsive behavior. This hypothesis was evaluated by using a behavioral task measure that could directly reveal impulsive behavioral traits in humans.

  10. A homology-based model of the human 5-HT2A receptor derived from an in silico activated G-protein coupled receptor

    NASA Astrophysics Data System (ADS)

    Chambers, James J.; Nichols, David E.

    2002-07-01

    A homology-based model of the 5-HT2A receptor was produced utilizing an activated form of the bovine rhodopsin (Rh) crystal structure [1,2]. In silico activation of the Rh structure was accomplished by isomerization of the 11- cis-retinal (1) chromophore, followed by constrained molecular dynamics to relax the resultant high energy structure. The activated form of Rh was then used as a structural template for development of a human 5-HT2A receptor model. Both the 5-HT2A receptor and Rh are members of the G-protein coupled receptor (GPCR) super-family. The resulting homology model of the receptor was then used for docking studies of compounds representing a cross-section of structural classes that activate the 5-HT2A receptor, including ergolines, tryptamines, and amphetamines. The ligand/receptor complexes that ensued were refined and the final binding orientations were observed to be compatible with much of the data acquired through both diversified ligand design and site directed mutagenesis.

  11. Distribution of 5-HT2A receptor immunoreactivity in the rat amygdaloid complex and colocalization with γ-aminobutyric acid.

    PubMed

    Bombardi, Cristiano

    2011-01-25

    The 5-HT2A receptor (5-HT2Ar) is located in a variety of excitatory and inhibitory neurons in many regions of the central nervous system and is a major target for atypical antipsychotic drugs. In the present study, an immunoperoxidase experiment was used to investigate the distribution of 5-HT2Ar immunoreactivity in the rat amygdaloid complex. In the basolateral amygdala, the colocalization of 5-HT2Ar with inhibitory transmitter γ-aminobutyric acid (GABA) was studied using double-immunofluorescence confocal microscopy. The staining pattern obtained was colchicine-sensitive. In fact, pretreatment with colchicine increased the number of 5-HT2Ar-immunoreactive somata. Accordingly, with the exception of the intercalated nuclei, the amygdaloid complex of colchicine-injected rats exhibited a high density of 5-HT2Ar-IR somata. Morphological analyses indicated that 5-HT2Ar was located on both excitatory and inhibitory neurons in the rat amygdaloid complex. In addition, double-immunofluorescence observations revealed that the great majority of GABA-immunoreactive neurons in the basolateral amygdala exhibited 5-HT2Ar immunoreactivity (66.3%-70.6% depending on the nucleus). These data help to clarify the complex role of the 5-HT2Ar in the amygdaloid complex suggesting that this receptor can regulate amygdaloid activity by acting on different neuronal populations.

  12. Increasing spinal 5-HT2A receptor responsiveness mediates anti-allodynic effect and potentiates fluoxetine efficacy in neuropathic rats. Evidence for GABA release.

    PubMed

    Dupuis, Amandine; Wattiez, Anne-Sophie; Pinguet, Jérémy; Richard, Damien; Libert, Frédéric; Chalus, Maryse; Aissouni, Youssef; Sion, Benoit; Ardid, Denis; Marin, Philippe; Eschalier, Alain; Courteix, Christine

    2017-04-01

    Antidepressants are one of the first line treatments for neuropathic pain but their use is limited by the incidence and severity of side effects of tricyclics and the weak effectiveness of selective serotonin reuptake inhibitors (SSRIs). Serotonin type 2A (5-HT2A) receptors interact with PDZ proteins that regulate their functionality and SSRI efficacy to alleviate pain. We investigated whether an interfering peptide (TAT-2ASCV) disrupting the interaction between 5-HT2A receptors and associated PDZ proteins would improve the treatment of traumatic neuropathic allodynia. Tactile allodynia was assessed in spinal nerve ligation-induced neuropathic pain in rats using von Frey filaments after acute treatment with TAT-2ASCV and/or 5-HT2A receptor agonist, alone or in combination with repeated treatment with fluoxetine. In vivo microdialysis was performed in order to examine the involvement of GABA in TAT-2ASCV/fluoxetine treatment-associated analgesia. TAT-2ASCV (100ng, single i.t. injection) improved SNL-induced tactile allodynia by increasing 5-HT2A receptor responsiveness to endogenous 5-HT. Fluoxetine alone (10mg/kg, five i.p. injections) slightly increased tactile thresholds and its co-administration with TAT-2ASCV (100ng, single i.t. injection) further enhanced the anti-allodynic effect. This effect depends on the integrity of descending serotonergic bulbospinal pathways and spinal release of GABA. The anti-allodynic effect of fluoxetine can be enhanced by disrupting 5-HT2A receptor-PDZ protein interactions. This enhancement depends on 5-HT2A receptor activation, spinal GABA release and GABAA receptor activation.

  13. Activation of 5-HT2a receptors in the basolateral amygdala promotes defeat-induced anxiety and the acquisition of conditioned defeat in Syrian hamsters.

    PubMed

    Clinard, Catherine T; Bader, Lauren R; Sullivan, Molly A; Cooper, Matthew A

    2015-03-01

    Conditioned defeat is a model in Syrian hamsters (Mesocricetus auratus) in which normal territorial aggression is replaced by increased submissive and defensive behavior following acute social defeat. The conditioned defeat response involves both a fear-related memory for a specific opponent as well as anxiety-like behavior indicated by avoidance of novel conspecifics. We have previously shown that systemic injection of a 5-HT2a receptor antagonist reduces the acquisition of conditioned defeat. Because neural activity in the basolateral amygdala (BLA) is critical for the acquisition of conditioned defeat and BLA 5-HT2a receptors can modulate anxiety but have a limited effect on emotional memories, we investigated whether 5-HT2a receptor modulation alters defeat-induced anxiety but not defeat-related memories. We injected the 5-HT2a receptor antagonist MDL 11,939 (0 mM, 1.7 mM or 17 mM) or the 5-HT2a receptor agonist TCB-2 (0 mM, 8 mM or 80 mM) into the BLA prior to social defeat. We found that injection of MDL 11,939 into the BLA impaired acquisition of the conditioned defeat response and blocked defeat-induced anxiety in the open field, but did not significantly impair avoidance of former opponents in the Y-maze. Furthermore, we found that injection of TCB-2 into the BLA increased the acquisition of conditioned defeat and increased anxiety-like behavior in the open field, but did not alter avoidance of former opponents. Our data suggest that 5-HT2a receptor signaling in the BLA is both necessary and sufficient for the development of conditioned defeat, likely via modulation of defeat-induced anxiety.

  14. Interaction between serotonin 5-HT2A receptor gene and dopamine transporter (DAT1) gene polymorphisms influences personality trait of persistence in Austrian Caucasians.

    PubMed

    Schosser, Alexandra; Fuchs, Karoline; Scharl, Theresa; Schloegelhofer, Monika; Kindler, Jochen; Mossaheb, Nilufar; Kaufmann, Rainer M; Leisch, Friedrich; Kasper, Siegfried; Sieghart, Werner; Aschauer, Harald N

    2010-03-01

    We examined 89 normal volunteers using Cloninger's Temperament and Character Inventory (TCI). Genotyping the 102T/C polymorphism of the serotonin 5HT2A receptor gene and the ser9gly polymorphism in exon 1 of the dopamine D3 receptor (DRD3) gene was performed using PCR-RFLP, whereas the dopamine transporter (DAT1) gene variable number of tandem repeats (VNTR) polymorphism was investigated using PCR amplification followed by electrophoresis in an 8% acrylamide gel with a set of size markers. We found a nominally significant association between gender and harm avoidance (P=0.017; women showing higher scores). There was no association of either DAT1, DRD3 or 5HT2A alleles or genotypes with any dimension of the TCI applying Kruskal-Wallis rank-sum tests. Comparing homozygote and heterozygote DAT1 genotypes, we found higher novelty seeking scores in homozygotes (P=0.054). We further found a nominally significant interaction between DAT1 and 5HT2A homo-/heterozygous gene variants (P=0.0071; DAT1 and 5HT2A genotypes P value of 0.05), performing multivariate analysis of variance (MANOVA). Examining the temperamental TCI subscales, this interaction was associated with persistence (genotypes: P=0.004; homo-/heterozygous gene variants: P=0.0004). We conclude that an interaction between DAT1 and 5HT2A genes might influence the temperamental personality trait persistence.

  15. Regional distribution and behavioral correlates of 5-HT(2A) receptors in Alzheimer's disease with [(18)F]deuteroaltanserin and PET.

    PubMed

    Santhosh, Lekshmi; Estok, Kristina M; Vogel, Rebecca S; Tamagnan, Gilles D; Baldwin, Ronald M; Mitsis, Effie M; Macavoy, Martha G; Staley, Julie K; van Dyck, Christopher H

    2009-09-30

    Postmortem studies show reductions in brain serotonin 2A (5-HT(2A)) receptors in Alzheimer's disease (AD). Converging evidence also suggests that serotonergic dysregulation may contribute to behavioral symptoms that frequently occur in AD. This study aimed to define regional reductions in 5-HT(2A) binding in AD patients and to examine their behavioral correlates. Nine patients with probable AD and eight elderly controls were studied using a constant infusion paradigm for equilibrium modeling of [(18)F]deuteroaltanserin with positron emission tomography (PET). Region of interest analyses were performed on PET images coregistered to MRI scans. The outcome measures BP(P) (ratio of specific brain uptake to total plasma parent concentration) and BP(ND) (ratio of specific to nondisplaceable uptake) were obtained for pertinent cortical and subcortical regions. AD patients showed a statistically significant decrease in the anterior cingulate in both BP(P) and BP(ND), but in no other region. Within the AD patient sample, no significant correlations were observed between regional 5-HT(2A) binding and behavioral measures, including depressive and psychotic symptoms. These results confirm a reduction in cortical 5-HT(2A) receptors in AD, specifically in the anterior cingulate. However, in a limited AD patient sample, they fail to demonstrate a relationship between regional 5-HT(2A) binding and major behavioral symptoms.

  16. Extensive Rigid Analogue Design Maps the Binding Conformation of Potent N-Benzylphenethylamine 5-HT2A Serotonin Receptor Agonist Ligands

    PubMed Central

    2012-01-01

    Based on the structure of the superpotent 5-HT2A agonist 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine, which consists of a ring-substituted phenethylamine skeleton modified with an N-benzyl group, we designed and synthesized a small library of constrained analogues to identify the optimal arrangement of the pharmacophoric elements of the ligand. Structures consisted of diversely substituted tetrahydroisoquinolines, piperidines, and one benzazepine. Based on the structure of (S,S)-9b, which showed the highest affinity of the series, we propose an optimal binding conformation. (S,S)-9b also displayed 124-fold selectivity for the 5-HT2A over the 5-HT2C receptor, making it the most selective 5-HT2A receptor agonist ligand currently known. PMID:23336049

  17. Role of 5-HT1B, 5-HT2A and 5-HT2C receptors in learning.

    PubMed

    Meneses, A; Hong, E

    1997-08-01

    The effects of post-training (i.p.) injection of TFMPP, mCPP, DOI or 1-NP in the autoshaping learning task was explored. Furthermore, the post-training effects of these agonists after treatment with the antagonists (+/-)-pindolol, (+/-)-propranolol, NAN-190, ketanserin, ritanserin, mesulergine, MDL-72222 or p-chloroamphetamine (5-HT depleter) were studied. Rats were individually trained with a lever-press response (conditioned response; CR) on the autoshaping task and tested 24 h later. The results showed that the injection of TFMPP (1-10 mg/kg), mCPP (1-10 mg/kg), 1-NP (0.1-1.0 mg/kg) or mesulergine (0.4 mg/kg) decreased the rate of CR, while DOI (0.01-0.1 mg/kg) and ritanserin (0.5 mg/kg) and ketanserin (0.001-0.1 mg/kg) increased it. However, the effect induced by TFMPP was reversed by (+/-)-pindolol, ketanserin, ritanserin and PCA; the mCPP-induced effect was antagonized by (+/-)-propranolol, ketanserin, ritanserin and MDL-72222; and the effect produced by 1-NP was reversed by ketanserin, ritanserin and PCA. In addition, the increment in CR provoked by DOI was enhanced by ketanserin, and reversed by ritanserin, mesulergine and PCA. These findings suggest that TFMPP, 1-NP and DOI exerted their effects via stimulation of presynaptic 5-HT receptors. The effects of mCPP most probably reflect activation of postsynaptic receptors. The present data suggest that both 5-HT1B and 5-HT2A-2C receptors play a significant role in the consolidation of learning.

  18. Effects of the serotonin 5-HT2A and 5-HT2C receptor ligands on the discriminative stimulus effects of nicotine in rats.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Przegaliński, Edmund; Filip, Malgorzata

    2007-10-01

    The present study tested the hypothesis that serotonergic (5-HT) 5-HT2A or 5-HT2C receptors or their pharmacological stimulation modulated the discriminative stimulus effects of nicotine in male Wistar rats. To this end the selective 5-HT2A receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidinemethanol (M100,907; 0.5-1 mg/kg, i.p.), the functional 5-HT2A receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI; 0.1-1 mg/kg, s.c.), the selective 5-HT2C receptor antagonist 6-chloro-5-methyl-1-{[2-(2-methylpyrid-3-yloxy)pyrid-5-yl]carbamoyl}indoline (SB 242,084; 0.25-1 mg/kg, i.p.) and the 5-HT2C receptor agonists (S)-2-chloro-5-fluoro-indol-1-yl)-1-methylethylamine fumarate (Ro 60-0175; 0.3-1 mg/kg, s.c.) and (7bR, 10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole (WAY 163,909; 0.75-1.5 mg/kg, i.p.) were used. Additionally, the effects of the selective alpha4beta2 nicotinic acetylcholine receptor subtype agonist 5-iodo-3-(2(S)-azetidinylmethoxy)pyridine (5-IA; 0.01 mg/kg, s.c.) were investigated. In rats trained to discriminate (-)-nicotine (0.4 mg/kg, s.c.) from saline in a two-lever, water-reinforced fixed ratio 10 task, substitutions were not observed with 5-HT2 receptor ligands (<32% nicotine-lever responding), conversely 5-IA induced a full substitution (100% nicotine-lever responding). In combination studies, fixed doses of M100,907 (0.5-1 mg/kg) or SB 242,084 (0.25-1 mg/kg) did not alter the dose-response curve of nicotine, while DOI (0.3 mg/kg), Ro 60-0175 (1 mg/kg) and WAY 163,909 (1 and 1.5 mg/kg) attenuated the discriminative stimulus effects of nicotine. The decrease in the expression of the discriminative stimulus effects of nicotine produced by DOI was blocked by M100,907 (1 mg/kg), but not by SB 242,084 (1 mg/kg), while that evoked by Ro 60-0175 or WAY 163,909 was blocked by SB 242,084 (1 mg/kg), but not by M100,907 (1 mg/kg). Further studies showed that

  19. INCREASED 5-HT2A RECEPTOR AVAILABILITY IN THE ORBITOFRONTAL CORTEX OF PHYSICALLY AGGRESSIVE PERSONALITY DISORDERED PATIENTS

    PubMed Central

    Rosell, Daniel R.; Thompson, Judy L.; Slifstein, Mark; Xu, Xiaoyan; Frankle, W. Gordon; New, Antonia S.; Goodman, Marianne; Weinstein, Shauna R.; Laruelle, Marc; Dargham, Anissa Abi; Siever, Larry J.

    2011-01-01

    Background Impulsive physical aggression is a common and problematic feature of many personality disorders. The serotonergic system is known to be involved in the pathophysiology of aggression, and multiple lines of evidence have implicated the 5-HT2A receptor (5-HT2AR). We sought to examine the role of the 5-HT2AR in impulsive aggression specifically in the orbitofrontal cortex (OFC), given that our own studies and an extensive literature indicate that serotonergic disturbances in the OFC are linked to aggression. We have previously hypothesized that increased 5-HT2AR function in the OFC is a state phenomenon which promotes impulsive aggression. Methods 5-HT2AR availability was measured with positron emission tomography and the selective 5-HT2AR antagonist radioligand [11C]MDL100907 in two groups of impulsively aggressive personality disordered patients --14 with current physical aggression, and 15 without current physical aggression --and 25 healthy controls. Clinical ratings of various symptom dimensions were also obtained. Results Orbitofrontal 5-HT2AR availability was greater in patients with current physical aggression compared to patients without current physical aggression and healthy controls; no differences in OFC 5-HT2AR availability were observed between patients without current physical aggression and healthy controls. No significant differences in 5-HT2AR availability were observed in other brain regions examined. Among both groups of impulsively aggressive personality disordered patients combined, OFC 5-HT2AR availability was correlated, specifically, with a state measure of impulsive aggression. Conclusions These findings are consistent with our previously described model in which impulsive aggression is related to dynamic changes in 5-HT2AR function in the OFC. PMID:20434136

  20. Tolerance to LSD and DOB induced shaking behaviour: differential adaptations of frontocortical 5-HT(2A) and glutamate receptor binding sites.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Dieterich, Daniela C; Grecksch, Gisela; Höllt, Volker

    2015-03-15

    Serotonergic hallucinogens, such as lysergic acid diethylamide (LSD) and dimethoxy-bromoamphetamine (DOB), provoke stereotype-like shaking behaviour in rodents, which is hypothesised to engage frontocortical glutamate receptor activation secondary to serotonin2A (5-HT2A) related glutamate release. Challenging this hypothesis, we here investigate whether tolerance to LSD and DOB correlates with frontocortical adaptations of 5-HT2A and/or overall-glutamate binding sites. LSD and DOB (0.025 and 0.25 mg/kg, i.p.) induce a ketanserin-sensitive (0.5 mg/kg, i.p., 30-min pretreatment) increase in shaking behaviour (including head twitches and wet dog shakes), which with repeated application (7× in 4 ds) is undermined by tolerance. Tolerance to DOB, as indexed by DOB-sensitive [(3)H]spiroperidol and DOB induced [(35)S]GTP-gamma-S binding, is accompanied by a frontocortical decrease in 5-HT2A binding sites and 5-HT2 signalling, respectively; glutamate-sensitive [(3)H]glutamate binding sites, in contrast, remain unchanged. As to LSD, 5-HT2 signalling and 5-HT2A binding, respectively, are not or only marginally affected, yet [(3)H]glutamate binding is significantly decreased. Correlation analysis interrelates tolerance to DOB to the reduced 5-HT2A (r=.80) as well as the unchanged [(3)H]glutamate binding sites (r=.84); tolerance to LSD, as opposed, shares variance with the reduction in [(3)H]glutamate binding sites only (r=.86). Given that DOB and LSD both induce tolerance, one correlating with 5-HT2A, the other with glutamate receptor adaptations, it might be inferred that tolerance can arise at either level. That is, if a hallucinogen (like LSD in our study) fails to induce 5-HT2A (down-)regulation, glutamate receptors (activated postsynaptic to 5-HT2A related glutamate release) might instead adapt and thus prevent further overstimulation of the cortex.

  1. Effect of fluvoxamine on platelet 5-HT2A receptors as studied by [3H]lysergic acid diethylamide ([3H]LSD) binding in healthy volunteers.

    PubMed

    Spigset, O; Mjörndal, T

    1997-09-01

    Alterations in platelet 5-HT2A receptor characteristics have been reported in major depression as well as in other psychiatric diseases, and some effort has been made to utilize platelet 5-HT2A receptor status as a biological correlate to antidepressant drug response. In order to investigate whether treatment with a selective serotonin reuptake inhibitor affects platelet 5-HT2A receptors, we have studied platelet [3H]lysergic acid diethylamide ([3H]LSD) binding in healthy subjects treated with fluvoxamine in increasing dosage once weekly for 4 weeks. After 1 week of fluvoxamine treatment (25 mg/day), both Bmax and Kd were significantly lower than before the start of the treatment (19.9 versus 25.5 fmol/mg protein, P = 0.005 for Bmax; 0.45 versus 0.93 nM, P = 0.006 for Kd). Bmax returned to baseline during week 2, whereas Kd was lower than the baseline value throughout the treatment period. After discontinuation of fluvoxamine treatment, there was a significant increase in Kd (0.50 nM before discontinuation vs. 1.14 nM after discontinuation; P = 0.001), but not in Bmax. The study demonstrates that fluvoxamine affects platelet 5-HT2A receptor status irrespective of underlying psychiatric disease, and that this effect is evident already after 1 week at a subtherapeutic fluvoxamine dose.

  2. Variation in Dopamine D2 and Serotonin 5-HT2A Receptor Genes is Associated with Working Memory Processing and Response to Treatment with Antipsychotics

    PubMed Central

    Blasi, Giuseppe; Selvaggi, Pierluigi; Fazio, Leonardo; Antonucci, Linda Antonella; Taurisano, Paolo; Masellis, Rita; Romano, Raffaella; Mancini, Marina; Zhang, Fengyu; Caforio, Grazia; Popolizio, Teresa; Apud, Jose; Weinberger, Daniel R; Bertolino, Alessandro

    2015-01-01

    Dopamine D2 and serotonin 5-HT2A receptors contribute to modulate prefrontal cortical physiology and response to treatment with antipsychotics in schizophrenia. Similarly, functional variation in the genes encoding these receptors is also associated with these phenotypes. In particular, the DRD2 rs1076560 T allele predicts a lower ratio of expression of D2 short/long isoforms, suboptimal working memory processing, and better response to antipsychotic treatment compared with the G allele. Furthermore, the HTR2A T allele is associated with lower 5-HT2A expression, impaired working memory processing, and poorer response to antipsychotics compared with the C allele. Here, we investigated in healthy subjects whether these functional polymorphisms have a combined effect on prefrontal cortical physiology and related cognitive behavior linked to schizophrenia as well as on response to treatment with second-generation antipsychotics in patients with schizophrenia. In a total sample of 620 healthy subjects, we found that subjects with the rs1076560 T and rs6314 T alleles have greater fMRI prefrontal activity during working memory. Similar results were obtained within the attentional domain. Also, the concomitant presence of the rs1076560 T/rs6314 T alleles also predicted lower behavioral accuracy during working memory. Moreover, we found that rs1076560 T carrier/rs6314 CC individuals had better responses to antipsychotic treatment in two independent samples of patients with schizophrenia (n=63 and n=54, respectively), consistent with the previously reported separate effects of these genotypes. These results indicate that DRD2 and HTR2A genetic variants together modulate physiological prefrontal efficiency during working memory and also modulate the response to antipsychotics. Therefore, these results suggest that further exploration is needed to better understand the clinical consequences of these genotype–phenotype relationships. PMID:25563748

  3. Effects of the 5-HT receptor antagonists GR127935 (5-HT1B/1D) and MDL100907 (5-HT2A) in the consolidation of learning.

    PubMed

    Meneses, A; Terrón, J A; Hong, E

    1997-12-01

    We have previously reported that 5-HT1B/1D and 5-HT2A/2B/2C receptors play a role in learning and memory. The present investigation was devoted to analyze further in the autoshaping learning task: (1) the effects of the 5-HT1A/1B/1D receptor agonist, GR46611, the 5-HT1B/1D receptor antagonist, GR127935, and the selective 5-HT2A receptor antagonist, MDL100907. Consistent with a role of 5-HT1B/1D receptors in learning, the post-training injection of GR46611 (1-10 mg/kg) decreased the consolidation of learning whereas GR127935 (10 mg/kg) increased it; the effects of both drugs were reversed by PCA pretreatment. GR127935 abolished the decrease induced by GR46611, TFMPP and mCPP, whereas MDL100907 (0.1-3.0 mg/kg) had no effect by itself but abolished the effects of DOI, ketanserin and TFMPP and moderately inhibited the effects elicited by mCPP, 1-NP and mesulergine. Neither did GR127935 nor MDL100907 significantly modify the increase in the consolidation of learning induced by 8-OH-DPAT. Thus, the present findings suggest that stimulation of presynaptic 5-HT1B/1D receptors impairs the consolidation of learning whilst stimulation of 5-HT2A/2C receptors enhances it; the blockade of 5-HT2A receptors has no effects. In addition, 5-HT2 receptors seem to modulate this cognitive stage.

  4. Differences in the C-terminus contribute to variations in trafficking between rat and human 5-HT(2A) receptor isoforms: identification of a primate-specific tripeptide ASK motif that confers GRK-2 and beta arrestin-2 interactions.

    PubMed

    Bhattacharya, Aditi; Sankar, Shobhana; Panicker, Mitradas M

    2010-02-01

    Internalization and recycling of G-protein coupled receptors are important cellular processes regulating receptor function. These are receptor-subtype and cell type-specific. Although important, trafficking variations between receptor isoforms of different species has received limited attention. We report here, differences in internalization and recycling between rat and human serotonin 2A receptor (5-HT(2A)R) isoforms expressed in human embryonic kidney 293 cells in response to serotonin. Although the human and rat 5-HT(2A)Rs differ by only a few amino acids, the human receptor takes longer to recycle to the cell surface after internalization, with the additional involvement of beta arrestin-2 and G-protein receptor kinase 2. The interaction of beta arrestin-2 with the human receptor causes the delay in recycling and is dependent on a primate-specific ASK motif present in the C-terminus of the receptor. Conversion of this motif to NCT, the corresponding sequence present in the rat isoform, results in the human isoform trafficking like the rat receptor. Replacing the serine 457 with alanine in the ASK motif of human isoform resulted in faster recycling, although with continued arrestin-dependent internalization. This study establishes significant differences between the two isoforms with important implications in our understanding of the human 5-HT(2A)R functions; and indicates that extrapolating results from non-human receptor isoforms to human subtypes is not without caveats.

  5. DRD2, DRD3 and 5HT2A receptor genes polymorphisms in obsessive-compulsive disorder.

    PubMed

    Nicolini, H; Cruz, C; Camarena, B; Orozco, B; Kennedy, J L; King, N; Weissbecker, K; de la Fuente, J R; Sidenberg, D

    1996-12-01

    We performed an association analysis of the DRD2, DRD3 and 5HT2A genes polymorphisms in 67 Obsessive-Compulsive Disorder (OCD) patients and 54 healthy controls. There were no statistically significant differences in genotype or allele frequencies for any of the polymorphisms studied between OCD subjects and controls. For the subgrouped analysis, no results were significant after correction for multiple testing, although homozygosity of DRD2/A2A2 in subjects displaying vocal or motor tics approached significance compared to controls (Fisher exact test, P = 0.008). Our results may follow the notion that OCD patients with tics represent a different genetic subtype of the disease.

  6. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors.

    PubMed

    Collins, Stuart A; Gudelsky, Gary A; Yamamoto, Bryan K

    2015-08-15

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation.

  7. The role of peripheral 5HT2A and 5HT1A receptors on the orofacial formalin test in rats with persistent temporomandibular joint inflammation.

    PubMed

    Okamoto, K; Imbe, H; Tashiro, A; Kimura, A; Donishi, T; Tamai, Y; Senba, E

    2005-01-01

    The role of peripheral serotonin (5HT) 2A and 5HT1A receptors on the orofacial nocifensive behavioral activities evoked by the injection of formalin into the masseter muscle was evaluated in the rats with persistent temporomandibular joint (TMJ) inflammation evoked by Complete Freund's Adjuvant (CFA). The orofacial nocifensive behavioral activities evoked by the injection of formalin into masseter muscle were significantly enhanced at 1 day (CFA day 1 group) or 7 days (CFA day 7 group) during TMJ inflammation. Pretreatment with local administration of 5HT2A receptor antagonist, ketanserin (0.01, 0.1 mg/rat) into the masseter muscle or systemic administration of ketanserin via i.p. injection (1 mg/kg) reduced the orofacial nocifensive behavioral activities of the late phase evoked by formalin injection into masseter muscle on the side of TMJ inflammation (CFA day 7 group). However, local (0.001-0.1 mg/rat) or systemic (1 mg/kg) administration of 5HT1A receptor antagonist, propranolol, into masseter muscle did not produce the antinociceptive effect in CFA day 7 group. Moreover, local administration of ketanserin (0.1 mg) or propranolol (0.1 mg) into masseter muscle did not inhibit nocifensive orofacial behavior in rats without TMJ inflammation. These data suggest that persistent TMJ inflammation causes the elevation of the orofacial nocifensive behavior, and peripheral 5HT2A receptors play an important role in mediating the deep craniofacial tissue nociception in rats with TMJ inflammation.

  8. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors.

    PubMed

    Viñals, Xavier; Moreno, Estefanía; Lanfumey, Laurence; Cordomí, Arnau; Pastor, Antoni; de La Torre, Rafael; Gasperini, Paola; Navarro, Gemma; Howell, Lesley A; Pardo, Leonardo; Lluís, Carmen; Canela, Enric I; McCormick, Peter J; Maldonado, Rafael; Robledo, Patricia

    2015-07-01

    Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.

  9. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors

    PubMed Central

    Lanfumey, Laurence; Cordomí, Arnau; Pastor, Antoni; de La Torre, Rafael; Gasperini, Paola; Navarro, Gemma; Howell, Lesley A.; Pardo, Leonardo; Lluís, Carmen; Canela, Enric I.; McCormick, Peter J.; Maldonado, Rafael; Robledo, Patricia

    2015-01-01

    Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties. PMID:26158621

  10. LSD and DOB: interaction with 5-HT2A receptors to inhibit NMDA receptor-mediated transmission in the rat prefrontal cortex.

    PubMed

    Arvanov, V L; Liang, X; Russo, A; Wang, R Y

    1999-09-01

    Both the phenethylamine hallucinogen (-)-1-2, 5-dimethoxy-4-bromophenyl-2-aminopropane (DOB), a selective serotonin 5-HT2A,2C receptor agonist, and the indoleamine hallucinogen D-lysergic acid diethylamide (LSD, which binds to 5-HT1A, 1B, 1D, 1E, 1F, 2A, 2C, 5, 6, 7, dopamine D1 and D2, and alpha1 and alpha2 adrenergic receptors), but not their non-hallucinogenic congeners, inhibited N-methyl-D-aspartate (NMDA)-induced inward current and NMDA receptor-mediated synaptic responses evoked by electrical stimulation of the forceps minor in pyramidal cells of the prefrontal cortical slices. The inhibitory effect of hallucinogens was mimicked by 5-HT in the presence of selective 5-HT1A and 5-HT3 receptor antagonists. The inhibitory action of DOB, LSD and 5-HT on the NMDA transmission was blocked by the 5-HT2A receptor antagonists R-(+)-alpha-(2, 3-dimethoxyphenil)-1-[4-fluorophenylethyl]-4-piperidineme thanol (M100907) and ketanserin. However, at low concentrations, when both LSD and DOB by themselves only partially depressed the NMDA response, they blocked the inhibitory effect of 5-HT, suggesting a partial agonist action. Whereas N-(4-aminobutyl)-5-chloro-2-naphthalenesulphonamide (W-7, a calmodulin antagonist) and N-[2-[[[3-(4'-chlorophenyl)- 2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4'-methoxy-b enzenesulphonamide phosphate (KN-93, a Ca2+/CaM-KII inhibitor), but not the negative control 2-[N-4'methoxybenzenesulphonyl]amino-N-(4'-chlorophenyl)-2-propeny l-N -methylbenzylamine phosphate (KN-92), blocked the inhibitory action of LSD and DOB, the selective protein kinase C inhibitor chelerythrine was without any effect. We conclude that phenethylamine and indoleamine hallucinogens may exert their hallucinogenic effect by interacting with 5-HT2A receptors via a Ca2+/CaM-KII-dependent signal transduction pathway as partial agonists and modulating the NMDA receptors-mediated sensory, perceptual, affective and cognitive processes.

  11. The atypical 5-HT2 receptor mediating tachycardia in pithed rats: pharmacological correlation with the 5-HT2A receptor subtype

    PubMed Central

    Centurión, David; Ortiz, Mario I; Saxena, Pramod R; Villalón, Carlos M

    2002-01-01

    In pithed rats, 5-HT mediates tachycardia both directly (by 5-HT2 receptors) and indirectly (by a tyramine-like effect). The receptor mediating tachycardia directly has been classified as an ‘atypical' 5-HT2 receptor since it was ‘weakly' blocked by ketanserin. Moreover, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT2 agonist, failed to mimic 5-HT-induced tachycardia. Since 5-HT2 receptors consist of 5-HT2A, 5-HT2B and 5-HT2C subtypes, this study investigated if these subtypes mediate the above response. In pithed rats, intraperitoneally (i.p.) pre-treated with reserpine (5 mg kg−1), intravenous (i.v.) administration of 5-HT, 5-methoxytryptamine (5-MeO-T), 1-(3-chlorophenyl) piperazine (mCPP) and 5-carboxamidotryptamine (5-CT) (10, 30, 100 and 300 μg kg−1 each), produced dose-dependent tachycardic responses. Interestingly, DOI (10 – 1000 μg kg−1, i.v.) induced only slight, dose-unrelated, tachycardic responses, whilst the 5-HT2C agonist, Ro 60-0175 (10 – 1000 μg kg−1, i.v.), produced a slight tachycardia only at 300 and 1000 μg kg−1. In contrast, sumatriptan and 1-(m-trifluoromethylphenyl)- piperazine (TFMPP) were inactive. The rank order of potency was: 5-HT⩾5-MeO-T> mCPP⩾5-CT⩾DOI>Ro 60-0175. The tachycardic responses to 5-HT, which remained unaffected after i.v. saline (0.3 and 1 ml kg−1) or propranolol (3 mg kg−1), were selectively blocked by the 5-HT2A antagonists ketanserin (30 and 100 μg kg−1) or spiperone (10 and 30 μg kg−1) as well as by the non-selective 5-HT2 antagonists, ritanserin (10 and 30 μg kg−1) or mesulergine (100 μg kg−1). Remarkably, these responses were unaffected by the antagonists rauwolscine (5-HT2B), SB204741 (5-HT2B/2C) or Ro 04-6790 (5-ht6) (300 and 1000 μg kg−1 each). These results suggest that the ‘atypical' 5-HT2 receptors mediating tachycardia in reserpinized pithed rats are pharmacologically similar to the 5-HT2A

  12. Selective blockade of 5-HT2A receptors attenuates the increased temperature response in brown adipose tissue to restraint stress in rats.

    PubMed

    Ootsuka, Youichirou; Blessing, William W; Nalivaiko, Eugene

    2008-03-01

    Previous studies have demonstrated that 5-HT2A receptors may be involved in the central control of thermoregulation and of the cardiovascular system. Our aim was to test whether these receptors mediate thermogenic and tachycardiac responses induced by acute psychological stress. Three groups of adult male Hooded Wistar rats were instrumented with: (i) a thermistor in the interscapular area (for recording brown adipose tissue temperature) and an ultrasound Doppler probe (to record tail blood flow); (ii) temperature dataloggers to record core body temperature; (iii) ECG electrodes. On the day of the experiment, rats were subjected to a 30-min restraint stress preceded by s.c. injection of either vehicle or SR-46349B (a serotonin 2A receptor antagonist) at doses of 0.01, 0.1 and 1.0 mg/kg. The restraint stress caused a rise in brown adipose tissue temperature (from, mean +/- s.e.m., 36.6 +/- 0.2 to 38.0 +/- 0.2 degrees C), transient cutaneous vasoconstriction (tail blood flow decreased from 12 +/- 2 to 5 +/- 1 cm/s), increase in heart rate (from 303 +/- 15 to 453 +/- 15 bpm at the peak, then reduced to 393 +/- 12 bpm at the steady state), and defaecation (6 +/- 1 pellets per restraint session). The core body temperature was not affected by the restraint. Blockade of 5-HT2A receptors attenuated the increase in brown adipose tissue temperature and transient cutaneous vasoconstriction, but not tachycardia and defaecation elicited by restraint stress. These results indicate that psychological stress causes activation of 5-HT2A receptors in neural pathways that control thermogenesis in the brown adipose tissue and facilitate cutaneous vasoconstriction.

  13. Novel class of arylpiperazines containing N-acylated amino acids: their synthesis, 5-HT1A, 5-HT2A receptor affinity, and in vivo pharmacological evaluation.

    PubMed

    Zajdel, Paweł; Subra, Gilles; Bojarski, Andrzej J; Duszyńska, Beata; Tatarczyńska, Ewa; Nikiforuk, Agnieszka; Chojnacka-Wójcik, Ewa; Pawłowski, Maciej; Martinez, Jean

    2007-04-15

    Novel arylpiperazines with N-acylated amino acids, selected on the basis of a preliminary screening of two libraries previously synthesized on SynPhase Lanterns, were prepared in solution and their affinity for 5-HT(1A), 5-HT(2A), and D(2) receptors was evaluated. The compounds bearing (3-acylamino)pyrrolidine-2,5-dione (19-26) and N-acylprolinamide (29-34) moieties showed high affinity for 5-HT(1A) (K(i)=3-47 nM), high-to-low for 5-HT(2A) (K(i)=4.2-990 nM), and low for D(2) receptors (K(i)=0.77-21.19 microM). All the new o-methoxy derivatives of (3-acylamino)pyrrolidine-2,5-diones tested in vivo revealed agonistic activity at postsynaptic 5-HT(1A) receptors, while m-chloro derivatives were classified as antagonists of these sites; similar relations were observed for o-methoxy (29) and m-chlorophenylpiperazine derivatives of N-acylprolinamides. The reported results show that the amino acid-derived terminal fragment modified the in vivo functional profile. Finally, the selected compounds 19 and 20, a 5-HT(1A) partial agonist and a full agonist, respectively, and 26, a mixed 5-HT(1A)/5-HT(2A) antagonist, were evaluated in preclinical animal models of depression and anxiety. The project allowed selecting the lead compound 20 which exhibited an anxiolytic-like effect in the four-plate test in mice and revealed distinct antidepressant-like effects in the forced swimming and tail suspension tests in mice.

  14. A 5-HT2A/2C receptor agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, mitigates developmental neurotoxicity of ethanol to serotonergic neurons.

    PubMed

    Ishiguro, Tsukasa; Sakata-Haga, Hiromi; Fukui, Yoshihiro

    2016-07-01

    Prenatal ethanol exposure causes the reduction of serotonergic (5-HTergic) neurons in the midbrain raphe nuclei. In the present study, we examined whether an activation of signaling via 5-HT2A and 5-HT2C receptors during the fetal period is able to prevent the reduction of 5-HTergic neurons induced by prenatal ethanol exposure. Pregnant Sprague-Dawley rats were given a liquid diet containing 2.5 to 5.0% (w/v) ethanol on gestational days (GDs) 10 to 20 (Et). As a pair-fed control, other pregnant rats were fed the same liquid diet except that the ethanol was replaced by isocaloric sucrose (Pf). Each Et and Pf group was subdivided into two groups; one of the groups was treated with 1 mg/kg (i.p.) of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), an agonist for 5-HT2A/2C receptors, during GDs 13 to 19 (Et-DOI or Pf-DOI), and another was injected with saline vehicle only (Et-Sal or Pf-Sal). Their fetuses were removed by cesarean section on GD 19 or 20, and fetal brains were collected. An immunohistological examination of 5-HTergic neurons in the fetuses on embryonic day 20 using an antibody against tryptophan hydroxylase revealed that the number of 5-HTergic neurons in the midbrain raphe nuclei was significantly reduced in the Et-Sal fetuses compared to that of the Pf-Sal and Pf-DOI fetuses, whereas there were no significant differences between Et-DOI and each Pf control. Thus, we concluded that the reduction of 5-HTergic neurons that resulted in prenatal ethanol exposure could be alleviated by the enhancement of signaling via 5-HT2A/2C receptors during the fetal period.

  15. Horse chestnut extract contracts bovine vessels and affects human platelet aggregation through 5-HT(2A) receptors: an in vitro study.

    PubMed

    Felixsson, Emma; Persson, Ingrid A-L; Eriksson, Andreas C; Persson, Karin

    2010-09-01

    Extract from seeds and bark of horse chestnut (Aesculus hippocastanum L) is used as an herbal medicine against chronic venous insufficiency. The effect and mechanism of action on veins, arteries, and platelets are not fully understood. The aim of this study was to investigate the effects and mechanisms of action of horse chestnut on the contraction of bovine mesenteric veins and arteries, and human platelet aggregation. Contraction studies showed that horse chestnut extract dose-dependently contracted both veins and arteries, with the veins being the most sensitive. Contraction of both veins and arteries were significantly inhibited by the 5-HT(2A) receptor antagonist ketanserin. No effect on contraction was seen with the cyclooxygenase inhibitor indomethacin, the alpha(1) receptor antagonist prazosin or the angiotensin AT(1) receptor antagonist saralasin neither in veins nor arteries. ADP-induced human platelet aggregation was significantly reduced by horse chestnut. A further reduction was seen with the extract in the presence of ketanserin. In conclusion, horse chestnut contraction of both veins and arteries is, at least partly, mediated through 5-HT(2A) receptors. Human platelet aggregation is reduced by horse chestnut. The clinical importance of these findings concerning clinical use, possible adverse effects, and drug interactions remains to be investigated.

  16. Cerebral 5-HT release correlates with [(11)C]Cimbi36 PET measures of 5-HT2A receptor occupancy in the pig brain.

    PubMed

    Jørgensen, Louise M; Weikop, Pia; Villadsen, Jonas; Visnapuu, Tanel; Ettrup, Anders; Hansen, Hanne D; Baandrup, Anders O; Andersen, Flemming L; Bjarkam, Carsten R; Thomsen, Carsten; Jespersen, Bo; Knudsen, Gitte M

    2017-02-01

    Positron emission tomography (PET) can, when used with appropriate radioligands, non-invasively generate temporal and spatial information about acute changes in brain neurotransmitter systems. We for the first time evaluate the novel 5-HT2A receptor agonist PET radioligand, [(11)C]Cimbi-36, for its sensitivity to detect changes in endogenous cerebral 5-HT levels, as induced by different pharmacological challenges. To enable a direct translation of PET imaging data to changes in brain 5-HT levels, we calibrated the [(11)C]Cimbi-36 PET signal in the pig brain by simultaneous measurements of extracellular 5-HT levels with microdialysis and [(11)C]Cimbi-36 PET after various acute interventions (saline, citalopram, citalopram + pindolol, fenfluramine). In a subset of pigs, para-chlorophenylalanine pretreatment was given to deplete cerebral 5-HT. The interventions increased the cerebral extracellular 5-HT levels to 2-11 times baseline, with fenfluramine being the most potent pharmacological enhancer of 5-HT release, and induced a varying degree of decline in [(11)C]Cimbi-36 binding in the brain, consistent with the occupancy competition model. The observed correlation between changes in the extracellular 5-HT level in the pig brain and the 5-HT2A receptor occupancy indicates that [(11)C]Cimbi-36 binding is sensitive to changes in endogenous 5-HT levels, although only detectable with PET when the 5-HT release is sufficiently high.

  17. The secret ingredient for social success of young males: a functional polymorphism in the 5HT2A serotonin receptor gene.

    PubMed

    Dijkstra, Jan Kornelis; Lindenberg, Siegwart; Zijlstra, Lieuwe; Bouma, Esther; Veenstra, René

    2013-01-01

    In adolescence, being socially successful depends to a large extent on being popular with peers. Even though some youths have what it takes to be popular, they are not, whereas others seem to have a secret ingredient that just makes the difference. In this study the G-allele of a functional polymorphism in the promotor region of the 5HT2A serotonin receptor gene (-G1438A) was identified as a secret ingredient for popularity among peers. These findings build on and extend previous work by Burt (2008, 2009). Tackling limitations from previous research, the role of the 5HT2A serotonin receptor gene was examined in adolescent males (N = 285; average age 13) using a unique sample of the TRAILS study. Carrying the G-allele enhanced the relation between aggression and popularity, particularly for those boys who have many female friends. This seems to be an "enhancer" effect of the G-allele whereby popularity relevant characteristics are made more noticeable. There is no "popularity gene", as the G-allele by itself had no effect on popularity.

  18. The 5-HT(2A) receptor and serotonin transporter in Asperger's disorder: A PET study with [¹¹C]MDL 100907 and [¹¹C]DASB.

    PubMed

    Girgis, Ragy R; Slifstein, Mark; Xu, Xiaoyan; Frankle, W Gordon; Anagnostou, Evdokia; Wasserman, Stacey; Pepa, Lauren; Kolevzon, Alexander; Abi-Dargham, Anissa; Laruelle, Marc; Hollander, Eric

    2011-12-30

    Evidence from biochemical, imaging, and treatment studies suggest abnormalities of the serotonin system in autism spectrum disorders, in particular in frontolimbic areas of the brain. We used the radiotracers [(11)C]MDL 100907 and [(11)C]DASB to characterize the 5-HT(2A) receptor and serotonin transporter in Asperger's Disorder. Seventeen individuals with Asperger's Disorder (age=34.3 ± 11.1 years) and 17 healthy controls (age=33.0 ± 9.6 years) were scanned with [(11)C]MDL 100907. Of the 17 patients, eight (age=29.7 ± 7.0 years) were also scanned with [¹¹C]DASB, as were eight healthy controls (age=28.7 ± 7.0 years). Patients with Asperger's Disorder and healthy control subjects were matched for age, gender, and ethnicity, and all had normal intelligence. Metabolite-corrected arterial plasma inputs were collected and data analyzed by two-tissue compartment modeling. The primary outcome measure was regional binding potential BP(ND). Neither regional [¹¹C]MDL 100907 BP(ND) nor [¹¹C]DASB BP(ND) was statistically different between the Asperger's and healthy subjects. This study failed to find significant alterations in binding parameters of 5-HT(2A) receptors and serotonin transporters in adult subjects with Asperger's disorder.

  19. Test-retest variability of high resolution positron emission tomography (PET) imaging of cortical serotonin (5HT2A) receptors in older, healthy adults

    PubMed Central

    2009-01-01

    Background Position emission tomography (PET) imaging using [18F]-setoperone to quantify cortical 5-HT2A receptors has the potential to inform pharmacological treatments for geriatric depression and dementia. Prior reports indicate a significant normal aging effect on serotonin 5HT2A receptor (5HT2AR) binding potential. The purpose of this study was to assess the test-retest variability of [18F]-setoperone PET with a high resolution scanner (HRRT) for measuring 5HT2AR availability in subjects greater than 60 years old. Methods: Six healthy subjects (age range = 65–78 years) completed two [18F]-setoperone PET scans on two separate occasions 5–16 weeks apart. Results The average difference in the binding potential (BPND) as measured on the two occasions in the frontal and temporal cortical regions ranged between 2 and 12%, with the lowest intraclass correlation coefficient in anterior cingulate regions. Conclusion We conclude that the test-retest variability of [18F]-setoperone PET in elderly subjects is comparable to that of [18F]-setoperone and other 5HT2AR radiotracers in younger subject samples. PMID:19580676

  20. Examination of the hippocampal contribution to serotonin 5-HT2A receptor-mediated facilitation of object memory in C57BL/6J mice.

    PubMed

    Zhang, Gongliang; Cinalli, David; Cohen, Sarah J; Knapp, Kristina D; Rios, Lisa M; Martínez-Hernández, José; Luján, Rafael; Stackman, Robert W

    2016-10-01

    The rodent hippocampus supports non-spatial object memory. Serotonin 5-HT2A receptors (5-HT2AR) are widely expressed throughout the hippocampus. We previously demonstrated that the activation of 5-HT2ARs enhanced the strength of object memory assessed 24 h after a limited (i.e., weak memory) training procedure. Here, we examined the subcellular distribution of 5-HT2ARs in the hippocampal CA1 region and underlying mechanisms of 5-HT2AR-mediated object memory consolidation. Analyses with immuno-electron microscopy revealed the presence of 5-HT2ARs on the dendritic spines and shafts of hippocampal CA1 neurons, and presynaptic terminals in the CA1 region. In an object recognition memory procedure that places higher demand on the hippocampus, only post-training systemic or intrahippocampal administration of the 5-HT2AR agonist TCB-2 enhanced object memory. Object memory enhancement by TCB-2 was blocked by the 5-HT2AR antagonist, MDL 11,937. The memory-enhancing dose of systemic TCB-2 increased extracellular glutamate levels in hippocampal dialysate samples, and increased the mean in vivo firing rate of hippocampal CA1 neurons. In summary, these data indicate a pre- and post-synaptic distribution of 5-HT2ARs, and activation of 5-HT2ARs selectively enhanced the consolidation of object memory, without affecting encoding or retrieval. The 5-HT2AR-mediated facilitation of hippocampal memory may be associated with an increase in hippocampal neuronal firing and glutamate efflux during a post-training time window in which recently encoded memories undergo consolidation.

  1. Evaluation of 5-HT2A and mGlu2/3 receptors in postmortem prefrontal cortex of subjects with major depressive disorder: effect of antidepressant treatment.

    PubMed

    Muguruza, Carolina; Miranda-Azpiazu, Patricia; Díez-Alarcia, Rebeca; Morentin, Benito; González-Maeso, Javier; Callado, Luis F; Meana, J Javier

    2014-11-01

    Several studies have demonstrated alterations in serotonin 5-HT2A (5-HT2AR) and glutamate metabotropic mGlu2 (mGlu2R) receptors in depression, but never in the same sample population. Recently it has been shown that both receptors form a functional receptor heterocomplex that is altered in schizophrenia. The present study evaluates the gene expression and protein density of 5-HT2AR and mGlu2/3R in the postmortem prefrontal cortex of subjects with major depressive disorder (n = 14) compared with control subjects (n = 14) in a paired design. No significant differences between subjects with depression and controls in the relative mRNA levels of the genes HTR2A, GRM2 and GRM3 were observed. The 5-HT2AR density evaluated by [(3)H]ketanserin binding was significantly lower in antidepressant-treated subjects (Bmax = 313 ± 17 fmol/mg protein; p < 0.05) compared to controls (Bmax = 360 ± 12 fmol/mg protein) but not in antidepressant-free subjects (Bmax = 394 ± 16 fmol/mg protein; p > 0.05). In rats, chronic treatment with citalopram (10 mg/kg/day) and mirtazapine (5 mg/kg/day) decreased mRNA expression and 5-HT2AR density whereas reboxetine (20 mg/kg/day) modified only mRNA expression. The mGlu2/3R density evaluated by [(3)H]LY341495 binding was not significantly different between depression and control subjects. The present results demonstrate no changes in expression and density of both 5-HT2AR and mGlu2/3R in the postmortem prefrontal cortex of subjects with major depressive disorder under basal conditions. However, antidepressant treatment induces a decrease in 5-HT2AR density. This finding suggests that 5-HT2AR down-regulation may be a mechanism for antidepressant effect.

  2. Individual Differences in Impulsive Action Reflect Variation in the Cortical Serotonin 5-HT2A Receptor System

    PubMed Central

    Fink, Latham HL; Anastasio, Noelle C; Fox, Robert G; Rice, Kenner C; Moeller, F Gerard; Cunningham, Kathryn A

    2015-01-01

    Impulsivity is an important feature of multiple neuropsychiatric disorders, and individual variation in the degree of inherent impulsivity could play a role in the generation or exacerbation of problematic behaviors. Serotonin (5-HT) actions at the 5-HT2AR receptor (5-HT2AR) promote and 5-HT2AR antagonists suppress impulsive action (the inability to withhold premature responses; motor impulsivity) upon systemic administration or microinfusion directly into the medial prefrontal cortex (mPFC), a node in the corticostriatal circuit that is thought to play a role in the regulation of impulsive action. We hypothesized that the functional capacity of the 5-HT2AR, which is governed by its expression, localization, and protein/protein interactions (eg, postsynaptic density 95 (PSD95)), may drive the predisposition to inherent impulsive action. Stable high-impulsive (HI) and low-impulsive (LI) phenotypes were identified from an outbred rodent population with the 1-choice serial reaction time (1-CSRT) task. HI rats exhibited a greater head-twitch response following administration of the preferential 5-HT2AR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) and were more sensitive to the effects of the selective 5-HT2AR antagonist M100907 to suppress impulsive action relative to LI rats. A positive correlation was observed between levels of premature responses and 5-HT2AR binding density in frontal cortex ([3H]-ketanserin radioligand binding). Elevated mPFC 5-HT2AR protein expression concomitant with augmented association of the 5-HT2AR with PSD95 differentiated HI from LI rats. The observed differential sensitivity of HI and LI rats to 5-HT2AR ligands and associated distinct 5-HT2AR protein profiles provide evidence that spontaneously occurring individual differences in impulsive action reflect variation in the cortical 5-HT2AR system. PMID:25666313

  3. Evidence for 5-HT1B/1D and 5-HT2A receptors mediating constriction of the canine internal carotid circulation

    PubMed Central

    Centurión, David; Ortiz, Mario I; Sánchez-López, Araceli; De Vries, Peter; Saxena, Pramod R; Villalón, Carlos M

    2001-01-01

    The present study has investigated the preliminary pharmacological profile of the receptors mediating vasoconstriction to 5-hydroxytryptamine (5-HT) in the internal carotid bed of vagosympathectomised dogs. One minute intracarotid infusions of the agonists 5-HT (0.1–10 μg min−1), sumatriptan (0.3–10 μg min−1; 5-HT1B/1D), 5-methoxytryptamine (1–100 μg min−1; 5-HT1, 5-HT2, 5-HT4, 5-ht6 and 5-HT7) or DOI (0.31–10 μg min−1; 5-HT2), but not 5-carboxamidotryptamine (0.01–0.3 μg min−1; 5-HT1, 5-ht5A and 5-HT7), 1-(m-chlorophenyl)-biguanide (mCPBG; 1–1000 μg min−1; 5-HT3) or cisapride (1–1000 μg min−1; 5-HT4), resulted in dose-dependent decreases in internal carotid blood flow, without changing blood pressure or heart rate. The vasoconstrictor responses to 5-HT, which remained unaffected after saline, were resistant to blockade by i.v. administration of the antagonists ritanserin (100 μg kg−1; 5-HT2A/2B/2C) in combination with tropisetron (3000 μg kg−1; 5-HT3/4) or the cyclo-oxygenase inhibitor, indomethacin (5000 μg kg−1), but were abolished by the 5-HT1B/1D receptor antagonist, GR127935 (30 μg kg−1). Interestingly, after administration of GR127935, the subsequent administration of ritanserin unmasked a dose-dependent vasodilator component. GR127935 or saline did not practically modify the vasoconstrictor effects of 5-MeO-T. In animals receiving GR127935, the subsequent administration of ritanserin abolished the vasoconstrictor responses to 5-MeO-T unmasking a dose-dependent vasodilator component. The vasoconstriction induced by sumatriptan was antagonized by GR127935, but not by ritanserin. Furthermore, ritanserin (100 μg kg−1) or ketanserin (100 μg kg−1; 5-HT2A), but not GR127935, abolished DOI-induced vasoconstrictor responses. The above results suggest that 5-HT-induced internal carotid vasoconstriction is predominantly mediated by 5-HT1B/1D and 5-HT2A receptors

  4. Crucial role of the 5-HT2C receptor, but not of the 5-HT2A receptor, in the down regulation of stimulated dopamine release produced by pressure exposure in freely moving rats.

    PubMed

    Kriem, B; Rostain, J C; Abraini, J H

    1998-06-15

    Helium pressure of more than 2 MPa is a well known factor underlying pressure-dependent central neuroexcitatory disorders, referred to as the high-pressure neurological syndrome. This includes an increase in both serotonin (5-HT) and dopamine (DA) release. The relationship between the increase in 5-HT transmission produced by helium pressure and its effect on DA release has been clarified in a recent study, which have first demonstrated that the helium pressure-induced increase in DA release was dependent on some 5-HT receptor activation. In the present study, we examined in freely moving rats the role of 5-HT2A and 5-HT2C receptors in the increase in DA release induced by 8 MPa helium pressure. We used the 5-HT2A receptor antagonist ketanserin and the 5-HT2C receptor agonist m-CPP which have been demonstrated to reduce DA function. Because neither ketanserin is an ideal 5-HT2A receptor antagonist nor m-CPP an ideal 5-HT2C receptor agonist, additional experiments were made at normal pressure to check up on the selectivity of ketanserin and m-CPP for 5-HT2A and 5-HT2C receptors, respectively. Administration of m-CPP reduced both DA basal level and the helium pressure-induced increase in DA release, whereas administration of ketanserin only showed a little effect on the increase in DA release produced by high helium pressure. These results suggest that the 5-HT2C receptor, but not the 5-HT2A receptor, would play a crucial role in the helium pressure-induced increase in DA release. This further suggests that helium pressure may simultaneously induce an increase in 5-HT transmission at the level of 5-HT2A receptors and a decrease in 5-HT transmission at the level of 5-HT2C receptors.

  5. Polymorphism of the 5-HT2A Receptor Gene: Association with Stress-Related Indices in Healthy Middle-Aged Adults

    PubMed Central

    Fiocco, Alexandra J.; Joober, Ridha; Poirier, Judes; Lupien, Sonia

    2007-01-01

    Past research has concentrated on the stress system and personality in order to explain the variance found in cognitive performance in old age. A growing body of research is starting to focus on genetic polymorphism as an individual difference factor to explain the observed heterogeneity in cognitive function. While the functional mechanism is still under investigation, polymorphism of the 5-HT2A receptor gene (−1438A/G) has been linked to certain behavioral and physiological outcomes, including cortisol secretion, the expression of certain personality traits, and memory performance. It was the goal of the present study to investigate the association between the −1438A/G polymorphism and stress hormone secretion, stress-related psychological measures, and cognitive performance in a group of adults between the ages of 50 and 65. To examine these associations, 101 middle-aged adults were recruited, completed a battery of psychological questionnaires and were administered a battery of cognitive tasks that assess frontal lobe and hippocampal function. Basal and stress-reactive salivary cortisol levels were collected, at home and in the laboratory. Analyses on psychological measures showed that participants with the GG genotype reported significantly higher levels of neuroticism compared to the AG group and higher levels of depression and more emotion-based coping strategies compared to both the AG and AA group. In terms of cortisol secretion, the AA genotype was related to a significantly higher awakening cortisol response (ACR) compared to the AG and GG group and the GG genotype group displayed a greater increase in cortisol secretion following a psychosocial stressor compared to the two other groups. On measures of cognitive performance, the AA genotype group performed significantly better on a test of declarative memory and selective attention compared to the other two groups. Together, these results suggest that carriers of the GG genotype are more susceptible

  6. Hallucinogen-like effects of N,N-dipropyltryptamine (DPT): possible mediation by serotonin 5-HT1A and 5-HT2A receptors in rodents

    PubMed Central

    Fantegrossi, William E.; Reissig, Chad J.; Katz, Elyse B.; Yarosh, Haley L.; Rice, Kenner C.; Winter, Jerrold C.

    2008-01-01

    N,N-dipropyltryptamine (DPT) is a synthetic tryptamine hallucinogen which has been used psychotherapeutically in humans, but has been studied preclinically only rarely. In the present studies, DPT was tested in a drug-elicited head twitch assay in mice, and in rats trained to discriminate lysergic acid diethylamide (LSD), N,N-dimethyl-4-phosphoryloxytryptamine (psilocybin), or 3,4-methylenedioxymethamphetamine (MDMA). A separate group of rats was also trained to recognize DPT itself as a discriminative stimulus, and in all cases, the behavioral effects of DPT were challenged with the selective serotonin (5-HT)2A antagonist M100907, the 5-HT1A selective antagonist WAY-100635, or their combination. In the head twitch assay, DPT elicited dose-dependent effects, producing a biphasic dose-effect curve. WAY-100635 produced a parallel rightward shift in the dose-effect curve for head twitches, indicative of surmountable antagonism, but the antagonist effects of M100907 were functionally insurmountable. DPT produced partial to full substitution when tested in rats trained to discriminate LSD, psilocybin or MDMA, and served as a discriminative stimulus. In all cases, the antagonist effects of M100907 were more profound than were those of WAY-100635. DPT is thus active in two rodent models relevant to 5-HT2 agonist activity. The effectiveness with which M100907 antagonizes the behavioral actions of this compound strongly suggests that the 5-HT2A receptor is an important site of action for DPT, but the modulatory actions of WAY-100635 also imply a 5-HT1A-mediated component to the actions of this compound. PMID:17905422

  7. Effects of serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibition plus 5-HT(2A) receptor antagonism on the firing activity of norepinephrine neurons.

    PubMed

    Szabo, Steven T; Blier, Pierre

    2002-09-01

    YM992 [(S)-2-[[(7-fluoro-4-indanyl)oxy]methyl]morpholine monohydrochloride] is a selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor (SSRI) and a potent 5-HT(2A) antagonist. The aim of the present study was to assess, using in vivo extracellular unitary recordings, the effect of acute and sustained administration of YM992 (40 mg kg(-1) day(-1) s.c., using osmotic minipumps) on the spontaneous firing activity of locus coeruleus (LC) norepinephrine (NE) neurons. Acute intravenous injection of YM992 (4 mg kg(-1)) significantly decreased NE neuron firing activity by 29% and blocked the inhibitory effect of a subsequent injection of the 5-HT(2) agonist DOI [1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride]. A 2-day treatment with YM992 decreased the firing rate of NE neurons by 66%, whereas a partial recovery was observed after a 7-day treatment and a complete one after a 21-day treatment. Following the injection of the alpha(2)-adrenoceptor antagonist idazoxan (1 mg kg(-1) i.v.), NE neuron firing was equalized in controls and 2-day YM992-treated rats. This put into evidence an increased degree of activation of alpha(2)-adrenergic autoreceptors in the treated rats. The suppressant effect of the alpha(2)-adrenoceptor agonist clonidine was significantly decreased in long-term YM992-treated rats. The recovery of LC firing activity after long-term YM992 administration could thus be explained by a decreased sensitivity of alpha(2)-adrenergic autoreceptors. Sustained SSRI administration leads to a gradual reduction of the firing activity of NE neurons during long-term administration, whereas YM992 produced opposite effects. The exact basis for the increased synaptic availability of NE by YM992 remains to be elucidated. This NE activity, resulting from 5-HT reuptake inhibition plus 5-HT(2A) receptor antagonism, might confer additional benefits in affective and anxiety disorders.

  8. Potential Modes of Interaction of 9-Aminomethyl-9,10-dihydroanthracene (AMDA) Derivatives with the 5-HT2A Receptor: A Ligand Structure-Affinity Relationship, Receptor Mutagenesis and Receptor Modeling Investigation⊕

    PubMed Central

    Runyon, Scott P.; Mosier, Philip D.; Roth, Bryan L.; Glennon, Richard A.; Westkaemper, Richard B.

    2011-01-01

    The effects of 3-position substitution of 9-aminomethyl-9,10-dihydroanthracene (AMDA) on 5-HT2A receptor affinity were determined and compared to a parallel series of DOB-like 1-(2,5-dimethoxyphenyl)-2-aminopropanes substituted at the 4-position. The results were interpreted within the context of 5-HT2A receptor models that suggest that members of the DOB-like series can bind to the receptor in two distinct modes that correlate with the compounds’ functional activity. Automated ligand docking and molecular dynamics suggest that all of the AMDA derivatives, the parent of which is a 5-HT2A antagonist, bind in a fashion analogous to that for the sterically demanding antagonist DOB-like compounds. The failure of the F3406.52L mutation to adversely affect the affinity of AMDA and the 3-bromo derivative is consistent with the proposed modes of orientation. Evaluation of ligand-receptor complex models suggest that a valine/threonine exchange between the 5-HT2A and D2 receptors may be the origin of selectivity for AMDA and two substituted derivatives. PMID:18847250

  9. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors

    PubMed Central

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2014-01-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity. PMID:25446678

  10. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors.

    PubMed

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2015-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity.

  11. Serotonin 5-HT2A receptor binding in platelets from healthy subjects as studied by [3H]-lysergic acid diethylamide ([3H]-LSD): intra- and interindividual variability.

    PubMed

    Spigset, O; Mjörndal, T

    1997-04-01

    In studies on platelet 5-HT2A receptor binding in patients with neuropsychiatric disorders, there has been a marked variability and a considerable overlap of values between patients and controls. The causes of the large variability in 5-HT2A receptor parameters is still unsettled. In the present study, we have quantified the intra- and interindividual variability of platelet 5-HT2A receptor binding in 112 healthy subjects and explored factors that may influence 5-HT2A receptor binding, using [3H]-lysergic acid diethylamide as radioligand. Age, gender, blood pressure, and metabolic capacity of the liver enzymes CYP2D6 and CYP2C19 did not influence Bmax and Kd values. Body weight and body mass index (BMI) showed a negative correlation with Kd (p = .04 and .03, respectively), but not with Bmax. Bmax was significantly lower in the light half of the year than in the dark half of the year (p = .001), and Kd was significantly lower in the fall than in the summer and winter (p < .001). In females, there was a significant increase in Bmax from week 1 to week 2 of the menstrual cycle (p = .03). Females taking contraceptive pills had significantly higher Kd than drug-free females in weeks 1 and 4 of the menstrual cycle (p = .04). This study shows that a number of factors should be taken into account when using platelet 5-HT2A receptor binding in studies of neuropsychiatric disorders.

  12. Platelet 5-hydroxytryptamine (5-HT) transporter and 5-HT2A receptor binding after chronic hypercorticosteronemia, (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane administration or neurotoxin-induced depletion of central nervous system 5-HT in the rat.

    PubMed

    Owens, M J; Ballenger, C A; Knight, D L; Nemeroff, C B

    1996-09-01

    There is considerable evidence that the number of platelet 5-hydroxytryptamine (5-HT) transporter binding sites, as measured by [3H]imipramine binding, are significantly decreased, and platelet 5-HT2 receptor density is increased, in drug-free patients with major depression. To investigate whether these changes in the platelet 5-HT transporter or 5-HT2 receptor sites resulted from known or hypothesized biochemical changes observed in major depression, we examined, in the rat, whether a chronic hyperglucocorticoid state, or decreases or increases in central nervous system 5-HT neurotransmission, altered binding of the selective ligands [3H]citalopram and [125I] (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane to platelet and brain 5-HT transporters and 5-HT2 receptors, respectively. Chronic (6 weeks) hypercorticosteronemia did not alter either brain or platelet 5-HT transporter or 5-HT2A receptor binding. Similarly, 8-week administration of the 5-HT2A/5-HT2C agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, at a dose which down-regulates brain 5-HT2A/2C receptors, did not alter brain or platelet 5-HT transporters or platelet 5-HT2A receptors. Additionally, para-chloroamphetamine-(11 weeks) or fenfluramine-induced chronic (1.5-10 weeks) depletion of central nervous system 5-HT did not alter platelet 5-HT transporter or 5-HT2A receptor binding. Finally, there was no correlation between the number of 5-HT transporters in brain and platelets in any of the control or treatment groups. These findings suggest that the observed changes in platelet 5-HT transporter and 5-HT2A receptor binding in depressed patients are more apt to be of genetic origin (i.e., trait-dependent) rather than an epiphenomenon of hypercortisolemia or altered central nervous system 5-HT status.

  13. A new class of arylpiperazine derivatives: the library synthesis on SynPhase lanterns and biological evaluation on serotonin 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Zajdel, Paweł; Subra, Gilles; Bojarski, Andrzej J; Duszyńska, Beata; Pawłowski, Maciej; Martinez, Jean

    2004-01-01

    An efficient solid-supported method for the synthesis of a new class of arylpiperazine derivatives containing amino acid residues has been developed. A 72-membered library was synthesized on SynPhase Lanterns functionalized by a BAL linker. A one-pot cleavage/cyclization step of aspartic and glutamic acid derivatives yielded succinimide- and pyroglutamyl-containing ligands (chemsets 9 and 10). The library representatives under study showed different levels of affinity for 5-HT(1A) and 5-HT(2A) receptors (estimated K(i) = 24-4000 and 1-2130 nM, respectively). Several dual 5-HT(1A)/5-HT(2A) ligands were found, of which two (9(3,3) and 9(3,5)) displayed high 5-HT(2A) affinity comparable to that of the reference drug ritanserin. A set of individual fragment contributions for the prediction of 5-HT(1A) and 5-HT(2A) affinity of all the library members were defined on the basis of the Free-Wilson analysis of 26 compounds. An alkylarylpiperazine fragment had essentially the same impact on the affinity for both receptors, whereas different terminal amide fragments were preferred by 5-HT(1A) (chemset 17, R(2) = adamantyl) and 5-HT(2A) (chemset 9, R(2) = norborn-2-ylmethyl) binding sites.

  14. Antidepressant-like activity of Tagetes lucida Cav. is mediated by 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Bonilla-Jaime, H; Guadarrama-Cruz, G; Alarcon-Aguilar, F J; Limón-Morales, O; Vazquez-Palacios, G

    2015-10-01

    It has been demonstrated that the aqueous extract of Tagetes lucida Cav. shows an antidepressant-like effect on the forced swimming test (FST) in rats. The aim of this study was to analyze the participation of the serotoninergic system in the antidepressant-like effect of the aqueous extract of T. lucida. Different doses of the extract of T. lucida were administered at 72, 48, 24, 18 and 1 h before FST. The animals were pretreated with a 5-HT1A receptor antagonist (WAY-100635, 0.5 mg/kg), a 5-HT2A receptor antagonist (ketanserin, 5 mg/kg), a β-noradrenergic receptor antagonist (propranolol, 200 mg/kg), and with a α2-noradrenergic receptor antagonist (yohimbine, 1 mg/kg) alone or combined with the extract and pretreated with a serotonin synthesis inhibitor (PCPA) before treatment with 8-OH-DPAT + the extract of T. lucida. In addition, suboptimal doses of the 5-HT1A agonist (8-OH-DPAT) + non-effective dose of extract was analyzed in the FST. To determine the presence of flavonoids, the aqueous extract of T. lucida (20 µl, 4 mg/ml) was injected in HPLC; however, a quercetin concentration of 7.72 mg/g of extract weight was detected. A suboptimal dose of 8-OH-DPAT + extract of T. lucida decreased immobility and increased swimming and climbing. An antidepressant-like effect with the aqueous extract of T. lucida at doses of 100 and 200 mg/kg was observed on the FST with decreased immobility behavior and increased swimming; however, this effect was blocked by WAY-100635, ketanserin and PCPA but not by yohimbine and propranolol, suggesting that the extract of T. lucida could be modulating the release/reuptake of serotonin.

  15. Cognition-induced modulation of serotonin in the orbitofrontal cortex: a controlled cross-over PET study of a delayed match-to-sample task using the 5-HT2a receptor antagonist [18F]altanserin.

    PubMed

    Hautzel, Hubertus; Müller, Hans-Wilhelm; Herzog, Hans; Grandt, Rüdiger

    2011-10-01

    Behavioral and cellular studies indicate that serotonin interacting with the 5-HT2a receptor (5-HT2aR) is involved in cognitive processes supporting working memory (WM). However, 5-HT receptor neuroimaging studies directly relating WM-induced neuronal activations to concomitant changes in the availability of 5-HT receptors as a functional measure for serotonin release are lacking. This controlled cross-over PET study aimed to identify brain regions with WM-induced changes in the binding potential (BP(nd)) of the 5-HT2aR antagonist [(18)F]altanserin. Ten young males underwent a delayed match-to-sample task using photographs of faces and a control task. The BP(nd)s for both conditions were calculated by applying Ichise's noninvasive plot. Statistics were performed with the SPM toolbox statistical nonparametric mapping (SnPM3) particularly suited for analyzing whole-brain PET data in an exploratory way. A higher BP(nd) for [(18)F]altanserin during WM versus control was found in the orbitofrontal cortex (OFC) pointing towards an increased [(18)F]altanserin/5-HT2aR interaction in OFC while BP(nd) decreases during WM were not found. Furthermore, no BP(nd) changes in regions known from functional neuroimaging studies to be more specifically involved in WM were identified. These findings may suggest that the increased [(18)F]altanserin BP(nd) under WM challenge and hence the increased availability of 5-HT2aR reflects a decrease in local OFC serotonin. As the OFC plays a prominent role in decision-making and supports cognitive processes related to the central executive functions of WM it might be modulated by the serotoninergic system via the 5-HT2aR in order to support and optimize basic cognitive functions.

  16. Effects of central activation of serotonin 5-HT2A/2C or dopamine D2/3 receptors on the acute and repeated effects of clozapine in the conditioned avoidance response test

    PubMed Central

    Feng, Min; Gao, Jun; Sui, Nan; Li, Ming

    2014-01-01

    Rationale: Acute administration of clozapine (a gold standard of atypical antipsychotics) disrupts avoidance response in rodents, while repeated administration often causes a tolerance effect. Objective: The present study investigated the neuroanatomical basis and receptor mechanisms of acute and repeated effects of clozapine treatment in the conditioned avoidance response test in male Sprague-Dawley rats. Methods: DOI (2,5-dimethoxy-4-iodo-amphetamine, a preferential 5-HT2A/2C agonist) or quinpirole (a preferential dopamine D2/3 agonist) was microinjected into the medial prefrontal cortex (mPFC) or nucleus accumbens shell (NAs), and their effects on the acute and long-term avoidance-disruptive effect of clozapine were tested. Results: Intra-mPFC microinjection of quinpirole enhanced the acute avoidance disruptive effect of clozapine (10 mg/kg, sc), while DOI microinjections reduced it marginally. Repeated administration of clozapine (10 mg/kg, sc) daily for 5 days caused a progressive decrease in its inhibition of avoidance responding, indicating tolerance development. Intra-mPFC microinjection of DOI at 25.0 (but not 5.0) μg/side during this period completely abolished the expression of clozapine tolerance. This was indicated by the finding that clozapine-treated rats centrally infused with 25.0 μg/side DOI did not show higher levels of avoidance responses than the vehicle-treated rats in the clozapine challenge test. Microinjection of DOI into the mPFC immediately before the challenge test also decreased the expression of clozapine tolerance. Conclusions: Acute behavioral effect of clozapine can be enhanced by activation of the D2/3 receptors in the mPFC. Clozapine tolerance expression relies on the neuroplasticity initiated by its antagonist action against 5-HT2A/2C receptors in the mPFC. PMID:25288514

  17. 5-HT2A/C receptors do not mediate the attenuation of compulsive checking by mCPP in the quinpirole sensitization rat model of obsessive-compulsive disorder (OCD).

    PubMed

    Tucci, Mark C; Dvorkin-Gheva, Anna; Johnson, Eric; Wong, Michael; Szechtman, Henry

    2015-02-15

    There is emerging evidence for a dopamine (DA)-serotonin (5-HT) interaction underlying obsessive-compulsive disorder (OCD). In the quinpirole sensitization rat model of OCD, compulsive checking is induced by chronic treatment with the DA agonist quinpirole, and is attenuated by the 5-HT agonist drug mCPP. However, mCPP has affinity for a number of 5-HT receptor subtypes, and it is unknown by which receptors mCPP exerts its effects on quinpirole-treated animals. The present study tested in rats whether mCPP activity at 5-HT2A/C receptors mediates the attenuation of compulsive checking in quinpirole-treated animals. Rats were chronically treated with quinpirole on the open field for the induction of compulsive checking. Following the induction phase, animals were treated with mCPP (1.25 mg/kg) and the selective 5-HT2A/C receptor antagonist ritanserin (1 mg/kg or 5 mg/kg) to test whether blockade of 5-HT2A/C receptors inhibits attenuation of checking by mCPP. Results showed that as expected, quinpirole induced compulsive checking, and mCPP reduced its performance. However, 5-HT2A/C receptor blockade by ritanserin did not inhibit the attenuation of compulsive checking by mCPP. These results suggest that the reduction in compulsive checking by mCPP is not mediated by activity at 5-HT2A/C receptors, but by another receptor subtype.

  18. Effects of olanzapine and betahistine co-treatment on serotonin transporter, 5-HT2A and dopamine D2 receptor binding density.

    PubMed

    Lian, Jiamei; Huang, Xu-Feng; Pai, Nagesh; Deng, Chao

    2013-12-02

    Olanzapine is widely used in treating multiple domains of schizophrenia symptoms but induces serious metabolic side-effects. Recent evidence has showed that co-treatment of betahistine (a histaminergic H1 receptor agonist and H3 receptor antagonist) is effective for preventing olanzapine-induced weight gain/obesity, however it is not clear whether this co-treatment affects on the primary therapeutic receptor binding sites of olanzapine such as serotonergic 5-HT2A receptors (5-HT2AR) and dopaminergic D2 receptors (D2R). Therefore, this study investigated the effects of this co-treatment on 5-HT2AR, 5-HT transporter (5-HTT) and D2R bindings in various brain regions involved in antipsychotic efficacy. Female Sprague Dawley rats were administered orally (t.i.d.) with either olanzapine (1mg/kg), betahistine (2.7 mg/kg), olanzapine plus betahistine (O+B), or vehicle (control) for 2 weeks. Quantitative autoradiography was used to detect the density of [(3)H]ketanserin, [(3)H]paroxetine and [(3)H]raclopride binding site to 5-HT2AR, 5-HTT and D2R. Compared to the controls, olanzapine significantly decreased [(3)H]ketanserin bindings to 5-HT2AR in the prefrontal cortex, cingulate cortex, and nucleus accumbens. Similar changes in 5-HT2AR bindings in these nuclei were also observed in the O+B co-treatment group. Olanzapine also significantly decreased [(3)H]paroxetine binding to 5-HTT in the ventral tegmental area and substantia nigra, however, both olanzapine only and O+B co-treatment did not affect [(3)H]raclopride binding to D2R. The results confirmed the important role of 5-HT2AR in the efficacy of olanzapine, which is not influenced by the O+B co-treatment. Therefore, betahistine co-treatment would be an effective combination therapy to reduce olanzapine-induced weight gain side-effects without affecting olanzapine's actions on 5-HT2AR transmissions.

  19. Responding for a conditioned reinforcer, and its enhancement by nicotine, is blocked by dopamine receptor antagonists and a 5-HT(2C) receptor agonist but not by a 5-HT(2A) receptor antagonist.

    PubMed

    Guy, Elizabeth Glenn; Fletcher, Paul J

    2014-10-01

    An aspect of nicotine reinforcement that may contribute to tobacco addiction is the effect of nicotine to enhance the motivational properties of reward-associated cues, or conditioned stimuli (CSs). Several studies have now shown that nicotine enhances responding for a stimulus that has been paired with a natural reinforcer. This effect of nicotine to enhance responding for a conditioned reinforcer is likely due to nicotine-induced enhancements in mesolimbic dopaminergic activity, but this has not been directly assessed. In this study, we assessed roles for dopamine (DA) D1 or D2 receptors, and two serotonin (5-HT) receptor subtypes known to modulate DA activity, the 5-HT2C or 5-HT2A subtypes, on nicotine-enhanced responding for a conditioned reinforcer. Water-restricted rats were exposed to Pavlovian conditioning sessions, where a CS was paired with water delivery. Then, in a second phase, animals were required to perform a novel, lever-pressing response for presentations of the CS as a conditioned reinforcer. Nicotine (0.4 mg/kg) enhanced responding for the conditioned reinforcer. To examine potential roles for dopamine (DA) and serotonin (5-HT) receptors in this effect, separate groups of animals were used to assess the impact of administering the D1 receptor antagonist SCH 23390, D2 receptor antagonist eticlopride, 5-HT2C receptor agonist Ro 60-0175, or 5-HT2A receptor antagonist M100907 on nicotine-enhanced responding for conditioned reinforcement. SCH 23390, eticlopride, and Ro 60-0175 all reduced responding for conditioned reinforcement, and the ability of nicotine to enhance this effect. M100907 did not alter this behavior. Together, these studies indicate that DA D1 and D2 receptors, but not 5-HT2A receptors, contribute to the effect of nicotine to enhance responding for a conditioned reinforcer. This effect can also be modulated by 5-HT2C receptor activation.

  20. Enhanced responsivity of 5-HT2A receptors at warm ambient temperatures is responsible for the augmentation of the 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-induced hyperthermia

    PubMed Central

    Zhang, Gongliang; Tao, Rui

    2011-01-01

    Warm ambient temperature facilitates hyperthermia and other neurotoxic responses elicited by psychogenic drugs such as MDMA and methamphetamine. However, little is known about the neural mechanism underlying such effects. In the present study, we tested the hypothesis that a warm ambient temperature may enhance the responsivity of 5-HT2A receptors in the central nervous system and thereafter cause an augmented response to 5-HT2A receptor agonists. This hypothesis was tested by measuring changes in body-core temperature in response to the 5-HT2A receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) administered at four different ambient temperature levels: 12 °C (cold), 22 °C (standard), 27 °C (thermoneutral zone) and 32 °C (warm). It was found that DOI only evoked a small increase in body-core temperature at the standard (22 °C) or thermoneutral ambient temperature (27 °C). In contrast, there was a large increase in body-core temperature when the experiments were conducted at the warmer ambient temperature (32 °C). Interestingly, the effect of DOI at the cold ambient temperature of 12 °C was significantly reduced. Moreover, the ambient temperature-dependent response to DOI was completely blocked by pretreatment with the 5-HT2A receptor antagonist ketanserin. Taken together, these findings support the hypothesis that 5-HT2A receptors may be responsible for some neurotoxic effects of psychogenic drugs in the central nervous system, the activity of which is functionally inhibited at cold but enhanced at warm ambient temperature in contrast to that at standard experimental conditions. PMID:21172407

  1. Dual role of serotonin in the acquisition and extinction of reward-driven learning: involvement of 5-HT1A, 5-HT2A and 5-HT3 receptors.

    PubMed

    Frick, Luciana Romina; Bernardez-Vidal, Micaela; Hocht, Christian; Zanutto, Bonifacio Silvano; Rapanelli, Maximiliano

    2015-01-15

    Serotonin (5-HT) has been proposed as a possible encoder of reward. Nevertheless, the role of this neurotransmitter in reward-based tasks is not well understood. Given that the major serotonergic circuit in the rat brain comprises the dorsal raphe nuclei and the medial prefrontal cortex (mPFC), and because the latter structure is involved in the control of complex behaviors and expresses 1A (5-HT1A), 2A (5-HT2A), and 3 (5-HT3) receptors, the aim was to study the role of 5-HT and of these receptors in the acquisition and extinction of a reward-dependent operant conditioning task. Long Evans rats were trained in an operant conditioning task while receiving fluoxetine (serotonin reuptake inhibitor, 10mg/kg), tianeptine (serotonin reuptake enhancer, 10mg/kg), buspirone (5-HT1A partial agonist, 10mg/kg), risperidone (5-HT2A antagonist, 1mg/kg), ondansetron (5-HT3 antagonist, 2mg/kg) or vehicle. Then, animals that acquired the operant conditioning without any treatment were trained to extinct the task in the presence of the pharmacological agents. Fluoxetine impaired acquisition but improved extinction. Tianeptine administration induced the opposite effects. Buspirone induced a mild deficit in acquisition and had no effects during the extinction phase. Risperidone administration resulted in learning deficits during the acquisition phase, although it promoted improved extinction. Ondansetron treatment showed a deleterious effect in the acquisition phase and an overall improvement in the extinction phase. These data showed a differential role of 5-HT in the acquisition and extinction of an operant conditioning task, suggesting that it may have a dual function in reward encoding.

  2. Extended characterisation of the serotonin 2A (5-HT2A) receptor-selective PET radiotracer 11C-MDL100907 in humans: quantitative analysis, test-retest reproducibility, and vulnerability to endogenous 5-HT tone

    PubMed Central

    Talbot, Peter S.; Slifstein, Mark; Hwang, Dah-Ren; Huang, Yiyun; Scher, Erica; Abi-Dargham, Anissa; Laruelle, Marc

    2011-01-01

    Introduction scanning properties and analytic methodology of the 5-HT2A receptor-selective positron emission tomography (PET) tracer 11C-MDL100907 have been partially characterised in previous reports. We present an extended characterisation in healthy human subjects. Methods 64 11C-MDL100907 PET scans with metabolite-corrected arterial input function were performed in 39 healthy adults (18–55 yr). 12 subjects were scanned twice (duration 150 min) to provide data on plasma analysis, model order estimation, and stability and test-retest characteristics of outcome measures. All other scans were 90 min duration. 3 subjects completed scanning at baseline and following 5-HT2A receptor antagonist medication (risperidone or ciproheptadine) to provide definitive data on the suitability of the cerebellum as reference region. 10 subjects were scanned under reduced 5-HT and control conditions using rapid tryptophan depletion to investigate vulnerability to competition with endogenous 5-HT. 13 subjects were scanned as controls in clinical protocols. Pooled data were used to analyze the relationship between tracer injected mass and receptor occupancy, and age-related decline in 5-HT2A receptors. Results optimum analytic method was a 2-tissue compartment model with arterial input function. However, basis function implementation of SRTM may be suitable for measuring between-group differences non-invasively and warrants further investigation. Scan duration of 90 minutes achieved stable outcome measures in all cortical regions except orbitofrontal which required 120 minutes. Binding potential (BPP and BPND) test-retest variability was very good (7–11%) in neocortical regions other than orbitofrontal, and moderately good (14–20%) in orbitofrontal cortex and medial temporal lobe. Saturation occupancy of 5-HT2A receptors by risperidone validates the use of the cerebellum as a region devoid of specific binding for the purposes of PET. We advocate a mass limit of 4.6 µg to remain

  3. Blonanserin Ameliorates Phencyclidine-Induced Visual-Recognition Memory Deficits: the Complex Mechanism of Blonanserin Action Involving D3-5-HT2A and D1-NMDA Receptors in the mPFC

    PubMed Central

    Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2015-01-01

    Blonanserin differs from currently used serotonin 5-HT2A/dopamine-D2 receptor antagonists in that it exhibits higher affinity for dopamine-D2/3 receptors than for serotonin 5-HT2A receptors. We investigated the involvement of dopamine-D3 receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT2A receptor agonist) and 7-OH-DPAT (a dopamine-D3 receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D1 receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr197 and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser897 by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser896 by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D1-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D3 and serotonin 5-HT2A receptors in the mPFC. PMID:25120077

  4. Serotonin 5-HT2A but not 5-HT2C receptor antagonism reduces hyperlocomotor activity induced in dopamine-depleted rats by striatal administration of the D1 agonist SKF 82958.

    PubMed

    Bishop, Christopher; Daut, Gregory S; Walker, Paul D

    2005-09-01

    While recent work has indicated that D1 receptor agonist-induced hyperlocomotion in DA-depleted rats is reduced by striatal 5-HT2 receptor antagonism, the 5-HT receptor(s) subtypes mediating these effects are not yet known. In the present study, we examined the influence(s) of striatal 5-HT2A and 5-HT2C receptors on locomotor behavior induced by D1 agonism in neonatal DA-depleted rats. On postnatal day 3, male Sprague-Dawley rats (n=68) were treated with either vehicle or 6-hydroxydopamine (6-OHDA; 60 microg) which produced >98% DA depletion. Sixty days later, all rats were fitted with bilateral striatal cannulae. A subset of control and 6-OHDA-lesioned rats (n=20) was tested for locomotor responses to striatal infusion of the D1 agonist SKF 82958 (0, 0.1, 1.0, 10 microg/side). The remaining rats (n=48) were tested for locomotor responses to intrastriatal SKF 82958 (2.0 microg/side) alone or in combination with the 5-HT2A- or 5-HT2C-preferring antagonists M100907 or RS102221 (0.1 or 1.0 microg/side), respectively. Intrastriatal SKF 82958 dose-dependently increased measures of motor activity within DA-depleted rats. This hyperlocomotor activity was suppressed by co-infusion of M100907, but not RS102221. These results indicate that DA depletion strengthens striatal 5-HT2A/D1 receptor interactions and suggest that 5-HT2A receptor antagonists may prove useful in reducing D1-related movements.

  5. Effects of the 5-HT2C receptor agonist Ro60-0175 and the 5-HT2A receptor antagonist M100907 on nicotine self-administration and reinstatement.

    PubMed

    Fletcher, Paul J; Rizos, Zoë; Noble, Kevin; Soko, Ashlie D; Silenieks, Leo B; Lê, Anh Dzung; Higgins, Guy A

    2012-06-01

    The reinforcing effects of nicotine are mediated in part by brain dopamine systems. Serotonin, acting via 5-HT(2A) and 5-HT(2C) receptors, modulates dopamine function. In these experiments we examined the effects of the 5-HT(2C) receptor agonist Ro60-0175 and the 5-HT(2A) receptor antagonist (M100907, volinanserin) on nicotine self-administration and reinstatement of nicotine-seeking. Male Long-Evans rats self-administered nicotine (0.03 mg/kg/infusion, IV) on either a FR5 or a progressive ratio schedule of reinforcement. Ro60-0175 reduced responding for nicotine on both schedules. While Ro60-0175 also reduced responding for food reinforcement, response rates under drug treatment were several-fold higher than in animals responding for nicotine. M100907 did not alter responding for nicotine, or food, on either schedule. In tests of reinstatement of nicotine-seeking, rats were first trained to lever press for IV infusions of nicotine; each infusion was also accompanied by a compound cue consisting of a light and tone. This response was then extinguished over multiple sessions. Injecting rats with a nicotine prime (0.15 mg/kg) reinstated responding; reinstatement was also observed when responses were accompanied by the nicotine associated cue. Ro60-0175 attenuated reinstatement of responding induced by nicotine and by the cue. The effects of Ro60-0175 on both forms of reinstatement were blocked by the 5-HT(2C) receptor antagonist SB242084. M100907 also reduced reinstatement induced by either the nicotine prime or by the nicotine associated cue. The results indicate that 5-HT(2C) and 5-HT(2A) receptors may be potential targets for therapies to treat some aspects of nicotine dependence.

  6. Targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors for developing effective antipsychotics: synthesis, biological characterization, and behavioral studies.

    PubMed

    Brindisi, Margherita; Butini, Stefania; Franceschini, Silvia; Brogi, Simone; Trotta, Francesco; Ros, Sindu; Cagnotto, Alfredo; Salmona, Mario; Casagni, Alice; Andreassi, Marco; Saponara, Simona; Gorelli, Beatrice; Weikop, Pia; Mikkelsen, Jens D; Scheel-Kruger, Jorgen; Sandager-Nielsen, Karin; Novellino, Ettore; Campiani, Giuseppe; Gemma, Sandra

    2014-11-26

    Combination of dopamine D3 antagonism, serotonin 5-HT1A partial agonism, and antagonism at 5-HT2A leads to a novel approach to potent atypical antipsychotics. Exploitation of the original structure-activity relationships resulted in the identification of safe and effective antipsychotics devoid of extrapyramidal symptoms liability, sedation, and catalepsy. The potential atypical antipsychotic 5bb was selected for further pharmacological investigation. The distribution of c-fos positive cells in the ventral striatum confirmed the atypical antipsychotic profile of 5bb in agreement with behavioral rodent studies. 5bb administered orally demonstrated a biphasic effect on the MK801-induced hyperactivity at dose levels not able to induce sedation, catalepsy, or learning impairment in passive avoidance. In microdialysis studies, 5bb increased the dopamine efflux in the medial prefrontal cortex. Thus, 5bb represents a valuable lead for the development of atypical antipsychotics endowed with a unique pharmacological profile for addressing negative symptoms and cognitive deficits in schizophrenia.

  7. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor.

    PubMed

    Braden, Michael R; Nichols, David E

    2007-11-01

    We assessed the relative importance of two serine residues located near the top of transmembrane helix 5 of the human 5-HT(2A) receptor, comparing the wild type with S5.43(239)A or S5.46(242)A mutations. Using the ergoline lysergic acid diethylamide (LSD), and a series of substituted tryptamine and phenethylamine 5-HT(2A) receptor agonists, we found that Ser5.43(239) is more critical for agonist binding and function than Ser5.46(242). Ser5.43(239) seems to engage oxygen substituents at either the 4- or 5-position of tryptamine ligands and the 5-position of phenylalkylamine ligands. Even when a direct binding interaction cannot occur, our data suggest that Ser5.43(239) is still important for receptor activation. Polar ring-substituted tryptamine ligands also seem to engage Ser5.46(242), but tryptamines lacking such a substituent may adopt an alternate binding orientation that does not engage this residue. Our results are consistent with the role of Ser5.43(239) as a hydrogen bond donor, whereas Ser5.46(242) seems to serve as a hydrogen bond acceptor. These results are consistent with the functional topography and utility of our in silico-activated homology model of the h5-HT(2A) receptor. In addition, being more distal from the absolutely conserved Pro5.50, a strong interaction with Ser5.43(239) may be more effective in straightening the kink in helix 5, a feature that is possibly common to all type A GPCRs that have polar residues at position 5.43.

  8. The antidepressant-like activity of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one involves serotonergic 5-HT(1A) and 5-HT(2A/C) receptors activation.

    PubMed

    Pytka, Karolina; Walczak, Maria; Kij, Agnieszka; Rapacz, Anna; Siwek, Agata; Kazek, Grzegorz; Olczyk, Adrian; Gałuszka, Adam; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara

    2015-10-05

    Xanthone derivatives have been shown to posses many biological properties. Some of them act within the central nervous system and show neuroprotective or antidepressant-like properties. Taking this into account we investigated antidepressant-like activity in mice and the possible mechanism of action of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one (HBK-11) - a new xanthone derivative. We demonstrated that HBK-11 produced antidepressant-like effects in the forced swim test and tail suspension test, comparable to that of venlafaxine. The combined treatment with sub-effective doses of HBK-11 and fluoxetine (but not reboxetine or bupropion) significantly reduced the immobility in the forced swim test. Moreover, the antidepressant-like activity of HBK-11 in the aforementioned test was blocked by p-chlorophenylalanine, and significantly reduced by serotonergic 5HT1A receptor antagonist - WAY-1006335 and 5HT2A/C receptor antagonist - ritanserin. As none of the above treatments influenced the spontaneous locomotor activity, it can be concluded that HBK-11 mediates its activity through a serotonergic system, and its antidepressant-like effect involves 5HT1A and 5HT2A/C receptor activation. Furthermore, at antidepressant-like doses HBK-11 did not cause the mice to display locomotor deficits in rotarod or chimney tests. Considering the pharmacokinetic profile, HBK-11 demonstrated rapid absorption after i.p. administration, high clearance value, short terminal half-life, very high volume of distribution and incomplete bioavailability. The compound studied had good penetration into the brain tissue of mice. Since studied xanthone derivative seems to present interesting, untypical mechanism of antidepressant-like action i.e. 5HT2A/C receptor activation, it may have a potential in the treatment of depressive disorders, and surely requires further studies.

  9. The highly selective 5-hydroxytryptamine (5-HT)2A receptor antagonist, EMD 281014, significantly increases swimming and decreases immobility in male congenital learned helpless rats in the forced swim test.

    PubMed

    Patel, Jignesh G; Bartoszyk, Gerd D; Edwards, Emmeline; Ashby, Charles R

    2004-04-01

    We examined the effect of the highly selective 5-hydroxytryptamine (5-HT)(2A) receptor antagonist 7-[4-[2-(4-fluoro-phenyl)-ethyl]-piperazine-1-carbonyl]-1H-indole-3-carbonitrile HCl (EMD 281014) in congenital learned helpless male rats in the forced swim test. The administration of EMD-281014 (0.3-30 mg/kg i.p.) to congenital learned helpless rats dose-dependently and significantly (at 10 and 30 mg/kg) decreased immobility and increased swimming compared to vehicle-treated animals. Thus, EMD 281014 produces effects in the forced swim test resembling those of antidepressants.

  10. Binding of [(3)H]lysergic acid diethylamide to serotonin 5-HT(2A) receptors and of [(3)H]paroxetine to serotonin uptake sites in platelets from healthy children, adolescents and adults.

    PubMed

    Sigurdh, J; Spigset, O; Allard, P; Mjörndal, T; Hägglöf, B

    1999-11-01

    Possible age effects on binding of [(3)H]lysergic acid diethylamide ([(3)H]LSD) to serotonin 5-HT(2A) receptors and of [(3)H]paroxetine to serotonin uptake sites were studied in platelets from healthy children (11-12 years of age), adolescents (16-17 years of age) and adults. Significant overall age effects were found both for the number of binding sites (B(max)) for [(3)H]LSD binding (p < 0.001), the affinity constant (K(d)) for [(3)H]LSD binding (p < 0.001), B(max) for [(3)H]paroxetine binding (p < 0.001) and K(d) for [(3)H] paroxetine binding (p = 0.006). In general, there was a decrease in B(max) with increasing age, which predominantly occurred between the ages 11-12 years and 16-17 years for the 5-HT(2A) receptor, and after 16-17 years of age for the serotonin uptake site. These developmental changes might have an impact on the effect of treatment with serotonergic drugs in children and adolescents. When the platelet serotonin variables investigated are employed in studies in children or adolescents, age matching or, alternatively, introduction of age control in the statistical analysis should be performed.

  11. 5-HT(2A) and mGlu2 receptor binding levels are related to differences in impulsive behavior in the Roman Low- (RLA) and High- (RHA) avoidance rat strains.

    PubMed

    Klein, A B; Ultved, L; Adamsen, D; Santini, M A; Tobeña, A; Fernandez-Teruel, A; Flores, P; Moreno, M; Cardona, D; Knudsen, G M; Aznar, S; Mikkelsen, J D

    2014-03-28

    The Roman Low- and High-Avoidance rat strains (RLA-I vs RHA-I) have been bidirectionally selected and bred according to their performance in the two-way active avoidance response in the shuttle-box test. Numerous studies have reported a pronounced divergence in emotionality between the two rat strains including differences in novelty seeking, anxiety, stress coping, and susceptibility to addictive substances. However, the underlying molecular mechanisms behind these divergent phenotypes are not known. Here, we determined impulsivity using the 5-choice serial reaction time task and levels of serotonin transporter (SERT), 5-HT(2A) and 5-HT(1A) receptor binding using highly specific radioligands ((3)H-escitalopram, (3)H-MDL100907 and (3)H-WAY100635) and mGlu2/3 receptor binding ((3)H-LY341495) using receptor autoradiography in fronto-cortical sections from RLA-I (n=8) and RHA-I (n=8) male rats. In the more impulsive RHA-I rats, 5-HT(2A), 5-HT(1A) and SERT binding in the frontal cortex was significantly higher compared to RLA-I rats. In contrast, mGlu2/3 receptor binding was decreased by 40% in RHA-I rats compared to RLA-I rats. To differentiate between mGlu2 and mGlu3 receptor protein levels, these were further studied using western blotting, which showed non-detectable levels of mGlu2 receptor protein in RHA rats, while no differences were observed for mGlu3 receptor protein levels. Collectively, these data show general congenital differences in the serotonergic system and a pronounced difference in mGlu2 receptor protein levels. We suggest that the differences in the serotonergic system may mediate some of the phenotypic characteristics in this strain such as hyper-impulsivity and susceptibility to drug addiction.

  12. Serotonin (5-HT) 5-HT2A Receptor (5-HT2AR):5-HT2CR Imbalance in Medial Prefrontal Cortex Associates with Motor Impulsivity.

    PubMed

    Anastasio, Noelle C; Stutz, Sonja J; Fink, Latham H L; Swinford-Jackson, Sarah E; Sears, Robert M; DiLeone, Ralph J; Rice, Kenner C; Moeller, F Gerard; Cunningham, Kathryn A

    2015-07-15

    A feature of multiple neuropsychiatric disorders is motor impulsivity. Recent studies have implicated serotonin (5-HT) systems in medial prefrontal cortex (mPFC) in mediating individual differences in motor impulsivity, notably the 5-HT2AR receptor (5-HT2AR) and 5-HT2CR. We investigated the hypothesis that differences in the ratio of 5-HT2AR:5-HT2CR protein expression in mPFC would predict the individual level of motor impulsivity and that the engineered loss of the 5-HT2CR would result in high motor impulsivity concomitant with elevated 5-HT2AR expression and pharmacological sensitivity to the selective 5-HT2AR antagonist M100907. High and low impulsive rats were identified in a 1-choice serial reaction time task. Native protein levels of the 5-HT2AR and the 5-HT2CR predicted the intensity of motor impulsivity and the 5-HT2AR:5-HT2CR ratio in mPFC positively correlated with levels of premature responses in individual outbred rats. The possibility that the 5-HT2AR and 5-HT2CR act in concert to control motor impulsivity is supported by the observation that high phenotypic motor impulsivity associated with a diminished mPFC synaptosomal 5-HT2AR:5-HT2CR protein:protein interaction. Knockdown of mPFC 5-HT2CR resulted in increased motor impulsivity and triggered a functional disruption of the local 5-HT2AR:5-HT2CR balance as evidenced by a compensatory upregulation of 5-HT2AR protein expression and a leftward shift in the potency of M100907 to suppress impulsive behavior. We infer that there is an interactive relationship between the mPFC 5-HT2AR and 5-HT2CR, and that a 5-HT2AR:5-HT2CR imbalance may be a functionally relevant mechanism underlying motor impulsivity.

  13. Serotonin (5-HT) 5-HT2A Receptor (5-HT2AR):5-HT2CR Imbalance in Medial Prefrontal Cortex Associates with Motor Impulsivity

    PubMed Central

    Anastasio, Noelle C.; Stutz, Sonja J.; Fink, Latham H. L.; Swinford-Jackson, Sarah E.; Sears, Robert M; DiLeone, Ralph J.; Rice, Kenner C.; Moeller, F. Gerard; Cunningham, Kathryn A.

    2016-01-01

    A feature of multiple neuropsychiatric disorders is motor impulsivity. Recent studies have implicated serotonin (5-HT) systems in medial prefrontal cortex (mPFC) in mediating individual differences in motor impulsivity, notably the 5-HT2AR receptor (5-HT2AR) and 5-HT2CR. We investigated the hypothesis that differences in the ratio of 5-HT2AR:5-HT2CR protein expression in mPFC would predict the individual level of motor impulsivity and that the engineered loss of the 5-HT2CR would result in high motor impulsivity concomitant with elevated 5-HT2AR expression and pharmacological sensitivity to the selective 5-HT2AR antagonist M100907. High and low impulsive rats were identified in a 1-choice serial reaction time task. Native protein levels of the 5-HT2AR and the 5-HT2CR predicted the intensity of motor impulsivity and the 5-HT2AR:5-HT2CR ratio in mPFC positively correlated with levels of premature responses in individual outbred rats. The possibility that the 5-HT2AR and 5-HT2CR act in concert to control motor impulsivity is supported by the observation that high phenotypic motor impulsivity associated with a diminished mPFC synaptosomal 5-HT2AR:5-HT2CR protein:protein interaction. Knockdown of mPFC 5-HT2CR resulted in increased motor impulsivity and triggered a functional disruption of the local 5-HT2AR:5-HT2CR balance as evidenced by a compensatory upregulation of 5-HT2AR protein expression and a leftward shift in the potency of M100907 to suppress impulsive behavior. We infer that there is an interactive relationship between the mPFC 5-HT2AR and 5-HT2CR, and that a 5-HT2AR:5-HT2CR imbalance may be a functionally-relevant mechanism underlying motor impulsivity. PMID:26120876

  14. Evidence for the involvement of the serotonergic 5-HT2A/C and 5-HT3 receptors in the antidepressant-like effect caused by oral administration of bis selenide in mice.

    PubMed

    Jesse, Cristiano R; Wilhelm, Ethel A; Bortolatto, Cristiani F; Nogueira, Cristina W

    2010-03-17

    The present study investigated a possible antidepressant-like activity of bis selenide using two predictive tests for antidepressant effect on rodents: the forced swimming test (FST) and the tail suspension test (TST). Bis selenide (0.5-5 mg/kg, p.o.) decreased the immobility time in the mouse FST and TST. The anti-immobility effect of bis selenide (1 mg/kg, p.o.) in the TST was prevented by the pretreatment of mice with p-chlorophenylalanine methyl ester (PCPA; 100 mg/kg, i.p., an inhibitor of serotonin synthesis), ketanserin (1 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), and ondasentron (1 mg/kg, i.p., a 5-HT(3) receptor antagonist). Pretreatment of mice with prazosin (1 mg/kg, i.p., an alpha(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an alpha(2)-adrenoceptor antagonist), propranolol (2 mg/kg, i.p., a beta-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, s.c., a dopamine D(1) receptor antagonist), sulpiride (50 mg/kg, i.p., a dopamine D(2) receptor antagonist), or WAY 100635 (0.1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist) did not block the antidepressant-like effect of bis selenide (1 mg/kg, p.o.) in the TST. Administration of bis selenide (0.1 mg/kg, p.o.) and fluoxetine (1 mg/kg), at subeffective doses, produced an antidepressant-like effect in the TST. Bis selenide did not alter Na(+) K(+) ATPase, MAO-A and MAO-B activities in whole brains of mice. Bis selenide produced an antidepressant-like effect in the mouse TST and FST, which may be related to the serotonergic system (5-HT(2A/2C) and 5-HT(3) receptors).

  15. The Combination of Marketed Antagonists of α1b-Adrenergic and 5-HT2A Receptors Inhibits Behavioral Sensitization and Preference to Alcohol in Mice: A Promising Approach for the Treatment of Alcohol Dependence.

    PubMed

    Trovero, Fabrice; David, Sabrina; Bernard, Philippe; Puech, Alain; Bizot, Jean-Charles; Tassin, Jean-Pol

    2016-01-01

    Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg) and cyproheptadine (1 mg/kg) (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively) blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v) and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France) and cyproheptadine (1 mg/kg) could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs.

  16. The Combination of Marketed Antagonists of α1b-Adrenergic and 5-HT2A Receptors Inhibits Behavioral Sensitization and Preference to Alcohol in Mice: A Promising Approach for the Treatment of Alcohol Dependence

    PubMed Central

    Trovero, Fabrice; David, Sabrina; Bernard, Philippe; Puech, Alain; Bizot, Jean-Charles; Tassin, Jean-Pol

    2016-01-01

    Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg) and cyproheptadine (1 mg/kg) (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively) blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v) and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France) and cyproheptadine (1 mg/kg) could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs. PMID:26968030

  17. Distinct effect of 5-HT1A and 5-HT2A receptors in the medial nucleus of the amygdala on tonic immobility behavior.

    PubMed

    de Paula, Bruna Balbino; Leite-Panissi, Christie Ramos Andrade

    2016-07-15

    The tonic immobility (TI) response is an innate fear behavior associated with intensely dangerous situations, exhibited by many species of invertebrate and vertebrate animals. In humans, it is possible that TI predicts the severity of posttraumatic stress disorder symptoms. This behavioral response is initiated and sustained by the stimulation of various groups of neurons distributed in the telencephalon, diencephalon and brainstem. Previous research has found the highest Fos-IR in the posteroventral part of the medial nucleus of the amygdala (MEA) during TI behavior; however, the neurotransmission of this amygdaloid region involved in the modulation of this innate fear behavior still needs to be clarified. Considering that a major drug class used for the treatment of psychopathology is based on serotonin (5-HT) neurotransmission, we investigated the effects of serotonergic receptor activation in the MEA on the duration of TI. The results indicate that the activation of the 5HT1A receptors or the blocking of the 5HT2 receptors of the MEA can promote a reduction in fear and/or anxiety, consequently decreasing TI duration in guinea pigs. In contrast, blocking the 5HT1A receptors or activating the 5HT2 receptors in this amygdalar region increased the TI duration, suggesting an increase in fear and/or anxiety. These alterations do not appear to be due to a modification of spontaneous motor activity, which might non-specifically affect TI duration. Thus, these results suggest a distinct role of the 5HT receptors in the MEA in innate fear modulation.

  18. Hallucinogen-like effects of 2-([2-(4-cyano-2,5-dimethoxyphenyl) ethylamino]methyl)phenol (25CN-NBOH), a novel N-benzylphenethylamine with 100-fold selectivity for 5-HT2A receptors, in mice

    PubMed Central

    Gray, Bradley W.; Bailey, Jessica M.; Smith, Douglas; Hansen, Martin; Kristensen, Jesper L.

    2014-01-01

    Rationale 2-([2-(4-cyano-2,5-dimethoxyphenyl)ethylamino]methyl)phenol (25CN-NBOH) is structurally similar to N-benzyl substituted phenethylamine hallucinogens currently emerging as drugs of abuse. 25CN-NBOH exhibits dramatic selectivity for 5-HT2A receptors in vitro, but has not been behaviorally characterized. Objective 25CN-NBOH was compared to the traditional phenethylamine hallucinogen R(−)-2,5-dimethoxy-4-iodoamphetamine (DOI) using mouse models of drug-elicited head twitch behavior and drug discrimination. Methods Drug-elicited head twitches were quantified for 10 min following administration of various doses of either DOI or 25CN-NBOH, with and without pretreatments of 0.01 mg/kg 5-HT2A antagonist M100907 or 3.0 mg/kg 5-HT2C antagonist RS102221. The capacity of 25CN-NBOH to attenuate DOI-elicited head twitch was also investigated. Mice were trained to discriminate DOI or M100907 from saline, and 25CN-NBOH was tested for generalization. Results 25CN-NBOH induced a head twitch response in the mouse that was lower in magnitude than that of DOI, blocked by M100907, but not altered by RS102221. DOI-elicited head twitch was dose-dependently attenuated by 25CN-NBOH pretreatment. 25CN-NBOH produced an intermediate degree of generalization (55%) for the DOI training dose, and these interoceptive effects were attenuated by M100907. Finally, 25CN-NBOH did not generalize to M100907 at any dose, but ketanserin fully substituted in these animals. Conclusions 25CN-NBOH was behaviorally active, but less effective than DOI in two mouse models of hallucinogenic effects. The effectiveness with which M100907 antagonized the behavioral actions of 25CN-NBOH strongly suggests that the 5-HT2A receptor is an important site of agonist action for this compound in vivo. PMID:25224567

  19. Cultural consonance, a 5HT2A receptor polymorphism, and depressive symptoms: a longitudinal study of gene x culture interaction in urban Brazil.

    PubMed

    Dressler, William W; Balieiro, Mauro C; Ribeiro, Rosane P; Dos Santos, José Ernesto

    2009-01-01

    In this study in urban Brazil we examine, as a predictor of depressive symptoms, the interaction between a single nucleotide polymorphism in the 2A receptor in the serotonin system (-1438G/A) and cultural consonance in family life, a measure of the degree to which an individual perceives her family as corresponding to a widely shared cultural model of the prototypical family. A community sample of 144 adults was followed over a 2-year-period. Cultural consonance in family life was assessed by linking individuals' perceptions of their own families with a shared cultural model of the family derived from cultural consensus analysis. The -1438G/A polymorphism in the 2A serotonin receptor was genotyped using a standard protocol for DNA extracted from leukocytes. Covariates included age, sex, socioeconomic status, and stressful life events. Cultural consonance in family life was prospectively associated with depressive symptoms. In addition, the interaction between genotype and cultural consonance in family life was significant. For individuals with the A/A variant of the -1438G/A polymorphism of the 2A receptor gene, the effect of cultural consonance in family life on depressive symptoms over a 2-year-period was larger (beta = -0.533, P < 0.01) than those effects for individuals with either the G/A (beta = -0.280, P < 0.10) or G/G (beta = -0.272, P < 0.05) variants. These results are consistent with a process in which genotype moderates the effects of culturally meaningful social experience on depressive symptoms.

  20. Effect of 5-HT2A Receptor Polymorphisms, Work Stressors, and Social Support on Job Strain among Petroleum Workers in Xinjiang, China

    PubMed Central

    Jiang, Yu; Tang, Jinhua; Li, Rong; Zhao, Junling; Song, Zhixin; Ge, Hua; Lian, Yulong; Liu, Jiwen

    2016-01-01

    Previous studies have shown that work stressors and social support influence job strain. However, few studies have examined the impact of individual differences on job strain. In Xinjiang, there are a large number of petroleum workers in arid deserts. The present study investigated the effects of work stressors, social support, and 5-hydroxytryptamine receptor (5-HTR2A) genotype on the etiology of job strain among petroleum workers in Xinjiang. A cross-sectional study was carried out between January and August 2013. A total of 700 workers were selected by a three-stage stratified sampling method. 5-HTR2A genotypes were determined with the SNaPshot single nucleotide polymorphism assay. Work stressors and job strain were evaluated with the Occupational Stress Inventory-Revised questionnaire. Social support was assessed with the Chinese Social Support Rating Scale. Work overload and responsibility were significantly associated with job strain. Low social support was associated with severe vocational and interpersonal strain. High social support was a protective factor against job strain (odds ratio (OR) = 0.32, 95% confidence interval (CI): 0.14–0.76). The CC genotype of rs6313 and the AA genotype of rs2070040 were linked to severe vocational strain. Ordinal logistic regression analysis revealed that the CC genotype of rs6313 was linked to higher risk of job strain than the TT genotype (OR = 1.88, 95% CI: 1.10–3.23). These data provide evidence that work stressors, low social support, and 5-HTR2A gene polymorphism contributes to the risk of job strain. PMID:27999378

  1. Effect of 5-HT2A Receptor Polymorphisms, Work Stressors, and Social Support on Job Strain among Petroleum Workers in Xinjiang, China.

    PubMed

    Jiang, Yu; Tang, Jinhua; Li, Rong; Zhao, Junling; Song, Zhixin; Ge, Hua; Lian, Yulong; Liu, Jiwen

    2016-12-19

    Previous studies have shown that work stressors and social support influence job strain. However, few studies have examined the impact of individual differences on job strain. In Xinjiang, there are a large number of petroleum workers in arid deserts. The present study investigated the effects of work stressors, social support, and 5-hydroxytryptamine receptor (5-HTR2A) genotype on the etiology of job strain among petroleum workers in Xinjiang. A cross-sectional study was carried out between January and August 2013. A total of 700 workers were selected by a three-stage stratified sampling method. 5-HTR2A genotypes were determined with the SNaPshot single nucleotide polymorphism assay. Work stressors and job strain were evaluated with the Occupational Stress Inventory-Revised questionnaire. Social support was assessed with the Chinese Social Support Rating Scale. Work overload and responsibility were significantly associated with job strain. Low social support was associated with severe vocational and interpersonal strain. High social support was a protective factor against job strain (odds ratio (OR) = 0.32, 95% confidence interval (CI): 0.14-0.76). The CC genotype of rs6313 and the AA genotype of rs2070040 were linked to severe vocational strain. Ordinal logistic regression analysis revealed that the CC genotype of rs6313 was linked to higher risk of job strain than the TT genotype (OR = 1.88, 95% CI: 1.10-3.23). These data provide evidence that work stressors, low social support, and 5-HTR2A gene polymorphism contributes to the risk of job strain.

  2. Restricted access to standard or high fat chow alters sensitivity of rats to the 5-HT2A/2C receptor agonist 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM)

    PubMed Central

    Serafine, Katherine M.; France, Charles P.

    2017-01-01

    Feeding conditions can impact sensitivity to drugs acting on dopamine receptors; less is known about the impact of feeding conditions on the effects of drugs acting on serotonin (5-HT) receptors. This study examined the effects of feeding condition on sensitivity to the direct-acting 5-HT2A/2C receptor agonist 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM; 0.1–3.2 mg/kg) and the direct-acting dopamineD3/D2 receptor agonist quinpirole (0.0032–0.32 mg/kg). Male Sprague-Dawley rats had free access (11 weeks) followed by restricted access (6 weeks) to high (34.3%, n = 8) fat or standard (5.7% fat; n = 7) chow. Rats eating high fat chow became insulin resistant and gained more weight than rats eating standard chow. Free access to high fat chow did not alter sensitivity to DOM-induced head twitch but increased sensitivity to quinpirole-induced yawning. Restricting access to high fat or standard chow shifted the DOM-induced head twitch dose-response curve to the right and shifted the quinpirole-induced yawning dose-response curve downward in both groups of rats. Some drugs of abuse and many therapeutic drugs act on 5-HT and dopamine systems; these results demonstrate that feeding condition impacts sensitivity to drugs acting on these systems, thereby possibly impacting vulnerability to abuse as well as therapeutic effectiveness of drugs. PMID:24346289

  3. Binding of [3H]paroxetine to serotonin uptake sites and of [3H]lysergic acid diethylamide to 5-HT2A receptors in platelets from women with premenstrual dysphoric disorder during gonadotropin releasing hormone treatment.

    PubMed

    Bixo, M; Allard, P; Bäckström, T; Mjörndal, T; Nyberg, S; Spigset, O; Sundström-Poromaa, I

    2001-08-01

    Changes in serotonergic parameters have been reported in psychiatric conditions such as depression but also in the premenstrual dysphoric disorder (PMDD). In addition, hormonal effects on serotonergic activity have been established. In the present study, binding of [3H]paroxetine to platelet serotonin uptake sites and binding of [3H]lysergic acid diethylamide ([3H]LSD) to platelet serotonin (5-HT)2A receptors were studied in patients with PMDD treated with a low dose of a gonadotropin releasing hormone (GnRH) agonist (buserelin) or placebo and compared to controls. The PMDD patients were relieved of premenstrual symptoms like depression and irritability during buserelin treatment. The number of [3H]paroxetine binding sites (Bmax) were significantly higher in the follicular phase in untreated PMDD patients compared to controls. When treated with buserelin the difference disappeared. No differences in [3H]LSD binding between the three groups were shown. The present study demonstrated altered platelet [3H]paroxetine binding characteristics in women with PMDD compared to controls. Furthermore, [3H]paroxetine binding was affected by PMDD treatment with a low dose of buserelin. The results are consistent with the hypothesis that changes in serotonergic transmission could be a trait in the premenstrual dysphoric disorder.

  4. The Role of 5-HT2A, 5-HT2C and mGlu2 Receptors in the Behavioral Effects of Tryptamine Hallucinogens N,N-Dimethyltryptamine and N,N-Diisopropyltryptamine in Rats and Mice

    PubMed Central

    Carbonaro, Theresa M.; Eshleman, Amy J.; Forster, Michael J.; Cheng, Kejun; Rice, Kenner C.; Gatch, Michael B.

    2014-01-01

    Rationale: Serotonin 5-HT2A and 5-HT2C receptors are thought to be the primary pharmacological mechanisms for serotonin-mediated hallucinogenic drugs, but recently there has been interest in metabotropic glutamate (mGluR2) receptors as contributors to the mechanism of hallucinogens. Objective: The present study assesses the role of these 5-HT and glutamate receptors as molecular targets for two tryptamine hallucinogens, N,N-dimethyltryptamine (DMT) and N,N-diisopropyltryptamine (DiPT). Methods: Drug discrimination, head twitch and radioligand binding assays were used. A 5-HT2AR inverse agonist (MDL100907), 5-HT2CR antagonist (SB242084) and mGluR2/3 agonist (LY379268) were tested for their ability to attenuate the discriminative stimulus effects of DMT and DiPT; an mGluR2/3 antagonist (LY341495) was tested for potentiation. MDL100907 was used to attenuate head twitches induced by DMT and DiPT. Radioligand binding studies and inosital-1-phosphate (IP-1) accumulation were performed at the 5-HT2CR for DiPT. Results: MDL100907 fully blocked the discriminative stimulus effects of DMT, but only partially blocked DiPT. SB242084 partially attenuated the discriminative stimulus effects of DiPT, but produced minimal attenuation of DMT’s effects. LY379268 produced potent, but only partial blockade of the discriminative stimulus effects of DMT. LY341495 facilitated DMT- and DiPT-like effects. Both compounds elicited head twitches (DiPT>DMT) which were blocked by MDL1000907. DiPT was a low potency full agonist at 5-HT2CR in vitro. Conclusions: The 5-HT2AR likely plays a major role in mediating the effects of both compounds. 5-HT2C and mGluR2 receptors likely modulate the discriminative stimulus effects of both compounds to some degree. PMID:24985890

  5. Extending David Horrobin's membrane phospholipid theory of schizophrenia: overactivity of cytosolic phospholipase A(2) in the brain is caused by overdrive of coupled serotonergic 5HT(2A/2C) receptors in response to stress.

    PubMed

    Eggers, Arnold E

    2012-12-01

    David Horrobin's membrane phospholipid theory of schizophrenia has held up well over time because his therapeutic prediction that dietary supplementation with eicosapentaenoic acid (EPA) would have a therapeutic effect has been partially verified and undergoes continued testing. In the final version of his theory, he hypothesized that there was hyperactivity of phosphoslipase A(2) (PLA(2)) or a related enzyme but did not explain how the hyperactivity came about. It is known that serotonergic 5HT(2A/2C) receptors are coupled to PLA(2), which hydrolyzes both arachidonic acid (AA) and EPA from diacylglycerides at the sn-2 position. In this paper, Horrobin's theory is combined with a previously published theory of chronic stress in which it was hypothesized that a disinhibited dorsal raphe nucleus, the principal nucleus of the serotonergic system, can organize the neuropathology of diseases such as migraine, hypertension, and the metabolic syndrome. The new or combined theory is that schizophrenia is a disease of chronic stress in which a disinhibited DRN causes widespread serotonergic overdrive in the cerebral cortex. This in turn causes overdrive of cPLA(2) and both central and peripheral depletion of AA and EPA. Because EPA is present in smaller amounts, it falls below threshold for maintaining an intracellular balance between AA-derived and EPA-derived second messenger cascades, which leads to abnormal patterns of neuronal firing. There are two causes of neuronal dysfunction: the disinhibited DRN and EPA depletion. Schizophrenia is statistically associated with metabolic syndrome, hypertension, and migraine because they form a cluster of diseases with similar pathophysiology. The theory provides an explanation for both the central and peripheral phospholipid abnormalities in schizophrenia. It also explains the role of stress in schizophrenia, elevated serum PLA(2) activity in schizophrenia, the relationship between untreated schizophrenia and metabolic syndrome

  6. Stimulation of 5-HT1A, 5-HT1B, 5-HT2A/2C, 5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition: short- and long-term memory.

    PubMed

    Meneses, Alfredo

    2007-11-22

    In order to determine whether short- (STM) and long-term memory (LTM) function in serial or parallel manner, serotonin (5-hydroxtryptamine, 5-HT) receptor agonists were tested in autoshaping task. Results show that control-vehicle animals were modestly but significantly mastering the autoshaping task as illustrated by memory scores between STM and LTM. Thus, post-training administration of 8-OHDPAT (agonist for 5-HT(1A/7) receptors) only at 0.250 and 0.500 mg/kg impaired both STM and LTM. CGS12066 (agonist for 5-HT(1B)) produced biphasic affects, at 5.0 mg/kg impaired STM but at 1.0 and 10.0 mg/kg, respectively, improved or impaired LTM. DOI (agonist for 5-HT(2A/2C) receptors) dose-dependently impaired STM and, at 10.0 mg/kg only impaired LTM. Both, STM and LTM were impaired by either mCPP (mainly agonist for 5-HT(2C) receptors) or mesulergine (mainly antagonist for 5-HT(2C) receptors) lower dose. The 5-HT(3) agonist mCPBG at 1.0 impaired STM and its higher dose impaired both STM and LTM. RS67333 (partial agonist for 5-HT(4) receptors), at 5.0 and 10.0 mg/kg facilitated both STM and LTM. The higher dose of fluoxetine (a 5-HT uptake inhibitor) improved both STM and LTM. Using as head-pokes during CS as an indirect measure of food-intake showed that of 30 memory changes, 21 of these were unrelated to the former. While some STM or LTM impairments can be attributed to decrements in food-intake, but not memory changes (either increase or decreases) produced by 8-OHDPAT, CGS12066, RS67333 or fluoxetine. Except for animals treated with DOI, mCPBG or fluoxetine, other groups treated with 5-HT agonists 6 h following autoshaping training showed similar LTM and unmodified CS-head-pokes scores.

  7. The serotonergic hallucinogen 5-methoxy-N,N-dimethyltryptamine disrupts cortical activity in a regionally-selective manner via 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Riga, Maurizio S; Bortolozzi, Analia; Campa, Letizia; Artigas, Francesc; Celada, Pau

    2016-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen, acting as a non-selective serotonin 5-HT(1A)/5-HT(2A)-R agonist. Psychotomimetic agents such as the non-competitive NMDA-R antagonist phencyclidine and serotonergic hallucinogens (DOI and 5-MeO-DMT) disrupt cortical synchrony in the low frequency range (<4 Hz) in rat prefrontal cortex (PFC), an effect reversed by antipsychotic drugs. Here we extend these observations by examining the effect of 5-MeO-DMT on low frequency cortical oscillations (LFCO, <4 Hz) in PFC, visual (V1), somatosensory (S1) and auditory (Au1) cortices, as well as the dependence of these effects on 5-HT(1A)-R and 5-HT(2A)-R, using wild type (WT) and 5-HT(2A)-R knockout (KO2A) anesthetized mice. 5-MeO-DMT reduced LFCO in the PFC of WT and KO2A mice. The effect in KO2A mice was fully prevented by the 5-HT(1A)-R antagonist WAY-100635. Systemic and local 5-MeO-DMT reduced 5-HT release in PFC mainly via 5-HT(1A)-R. Moreover, 5-MeO-DMT reduced LFCO in S1, Au1 and V1 of WT mice and only in V1 of KO2A mice, suggesting the involvement of 5-HT(1A)-R activation in the 5-MeO-DMT-induced disruption of V1 activity. In addition, antipsychotic drugs reversed 5-MeO-DMT effects in WT mice. The present results suggest that the hallucinogen action of 5-MeO-DMT is mediated by simultaneous alterations of the activity of sensory (S1, Au1, V1) and associative (PFC) cortical areas, also supporting a role of 5-HT(1A)-R stimulation in V1 and PFC, in addition to the well-known action on 5-HT(2A)-R. Moreover, the reversal by antipsychotic drugs of 5-MeO-DMT effects adds to previous literature supporting the usefulness of the present model in antipsychotic drug development.

  8. New arylpiperazinylalkyl derivatives of 8-alkoxy-purine-2,6-dione and dihydro[1,3]oxazolo[2,3-f]purinedione targeting the serotonin 5-HT1A /5-HT2A /5-HT7 and dopamine D2 receptors.

    PubMed

    Chłoń-Rzepa, Grażyna; Zagórska, Agnieszka; Bucki, Adam; Kołaczkowski, Marcin; Pawłowski, Maciej; Satała, Grzegorz; Bojarski, Andrzej J; Partyka, Anna; Wesołowska, Anna; Pękala, Elżbieta; Słoczyńska, Karolina

    2015-04-01

    To obtain potential antidepressants and/or antipsychotics, a series of new long-chain arylpiperazine derivatives of 8-alkoxy-purine-2,6-dione (10-24) and dihydro[1,3]oxazolo[2,3-f]purinedione (30-34) were synthesized and their serotonin (5-HT1A , 5-HT2A , 5-HT6 , 5-HT7 ) and dopamine (D2 ) receptor affinities were determined. The study allowed the identification of some potent 5-HT1A /5-HT7 /D2 ligands with moderate affinity for 5-HT2A sites. The binding mode of representative compounds from both chemical classes (11 and 31) in the site of 5-HT1A receptor was analyzed in computational studies. In functional in vitro studies, the selected compounds 15 and 16 showed antagonistic properties for the evaluated receptors. 8-Methoxy-7-{4-[4-(2-methoxyphenyl)-piperazin-1-yl]-butyl}-1,3-dimethyl-purine-2,6-dione (15) showed a lack of activity in terms and under the conditions of the forced swim, four plate and amphetamine-induced hyperactivity tests in mice, probably as a result of its high first pass effect in the liver.

  9. 5-HT2A SNPs and the Temperament and Character Inventory.

    PubMed

    Serretti, Alessandro; Calati, Raffaella; Giegling, Ina; Hartmann, Annette M; Möller, Hans-Jürgen; Colombo, Cristina; Rujescu, Dan

    2007-08-15

    Temperamental traits, the most basic part of personality, have been largely correlated with neurotransmitter systems and are under genetic control. Among serotonin candidates, the 2A receptor (5-HT(2A)) received considerable attention. We analyzed four SNPs (rs643627, rs594242, rs6311 and rs6313) in the 5-HT(2A) gene and their association with personality traits, as measured with the Temperament and Character Inventory (TCI). The sample was composed of three sub-groups: two German sub-samples, consisting of a healthy group of 289 subjects (42.6% males, mean age: 45.2+/-14.9) and a psychiatric patient group of 111 suicide attempters (38.7% males, mean age: 39.2+/-13.6), and an Italian sub-sample, composed of 60 mood disorder patients (35.0% males, mean age: 44.0+/-14.8). Controlling for sex, age and educational level, the SNPs were not strongly associated with personality dimensions. Only the rs594242 showed an association with Self-Directedness (p=0.003) in the German sample, while rs6313 was marginally associated with Novelty Seeking (p=0.01) in the Italian sample. We conclude that 5-HT(2A) SNPs may marginally modulate personality traits but further studies are required.

  10. T102C polymorphism in the 5HT2A gene and schizophrenia: relation to phenotype and drug response variability.

    PubMed Central

    Joober, R; Benkelfat, C; Brisebois, K; Toulouse, A; Turecki, G; Lal, S; Bloom, D; Labelle, A; Lalonde, P; Fortin, D; Alda, M; Palmour, R; Rouleau, G A

    1999-01-01

    Although genes play a major role in the etiology of schizophrenia, no major genes involved in this disease have been identified. However, several genes with small effect have been reported, though inconsistently, to increase the risk for schizophrenia. Recently, the 5HT2A 2 allele (T102C polymorphism) was reported to be over-represented in patients with schizophrenia. Other reports have found an excess of allele 2(C) only in schizophrenic patients who are resistant to clozapine, not in those who respond to clozapine. In this study, the 5HT2A receptor allele 2 frequencies were compared between 2 groups of patients with schizophrenia (39 responders and 63 nonresponders) based on long-term outcome and response to typical neuroleptics. A control group of 90 healthy volunteers screened for mental disorders was also included. Genotype 2/2 tended to be more frequent in patients with schizophrenia with poor long-term outcome and poor response to typical neuroleptics (Bonferroni corrected p = 0.09). This difference was significant in men (Bonferroni corrected p = 0.054) but not in women. In addition, the age at first contact with psychiatric care was significantly younger in the patients with schizophrenia with genotype 2/2 than in patients with genotype 1/1. These result suggest that the 5HT2A-receptor gene may play a role in a subset of schizophrenia characterized by poor long-term outcome and poor response to neuroleptics. PMID:10212557

  11. Repeated adolescent MDMA ("Ecstasy") exposure in rats increases behavioral and neuroendocrine responses to a 5-HT2A/2C agonist.

    PubMed

    Biezonski, Dominik K; Courtemanche, Andrea B; Hong, Sang B; Piper, Brian J; Meyer, Jerrold S

    2009-02-03

    MDMA (3,4-methylenedioxymethamphetamine) is a popular recreational drug among adolescents. The present study aimed to determine the effects of repeated intermittent administration of 10 mg/kg MDMA during adolescence on behavioral (Experiment 1) and neuroendocrine (Experiment 2) responses of rats to the 5-HT(2A/2C) agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and on [(3)H]ketanserin binding to 5-HT(2A) receptors. In the first experiment, MDMA pretreatment increased the frequency of head twitches and back muscle contractions, but not wet-dog shakes, to a high-dose DOI challenge. In the second experiment, both the prolactin and corticosterone responses to DOI were potentiated in MDMA-pretreated animals. No changes were found in 5-HT(2A) receptor binding in the hypothalamus or other forebrain areas that were examined. These results indicate that intermittent adolescent MDMA exposure enhances sensitivity of 5-HT(2A/2C) receptors in the CNS, possibly through changes in downstream signaling mechanisms.

  12. Allergic sensitization modifies the pulmonary expression of 5-hydroxytryptamine receptors in guinea pigs.

    PubMed

    Córdoba-Rodríguez, Guadalupe; Vargas, Mario H; Ruiz, Víctor; Carbajal, Verónica; Campos-Bedolla, Patricia; Mercadillo-Herrera, Paulina; Arreola-Ramírez, José Luis; Segura-Medina, Patricia

    2016-03-01

    There is mounting evidence that 5-hydroxytryptamine (5-HT) plays a role in asthma. However, scarce information exists about the pulmonary expression of 5-HT receptors and its modification after allergic sensitization. In the present work, we explored the expression of 5-HT1A, 5-HT2A, 5-HT3, 5-HT4, 5-ht5a, 5-HT6, and 5-HT7 receptors in lungs from control and sensitized guinea pigs through qPCR and Western blot. In control animals, mRNA from all receptors was detectable in lung homogenates, especially from 5-HT2A and 5-HT4 receptors. Sensitized animals had decreased mRNA expression of 5-HT2A and 5-HT4 receptors and increased that of 5-HT7 receptor. In contrast, they had increased protein expression of 5-HT2A receptor in bronchial epithelium and of 5-HT4 receptor in lung parenchyma. The degree of airway response to the allergic challenge was inversely correlated with mRNA expression of the 5-HT1A receptor. In summary, our results showed that major 5-HT receptor subtypes are constitutively expressed in the guinea pig lung, and that allergic sensitization modifies the expression of 5-HT2A, 5-HT4, and 5-HT7 receptors.

  13. Comparison of the anti-dopamine D₂ and anti-serotonin 5-HT(2A) activities of chlorpromazine, bromperidol, haloperidol and second-generation antipsychotics parent compounds and metabolites thereof.

    PubMed

    Suzuki, Hidenobu; Gen, Keishi; Inoue, Yuichi

    2013-04-01

    Second-generation antipsychotics, which have become the standard drug therapies for schizophrenia, are known to have a serotonin 5-HT(2A) receptor blocking effect in addition to a dopamine D₂ receptor blocking effect. However, although chlorpromazine (CPZ) has a 5-HT(2A) receptor blocking effect and has the profile of a second-generation antipsychotic in vitro, it loses this pharmacological profile in vivo. In order to elucidate the differences between the in vivo and in vitro pharmacological characteristics of CPZ, we used a radioreceptor assay to measure the anti-D₂ activity and the anti-5-HT(2A) activity of CPZ and five major metabolites of CPZ, and compared the results to the anti-D₂ activity and anti-5-HT(2A) activity of risperidone, zotepine, perospirone, the major metabolites of each of these drugs, and olanzapine, bromperidol, and haloperidol. The subjects were 182 patients who had received diagnoses of schizophrenia based on the DSM-IV criteria. The results revealed that CPZ exhibited little anti-5-HT(2A) activity, regardless of the anti-D₂ activity level, and that none of the metabolites possessed anti-5-HT(2A) activity. However, both the parent compounds and the metabolites of each of the second-generation antipsychotics possessed both anti-D₂ activity and anti-5-HT(2A) activity. This clarified that, unlike second-generation antipsychotics, the reason CPZ loses its second-generation antipsychotic profiles in vivo is because it does not have any metabolites that possess anti-5-HT(2A) activity.

  14. 5-HT2 receptors modulate the expression of antipsychotic-induced dopamine supersensitivity.

    PubMed

    Charron, Alexandra; Hage, Cynthia El; Servonnet, Alice; Samaha, Anne-Noël

    2015-12-01

    Antipsychotic treatment can produce supersensitivity to dopamine receptor stimulation. This compromises the efficacy of ongoing treatment and increases the risk of relapse to psychosis upon treatment cessation. Serotonin 5-HT2 receptors modulate dopamine function and thereby influence dopamine-dependent responses. Here we evaluated the hypothesis that 5-HT2 receptors modulate the behavioural expression of antipsychotic-induced dopamine supersensitivity. To this end, we first treated rats with the antipsychotic haloperidol using a clinically relevant treatment regimen. We then assessed the effects of a 5-HT2 receptor antagonist (ritanserin; 0.01 and 0.1mg/kg) and of a 5-HT2A receptor antagonist (MDL100,907; 0.025-0.1mg/kg) on amphetamine-induced psychomotor activity. Antipsychotic-treated rats showed increased amphetamine-induced locomotion relative to antipsychotic-naïve rats, indicating a dopamine supersensitive state. At the highest dose tested (0.1mg/kg for both antagonists), both ritanserin and MDL100,907 suppressed amphetamine-induced locomotion in antipsychotic-treated rats, while having no effect on this behaviour in control rats. In parallel, antipsychotic treatment decreased 5-HT2A receptor density in the prelimbic cortex and nucleus accumbens core and increased 5-HT2A receptor density in the caudate-putamen. Thus, activation of either 5-HT2 receptors or of 5-HT2A receptors selectively is required for the full expression of antipsychotic-induced dopamine supersensitivity. In addition, antipsychotic-induced dopamine supersensitivity enhances the ability of 5-HT2/5-HT2A receptors to modulate dopamine-dependent behaviours. These effects are potentially linked to changes in 5-HT2A receptor density in the prefrontal cortex and the striatum. These observations raise the possibility that blockade of 5-HT2A receptors might overcome some of the behavioural manifestations of antipsychotic-induced dopamine supersensitivity.

  15. Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes.

    PubMed

    Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Narvaez, Manuel; Oflijan, Julia; Agnati, Luigi F; Fuxe, Kjell

    2014-01-03

    Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor-receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist (3)H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in (3)H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists.

  16. Lysergic acid diethylamide-induced Fos expression in rat brain: role of serotonin-2A receptors.

    PubMed

    Gresch, P J; Strickland, L V; Sanders-Bush, E

    2002-01-01

    Lysergic acid diethylamide (LSD) produces altered mood and hallucinations in humans and binds with high affinity to serotonin-2A (5-HT(2A)) receptors. Although LSD interacts with other receptors, the activation of 5-HT(2A) receptors is thought to mediate the hallucinogenic properties of LSD. The goal of this study was to identify the brain sites activated by LSD and to determine the influence of 5-HT(2A) receptors in this activation. Rats were pretreated with the 5-HT(2A) receptor antagonist MDL 100907 (0.3 mg/kg, i.p.) or vehicle 30 min prior to LSD (500 microg/kg, i.p.) administration and killed 3 h later. Brain tissue was examined for Fos protein expression by immunohistochemistry. LSD administration produced a five- to eight-fold increase in Fos-like immunoreactivity in medial prefrontal cortex, anterior cingulate cortex, and central nucleus of amygdala. However, in dorsal striatum and nucleus accumbens no increase in Fos-like immunoreactivity was observed. Pretreatment with MDL 100907 completely blocked LSD-induced Fos-like immunoreactivity in medial prefrontal cortex and anterior cingulate cortex, but only partially blocked LSD-induced Fos-like immunoreactivity in amygdala. Double-labeled immunohistochemistry revealed that LSD did not induce Fos-like immunoreactivity in cortical cells expressing 5-HT(2A) receptors, suggesting an indirect activation of cortical neurons. These results indicate that the LSD activation of medial prefrontal cortex and anterior cingulate cortex is mediated by 5-HT(2A) receptors, whereas in amygdala 5-HT(2A) receptor activation is a component of the response. These findings support the hypothesis that the medial prefrontal cortex, anterior cingulate cortex, and perhaps the amygdala, are important regions involved in the production of hallucinations.

  17. Effects of the 5-HT2A agonist psilocybin on mismatch negativity generation and AX-continuous performance task: implications for the neuropharmacology of cognitive deficits in schizophrenia.

    PubMed

    Umbricht, Daniel; Vollenweider, Franz X; Schmid, Liselotte; Grübel, Claudia; Skrabo, Anja; Huber, Theo; Koller, Rene

    2003-01-01

    Previously the NMDA (N-methyl-D-aspartate) receptor (NMDAR) antagonist ketamine was shown to disrupt generation of the auditory event-related potential (ERP) mismatch negativity (MMN) and the performance of an 'AX'-type continuous performance test (AX-CPT)--measures of auditory and visual context-dependent information processing--in a similar manner as observed in schizophrenia. This placebo-controlled study investigated effects of the 5-HT(2A) receptor agonist psilocybin on the same measures in 18 healthy volunteers. Psilocybin administration induced significant performance deficits in the AX-CPT, but failed to reduce MMN generation significantly. These results indirectly support evidence that deficient MMN generation in schizophrenia may be a relatively distinct manifestation of deficient NMDAR functioning. In contrast, secondary pharmacological effects shared by NMDAR antagonists and the 5-HT(2A) agonist (ie disruption of glutamatergic neurotransmission) may be the mechanism underlying impairments in AX-CPT performance observed during both psilocybin and ketamine administration. Comparable deficits in schizophrenia may result from independent dysfunctions of 5-HT(2A) and NMDAR-related neurotransmission.

  18. Reversal of amphetamine-induced behaviours by MDL 100,907, a selective 5-HT2A antagonist.

    PubMed

    Moser, P C; Moran, P M; Frank, R A; Kehne, J H

    1996-01-01

    MDL 100,907 is a potent and selective antagonist of the 5-HT2A receptor which, unlike other antagonists at this receptor, has little affinity for the 5-HT2C receptor. We have investigated the antipsychotic potential of MDL 100,907 by examining its ability to antagonise different behavioural effects of amphetamine in rats. MDL 100,907 reversed the locomotor stimulant effects of amphetamine in rats without itself having any effect on locomotor activity. It also antagonised the disruptive effects of amphetamine on the development of latent inhibition. In contrast, MDL 100,907 had no effect on the discriminative stimulus properties of amphetamine, nor did it affect the ability of amphetamine to reduce the threshold required to sustain rewarding brain stimulation in the ventral tegmental area. This profile is different from that of typical and atypical neuroleptics, and also from other 5-HT2 receptor antagonists, which lack the selectivity of MDL 100,907. These results suggest that MDL 100,907 may have a unique interaction with dopaminergic systems and support the further development of selective 5-HT2 receptor antagonists as a novel therapeutic strategy for schizophrenia.

  19. Identification and characterization of a truncated variant of the 5-hydroxytryptamine(2A) receptor produced by alternative splicing.

    PubMed

    Guest, P C; Salim, K; Skynner, H A; George, S E; Bresnick, J N; McAllister, G

    2000-09-08

    We have identified an alternatively spliced 5-hydroxytryptamine 2A receptor (5-HT(2A)-R) transcript by PCR of human brain cDNA using degenerate oligonucleotide primers to transmembrane (TM) domains 3 and 7 of the 5-HT(2)-R subfamily. The variant contains a 118-bp insertion at the exon II/III boundary of the 5-HT(2A)-R, which produces a frame shift in the coding sequence and a premature stop codon. PCR analysis showed that the truncated receptor (5-HT(2A-tr)) and native 5-HT(2A)-R were co-expressed in most brain tissues, with the highest levels being found in hippocampus, corpus collosum, amygdala and caudate nucleus. Western blot analysis of HEK-293 cells transfected transiently with a 5-HT(2A-tr) construct showed that a 30-kDa protein was expressed on cell membranes. Co-transfection studies showed no effect of the 5-HT(2A-tr) variant on 3H-ketanserin binding to the native 5-HT(2A)-R or on functional coupling of the 5-HT(2A)-R to 5-HT-stimulated Ca(2+) mobilization. The functional significance of the 5-HT(2A-tr) variant and other truncated receptors remains to be established.

  20. Cannabinoid 2 receptor- and beta Arrestin 2-dependent upregulation of serotonin 2A receptors.

    PubMed

    Franklin, J M; Vasiljevik, T; Prisinzano, T E; Carrasco, G A

    2013-07-01

    Recent evidence suggests that cannabinoid receptor agonists may regulate serotonin 2A (5-HT(2A)) receptor neurotransmission in the brain, although no molecular mechanism has been identified. Here, we present experimental evidence that sustained treatment with a non-selective cannabinoid agonist (CP55,940) or selective CB2 receptor agonists (JWH133 or GP1a) upregulate 5-HT(2A) receptors in a neuronal cell line. Furthermore, this cannabinoid receptor agonist-induced upregulation of 5-HT(2A) receptors was prevented in cells stably transfected with either CB2 or β-Arrestin 2 shRNA lentiviral particles. Additionally, inhibition of clathrin-mediated endocytosis also prevented the cannabinoid receptor-induced upregulation of 5-HT(2A) receptors. Our results indicate that cannabinoid agonists might upregulate 5-HT(2A) receptors by a mechanism that requires CB2 receptors and β-Arrestin 2 in cells that express both CB2 and 5-HT(2A) receptors. 5-HT(2A) receptors have been associated with several physiological functions and neuropsychiatric disorders such as stress response, anxiety and depression, and schizophrenia. Therefore, these results might provide a molecular mechanism by which activation of cannabinoid receptors might be relevant to some cognitive and mood disorders in humans.

  1. 5-HT2A Gene Variants Moderate the Association between PTSD and Reduced Default Mode Network Connectivity.

    PubMed

    Miller, Mark W; Sperbeck, Emily; Robinson, Meghan E; Sadeh, Naomi; Wolf, Erika J; Hayes, Jasmeet P; Logue, Mark; Schichman, Steven A; Stone, Angie; Milberg, William; McGlinchey, Regina

    2016-01-01

    The default mode network (DMN) has been used to study disruptions of functional connectivity in a wide variety of psychiatric and neurological conditions, including posttraumatic stress disorder (PTSD). Studies indicate that the serotonin system exerts a modulatory influence on DMN connectivity; however, no prior study has examined associations between serotonin receptor gene variants and DMN connectivity in either clinical or healthy samples. We examined serotonin receptor single nucleotide polymorphisms (SNPs), PTSD, and their interactions for association with DMN connectivity in 134 White non-Hispanic veterans. We began by analyzing candidate SNPs identified in prior meta-analyses of relevant psychiatric traits and found that rs7997012 (an HTR2A SNP), implicated previously in anti-depressant medication response in the Sequenced Treatment Alternatives for Depression study (STAR(*)D; McMahon et al., 2006), interacted with PTSD to predict reduced connectivity between the posterior cingulate cortex (PCC) and the right medial prefrontal cortex and right middle temporal gyrus (MTG). rs130058 (HTR1B) was associated with connectivity between the PCC and right angular gyrus. We then expanded our analysis to 99 HTR1B and HTR2A SNPs and found two HTR2A SNPs (rs977003 and rs7322347) that significantly moderated the association between PTSD severity and the PCC-right MTG component of the DMN after correcting for multiple testing. Finally, to obtain a more precise localization of the most significant SNP × PTSD interaction, we performed a whole cortex vertex-wise analysis of the rs977003 effect. This analysis revealed the locus of the pre-frontal effect to be in portions of the superior frontal gyrus, while the temporal lobe effect was centered in the middle and inferior temporal gyri. These findings point to the influence of HTR2A variants on DMN connectivity and advance knowledge of the role of 5-HT2A receptors in the neurobiology of PTSD.

  2. 5-HT2A Gene Variants Moderate the Association between PTSD and Reduced Default Mode Network Connectivity

    PubMed Central

    Miller, Mark W.; Sperbeck, Emily; Robinson, Meghan E.; Sadeh, Naomi; Wolf, Erika J.; Hayes, Jasmeet P.; Logue, Mark; Schichman, Steven A.; Stone, Angie; Milberg, William; McGlinchey, Regina

    2016-01-01

    The default mode network (DMN) has been used to study disruptions of functional connectivity in a wide variety of psychiatric and neurological conditions, including posttraumatic stress disorder (PTSD). Studies indicate that the serotonin system exerts a modulatory influence on DMN connectivity; however, no prior study has examined associations between serotonin receptor gene variants and DMN connectivity in either clinical or healthy samples. We examined serotonin receptor single nucleotide polymorphisms (SNPs), PTSD, and their interactions for association with DMN connectivity in 134 White non-Hispanic veterans. We began by analyzing candidate SNPs identified in prior meta-analyses of relevant psychiatric traits and found that rs7997012 (an HTR2A SNP), implicated previously in anti-depressant medication response in the Sequenced Treatment Alternatives for Depression study (STAR*D; McMahon et al., 2006), interacted with PTSD to predict reduced connectivity between the posterior cingulate cortex (PCC) and the right medial prefrontal cortex and right middle temporal gyrus (MTG). rs130058 (HTR1B) was associated with connectivity between the PCC and right angular gyrus. We then expanded our analysis to 99 HTR1B and HTR2A SNPs and found two HTR2A SNPs (rs977003 and rs7322347) that significantly moderated the association between PTSD severity and the PCC-right MTG component of the DMN after correcting for multiple testing. Finally, to obtain a more precise localization of the most significant SNP × PTSD interaction, we performed a whole cortex vertex-wise analysis of the rs977003 effect. This analysis revealed the locus of the pre-frontal effect to be in portions of the superior frontal gyrus, while the temporal lobe effect was centered in the middle and inferior temporal gyri. These findings point to the influence of HTR2A variants on DMN connectivity and advance knowledge of the role of 5-HT2A receptors in the neurobiology of PTSD. PMID:27445670

  3. Effect of GABAergic ligands on the anxiolytic-like activity of DOI (a 5-HT(2A/2C) agonist) in the four-plate test in mice.

    PubMed

    Massé, Fabienne; Hascoët, Martine; Bourin, Michel

    2007-01-01

    5-HTergic and GABAergic systems are involved in neurobiology of anxiety. Precedent studies have demonstrated that SSRIs possessed an anxiolytic-like effect in the four-plate test (FPT) at doses that did not modify spontaneous locomotor activity. This effect seems to be mediated through the activation of 5-HT(2A) postsynaptic receptors. The purpose of the present study was to examine the implication of GABA system in the anxiolytic-like activity of DOI in the FPT. To achieve this, the co-administration of DOI (5-HT(2A/2C) receptor agonists) with GABA(A) and GABA(B) receptor ligands was evaluated in the FPT. Alprazolam, diazepam and muscimol (for higher dose) potentiated the anxiolytic-like effect of DOI. Bicuculline, picrotoxin and baclofen inhibited the anxiolytic-like effect of DOI. Flumazenil and CGP 35348 had no effect on the anxiolytic-like activity of DOI. These results suggest that the GABA system seems to be strongly implicated in the anxiolytic-like activity of DOI in the FPT.

  4. Evidence for a common biological basis of the Absorption trait, hallucinogen effects, and positive symptoms: epistasis between 5-HT2a and COMT polymorphisms.

    PubMed

    Ott, Ulrich; Reuter, Martin; Hennig, Juergen; Vaitl, Dieter

    2005-08-05

    Absorption represents a disposition to experience altered states of consciousness characterized by intensively focused attention. It is correlated with hypnotic susceptibility and includes phenomena ranging from vivid perceptions and imaginations to mystical experiences. Based on the assumption that drug-induced and naturally occurring mystical experiences share common neural mechanisms, we hypothesized that Absorption is influenced by the T102C polymorphism affecting the 5-HT2a receptor, which is known to be an important target site of hallucinogens like LSD. Based on the pivotal role ascribed to the prefrontal executive control network for absorbed attention and positive symptoms in schizophrenia, it was further hypothesized that Absorption is associated with the VAL158MET polymorphism of the catechol-O-methyltransferase (COMT) gene affecting the dopaminergic neurotransmitter system. The Tellegen Absorption Scale was administered to 336 subjects (95 male, 241 female). Statistical analysis revealed that the group with the T/T genotype of the T102C polymorphism, implying a stronger binding potential of the 5-HT2a receptor, indeed had significantly higher Absorption scores (F = 10.00, P = 0.002), while no main effect was found for the COMT polymorphism. However, the interaction between T102C and COMT genotypes yielded significance (F = 3.89; P = 0.049), underlining the known functional interaction between the 5-HT and the dopaminergic system. These findings point to biological foundations of the personality trait of Absorption.

  5. The effects of the preferential 5-HT2A agonist psilocybin on prepulse inhibition of startle in healthy human volunteers depend on interstimulus interval.

    PubMed

    Vollenweider, Franz X; Csomor, Philipp A; Knappe, Bernhard; Geyer, Mark A; Quednow, Boris B

    2007-09-01

    Schizophrenia patients exhibit impairments in prepulse inhibition (PPI) of the startle response. Hallucinogenic 5-HT(2A) receptor agonists are used for animal models of schizophrenia because they mimic some symptoms of schizophrenia in humans and induce PPI deficits in animals. Nevertheless, one report indicates that the 5-HT(2A) receptor agonist psilocybin increases PPI in healthy humans. Hence, we investigated these inconsistent results by assessing the dose-dependent effects of psilocybin on PPI in healthy humans. Sixteen subjects each received placebo or 115, 215, and 315 microg/kg of psilocybin at 4-week intervals in a randomized and counterbalanced order. PPI at 30-, 60-, 120-, 240-, and 2000-ms interstimulus intervals (ISIs) was measured 90 and 165 min after drug intake, coinciding with the peak and post-peak effects of psilocybin. The effects of psilocybin on psychopathological core dimensions and sustained attention were assessed by the Altered States of Consciousness Rating Scale (5D-ASC) and the Frankfurt Attention Inventory (FAIR). Psilocybin dose-dependently reduced PPI at short (30 ms), had no effect at medium (60 ms), and increased PPI at long (120-2000 ms) ISIs, without affecting startle reactivity or habituation. Psilocybin dose-dependently impaired sustained attention and increased all 5D-ASC scores with exception of Auditory Alterations. Moreover, psilocybin-induced impairments in sustained attention performance were positively correlated with reduced PPI at the 30 ms ISI and not with the concomitant increases in PPI observed at long ISIs. These results confirm the psilocybin-induced increase in PPI at long ISIs and reveal that psilocybin also produces a decrease in PPI at short ISIs that is correlated with impaired attention and consistent with deficient PPI in schizophrenia.

  6. Association study of T102C 5-HT2A polymorphism in schizophrenic patients: diagnosis, psychopathology, and suicidal behavior

    PubMed Central

    Correa, Humberto; De Marco, Luiz; Boson, Wolfanga; Nicolato, Rodrigo; Teixeira, Antó L.; Campo, Valdir R.; Romano-Silva, Marco A.

    2007-01-01

    The objective of this study was to examine the association between the serotonin (5-HT)2A gene polymorphism (102T/C) and suicidal behavior in schizophrenic inpatients. We studied 129 subjects who met the diagnostic criteria for schizophrenia according to a structured clinicai interview (MINI-PLUS), Patients underwent a semistructured interview to assess suicide attempt history and its characteristics, in addition, at least one close relative of the patient was interviewed to assess prohand and family suicidal behavior. Healthy controls were students and hospital staff members free of psychiatric and medical illness. Genotypes were determined after polymerase chain reaction amplification of the region of 5-HT2A/T102C containing the polymorphic site and digestion with the restriction enzyme Hpall, We found no association between suicidal attempt history and suicide attempt characteristics and genotypic or aileie frequencies. Suicidal behavior was also not associated with demographic or psychopathological characteristics. These results suggest that the S-HT2A gene polymorphism (102T/C) is not involved in genetic susceptibility to suicidal behavior, but further studies in a larger sample are needed. PMID:17506229

  7. Down regulation of cerebellar serotonergic receptors in streptozotocin induced diabetic rats: Effect of pyridoxine and Aegle marmelose.

    PubMed

    Abraham, Pretty Mary; Paul, Jes; Paulose, C S

    2010-04-29

    Oxidative stress plays an important role in cerebellar damage caused by diabetes, leading to deterioration in glucose homeostasis causing metabolic disorders. The present study was carried out to find the effects of Aegle marmelose leaf extract and insulin alone and in combination with pyridoxine on the cerebellar 5-HT through 5-HT(2A) receptor subtype, gene expression studies on the status of antioxidants-superoxide dismutase (SOD), glutathione peroxidase (GPx), 5-HT(2A) and 5-HT transporter (5-HTT) and immunohistochemical studies in streptozotocin induced diabetic rats. 5-HT and 5-HT(2A) receptor binding parameters, B(max) and K(d), showed a significant decrease (p<0.001) in the cerebellum of diabetic rats compared to control. Gene expression studies of SOD, GPx, 5-HT(2A) and 5-HTT in cerebellum showed a significant down regulation (p<0.001) in diabetic rats compared to control. Pyridoxine treated alone and in combination with insulin, A. marmelose to diabetic rats reversed the B(max), K(d) of 5-HT, 5-HT(2A) and the gene expression of SOD, GPx, 5-HT(2A) and 5-HTT in cerebellum to near control. The gene expression of 5-HT(2A) and 5-HTT were confirmed by immunohistochemical studies. Also, the Rotarod test confirms the motor dysfunction and recovery by treatment. These data suggest the antioxidant and neuroprotective role of pyridoxine and A. marmelose through the up regulation of 5-HT through 5-HT(2A) receptor in diabetic rats. Our results suggest that pyridoxine treated alone and in combination with insulin and A. marmelose has a role in the regulation of insulin synthesis and release, normalizing diabetic related oxidative stress and neurodegeneration affecting the motor ability of an individual by serotonergic receptors through 5-HT(2A) function. This has clinical significance in the management of diabetes.

  8. Adolescent anabolic-androgenic steroid exposure alters lateral anterior hypothalamic serotonin-2A receptors in aggressive male hamsters.

    PubMed

    Schwartzer, Jared J; Ricci, Lesley A; Melloni, Richard H

    2009-05-16

    Chronic anabolic-androgenic steroid (AAS) treatment during adolescence facilitates offensive aggression in male Syrian hamsters (Mesocricetus auratus). Serotonin (5-HT) modulates aggressive behavior and has been shown to be altered after chronic treatment with AAS. Furthermore, 5-HT type 2 receptors have been implicated in the control of aggression. For example, treatment with 5-HT(2A) receptor antagonists suppress the generation of the offensive aggressive phenotype. However, it is unclear whether these receptors are sensitive to adolescent AAS exposure. The current study assessed whether treatment with AAS throughout adolescence influenced the immunohistochemical localization of 5-HT(2A) in areas of the hamster brain implicated in the control of aggression. Hamsters were administered AAS (5.0 mg/kg) each day throughout adolescence, scored for offensive aggression, and then examined for differences in 5-HT(2A)-immunoreactivity (5-HT(2A)-ir). When compared with non-aggressive oil-treated controls, aggressive AAS-treated hamsters showed significant increases in 5-HT(2A)-ir fibers in the lateral portion of the anterior hypothalamus (LAH). Further analysis revealed that AAS treatment also produced a significant increase in the number of cells expressing 5-HT(2A)-ir in the LAH. Together, these results support a role for altered 5-HT(2A) expression and further implicate the LAH as a central brain region important in the control of adolescent AAS-induced offensive aggression.

  9. Serotonin-2C and -2A Receptor Co-expression on Cells in the Rat Medial Prefrontal Cortex

    PubMed Central

    Nocjar, Christine; Alex, Katherine D; Sonneborn, Alex; Abbas, Atheir I; Roth, Bryan L; Pehek, Elizabeth A

    2015-01-01

    Neural function within the medial prefrontal cortex (mPFC) regulates normal cognition, attention and impulse control, implicating neuroregulatory abnormalities within this region in mental dysfunction related to schizophrenia, depression and drug abuse. Both serotonin -2A (5-HT2A) and -2C (5-HT2C) receptors are known to be important in neuropsychiatric drug action and are distributed throughout the mPFC. However, their interactive role in serotonergic cortical regulation is poorly understood. While the main signal transduction mechanism for both receptors is stimulation of phosphoinositide production, they can have opposite effects downstream. 5-HT2A versus 5-HT2C receptor activation oppositely regulates behavior and can oppositely affect neurochemical release within the mPFC. These distinct receptor effects could be caused by their differential cellular distribution within the cortex and/or other areas. It is known that both receptors are located on GABAergic and pyramidal cells within the mPFC, but it is not clear whether they are expressed on the same or different cells. The present work employed immunofluorescence with confocal microscopy to examine this in layers V-VI of the prelimbic mPFC. The majority of GABA cells in the deep prelimbic mPFC expressed 5-HT2C receptor immunoreactivity. Furthermore, most cells expressing 5-HT2C receptor immunoreactivity notably co-expressed 5-HT2A receptors. However, 27% of 5-HT2C receptor immunoreactive cells were not GABAergic, indicating that a population of prelimbic pyramidal projection cells could express the 5-HT2C receptor. Indeed, some cells with 5-HT2C and 5-HT2A receptor co-labeling had a pyramidal shape and were expressed in the typical layered fashion of pyramidal cells. This indirectly demonstrates that 5-HT2C and 5-HT2A receptors may be commonly co-expressed on GABAergic cells within the deep layers of the prelimbic mPFC and perhaps co-localized on a small population of local pyramidal projection cells. Thus a

  10. Altered coronary microvascular serotonin receptor expression after coronary artery bypass grafting utilizing cardiopulmonary bypass

    PubMed Central

    Robich, Michael P.; Araujo, Eugenio G.; Feng, Jun; Osipov, Robert M.; Clements, Richard T.; Bianchi, Cesario; Sellke, Frank W.

    2009-01-01

    Objectives Evaluate the role of serotonin receptors 1B and 2A, thromboxane synthase and receptor and phospholipases A2 and C in response to cardiopulmonary bypass in patients. Methods Atrial tissue was harvested from patients before and after cardiopulmonary bypass with cardioplegia (n=13). Coronary microvessels were assessed for vasoactive response to serotonin with and without inhibitors of 5-HT1B and 5-HT2A receceptors, phospholipase A2 and C. Expression of 5-HT1B and 5-HT2A mRNA was determined by RT-PCR. Expression of 5-HT1B, 5-HT2A, Thromboxane A2 receptor and synthase protein was determined by immunoblotting and immunohistochemistry. Results Exposure of microvessels to serotonin elicited a 7.3 ± 2% relaxation response pre-bypass, changing to a strong contraction response of -19.2 ± 2% after bypass (p<0.001). Addition of either a specific 5-HT1B antagonist or inhibitor of PLA2 resulted in a significant decrease in the contractile response to -8.6 ±1% (p<0.001) and 2.8 ± 3% (p= 0.001), respectively. 5-HT1B receptor mRNA expression increased 1.82 ± 0.34 fold after bypass (p=0.044), while 5-HT2A mRNA expression did not change. 5-HT1B receptor, but not 5-HT2A, protein expression increased after bypass by 1.35 ± 0.7 fold (p=0.0413). Neither thromboxane synthase nor thromboxane receptor expression changed after bypass. Immunohistochemistry demonstrated 5-HT1B receptor increased mainly in the arterial smooth muscle. There was no appreciable difference in arterial expression of either thromboxane synthase or receptor. Conclusion These data indicate that 5-HT-induced vascular dysfunction after cardiopulmonary bypass with cardioplegia may be mediated by increased expression of 5-HT1B receptor and subsequent PLA2 activation in myocardial coronary smooth muscle. Mini Abstract The expression of 5-HT1B receptor protein and mRNA were increased in the atrial myocardium after cardioplegia and cardiopulmonary bypass (CP-CPB). Serotonin elicited a strong contraction

  11. Repeated 7-Day Treatment with the 5-HT2C Agonist Lorcaserin or the 5-HT2A Antagonist Pimavanserin Alone or in Combination Fails to Reduce Cocaine vs Food Choice in Male Rhesus Monkeys.

    PubMed

    Banks, Matthew L; Negus, S Stevens

    2017-04-01

    Cocaine use disorder is a global public health problem for which there are no Food and Drug Administration-approved pharmacotherapies. Emerging preclinical evidence has implicated both serotonin (5-HT) 2C and 2A receptors as potential mechanisms for mediating serotonergic attenuation of cocaine abuse-related neurochemical and behavioral effects. Therefore, the present study aim was to determine whether repeated 7-day treatment with the 5-HT2C agonist lorcaserin (0.1-1.0 mg/kg per day, intramuscular; 0.032-0.1 mg/kg/h, intravenous) or the 5-HT2A inverse agonist/antagonist pimavanserin (0.32-10 mg/kg per day, intramuscular) attenuated cocaine reinforcement under a concurrent 'choice' schedule of cocaine and food availability in rhesus monkeys. During saline treatment, cocaine maintained a dose-dependent increase in cocaine vs food choice. Repeated pimavanserin (3.2 mg/kg per day) treatments significantly increased small unit cocaine dose choice. Larger lorcaserin (1.0 mg/kg per day and 0.1 mg/kg/h) and pimavanserin (10 mg/kg per day) doses primarily decreased rates of operant behavior. Coadministration of ineffective lorcaserin (0.1 mg/kg per day) and pimavanserin (0.32 mg/kg per day) doses also failed to significantly alter cocaine choice. These results suggest that neither 5-HT2C receptor activation nor 5-HT2A receptor blockade are sufficient to produce a therapeutic-like decrease in cocaine choice and a complementary increase in food choice. Overall, these results do not support the clinical utility of 5-HT2C agonists and 5-HT2A inverse agonists/antagonists alone or in combination as candidate anti-cocaine use disorder pharmacotherapies.

  12. Modulating the rate and rhythmicity of perceptual rivalry alternations with the mixed 5-HT2A and 5-HT1A agonist psilocybin.

    PubMed

    Carter, Olivia L; Pettigrew, John D; Hasler, Felix; Wallis, Guy M; Liu, Guang B; Hell, Daniel; Vollenweider, Franz X

    2005-06-01

    Binocular rivalry occurs when different images are presented simultaneously to corresponding points within the left and right eyes. Under these conditions, the observer's perception will alternate between the two perceptual alternatives. Motivated by the reported link between the rate of perceptual alternations, symptoms of psychosis and an incidental observation that the rhythmicity of perceptual alternations during binocular rivalry was greatly increased 10 h after the consumption of LSD, this study aimed to investigate the pharmacology underlying binocular rivalry and to explore the connection between the timing of perceptual switching and psychosis. Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine, PY) was chosen for the study because, like LSD, it is known to act as an agonist at serotonin (5-HT)1A and 5-HT2A receptors and to produce an altered state sometimes marked by psychosis-like symptoms. A total of 12 healthy human volunteers were tested under placebo, low-dose (115 microg/kg) and high-dose (250 microg/kg) PY conditions. In line with predictions, under both low- and high-dose conditions, the results show that at 90 min postadministration (the peak of drug action), rate and rhythmicity of perceptual alternations were significantly reduced from placebo levels. Following the 90 min testing period, the perceptual switch rate successively increased, with some individuals showing increases well beyond pretest levels at the final testing, 360 min postadministration. However, as some subjects had still not returned to pretest levels by this time, the mean phase duration at 360 min was not found to differ significantly from placebo. Reflecting the drug-induced changes in rivalry phase durations, subjects showed clear changes in psychological state as indexed by the 5D-ASC (altered states of consciousness) rating scales. This study suggests the involvement of serotonergic pathways in binocular rivalry and supports the previously proposed role of a brainstem

  13. Chronic betahistine co-treatment reverses olanzapine's effects on dopamine D₂ but not 5-HT2A/2C bindings in rat brains.

    PubMed

    Lian, Jiamei; Huang, Xu-Feng; Pai, Nagesh; Deng, Chao

    2015-01-02

    Olanzapine is widely prescribed for treating schizophrenia and other mental disorders, although it leads to severe body weight gain/obesity. Chronic co-treatment with betahistine has been found to significantly decrease olanzapine-induced weight gain; however, it is not clear whether this co-treatment affects the therapeutic effects of olanzapine. This study investigated the effects of chronic treatment of olanzapine and/or betahistine on the binding density of the serotonergic 5-HT2A (5-HT2AR) and 5-HT2C (5-HT2CR) receptors, 5-HT transporter (5-HTT), and dopaminergic D₂ receptors (D₂R) in the brain regions involved in antipsychotic efficacy, including the prefrontal cortex (PFC), cingulate cortex (Cg), nucleus accumbens (NAc), and caudate putamen (CPu). Rats were treated with olanzapine (1 mg/kg, t.i.d.) or vehicle for 3.5 weeks, and then olanzapine treatment was withdrawn for 19 days. From week 6, the two groups were divided into 4 groups (n=6) for 5 weeks' treatment: (1) olanzapine-only (1 mg/kg, t.i.d.), (2) betahistine-only (9.6 mg/kg, t.i.d.), (3) olanzapine and betahistine co-treatment (O+B), and (4) vehicle. Compared to the control, the olanzapine-only treatment significantly decreased the bindings of 5-HT2AR, 5-HT2CR, and 5-HTT in the PFC, Cg, and NAc. Similar changes were observed in the rats receiving the O+B co-treatment. The olanzapine-only treatment significantly increased the D₂R binding in the Cg, NAc, and CPu, while the betahistine-only treatment reduced D₂R binding. The co-treatment of betahistine reversed the D₂R bindings in the NAc and CPu that were increased by olanzapine. Therefore, chronic O+B co-treatment has similar effects on serotonin transmission as the olanzapine-only treatment, but reverses the D₂R that is up-regulated by chronic olanzapine treatment. The co-treatment maintains the therapeutic effects of olanzapine but decreases/prevents the excess weight gain.

  14. Quantitative structure-activity relationship of phenoxyphenyl-methanamine compounds with 5HT2A, SERT, and hERG activities.

    PubMed

    Mente, Scot; Gallaschun, Randall; Schmidt, Anne; Lebel, Lorrie; Vanase-Frawley, Michelle; Fliri, Anton

    2008-12-01

    QSAR models have been used to evaluate activities for compounds in the phenoxyphenyl-methanamine (PPMA) class of compounds. These models utilize Hammett-type donating-withdrawing substituent values as well as simple parameters to describe substituent size and elucidate the SAR of the 'A' and 'B' rings. Using this methodology, intuitive QSAR relationships were found for the three biological activities with R(2) values of 0.73, 0.45, and 0.58 for 5HT(2A), SerT, and hERG activities.

  15. 5-HT2 receptors mediate functional modulation of GABAa receptors and inhibitory synaptic transmissions in human iPS-derived neurons

    PubMed Central

    Wang, Haitao; Hu, Lingli; Liu, Chunhua; Su, Zhenghui; Wang, Lihui; Pan, Guangjin; Guo, Yiping; He, Jufang

    2016-01-01

    Neural progenitors differentiated from induced pluripotent stem cells (iPS) hold potentials for treating neurological diseases. Serotonin has potent effects on neuronal functions through multiple receptors, underlying a variety of neural disorders. Glutamate and GABA receptors have been proven functional in neurons differentiated from iPS, however, little is known about 5-HT receptor-mediated modulation in such neuronal networks. In the present study, human iPS were differentiated into cells possessing featured physiological properties of cortical neurons. Whole-cell patch-clamp recording was used to examine the involvement of 5-HT2 receptors in functional modulation of GABAergic synaptic transmission. We found that serotonin and DOI (a selective agonist of 5-HT2A/C receptor) reversibly reduced GABA-activated currents, and this 5-HT2A/C receptor mediated inhibition required G protein, PLC, PKC, and Ca2+ signaling. Serotonin increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs), which could be mimicked by α-methylserotonin, a 5-HT2 receptor agonist. In contrast, DOI reduced both frequency and amplitude of mIPSCs. These findings suggested that in iPS-derived human neurons serotonin postsynaptically reduced GABAa receptor function through 5-HT2A/C receptors, but presynaptically other 5-HT2 receptors counteracted the action of 5-HT2A/C receptors. Functional expression of serotonin receptors in human iPS-derived neurons provides a pre-requisite for their normal behaviors after grafting. PMID:26837719

  16. Neuronal localization of the 5-HT2 receptor family in the amygdaloid complex.

    PubMed

    Bombardi, Cristiano

    2014-01-01

    The amygdaloid complex (or amygdala), a heterogeneous structure located in the medial portion of the temporal lobe, is composed of deep, superficial, and "remaining" nuclei. This structure is involved in the generation of emotional behavior, in the formation of emotional memories and in the modulation of the consolidation of explicit memories for emotionally arousing events. The serotoninergic fibers originating in the dorsal and medial raphe nuclei are critically involved in amygdalar functions. Serotonin (5-hydroxytryptamine, 5-HT) regulates amygdalar activity through the activation of the 5-HT2 receptor family, which includes three receptor subtypes: 5-HT2A, 5-HT2B, and 5-HT2C. The distribution and the functional activity of the 5-HT2 receptor family has been studied more extensively than that of the 5-HT2A receptor subtypes, especially in the deep nuclei. In these nuclei, the 5-HT2A receptor is expressed on both pyramidal and non-pyramidal neurons, and could play a critical role in the formation of emotional memories. However, the exact role of the 5-HT2A receptor subtypes, as well as that of the 5-HT2B and 5-HT2C receptor subtypes, in the modulation of the amygdalar microcircuits requires additional study. The present review reports data concerning the distribution and the functional roles of the 5-HT2 receptor family in the amygdala.

  17. The serotonin 2C receptor potently modulates the head-twitch response in mice induced by a phenethylamine hallucinogen

    PubMed Central

    Canal, Clinton E.; Olaghere da Silva, Uade B.; Gresch, Paul J.; Watt, Erin E.; Sanders-Bush, Elaine

    2010-01-01

    Rationale Hallucinogenic serotonin 2A (5-HT2A) receptor partial agonists, such as (±)-1-(2,5-dimethoxy-4-iodo-phenyl)-2-aminopropane hydrochloride (DOI), induce a frontal cortex-dependent head-twitch response (HTR) in rodents, a behavioral proxy of a hallucinogenic response that is blocked by 5-HT2A receptor antagonists. In addition to 5-HT2A receptors, DOI and most other serotonin-like hallucinogens have high affinity and potency as partial agonists at 5-HT2C receptors. Objectives We tested for involvement of 5-HT2C receptors in the HTR induced by DOI. Results Comparison of 5-HT2C receptor knockout and wild-type littermates revealed an approximately 50% reduction in DOI-induced HTR in knockout mice. Also, pretreatment with either the 5-HT2C receptor antagonist SB206553 or SB242084 eradicated a twofold difference in DOI-induced HTR between the standard inbred mouse strains C57BL/6J and DBA/2J, and decreased the DOI-induced HTR by at least 50% in both strains. None of several measures of 5-HT2A receptors in frontal cortex explained the strain difference, including 5-HT2A receptor density, Gαq or Gαi/o protein levels, phospholipase C activity, or DOI-induced expression of Egr1 and Egr2. 5-HT2C receptor density in the brains of C57BL/6J and DBA/2J was also equivalent, suggesting that 5-HT2C receptor-mediated intracellular signaling or other physiological modulators of the HTR may explain the strain difference in response to DOI. Conclusions We conclude that the HTR to DOI in mice is strongly modulated by 5-HT2C receptor activity. This novel finding invites reassessment of hallucinogenic mechanisms involving 5-HT2 receptors. PMID:20165943

  18. Antagonizing 5-HT₂A receptors with M100907 and stimulating 5-HT₂C receptors with Ro60-0175 blocks cocaine-induced locomotion and zif268 mRNA expression in Sprague-Dawley rats.

    PubMed

    Burton, Christie L; Rizos, Zoë; Diwan, Mustansir; Nobrega, José N; Fletcher, Paul J

    2013-03-01

    Serotonin (5-HT) plays a role in several psychiatric disorders including drug addiction. The 5-HT system modulates the activity of midbrain dopamine (DA) systems, and the behavioural effects of psychostimulants mediated by these systems. The direction of this modulation depends upon the 5-HT receptor subtypes involved, with 5-HT(2A) and 5-HT(2C) receptors having opposing effects. For example the 5-HT(2A) receptor antagonist M100907 and the 5-HT(2C) receptor agonist Ro60-0175 both attenuate several cocaine-induced behavioural and neurochemical effects. To investigate the possible brain regions involved in the interactions between 5-HT(2A) or 5-HT(2C) receptor ligands and cocaine-induced behaviour, we examined the effects of M100907 or Ro60-0175 on cocaine-induced locomotion and mRNA expression of the immediate early gene zif268. Sprague-Dawley rats were pre-treated with M100907 (0.5mg/kg), Ro60-0175 (1.0mg/kg) or vehicle, and then injected with cocaine (15mg/kg) or vehicle. Locomotor activity was monitored for 60 min before rats were sacrificed for zif268 mRNA in situ hybridization mapping. Cocaine increased locomotor activity and zif268 mRNA expression consistently in the nucleus accumbens core, the orbitofrontal cortex and the caudate. M100907 attenuated cocaine-induced locomotion and zif268 mRNA expression in these brain regions in a defined subset of rats but failed to alter any effects of cocaine in another defined subset of rats. Ro60-0175 blocked cocaine-induced locomotion and zif268 mRNA expression in similar brain regions. Our results suggest that despite the opposing actions of 5-HT at 5-HT(2A) and 5-HT(2C) receptors, ligands acting on these receptors likely modulate cocaine-induced locomotion via a common mechanism to influence DA-dependent circuitry.

  19. Serotonin Transporter and Receptor Expression in Osteocytic MLO-Y4 Cells

    PubMed Central

    BLIZIOTES, M.; ESHLEMAN, A.; BURT-PICHAT, B.; ZHANG, X.-W.; HASHIMOTO, J.; WIREN, K.; CHENU, C.

    2006-01-01

    Neurotransmitter regulation of bone metabolism has been a subject of increasing interest and investigation. We reported previously that osteoblastic cells express a functional serotonin (5-HT) signal transduction system, with mechanisms for responding to and regulating uptake of 5-HT. The clonal murine osteocytic cell line, MLO-Y4, demonstrates expression of the serotonin transporter (5-HTT), and the 5-HT1A, and 5-HT2A receptors by real-time RT-PCR and immunoblot analysis. Immunohistochemistry using antibodies for the 5-HTT, and the 5-HT1A and 5-HT2A receptors reveals expression of all three proteins in both osteoblasts and osteocytes in rat tibia. 5-HTT binding sites were demonstrated in the MLO-Y4 cells with nanomolar affinity for the stable cocaine analog [125I]RTI-55. Imipramine and fluoxetine, antagonists with specificity for 5-HTT, show the highest potency to antagonize [125I]RTI-55 binding in the MLO-Y4 cells. GBR-12935, a relatively selective dopamine transporter antagonist, had a much lower potency, as did desipramine, a selective norepinephrine transporter antagonist. The maximal [3H]5-HT uptake rate in MLO-Y4 cells was 2.85 pmol/15 min/well, with a Km value of 290 nM. Imipramine and fluoxetine inhibited specific [3H]5-HT uptake with IC50 values in the nanomolar range. 5-HT rapidly stimulated PGE2 release from MLO-Y4 cells; the EC50 for 5-HT was 0.1 μM, with a 3-fold increase seen at 60 min. The rate limiting enzyme for serotonin synthesis, tryptophan hydroxylase, is expressed in MLO-Y4 cells as well as osteoblastic MC3T3-E1 cells. Thus, osteocytes, as well as osteoblasts, are capable of 5-HT synthesis, and express functional receptor and transporter components of the 5-HT signal transduction system. PMID:16884969

  20. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    PubMed

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  1. Ozone Exposure Alters Serotonin and Serotonin Receptor Expression in the Developing Lung

    PubMed Central

    Van Winkle, Laura S.

    2013-01-01

    Ozone, a pervasive environmental pollutant, adversely affects functional lung growth in children. Animal studies demonstrate that altered lung development is associated with modified signaling within the airway epithelial mesenchymal trophic unit, including mediators that can change nerve growth. We hypothesized that ozone exposure alters the normal pattern of serotonin, its transporter (5-HTT), and two key receptors (5-HT2A and 5-HT4), a pathway involved in postnatal airway neural, epithelial, and immune processes. We exposed monkeys to acute or episodic ozone during the first 2 or 6 months of life. There were three exposure groups/age: (1) filtered air, (2) acute ozone challenge, and (3) episodic ozone + acute ozone challenge. Lungs were prepared for compartment-specific qRT-PCR, immunohistochemistry, and stereology. Airway epithelial serotonin immunopositive staining increased in all exposure groups with the most prominent in 2-month midlevel and 6-month distal airways. Gene expression of 5-HTT, 5-HT2AR, and 5-HT4R increased in an age-dependent manner. Overall expression was greater in distal compared with midlevel airways. Ozone exposure disrupted both 5-HT2AR and 5-HT4R protein expression in airways and enhanced immunopositive staining for 5-HT2AR (2 months) and 5-HT4R (6 months) on smooth muscle. Ozone exposure increases serotonin in airway epithelium regardless of airway level, age, and exposure history and changes the spatial pattern of serotonin receptor protein (5-HT2A and 5-HT4) and 5-HTT gene expression depending on compartment, age, and exposure history. Understanding how serotonin modulates components of reversible airway obstruction exacerbated by ozone exposure sets the foundation for developing clinically relevant therapies for airway disease. PMID:23570994

  2. Activation of serotonin2A receptors in the medial septum-diagonal band of Broca complex enhanced working memory in the hemiparkinsonian rats.

    PubMed

    Li, Li-Bo; Zhang, Li; Sun, Yi-Na; Han, Ling-Na; Wu, Zhong-Heng; Zhang, Qiao-Jun; Liu, Jian

    2015-04-01

    Serotonin2A (5-HT2A) receptors are highly expressed in the medial septum-diagonal band of Broca complex (MS-DB), especially in parvalbumin (PV)-positive neurons linked to hippocampal theta rhythm, which is involved in cognition. Cognitive impairments commonly occur in Parkinson's disease. Here we performed behavioral, electrophysiological, neurochemical and immunohistochemical studies in rats with complete unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB) to assess the importance of dopamine (DA) depletion and MS-DB 5-HT2A receptors for working memory. The MFB lesions resulted in working memory impairment and decreases in firing rate and density of MS-DB PV-positive neurons, peak frequency of hippocampal theta rhythm, and DA levels in septohippocampal system and medial prefrontal cortex (mPFC) compared to control rats. Intra-MS-DB injection of high affinity 5-HT2A receptor agonist TCB-2 enhanced working memory, increased firing rate of PV-positive neurons and peak frequency of hippocampal theta rhythm, elevated DA levels in the hippocampus and mPFC, and decreased 5-HT level in the hippocampus in control and lesioned rats. Compared to control rats, the duration of the excitatory effect produced by TCB-2 on the firing rate of PV-positive neurons was markedly shortened in lesioned rats, indicating dysfunction of 5-HT2A receptors. These findings suggest that unilateral lesions of the MFB in rats induced working memory deficit, and activation of MS-DB 5-HT2A receptors enhanced working memory, which may be due to changes in the activity of septohippocampal network and monoamine levels in the hippocampus and mPFC.

  3. Differential effects of serotonin (5-HT)2 receptor-targeting ligands on locomotor responses to nicotine-repeated treatment.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Wydra, Karolina; Filip, Małgorzata

    2010-07-01

    We verified the hypothesis that serotonin (5-HT)(2) receptors control the locomotor effects of nicotine (0.4 mg kg(-1)) in rats by using the 5-HT(2A) receptor antagonist M100907, the preferential 5-HT(2A) receptor agonist DOI, the 5-HT(2C) receptor antagonist SB 242084, and the 5-HT(2C) receptor agonists Ro 60-0175 and WAY 163909. Repeated pairings of a test environment with nicotine for 5 days, on Day 10 significantly augmented the locomotor activity following nicotine administration. Of the investigated 5-HT(2) receptor ligands, M100907 (2 mg kg(-1)) or DOI (1 mg kg(-1)) administered during the first 5 days in combination with nicotine attenuated or enhanced, respectively, the development of nicotine sensitization. Given acutely on Day 10, M100907 (2 mg kg(-1)), Ro 60-0175 (1 mg kg(-1)), and WAY 163909 (1.5 mg kg(-1)) decreased the expression of nicotine sensitization. In another set of experiments, where the nicotine challenge test was performed on Day 15 in animals treated repeatedly (Days: 1-5, 10) with nicotine, none of 5-HT(2) receptor ligands administered during the second withdrawal period (Days: 11-14) to nicotine-treated rats altered the sensitizing effect of nicotine given on Day 15. Our data indicate that 5-HT(2A) receptors (but not 5-HT(2C) receptors) play a permissive role in the sensitizing effects of nicotine, while stimulation of 5-HT(2A) receptors enhances the development of nicotine sensitization and activation of 5-HT(2C) receptors is essential for the expression of nicotine sensitization. Repeated treatment with the 5-HT(2) receptor ligands within the second nicotine withdrawal does not inhibit previously established sensitization.

  4. Dynamic changes in prefrontal cortex gene expression following lysergic acid diethylamide administration.

    PubMed

    Nichols, Charles D; Garcia, Efrain E; Sanders-Bush, Elaine

    2003-03-17

    Lysergic acid diethylamide (LSD) is a psychoactive drug that transiently alters human perception, behavior, and mood at extremely low doses. Certain aspects of the behavior elicited by acute doses of LSD closely resemble symptoms of mental disorders such as schizophrenia. Characterizing gene expression profiles after LSD will be important for understanding how it alters behavior, and will lead to novel insights into disorders, such as schizophrenia, whose behavioral symptoms resemble the temporary effects of hallucinogenic drugs. We previously identified a small collection of genes within the rat prefrontal cortex that respond to LSD. Many of the products of these genes are involved in the process of synaptic plasticity. In the current report, we present a detailed analysis of the expression of these genes within the brain using RNase protection analysis. We find that the gene response to LSD is quite dynamic. The expression of some genes increases rapidly and decreases rapidly, while other genes change more gradually. Dose-response studies show two classes of expression; gene expression maximally stimulated at lower doses, versus gene expression that continues to rise at the higher doses. The role of the 5-HT(1A) and 5-HT(2A) receptor in mediating the increases in gene expression was examined in a series of experiments using receptor specific antagonists. Most expression increases were due to activation of the 5-HT(2A) receptor, however expression of two genes had neither a 5-HT(1A) nor a 5-HT(2A) receptor component.

  5. Expression of Serotonin2C Receptors in Pyramidal and GABAergic Neurons of Rat Prefrontal Cortex: A Comparison with Striatum.

    PubMed

    Santana, Noemí; Artigas, Francesc

    2016-06-01

    The prefrontal cortex (PFC) is enriched in several serotonin receptors, including 5-HT1A-R, 5-HT2A-R, and 5-HT3-R. These receptors modulate PFC activity due to their expression in large neuronal populations (5-HT1A-R, 5-HT2A-R) or in selected GABAergic populations (5-HT3-R). They are also relevant for antidepressant and antipsychotic drug action. Less is known about the localization of 5-HT2C-R, for which atypical antipsychotics show high affinity. Here, we report on the cellular distribution of 5-HT2C-R in rat PFC and striatum, using double in situ hybridization histochemistry. In PFC, 5-HT2C-R are expressed in pyramidal (VGLUT1-positive) and GABAergic (GAD-positive) neurons, including parvalbumin-positive neurons. There is a marked dorso-ventral gradient in the proportion of VGLUT1-positive cells expressing 5-HT2C-R (9% in the cingulate cortex, 61% in the tenia tecta and 66% in the piriform cortex), less marked for GABAergic neurons (13-27%). There is also a laminar gradient, with more cells expressing 5-HT2C-R in deep (V-VI) than in intermediate (II-III) layers. In common with 5-HT3-R, layer I GABAergic cells express 5-HT2C-R. The proportion of 5-HT2C-R-expressing striatal neurons was 23% (dorsolateral caudate-putamen), 37% (ventromedial caudate-putamen), 53% (nucleus accumbens-core), and 49% (nucleus accumbens-shell). These results help to better understand the serotonergic modulation of PFC-based networks, including basal ganglia circuits, and atypical antipsychotic drug action.

  6. Expression and Function of Serotonin 2A and 2B Receptors in the Mammalian Respiratory Network

    PubMed Central

    Koch, Uwe R.; Bischoff, Anna-Maria; Kron, Miriam; Bock, Nathalie; Manzke, Till

    2011-01-01

    Neurons of the respiratory network in the lower brainstem express a variety of serotonin receptors (5-HTRs) that act primarily through adenylyl cyclase. However, there is one receptor family including 5-HT2A, 5-HT2B, and 5-HT2C receptors that are directed towards protein kinase C (PKC). In contrast to 5-HT2ARs, expression and function of 5-HT2BRs within the respiratory network are still unclear. 5-HT2BR utilizes a Gq-mediated signaling cascade involving calcium and leading to activation of phospholipase C and IP3/DAG pathways. Based on previous studies, this signal pathway appears to mediate excitatory actions on respiration. In the present study, we analyzed receptor expression in pontine and medullary regions of the respiratory network both at the transcriptional and translational level using quantitative RT-PCR and self-made as well as commercially available antibodies, respectively. In addition we measured effects of selective agonists and antagonists for 5-HT2ARs and 5-HT2BRs given intra-arterially on phrenic nerve discharges in juvenile rats using the perfused brainstem preparation. The drugs caused significant changes in discharge activity. Co-administration of both agonists revealed a dominance of the 5-HT2BR. Given the nature of the signaling pathways, we investigated whether intracellular calcium may explain effects observed in the respiratory network. Taken together, the results of this study suggest a significant role of both receptors in respiratory network modulation. PMID:21789169

  7. Hippocampal serotonin-2A receptor-immunoreactive neurons density increases after testosterone therapy in the gonadectomized male mice

    PubMed Central

    Nikmahzar, Emsehgol; Ghaemi, Amir; Naseri, Gholam Reza; Moharreri, Ali Reza; Lotfinia, Ahmad Ali

    2016-01-01

    The change of steroid levels may also exert different modulatory effects on the number and class of serotonin receptors present in the plasma membrane. The effects of chronic treatment of testosterone for anxiety were examined and expression of 5-HT2A serotonergic receptor, neuron, astrocyte, and dark neuron density in the hippocampus of gonadectomized male mice was determined. Thirty-six adult male NMRI mice were randomly divided into six groups: intact-no testosterone treatment (No T), gonadectomy (GDX)-No T, GDX-Vehicle, GDX-6.25 mg/kg testosterone (T), GDX-12.5 mg/kg T, and GDX-25 mg/kg T. Anxiety-related behavior was evaluated using elevated plus maze apparatus. The animals were anesthetized after 48 hours after behavioral testing, and decapitated and micron slices were prepared for immunohistochemical as well as histopathological assessment. Subcutaneous injection of testosterone (25 mg/kg) may induce anxiogenic-like behavior in male mice. In addition, immunohistochemical data reveal reduced expression of 5-HT2A serotonergic receptor after gonadectomy in all areas of the hippocampus. However, treatment with testosterone could increase the mean number of dark neurons as well as immunoreactive neurons in CA1 and CA3 area, dose dependently. The density of 5-HT2A receptor-immunoreactive neurons may play a crucial role in the induction of anxiety like behavior. As reduction in such receptor expression have shown to significantly enhance anxiety behaviors. However, replacement of testosterone dose dependently enhances the number of 5-HT2A receptor-immunoreactive neurons and interestingly also reduced anxiety like behaviors. PMID:28127501

  8. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress

    PubMed Central

    Jiang, De-guo; Jin, Shi-li; Li, Gong-ying; Li, Qing-qing; Li, Zhi-ruo; Ma, Hong-xia; Zhuo, Chuan-jun; Jiang, Rong-huan; Ye, Min-jie

    2016-01-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry and in situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no significant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our findings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress. PMID:27857753

  9. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress.

    PubMed

    Jiang, De-Guo; Jin, Shi-Li; Li, Gong-Ying; Li, Qing-Qing; Li, Zhi-Ruo; Ma, Hong-Xia; Zhuo, Chuan-Jun; Jiang, Rong-Huan; Ye, Min-Jie

    2016-09-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry and in situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no significant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our findings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress.

  10. Quantitative mapping shows that serotonin rather than dopamine receptor mRNA expressions are affected after repeated intermittent administration of MDMA in rat brain.

    PubMed

    Kindlundh-Högberg, Anna M S; Svenningsson, Per; Schiöth, Helgi B

    2006-09-01

    Ecstasy, (+/-)-3,4-methylenedioxy-metamphetamine (MDMA), is a popular recreational drug among young people. The present study aims to mimic MDMA intake among adolescents at dance clubs, taking repeated doses in the same evening on an intermittent basis. Male Sprague-Dawley rats received either 3x1 or 3x5 mg/kg/day (3 h apart) every seventh day during 4 weeks. We used real-time RT-PCR to determine the gene expression of serotonin 5HT1A, 5HT1B, 5HT2A, 5HT2C, 5HT3, 5HT6 receptors and dopamine D1, D2, D3 receptors in seven brain nuclei. The highest dose of MDMA extensively increased the 5HT1B-receptor mRNA in the cortex, caudate putamen, nucleus accumbens, and hypothalamus. The 5HT2A-receptor mRNA was reduced at the highest MDMA dose in the cortex. The 5HT2C mRNA was significantly increased in a dose-dependent manner in the cortex and the hypothalamus, as well as the 5HT3-receptor mRNA was in the hypothalamus. The 5HT6 mRNA level was increased in the forebrain cortex and the amygdala. Dopamine receptor mRNAs were only affected in the hypothalamus. In conclusion, this study provides evidence for a unique implication of serotonin rather than dopamine receptor mRNA levels, in response to repeated intermittent MDMA administration. We therefore suggest that serotonin regulated functions also primarily underlie repeated MDMA intake at rave parties.

  11. The alpha2 adrenergic receptor antagonist idazoxan, but not the serotonin-2A receptor antagonist M100907, partially attenuated reward deficits associated with nicotine, but not amphetamine, withdrawal in rats.

    PubMed

    Semenova, Svetlana; Markou, Athina

    2010-10-01

    Based on phenomenological similarities between anhedonia (reward deficits) associated with drug withdrawal and the negative symptoms of schizophrenia, we showed previously that the atypical antipsychotic clozapine attenuated reward deficits associated with psychostimulant withdrawal. Antagonism of alpha(2) adrenergic and 5-HT(2A) receptors may contribute to these effects of clozapine. We investigated here whether blockade of alpha(2) or 5-HT(2A) receptors by idazoxan and M100907, respectively, would reverse anhedonic aspects of psychostimulant withdrawal. Idazoxan treatment facilitated recovery from spontaneous nicotine, but not amphetamine, withdrawal by attenuating reward deficits and increase the number of somatic signs. Thus, alpha(2) adrenoceptor blockade may have beneficial effects against nicotine withdrawal and may be involved in the effects of clozapine previously observed. M100907 worsened the anhedonia associated with nicotine and amphetamine withdrawal, suggesting that monotherapy with M100907 may exacerbate the expression of the negative symptoms of schizophrenia or nicotine withdrawal symptoms in people, including schizophrenia patients, attempting to quit smoking.

  12. Maternal influenza viral infection causes schizophrenia-like alterations of 5-HT₂A and mGlu₂ receptors in the adult offspring.

    PubMed

    Moreno, José L; Kurita, Mitsumasa; Holloway, Terrell; López, Javier; Cadagan, Richard; Martínez-Sobrido, Luis; García-Sastre, Adolfo; González-Maeso, Javier

    2011-02-02

    Epidemiological studies indicate that maternal influenza viral infection increases the risk for schizophrenia in the adult offspring. The serotonin and glutamate systems are suspected in the etiology of schizophrenia, as well as in the mechanism of action of antipsychotic drugs. The effects of hallucinogens, such as psilocybin and mescaline, require the serotonin 5-HT(2A) receptor, and induce schizophrenia-like psychosis in humans. In addition, metabotropic glutamate receptor mGlu(2/3) agonists show promise as a new treatment for schizophrenia. Here, we investigated the level of expression and behavioral function of 5-HT(2A) and mGlu(2) receptors in a mouse model of maternal influenza viral infection. We show that spontaneous locomotor activity is diminished by maternal infection with the mouse-adapted influenza A/WSN/33 (H1N1) virus. The behavioral responses to hallucinogens and glutamate antipsychotics are both affected by maternal exposure to influenza virus, with increased head-twitch response to hallucinogens and diminished antipsychotic-like effect of the glutamate agonist. In frontal cortex of mice born to influenza virus-infected mothers, the 5-HT(2A) receptor is upregulated and the mGlu(2) receptor is downregulated, an alteration that may be involved in the behavioral changes observed. Additionally, we find that the cortical 5-HT(2A) receptor-dependent signaling pathways are significantly altered in the offspring of infected mothers, showing higher c-fos, egr-1, and egr-2 expression in response to the hallucinogenic drug DOI. Identifying a biochemical alteration that parallels the behavioral changes observed in a mouse model of prenatal viral infection may facilitate targeting therapies for treatment and prevention of schizophrenia.

  13. Interactions of serotonin (5-HT)2 receptor-targeting ligands and nicotine: locomotor activity studies in rats.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Filip, Małgorzata

    2009-08-01

    Male Wistar rats were used to verify the hypothesis that serotonin (5-HT)(2A) or 5-HT(2C) receptors may control the locomotor effects evoked by nicotine (0.4 mg/kg). The 5-HT(2A) receptor antagonist (M100,907), the 5-HT(2A) receptor agonist (DOI), the 5-HT(2C) receptor antagonist (SB 242,084), and the 5-HT(2C) receptor agonists (Ro 60-0175 and WAY 163,909) were used. M100,907 (0.5-2mg/kg) did not alter, while DOI (1 mg/kg) enhanced the nicotine-induced hyperlocomotion. The effect of DOI was antagonized by M100,907 (1 mg/kg). SB 242,084 (0.25-1 mg/kg) augmented, while Ro 60-0175 (1 and 3 mg/kg) and WAY 163,909 (1.5 mg/kg) decreased the overall effect of acute nicotine; effects of Ro 60-0175 and WAY 163,909 were attenuated by SB 242,084 (0.125 mg/kg). In another set of experiments, M100,907 (2 mg/kg) on Day 10 attenuated, while DOI (0.1-1 mg/kg) enhanced the nicotine-evoked conditioned hyperlocomotion in rats repeatedly (Days 1-5) treated with nicotine in experimental chambers. SB 242,084 (0.125 or 1 mg/kg) did not change, while Ro 60-0175 (1 mg/kg) or WAY 163,909 (1.5 mg/kg) decreased the expression of nicotine-induced conditioned hyperactivity. Only DOI (0.3 and 1 mg/kg) and SB 242,084 (1 mg/kg) enhanced the basal locomotion. The present data indicate that 5-HT(2A) receptors are significant for the expression of nicotine-evoked conditioned hyperactivity. Conversely, 5-HT(2C) receptors play a pivotal role in the acute effects of nicotine. Pharmacological stimulation of 5-HT(2A) receptors enhances the conditioned hyperlocomotion, while activation of 5-HT(2C) receptors decreases both the response to acute nicotine and conditioned hyperactivity.

  14. Bi-directional modulation of BNST neurons by 5-HT: Molecular expression and functional properties of excitatory 5-HT receptor subtypes

    PubMed Central

    Guo, Ji-Dong; Hammack, Sayamwong E.; Hazra, Rimi; Levita, Liat; Rainnie, Donald G.

    2009-01-01

    Activation of neurons in the anterolateral bed nucleus of the stria terminalis (BNSTALG) plays an important role in mediating the behavioral response to stressful and anxiogenic stimuli. Application of 5-HT elicits complex postsynaptic responses in BNSTALG neurons, which includes 1) membrane hyperpolarization (5-HTHyp), 2) hyperpolarization followed by depolarization (5-HTHyp-Dep), 3) depolarization (5-HTDep) or 4) no response (5-HTNR). We have shown that the inhibitory response is mediated by activation of postsynaptic 5-HT1A receptors. Here, we used a combination of in vitro whole-cell patch-clamp recording and single cell reverse transcriptase polymerase chain reaction (RT-PCR) to determine the pharmacological properties and molecular profile of 5-HT receptor subtypes mediating the excitatory response to 5-HT in BNSTALG neurons. We show that the depolarizing component of both the 5-HTHyp/Dep and the 5-HTDep response was mediated by activation of 5-HT2A, 5-HT2C and/or 5-HT7 receptors. Single cell RT-PCR data revealed that 5-HT7 receptors (46%) and 5-HT1A receptors (41%) are the most prevalent receptor subtypes expressed in BNSTALG neurons. Moreover, 5-HT receptor subtypes are differentially expressed in Type I – III BNSTALG neurons. Hence, 5-HT2C receptors are almost exclusively expressed by Type III neurons, whereas 5-HT7 receptors are expressed by Type I and II neurons, but not Type III neurons. Conversely, 5-HT2A receptors are found predominantly in Type II neurons. Finally, bi-directional modulation of individual neurons occurs only in Type I and II neurons. Significantly the distribution of 5-HT receptor subtypes in BNSTALG neurons predicted the observed expression pattern of 5-HT responses determined pharmacologically. Together, these results suggest that 5-HT can differentially modulate the excitability of Type I – III neurons, and further suggest that bi-directional modulation of BNSTALG neurons occurs primarily through an interplay between 5-HT1A and

  15. The response of juxtacellular labeled GABA interneurons in the basolateral amygdaloid nucleus anterior part to 5-HT₂A/₂C receptor activation is decreased in rats with 6-hydroxydopamine lesions.

    PubMed

    Sun, Yi-Na; Li, Li-Bo; Zhang, Qiao-Jun; Hui, Yan-Ping; Wang, Yong; Zhang, Li; Chen, Li; Han, Ling-Na; Guo, Yuan; Liu, Jian

    2013-10-01

    Here we report that juxtacellular labeled GABA interneurons in the basolateral amygdaloid nucleus anterior part (BLA) of rats with 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc) showed a more burst-firing pattern, while having no change in the firing rate. In sham-operated and the lesioned rats, systemic administration of 5-HT(2A/2C) receptor agonist DOI produced excitation, inhibition and unchanged in the firing rate of the interneurons, and the mean response of DOI was excitatory. However, cumulative dose producing excitation in the lesioned rats was higher than that of sham-operated rats. The local administration of DOI in the BLA also produced three types of responses in two groups of rats. Furthermore, the local administration of DOI excited the interneurons in sham-operated rats, whereas the mean firing rate of the interneurons in the lesioned rats was not affected at the same dose. The excitatory effect of the majority of the interneurons after systemic and local administration of DOI was not reversed by the selective 5-HT(2C) receptor antagonist SB242084, and the inhibitory effect of DOI in all the interneurons examined was reversed by GABA(A) receptor antagonist picrotoxinin. The SNc lesion in rats did not change the density of GAD67/5-HT(2A) receptor co-expressing neurons in the BLA. These results indicate that the SNc lesion changes the firing activity of BLA GABA interneurons. Moreover, DOI regulated the firing activity of the interneurons mainly through activation of 5-HT(2A) receptor, and the lesion led to a decreased response of the interneurons to DOI, which attributes to dysfunction of 5-HT(2A) receptor on these interneurons.

  16. Effects of chronic fluoxetine treatment on catalepsy and the immune response in mice with a genetic predisposition to freezing reactions: the roles of types 1A and 2A serotonin receptors and the tph2 and SERT genes.

    PubMed

    Tikhonova, M A; Alperina, E L; Tolstikova, T G; Bazovkina, D V; Di, V Y; Idova, G V; Kulikov, A V; Popova, N K

    2010-06-01

    ASC (Antidepressant-Sensitive Catalepsy) mice, bred for a high predisposition to catalepsy, are characterized by depression-like behavior and decreased immune responses. Chronic administration of fluoxetine, which is a selective serotonin reuptake inhibitor antidepressant widely used in clinical practice, to mice of this strain weakened catalepsy and normalized the number of rosette-forming cells in the spleen. In mice of the parental cataleptic strain CBA/Lac, fluoxetine had no effect on the level of catalepsy or the immune response. Analysis of the effects of fluoxetine on the functional activity of 5-HT(1A) and 5-HT(2A) receptors, and the expression of 5-HT(1A) receptor genes in the frontal cortex and midbrain and 5-HT(2A) receptors in the frontal cortex, as well as the tryptophan hydroxylase-2 and the serotonin transporter genes in the midbrain showed that the antidepressant had no effect on these parameters in ASC mice, but decreased the functional activity of 5-HT(2A) receptors in CBA/Lac mice. The possibility that the actions of fluoxetine on catalepsy and the immune response in mice with depression-like states are mediated via other serotoninergic mechanisms is discussed.

  17. Enhanced brain stem 5HT₂A receptor function under neonatal hypoxic insult: role of glucose, oxygen, and epinephrine resuscitation.

    PubMed

    Anju, T R; Korah, P K; Jayanarayanan, S; Paulose, C S

    2011-08-01

    Molecular processes regulating brain stem serotonergic receptors play an important role in the control of respiration. We evaluated 5-HT(2A) receptor alterations in the brain stem of neonatal rats exposed to hypoxic insult and the effect of glucose, oxygen, and epinephrine resuscitation in ameliorating these alterations. Hypoxic stress increased the total 5-HT and 5-HT(2A) receptor number along with an up regulation of 5-HT Transporter and 5-HT(2A) receptor gene in the brain stem of neonates. These serotonergic alterations were reversed by glucose supplementation alone and along with oxygen to hypoxic neonates. The enhanced brain stem 5-HT(2A) receptors act as a modulator of ventilatory response to hypoxia, which can in turn result in pulmonary vasoconstriction and cognitive dysfunction. The adverse effects of 100% oxygenation and epinephrine administration to hypoxic neonates were also reported. This has immense clinical significance in neonatal care.

  18. Behavioral and neurochemical pharmacology of six psychoactive substituted phenethylamines: Mouse locomotion, rat drug discrimination and in vitro receptor and transporter binding and function

    PubMed Central

    Eshleman, Amy J.; Forster, Michael J.; Wolfrum, Katherine M.; Johnson, Robert A.; Janowsky, Aaron; Gatch, Michael B.

    2014-01-01

    Rationale Psychoactive substituted phenethylamines 2,5-dimethoxy-4-chlorophenethylamine (2C-C); 2,5-dimethoxy-4-methylphenethylamine (2C-D); 2,5-dimethoxy-4-ethylphenethylamine (2C-E); 2,5-dimethoxy-4-iodophenethylamine (2C-I); 2,5-dimethoxy-4-ethylthiophenethylamine (2C-T-2) and 2,5-dimethoxy-4-chloroamphetamine (DOC) are used recreationally and may have deleterious side effects. Objectives This study compares behavioral effects and mechanisms of action of these substituted phenethylamines with those of hallucinogens and a stimulant. Methods The effects of these compounds on mouse locomotor activity and in rats trained to discriminate dimethyltryptamine, (−)DOM, (+)LSD, (±)MDMA and (S+)methamphetamine were assessed. Binding and functional activity of the phenethylamines at 5-HT1A, 5-HT2A, 5-HT2C receptors and monoamine transporters were assessed using cells heterologously expressing these proteins. Results The phenethylamines depressed mouse locomotor activity, although 2C-D and 2C-E stimulated activity at low doses. The phenethylamines except 2C-T-2 fully substituted for at least one hallucinogenic training compound but none fully substituted for (+)-methamphetamine. At 5-HT1A receptors, only 2C-T-2 and 2C-I were partial-to-full very low potency agonists. In 5-HT2A arachidonic acid release assays, the phenethylamines were partial to full agonists except 2C-I which was an antagonist. All compounds were full agonists at 5-HT2A and 5-HT2C receptor inositol phosphate assays. Only 2C-I had moderate affinity for, and very low potency at, the serotonin transporter. Conclusions The discriminative stimulus effects of 2C-C, 2C-D, 2C-E, 2C-I and DOC were similar to those of several hallucinogens but not methamphetamine. Additionally, the substituted phenethylamines were full agonists at 5-HT2A and 5-HT2C receptors, but for 2C-T-2, this was not sufficient to produce hallucinogenlike discriminative stimulus effects. Additionally, the 5-HT2A inositol phosphate pathway may

  19. Age-dependent effects of the 5-hydroxytryptamine-2a-receptor polymorphism (His452Tyr) on human memory.

    PubMed

    Papassotiropoulos, Andreas; Henke, Katharina; Aerni, Amanda; Coluccia, Daniel; Garcia, Esmeralda; Wollmer, Marc A; Huynh, Kim-Dung; Monsch, Andreas U; Stähelin, Hannes B; Hock, Christoph; Nitsch, Roger M; de Quervain, Dominique J-F

    2005-05-31

    A polymorphism (His452Tyr) of the 5-hydroxytryptamine (5-HT)2a receptor is associated with episodic memory in healthy young humans. Because 5-HT2a-receptor density decreases with increasing age, we tested whether the 5-HT2a receptor genotype effect on memory is influenced by age. We investigated the association of the His452Tyr genotype with memory performance in 622 healthy study participants aged from 18 to 90 years. In young to middle-aged participants, age significantly influenced genotype effects on episodic memory: the His452Tyr genotype exerted a significant influence on memory only in young participants. In the group of elderly cognitively healthy participants, the His452Tyr genotype did not affect memory performance. We conclude that age strongly modulates the effect of the 5-HT2a receptor polymorphism at residue 452 on episodic memory.

  20. Serotonin 2a Receptor and Serotonin 1a Receptor Interact Within the Medial Prefrontal Cortex During Recognition Memory in Mice

    PubMed Central

    Morici, Juan F.; Ciccia, Lucia; Malleret, Gaël; Gingrich, Jay A.; Bekinschtein, Pedro; Weisstaub, Noelia V.

    2015-01-01

    Episodic memory, can be defined as the memory for unique events. The serotonergic system one of the main neuromodulatory systems in the brain appears to play a role in it. The serotonin 2a receptor (5-HT2aR) one of the principal post-synaptic receptors for 5-HT in the brain, is involved in neuropsychiatric and neurological disorders associated with memory deficits. Recognition memory can be defined as the ability to recognize if a particular event or item was previously encountered and is thus considered, under certain conditions, a form of episodic memory. As human data suggest that a constitutively decrease of 5-HT2A signaling might affect episodic memory performance we decided to compare the performance of mice with disrupted 5-HT2aR signaling (htr2a−/−) with wild type (htr2a+/+) littermates in different recognition memory and working memory tasks that differed in the level of proactive interference. We found that ablation of 5-HT2aR signaling throughout development produces a deficit in tasks that cannot be solved by single item strategy suggesting that 5-HT2aR signaling is involved in interference resolution. We also found that in the absence of 5-HT2aR signaling serotonin has a deleterious effect on recognition memory retrieval through the activation of 5-HT1aR in the medial prefrontal cortex. PMID:26779016

  1. Effects of serotonin on expression of the LDL receptor family member LR11 and 7-ketocholesterol-induced apoptosis in human vascular smooth muscle cells

    SciTech Connect

    Nagayama, Daiji; Ishihara, Noriko; Bujo, Hideaki; Shirai, Kohji; Tatsuno, Ichiro

    2014-04-18

    Highlights: • The dedifferentiation of VSMCs in arterial intima is involved in atherosclerosis. • 5-HT showed proliferative effect on VSMCs which was abolished by sarpogrelate. • 5-HT enhanced expression of LR11 mRNA in VSMCs which was abolished by sarpogrelate. • 5-HT suppressed 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. • The mechanisms explain the 5-HT-induced remodeling of arterial structure. - Abstract: Serotonin (5-HT) is a known mitogen for vascular smooth muscle cells (VSMCs). The dedifferentiation and proliferation/apoptosis of VSMCs in the arterial intima represent one of the atherosclerotic changes. LR11, a member of low-density lipoprotein receptor family, may contribute to the proliferation of VSMCs in neointimal hyperplasia. We conducted an in vitro study to investigate whether 5-HT is involved in LR11 expression in human VSMCs and apoptosis of VSMCs induced by 7-ketocholesterol (7KCHO), an oxysterol that destabilizes plaque. 5-HT enhanced the proliferation of VSMCs, and this effect was abolished by sarpogrelate, a selective 5-HT2A receptor antagonist. Sarpogrelate also inhibited the 5-HT-enhanced LR11 mRNA expression in VSMCs. Furthermore, 5-HT suppressed the 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. These findings provide new insights on the changes in the differentiation stage of VSMCs mediated by 5-HT.

  2. Gender, personality, and serotonin-2A receptor binding in healthy subjects

    PubMed Central

    Soloff, Paul H.; Price, Julie C.; Mason, Neale Scott; Becker, Carl; Meltzer, Carolyn C.

    2009-01-01

    The vulnerability to mood disorders, impulsive-aggression, eating disorders, and suicidal behavior varies greatly with gender, and may reflect gender differences in central serotonergic function. We investigated the relationships of gender, mood, impulsivity, aggression and temperament to 5HT2A receptor binding in 21 healthy subjects using [18F]altanserin and PET neuro-imaging. Binding potentials in pre-defined Regions of Interest (ROI) were calculated using the Logan graphical method, corrected for partial volume effects, and compared by gender with age co-varied. SPM analysis was used for voxel level comparisons. Altanserin binding (BPp) was greater in male than female subjects in 9 ROIs: hippocampus (HIP) and Lt. HIP, lateral orbital frontal cortex (LOF) and Lt.LOF, left medial frontal cortex (Lt.MFC), left medial temporal cortex (Lt. MTC), left occipital cortex (Lt. OCC), thalamus (THL) and Lt. THL. Differences in Lt. HIP and Lt. MTL remained significant after Bonferroni correction. Gender differences were noted in the co-variation of psychological traits with BPp values in specific ROIs. Among males alone, aggression was negatively correlated with BPp values in Lt. LOF and Lt. MFC, and Suspiciousness positively correlated in LOF, Lt. LOF and Lt. MFC. Among female subjects alone, Negativism was positively correlated with BPp values in HIP, and Verbal Hostility in Lt. HIP. Altanserin binding in Lt. MTC was positively correlated with Persistence, with no significant gender effect. Gender differences in 5HT2A receptor function in specific ROIs may mediate expression of psychological characteristics such as aggression, suspiciousness and negativism. Future studies of 5HT2A receptor function and its relationship to behavior should control for gender. PMID:19959344

  3. Activation, internalization, and recycling of the serotonin 2A receptor by dopamine

    PubMed Central

    Bhattacharyya, Samarjit; Raote, Ishier; Bhattacharya, Aditi; Miledi, Ricardo; Panicker, Mitradas M.

    2006-01-01

    Serotonergic and dopaminergic systems, and their functional interactions, have been implicated in the pathophysiology of various CNS disorders. Here, we use recombinant serotonin (5-HT) 2A (5-HT2A) receptors to further investigate direct interactions between dopamine and 5-HT receptors. Previous studies in Xenopus oocytes showed that dopamine, although not the cognate ligand for the 5-HT2A receptor, acts as a partial-efficacy agonist. At micromolar concentrations, dopamine also acts as a partial-efficacy agonist on 5-HT2A receptors in HEK293 cells. Like 5-HT, dopamine also induces receptor-internalization in these cells, although at significantly higher concentrations than 5-HT. Interestingly, if the receptors are first sensitized or “primed” by subthreshold concentrations of 5-HT, then dopamine-induced internalization occurs at concentrations ≈10-fold lower than when dopamine is used alone. Furthermore, unlike 5-HT-mediated internalization, dopamine-mediated receptor internalization, alone, or after sensitization by 5-HT, does not depend on PKC. Dopamine-internalized receptors recycle to the surface at rates similar to those of 5-HT-internalized receptors. Our results suggest a previously uncharacterized role for dopamine in the direct activation and internalization of 5-HT2A receptors that may have clinical relevance to the function of serotonergic systems in anxiety, depression, and schizophrenia and also to the treatment of these disorders. PMID:17005723

  4. Mirtazapine prevents induction and expression of cocaine-induced behavioral sensitization in rats.

    PubMed

    Salazar-Juárez, Alberto; Barbosa-Méndez, Susana; Jurado, Noe; Hernández-Miramontes, Ricardo; Leff, Philippe; Antón, Benito

    2016-07-04

    Cocaine abuse is a major health problem worldwide. Treatment based on both 5-HT2A/C and 5-HT3 receptor antagonists attenuate not only the effects of cocaine abuse but also the incentive/motivational effect related to cocaine-paired cues. Mirtazapine, an antagonist of postsynaptic α2-adrenergic, 5-HT2A/C and 5HT3 receptors and inverse agonist of the 5-HT2C receptor, has been shown to effectively modify, at the preclinical and clinical levels, various behavioral alterations induced by drugs abuse. Therefore, it is important to assess whether chronic dosing of mirtazapine alters locomotor effects of cocaine as well as induction and expression of cocaine sensitization. Our results reveal that a daily mirtazapine regimen administered for 30days effectively induces a significant attenuation of cocaine-dependent locomotor activity and as well as the induction and expression of behavioral sensitization. These results suggest that mirtazapine may be used as a potentially effective therapy to attenuate induction and expression of cocaine-induced locomotor sensitization.

  5. Disease-specific expression of the serotonin-receptor 5-HT(2C) in natural killer cells in Alzheimer's dementia.

    PubMed

    Martins, Luiza Conceição Amorim; Rocha, Natália Pessoa; Torres, Karen Cecília Lima; Dos Santos, Rodrigo Ribeiro; França, Giselle Sabrina; de Moraes, Edgar Nunes; Mukhamedyarov, Marat Alexandrovich; Zefirov, Andrey Lvovich; Rizvanov, Albert Anatolyevich; Kiyasov, Andrey Pavlovich; Vieira, Luciene Bruno; Guimarães, Melissa Monteiro; Yalvaç, Mehmet Emir; Teixeira, Antônio Lúcio; Bicalho, Maria Aparecida Camargo; Janka, Zoltán; Romano-Silva, Marco Aurélio; Palotás, András; Reis, Helton José

    2012-10-15

    Alzheimer's dementia (AD) is a degenerative brain disorder characterized mainly by cholinergic failure, but other neuro-transmitters are also deficient especially at late stages of the disease. Misfolded β-amyloid peptide has been identified as a causative agent, however inflammatory changes also play a pivotal role. Even though the most prominent pathology is seen in the cognitive functions, specific abnormalities of the central nervous system (CNS) are also reflected in the periphery, particularly in the immune responses of the body. The aim of this study was to characterize the dopaminergic and serotonergic systems in AD, which are also markedly disrupted along with the hallmark acetyl-choline dysfunction. Peripheral blood mono-nuclear cells (PBMCs) from demented patients were judged against comparison groups including individuals with late-onset depression (LOD), as well as non-demented and non-depressed subjects. Cellular sub-populations were evaluated by mono-clonal antibodies against various cell surface receptors: CD4/CD8 (T-lymphocytes), CD19 (B-lymphocytes), CD14 (monocytes), and CD56 (natural-killer (NK)-cells). The expressions of dopamine D(3) and D(4), as well as serotonin 5-HT(1A), 5-HT(2A), 5-HT(2B) and 5-HT(2C) were also assessed. There were no significant differences among the study groups with respect to the frequency of the cellular sub-types, however a unique profound increase in 5-HT(2C) receptor exclusively in NK-cells was observed in AD. The disease-specific expression of 5-HT(2C), as well as the NK-cell cyto-toxicity, has been linked with cognitive derangement in dementia. These changes not only corroborate the existence of bi-directional communication between the immune system and the CNS, but also elucidate the role of inflammatory activity in AD pathology, and may serve as potential biomarkers for less invasive and early diagnostic purposes as well.

  6. Effects of postischemic environment on transcription factor and serotonin receptor expression after permanent focal cortical ischemia in rats.

    PubMed

    Dahlqvist, P; Rönnbäck, A; Risedal, A; Nergårdh, R; Johansson, I-M; Seckl, J R; Johansson, B B; Olsson, T

    2003-01-01

    Housing rats in an enriched environment improves functional outcome after ischemic stroke, this may reflect neuronal plasticity in brain regions outside the lesion. Which components of the enriched environment that are of greatest importance for recovery after brain ischemia is uncertain. We have previously found that enriched environment and social interaction alone both improve functional recovery after focal cerebral ischemia, compared with isolated housing with voluntary wheel-running. In this study, the aim was to separate components of the enriched environment and investigate the effects on some potential mediators of improved functional recovery; such as the inducible transcription factors nerve growth factor-induced gene A (NGFI-A) and NGFI-B, and the glucocorticoid and serotonin systems. After permanent middle cerebral artery occlusion, rats were divided into four groups: individually housed with no equipment (deprived group), individually housed with free access to a running wheel (running group), housed together in a large cage with no equipment (social group) or in a large cage furnished with exchangeable bars, chains and other objects (enriched group). mRNA expression of inducible transcription factors, serotonin and glucocorticoid receptors was determined with in situ hybridisation 1 month after cerebral ischemia. Rats housed in enriched or social environments showed significantly higher mRNA expression of NGFI-A and NGFI-B in cortical regions outside the lesion and in the CA1 (cornu ammonis region of the hippocampus), compared with isolated rats with or without a running wheel. NGFI-A and NGFI-B mRNA expression in cortex and in CA1 was significantly correlated to functional outcome. 5-Hydroxytryptamine receptor 1A (5-HT(1A)) mRNA expression and binding, as well as 5-HT(2A) receptor mRNA expression were decreased in the hippocampus (CA4 region) of the running wheel rats. Mineralocorticoid receptor gene expression was increased in the dentate gyrus

  7. 5-Hydroxytryptamine-2A receptor gene (HTR 2 A) candidate polymorphism (T 102 C): Role for human platelet function under pharmacological challenge ex vivo.

    PubMed

    Ozdener, F; Gülbas, Z; Erol, K; Ozdemir, V

    2005-01-01

    Although the environmental and life-style factors influencing individual predisposition to acute myocardial infarction (AMI) have been well documented, little is known on the identity of genetic loci that may contribute to risk for AMI. Recently, genetic studies in patients with nonfatal AMI have suggested an association with the T 102 C polymorphism in the serotonin 5-HT(2A) receptor gene (HTR 2 A). Considering the significant role of the 5-HT(2A) receptor in serotonin-induced platelet responses and the contribution of platelet (patho)physiology to thromboembolic events, we postulated that the increased susceptibility to AMI in patients with the T 102 homozygosity may be attributable, in part, to altered serotonin-mediated platelet function. In a group of healthy volunteers recruited from the Eskisehir region in central Turkey (N=37), we investigated the functional consequences of HTR 2 A T 102 C polymorphism in relation to platelet pharmacodynamics ex vivo. The platelet shape change and aggregation response to serotonin were measured with use of the platelet aggregometry and expressed as aggregometer output (mm). Because the circulating catecholamine hormone epinephrine can augment platelet aggregation, pharmacodynamic response (aggregation and its inhibition by 5-HT(2A) receptor antagonist cyproheptadine) was measured in the presence of both serotonin and epinephrine, to mimic the clinical situation in patients. The mean platelet aggregation was higher by 38% in subjects with T 10 2 homozygosity (T/T genotype, N=13) when compared with the carriers of the 102 C-allele (T/C and the C/C genotypic groups, N=24) (39.5 mm+/-12.3 vs. 28.7 mm+/-16.8, respectively) (mean+/-SD) (p<0.05). On the other hand, neither the serotonin-induced platelet shape change nor the cyproheptadine inhibition of platelet aggregation was influenced by the HTR 2 A T 102 C genetic variation (p>0.05). These findings in healthy subjects may provide a mechanistic explanation for the previously

  8. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    PubMed

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.

  9. Effects of developmental hyperserotonemia on juvenile play behavior, oxytocin and serotonin receptor expression in the hypothalamus are age and sex dependent.

    PubMed

    Madden, Amanda M K; Zup, Susan L

    2014-04-10

    There is a striking sex difference in the diagnosis of Autism Spectrum Disorder (ASD), such that males are diagnosed more often than females, usually in early childhood. Given that recent research has implicated elevated blood serotonin (hyperserotonemia) in perinatal development as a potential factor in the pathogenesis of ASD, we sought to evaluate the effects of developmental hyperserotonemia on social behavior and relevant brain morphology in juvenile males and females. Administration of 5-methoxytryptamine (5-MT) both pre- and postnatally was found to disrupt normal social play behavior in juveniles. In addition, alterations in the number of oxytocinergic cells in the lateral and medial paraventricular nucleus (PVN) were evident on postnatal day 18 (PND18) in 5-MT treated females, but not treated males. 5-MT treatment also changed the relative expression of 5-HT(1A) and 5-HT(2A) receptors in the PVN, in males at PND10 and in females at PND18. These data suggest that serotonin plays an organizing role in the development of the PVN in a sexually dimorphic fashion, and that elevated serotonin levels during perinatal development may disrupt normal organization, leading to neurochemical and behavioral changes. Importantly, these data also suggest that the inclusion of both juvenile males and females in studies will be necessary to fully understand the role of serotonin in development, especially in relation to ASD.

  10. Increased Serotonin Transporter Expression Reduces Fear and Recruitment of Parvalbumin Interneurons of the Amygdala.

    PubMed

    Bocchio, Marco; Fucsina, Giulia; Oikonomidis, Lydia; McHugh, Stephen B; Bannerman, David M; Sharp, Trevor; Capogna, Marco

    2015-12-01

    Genetic association studies suggest that variations in the 5-hydroxytryptamine (5-HT; serotonin) transporter (5-HTT) gene are associated with susceptibility to psychiatric disorders such as anxiety or posttraumatic stress disorder. Individuals carrying high 5-HTT-expressing gene variants display low amygdala reactivity to fearful stimuli. Mice overexpressing the 5-HTT (5-HTTOE), an animal model of this human variation, show impaired fear, together with reduced fear-evoked theta oscillations in the basolateral amygdala (BLA). However, it is unclear how variation in 5-HTT gene expression impacts on the microcircuitry of the BLA to change behavior. We addressed this issue by investigating the activity of parvalbumin (PV)-expressing interneurons (PVINs), the biggest IN population in the basal amygdala (BA). We found that increased 5-HTT expression impairs the recruitment of PVINs (measured by their c-Fos immunoreactivity) during fear. Ex vivo patch-clamp recordings demonstrated that the depolarizing effect of 5-HT on PVINs was mediated by 5-HT2A receptor. In 5-HTTOE mice, 5-HT-evoked depolarization of PVINs and synaptic inhibition of principal cells, which provide the major output of the BA, were impaired. This deficit was because of reduced 5-HT2A function and not because of increased 5-HT uptake. Collectively, these findings provide novel cellular mechanisms that are likely to contribute to differences in emotional behaviors linked with genetic variations of the 5-HTT.

  11. Essential role for phosphatidylinositol 4,5-bisphosphate in the expression, regulation, and gating of the slow afterhyperpolarization current in the cerebral cortex.

    PubMed

    Villalobos, Claudio; Foehring, Robert C; Lee, Jonathan C; Andrade, Rodrigo

    2011-12-14

    Many neurons of the CNS and peripheral nervous system express a slow afterhyperpolarization that is mediated by a slow calcium-activated potassium current. Previous work has shown that this aftercurrent regulates repetitive firing and is an important target for neuromodulators signaling through receptors coupled to G-proteins of the Gα(q-11) and Gα(s) subtypes. Yet, despite considerable effort, a molecular-level understanding of the potassium current underlying the slow afterhyperpolarization and its modulation has proven elusive. Here, we use a combination of pharmacological and molecular biological approaches in cortical brain slices to show that the functional expression of the slow calcium-activated afterhyperpolarizing current in pyramidal cells is critically dependent on membrane phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] and that this dependence accounts for its inhibition by 5-HT(2A) receptors. Furthermore, we show that PtdIns(4,5)P(2) regulates the calcium sensitivity of I(sAHP) in a manner that suggests it acts downstream from the rise in intracellular calcium. These results clarify key functional aspects of the slow afterhyperpolarization current and its modulation by 5-HT(2A) receptors and point to a key role for PtdIns(4,5)P(2) in the gating of this current.

  12. Regulating prefrontal cortex activation: an emerging role for the 5-HT₂A serotonin receptor in the modulation of emotion-based actions?

    PubMed

    Aznar, Susana; Klein, Anders B

    2013-12-01

    The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala and the striatal circuitry, areas involved in emotion and reward processing. The PFC, however, is able to modulate amygdala reactivity via a feedback loop to this area. A role for serotonin in adjusting for this circuitry of cognitive regulation of emotion has long been suggested based primarily on the positive pharmacological effect of elevating serotonin levels in anxiety regulation. Recent animal and human functional magnetic resonance studies have pointed to a specific involvement of the 5-hydroxytryptamine (5-HT)2A serotonin receptor in the PFC feedback regulatory projection onto the amygdala. This receptor is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings of a regulatory effect of the PFC on the emotional control of our actions.

  13. Effect of long-term actual spaceflight on the expression of key genes encoding serotonin and dopamine system

    NASA Astrophysics Data System (ADS)

    Popova, Nina; Shenkman, Boris; Naumenko, Vladimir; Kulikov, Alexander; Kondaurova, Elena; Tsybko, Anton; Kulikova, Elisabeth; Krasnov, I. B.; Bazhenova, Ekaterina; Sinyakova, Nadezhda

    The effect of long-term spaceflight on the central nervous system represents important but yet undeveloped problem. The aim of our work was to study the effect of 30-days spaceflight of mice on Russian biosatellite BION-M1 on the expression in the brain regions of key genes of a) serotonin (5-HT) system (main enzymes in 5-HT metabolism - tryptophan hydroxylase-2 (TPH-2), monoamine oxydase A (MAO A), 5-HT1A, 5-HT2A and 5-HT3 receptors); b) pivotal enzymes in DA metabolism (tyrosine hydroxylase, COMT, MAO A, MAO B) and D1, D2 receptors. Decreased expression of genes encoding the 5-HT catabolism (MAO A) and 5-HT2A receptor in some brain regions was shown. There were no differences between “spaceflight” and control mice in the expression of TPH-2 and 5-HT1A, 5-HT3 receptor genes. Significant changes were found in genetic control of DA system. Long-term spaceflight decreased the expression of genes encoding the enzyme in DA synthesis (tyrosine hydroxylase in s.nigra), DA metabolism (MAO B in the midbrain and COMT in the striatum), and D1 receptor in hypothalamus. These data suggested that 1) microgravity affected genetic control of 5-HT and especially the nigrostriatal DA system implicated in the central regulation of muscular tonus and movement, 2) the decrease in the expression of genes encoding key enzyme in DA synthesis, DA degradation and D1 receptor contributes to the movement impairment and dyskinesia produced by the spaceflight. The study was supported by Russian Foundation for Basic Research grant № 14-04-00173.

  14. Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes

    PubMed Central

    Blough, Bruce E.; Landavazo, Antonio; Decker, Ann M.; Partilla, John S.; Baumann, Michael H.; Rothman, Richard B.

    2014-01-01

    Rationale Synthetic hallucinogenic tryptamines, especially those originally described by Alexander Shulgin, continue to be abused in the United States. The range of subjective experiences produced by different tryptamines suggests that multiple neurochemical mechanisms are involved in their actions, in addition to the established role of agonist activity at serotonin-2A (5-HT2A) receptors. Objectives This study evaluated the interaction of a series of synthetic tryptamines with biogenic amine neurotransmitter transporters and with serotonin (5-HT) receptor subtypes implicated in psychedelic effects. Methods Neurotransmitter transporter activity was determined in rat brain synaptosomes. Receptor activity was determined using calcium mobilization and DiscoveRx PathHunter® assays in HEK293, Gα16-CHO, and CHOk1 cells transfected with human receptors. Results Twenty-one tryptamines were analyzed in transporter uptake and release assays, and 5-HT2A, serotonin 1A (5-HT1A), and 5-HT2A β-arrestin functional assays. Eight of the compounds were found to have 5-HT-releasing activity. Thirteen compounds were found to be 5-HT uptake inhibitors or were inactive. All tryptamines were 5-HT2A agonists with a range of potencies and efficacies, but only a few compounds were 5-HT1A agonists. Most tryptamines recruited β-arrestin through 5-HT2A activation. Conclusions All psychoactive tryptamines are 5-HT2A agonists, but 5-HT transporter (SERT) activity may contribute significantly to the pharmacology of certain compounds. The in vitro transporter data confirm structure-activity trends for releasers and uptake inhibitors whereby releasers tend to be structurally smaller compounds. Interestingly, two tertiary amines were found to be selective substrates at SERT, which dispels the notion that 5-HT-releasing activity is limited only to primary or secondary amines. PMID:24800892

  15. Tall Fescue Alkaloids Bind Serotonin Receptors in Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The serotonin (5HT) receptor 5HT2A is involved in the tall fescue alkaloid-induced vascular contraction in the bovine periphery. This was determined by evaluating the contractile responses of lateral saphenous veins biopsied from cattle grazing different tall fescue/endophyte combinations. The contr...

  16. The 5-hydroxytryptamine2A receptor is involved in (+)-norfenfluramine-induced arterial contraction and blood pressure increase in deoxycorticosterone acetate-salt hypertension.

    PubMed

    Ni, Wei; Fink, Gregory D; Watts, Stephanie W

    2007-05-01

    The highly effective anorexigen (+)-fenfluramine was widely used to control body weight until the association with primary pulmonary hypertension and valvular heart disease. (+)-Norfenfluramine is the major hepatic metabolite of (+)-fenfluramine and is primarily responsible for the anorexic effect as well as side effects. We reported that (+)-norfenfluramine causes vasoconstriction and a blood pressure increase in rats with normal blood pressure via the 5-hydroxytryptamine (5-HT)2A receptor. With the knowledge that (+)-norfenfluramine also has affinity for 5-HT2B receptors and that arterial 5-HT2B receptor expression is up-regulated in deoxycorticosterone acetate (DOCA)-salt hypertension, we tested the hypothesis that (+)-norfenfluramine-induced vasoconstriction and pressor effects are potentiated in DOCA-salt hypertensive rats in a 5-HT2 receptor-dependent manner. Contractions of arteries were measured using an isolated tissue bath system or myograph. Mean arterial blood pressure was measured in chronically instrumented conscious rats. Effects of (+)-norfenfluramine in stimulating arterial contraction (leftward shift versus SHAM, aorta, 5.13-fold; renal artery, 1.95-fold; mesenteric resistance artery, 1.77-fold) and raising blood pressure were significantly enhanced in hypertension. In arteries from both normotensive and hypertensive rats, (+)-norfenfluramine-induced contraction in aorta was inhibited by 5-HT2A receptor antagonists, ketanserin and LY53857 (4-isopropyl-7-methyl-9-(2-hydroxy-1-meth ylpropoxycarbonyl)4,6,6a,7,8,9,10,10a-octahydroindolo[4,3-fg]quinoline), but not by the 5-HT2B receptor antagonist, LY272015 [6-chloro-5-methyl-N-(5-quinolinyl)-2,3-dihydro-1H-indole-1-carboxamide]. Ketanserin (3 mg/kg) reduced (+)-norfenfluramine-induced pressor response in both SHAM and DOCA rats. Our results demonstrate that (+)-norfenfluramine-induced arterial contraction and blood pressure increases are potentiated in DOCA-salt hypertensive rats. However, it is the 5

  17. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens.

    PubMed

    Rickli, Anna; Moning, Olivier D; Hoener, Marius C; Liechti, Matthias E

    2016-08-01

    The present study investigated interactions between the novel psychoactive tryptamines DiPT, 4-OH-DiPT, 4-OH-MET, 5-MeO-AMT, and 5-MeO-MiPT at monoamine receptors and transporters compared with the classic hallucinogens lysergic acid diethylamide (LSD), psilocin, N,N-dimethyltryptamine (DMT), and mescaline. We investigated binding affinities at human monoamine receptors and determined functional serotonin (5-hydroxytryptamine [5-HT]) 5-HT2A and 5-HT2B receptor activation. Binding at and the inhibition of human monoamine uptake transporters and transporter-mediated monoamine release were also determined. All of the novel tryptamines interacted with 5-HT2A receptors and were partial or full 5-HT2A agonists. Binding affinity to the 5-HT2A receptor was lower for all of the tryptamines, including psilocin and DMT, compared with LSD and correlated with the reported psychoactive doses in humans. Several tryptamines, including psilocin, DMT, DiPT, 4-OH-DiPT, and 4-OH-MET, interacted with the serotonin transporter and partially the norepinephrine transporter, similar to 3,4-methylenedioxymethamphetamine but in contrast to LSD and mescaline. LSD but not the tryptamines interacted with adrenergic and dopaminergic receptors. In conclusion, the receptor interaction profiles of the tryptamines predict hallucinogenic effects that are similar to classic serotonergic hallucinogens but also MDMA-like psychoactive properties.

  18. 5-HT1B receptor-mediated contractions in human temporal artery: evidence from selective antagonists and 5-HT receptor mRNA expression

    PubMed Central

    Verheggen, R; Hundeshagen, A G; Brown, A M; Schindler, M; Kaumann, A J

    1998-01-01

    In the human temporal artery both 5-HT1-like and 5-HT2A receptors mediate the contractile effects of 5-hydroxytryptamine (5-HT) and we have suggested that the 5-HT1-like receptors resemble more closely recombinant 5-HT1B than 5-HT1D receptors. To investigate further which subtype is involved, we investigated the blockade of 5-HT-induced contractions by the 5-HT1B-selective antagonist SB-224289 (2,3,6,7-tetrahydro-1′-methyl-5-{2-methyl-4′[(5-methyl-1,2,4-oxadiazole-3-yl) biphenyl-4-yl] carbonyl} furo[2,3-f]indole-3-spiro-4′-piperidine oxalate) and the 5-HT1D-selective antagonist BRL-15572 (1-phenyl-3[4-3-chlorophenyl piperazin-1-yl] phenylpropan-2-ol). We also used RT-PCR to search for the mRNA of 5-HT1B, 5-HT1D and other 5-HT receptors.The contractile effects of 5-HT in temporal artery rings were partially antagonized by SB-224289 (20, 200 nM) (apparent KB=1 nM) and ketanserin (1 μM) but not by BRL-15572 (500 nM).Sumatriptan evoked contractions (EC50, 170 nM) that were resistant to blockade by BRL-15572 (500 nM) but antagonized by SB-224289 (20, 200 nM).The potency of 5-HT (EC50) was estimated to be 94 nM for the ketanserin-sensitive receptor and 34 nM for the SB-224289-sensitive receptor. The fraction of maximal 5-HT response mediated through SB-224289-sensitive receptors was 0.20–0.67, the remainder being mediated through ketanserin-sensitive receptors.We detected arterial receptor mRNA for the following receptors (incidence): 5-HT1B (8/8), 5-HT1D (2/8), 5-HT1F (0/4), 5-HT2A (0/8), 5-HT2B (0/8), 5-HT2C (0/8), 5-HT4 (4/8) and 5-HT7 (4/8).We conclude that the ketanserin-resistant fraction of the 5-HT effects and the effects of sumatriptan are mediated by 5-HT1B receptors. The lack of antagonism by BRL-15572 rules out 5-HT1D receptors as mediators of the contractile effects of 5-HT and sumatriptan. PMID:9723944

  19. Modulation of GABA release from the thalamic reticular nucleus by cocaine and caffeine: role of serotonin receptors.

    PubMed

    Goitia, Belén; Rivero-Echeto, María Celeste; Weisstaub, Noelia V; Gingrich, Jay A; Garcia-Rill, Edgar; Bisagno, Verónica; Urbano, Francisco J

    2016-02-01

    Serotonin receptors are targets of drug therapies for a variety of neuropsychiatric and neurodegenerative disorders. Cocaine inhibits the re-uptake of serotonin (5-HT), dopamine, and noradrenaline, whereas caffeine blocks adenosine receptors and opens ryanodine receptors in the endoplasmic reticulum. We studied how 5-HT and adenosine affected spontaneous GABAergic transmission from thalamic reticular nucleus. We combined whole-cell patch clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) in ventrobasal thalamic neurons during local (puff) application of 5-HT in wild type (WT) or knockout mice lacking 5-HT2A receptors (5-HT2A -/-). Inhibition of mIPSCs frequency by low (10 μM) and high (100 μM) 5-HT concentrations was observed in ventrobasal neurons from 5-HT2A -/- mice. In WT mice, only 100 μM 5-HT significantly reduced mIPSCs frequency. In 5-HT2A -/- mice, NAN-190, a specific 5-HT1A antagonist, prevented the 100 μM 5-HT inhibition while blocking H-currents that prolonged inhibition during post-puff periods. The inhibitory effects of 100 μM 5-HT were enhanced in cocaine binge-treated 5-HT2A -/- mice. Caffeine binge treatment did not affect 5-HT-mediated inhibition. Our findings suggest that both 5-HT1A and 5-HT2A receptors are present in pre-synaptic thalamic reticular nucleus terminals. Serotonergic-mediated inhibition of GABA release could underlie aberrant thalamocortical physiology described after repetitive consumption of cocaine. Our findings suggest that both 5-HT1A , 5-HT2A and A1 receptors are present in pre-synaptic TRN terminals. 5-HT1A and A1 receptors would down-regulate adenylate cyclase, whereas 5-HT1A would also increase the probability of the opening of G-protein-activated inwardly rectifying K(+) channels (GIRK). Sustained opening of GIRK channels would hyperpolarize pre-synaptic terminals activating H-currents, resulting in less GABA release. 5-HT2A -would activate PLC and IP3 , increasing intracellular [Ca(2+) ] and

  20. [Olfactory esthesioneuroblastoma: scintigraphic expression of somatostatin receptors].

    PubMed

    García Vicente, A; García Del Castillo, E; Soriano Castrejón, A; Alonso Farto, J

    1999-10-01

    Esthesioneuroblastoma is an uncommon tumor originating in the upper nasal cavity and constitutes 3% of all intranasal neoplasms. Few references exist about the expression of somatostatin receptors in these tumors. Our case demonstrates a good correlation between the somatostatin receptor scintigraphy and magnetic resonance imaging.

  1. Estrogen increases renal oxytocin receptor gene expression.

    PubMed

    Ostrowski, N L; Young, W S; Lolait, S J

    1995-04-01

    Estrogens have been implicated in the sodium and fluid imbalances associated with the menstrual cycle and late pregnancy. An estrogen-dependent role for renal oxytocin receptors in fluid homeostasis is suggested by the present findings which demonstrate that estradiol benzoate treatment increases the expression of the oxytocin receptor messenger ribonucleic acid and 125I-OTA binding to oxytocin receptors in the renal cortex and medullary collecting ducts of ovariectomized female rats. Moreover, estradiol induced high levels of oxytocin receptor expression in outer stripe proximal tubules of ovariectomized female and adrenalectomized male rats. Proximal tubule induction was inhibited in a dose-dependent manner by the antiestrogen tamoxifen, but cortical expression of oxytocin receptors in macula densa cells was unaffected by tamoxifen. These data demonstrate cell-specific regulation of oxytocin receptor expression in macula densa and proximal tubule cells, and suggest a important role for these receptors in mediating estrogen-induced alterations in renal fluid dynamics by possibly affecting glomerular filtration and water and solute reabsorption during high estrogen states.

  2. Contribution of a helix 5 locus to selectivity of hallucinogenic and nonhallucinogenic ligands for the human 5-hydroxytryptamine2A and 5-hydroxytryptamine2C receptors: direct and indirect effects on ligand affinity mediated by the same locus.

    PubMed

    Almaula, N; Ebersole, B J; Ballesteros, J A; Weinstein, H; Sealfon, S C

    1996-07-01

    An important determinant of the neurobehavioral responses induced by a drug is its relative receptor selectivity. The molecular basis of ligand selectivity of hallucinogenic and nonhallucinogenic compounds of varying structural classes for the human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors was investigated with the use of reciprocal site-directed mutagenesis. Because these two closely related receptor subtypes differ in the amino acid present at position 5.46 (residues 242 and 222 in the sequences, respectively), the effects of corresponding substitutions in the 5-HT2A[S5.46(242)-->A] and 5-HT2C[A5.46(222)-->S] receptors were studied in tandem. By studying both receptors, the direct and indirect effects of mutations on affinity and selectivity can be distinguished. The ergolines studied, mesulergine (selective for the 5-HT2C receptor) and d-lysergic acid diethylamide (selective for the 5-HT2A receptor), reversed their relative affinity with mutations in each receptor, supporting a direct role of this locus in the selectivity of these ligands. However, interchange mutations in either receptor led to decreased or unchanged affinity for (+/-)-1-)(2,5-dimethoxy-4-iodophenyl)-2-aminopropane and ketanserin, which have higher affinity for the 5-HT2A receptor, consistent with little contribution of this locus to the selectivity of these ligands. The indoleamines studied were affected differently by mutations in each receptor, suggesting that they bind differently to the two receptor subtypes. Mutation of this locus in the 5-HT2A receptor decreased the affinity of all indoleamines, whereas the interchange mutation of the 5-HT2C receptor did not affect indoleamine affinity. These results are consistent with a direct interaction between this side chain and indoleamines for the 5-HT2A receptor but not for the 5-HT2C receptor. Furthermore, this analysis shows that the higher affinity of 5-HT and tryptamine for the 5-HT2C receptor than for the 5-HT2A receptors is not

  3. Dorsal prefrontal cortical serotonin 2A receptor binding indices are differentially related to individual scores on harm avoidance.

    PubMed

    Baeken, Chris; Bossuyt, Axel; De Raedt, Rudi

    2014-02-28

    Although the serotonergic system has been implicated in healthy as well as in pathological emotional states, knowledge about its involvement in personality is limited. Earlier research on this topic suggests that post-synaptic 5-HT2A receptors could be involved in particular in frontal cortical areas. In drug-naïve healthy individuals, we examined the relationship between these 5-HT2A receptors and the temperament dimension harm avoidance (HA) using 123I-5-I-R91150 single photon emission computed tomography (SPECT). HA is a personality feature closely related to stress, anxiety and depression proneness, and it is thought to be mediated by the serotonergic system. We focused on the prefrontal cortices as these regions are frequently implicated in cognitive processes related to a variety of affective disorders. We found a positive relationship between dorsal prefrontal cortical (DPFC) 5-HT2A receptor binding indices (BI) and individual HA scores. Further, our results suggest that those individuals with a tendency to worry or to ruminate are particularly prone to display significantly higher 5-HT2A receptor BI in the left DPFC. Although we only examined psychologically healthy individuals, this relationship suggests a possible vulnerability for affective disorders.

  4. Tyrosine Kinase Receptor Expression in Canine Liposarcoma.

    PubMed

    Avallone, G; Pellegrino, V; Roccabianca, P; Lepri, E; Crippa, L; Beha, G; De Tolla, L; Sarli, G

    2017-03-01

    The expression of tyrosine kinase receptors is attracting major interest in human and veterinary oncological pathology because of their role as targets for adjuvant therapies. Little is known about tyrosine kinase receptor (TKR) expression in canine liposarcoma (LP), a soft tissue sarcoma. The aim of this study was to evaluate the immunohistochemical expression of the TKRs fibroblast growth factor receptor 1 (FGFR1) and platelet-derived growth factor receptor-β (PDGFRβ); their ligands, fibroblast growth factor 2 (FGF2) and platelet-derived growth factor B (PDGFB); and c-kit in canine LP. Immunohistochemical labeling was categorized as high or low expression and compared with the mitotic count and MIB-1-based proliferation index. Fifty canine LPs were examined, classified, and graded. Fourteen cases were classified as well differentiated, 7 as myxoid, 25 as pleomorphic, and 4 as dedifferentiated. Seventeen cases were grade 1, 26 were grade 2, and 7 were grade 3. A high expression of FGF2, FGFR1, PDGFB, and PDGFRβ was identified in 62% (31/50), 68% (34/50), 81.6% (40/49), and 70.8% (34/48) of the cases, respectively. c-kit was expressed in 12.5% (6/48) of the cases. Mitotic count negatively correlated with FGF2 ( R = -0.41; P < .01), being lower in cases with high FGF2 expression, and positively correlated with PDGFRβ ( R = 0.33; P < .01), being higher in cases with high PDGFRβ expression. No other statistically significant correlations were identified. These results suggest that the PDGFRβ-mediated pathway may have a role in the progression of canine LP and may thus represent a promising target for adjuvant cancer therapies.

  5. Social regulation of cortisol receptor gene expression

    PubMed Central

    Korzan, Wayne J.; Grone, Brian P.; Fernald, Russell D.

    2014-01-01

    In many social species, individuals influence the reproductive capacity of conspecifics. In a well-studied African cichlid fish species, Astatotilapia burtoni, males are either dominant (D) and reproductively competent or non-dominant (ND) and reproductively suppressed as evidenced by reduced gonadotropin releasing hormone (GnRH1) release, regressed gonads, lower levels of androgens and elevated levels of cortisol. Here, we asked whether androgen and cortisol levels might regulate this reproductive suppression. Astatotilapia burtoni has four glucocorticoid receptors (GR1a, GR1b, GR2 and MR), encoded by three genes, and two androgen receptors (ARα and ARβ), encoded by two genes. We previously showed that ARα and ARβ are expressed in GnRH1 neurons in the preoptic area (POA), which regulates reproduction, and that the mRNA levels of these receptors are regulated by social status. Here, we show that GR1, GR2 and MR mRNAs are also expressed in GnRH1 neurons in the POA, revealing potential mechanisms for both androgens and cortisol to influence reproductive capacity. We measured AR, MR and GR mRNA expression levels in a microdissected region of the POA containing GnRH1 neurons, comparing D and ND males. Using quantitative PCR (qPCR), we found D males had higher mRNA levels of ARα, MR, total GR1a and GR2 in the POA compared with ND males. In contrast, ND males had significantly higher levels of GR1b mRNA, a receptor subtype with a reduced transcriptional response to cortisol. Through this novel regulation of receptor type, neurons in the POA of an ND male will be less affected by the higher levels of cortisol typical of low status, suggesting GR receptor type change as a potential adaptive mechanism to mediate high cortisol levels during social suppression. PMID:25013108

  6. Hormone Receptor Expression in Human Fascial Tissue

    PubMed Central

    Fede, C.; Albertin, G.; Petrelli, L.; Sfriso, M.M.; Biz, C.; De Caro, R.

    2016-01-01

    Many epidemiologic, clinical, and experimental findings point to sex differences in myofascial pain in view of the fact that adult women tend to have more myofascial problems with respect to men. It is possible that one of the stimuli to sensitization of fascial nociceptors could come from hormonal factors such as estrogen and relaxin, that are involved in extracellular matrix and collagen remodeling and thus contribute to functions of myofascial tissue. Immunohistochemical and molecular investigations (real-time PCR analysis) of relaxin receptor 1 (RXFP1) and estrogen receptor-alpha (ERα) localization were carried out on samples of human fascia collected from 8 volunteers patients during orthopedic surgery (all females, between 42 and 70 yrs, divided into pre- and post-menopausal groups), and in fibroblasts isolated from deep fascia, to examine both protein and RNA expression levels. We can assume that the two sex hormone receptors analyzed are expressed in all the human fascial districts examined and in fascial fibroblasts culture cells, to a lesser degree in the post-menopausal with respect to the pre-menopausal women. Hormone receptor expression was concentrated in the fibroblasts, and RXFP1 was also evident in blood vessels and nerves. Our results are the first demonstrating that the fibroblasts located within different districts of the muscular fasciae express sex hormone receptors and can help to explain the link between hormonal factors and myofascial pain. It is known, in fact, that estrogen and relaxin play a key role in extracellular matrix remodeling by inhibiting fibrosis and inflammatory activities, both important factors affecting fascial stiffness and sensitization of fascial nociceptors. PMID:28076930

  7. Antagonism of lateral saphenous vein serotonin receptors from steers grazing endophyte-free, wild-type, or novel endophyte-infected tall fescue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pharmacologic profiling of 5-hydroxytryptamine (5HT) receptors of bovine lateral saphenous vein has shown that cattle grazing endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have altered responses to ergovaline (ERV), 5HT, 5HT2A and 5HT7 agonists. To determine if 5HT...

  8. Lateral/basolateral amygdala serotonin type-2 receptors modulate operant self-administration of a sweetened ethanol solution via inhibition of principal neuron activity

    PubMed Central

    McCool, Brian A.; Christian, Daniel T.; Fetzer, Jonathan A.; Chappell, Ann M.

    2014-01-01

    The lateral/basolateral amygdala (BLA) forms an integral part of the neural circuitry controlling innate anxiety and learned fear. More recently, BLA dependent modulation of self-administration behaviors suggests a much broader role in the regulation of reward evaluation. To test this, we employed a self-administration paradigm that procedurally segregates “seeking” (exemplified as lever-press behaviors) from consumption (drinking) directed at a sweetened ethanol solution. Microinjection of the nonselective serotonin type-2 receptor agonist, alpha-methyl-5-hydroxytryptamine (α-m5HT) into the BLA reduced lever pressing behaviors in a dose-dependent fashion. This was associated with a significant reduction in the number of response-bouts expressed during non-reinforced sessions without altering the size of a bout or the rate of responding. Conversely, intra-BLA α-m5HT only modestly effected consumption-related behaviors; the highest dose reduced the total time spent consuming a sweetened ethanol solution but did not inhibit the total number of licks, number of lick bouts, or amount of solution consumed during a session. In vitro neurophysiological characterization of BLA synaptic responses showed that α-m5HT significantly reduced extracellular field potentials. This was blocked by the 5-HT2A/C antagonist ketanserin suggesting that 5-HT2-like receptors mediate the behavioral effect of α-m5HT. During whole-cell patch current-clamp recordings, we subsequently found that α-m5HT increased action potential threshold and hyperpolarized the resting membrane potential of BLA pyramidal neurons. Together, our findings show that the activation of BLA 5-HT2A/C receptors inhibits behaviors related to reward-seeking by suppressing BLA principal neuron activity. These data are consistent with the hypothesis that the BLA modulates reward-related behaviors and provides specific insight into BLA contributions during operant self-administration of a sweetened ethanol solution

  9. Expression of orexin receptors in the pituitary.

    PubMed

    Kaminski, Tadeusz; Smolinska, Nina

    2012-01-01

    Orexin receptors type 1 (OX1R) and type 2 (OX2R) are G protein-coupled receptors whose structure is highly conserved in mammals. OX1R is selective for orexin A, and OX2R binds orexin A and orexin B with similar affinity. Orexin receptor expression was observed in human, rat, porcine, sheep as well as Xenopus laevis pituitaries, both in the adenohypophysis and in the neurohypophysis. The expression level is regulated by gonadal steroid hormones and GnRH. The majority of orexins reaching the pituitary originate from the lateral hypothalamus, but due to the presence of the receptors and the local production of orexins in the pituitary, orexins could deliver an auto/paracrine effect within the gland. Cumulative data indicate that orexins are involved in the regulation of LH, GH, PRL, ACTH, and TSH secretion by pituitary cells, pointing to orexins' effect on the functioning of the endocrine axes. Those hormones may also serve as a signal linking metabolic status with endocrine control of sleep, arousal, and reproduction processes.

  10. Myometrial oxytocin receptor expression and intracellular pathways.

    PubMed

    Yulia, A; Johnson, M R

    2014-06-01

    Oxytocin (OT) signalling plays a fundamental role in the mechanisms of parturition. OT is one of the most frequently used drugs in obstetrics, promoting uterine contractions for labor induction and augmentation and to prevent postpartum hemorrhage (PPH). Expression of the oxytocin receptor (OTR) in the human myometrium is tightly regulated during pregnancy and its levels have been shown to peak upon labour onset and to fall sharply in advanced labour and the postpartum period, when the uterus become refractive to OT. However, uterine sensitivity to OT varies between pregnant women, probably reflecting differences in their myometrial OTR expression. Control of OTR expression is mediated by a combination of steroid hormone stimulation, stretch, and inflammation. This review summarises current knowledge regarding the complex regulation of myometrial OTR expression and its associated intracellular signaling pathways.

  11. Expression of prostacyclin receptor in human megakaryocytes.

    PubMed

    Sasaki, Y; Takahashi, T; Tanaka, I; Nakamura, K; Okuno, Y; Nakagawa, O; Narumiya, S; Nakao, K

    1997-08-01

    Prostacyclin (prostaglandin I2, PGI2) is a potent vasodilator and inhibitor of platelet aggregation. Although it is well known that the specific receptor for prostacyclin (PGI2-R) is abundantly expressed on platelets, PGI2-R expression in megakaryocytes is poorly understood. In this study, we examined its expression in leukemic or normal megakaryocytes. PGI2-R mRNA was expressed in human leukemic cell lines of megakaryocytic nature as evaluated by Northern blot analysis. Phorbol 12-myristate 13-acetate (PMA), interleukin-1 (IL-1), IL-3, IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), thrombopoietin (TPO), and tumor necrosis factor-alpha (TNF-alpha) enhanced PGI2-R mRNA expression. The enhancement of PGI2-R expression by PMA and TPO was associated with the upregulation of platelet factor 4 or glycoprotein IIb mRNA expression. Iloprost, an agonist of prostacyclin, induced significant cyclic (c)AMP synthesis in these leukemic cells indicating that interaction of PGI2-R and its ligand can induce postreceptor signal transduction. Furthermore, iloprost-induced cAMP synthesis was enhanced by the pretreatment with PMA or the cytokines that promoted PGI2-R expression. PMA and TPO also increased the specific binding of [3H]iloprost to these cells. Pooled normal megakaryocytic colonies from TPO-containing semisolid culture of purified human CD34+ cells expressed PGI2-R, which were increased as the megakaryocytes matured with the peak expression before proplatelet formation, as evaluated by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR). These results indicate that PGI2-R is expressed in human megakaryocytes and is upregulated by cytokines involved in thrombopoiesis or inflammation. Also, it was indicated that megakaryocytic maturation accompanies enhancement of PGI2-R expression.

  12. Chronic intermittent hypoxia affects endogenous serotonergic inputs and expression of synaptic proteins in rat hypoglossal nucleus

    PubMed Central

    Wu, Xu; Lu, Huan; Hu, Lijuan; Gong, Wankun; Wang, Juan; Fu, Cuiping; Liu, Zilong; Li, Shanqun

    2017-01-01

    Evidence has shown that hypoxic episodes elicit hypoglossal neuroplasticity which depends on elevated serotonin (5-HT), in contrast to the rationale of obstructive sleep apnea (OSA) that deficient serotonergic input to HMs fails to keep airway patency. Therefore, understanding of the 5-HT dynamic changes at hypoglossal nucleus (HN) during chronic intermittent hypoxia (CIH) will be essential to central pathogenic mechanism and pharmacological therapy of OSA. Moreover, the effect of CIH on BDNF-TrkB signaling proteins was quantified in an attempt to elucidate cellular cascades/synaptic mechanisms following 5-HT alteration. Male rats were randomly exposed to normal air (control), intermittent hypoxia of 3 weeks (IH3) and 5 weeks (IH5) groups. Through electrical stimulation of dorsal raphe nuclei (DRN), we conducted amperometric technique with carbon fiber electrode in vivo to measure the real time release of 5-HT at XII nucleus. 5-HT2A receptors immunostaining measured by intensity and c-Fos quantified visually were both determined by immunohistochemistry. CIH significantly reduced endogenous serotonergic inputs from DRN to XII nucleus, shown as decreased peak value of 5-HT signals both in IH3 and IH5groups, whereas time to peak and half-life period of 5-HT were unaffected. Neither 5-HT2A receptors nor c-Fos expression in HN were significantly altered by CIH. Except for marked increase in phosphorylation of ERK in IH5 rats, BDNF-TrkB signaling and synaptophys consistently demonstrated downregulated levels. These results suggest that the deficiency of 5-HT and BDNF-dependent synaptic proteins in our CIH protocol contribute to the decompensated mechanism of OSA. PMID:28337282

  13. Serotonin receptors in suicide victims with major depression.

    PubMed

    Stockmeier, C A; Dilley, G E; Shapiro, L A; Overholser, J C; Thompson, P A; Meltzer, H Y

    1997-02-01

    Serotonin1A (5-HT1A) and serotonin2A (5-HT2A) receptors in the brain have been implicated in the pathophysiology of suicide. Brain samples were collected at autopsy from suicide victims with a current episode of major depression and matched comparison subjects who died of natural or accidental causes. Retrospective psychiatric assessments were collected from knowledgeable informants for all suicide victims and most of the comparison subjects. Psychiatric diagnoses were determined according to DSM-III-R criteria. Any subjects with current psychoactive substance use disorders were excluded. Quantitative receptor autoradiography was used in serial sections of the right prefrontal cortex (area 10) and hippocampus to measure the binding of [3H]8-hydroxy-2-(di-n-propyl)-aminotetralin ([3H]8-OH-DPAT) to 5-HT1A receptors and [3H]ketanserin to 5-HT2A receptors. Analysis of covariance was used to compare control subjects and suicide victims with major depression. The age of subjects, the time from death to freezing the tissue (postmortem interval), and the storage time of tissues in the freezer were used as covariates in the analyses. There were no significant differences between suicide victims with major depression and comparison subjects in 5-HT1A or 5-HT2A receptors in area 10 of the right prefrontal cortex or the hippocampus. The current results suggest that the number of 5-HT1A and 5-HT2A receptors in the right prefrontal cortex (area 10) or hippocampus are not different in suicide victims with major depression.

  14. Familial risk for mood disorder and the personality risk factor, neuroticism, interact in their association with frontolimbic serotonin 2A receptor binding.

    PubMed

    Frokjaer, Vibe G; Vinberg, Maj; Erritzoe, David; Baaré, William; Holst, Klaus Kähler; Mortensen, Erik Lykke; Arfan, Haroon; Madsen, Jacob; Jernigan, Terry L; Kessing, Lars Vedel; Knudsen, Gitte Moos

    2010-04-01

    Life stress is a robust risk factor for later development of mood disorders, particularly for individuals at familial risk. Likewise, scoring high on the personality trait neuroticism is associated with an increased risk for mood disorders. Neuroticism partly reflects stress vulnerability and is positively correlated to frontolimbic serotonin 2A (5-HT(2A)) receptor binding. Here, we investigate whether neuroticism interacts with familial risk in relation to frontolimbic 5-HT(2A) receptor binding. Twenty-one healthy twins with a co-twin history of mood disorder and 16 healthy twins without a co-twin history of mood disorder were included. They answered self-report personality questionnaires and underwent [(18)F]altanserin positron emission tomography. We found a significant interaction between neuroticism and familial risk in predicting the frontolimbic 5-HT(2A) receptor binding (p=0.026) in an analysis adjusting for age and body mass index. Within the high-risk group only, neuroticism and frontolimbic 5-HT(2A) receptor binding was positively associated (p=0.0037). In conclusion, our data indicate that familial risk and neuroticism interact in their relation to frontolimbic 5-HT(2A) receptor binding. These findings point at a plausible neurobiological link between genetic and personality risk factors and vulnerability to developing mood disorders. It contributes to our understanding of why some people at high risk develop mood disorders while others do not. We speculate that an increased stress reactivity in individuals at high familial risk for mood disorders might enhance the effect of neuroticism in shaping the impact of potential environmental stress and thereby influence serotonergic neurotransmission.

  15. Endogenous hallucinogens as ligands of the trace amine receptors: a possible role in sensory perception.

    PubMed

    Wallach, J V

    2009-01-01

    While the endogenous hallucinogens, N,N-dimethyltryptamine, 5-hydroxy-N,N-dimethyl-tryptamine and 5-methoxy-N,N-dimethyltryptamine, have been acknowledged as naturally occurring components of the mammalian body for decades, their biological function remains as elusive now as it was at the time of their discovery. The recent discovery of the trace amine associated receptors and the activity of DMT and other hallucinogenic compounds at these receptor sites leads to the hypothesis that the endogenous hallucinogens act as neurotransmitters of a subclass of these trace amine receptors. Additionally, while activity at the serotonin 5-HT2A receptor has been proposed as being responsible for the hallucinogenic affects of administered hallucinogens, in their natural setting the 5-HT2A receptor may not interact with the endogenous hallucinogens at all. Additionally 5-HT2A agonist activity is unable to account for the visual altering effects of many of the administered hallucinogens; these effects may be mediated by one of the endogenous hallucinogen trace amine receptors rather than the serotonin 5-HT2A receptor. Therefore, activity at the trace amine receptors, in addition to serotonin receptors, may play a large role in the sensory altering effects of administered hallucinogens and the trace amine receptors along with their endogenous hallucinogen ligands may serve an endogenous role in mediating sensory perception in the mammalian central nervous system. Thus the theory proposed states that these compounds act as true endogenous hallucinogenic transmitters acting in regions of the central nervous system involved in sensory perception.

  16. Combined antagonism of adrenoceptors and dopamine and 5-HT receptors underlies the atypical profile of clozapine.

    PubMed

    Prinssen, E P; Ellenbroek, B A; Cools, A R

    1994-09-01

    Previous studies have shown that alpha 1-adrenoceptors, dopamine D1-like and 5-HT2A receptors play an important role in the effects of the atypical neuroleptic, clozapine, on the parameter modelling antipsychotic efficacy in the paw test. Therefore, it became of interest to investigate whether antagonism of all these receptors together would give rise to effects characteristic of clozapine. The effects of the combined administration of the alpha 1-adrenoceptor antagonist phenoxybenzamine, the dopamine D1 receptor antagonist, SCH 39166 (4-(4-chloro-3-methoxyphenyl)-1,2- dihydronaphthalene), and the 5-HT2A receptor antagonist, ketanserin, were therefore measured in the paw test. The present data show that all three drugs together, but not simply combinations of two out of three, produced a profile similar to that of clozapine: a significant increase in the parameter modelling antipsychotic efficacy and no change in the parameter modelling extrapyramidal side-effects.

  17. Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans.

    PubMed

    Valle, Marta; Maqueda, Ana Elda; Rabella, Mireia; Rodríguez-Pujadas, Aina; Antonijoan, Rosa Maria; Romero, Sergio; Alonso, Joan Francesc; Mañanas, Miquel Àngel; Barker, Steven; Friedlander, Pablo; Feilding, Amanda; Riba, Jordi

    2016-07-01

    Ayahuasca is an Amazonian psychotropic plant tea typically obtained from two plants, Banisteriopsis caapi and Psychotria viridis. It contains the psychedelic 5-HT2A and sigma-1 agonist N,N-dimethyltryptamine (DMT) plus β-carboline alkaloids with monoamine-oxidase (MAO)-inhibiting properties. Although the psychoactive effects of ayahuasca have commonly been attributed solely to agonism at the 5-HT2A receptor, the molecular target of classical psychedelics, this has not been tested experimentally. Here we wished to study the contribution of the 5-HT2A receptor to the neurophysiological and psychological effects of ayahuasca in humans. We measured drug-induced changes in spontaneous brain oscillations and subjective effects in a double-blind randomized placebo-controlled study involving the oral administration of ayahuasca (0.75mg DMT/kg body weight) and the 5-HT2A antagonist ketanserin (40mg). Twelve healthy, experienced psychedelic users (5 females) participated in four experimental sessions in which they received the following drug combinations: placebo+placebo, placebo+ayahuasca, ketanserin+placebo and ketanserin+ayahuasca. Ayahuasca induced EEG power decreases in the delta, theta and alpha frequency bands. Current density in alpha-band oscillations in parietal and occipital cortex was inversely correlated with the intensity of visual imagery induced by ayahuasca. Pretreatment with ketanserin inhibited neurophysiological modifications, reduced the correlation between alpha and visual effects, and attenuated the intensity of the subjective experience. These findings suggest that despite the chemical complexity of ayahuasca, 5-HT2A activation plays a key role in the neurophysiological and visual effects of ayahuasca in humans.

  18. Novel insights into the potential involvement of 5-HT7 receptors in endocrine dysregulation in stress-related disorders.

    PubMed

    Terrón, José A

    2014-01-01

    A hyperactive hypothalamic-pituitary-adrenal (HPA) axis is a common feature of stress-related disorders, and the brain serotonin (5-HT) system plays a major role in HPA axis modulation. Glucocorticoids and stress profoundly affect the 5-HT system so it is possible that alterations of endocrine 5-HT mechanisms may underlie HPA axis overdrive in stress-related diseases. Available evidence suggests a role of 5-HT1A, 5-HT2A/2C and 5-HT7 receptors in HPA system activation, and pharmacological blockade of 5-HT7 receptors produces a fast-acting antidepressant-like action and shortens the onset of antidepressant-like effects of various classes of antidepressants. The mechanisms involved in this effect have not been elucidated, but recent findings suggest a role of 5-HT7 receptors in the development of HPA axis overdrive as a result of chronic stress. Remarkably, clinical findings have shown an association between corticosteroid-producing adenomas and expression of ectopic 5-HT7 receptors in corticosteroid-producing adrenocortical cells. These observations might therefore reveal an endocrine mechanism for the antidepressant-like action of 5-HT7 receptor blockers, possibly through normalization of HPA axis function. If such a preliminary hypothesis is confirmed, the potential therapeutic usefulness of 5-HT7 receptor antagonists could extend beyond depression to include other diseases, the pathophysiology of which has been associated with chronic stress and HPA axis dysregulation.

  19. Melanocortin MC₄ receptor expression sites and local function.

    PubMed

    Siljee-Wong, Jacqueline E

    2011-06-11

    The melanocortin MC(4) receptor plays an important role in energy metabolism, but also affects blood pressure, heart rate and erectile function. Localization of the receptors that fulfill these distinct roles is only partially known. Mapping of the melanocortin MC(4) receptor has been stymied by the absence of a functional antibody. Several groups have examined mRNA expression of the melanocortin MC(4) receptor in the rodent brain and transgenic approaches have also been utilized to visualize melanocortin MC(4) receptor expression sites within the brain. Ligand expression and binding studies have provided additional information on the areas of the brain where this elusive receptor is functionally expressed. Finally, microinjection of melanocortin MC(4) receptor ligands in specific nuclei has further served to elucidate the function of melanocortin MC(4) receptors in these nuclei. These combined approaches have helped link the anatomy and function of this receptor, such as the role of paraventricular hypothalamic nucleus melanocortin MC(4) receptor in the regulation of food intake. Intriguingly, however, numerous expression-sites have been identified that have not been linked to a specific receptor function such as those along the optic tract and olfactory tubercle. Further research is needed to clarify the function of the melanocortin MC(4) receptor at these sites.

  20. Spatial pattern of receptor expression in the olfactory epithelium.

    PubMed Central

    Nef, P; Hermans-Borgmeyer, I; Artières-Pin, H; Beasley, L; Dionne, V E; Heinemann, S F

    1992-01-01

    A PCR-based strategy for amplifying putative receptors involved in murine olfaction was employed to isolate a member (OR3) of the seven-transmembrane-domain receptor superfamily. During development, the first cells that express OR3 appear adjacent to the wall of the telencephalic vesicle at embryonic day 10. The OR3 receptor is uniquely expressed in a subset of olfactory cells that have a characteristic bilateral symmetry in the adult olfactory epithelium. This receptor and its specific pattern of expression may serve a functional role in odor coding or, alternatively, may play a role in the development of the olfactory system. Images PMID:1384038

  1. Distribution of cellular HSV-1 receptor expression in human brain.

    PubMed

    Lathe, Richard; Haas, Juergen G

    2016-12-15

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.

  2. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  3. Blockade of 5-HT2 Receptor Selectively Prevents MDMA-Induced Verbal Memory Impairment

    PubMed Central

    van Wel, J H P; Kuypers, K P C; Theunissen, E L; Bosker, W M; Bakker, K; Ramaekers, J G

    2011-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) or ‘ecstasy' has been associated with memory deficits during abstinence and intoxication. The human neuropharmacology of MDMA-induced memory impairment is unknown. This study investigated the role of 5-HT2A and 5-HT1A receptors in MDMA-induced memory impairment. Ketanserin is a 5-HT2A receptor blocker and pindolol a 5-HT1A receptor blocker. It was hypothesized that pretreatment with ketanserin and pindolol would protect against MDMA-induced memory impairment. Subjects (N=17) participated in a double-blind, placebo-controlled, within-subject design involving six experimental conditions consisting of pretreatment (T1) and treatment (T2). T1 preceded T2 by 30 min. T1–T2 combinations were: placebo–placebo, pindolol 20 mg–placebo, ketanserin 50 mg–placebo, placebo–MDMA 75 mg, pindolol 20 mg–MDMA 75 mg, and ketanserin 50 mg–MDMA 75 mg. Memory function was assessed at Tmax of MDMA by means of a word-learning task (WLT), a spatial memory task and a prospective memory task. MDMA significantly impaired performance in all memory tasks. Pretreatment with a 5-HT2A receptor blocker selectively interacted with subsequent MDMA treatment and prevented MDMA-induced impairment in the WLT, but not in the spatial and prospective memory task. Pretreatment with a 5-HT1A blocker did not affect MDMA-induced memory impairment in any of the tasks. Together, the results demonstrate that MDMA-induced impairment of verbal memory as measured in the WLT is mediated by 5-HT2A receptor stimulation. PMID:21562484

  4. Role of 5-HT6 receptors in memory formation.

    PubMed

    Meneses, A

    2001-09-01

    Mice lacking the 5-HT(6) receptor presented neither gross anatomical or behavioral abnormalities nor obvious changes in microscopic brain morphology, and their performance in rotarod, open field and novel object testing paradigms revealed no differences compared with wild-type animals. Nevertheless, an association between the 5-HT(6) receptor polymorphism C267T and Alzheimer's disease has been reported. Interestingly, the 5-HT(6) antisense oligonucleotide decreased 5-HT(6) gene expression and enhanced spatial learning acquisition in the water maze. Similarly, injection of the 5-HT(6) receptor antagonist Ro-04-6790 improved learning consolidation in an autoshaping task, while mCPP, scopolamine and dizocilpine decreased performance. The effect induced by scopolamine or dizocilpine, but not that induced by mCPP, was completely or partially reversed by Ro-04-6790. Ro-04-6790 did not modify the 8-OH-DPAT facilitatory effects on learning consolidation. Since Ro-04-6790 facilitatory effect was unaffected by 5-HT(1A), 5-HT(2A/2B/2C), 5-HT(3), 5-HT(4) or 5-HT(7) receptor blockade, the facilitatory effect induced by Ro-04-6790 involved specifically 5-HT6 receptors. Similarly, the 5-HT(6) receptor antagonist SB-271046 improved retention in the water maze and produced a significant performance improvement in aged rats in an operant-delayed alternation task. A series of Ro-04-6790 analogues that penetrate the brain and specifically bind to 5-HT(6) receptors reversed scopolamine-induced retention deficit in a passive avoidance learning test. Collectively, these data provide further support to the notion that 5-HT systems, via 5-HT(6) receptors, also play a significant role in memory formation under normal and dysfunctional memory conditions.

  5. Androgen receptor expression predicts different clinical outcomes for breast cancer patients stratified by hormone receptor status

    PubMed Central

    Xu, Yan; Zheng, Yi-Zi; Liu, Yi-Rong; Lang, Guan-Tian; Qiao, Feng; Hu, Xin; Shao, Zhi-Ming

    2016-01-01

    In this study we sought to correlate androgen receptor (AR) expression with tumor progression and disease-free survival (DFS) in breast cancer patients. We investigated AR expression in 450 breast cancer patients. We found that breast cancers expressing the estrogen receptor (ER) are more likely to co-express AR compared to ER-negative cancers (56.0% versus 28.1%, P < 0.001). In addition, we found that AR expression is correlated with increased DFS in patients with luminal breast cancer (P < 0.001), and decreased DFS in TNBC (triple negative breast cancer, P = 0.014). In addition, patients with HR+ tumors (Hormone receptor positive tumors) expressing low levels of AR have the lowest DFS among all receptor combinations. We also propose a novel prognostic model using AR receptor status, BRCA1, and present data showing that our model is more predictive of disease free survival compared to the traditional TMN staging system. PMID:27285752

  6. Expression of the Endocannabinoid Receptors in Human Fascial Tissue

    PubMed Central

    Fede, C.; Albertin, G.; Petrelli, L.; Sfriso, M.M.; Biz, C.; Caro, R. De; Stecco, C.

    2016-01-01

    Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues. Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, until now the expression of CB1 (cannabinoid receptor 1) and CB2 (cannabinoid receptor 2) in fasciae has not yet been established. Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies) and real time RT-PCR to detect the expression of CB1 and CB2. Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts. This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments. Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation. PMID:27349320

  7. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  8. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation.

    PubMed

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G; Beazely, Michael A

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  9. Effects of serotonin 2A/1A receptor stimulation on social exclusion processing.

    PubMed

    Preller, Katrin H; Pokorny, Thomas; Hock, Andreas; Kraehenmann, Rainer; Stämpfli, Philipp; Seifritz, Erich; Scheidegger, Milan; Vollenweider, Franz X

    2016-05-03

    Social ties are crucial for physical and mental health. However, psychiatric patients frequently encounter social rejection. Moreover, an increased reactivity to social exclusion influences the development, progression, and treatment of various psychiatric disorders. Nevertheless, the neuromodulatory substrates of rejection experiences are largely unknown. The preferential serotonin (5-HT) 2A/1A receptor agonist, psilocybin (Psi), reduces the processing of negative stimuli, but whether 5-HT2A/1A receptor stimulation modulates the processing of negative social interactions remains unclear. Therefore, this double-blind, randomized, counterbalanced, cross-over study assessed the neural response to social exclusion after the acute administration of Psi (0.215 mg/kg) or placebo (Pla) in 21 healthy volunteers by using functional magnetic resonance imaging (fMRI) and resting-state magnetic resonance spectroscopy (MRS). Participants reported a reduced feeling of social exclusion after Psi vs. Pla administration, and the neural response to social exclusion was decreased in the dorsal anterior cingulate cortex (dACC) and the middle frontal gyrus, key regions for social pain processing. The reduced neural response in the dACC was significantly correlated with Psi-induced changes in self-processing and decreased aspartate (Asp) content. In conclusion, 5-HT2A/1A receptor stimulation with psilocybin seems to reduce social pain processing in association with changes in self-experience. These findings may be relevant to the normalization of negative social interaction processing in psychiatric disorders characterized by increased rejection sensitivity. The current results also emphasize the importance of 5-HT2A/1A receptor subtypes and the Asp system in the control of social functioning, and as prospective targets in the treatment of sociocognitive impairments in psychiatric illnesses.

  10. Effects of serotonin 2A/1A receptor stimulation on social exclusion processing

    PubMed Central

    Preller, Katrin H.; Pokorny, Thomas; Hock, Andreas; Kraehenmann, Rainer; Stämpfli, Philipp; Seifritz, Erich; Scheidegger, Milan; Vollenweider, Franz X.

    2016-01-01

    Social ties are crucial for physical and mental health. However, psychiatric patients frequently encounter social rejection. Moreover, an increased reactivity to social exclusion influences the development, progression, and treatment of various psychiatric disorders. Nevertheless, the neuromodulatory substrates of rejection experiences are largely unknown. The preferential serotonin (5-HT) 2A/1A receptor agonist, psilocybin (Psi), reduces the processing of negative stimuli, but whether 5-HT2A/1A receptor stimulation modulates the processing of negative social interactions remains unclear. Therefore, this double-blind, randomized, counterbalanced, cross-over study assessed the neural response to social exclusion after the acute administration of Psi (0.215 mg/kg) or placebo (Pla) in 21 healthy volunteers by using functional magnetic resonance imaging (fMRI) and resting-state magnetic resonance spectroscopy (MRS). Participants reported a reduced feeling of social exclusion after Psi vs. Pla administration, and the neural response to social exclusion was decreased in the dorsal anterior cingulate cortex (dACC) and the middle frontal gyrus, key regions for social pain processing. The reduced neural response in the dACC was significantly correlated with Psi-induced changes in self-processing and decreased aspartate (Asp) content. In conclusion, 5-HT2A/1A receptor stimulation with psilocybin seems to reduce social pain processing in association with changes in self-experience. These findings may be relevant to the normalization of negative social interaction processing in psychiatric disorders characterized by increased rejection sensitivity. The current results also emphasize the importance of 5-HT2A/1A receptor subtypes and the Asp system in the control of social functioning, and as prospective targets in the treatment of sociocognitive impairments in psychiatric illnesses. PMID:27091970

  11. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor

    PubMed Central

    Walker, Christopher S; Eftekhari, Sajedeh; Bower, Rebekah L; Wilderman, Andrea; Insel, Paul A; Edvinsson, Lars; Waldvogel, Henry J; Jamaluddin, Muhammad A; Russo, Andrew F; Hay, Debbie L

    2015-01-01

    Objective The trigeminovascular system plays a central role in migraine, a condition in need of new treatments. The neuropeptide, calcitonin gene-related peptide (CGRP), is proposed as causative in migraine and is the subject of intensive drug discovery efforts. This study explores the expression and functionality of two CGRP receptor candidates in the sensory trigeminal system. Methods Receptor expression was determined using Taqman G protein-coupled receptor arrays and immunohistochemistry in trigeminal ganglia (TG) and the spinal trigeminal complex of the brainstem in rat and human. Receptor pharmacology was quantified using sensitive signaling assays in primary rat TG neurons. Results mRNA and histological expression analysis in rat and human samples revealed the presence of two CGRP-responsive receptors (AMY1: calcitonin receptor/receptor activity-modifying protein 1 [RAMP1]) and the CGRP receptor (calcitonin receptor-like receptor/RAMP1). In support of this finding, quantification of agonist and antagonist potencies revealed a dual population of functional CGRP-responsive receptors in primary rat TG neurons. Interpretation The unexpected presence of a functional non-canonical CGRP receptor (AMY1) at neural sites important for craniofacial pain has important implications for targeting the CGRP axis in migraine. PMID:26125036

  12. Multiple 5-HT receptors in the guinea-pig superior cervical ganglion.

    PubMed Central

    Watkins, C. J.; Newberry, N. R.

    1996-01-01

    1. We have studied the pharmacology of the depolarization by 5-hydroxytryptamine (5-HT) of the guinea-pig isolated superior cervical ganglion (SCG) using the grease-gap technique. We studied the effects of selective and non-selective antagonists on the responses to 5-HT and other 5-HT receptor agonists. 2. We have extended the pharmacology of the 5-HT3 receptor in this preparation by studying the effects of granisetron, BRL 46470 and mianserin on the concentration-response curve (CRC) to 2-methyl-5-HT. As with other 5-HT3 receptor antagonists, these compounds exhibited a lower affinity for guinea-pig 5-HT3 receptors than for rat 5-HT3 receptors. 3. We have confirmed that low concentrations of 5-HT (< or = 1 microM) mediate ketanserin-sensitive responses and higher concentrations of 5-HT also recruit 5-HT3 receptors. The responses to low concentrations of 5-HT were antagonized by low concentrations of ketanserin, spiperone, mianserin, DOI and LSD indicating probably mediation by 5-HT2A receptors. At high concentrations, the hallucinogen, DOI, but not LSD, evoked a ketanserin-sensitive depolarization. 4. Although mianserin could bind to the 5-HT2A receptors in this preparation, we could not demonstrate a down-regulation of depolarizations evoked by these receptors after a 10 day oral treatment with mianserin (10 mg kg-1, daily). 5. 5-Carboxamidotryptamine (5-CT) evoked a prolonged depolarization. Although high concentrations of 5-CT (> or = microM) appeared to activate 5-HT2A receptors, lower concentrations of 5-CT evoked a response with a distinct pharmacology. After studying the action of 20 selective and non-selective 5-HT receptor ligands we believe that this response may be mediated by a novel receptor; but its pharmacology is closest to that of receptors in the 5-HT2 receptor family. Like 5-CT, 5-HT (3-300 microM) could evoke an LSD-sensitive response in the presence of the 5-HT2 receptor antagonist, ketanserin and the 5-HT3 receptor antagonist, tropisetron

  13. New functional activity of aripiprazole revealed: Robust antagonism of D2 dopamine receptor-stimulated Gβγ signaling.

    PubMed

    Brust, Tarsis F; Hayes, Michael P; Roman, David L; Watts, Val J

    2015-01-01

    The dopamine D2 receptor (DRD2) is a G protein-coupled receptor (GPCR) that is generally considered to be a primary target in the treatment of schizophrenia. First generation antipsychotic drugs (e.g. haloperidol) are antagonists of the DRD2, while second generation antipsychotic drugs (e.g. olanzapine) antagonize DRD2 and 5HT2A receptors. Notably, both these classes of drugs may cause side effects associated with D2 receptor antagonism (e.g. hyperprolactemia and extrapyramidal symptoms). The novel, "third generation" antipsychotic drug, aripiprazole is also used to treat schizophrenia, with the remarkable advantage that its tendency to cause extrapyramidal symptoms is minimal. Aripiprazole is considered a partial agonist of the DRD2, but it also has partial agonist/antagonist activity for other GPCRs. Further, aripiprazole has been reported to have a unique activity profile in functional assays with the DRD2. In the present study the molecular pharmacology of aripiprazole was further examined in HEK cell models stably expressing the DRD2 and specific isoforms of adenylyl cyclase to assess functional responses of Gα and Gβγ subunits. Additional studies examined the activity of aripiprazole in DRD2-mediated heterologous sensitization of adenylyl cyclase and cell-based dynamic mass redistribution (DMR). Aripiprazole displayed a unique functional profile for modulation of G proteins, being a partial agonist for Gαi/o and a robust antagonist for Gβγ signaling. Additionally, aripiprazole was a weak partial agonist for both heterologous sensitization and dynamic mass redistribution.

  14. Expression of glutamate receptor subunits in human cancers.

    PubMed

    Stepulak, Andrzej; Luksch, Hella; Gebhardt, Christine; Uckermann, Ortrud; Marzahn, Jenny; Sifringer, Marco; Rzeski, Wojciech; Staufner, Christian; Brocke, Katja S; Turski, Lechoslaw; Ikonomidou, Chrysanthy

    2009-10-01

    Emerging evidence suggests a role for glutamate and its receptors in the biology of cancer. This study was designed to systematically analyze the expression of ionotropic and metabotropic glutamate receptor subunits in various human cancer cell lines, compare expression levels to those in human brain tissue and, using electrophysiological techniques, explore whether cancer cells respond to glutamate receptor agonists and antagonists. Expression analysis of glutamate receptor subunits NR1-NR3B, GluR1-GluR7, KA1, KA2 and mGluR1-mGluR8 was performed by means of RT-PCR in human rhabdomyosarcoma/medulloblastoma (TE671), neuroblastoma (SK-NA-S), thyroid carcinoma (FTC 238), lung carcinoma (SK-LU-1), astrocytoma (MOGGCCM), multiple myeloma (RPMI 8226), glioma (U87-MG and U343), lung carcinoma (A549), colon adenocarcinoma (HT 29), T cell leukemia cells (Jurkat E6.1), breast carcinoma (T47D) and colon adenocarcinoma (LS180). Analysis revealed that all glutamate receptor subunits were differentially expressed in the tumor cell lines. For the majority of tumors, expression levels of NR2B, GluR4, GluR6 and KA2 were lower compared to human brain tissue. Confocal imaging revealed that selected glutamate receptor subunit proteins were expressed in tumor cells. By means of patch-clamp analysis, it was shown that A549 and TE671 cells depolarized in response to application of glutamate agonists and that this effect was reversed by glutamate receptor antagonists. This study reveals that glutamate receptor subunits are differentially expressed in human tumor cell lines at the mRNA and the protein level, and that their expression is associated with the formation of functional channels. The potential role of glutamate receptor antagonists in cancer therapy is a feasible goal to be explored in clinical trials.

  15. Serotonin 5-HT2 Receptor Interactions with Dopamine Function: Implications for Therapeutics in Cocaine Use Disorder

    PubMed Central

    Cunningham, Kathryn A.

    2015-01-01

    Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder. PMID:25505168

  16. Hypothyroidism affects D2 receptor-mediated breathing without altering D2 receptor expression.

    PubMed

    Schlenker, Evelyn H; Del Rio, Rodrigo; Schultz, Harold D

    2014-03-01

    Bromocriptine depressed ventilation in air and D2 receptor expression in the nucleus tractus solitaries (NTS) in male hypothyroid hamsters. Here we postulated that in age-matched hypothyroid female hamsters, the pattern of D2 receptor modulation of breathing and D2 receptor expression would differ from those reported in hypothyroid males. In females hypothyroidism did not affect D2 receptor protein levels in the NTS, carotid bodies or striatum. Bromocriptine, but not carmoxirole (a peripheral D2 receptor agonist), increased oxygen consumption and body temperature in awake air-exposed hypothyroid female hamsters and stimulated their ventilation before and following exposure to hypoxia. Carmoxirole depressed frequency of breathing in euthyroid hamsters prior to, during and following hypoxia exposures and stimulated it in the hypothyroid hamsters following hypoxia. Although hypothyroidism did not affect expression of D2 receptors, it influenced central D2 modulation of breathing in a disparate manner relative to euthyroid hamsters.

  17. Mammal-like striatal functions in Anolis. I. Distribution of serotonin receptor subtypes, and absence of striosome and matrix organization.

    PubMed

    Clark, E C; Baxter, L R

    2000-11-01

    Serotonin (5-HT) 5-HT(2A) and 5-HT(2C) receptors are thought to play important roles in the mammalian striatum. As basal ganglia functions in general are thought highly conserved among amniotes, we decided to use in situ autoradiographic methods to determine the occurrence and distribution of pharmacologically mammal-like 5-HT(2A) and 5-HT(2C) receptors in the lizard, Anolis carolinensis, with particular attention to the striatum. We also determined the distributions of 5-HT(1A), 5-HT(1B/D), 5 HT(3), and 5-HT(uptake) receptors for comparison. All 5-HT receptors examined showed pharmacological binding specificity, and forebrain binding density distributions that resembled those reported for mammals. Anolis 5 HT(2A/C) and 5-HT(1A) site distributions were similar in both in vivo and ex vivo binding experiments. 5-HT(2A & C) receptors occur in both high and low affinity states, the former having preferential affinity for (125)I-(+/-)-2,5-dimethoxy-4-iodo-amphetamine hydrochloride ((125)I-DOI). In mammals (125)I-DOI binding shows a patchy density distribution in the striatum, being more dense in striosomes than in surrounding matrix. There was no evidence of any such patchy density of (125)I-DOI binding in the anole striatum, however. As a further indication that anoles do not possess a striosome and matrix striatal organization, neither (3)H-naloxone binding nor histochemical staining for acetylcholinesterase activity (AChE) were patchy. AChE did show a band-like striatal distribution, however, similar to that seen in birds.

  18. Dcc haploinsufficiency regulates dopamine receptor expression across postnatal lifespan.

    PubMed

    Pokinko, Matthew; Grant, Alanna; Shahabi, Florence; Dumont, Yvan; Manitt, Colleen; Flores, Cecilia

    2017-03-27

    Adolescence is a period during which the medial prefrontal cortex (mPFC) undergoes significant remodeling. The netrin-1 receptor, deleted in colorectal cancer (DCC), controls the extent and organization of mPFC dopamine connectivity during adolescence and in turn directs mPFC functional and structural maturation. Dcc haploinsufficiency leads to increased mPFC dopamine input, which causes improved cognitive processing and resilience to behavioral effects of stimulant drugs of abuse. Here we examine the effects of Dcc haploinsufficiency on the dynamic expression of dopamine receptors in forebrain targets of C57BL6 mice. We conducted quantitative receptor autoradiography experiments with [(3)H]SCH-23390 or [(3)H]raclopride to characterize D1 and D2 receptor expression in mPFC and striatal regions in male Dcc haploinsufficient and wild-type mice. We generated autoradiograms at early adolescence (PND21±1), mid-adolescence (PND35±2), and adulthood (PND75±15). C57BL6 mice exhibit overexpression and pruning of D1, but not D2, receptors in striatal regions, and a lack of dopamine receptor pruning in the mPFC. We observed age- and region-specific differences in D1 and D2 receptor density between Dcc haploinsufficient and wild-type mice. Notably, neither group shows the typical pattern of mPFC dopamine receptor pruning in adolescence, but adult haploinsufficient mice show increased D2 receptor density in the mPFC. These results show that DCC receptors contribute to the dynamic refinement of D1 and D2 receptor expression in striatal regions across adolescence. The age-dependent expression of dopamine receptor in C57BL6 mice shows marked differences from previous characterizations in rats.

  19. Diabetes modulates the expression of glomerular kinin receptors.

    PubMed

    Christopher, Julie; Jaffa, Ayad A

    2002-12-01

    The localization of kinin receptors within the kidney implicates this system in the regulation of glomerular hemodynamics. We reported that diabetes alters the activity of the renal kallikrein-kinin system, and that these alterations contribute to the development of microvascular complications of diabetes. The present study examined the influence of diabetes on the expression of glomerular B1 and B2-kinin receptors, and assessed the cellular signaling of kinin receptor activation. Rats made diabetic with streptozocin (85 mg/kg), displayed plasma glucose levels in the range of 350-500 mg/dl. At 3, 7, and 21 days, B1 and B2-kinin receptor mRNA levels were measured in isolated glomeruli from control and diabetic rats by RT-PCR. Glomeruli revealed a differential pattern of expression between the two kinin receptors. The constitutively expressed B2-receptor was increased three-fold at day 3, but returned to normal levels at day 7; whereas, the inducible B1-receptor was maximally expressed (20-fold) at day 7 and remained elevated (10-fold) at day 21. To test whether the induction of kinin receptors by diabetes translates into increased responsiveness, we measured mitogen-activated protein kinase (MAPK) phosphorylation (p42, p44) in glomeruli isolated from control and diabetic rats stimulated with B1-receptor agonist (des-Arg9-bradykinin, 10(-8) M). A three-fold increase in phosphorylation of MAPK was observed in response to B1-receptor agonist challenge in glomeruli isolated form diabetic rats compared to controls. These findings demonstrate for the first time that glomerular kinin receptors are induced by diabetes, and provide a rationale to study the contribution of these receptors to the development of glomerular injury in diabetes.

  20. Toll-like receptors 2 and 4 exert opposite effects on the contractile response induced by serotonin in mouse colon: role of serotonin receptors.

    PubMed

    Forcén, R; Latorre, E; Pardo, J; Alcalde, A I; Murillo, M D; Grasa, L

    2016-08-01

    What is the central question of this study? The action of Toll-like receptors (TLRs) 2 and 4 on the motor response to serotonin in mouse colon has not previously been reported. What is the main finding and its importance? Toll-like receptors 2 and 4 modulate the serotonin-induced contractile response in mouse colon by modifying the expression of serotonin (5-HT) receptors. Alterations in 5-HT2A and 5-HT2C receptors explain the increase of the response to serotonin in TLR2(-/-) mice. Alterations in 5-HT2C and 5-HT4 receptors explain the suppression of the response to serotonin in TLR4(-/-) mice. The microbiota, through Toll-like receptors (TLRs), may regulate gastrointestinal motility by activating neuroendocrine mechanisms. We evaluated the influence of TLR2 and TLR4 in spontaneous contractions and in the serotonin (5-HT)-induced motor response in mouse colon, and assessed the 5-HT receptors involved. Muscle contractility studies to evaluate the intestinal spontaneous motility and the response to 5-HT were performed in the colon from wild-type (WT), TLR2(-/-) , TLR4(-/-) and TLR2/4 double knockout (DKO) mice. The 5-HT receptor mRNA expression was determined by real-time PCR. The amplitude and frequency of the spontaneous contractions of the colon were smaller in TLR4(-/-) and TLR2/4 DKO mice with respect to WT mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 100 μm 5-HT evoked a contractile response. The contractile response induced by 5-HT was significantly higher in TLR2(-/-) than in WT mice. In TLR4(-/-) mice, 5-HT did not evoke any contractile response. The mRNA expression of 5-HT2A was increased in TLR2(-/-) and TLR2/4 DKO mice. The 5-HT2C and 5-HT4 mRNA expressions were increased in TLR4(-/-) and TLR2/4 DKO mice. The 5-HT2C mRNA expression was diminished in TLR2(-/-) mice. The 5-HT3 mRNA expression was increased in TLR2(-/-) , TLR4(-/-) and TLR2/4 DKO mice. The 5-HT7 mRNA expression was diminished in TLR2/4 DKO mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 5-HT2

  1. Human articular chondrocytes express functional leukotriene B4 receptors

    PubMed Central

    Hansen, Ann Kristin; Indrevik, Jill-Tove; Figenschau, Yngve; Martinez-Zubiaurre, Inigo; Sveinbjörnsson, Baldur

    2015-01-01

    Leukotriene B4 (LTB4) is a potent chemoattractant associated with the development of osteoarthritis (OA), while its receptors BLT1 and BLT2 have been found in synovium and subchondral bone. In this study, we have investigated whether these receptors are also expressed by human cartilage cells and their potential effects on cartilage cells. The expression of LTB4 receptors in native tissue and cultured cells was assessed by immunohistochemistry, immunocytochemistry, polymerase chain reaction (PCR) and electron microscopy. The functional significance of the LTB4 receptor expression was studied by Western blotting, using phospho-specific antibodies in the presence or absence of receptor antagonists. In further studies, the secretion of pro-inflammatory cytokines, growth factors and metalloproteinases by LTB4-stimulated chondrocytes was measured by multiplex protein assays. The effects of LTB4 in cartilage signature gene expression in cultured cells were assessed by quantitative PCR, whereas the LTB4-promoted matrix synthesis was determined using 3D pellet cultures. Both receptors were present in cultured chondrocytes, as was confirmed by immunolabelling and PCR. The relative quantification by PCR demonstrated a higher expression of the receptors in cells from healthy joints compared with OA cases. The stimulation of cultured chondrocytes with LTB4 resulted in a phosphorylation of downstream transcription factor Erk 1/2, which was reduced after blocking BLT1 signalling. No alteration in the secretion of cytokine and metalloproteinases was recorded after challenging cultured cells with LTB4; likewise, cartilage matrix gene expression and 3D tissue synthesis were unaffected. Chondrocytes express BLT1 and BLT2 receptors, and LTB4 activates the downstream Erk 1/2 pathway by engaging the high-affinity receptor BLT1. However, any putative role in cartilage biology could not be revealed, and remains to be clarified. PMID:25677035

  2. Expression of luteinizing hormone receptors in the mouse penis.

    PubMed

    Kokk, Kersti; Kuuslahti, Marianne; Keisala, Tiina; Purmonen, Sami; Kaipia, Antti; Tammela, Teuvo; Orro, Helen; Simovart, Helle-Evi; Pöllänen, Pasi

    2011-01-01

    The role of luteinizing hormone (LH) in the regulation of normal reproductive functions in males and females is quite well established. Besides the expression of LH receptors in the target cells in gonads, it has been found in several extragonadal organs. There is no information about the expression of LH receptors in the penis up to now. The aim of the present study is to investigate the expression of the LH receptor in the mouse penis to see if LH effects are possible in the penis. BALB/c mice were used as donors of normal penis and testis tissue. Immunocytochemistry, Western blotting, and quantitative reverse transcriptase polymerase chain reactions (RT-PCRs) were used for the detection of the LH receptor. Positive immunoreaction for LH receptors was present in the nuclei of urethral epithelium and endothelial cells of cavernous spaces in the corpus cavernosum and corpus spongiosum penis. Western blotting experiments demonstrated the presence of LH antigen at M(r) = 97.4 and 78 kd. Quantitative RT-PCRs confirmed the expression of LH receptor in the penis. Our results show that LH receptor is expressed in the body of the mouse penis; thus, it may directly regulate functions of penile tissue.

  3. Mistargeting hippocampal axons by expression of a truncated Eph receptor

    PubMed Central

    Yue, Yong; Chen, Zhi-Yong; Gale, Nick W.; Blair-Flynn, Jan; Hu, Tian-Jing; Yue, Xin; Cooper, Margaret; Crockett, David P.; Yancopoulos, George D.; Tessarollo, Lino; Zhou, Renping

    2002-01-01

    Topographic mapping of axon terminals is a general principle of neural architecture that underlies the interconnections among many neural structures. The Eph family tyrosine kinase receptors and their ligands, the ephrins, have been implicated in the formation of topographic projection maps. We show that multiple Eph receptors and ligands are expressed in the hippocampus and its major subcortical projection target, the lateral septum, and that expression of a truncated Eph receptor in the mouse brain results in a pronounced alteration of the hippocamposeptal topographic map. Our observations provide strong support for a critical role of Eph family guidance factors in regulating ontogeny of hippocampal projections. PMID:12124402

  4. Effect of olanzapine on scopolamine induced deficits in differential reinforcement of low rate 72s (DRL-72s) schedule in rats: involvement of the serotonergic receptors in restoring the deficits.

    PubMed

    Jayarajan, Pradeep; Nirogi, Ramakrishna; Shinde, Anil

    2013-11-15

    Scopolamine, a non-selective muscarinic receptor antagonist has widespread central nervous system effects. Muscarinic receptors located in the central nervous system play a vital role in the modulation of impulsivity. The objective of the current study was to evaluate the effect of scopolamine on impulsivity using differential-reinforcement-of-low-rate 72-s schedule (DRL-72s) and to demonstrate the involvement of serotonergic receptors in mediating the effect of olanzapine (atypical antipsychotic) on scopolamine induced impulsivity. Scopolamine impaired the performance of the rats trained under DRL-72s schedule. Olanzapine reversed the deficits induced by scopolamine. We evaluated the effect of donepezil (cholinesterase inhibitor), SB-742457 (5-HT6 and 5-HT2a antagonist), and haloperidol (typical antipsychotic) in rats challenged with scopolamine in the DRL-72s schedule to identify the receptor(s) involved in reversing the deficits. SB-742457 partially reversed the deficits, but donepezil and haloperidol did not show any effects on the deficits induced by scopolamine. Olanzapine and SB-742457 shifted the peak location (PkL) towards longer IRT duration, indicating a decrease in motor impulsivity. Modulation of scopolamine-induced impulsivity by olanzapine could be partly due to its antagonistic action at 5-HT2a and 5-HT6 receptors, respectively. Superior effects of olanzapine on impulsivity in schizophrenic patients may be mediated through the antagonism of 5-HT2a and 5-HT6 receptors.

  5. N-Benzyl-5-methoxytryptamines as Potent Serotonin 5-HT2 Receptor Family Agonists and Comparison with a Series of Phenethylamine Analogues

    PubMed Central

    2015-01-01

    A series of N-benzylated-5-methoxytryptamine analogues was prepared and investigated, with special emphasis on substituents in the meta position of the benzyl group. A parallel series of several N-benzylated analogues of 2,5-dimethoxy-4-iodophenethylamine (2C-I) also was included for comparison of the two major templates (i.e., tryptamine and phenethylamine). A broad affinity screen at serotonin receptors showed that most of the compounds had the highest affinity at the 5-HT2 family receptors. Substitution at the para position of the benzyl group resulted in reduced affinity, whereas substitution in either the ortho or the meta position enhanced affinity. In general, introduction of a large lipophilic group improved affinity, whereas functional activity often followed the opposite trend. Tests of the compounds for functional activity utilized intracellular Ca2+ mobilization. Function was measured at the human 5-HT2A, 5-HT2B, and 5-HT2C receptors, as well as at the rat 5-HT2A and 5-HT2C receptors. There was no general correlation between affinity and function. Several of the tryptamine congeners were very potent functionally (EC50 values from 7.6 to 63 nM), but most were partial agonists. Tests in the mouse head twitch assay revealed that many of the compounds induced the head twitch and that there was a significant correlation between this behavior and functional potency at the rat 5-HT2A receptor. PMID:25547199

  6. Cloning and expression of a novel neuropeptide Y receptor.

    PubMed

    Weinberg, D H; Sirinathsinghji, D J; Tan, C P; Shiao, L L; Morin, N; Rigby, M R; Heavens, R H; Rapoport, D R; Bayne, M L; Cascieri, M A; Strader, C D; Linemeyer, D L; MacNeil, D J

    1996-07-12

    The neuropeptide Y family of peptides, which includes neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP), are found in the central and peripheral nervous system and display a wide array of biological activities. These actions are believed to be mediated through pharmacologically distinct G protein-coupled receptors, and, to date, three members of the NPY receptor family have been cloned. In this study we describe the cloning and expression of a novel NPY receptor from mouse genomic DNA. This receptor, designated NPY Y5, shares 60% amino acid identity to the murine NPY Y1 receptor. The pharmacology of this novel receptor resembles that of the NPY Y1 receptor and is distinct from that described for the NPY Y2, Y3, and Y4 receptors. In situ hybridization of mouse brain sections reveals expression of this receptor within discrete regions of the hypothalamus including the suprachiasmatic nucleus, anterior hypothalamus, bed nucleus stria terminalis, and the ventromedial nucleus with no localization apparent elsewhere in the brain.

  7. Expression of GABA receptor rho subunits in rat brain.

    PubMed

    Boue-Grabot, E; Roudbaraki, M; Bascles, L; Tramu, G; Bloch, B; Garret, M

    1998-03-01

    The GABA receptor rho1, rho2, and rho3 subunits are expressed in the retina where they form bicuculline-insensitive GABA(C) receptors. We used northern blot, in situ hybridization, and RT-PCR analysis to study the expression of rho subunits in rat brains. In situ hybridization allowed us to detect rho-subunit expression in the superficial gray layer of the superior colliculus and in the cerebellar Purkinje cells. RT-PCR experiments indicated that (a) in retina and in domains that may contain functional GABA(C) receptors, rho2 and rho1 subunits are expressed at similar levels; and (b) in domains and in tissues that are unlikely to contain GABA(C) receptors, rho2 mRNA is enriched relative to rho1 mRNA. These results suggest that both rho1 and rho2 subunits are necessary to form a functional GABA(C) receptor. The use of RT-PCR also showed that, except in the superior colliculus, rho3 is expressed along with rho1 and rho2 subunits. We also raised an antibody against a peptide sequence unique to the rho1 subunit. The use of this antibody on cerebellum revealed the rat rho1 subunit in the soma and dendrites of Purkinje neurons. The allocation of GABA(C) receptor subunits to identified neurons paves the way for future electrophysiological studies.

  8. Hormone-binding assay using living bacteria expressing eukaryotic receptors.

    PubMed

    Romanov, Georgy A; Lomin, Sergey N

    2009-01-01

    Studies on hormone-receptor interaction include, as a rule, isolation and extensive purification of the receptor protein or a particular receptor-containing fraction. To bypass these time- and resource-consuming procedures, we proposed a live cell-based assay using transgenic bacteria expressing single eukaryotic receptors. We describe here 3H-cytokinin binding to corresponding plant receptors as an example. The method includes procedures of bacteria growing, incubation with labeled hormone, separation of bound from unbound ligand, determination of radioactivity in bacterial precipitates, and mathematical analysis of primary data. The established simple protocol for specific labeling hormone-binding sites in intact bacteria allows determination of the main parameters of the ligand-receptor interaction.

  9. Serotonergic system and its role in epilepsy and neuropathic pain treatment: a review based on receptor ligands.

    PubMed

    Panczyk, Katarzyna; Golda, Sylwia; Waszkielewicz, Anna; Zelaszczyk, Dorota; Gunia-Krzyzak, Agnieszka; Marona, Henryk

    2015-01-01

    The serotonergic system is involved in pathomechanisms of both epilepsy and neuropathic pain. So far, participation in the epileptogenesis and maintenance of epilepsy was proved for 5-HT1A, 5-HT2C, 5-HT3, 5-HT4 and 5-HT7 receptors as well as 5-HTT serotonin transporter. Depending on the receptor type or its localization, its stimulation may increase or decrease neuronal excitability. According to the available data, neuropathic pain mechanisms involve 5-HT1A/1B/1D, 5-HT2A/2B/2C, 5-HT3, 5-HT4, 5-HT6, 5-HT7 receptors and 5-HTT serotonin transporter. Changes in their expression modulate pain mainly by affecting the transmission through serotonergic descending pathways. Several compounds, whose mechanisms of action base on influence on the serotonergic system, are already in use. These are 5-HT3 agonists (triptans) in case of migraine, tricyclic antidepressants or monoamine reuptake inhibitors in neuropathic pain treatment. In addition, selective and non-selective ligands are tested for their anticonvulsant or analgesic properties. Some ED50 values have been already obtained in such animal models as maximal electroshock (MES)-induced seizures (epilepsy), spinal nerve ligation (SNL), chronic constriction injury (CCI) or formalin (neuropathic pain). This review shows that in case of drug discovery within the serotonergic system one must take into account special significance of factors such as: the species, the type of model, the route of administration, and the dose range.

  10. Interaction of tryptamine and ergoline compounds with threonine 196 in the ligand binding site of the 5-hydroxytryptamine6 receptor.

    PubMed

    Boess, F G; Monsma, F J; Meyer, V; Zwingelstein, C; Sleight, A J

    1997-09-01

    We examined the ligand-binding site of the 5-hydroxytryptamine6 (5-HT6) receptor using site-directed mutagenesis. Interactions with residues in two characteristic positions of trans-membrane region V are important for ligand binding in several bioamine receptors. In the 5-HT6 receptor, one of these residues is a threonine (Thr196), whereas in most other mammalian 5-HT receptors, the corresponding residue is alanine. After transient expression in human embryonic kidney 293 cells, we determined the effects of the mutation T196A on [3H]d-lysergic acid diethylamide (LSD) binding and adenylyl cyclase stimulation. This mutation produced a receptor with a 10-fold reduced affinity for [3H]LSD and a 6-fold reduced affinity for 5-HT. The potency of both LSD and 5-HT for stimulation of adenylyl cyclase was also reduced by 18- and 7-fold, respectively. The affinity of other N1-unsubstituted ergolines (e.g., ergotamine, lisuride) was reduced 10-30 fold, whereas the affinity of N1-methylated ergolines (e.g., metergoline, methysergide, mesulergine) and other ligands, such as methiothepine, clozapine, ritanserin, amitriptyline, and mainserin, changed very little or increased. This indicates that in wild-type 5-HT6 receptor, Thr196 interacts with the N1 of N1-unsubstituted ergolines and tryptamines, probably forming a hydrogen bond. Based on molecular modeling, a serine residue in transmembrane region IV of the 5-HT2A receptor has previously been proposed to interact with the N1-position of 5-HT. When the corresponding residue of the 5-HT6 receptor (Ala154) was converted to serine, no change in the affinity of twelve 5-HT6 receptor ligands or in the potency of 5-HT and LSD could be detected, suggesting that this position does not contribute to the ligand binding site of the 5-HT6 receptor.

  11. Motoneuron glutamatergic receptor expression following recovery from cervical spinal hemisection.

    PubMed

    Gransee, Heather M; Gonzalez Porras, Maria A; Zhan, Wen-Zhi; Sieck, Gary C; Mantilla, Carlos B

    2017-04-01

    Cervical spinal hemisection at C2 (SH) removes premotor drive to phrenic motoneurons located in segments C3-C5 in rats. Spontaneous recovery of ipsilateral diaphragm muscle activity is associated with increased phrenic motoneuron expression of glutamatergic N-methyl-D-aspartate (NMDA) receptors and decreased expression of α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) receptors. Glutamatergic receptor expression is regulated by tropomyosin-related kinase receptor subtype B (TrkB) signaling in various neuronal systems, and increased TrkB receptor expression in phrenic motoneurons enhances recovery post-SH. Accordingly, we hypothesize that recovery of ipsilateral diaphragm muscle activity post-SH, whether spontaneous or enhanced by adenoassociated virus (AAV)-mediated upregulation of TrkB receptor expression, is associated with increased expression of glutamatergic NMDA receptors in phrenic motoneurons. Adult male Sprague-Dawley rats underwent diaphragm electromyography electrode implantation and SH surgery. Rats were injected intrapleurally with AAV expressing TrkB or GFP 3 weeks before SH. At 14 days post-SH, the proportion of animals displaying recovery of ipsilateral diaphragm activity increased in AAV-TrkB-treated (9/9) compared with untreated (3/5) or AAV-GFP-treated (4/10; P < 0.027) animals. Phrenic motoneuron NMDA NR1 subunit mRNA expression was approximately fourfold greater in AAV-TrkB- vs. AAV-GFP-treated SH animals (P < 0.004) and in animals displaying recovery vs. those not recovering (P < 0.005). Phrenic motoneuron AMPA glutamate receptor 2 (GluR2) subunit mRNA expression decreased after SH, and, albeit increased in animals displaying recovery vs. those not recovering, levels remained lower than control. We conclude that increased phrenic motoneuron expression of glutamatergic NMDA receptors is associated with spontaneous recovery after SH and enhanced recovery after AAV-TrkB treatment. J. Comp. Neurol. 525:1192-1205, 2017.

  12. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.

    PubMed

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo

    2013-03-22

    Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration.

  13. Kaitocephalin Antagonism of Glutamate Receptors Expressed in Xenopus Oocytes

    PubMed Central

    2009-01-01

    Kaitocephalin is the first discovered natural toxin with protective properties against excitotoxic death of cultured neurons induced by N-methyl-d-aspartate (NMDA) or α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainic acid (kainate, KA) receptors. Nevertheless, the effects of kaitocephalin on the function of these receptors were unknown. In this work, we report some pharmacological properties of synthetic (−)-kaitocephalin on rat brain glutamate receptors expressed in Xenopus laevis oocytes and on the homomeric AMPA-type GluR3 and KA-type GluR6 receptors. Kaitocephalin was found to be a more potent antagonist of NMDA receptors (IC50 = 75 ± 9 nM) than of AMPA receptors from cerebral cortex (IC50 = 242 ± 37 nM) and from homomeric GluR3 subunits (IC50 = 502 ± 55 nM). Moreover, kaitocephalin is a weak antagonist of the KA-type receptor GluR6 (IC50 ∼ 100 μM) and of metabotropic (IC50 > 100 μM) glutamate receptors expressed by rat brain mRNA. PMID:20436943

  14. Stable Expression and Characterization of an Optimized Mannose Receptor.

    PubMed

    Vigerust, David J; Vick, Sherell; Shepherd, Virginia L

    2015-06-01

    The mannose receptor (MR) is a macrophage surface receptor that recognizes pathogen associated molecular patterns (PAMPs) from a diverse array of bacterial, fungal and viral pathogens. Functional studies of the MR are hampered by the scarcity of human cell lines that express the receptor. Current model systems available for the study of MR biology often demonstrate low levels of expression and do not retain many of the classical MR properties. Although several laboratories have reported transient and stable expression of MR from plasmids, preliminary data from our laboratory suggests that these plasmids produce a protein that lacks critical domains and is often not stable over time. In this current report we describe the generation and characterization of a novel human codon-optimized system for transient and stable MR expression. Rare codons and sequences that contribute to mRNA instability were modified to produce mRNA that is qualitatively and quantitatively improved. Confocal imaging of the transient and stably expressed optimized receptor demonstrates a distribution consistent with previous reports. To demonstrate the functional characteristics of the optimized receptor, we further show that the introduction of codon-optimized MR plasmid can confer MR-associated phagocytosis of S. aureus to non-phagocytic HeLa cells. We show that three molecules participate in the engagement and internalization of S. aureus. MR was found to colocalize with Toll-like receptor 2 (TLR2) and Rab5 following exposure to pHrodo-stained S. aureus, suggesting cooperation among the three molecules to engage and internalize the bacterial particle. This study describes a transfection capable, optimized MR receptor with functional characteristics similar to the wild type receptor and further demonstrates a new system for the continued study of MR biology and function.

  15. Stable Expression and Characterization of an Optimized Mannose Receptor

    PubMed Central

    Vigerust, David J; Vick, Sherell; Shepherd, Virginia L

    2015-01-01

    The mannose receptor (MR) is a macrophage surface receptor that recognizes pathogen associated molecular patterns (PAMPs) from a diverse array of bacterial, fungal and viral pathogens. Functional studies of the MR are hampered by the scarcity of human cell lines that express the receptor. Current model systems available for the study of MR biology often demonstrate low levels of expression and do not retain many of the classical MR properties. Although several laboratories have reported transient and stable expression of MR from plasmids, preliminary data from our laboratory suggests that these plasmids produce a protein that lacks critical domains and is often not stable over time. In this current report we describe the generation and characterization of a novel human codon-optimized system for transient and stable MR expression. Rare codons and sequences that contribute to mRNA instability were modified to produce mRNA that is qualitatively and quantitatively improved. Confocal imaging of the transient and stably expressed optimized receptor demonstrates a distribution consistent with previous reports. To demonstrate the functional characteristics of the optimized receptor, we further show that the introduction of codon-optimized MR plasmid can confer MR-associated phagocytosis of S. aureus to non-phagocytic HeLa cells. We show that three molecules participate in the engagement and internalization of S. aureus. MR was found to colocalize with Toll-like receptor 2 (TLR2) and Rab5 following exposure to pHrodo-stained S. aureus, suggesting cooperation among the three molecules to engage and internalize the bacterial particle. This study describes a transfection capable, optimized MR receptor with functional characteristics similar to the wild type receptor and further demonstrates a new system for the continued study of MR biology and function. PMID:26581716

  16. Prolactin receptor antagonism in mouse anterior pituitary: effects on cell turnover and prolactin receptor expression.

    PubMed

    Ferraris, Jimena; Boutillon, Florence; Bernadet, Marie; Seilicovich, Adriana; Goffin, Vincent; Pisera, Daniel

    2012-02-01

    Since anterior pituitary expresses prolactin receptors, prolactin secreted by lactotropes could exert autocrine or paracrine actions on anterior pituitary cells. In fact, it has been observed that prolactin inhibits its own expression by lactotropes. Our hypothesis is that prolactin participates in the control of anterior pituitary cell turnover. In the present study, we explored the action of prolactin on proliferation and apoptosis of anterior pituitary cells and its effect on the expression of the prolactin receptor. To determine the activity of endogenous prolactin, we evaluated the effect of the competitive prolactin receptor antagonist Δ1-9-G129R-hPRL in vivo, using transgenic mice that constitutively and systemically express this antagonist. The weight of the pituitary gland and the anterior pituitary proliferation index, determined by BrdU incorporation, were higher in transgenic mice expressing the antagonist than in wild-type littermates. In addition, blockade of prolactin receptor in vitro by Δ1-9-G129R-hPRL increased proliferation and inhibited apoptosis of somatolactotrope GH3 cells and of primary cultures of male rat anterior pituitary cells, including lactotropes. These results suggest that prolactin acts as an autocrine/paracrine antiproliferative and proapoptotic factor in the anterior pituitary gland. In addition, anterior pituitary expression of the long isoform of the prolactin receptor, measured by real-time PCR, increased about 10-fold in transgenic mice expressing the prolactin receptor antagonist, whereas only a modest increase in the S3 short-isoform expression was observed. These results suggest that endogenous prolactin may regulate its own biological actions in the anterior pituitary by inhibiting the expression of the long isoform of the prolactin receptor. In conclusion, our observations suggest that prolactin is involved in the maintenance of physiological cell renewal in the anterior pituitary. Alterations in this physiological

  17. Male genital leiomyomas showing androgen receptor expression.

    PubMed

    Suárez-Peñaranda, José Manuel; Vieites, Begoña; Evgenyeva, Elena; Vázquez-Veiga, Hugo; Forteza, Jeronimo

    2007-12-01

    Genital leiomyoma in men include those superficial leiomyomas arising in the scrotum and the areola. They are unusual neoplasms: few cases have been reported in the literature and they usually escape clinical diagnosis. Three cases of male genital leiomyomas are reported: two in the scrotum and one in the areola. They were all conservatively excised and the behaviour was completely benign in all cases. Histopathological examination showed the typical findings of superficial leiomyomas, with some minor differences between cases arising in the scrotum and those from the areola. Immunohistochemical findings not only confirmed the smooth muscle nature of all cases but also showed unequivocal immunostaining for androgen receptors in the leiomyomas from the scrotum. Immunostaining for androgen receptors in scrotal leiomyomas is, as far as we are aware, a previously unknown characteristic of male genital leiomyomas. This finding supports the role of steroid hormones in the growth of genital leiomyomas, similar to leiomyomas found in other locations.

  18. Estrogen and Progesterone hormone receptor expression in oral cavity cancer

    PubMed Central

    Biegner, Thorsten; Teriete, Peter; Hoefert, Sebastian; Krimmel, Michael; Munz, Adelheid; Reinert, Siegmar

    2016-01-01

    Background Recent studies have shown an increase in the incidence of oral squamous cell carcinoma (OSCC) in younger patients. The hypothesis that tumors could be hormonally induced during pregnancy or in young female patients without the well-known risk factors alcohol or tobacco abuse seems to be plausible. Material and Methods Estrogen Receptor alpha (ERα) and Progesterone Receptor (PR) expression were analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen. OSCCs were stratified in a young female (n=7) study cohort and older patients (n=46). In the young female study cohort three patients (n=3/7) developed OSCC during or shortly after pregnancy. Breast cancer tissues were used as positive control for ERα and PR expression. Results ERα expression was found in four oral precursor lesions (squamous intraepithelial neoplasia, SIN I-III, n=4/35, 11%) and in five OSCC specimen (n=5/46, 11%). The five ERα positive OSCC samples were older male patients. All patients within the young female study cohort were negatively stained for both ERα and PR. Conclusions ER expression could be regarded as a seldom risk factor for OSCC. PR expression seems to be not relevant for the development of OSCC. Key words:Oral squamous cell carcinoma, estrogen receptor, progesterone receptor, hormone receptor. PMID:27475696

  19. Mechanism of GABAB receptor-induced BDNF secretion and promotion of GABAA receptor membrane expression.

    PubMed

    Kuczewski, Nicola; Fuchs, Celine; Ferrand, Nadine; Jovanovic, Jasmina N; Gaiarsa, Jean-Luc; Porcher, Christophe

    2011-08-01

    Recent studies have shown that GABA(B) receptors play more than a classical inhibitory role and can function as an important synaptic maturation signal early in life. In a previous study, we reported that GABA(B) receptor activation triggers secretion of brain-derived neurotrophic factor (BDNF) and promotes the functional maturation of GABAergic synapses in the developing rat hippocampus. To identify the signalling pathway linking GABA(B) receptor activation to BDNF secretion in these cells, we have now used the phosphorylated form of the cAMP response element-binding protein as a biological sensor for endogenous BDNF release. In the present study, we show that GABA(B) receptor-induced secretion of BDNF relies on the activation of phospholipase C, followed by the formation of diacylglycerol, activation of protein kinase C, and the opening of L-type voltage-dependent Ca(2+) channels. We further show that once released by GABA(B) receptor activation, BDNF increases the membrane expression of β(2/3) -containing GABA(A) receptors in neuronal cultures. These results reveal a novel function of GABA(B) receptors in regulating the expression of GABA(A) receptor through BDNF-tropomyosin-related kinase B receptor dependent signalling pathway.

  20. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor β receptor expression.

    PubMed

    Vasefi, Maryam S; Kruk, Jeff S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2012-03-09

    Several antipsychotics have a high affinity for 5-HT7 receptors yet despite intense interest in the 5-HT7 receptor as a potential drug target to treat psychosis, the function and signaling properties of 5-HT7 receptors in neurons remain largely uncharacterized. In primary mouse hippocampal and cortical neurons, as well as in the SH-SY5Y cell line, incubation with 5-HT, 5-carboxamidotryptamine (5-CT), or 5-HT7 receptor-selective agonists increases the expression of platelet-derived growth factor (PDGF)β receptors. The increased PDGFβ receptor expression is cyclic AMP-dependent protein kinase (PKA)-dependent, suggesting that 5-HT7 receptors couple to Gα(s) in primary neurons. Interestingly, up-regulated PDGFβ receptors display an increased basal phosphorylation state at the phospholipase Cγ-activating tyrosine 1021. This novel linkage between the 5-HT7 receptor and the PDGF system may be an important GPCR-neurotrophic factor signaling pathway in neurons.

  1. Involvement of local serotonin-2A but not serotonin-1B receptors in the reinforcing effects of ethanol within the posterior ventral tegmental area of female Wistar rats

    PubMed Central

    Ding, Zheng-Ming; Toalston, Jamie E.; Oster, Scott M.; McBride, William J.; Rodd, Zachary A.

    2010-01-01

    Rationale Previous studies indicated that ethanol could be self-infused into the posterior ventral tegmental area (p-VTA) and that activation of local serotonin-3 (5-HT3) receptors was involved. 5-HT1B and 5-HT2A receptors are involved in the effects of 5-HT and ethanol on VTA dopamine neurons. Objective The current study used the intracranial self-administration (ICSA) procedure to determine the involvement of local 5-HT1B and 5-HT2A receptors in the self-infusion of ethanol into the p-VTA. Materials and methods Female Wistar rats were implanted unilaterally with a guide cannula aimed at the p-VTA. Seven days after surgery, rats were placed into the two-lever operant conditioning chambers for ICSA tests. The tests consisted of four acquisition sessions with self-infusion of 200 mg% ethanol alone, two or three sessions with co-infusion of the 5-HT1B antagonist GR 55562 (10, 100, or 200 μM) or the 5-HT2A antagonist R-96544 (10, 100, or 200 μM) with 200 mg% ethanol, and one final session with 200 mg% ethanol alone. Results During the acquisition sessions, all rats readily self-infused ethanol and discriminated the active from inactive lever. Co-infusion of GR 55562, at all three doses, had no effect on the self-infusion of ethanol. In contrast, co-infusion of R-96544, at the two higher doses, attenuated responding on the active lever for ethanol infusion (p<0.05). Conclusion The results suggest that the reinforcing effects of ethanol within the p-VTA are modulated, at least in part, by activation of local 5-HT2A, but not 5-HT1B, receptors. PMID:19165471

  2. Developmental changes in NMDA receptor expression in the platyfish brain

    NASA Technical Reports Server (NTRS)

    Flynn, K. M.; Schreibman, M. P.; Magliulo-Cepriano, L.

    1997-01-01

    We have examined the distribution of the N-methyl-D-aspartate (NMDA) receptor in the brain of a freshwater teleost using an antibody against the R1 subunit of the receptor (NMDAR1). The primary site of localization was the nucleus olfactoretinalis (NOR), a significant gonadotropin releasing hormone (GnRH)-containing brain nucleus. The number of cells expressing NMDAR1 in this nucleus was dependent upon developmental stage, with pubescent and mature animals displaying significantly more stained cells than immature and senescent animals. This is the first reported observation of age- and maturity-related NMDA receptor association with GnRH-containing brain areas.

  3. Multiple melanocortin receptors are expressed in bone cells

    NASA Technical Reports Server (NTRS)

    Zhong, Qing; Sridhar, Supriya; Ruan, Ling; Ding, Ke-Hong; Xie, Ding; Insogna, Karl; Kang, Baolin; Xu, Jianrui; Bollag, Roni J.; Isales, Carlos M.

    2005-01-01

    Melanocortin receptors belong to the seven transmembrane domain, G-protein coupled family of receptors. There are five members of this receptor family labeled MC1R-MC5R. These receptors are activated by fragments derived from a larger molecule, proopiomelanocortin (POMC) and include ACTH, alpha beta and gamma-MSH and beta-endorphin. Because of in vitro and in vivo data suggesting direct effects of these POMC molecules on bone and bone turnover, we examined bone and bone derived cells for the presence of the various members of the melanocortin receptor family. We report that the five known melanocortin receptors are expressed to varying degrees in osteoblast-like and osteoclastic cells. POMC fragments increased proliferation and expression of a variety of genes in osteoblastic cells. Furthermore, POMC mRNA was detected in osteoclastic cells. These data demonstrate that POMC-derived peptide hormones acting through high affinity melanocortin receptors have specific effects on bone cells. Thus, in addition to the indirect effects of POMC-derived hormones on bone turnover through their modulation of steroid hormone secretion, POMC fragments may have direct and specific effects on bone cell subpopulations.

  4. Morphine upregulates functional expression of neurokinin-1 receptor in neurons.

    PubMed

    Wan, Qi; Douglas, Steven D; Wang, Xu; Kolson, Dennis L; O'Donnell, Lauren A; Ho, Wen-Zhe

    2006-11-15

    Neuronkinin-1 receptor (NK-1R), the neuropeptide substance P (SP) preferring receptor, is highly expressed in areas of the central nervous system (CNS) that are especially implicated in depression, anxiety, and stress. Repeated exposure to opioids may sensitize neuronal systems involved in stress response. We examined the effects of morphine, the principal metabolite of heroin, on the functional expression of NK-1R in the cortical neurons. NK-1R and mu-opioid receptor (MOR) are co-expressed in the cortical neurons. Morphine enhanced NK-1R expression in the cortical neurons at both the mRNA and protein levels. The upregulated NK-1R by morphine had functional activity, because morphine-treated cortical neurons had greater SP-induced Ca(2+) mobilization than untreated neurons. Blocking opioid receptors on the cortical neurons by naltrexone or CTAP (a mu-opioid receptor antagonist) abolished the morphine action. Investigation of the mechanism(s) responsible for the morphine action showed that morphine activated NK-1R promoter and induced the phosphorylation of p38 MAPK protein in the cortical neurons. These in vitro data provide a plausible cellular mechanism for opioid-mediated neurological disorders.

  5. Serotonin 2A Receptors, Citalopram and Tryptophan-Depletion: a Multimodal Imaging Study of their Interactions During Response Inhibition

    PubMed Central

    Macoveanu, Julian; Hornboll, Bettina; Elliott, Rebecca; Erritzoe, David; Paulson, Olaf B; Siebner, Hartwig; Knudsen, Gitte M; Rowe, James B

    2013-01-01

    Poor behavioral inhibition is a common feature of neurological and psychiatric disorders. Successful inhibition of a prepotent response in ‘NoGo' paradigms requires the integrity of both the inferior frontal gyrus (IFG) and the serotonergic system. We investigated individual differences in serotonergic regulation of response inhibition. In 24 healthy adults, we used 18F-altanserin positron emission tomography to assess cerebral 5-HT2A receptors, which have been related to impulsivity. We then investigated the impact of two acute manipulations of brain serotonin levels on behavioral and neural correlates of inhibition using intravenous citalopram and acute tryptophan depletion during functional magnetic resonance imaging. We adapted the NoGo paradigm to isolate effects on inhibition per se as opposed to other aspects of the NoGo paradigm. Successful NoGo inhibition was associated with greater activation of the right IFG compared to control trials with alternative responses, indicating that the IFG is activated with inhibition in NoGo trials rather than other aspects of invoked cognitive control. Activation of the left IFG during NoGo trials was greater with citalopram than acute tryptophan depletion. Moreover, with the NoGo-type of response inhibition, the right IFG displayed an interaction between the type of serotonergic challenge and neocortical 5-HT2A receptor binding. Specifically, acute tryptophan depletion (ATD) produced a relatively larger NoGo response in the right IFG in subjects with low 5-HT2A BPP but reduced the NoGo response in those with high 5-HT2A BPP. These links between serotonergic function and response inhibition in healthy subjects may help to interpret serotonergic abnormalities underlying impulsivity in neuropsychiatric disorders. PMID:23303045

  6. Enhancement of G Protein-Coupled Receptor Surface Expression

    PubMed Central

    Dunham, Jill H.; Hall, Randy A.

    2009-01-01

    G protein-coupled receptors (GPCRs) mediate physiological responses to a diverse array of stimuli and are the molecular targets for numerous therapeutic drugs. GPCRs primarily signal from the plasma membrane, but when expressed in heterologous cells many GPCRs exhibit poor trafficking to the cell surface. Multiple approaches have been taken to enhance GPCR surface expression in heterologous cells, including addition/deletion of receptor sequences, co-expression with interacting proteins, and treatment with pharmacological chaperones. In addition to allowing for enhanced surface expression of certain GPCRs in heterologous cells, these approaches have also shed light on the control of GPCR trafficking in vivo and in some cases have led to new therapeutic approaches for treating human diseases that result from defects in GPCR trafficking. PMID:19679364

  7. LTD expression is independent of glutamate receptor subtype.

    PubMed

    Granger, Adam J; Nicoll, Roger A

    2014-01-01

    Long-term depression (LTD) is a form of synaptic plasticity that plays a major role in the activity-dependent reshaping of synaptic transmission. LTD is expressed as a decrease in synaptic AMPA receptor number, though the exact mechanism remains controversial. Several lines of evidence have suggested necessary roles for both the GluA1 and GluA2 subunits, and specifically certain interactions with their cytoplasmic tails. However, it is unclear if either GluA1 or GluA2 are absolutely required for LTD. We tested this hypothesis using constitutive knock-outs and single-cell molecular replacement of AMPA receptor subunits in mouse hippocampus. We found that neither GluA1 or GluA2 are required for normal expression of LTD, and indeed a normal decrease in synaptic transmission was observed in cells in which all endogenous AMPA receptors have been replaced by kainate receptors. Thus, LTD does not require removal of specific AMPA receptor subunits, but likely involves a more general modification of the synapse and its ability to anchor a broad range of receptor proteins.

  8. Olfactory receptor gene expression in tiger salamander olfactory epithelium.

    PubMed

    Marchand, James E; Yang, Xinhai; Chikaraishi, Dona; Krieger, Jurgen; Breer, Heinz; Kauer, John S

    2004-06-28

    Physiological studies of odor-elicited responses from the olfactory epithelium and bulb in the tiger salamander, Ambystoma tigrinum, have elucidated a number of features of olfactory coding that appear to be conserved across several vertebrate species. This animal model has provided an accessible in vivo system for observing individual and ensemble olfactory responses to odorant stimulation using biochemical, neurophysiological, and behavioral assays. In this paper we have complemented these studies by characterizing 35 candidate odorant receptor genes. These receptor sequences are similar to those of the large families of olfactory receptors found in mammals and fish. In situ hybridization, using RNA probes to 20 of these sequences, demonstrates differential distributions of labeled cells across the extent and within the depth of the olfactory epithelium. The distributions of cells labeled with probes to different receptors show spatially restricted patterns that are generally localized to different degrees in medial-lateral and anterior-posterior directions. The patterns of receptor expression in the ventral olfactory epithelium (OE) are mirrored in the dorsal OE. We present a hypothesis as to how the sensory neuron populations expressing different receptor types responding to a particular odorant may relate to the distribution patterns of epithelial and bulbar responses previously characterized using single-unit and voltage-sensitive dye recording methods.

  9. Histamine Receptor Expression in the Gastrointestinal Tract of Dogs.

    PubMed

    Schwittlick, U; Junginger, J; Hahn, K; Habierski, A; Hewicker-Trautwein, M

    2017-02-01

    Histamine is an important mediator of many physiological processes including gastrointestinal function that acts via four different histamine receptors (H1R to H4R). Elevated histamine levels and increased HR messenger ribonucleic acid (mRNA) have been shown in humans with gastrointestinal disorders such as irritable bowel syndrome or allergic intestinal diseases. As there is limited knowledge concerning the distribution of histamine receptors (HR) in dogs, one aim of this study was to investigate the expression of histamine 1 receptor (H1R), histamine 2 receptor (H2R) and histamine 4 receptor (H4R) in the canine gastrointestinal tract at protein level using immunohistochemistry. Histamine 1 receptor, H2R and H4R were widely expressed throughout the canine gastrointestinal tract including epithelial, mesenchymal, neuronal and immune cells. In addition, in situ hybridisation was established for detecting canine H4R mRNA. Results showed H4R mRNA to be present in enterocytes, lamina propria immune cells and submucosal plexus in the duodenum and colon of nearly all investigated animals. The results elucidate the importance of HR in the canine gut and represent the basis for investigating their possible impact on canine inflammatory gastrointestinal disorders.

  10. Repeated co-treatment with imipramine and amantadine induces hippocampal brain-derived neurotrophic factor gene expression in rats.

    PubMed

    Rogóz, Z; Skuza, G; Legutko, B

    2007-06-01

    The problem of drug-resistant depression indicates a strong need for alternative antidepressant therapies. In our earlier papers we described synergistic, antidepressant-like effects of a combination of imipramine (IMI) and amantadine (AMA) in the forced swimming test in rats, an animal model of depression. Moreover, preliminary clinical data showed that the above-mentioned combination had beneficial effects in treatment-resistant patients. In addition, a number of studies predicted a role of the brain-derived neurotrophic factor (BDNF) in the mechanism of action of antidepressant drugs (ADs). Since the most potent effect of ADs on BDNF gene expression was found after prolonged treatment, in the present study we investigated the influence of repeated treatment with IMI (5 or 10 mg/kg) and AMA (10 mg/kg), given separately or jointly (twice daily for 14 day), on mRNA level (the Northern blot) in the hippocampus and cerebral cortex. The experiment was carried out on male Wistar rats. The tissue for biochemical assays was dissected 24 h after the last dose of IMI and AMA. We also studied the effect of repeated treatment with IMI and AMA on the action of 5-HT(1A)- and 5-HT(2A) receptor agonists (8-OH-DPAT and (+/-)DOI, respectively) in behavioral tests. The obtained results showed that in the hippocampus IMI (10 mg/kg), and in the cerebral cortex IMI (5 and 10 mg/kg) and AMA (10 mg/kg) significantly elevated BDNF mRNA level. Joint administration of IMI (5 or 10 mg/kg) and AMA (10 mg/kg) induced a more potent increase BDNF gene expression in the hippocampus (but not in cerebral cortex) and either inhibited the behavioral syndrome induced by (+/-)DOI or did not change the action of 8-OH-DPAT (compared to treatment with either drug alone). The obtained results suggest that the enhancement of BDNF gene expression may be essential for the therapeutic effect of co-administration of IMI and AMA to drug-resistant depressed patients, and that among other mechanisms, 5-HT(2A

  11. Brain Serotonin Receptors and Transporters: Initiation vs. Termination of Escalated Aggression

    PubMed Central

    Takahashi, Aki; Quadros, Isabel M.; de Almeida, Rosa M. M.; Miczek, Klaus A.

    2013-01-01

    Rationale Recent findings have shown a complexly regulated 5-HT system as it is linked to different kinds of aggression. Objective We focus on (1) phasic and tonic changes of 5-HT and (2) state and trait of aggression, and emphasize the different receptor subtypes, their role in specific brain regions, feed-back regulation and modulation by other amines, acids and peptides. Results New pharmacological tools differentiate the first three 5-HT receptor families and their modulation by GABA, glutamate and CRF. Activation of 5-HT1A, 5-HT1B and 5-HT2A/2C receptors in mesocorticolimbic areas, reduce species-typical and other aggressive behaviors. In contrast, agonists at 5-HT1A and 5-HT1B receptors in the medial prefrontal cortex or septal area can increase aggressive behavior under specific conditions. Activation of serotonin transporters reduce mainly pathological aggression. Genetic analyses of aggressive individuals have identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT1B, 5-HT transporter, Pet1, MAOA) or indirectly (e.g., Neuropeptide Y, αCaMKII, NOS, BDNF). Dysfunction in genes for MAOA escalates pathological aggression in rodents and humans, particularly in interaction with specific experiences. Conclusions Feedback to autoreceptors of the 5-HT1 family and modulation via heteroreceptors are important in the expression of aggressive behavior. Tonic increase of the 5-HT2 family expression may cause escalated aggression, whereas the phasic increase of 5-HT2 receptors inhibits aggressive behaviors. Polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT modulate aggression, often requiring interaction with the rearing environment. PMID:20938650

  12. Differential expression of laminin receptors in human hepatocellular carcinoma

    PubMed Central

    Ozaki, I; Yamamoto, K; Mizuta, T; Kajihara, S; Fukushima, N; Setoguchi, Y; Morito, F; Sakai, T

    1998-01-01

    Background—Laminin receptors are involved in cell-extracellular matrix interactions in malignant cells that show invasion and metastasis. Hepatocellular carcinoma frequently shows early invasion into blood vessels, and intrahepatic and extrahepatic metastases. However, the role of laminin receptors in hepatocellular carcinoma is unknown. 
Aims—To examine the expression of mRNA for laminin receptors and their isoforms in hepatocellular carcinoma. 
Methods—The expression of several laminin receptors, including α1 integrin, α6 integrin and its isoforms α6A and α6B, β1 integrin and its isoforms β1A and β1B, and 32kD/67kDa laminin binding protein was examined in human hepatocellular carcinomas and non-cancerous liver tissues using the reverse transcription polymerase chain reaction. 
Results—α6 Integrin, β1 integrin, and laminin binding protein showed notably increased expression in hepatocellular carcinoma, compared with non-cancerous liver tissue, although the α1 integrin did not show a significant change. Furthermore, β1B integrin, a splicing variant of β1 integrin, was overexpressed in hepatocellular carcinoma while the β1A integrin isoform did not show significant changes between hepatocellular carcinoma and surrounding non-cancerous liver tissue. 
Conclusions—The differential upregulation of laminin receptors and their splicing isoforms was shown in hepatocellular carcinoma, suggesting that certain laminin receptors and their isoforms may be involved in the development and progression of hepatocellular carcinoma. 

 Keywords: laminin receptor; integrin α6β1; hepatocellular carcinoma PMID:9824613

  13. Finding Balance: T cell Regulatory Receptor Expression during Aging.

    PubMed

    Cavanagh, Mary M; Qi, Qian; Weyand, Cornelia M; Goronzy, Jörg J

    2011-10-01

    Aging is associated with a variety of changes to immune responsiveness. Reduced protection against infection, reduced responses to vaccination and increased risk of autoimmunity are all hallmarks of advanced age. Here we consider how changes in the expression of regulatory receptors on the T cell surface contribute to altered immunity during aging.

  14. Problem-Solving Test: Expression Cloning of the Erythropoietin Receptor

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    Terms to be familiar with before you start to solve the test: cytokines, cytokine receptors, cDNA library, cDNA synthesis, poly(A)[superscript +] RNA, primer, template, reverse transcriptase, restriction endonucleases, cohesive ends, expression vector, promoter, Shine-Dalgarno sequence, poly(A) signal, DNA helicase, DNA ligase, topoisomerases,…

  15. Expression of androgen receptor in breast cancer & its correlation with other steroid receptors & growth factors

    PubMed Central

    Mishra, Ashwani K.; Agrawal, Usha; Negi, Shivani; Bansal, Anju; Mohil, R.; Chintamani, Chintamani; Bhatnagar, Amar; Bhatnagar, Dinesh; Saxena, Sunita

    2012-01-01

    Background & objectives: Breast cancer is the second most common malignancy in Indian women. Among the members of the steroid receptor superfamily the role of estrogen and progesterone receptors (ER and PR) is well established in breast cancer in predicting the prognosis and management of therapy, however, little is known about the clinical significance of androgen receptor (AR) in breast carcinogenesis. The present study was aimed to evaluate the expression of AR in breast cancer and to elucidate its clinical significance by correlating it with clinicopathological parameters, other steroid receptors (ER and PR) and growth factors receptors (EGFR and CD105). Methods: Expression of AR, ER, PR, epidermal growth factor receptor (EGFR) and endoglin (CD105) was studied in 100 cases of breast cancer by immunohistochemistry (IHC). Risk ratio (RR) along with 95% confidence interval (CI) was estimated to assess the strength of association between the markers and clinicopathological characteristics. Categorical principal component analysis (CATPCA) was applied to obtain new sets of linearly combined expression, for their further evaluation with clinicopathological characteristics (n=100). Results: In 31 cases presenting with locally advanced breast cancer (LABC), the expression of AR, ER, PR, EGFR and CD105 was associated with response to neoadjuvant chemotherapy (NACT). The results indicated the association of AR+ (P=0.001) and AR+/EGFR- (P=0.001) with the therapeutic response to NACT in LABC patients. The AR expression exhibited maximum sensitivity, specificity and likelihood ratio of positive and negative test. The present results showed the benefit of adding AR, EGFR and CD105 to the existing panel of markers to be able to predict response to therapy. Interpretation & conclusions: More studies on the expression profiles of AR+, AR+/CD105+ and AR+/EGFR- in larger set of breast cancer patients may possibly help in confirming their predictive role for therapeutic response

  16. Expression of oxytocin receptor in diabetic rat penis.

    PubMed

    Li, M; Wang, T; Guo, S; Rao, K; Liu, J; Ye, Z

    2012-05-01

    Oxytocin receptor (OTR) expressed in the rat penis and mediated the contractility of the corpus cavernosum smooth muscle both in vitro and in vivo, and OTR could maintain penile detumescence; however, the expression of OTR in diabetic rat penis remains unknown. In the present study, we investigated the expression of OTR in diabetic rat penis. The experimental rats were randomly divided into control group and STZ-diabetic rats group. The expressions of mRNA and protein were examined by real-time quantitative PCR, Western blotting and immunohistochemistry respectively. Erectile function was evaluated by measuring intracavernous pressure following electrostimulation of the cavernous nerves. mRNA and protein expression of OTR significantly increased in diabetic rats group compared with the control group. Erectile function of diabetic rats group significantly decreased compared with the control group. Our data showed that the expression of OTR significantly increased in diabetic rats group and OTR may involve in the development of diabetic erectile dysfunction.

  17. Expression Profile of Ectopic Olfactory Receptors Determined by Deep Sequencing

    PubMed Central

    Flegel, Caroline; Manteniotis, Stavros; Osthold, Sandra; Hatt, Hanns; Gisselmann, Günter

    2013-01-01

    Olfactory receptors (ORs) provide the molecular basis for the detection of volatile odorant molecules by olfactory sensory neurons. The OR supergene family encodes G-protein coupled proteins that belong to the seven-transmembrane-domain receptor family. It was initially postulated that ORs are exclusively expressed in the olfactory epithelium. However, recent studies have demonstrated ectopic expression of some ORs in a variety of other tissues. In the present study, we conducted a comprehensive expression analysis of ORs using an extended panel of human tissues. This analysis made use of recent dramatic technical developments of the so-called Next Generation Sequencing (NGS) technique, which encouraged us to use open access data for the first comprehensive RNA-Seq expression analysis of ectopically expressed ORs in multiple human tissues. We analyzed mRNA-Seq data obtained by Illumina sequencing of 16 human tissues available from Illumina Body Map project 2.0 and from an additional study of OR expression in testis. At least some ORs were expressed in all the tissues analyzed. In several tissues, we could detect broadly expressed ORs such as OR2W3 and OR51E1. We also identified ORs that showed exclusive expression in one investigated tissue, such as OR4N4 in testis. For some ORs, the coding exon was found to be part of a transcript of upstream genes. In total, 111 of 400 OR genes were expressed with an FPKM (fragments per kilobase of exon per million fragments mapped) higher than 0.1 in at least one tissue. For several ORs, mRNA expression was verified by RT-PCR. Our results support the idea that ORs are broadly expressed in a variety of tissues and provide the basis for further functional studies. PMID:23405139

  18. Expression of Arginine Vasotocin Receptors in the Developing Zebrafish CNS

    PubMed Central

    Iwasaki, Kenichi; Taguchi, Meari; Bonkowsky, Joshua L.; Kuwada, John Y.

    2013-01-01

    Vasotocin/vasopressin is a neuropeptide that regulates social and reproductive behaviors in a variety of animals including fish. Arginine vasotocin (AVT) is expressed by cells in the ventral hypothalamic and preoptic areas in the diencephalon during embryogenesis in zebrafish suggesting that vasotocin might mediate other functions within the CNS prior to the development of social and reproductive behaviors. In order to examine potential early roles for vasotocin we cloned two zebrafish vasotocin receptors homologous to AVPR1a. The receptors are expressed primarily in the CNS in similar but generally non-overlapping patterns. Both receptors are expressed in the forebrain, midbrain and hindbrain by larval stage. Of note, AVTR1a-expressing neurons in the hindbrain appear to be contacted by the axons of preoptic neurons in the forebrain that include avt+ neurons and from sensory axons in the lateral longitudinal fasciculus (LLF). Furthermore, AVTR1a-expressing hindbrain neurons extend axons into the medial longitudinal fasciculus (MLF) that contains axons of many neurons thought to be involved in locomotor responses to sensory stimulation. One hypothesis consistent with this anatomy is that AVT signaling mediates or gates sensory input to motor circuits in the hindbrain and spinal cord. PMID:23830982

  19. Predictive In Silico Studies of Human 5-hydroxytryptamine Receptor Subtype 2B (5-HT2B) and Valvular Heart Disease

    PubMed Central

    Reid, Terry-Elinor; Kumar, Krishna

    2014-01-01

    Serotonin (5-HT) receptors are neuromodulator neurotransmitter receptors which when activated generate a signal transduction pathway within cells resulting in cell-cell communication. 5-hydroxytryptamine (serotonin) receptor 2B (5-HT2B) is a subtype of the seven members of 5-hydroxytrytamine (5-HT) family of receptors which is the largest member of the super family of 7-transmembrane G-protein coupled receptors (GPCRs). Not only do 5-HT receptors play physiological roles in the cardiovascular system, gastrointestinal and endocrine function and the central nervous, but they also play a role in behavioral functions. In particular 5-HT2B receptor is wide spread with regards to its distribution throughout bodily tissues and is expressed at high levels in the lungs, peripheral tissues, liver, kidney and prostate just to name a few. Hence 5-HT2B participates in multiple biological functions including CNS regulation, regulation of gastrointestinal motality, cardiovascular regulation and 5-HT transport system regulation. While 5-HT2B is a viable drug target and has therapeutic indications for treating obesity, psychotherapy, Parkinson’s disease etc. there is a growing concern regarding adverse drug reactions, specifically valvulopathy associated with 5-HT2B agonists. Due to the sequence homology experienced by 5-HT2 subtypes there is also a concern regarding the off target effects of 5-HT2A and 5-HT2C agonists. The concept of subtype selectivity is of paramount importance and can be tackled with the aid of in silico studies, specifically cheminformatics, to develop models to predict valvulopathy associated toxicity of drug candidates prior to clinical trials. This review has highlighted three in silico approaches thus far that have been successful in either predicting 5-HT2B toxicity of molecules or identifying important interactions between 5-HT2B and drug molecules that bring about valvulopathy related toxicities. PMID:23675941

  20. Sex Steroid Receptor Expression in Idiopathic Pulmonary Fibrosis.

    PubMed

    Mehrad, Mitra; Trejo Bittar, Humberto E; Yousem, Samuel A

    2017-03-11

    Usual interstitial pneumonia (UIP) is characterized by progressive scarring of the lungs and is associated with high morbidity and mortality despite therapeutic interventions. Sex steroid receptors have been demonstrated to play an important role in chronic lung conditions; however, their significance is unknown in patients with UIP. We retrospectively reviewed 40 idiopathic UIP cases for the expression of hormonal receptors. Forty cases including 10 normal lung, 10 cryptogenic organizing pneumonia (COP), 10 idiopathic organizing diffuse alveolar damage (DAD), 7 hypersensitivity pneumonitis (HP) and 3 nonspecific interstitial pneumonitis (NSIP) served as controls. Immunohistochemistry for estrogen receptor alpha (ER-α), progesterone receptor (PR) and androgen receptor (AR) was performed in all groups. Expression of these receptors was assessed in four anatomic/pathologic compartments: alveolar and bronchiolar epithelium, arteries/veins, fibroblastic foci/airspace organization, and old scar. All UIPs (100%) stained positive for PR in myofibroblasts in the scarred areas, while among the control cases only one NSIP case stained focally positive and the rest were negative. PR was positive in myocytes of the large-sized arteries within the fibrotic areas in 31 cases (77.5%). PR was negative within the alveolar and bronchial epithelium, airspace organization and center of fibroblastic foci, however, weak PR positivity was noted in the peripheral fibroblasts of the fibroblastic foci where they merged with dense fibrous connective tissue scar. All UIP and control cases were negative for AR and ER-α. This is the first study to show the expression of PR within the established fibrotic areas of UIP, indicating that progesterone may have profibrotic effects in UIP patients. Hormonal therapy by targeting PR could be of potential benefit in patients with UIP/IPF.

  1. Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior.

    PubMed

    Veenstra-VanderWeele, Jeremy; Muller, Christopher L; Iwamoto, Hideki; Sauer, Jennifer E; Owens, W Anthony; Shah, Charisma R; Cohen, Jordan; Mannangatti, Padmanabhan; Jessen, Tammy; Thompson, Brent J; Ye, Ran; Kerr, Travis M; Carneiro, Ana M; Crawley, Jacqueline N; Sanders-Bush, Elaine; McMahon, Douglas G; Ramamoorthy, Sammanda; Daws, Lynette C; Sutcliffe, James S; Blakely, Randy D

    2012-04-03

    Fifty years ago, increased whole-blood serotonin levels, or hyperserotonemia, first linked disrupted 5-HT homeostasis to Autism Spectrum Disorders (ASDs). The 5-HT transporter (SERT) gene (SLC6A4) has been associated with whole blood 5-HT levels and ASD susceptibility. Previously, we identified multiple gain-of-function SERT coding variants in children with ASD. Here we establish that transgenic mice expressing the most common of these variants, SERT Ala56, exhibit elevated, p38 MAPK-dependent transporter phosphorylation, enhanced 5-HT clearance rates and hyperserotonemia. These effects are accompanied by altered basal firing of raphe 5-HT neurons, as well as 5HT(1A) and 5HT(2A) receptor hypersensitivity. Strikingly, SERT Ala56 mice display alterations in social function, communication, and repetitive behavior. Our efforts provide strong support for the hypothesis that altered 5-HT homeostasis can impact risk for ASD traits and provide a model with construct and face validity that can support further analysis of ASD mechanisms and potentially novel treatments.

  2. Transgenic silkworms expressing human insulin receptors for evaluation of therapeutically active insulin receptor agonists.

    PubMed

    Matsumoto, Yasuhiko; Ishii, Masaki; Ishii, Kenichi; Miyaguchi, Wataru; Horie, Ryo; Inagaki, Yoshinori; Hamamoto, Hiroshi; Tatematsu, Ken-ichiro; Uchino, Keiro; Tamura, Toshiki; Sezutsu, Hideki; Sekimizu, Kazuhisa

    2014-12-12

    We established a transgenic silkworm strain expressing the human insulin receptor (hIR) using the GAL4/UAS system. Administration of human insulin to transgenic silkworms expressing hIR decreased hemolymph sugar levels and facilitated Akt phosphorylation in the fat body. The decrease in hemolymph sugar levels induced by injection of human insulin in the transgenic silkworms expressing hIR was blocked by co-injection of wortmannin, a phosphoinositide 3-kinase inhibitor. Administration of bovine insulin, an hIR ligand, also effectively decreased sugar levels in the transgenic silkworms. These findings indicate that functional hIRs that respond to human insulin were successfully induced in the transgenic silkworms. We propose that the humanized silkworm expressing hIR is useful for in vivo evaluation of the therapeutic activities of insulin receptor agonists.

  3. Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors.

    PubMed

    Narla, Chakravarthi; Dunn, Henry A; Ferguson, Stephen S G; Poulter, Michael O

    2015-01-01

    The piriform cortex (PC) is richly innervated by corticotropin-releasing factor (CRF) and serotonin (5-HT) containing axons arising from central amygdala and Raphe nucleus. CRFR1 and 5-HT2A/2CRs have been shown to interact in manner where CRFR activation subsequently potentiates the activity of 5-HT2A/2CRs. The purpose of this study was to determine how the activation of CRFR1 and/or 5-HT2Rs modulates PC activity at both the circuit and cellular level. Voltage sensitive dye imaging showed that CRF acting through CRFR1 dampened activation of the Layer II of PC and interneurons of endopiriform nucleus. Application of the selective 5-HT2A/CR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) following CRFR1 activation potentiated this effect. Blocking the interaction between CRFR1 and 5-HT2R with a Tat-CRFR1-CT peptide abolished this potentiation. Application of forskolin did not mimic CRFR1 activity but instead blocked it, while a protein kinase A antagonist had no effect. However, activation and antagonism of protein kinase C (PKC) either mimicked or blocked CRF modulation, respectively. DOI had no effect when applied alone indicating that the prior activation of CRFR1 receptors was critical for DOI to show significant effects similar to CRF. Patch clamp recordings showed that both CRF and DOI reduced the synaptic responsiveness of Layer II pyramidal neurons. CRF had highly variable effects on interneurons within Layer III, both increasing and decreasing their excitability, but DOI had no effect on the excitability of this group of neurons. These data show that CRF and 5-HT, acting through both CRFR1 and 5-HT2A/CRs, reduce the activation of the PC. This modulation may be an important blunting mechanism of stressor behaviors mediated through the olfactory cortex.

  4. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    PubMed

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  5. Growing vascular endothelial cells express somatostatin subtype 2 receptors

    PubMed Central

    Watson, J C; Balster, D A; Gebhardt, B M; O'Dorisio, T M; O'Dorisio, M S; Espenan, G D; Drouant, G J; Woltering, E A

    2001-01-01

    We hypothesized that non-proliferating (quiescent) human vascular endothelial cells would not express somatostatin receptor subtype 2 (sst 2) and that this receptor would be expressed when the endothelial cells begin to grow. To test this hypothesis, placental veins were harvested from 6 human placentas and 2 mm vein disks were cultured in 0.3% fibrin gels. Morphometric analysis confirmed that 50–75% of cultured vein disks developed radial capillary growth within 15 days. Sst 2 gene expression was determined by reverse transcription-polymerase chain reaction (RT-PCR) analysis of the RNA from veins before culture and from tissue-matched vein disks that exhibited an angiogenic response. The sst 2 gene was expressed in the proliferating angiogenic sprouts of human vascular endothelium. The presence of sst 2 receptors on proliferating angiogenic vessels was confirmed by immunohistochemical staining and in vivo scintigraphy. These results suggest that sst 2 may be a unique target for antiangiogenic therapy with sst 2 preferring somatostatin analogues conjugated to radioisotopes or cytotoxic agents. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11461088

  6. Reduced Serotonin Receptor Subtypes in a Limbic and a Neocortical Region in Autism

    PubMed Central

    Oblak, Adrian; Gibbs, Terrell T.; Blatt, Gene J.

    2013-01-01

    Autism is a behaviorally defined, neurological disorder with symptom onset before the age of three. Abnormalities in social-emotional behaviors are a core deficit in autism and are characterized by impaired reciprocal social interaction, lack of facial expressions, and the inability to recognize familiar faces. The posterior cingulate cortex (PCC) and fusiform gyrus (FG) are two regions within an extensive limbic-cortical network that contribute to social-emotional behaviors. Evidence indicates that changes in brains of individuals with autism begin prenatally. Serotonin (5HT) is one of the earliest expressed neurotransmitters, and plays an important role in synaptogenesis, neurite outgrowth, and neuronal migration. Abnormalities in 5HT systems have been implicated in several psychiatric disorders including autism, as evidenced by immunology, imaging, genetics, pharmacotherapy, and neuropathology. Although information is known regarding peripheral 5HT in autism, there is emerging evidence that 5HT systems in the CNS, including various 5HT receptor subtypes and transporters, are affected in autism. The present study demonstrated significant reductions in 5HT1A receptor binding density in superficial and deep layers of the PCC and FG, and in the density of 5HT2A receptors in superficial layers of the PCC and FG. Significant reduction in the density of serotonin transporters (5-HTT) was also found in the deep layers of the FG, but normal levels were demonstrated in both layers of the PCC and superficial layers of the FG. These studies provide potential substrates for decreased 5-HT modulation/innervation in the autism brain, and implicate two 5-HT receptor subtypes as potential neuromarkers for novel or existing pharmacotherapies. PMID:23894004

  7. GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster

    PubMed Central

    Cheung, Samantha K.

    2017-01-01

    Feeding decisions are highly plastic and bidirectionally regulated by neurons that either promote or inhibit feeding. In Drosophila melanogaster, recent studies have identified four GABAergic interneurons that act as critical brakes to prevent incessant feeding. These GABAergic neurons may inhibit target neurons that drive consumption. Here, we tested this hypothesis by examining GABA receptors and neurons that promote consumption. We find that Resistance to dieldrin (RDL), a GABAA type receptor, is required for proper control of ingestion. Knockdown of Rdl in a subset of neurons causes overconsumption of tastants. Acute activation of these neurons is sufficient to drive consumption of appetitive substances and non-appetitive substances and acute silencing of these neurons decreases consumption. Taken together, these studies identify GABAA receptor-expressing neurons that promote Drosophila ingestive behavior and provide insight into feeding regulation. PMID:28362856

  8. Canine pulmonary adenocarcinoma tyrosine kinase receptor expression and phosphorylation

    PubMed Central

    2014-01-01

    Background This study evaluated tyrosine kinase receptor (TKR) expression and activation in canine pulmonary adenocarcinoma (cpAC) biospecimens. As histological similarities exist between human and cpAC, we hypothesized that cpACs will have increased TKR mRNA and protein expression as well as TKR phosphorylation. The molecular profile of cpAC has not been well characterized making the selection of therapeutic targets that would potentially have relevant biological activity impossible. Therefore, the objectives of this study were to define TKR expression and their phosphorylation state in cpAC as well as to evaluate the tumors for the presence of potential epidermal growth factor receptor (EGFR) tyrosine kinase activating mutations in exons 18–21. Immunohistochemistry (IHC) for TKR expression was performed using a tissue microarray (TMA) constructed from twelve canine tumors and companion normal lung samples. Staining intensities of the IHC were quantified by a veterinary pathologist as well as by two different digitalized algorithm image analyses software programs. An antibody array was used to evaluate TKR phosphorylation of the tumor relative to the TKR phosphorylation of normal tissues with the resulting spot intensities quantified using array analysis software. Each EGFR exon PCR product from all of the tumors and non-affected lung tissues were sequenced using sequencing chemistry and the sequencing reactions were run on automated sequencer. Sequence alignments were made to the National Center for Biotechnology Information canine EGFR reference sequence. Results The pro-angiogenic growth factor receptor, PDGFRα, had increased cpAC tumor mRNA, protein expression and phosphorylation when compared to the normal lung tissue biospecimens. Similar to human pulmonary adenocarcinoma, significant increases in cpAC tumor mRNA expression and receptor phosphorylation of the anaplastic lymphoma kinase (ALK) tyrosine receptor were present when compared to the

  9. Vitamin D Receptor, Retinoid X Receptor, Ki-67, Survivin, and Ezrin Expression in Canine Osteosarcoma

    PubMed Central

    Davies, John; Heeb, Heather; Garimella, Rama; Templeton, Kimberly; Pinson, David; Tawfik, Ossama

    2012-01-01

    Canine osteosarcoma (OS) is an aggressive malignant bone tumor. Prognosis is primarily determined by clinical parameters. Vitamin D has been postulated as a novel therapeutic option for many malignancies. Upon activation, vitamin D receptors (VDRs) combine with retinoid receptor (RXR) forming a heterodimer initiating a cascade of events. Vitamin D's antineoplastic activity and its mechanism of action in OS remain to be clearly established. Expression of VDR, RXR, Ki-67, survivin, and ezrin was studied in 33 archived, canine OS specimens. VDR, RXR, survivin, and ezrin were expressed in the majority of cases. There was no statistically significant difference in VDR expression in relationship with tumor grade, type, or locations or animal breed, age, and/or sex. No significant association (p = 0.316) between tumor grade and Ki-67 expression was found; in particular, no difference in Ki-67 expression between grades 2 and 3 OSs was found, while a negative correlation was noted between Ki-67 and VDR expression (ρ = −0.466), a positive correlation between survivin and RXR expression was found (p = 0.374). A significant relationship exists between VDR and RXR expression in OSs and proliferative/apoptosis markers. These results establish a foundation for elucidating mechanisms by which vitamin D induces antineoplastic activity in OS. PMID:23346460

  10. Adenosine receptor expression and function in rat striatal cholinergic interneurons.

    PubMed

    Preston, Z; Lee, K; Widdowson, L; Freeman, T C; Dixon, A K; Richardson, P J

    2000-06-01

    Cholinergic neurons were identified in rat striatal slices by their size, membrane properties, sensitivity to the NK(1) receptor agonist (Sar(9), Met(O(2))(11)) Substance P, and expression of choline acetyltransferase mRNA. A(1) receptor mRNA was detected in 60% of the neurons analysed, and A(2A) receptor mRNA in 67% (n=15). The A(1) receptor agonist R-N(6)-(2-phenylisopropyl)adenosine (R-PIA) hyperpolarized cholinergic neurons in a concentration dependent manner sensitive to the A(1) antagonist 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX, 100 nM). In dual stimulus experiments, the A(2A) receptor antagonist 8-(3-chlorostyryl)caffeine (CSC, 500 nM) decreased release of [(3)H]-acetylcholine from striatal slices (S2/S1 0.78+/-0.07 versus 0.95+/-0.05 in control), as did adenosine deaminase (S2/S1 ratio 0.69+/-0.05), whereas the A(1) receptor antagonist DPCPX (100 nM) had no effect (S2/S1 1.05+/-0.14). In the presence of adenosine deaminase the adenosine A(2A) receptor agonist 2-p-((carboxyethyl)phenylethylamino)-5'-N-ethylcarboxamidoadeno sin e (CGS21680, 10 nM) increased release (S2/S1 ratio 1.03+/-0.05 versus 0.88+/-0.05 in control), an effect blocked by the antagonist CSC (500 nM, S2/S1 0.68+/-0.05, versus 0.73+/-0.08 with CSC alone). The combined superfusion of bicuculline (10 microM), saclofen (1 microM) and naloxone (10 microM) had no effect on the stimulation by CGS21680 (S2/S1 ratio 0.99+/-0.04). The A(1) receptor agonist R-PIA (100 nM) inhibited the release of [(3)H]-acetylcholine (S2/S1 ratio 0.70+/-0.03), an effect blocked by DPCPX (S2/S1 ratio 1.06+/-0.07). It is concluded that both A(1) and A(2A) receptors are expressed on striatal cholinergic neurons where they are functionally active.

  11. Regulation of bradykinin B2-receptor expression by oestrogen

    PubMed Central

    Madeddu, Paolo; Emanueli, Costanza; Varoni, Maria Vittoria; Demontis, Maria Piera; Anania, Vittorio; Gorioso, Nicola; Chao, Julie

    1997-01-01

    Tissue kallikrein is overexpressed in the kidney of female rats, this sexual dimorphism being associated with a greater effect of early blockade of bradykinin B2-receptors on female blood pressure phenotype. We evaluated the effect of ovariectomy and oestradiol benzoate (50 μg kg−1 every two days for two weeks) on the vasodepressor response to intra-arterial injection of bradykinin (150–900 ng kg−1) and on the expression of bradykinin B2-receptors.Ovariectomy reduced the magnitude of the vasodepressor response to bradykinin and unmasked a secondary vasopressor effect. Oestrogen replacement restored the vasodepressor response to bradykinin in ovariectomized rats.The vasodepressor responses to sodium nitroprusside (3–18 μg kg−1), acetylcholine (30–600 ng kg−1), desArg9-bradykinin (150–900 ng kg−1) or prostaglandin E2 (30–600 ng kg−1) were significantly reduced by ovariectomy. Oestrogen restored to normal the responses to desArg9-bradykinin, acetylcholine and prostaglandin E2, but not that to sodium nitroprusside.B2-receptor mRNA levels were decreased by ovariectomy in the aorta and kidney and they were restored to normal levels by oestrogen. Neither ovariectomy nor oestradiol affected receptor expression in the heart and uterus.These results indicate that oestrogen regulates B2-receptor gene expression and function. Since kinins exert a cardiovascular protective action, reduction in their vasodilator activity after menopause might contribute to the increased risk of pathological cardiovascular events. Conversely, the cardioprotective effects of oestrogen replacement might be, at least in part, mediated by activation of the kallikrein-kinin system. PMID:9283715

  12. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.

    1998-01-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  13. The role of 5-HT7 receptor antagonism in the amelioration of MK-801-induced learning and memory deficits by the novel atypical antipsychotic drug lurasidone.

    PubMed

    Horisawa, Tomoko; Nishikawa, Hiroyuki; Toma, Satoko; Ikeda, Atsushi; Horiguchi, Masakuni; Ono, Michiko; Ishiyama, Takeo; Taiji, Mutsuo

    2013-05-01

    Lurasidone is a novel atypical antipsychotic with high affinity for dopamine D2, serotonin 5-HT7 and 5-HT2A receptors. We previously reported that lurasidone and the selective 5-HT7 receptor antagonist, SB-656104-A improved learning and memory deficits induced by MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist, in the rat passive avoidance test. In this study, we first examined the role of the 5-HT7 receptor antagonistic activity of lurasidone in its pro-cognitive effect to ameliorate MK-801-induced deficits in the rat passive avoidance test. The 5-HT7 receptor agonist, AS19, (2S)-(+)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino) tetralin, (3 mg/kg, s.c.) completely blocked the attenuating effects of lurasidone (3 mg/kg, p.o.), highlighting the importance of 5-HT7 receptor antagonism in the pro-cognitive effect of lurasidone. AS19 (3 mg/kg, s.c.) also blocked the ameliorating effect of SB-656104-A (10 mg/kg, i.p.) in the same experimental paradigm. To further extend our observation, we next tested whether 5-HT7 receptor antagonism still led to the amelioration of MK-801-induced deficits when combined with D2 and 5-HT2A receptor antagonists, and found that SB-656104-A (10 mg/kg, i.p.) significantly ameliorated MK-801-induced deficits even in the presence of the D2 receptor antagonist raclopride (0.1 mg/kg, s.c.) and 5-HT2A receptor antagonist ketanserin (1 mg/kg, s.c.). Taken together, these results suggest that the 5-HT7 receptor antagonistic activity of lurasidone plays an important role in its effectiveness against MK-801-induced deficits, and may contribute to its pharmacological actions in patients with schizophrenia.

  14. Support for 5-HT2C receptor functional selectivity in vivo utilizing structurally diverse, selective 5-HT2C receptor ligands and the 2,5-dimethoxy-4-iodoamphetamine elicited head-twitch response model.

    PubMed

    Canal, Clinton E; Booth, Raymond G; Morgan, Drake

    2013-07-01

    There are seemingly conflicting data in the literature regarding the role of serotonin (5-HT) 5-HT2C receptors in the mouse head-twitch response (HTR) elicited by the hallucinogenic 5-HT2A/2B/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI). Namely, both 5-HT2C receptor agonists and antagonists, regarding 5-HT2C receptor-mediated Gq-phospholipase C (PLC) signaling, reportedly attenuate the HTR response. The present experiments tested the hypothesis that both classes of 5-HT2C receptor compounds could attenuate the DOI-elicited-HTR in a single strain of mice, C57Bl/6J. The expected results were considered in accordance with ligand functional selectivity. Commercially-available 5-HT2C agonists (CP 809101, Ro 60-0175, WAY 161503, mCPP, and 1-methylpsilocin), novel 4-phenyl-2-N,N-dimethyl-aminotetralin (PAT)-type 5-HT2C agonists (with 5-HT2A/2B antagonist activity), and antagonists selective for 5-HT2A (M100907), 5-HT2C (SB-242084), and 5-HT2B/2C (SB-206553) receptors attenuated the DOI-elicited-HTR. In contrast, there were differential effects on locomotion across classes of compounds. The 5-HT2C agonists and M100907 decreased locomotion, SB-242084 increased locomotion, SB-206553 resulted in dose-dependent biphasic effects on locomotion, and the PATs did not alter locomotion. In vitro molecular pharmacology studies showed that 5-HT2C agonists potent for attenuating the DOI-elicited-HTR also reduced the efficacy of DOI to activate mouse 5-HT2C receptor-mediated PLC signaling in HEK cells. Although there were differences in affinities of a few compounds at mouse compared to human 5-HT2A or 5-HT2C receptors, all compounds tested retained their selectivity for either receptor, regardless of receptor species. Results indicate that 5-HT2C receptor agonists and antagonists attenuate the DOI-elicited-HTR in C57Bl/6J mice, and suggest that structurally diverse 5-HT2C ligands result in different 5-HT2C receptor signaling outcomes compared to DOI.

  15. Effects of Repeated Ethanol Exposures on NMDA Receptor Expression and Locomotor Sensitization in Mice Expressing Ethanol Resistant NMDA Receptors

    PubMed Central

    den Hartog, Carolina R.; Gilstrap, Meghin; Eaton, Bethany; Lench, Daniel H.; Mulholland, Patrick J.; Homanics, Gregg. E.; Woodward, John J.

    2017-01-01

    Evidence from a large number of preclinical studies suggests that chronic exposure to drugs of abuse, such as psychostimulants or ethanol induces changes in glutamatergic transmission in key brain areas associated with reward and control of behavior. These changes include alterations in the expression of ionotropic glutamate receptors including N-methyl-D-aspartate receptors (NMDAR) that are important for regulating neuronal activity and synaptic plasticity. NMDA receptors are inhibited by ethanol and reductions in NMDA-mediated signaling are thought to trigger homestatic responses that limit ethanol's effects on glutamatergic transmission. Following repeated exposures to ethanol, these homeostatic responses may become unstable leading to an altered glutamatergic state that contributes to the escalations in drinking and cognitive deficits observed in alcohol-dependent subjects. An important unanswered question is whether ethanol-induced changes in NMDAR expression are modulated by the intrinsic sensitivity of the receptor to ethanol. In this study, we examined the effects of ethanol on NMDAR subunit expression in cortical (orbitofrontal, medial prefrontal), striatal (dorsal and ventral striatum) and limbic (dorsal hippocampus, basolateral amygdala) areas in mice genetically modified to express ethanol-resistant receptors (F639A mice). These mice have been previously shown to drink more ethanol than their wild-type counterparts and have altered behavioral responses to certain actions of ethanol. Following long-term voluntary drinking, F639A mice showed elevations in GluN2A but not GluN1 or GluN2B expression as compared to wild-type mice. Mice treated with repeated injections with ethanol (2–3.5 g/kg; i.p.) showed changes in NMDAR expression that varied in a complex manner with genotype, brain region, subunit type and exposure protocol all contributing to the observed response. F639A mice, but not wild-type mice, showed enhanced motor activity following repeated

  16. BMP and BMP receptor expression during murine organogenesis

    PubMed Central

    Danesh, Shahab M.; Villasenor, Alethia; Chong, Diana; Soukup, Carrie; Cleaver, Ondine

    2009-01-01

    Cell-cell communication is critical for regulating embryonic organ growth and differentiation. The Bone Morphogenetic Protein (BMP) family of transforming growth factor β (TGFβ) molecules represents one class of such cell-cell signaling molecules that regulate the morphogenesis of several organs. Due to high redundancy between the myriad BMP ligands and receptors in certain tissues, it has been challenging to address the role of BMP signaling using targeting of single Bmp genes in mouse models. Here, we present a detailed study of the developmental expression profiles of three BMP ligands (Bmp2, Bmp4, Bmp7) and three BMP receptors (Bmpr1a, Bmpr1b, and BmprII), as well as their molecular antagonist (noggin), in the early embryo during the initial steps of murine organogenesis. In particular, we focus on the expression of Bmp family members in the first organs and tissues that take shape during embryogenesis, such as the heart, vascular system, lungs, liver, stomach, nervous system, somites and limbs. Using in situ hybridization, we identify domains where ligand(s) and receptor(s) are either singly or co-expressed in specific tissues. In addition, we identify a previously unnoticed asymmetric expression of Bmp4 in the gut mesogastrium, which initiates just prior to gut turning and the establishment of organ asymmetry in the gastrointestinal tract. Our studies will aid in the future design and/or interpretation of targeted deletion of individual Bmp or Bmpr genes, since this study identifies organs and tissues where redundant BMP signaling pathways are likely to occur. PMID:19393343

  17. BMP and BMP receptor expression during murine organogenesis.

    PubMed

    Danesh, Shahab M; Villasenor, Alethia; Chong, Diana; Soukup, Carrie; Cleaver, Ondine

    2009-06-01

    Cell-cell communication is critical for regulating embryonic organ growth and differentiation. The Bone Morphogenetic Protein (BMP) family of transforming growth factor beta (TGFbeta) molecules represents one class of such cell-cell signaling molecules that regulate the morphogenesis of several organs. Due to high redundancy between the myriad BMP ligands and receptors in certain tissues, it has been challenging to address the role of BMP signaling using targeting of single Bmp genes in mouse models. Here, we present a detailed study of the developmental expression profiles of three BMP ligands (Bmp2, Bmp4, Bmp7) and three BMP receptors (Bmpr1a, Bmpr1b, and BmprII), as well as their molecular antagonist (noggin), in the early embryo during the initial steps of murine organogenesis. In particular, we focus on the expression of Bmp family members in the first organs and tissues that take shape during embryogenesis, such as the heart, vascular system, lungs, liver, stomach, nervous system, somites and limbs. Using in situ hybridization, we identify domains where ligand(s) and receptor(s) are either singly or co-expressed in specific tissues. In addition, we identify a previously unnoticed asymmetric expression of Bmp4 in the gut mesogastrium, which initiates just prior to gut turning and the establishment of organ asymmetry in the gastrointestinal tract. Our studies will aid in the future design and/or interpretation of targeted deletion of individual Bmp or Bmpr genes, since this study identifies organs and tissues where redundant BMP signaling pathways are likely to occur.

  18. Monoamine transporter and receptor interaction profiles of novel psychoactive substances: para-halogenated amphetamines and pyrovalerone cathinones.

    PubMed

    Rickli, Anna; Hoener, Marius C; Liechti, Matthias E

    2015-03-01

    The pharmacology of novel psychoactive substances is mostly unknown. We evaluated the transporter and receptor interaction profiles of a series of para-(4)-substituted amphetamines and pyrovalerone cathinones. We tested the potency of these compounds to inhibit the norepinephrine (NE), dopamine (DA), and serotonin (5-HT) transporters (NET, DAT, and SERT, respectively) using human embryonic kidney 293 cells that express the respective human transporters. We also tested the substance-induced efflux of NE, DA, and 5-HT from monoamine-loaded cells, binding affinities to monoamine receptors, and 5-HT2B receptor activation. Para-(4)-substituted amphetamines, including 4-methylmethcathinone (mephedrone), 4-ethylmethcathinone, 4-fluoroamphetamine, 4-fluoromethamphetamine, 4-fluoromethcatinone (flephedrone), and 4-bromomethcathinone, were relatively more serotonergic (lower DAT:SERT ratio) compared with their analogs amphetamine, methamphetamine, and methcathinone. The 4-methyl, 4-ethyl, and 4-bromo groups resulted in enhanced serotonergic properties compared with the 4-fluoro group. The para-substituted amphetamines released NE and DA. 4-Fluoramphetamine, 4-flouromethamphetamine, 4-methylmethcathinone, and 4-ethylmethcathinone also released 5-HT similarly to 3,4-methylenedioxymethamphetamine. The pyrovalerone cathinones 3,4-methylenedioxypyrovalerone, pyrovalerone, α-pyrrolidinovalerophenone, 3,4-methylenedioxy-α-pyrrolidinopropiophenone, and 3,4-methylenedioxy-α-pyrrolidinobutiophenone potently inhibited the NET and DAT but not the SERT. Naphyrone was the only pyrovalerone that also inhibited the SERT. The pyrovalerone cathinones did not release monoamines. Most of the para-substituted amphetamines exhibited affinity for the 5-HT2A receptor but no relevant activation of the 5-HT2B receptor. All the cathinones exhibited reduced trace amine-associated receptor 1 binding compared with the non-β-keto-amphetamines. In conclusion, para-substituted amphetamines exhibited

  19. Systemic paracetamol-induced analgesic and antihyperalgesic effects through activation of descending serotonergic pathways involving spinal 5-HT₇ receptors.

    PubMed

    Dogrul, Ahmet; Seyrek, Melik; Akgul, Emin Ozgur; Cayci, Tuncer; Kahraman, Serdar; Bolay, Hayrunnisa

    2012-02-29

    Although some studies have shown the essential role of descending serotonergic pathways and spinal 5-HT(1A), 5-HT(2A), or 5-HT(3) receptors in the antinociceptive effects of paracetamol, other studies have presented conflicting results, and the particular subtype of spinal 5-HT receptors involved in paracetamol-induced analgesia remains to be clarified. Recent studies have demonstrated the importance of spinal 5-HT(7) receptors in descending serotonergic pain inhibitory pathways. In this study, we investigated the role of descending serotonergic pathways and spinal 5-HT(7) receptors compared with 5-HT(3) and 5-HT(2A) receptors in the antinociceptive and antihyperalgesic effects of paracetamol. Tail-flick, hot plate and plantar incision tests were used to determine nociception in male BALB/c mice. Lesion of serotonergic bulbospinal pathways was performed by intrathecal (i.th.) injection of 5,7-dihydroxytryptamine (5,7-DHT), and spinal 5-HT levels were measured by HPLC. To evaluate the particular subtypes of the spinal 5-HT receptors, the selective 5-HT(7), 5-HT(3) and 5-HT(2A) receptor antagonists SB 269970, ondansetron and ketanserin, respectively, were given i.th. after oral administration of paracetamol. Oral paracetamol (200, 400 and 600 mg/kg) elicits dose-dependent antinociceptive and antihyperalgesic effects. I.th. pretreatment with 5,7-DHT (50 μg) sharply reduced 5-HT levels in the spinal cord. Depletion of spinal 5-HT totally abolished the antinociceptive and antihyperalgesic effects of paracetamol. I.th. injection of SB 2669970 (10 μg) blocked the antinociceptive and antihyperalgesic effects of paracetamol, but ondansetron and ketanserin (10 μg) did not. Our findings suggest that systemic administration of paracetamol may activate descending serotonergic pathways and spinal 5-HT(7) receptors to produce a central antinociceptive and antihyperalgesic effects.

  20. Expression of growth hormone receptor in the human brain.

    PubMed

    Castro, J R; Costoya, J A; Gallego, R; Prieto, A; Arce, V M; Señarís, R

    2000-03-10

    This study was designed to investigate the presence of growth hormone receptor (GHR) expression in the human brain tissue, both normal and tumoral, as well as in the human glioblastoma cell line U87MG. Reverse transcription-polymerase chain reaction revealed the presence of GHR mRNA in all brain samples investigated and in U87MG cells. GHR immunoreactivity was also detected in this cell line using both immunocytochemistry and western blotting. All together, our data demonstrate the existence of GHR expression within the central nervous system (CNS), thus supporting a possible role for GH in the CNS physiology.

  1. Cell-free expression of G-protein-coupled receptors.

    PubMed

    Orbán, Erika; Proverbio, Davide; Haberstock, Stefan; Dötsch, Volker; Bernhard, Frank

    2015-01-01

    Cell-free expression has emerged as a new standard for the production of membrane proteins. The reduction of expression complexity in cell-free systems eliminates central bottlenecks and allows the reliable and efficient synthesis of many different types of membrane proteins. Furthermore, the open accessibility of cell-free reactions enables the co-translational solubilization of cell-free expressed membrane proteins in a large variety of supplied additives. Hydrophobic environments can therefore be adjusted according to the requirements of individual membrane protein targets. We present different approaches for the preparative scale cell-free production of G-protein-coupled receptors using the extracts of Escherichia coli cells. We exemplify expression conditions implementing detergents, nanodiscs, or liposomes. The generated protein samples could be directly used for further functional characterization.

  2. Estrogen receptor-related receptors in the killifish Fundulus heteroclitus: diversity, expression, and estrogen responsiveness.

    PubMed

    Tarrant, A M; Greytak, S R; Callard, G V; Hahn, M E

    2006-08-01

    The estrogen receptor-related receptors (ERRs) are a group of nuclear receptors that were originally identified on the basis of sequence similarity to the estrogen receptors. The three mammalian ERR genes have been implicated in diverse physiological processes ranging from placental development to maintenance of bone density, but the diversity, function, and regulation of ERRs in non-mammalian species are not well understood. In this study, we report the cloning of four ERR cDNAs from the Atlantic killifish, Fundulus heteroclitus, along with adult tissue expression and estrogen responsiveness. Phylogenetic analysis indicates that F. heteroclitus (Fh)ERRalpha is an ortholog of the single ERRalpha identified in mammals, pufferfish, and zebrafish. FhERRbetaa and FhERRbetab are co-orthologs of the mammalian ERRbeta. Phylogenetic placement of the fourth killifish ERR gene, tentatively identified as FhERRgammab, is less clear. The four ERRs showed distinct, partially overlapping mRNA expression patterns in adult tissues. FhERRalpha was broadly expressed. FhERRbetaa was expressed at apparently low levels in eye, brain, and ovary. FhERRbetab was expressed more broadly in liver, gonad, eye, brain, and kidney. FhERRgammab was expressed in multiple tissues including gill, heart, kidney, and eye. Distinct expression patterns of FhERRbetaa and FhERRbetab are consistent with subfunctionalization of the ERRbeta paralogs. Induction of ERRalpha mRNA by exogenous estrogen exposure has been reported in some mammalian tissues. In adult male killifish, ERR expression did not significantly change following estradiol injection, but showed a trend toward a slight induction (three- to five-fold) of ERRalpha expression in heart. In a second, more targeted experiment, expression of ERRalpha in adult female killifish was downregulated 2.5-fold in the heart following estradiol injection. In summary, our results indicate that killifish contain additional ERR genes relative to mammals, including

  3. Spatiotemporal expression of Nogo-66 receptor after focal cerebral ischemia

    PubMed Central

    Cao, Yue; Dong, Ya-xian; Xu, Jie; Chu, Guo-liang; Yang, Zhi-hua; Liu, Yan-ming

    2016-01-01

    NgR, the receptor for the neurite outgrowth inhibitor Nogo-66, plays a critical role in the plasticity and regeneration of the nervous system after injury such as ischemic stroke. In the present study, we used immunohistochemistry to investigate the regional expression of NgR in rat brain following middle cerebral artery occlusion (MCAO). NgR protein expression was not observed in the center of the lesion, but was elevated in the marginal zone compared with control and sham-operated rats. The cerebral cortex and hippocampus (CA1, CA2, and CA3) showed the greatest expression of NgR. Furthermore, NgR expression was higher in the ipsilesional hemisphere than on the control side in the same coronal section. Although time-dependent changes in NgR expression across brain regions had their own characteristics, the overall trend complied with the following rules: NgR expression changes with time showed two peaks and one trough; the first peak in expression appeared between 1 and 3 days after MCAO; expression declined at 5 days; and the second peak occurred at 28 days. PMID:26981102

  4. Effects of direct- and indirect-acting serotonin receptor agonists on the antinociceptive and discriminative stimulus effects of morphine in rhesus monkeys.

    PubMed

    Li, Jun-Xu; Koek, Wouter; Rice, Kenner C; France, Charles P

    2011-04-01

    Serotonergic (5-HT) systems modulate pain, and drugs acting on 5-HT systems are used with opioids to treat pain. This study examined the effects of 5-HT receptor agonists on the antinociceptive and discriminative stimulus effects of morphine in monkeys. Morphine increased tail-withdrawal latency in a dose-related manner; 5-HT receptor agonists alone increased tail-withdrawal latency at 50 °C but not 55 °C water. The antinociceptive effects of morphine occurred with smaller doses when monkeys received an indirect-acting (fenfluramine) or direct acting (8-OH-DPAT, F13714, buspirone, quipazine, DOM, and 2C-T-7) agonist. The role of 5-HT receptor subtypes in these interactions was confirmed with selective 5-HT(1A) (WAY100635) and 5-HT(2A) (MDL100907) receptor antagonists. None of the 5-HT drugs had morphine-like discriminative stimulus effects; however, fenfluramine and 5-HT(2A) receptor agonists attenuated the discriminative stimulus effects of morphine and this attenuation was prevented by MDL100907. The 5-HT(1A) receptor agonists did not alter the discriminative stimulus effects of morphine. Thus, 5-HT receptor agonists increase the potency of morphine in an assay of antinociception, even under conditions where 5-HT agonists are themselves without effect (ie, 55 °C water), without increasing (and in some cases decreasing) the potency of morphine in a drug discrimination assay. Whereas 5-HT(2A) receptor agonists increase the potency of morphine for antinociception at doses that have no effect on the rate of operant responding, 5-HT(1A) receptor agonists increase the potency of morphine only at doses that eliminate operant responding. These data suggest that drugs acting selectively on 5-HT receptor subtypes could help to improve the use of opioids for treating pain.

  5. Expression of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein and scavenger receptor in human atherosclerotic lesions.

    PubMed Central

    Luoma, J; Hiltunen, T; Särkioja, T; Moestrup, S K; Gliemann, J; Kodama, T; Nikkari, T; Ylä-Herttuala, S

    1994-01-01

    Macrophage- and smooth muscle cell (SMC)-derived foam cells are typical constituents of human atherosclerotic lesions. At least three receptor systems have been characterized that could be involved in the development of foam cells: alpha 2-macroglobulin receptor/LDL receptor-related protein (alpha 2 MR/LRP), scavenger receptor, and LDL receptor. We studied the expression of these receptors in human atherosclerotic lesions with in situ hybridization and immunocytochemistry. An abundant expression of alpha 2MR/LRP mRNA and protein was found in SMC and macrophages in both early and advanced lesions in human aortas. alpha 2MR/LRP was also present in SMC in normal aortas. Scavenger receptor mRNA and protein were expressed in lesion macrophages but no expression was found in lesion SMC. LDL receptor was absent from the lesion area but was expressed in some aortas in medial SMC located near the adventitial border. The results demonstrate that (a) alpha 2MR/LRP is, so far, the only lipoprotein receptor expressed in lesions SMC in vivo; (b) scavenger receptors are expressed only in lesion macrophages; and (c) both receptors may play important roles in the development of human atherosclerotic lesions. Images PMID:8182133

  6. Anxious behavior induces elevated hippocampal Cb2 receptor gene expression.

    PubMed

    Robertson, James M; Achua, Justin K; Smith, Justin P; Prince, Melissa A; Staton, Clarissa D; Ronan, Patrick J; Summers, Tangi R; Summers, Cliff H

    2017-04-07

    Anxiety is differentially expressed across a continuum of stressful/fearful intensity, influenced endocannabinoid systems and receptors. The hippocampus plays important roles in the regulation of affective behavior, emotion, and anxiety, as well as memory. Location of Cb1/Cb2 receptor action could be important in determining emotional valence, because while the dorsal hippocampus is involved in spatial memory and cognition, the ventral hippocampus has projections to the PFC, BNST, amygdala, and HPA axis, and is important for emotional responses to stress. During repeated social defeat in a Stress-Alternatives Model arena (SAM; an oval open field with escape portals only large enough for smaller mice), smaller C57BL6/N mice are subject to fear conditioning (tone=CS), and attacked by novel larger aggressive CD1 mice (US) over four daily (5min) trials. Each SAM trial presents an opportunity for escape or submission, with stable behavioral responses established by the second day of interaction. Additional groups had access to a running wheel. Social aggression plus fear conditioning stimulates enhanced Cb2 receptor gene expression in the dorsal CA1, dorsal and ventral dentate gyrus subregions in animals displaying a submissive behavioral phenotype. Escape behavior is associated with reduced Cb2 expression in the dorsal CA1 region, with freezing and escape latency correlated with mRNA levels. Escaping and submitting animals with access to running wheels had increased Cb2 mRNA in dorsal DG/CA1. These results suggest that the Cb2 receptor system is rapidly induced during anxiogenic social interactions plus fear conditioning or exercise; with responses potentially adaptive for coping mechanisms.

  7. Leptin receptor expression during the progression of endometrial carcinoma is correlated with estrogen and progesterone receptors

    PubMed Central

    Méndez-López, Luis Fernando; Zavala-Pompa, Angel; Cortés-Gutiérrez, Elva I.; Cerda-Flores, Ricardo M.

    2016-01-01

    Introduction The hormone leptin, which is produced in the adipose tissue, may influence tumorigenesis directly via its receptor (Ob-R). Thus, a role for Ob-R in endometrial carcinogenesis has been proposed. However, most studies neither included samples of the entire histological progression of endometrial carcinoma nor examined Ob-R jointly with the estrogen and progesterone receptors (ER and PR, respectively). Material and methods To determine the fluctuations of Ob-R, ER, and PR during the histological progression of endometrial carcinoma, we assessed their expression via immunohistochemistry (IHC) in six histological types of endometrium (proliferative, secretory, nonatypical and atypical hyperplasia, and endometrioid and nonendometrioid endometrial carcinoma), in which we performed histopathological and digital scoring for the quantification of receptors. Results We found that Ob-R expression was positively correlated with that of ER and PR (r = 1, p < 0.001; r = 0.943, p < 0.005, respectively), and there was a significant difference in Ob-R expression among proliferative normal endometrium, hyperplasias, and carcinomas, according to their relative digitally scored Ob-R expression (p < 0.001). In addition, we observed that Ob-R expression in the secretory endometrium was more similar to that of carcinomas than to its proliferative counterpart. Conclusions These results indicate that Ob-R expression fluctuates during endometrial carcinogenesis in correlation with ER and PR, suggesting that Ob-R expression in vivo is highly dependent on estrogen and progesterone activities in the endometrium and on its ER and PR status, as suggested previously by in vitro studies. PMID:28144276

  8. Expression profile of frizzled receptors in human medulloblastomas.

    PubMed

    Salsano, Ettore; Paterra, Rosina; Figus, Miriam; Menghi, Francesca; Maderna, Emanuela; Pollo, Bianca; Solero, Carlo Lazzaro; Massimi, Luca; Finocchiaro, Gaetano

    2012-01-01

    Secreted WNT proteins signal through ten receptors of the frizzled (FZD) family. Because of the relevance of the WNT/β-catenin (CTNNB1) signaling pathway in medulloblastomas (MBs), we investigated the expression of all ten members of the FZD gene family (FZD1-10) in 17 human MBs, four MB cell lines and in normal human cerebellum, using real-time PCR. We found that FZD2 transcript was over-expressed in all MBs and MB cell lines. Western blot analysis confirmed the expression of FZD2 at the protein level. Moreover, the levels of FZD2 transcript were found to correlate with those of ASPM transcript, a marker of mitosis essential for mitotic spindle function. Accordingly, ASPM mRNA was expressed at a very low level in the adult, post-mitotic, human cerebellum, at higher levels in fetal cerebellum and at highest levels in MB tissues and cell lines. Unlike FZD2, the other FZDs were overexpressed (e.g., FZD1, FZD3 and FZD8) or underexpressed (e.g., FZD7, FZD9 and FZD10) in a case-restricted manner. Interestingly, we did not find any nuclear immuno-reactivity to CTNNB1 in four MBs over-expressing both FZD2 and other FZD receptors, confirming the lack of nuclear CTNNB1 staining in the presence of increased FZD expression, as in other tumor types. Overall, our results indicate that altered expression of FZD2 might be associated with a proliferative status, thus playing a role in the biology of human MBs, and possibly of cerebellar progenitors from which these malignancies arise.

  9. Cyclic AMP-receptor protein activates aerobactin receptor IutA expression in Vibrio vulnificus.

    PubMed

    Kim, Choon-Mee; Kim, Seong-Jung; Shin, Sung-Heui

    2012-04-01

    The ferrophilic bacterium Vibrio vulnificus can utilize the siderophore aerobactin of Escherichia coli for iron acquisition via its specific receptor IutA. This siderophore piracy by V. vulnificus may contribute to its survival and proliferation, especially in mixed bacterial environments. In this study, we examined the effects of glucose, cyclic AMP (cAMP), and cAMP-receptor protein (Crp) on iutA expression in V. vulnificus. Glucose dose-dependently repressed iutA expression. A mutation in cya encoding adenylate cyclase required for cAMP synthesis severely repressed iutA expression, and this change was recovered by in trans complementing cya or the addition of exogenous cAMP. Furthermore, a mutation in crp encoding Crp severely repressed iutA expression, and this change was recovered by complementing crp. Accordingly, glucose deprivation under iron-limited conditions is an environmental signal for iutA expression, and Crp functions as an activator that regulates iutA expression in response to glucose availability.

  10. Expression of Estrogen Receptor Alpha in Malignant Melanoma

    PubMed Central

    Rajabi, Parvin; Bagheri, Marzieh; Hani, Mohsen

    2017-01-01

    Background: Features of malignant melanoma (MM) vary in the different geographic regions of the world. This may be attributable to environmental, ethnic, and genetic factors. The aim of this study was to determine the expression of estrogen receptor alpha (ER-α) in MM in Isfahan, Iran. Materials and Methods: This study was planned as a descriptive, analytical, cross-sectional investigation. During this study, paraffin-embedded tissue blocks of patients with a histopathologic diagnosis of MM was studied for ER-α using immunohistochemistry (IHC). Results: In this study, 38 patients (female/male; 20/18) with a definite diagnosis of malignant cutaneous melanoma and mean age of 52.4 ± 11.2 years were investigated. Using envision IHC staining, there were not any cases with ER-α expression. Conclusion: In confirmation to the most previous studies, expression of ER-α was negative in MM. It is recommended to investigate the expression of estrogen receptor beta and other markers in MM. PMID:28299306

  11. Expression of cloned α6* nicotinic acetylcholine receptors.

    PubMed

    Wang, Jingyi; Kuryatov, Alexander; Lindstrom, Jon

    2015-09-01

    Nicotinic acetylcholine receptors (AChRs) are ACh-gated ion channels formed from five homologous subunits in subtypes defined by their subunit composition and stoichiometry. Some subtypes readily produce functional AChRs in Xenopus oocytes and transfected cell lines. α6β2β3* AChRs (subtypes formed from these subunits and perhaps others) are not easily expressed. This may be because the types of neurons in which they are expressed (typically dopaminergic neurons) have unique chaperones for assembling α6β2β3* AChRs, especially in the presence of the other AChR subtypes. Because these relatively minor brain AChR subtypes are of major importance in addiction to nicotine, it is important for drug development as well as investigation of their functional properties to be able to efficiently express human α6β2β3* AChRs. We review the issues and progress in expressing α6* AChRs. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.

  12. Hypoxia Selectively Enhances Integrin Receptor Expression to Promote Metastasis.

    PubMed

    Ju, Julia A; Godet, Ines; Ye, I Chae; Byun, Jungmin; Jayatilaka, Hasini; Lee, Sun Joo; Xiang, Lisha; Samanta, Debangshu; Lee, Meng Horng; Wu, Pei-Hsun; Wirtz, Denis; Semenza, Gregg L; Gilkes, Daniele M

    2017-02-17

    Metastasis is the leading cause of breast cancer (BCa)mortality. Previous studies have implicated hypoxia-induced changes in the composition and stiffness of the extracellular matrix (ECM) in the metastatic process. Therefore, the contribution of potential ECM binding receptors in this process was explored. Using a bioinformatics approach the expression of all integrin receptor subunits, in two independent BCa patient data sets, were analyzed to determine if integrin status correlates with a validated hypoxiainducible gene signature. Subsequently, a large panel of breast cancer cell lines were used to validate that hypoxia induces the expression of integrin's that bind to collagen (ITGA1, ITGA11, ITGB1) and fibronectin (ITGA5, ITGB1). Hypoxia-inducible factors (HIF-1 and HIF-2) are directly required for ITGA5 induction under hypoxic conditions, which leads to enhanced migration and invasion of single cells within a multicellular 3D tumor spheroid but did not affect migration in a 2D microenvironment. ITGB1 expression requires HIF-1alpha, but not HIF-2alpha, for hypoxic induction in breast cancer cells. ITGA5 (alpha5 subunit) is required for metastasis to lymph nodes and lungs in breast cancer models and high ITGA5 expression in clinical biopsies is associated with an increased risk of mortality.

  13. Brain cannabinoid receptor 2: expression, function and modulation.

    PubMed

    Chen, De-Jie; Gao, Ming; Gao, Fen-Fei; Su, Quan-Xi; Wu, Jie

    2017-03-01

    Cannabis sativa (marijuana) is a fibrous flowering plant that produces an abundant variety of molecules, some with psychoactive effects. At least 4% of the world's adult population uses cannabis annually, making it one of the most frequently used illicit drugs in the world. The psychoactive effects of cannabis are mediated primarily through cannabinoid receptor (CBR) subtypes. The prevailing view is that CB1Rs are mainly expressed in the central neurons, whereas CB2Rs are predominantly expressed in peripheral immune cells. However, this traditional view has been challenged by emerging strong evidence that shows CB2Rs are moderately expressed and function in specific brain areas. New evidence has demonstrated that brain CB2Rs modulate animal drug-seeking behaviors, suggesting that these receptors may exist in brain regions that regulate drug addiction. Recently, we further confirmed that functional CB2Rs are expressed in mouse ventral tegmental area (VTA) dopamine (DA) neurons and that the activation of VTA CB2Rs reduces neuronal excitability and cocaine-seeking behavior. In addition, CB2R-mediated modulation of hippocampal CA3 neuronal excitability and network synchronization has been reported. Here, we briefly summarize recent lines of evidence showing how CB2Rs modulate function and pathophysiology in the CNS.

  14. Brain cannabinoid receptor 2: expression, function and modulation

    PubMed Central

    Chen, De-jie; Gao, Ming; Gao, Fen-fei; Su, Quan-xi; Wu, Jie

    2017-01-01

    Cannabis sativa (marijuana) is a fibrous flowering plant that produces an abundant variety of molecules, some with psychoactive effects. At least 4% of the world's adult population uses cannabis annually, making it one of the most frequently used illicit drugs in the world. The psychoactive effects of cannabis are mediated primarily through cannabinoid receptor (CBR) subtypes. The prevailing view is that CB1Rs are mainly expressed in the central neurons, whereas CB2Rs are predominantly expressed in peripheral immune cells. However, this traditional view has been challenged by emerging strong evidence that shows CB2Rs are moderately expressed and function in specific brain areas. New evidence has demonstrated that brain CB2Rs modulate animal drug-seeking behaviors, suggesting that these receptors may exist in brain regions that regulate drug addiction. Recently, we further confirmed that functional CB2Rs are expressed in mouse ventral tegmental area (VTA) dopamine (DA) neurons and that the activation of VTA CB2Rs reduces neuronal excitability and cocaine-seeking behavior. In addition, CB2R-mediated modulation of hippocampal CA3 neuronal excitability and network synchronization has been reported. Here, we briefly summarize recent lines of evidence showing how CB2Rs modulate function and pathophysiology in the CNS. PMID:28065934

  15. The regulation of oxytocin receptor gene expression during adipogenesis.

    PubMed

    Yi, K J; So, K H; Hata, Y; Suzuki, Y; Kato, D; Watanabe, K; Aso, H; Kasahara, Y; Nishimori, K; Chen, C; Katoh, K; Roh, S G

    2015-05-01

    Although it has been reported that oxytocin stimulates lipolysis in adipocytes, changes in the expression of oxytocin receptor (OTR) mRNA in adipogenesis are still unknown. The present study aimed to investigate the expression of OTR mRNA during adipocyte differentiation and fat accumulation in adipocytes. OTR mRNA was highly expressed in adipocytes prepared from mouse adipose tissues compared to stromal-vascular cells. OTR mRNA expression was increased during the adipocyte differentiation of 3T3-L1 cells. OTR expression levels were higher in subcutaneous and epididymal adipose tissues of 14-week-old male mice compared to 7-week-old male mice. Levels of OTR mRNA expression were higher in adipose tissues at four different sites of mice fed a high-fat diet than in those of mice fed a normal diet. The OTR expression level was also increased by refeeding for 4 h after fasting for 16 h. Oxytocin significantly induced lipolysis in 3T3-L1 adipocytes. In conclusion, a new regulatory mechanism is demonstrated for oxytocin to control the differentiation and fat accumulation in adipocytes via activation of OTR as a part of the hypothalamic-pituitary-adipose axis.

  16. Human platelets express authentic CB₁ and CB₂ receptors.

    PubMed

    Catani, M V; Gasperi, V; Catanzaro, G; Baldassarri, S; Bertoni, A; Sinigaglia, F; Avigliano, L; Maccarrone, M

    2010-11-01

    In the last decade, the neurovascular effects exerted by endocannabinoids (eCBs) have attracted growing interest, because they hold the promise to open new avenues of therapeutic intervention against major causes of death in Western society. Several actions of eCBs are mediated by type-1 (CB₁) or type-2 (CB₂) cannabinoid receptors, yet there is no clear evidence of the presence of these proteins in platelets. To demonstrate that CB₁ and CB₂ are expressed in human platelets, we analyzed their protein level by Western blotting and ELISA, visualized their cellular localization by confocal microscopy, and ascertained their functionality by binding assays. We found that CB₁, and to a lesser extent CB₂, are expressed in highly purified human platelets. Both receptor subtypes were predominantly localized inside the cell, thus explaining why they might remain undetected in preparations of plasma membranes. The identification of authentic CB₁ and CB₂ in human platelets supports the potential exploitation of selective agonists or antagonists of these receptors as novel therapeutics to combat neurovascular disorders. It seems remarkable that some of these substances have been already used in humans to treat disease states.

  17. A pharmacological analysis of serotonergic receptors: effects of their activation of blockade in learning.

    PubMed

    Meneses, A; Hong, E

    1997-02-01

    1. The authors have tested several 5-HT selective agonists and antagonists (5-HT1A/1B, 5-HT2A/2B/2C, 5-HT3 or 5-HT4), an uptake inhibitor and 5-HT depletors in the autoshaping learning task. 2. The present work deals with the receptors whose stimulation increases or decreases learning. 3. Impaired consolidation of learning was observed after the presynaptic activation of 5-HT1B, 5-HT3 or 5-HT4 or the blockade of postsynaptic 5-HT2C/2B receptors. 4. In contrast, an improvement occurred after the presynaptic activation of 5-HT1A, 5-HT2C, and the blockade of presynaptic 5-HT2A, 5-HT2C and 5-HT3 receptors. 5. The blockade of postsynaptic 5-HT1A, 5-HT1B, 5-HT3 or 5-HT4 receptors and 5-HT inhibition of synthesis and its depletion did no alter learning by themselves. 6. The present data suggest that multiple pre- and postsynaptic serotonergic receptors are involved in the consolidation of learning. 7. Stimulation of most 5-HT receptors increases learning, however, some of 5-HT subtypes seem to limit the data storage. 8. Furthermore, the role of 5-HT receptors in learning seem to require an interaction with glutamatergic, GABAergic and cholinergic neurotransmission systems.

  18. Anatomical profiling of G protein-coupled receptor expression

    PubMed Central

    Regard, Jean B.; Sato, Isaac T.; Coughlin, Shaun R.

    2008-01-01

    Summary G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane signaling molecules and regulate a host of physiological and disease processes. To better understand the functions of GPCRs in vivo, we quantified transcript levels of 353 non-odorant GPCRs in 41 adult mouse tissues. Cluster analysis placed many GPCRs into anticipated anatomical and functional groups and predicted novel roles for less studied receptors. From one such prediction, we showed that the Gpr91 ligand succinate can regulate lipolysis in white adipose tissue suggesting that signaling by this citric acid cycle intermediate may regulate energy homeostasis. We also showed that pairwise analysis of GPCR expression across tissues may help predict drug side effects. This resource will aid studies to understand GPCR function in vivo and may assist in the identification of therapeutic targets. PMID:18984166

  19. Downregulation of transferrin receptor surface expression by intracellular antibody

    SciTech Connect

    Peng Jilin; Wu Sha; Zhao Xiaoping; Wang Min; Li Wenhan; Shen Xin; Liu Jing; Lei Ping; Zhu Huifen; Shen Guanxin . E-mail: guanxin_shen@yahoo.com.cn

    2007-03-23

    To deplete cellular iron uptake, and consequently inhibit the proliferation of tumor cells, we attempt to block surface expression of transferrin receptor (TfR) by intracellular antibody technology. We constructed two expression plasmids (scFv-HAK and scFv-HA) coding for intracellular single-chain antibody against TfR with or without endoplasmic reticulum (ER) retention signal, respectively. Then they were transfected tumor cells MCF-7 by liposome. Applying RT-PCR, Western blotting, immunofluorescence microscopy and immunoelectron microscope experiments, we insure that scFv-HAK intrabody was successfully expressed and retained in ER contrasted to the secreted expression of scFv-HA. Flow cytometric analysis confirmed that the TfR surface expression was markedly decreased approximately 83.4 {+-} 2.5% in scFv-HAK transfected cells, while there was not significantly decrease in scFv-HA transfected cells. Further cell growth and apoptosis characteristics were evaluated by cell cycle analysis, nuclei staining and MTT assay. Results indicated that expression of scFv-HAK can dramatically induce cell cycle G1 phase arrest and apoptosis of tumor cells, and consequently significantly suppress proliferation of tumor cells compared with other control groups. For First time this study demonstrates the potential usage of anti-TfR scFv-intrabody as a growth inhibitor of TfR overexpressing tumors.

  20. Expression of T cell antigen receptor during differentiation

    SciTech Connect

    Allison, J.P.; Lanier, L.L.; Guyden, J.; Richie, E.R.

    1986-03-01

    The authors have used flow cytometry with monoclonal antibodies, radioimmuneprecipitation with a rabbit antiserum to common epitopes of the TCR, and Northern and Southern blot analysis with cloned TCR genes to study antigen receptor (TCR) expression by normal murine and human thymocytes and by primary murine thymomas. L3T4-,Lyt2- murine thymomas corresponding to the earliest stage of thymic differentiation, were found to have rearranged TCR beta genes, and to express low levels of beta transcript, but lacked alpha gene transcript and failed to express TCR on the cell surface. L3T4+,Lyt2+ thymomas were variable, but the majority were found to contain significant levels of both alpha and beta transcripts and to express TCR at the cell surface. Similarly, alpha and beta transcripts and TCR protein were detected in sorted L3T4+,Lyt2+ murine thymocytes. Using three color fluorescence, the authors determined that app. 70% of human T4+T8+ thymocytes also expressed T3, a component of the TCR complex. These data indicate that in mouse and man expression of TCR occurs in the immature, or cortical, thymic population.

  1. Molecular Cooperativity Governs Diverse and Monoallelic Olfactory Receptor Expression

    NASA Astrophysics Data System (ADS)

    Xing, Jianhua; Tian, Xiaojun; Zhang, Hang; Sannerud, Jens

    Multiple-objective optimization is common in biological systems. In the mammalian olfactory system, each sensory neuron stochastically expresses only one out of up to thousands of olfactory receptor (OR) gene alleles; at organism level the types of expressed ORs need to be maximized. The molecular mechanism of this Nobel-Prize winning puzzle remains unresolved after decades of extensive studies. Existing models focus only on monoallele activation, and cannot explain recent observations in mutants, especially the reduced global diversity of expressed ORs in G9a/GLP knockouts. In this work we integrated existing information on OR expression, and proposed an evolutionarily optimized three-layer regulation mechanism, which includes zonal segregation, epigenetic and enhancer competition coupled to a negative feedback loop. This model not only recapitulates monoallelic OR expression, but also elucidates how the olfactory system maximizes and maintains the diversity of OR expression. The model is validated by several experimental results, and particularly underscores cooperativity and synergy as a general design principle of multi-objective optimization in biology. The work is supported by the NIGMS/DMS Mathematical Biology program.

  2. Individual vulnerability to escalated aggressive behavior by a low dose of alcohol: decreased serotonin receptor mRNA in the prefrontal cortex of male mice.

    PubMed

    Chiavegatto, S; Quadros, I M H; Ambar, G; Miczek, K A

    2010-02-01

    Low to moderate doses of alcohol consumption induce heightened aggressive behavior in some, but not all individuals. Individual vulnerability for this nonadaptive behavior may be determined by an interaction of genetic and environmental factors with the sensitivity of alcohol's effects on brain and behavior. We used a previously established protocol for alcohol oral self-administration and characterized alcohol-heightened aggressive (AHA) mice as compared with alcohol non-heightened (ANA) counterparts. A week later, we quantified mRNA steady state levels of several candidate genes in the serotonin [5-hydroxytryptamine (5-HT)] system in different brain areas. We report a regionally selective and significant reduction of all 5-HT receptor subtype transcripts, except for 5-HT(3), in the prefrontal cortex of AHA mice. Comparable gene expression profile was previously observed in aggressive mice induced by social isolation or by an anabolic androgenic steroid. Additional change in the 5-HT(1B) receptor transcripts was seen in the amygdala and hypothalamus of AHA mice. In both these areas, 5-HT(1B) mRNA was elevated when compared with ANA mice. In the hypothalamus, AHA mice also showed increased transcripts for 5-HT(2A) receptor. In the midbrain, 5-HT synthetic enzyme, 5-HT transporter and 5-HT receptors mRNA levels were similar between groups. Our results emphasize a role for postsynaptic over presynaptic 5-HT receptors in mice which showed escalated aggression after the consumption of a moderate dose of alcohol. This gene expression profile of 5-HT neurotransmission components in the brain of mice may suggest a vulnerability trait for alcohol-heightened aggression.

  3. G-protein coupled receptor expression patterns delineate medulloblastoma subgroups

    PubMed Central

    2013-01-01

    Background Medulloblastoma is the most common malignant brain tumor in children. Genetic profiling has identified four principle tumor subgroups; each subgroup is characterized by different initiating mutations, genetic and clinical profiles, and prognoses. The two most well-defined subgroups are caused by overactive signaling in the WNT and SHH mitogenic pathways; less is understood about Groups 3 and 4 medulloblastoma. Identification of tumor subgroup using molecular classification is set to become an important component of medulloblastoma diagnosis and staging, and will likely guide therapeutic options. However, thus far, few druggable targets have emerged. G-protein coupled receptors (GPCRs) possess characteristics that make them ideal targets for molecular imaging and therapeutics; drugs targeting GPCRs account for 30-40% of all current pharmaceuticals. While expression patterns of many proteins in human medulloblastoma subgroups have been discerned, the expression pattern of GPCRs in medulloblastoma has not been investigated. We hypothesized that analysis of GPCR expression would identify clear subsets of medulloblastoma and suggest distinct GPCRs that might serve as molecular targets for both imaging and therapy. Results Our study found that medulloblastoma tumors fall into distinct clusters based solely on GPCR expression patterns. Normal cerebellum clustered separately from the tumor samples. Further, two of the tumor clusters correspond with high fidelity to the WNT and SHH subgroups of medulloblastoma. Distinct over-expressed GPCRs emerge; for example, LGR5 and GPR64 are significantly and uniquely over-expressed in the WNT subgroup of tumors, while PTGER4 is over-expressed in the SHH subgroup. Uniquely under-expressed GPCRs were also observed. Our key findings were independently validated using a large international dataset. Conclusions Our results identify GPCRs with potential to act as imaging and therapeutic targets. Elucidating tumorigenic pathways

  4. Regulation of GIP and GLP1 receptor cell surface expression by N-glycosylation and receptor heteromerization.

    PubMed

    Whitaker, Gina M; Lynn, Francis C; McIntosh, Christopher H S; Accili, Eric A

    2012-01-01

    In response to a meal, Glucose-dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) are released from gut endocrine cells into the circulation and interact with their cognate G-protein coupled receptors (GPCRs). Receptor activation results in tissue-selective pleiotropic responses that include augmentation of glucose-induced insulin secretion from pancreatic beta cells. N-glycosylation and receptor oligomerization are co-translational processes that are thought to regulate the exit of functional GPCRs from the ER and their maintenance at the plasma membrane. Despite the importance of these regulatory processes, their impact on functional expression of GIP and GLP-1 receptors has not been well studied. Like many family B GPCRs, both the GIP and GLP-1 receptors possess a large extracellular N-terminus with multiple consensus sites for Asn-linked (N)-glycosylation. Here, we show that each of these Asn residues is glycosylated when either human receptor is expressed in Chinese hamster ovary cells. N-glycosylation enhances cell surface expression and function in parallel but exerts stronger control over the GIP receptor than the GLP-1 receptor. N-glycosylation mainly lengthens receptor half-life by reducing degradation in the endoplasmic reticulum. N-glycosylation is also required for expression of the GIP receptor at the plasma membrane and efficient GIP potentiation of glucose-induced insulin secretion from the INS-1 pancreatic beta cell line. Functional expression of a GIP receptor mutant lacking N-glycosylation is rescued by co-expressed wild type GLP1 receptor, which, together with data obtained using Bioluminescence Resonance Energy Transfer, suggests formation of a GIP-GLP1 receptor heteromer.

  5. Simvastatin enhances bone morphogenetic protein receptor type II expression

    SciTech Connect

    Hu Hong; Sung, Arthur; Zhao, Guohua; Shi, Lingfang; Qiu Daoming; Nishimura, Toshihiko; Kao, Peter N. . E-mail: peterkao@stanford.edu

    2006-01-06

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function.

  6. The collagen receptor DDR2 is expressed during early cardiac development.

    PubMed

    Goldsmith, Edie C; Zhang, Xiadong; Watson, James; Hastings, Josh; Potts, Jay D

    2010-05-01

    Discoidin Domain Receptor 2 (DDR2) is a receptor tyrosine kinase which has been shown to regulate cell migration upon binding its ligand, collagen. Expression studies determined that DDR2 mRNA and protein are present in the atrioventricular canal during epithelial-mesenchymal transformation (EMT) and the receptor is expressed in both activated endothelial and migrating mesenchymal cells in vivo.

  7. Functional Erythropoietin Receptors Expressed by Human Prostate Cancer Cells

    DTIC Science & Technology

    2006-10-01

    carcinoma cell line (PC-3). Invest Urol, 1979. 17(1): p. 16-23. 11. Yoshimura, A., A.D. D’Andrea, and H.F. Lodish , Friend spleen focus-forming virus...receptor expression in human prostate cancer. Mod Pathol, 2004. 13. Socolovsky, M., A.E. Fallon, S. Wang, C. Brugnara, and H.F. Lodish , Fetal anemia and...Socolovsky, M., H. Nam, M.D. Fleming, V.H. Haase, C. Brugnara, and H.F. Lodish , Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased

  8. Tumor expression of adiponectin receptor 2 and lethal prostate cancer

    PubMed Central

    Fiorentino, Michelangelo; Kelly, Rachel; Gerke, Travis; Jordahl, Kristina; Sinnott, Jennifer A.; Giovannucci, Edward L.; Loda, Massimo; Mucci, Lorelei A.; Finn, Stephen

    2015-01-01

    To investigate the role of adiponectin receptor 2 (AdipoR2) in aggressive prostate cancer we used immunohistochemistry to characterize AdipoR2 protein expression in tumor tissue for 866 men with prostate cancer from the Physicians’ Health Study and the Health Professionals Follow-up Study. AdipoR2 tumor expression was not associated with measures of obesity, pathological tumor stage or prostate-specific antigen (PSA) at diagnosis. However, AdipoR2 expression was positively associated with proliferation as measured by Ki-67 expression quartiles (P-trend < 0.0001), with expression of fatty acid synthase (P-trend = 0.001), and with two measures of angiogenesis (P-trend < 0.1). An inverse association was observed with apoptosis as assessed by the TUNEL assay (P-trend = 0.006). Using Cox proportional hazards regression and controlling for age at diagnosis, Gleason score, year of diagnosis category, cohort and baseline BMI, we identified a statistically significant trend for the association between quartile of AdipoR2 expression and lethal prostate cancer (P-trend = 0.02). The hazard ratio for lethal prostate cancer for the two highest quartiles, as compared to the two lowest quartiles, of AdipoR2 expression was 1.9 (95% confidence interval [CI]: 1.2–3.0). Results were similar when additionally controlling for categories of PSA at diagnosis and Ki-67 expression quartiles. These results strengthen the evidence for the role of AdipoR2 in prostate cancer progression. PMID:25863129

  9. Constitutive androstane receptor activation evokes the expression of glycolytic genes.

    PubMed

    Yarushkin, Andrei A; Kazantseva, Yuliya A; Prokopyeva, Elena A; Markova, Diana N; Pustylnyak, Yuliya A; Pustylnyak, Vladimir O

    2016-09-23

    It is well-known that constitutive androstane receptor (CAR) activation by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) increases the liver-to-body weight ratio. CAR-mediated liver growth is correlated with increased expression of the pleiotropic transcription factor cMyc, which stimulates cell cycle regulatory genes and drives proliferating cells into S phase. Because glycolysis supports cell proliferation and cMyc is essential for the activation of glycolytic genes, we hypothesized that CAR-mediated up-regulation of cMyc in mouse livers might play a role in inducing the expression of glycolytic genes. The aim of the present study was to examine the effect of long-term CAR activation on glycolytic genes in a mouse model not subjected to metabolic stress. We demonstrated that long-term CAR activation by TCPOBOP increases expression of cMyc, which was correlated with reduced expression of gluconeogenic genes and up-regulation of glucose transporter, glycolytic and mitochondrial pyruvate metabolising genes. These changes in gene expression after TCPOBOP treatment were strongly correlated with changes in levels of glycolytic intermediates in mouse livers. Moreover, we demonstrated a significant positive regulatory effect of TCPOBOP-activated CAR on both mRNA and protein levels of Pkm2, a master regulator of glucose metabolism and cell proliferation. Thus, our findings provide evidence to support the conclusion that CAR activation initiates a transcriptional program that facilitates the coordinated metabolic activities required for cell proliferation.

  10. Involvement of serotonin receptor subtypes in the antidepressant-like effect of beta receptor agonist Amibegron (SR 58611A): an experimental study.

    PubMed

    Tanyeri, Pelin; Buyukokuroglu, Mehmet Emin; Mutlu, Oguz; Ulak, Güner; Yıldız Akar, Füruzan; Komsuoglu Celikyurt, Ipek; Erden, Bekir Faruk

    2013-04-01

    New therapeutic strategies against depression, with less side effects and thus greater efficacy in larger proportion of depressed patients, are needed. Amibegron (SR58611A) is the first selective β3 adrenergic agent that has been shown to possess a profile of antidepressant activity in rodents. To investigate the involvement of serotonin receptors in the effects of amibegron, we used the serotonin 5HT1A receptor antagonist WAY-100635 (WAY) or serotonin 5HT2A-2C receptor antagonist ketanserin or serotonin 5HT3 receptor antagonist ondansetron in mice forced swimming test (FST). The locomotor activity was evaluated by measuring the total distance moved in the apparatus and the speed of the animals in the open field test. Imipramine (30mg/kg) significantly reduced immobility time compared to vehicle-treated group while amibegron (5 and 10mg/kg) dose dependently reduced immobility time in the FST. WAY(0.1mg/kg), ondansetron (1mg/kg), ketanserin(5mg/kg) had no effect on immobility time in naive mice while all of the drugs partially and significantly reversed amibegron (10mg/kg) induced decreasement in the immobility time in FST. None of the drugs alter locomotor activity in the open field test. The antidepressant-like effect of amibegron in the FST seems to be mediated by an interaction with serotonin 5-HT1A, serotonin 5-HT2A-2C and serotonin 5-HT3 receptors.

  11. Stimulation of glutamate receptors in the ventral tegmental area is necessary for serotonin-2 receptor-induced increases in mesocortical dopamine release

    PubMed Central

    Pehek, E.A.; Hernan, A.E.

    2017-01-01

    Modulation of dopamine (DA) released by serotonin-2 (5-HT2) receptors has been implicated in the mechanism of action of antipsychotic drugs. The mesocortical DA system has been implicated particularly in the cognitive deficits observed in schizophrenia. Agonism at 5-HT2A receptors in the prefrontal cortex is associated with increases in cortical DA release. Evidence indicates that 5-HT2A receptors in the cortex regulate mesocortical DA release through stimulation of a “long-loop” feedback system from the PFC to the VTA and back. However, a causal role for VTA glutamate in the 5-HT2-induced increases in PFC DA has not been established. The present study does so by measuring 5-HT2 agonist-induced DA release in the cortex after infusions of glutamate antagonists into the VTA. Infusions of a combination of a NMDA (AP-5: 2-amino-5-phosphopentanoic acid) and an AMPA/kainate (CNQX: 6-cyano-7-nitroquinoxaline-2,3-dione) receptor antagonist into the VTA blocked the increases in cortical DA produced by administration of the 5-HT2 agonist DOI [(±)-2,5-Dimethoxy-4-iodoamphetamine] (2.5 mg/kg s.c.). These results demonstrate that stimulation of glutamate receptors in the VTA is necessary for 5-HT2 agonist-induced increases in cortical DA. PMID:25637799

  12. An Epigenetic Signature for Monoallelic Olfactory Receptor Expression

    PubMed Central

    Magklara, Angeliki; Yen, Angela; Colquitt, Bradley M.; Clowney, E. Josephine; Allen, William; Markenscoff-Papadimitriou, Eirene; Evans, Zoe A.; Kheradpour, Pouya; Mountoufaris, George; Carey, Catriona; Barnea, Gilad; Kellis, Manolis; Lomvardas, Stavros

    2011-01-01

    SUMMARY Constitutive heterochromatin is traditionally viewed as the static form of heterochromatin that silences pericentromeric and telomeric repeats in a cell cycle and differentiation independent manner. Here, we show that in the mouse olfactory epithelium, olfactory receptor (OR) genes are marked, in a highly dynamic fashion, with the molecular hallmarks of constitutive heterochromatin, H3K9me3 and H4K20me3. The cell-type and developmentally dependent deposition of these marks along the OR clusters is, most likely, reversed during the process of OR choice to allow for monogenic and monoallelic OR expression. In contrast to the current view of OR choice, our data suggest that OR silencing takes place before OR expression, indicating that it is not the product of an OR-elicited feedback signal. This suggests a new role for chromatin-mediated silencing as the molecular foundation upon which singular and stochastic selection can be applied. PMID:21529909

  13. Transferrin receptor expression by stimulated cells in mixed lymphocyte culture.

    PubMed Central

    Salmon, M; Bacon, P A; Symmons, D P; Walton, K W

    1985-01-01

    Transferrin receptor (TRFr) expression by cells in mixed lymphocyte culture increases steadily for the first 5 days, but then reaches a plateau. By the sixth day in culture, about 20% of viable cells express TRFr in two-way mixed lymphocyte reactions. This subpopulation of TRFr-positive cells represents the proliferating population; it is heterogeneous, containing T-cell blasts and smaller cells which are a mixture of T and non-T cells. A small group of non-T cells have phenotypic similarity to natural killer (NK) cells. T cells appear to divide earlier in the course of the response than non-T cells. The biphasic nature of this response and the slower non-T reactivity may be due to a secondary stimulation of non-T cells by factors released from activated T cells (such as interleukin-2). PMID:2982734

  14. Cultured rat microglia express functional beta-chemokine receptors.

    PubMed

    Boddeke, E W; Meigel, I; Frentzel, S; Gourmala, N G; Harrison, J K; Buttini, M; Spleiss, O; Gebicke-Härter, P

    1999-08-03

    We have investigated the functional expression of the beta-chemokine receptors CCR1 to 5 in cultured rat microglia. RT-PCR analysis revealed constitutive expression of CCR1, CCR2 and CCR5 mRNA. The beta-chemokines MCP-1 (1-30 nM) as well as RANTES and MIP-1alpha (100-1000 nM) evoked calcium transients in control and LPS-treated microglia. Whereas, the response to MCP-1 was dependent on extracellular calcium the response to RANTES was not. The effect of MCP-1 but not that of RANTES was inhibited by the calcium-induced calcium release inhibitor ryanodine. Calcium responses to MCP-1- and RANTES were observed in distinct populations of microglia.

  15. Urokinase type plasminogen activator receptor expression in colorectal neoplasms

    PubMed Central

    Suzuki, S; Hayashi, Y; Wang, Y; Nakamura, T; Morita, Y; Kawasaki, K; Ohta, K; Aoyama, N; Kim, S; Itoh, H; Kuroda, Y; Doe, W

    1998-01-01

    Background—The urokinase type plasminogen activator receptor (uPAR) may play a critical role in cancer invasion and metastasis. 
Aims—To study the involvement of uPAR in colorectal carcinogenesis. 
Methods—The cellular expression and localisation of uPAR were investigated in colorectal adenomas and invasive carcinomas by in situ hybridisation, immunohistochemistry, and northern and western blot analyses. 
Results—uPAR mRNA expression was found mainly in the cytoplasm of dysplastic epithelial cells of 30% of adenomas with mild (19%), moderate (21%), and severe (47%) dysplasia, and in that of carcinomatous cells of 85% of invasive carcinomas: Dukes' stages A (72%), B (93%), and C (91%). Some stromal cells in the adjacent neoplastic epithelium were faintly positive. Immunoreactivity for uPAR was detected in dysplastic epithelial cells of 14% of adenomas and in carcinomatous cells of 49% of invasive carcinomas. uPAR mRNA and protein concentrations were significantly higher in severe than in mild or moderate dysplasia (p<0.05); they were notably higher in Dukes' stage A than in severe dysplasia (p<0.05), and significantly higher in Dukes' stage B than in stage A (p<0.05), but those in stage B were not different from those in stage C or in metastatic colorectal carcinomas of the liver. 
Conclusions—Colorectal adenoma uPAR, expressed essentially in dysplastic epithelial cells, was upregulated with increasing severity of atypia, and increased notably during the critical transition from severe dysplasic adenoma to invasive carcinoma. These findings implicate uPAR expression in the invasive and metastatic processes of colorectal cancer. 

 Keywords: urokinase type plasminogen activator receptor; colorectal adenoma; colorectal cancer; adenoma-carcinoma sequence PMID:9824607

  16. [Innate immunity: cutaneous expression of Toll-like receptors].

    PubMed

    Musette, Philippe; Auquit Auckbur, Isabelle; Begon, Edouard

    2006-02-01

    Toll receptors were first identified as an essential molecule for embryonic patterning in Drosophila and were subsequently shown to be a key in antibacterial and antifungal immunity in adult flies. Toll receptors have been conserved throughout evolution. In mammals, TLRs have been implicated in both inflammatory responses and innate host defense to pathogens. The 11 different TLRs recognize conserved molecular patterns of microbial pathogens termed pathogen-specific molecular patterns (PAMPs), that permit to confer responsiveness to a wide variety of pathogens. Endogenous ligands are also able to activate TLRs. All adult tissue is capable to express at least one of member of TLR family, but a largest repertoire of TLRs is found in tissues exposed to the external environment. The TLR activation induce the NF-kappaB translocation to the nucleus and cytokine secretion. Since the primary function of skin is to provide an effective barrier against outside agression, it is likely that keratinocytes may play a role in a rapid and efficient host defence system, and the fact that keratinocytes are capable of expressing a wide variety of TLRs is subsequently not surprising.

  17. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens.

    PubMed

    Halberstadt, Adam L; Geyer, Mark A

    2011-09-01

    Serotonergic hallucinogens produce profound changes in perception, mood, and cognition. These drugs include phenylalkylamines such as mescaline and 2,5-dimethoxy-4-methylamphetamine (DOM), and indoleamines such as (+)-lysergic acid diethylamide (LSD) and psilocybin. Despite their differences in chemical structure, the two classes of hallucinogens produce remarkably similar subjective effects in humans, and induce cross-tolerance. The phenylalkylamine hallucinogens are selective 5-HT(2) receptor agonists, whereas the indoleamines are relatively non-selective for serotonin (5-HT) receptors. There is extensive evidence, from both animal and human studies, that the characteristic effects of hallucinogens are mediated by interactions with the 5-HT(2A) receptor. Nevertheless, there is also evidence that interactions with other receptor sites contribute to the psychopharmacological and behavioral effects of the indoleamine hallucinogens. This article reviews the evidence demonstrating that the effects of indoleamine hallucinogens in a variety of animal behavioral paradigms are mediated by both 5-HT(2) and non-5-HT(2) receptors.

  18. New functional activity of aripiprazole revealed: robust antagonism of D2 dopamine receptor-stimulated Gβγ signaling

    PubMed Central

    Brust, Tarsis F.; Hayes, Michael P.; Roman, David L.; Watts, Val J.

    2014-01-01

    The dopamine D2 receptor (DRD2) is a G protein-coupled receptor (GPCR) that is generally considered to be a primary target in the treatment of schizophrenia. First generation antipsychotic drugs (e.g. haloperidol) are antagonists of the DRD2, while second generation antipsychotic drugs (e.g. olanzapine) antagonize DRD2 and 5HT2A receptors. Notably, both these classes of drugs may cause side effects associated with D2 receptor antagonism (e.g. hyperprolactemia and extrapyramidal symptoms). The novel, “third generation” antipsychotic drug, aripiprazole is also used to treat schizophrenia, with the remarkable advantage that its tendency to cause extrapyramidal symptoms is minimal. Aripiprazole is considered a partial agonist of the DRD2, but it also has partial agonist/antagonist activity for other GPCRs. Further, aripiprazole has been reported to have a unique activity profile in functional assays with the DRD2. In the present study the molecular pharmacology of aripiprazole was further examined in HEK cell models stably expressing the DRD2 and specific isoforms of adenylyl cyclase to assess functional responses of Gα and Gβγ subunits. Additional studies examined the activity of aripiprazole in DRD2-mediated heterologous sensitization of adenylyl cyclase and cell-based dynamic mass redistribution (DMR). Aripiprazole displayed a unique functional profile for modulation of G proteins, being a partial agonist for Gαi/o and a robust antagonist for Gβγ signaling. Additionally, aripiprazole was a weak partial agonist for both heterologous sensitization and dynamic mass redistribution. PMID:25449598

  19. The Estrogen ReceptorExpression in De Quervain's Disease.

    PubMed

    Shen, Po-Chuan; Wang, Ping-Hui; Wu, Po-Ting; Wu, Kuo-Chen; Hsieh, Jeng-Long; Jou, I-Ming

    2015-11-04

    Stenosing tenosynovitis of the first dorsal compartment of the wrist (a.k.a. de Quervain's disease) is common but how estrogen is involved is still unknown. We previously reported that inflammation was involved in the pathogenesis of this ailment. In the present study, we extended our investigation of estrogen receptor (ER)-β expression to determine whether estrogen is involved in the pathogenesis of de Quervain's. Intraoperative retinaculum samples were collected from 16 patients with the ailment. Specimens were histologically graded by collagen structure and immunohistochemically evaluated by quantifying the expression of ER-β, interleukin (IL)-1β and IL-6 (inflammatory cytokines), cyclooxygenase (COX)-2 (an inflammatory enzyme), and vascular endothelial growth factor (VEGF), and Von Willebrand's factor (vWF). De Quervain's occurs primarily in women. The female:male ratio in our study was 7:1. We found that ER-β expression in the retinaculum was positively correlated with disease grade and patient age. Additionally, disease severity was associated with inflammatory factors--IL-1β and IL-6, COX-2, and VEGF and vWF in tenosynovial tissue. The greater the levels of ER-β expression, tissue inflammation, and angiogenesis are, the more severe de Quervain's disease is. ER-β might be a useful target for novel de Quervain's disease therapy.

  20. Expression of androgen receptor target genes in skeletal muscle.

    PubMed

    Rana, Kesha; Lee, Nicole K L; Zajac, Jeffrey D; MacLean, Helen E

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (AR(ΔZF2)) versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR(∆ZF2) muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57(Kip2), Igf2 and calcineurin Aa, was increased in AR(∆ZF2) muscle, and the expression of all but p57(Kip2) was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  1. Linking estrogen receptor β expression with inflammatory bowel disease activity

    PubMed Central

    Pierdominici, Marina; Maselli, Angela; Varano, Barbara; Barbati, Cristiana; Cesaro, Paola; Spada, Cristiano; Zullo, Angelo; Lorenzetti, Roberto; Rosati, Marco; Rainaldi, Gabriella; Limiti, Maria Rosaria; Guidi, Luisa

    2015-01-01

    Crohn disease (CD) and ulcerative colitis (UC) are chronic forms of inflammatory bowel disease (IBD) whose pathogenesis is only poorly understood. Estrogens have a complex role in inflammation and growing evidence suggests that these hormones may impact IBD pathogenesis. Here, we demonstrated a significant reduction (p < 0.05) of estrogen receptor (ER)β expression in peripheral blood T lymphocytes from CD/UC patients with active disease (n = 27) as compared to those in remission (n = 21) and healthy controls (n = 29). Accordingly, in a subgroup of CD/UC patients undergoing to anti-TNF-α therapy and responsive to treatment, ERβ expression was higher (p < 0.01) than that observed in not responsive patients and comparable to that of control subjects. Notably, ERβ expression was markedly decreased in colonic mucosa of CD/UC patients with active disease, reflecting the alterations observed in peripheral blood T cells. ERβ expression inversely correlated with interleukin (IL)-6 serum levels and exogenous exposure of both T lymphocytes and intestinal epithelial cells to this cytokine resulted in ERβ downregulation. These results demonstrate that the ER profile is altered in active IBD patients at both mucosal and systemic levels, at least in part due to IL-6 dysregulation, and highlight the potential exploitation of T cell-associated ERβ as a biomarker of endoscopic disease activity. PMID:26497217

  2. Antidepressant-like effect of chromium chloride in the mouse forced swim test: involvement of glutamatergic and serotonergic receptors.

    PubMed

    Piotrowska, Anna; Młyniec, Katarzyna; Siwek, Agata; Dybała, Małgorzata; Opoka, Włodzimierz; Poleszak, Ewa; Nowak, Gabriel

    2008-01-01

    Chromium (Cr) (III), an essential microelement of living organisms, was reported to exhibit potential antidepressant properties in preclinical and clinical studies. The aim of the present study was to examine the effect of CrCl(3) ip administration in the forced swim test (FST) in mice and the involvement of glutamatergic and serotonergic receptors in the antidepressant-like activity of chromium. CrCl(3) in a dose of 12 mg/kg, but not in doses of 6 or 32 mg/kg, reduced the immobility time in the FST. The locomotor activity was reduced by CrCl(3) in a dose of 32 mg/kg. Moreover, the reduction of the immobility time induced by the active dose (12 mg/kg) of CrCl(3) was completely abolished by NBQX (10 mg/kg; an antagonist of the AMPA receptor) pretreatment and partially inhibited by ritanserin (4 mg/kg; an antagonist of 5-HT(2A/C) receptor), WAY 1006335 (0.1 mg/kg; an antagonist of 5-HT(1A) receptor) and N-methyl-D-aspartate (75 mg/kg; agonist of NMDA receptor) administration. The present study demonstrates the antidepressant-like activity of chromium in the mouse FST and indicates the major role of the AMPA receptor and participation of NMDA glutamatergic and 5-HT(1) and 5-HT(2A/C) serotonin receptors in this activity.

  3. Behavioral tolerance to lysergic acid diethylamide is associated with reduced serotonin-2A receptor signaling in rat cortex.

    PubMed

    Gresch, Paul J; Smith, Randy L; Barrett, Robert J; Sanders-Bush, Elaine

    2005-09-01

    Tolerance is defined as a decrease in responsiveness to a drug after repeated administration. Tolerance to the behavioral effects of hallucinogens occurs in humans and animals. In this study, we used drug discrimination to establish a behavioral model of lysergic acid diethylamide (LSD) tolerance and examined whether tolerance to the stimulus properties of LSD is related to altered serotonin receptor signaling. Rats were trained to discriminate 60 microg/kg LSD from saline in a two-lever drug discrimination paradigm. Two groups of animals were assigned to either chronic saline treatment or chronic LSD treatment. For chronic treatment, rats from each group were injected once per day with either 130 microg/kg LSD or saline for 5 days. Rats were tested for their ability to discriminate either saline or 60 microg/kg LSD, 24 h after the last chronic injection. Rats receiving chronic LSD showed a 44% reduction in LSD lever selection, while rats receiving chronic vehicle showed no change in percent choice on the LSD lever. In another group of rats receiving the identical chronic LSD treatment, LSD-stimulated [35S]GTPgammaS binding, an index of G-protein coupling, was measured in the rat brain by autoradiography. After chronic LSD, a significant reduction in LSD-stimulated [35S]GTPgammaS binding was observed in the medial prefrontal cortex and anterior cingulate cortex. Furthermore, chronic LSD produced a significant reduction in 2,5-dimethoxy-4-iodoamphetamine-stimulated [35S]GTPgammaS binding in medial prefrontal cortex and anterior cingulate cortex, which was blocked by MDL 100907, a selective 5-HT2A receptor antagonist, but not SB206553, a 5-HT2C receptor antagonist, indicating a reduction in 5-HT2A receptor signaling. 125I-LSD binding to 5-HT2A receptors was reduced in cortical regions, demonstrating a reduction in 5-HT2A receptor density. Taken together, these results indicate that adaptive changes in LSD-stimulated serotonin receptor signaling may mediate tolerance

  4. Obtaining anti-type 1 melatonin receptor antibodies by immunization with melatonin receptor-expressing cells.

    PubMed

    Cordeiro, Nelia; Wijkhuisen, Anne; Savatier, Alexandra; Moulharat, Natacha; Ferry, Gilles; Léonetti, Michel

    2016-01-01

    Antibodies (Abs) specific to cell-surface receptors are attractive tools for studying the physiological role of such receptors or for controlling their activity. We sought to obtain such antibodies against the type 1 receptor for melatonin (MT1). For this, we injected mice with CHO cells transfected with a plasmid encoding human MT1 (CHO-MT1-h), in the presence or absence of an adjuvant mixture containing Alum and CpG1018. As we previously observed that the immune response to a protein antigen is increased when it is coupled to a fusion protein, called ZZTat101, we also investigated if the association of ZZTat101 with CHO-MT1-h cells provides an immunogenic advantage. We measured similar levels of anti-CHO and anti-MT1-h Ab responses in animals injected with either CHO-MT1-h cells or ZZTat101/CHO-MT1-h cells, with or without adjuvant, indicating that neither the adjuvant mixture nor ZZTat101 increased the anti-cell immune response. Then, we investigated whether the antisera also recognized murine MT1 (MT1-m). Using cloned CHO cells transfected with a plasmid encoding MT1-m, we found that antisera raised against CHO-MT1-h cells also bound the mouse receptor. Altogether our studies indicate that immunizing approaches based on MT1-h-expressing CHO cells allow the production of polyclonal antibodies against MT1 receptors of different origins. This paves the way to preparation of MT1-specific monoclonal antibodies.

  5. Glomerular Glucocorticoid Receptors Expression and Clinicopathological Types of Childhood Nephrotic Syndrome.

    PubMed

    Gamal, Yasser; Badawy, Ahlam; Swelam, Salwa; Tawfeek, Mostafa S K; Gad, Eman Fathalla

    2017-02-01

    Glucocorticoids are primary therapy of idiopathic nephrotic syndrome (INS). However, not all children respond to steroid therapy. We assessed glomerular glucocorticoid receptor expression in fifty-one children with INS and its relation to response to steroid therapy and to histopathological type. Clinical, laboratory and glomerular expression of glucocorticoid receptors were compared between groups with different steroid response. Glomerular glucocorticoid expression was slightly higher in controls than in minimal change early responders, which in turn was significantly higher than in minimal change late responders. There was significantly lower glomerular glucocorticoid receptor expression in steroid-resistance compared to early responders, late responders and controls. Glomerular glucocorticoid expression was significantly higher in all minimal change disease (MCD) compared to focal segmental glomerulosclerosis. In INS, response to glucocorticoid is dependent on glomerular expression of receptors and peripheral expression. Evaluation of glomerular glucocorticoid receptor expression at time of diagnosis of NS can predict response to steroid therapy.

  6. Altered glucocorticoid receptor expression and function during mouse skin carcinogenesis.

    PubMed

    Budunova, I V; Carbajal, S; Kang, H; Viaje, A; Slaga, T J

    1997-03-01

    Glucocorticoids are the most potent inhibitors of tumor promotion in mouse skin, when applied with a promoting agent at the early stages of promotion. However, established skin papillomas become resistant to growth inhibition by glucocorticoids. Glucocorticoid control of cellular functions is mediated by the glucocorticoid receptor (GR), a well-known transcription factor. Here we present data on GR expression and function in mouse papillomas and squamous cell carcinomas. Tumors were produced in SENCAR mice by a 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate two-stage protocol. In early papillomas (after 15-20 wk of promotion), northern blotting revealed a decrease in the GR mRNA level that was confirmed by a binding assay. However, in late papillomas (after 30-40 wk of promotion), and especially in squamous cell carcinomas, the level of GR in both assays was similar to or higher than the GR level in normal epidermis. To test the functional capability of GR in tumors, we compared the effect of the synthetic glucocorticoid fluocinolone acetonide (FA) on keratinocyte proliferation and on expression of glucocorticoid-responsive genes in normal epidermis, hyperplastic skin surrounding tumors, and mouse skin papillomas. FA strongly inhibited DNA synthesis in keratinocytes in normal skin and tumor-surrounding skin but had no effect on DNA synthesis in papillomas. In addition, FA strongly induced metallothionein 1 expression and inhibited connexin 26 expression in skin but did not affect expression of these genes in tumors. These data suggest that alteration of both the expression and function of GR may be an important mechanism of tumor promotion in skin.

  7. Brain CB₁ receptor expression following lipopolysaccharide-induced inflammation.

    PubMed

    Hu, H; Ho, W; Mackie, K; Pittman, Q J; Sharkey, K A

    2012-12-27

    Cannabinoid 1 receptors (CB(1)) are highly expressed on presynaptic terminals in the brain where they are importantly involved in the control of neurotransmitter release. Alteration of CB(1) expression is associated with a variety of neurological and psychiatric disorders. There is now compelling evidence that peripheral inflammatory disorders are associated with depression and cognitive impairments. These can be modeled in rodents with peripheral administration of lipopolysaccharide (LPS), but central effects of this treatment remain to be fully elucidated. As a reduction in endocannabinoid tone is thought to contribute to depression, we asked whether the expression of CB(1) in the CNS is altered following LPS treatment. CD1 mice received LPS (0.1-1mg/kg, ip) and 6h later activated microglial cells were observed only in circumventricular organs and only at the higher dose. At 24h, activated microglial cells were identified in other brain regions, including the hippocampus, a structure implicated in some mood disorders. Immunohistochemistry and real-time polymerase chain reaction (PCR) were utilized to evaluate the change of CB(1) expression 24h after inflammation. LPS induced an increase of CB(1) mRNA in the hippocampus and brainstem. Subsequent immunohistochemical analysis revealed reduced CB(1) in the hippocampus, especially in CA3 pyramidal layer. Analysis of co-localization with markers of excitatory and inhibitory terminals indicated that the decrease in CB(1) expression was restricted to glutamatergic terminals. Despite widespread microglial activation, these results suggest that peripheral LPS treatment leads to limited changes in CB(1) expression in the brain.

  8. A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types.

    PubMed Central

    McMahan, C J; Slack, J L; Mosley, B; Cosman, D; Lupton, S D; Brunton, L L; Grubin, C E; Wignall, J M; Jenkins, N A; Brannan, C I

    1991-01-01

    cDNA clones corresponding to an Mr approximately 80,000 receptor (type I receptor) for interleukin-1 (IL-1) have been isolated previously by mammalian expression. Here, we report the use of an improved expression cloning method to isolate human and murine cDNA clones encoding a second type (Mr approximately 60,000) of IL-1 receptor (type II receptor). The mature type II IL-1 receptor consists of (i) a ligand binding portion comprised of three immunoglobulin-like domains; (ii) a single transmembrane region; and (iii) a short cytoplasmic domain of 29 amino acids. This last contrasts with the approximately 215 amino acid cytoplasmic domain of the type I receptor, and suggests that the two IL-1 receptors may interact with different signal transduction pathways. The type II receptor is expressed in a number of different tissues, including both B and T lymphocytes, and can be induced in several cell types by treatment with phorbol ester. Both IL-1 receptors appear to be well conserved in evolution, and map to the same chromosomal location. Like the type I receptor, the human type II IL-1 receptor can bind all three forms of IL-1 (IL-1 alpha, IL-1 beta and IL-1ra). Vaccinia virus contains an open reading frame bearing strong resemblance to the type II IL-1 receptor. Images PMID:1833184

  9. Expression of the human muscarinic receptor gene m2 in Dictyostelium discoideum

    SciTech Connect

    Voith, G.; Dingermann, T.

    1995-11-01

    We have expressed a functional human muscarinic M2 receptor, under the control of the homologous discoidin I{gamma} promoter, in the cellular slime mold Dictyostelium discoideum. The use of a contact site A leader peptide ensured insertion of the newly synthesized receptor protein into the plasma membrane. Due to the characteristics of the discoidin I{gamma} promoter, the M2 receptor is expressed during late growth and early development. The heterologously expressed M2 receptors show binding characteristics similar to authentic receptors. Membranes as well as whole cells can be used in ligand binding assays. 36 refs., 4 figs.

  10. Differential microRNA expression is associated with androgen receptor expression in breast cancer.

    PubMed

    Shi, Yaqin; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Gu, Jun; Guan, Xiaoxiang

    2017-01-01

    The androgen receptor (AR) is frequently expressed in breast cancer; however, its prognostic value remains unclear. AR expression in breast cancer has been associated with improved outcomes in estrogen receptor (ER)‑positive breast cancer compared with ER‑negative disease. Eliminating AR function in breast cancer is critically important for breast cancer progression. However, the mechanism underlying AR regulation remains poorly understood. The study of microRNAs (miRNAs) has provided important insights into the pathogenesis of hormone‑dependent cancer. To determine whether miRNAs function in the AR regulation of breast cancer, the present study performed miRNA expression profiling in AR‑positive and ‑negative breast cancer cell lines. A total of 153 miRNAs were differentially expressed in AR‑positive compared with AR‑negative breast cancer cells; 52 were upregulated and 101 were downregulated. A number of these have been extensively associated with breast cancer cell functions, including proliferation, invasion and drug‑resistance. Furthermore, through pathway enrichment analysis, signaling pathways associated with the prediction targets of the miRNAs were characterized, including the vascular endothelial growth factor and mammalian target of rapamycin signaling pathways. In conclusion, the results of the present study indicated that the expression of miRNAs may be involved in the mechanism underlying AR regulation of breast cancer, and may improve understanding of the role of AR in breast cancer.

  11. Aryl hydrocarbon receptor activity modulates prolactin expression in the pituitary

    PubMed Central

    Moran, Tyler B.; Brannick, Katherine E.; Raetzman, Lori T.

    2012-01-01

    Pituitary tumors account for 15% of intracranial neoplasms, however the extent to which environmental toxicants contribute to the proliferation and hormone expression of pituitary cells is unknown. Aryl-hydrocarbon receptor (AhR) interacting protein (AIP) loss of function mutations cause somatotroph and lactotroph adenomas in humans. AIP sequesters AhR and inhibits its transcriptional function. Because of the link between AIP and pituitary tumors, we hypothesize that exposure to dioxins, potent exogenous ligands for AhR that are persistent in the environment, may predispose to pituitary dysfunction through activation of AhR. In the present study, we examined the effect of AhR activation on proliferation and endogenous pituitary hormone expression in the GH3 rat somato-lactotrope tumor cell line and the effect of loss of AhR action in knockout mice. GH3 cells respond to nM doses of the reversible AhR agonist β-naphthoflavone with a robust induction of Cyp1a1. Although mRNA levels of the anti-proliferative signaling cytokine TGFbeta1 are suppressed upon β-naphthoflavone treatment, we did not observe an alteration in cell proliferation. AhR activation with β-naphthoflavone suppresses Ahr expression and impairs expression of prolactin (PRL), but not growth hormone (GH) mRNA in GH3 cells. In mice, loss of Ahr similarly leads to a reduction in Prl mRNA at P3, while Gh is unaffected. Additionally, there is a significant reduction pituitary hormones Lhb and Fshb in the absence of Ahr. Overall, these results demonstrate that AhR is important for pituitary hormone expression and suggests environmental dioxins can exert endocrine disrupting effects at the pituitary. PMID:22975028

  12. Human rhabdomyosarcoma cells express functional erythropoietin receptor: Potential therapeutic implications

    PubMed Central

    PONIEWIERSKA-BARAN, AGATA; SUSZYNSKA, MALWINA; SUN, WENYUE; ABDELBASET-ISMAIL, AHMED; SCHNEIDER, GABRIELA; BARR, FREDERIC G.; RATAJCZAK, MARIUSZ Z.

    2015-01-01

    The erythropoietin receptor (EpoR) is expressed by cells from the erythroid lineage; however, evidence has accumulated that it is also expressed by some solid tumors. This is an important observation, because recombinant erythropoietin (EPO) is employed in cancer patients to treat anemia related to chemo/radiotherapy. In our studies we employed eight rhabdomyosarcoma (RMS) cell lines (three alveolar-type RMS cell lines and five embrional-type RMS cell lines), and mRNA samples obtained from positive, PAX7-FOXO1-positive, and fusion-negative RMS patient samples. Expression of EpoR was evaluated by RT-PCR, gene array and FACS. The functionality of EpoR in RMS cell lines was evaluated by chemotaxis, adhesion, and direct cell proliferation assays. In some of the experiments, RMS cells were exposed to vincristine (VCR) in the presence or absence of EPO to test whether EPO may impair the therapeutic effect of VCR. We report for a first time that functional EpoR is expressed in human RMS cell lines as well as by primary tumors from RMS patients. Furthermore, EpoR is detectably expressed in both embryonal and alveolar RMS subtypes. At the functional level, several human RMS cell lines responded to EPO stimulation by enhanced proliferation, chemotaxis, cell adhesion, and phosphorylation of MAPKp42/44 and AKT. Moreover, RMS cells became more resistant to VCR treatment in the presence of EPO. Our findings have important potential clinical implications, indicating that EPO supplementation in RMS patients may have the unwanted side effect of tumor progression. PMID:26412593

  13. Expression of glucocorticoid receptors in the regenerating human skeletal muscle.

    PubMed

    Filipović, D; Pirkmajer, S; Mis, K; Mars, T; Grubic, Z

    2011-01-01

    Many stress conditions are accompanied by skeletal muscle dysfunction and regeneration, which is essentially a recapitulation of the embryonic development. However, regeneration usually occurs under conditions of hypothalamus-pituitary-adrenal gland axis activation and therefore increased glucocorticoid (GC) levels. Glucocorticoid receptor (GR), the main determinant of cellular responsiveness to GCs, exists in two isoforms (GRalpha and GRbeta) in humans. While the role of GRalpha is well characterized, GRbeta remains an elusive player in GC signalling. To elucidate basic characteristics of GC signalling in the regenerating human skeletal muscle we assessed GRalpha and GRbeta expression pattern in cultured human myoblasts and myotubes and their response to 24-hour dexamethasone (DEX) treatment. There was no difference in GRalpha mRNA and protein expression or DEX-mediated GRalpha down-regulation in myoblasts and myotubes. GRbeta mRNA level was very low in myoblasts and remained unaffected by differentiation and/or DEX. GRbeta protein could not be detected. These results indicate that response to GCs is established very early during human skeletal muscle regeneration and that it remains practically unchanged before innervation is established. Very low GRbeta mRNA expression and inability to detect GRbeta protein suggests that GRbeta is not a major player in the early stages of human skeletal muscle regeneration.

  14. Characterization of the Olfactory Receptors Expressed in Human Spermatozoa

    PubMed Central

    Flegel, Caroline; Vogel, Felix; Hofreuter, Adrian; Schreiner, Benjamin S. P.; Osthold, Sandra; Veitinger, Sophie; Becker, Christian; Brockmeyer, Norbert H.; Muschol, Michael; Wennemuth, Gunther; Altmüller, Janine; Hatt, Hanns; Gisselmann, Günter

    2016-01-01

    The detection of external cues is fundamental for human spermatozoa to locate the oocyte in the female reproductive tract. This task requires a specific chemoreceptor repertoire that is expressed on the surface of human spermatozoa, which is not fully identified to date. Olfactory receptors (ORs) are candidate molecules and have been attributed to be involved in sperm chemotaxis and chemokinesis, indicating an important role in mammalian spermatozoa. An increasing importance has been suggested for spermatozoal RNA, which led us to investigate the expression of all 387 OR genes. This study provides the first comprehensive analysis of OR transcripts in human spermatozoa of several individuals by RNA-Seq. We detected 91 different transcripts in the spermatozoa samples that could be aligned to annotated OR genes. Using stranded mRNA-Seq, we detected a class of these putative OR transcripts in an antisense orientation, indicating a different function, rather than coding for a functional OR protein. Nevertheless, we were able to detect OR proteins in various compartments of human spermatozoa, indicating distinct functions in human sperm. A panel of various OR ligands induced Ca2+ signals in human spermatozoa, which could be inhibited by mibefradil. This study indicates that a variety of ORs are expressed at the mRNA and protein level in human spermatozoa. PMID:26779489

  15. Pharmacological Characterization of Human Histamine Receptors and Histamine Receptor Mutantsin the Sf9 Cell Expression System.

    PubMed

    Schneider, Erich H; Seifert, Roland

    2017-02-24

    A large problem of histamine receptor research is data heterogeneity. Various experimental approaches, the complex signaling pathways of mammalian cells, and the use of different species orthologues render it difficult to compare and interpret the published results. Thus, the four human histamine receptor subtypes were analyzed side-by-side in the Sf9 insect cell expression system, using radioligand binding assays as well as functional readouts proximal to the receptor activation event (steady-state GTPase assays and [(35)S]GTPγS assays). The human H1R was co-expressed with the regulators of G protein signaling RGS4 or GAIP, which unmasked a productive interaction between hH1R and insect cell Gαq. By contrast, functional expression of the hH2R required the generation of an hH2R-Gsα fusion protein to ensure close proximity of G protein and receptor. Fusion of hH2R to the long (GsαL) or short (GsαS) splice variant of Gαs resulted in comparable constitutive hH2R activity, although both G protein variants show different GDP affinities. Medicinal chemistry studies revealed profound species differences between hH1R/hH2R and their guinea pig orthologues gpH1R/gpH2R. The causes for these differences were analyzed by molecular modeling in combination with mutational studies. Co-expression of the hH3R with Gαi1, Gαi2, Gαi3, and Gαi/o in Sf9 cells revealed high constitutive activity and comparable interaction efficiency with all G protein isoforms. A comparison of various cations (Li(+), Na(+), K(+)) and anions (Cl(-), Br(-), I(-)) revealed that anions with large radii most efficiently stabilize the inactive hH3R state. Potential sodium binding sites in the hH3R protein were analyzed by expressing specific hH3R mutants in Sf9 cells. In contrast to the hH3R, the hH4R preferentially couples to co-expressed Gαi2 in Sf9 cells. Its high constitutive activity is resistant to NaCl or GTPγS. The hH4R shows structural instability and adopts a G protein-independent high

  16. Mapping the binding site pocket of the serotonin 5-Hydroxytryptamine2A receptor. Ser3.36(159) provides a second interaction site for the protonated amine of serotonin but not of lysergic acid diethylamide or bufotenin.

    PubMed

    Almaula, N; Ebersole, B J; Zhang, D; Weinstein, H; Sealfon, S C

    1996-06-21

    Like other amine neurotransmitters that activate G-protein-coupled receptors, 5-hydroxytryptamine (5-HT) binds to the 5-HT2A receptor through the interaction of its cationic primary amino group with the conserved Asp3.32(155) in transmembrane helix 3. Computational experiments with a 5-HT2A receptor model suggest that the same functional group of 5-hydroxytryptamine also forms a hydrogen bond with the side chain of Ser3.36(159), which is adjacent in space to Asp3.32(155). However, other 5-HT2A receptor ligands like lysergic acid diethylamide (LSD), in which the amine nitrogen is embedded in a heterocycle, or N,N-dimethyl 5-HT, in which the side chain is a tertiary amine, are found in the computational simulations to interact with the aspartate but not with the serine, due mainly to steric hindrance. The predicted difference in the interaction of various ligands in the same receptor binding pocket was tested with site-directed mutagenesis of Ser3.36(159) --> Ala and Ser3.36(159) --> Cys. The alanine substitution led to an 18-fold reduction in 5-HT affinity and the cysteine substitution to an intermediate 5-fold decrease. LSD affinity, in contrast, was unaffected by either mutation. N,N-Dimethyl 5-HT affinity was unaffected by the cysteine mutation and had a comparatively small 3-fold decrease in affinity for the alanine mutant. These findings identify a mode of ligand-receptor complexation that involves two receptor side chains interacting with the same functional group of specific serotonergic ligands. This interaction serves to orient the ligands in the binding pocket and may influence the degree of receptor activation.

  17. Use of LC/MS to assess brain tracer distribution in preclinical, in vivo receptor occupancy studies: dopamine D2, serotonin 2A and NK-1 receptors as examples.

    PubMed

    Chernet, Eyassu; Martin, Laura J; Li, Dominic; Need, Anne B; Barth, Vanessa N; Rash, Karen S; Phebus, Lee A

    2005-12-12

    High performance liquid chromatography combined with either single quad or triple quad mass spectral detectors (LC/MS) was used to measure the brain distribution of receptor occupancy tracers targeting dopamine D2, serotonin 5-HT2A and neurokinin NK-1 receptors using the ligands raclopride, MDL-100907 and GR205171, respectively. All three non-radiolabeled tracer molecules were easily detectable in discrete rat brain areas after intravenous doses of 3, 3 and 30 microg/kg, respectively. These levels showed a differential brain distribution caused by differences in receptor density, as demonstrated by the observation that pretreatment with compounds that occupy these receptors reduced this differential distribution in a dose-dependent manner. Intravenous, subcutaneous and oral dose-occupancy curves were generated for haloperidol at the dopamine D2 receptor as were oral curves for the antipsychotic drugs olanzapine and clozapine. In vivo dose-occupancy curves were also generated for orally administered clozapine, olanzapine and haloperidol at the cortical 5-HT2A binding site. In vivo occupancy at the striatal neurokinin NK-1 binding site by various doses of orally administered MK-869 was also measured. Our results demonstrate the utility of LC/MS to quantify tracer distribution in preclinical brain receptor occupancy studies.

  18. α-Synuclein Alters Toll-Like Receptor Expression

    PubMed Central

    Béraud, Dawn; Twomey, Margaret; Bloom, Benjamin; Mittereder, Andrew; Ton, Vy; Neitzke, Katherine; Chasovskikh, Sergey; Mhyre, Timothy R.; Maguire-Zeiss, Kathleen A.

    2011-01-01

    Parkinson's disease, an age-related neurodegenerative disorder, is characterized by the loss of dopamine neurons in the substantia nigra, the accumulation of α-synuclein in Lewy bodies and neurites, and neuroinflammation. While the exact etiology of sporadic Parkinson's disease remains elusive, a growing body of evidence suggests that misfolded α-synuclein promotes inflammation and oxidative stress resulting in neurodegeneration. α-Synuclein has been directly linked to microglial activation in vitro and increased numbers of activated microglia have been reported in an α-synuclein overexpressing mouse model prior to neuronal loss. However, the mechanism by which α-synuclein incites microglial activation has not been fully described. Microglial activation is governed in part, by pattern recognition receptors that detect foreign material and additionally recognize changes in homeostatic cellular conditions. Upon proinflammatory pathway initiation, activated microglia contribute to oxidative stress through release of cytokines, nitric oxide, and other reactive oxygen species, which may adversely impact adjacent neurons. Here we show that microglia are directly activated by α-synuclein in a classical activation pathway that includes alterations in the expression of toll-like receptors. These data suggest that α-synuclein can act as a danger-associated molecular pattern. PMID:21747756

  19. Expression of melatonin receptors in arteries involved in thermoregulation

    SciTech Connect

    Viswanathan, M.; Laitinen, J.T.; Saavedra, J.M. )

    1990-08-01

    Melatonin binding sites were localized and characterized in the vasculature of the rat by using the melatonin analogue 2-(125I)iodomelatonin (125I-melatonin) and quantitative in vitro autoradiography. The expression of these sites was restricted to the caudal artery and to the arteries that form the circle of Willis at the base of the brain. The arterial 125I-melatonin binding was stable, saturable, and reversible. Saturation studies revealed that the binding represented a single class of high-affinity binding sites with a dissociation constant (Kd) of 3.4 x 10(-11) M in the anterior cerebral artery and 1.05 x 10(-10) M in the caudal artery. The binding capacities (Bmax) in these arteries were 19 and 15 fmol/mg of protein, respectively. The relative order of potency of indoles for inhibition of 125I-melatonin binding at these sites was typical of a melatonin receptor: 2-iodomelatonin greater than melatonin greater than N-acetylserotonin much much greater than 5-hydroxytryptamine. Norepinephrine-induced contraction of the caudal artery in vitro was significantly prolonged and potentiated by melatonin in a concentration-dependent manner, suggesting that these arterial binding sites are functional melatonin receptors. Neither primary steps in smooth muscle contraction (inositol phospholipid hydrolysis) nor relaxation (adenylate cyclase activation) were affected by melatonin. Melatonin, through its action on the tone of these arteries, may cause circulatory adjustments in these arteries, which are believed to be involved in thermoregulation.

  20. Optimization of 2-phenylcyclopropylmethylamines as selective serotonin 2C receptor agonists and their evaluation as potential antipsychotic agents.

    PubMed

    Cheng, Jianjun; Giguère, Patrick M; Onajole, Oluseye K; Lv, Wei; Gaisin, Arsen; Gunosewoyo, Hendra; Schmerberg, Claire M; Pogorelov, Vladimir M; Rodriguiz, Ramona M; Vistoli, Giulio; Wetsel, William C; Roth, Bryan L; Kozikowski, Alan P

    2015-02-26

    The discovery of a new series of compounds that are potent, selective 5-HT2C receptor agonists is described herein as we continue our efforts to optimize the 2-phenylcyclopropylmethylamine scaffold. Modifications focused on the alkoxyl substituent present on the aromatic ring led to the identification of improved ligands with better potency at the 5-HT2C receptor and excellent selectivity against the 5-HT2A and 5-HT2B receptors. ADMET studies coupled with a behavioral test using the amphetamine-induced hyperactivity model identified four compounds possessing drug-like profiles and having antipsychotic properties. Compound (+)-16b, which displayed an EC50 of 4.2 nM at 5-HT2C, no activity at 5-HT2B, and an 89-fold selectivity against 5-HT2A, is one of the most potent and selective 5-HT2C agonists reported to date. The likely binding mode of this series of compounds to the 5-HT2C receptor was also investigated in a modeling study, using optimized models incorporating the structures of β2-adrenergic receptor and 5-HT2B receptor.

  1. Antidepressant-like activity of aroxyalkyl derivatives of 2-methoxyphenylpiperazine and evidence for the involvement of serotonin receptor subtypes in their mechanism of action.

    PubMed

    Kubacka, Monika; Mogilski, Szczepan; Bednarski, Marek; Nowiński, Leszek; Dudek, Magdalena; Żmudzka, Elżbieta; Siwek, Agata; Waszkielewicz, Anna M; Marona, Henryk; Satała, Grzegorz; Bojarski, Andrzej; Filipek, Barbara; Pytka, Karolina

    2016-02-01

    Since serotonin (5-HT) is strongly involved in the etiology and pathophysiology of depression, the development of new antidepressants is still based on the serotonergic system. The complexity of serotonergic system provides an opportunity for the development of compounds with multiple and complementary mechanism of action. This study describes serotonin receptor profile, functional characterization, and pharmacological in vivo evaluation of new aroxyalkyl derivatives of 2-methoxyphenylpiperazine. The obtained results allowed for the identification of compound 3, (1-[3-(2,6-dimethylphenoxy)propyl]-4-(2-methoxyphenyl)piperazine hydrochloride), a partial 5-HT1A receptor agonist, and 5-HT2A receptor antagonist, with high affinity toward 5-HT7 receptors, showing antidepressant- and anxiolytic-like properties. Moreover, 5-HT1A receptor activation is crucial for the antidepressant-like activity of compound 3. The rest of the compounds (except compounds 1 and 9) showed antidepressant but not anxiolytic-like properties, which did not result from 5-HT1A receptors activation. Furthermore, the compounds are 5-HT1A and weak 5-HT3 receptors antagonists, and some of them 5-HT2A antagonists. Moreover, none of the studied compounds impaired motor coordination at antidepressant-like doses. Since the studied compounds exhibited activity in behavioral assays and interacted with various receptors, the results of our experiments are very promising and require further studies.

  2. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  3. The farnesoid X receptor is expressed in breast cancer and regulates apoptosis and aromatase expression.

    PubMed

    Swales, Karen E; Korbonits, Márta; Carpenter, Robert; Walsh, Desmond T; Warner, Timothy D; Bishop-Bailey, David

    2006-10-15

    Bile acids are present at high concentrations in breast cysts and in the plasma of postmenopausal women with breast cancer. The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that regulates bile acid homeostasis. FXR was detected in normal and tumor breast tissue, with a high level of expression in ductal epithelial cells of normal breast and infiltrating ductal carcinoma cells. FXR was also present in the human breast carcinoma cells, MCF-7 and MDA-MB-468. Activation of FXR by high concentrations of ligands induced MCF-7 and MDA-MB-468 apoptosis. At lower concentrations that had no direct effect on viability, the FXR agonist GW4064 induced expression of mRNA for the FXR target genes, small heterodimer partner (SHP), intestinal bile acid binding protein, and multidrug resistance-associated protein 2 (MRP-2), and repressed the expression of the SHP target gene aromatase. In contrast to MRP-2, mRNA for the breast cancer target genes MDR-3, MRP-1, and solute carrier transporter 7A5 were decreased. Although multidrug resistance transporters were regulated and are known FXR target genes, GW4064 had no effect on the cell death induced by the anticancer drug paclitaxel. Our findings show for the first time that FXR is expressed in breast cancer tissue and has multiple properties that could be used for the treatment of breast cancer.

  4. Cyclic AMP Effectors Regulate Myometrial Oxytocin Receptor Expression.

    PubMed

    Yulia, Angela; Singh, Natasha; Lei, Kaiyu; Sooranna, Suren R; Johnson, Mark R

    2016-11-01

    The factors that initiate human labor are poorly understood. We have tested the hypothesis that a decline in cAMP/protein kinase A (PKA) function leads to the onset of labor. Initially, we identified myometrial cAMP/PKA-responsive genes (six up-regulated and five down-regulated genes) and assessed their expression in myometrial samples taken from different stages of pregnancy and labor. We found that the oxytocin receptor (OTR) was one of the cAMP-repressed genes, and, given the importance of OTR in the labor process, we studied the mechanisms involved in greater detail using small interfering RNA, chemical agonists, and antagonists of the cAMP effectors. We found that cAMP-repressed genes, including OTR, increased with the onset of labor. Our in vitro studies showed that cAMP acting via PKA reduced OTR expression but that in the absence of PKA, cAMP acts via exchange protein activated by cAMP (EPAC) to increase OTR expression. In early labor myometrial samples, PKA levels and activity declined and Epac1 levels increased, perhaps accounting for the increase in myometrial OTR mRNA and protein levels at this time. In vitro exposure of myometrial cells to stretch and IL-1β increased OTR levels and reduced basal and forskolin-stimulated cAMP and PKA activity, as judged by phospho-cAMP response element-binding protein levels, but neither stretch nor IL-1β had any effect on PKA or EPAC1 levels. In summary, there is a reduction in the activity of the cAMP/PKA pathway with the onset of human labor potentially playing a critical role in regulating OTR expression and the transition from myometrial quiescence to activation.

  5. Evidence that the anorexia induced by lipopolysaccharide is mediated by the 5-HT2C receptor.

    PubMed

    von Meyenburg, Claudia; Langhans, Wolfgang; Hrupka, Brian J

    2003-01-01

    Rats consistently reduce their food intake following injections of bacterial lipopolysaccharides (LPS). Because inhibition of serotonergic (5-HT) activity by 8-OH-DPAT (5-HT(1A) activation) attenuates LPS-induced anorexia, we conducted a series of studies to examine whether other 5-HT-receptors are involved in the mediation of peripheral LPS-induced anorexia. In all experiments, rats were injected with LPS (100 microg/kg body weight [BW] ip) at lights out (hour 0). Antagonists were administered peripherally at hour 4, shortly after the onset of anorexia, which presumably follows the enhanced cytokine production after LPS. Food intake was then recorded during the subsequent 2 h or longer. 5-HT receptor antagonists cyanopindolol and SB 224289 (5-HT(1B)), ketanserin (5-HT(2A)), RS-102221 (5-HT(2C)), and metoclopramide (5-HT(3)) failed to attenuate LPS-induced anorexia. In contrast, both ritanserin (5-HT(2A/C)-receptor antagonist) (0.5 mg/kg BW) and SB 242084 (5-HT(2C)) (0.3 mg/kg BW) attenuated LPS-induced anorexia at doses that did not alter food intake in non-LPS-treated rats (all P<.01). Our results suggest that at least part of the anorexia following peripheral LPS administration is mediated through an enhanced 5-HT-ergic activity and the 5-HT(2C) receptor.

  6. Receptor Expression in Rat Skeletal Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.

    1996-01-01

    One on the most persistent problems with long-term space flight is atrophy of skeletal muscles. Skeletal muscle is unique as a tissue in the body in that its ability to undergo atrophy or hypertrophy is controlled exclusively by cues from the extracellular environment. The mechanism of communication between muscle cells and their environment is through a group of membrane-bound and soluble receptors, each of which carries out unique, but often interrelated, functions. The primary receptors include acetyl choline receptors, beta-adrenergic receptors, glucocorticoid receptors, insulin receptors, growth hormone (i.e., somatotropin) receptors, insulin-like growth factor receptors, and steroid receptors. This project has been initiated to develop an integrated approach toward muscle atrophy and hypertrophy that takes into account information on the populations of the entire group of receptors (and their respective hormone concentrations), and it is hypothesized that this information can form the basis for a predictive computer model for muscle atrophy and hypertrophy. The conceptual basis for this project is illustrated in the figure below. The individual receptors are shown as membrane-bound, with the exception of the glucocorticoid receptor which is a soluble intracellular receptor. Each of these receptors has an extracellular signalling component (e.g., innervation, glucocorticoids, epinephrine, etc.), and following the interaction of the extracellular component with the receptor itself, an intracellular signal is generated. Each of these intracellular signals is unique in its own way; however, they are often interrelated.

  7. Cholecystokinin A and B receptors are differentially expressed in normal pancreas and pancreatic adenocarcinoma.

    PubMed Central

    Weinberg, D S; Ruggeri, B; Barber, M T; Biswas, S; Miknyocki, S; Waldman, S A

    1997-01-01

    Cholecystokinin (CCK) plays an important role in pancreatic carcinogenesis. While human CCK-A and -B receptors have been fully characterized, their relative roles in human pancreatic adenocarcinoma remain unclear. Thus, expression of CCK-A and -B receptors in normal human pancreas, pancreatic adenocarcinomas, and other human extrapancreatic tissues and malignancies was examined, using reverse transcription followed by the polymerase chain reaction (RT-PCR). mRNA isolated from 15 normal pancreas specimens, 22 pancreatic adenocarcinomas, and 58 extrapancreatic tissues and tumors was subjected to RT-PCR using primers specific for human CCK-A and -B receptors. Expression of CCK-B receptors was detected in all tissues arising from pancreas and in most extrapancreatic tissues and tumors. In contrast, CCK-A receptors exhibited a more selective pattern of expression in gall bladder, intestine, brain, ovary, spleen, and thymus. Of significance, CCK-A receptors were expressed selectively in all pancreatic adenocarcinomas, but not in any normal pancreas specimens. In situ hybridization, using receptor-specific riboprobes, localized CCK-A receptor expression to ductal cells, the presumed origin of most human pancreatic adenocarcinomas. Southern blot analysis revealed no evidence of CCK-A receptor gene amplification or rearrangement in pancreatic adenocarcinomas. Because of its selective expression, the CCK-A receptor may serve as selective biomarker for pancreatic adenocarcinoma. PMID:9239407

  8. Abnormal melatonin receptor 1B expression in osteoblasts from girls with adolescent idiopathic scoliosis.

    PubMed

    Man, Gene Chi-Wai; Wong, Jack Ho; Wang, William Wei-Jun; Sun, Guang-Quan; Yeung, Benson Hiu-Yan; Ng, Tzi-Bun; Lee, Simon Kwong-Man; Ng, Bobby Kin-Wah; Qiu, Yong; Cheng, Jack Chun-Yiu

    2011-05-01

    Melatonin signaling dysfunction has been associated with the etiology of adolescent idiopathic scoliosis (AIS). Genetic analysis has also associated the occurrence of AIS with the MT2 gene. Thus, we determined whether there is abnormality in the protein expression of melatonin receptors (MT) in AIS osteoblasts. In this study, we recruited 11 girls with severe AIS and eight normal subjects for intraoperative bone biopsies. MT1 and MT2 receptor protein expressions in the isolated osteoblasts were detected. Also, cell proliferation assay using different melatonin concentrations (0, 10(-9), 10(-5), 10(-4) m) was carried out. The results showed that both MT1 and MT2 receptors are expressed in osteoblasts of the controls. While MT1 receptors were expressed in osteoblasts of all AIS subjects, osteoblasts of only 7 of 11 AIS showed expression of MT2 receptors. Melatonin stimulated control osteoblasts to proliferate. However, proliferation of AIS osteoblasts without expression of MT2 receptor, after treatment with melatonin, was minimal when compared with control and AIS osteoblasts with MT2 receptor expression. The proliferation of AIS osteoblasts with MT2 receptor was greater than those without. This is the first report demonstrating a difference between AIS and normal osteoblasts in the protein expression of MT2 receptor. The results suggest that there is a possible functional effect of MT2 receptor on osteoblast proliferation. AIS osteoblasts without expression of MT2 receptor showed the lowest percentage of viable cells after melatonin treatment. This possibly indicates the modulating role of melatonin through MT2 receptor on the proliferation of osteoblasts.

  9. Defective expression of scavenger receptors in celiac disease mucosa.

    PubMed

    Cupi, Maria Laura; Sarra, Massimiliano; De Nitto, Daniela; Franzè, Eleonora; Marafini, Irene; Monteleone, Ivan; Del Vecchio Blanco, Giovanna; Paoluzi, Omero Alessandro; Di Fusco, Davide; Gentileschi, Paolo; Ortenzi, Angela; Colantoni, Alfredo; Pallone, Francesco; Monteleone, Giovanni

    2014-01-01

    Celiac disease (CD) is a gluten sensitive enteropathy characterized by a marked infiltration of the mucosa with immune cells, over-production of inflammatory cytokines and epithelial cell damage. The factors/mechanisms that sustain and amplify the ongoing mucosal inflammation in CD are not however fully understood. Here, we have examined whether in CD there is a defective clearance of apoptotic cells/bodies, a phenomenon that helps promote tolerogenic signals thus liming pathogenic responses. Accumulation of apoptotic cells and bodies was more pronounced in the epithelial and lamina propria compartments of active CD patients as compared to inactive CD patients and normal controls. Expression of scavenger receptors, which are involved in the clearance of apoptotic cells/bodies, namely thrombospondin (TSP)-1, CD36 and CD61, was significantly reduced in active CD as compared to inactive CD and normal mucosal samples. Consistently, lamina propria mononuclear cells (LPMC) of active CD patients had diminished ability to phagocyte apoptotic cells. Interleukin (IL)-15, IL-21 and interferon-γ, cytokines over-produced in active CD, inhibited the expression of TSP-1, CD36, and CD61 in normal intestinal LPMC. These results indicate that CD-related inflammation is marked by diminished clearance of apoptotic cells/bodies, thus suggesting a role for such a defect in the ongoing mucosal inflammation in this disorder.

  10. Defective Expression of Scavenger Receptors in Celiac Disease Mucosa

    PubMed Central

    Cupi, Maria Laura; Sarra, Massimiliano; De Nitto, Daniela; Franzè, Eleonora; Marafini, Irene; Monteleone, Ivan; Del Vecchio Blanco, Giovanna; Paoluzi, Omero Alessandro; Di Fusco, Davide; Gentileschi, Paolo; Ortenzi, Angela; Colantoni, Alfredo; Pallone, Francesco; Monteleone, Giovanni

    2014-01-01

    Celiac disease (CD) is a gluten sensitive enteropathy characterized by a marked infiltration of the mucosa with immune cells, over-production of inflammatory cytokines and epithelial cell damage. The factors/mechanisms that sustain and amplify the ongoing mucosal inflammation in CD are not however fully understood. Here, we have examined whether in CD there is a defective clearance of apoptotic cells/bodies, a phenomenon that helps promote tolerogenic signals thus liming pathogenic responses. Accumulation of apoptotic cells and bodies was more pronounced in the epithelial and lamina propria compartments of active CD patients as compared to inactive CD patients and normal controls. Expression of scavenger receptors, which are involved in the clearance of apoptotic cells/bodies, namely thrombospondin (TSP)-1, CD36 and CD61, was significantly reduced in active CD as compared to inactive CD and normal mucosal samples. Consistently, lamina propria mononuclear cells (LPMC) of active CD patients had diminished ability to phagocyte apoptotic cells. Interleukin (IL)-15, IL-21 and interferon-γ, cytokines over-produced in active CD, inhibited the expression of TSP-1, CD36, and CD61 in normal intestinal LPMC. These results indicate that CD-related inflammation is marked by diminished clearance of apoptotic cells/bodies, thus suggesting a role for such a defect in the ongoing mucosal inflammation in this disorder. PMID:24971453

  11. Lack of association between serotonin-2A receptor gene (HTR2A) polymorphisms and tardive dyskinesia in schizophrenia.

    PubMed

    Basile, V S; Ozdemir, V; Masellis, M; Meltzer, H Y; Lieberman, J A; Potkin, S G; Macciardi, F M; Petronis, A; Kennedy, J L

    2001-03-01

    Tardive dyskinesia (TD) is a disabling neurological side effect associated with long-term treatment with typical antipsychotics. Family studies and animal models lend evidence for hereditary predisposition to TD. The newer atypical antipsychotics pose a minimal risk for TD which is in part attributed to their ability to block the serotonin-2A (5-HT(2A)) receptor. 5-HT(2A) receptors were also identified in the basal ganglia; a brain region that plays a critical role in antipsychotic-induced movement disorders. We tested the significance of variation in the 5-HT(2A) receptor gene (HTR2A) in relation to the TD phenotype. Three polymorphisms in HTR2A, one silent (C102T), one that alters the amino acid sequence (his452tyr) and one in the promoter region (A-1437G) were investigated in 136 patients refractory or intolerant to treatment with typical antipsychotics and with a DSM-IIIR diagnosis of schizophrenia. We did not find any significant difference in allele, genotype or haplotype frequencies of polymorphisms in HTR2A among patients with or without TD (P > 0.05). Further analysis using the ANCOVA statistic with a continuous measure of the TD phenotype (Abnormal Involuntary Movement Scale (AIMS) score) found that the AIMS scores were not significantly influenced by HTR2A polymorphisms, despite controlling for potential confounders such as age, gender and ethnicity (P > 0.05). Theoretically, central serotonergic function can be subject to genetic control at various other mechanistic levels including the rate of serotonin synthesis (tryptophane hydroxylase gene), release, reuptake (serotonin transporter gene) and degradation (monoamine oxidase gene). Analyses of these other serotonergic genes are indicated. In summary, polymorphisms in HTR2A do not appear to influence the risk for TD. Further studies evaluating in tandem multiple candidate genes relevant for the serotonergic system are warranted to dissect the genetic basis of the complex TD phenotype.

  12. Distribution of delta opioid receptor expressing neurons in the mouse hippocampus

    PubMed Central

    Eric, ERBS; Lauren, FAGET; Gregory, SCHERRER; Pascal, KESSLER; Didier, HENTSCH; Jean-Luc, VONESCH; Audrey, MATIFAS; Brigitte L., KIEFFER; Dominique, MASSOTTE

    2012-01-01

    Delta opioid receptors participate to the control of chronic pain and emotional responses. Recent data also identified their implication in spatial memory and drug-context associations pointing to a critical role of hippocampal delta receptors. We examined the distribution of delta receptor-expressing cells in the hippocampus using fluorescent knock-in mice that express a functional delta receptor fused at its carboxyterminus with the green fluorescent protein in place of the native receptor. Colocalization with markers for different neuronal populations was performed by immunohistochemical detection. Fine mapping in the dorsal hippocampus confirmed that delta opioid receptors are mainly present in GABAergic neurons. Indeed, they are mostly expressed in parvalbumin-immunopositive neurons both in the Ammon’s horn and dentate gyrus. These receptors, therefore, most likely participate to the dynamic regulation of hippocampal activity. PMID:22750239

  13. Cytokine receptor expression in human lymphoid tissue: analysis by fluorescence microscopy.

    PubMed

    Zola, H; Ridings, J; Weedon, H; Fusco, M; Byard, R W; Macardle, P J

    1995-08-01

    A highly-sensitive flourescence method, capable of detecting cytokine receptors present at low concentrations (around 100 molecules per cell) by flow cytometry, was adapted for use on tissue sections. This method was used to examine the expression of several cytokine receptors in lymphoid tissues. IL-2 receptors were distributed broadly, with higher concentrations in T cell areas. IL-1 receptor Type 1 was detected in T cell areas and in the follicular mantle, and was strongly expressed on vascular endothelium. IL-6 receptor was found at very low concentration, both within and outside germinal centres. The gp 130 molecule, which is involved in the functional receptor complex for IL-6 and several other cytokines, was present at higher concentrations, particularly in the germinal centre. Analysis of receptor expression in secondary lymphoid tissue provides evidence bearing on the physiological roles of cytokines, as these tissues contain cells at various stages of physiological activation located in well-defined functional zones.

  14. Distribution of delta opioid receptor-expressing neurons in the mouse hippocampus.

    PubMed

    Erbs, E; Faget, L; Scherrer, G; Kessler, P; Hentsch, D; Vonesch, J-L; Matifas, A; Kieffer, B L; Massotte, D

    2012-09-27

    Delta opioid receptors participate to the control of chronic pain and emotional responses. Recent data also identified their implication in spatial memory and drug-context associations pointing to a critical role of hippocampal delta receptors. We examined the distribution of delta receptor-expressing cells in the hippocampus using fluorescent knock-in mice that express a functional delta receptor fused at its carboxyterminus with the green fluorescent protein in place of the native receptor. Colocalization with markers for different neuronal populations was performed by immunohistochemical detection. Fine mapping in the dorsal hippocampus confirmed that delta opioid receptors are mainly present in GABAergic neurons. Indeed, they are mostly expressed in parvalbumin-immunopositive neurons both in the Ammon's horn and dentate gyrus. These receptors, therefore, most likely participate in the dynamic regulation of hippocampal activity.

  15. Heterologous expression of the adenosine A1 receptor in transgenic mouse retina.

    PubMed

    Li, Ning; Salom, David; Zhang, Li; Harris, Tim; Ballesteros, Juan A; Golczak, Marcin; Jastrzebska, Beata; Palczewski, Krzysztof; Kurahara, Carole; Juan, Todd; Jordan, Steven; Salon, John A

    2007-07-17

    Traditional cell-based systems used to express integral membrane receptors have yet to produce protein samples of sufficient quality for structural study. Herein we report an in vivo method that harnesses the photoreceptor system of the retina to heterologously express G protein-coupled receptors in a biochemically homogeneous and pharmacologically functional conformation. As an example we show that the adenosine A1 receptor, when placed under the influence of the mouse opsin promoter and rhodopsin rod outer segment targeting sequence, localized to the photoreceptor cells of transgenic retina. The resulting receptor protein was uniformly glycosylated and pharmacologically well behaved. By comparison, we demonstrated in a control experiment that opsin, when expressed in the liver, had a complex pattern of glycosylation. Upon solubilization, the retinal adenosine A1 receptor retained binding characteristics similar to its starting material. This expression method may prove generally useful for generating high-quality G protein-coupled receptors for structural studies.

  16. Modified expression of peripheral blood lymphocyte muscarinic cholinergic receptors in asthmatic child