Science.gov

Sample records for 5-ht2a serotonin receptors

  1. Insights into the regulation of 5-HT2A serotonin receptors by scaffolding proteins and kinases.

    PubMed

    Allen, John A; Yadav, Prem N; Roth, Bryan L

    2008-11-01

    5-HT(2A) serotonin receptors are essential molecular targets for the actions of LSD-like hallucinogens and atypical antipsychotic drugs. 5-HT(2A) serotonin receptors also mediate a variety of physiological processes in peripheral and central nervous systems including platelet aggregation, smooth muscle contraction, and the modulation of mood and perception. Scaffolding proteins have emerged as important regulators of 5-HT(2A) receptors and our recent studies suggest multiple scaffolds exist for 5-HT(2A) receptors including PSD95, arrestin, and caveolin. In addition, a novel interaction has emerged between p90 ribosomal S6 kinase and 5-HT(2A) receptors which attenuates receptor signaling. This article reviews our recent studies and emphasizes the role of scaffolding proteins and kinases in the regulation of 5-HT(2A) trafficking, targeting and signaling.

  2. 5-HT2A SEROTONIN RECEPTOR BIOLOGY: Interacting proteins, kinases and paradoxical regulation

    PubMed Central

    Roth, Bryan L

    2011-01-01

    5-hydroxytryptamine2A (5-HT2A) serotonin receptors are important pharmacological targets for a large number of central nervous system and peripheral serotonergic medications. In this review article I summarize work mainly from my lab regarding serotonin receptor anatomy, pharmacology, signaling and regulation. I highlight the role of serotonin receptor interacting proteins and the emerging paradigm of G-protein coupled receptor functional selectivity. PMID:21288474

  3. 5-HT2A receptor antagonist M100907 reduces serotonin synthesis: An autoradiographic study

    PubMed Central

    Hasegawa, Shu; Fikre-Merid, Maraki; Diksic, Mirko

    2013-01-01

    The effects of the administration of the serotonin (5-HT)2A antagonist, M100907, on 5-HT synthesis rates, were evaluated using the α-[14C]methyl-L-tryptophan (α-MTrp) autoradiographic method. In the treatment study, M100907 (10 mg/kg) was injected intraperitoneally 30 min before the α-MTrp injection (30 μCi over 2 min). A single dose of M100907 caused a significant decrease in the synthesis in the anterior olfactory nucleus, accumbens nucleus, frontal cortex, sensory-motor cortex, cingulate cortex, medial caudate-putamen, dorsal thalamus, substantia nigra, inferior collicus, raphe magnus nucleus, superior olive, and raphe pallidus nucleus. These data suggest that the terminal 5-HT2A receptors are involved in the regulation of 5-HT synthesis in the entire brain. Further, 5-HT synthesis is likely regulated by the 5-HT2A antagonistic property of M100907 in the cortices, anterior olfactory nucleus, caudate putamen, and nucleus accumbens. PMID:22056993

  4. The role of serotonin 5-HT2A receptors in memory and cognition

    PubMed Central

    Zhang, Gongliang; Stackman, Robert W.

    2015-01-01

    Serotonin 5-HT2A receptors (5-HT2ARs) are widely distributed in the central nervous system, especially in brain region essential for learning and cognition. In addition to endogenous 5-HT, several hallucinogens, antipsychotics, and antidepressants function by targeting 5-HT2ARs. Preclinical studies show that 5-HT2AR antagonists have antipsychotic and antidepressant properties, whereas agonist ligands possess cognition-enhancing and hallucinogenic properties. Abnormal 5-HT2AR activity is associated with a number of psychiatric disorders and conditions, including depression, schizophrenia, and drug addiction. In addition to its traditional activity as a G protein-coupled receptor (GPCR), recent studies have defined novel operations of 5-HT2ARs. Here we review progress in the (1) receptor anatomy and biology: distribution, signaling, polymerization and allosteric modulation; and (2) receptor functions: learning and memory, hallucination and spatial cognition, and mental disorders. Based on the recent progress in basic research on the 5-HT2AR, it appears that post-training 5-HT2AR activation enhances non-spatial memory consolidation, while pre-training 5-HT2AR activation facilitates fear extinction. Further, the potential influence that 5-HT2AR-elicited visual hallucinations may have on visual cue (i.e., landmark) guided spatial cognition is discussed. We conclude that the development of selective 5-HT2AR modulators to target distinct signaling pathways and neural circuits represents a new possibility for treating emotional, neuropsychiatric, and neurodegenerative disorders. PMID:26500553

  5. 5-HT2A Serotonin Receptor Density in Adult Male Rats’ Hippocampus after Morphine-based Conditioned Place Preference

    PubMed Central

    Mohammadi, Rabie; Jahanshahi, Mehrdad; Jameie, Seyed Behnamedin

    2016-01-01

    Introduction: A close interaction exists between the brain opioid and serotonin (5-HT) neurotransmitter systems. Brain neurotransmitter 5-HT plays an important role in the regulation of reward-related processing. However, a few studies have investigated the potential role of 5-HT2A receptors in this behavior. Therefore, the aim of the present study was to assess the influence of morphine and Conditioned Place Preference (CPP) on the density of 5-HT2A receptor in neurons of rat hippocampal formation. Methods: Morphine (10 mg/kg, IP) was injected in male Wistar rats for 7 consecutive days (intervention group), but control rats received just normal saline (1 mL/kg, IP). We used a hotplate test of analgesia to assess induction of tolerance to analgesic effects of morphine on days 1 and 8 of injections. Later, two groups of rats were sacrificed one day after 7 days of injections, their whole brains removed, and the striatum and PFC immediately dissected. Then, the NR1 gene expression was examined with a semi-quantitative RT-PCR method. Results: Our data showed that the maximum response was obtained with 2.5 mg/kg of morphine. The density of 5-HT2A receptor in different areas of the hippocampus increased significantly at sham-morphine and CPP groups (P<0.05). On the other hand, the CPP groups had more 5-HT2A receptors than sham-morphine groups and also the sham-morphine groups had more 5-HT2A receptors than the control groups. Conclusion: We concluded that the phenomenon of conditioned place preference induced by morphine can cause a significant increase in the number of serotonin 5-HT2A receptors in neurons of all areas of hippocampus. PMID:27563418

  6. The antidepressant 5-HT2A receptor antagonists pizotifen and cyproheptadine inhibit serotonin-enhanced platelet function.

    PubMed

    Lin, Olivia A; Karim, Zubair A; Vemana, Hari Priya; Espinosa, Enma V P; Khasawneh, Fadi T

    2014-01-01

    There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR) expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS) exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and EMD 281014, their

  7. Internalization and recycling of 5-HT2A receptors activated by serotonin and protein kinase C-mediated mechanisms

    PubMed Central

    Bhattacharyya, Samarjit; Puri, Sapna; Miledi, Ricardo; Panicker, Mitradas M.

    2002-01-01

    Serotonin (5-HT), a major neurotransmitter, has a large number of G protein-coupled receptors in mammals. On activation by exposure to their ligand, 5-HT2 receptor subtypes increase IP3 levels and undergo desensitization and internalization. To visualize the receptor in cells during these processes, we have constructed a 5-HT2A-enhanced GFP (SR2-GFP) fusion receptor. We show that this fusion receptor undergoes internalization on exposure to its natural ligand, 5-HT. Because 5-HT2A receptors activate the phospholipase C pathway, we studied the effect of protein kinase C (PKC) on the internalization process and found that activation of PKC by its specific activator phorbol 12-myristate 13-acetate, in the absence of 5-HT, leads to internalization of the receptor. Moreover, inhibition of PKC by its inhibitor sphingosine in the presence of 5-HT prevents the internalization process, suggesting that activation of PKC is sufficient and necessary for the internalization of 5-HT2A receptors. We also show that SR2-GFP recycles back to the plasma membrane after 5-HT-dependent internalization, suggesting a mechanism for resensitization. In addition, receptors that have been internalized on addition of phorbol 12-myristate 13-acetate in the absence of 5-HT also recycle to the surface, with a time course similar to that seen after activation of the receptors by 5-HT. Our study suggests that 5-HT2A receptors internalize and return to the surface after both serotonin- and PKC-mediated processes. This study reveals a role for PKC in receptor internalization and also shows that 5-HT2A receptors are recycled. PMID:12388782

  8. Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors.

    PubMed

    Smith, R L; Canton, H; Barrett, R J; Sanders-Bush, E

    1998-11-01

    Extensive behavioral and biochemical evidence suggests an agonist role at the 5-HT2A receptor, and perhaps the 5-HT2C receptor, in the mechanism of action of hallucinogenic drugs. However the published in vitro pharmacological properties of N,N-dimethyltryptamine (DMT), an hallucinogenic tryptamine analog, are not consistent with this hypothesis. We, therefore, undertook an extensive investigation into the properties of DMT at 5-HT2A and 5-HT2C receptors. In fibroblasts transfected with the 5-HT2A receptor or the 5-HT2C receptor, DMT activated the major intracellular signaling pathway (phosphoinositide hydrolysis) to an extent comparable to that produced by serotonin. Because drug efficacy changes with receptor density and cellular microenvironment, we also examined the properties of DMT in native preparations using a behavioral and biochemical approach. Rats were trained to discriminate an antagonist ketanserin from an agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in a two-lever choice paradigm. Pharmacological studies showed that responding on the DOI and ketanserin lever reflected agonist and antagonist activity at 5-HT2A receptors, and hence, was a suitable model for evaluating the in vivo functional properties of DMT. Like other 5-HT2A receptor agonists, DMT substituted fully for DOI. Intact choroid plexus was used to evaluate the agonist properties at endogenous 5-HT2C receptors; DMT was a partial agonist at 5-HT2C receptors in this native preparation. Thus, we conclude that DMT behaves as an agonist at both 5-HT2A and 5-HT2A receptors. One difference was evident in that the 5-HT2C, but not the 5-HT2A, receptor showed a profound desensitization to DMT over time. This difference is interesting in light of the recent report that the hallucinogenic activity of DMT does not tolerate in humans and suggests the 5-HT2C receptor plays a less prominent role in the action of DMT.

  9. Detection of new biased agonists for the serotonin 5-HT2A receptor: modeling and experimental validation.

    PubMed

    Martí-Solano, Maria; Iglesias, Alba; de Fabritiis, Gianni; Sanz, Ferran; Brea, José; Loza, M Isabel; Pastor, Manuel; Selent, Jana

    2015-04-01

    Detection of biased agonists for the serotonin 5-HT2A receptor can guide the discovery of safer and more efficient antipsychotic drugs. However, the rational design of such drugs has been hampered by the difficulty detecting the impact of small structural changes on signaling bias. To overcome these difficulties, we characterized the dynamics of ligand-receptor interactions of known biased and balanced agonists using molecular dynamics simulations. Our analysis revealed that interactions with residues S5.46 and N6.55 discriminate compounds with different functional selectivity. Based on our computational predictions, we selected three derivatives of the natural balanced ligand serotonin and experimentally validated their ability to act as biased agonists. Remarkably, our approach yielded compounds promoting an unprecedented level of signaling bias at the 5-HT2A receptor, which could help interrogate the importance of particular pathways in conditions like schizophrenia.

  10. Serotonin 5-HT2A receptor gene variants influence antidepressant response to repeated total sleep deprivation in bipolar depression.

    PubMed

    Benedetti, Francesco; Barbini, Barbara; Bernasconi, Alessandro; Fulgosi, Mara Cigala; Colombo, Cristina; Dallaspezia, Sara; Gavinelli, Chiara; Marino, Elena; Pirovano, Adele; Radaelli, Daniele; Smeraldi, Enrico

    2008-12-12

    5-HT2A receptor density in prefrontal cortex was associated with depression and suicide. 5-HT2A receptor gene polymorphism rs6313 was associated with 5-HT2A receptor binding potential, with the ability of individuals to use environmental support in order to prevent depression, and with sleep improvement after antidepressant treatment with mirtazapine. Studies on response to antidepressant drugs gave inconsistent results. Here we studied the effect of rs6313 on response to repeated total sleep deprivation (TSD) in 80 bipolar depressed inpatients treated with three consecutive TSD cycles (each one made of 36 h awake followed by a night of undisturbed sleep). All genotype groups showed comparable acute effects of the first TSD, but patients homozygotes for the T variant had better perceived and observed benefits from treatment than carriers of the C allele. These effects became significant after the first recovery night and during the following days, leading to a 36% higher final response rate (Hamilton depression rating<8). The higher density of postsynaptic excitatory 5-HT2A receptors in T/T homozygotes could have led to higher behavioural effects of increased 5-HT neurotransmission due to repeated TSD. Other possible mechanisms involve allostatic/homeostatic adaptation to sleep loss, and a different effect of the allele variants on epigenetic influences. Results confirm the interest for individual gene variants of the serotonin pathway in shaping clinical characteristics of depression and antidepressant response.

  11. Biochemical profile of YM992, a novel selective serotonin reuptake inhibitor with 5-HT2A receptor antagonistic activity.

    PubMed

    Hatanaka, K; Nomura, T; Hidaka, K; Takeuchi, H; Yatsugi, S; Fujii, M; Yamaguchi, T

    1996-01-01

    YM992, (S)-2-[[(7-fluoro-4-indanyl)oxy]methyl]morpholine monohydrochloride, exhibited the biochemical profile of a selective serotonin (5-HT) reuptake inhibitor (SSRI) with 5-HT2A receptor antagonistic activity. YM922 showed the same high affinity as fluoxetine against the 5-HT reuptake site (Ki = 21 nM) and a similar affinity to that of crazodone against the 5-HT2A receptor (Ki = 86 nM). In other receptor binding studies, an affinity for the adrenergic alpha 1 receptor (Ki = 200 nM) and 5-HT2C receptor (Ki = 680 nM) was observed. In a monoamine uptake study, YM992 showed a selective 5-HT uptake inhibition (IC50 = 0.15 microM), but only very weakly inhibited both noradrenaline (NA) and dopamine (DA) uptake (IC50 = 3.1 microM (NA), > 10 microM (DA)). YM992 was also found to potently inhibit the aggregation of human platelets (IC50 = 1.9 microM), revealing antagonistic activity for the 5-HT2A receptor in vitro. Enhanced serotonergic neurotransmission, in particular that mediated by the 5-HT1A receptor, has recently been reported to be important in the long-term treatment of depressive disorders with antidepressants. In addition, some 5-HT1A receptor-mediated responses are known to be potentiated by co-administration of 5-HT2A receptor antagonists. Thus, YM992, having both selective 5-HT reuptake inhibition and 5-HT2A antagonistic activity, might show potent therapeutic activity as a novel antidepressant in comparison with conventional SSRIs.

  12. Molecular dynamics of 5-HT1A and 5-HT2A serotonin receptors with methylated buspirone analogues

    NASA Astrophysics Data System (ADS)

    Bronowska, Agnieszka; Chilmonczyk, Zdzisław; Leś, Andrzej; Edvardsen, Øyvind; Østensen, Roy; Sylte, Ingebrigt

    2001-11-01

    In the present study experimentally determined ligand selectivity of three methylated buspirone analogues (denoted as MM2, MM5 and P55) towards 5-HT1A and 5-HT2A serotonin receptors was theoretically investigated on a molecular level. The relationships between the ligand structure and 5-HT1A and 5-HT2A receptor affinities were studied and the results were found to be in agreement with the available site-directed mutagenesis and binding affinity data. Molecular dynamics (MD) simulations of ligand-receptor complexes were performed for each investigated analogue, docked twice into the central cavity of 5-HT1A/5-HT2A, each time in a different orientation. Present results were compared with our previous theoretical results, obtained for buspirone and its non-methylated analogues. It was found that due to the presence of the methyl group in the piperazine ring the ligand position alters and the structure of the ligand-receptor complex is modified. Further, the positions of derivatives with pyrimidinyl aromatic moiety and quinolinyl moiety are significantly different at the 5-HT2A receptor. Thus, methylation of such derivatives alters the 3D structures of ligand-receptor complexes in different ways. The ligand-induced changes of the receptor structures were also analysed. The obtained results suggest, that helical domains of both receptors have different dynamical behaviour. Moreover, both location and topography of putative binding sites for buspirone analogues are different at 5-HT1A and 5-HT2A receptors.

  13. Discovering the mechanisms underlying serotonin (5-HT)2A and 5-HT2C receptor regulation following nicotine withdrawal in rats.

    PubMed

    Zaniewska, Magdalena; Alenina, Natalia; Wydra, Karolina; Fröhler, Sebastian; Kuśmider, Maciej; McCreary, Andrew C; Chen, Wei; Bader, Michael; Filip, Małgorzata

    2015-08-01

    We have previously demonstrated that nicotine withdrawal produces depression-like behavior and that serotonin (5-HT)2A/2C receptor ligands modulate that mood-like state. In the present study we aimed to identify the mechanisms (changes in radioligand binding, transcription or RNA-editing) related to such a behavioral outcome. Rats received vehicle or nicotine (0.4 mg/kg, s.c.) for 5 days in home cages. Brain 5-HT2A/2C receptors were analyzed on day 3 of nicotine withdrawal. Nicotine withdrawal increased [(3)H]ketanserin binding to 5-HT2A receptors in the ventral tegmental area and ventral dentate gyrus, yet decreased binding in the nucleus accumbens shell. Reduction in [(3)H]mesulergine binding to 5-HT2C receptors was seen in the ventral dentate gyrus. Profound decrease in the 5-HT2A receptor transcript level was noted in the hippocampus and ventral tegmental area. Out of five 5-HT2C receptor mRNA editing sites, deep sequencing data showed a reduction in editing at the E site and a trend toward reduction at the C site in the hippocampus. In the ventral tegmental area, a reduction for the frequency of CD 5-HT2C receptor transcript was seen. These results show that the reduction in the 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor density in the hippocampus and ventral tegmental area during nicotine withdrawal, while decreased 5-HT2C receptor mRNA editing may explain the reduction in receptor labeling in the hippocampus. Serotonin (5-HT)2A/2C receptor ligands alleviate depression-like state in nicotine-withdrawn rats. Here, we show that the reduction in 5-HT2A receptor transcript level may be an auto-regulatory response to the increased receptor number in the hippocampus and ventral tegmental area during nicotine withdrawal, while attenuated 5-HT2C receptor mRNA editing in the hippocampus might explain reduced inverse agonist binding to 5-HT2C receptor and suggest a shift toward a population of more active receptors. 5

  14. Interaction between serotonin 5-HT2A receptor gene and dopamine transporter (DAT1) gene polymorphisms influences personality trait of persistence in Austrian Caucasians.

    PubMed

    Schosser, Alexandra; Fuchs, Karoline; Scharl, Theresa; Schloegelhofer, Monika; Kindler, Jochen; Mossaheb, Nilufar; Kaufmann, Rainer M; Leisch, Friedrich; Kasper, Siegfried; Sieghart, Werner; Aschauer, Harald N

    2010-03-01

    We examined 89 normal volunteers using Cloninger's Temperament and Character Inventory (TCI). Genotyping the 102T/C polymorphism of the serotonin 5HT2A receptor gene and the ser9gly polymorphism in exon 1 of the dopamine D3 receptor (DRD3) gene was performed using PCR-RFLP, whereas the dopamine transporter (DAT1) gene variable number of tandem repeats (VNTR) polymorphism was investigated using PCR amplification followed by electrophoresis in an 8% acrylamide gel with a set of size markers. We found a nominally significant association between gender and harm avoidance (P=0.017; women showing higher scores). There was no association of either DAT1, DRD3 or 5HT2A alleles or genotypes with any dimension of the TCI applying Kruskal-Wallis rank-sum tests. Comparing homozygote and heterozygote DAT1 genotypes, we found higher novelty seeking scores in homozygotes (P=0.054). We further found a nominally significant interaction between DAT1 and 5HT2A homo-/heterozygous gene variants (P=0.0071; DAT1 and 5HT2A genotypes P value of 0.05), performing multivariate analysis of variance (MANOVA). Examining the temperamental TCI subscales, this interaction was associated with persistence (genotypes: P=0.004; homo-/heterozygous gene variants: P=0.0004). We conclude that an interaction between DAT1 and 5HT2A genes might influence the temperamental personality trait persistence.

  15. Role of serotonin 5-HT2A receptors in the development of cardiac hypertrophy in response to aortic constriction in mice.

    PubMed

    Lairez, O; Cognet, T; Schaak, S; Calise, D; Guilbeau-Frugier, C; Parini, A; Mialet-Perez, J

    2013-06-01

    Serotonin, in addition to its fundamental role as a neurotransmitter, plays a critical role in the cardiovascular system, where it is thought to be involved in the development of cardiac hypertrophy and failure. Indeed, we recently found that mice with deletion of monoamine oxidase A had enhanced levels of blood and cardiac 5-HT, which contributed to exacerbation of hypertrophy in a model of experimental pressure overload. 5-HT2A receptors are expressed in the heart and mediate a hypertrophic response to 5-HT in cardiac cells. However, their role in cardiac remodeling in vivo and the signaling pathways associated are not well understood. In the present study, we evaluated the effect of a selective 5-HT2A receptor antagonist, M100907, on the development of cardiac hypertrophy induced by transverse aortic constriction (TAC). Cardiac 5-HT2A receptor expression was transiently increased after TAC, and was recapitulated in cardiomyocytes, as observed with 5-HT2A in situ labeling by immunohistochemistry. Selective blockade of 5-HT2A receptors prevented the development of cardiac hypertrophy, as measured by echocardiography, cardiomyocyte area and heart weight-to-body weight ratio. Interestingly, activation of calmodulin kinase (CamKII), which is a core mechanism in cardiac hypertrophy, was reduced in cardiac samples from M100907-treated TAC mice compared to vehicle-treated mice. In addition, phosphorylation of histone deacetylase 4 (HDAC4), a downstream partner of CamKII was significantly diminished in M100907-treated TAC mice. Thus, our results show that selective blockade of 5-HT2A receptors has beneficial effect in the development of cardiac hypertrophy through inhibition of the CamKII/HDAC4 pathway.

  16. Cerebral metabolic responses to 5-HT2A/C receptor activation in mice with genetically modified serotonin transporter (SERT) expression.

    PubMed

    Dawson, Neil; Ferrington, Linda; Lesch, Klaus-Peter; Kelly, Paul A T

    2011-01-01

    Variation in the human serotonin transporter gene (hSERT; 5-HTT) resulting in a life-long alteration in SERT function influences anxiety and the risk of developing affective disorders. The mechanisms underlying the influence of the hSERT gene on these phenotypes remain unclear but may involve altered 5-HT receptor function. Here we characterise the cerebral metabolic response to 5-HT(2A/C) receptor activation in two transgenic mouse models of altered SERT function, SERT knock-out (SERT KO) and hSERT over-expressing (hSERT OE) mice, to test the hypothesis that genetically mediated variability in SERT expression alters 5-HT(2A/C) function. We found that a constitutive increase in SERT expression (hSERT OE) enhanced, whereas a constitutive decrease in SERT expression (SERT KO) attenuated, 5-HT(2A/C) function. Therefore, altered 5-HT(2A/C) receptor functioning in response to hSERT gene variation may contribute to its influence on affective phenotypes.

  17. The 5-HT(2A) receptor and serotonin transporter in Asperger's disorder: A PET study with [¹¹C]MDL 100907 and [¹¹C]DASB.

    PubMed

    Girgis, Ragy R; Slifstein, Mark; Xu, Xiaoyan; Frankle, W Gordon; Anagnostou, Evdokia; Wasserman, Stacey; Pepa, Lauren; Kolevzon, Alexander; Abi-Dargham, Anissa; Laruelle, Marc; Hollander, Eric

    2011-12-30

    Evidence from biochemical, imaging, and treatment studies suggest abnormalities of the serotonin system in autism spectrum disorders, in particular in frontolimbic areas of the brain. We used the radiotracers [(11)C]MDL 100907 and [(11)C]DASB to characterize the 5-HT(2A) receptor and serotonin transporter in Asperger's Disorder. Seventeen individuals with Asperger's Disorder (age=34.3 ± 11.1 years) and 17 healthy controls (age=33.0 ± 9.6 years) were scanned with [(11)C]MDL 100907. Of the 17 patients, eight (age=29.7 ± 7.0 years) were also scanned with [¹¹C]DASB, as were eight healthy controls (age=28.7 ± 7.0 years). Patients with Asperger's Disorder and healthy control subjects were matched for age, gender, and ethnicity, and all had normal intelligence. Metabolite-corrected arterial plasma inputs were collected and data analyzed by two-tissue compartment modeling. The primary outcome measure was regional binding potential BP(ND). Neither regional [¹¹C]MDL 100907 BP(ND) nor [¹¹C]DASB BP(ND) was statistically different between the Asperger's and healthy subjects. This study failed to find significant alterations in binding parameters of 5-HT(2A) receptors and serotonin transporters in adult subjects with Asperger's disorder.

  18. The secret ingredient for social success of young males: a functional polymorphism in the 5HT2A serotonin receptor gene.

    PubMed

    Dijkstra, Jan Kornelis; Lindenberg, Siegwart; Zijlstra, Lieuwe; Bouma, Esther; Veenstra, René

    2013-01-01

    In adolescence, being socially successful depends to a large extent on being popular with peers. Even though some youths have what it takes to be popular, they are not, whereas others seem to have a secret ingredient that just makes the difference. In this study the G-allele of a functional polymorphism in the promotor region of the 5HT2A serotonin receptor gene (-G1438A) was identified as a secret ingredient for popularity among peers. These findings build on and extend previous work by Burt (2008, 2009). Tackling limitations from previous research, the role of the 5HT2A serotonin receptor gene was examined in adolescent males (N = 285; average age 13) using a unique sample of the TRAILS study. Carrying the G-allele enhanced the relation between aggression and popularity, particularly for those boys who have many female friends. This seems to be an "enhancer" effect of the G-allele whereby popularity relevant characteristics are made more noticeable. There is no "popularity gene", as the G-allele by itself had no effect on popularity.

  19. Blockade of Serotonin 5-HT2A Receptors Suppresses Behavioral Sensitization and Naloxone-Precipitated Withdrawal Symptoms in Morphine-Treated Mice

    PubMed Central

    Pang, Gang; Wu, Xian; Tao, Xinrong; Mao, Ruoying; Liu, Xueke; Zhang, Yong-Mei; Li, Guangwu; Stackman, Robert W.; Dong, Liuyi; Zhang, Gongliang

    2016-01-01

    The increasing prescription of opioids is fueling an epidemic of addiction and overdose deaths. Morphine is a highly addictive drug characterized by a high relapse rate – even after a long period of abstinence. Serotonin (5-HT) neurotransmission participates in the development of morphine dependence, as well as the expression of morphine withdrawal. In this study, we examined the effect of blockade of 5-HT2A receptors (5-HT2ARs) on morphine-induced behavioral sensitization and withdrawal in male mice. 5-HT2AR antagonist MDL 11,939 (0.5 mg/kg, i.p.) suppressed acute morphine (5.0 mg/kg, s.c.)-induced increase in locomotor activity. Mice received morphine (10 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of morphine (10 mg/kg) was administered to induce the expression of behavioral sensitization. MDL 11,939 (0.5 mg/kg, i.p.) pretreatment suppressed the expression of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. MDL 11,939 (0.5 mg/kg, i.p.) prevented naloxone-precipitated withdrawal in morphine-dependent mice on day 7. Moreover, chronic morphine treatment increased 5-HT2AR protein level and decreased the phosphorylation of extracellular signal-regulated kinases in the prefrontal cortex. Together, these results by the first time demonstrate that 5-HT2ARs modulate opioid dependence and blockade of 5-HT2AR may represent a novel strategy for the treatment of morphine use disorders. Highlights (i) Blockade of 5-HT2A receptors suppresses the expression of morphine-induced behavioral sensitization. (ii) Blockade of 5-HT2A receptors suppresses naloxone-precipitated withdrawal in morphine-treated mice. (iii) Chronic morphine exposure induces an increase in 5-HT2A receptor protein level and a decrease in ERK protein phosphorylation in prefrontal cortex. PMID:28082900

  20. Test-retest variability of high resolution positron emission tomography (PET) imaging of cortical serotonin (5HT2A) receptors in older, healthy adults

    PubMed Central

    2009-01-01

    Background Position emission tomography (PET) imaging using [18F]-setoperone to quantify cortical 5-HT2A receptors has the potential to inform pharmacological treatments for geriatric depression and dementia. Prior reports indicate a significant normal aging effect on serotonin 5HT2A receptor (5HT2AR) binding potential. The purpose of this study was to assess the test-retest variability of [18F]-setoperone PET with a high resolution scanner (HRRT) for measuring 5HT2AR availability in subjects greater than 60 years old. Methods: Six healthy subjects (age range = 65–78 years) completed two [18F]-setoperone PET scans on two separate occasions 5–16 weeks apart. Results The average difference in the binding potential (BPND) as measured on the two occasions in the frontal and temporal cortical regions ranged between 2 and 12%, with the lowest intraclass correlation coefficient in anterior cingulate regions. Conclusion We conclude that the test-retest variability of [18F]-setoperone PET in elderly subjects is comparable to that of [18F]-setoperone and other 5HT2AR radiotracers in younger subject samples. PMID:19580676

  1. Individual Differences in Impulsive Action Reflect Variation in the Cortical Serotonin 5-HT2A Receptor System

    PubMed Central

    Fink, Latham HL; Anastasio, Noelle C; Fox, Robert G; Rice, Kenner C; Moeller, F Gerard; Cunningham, Kathryn A

    2015-01-01

    Impulsivity is an important feature of multiple neuropsychiatric disorders, and individual variation in the degree of inherent impulsivity could play a role in the generation or exacerbation of problematic behaviors. Serotonin (5-HT) actions at the 5-HT2AR receptor (5-HT2AR) promote and 5-HT2AR antagonists suppress impulsive action (the inability to withhold premature responses; motor impulsivity) upon systemic administration or microinfusion directly into the medial prefrontal cortex (mPFC), a node in the corticostriatal circuit that is thought to play a role in the regulation of impulsive action. We hypothesized that the functional capacity of the 5-HT2AR, which is governed by its expression, localization, and protein/protein interactions (eg, postsynaptic density 95 (PSD95)), may drive the predisposition to inherent impulsive action. Stable high-impulsive (HI) and low-impulsive (LI) phenotypes were identified from an outbred rodent population with the 1-choice serial reaction time (1-CSRT) task. HI rats exhibited a greater head-twitch response following administration of the preferential 5-HT2AR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) and were more sensitive to the effects of the selective 5-HT2AR antagonist M100907 to suppress impulsive action relative to LI rats. A positive correlation was observed between levels of premature responses and 5-HT2AR binding density in frontal cortex ([3H]-ketanserin radioligand binding). Elevated mPFC 5-HT2AR protein expression concomitant with augmented association of the 5-HT2AR with PSD95 differentiated HI from LI rats. The observed differential sensitivity of HI and LI rats to 5-HT2AR ligands and associated distinct 5-HT2AR protein profiles provide evidence that spontaneously occurring individual differences in impulsive action reflect variation in the cortical 5-HT2AR system. PMID:25666313

  2. Variation in Dopamine D2 and Serotonin 5-HT2A Receptor Genes is Associated with Working Memory Processing and Response to Treatment with Antipsychotics

    PubMed Central

    Blasi, Giuseppe; Selvaggi, Pierluigi; Fazio, Leonardo; Antonucci, Linda Antonella; Taurisano, Paolo; Masellis, Rita; Romano, Raffaella; Mancini, Marina; Zhang, Fengyu; Caforio, Grazia; Popolizio, Teresa; Apud, Jose; Weinberger, Daniel R; Bertolino, Alessandro

    2015-01-01

    Dopamine D2 and serotonin 5-HT2A receptors contribute to modulate prefrontal cortical physiology and response to treatment with antipsychotics in schizophrenia. Similarly, functional variation in the genes encoding these receptors is also associated with these phenotypes. In particular, the DRD2 rs1076560 T allele predicts a lower ratio of expression of D2 short/long isoforms, suboptimal working memory processing, and better response to antipsychotic treatment compared with the G allele. Furthermore, the HTR2A T allele is associated with lower 5-HT2A expression, impaired working memory processing, and poorer response to antipsychotics compared with the C allele. Here, we investigated in healthy subjects whether these functional polymorphisms have a combined effect on prefrontal cortical physiology and related cognitive behavior linked to schizophrenia as well as on response to treatment with second-generation antipsychotics in patients with schizophrenia. In a total sample of 620 healthy subjects, we found that subjects with the rs1076560 T and rs6314 T alleles have greater fMRI prefrontal activity during working memory. Similar results were obtained within the attentional domain. Also, the concomitant presence of the rs1076560 T/rs6314 T alleles also predicted lower behavioral accuracy during working memory. Moreover, we found that rs1076560 T carrier/rs6314 CC individuals had better responses to antipsychotic treatment in two independent samples of patients with schizophrenia (n=63 and n=54, respectively), consistent with the previously reported separate effects of these genotypes. These results indicate that DRD2 and HTR2A genetic variants together modulate physiological prefrontal efficiency during working memory and also modulate the response to antipsychotics. Therefore, these results suggest that further exploration is needed to better understand the clinical consequences of these genotype–phenotype relationships. PMID:25563748

  3. Functions of 5-HT2A receptor and its antagonists in the cardiovascular system.

    PubMed

    Nagatomo, Takafumi; Rashid, Mamunur; Abul Muntasir, Habib; Komiyama, Tadazumi

    2004-10-01

    The serotonin (5-hydroxytryptamine, 5-HT) receptors have conventionally been divided into seven subfamilies, most of which have several subtypes. Among them, 5-HT(2A) receptor is associated with the contraction of vascular smooth muscle, platelet aggregation and thrombus formation and coronary artery spasms. Accordingly, selective 5-HT(2A) antagonists may have potential in the treatment of cardiovascular diseases. Sarpogrelate, a selective 5-HT(2A) antagonist, has been introduced clinically as a therapeutic agent for the treatment of ischemic diseases associated with thrombosis. Molecular modeling studies also suggest that sarpogrelate is a 5-HT(2A) selective antagonist and is likely to have pharmacological effects beneficial in the treatment of cardiovascular diseases. This review describes the above findings as well as the signaling linkages of the 5-HT(2A) receptors and the mode of agonist binding to 5-HT(2A) receptor using data derived from molecular modeling and site-directed mutagenesis.

  4. Hallucinogen-like effects of N,N-dipropyltryptamine (DPT): possible mediation by serotonin 5-HT1A and 5-HT2A receptors in rodents

    PubMed Central

    Fantegrossi, William E.; Reissig, Chad J.; Katz, Elyse B.; Yarosh, Haley L.; Rice, Kenner C.; Winter, Jerrold C.

    2008-01-01

    N,N-dipropyltryptamine (DPT) is a synthetic tryptamine hallucinogen which has been used psychotherapeutically in humans, but has been studied preclinically only rarely. In the present studies, DPT was tested in a drug-elicited head twitch assay in mice, and in rats trained to discriminate lysergic acid diethylamide (LSD), N,N-dimethyl-4-phosphoryloxytryptamine (psilocybin), or 3,4-methylenedioxymethamphetamine (MDMA). A separate group of rats was also trained to recognize DPT itself as a discriminative stimulus, and in all cases, the behavioral effects of DPT were challenged with the selective serotonin (5-HT)2A antagonist M100907, the 5-HT1A selective antagonist WAY-100635, or their combination. In the head twitch assay, DPT elicited dose-dependent effects, producing a biphasic dose-effect curve. WAY-100635 produced a parallel rightward shift in the dose-effect curve for head twitches, indicative of surmountable antagonism, but the antagonist effects of M100907 were functionally insurmountable. DPT produced partial to full substitution when tested in rats trained to discriminate LSD, psilocybin or MDMA, and served as a discriminative stimulus. In all cases, the antagonist effects of M100907 were more profound than were those of WAY-100635. DPT is thus active in two rodent models relevant to 5-HT2 agonist activity. The effectiveness with which M100907 antagonizes the behavioral actions of this compound strongly suggests that the 5-HT2A receptor is an important site of action for DPT, but the modulatory actions of WAY-100635 also imply a 5-HT1A-mediated component to the actions of this compound. PMID:17905422

  5. Effects of serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibition plus 5-HT(2A) receptor antagonism on the firing activity of norepinephrine neurons.

    PubMed

    Szabo, Steven T; Blier, Pierre

    2002-09-01

    YM992 [(S)-2-[[(7-fluoro-4-indanyl)oxy]methyl]morpholine monohydrochloride] is a selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor (SSRI) and a potent 5-HT(2A) antagonist. The aim of the present study was to assess, using in vivo extracellular unitary recordings, the effect of acute and sustained administration of YM992 (40 mg kg(-1) day(-1) s.c., using osmotic minipumps) on the spontaneous firing activity of locus coeruleus (LC) norepinephrine (NE) neurons. Acute intravenous injection of YM992 (4 mg kg(-1)) significantly decreased NE neuron firing activity by 29% and blocked the inhibitory effect of a subsequent injection of the 5-HT(2) agonist DOI [1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride]. A 2-day treatment with YM992 decreased the firing rate of NE neurons by 66%, whereas a partial recovery was observed after a 7-day treatment and a complete one after a 21-day treatment. Following the injection of the alpha(2)-adrenoceptor antagonist idazoxan (1 mg kg(-1) i.v.), NE neuron firing was equalized in controls and 2-day YM992-treated rats. This put into evidence an increased degree of activation of alpha(2)-adrenergic autoreceptors in the treated rats. The suppressant effect of the alpha(2)-adrenoceptor agonist clonidine was significantly decreased in long-term YM992-treated rats. The recovery of LC firing activity after long-term YM992 administration could thus be explained by a decreased sensitivity of alpha(2)-adrenergic autoreceptors. Sustained SSRI administration leads to a gradual reduction of the firing activity of NE neurons during long-term administration, whereas YM992 produced opposite effects. The exact basis for the increased synaptic availability of NE by YM992 remains to be elucidated. This NE activity, resulting from 5-HT reuptake inhibition plus 5-HT(2A) receptor antagonism, might confer additional benefits in affective and anxiety disorders.

  6. Extensive Rigid Analogue Design Maps the Binding Conformation of Potent N-Benzylphenethylamine 5-HT2A Serotonin Receptor Agonist Ligands

    PubMed Central

    2012-01-01

    Based on the structure of the superpotent 5-HT2A agonist 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine, which consists of a ring-substituted phenethylamine skeleton modified with an N-benzyl group, we designed and synthesized a small library of constrained analogues to identify the optimal arrangement of the pharmacophoric elements of the ligand. Structures consisted of diversely substituted tetrahydroisoquinolines, piperidines, and one benzazepine. Based on the structure of (S,S)-9b, which showed the highest affinity of the series, we propose an optimal binding conformation. (S,S)-9b also displayed 124-fold selectivity for the 5-HT2A over the 5-HT2C receptor, making it the most selective 5-HT2A receptor agonist ligand currently known. PMID:23336049

  7. Cognition-induced modulation of serotonin in the orbitofrontal cortex: a controlled cross-over PET study of a delayed match-to-sample task using the 5-HT2a receptor antagonist [18F]altanserin.

    PubMed

    Hautzel, Hubertus; Müller, Hans-Wilhelm; Herzog, Hans; Grandt, Rüdiger

    2011-10-01

    Behavioral and cellular studies indicate that serotonin interacting with the 5-HT2a receptor (5-HT2aR) is involved in cognitive processes supporting working memory (WM). However, 5-HT receptor neuroimaging studies directly relating WM-induced neuronal activations to concomitant changes in the availability of 5-HT receptors as a functional measure for serotonin release are lacking. This controlled cross-over PET study aimed to identify brain regions with WM-induced changes in the binding potential (BP(nd)) of the 5-HT2aR antagonist [(18)F]altanserin. Ten young males underwent a delayed match-to-sample task using photographs of faces and a control task. The BP(nd)s for both conditions were calculated by applying Ichise's noninvasive plot. Statistics were performed with the SPM toolbox statistical nonparametric mapping (SnPM3) particularly suited for analyzing whole-brain PET data in an exploratory way. A higher BP(nd) for [(18)F]altanserin during WM versus control was found in the orbitofrontal cortex (OFC) pointing towards an increased [(18)F]altanserin/5-HT2aR interaction in OFC while BP(nd) decreases during WM were not found. Furthermore, no BP(nd) changes in regions known from functional neuroimaging studies to be more specifically involved in WM were identified. These findings may suggest that the increased [(18)F]altanserin BP(nd) under WM challenge and hence the increased availability of 5-HT2aR reflects a decrease in local OFC serotonin. As the OFC plays a prominent role in decision-making and supports cognitive processes related to the central executive functions of WM it might be modulated by the serotoninergic system via the 5-HT2aR in order to support and optimize basic cognitive functions.

  8. Examination of the hippocampal contribution to serotonin 5-HT2A receptor-mediated facilitation of object memory in C57BL/6J mice.

    PubMed

    Zhang, Gongliang; Cinalli, David; Cohen, Sarah J; Knapp, Kristina D; Rios, Lisa M; Martínez-Hernández, José; Luján, Rafael; Stackman, Robert W

    2016-10-01

    The rodent hippocampus supports non-spatial object memory. Serotonin 5-HT2A receptors (5-HT2AR) are widely expressed throughout the hippocampus. We previously demonstrated that the activation of 5-HT2ARs enhanced the strength of object memory assessed 24 h after a limited (i.e., weak memory) training procedure. Here, we examined the subcellular distribution of 5-HT2ARs in the hippocampal CA1 region and underlying mechanisms of 5-HT2AR-mediated object memory consolidation. Analyses with immuno-electron microscopy revealed the presence of 5-HT2ARs on the dendritic spines and shafts of hippocampal CA1 neurons, and presynaptic terminals in the CA1 region. In an object recognition memory procedure that places higher demand on the hippocampus, only post-training systemic or intrahippocampal administration of the 5-HT2AR agonist TCB-2 enhanced object memory. Object memory enhancement by TCB-2 was blocked by the 5-HT2AR antagonist, MDL 11,937. The memory-enhancing dose of systemic TCB-2 increased extracellular glutamate levels in hippocampal dialysate samples, and increased the mean in vivo firing rate of hippocampal CA1 neurons. In summary, these data indicate a pre- and post-synaptic distribution of 5-HT2ARs, and activation of 5-HT2ARs selectively enhanced the consolidation of object memory, without affecting encoding or retrieval. The 5-HT2AR-mediated facilitation of hippocampal memory may be associated with an increase in hippocampal neuronal firing and glutamate efflux during a post-training time window in which recently encoded memories undergo consolidation.

  9. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  10. Binding of [(3)H]lysergic acid diethylamide to serotonin 5-HT(2A) receptors and of [(3)H]paroxetine to serotonin uptake sites in platelets from healthy children, adolescents and adults.

    PubMed

    Sigurdh, J; Spigset, O; Allard, P; Mjörndal, T; Hägglöf, B

    1999-11-01

    Possible age effects on binding of [(3)H]lysergic acid diethylamide ([(3)H]LSD) to serotonin 5-HT(2A) receptors and of [(3)H]paroxetine to serotonin uptake sites were studied in platelets from healthy children (11-12 years of age), adolescents (16-17 years of age) and adults. Significant overall age effects were found both for the number of binding sites (B(max)) for [(3)H]LSD binding (p < 0.001), the affinity constant (K(d)) for [(3)H]LSD binding (p < 0.001), B(max) for [(3)H]paroxetine binding (p < 0.001) and K(d) for [(3)H] paroxetine binding (p = 0.006). In general, there was a decrease in B(max) with increasing age, which predominantly occurred between the ages 11-12 years and 16-17 years for the 5-HT(2A) receptor, and after 16-17 years of age for the serotonin uptake site. These developmental changes might have an impact on the effect of treatment with serotonergic drugs in children and adolescents. When the platelet serotonin variables investigated are employed in studies in children or adolescents, age matching or, alternatively, introduction of age control in the statistical analysis should be performed.

  11. Targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors for developing effective antipsychotics: synthesis, biological characterization, and behavioral studies.

    PubMed

    Brindisi, Margherita; Butini, Stefania; Franceschini, Silvia; Brogi, Simone; Trotta, Francesco; Ros, Sindu; Cagnotto, Alfredo; Salmona, Mario; Casagni, Alice; Andreassi, Marco; Saponara, Simona; Gorelli, Beatrice; Weikop, Pia; Mikkelsen, Jens D; Scheel-Kruger, Jorgen; Sandager-Nielsen, Karin; Novellino, Ettore; Campiani, Giuseppe; Gemma, Sandra

    2014-11-26

    Combination of dopamine D3 antagonism, serotonin 5-HT1A partial agonism, and antagonism at 5-HT2A leads to a novel approach to potent atypical antipsychotics. Exploitation of the original structure-activity relationships resulted in the identification of safe and effective antipsychotics devoid of extrapyramidal symptoms liability, sedation, and catalepsy. The potential atypical antipsychotic 5bb was selected for further pharmacological investigation. The distribution of c-fos positive cells in the ventral striatum confirmed the atypical antipsychotic profile of 5bb in agreement with behavioral rodent studies. 5bb administered orally demonstrated a biphasic effect on the MK801-induced hyperactivity at dose levels not able to induce sedation, catalepsy, or learning impairment in passive avoidance. In microdialysis studies, 5bb increased the dopamine efflux in the medial prefrontal cortex. Thus, 5bb represents a valuable lead for the development of atypical antipsychotics endowed with a unique pharmacological profile for addressing negative symptoms and cognitive deficits in schizophrenia.

  12. Effects of the serotonin 5-HT2A and 5-HT2C receptor ligands on the discriminative stimulus effects of nicotine in rats.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Przegaliński, Edmund; Filip, Malgorzata

    2007-10-01

    The present study tested the hypothesis that serotonergic (5-HT) 5-HT2A or 5-HT2C receptors or their pharmacological stimulation modulated the discriminative stimulus effects of nicotine in male Wistar rats. To this end the selective 5-HT2A receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidinemethanol (M100,907; 0.5-1 mg/kg, i.p.), the functional 5-HT2A receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI; 0.1-1 mg/kg, s.c.), the selective 5-HT2C receptor antagonist 6-chloro-5-methyl-1-{[2-(2-methylpyrid-3-yloxy)pyrid-5-yl]carbamoyl}indoline (SB 242,084; 0.25-1 mg/kg, i.p.) and the 5-HT2C receptor agonists (S)-2-chloro-5-fluoro-indol-1-yl)-1-methylethylamine fumarate (Ro 60-0175; 0.3-1 mg/kg, s.c.) and (7bR, 10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole (WAY 163,909; 0.75-1.5 mg/kg, i.p.) were used. Additionally, the effects of the selective alpha4beta2 nicotinic acetylcholine receptor subtype agonist 5-iodo-3-(2(S)-azetidinylmethoxy)pyridine (5-IA; 0.01 mg/kg, s.c.) were investigated. In rats trained to discriminate (-)-nicotine (0.4 mg/kg, s.c.) from saline in a two-lever, water-reinforced fixed ratio 10 task, substitutions were not observed with 5-HT2 receptor ligands (<32% nicotine-lever responding), conversely 5-IA induced a full substitution (100% nicotine-lever responding). In combination studies, fixed doses of M100,907 (0.5-1 mg/kg) or SB 242,084 (0.25-1 mg/kg) did not alter the dose-response curve of nicotine, while DOI (0.3 mg/kg), Ro 60-0175 (1 mg/kg) and WAY 163,909 (1 and 1.5 mg/kg) attenuated the discriminative stimulus effects of nicotine. The decrease in the expression of the discriminative stimulus effects of nicotine produced by DOI was blocked by M100,907 (1 mg/kg), but not by SB 242,084 (1 mg/kg), while that evoked by Ro 60-0175 or WAY 163,909 was blocked by SB 242,084 (1 mg/kg), but not by M100,907 (1 mg/kg). Further studies showed that

  13. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors.

    PubMed

    Viñals, Xavier; Moreno, Estefanía; Lanfumey, Laurence; Cordomí, Arnau; Pastor, Antoni; de La Torre, Rafael; Gasperini, Paola; Navarro, Gemma; Howell, Lesley A; Pardo, Leonardo; Lluís, Carmen; Canela, Enric I; McCormick, Peter J; Maldonado, Rafael; Robledo, Patricia

    2015-07-01

    Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.

  14. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors

    PubMed Central

    Lanfumey, Laurence; Cordomí, Arnau; Pastor, Antoni; de La Torre, Rafael; Gasperini, Paola; Navarro, Gemma; Howell, Lesley A.; Pardo, Leonardo; Lluís, Carmen; Canela, Enric I.; McCormick, Peter J.; Maldonado, Rafael; Robledo, Patricia

    2015-01-01

    Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties. PMID:26158621

  15. Effects of olanzapine and betahistine co-treatment on serotonin transporter, 5-HT2A and dopamine D2 receptor binding density.

    PubMed

    Lian, Jiamei; Huang, Xu-Feng; Pai, Nagesh; Deng, Chao

    2013-12-02

    Olanzapine is widely used in treating multiple domains of schizophrenia symptoms but induces serious metabolic side-effects. Recent evidence has showed that co-treatment of betahistine (a histaminergic H1 receptor agonist and H3 receptor antagonist) is effective for preventing olanzapine-induced weight gain/obesity, however it is not clear whether this co-treatment affects on the primary therapeutic receptor binding sites of olanzapine such as serotonergic 5-HT2A receptors (5-HT2AR) and dopaminergic D2 receptors (D2R). Therefore, this study investigated the effects of this co-treatment on 5-HT2AR, 5-HT transporter (5-HTT) and D2R bindings in various brain regions involved in antipsychotic efficacy. Female Sprague Dawley rats were administered orally (t.i.d.) with either olanzapine (1mg/kg), betahistine (2.7 mg/kg), olanzapine plus betahistine (O+B), or vehicle (control) for 2 weeks. Quantitative autoradiography was used to detect the density of [(3)H]ketanserin, [(3)H]paroxetine and [(3)H]raclopride binding site to 5-HT2AR, 5-HTT and D2R. Compared to the controls, olanzapine significantly decreased [(3)H]ketanserin bindings to 5-HT2AR in the prefrontal cortex, cingulate cortex, and nucleus accumbens. Similar changes in 5-HT2AR bindings in these nuclei were also observed in the O+B co-treatment group. Olanzapine also significantly decreased [(3)H]paroxetine binding to 5-HTT in the ventral tegmental area and substantia nigra, however, both olanzapine only and O+B co-treatment did not affect [(3)H]raclopride binding to D2R. The results confirmed the important role of 5-HT2AR in the efficacy of olanzapine, which is not influenced by the O+B co-treatment. Therefore, betahistine co-treatment would be an effective combination therapy to reduce olanzapine-induced weight gain side-effects without affecting olanzapine's actions on 5-HT2AR transmissions.

  16. Disrupting 5-HT2A Receptor/PDZ Protein Interactions Reduces Hyperalgesia and Enhances SSRI Efficacy in Neuropathic Pain

    PubMed Central

    Pichon, Xavier; Wattiez, Anne S; Becamel, Carine; Ehrlich, Ingrid; Bockaert, Joel; Eschalier, Alain; Marin, Philippe; Courteix, Christine

    2010-01-01

    Antidepressants are one of the first-line treatments for neuropathic pain. Despite the influence of serotonin (5-hydroxytryptamine, 5-HT) in pain modulation, selective serotonin reuptake inhibitors (SSRIs) are less effective than tricyclic antidepressants. Here, we show, in diabetic neuropathic rats, an alteration of the antihyperalgesic effect induced by stimulation of 5-HT2A receptors, which are known to mediate SSRI-induced analgesia. 5-HT2A receptor density was not changed in the spinal cord of diabetic rats, whereas postsynaptic density protein-95 (PSD-95), one of the PSD-95/disc large suppressor/zonula occludens-1 (PDZ) domain containing proteins interacting with these receptors, was upregulated. Intrathecal injection of a cell-penetrating peptidyl mimetic of the 5-HT2A receptor C-terminus, which disrupts 5-HT2A receptor–PDZ protein interactions, induced an antihyperalgesic effect in diabetic rats, which results from activation of 5-HT2A receptors by endogenous 5-HT. The peptide also enhanced antihyperalgesia induced by the SSRI fluoxetine. Its effects likely resulted from an increase in receptor responsiveness, because it revealed functional 5-HT2A receptor-operated Ca2+ responses in neurons, an effect mimicked by knockdown of PSD-95. Hence, 5-HT2A receptor/PDZ protein interactions might contribute to the resistance to SSRI-induced analgesia in painful diabetic neuropathy. Disruption of these interactions might be a valuable strategy to design novel treatments for neuropathic pain and to increase the effectiveness of SSRIs. PMID:20531396

  17. Dual role of serotonin in the acquisition and extinction of reward-driven learning: involvement of 5-HT1A, 5-HT2A and 5-HT3 receptors.

    PubMed

    Frick, Luciana Romina; Bernardez-Vidal, Micaela; Hocht, Christian; Zanutto, Bonifacio Silvano; Rapanelli, Maximiliano

    2015-01-15

    Serotonin (5-HT) has been proposed as a possible encoder of reward. Nevertheless, the role of this neurotransmitter in reward-based tasks is not well understood. Given that the major serotonergic circuit in the rat brain comprises the dorsal raphe nuclei and the medial prefrontal cortex (mPFC), and because the latter structure is involved in the control of complex behaviors and expresses 1A (5-HT1A), 2A (5-HT2A), and 3 (5-HT3) receptors, the aim was to study the role of 5-HT and of these receptors in the acquisition and extinction of a reward-dependent operant conditioning task. Long Evans rats were trained in an operant conditioning task while receiving fluoxetine (serotonin reuptake inhibitor, 10mg/kg), tianeptine (serotonin reuptake enhancer, 10mg/kg), buspirone (5-HT1A partial agonist, 10mg/kg), risperidone (5-HT2A antagonist, 1mg/kg), ondansetron (5-HT3 antagonist, 2mg/kg) or vehicle. Then, animals that acquired the operant conditioning without any treatment were trained to extinct the task in the presence of the pharmacological agents. Fluoxetine impaired acquisition but improved extinction. Tianeptine administration induced the opposite effects. Buspirone induced a mild deficit in acquisition and had no effects during the extinction phase. Risperidone administration resulted in learning deficits during the acquisition phase, although it promoted improved extinction. Ondansetron treatment showed a deleterious effect in the acquisition phase and an overall improvement in the extinction phase. These data showed a differential role of 5-HT in the acquisition and extinction of an operant conditioning task, suggesting that it may have a dual function in reward encoding.

  18. Serotonin (5-HT) 5-HT2A Receptor (5-HT2AR):5-HT2CR Imbalance in Medial Prefrontal Cortex Associates with Motor Impulsivity.

    PubMed

    Anastasio, Noelle C; Stutz, Sonja J; Fink, Latham H L; Swinford-Jackson, Sarah E; Sears, Robert M; DiLeone, Ralph J; Rice, Kenner C; Moeller, F Gerard; Cunningham, Kathryn A

    2015-07-15

    A feature of multiple neuropsychiatric disorders is motor impulsivity. Recent studies have implicated serotonin (5-HT) systems in medial prefrontal cortex (mPFC) in mediating individual differences in motor impulsivity, notably the 5-HT2AR receptor (5-HT2AR) and 5-HT2CR. We investigated the hypothesis that differences in the ratio of 5-HT2AR:5-HT2CR protein expression in mPFC would predict the individual level of motor impulsivity and that the engineered loss of the 5-HT2CR would result in high motor impulsivity concomitant with elevated 5-HT2AR expression and pharmacological sensitivity to the selective 5-HT2AR antagonist M100907. High and low impulsive rats were identified in a 1-choice serial reaction time task. Native protein levels of the 5-HT2AR and the 5-HT2CR predicted the intensity of motor impulsivity and the 5-HT2AR:5-HT2CR ratio in mPFC positively correlated with levels of premature responses in individual outbred rats. The possibility that the 5-HT2AR and 5-HT2CR act in concert to control motor impulsivity is supported by the observation that high phenotypic motor impulsivity associated with a diminished mPFC synaptosomal 5-HT2AR:5-HT2CR protein:protein interaction. Knockdown of mPFC 5-HT2CR resulted in increased motor impulsivity and triggered a functional disruption of the local 5-HT2AR:5-HT2CR balance as evidenced by a compensatory upregulation of 5-HT2AR protein expression and a leftward shift in the potency of M100907 to suppress impulsive behavior. We infer that there is an interactive relationship between the mPFC 5-HT2AR and 5-HT2CR, and that a 5-HT2AR:5-HT2CR imbalance may be a functionally relevant mechanism underlying motor impulsivity.

  19. Serotonin (5-HT) 5-HT2A Receptor (5-HT2AR):5-HT2CR Imbalance in Medial Prefrontal Cortex Associates with Motor Impulsivity

    PubMed Central

    Anastasio, Noelle C.; Stutz, Sonja J.; Fink, Latham H. L.; Swinford-Jackson, Sarah E.; Sears, Robert M; DiLeone, Ralph J.; Rice, Kenner C.; Moeller, F. Gerard; Cunningham, Kathryn A.

    2016-01-01

    A feature of multiple neuropsychiatric disorders is motor impulsivity. Recent studies have implicated serotonin (5-HT) systems in medial prefrontal cortex (mPFC) in mediating individual differences in motor impulsivity, notably the 5-HT2AR receptor (5-HT2AR) and 5-HT2CR. We investigated the hypothesis that differences in the ratio of 5-HT2AR:5-HT2CR protein expression in mPFC would predict the individual level of motor impulsivity and that the engineered loss of the 5-HT2CR would result in high motor impulsivity concomitant with elevated 5-HT2AR expression and pharmacological sensitivity to the selective 5-HT2AR antagonist M100907. High and low impulsive rats were identified in a 1-choice serial reaction time task. Native protein levels of the 5-HT2AR and the 5-HT2CR predicted the intensity of motor impulsivity and the 5-HT2AR:5-HT2CR ratio in mPFC positively correlated with levels of premature responses in individual outbred rats. The possibility that the 5-HT2AR and 5-HT2CR act in concert to control motor impulsivity is supported by the observation that high phenotypic motor impulsivity associated with a diminished mPFC synaptosomal 5-HT2AR:5-HT2CR protein:protein interaction. Knockdown of mPFC 5-HT2CR resulted in increased motor impulsivity and triggered a functional disruption of the local 5-HT2AR:5-HT2CR balance as evidenced by a compensatory upregulation of 5-HT2AR protein expression and a leftward shift in the potency of M100907 to suppress impulsive behavior. We infer that there is an interactive relationship between the mPFC 5-HT2AR and 5-HT2CR, and that a 5-HT2AR:5-HT2CR imbalance may be a functionally-relevant mechanism underlying motor impulsivity. PMID:26120876

  20. Serotonin 5-HT2A receptor binding in platelets from healthy subjects as studied by [3H]-lysergic acid diethylamide ([3H]-LSD): intra- and interindividual variability.

    PubMed

    Spigset, O; Mjörndal, T

    1997-04-01

    In studies on platelet 5-HT2A receptor binding in patients with neuropsychiatric disorders, there has been a marked variability and a considerable overlap of values between patients and controls. The causes of the large variability in 5-HT2A receptor parameters is still unsettled. In the present study, we have quantified the intra- and interindividual variability of platelet 5-HT2A receptor binding in 112 healthy subjects and explored factors that may influence 5-HT2A receptor binding, using [3H]-lysergic acid diethylamide as radioligand. Age, gender, blood pressure, and metabolic capacity of the liver enzymes CYP2D6 and CYP2C19 did not influence Bmax and Kd values. Body weight and body mass index (BMI) showed a negative correlation with Kd (p = .04 and .03, respectively), but not with Bmax. Bmax was significantly lower in the light half of the year than in the dark half of the year (p = .001), and Kd was significantly lower in the fall than in the summer and winter (p < .001). In females, there was a significant increase in Bmax from week 1 to week 2 of the menstrual cycle (p = .03). Females taking contraceptive pills had significantly higher Kd than drug-free females in weeks 1 and 4 of the menstrual cycle (p = .04). This study shows that a number of factors should be taken into account when using platelet 5-HT2A receptor binding in studies of neuropsychiatric disorders.

  1. 5-HT2A/C receptors mediate the antipsychotic-like effects of alstonine.

    PubMed

    Linck, V M; Bessa, M M; Herrmann, A P; Iwu, M M; Okunji, C O; Elisabetsky, E

    2012-01-10

    The purpose of this study was to determine the effects of alstonine, an indole alkaloid with putative antipsychotic effects, on working memory by using the step-down inhibitory avoidance paradigm and MK801-induced working memory deficits in mice. Additionally, the role of serotonin 5-HT2A/C receptors in the effects of alstonine on mouse models associated with positive (MK801-induced hyperlocomotion), negative (MK801-induced social interaction deficit), and cognitive (MK801-induced working memory deficit) schizophrenia symptoms was examined. Treatment with alstonine was able to prevent MK801-induced working memory deficit, indicating its potential benefit for cognitive deficits now seen as a core symptom in the disease. Corroborating previously reported data, alstonine was also effective in counteracting MK801-induced hyperlocomotion and social interaction deficit. Ritanserin, a 5-HT2A/C receptor antagonist, prevented alstonine's effects on these three behavioral parameters. This study presents additional evidence that 5-HT2A/C receptors are central to the antipsychotic-like effects of alstonine, consistently seen in mouse models relevant to the three dimensions of schizophrenia symptoms.

  2. A new class of arylpiperazine derivatives: the library synthesis on SynPhase lanterns and biological evaluation on serotonin 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Zajdel, Paweł; Subra, Gilles; Bojarski, Andrzej J; Duszyńska, Beata; Pawłowski, Maciej; Martinez, Jean

    2004-01-01

    An efficient solid-supported method for the synthesis of a new class of arylpiperazine derivatives containing amino acid residues has been developed. A 72-membered library was synthesized on SynPhase Lanterns functionalized by a BAL linker. A one-pot cleavage/cyclization step of aspartic and glutamic acid derivatives yielded succinimide- and pyroglutamyl-containing ligands (chemsets 9 and 10). The library representatives under study showed different levels of affinity for 5-HT(1A) and 5-HT(2A) receptors (estimated K(i) = 24-4000 and 1-2130 nM, respectively). Several dual 5-HT(1A)/5-HT(2A) ligands were found, of which two (9(3,3) and 9(3,5)) displayed high 5-HT(2A) affinity comparable to that of the reference drug ritanserin. A set of individual fragment contributions for the prediction of 5-HT(1A) and 5-HT(2A) affinity of all the library members were defined on the basis of the Free-Wilson analysis of 26 compounds. An alkylarylpiperazine fragment had essentially the same impact on the affinity for both receptors, whereas different terminal amide fragments were preferred by 5-HT(1A) (chemset 17, R(2) = adamantyl) and 5-HT(2A) (chemset 9, R(2) = norborn-2-ylmethyl) binding sites.

  3. Binding of [3H]paroxetine to serotonin uptake sites and of [3H]lysergic acid diethylamide to 5-HT2A receptors in platelets from women with premenstrual dysphoric disorder during gonadotropin releasing hormone treatment.

    PubMed

    Bixo, M; Allard, P; Bäckström, T; Mjörndal, T; Nyberg, S; Spigset, O; Sundström-Poromaa, I

    2001-08-01

    Changes in serotonergic parameters have been reported in psychiatric conditions such as depression but also in the premenstrual dysphoric disorder (PMDD). In addition, hormonal effects on serotonergic activity have been established. In the present study, binding of [3H]paroxetine to platelet serotonin uptake sites and binding of [3H]lysergic acid diethylamide ([3H]LSD) to platelet serotonin (5-HT)2A receptors were studied in patients with PMDD treated with a low dose of a gonadotropin releasing hormone (GnRH) agonist (buserelin) or placebo and compared to controls. The PMDD patients were relieved of premenstrual symptoms like depression and irritability during buserelin treatment. The number of [3H]paroxetine binding sites (Bmax) were significantly higher in the follicular phase in untreated PMDD patients compared to controls. When treated with buserelin the difference disappeared. No differences in [3H]LSD binding between the three groups were shown. The present study demonstrated altered platelet [3H]paroxetine binding characteristics in women with PMDD compared to controls. Furthermore, [3H]paroxetine binding was affected by PMDD treatment with a low dose of buserelin. The results are consistent with the hypothesis that changes in serotonergic transmission could be a trait in the premenstrual dysphoric disorder.

  4. 5-HT2A receptor activation is necessary for CO2-induced arousal

    PubMed Central

    Smith, Haleigh R.; MacAskill, Amanda; Richerson, George B.

    2015-01-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT2A receptors dose-dependently blocked CO2-induced arousal. The 5-HT2C receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1bf/f/p) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT2A, but not 5-HT2C, receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT2A receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  5. Extended characterisation of the serotonin 2A (5-HT2A) receptor-selective PET radiotracer 11C-MDL100907 in humans: quantitative analysis, test-retest reproducibility, and vulnerability to endogenous 5-HT tone

    PubMed Central

    Talbot, Peter S.; Slifstein, Mark; Hwang, Dah-Ren; Huang, Yiyun; Scher, Erica; Abi-Dargham, Anissa; Laruelle, Marc

    2011-01-01

    Introduction scanning properties and analytic methodology of the 5-HT2A receptor-selective positron emission tomography (PET) tracer 11C-MDL100907 have been partially characterised in previous reports. We present an extended characterisation in healthy human subjects. Methods 64 11C-MDL100907 PET scans with metabolite-corrected arterial input function were performed in 39 healthy adults (18–55 yr). 12 subjects were scanned twice (duration 150 min) to provide data on plasma analysis, model order estimation, and stability and test-retest characteristics of outcome measures. All other scans were 90 min duration. 3 subjects completed scanning at baseline and following 5-HT2A receptor antagonist medication (risperidone or ciproheptadine) to provide definitive data on the suitability of the cerebellum as reference region. 10 subjects were scanned under reduced 5-HT and control conditions using rapid tryptophan depletion to investigate vulnerability to competition with endogenous 5-HT. 13 subjects were scanned as controls in clinical protocols. Pooled data were used to analyze the relationship between tracer injected mass and receptor occupancy, and age-related decline in 5-HT2A receptors. Results optimum analytic method was a 2-tissue compartment model with arterial input function. However, basis function implementation of SRTM may be suitable for measuring between-group differences non-invasively and warrants further investigation. Scan duration of 90 minutes achieved stable outcome measures in all cortical regions except orbitofrontal which required 120 minutes. Binding potential (BPP and BPND) test-retest variability was very good (7–11%) in neocortical regions other than orbitofrontal, and moderately good (14–20%) in orbitofrontal cortex and medial temporal lobe. Saturation occupancy of 5-HT2A receptors by risperidone validates the use of the cerebellum as a region devoid of specific binding for the purposes of PET. We advocate a mass limit of 4.6 µg to remain

  6. 5-HT2A receptors are involved in cognitive but not antidepressant effects of fluoxetine.

    PubMed

    Castañé, Anna; Kargieman, Lucila; Celada, Pau; Bortolozzi, Analía; Artigas, Francesc

    2015-08-01

    The prefrontal cortex (PFC) plays a crucial role in cognitive and affective functions. It contains a rich serotonergic (serotonin, 5-HT) innervation and a high density of 5-HT receptors. Endogenous 5-HT exerts robust actions on the activity of pyramidal neurons in medial PFC (mPFC) via excitatory 5-HT2A and inhibitory 5-HT1A receptors, suggesting the involvement of 5-HT neurotransmission in cortical functions. However, the underlying mechanisms must be elucidated. Here we examine the role of 5-HT2A receptors in the processing of emotional and cognitive signals evoked by increasing the 5-HT tone after acute blockade of the 5-HT transporter. Fluoxetine (5-20mg/kg i.p.) dose-dependently reduced the immobility time in the tail-suspension test in wild-type (WT) and 5-HT2Aknockout (KO2A) mice, with non-significant differences between genotypes. Fluoxetine (10mg/kg i.p.) significantly impaired mice performance in the novel object recognition test 24h post-administration in WT, but not in KO2A mice. The comparable effect of fluoxetine on extracellular 5-HT in the mPFC of both genotypes suggests that presynaptic differences are not accountable. In contrast, single unit recordings of mPFC putative pyramidal neurons showed that fluoxetine (1.8-7.2mg/kg i.v.) significantly increased neuronal discharge in KO2A but not in WT mice. This effect is possibly mediated by an altered excitatory/inhibitory balance in the PFC in KO2A mice. Overall, the present results suggest that 5-HT2A receptors play a detrimental role in long-term memory deficits mediated by an excess 5-HT in PFC.

  7. Selective 5HT2A and 5HT6 Receptor Antagonists Promote Sleep in Rats

    PubMed Central

    Morairty, Stephen R.; Hedley, Linda; Flores, Judith; Martin, Renee; Kilduff, Thomas S.

    2008-01-01

    Study Objectives: Serotonin (5-HT) has long been implicated in the control of sleep and wakefulness. This study evaluated the hypnotic efficacy of the 5-HT6 antagonist RO4368554 (RO) and the 5-HT2A receptor antagonist MDL100907 (MDL) relative to zolpidem. Design: A randomized, repeated-measures design was utilized in which Wistar rats received intraperitoneal injections of RO (1.0, 3.0, and 10 mg/kg), MDL (0.1, 1.0 and 3.0 mg/kg), zolpidem (10 mg/kg), or vehicle in the middle of the dark (active) period. Electroencephalogram, electromyogram, body temperature (Tb) and locomotor activity were analyzed for 6 hours after injection. Measurements and Results: RO, MDL, and zolpidem all produced significant increases in sleep and decreases in waking, compared with vehicle control. All 3 doses of MDL produced more consolidated sleep, increased non-rapid eye movement sleep (NREM) sleep, and increased electroencephalographic delta power during NREM sleep. The highest dose of RO (10.0 mg/kg) produced significant increases in sleep and decreases in waking during hour 2 following dosing. These increases in sleep duration were associated with greater delta power during NREM sleep. ZO Zolpidem induced sleep with the shortest latency and significantly increased NREM sleep and delta power but also suppressed rapid eye movement sleep sleep; in contrast, neither RO nor MDL affected rapid eye movement sleep. Whereas RO did not affect Tb, both zolpidem and MDL reduced Tb relative to vehicle-injected controls. Conclusions: These results support a role for 5-HT2A receptor modulation in NREM sleep and suggest a previously unrecognized role for 5-HT6 receptors in sleep-wake regulation. Citation: Morairty SR; Hedley L; Flores J; Martin R; Kilduff TS. Selective 5HT2A and 5HT6 receptor antagonists promote sleep in rats. SLEEP 2008;31(1):34-44. PMID:18220076

  8. Serotonin 5-HT2A but not 5-HT2C receptor antagonism reduces hyperlocomotor activity induced in dopamine-depleted rats by striatal administration of the D1 agonist SKF 82958.

    PubMed

    Bishop, Christopher; Daut, Gregory S; Walker, Paul D

    2005-09-01

    While recent work has indicated that D1 receptor agonist-induced hyperlocomotion in DA-depleted rats is reduced by striatal 5-HT2 receptor antagonism, the 5-HT receptor(s) subtypes mediating these effects are not yet known. In the present study, we examined the influence(s) of striatal 5-HT2A and 5-HT2C receptors on locomotor behavior induced by D1 agonism in neonatal DA-depleted rats. On postnatal day 3, male Sprague-Dawley rats (n=68) were treated with either vehicle or 6-hydroxydopamine (6-OHDA; 60 microg) which produced >98% DA depletion. Sixty days later, all rats were fitted with bilateral striatal cannulae. A subset of control and 6-OHDA-lesioned rats (n=20) was tested for locomotor responses to striatal infusion of the D1 agonist SKF 82958 (0, 0.1, 1.0, 10 microg/side). The remaining rats (n=48) were tested for locomotor responses to intrastriatal SKF 82958 (2.0 microg/side) alone or in combination with the 5-HT2A- or 5-HT2C-preferring antagonists M100907 or RS102221 (0.1 or 1.0 microg/side), respectively. Intrastriatal SKF 82958 dose-dependently increased measures of motor activity within DA-depleted rats. This hyperlocomotor activity was suppressed by co-infusion of M100907, but not RS102221. These results indicate that DA depletion strengthens striatal 5-HT2A/D1 receptor interactions and suggest that 5-HT2A receptor antagonists may prove useful in reducing D1-related movements.

  9. The selective 5-HT2A receptor antagonist M100907 enhances antidepressant-like behavioral effects of the SSRI fluoxetine.

    PubMed

    Marek, Gerard J; Martin-Ruiz, Raul; Abo, Allyson; Artigas, Francesc

    2005-12-01

    The addition of low doses of atypical antipsychotic drugs, which saturate 5-HT(2A) receptors, enhances the therapeutic effect of selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitors (SSRIs) in patients with major depression as well as treatment-refractory obsessive-compulsive disorder. The purpose of the present studies was to test the effects of combined treatment with a low dose of a highly selective 5-HT(2A) receptor antagonist (M100907; formerly MDL 100,907) and low doses of a SSRI using a behavioral screen in rodents (the differential-reinforcement-of low rate 72-s schedule of reinforcement; DRL 72-s) which previously has been shown to be sensitive both to 5-HT(2) antagonists and SSRIs. M100907 has a approximately 100-fold or greater selectivity at 5-HT(2A) receptors vs other 5-HT receptor subtypes, and would not be expected to appreciably occupy non-5-HT(2A) receptors at doses below 100 microg/kg. M100907 increased the reinforcement rate, decreased the response rate, and shifted the inter-response time distributions to the right in a pattern characteristic of antidepressant drugs. In addition, a positive synergistic interaction occurred when testing low doses of the 5-HT(2A) receptor antagonist (6.25-12.5 microg/kg) with clinically relevant doses of the SSRI fluoxetine (2.5-5 mg/kg), which both exerted minimal antidepressant-like effects by themselves. In vivo microdialysis study revealed that a low dose of M100907 (12.5 microg/kg) did not elevate extracellular 5-HT levels in the prefrontal cortex over those observed with fluoxetine alone (5 mg/kg). These results will be discussed in the context that the combined blockade of 5-HT(2A) receptors and serotonin transporters (SERT) may result in greater efficacy in treating neuropsychiatric syndromes than blocking either site alone.

  10. 5-HT2A receptor gene polymorphisms in Croatian subjects with autistic disorder.

    PubMed

    Hranilovic, Dubravka; Blazevic, Sofia; Babic, Marina; Smurinic, Maja; Bujas-Petkovic, Zorana; Jernej, Branimir

    2010-08-15

    Disturbances in the expression/function of the 5-HT2A receptor are implicated in autism. The association of the 5-HT2A receptor gene with autism was studied in the Croatian population. Distribution frequencies for alleles, genotypes and haplotypes of -1438 A/G and His452Tyr polymorphisms were compared in samples of 103 autistic and 214 control subjects. Significant overrepresentation of the G allele and the GG genotype of the -1438 A/G polymorphism was observed in group of autistic subjects, supporting the possible involvement of the 5-HT2A receptor in the development of autism.

  11. Long-lasting alterations in 5-HT2A receptor after a binge regimen of methamphetamine in mice.

    PubMed

    Chiu, Hong-Yi; Chan, Ming-Huan; Lee, Mei-Yi; Chen, Shao-Tsu; Zhan, Zih-Yi; Chen, Hwei-Hsien

    2014-10-01

    The repeated administration of methamphetamine (MA) to animals in a single-day 'binge' dosing regimen produces damage to dopamine and serotonin terminals and psychosis-like behaviours similar to those observed in MA abusers. The present study aimed to examine the effects of MA binge exposure on 5-HT2A receptors, the subtype of serotonin receptors putatively involved in psychosis. ICR male mice were treated with MA (4 × 5 mg/kg) or saline at 2 h intervals. Recognition memory and social behaviours were sequentially evaluated by a novel location recognition test, a novel object recognition test, a social interaction and a nest-building test to confirm the persistent cognitive and behavioural impairments after this dosing regimen. Subsequently, a hallucinogenic 5-HT2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI)-induced head-twitch, molecular and electrophysiological responses were monitored. Finally, the levels of 5-HT2C, 5-HT1A, 5-HT2A and mGlu2 receptors in the medial prefrontal cortex were determined. MA binge exposure produced recognition memory impairment, reduced social behaviours, and increased DOI-induced head-twitch response, c-Fos and Egr-2 expression and field potentials in the medial prefrontal cortex. Furthermore, MA binge exposure increased 5-HT2A and decreased mGlu2 receptor expression in the medial frontal cortex, whereas 5-HT2C and 5-HT1A receptors were unaffected. These data reveal that the increased behavioural, molecular and electrophysiological responses to DOI might be associated with an up-regulation of 5-HT2A receptors in the medial prefrontal cortex after MA binge exposure. Identifying the biochemical alterations that parallel the behavioural changes in a mouse model of MA binge exposure may facilitate targeting therapies for treatment of MA-related psychiatric disorders.

  12. Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor.

    PubMed

    Braden, Michael R; Nichols, David E

    2007-11-01

    We assessed the relative importance of two serine residues located near the top of transmembrane helix 5 of the human 5-HT(2A) receptor, comparing the wild type with S5.43(239)A or S5.46(242)A mutations. Using the ergoline lysergic acid diethylamide (LSD), and a series of substituted tryptamine and phenethylamine 5-HT(2A) receptor agonists, we found that Ser5.43(239) is more critical for agonist binding and function than Ser5.46(242). Ser5.43(239) seems to engage oxygen substituents at either the 4- or 5-position of tryptamine ligands and the 5-position of phenylalkylamine ligands. Even when a direct binding interaction cannot occur, our data suggest that Ser5.43(239) is still important for receptor activation. Polar ring-substituted tryptamine ligands also seem to engage Ser5.46(242), but tryptamines lacking such a substituent may adopt an alternate binding orientation that does not engage this residue. Our results are consistent with the role of Ser5.43(239) as a hydrogen bond donor, whereas Ser5.46(242) seems to serve as a hydrogen bond acceptor. These results are consistent with the functional topography and utility of our in silico-activated homology model of the h5-HT(2A) receptor. In addition, being more distal from the absolutely conserved Pro5.50, a strong interaction with Ser5.43(239) may be more effective in straightening the kink in helix 5, a feature that is possibly common to all type A GPCRs that have polar residues at position 5.43.

  13. Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors.

    PubMed

    Santana, Noemí; Mengod, Guadalupe; Artigas, Francesc

    2013-06-01

    The prefrontal cortex (PFC) is involved in behavioural control and cognitive processes that are altered in schizophrenia. The brainstem monoaminergic systems control PFC function, yet the cells/networks involved are not fully known. Serotonin (5-HT) and norepinephrine (NE) increase PFC neuronal activity through the activation of α(1)-adrenergic receptors (α(1)ARs) and 5-HT(2A) receptors (5-HT(2A)Rs), respectively. Neurochemical and behavioural interactions between these receptors have been reported. Further, classical and atypical antipsychotic drugs share nm in vitro affinity for α(1)ARs while having preferential affinity for D(2) and 5-HT(2A)Rs, respectively. Using double in situ hybridization we examined the cellular expression of α(1)ARs in pyramidal (vGluT1-positive) and GABAergic (GAD(65/67)-positive) neurons in rat PFC and their co-localization with 5-HT(2A)Rs. α(1)ARs are expressed by a high proportion of pyramidal (59-85%) and GABAergic (52-79%) neurons. The expression in pyramidal neurons exhibited a dorsoventral gradient, with a lower percentage of α(1)AR-positive neurons in infralimbic cortex compared to anterior cingulate and prelimbic cortex. The expression of α(1A), α(1B) and α(1D) adrenergic receptors was segregated in different layers and subdivisions. In all them there is a high co-expression with 5-HT(2A)Rs (∼80%). These observations indicate that NE controls the activity of most PFC pyramidal neurons via α(1)ARs, either directly or indirectly, via GABAergic interneurons. Antipsychotic drugs can thus modulate the activity of PFC via α(1)AR blockade. The high co-expression with 5-HT(2A)Rs indicates a convergence of excitatory serotonergic and noradrenergic inputs onto the same neuronal populations. Moreover, atypical antipsychotics may exert a more powerful control of PFC function through the simultaneous blockade of α(1)ARs and 5-HT(2A)Rs.

  14. MDMA Increases Excitability in the Dentate Gyrus: Role of 5HT2A Receptor Induced PGE2 Signaling

    PubMed Central

    Collins, Stuart A.; Huff, Courtney; Chiaia, Nicolas; Gudelsky, Gary A.; Yamamoto, Bryan K.

    2015-01-01

    MDMA is a widely abused psychostimulant which causes release of serotonin in various forebrain regions. Recently, we reported that MDMA increases extracellular glutamate concentrations in the dentate gyrus, via activation of 5HT2A receptors. We examined the role of prostaglandin signaling in mediating the effects of 5HT2A receptor activation on the increases in extracellular glutamate and the subsequent long-term loss of parvalbumin interneurons in the dentate gyrus caused by MDMA. Administration of MDMA into the dentate gyrus of rats increased PGE2 concentrations which was prevented by coadministration of MDL100907, a 5HT2A receptor antagonist. MDMA-induced increases in extracellular glutamate were inhibited by local administration of SC-51089, an inhibitor of the EP1 prostaglandin receptor. Systemic administration of SC-51089 during injections of MDMA prevented the decreases in parvalbumin interneurons observed 10 days later. The loss of parvalbumin immunoreactivity after MDMA exposure coincided with a decrease in paired-pulse inhibition and afterdischarge threshold in the dentate gyrus. These changes were prevented by inhibition of EP1 and 5HT2A receptors during MDMA. Additional experiments revealed an increased susceptibility to kainic acid-induced seizures in MDMA treated rats which could be prevented with SC51089 treatments during MDMA exposure. Overall, these findings suggest that 5HT2A receptors mediate MDMA-induced PGE2 signaling and subsequent increases in glutamate. This signaling mediates parvalbumin cell losses as well as physiologic changes in the dentate gyrus, suggesting that the lack of the inhibition provided by these neurons increases the excitability within the dentate gyrus of MDMA treated rats. PMID:26670377

  15. Effects of central activation of serotonin 5-HT2A/2C or dopamine D2/3 receptors on the acute and repeated effects of clozapine in the conditioned avoidance response test

    PubMed Central

    Feng, Min; Gao, Jun; Sui, Nan; Li, Ming

    2014-01-01

    Rationale: Acute administration of clozapine (a gold standard of atypical antipsychotics) disrupts avoidance response in rodents, while repeated administration often causes a tolerance effect. Objective: The present study investigated the neuroanatomical basis and receptor mechanisms of acute and repeated effects of clozapine treatment in the conditioned avoidance response test in male Sprague-Dawley rats. Methods: DOI (2,5-dimethoxy-4-iodo-amphetamine, a preferential 5-HT2A/2C agonist) or quinpirole (a preferential dopamine D2/3 agonist) was microinjected into the medial prefrontal cortex (mPFC) or nucleus accumbens shell (NAs), and their effects on the acute and long-term avoidance-disruptive effect of clozapine were tested. Results: Intra-mPFC microinjection of quinpirole enhanced the acute avoidance disruptive effect of clozapine (10 mg/kg, sc), while DOI microinjections reduced it marginally. Repeated administration of clozapine (10 mg/kg, sc) daily for 5 days caused a progressive decrease in its inhibition of avoidance responding, indicating tolerance development. Intra-mPFC microinjection of DOI at 25.0 (but not 5.0) μg/side during this period completely abolished the expression of clozapine tolerance. This was indicated by the finding that clozapine-treated rats centrally infused with 25.0 μg/side DOI did not show higher levels of avoidance responses than the vehicle-treated rats in the clozapine challenge test. Microinjection of DOI into the mPFC immediately before the challenge test also decreased the expression of clozapine tolerance. Conclusions: Acute behavioral effect of clozapine can be enhanced by activation of the D2/3 receptors in the mPFC. Clozapine tolerance expression relies on the neuroplasticity initiated by its antagonist action against 5-HT2A/2C receptors in the mPFC. PMID:25288514

  16. Chronic treatment with LY341495 decreases 5-HT(2A) receptor binding and hallucinogenic effects of LSD in mice.

    PubMed

    Moreno, José L; Holloway, Terrell; Rayannavar, Vinayak; Sealfon, Stuart C; González-Maeso, Javier

    2013-03-01

    Hallucinogenic drugs, such as lysergic acid diethylamide (LSD), mescaline and psilocybin, alter perception and cognitive processes. All hallucinogenic drugs have in common a high affinity for the serotonin 5-HT(2A) receptor. Metabotropic glutamate 2/3 (mGlu2/3) receptor ligands show efficacy in modulating the cellular and behavioral responses induced by hallucinogenic drugs. Here, we explored the effect of chronic treatment with the mGlu2/3 receptor antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)-propionic acid (LY341495) on the hallucinogenic-like effects induced by LSD (0.24mg/kg). Mice were chronically (21 days) treated with LY341495 (1.5mg/kg), or vehicle, and experiments were carried out one day after the last injection. Chronic treatment with LY341495 down-regulated [(3)H]ketanserin binding in somatosensory cortex of wild-type, but not mGlu2 knockout (KO), mice. Head-twitch behavior, and expression of c-fos, egr-1 and egr-2, which are responses induced by hallucinogenic 5-HT(2A) agonists, were found to be significantly decreased by chronic treatment with LY341495. These findings suggest that repeated blockade of the mGlu2 receptor by LY341495 results in reduced 5-HT(2A) receptor-dependent hallucinogenic effects of LSD.

  17. Effects of Constant Flickering Light on Refractive Status, 5-HT and 5-HT2A Receptor in Guinea Pigs

    PubMed Central

    Li, Tao; Zheng, Changyue; Ji, Shunmei; Ma, Yuanyuan; Zhang, Shuangshuang; Zhou, Xiaodong

    2016-01-01

    Purpose To investigate the effects of constant flickering light on refractive development, the role of serotonin (i.e.5-hydroxytryptamine, 5-HT)and 5-HT2A receptor in myopia induced by flickering light in guinea pigs. Methods Forty-five guinea pigs were randomly divided into three groups: control, form deprivation myopia (FDM) and flickering light induced myopia (FLM) groups(n = 15 for each group). The right eyes of the FDM group were covered with semitransparent hemispherical plastic shells serving as eye diffusers. Guinea pigs in FLM group were raised with illumination of a duty cycle of 50% at a flash frequency of 0.5Hz. The refractive status, axial length (AL), corneal radius of curvature(CRC) were measured by streak retinoscope, A-scan ultrasonography and keratometer, respectively. Ultramicroscopy images were taken by electron microscopy. The concentrations of 5-HTin the retina, vitreous body and retinal pigment epithelium (RPE) were assessed by high performance liquid chromatography, the retinal 5-HT2A receptor expression was evaluated by immunohistofluorescence and western blot. Results The refraction of FDM and FLM eyes became myopic from some time point (the 4th week and the 6th week, respectively) in the course of the experiment, which was indicated by significantly decreased refraction and longer AL when compared with the controls (p<0.05). The concentrations of 5-HT in the retina, vitreous body and RPE of FDM and FLM eyes were significantly increased in comparison with those of control eyes (both p<0.05). Similar to FDM eyes, the expression of retinal 5-HT2A receptor in FLM eyes was significantly up-regulated compared to that of control eyes (both p<0.05). Western blot analysis showed that retinal 5-HT2A receptor level elevated less in the FLM eyes than that in the FDM eyes. Moreover, the levels of norepinephrine and epinephrine in FDM and FLM groups generally decreased when compared with control groups (all p<0.05). Conclusions Constant flickering

  18. Expression of 5-HT2A receptors in prefrontal cortex pyramidal neurons projecting to nucleus accumbens. Potential relevance for atypical antipsychotic action.

    PubMed

    Mocci, Giuseppe; Jiménez-Sánchez, Laura; Adell, Albert; Cortés, Roser; Artigas, Francesc

    2014-04-01

    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotic drugs modulate information processing in cortico-limbic circuits via dopamine D2 receptor blockade in nucleus accumbens (NAc) whereas atypical antipsychotic drugs preferentially target cortical serotonin (5-HT) receptors. The brain networks involved in the therapeutic action of atypical drugs are not fully understood. Previous work indicated that medial PFC (mPFC) pyramidal neurons projecting to ventral tegmental area express 5-HT2A receptors suggesting that atypical antipsychotic drugs modulate dopaminergic activity distally, via 5-HT2A receptor (5-HT2A-R) blockade in PFC. Since the mPFC also projects heavily to NAc, we examined whether NAc-projecting pyramidal neurons also express 5-HT2A-R. Using a combination of retrograde tracing experiments and in situ hybridization we report that a substantial proportion of mPFC-NAc pyramidal neurons in rat brain express 5-HT2A-R mRNA in a layer- and area-specific manner (up to 68% in layer V of contralateral cingulate). The functional relevance of 5-HT2A-R to modulate mPFC-NAc projections was examined in dual-probe microdialysis experiments. The application of the preferential 5-HT2A-R agonist DOI into mPFC enhanced glutamate release locally (+66 ± 18%) and in NAc (+74 ± 12%) indicating that cortical 5-HT2A-R activation augments glutamatergic transmission in NAc. Since NAc integrates glutamatergic and dopaminergic inputs, blockade of 5-HT2A-R by atypical drugs may reduce cortical excitatory inputs onto GABAergic neurons of NAc, adding to dopamine D2 receptor blockade. Together with previous observations, the present results suggest that atypical antipsychotic drugs may control the activity of the mesolimbic pathway at cell body and terminal level.

  19. 5-HT2A Receptor Binding in the Frontal Cortex of Parkinson's Disease Patients and Alpha-Synuclein Overexpressing Mice: A Postmortem Study.

    PubMed

    Rasmussen, Nadja Bredo; Olesen, Mikkel Vestergaard; Brudek, Tomasz; Plenge, Per; Klein, Anders Bue; Westin, Jenny E; Fog, Karina; Wörtwein, Gitta; Aznar, Susana

    2016-01-01

    The 5-HT2A receptor is highly involved in aspects of cognition and executive function and seen to be affected in neurodegenerative diseases like Alzheimer's disease and related to the disease pathology. Even though Parkinson's disease (PD) is primarily a motor disorder, reports of impaired executive function are also steadily being associated with this disease. Not much is known about the pathophysiology behind this. The aim of this study was thereby twofold: (1) to investigate 5-HT2A receptor binding levels in Parkinson's brains and (2) to investigate whether PD associated pathology, alpha-synuclein (AS) overexpression, could be associated with 5-HT2A alterations. Binding density for the 5-HT2A-specific radioligand [(3)H]-MDL 100.907 was measured in membrane suspensions of frontal cortex tissue from PD patients. Protein levels of AS were further measured using western blotting. Results showed higher AS levels accompanied by increased 5-HT2A receptor binding in PD brains. In a separate study, we looked for changes in 5-HT2A receptors in the prefrontal cortex in 52-week-old transgenic mice overexpressing human AS. We performed region-specific 5-HT2A receptor binding measurements followed by gene expression analysis. The transgenic mice showed lower 5-HT2A binding in the frontal association cortex that was not accompanied by changes in gene expression levels. This study is one of the first to look at differences in serotonin receptor levels in PD and in relation to AS overexpression.

  20. (±)-Nantenine analogs as antagonists at human 5-HT2A receptors: C1 and flexible congeners

    PubMed Central

    Chaudhary, Sandeep; Pecic, Stevan; LeGendre, Onica; Navarro, Hérnan A.; Harding, Wayne W.

    2009-01-01

    C1 and flexible analogs of (±)-nantenine were synthesized and evaluated for antagonist activity at human 5-HT2A receptors in a calcium mobilization assay. This work has resulted in the identification of the most potent 5-HT2A antagonist known based on an aporphine. Our results also suggest that the C1 position may be a key site for increasing 5-HT2A antagonist activity in this compound series. In addition, the structural rigidity of the aporphine core appears to be required for nantenine to function as a 5-HT2A antagonist. PMID:19328689

  1. Increasing spinal 5-HT2A receptor responsiveness mediates anti-allodynic effect and potentiates fluoxetine efficacy in neuropathic rats. Evidence for GABA release.

    PubMed

    Dupuis, Amandine; Wattiez, Anne-Sophie; Pinguet, Jérémy; Richard, Damien; Libert, Frédéric; Chalus, Maryse; Aissouni, Youssef; Sion, Benoit; Ardid, Denis; Marin, Philippe; Eschalier, Alain; Courteix, Christine

    2017-04-01

    Antidepressants are one of the first line treatments for neuropathic pain but their use is limited by the incidence and severity of side effects of tricyclics and the weak effectiveness of selective serotonin reuptake inhibitors (SSRIs). Serotonin type 2A (5-HT2A) receptors interact with PDZ proteins that regulate their functionality and SSRI efficacy to alleviate pain. We investigated whether an interfering peptide (TAT-2ASCV) disrupting the interaction between 5-HT2A receptors and associated PDZ proteins would improve the treatment of traumatic neuropathic allodynia. Tactile allodynia was assessed in spinal nerve ligation-induced neuropathic pain in rats using von Frey filaments after acute treatment with TAT-2ASCV and/or 5-HT2A receptor agonist, alone or in combination with repeated treatment with fluoxetine. In vivo microdialysis was performed in order to examine the involvement of GABA in TAT-2ASCV/fluoxetine treatment-associated analgesia. TAT-2ASCV (100ng, single i.t. injection) improved SNL-induced tactile allodynia by increasing 5-HT2A receptor responsiveness to endogenous 5-HT. Fluoxetine alone (10mg/kg, five i.p. injections) slightly increased tactile thresholds and its co-administration with TAT-2ASCV (100ng, single i.t. injection) further enhanced the anti-allodynic effect. This effect depends on the integrity of descending serotonergic bulbospinal pathways and spinal release of GABA. The anti-allodynic effect of fluoxetine can be enhanced by disrupting 5-HT2A receptor-PDZ protein interactions. This enhancement depends on 5-HT2A receptor activation, spinal GABA release and GABAA receptor activation.

  2. New arylpiperazinylalkyl derivatives of 8-alkoxy-purine-2,6-dione and dihydro[1,3]oxazolo[2,3-f]purinedione targeting the serotonin 5-HT1A /5-HT2A /5-HT7 and dopamine D2 receptors.

    PubMed

    Chłoń-Rzepa, Grażyna; Zagórska, Agnieszka; Bucki, Adam; Kołaczkowski, Marcin; Pawłowski, Maciej; Satała, Grzegorz; Bojarski, Andrzej J; Partyka, Anna; Wesołowska, Anna; Pękala, Elżbieta; Słoczyńska, Karolina

    2015-04-01

    To obtain potential antidepressants and/or antipsychotics, a series of new long-chain arylpiperazine derivatives of 8-alkoxy-purine-2,6-dione (10-24) and dihydro[1,3]oxazolo[2,3-f]purinedione (30-34) were synthesized and their serotonin (5-HT1A , 5-HT2A , 5-HT6 , 5-HT7 ) and dopamine (D2 ) receptor affinities were determined. The study allowed the identification of some potent 5-HT1A /5-HT7 /D2 ligands with moderate affinity for 5-HT2A sites. The binding mode of representative compounds from both chemical classes (11 and 31) in the site of 5-HT1A receptor was analyzed in computational studies. In functional in vitro studies, the selected compounds 15 and 16 showed antagonistic properties for the evaluated receptors. 8-Methoxy-7-{4-[4-(2-methoxyphenyl)-piperazin-1-yl]-butyl}-1,3-dimethyl-purine-2,6-dione (15) showed a lack of activity in terms and under the conditions of the forced swim, four plate and amphetamine-induced hyperactivity tests in mice, probably as a result of its high first pass effect in the liver.

  3. Regional distribution and behavioral correlates of 5-HT(2A) receptors in Alzheimer's disease with [(18)F]deuteroaltanserin and PET.

    PubMed

    Santhosh, Lekshmi; Estok, Kristina M; Vogel, Rebecca S; Tamagnan, Gilles D; Baldwin, Ronald M; Mitsis, Effie M; Macavoy, Martha G; Staley, Julie K; van Dyck, Christopher H

    2009-09-30

    Postmortem studies show reductions in brain serotonin 2A (5-HT(2A)) receptors in Alzheimer's disease (AD). Converging evidence also suggests that serotonergic dysregulation may contribute to behavioral symptoms that frequently occur in AD. This study aimed to define regional reductions in 5-HT(2A) binding in AD patients and to examine their behavioral correlates. Nine patients with probable AD and eight elderly controls were studied using a constant infusion paradigm for equilibrium modeling of [(18)F]deuteroaltanserin with positron emission tomography (PET). Region of interest analyses were performed on PET images coregistered to MRI scans. The outcome measures BP(P) (ratio of specific brain uptake to total plasma parent concentration) and BP(ND) (ratio of specific to nondisplaceable uptake) were obtained for pertinent cortical and subcortical regions. AD patients showed a statistically significant decrease in the anterior cingulate in both BP(P) and BP(ND), but in no other region. Within the AD patient sample, no significant correlations were observed between regional 5-HT(2A) binding and behavioral measures, including depressive and psychotic symptoms. These results confirm a reduction in cortical 5-HT(2A) receptors in AD, specifically in the anterior cingulate. However, in a limited AD patient sample, they fail to demonstrate a relationship between regional 5-HT(2A) binding and major behavioral symptoms.

  4. Differential regulation of 5-HT2A receptor mRNA expression following withdrawal from a chronic escalating dose regimen of D-amphetamine.

    PubMed

    Horner, Kristen A; Gilbert, Yamiece E; Noble, Erika S

    2011-05-16

    Several lines of evidence indicate that psychostimulant withdrawal can induce negative emotional symptoms, such as anhedonia and dysphoria, which may be due in part, to dysfunction of the serotonin (5-HT) system, including alterations in 5-HT receptors. For example, changes in 5-HT(2A) receptor function in prefrontal cortex (PFC) have been reported in association with psychostimulant withdrawal. However, it is not known if alterations in 5-HT(2A) receptor mRNA expression occur in the PFC or other limbic-associated areas following withdrawal from chronic psychostimulant treatment. The goal of the current study was to determine the effects of chronic, escalating doses of D-amphetamine (D-AMPH) and withdrawal on the expression of 5-HT(2A) receptors in the cortex, caudate putamen, NAc and hippocampus of rat brain. Animals were treated three times a day for 4 days with escalating doses of D-AMPH (1-10 mg/kg). Twenty-four hours after the final dose of D-AMPH, animals were sacrificed and the tissue processed for in situ hybridization histochemistry. Chronic, escalating doses of D-AMPH, followed by a 24 h withdrawal period, significantly decreased 5-HT(2A) receptor mRNA expression in the prefrontal, motor and cingulate cortices, while 5-HT(2A) receptor mRNA expression in the NAc, caudal CPu and hippocampus were significantly increased. These data indicate that region-specific changes in 5-HT(2A) receptor mRNA expression occur in limbic system and associated areas following chronic D-AMPH treatment, supporting the notion that alterations in the 5-HT system may contribute to the negative emotional aspects of psychostimulant withdrawal.

  5. Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia

    PubMed Central

    Moreno, José L.; Miranda-Azpiazu, Patricia; García-Bea, Aintzane; Younkin, Jason; Cui, Meng; Kozlenkov, Alexey; Ben-Ezra, Ariel; Voloudakis, Georgios; Fakira, Amanda K.; Baki, Lia; Ge, Yongchao; Georgakopoulos, Anastasios; Morón, José A.; Milligan, Graeme; López-Giménez, Juan F.; Robakis, Nikolaos K.; Logothetis, Diomedes E.; Meana, J. Javier; González-Maeso, Javier

    2016-01-01

    Heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors (GPCRs) can form multiprotein complexes (heteromers), which can alter the pharmacology and functions of the constituent receptors. Previous findings demonstrated that the Gq/11-coupled serotonin 5-HT2A receptor and the Gi/o-coupled metabotropic glutamate 2 (mGlu2) receptor—GPCRs that are involved in signaling alterations associated with psychosis—assemble into a heteromeric complex in the mammalian brain. In single-cell experiments with various mutant versions of the mGlu2 receptor, we showed that stimulation of cells expressing mGlu2–5-HT2A heteromers with an mGlu2 agonist led to activation of Gq/11 proteins by the 5-HT2A receptors. For this crosstalk to occur, one of the mGlu2 subunits had to couple to Gi/o proteins, and we determined the relative location of the Gi/o-contacting subunit within the mGlu2 homodimer of the heteromeric complex. Additionally, mGlu2-dependent activation of Gq/11, but not Gi/o, was reduced in the frontal cortex of 5-HT2A knockout mice and was reduced in the frontal cortex of postmortem brains from schizophrenic patients. These findings offer structural insights into this important target in molecular psychiatry. PMID:26758213

  6. Effect of fluvoxamine on platelet 5-HT2A receptors as studied by [3H]lysergic acid diethylamide ([3H]LSD) binding in healthy volunteers.

    PubMed

    Spigset, O; Mjörndal, T

    1997-09-01

    Alterations in platelet 5-HT2A receptor characteristics have been reported in major depression as well as in other psychiatric diseases, and some effort has been made to utilize platelet 5-HT2A receptor status as a biological correlate to antidepressant drug response. In order to investigate whether treatment with a selective serotonin reuptake inhibitor affects platelet 5-HT2A receptors, we have studied platelet [3H]lysergic acid diethylamide ([3H]LSD) binding in healthy subjects treated with fluvoxamine in increasing dosage once weekly for 4 weeks. After 1 week of fluvoxamine treatment (25 mg/day), both Bmax and Kd were significantly lower than before the start of the treatment (19.9 versus 25.5 fmol/mg protein, P = 0.005 for Bmax; 0.45 versus 0.93 nM, P = 0.006 for Kd). Bmax returned to baseline during week 2, whereas Kd was lower than the baseline value throughout the treatment period. After discontinuation of fluvoxamine treatment, there was a significant increase in Kd (0.50 nM before discontinuation vs. 1.14 nM after discontinuation; P = 0.001), but not in Bmax. The study demonstrates that fluvoxamine affects platelet 5-HT2A receptor status irrespective of underlying psychiatric disease, and that this effect is evident already after 1 week at a subtherapeutic fluvoxamine dose.

  7. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease.

    PubMed

    Ferguson, Marcus C; Nayyar, Tultul; Deutch, Ariel Y; Ansah, Twum A

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT(2A/C) receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT(2A) receptor antagonist M100907 and the selective 5-HT(2C) receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT(2A/C) antagonist ritanserin and the selective 5-HT(2A) antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT(2A) receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease.

  8. Tolerance to LSD and DOB induced shaking behaviour: differential adaptations of frontocortical 5-HT(2A) and glutamate receptor binding sites.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Dieterich, Daniela C; Grecksch, Gisela; Höllt, Volker

    2015-03-15

    Serotonergic hallucinogens, such as lysergic acid diethylamide (LSD) and dimethoxy-bromoamphetamine (DOB), provoke stereotype-like shaking behaviour in rodents, which is hypothesised to engage frontocortical glutamate receptor activation secondary to serotonin2A (5-HT2A) related glutamate release. Challenging this hypothesis, we here investigate whether tolerance to LSD and DOB correlates with frontocortical adaptations of 5-HT2A and/or overall-glutamate binding sites. LSD and DOB (0.025 and 0.25 mg/kg, i.p.) induce a ketanserin-sensitive (0.5 mg/kg, i.p., 30-min pretreatment) increase in shaking behaviour (including head twitches and wet dog shakes), which with repeated application (7× in 4 ds) is undermined by tolerance. Tolerance to DOB, as indexed by DOB-sensitive [(3)H]spiroperidol and DOB induced [(35)S]GTP-gamma-S binding, is accompanied by a frontocortical decrease in 5-HT2A binding sites and 5-HT2 signalling, respectively; glutamate-sensitive [(3)H]glutamate binding sites, in contrast, remain unchanged. As to LSD, 5-HT2 signalling and 5-HT2A binding, respectively, are not or only marginally affected, yet [(3)H]glutamate binding is significantly decreased. Correlation analysis interrelates tolerance to DOB to the reduced 5-HT2A (r=.80) as well as the unchanged [(3)H]glutamate binding sites (r=.84); tolerance to LSD, as opposed, shares variance with the reduction in [(3)H]glutamate binding sites only (r=.86). Given that DOB and LSD both induce tolerance, one correlating with 5-HT2A, the other with glutamate receptor adaptations, it might be inferred that tolerance can arise at either level. That is, if a hallucinogen (like LSD in our study) fails to induce 5-HT2A (down-)regulation, glutamate receptors (activated postsynaptic to 5-HT2A related glutamate release) might instead adapt and thus prevent further overstimulation of the cortex.

  9. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected.

  10. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors.

    PubMed

    Collins, Stuart A; Gudelsky, Gary A; Yamamoto, Bryan K

    2015-08-15

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation.

  11. Comparison of the anti-dopamine D₂ and anti-serotonin 5-HT(2A) activities of chlorpromazine, bromperidol, haloperidol and second-generation antipsychotics parent compounds and metabolites thereof.

    PubMed

    Suzuki, Hidenobu; Gen, Keishi; Inoue, Yuichi

    2013-04-01

    Second-generation antipsychotics, which have become the standard drug therapies for schizophrenia, are known to have a serotonin 5-HT(2A) receptor blocking effect in addition to a dopamine D₂ receptor blocking effect. However, although chlorpromazine (CPZ) has a 5-HT(2A) receptor blocking effect and has the profile of a second-generation antipsychotic in vitro, it loses this pharmacological profile in vivo. In order to elucidate the differences between the in vivo and in vitro pharmacological characteristics of CPZ, we used a radioreceptor assay to measure the anti-D₂ activity and the anti-5-HT(2A) activity of CPZ and five major metabolites of CPZ, and compared the results to the anti-D₂ activity and anti-5-HT(2A) activity of risperidone, zotepine, perospirone, the major metabolites of each of these drugs, and olanzapine, bromperidol, and haloperidol. The subjects were 182 patients who had received diagnoses of schizophrenia based on the DSM-IV criteria. The results revealed that CPZ exhibited little anti-5-HT(2A) activity, regardless of the anti-D₂ activity level, and that none of the metabolites possessed anti-5-HT(2A) activity. However, both the parent compounds and the metabolites of each of the second-generation antipsychotics possessed both anti-D₂ activity and anti-5-HT(2A) activity. This clarified that, unlike second-generation antipsychotics, the reason CPZ loses its second-generation antipsychotic profiles in vivo is because it does not have any metabolites that possess anti-5-HT(2A) activity.

  12. Differences in 5-HT2A and mGlu2 Receptor Expression Levels and Repressive Epigenetic Modifications at the 5-HT2A Promoter Region in the Roman Low- (RLA-I) and High- (RHA-I) Avoidance Rat Strains.

    PubMed

    Fomsgaard, Luna; Moreno, Jose L; de la Fuente Revenga, Mario; Brudek, Tomasz; Adamsen, Dea; Rio-Alamos, Cristobal; Saunders, Justin; Klein, Anders Bue; Oliveras, Ignasi; Cañete, Toni; Blazquez, Gloria; Tobeña, Adolf; Fernandez-Teruel, Albert; Gonzalez-Maeso, Javier; Aznar, Susana

    2017-03-06

    The serotonin 2A (5-HT2A) and metabotropic glutamate 2 (mGlu2) receptors regulate each other and are associated with schizophrenia. The Roman high- (RHA-I) and the Roman low- (RLA-I) avoidance rat strains present well-differentiated behavioral profiles, with the RHA-I strain emerging as a putative genetic rat model of schizophrenia-related features. The RHA-I strain shows increased 5-HT2A and decreased mGlu2 receptor binding levels in prefrontal cortex (PFC). Here, we looked for differences in gene expression and transcriptional regulation of these receptors. The striatum (STR) was included in the analysis. 5-HT2A, 5-HT1A, and mGlu2 mRNA and [(3)H]ketanserin binding levels were measured in brain homogenates. As expected, 5-HT2A binding was significantly increased in PFC in the RHA-I rats, while no difference in binding was observed in STR. Surprisingly, 5-HT2A gene expression was unchanged in PFC but significantly decreased in STR. mGlu2 receptor gene expression was significantly decreased in both PFC and STR. No differences were observed for the 5-HT1A receptor. Chromatin immunoprecipitation assay revealed increased trimethylation of histone 3 at lysine 27 (H3K27me3) at the promoter region of the HTR2A gene in the STR. We further looked at the Akt/GSK3 signaling pathway, a downstream point of convergence of the serotonin and glutamate system, and found increased phosphorylation levels of GSK3β at tyrosine 216 and increased β-catenin levels in the PFC of the RHA-I rats. These results reveal region-specific regulation of the 5-HT2A receptor in the RHA-I rats probably due to absence of mGlu2 receptor that may result in differential regulation of downstream pathways.

  13. Emotional management and 5-HT2A receptor gene variance in patients with schizophrenia.

    PubMed

    Lo, Chi-Hsuan; Tsai, Guochuan E; Liao, Chun-Hui; Wang, Ming-Yu; Chang, Jane Pei-Chen; Tsuang, Hui-Chun; Lane, Hsien-Yuan

    2010-02-01

    Individuals with schizophrenia exhibit impaired social cognitive functions, particularly emotion management. Emotion management may be partially regulated by the serotoninergic system; the -1438 A/G polymorphism in the promoter region of the 5-HT2A gene can modulate 5-HT2A activity and is linked to certain emotional traits and anger- and aggression-related behaviors. The current study aimed to investigate whether this 5-HT2A genetic variance is associated with social cognitive function, particularly the management of emotions. One hundred and fifteen patients with chronic schizophrenia were stabilized with an optimal-dose of antipsychotic treatment. All were genotyped for the -1438 A/G polymorphism and assessed with symptom rating scales, neurocognitive instruments, and the "Managing Emotions" section of Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Multiple regression showed that patients with the A/G genotype performed better than those with G/G in managing emotion (p=0.018) but did not differ from those with the A/A genotype. Regarding the two subtasks of the Managing Emotions section, the A/G heterozygotes also performed better than the G/G homozygotes in the emotion management (p=0.026) and emotional relations (p=0.027) subtasks. The results suggest that variability in the 5-HT2A gene may influence emotion management in patients with schizophrenia.

  14. Effects of imipramine and bupropion on the duration of immobility of ACTH-treated rats in the forced swim test: involvement of the expression of 5-HT2A receptor mRNA.

    PubMed

    Kitamura, Yoshihisa; Fujitani, Yoshika; Kitagawa, Kouhei; Miyazaki, Toshiaki; Sagara, Hidenori; Kawasaki, Hiromu; Shibata, Kazuhiko; Sendo, Toshiaki; Gomita, Yutaka

    2008-02-01

    We examined the effect of chronic administration of imipramine and bupropion, monoamine reuptake inhibitors, on the duration of immobility in the forced swim test and serotonin (5-HT)(2A) receptor function in the form of 5-HT(2A) receptor mRNA levels in rats chronically treated with adrenocorticotropic hormone (ACTH). The immobility-decreasing effect of bupropion without imipramine did not influence the chronic ACTH treatment. The effect on the expression of 5-HT(2A) receptor mRNA of chronic ACTH treatment was decreased by bupropion, but not imipramine. These results suggest that bupropion has the effect of reducing immobility time in the forced swim test in the tricyclic antidepressant-resistant depressive model induced by chronic ACTH treatment in rats, and that decreased 5-HT(2A) receptor mRNA levels may be involved in this phenomenon.

  15. Cartography of 5-HT1A and 5-HT2A Receptor Subtypes in Prefrontal Cortex and Its Projections.

    PubMed

    Mengod, Guadalupe; Palacios, José M; Cortés, Roser

    2015-07-15

    Since the development of chemical neuroanatomical tools in the 1960s, a tremendous wealth of information has been generated on the anatomical components of the serotonergic system, at the microscopic level in the brain including the prefrontal cortex (PFC). The PFC receives a widespread distribution of serotonin (5-hydroxytryptamine, 5-HT) terminals from the median and dorsal raphe nuclei. 5-HT receptors were first visualized using radioligand autoradiography in the late 1980s and early 1990s and showed, in contrast to 5-HT innervation, a differential distribution of binding sites associated with different 5-HT receptor subtypes. Due to the cloning of the different 5-HT receptor subtype genes in the late 1980s and early 1990s, it was possible, using in situ hybridization histochemistry, to localize cells expressing mRNA for these receptors. Double in situ hybridization histochemistry and immunohistochemistry allowed for the chemical characterization of the phenotype of cells expressing 5-HT receptors. Tract tracing technology allowed a detailed cartography of the neuronal connections of PFC and other brain areas. Based on these data, maps have been constructed that reflect our current understanding of the different circuits where 5-HT receptors can modulate the electrophysiological, pharmacological, and behavioral functions of the PFC. We will review current knowledge regarding the cellular localization of 5-HT1A and 5-HT2A receptors in mammalian PFC and their possible functions in the neuronal circuits of the PFC. We will discuss data generated in our laboratory as well as in others, focusing on localization in the pyramidal and GABAergic neuronal cell populations in different mammalian species using molecular neuroanatomy and on the connections with other brain regions.

  16. The role of peripheral 5HT2A and 5HT1A receptors on the orofacial formalin test in rats with persistent temporomandibular joint inflammation.

    PubMed

    Okamoto, K; Imbe, H; Tashiro, A; Kimura, A; Donishi, T; Tamai, Y; Senba, E

    2005-01-01

    The role of peripheral serotonin (5HT) 2A and 5HT1A receptors on the orofacial nocifensive behavioral activities evoked by the injection of formalin into the masseter muscle was evaluated in the rats with persistent temporomandibular joint (TMJ) inflammation evoked by Complete Freund's Adjuvant (CFA). The orofacial nocifensive behavioral activities evoked by the injection of formalin into masseter muscle were significantly enhanced at 1 day (CFA day 1 group) or 7 days (CFA day 7 group) during TMJ inflammation. Pretreatment with local administration of 5HT2A receptor antagonist, ketanserin (0.01, 0.1 mg/rat) into the masseter muscle or systemic administration of ketanserin via i.p. injection (1 mg/kg) reduced the orofacial nocifensive behavioral activities of the late phase evoked by formalin injection into masseter muscle on the side of TMJ inflammation (CFA day 7 group). However, local (0.001-0.1 mg/rat) or systemic (1 mg/kg) administration of 5HT1A receptor antagonist, propranolol, into masseter muscle did not produce the antinociceptive effect in CFA day 7 group. Moreover, local administration of ketanserin (0.1 mg) or propranolol (0.1 mg) into masseter muscle did not inhibit nocifensive orofacial behavior in rats without TMJ inflammation. These data suggest that persistent TMJ inflammation causes the elevation of the orofacial nocifensive behavior, and peripheral 5HT2A receptors play an important role in mediating the deep craniofacial tissue nociception in rats with TMJ inflammation.

  17. Repeated administration of Yokukansan inhibits DOI-induced head-twitch response and decreases expression of 5-hydroxytryptamine (5-HT)2A receptors in the prefrontal cortex.

    PubMed

    Egashira, Nobuaki; Iwasaki, Katsunori; Ishibashi, Ayumi; Hayakawa, Kazuhide; Okuno, Ryoko; Abe, Moe; Uchida, Naoki; Mishima, Kenichi; Takasaki, Kotaro; Nishimura, Ryoji; Oishi, Ryozo; Fujiwara, Michihiro

    2008-08-01

    Behavioral and psychological symptoms of dementia (BPSD) are commonly seen in patients with Alzheimer's disease (AD) and other forms of senile dementia. BPSD have a serious impact on the quality of life of dementia patients, as well as their caregivers. However, an effective drug therapy for BPSD has not been established. Recently, the traditional Japanese medicine Yokukansan (YKS, Yi-gan san in Chinese) has been reported to improve BPSD in a randomized, single-blind, placebo-controlled study. Moreover, abnormalities of the serotonin (5-HT) system such as 5-HT2A receptors have been reported to be associated with BPSD of AD patients. In the present study, we investigated the effect of YKS on head-twitch response induced by 2,5-dimethoxy-4-iodoamphetamine (DOI, 5 mg/kg, i.p.) in mice, a behavioral response that is mediated, in part, by 5-HT2A receptors. Acute treatment with YKS (100 and 300 mg/kg, p.o.) had no effect on the DOI-induced head-twitch response, whilst 14 days repeated treatment with YKS (300 mg/kg, p.o.) significantly inhibited this response. Moreover, repeated treatment with YKS (300 mg/kg, p.o.) decreased expression of 5-HT2A receptors in the prefrontal cortex, which is part of the circuitry mediating the head-twitch response. These findings suggest that the inhibition of DOI-induced head-twitch response by YKS may be mediated, in part, by altered expression of 5-HT2A receptors in the prefrontal cortex, which suggests the involvement of the 5-HT system in psychopharmacological effects of YKS.

  18. Differential involvement of 5-HT(2A) receptors in the discriminative-stimulus effects of cocaine and methamphetamine.

    PubMed

    Munzar, Patrik; Justinova, Zuzana; Kutkat, Scott W; Goldberg, Steven R

    2002-02-01

    Involvement of 5-HT(2A) receptors in the discriminative-stimulus effects of cocaine versus methamphetamine was studied in Sprague Dawley rats (n=10) trained to discriminate 10 mg/kg cocaine, i.p., from saline under a fixed-ratio 10 (FR10) schedule of food presentation. The ability of (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT(2A) receptor agonist, and ketanserin, a 5-HT(2A) receptor antagonist, to either substitute for or block the discriminative-stimulus effects of cocaine, or to shift the cocaine dose-response curve, was evaluated. DOI (0.18-1.0 mg/kg) partially substituted for the training dose of 10 mg/kg cocaine, but only at doses that decreased rates of responding. At the highest dose of DOI tested (1.0 mg/kg), there was about 65% cocaine-appropriate responding. Substitution of DOI for cocaine and DOI-induced decreases in rates of responding were completely reversed by ketanserin (3.0 mg/kg). Ketanserin (3.0 mg/kg) also produced a significant shift to the right of the cocaine dose-response curve and antagonized increases in rates of responding produced by lower doses of cocaine. Ketanserin (1.0-10.0 mg/kg), however, did not block the discriminative-stimulus effects of the training dose of cocaine. When DOI (0.3 mg/kg) was co-administered with different doses of cocaine, there was a slight leftward shift in the cocaine dose-response curve, which was not significant and appeared to reflect simple additive effects of DOI and cocaine. In contrast, the same dose of DOI (0.3 mg/kg) produced a marked and highly significant shift to the left of the methamphetamine (0.18-1.0 mg/kg) dose-response curve in the same subjects and the effects of DOI and methamphetamine were clearly more than additive. The present findings provide new evidence that there is some serotonergic modulation of cocaine's discriminative-stimulus actions, which appears to involve stimulation of 5-HT(2A) receptors. However, involvement of 5-HT(2A) receptor activity in the

  19. Crucial role of the 5-HT2C receptor, but not of the 5-HT2A receptor, in the down regulation of stimulated dopamine release produced by pressure exposure in freely moving rats.

    PubMed

    Kriem, B; Rostain, J C; Abraini, J H

    1998-06-15

    Helium pressure of more than 2 MPa is a well known factor underlying pressure-dependent central neuroexcitatory disorders, referred to as the high-pressure neurological syndrome. This includes an increase in both serotonin (5-HT) and dopamine (DA) release. The relationship between the increase in 5-HT transmission produced by helium pressure and its effect on DA release has been clarified in a recent study, which have first demonstrated that the helium pressure-induced increase in DA release was dependent on some 5-HT receptor activation. In the present study, we examined in freely moving rats the role of 5-HT2A and 5-HT2C receptors in the increase in DA release induced by 8 MPa helium pressure. We used the 5-HT2A receptor antagonist ketanserin and the 5-HT2C receptor agonist m-CPP which have been demonstrated to reduce DA function. Because neither ketanserin is an ideal 5-HT2A receptor antagonist nor m-CPP an ideal 5-HT2C receptor agonist, additional experiments were made at normal pressure to check up on the selectivity of ketanserin and m-CPP for 5-HT2A and 5-HT2C receptors, respectively. Administration of m-CPP reduced both DA basal level and the helium pressure-induced increase in DA release, whereas administration of ketanserin only showed a little effect on the increase in DA release produced by high helium pressure. These results suggest that the 5-HT2C receptor, but not the 5-HT2A receptor, would play a crucial role in the helium pressure-induced increase in DA release. This further suggests that helium pressure may simultaneously induce an increase in 5-HT transmission at the level of 5-HT2A receptors and a decrease in 5-HT transmission at the level of 5-HT2C receptors.

  20. Selective blockade of 5-HT2A receptors attenuates the increased temperature response in brown adipose tissue to restraint stress in rats.

    PubMed

    Ootsuka, Youichirou; Blessing, William W; Nalivaiko, Eugene

    2008-03-01

    Previous studies have demonstrated that 5-HT2A receptors may be involved in the central control of thermoregulation and of the cardiovascular system. Our aim was to test whether these receptors mediate thermogenic and tachycardiac responses induced by acute psychological stress. Three groups of adult male Hooded Wistar rats were instrumented with: (i) a thermistor in the interscapular area (for recording brown adipose tissue temperature) and an ultrasound Doppler probe (to record tail blood flow); (ii) temperature dataloggers to record core body temperature; (iii) ECG electrodes. On the day of the experiment, rats were subjected to a 30-min restraint stress preceded by s.c. injection of either vehicle or SR-46349B (a serotonin 2A receptor antagonist) at doses of 0.01, 0.1 and 1.0 mg/kg. The restraint stress caused a rise in brown adipose tissue temperature (from, mean +/- s.e.m., 36.6 +/- 0.2 to 38.0 +/- 0.2 degrees C), transient cutaneous vasoconstriction (tail blood flow decreased from 12 +/- 2 to 5 +/- 1 cm/s), increase in heart rate (from 303 +/- 15 to 453 +/- 15 bpm at the peak, then reduced to 393 +/- 12 bpm at the steady state), and defaecation (6 +/- 1 pellets per restraint session). The core body temperature was not affected by the restraint. Blockade of 5-HT2A receptors attenuated the increase in brown adipose tissue temperature and transient cutaneous vasoconstriction, but not tachycardia and defaecation elicited by restraint stress. These results indicate that psychological stress causes activation of 5-HT2A receptors in neural pathways that control thermogenesis in the brown adipose tissue and facilitate cutaneous vasoconstriction.

  1. A Model of Post-Infection Fatigue Is Associated with Increased TNF and 5-HT2A Receptor Expression in Mice

    PubMed Central

    Couch, Yvonne; Xie, Qin; Lundberg, Louise; Sharp, Trevor; Anthony, Daniel C.

    2015-01-01

    It is well documented that serotonin (5-HT) plays an important role in psychiatric illness. For example, myalgic encephalomyelitis (ME/CFS), which is often provoked by infection, is a disabling illness with an unknown aetiology and diagnosis is based on symptom-specific criteria. However, 5-HT2A receptor expression and peripheral cytokines are known to be upregulated in ME. We sought to examine the relationship between the 5-HT system and cytokine expression following systemic bacterial endotoxin challenge (LPS, 0.5mg/kg i.p.), at a time when the acute sickness behaviours have largely resolved. At 24 hours post-injection mice exhibit no overt changes in locomotor behaviour, but do show increased immobility in a forced swim test, as well as decreased sucrose preference and reduced marble burying activity, indicating a depressive-like state. While peripheral IDO activity was increased after LPS challenge, central activity levels remained stable and there was no change in total brain 5-HT levels or 5-HIAA/5-HT. However, within the brain, levels of TNF and 5-HT2A receptor mRNA within various regions increased significantly. This increase in receptor expression is reflected by an increase in the functional response of the 5-HT2A receptor to agonist, DOI. These data suggest that regulation of fatigue and depressive-like moods after episodes of systemic inflammation may be regulated by changes in 5-HT receptor expression, rather than by levels of enzyme activity or cytokine expression in the CNS. PMID:26147001

  2. LSD and DOB: interaction with 5-HT2A receptors to inhibit NMDA receptor-mediated transmission in the rat prefrontal cortex.

    PubMed

    Arvanov, V L; Liang, X; Russo, A; Wang, R Y

    1999-09-01

    Both the phenethylamine hallucinogen (-)-1-2, 5-dimethoxy-4-bromophenyl-2-aminopropane (DOB), a selective serotonin 5-HT2A,2C receptor agonist, and the indoleamine hallucinogen D-lysergic acid diethylamide (LSD, which binds to 5-HT1A, 1B, 1D, 1E, 1F, 2A, 2C, 5, 6, 7, dopamine D1 and D2, and alpha1 and alpha2 adrenergic receptors), but not their non-hallucinogenic congeners, inhibited N-methyl-D-aspartate (NMDA)-induced inward current and NMDA receptor-mediated synaptic responses evoked by electrical stimulation of the forceps minor in pyramidal cells of the prefrontal cortical slices. The inhibitory effect of hallucinogens was mimicked by 5-HT in the presence of selective 5-HT1A and 5-HT3 receptor antagonists. The inhibitory action of DOB, LSD and 5-HT on the NMDA transmission was blocked by the 5-HT2A receptor antagonists R-(+)-alpha-(2, 3-dimethoxyphenil)-1-[4-fluorophenylethyl]-4-piperidineme thanol (M100907) and ketanserin. However, at low concentrations, when both LSD and DOB by themselves only partially depressed the NMDA response, they blocked the inhibitory effect of 5-HT, suggesting a partial agonist action. Whereas N-(4-aminobutyl)-5-chloro-2-naphthalenesulphonamide (W-7, a calmodulin antagonist) and N-[2-[[[3-(4'-chlorophenyl)- 2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4'-methoxy-b enzenesulphonamide phosphate (KN-93, a Ca2+/CaM-KII inhibitor), but not the negative control 2-[N-4'methoxybenzenesulphonyl]amino-N-(4'-chlorophenyl)-2-propeny l-N -methylbenzylamine phosphate (KN-92), blocked the inhibitory action of LSD and DOB, the selective protein kinase C inhibitor chelerythrine was without any effect. We conclude that phenethylamine and indoleamine hallucinogens may exert their hallucinogenic effect by interacting with 5-HT2A receptors via a Ca2+/CaM-KII-dependent signal transduction pathway as partial agonists and modulating the NMDA receptors-mediated sensory, perceptual, affective and cognitive processes.

  3. Involvement of 5-HT(2A/2B/2C) receptors on memory formation: simple agonism, antagonism, or inverse agonism?

    PubMed

    Meneses, Alfredo

    2002-12-01

    1. The 5-HT2 receptors subdivision into the 5-HT(2A/2B/2C) subtypes along with the advent of the selective antagonists has allowed a more detailed investigation on the role and therapeutic significance of these subtypes in cognitive functions. The present study further analyzed the 5-HT2 receptors role on memory consolidation. 2. The SB-200646 (a selective 5-HT(2B/2C) receptor antagonist) and LY215840 (a nonselective 5-HT(2/7) receptor antagonist) posttraining administration had no effect on an autoshaped memory consolidation. However, both drugs significantly and differentially antagonized the memory impairments induced by 1-(3-chlorophenyl)piperazine (mCPP), 1-naphtyl-piperazine (1-NP), mesulergine, or N-(3-trifluoromethylphenyl) piperazine (TFMPP). 3. In contrast, SB-200646 failed to modify the facilitatory procognitive effect produced by (+/-)-2.5-dimethoxy-4-iodoamphetamine (DOI) or ketanserin, which were sensitive to MDL100907 (a selective 5-HT2A receptor antagonist) and to a LY215840 high dose. 4. Finally, SB-200646 reversed the learning deficit induced by dizocilpine, but not that by scopolamine: while SB-200646 and MDL100907 coadministration reversed memory deficits induced by both drugs. 5. It is suggested that 5-HT(2B/2C) receptors might be involved on memory formation probably mediating a suppressive or constraining action. Whether the drug-induced memory impairments in this study are explained by simple agonism, antagonism, or inverse agonism at 5-HT2 receptors remains unclear at this time. 6. Notably, the 5-HT2 receptor subtypes blockade may provide some benefit to reverse poor memory consolidation conditions associated with decreasedcholinergic, glutamatergic, and/or serotonergic neurotransmission.

  4. Long-term estrogen therapy and 5-HT(2A) receptor binding in postmenopausal women; a single photon emission tomography (SPET) study.

    PubMed

    Compton, J; Travis, M J; Norbury, R; Erlandsson, K; van Amelsvoort, T; Daly, E; Waddington, W; Matthiasson, P; Eersels, J L H; Whitehead, M; Kerwin, R W; Ell, P J; Murphy, D G M

    2008-01-01

    Variation in estrogen level is reported by some to affect brain maturation and memory. The neurobiological basis for this may include modulation of the serotonergic system. No neuroimaging studies have directly examined the effect of extended estrogen therapy (ET), on the 5-HT(2A) receptor in human brain. We investigated the effect of long-term ET on cortical 5-HT(2A) receptor availability in postmenopausal women. In a cross-sectional study, we compared cortical 5-HT(2A) receptor availability in 17 postmenopausal ERT-naive women and 17 long-term oophorectomised estrogen-users, age- and IQ-matched using single photon emission tomography and the selective 5-HT(2A) receptor ligand (123)I-5-I-R91150. Also, we used the Revised Wechsler Memory Scale to relate memory function to 5-HT(2A) receptor availability. Never-users had significantly higher 5-HT(2A) receptor availability than estrogen-users in hippocampus (1.17 vs. 1.11, respectively, p=0.02), although this did not remain significant after correction for multiple comparisons. Hippocampal 5-HT(2A) receptor availability correlated negatively with verbal and general memory and delayed recall (r=-0.45, p=0.01; r=-0.40, p=0.02; r=-0.36, p=0.04). Right superior temporal 5-HT(2A) receptor availability correlated negatively with verbal memory (r=-0.36, p=0.04). In estrogen-users, receptor availability correlated negatively with verbal and general memory (r=-0.70, p=0.002; r=-0.69, p=0.002); and in never-users, receptor availability negatively correlated with attention and concentration (r=-0.54, p=0.02). Long-term ET may be associated with lower 5-HT(2A) receptor availability in hippocampus. This may reflect increased activity within the serotonergic pathway leading to down-regulation of post-synaptic receptor. Also, increased availability of the 5-HT(2A) receptor in hippocampus is associated with poorer memory function.

  5. Blonanserin Ameliorates Phencyclidine-Induced Visual-Recognition Memory Deficits: the Complex Mechanism of Blonanserin Action Involving D3-5-HT2A and D1-NMDA Receptors in the mPFC

    PubMed Central

    Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2015-01-01

    Blonanserin differs from currently used serotonin 5-HT2A/dopamine-D2 receptor antagonists in that it exhibits higher affinity for dopamine-D2/3 receptors than for serotonin 5-HT2A receptors. We investigated the involvement of dopamine-D3 receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT2A receptor agonist) and 7-OH-DPAT (a dopamine-D3 receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D1 receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr197 and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser897 by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser896 by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D1-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D3 and serotonin 5-HT2A receptors in the mPFC. PMID:25120077

  6. Psychological, neuroimaging, and biochemical studies on functional association between impulsive behavior and the 5-HT2A receptor gene polymorphism in humans.

    PubMed

    Nomura, Michio; Nomura, Yasuyuki

    2006-11-01

    It has been suggested that impulsive behavior is caused by dysfunctional serotonergic 5-HT neurotransmission in the central nervous system (CNS). Brain neuroimaging studies have shown that behavioral inhibition is linked to the activation of cortex sites such as the ventral frontal cortex. Positron emission tomography (PET) imaging with [(18)F]altanserin to characterize 5-HT(2A) receptor binding revealed a reduction in 5-HT(2A) binding in the ventral frontal cortex in women who had recovered from impulsive diseases. These clinical, neuroimaging, and pharmacological studies appear to support the hypothesis that functional alteration of neurotransmission due to genetic polymorphisms of the 5-HT receptors may be involved in impulsive behavior modulation. Following evaluation by a self-reporting measure, it was proposed that a polymorphism in the promoter of the 5-HT(2A) receptor gene is the underlying cause of impulsive behavior; however, this hypothesis is not convincing. We examined whether the polymorphism in the 5-HT(2A) receptor gene promoter is involved in impulsive aggression by evaluating a behavioral task (Go/No-go task) in normal volunteers. The polymorphism of the 5-HT(2A) receptor gene promoter in lymphocytes from 71 volunteers was analyzed by using PCR. Impulsivity was defined as the number of commission errors (responding when one should not) recorded during a Go/No-go task; a larger number of commission errors indicate greater difficulty in inhibiting impulsive behavior. The subjects of the A-1438A allele group for the 5-HT(2A) receptor gene made more commission errors under the punishment-reward (PR)condition in a Go/No-go task than those in the G-1438G group. In the present review, we discuss and suggest the possible involvement of the A-1438A polymorphism of the 5HT2A receptor gene promoter in impulsive behavior. This hypothesis was evaluated by using a behavioral task measure that could directly reveal impulsive behavioral traits in humans.

  7. Differences in the C-terminus contribute to variations in trafficking between rat and human 5-HT(2A) receptor isoforms: identification of a primate-specific tripeptide ASK motif that confers GRK-2 and beta arrestin-2 interactions.

    PubMed

    Bhattacharya, Aditi; Sankar, Shobhana; Panicker, Mitradas M

    2010-02-01

    Internalization and recycling of G-protein coupled receptors are important cellular processes regulating receptor function. These are receptor-subtype and cell type-specific. Although important, trafficking variations between receptor isoforms of different species has received limited attention. We report here, differences in internalization and recycling between rat and human serotonin 2A receptor (5-HT(2A)R) isoforms expressed in human embryonic kidney 293 cells in response to serotonin. Although the human and rat 5-HT(2A)Rs differ by only a few amino acids, the human receptor takes longer to recycle to the cell surface after internalization, with the additional involvement of beta arrestin-2 and G-protein receptor kinase 2. The interaction of beta arrestin-2 with the human receptor causes the delay in recycling and is dependent on a primate-specific ASK motif present in the C-terminus of the receptor. Conversion of this motif to NCT, the corresponding sequence present in the rat isoform, results in the human isoform trafficking like the rat receptor. Replacing the serine 457 with alanine in the ASK motif of human isoform resulted in faster recycling, although with continued arrestin-dependent internalization. This study establishes significant differences between the two isoforms with important implications in our understanding of the human 5-HT(2A)R functions; and indicates that extrapolating results from non-human receptor isoforms to human subtypes is not without caveats.

  8. A homology-based model of the human 5-HT2A receptor derived from an in silico activated G-protein coupled receptor

    NASA Astrophysics Data System (ADS)

    Chambers, James J.; Nichols, David E.

    2002-07-01

    A homology-based model of the 5-HT2A receptor was produced utilizing an activated form of the bovine rhodopsin (Rh) crystal structure [1,2]. In silico activation of the Rh structure was accomplished by isomerization of the 11- cis-retinal (1) chromophore, followed by constrained molecular dynamics to relax the resultant high energy structure. The activated form of Rh was then used as a structural template for development of a human 5-HT2A receptor model. Both the 5-HT2A receptor and Rh are members of the G-protein coupled receptor (GPCR) super-family. The resulting homology model of the receptor was then used for docking studies of compounds representing a cross-section of structural classes that activate the 5-HT2A receptor, including ergolines, tryptamines, and amphetamines. The ligand/receptor complexes that ensued were refined and the final binding orientations were observed to be compatible with much of the data acquired through both diversified ligand design and site directed mutagenesis.

  9. 5-HT2A/C receptors do not mediate the attenuation of compulsive checking by mCPP in the quinpirole sensitization rat model of obsessive-compulsive disorder (OCD).

    PubMed

    Tucci, Mark C; Dvorkin-Gheva, Anna; Johnson, Eric; Wong, Michael; Szechtman, Henry

    2015-02-15

    There is emerging evidence for a dopamine (DA)-serotonin (5-HT) interaction underlying obsessive-compulsive disorder (OCD). In the quinpirole sensitization rat model of OCD, compulsive checking is induced by chronic treatment with the DA agonist quinpirole, and is attenuated by the 5-HT agonist drug mCPP. However, mCPP has affinity for a number of 5-HT receptor subtypes, and it is unknown by which receptors mCPP exerts its effects on quinpirole-treated animals. The present study tested in rats whether mCPP activity at 5-HT2A/C receptors mediates the attenuation of compulsive checking in quinpirole-treated animals. Rats were chronically treated with quinpirole on the open field for the induction of compulsive checking. Following the induction phase, animals were treated with mCPP (1.25 mg/kg) and the selective 5-HT2A/C receptor antagonist ritanserin (1 mg/kg or 5 mg/kg) to test whether blockade of 5-HT2A/C receptors inhibits attenuation of checking by mCPP. Results showed that as expected, quinpirole induced compulsive checking, and mCPP reduced its performance. However, 5-HT2A/C receptor blockade by ritanserin did not inhibit the attenuation of compulsive checking by mCPP. These results suggest that the reduction in compulsive checking by mCPP is not mediated by activity at 5-HT2A/C receptors, but by another receptor subtype.

  10. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors

    PubMed Central

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2014-01-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity. PMID:25446678

  11. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors.

    PubMed

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2015-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity.

  12. Distribution of 5-HT2A receptor immunoreactivity in the rat amygdaloid complex and colocalization with γ-aminobutyric acid.

    PubMed

    Bombardi, Cristiano

    2011-01-25

    The 5-HT2A receptor (5-HT2Ar) is located in a variety of excitatory and inhibitory neurons in many regions of the central nervous system and is a major target for atypical antipsychotic drugs. In the present study, an immunoperoxidase experiment was used to investigate the distribution of 5-HT2Ar immunoreactivity in the rat amygdaloid complex. In the basolateral amygdala, the colocalization of 5-HT2Ar with inhibitory transmitter γ-aminobutyric acid (GABA) was studied using double-immunofluorescence confocal microscopy. The staining pattern obtained was colchicine-sensitive. In fact, pretreatment with colchicine increased the number of 5-HT2Ar-immunoreactive somata. Accordingly, with the exception of the intercalated nuclei, the amygdaloid complex of colchicine-injected rats exhibited a high density of 5-HT2Ar-IR somata. Morphological analyses indicated that 5-HT2Ar was located on both excitatory and inhibitory neurons in the rat amygdaloid complex. In addition, double-immunofluorescence observations revealed that the great majority of GABA-immunoreactive neurons in the basolateral amygdala exhibited 5-HT2Ar immunoreactivity (66.3%-70.6% depending on the nucleus). These data help to clarify the complex role of the 5-HT2Ar in the amygdaloid complex suggesting that this receptor can regulate amygdaloid activity by acting on different neuronal populations.

  13. Responding for a conditioned reinforcer, and its enhancement by nicotine, is blocked by dopamine receptor antagonists and a 5-HT(2C) receptor agonist but not by a 5-HT(2A) receptor antagonist.

    PubMed

    Guy, Elizabeth Glenn; Fletcher, Paul J

    2014-10-01

    An aspect of nicotine reinforcement that may contribute to tobacco addiction is the effect of nicotine to enhance the motivational properties of reward-associated cues, or conditioned stimuli (CSs). Several studies have now shown that nicotine enhances responding for a stimulus that has been paired with a natural reinforcer. This effect of nicotine to enhance responding for a conditioned reinforcer is likely due to nicotine-induced enhancements in mesolimbic dopaminergic activity, but this has not been directly assessed. In this study, we assessed roles for dopamine (DA) D1 or D2 receptors, and two serotonin (5-HT) receptor subtypes known to modulate DA activity, the 5-HT2C or 5-HT2A subtypes, on nicotine-enhanced responding for a conditioned reinforcer. Water-restricted rats were exposed to Pavlovian conditioning sessions, where a CS was paired with water delivery. Then, in a second phase, animals were required to perform a novel, lever-pressing response for presentations of the CS as a conditioned reinforcer. Nicotine (0.4 mg/kg) enhanced responding for the conditioned reinforcer. To examine potential roles for dopamine (DA) and serotonin (5-HT) receptors in this effect, separate groups of animals were used to assess the impact of administering the D1 receptor antagonist SCH 23390, D2 receptor antagonist eticlopride, 5-HT2C receptor agonist Ro 60-0175, or 5-HT2A receptor antagonist M100907 on nicotine-enhanced responding for conditioned reinforcement. SCH 23390, eticlopride, and Ro 60-0175 all reduced responding for conditioned reinforcement, and the ability of nicotine to enhance this effect. M100907 did not alter this behavior. Together, these studies indicate that DA D1 and D2 receptors, but not 5-HT2A receptors, contribute to the effect of nicotine to enhance responding for a conditioned reinforcer. This effect can also be modulated by 5-HT2C receptor activation.

  14. Activation of 5-HT2a receptors in the basolateral amygdala promotes defeat-induced anxiety and the acquisition of conditioned defeat in Syrian hamsters.

    PubMed

    Clinard, Catherine T; Bader, Lauren R; Sullivan, Molly A; Cooper, Matthew A

    2015-03-01

    Conditioned defeat is a model in Syrian hamsters (Mesocricetus auratus) in which normal territorial aggression is replaced by increased submissive and defensive behavior following acute social defeat. The conditioned defeat response involves both a fear-related memory for a specific opponent as well as anxiety-like behavior indicated by avoidance of novel conspecifics. We have previously shown that systemic injection of a 5-HT2a receptor antagonist reduces the acquisition of conditioned defeat. Because neural activity in the basolateral amygdala (BLA) is critical for the acquisition of conditioned defeat and BLA 5-HT2a receptors can modulate anxiety but have a limited effect on emotional memories, we investigated whether 5-HT2a receptor modulation alters defeat-induced anxiety but not defeat-related memories. We injected the 5-HT2a receptor antagonist MDL 11,939 (0 mM, 1.7 mM or 17 mM) or the 5-HT2a receptor agonist TCB-2 (0 mM, 8 mM or 80 mM) into the BLA prior to social defeat. We found that injection of MDL 11,939 into the BLA impaired acquisition of the conditioned defeat response and blocked defeat-induced anxiety in the open field, but did not significantly impair avoidance of former opponents in the Y-maze. Furthermore, we found that injection of TCB-2 into the BLA increased the acquisition of conditioned defeat and increased anxiety-like behavior in the open field, but did not alter avoidance of former opponents. Our data suggest that 5-HT2a receptor signaling in the BLA is both necessary and sufficient for the development of conditioned defeat, likely via modulation of defeat-induced anxiety.

  15. Role of 5-HT1B, 5-HT2A and 5-HT2C receptors in learning.

    PubMed

    Meneses, A; Hong, E

    1997-08-01

    The effects of post-training (i.p.) injection of TFMPP, mCPP, DOI or 1-NP in the autoshaping learning task was explored. Furthermore, the post-training effects of these agonists after treatment with the antagonists (+/-)-pindolol, (+/-)-propranolol, NAN-190, ketanserin, ritanserin, mesulergine, MDL-72222 or p-chloroamphetamine (5-HT depleter) were studied. Rats were individually trained with a lever-press response (conditioned response; CR) on the autoshaping task and tested 24 h later. The results showed that the injection of TFMPP (1-10 mg/kg), mCPP (1-10 mg/kg), 1-NP (0.1-1.0 mg/kg) or mesulergine (0.4 mg/kg) decreased the rate of CR, while DOI (0.01-0.1 mg/kg) and ritanserin (0.5 mg/kg) and ketanserin (0.001-0.1 mg/kg) increased it. However, the effect induced by TFMPP was reversed by (+/-)-pindolol, ketanserin, ritanserin and PCA; the mCPP-induced effect was antagonized by (+/-)-propranolol, ketanserin, ritanserin and MDL-72222; and the effect produced by 1-NP was reversed by ketanserin, ritanserin and PCA. In addition, the increment in CR provoked by DOI was enhanced by ketanserin, and reversed by ritanserin, mesulergine and PCA. These findings suggest that TFMPP, 1-NP and DOI exerted their effects via stimulation of presynaptic 5-HT receptors. The effects of mCPP most probably reflect activation of postsynaptic receptors. The present data suggest that both 5-HT1B and 5-HT2A-2C receptors play a significant role in the consolidation of learning.

  16. Amelioration of hypoxia-induced striatal 5-HT(2A) receptor, 5-HT transporter and HIF1 alterations by glucose, oxygen and epinephrine in neonatal rats.

    PubMed

    Anju, T R; Paulose, C S

    2011-09-20

    Alterations in neurotransmitters and its receptors expression induce brain injury during neonatal hypoxic insult. Molecular processes regulating the serotonergic receptors play an important role in the control of respiration under hypoxic insult. The present study focused on the serotonergic regulation of neonatal hypoxia and its resuscitation methods. Receptor binding assays and gene expression studies were done to evaluate the changes in 5HT(2A) receptors and its transporter in the corpus striatum of hypoxic neonatal rats and hypoxic rats resuscitated with glucose, oxygen and epinephrine. Total 5HT and 5HT(2A) receptor number was increased in hypoxic neonates along with an up regulation of 5HT(2A) receptor and 5HT transporter gene. The enhanced striatal 5HT(2A) receptors modulate the ventilatory response to hypoxia. Immediate glucose resuscitation was found to ameliorate the receptor and transporter alterations. Hypoxia induced ATP depletion mediated reduction in blood glucose levels can be encountered by glucose administration and oxygenation helps in overcoming the anaerobic condition. The adverse effect of immediate oxygenation and epinephrine supplementation was also reported. This has immense clinical significance in establishing a proper resuscitation for the management of neonatal hypoxia.

  17. INCREASED 5-HT2A RECEPTOR AVAILABILITY IN THE ORBITOFRONTAL CORTEX OF PHYSICALLY AGGRESSIVE PERSONALITY DISORDERED PATIENTS

    PubMed Central

    Rosell, Daniel R.; Thompson, Judy L.; Slifstein, Mark; Xu, Xiaoyan; Frankle, W. Gordon; New, Antonia S.; Goodman, Marianne; Weinstein, Shauna R.; Laruelle, Marc; Dargham, Anissa Abi; Siever, Larry J.

    2011-01-01

    Background Impulsive physical aggression is a common and problematic feature of many personality disorders. The serotonergic system is known to be involved in the pathophysiology of aggression, and multiple lines of evidence have implicated the 5-HT2A receptor (5-HT2AR). We sought to examine the role of the 5-HT2AR in impulsive aggression specifically in the orbitofrontal cortex (OFC), given that our own studies and an extensive literature indicate that serotonergic disturbances in the OFC are linked to aggression. We have previously hypothesized that increased 5-HT2AR function in the OFC is a state phenomenon which promotes impulsive aggression. Methods 5-HT2AR availability was measured with positron emission tomography and the selective 5-HT2AR antagonist radioligand [11C]MDL100907 in two groups of impulsively aggressive personality disordered patients --14 with current physical aggression, and 15 without current physical aggression --and 25 healthy controls. Clinical ratings of various symptom dimensions were also obtained. Results Orbitofrontal 5-HT2AR availability was greater in patients with current physical aggression compared to patients without current physical aggression and healthy controls; no differences in OFC 5-HT2AR availability were observed between patients without current physical aggression and healthy controls. No significant differences in 5-HT2AR availability were observed in other brain regions examined. Among both groups of impulsively aggressive personality disordered patients combined, OFC 5-HT2AR availability was correlated, specifically, with a state measure of impulsive aggression. Conclusions These findings are consistent with our previously described model in which impulsive aggression is related to dynamic changes in 5-HT2AR function in the OFC. PMID:20434136

  18. Antidepressant-like activity of Tagetes lucida Cav. is mediated by 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Bonilla-Jaime, H; Guadarrama-Cruz, G; Alarcon-Aguilar, F J; Limón-Morales, O; Vazquez-Palacios, G

    2015-10-01

    It has been demonstrated that the aqueous extract of Tagetes lucida Cav. shows an antidepressant-like effect on the forced swimming test (FST) in rats. The aim of this study was to analyze the participation of the serotoninergic system in the antidepressant-like effect of the aqueous extract of T. lucida. Different doses of the extract of T. lucida were administered at 72, 48, 24, 18 and 1 h before FST. The animals were pretreated with a 5-HT1A receptor antagonist (WAY-100635, 0.5 mg/kg), a 5-HT2A receptor antagonist (ketanserin, 5 mg/kg), a β-noradrenergic receptor antagonist (propranolol, 200 mg/kg), and with a α2-noradrenergic receptor antagonist (yohimbine, 1 mg/kg) alone or combined with the extract and pretreated with a serotonin synthesis inhibitor (PCPA) before treatment with 8-OH-DPAT + the extract of T. lucida. In addition, suboptimal doses of the 5-HT1A agonist (8-OH-DPAT) + non-effective dose of extract was analyzed in the FST. To determine the presence of flavonoids, the aqueous extract of T. lucida (20 µl, 4 mg/ml) was injected in HPLC; however, a quercetin concentration of 7.72 mg/g of extract weight was detected. A suboptimal dose of 8-OH-DPAT + extract of T. lucida decreased immobility and increased swimming and climbing. An antidepressant-like effect with the aqueous extract of T. lucida at doses of 100 and 200 mg/kg was observed on the FST with decreased immobility behavior and increased swimming; however, this effect was blocked by WAY-100635, ketanserin and PCPA but not by yohimbine and propranolol, suggesting that the extract of T. lucida could be modulating the release/reuptake of serotonin.

  19. Effects of the 5-HT receptor antagonists GR127935 (5-HT1B/1D) and MDL100907 (5-HT2A) in the consolidation of learning.

    PubMed

    Meneses, A; Terrón, J A; Hong, E

    1997-12-01

    We have previously reported that 5-HT1B/1D and 5-HT2A/2B/2C receptors play a role in learning and memory. The present investigation was devoted to analyze further in the autoshaping learning task: (1) the effects of the 5-HT1A/1B/1D receptor agonist, GR46611, the 5-HT1B/1D receptor antagonist, GR127935, and the selective 5-HT2A receptor antagonist, MDL100907. Consistent with a role of 5-HT1B/1D receptors in learning, the post-training injection of GR46611 (1-10 mg/kg) decreased the consolidation of learning whereas GR127935 (10 mg/kg) increased it; the effects of both drugs were reversed by PCA pretreatment. GR127935 abolished the decrease induced by GR46611, TFMPP and mCPP, whereas MDL100907 (0.1-3.0 mg/kg) had no effect by itself but abolished the effects of DOI, ketanserin and TFMPP and moderately inhibited the effects elicited by mCPP, 1-NP and mesulergine. Neither did GR127935 nor MDL100907 significantly modify the increase in the consolidation of learning induced by 8-OH-DPAT. Thus, the present findings suggest that stimulation of presynaptic 5-HT1B/1D receptors impairs the consolidation of learning whilst stimulation of 5-HT2A/2C receptors enhances it; the blockade of 5-HT2A receptors has no effects. In addition, 5-HT2 receptors seem to modulate this cognitive stage.

  20. DRD2, DRD3 and 5HT2A receptor genes polymorphisms in obsessive-compulsive disorder.

    PubMed

    Nicolini, H; Cruz, C; Camarena, B; Orozco, B; Kennedy, J L; King, N; Weissbecker, K; de la Fuente, J R; Sidenberg, D

    1996-12-01

    We performed an association analysis of the DRD2, DRD3 and 5HT2A genes polymorphisms in 67 Obsessive-Compulsive Disorder (OCD) patients and 54 healthy controls. There were no statistically significant differences in genotype or allele frequencies for any of the polymorphisms studied between OCD subjects and controls. For the subgrouped analysis, no results were significant after correction for multiple testing, although homozygosity of DRD2/A2A2 in subjects displaying vocal or motor tics approached significance compared to controls (Fisher exact test, P = 0.008). Our results may follow the notion that OCD patients with tics represent a different genetic subtype of the disease.

  1. Effects of the 5-HT2C receptor agonist Ro60-0175 and the 5-HT2A receptor antagonist M100907 on nicotine self-administration and reinstatement.

    PubMed

    Fletcher, Paul J; Rizos, Zoë; Noble, Kevin; Soko, Ashlie D; Silenieks, Leo B; Lê, Anh Dzung; Higgins, Guy A

    2012-06-01

    The reinforcing effects of nicotine are mediated in part by brain dopamine systems. Serotonin, acting via 5-HT(2A) and 5-HT(2C) receptors, modulates dopamine function. In these experiments we examined the effects of the 5-HT(2C) receptor agonist Ro60-0175 and the 5-HT(2A) receptor antagonist (M100907, volinanserin) on nicotine self-administration and reinstatement of nicotine-seeking. Male Long-Evans rats self-administered nicotine (0.03 mg/kg/infusion, IV) on either a FR5 or a progressive ratio schedule of reinforcement. Ro60-0175 reduced responding for nicotine on both schedules. While Ro60-0175 also reduced responding for food reinforcement, response rates under drug treatment were several-fold higher than in animals responding for nicotine. M100907 did not alter responding for nicotine, or food, on either schedule. In tests of reinstatement of nicotine-seeking, rats were first trained to lever press for IV infusions of nicotine; each infusion was also accompanied by a compound cue consisting of a light and tone. This response was then extinguished over multiple sessions. Injecting rats with a nicotine prime (0.15 mg/kg) reinstated responding; reinstatement was also observed when responses were accompanied by the nicotine associated cue. Ro60-0175 attenuated reinstatement of responding induced by nicotine and by the cue. The effects of Ro60-0175 on both forms of reinstatement were blocked by the 5-HT(2C) receptor antagonist SB242084. M100907 also reduced reinstatement induced by either the nicotine prime or by the nicotine associated cue. The results indicate that 5-HT(2C) and 5-HT(2A) receptors may be potential targets for therapies to treat some aspects of nicotine dependence.

  2. The atypical 5-HT2 receptor mediating tachycardia in pithed rats: pharmacological correlation with the 5-HT2A receptor subtype

    PubMed Central

    Centurión, David; Ortiz, Mario I; Saxena, Pramod R; Villalón, Carlos M

    2002-01-01

    In pithed rats, 5-HT mediates tachycardia both directly (by 5-HT2 receptors) and indirectly (by a tyramine-like effect). The receptor mediating tachycardia directly has been classified as an ‘atypical' 5-HT2 receptor since it was ‘weakly' blocked by ketanserin. Moreover, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT2 agonist, failed to mimic 5-HT-induced tachycardia. Since 5-HT2 receptors consist of 5-HT2A, 5-HT2B and 5-HT2C subtypes, this study investigated if these subtypes mediate the above response. In pithed rats, intraperitoneally (i.p.) pre-treated with reserpine (5 mg kg−1), intravenous (i.v.) administration of 5-HT, 5-methoxytryptamine (5-MeO-T), 1-(3-chlorophenyl) piperazine (mCPP) and 5-carboxamidotryptamine (5-CT) (10, 30, 100 and 300 μg kg−1 each), produced dose-dependent tachycardic responses. Interestingly, DOI (10 – 1000 μg kg−1, i.v.) induced only slight, dose-unrelated, tachycardic responses, whilst the 5-HT2C agonist, Ro 60-0175 (10 – 1000 μg kg−1, i.v.), produced a slight tachycardia only at 300 and 1000 μg kg−1. In contrast, sumatriptan and 1-(m-trifluoromethylphenyl)- piperazine (TFMPP) were inactive. The rank order of potency was: 5-HT⩾5-MeO-T> mCPP⩾5-CT⩾DOI>Ro 60-0175. The tachycardic responses to 5-HT, which remained unaffected after i.v. saline (0.3 and 1 ml kg−1) or propranolol (3 mg kg−1), were selectively blocked by the 5-HT2A antagonists ketanserin (30 and 100 μg kg−1) or spiperone (10 and 30 μg kg−1) as well as by the non-selective 5-HT2 antagonists, ritanserin (10 and 30 μg kg−1) or mesulergine (100 μg kg−1). Remarkably, these responses were unaffected by the antagonists rauwolscine (5-HT2B), SB204741 (5-HT2B/2C) or Ro 04-6790 (5-ht6) (300 and 1000 μg kg−1 each). These results suggest that the ‘atypical' 5-HT2 receptors mediating tachycardia in reserpinized pithed rats are pharmacologically similar to the 5-HT2A

  3. Evaluation of 5-HT2A and mGlu2/3 receptors in postmortem prefrontal cortex of subjects with major depressive disorder: effect of antidepressant treatment.

    PubMed

    Muguruza, Carolina; Miranda-Azpiazu, Patricia; Díez-Alarcia, Rebeca; Morentin, Benito; González-Maeso, Javier; Callado, Luis F; Meana, J Javier

    2014-11-01

    Several studies have demonstrated alterations in serotonin 5-HT2A (5-HT2AR) and glutamate metabotropic mGlu2 (mGlu2R) receptors in depression, but never in the same sample population. Recently it has been shown that both receptors form a functional receptor heterocomplex that is altered in schizophrenia. The present study evaluates the gene expression and protein density of 5-HT2AR and mGlu2/3R in the postmortem prefrontal cortex of subjects with major depressive disorder (n = 14) compared with control subjects (n = 14) in a paired design. No significant differences between subjects with depression and controls in the relative mRNA levels of the genes HTR2A, GRM2 and GRM3 were observed. The 5-HT2AR density evaluated by [(3)H]ketanserin binding was significantly lower in antidepressant-treated subjects (Bmax = 313 ± 17 fmol/mg protein; p < 0.05) compared to controls (Bmax = 360 ± 12 fmol/mg protein) but not in antidepressant-free subjects (Bmax = 394 ± 16 fmol/mg protein; p > 0.05). In rats, chronic treatment with citalopram (10 mg/kg/day) and mirtazapine (5 mg/kg/day) decreased mRNA expression and 5-HT2AR density whereas reboxetine (20 mg/kg/day) modified only mRNA expression. The mGlu2/3R density evaluated by [(3)H]LY341495 binding was not significantly different between depression and control subjects. The present results demonstrate no changes in expression and density of both 5-HT2AR and mGlu2/3R in the postmortem prefrontal cortex of subjects with major depressive disorder under basal conditions. However, antidepressant treatment induces a decrease in 5-HT2AR density. This finding suggests that 5-HT2AR down-regulation may be a mechanism for antidepressant effect.

  4. Novel class of arylpiperazines containing N-acylated amino acids: their synthesis, 5-HT1A, 5-HT2A receptor affinity, and in vivo pharmacological evaluation.

    PubMed

    Zajdel, Paweł; Subra, Gilles; Bojarski, Andrzej J; Duszyńska, Beata; Tatarczyńska, Ewa; Nikiforuk, Agnieszka; Chojnacka-Wójcik, Ewa; Pawłowski, Maciej; Martinez, Jean

    2007-04-15

    Novel arylpiperazines with N-acylated amino acids, selected on the basis of a preliminary screening of two libraries previously synthesized on SynPhase Lanterns, were prepared in solution and their affinity for 5-HT(1A), 5-HT(2A), and D(2) receptors was evaluated. The compounds bearing (3-acylamino)pyrrolidine-2,5-dione (19-26) and N-acylprolinamide (29-34) moieties showed high affinity for 5-HT(1A) (K(i)=3-47 nM), high-to-low for 5-HT(2A) (K(i)=4.2-990 nM), and low for D(2) receptors (K(i)=0.77-21.19 microM). All the new o-methoxy derivatives of (3-acylamino)pyrrolidine-2,5-diones tested in vivo revealed agonistic activity at postsynaptic 5-HT(1A) receptors, while m-chloro derivatives were classified as antagonists of these sites; similar relations were observed for o-methoxy (29) and m-chlorophenylpiperazine derivatives of N-acylprolinamides. The reported results show that the amino acid-derived terminal fragment modified the in vivo functional profile. Finally, the selected compounds 19 and 20, a 5-HT(1A) partial agonist and a full agonist, respectively, and 26, a mixed 5-HT(1A)/5-HT(2A) antagonist, were evaluated in preclinical animal models of depression and anxiety. The project allowed selecting the lead compound 20 which exhibited an anxiolytic-like effect in the four-plate test in mice and revealed distinct antidepressant-like effects in the forced swimming and tail suspension tests in mice.

  5. A 5-HT2A/2C receptor agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, mitigates developmental neurotoxicity of ethanol to serotonergic neurons.

    PubMed

    Ishiguro, Tsukasa; Sakata-Haga, Hiromi; Fukui, Yoshihiro

    2016-07-01

    Prenatal ethanol exposure causes the reduction of serotonergic (5-HTergic) neurons in the midbrain raphe nuclei. In the present study, we examined whether an activation of signaling via 5-HT2A and 5-HT2C receptors during the fetal period is able to prevent the reduction of 5-HTergic neurons induced by prenatal ethanol exposure. Pregnant Sprague-Dawley rats were given a liquid diet containing 2.5 to 5.0% (w/v) ethanol on gestational days (GDs) 10 to 20 (Et). As a pair-fed control, other pregnant rats were fed the same liquid diet except that the ethanol was replaced by isocaloric sucrose (Pf). Each Et and Pf group was subdivided into two groups; one of the groups was treated with 1 mg/kg (i.p.) of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), an agonist for 5-HT2A/2C receptors, during GDs 13 to 19 (Et-DOI or Pf-DOI), and another was injected with saline vehicle only (Et-Sal or Pf-Sal). Their fetuses were removed by cesarean section on GD 19 or 20, and fetal brains were collected. An immunohistological examination of 5-HTergic neurons in the fetuses on embryonic day 20 using an antibody against tryptophan hydroxylase revealed that the number of 5-HTergic neurons in the midbrain raphe nuclei was significantly reduced in the Et-Sal fetuses compared to that of the Pf-Sal and Pf-DOI fetuses, whereas there were no significant differences between Et-DOI and each Pf control. Thus, we concluded that the reduction of 5-HTergic neurons that resulted in prenatal ethanol exposure could be alleviated by the enhancement of signaling via 5-HT2A/2C receptors during the fetal period.

  6. Horse chestnut extract contracts bovine vessels and affects human platelet aggregation through 5-HT(2A) receptors: an in vitro study.

    PubMed

    Felixsson, Emma; Persson, Ingrid A-L; Eriksson, Andreas C; Persson, Karin

    2010-09-01

    Extract from seeds and bark of horse chestnut (Aesculus hippocastanum L) is used as an herbal medicine against chronic venous insufficiency. The effect and mechanism of action on veins, arteries, and platelets are not fully understood. The aim of this study was to investigate the effects and mechanisms of action of horse chestnut on the contraction of bovine mesenteric veins and arteries, and human platelet aggregation. Contraction studies showed that horse chestnut extract dose-dependently contracted both veins and arteries, with the veins being the most sensitive. Contraction of both veins and arteries were significantly inhibited by the 5-HT(2A) receptor antagonist ketanserin. No effect on contraction was seen with the cyclooxygenase inhibitor indomethacin, the alpha(1) receptor antagonist prazosin or the angiotensin AT(1) receptor antagonist saralasin neither in veins nor arteries. ADP-induced human platelet aggregation was significantly reduced by horse chestnut. A further reduction was seen with the extract in the presence of ketanserin. In conclusion, horse chestnut contraction of both veins and arteries is, at least partly, mediated through 5-HT(2A) receptors. Human platelet aggregation is reduced by horse chestnut. The clinical importance of these findings concerning clinical use, possible adverse effects, and drug interactions remains to be investigated.

  7. Cerebral 5-HT release correlates with [(11)C]Cimbi36 PET measures of 5-HT2A receptor occupancy in the pig brain.

    PubMed

    Jørgensen, Louise M; Weikop, Pia; Villadsen, Jonas; Visnapuu, Tanel; Ettrup, Anders; Hansen, Hanne D; Baandrup, Anders O; Andersen, Flemming L; Bjarkam, Carsten R; Thomsen, Carsten; Jespersen, Bo; Knudsen, Gitte M

    2017-02-01

    Positron emission tomography (PET) can, when used with appropriate radioligands, non-invasively generate temporal and spatial information about acute changes in brain neurotransmitter systems. We for the first time evaluate the novel 5-HT2A receptor agonist PET radioligand, [(11)C]Cimbi-36, for its sensitivity to detect changes in endogenous cerebral 5-HT levels, as induced by different pharmacological challenges. To enable a direct translation of PET imaging data to changes in brain 5-HT levels, we calibrated the [(11)C]Cimbi-36 PET signal in the pig brain by simultaneous measurements of extracellular 5-HT levels with microdialysis and [(11)C]Cimbi-36 PET after various acute interventions (saline, citalopram, citalopram + pindolol, fenfluramine). In a subset of pigs, para-chlorophenylalanine pretreatment was given to deplete cerebral 5-HT. The interventions increased the cerebral extracellular 5-HT levels to 2-11 times baseline, with fenfluramine being the most potent pharmacological enhancer of 5-HT release, and induced a varying degree of decline in [(11)C]Cimbi-36 binding in the brain, consistent with the occupancy competition model. The observed correlation between changes in the extracellular 5-HT level in the pig brain and the 5-HT2A receptor occupancy indicates that [(11)C]Cimbi-36 binding is sensitive to changes in endogenous 5-HT levels, although only detectable with PET when the 5-HT release is sufficiently high.

  8. Evidence for 5-HT1B/1D and 5-HT2A receptors mediating constriction of the canine internal carotid circulation

    PubMed Central

    Centurión, David; Ortiz, Mario I; Sánchez-López, Araceli; De Vries, Peter; Saxena, Pramod R; Villalón, Carlos M

    2001-01-01

    The present study has investigated the preliminary pharmacological profile of the receptors mediating vasoconstriction to 5-hydroxytryptamine (5-HT) in the internal carotid bed of vagosympathectomised dogs. One minute intracarotid infusions of the agonists 5-HT (0.1–10 μg min−1), sumatriptan (0.3–10 μg min−1; 5-HT1B/1D), 5-methoxytryptamine (1–100 μg min−1; 5-HT1, 5-HT2, 5-HT4, 5-ht6 and 5-HT7) or DOI (0.31–10 μg min−1; 5-HT2), but not 5-carboxamidotryptamine (0.01–0.3 μg min−1; 5-HT1, 5-ht5A and 5-HT7), 1-(m-chlorophenyl)-biguanide (mCPBG; 1–1000 μg min−1; 5-HT3) or cisapride (1–1000 μg min−1; 5-HT4), resulted in dose-dependent decreases in internal carotid blood flow, without changing blood pressure or heart rate. The vasoconstrictor responses to 5-HT, which remained unaffected after saline, were resistant to blockade by i.v. administration of the antagonists ritanserin (100 μg kg−1; 5-HT2A/2B/2C) in combination with tropisetron (3000 μg kg−1; 5-HT3/4) or the cyclo-oxygenase inhibitor, indomethacin (5000 μg kg−1), but were abolished by the 5-HT1B/1D receptor antagonist, GR127935 (30 μg kg−1). Interestingly, after administration of GR127935, the subsequent administration of ritanserin unmasked a dose-dependent vasodilator component. GR127935 or saline did not practically modify the vasoconstrictor effects of 5-MeO-T. In animals receiving GR127935, the subsequent administration of ritanserin abolished the vasoconstrictor responses to 5-MeO-T unmasking a dose-dependent vasodilator component. The vasoconstriction induced by sumatriptan was antagonized by GR127935, but not by ritanserin. Furthermore, ritanserin (100 μg kg−1) or ketanserin (100 μg kg−1; 5-HT2A), but not GR127935, abolished DOI-induced vasoconstrictor responses. The above results suggest that 5-HT-induced internal carotid vasoconstriction is predominantly mediated by 5-HT1B/1D and 5-HT2A receptors

  9. 5-HT(2A) and mGlu2 receptor binding levels are related to differences in impulsive behavior in the Roman Low- (RLA) and High- (RHA) avoidance rat strains.

    PubMed

    Klein, A B; Ultved, L; Adamsen, D; Santini, M A; Tobeña, A; Fernandez-Teruel, A; Flores, P; Moreno, M; Cardona, D; Knudsen, G M; Aznar, S; Mikkelsen, J D

    2014-03-28

    The Roman Low- and High-Avoidance rat strains (RLA-I vs RHA-I) have been bidirectionally selected and bred according to their performance in the two-way active avoidance response in the shuttle-box test. Numerous studies have reported a pronounced divergence in emotionality between the two rat strains including differences in novelty seeking, anxiety, stress coping, and susceptibility to addictive substances. However, the underlying molecular mechanisms behind these divergent phenotypes are not known. Here, we determined impulsivity using the 5-choice serial reaction time task and levels of serotonin transporter (SERT), 5-HT(2A) and 5-HT(1A) receptor binding using highly specific radioligands ((3)H-escitalopram, (3)H-MDL100907 and (3)H-WAY100635) and mGlu2/3 receptor binding ((3)H-LY341495) using receptor autoradiography in fronto-cortical sections from RLA-I (n=8) and RHA-I (n=8) male rats. In the more impulsive RHA-I rats, 5-HT(2A), 5-HT(1A) and SERT binding in the frontal cortex was significantly higher compared to RLA-I rats. In contrast, mGlu2/3 receptor binding was decreased by 40% in RHA-I rats compared to RLA-I rats. To differentiate between mGlu2 and mGlu3 receptor protein levels, these were further studied using western blotting, which showed non-detectable levels of mGlu2 receptor protein in RHA rats, while no differences were observed for mGlu3 receptor protein levels. Collectively, these data show general congenital differences in the serotonergic system and a pronounced difference in mGlu2 receptor protein levels. We suggest that the differences in the serotonergic system may mediate some of the phenotypic characteristics in this strain such as hyper-impulsivity and susceptibility to drug addiction.

  10. Evidence for the involvement of the serotonergic 5-HT2A/C and 5-HT3 receptors in the antidepressant-like effect caused by oral administration of bis selenide in mice.

    PubMed

    Jesse, Cristiano R; Wilhelm, Ethel A; Bortolatto, Cristiani F; Nogueira, Cristina W

    2010-03-17

    The present study investigated a possible antidepressant-like activity of bis selenide using two predictive tests for antidepressant effect on rodents: the forced swimming test (FST) and the tail suspension test (TST). Bis selenide (0.5-5 mg/kg, p.o.) decreased the immobility time in the mouse FST and TST. The anti-immobility effect of bis selenide (1 mg/kg, p.o.) in the TST was prevented by the pretreatment of mice with p-chlorophenylalanine methyl ester (PCPA; 100 mg/kg, i.p., an inhibitor of serotonin synthesis), ketanserin (1 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), and ondasentron (1 mg/kg, i.p., a 5-HT(3) receptor antagonist). Pretreatment of mice with prazosin (1 mg/kg, i.p., an alpha(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an alpha(2)-adrenoceptor antagonist), propranolol (2 mg/kg, i.p., a beta-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, s.c., a dopamine D(1) receptor antagonist), sulpiride (50 mg/kg, i.p., a dopamine D(2) receptor antagonist), or WAY 100635 (0.1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist) did not block the antidepressant-like effect of bis selenide (1 mg/kg, p.o.) in the TST. Administration of bis selenide (0.1 mg/kg, p.o.) and fluoxetine (1 mg/kg), at subeffective doses, produced an antidepressant-like effect in the TST. Bis selenide did not alter Na(+) K(+) ATPase, MAO-A and MAO-B activities in whole brains of mice. Bis selenide produced an antidepressant-like effect in the mouse TST and FST, which may be related to the serotonergic system (5-HT(2A/2C) and 5-HT(3) receptors).

  11. Potential Modes of Interaction of 9-Aminomethyl-9,10-dihydroanthracene (AMDA) Derivatives with the 5-HT2A Receptor: A Ligand Structure-Affinity Relationship, Receptor Mutagenesis and Receptor Modeling Investigation⊕

    PubMed Central

    Runyon, Scott P.; Mosier, Philip D.; Roth, Bryan L.; Glennon, Richard A.; Westkaemper, Richard B.

    2011-01-01

    The effects of 3-position substitution of 9-aminomethyl-9,10-dihydroanthracene (AMDA) on 5-HT2A receptor affinity were determined and compared to a parallel series of DOB-like 1-(2,5-dimethoxyphenyl)-2-aminopropanes substituted at the 4-position. The results were interpreted within the context of 5-HT2A receptor models that suggest that members of the DOB-like series can bind to the receptor in two distinct modes that correlate with the compounds’ functional activity. Automated ligand docking and molecular dynamics suggest that all of the AMDA derivatives, the parent of which is a 5-HT2A antagonist, bind in a fashion analogous to that for the sterically demanding antagonist DOB-like compounds. The failure of the F3406.52L mutation to adversely affect the affinity of AMDA and the 3-bromo derivative is consistent with the proposed modes of orientation. Evaluation of ligand-receptor complex models suggest that a valine/threonine exchange between the 5-HT2A and D2 receptors may be the origin of selectivity for AMDA and two substituted derivatives. PMID:18847250

  12. Platelet 5-hydroxytryptamine (5-HT) transporter and 5-HT2A receptor binding after chronic hypercorticosteronemia, (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane administration or neurotoxin-induced depletion of central nervous system 5-HT in the rat.

    PubMed

    Owens, M J; Ballenger, C A; Knight, D L; Nemeroff, C B

    1996-09-01

    There is considerable evidence that the number of platelet 5-hydroxytryptamine (5-HT) transporter binding sites, as measured by [3H]imipramine binding, are significantly decreased, and platelet 5-HT2 receptor density is increased, in drug-free patients with major depression. To investigate whether these changes in the platelet 5-HT transporter or 5-HT2 receptor sites resulted from known or hypothesized biochemical changes observed in major depression, we examined, in the rat, whether a chronic hyperglucocorticoid state, or decreases or increases in central nervous system 5-HT neurotransmission, altered binding of the selective ligands [3H]citalopram and [125I] (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane to platelet and brain 5-HT transporters and 5-HT2 receptors, respectively. Chronic (6 weeks) hypercorticosteronemia did not alter either brain or platelet 5-HT transporter or 5-HT2A receptor binding. Similarly, 8-week administration of the 5-HT2A/5-HT2C agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, at a dose which down-regulates brain 5-HT2A/2C receptors, did not alter brain or platelet 5-HT transporters or platelet 5-HT2A receptors. Additionally, para-chloroamphetamine-(11 weeks) or fenfluramine-induced chronic (1.5-10 weeks) depletion of central nervous system 5-HT did not alter platelet 5-HT transporter or 5-HT2A receptor binding. Finally, there was no correlation between the number of 5-HT transporters in brain and platelets in any of the control or treatment groups. These findings suggest that the observed changes in platelet 5-HT transporter and 5-HT2A receptor binding in depressed patients are more apt to be of genetic origin (i.e., trait-dependent) rather than an epiphenomenon of hypercortisolemia or altered central nervous system 5-HT status.

  13. Restricted access to standard or high fat chow alters sensitivity of rats to the 5-HT2A/2C receptor agonist 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM)

    PubMed Central

    Serafine, Katherine M.; France, Charles P.

    2017-01-01

    Feeding conditions can impact sensitivity to drugs acting on dopamine receptors; less is known about the impact of feeding conditions on the effects of drugs acting on serotonin (5-HT) receptors. This study examined the effects of feeding condition on sensitivity to the direct-acting 5-HT2A/2C receptor agonist 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM; 0.1–3.2 mg/kg) and the direct-acting dopamineD3/D2 receptor agonist quinpirole (0.0032–0.32 mg/kg). Male Sprague-Dawley rats had free access (11 weeks) followed by restricted access (6 weeks) to high (34.3%, n = 8) fat or standard (5.7% fat; n = 7) chow. Rats eating high fat chow became insulin resistant and gained more weight than rats eating standard chow. Free access to high fat chow did not alter sensitivity to DOM-induced head twitch but increased sensitivity to quinpirole-induced yawning. Restricting access to high fat or standard chow shifted the DOM-induced head twitch dose-response curve to the right and shifted the quinpirole-induced yawning dose-response curve downward in both groups of rats. Some drugs of abuse and many therapeutic drugs act on 5-HT and dopamine systems; these results demonstrate that feeding condition impacts sensitivity to drugs acting on these systems, thereby possibly impacting vulnerability to abuse as well as therapeutic effectiveness of drugs. PMID:24346289

  14. The Role of 5-HT2A, 5-HT2C and mGlu2 Receptors in the Behavioral Effects of Tryptamine Hallucinogens N,N-Dimethyltryptamine and N,N-Diisopropyltryptamine in Rats and Mice

    PubMed Central

    Carbonaro, Theresa M.; Eshleman, Amy J.; Forster, Michael J.; Cheng, Kejun; Rice, Kenner C.; Gatch, Michael B.

    2014-01-01

    Rationale: Serotonin 5-HT2A and 5-HT2C receptors are thought to be the primary pharmacological mechanisms for serotonin-mediated hallucinogenic drugs, but recently there has been interest in metabotropic glutamate (mGluR2) receptors as contributors to the mechanism of hallucinogens. Objective: The present study assesses the role of these 5-HT and glutamate receptors as molecular targets for two tryptamine hallucinogens, N,N-dimethyltryptamine (DMT) and N,N-diisopropyltryptamine (DiPT). Methods: Drug discrimination, head twitch and radioligand binding assays were used. A 5-HT2AR inverse agonist (MDL100907), 5-HT2CR antagonist (SB242084) and mGluR2/3 agonist (LY379268) were tested for their ability to attenuate the discriminative stimulus effects of DMT and DiPT; an mGluR2/3 antagonist (LY341495) was tested for potentiation. MDL100907 was used to attenuate head twitches induced by DMT and DiPT. Radioligand binding studies and inosital-1-phosphate (IP-1) accumulation were performed at the 5-HT2CR for DiPT. Results: MDL100907 fully blocked the discriminative stimulus effects of DMT, but only partially blocked DiPT. SB242084 partially attenuated the discriminative stimulus effects of DiPT, but produced minimal attenuation of DMT’s effects. LY379268 produced potent, but only partial blockade of the discriminative stimulus effects of DMT. LY341495 facilitated DMT- and DiPT-like effects. Both compounds elicited head twitches (DiPT>DMT) which were blocked by MDL1000907. DiPT was a low potency full agonist at 5-HT2CR in vitro. Conclusions: The 5-HT2AR likely plays a major role in mediating the effects of both compounds. 5-HT2C and mGluR2 receptors likely modulate the discriminative stimulus effects of both compounds to some degree. PMID:24985890

  15. Enhanced responsivity of 5-HT2A receptors at warm ambient temperatures is responsible for the augmentation of the 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-induced hyperthermia

    PubMed Central

    Zhang, Gongliang; Tao, Rui

    2011-01-01

    Warm ambient temperature facilitates hyperthermia and other neurotoxic responses elicited by psychogenic drugs such as MDMA and methamphetamine. However, little is known about the neural mechanism underlying such effects. In the present study, we tested the hypothesis that a warm ambient temperature may enhance the responsivity of 5-HT2A receptors in the central nervous system and thereafter cause an augmented response to 5-HT2A receptor agonists. This hypothesis was tested by measuring changes in body-core temperature in response to the 5-HT2A receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) administered at four different ambient temperature levels: 12 °C (cold), 22 °C (standard), 27 °C (thermoneutral zone) and 32 °C (warm). It was found that DOI only evoked a small increase in body-core temperature at the standard (22 °C) or thermoneutral ambient temperature (27 °C). In contrast, there was a large increase in body-core temperature when the experiments were conducted at the warmer ambient temperature (32 °C). Interestingly, the effect of DOI at the cold ambient temperature of 12 °C was significantly reduced. Moreover, the ambient temperature-dependent response to DOI was completely blocked by pretreatment with the 5-HT2A receptor antagonist ketanserin. Taken together, these findings support the hypothesis that 5-HT2A receptors may be responsible for some neurotoxic effects of psychogenic drugs in the central nervous system, the activity of which is functionally inhibited at cold but enhanced at warm ambient temperature in contrast to that at standard experimental conditions. PMID:21172407

  16. Stress and withdrawal from d-amphetamine alter 5-HT2A receptor mRNA expression in the prefrontal cortex.

    PubMed

    Murray, Ryan C; Hebbard, John C; Logan, Anna S; Vanchipurakel, Golda A; Gilbert, Yamiece E; Horner, Kristen A

    2014-01-24

    Psychostimulant withdrawal results in emotional, behavioral, and cognitive impairments, which may be exacerbated by stress. However, little is known about the neurochemical changes that occur when these two conditions are experienced concomitantly. 5-HT2A receptor (5-HT2AR) mRNA expression in the prefrontal cortex (PFC) is diminished following withdrawal from d-amphetamine (AMPH) and may underlie the emotional and cognitive impairments observed in psychostimulant withdrawal, but whether stress affects 5-HT2AR mRNA expression during psychostimulant withdrawal is unknown. The goal of this study was to examine the impact of forced swim test (FST) exposure during AMPH withdrawal on 5-HT2AR mRNA expression in PFC. Animals were treated 3 times a day for 4 days with escalating doses of AMPH (1-10mg/kg) and 24h or 4 days after the final injection, animals were subjected to FST. At 24h of withdrawal, AMPH-treated animals showed greater immobility in FST and at 4 days of withdrawal, AMPH-treated animals did not show immobility. At 24h of withdrawal, animals showed lower 5-HT2AR mRNA expression in the PFC relative to saline-treated animals, and exposure to FST did not further decrease expression in these animals. At 4 days of withdrawal, AMPH-treated animals showed greater 5-HT2AR mRNA expression relative to saline-treated animals in the PFC, an effect that was diminished by exposure to FST. These data indicate that stress and short-term AMPH withdrawal affect prefrontal 5-HT2AR mRNA expression to a similar degree, and stress experienced during long-term AMPH withdrawal can diminish the recovery of 5-HT2AR mRNA expression. Together, these data suggest that exposure to stress during extended AMPH withdrawal could prolong withdrawal-induced, 5-HT2AR mRNA expression which could be related to 5-HT2AR mediated deficits.

  17. Polymorphism of the 5-HT2A Receptor Gene: Association with Stress-Related Indices in Healthy Middle-Aged Adults

    PubMed Central

    Fiocco, Alexandra J.; Joober, Ridha; Poirier, Judes; Lupien, Sonia

    2007-01-01

    Past research has concentrated on the stress system and personality in order to explain the variance found in cognitive performance in old age. A growing body of research is starting to focus on genetic polymorphism as an individual difference factor to explain the observed heterogeneity in cognitive function. While the functional mechanism is still under investigation, polymorphism of the 5-HT2A receptor gene (−1438A/G) has been linked to certain behavioral and physiological outcomes, including cortisol secretion, the expression of certain personality traits, and memory performance. It was the goal of the present study to investigate the association between the −1438A/G polymorphism and stress hormone secretion, stress-related psychological measures, and cognitive performance in a group of adults between the ages of 50 and 65. To examine these associations, 101 middle-aged adults were recruited, completed a battery of psychological questionnaires and were administered a battery of cognitive tasks that assess frontal lobe and hippocampal function. Basal and stress-reactive salivary cortisol levels were collected, at home and in the laboratory. Analyses on psychological measures showed that participants with the GG genotype reported significantly higher levels of neuroticism compared to the AG group and higher levels of depression and more emotion-based coping strategies compared to both the AG and AA group. In terms of cortisol secretion, the AA genotype was related to a significantly higher awakening cortisol response (ACR) compared to the AG and GG group and the GG genotype group displayed a greater increase in cortisol secretion following a psychosocial stressor compared to the two other groups. On measures of cognitive performance, the AA genotype group performed significantly better on a test of declarative memory and selective attention compared to the other two groups. Together, these results suggest that carriers of the GG genotype are more susceptible

  18. Cultural consonance, a 5HT2A receptor polymorphism, and depressive symptoms: a longitudinal study of gene x culture interaction in urban Brazil.

    PubMed

    Dressler, William W; Balieiro, Mauro C; Ribeiro, Rosane P; Dos Santos, José Ernesto

    2009-01-01

    In this study in urban Brazil we examine, as a predictor of depressive symptoms, the interaction between a single nucleotide polymorphism in the 2A receptor in the serotonin system (-1438G/A) and cultural consonance in family life, a measure of the degree to which an individual perceives her family as corresponding to a widely shared cultural model of the prototypical family. A community sample of 144 adults was followed over a 2-year-period. Cultural consonance in family life was assessed by linking individuals' perceptions of their own families with a shared cultural model of the family derived from cultural consensus analysis. The -1438G/A polymorphism in the 2A serotonin receptor was genotyped using a standard protocol for DNA extracted from leukocytes. Covariates included age, sex, socioeconomic status, and stressful life events. Cultural consonance in family life was prospectively associated with depressive symptoms. In addition, the interaction between genotype and cultural consonance in family life was significant. For individuals with the A/A variant of the -1438G/A polymorphism of the 2A receptor gene, the effect of cultural consonance in family life on depressive symptoms over a 2-year-period was larger (beta = -0.533, P < 0.01) than those effects for individuals with either the G/A (beta = -0.280, P < 0.10) or G/G (beta = -0.272, P < 0.05) variants. These results are consistent with a process in which genotype moderates the effects of culturally meaningful social experience on depressive symptoms.

  19. Distinct effect of 5-HT1A and 5-HT2A receptors in the medial nucleus of the amygdala on tonic immobility behavior.

    PubMed

    de Paula, Bruna Balbino; Leite-Panissi, Christie Ramos Andrade

    2016-07-15

    The tonic immobility (TI) response is an innate fear behavior associated with intensely dangerous situations, exhibited by many species of invertebrate and vertebrate animals. In humans, it is possible that TI predicts the severity of posttraumatic stress disorder symptoms. This behavioral response is initiated and sustained by the stimulation of various groups of neurons distributed in the telencephalon, diencephalon and brainstem. Previous research has found the highest Fos-IR in the posteroventral part of the medial nucleus of the amygdala (MEA) during TI behavior; however, the neurotransmission of this amygdaloid region involved in the modulation of this innate fear behavior still needs to be clarified. Considering that a major drug class used for the treatment of psychopathology is based on serotonin (5-HT) neurotransmission, we investigated the effects of serotonergic receptor activation in the MEA on the duration of TI. The results indicate that the activation of the 5HT1A receptors or the blocking of the 5HT2 receptors of the MEA can promote a reduction in fear and/or anxiety, consequently decreasing TI duration in guinea pigs. In contrast, blocking the 5HT1A receptors or activating the 5HT2 receptors in this amygdalar region increased the TI duration, suggesting an increase in fear and/or anxiety. These alterations do not appear to be due to a modification of spontaneous motor activity, which might non-specifically affect TI duration. Thus, these results suggest a distinct role of the 5HT receptors in the MEA in innate fear modulation.

  20. Stimulation of 5-HT1A, 5-HT1B, 5-HT2A/2C, 5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition: short- and long-term memory.

    PubMed

    Meneses, Alfredo

    2007-11-22

    In order to determine whether short- (STM) and long-term memory (LTM) function in serial or parallel manner, serotonin (5-hydroxtryptamine, 5-HT) receptor agonists were tested in autoshaping task. Results show that control-vehicle animals were modestly but significantly mastering the autoshaping task as illustrated by memory scores between STM and LTM. Thus, post-training administration of 8-OHDPAT (agonist for 5-HT(1A/7) receptors) only at 0.250 and 0.500 mg/kg impaired both STM and LTM. CGS12066 (agonist for 5-HT(1B)) produced biphasic affects, at 5.0 mg/kg impaired STM but at 1.0 and 10.0 mg/kg, respectively, improved or impaired LTM. DOI (agonist for 5-HT(2A/2C) receptors) dose-dependently impaired STM and, at 10.0 mg/kg only impaired LTM. Both, STM and LTM were impaired by either mCPP (mainly agonist for 5-HT(2C) receptors) or mesulergine (mainly antagonist for 5-HT(2C) receptors) lower dose. The 5-HT(3) agonist mCPBG at 1.0 impaired STM and its higher dose impaired both STM and LTM. RS67333 (partial agonist for 5-HT(4) receptors), at 5.0 and 10.0 mg/kg facilitated both STM and LTM. The higher dose of fluoxetine (a 5-HT uptake inhibitor) improved both STM and LTM. Using as head-pokes during CS as an indirect measure of food-intake showed that of 30 memory changes, 21 of these were unrelated to the former. While some STM or LTM impairments can be attributed to decrements in food-intake, but not memory changes (either increase or decreases) produced by 8-OHDPAT, CGS12066, RS67333 or fluoxetine. Except for animals treated with DOI, mCPBG or fluoxetine, other groups treated with 5-HT agonists 6 h following autoshaping training showed similar LTM and unmodified CS-head-pokes scores.

  1. The antidepressant-like activity of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one involves serotonergic 5-HT(1A) and 5-HT(2A/C) receptors activation.

    PubMed

    Pytka, Karolina; Walczak, Maria; Kij, Agnieszka; Rapacz, Anna; Siwek, Agata; Kazek, Grzegorz; Olczyk, Adrian; Gałuszka, Adam; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara

    2015-10-05

    Xanthone derivatives have been shown to posses many biological properties. Some of them act within the central nervous system and show neuroprotective or antidepressant-like properties. Taking this into account we investigated antidepressant-like activity in mice and the possible mechanism of action of 6-methoxy-2-[4-(2-methoxyphenyl)piperazin-1-yl]-9H-xanthen-9-one (HBK-11) - a new xanthone derivative. We demonstrated that HBK-11 produced antidepressant-like effects in the forced swim test and tail suspension test, comparable to that of venlafaxine. The combined treatment with sub-effective doses of HBK-11 and fluoxetine (but not reboxetine or bupropion) significantly reduced the immobility in the forced swim test. Moreover, the antidepressant-like activity of HBK-11 in the aforementioned test was blocked by p-chlorophenylalanine, and significantly reduced by serotonergic 5HT1A receptor antagonist - WAY-1006335 and 5HT2A/C receptor antagonist - ritanserin. As none of the above treatments influenced the spontaneous locomotor activity, it can be concluded that HBK-11 mediates its activity through a serotonergic system, and its antidepressant-like effect involves 5HT1A and 5HT2A/C receptor activation. Furthermore, at antidepressant-like doses HBK-11 did not cause the mice to display locomotor deficits in rotarod or chimney tests. Considering the pharmacokinetic profile, HBK-11 demonstrated rapid absorption after i.p. administration, high clearance value, short terminal half-life, very high volume of distribution and incomplete bioavailability. The compound studied had good penetration into the brain tissue of mice. Since studied xanthone derivative seems to present interesting, untypical mechanism of antidepressant-like action i.e. 5HT2A/C receptor activation, it may have a potential in the treatment of depressive disorders, and surely requires further studies.

  2. The serotonergic hallucinogen 5-methoxy-N,N-dimethyltryptamine disrupts cortical activity in a regionally-selective manner via 5-HT(1A) and 5-HT(2A) receptors.

    PubMed

    Riga, Maurizio S; Bortolozzi, Analia; Campa, Letizia; Artigas, Francesc; Celada, Pau

    2016-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen, acting as a non-selective serotonin 5-HT(1A)/5-HT(2A)-R agonist. Psychotomimetic agents such as the non-competitive NMDA-R antagonist phencyclidine and serotonergic hallucinogens (DOI and 5-MeO-DMT) disrupt cortical synchrony in the low frequency range (<4 Hz) in rat prefrontal cortex (PFC), an effect reversed by antipsychotic drugs. Here we extend these observations by examining the effect of 5-MeO-DMT on low frequency cortical oscillations (LFCO, <4 Hz) in PFC, visual (V1), somatosensory (S1) and auditory (Au1) cortices, as well as the dependence of these effects on 5-HT(1A)-R and 5-HT(2A)-R, using wild type (WT) and 5-HT(2A)-R knockout (KO2A) anesthetized mice. 5-MeO-DMT reduced LFCO in the PFC of WT and KO2A mice. The effect in KO2A mice was fully prevented by the 5-HT(1A)-R antagonist WAY-100635. Systemic and local 5-MeO-DMT reduced 5-HT release in PFC mainly via 5-HT(1A)-R. Moreover, 5-MeO-DMT reduced LFCO in S1, Au1 and V1 of WT mice and only in V1 of KO2A mice, suggesting the involvement of 5-HT(1A)-R activation in the 5-MeO-DMT-induced disruption of V1 activity. In addition, antipsychotic drugs reversed 5-MeO-DMT effects in WT mice. The present results suggest that the hallucinogen action of 5-MeO-DMT is mediated by simultaneous alterations of the activity of sensory (S1, Au1, V1) and associative (PFC) cortical areas, also supporting a role of 5-HT(1A)-R stimulation in V1 and PFC, in addition to the well-known action on 5-HT(2A)-R. Moreover, the reversal by antipsychotic drugs of 5-MeO-DMT effects adds to previous literature supporting the usefulness of the present model in antipsychotic drug development.

  3. The highly selective 5-hydroxytryptamine (5-HT)2A receptor antagonist, EMD 281014, significantly increases swimming and decreases immobility in male congenital learned helpless rats in the forced swim test.

    PubMed

    Patel, Jignesh G; Bartoszyk, Gerd D; Edwards, Emmeline; Ashby, Charles R

    2004-04-01

    We examined the effect of the highly selective 5-hydroxytryptamine (5-HT)(2A) receptor antagonist 7-[4-[2-(4-fluoro-phenyl)-ethyl]-piperazine-1-carbonyl]-1H-indole-3-carbonitrile HCl (EMD 281014) in congenital learned helpless male rats in the forced swim test. The administration of EMD-281014 (0.3-30 mg/kg i.p.) to congenital learned helpless rats dose-dependently and significantly (at 10 and 30 mg/kg) decreased immobility and increased swimming compared to vehicle-treated animals. Thus, EMD 281014 produces effects in the forced swim test resembling those of antidepressants.

  4. 5-HT2A SNPs and the Temperament and Character Inventory.

    PubMed

    Serretti, Alessandro; Calati, Raffaella; Giegling, Ina; Hartmann, Annette M; Möller, Hans-Jürgen; Colombo, Cristina; Rujescu, Dan

    2007-08-15

    Temperamental traits, the most basic part of personality, have been largely correlated with neurotransmitter systems and are under genetic control. Among serotonin candidates, the 2A receptor (5-HT(2A)) received considerable attention. We analyzed four SNPs (rs643627, rs594242, rs6311 and rs6313) in the 5-HT(2A) gene and their association with personality traits, as measured with the Temperament and Character Inventory (TCI). The sample was composed of three sub-groups: two German sub-samples, consisting of a healthy group of 289 subjects (42.6% males, mean age: 45.2+/-14.9) and a psychiatric patient group of 111 suicide attempters (38.7% males, mean age: 39.2+/-13.6), and an Italian sub-sample, composed of 60 mood disorder patients (35.0% males, mean age: 44.0+/-14.8). Controlling for sex, age and educational level, the SNPs were not strongly associated with personality dimensions. Only the rs594242 showed an association with Self-Directedness (p=0.003) in the German sample, while rs6313 was marginally associated with Novelty Seeking (p=0.01) in the Italian sample. We conclude that 5-HT(2A) SNPs may marginally modulate personality traits but further studies are required.

  5. The Combination of Marketed Antagonists of α1b-Adrenergic and 5-HT2A Receptors Inhibits Behavioral Sensitization and Preference to Alcohol in Mice: A Promising Approach for the Treatment of Alcohol Dependence.

    PubMed

    Trovero, Fabrice; David, Sabrina; Bernard, Philippe; Puech, Alain; Bizot, Jean-Charles; Tassin, Jean-Pol

    2016-01-01

    Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg) and cyproheptadine (1 mg/kg) (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively) blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v) and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France) and cyproheptadine (1 mg/kg) could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs.

  6. The Combination of Marketed Antagonists of α1b-Adrenergic and 5-HT2A Receptors Inhibits Behavioral Sensitization and Preference to Alcohol in Mice: A Promising Approach for the Treatment of Alcohol Dependence

    PubMed Central

    Trovero, Fabrice; David, Sabrina; Bernard, Philippe; Puech, Alain; Bizot, Jean-Charles; Tassin, Jean-Pol

    2016-01-01

    Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg) and cyproheptadine (1 mg/kg) (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively) blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v) and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France) and cyproheptadine (1 mg/kg) could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs. PMID:26968030

  7. Hallucinogen-like effects of 2-([2-(4-cyano-2,5-dimethoxyphenyl) ethylamino]methyl)phenol (25CN-NBOH), a novel N-benzylphenethylamine with 100-fold selectivity for 5-HT2A receptors, in mice

    PubMed Central

    Gray, Bradley W.; Bailey, Jessica M.; Smith, Douglas; Hansen, Martin; Kristensen, Jesper L.

    2014-01-01

    Rationale 2-([2-(4-cyano-2,5-dimethoxyphenyl)ethylamino]methyl)phenol (25CN-NBOH) is structurally similar to N-benzyl substituted phenethylamine hallucinogens currently emerging as drugs of abuse. 25CN-NBOH exhibits dramatic selectivity for 5-HT2A receptors in vitro, but has not been behaviorally characterized. Objective 25CN-NBOH was compared to the traditional phenethylamine hallucinogen R(−)-2,5-dimethoxy-4-iodoamphetamine (DOI) using mouse models of drug-elicited head twitch behavior and drug discrimination. Methods Drug-elicited head twitches were quantified for 10 min following administration of various doses of either DOI or 25CN-NBOH, with and without pretreatments of 0.01 mg/kg 5-HT2A antagonist M100907 or 3.0 mg/kg 5-HT2C antagonist RS102221. The capacity of 25CN-NBOH to attenuate DOI-elicited head twitch was also investigated. Mice were trained to discriminate DOI or M100907 from saline, and 25CN-NBOH was tested for generalization. Results 25CN-NBOH induced a head twitch response in the mouse that was lower in magnitude than that of DOI, blocked by M100907, but not altered by RS102221. DOI-elicited head twitch was dose-dependently attenuated by 25CN-NBOH pretreatment. 25CN-NBOH produced an intermediate degree of generalization (55%) for the DOI training dose, and these interoceptive effects were attenuated by M100907. Finally, 25CN-NBOH did not generalize to M100907 at any dose, but ketanserin fully substituted in these animals. Conclusions 25CN-NBOH was behaviorally active, but less effective than DOI in two mouse models of hallucinogenic effects. The effectiveness with which M100907 antagonized the behavioral actions of 25CN-NBOH strongly suggests that the 5-HT2A receptor is an important site of agonist action for this compound in vivo. PMID:25224567

  8. Cannabinoid 2 receptor- and beta Arrestin 2-dependent upregulation of serotonin 2A receptors.

    PubMed

    Franklin, J M; Vasiljevik, T; Prisinzano, T E; Carrasco, G A

    2013-07-01

    Recent evidence suggests that cannabinoid receptor agonists may regulate serotonin 2A (5-HT(2A)) receptor neurotransmission in the brain, although no molecular mechanism has been identified. Here, we present experimental evidence that sustained treatment with a non-selective cannabinoid agonist (CP55,940) or selective CB2 receptor agonists (JWH133 or GP1a) upregulate 5-HT(2A) receptors in a neuronal cell line. Furthermore, this cannabinoid receptor agonist-induced upregulation of 5-HT(2A) receptors was prevented in cells stably transfected with either CB2 or β-Arrestin 2 shRNA lentiviral particles. Additionally, inhibition of clathrin-mediated endocytosis also prevented the cannabinoid receptor-induced upregulation of 5-HT(2A) receptors. Our results indicate that cannabinoid agonists might upregulate 5-HT(2A) receptors by a mechanism that requires CB2 receptors and β-Arrestin 2 in cells that express both CB2 and 5-HT(2A) receptors. 5-HT(2A) receptors have been associated with several physiological functions and neuropsychiatric disorders such as stress response, anxiety and depression, and schizophrenia. Therefore, these results might provide a molecular mechanism by which activation of cannabinoid receptors might be relevant to some cognitive and mood disorders in humans.

  9. Effect of 5-HT2A Receptor Polymorphisms, Work Stressors, and Social Support on Job Strain among Petroleum Workers in Xinjiang, China

    PubMed Central

    Jiang, Yu; Tang, Jinhua; Li, Rong; Zhao, Junling; Song, Zhixin; Ge, Hua; Lian, Yulong; Liu, Jiwen

    2016-01-01

    Previous studies have shown that work stressors and social support influence job strain. However, few studies have examined the impact of individual differences on job strain. In Xinjiang, there are a large number of petroleum workers in arid deserts. The present study investigated the effects of work stressors, social support, and 5-hydroxytryptamine receptor (5-HTR2A) genotype on the etiology of job strain among petroleum workers in Xinjiang. A cross-sectional study was carried out between January and August 2013. A total of 700 workers were selected by a three-stage stratified sampling method. 5-HTR2A genotypes were determined with the SNaPshot single nucleotide polymorphism assay. Work stressors and job strain were evaluated with the Occupational Stress Inventory-Revised questionnaire. Social support was assessed with the Chinese Social Support Rating Scale. Work overload and responsibility were significantly associated with job strain. Low social support was associated with severe vocational and interpersonal strain. High social support was a protective factor against job strain (odds ratio (OR) = 0.32, 95% confidence interval (CI): 0.14–0.76). The CC genotype of rs6313 and the AA genotype of rs2070040 were linked to severe vocational strain. Ordinal logistic regression analysis revealed that the CC genotype of rs6313 was linked to higher risk of job strain than the TT genotype (OR = 1.88, 95% CI: 1.10–3.23). These data provide evidence that work stressors, low social support, and 5-HTR2A gene polymorphism contributes to the risk of job strain. PMID:27999378

  10. Effect of 5-HT2A Receptor Polymorphisms, Work Stressors, and Social Support on Job Strain among Petroleum Workers in Xinjiang, China.

    PubMed

    Jiang, Yu; Tang, Jinhua; Li, Rong; Zhao, Junling; Song, Zhixin; Ge, Hua; Lian, Yulong; Liu, Jiwen

    2016-12-19

    Previous studies have shown that work stressors and social support influence job strain. However, few studies have examined the impact of individual differences on job strain. In Xinjiang, there are a large number of petroleum workers in arid deserts. The present study investigated the effects of work stressors, social support, and 5-hydroxytryptamine receptor (5-HTR2A) genotype on the etiology of job strain among petroleum workers in Xinjiang. A cross-sectional study was carried out between January and August 2013. A total of 700 workers were selected by a three-stage stratified sampling method. 5-HTR2A genotypes were determined with the SNaPshot single nucleotide polymorphism assay. Work stressors and job strain were evaluated with the Occupational Stress Inventory-Revised questionnaire. Social support was assessed with the Chinese Social Support Rating Scale. Work overload and responsibility were significantly associated with job strain. Low social support was associated with severe vocational and interpersonal strain. High social support was a protective factor against job strain (odds ratio (OR) = 0.32, 95% confidence interval (CI): 0.14-0.76). The CC genotype of rs6313 and the AA genotype of rs2070040 were linked to severe vocational strain. Ordinal logistic regression analysis revealed that the CC genotype of rs6313 was linked to higher risk of job strain than the TT genotype (OR = 1.88, 95% CI: 1.10-3.23). These data provide evidence that work stressors, low social support, and 5-HTR2A gene polymorphism contributes to the risk of job strain.

  11. Serotonin 2a Receptor and Serotonin 1a Receptor Interact Within the Medial Prefrontal Cortex During Recognition Memory in Mice

    PubMed Central

    Morici, Juan F.; Ciccia, Lucia; Malleret, Gaël; Gingrich, Jay A.; Bekinschtein, Pedro; Weisstaub, Noelia V.

    2015-01-01

    Episodic memory, can be defined as the memory for unique events. The serotonergic system one of the main neuromodulatory systems in the brain appears to play a role in it. The serotonin 2a receptor (5-HT2aR) one of the principal post-synaptic receptors for 5-HT in the brain, is involved in neuropsychiatric and neurological disorders associated with memory deficits. Recognition memory can be defined as the ability to recognize if a particular event or item was previously encountered and is thus considered, under certain conditions, a form of episodic memory. As human data suggest that a constitutively decrease of 5-HT2A signaling might affect episodic memory performance we decided to compare the performance of mice with disrupted 5-HT2aR signaling (htr2a−/−) with wild type (htr2a+/+) littermates in different recognition memory and working memory tasks that differed in the level of proactive interference. We found that ablation of 5-HT2aR signaling throughout development produces a deficit in tasks that cannot be solved by single item strategy suggesting that 5-HT2aR signaling is involved in interference resolution. We also found that in the absence of 5-HT2aR signaling serotonin has a deleterious effect on recognition memory retrieval through the activation of 5-HT1aR in the medial prefrontal cortex. PMID:26779016

  12. Extending David Horrobin's membrane phospholipid theory of schizophrenia: overactivity of cytosolic phospholipase A(2) in the brain is caused by overdrive of coupled serotonergic 5HT(2A/2C) receptors in response to stress.

    PubMed

    Eggers, Arnold E

    2012-12-01

    David Horrobin's membrane phospholipid theory of schizophrenia has held up well over time because his therapeutic prediction that dietary supplementation with eicosapentaenoic acid (EPA) would have a therapeutic effect has been partially verified and undergoes continued testing. In the final version of his theory, he hypothesized that there was hyperactivity of phosphoslipase A(2) (PLA(2)) or a related enzyme but did not explain how the hyperactivity came about. It is known that serotonergic 5HT(2A/2C) receptors are coupled to PLA(2), which hydrolyzes both arachidonic acid (AA) and EPA from diacylglycerides at the sn-2 position. In this paper, Horrobin's theory is combined with a previously published theory of chronic stress in which it was hypothesized that a disinhibited dorsal raphe nucleus, the principal nucleus of the serotonergic system, can organize the neuropathology of diseases such as migraine, hypertension, and the metabolic syndrome. The new or combined theory is that schizophrenia is a disease of chronic stress in which a disinhibited DRN causes widespread serotonergic overdrive in the cerebral cortex. This in turn causes overdrive of cPLA(2) and both central and peripheral depletion of AA and EPA. Because EPA is present in smaller amounts, it falls below threshold for maintaining an intracellular balance between AA-derived and EPA-derived second messenger cascades, which leads to abnormal patterns of neuronal firing. There are two causes of neuronal dysfunction: the disinhibited DRN and EPA depletion. Schizophrenia is statistically associated with metabolic syndrome, hypertension, and migraine because they form a cluster of diseases with similar pathophysiology. The theory provides an explanation for both the central and peripheral phospholipid abnormalities in schizophrenia. It also explains the role of stress in schizophrenia, elevated serum PLA(2) activity in schizophrenia, the relationship between untreated schizophrenia and metabolic syndrome

  13. Tall Fescue Alkaloids Bind Serotonin Receptors in Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The serotonin (5HT) receptor 5HT2A is involved in the tall fescue alkaloid-induced vascular contraction in the bovine periphery. This was determined by evaluating the contractile responses of lateral saphenous veins biopsied from cattle grazing different tall fescue/endophyte combinations. The contr...

  14. Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes.

    PubMed

    Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Narvaez, Manuel; Oflijan, Julia; Agnati, Luigi F; Fuxe, Kjell

    2014-01-03

    Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor-receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist (3)H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in (3)H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists.

  15. Adolescent anabolic-androgenic steroid exposure alters lateral anterior hypothalamic serotonin-2A receptors in aggressive male hamsters.

    PubMed

    Schwartzer, Jared J; Ricci, Lesley A; Melloni, Richard H

    2009-05-16

    Chronic anabolic-androgenic steroid (AAS) treatment during adolescence facilitates offensive aggression in male Syrian hamsters (Mesocricetus auratus). Serotonin (5-HT) modulates aggressive behavior and has been shown to be altered after chronic treatment with AAS. Furthermore, 5-HT type 2 receptors have been implicated in the control of aggression. For example, treatment with 5-HT(2A) receptor antagonists suppress the generation of the offensive aggressive phenotype. However, it is unclear whether these receptors are sensitive to adolescent AAS exposure. The current study assessed whether treatment with AAS throughout adolescence influenced the immunohistochemical localization of 5-HT(2A) in areas of the hamster brain implicated in the control of aggression. Hamsters were administered AAS (5.0 mg/kg) each day throughout adolescence, scored for offensive aggression, and then examined for differences in 5-HT(2A)-immunoreactivity (5-HT(2A)-ir). When compared with non-aggressive oil-treated controls, aggressive AAS-treated hamsters showed significant increases in 5-HT(2A)-ir fibers in the lateral portion of the anterior hypothalamus (LAH). Further analysis revealed that AAS treatment also produced a significant increase in the number of cells expressing 5-HT(2A)-ir in the LAH. Together, these results support a role for altered 5-HT(2A) expression and further implicate the LAH as a central brain region important in the control of adolescent AAS-induced offensive aggression.

  16. Activation, internalization, and recycling of the serotonin 2A receptor by dopamine

    PubMed Central

    Bhattacharyya, Samarjit; Raote, Ishier; Bhattacharya, Aditi; Miledi, Ricardo; Panicker, Mitradas M.

    2006-01-01

    Serotonergic and dopaminergic systems, and their functional interactions, have been implicated in the pathophysiology of various CNS disorders. Here, we use recombinant serotonin (5-HT) 2A (5-HT2A) receptors to further investigate direct interactions between dopamine and 5-HT receptors. Previous studies in Xenopus oocytes showed that dopamine, although not the cognate ligand for the 5-HT2A receptor, acts as a partial-efficacy agonist. At micromolar concentrations, dopamine also acts as a partial-efficacy agonist on 5-HT2A receptors in HEK293 cells. Like 5-HT, dopamine also induces receptor-internalization in these cells, although at significantly higher concentrations than 5-HT. Interestingly, if the receptors are first sensitized or “primed” by subthreshold concentrations of 5-HT, then dopamine-induced internalization occurs at concentrations ≈10-fold lower than when dopamine is used alone. Furthermore, unlike 5-HT-mediated internalization, dopamine-mediated receptor internalization, alone, or after sensitization by 5-HT, does not depend on PKC. Dopamine-internalized receptors recycle to the surface at rates similar to those of 5-HT-internalized receptors. Our results suggest a previously uncharacterized role for dopamine in the direct activation and internalization of 5-HT2A receptors that may have clinical relevance to the function of serotonergic systems in anxiety, depression, and schizophrenia and also to the treatment of these disorders. PMID:17005723

  17. Lysergic acid diethylamide-induced Fos expression in rat brain: role of serotonin-2A receptors.

    PubMed

    Gresch, P J; Strickland, L V; Sanders-Bush, E

    2002-01-01

    Lysergic acid diethylamide (LSD) produces altered mood and hallucinations in humans and binds with high affinity to serotonin-2A (5-HT(2A)) receptors. Although LSD interacts with other receptors, the activation of 5-HT(2A) receptors is thought to mediate the hallucinogenic properties of LSD. The goal of this study was to identify the brain sites activated by LSD and to determine the influence of 5-HT(2A) receptors in this activation. Rats were pretreated with the 5-HT(2A) receptor antagonist MDL 100907 (0.3 mg/kg, i.p.) or vehicle 30 min prior to LSD (500 microg/kg, i.p.) administration and killed 3 h later. Brain tissue was examined for Fos protein expression by immunohistochemistry. LSD administration produced a five- to eight-fold increase in Fos-like immunoreactivity in medial prefrontal cortex, anterior cingulate cortex, and central nucleus of amygdala. However, in dorsal striatum and nucleus accumbens no increase in Fos-like immunoreactivity was observed. Pretreatment with MDL 100907 completely blocked LSD-induced Fos-like immunoreactivity in medial prefrontal cortex and anterior cingulate cortex, but only partially blocked LSD-induced Fos-like immunoreactivity in amygdala. Double-labeled immunohistochemistry revealed that LSD did not induce Fos-like immunoreactivity in cortical cells expressing 5-HT(2A) receptors, suggesting an indirect activation of cortical neurons. These results indicate that the LSD activation of medial prefrontal cortex and anterior cingulate cortex is mediated by 5-HT(2A) receptors, whereas in amygdala 5-HT(2A) receptor activation is a component of the response. These findings support the hypothesis that the medial prefrontal cortex, anterior cingulate cortex, and perhaps the amygdala, are important regions involved in the production of hallucinations.

  18. Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes

    PubMed Central

    Blough, Bruce E.; Landavazo, Antonio; Decker, Ann M.; Partilla, John S.; Baumann, Michael H.; Rothman, Richard B.

    2014-01-01

    Rationale Synthetic hallucinogenic tryptamines, especially those originally described by Alexander Shulgin, continue to be abused in the United States. The range of subjective experiences produced by different tryptamines suggests that multiple neurochemical mechanisms are involved in their actions, in addition to the established role of agonist activity at serotonin-2A (5-HT2A) receptors. Objectives This study evaluated the interaction of a series of synthetic tryptamines with biogenic amine neurotransmitter transporters and with serotonin (5-HT) receptor subtypes implicated in psychedelic effects. Methods Neurotransmitter transporter activity was determined in rat brain synaptosomes. Receptor activity was determined using calcium mobilization and DiscoveRx PathHunter® assays in HEK293, Gα16-CHO, and CHOk1 cells transfected with human receptors. Results Twenty-one tryptamines were analyzed in transporter uptake and release assays, and 5-HT2A, serotonin 1A (5-HT1A), and 5-HT2A β-arrestin functional assays. Eight of the compounds were found to have 5-HT-releasing activity. Thirteen compounds were found to be 5-HT uptake inhibitors or were inactive. All tryptamines were 5-HT2A agonists with a range of potencies and efficacies, but only a few compounds were 5-HT1A agonists. Most tryptamines recruited β-arrestin through 5-HT2A activation. Conclusions All psychoactive tryptamines are 5-HT2A agonists, but 5-HT transporter (SERT) activity may contribute significantly to the pharmacology of certain compounds. The in vitro transporter data confirm structure-activity trends for releasers and uptake inhibitors whereby releasers tend to be structurally smaller compounds. Interestingly, two tertiary amines were found to be selective substrates at SERT, which dispels the notion that 5-HT-releasing activity is limited only to primary or secondary amines. PMID:24800892

  19. Serotonin receptors in suicide victims with major depression.

    PubMed

    Stockmeier, C A; Dilley, G E; Shapiro, L A; Overholser, J C; Thompson, P A; Meltzer, H Y

    1997-02-01

    Serotonin1A (5-HT1A) and serotonin2A (5-HT2A) receptors in the brain have been implicated in the pathophysiology of suicide. Brain samples were collected at autopsy from suicide victims with a current episode of major depression and matched comparison subjects who died of natural or accidental causes. Retrospective psychiatric assessments were collected from knowledgeable informants for all suicide victims and most of the comparison subjects. Psychiatric diagnoses were determined according to DSM-III-R criteria. Any subjects with current psychoactive substance use disorders were excluded. Quantitative receptor autoradiography was used in serial sections of the right prefrontal cortex (area 10) and hippocampus to measure the binding of [3H]8-hydroxy-2-(di-n-propyl)-aminotetralin ([3H]8-OH-DPAT) to 5-HT1A receptors and [3H]ketanserin to 5-HT2A receptors. Analysis of covariance was used to compare control subjects and suicide victims with major depression. The age of subjects, the time from death to freezing the tissue (postmortem interval), and the storage time of tissues in the freezer were used as covariates in the analyses. There were no significant differences between suicide victims with major depression and comparison subjects in 5-HT1A or 5-HT2A receptors in area 10 of the right prefrontal cortex or the hippocampus. The current results suggest that the number of 5-HT1A and 5-HT2A receptors in the right prefrontal cortex (area 10) or hippocampus are not different in suicide victims with major depression.

  20. 5-HT2A Gene Variants Moderate the Association between PTSD and Reduced Default Mode Network Connectivity.

    PubMed

    Miller, Mark W; Sperbeck, Emily; Robinson, Meghan E; Sadeh, Naomi; Wolf, Erika J; Hayes, Jasmeet P; Logue, Mark; Schichman, Steven A; Stone, Angie; Milberg, William; McGlinchey, Regina

    2016-01-01

    The default mode network (DMN) has been used to study disruptions of functional connectivity in a wide variety of psychiatric and neurological conditions, including posttraumatic stress disorder (PTSD). Studies indicate that the serotonin system exerts a modulatory influence on DMN connectivity; however, no prior study has examined associations between serotonin receptor gene variants and DMN connectivity in either clinical or healthy samples. We examined serotonin receptor single nucleotide polymorphisms (SNPs), PTSD, and their interactions for association with DMN connectivity in 134 White non-Hispanic veterans. We began by analyzing candidate SNPs identified in prior meta-analyses of relevant psychiatric traits and found that rs7997012 (an HTR2A SNP), implicated previously in anti-depressant medication response in the Sequenced Treatment Alternatives for Depression study (STAR(*)D; McMahon et al., 2006), interacted with PTSD to predict reduced connectivity between the posterior cingulate cortex (PCC) and the right medial prefrontal cortex and right middle temporal gyrus (MTG). rs130058 (HTR1B) was associated with connectivity between the PCC and right angular gyrus. We then expanded our analysis to 99 HTR1B and HTR2A SNPs and found two HTR2A SNPs (rs977003 and rs7322347) that significantly moderated the association between PTSD severity and the PCC-right MTG component of the DMN after correcting for multiple testing. Finally, to obtain a more precise localization of the most significant SNP × PTSD interaction, we performed a whole cortex vertex-wise analysis of the rs977003 effect. This analysis revealed the locus of the pre-frontal effect to be in portions of the superior frontal gyrus, while the temporal lobe effect was centered in the middle and inferior temporal gyri. These findings point to the influence of HTR2A variants on DMN connectivity and advance knowledge of the role of 5-HT2A receptors in the neurobiology of PTSD.

  1. 5-HT2A Gene Variants Moderate the Association between PTSD and Reduced Default Mode Network Connectivity

    PubMed Central

    Miller, Mark W.; Sperbeck, Emily; Robinson, Meghan E.; Sadeh, Naomi; Wolf, Erika J.; Hayes, Jasmeet P.; Logue, Mark; Schichman, Steven A.; Stone, Angie; Milberg, William; McGlinchey, Regina

    2016-01-01

    The default mode network (DMN) has been used to study disruptions of functional connectivity in a wide variety of psychiatric and neurological conditions, including posttraumatic stress disorder (PTSD). Studies indicate that the serotonin system exerts a modulatory influence on DMN connectivity; however, no prior study has examined associations between serotonin receptor gene variants and DMN connectivity in either clinical or healthy samples. We examined serotonin receptor single nucleotide polymorphisms (SNPs), PTSD, and their interactions for association with DMN connectivity in 134 White non-Hispanic veterans. We began by analyzing candidate SNPs identified in prior meta-analyses of relevant psychiatric traits and found that rs7997012 (an HTR2A SNP), implicated previously in anti-depressant medication response in the Sequenced Treatment Alternatives for Depression study (STAR*D; McMahon et al., 2006), interacted with PTSD to predict reduced connectivity between the posterior cingulate cortex (PCC) and the right medial prefrontal cortex and right middle temporal gyrus (MTG). rs130058 (HTR1B) was associated with connectivity between the PCC and right angular gyrus. We then expanded our analysis to 99 HTR1B and HTR2A SNPs and found two HTR2A SNPs (rs977003 and rs7322347) that significantly moderated the association between PTSD severity and the PCC-right MTG component of the DMN after correcting for multiple testing. Finally, to obtain a more precise localization of the most significant SNP × PTSD interaction, we performed a whole cortex vertex-wise analysis of the rs977003 effect. This analysis revealed the locus of the pre-frontal effect to be in portions of the superior frontal gyrus, while the temporal lobe effect was centered in the middle and inferior temporal gyri. These findings point to the influence of HTR2A variants on DMN connectivity and advance knowledge of the role of 5-HT2A receptors in the neurobiology of PTSD. PMID:27445670

  2. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.

    1998-01-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  3. Serotonin receptors involved in antidepressant effects.

    PubMed

    Artigas, Francesc

    2013-01-01

    The neurotransmitter serotonin (5-hdroxytryptamine; 5-HT) has been implicated in the pathophysiology and treatment of major depression since the serendipitous discovery of antidepressant drugs in the 1950s. However, despite the generalised use of serotonin-enhancing drugs, such as the selective serotonin reuptake inhibitors (SSRIs) and the dual serotonin and norepinephrine reuptake inhibitors (SNRIs), the exact neurobiological mechanisms involved in the therapeutic action of these drugs are poorly understood. Better knowledge of these mechanisms may help to identify new therapeutic targets and to overcome the two main limitations of current treatments: reduced efficacy and slowness of action. Here I review the preclinical and clinical evidence supporting the involvement of different 5-HT receptors in the therapeutic action of antidepressant drugs. Presynaptic 5-HT(1A) and 5-HT(1B) autoreceptors play a major detrimental role in antidepressant treatments, as their activation by the excess of the active (extracellular) 5-HT fraction produced by serotonin transporter (SERT) blockade reduces presynaptic serotonergic function. Conversely, stimulation of postsynaptic 5-HT(1A) receptors in corticolimbic networks appears beneficial for the antidepressant action. The 5-HT(2) receptor family is also involved as 5-HT(2A/2C) receptor blockade improves the antidepressant action of SSRIs, and recent data suggest that 5-HT(2B) receptor activation enhances serotonergic activity. Less is known from the rest of postsynaptic 5-HT receptors. However, 5-HT(3) receptor blockade augments the 5-HT increase evoked by SERT inhibition, and 5-HT(4) receptor activation may have antidepressant effects on its own. Finally, blockade of 5-HT(6) and 5-HT(7) receptors appears also to augment the antidepressant effects of SERT inhibition.

  4. The serotonin 2C receptor potently modulates the head-twitch response in mice induced by a phenethylamine hallucinogen

    PubMed Central

    Canal, Clinton E.; Olaghere da Silva, Uade B.; Gresch, Paul J.; Watt, Erin E.; Sanders-Bush, Elaine

    2010-01-01

    Rationale Hallucinogenic serotonin 2A (5-HT2A) receptor partial agonists, such as (±)-1-(2,5-dimethoxy-4-iodo-phenyl)-2-aminopropane hydrochloride (DOI), induce a frontal cortex-dependent head-twitch response (HTR) in rodents, a behavioral proxy of a hallucinogenic response that is blocked by 5-HT2A receptor antagonists. In addition to 5-HT2A receptors, DOI and most other serotonin-like hallucinogens have high affinity and potency as partial agonists at 5-HT2C receptors. Objectives We tested for involvement of 5-HT2C receptors in the HTR induced by DOI. Results Comparison of 5-HT2C receptor knockout and wild-type littermates revealed an approximately 50% reduction in DOI-induced HTR in knockout mice. Also, pretreatment with either the 5-HT2C receptor antagonist SB206553 or SB242084 eradicated a twofold difference in DOI-induced HTR between the standard inbred mouse strains C57BL/6J and DBA/2J, and decreased the DOI-induced HTR by at least 50% in both strains. None of several measures of 5-HT2A receptors in frontal cortex explained the strain difference, including 5-HT2A receptor density, Gαq or Gαi/o protein levels, phospholipase C activity, or DOI-induced expression of Egr1 and Egr2. 5-HT2C receptor density in the brains of C57BL/6J and DBA/2J was also equivalent, suggesting that 5-HT2C receptor-mediated intracellular signaling or other physiological modulators of the HTR may explain the strain difference in response to DOI. Conclusions We conclude that the HTR to DOI in mice is strongly modulated by 5-HT2C receptor activity. This novel finding invites reassessment of hallucinogenic mechanisms involving 5-HT2 receptors. PMID:20165943

  5. Modulation of GABA release from the thalamic reticular nucleus by cocaine and caffeine: role of serotonin receptors.

    PubMed

    Goitia, Belén; Rivero-Echeto, María Celeste; Weisstaub, Noelia V; Gingrich, Jay A; Garcia-Rill, Edgar; Bisagno, Verónica; Urbano, Francisco J

    2016-02-01

    Serotonin receptors are targets of drug therapies for a variety of neuropsychiatric and neurodegenerative disorders. Cocaine inhibits the re-uptake of serotonin (5-HT), dopamine, and noradrenaline, whereas caffeine blocks adenosine receptors and opens ryanodine receptors in the endoplasmic reticulum. We studied how 5-HT and adenosine affected spontaneous GABAergic transmission from thalamic reticular nucleus. We combined whole-cell patch clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) in ventrobasal thalamic neurons during local (puff) application of 5-HT in wild type (WT) or knockout mice lacking 5-HT2A receptors (5-HT2A -/-). Inhibition of mIPSCs frequency by low (10 μM) and high (100 μM) 5-HT concentrations was observed in ventrobasal neurons from 5-HT2A -/- mice. In WT mice, only 100 μM 5-HT significantly reduced mIPSCs frequency. In 5-HT2A -/- mice, NAN-190, a specific 5-HT1A antagonist, prevented the 100 μM 5-HT inhibition while blocking H-currents that prolonged inhibition during post-puff periods. The inhibitory effects of 100 μM 5-HT were enhanced in cocaine binge-treated 5-HT2A -/- mice. Caffeine binge treatment did not affect 5-HT-mediated inhibition. Our findings suggest that both 5-HT1A and 5-HT2A receptors are present in pre-synaptic thalamic reticular nucleus terminals. Serotonergic-mediated inhibition of GABA release could underlie aberrant thalamocortical physiology described after repetitive consumption of cocaine. Our findings suggest that both 5-HT1A , 5-HT2A and A1 receptors are present in pre-synaptic TRN terminals. 5-HT1A and A1 receptors would down-regulate adenylate cyclase, whereas 5-HT1A would also increase the probability of the opening of G-protein-activated inwardly rectifying K(+) channels (GIRK). Sustained opening of GIRK channels would hyperpolarize pre-synaptic terminals activating H-currents, resulting in less GABA release. 5-HT2A -would activate PLC and IP3 , increasing intracellular [Ca(2+) ] and

  6. Altered coronary microvascular serotonin receptor expression after coronary artery bypass grafting utilizing cardiopulmonary bypass

    PubMed Central

    Robich, Michael P.; Araujo, Eugenio G.; Feng, Jun; Osipov, Robert M.; Clements, Richard T.; Bianchi, Cesario; Sellke, Frank W.

    2009-01-01

    Objectives Evaluate the role of serotonin receptors 1B and 2A, thromboxane synthase and receptor and phospholipases A2 and C in response to cardiopulmonary bypass in patients. Methods Atrial tissue was harvested from patients before and after cardiopulmonary bypass with cardioplegia (n=13). Coronary microvessels were assessed for vasoactive response to serotonin with and without inhibitors of 5-HT1B and 5-HT2A receceptors, phospholipase A2 and C. Expression of 5-HT1B and 5-HT2A mRNA was determined by RT-PCR. Expression of 5-HT1B, 5-HT2A, Thromboxane A2 receptor and synthase protein was determined by immunoblotting and immunohistochemistry. Results Exposure of microvessels to serotonin elicited a 7.3 ± 2% relaxation response pre-bypass, changing to a strong contraction response of -19.2 ± 2% after bypass (p<0.001). Addition of either a specific 5-HT1B antagonist or inhibitor of PLA2 resulted in a significant decrease in the contractile response to -8.6 ±1% (p<0.001) and 2.8 ± 3% (p= 0.001), respectively. 5-HT1B receptor mRNA expression increased 1.82 ± 0.34 fold after bypass (p=0.044), while 5-HT2A mRNA expression did not change. 5-HT1B receptor, but not 5-HT2A, protein expression increased after bypass by 1.35 ± 0.7 fold (p=0.0413). Neither thromboxane synthase nor thromboxane receptor expression changed after bypass. Immunohistochemistry demonstrated 5-HT1B receptor increased mainly in the arterial smooth muscle. There was no appreciable difference in arterial expression of either thromboxane synthase or receptor. Conclusion These data indicate that 5-HT-induced vascular dysfunction after cardiopulmonary bypass with cardioplegia may be mediated by increased expression of 5-HT1B receptor and subsequent PLA2 activation in myocardial coronary smooth muscle. Mini Abstract The expression of 5-HT1B receptor protein and mRNA were increased in the atrial myocardium after cardioplegia and cardiopulmonary bypass (CP-CPB). Serotonin elicited a strong contraction

  7. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    PubMed

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.

  8. Ozone Exposure Alters Serotonin and Serotonin Receptor Expression in the Developing Lung

    PubMed Central

    Van Winkle, Laura S.

    2013-01-01

    Ozone, a pervasive environmental pollutant, adversely affects functional lung growth in children. Animal studies demonstrate that altered lung development is associated with modified signaling within the airway epithelial mesenchymal trophic unit, including mediators that can change nerve growth. We hypothesized that ozone exposure alters the normal pattern of serotonin, its transporter (5-HTT), and two key receptors (5-HT2A and 5-HT4), a pathway involved in postnatal airway neural, epithelial, and immune processes. We exposed monkeys to acute or episodic ozone during the first 2 or 6 months of life. There were three exposure groups/age: (1) filtered air, (2) acute ozone challenge, and (3) episodic ozone + acute ozone challenge. Lungs were prepared for compartment-specific qRT-PCR, immunohistochemistry, and stereology. Airway epithelial serotonin immunopositive staining increased in all exposure groups with the most prominent in 2-month midlevel and 6-month distal airways. Gene expression of 5-HTT, 5-HT2AR, and 5-HT4R increased in an age-dependent manner. Overall expression was greater in distal compared with midlevel airways. Ozone exposure disrupted both 5-HT2AR and 5-HT4R protein expression in airways and enhanced immunopositive staining for 5-HT2AR (2 months) and 5-HT4R (6 months) on smooth muscle. Ozone exposure increases serotonin in airway epithelium regardless of airway level, age, and exposure history and changes the spatial pattern of serotonin receptor protein (5-HT2A and 5-HT4) and 5-HTT gene expression depending on compartment, age, and exposure history. Understanding how serotonin modulates components of reversible airway obstruction exacerbated by ozone exposure sets the foundation for developing clinically relevant therapies for airway disease. PMID:23570994

  9. T102C polymorphism in the 5HT2A gene and schizophrenia: relation to phenotype and drug response variability.

    PubMed Central

    Joober, R; Benkelfat, C; Brisebois, K; Toulouse, A; Turecki, G; Lal, S; Bloom, D; Labelle, A; Lalonde, P; Fortin, D; Alda, M; Palmour, R; Rouleau, G A

    1999-01-01

    Although genes play a major role in the etiology of schizophrenia, no major genes involved in this disease have been identified. However, several genes with small effect have been reported, though inconsistently, to increase the risk for schizophrenia. Recently, the 5HT2A 2 allele (T102C polymorphism) was reported to be over-represented in patients with schizophrenia. Other reports have found an excess of allele 2(C) only in schizophrenic patients who are resistant to clozapine, not in those who respond to clozapine. In this study, the 5HT2A receptor allele 2 frequencies were compared between 2 groups of patients with schizophrenia (39 responders and 63 nonresponders) based on long-term outcome and response to typical neuroleptics. A control group of 90 healthy volunteers screened for mental disorders was also included. Genotype 2/2 tended to be more frequent in patients with schizophrenia with poor long-term outcome and poor response to typical neuroleptics (Bonferroni corrected p = 0.09). This difference was significant in men (Bonferroni corrected p = 0.054) but not in women. In addition, the age at first contact with psychiatric care was significantly younger in the patients with schizophrenia with genotype 2/2 than in patients with genotype 1/1. These result suggest that the 5HT2A-receptor gene may play a role in a subset of schizophrenia characterized by poor long-term outcome and poor response to neuroleptics. PMID:10212557

  10. Serotonin Receptors in Hippocampus

    PubMed Central

    Berumen, Laura Cristina; Rodríguez, Angelina; Miledi, Ricardo; García-Alcocer, Guadalupe

    2012-01-01

    Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system. PMID:22629209

  11. Current status of positron emission tomography radiotracers for serotonin receptors in humans.

    PubMed

    Zimmer, Luc; Le Bars, Didier

    2013-01-01

    Serotonin (5-HT) neurotransmission plays a key modulatory role in the brain. This system is critical for pathophysiological processes and many drug treatments for brain disorders interact with its 14 subtypes of receptors. Positron emission tomography (PET) is a unique tool for the study of the living brain in translational studies from animal models to patients in neurology or psychiatry. This short review is intended to cover the current status of PET radioligands used for imaging human brain 5-HT receptors. Here, we describe the available PET radioligands for the 5-HT1A , 5-HT1B , 5-HT2A , 5-HT4 and 5-HT6 receptors. Finally, we highlight the future challenges for a functional PET imaging of serotonin receptors, including the research towards specific PET radiotracers for yet unexplored serotonin receptors, the need of radiotracers for endogenous serotonin level measurement and the contribution of agonist radiotracers for functional imaging of 5-HT neurotransmission.

  12. Repeated 7-Day Treatment with the 5-HT2C Agonist Lorcaserin or the 5-HT2A Antagonist Pimavanserin Alone or in Combination Fails to Reduce Cocaine vs Food Choice in Male Rhesus Monkeys.

    PubMed

    Banks, Matthew L; Negus, S Stevens

    2017-04-01

    Cocaine use disorder is a global public health problem for which there are no Food and Drug Administration-approved pharmacotherapies. Emerging preclinical evidence has implicated both serotonin (5-HT) 2C and 2A receptors as potential mechanisms for mediating serotonergic attenuation of cocaine abuse-related neurochemical and behavioral effects. Therefore, the present study aim was to determine whether repeated 7-day treatment with the 5-HT2C agonist lorcaserin (0.1-1.0 mg/kg per day, intramuscular; 0.032-0.1 mg/kg/h, intravenous) or the 5-HT2A inverse agonist/antagonist pimavanserin (0.32-10 mg/kg per day, intramuscular) attenuated cocaine reinforcement under a concurrent 'choice' schedule of cocaine and food availability in rhesus monkeys. During saline treatment, cocaine maintained a dose-dependent increase in cocaine vs food choice. Repeated pimavanserin (3.2 mg/kg per day) treatments significantly increased small unit cocaine dose choice. Larger lorcaserin (1.0 mg/kg per day and 0.1 mg/kg/h) and pimavanserin (10 mg/kg per day) doses primarily decreased rates of operant behavior. Coadministration of ineffective lorcaserin (0.1 mg/kg per day) and pimavanserin (0.32 mg/kg per day) doses also failed to significantly alter cocaine choice. These results suggest that neither 5-HT2C receptor activation nor 5-HT2A receptor blockade are sufficient to produce a therapeutic-like decrease in cocaine choice and a complementary increase in food choice. Overall, these results do not support the clinical utility of 5-HT2C agonists and 5-HT2A inverse agonists/antagonists alone or in combination as candidate anti-cocaine use disorder pharmacotherapies.

  13. Association study of T102C 5-HT2A polymorphism in schizophrenic patients: diagnosis, psychopathology, and suicidal behavior

    PubMed Central

    Correa, Humberto; De Marco, Luiz; Boson, Wolfanga; Nicolato, Rodrigo; Teixeira, Antó L.; Campo, Valdir R.; Romano-Silva, Marco A.

    2007-01-01

    The objective of this study was to examine the association between the serotonin (5-HT)2A gene polymorphism (102T/C) and suicidal behavior in schizophrenic inpatients. We studied 129 subjects who met the diagnostic criteria for schizophrenia according to a structured clinicai interview (MINI-PLUS), Patients underwent a semistructured interview to assess suicide attempt history and its characteristics, in addition, at least one close relative of the patient was interviewed to assess prohand and family suicidal behavior. Healthy controls were students and hospital staff members free of psychiatric and medical illness. Genotypes were determined after polymerase chain reaction amplification of the region of 5-HT2A/T102C containing the polymorphic site and digestion with the restriction enzyme Hpall, We found no association between suicidal attempt history and suicide attempt characteristics and genotypic or aileie frequencies. Suicidal behavior was also not associated with demographic or psychopathological characteristics. These results suggest that the S-HT2A gene polymorphism (102T/C) is not involved in genetic susceptibility to suicidal behavior, but further studies in a larger sample are needed. PMID:17506229

  14. Involvement of serotonin receptor subtypes in the antidepressant-like effect of beta receptor agonist Amibegron (SR 58611A): an experimental study.

    PubMed

    Tanyeri, Pelin; Buyukokuroglu, Mehmet Emin; Mutlu, Oguz; Ulak, Güner; Yıldız Akar, Füruzan; Komsuoglu Celikyurt, Ipek; Erden, Bekir Faruk

    2013-04-01

    New therapeutic strategies against depression, with less side effects and thus greater efficacy in larger proportion of depressed patients, are needed. Amibegron (SR58611A) is the first selective β3 adrenergic agent that has been shown to possess a profile of antidepressant activity in rodents. To investigate the involvement of serotonin receptors in the effects of amibegron, we used the serotonin 5HT1A receptor antagonist WAY-100635 (WAY) or serotonin 5HT2A-2C receptor antagonist ketanserin or serotonin 5HT3 receptor antagonist ondansetron in mice forced swimming test (FST). The locomotor activity was evaluated by measuring the total distance moved in the apparatus and the speed of the animals in the open field test. Imipramine (30mg/kg) significantly reduced immobility time compared to vehicle-treated group while amibegron (5 and 10mg/kg) dose dependently reduced immobility time in the FST. WAY(0.1mg/kg), ondansetron (1mg/kg), ketanserin(5mg/kg) had no effect on immobility time in naive mice while all of the drugs partially and significantly reversed amibegron (10mg/kg) induced decreasement in the immobility time in FST. None of the drugs alter locomotor activity in the open field test. The antidepressant-like effect of amibegron in the FST seems to be mediated by an interaction with serotonin 5-HT1A, serotonin 5-HT2A-2C and serotonin 5-HT3 receptors.

  15. Serotonin receptors contribute to the promnesic effects of P. olacoides (Marapuama).

    PubMed

    da Silva, Adriana Lourenço; Ferreira, Juliana G; da Silva Martins, Bárbara; Oliveira, Sabrina; Mai, Nathalia; Nunes, Domingos S; Elisabetsky, Elaine

    2008-09-03

    Nootropic, antioxidant, and neuroprotective properties have been shown in a standardized ethanol extract of Ptychopetalum olacoides (POEE), a medicinal plant traditionally used by the Amazonian elderly population. It has been revealed that POEE mechanisms of action include anticholinesterase effects, and involve beta-adrenergic and dopamine D(1) receptors. The purpose of this study was to verify the role of serotonin receptors in the promnesic effects of this standardized extract. The step-down task in mice and selective serotonin antagonists were used. The study reveals that POEE promnesic effects on short-term (acquisition, consolidation and retrieval) and long-term (retrieval) declarative aversive memories are increased by 5HT(2A) (but not 5HT(1A)) serotonin antagonists (spiperone and pindolol, respectively). The observed synergism between POEE and spiperone can be interpreted as the combined effects of two subeffective doses of two 5HT antagonists, or the known synergism between an acetylcholinesterase inhibitor (POEE) and a 5HT antagonist. In conclusion it is suggested that 5HT(2A) serotonin receptors are relevant for the promnesic effects of this extract, adding to its multiple mechanisms of action.

  16. Repeated adolescent MDMA ("Ecstasy") exposure in rats increases behavioral and neuroendocrine responses to a 5-HT2A/2C agonist.

    PubMed

    Biezonski, Dominik K; Courtemanche, Andrea B; Hong, Sang B; Piper, Brian J; Meyer, Jerrold S

    2009-02-03

    MDMA (3,4-methylenedioxymethamphetamine) is a popular recreational drug among adolescents. The present study aimed to determine the effects of repeated intermittent administration of 10 mg/kg MDMA during adolescence on behavioral (Experiment 1) and neuroendocrine (Experiment 2) responses of rats to the 5-HT(2A/2C) agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and on [(3)H]ketanserin binding to 5-HT(2A) receptors. In the first experiment, MDMA pretreatment increased the frequency of head twitches and back muscle contractions, but not wet-dog shakes, to a high-dose DOI challenge. In the second experiment, both the prolactin and corticosterone responses to DOI were potentiated in MDMA-pretreated animals. No changes were found in 5-HT(2A) receptor binding in the hypothalamus or other forebrain areas that were examined. These results indicate that intermittent adolescent MDMA exposure enhances sensitivity of 5-HT(2A/2C) receptors in the CNS, possibly through changes in downstream signaling mechanisms.

  17. Effects of serotonin 2A/1A receptor stimulation on social exclusion processing.

    PubMed

    Preller, Katrin H; Pokorny, Thomas; Hock, Andreas; Kraehenmann, Rainer; Stämpfli, Philipp; Seifritz, Erich; Scheidegger, Milan; Vollenweider, Franz X

    2016-05-03

    Social ties are crucial for physical and mental health. However, psychiatric patients frequently encounter social rejection. Moreover, an increased reactivity to social exclusion influences the development, progression, and treatment of various psychiatric disorders. Nevertheless, the neuromodulatory substrates of rejection experiences are largely unknown. The preferential serotonin (5-HT) 2A/1A receptor agonist, psilocybin (Psi), reduces the processing of negative stimuli, but whether 5-HT2A/1A receptor stimulation modulates the processing of negative social interactions remains unclear. Therefore, this double-blind, randomized, counterbalanced, cross-over study assessed the neural response to social exclusion after the acute administration of Psi (0.215 mg/kg) or placebo (Pla) in 21 healthy volunteers by using functional magnetic resonance imaging (fMRI) and resting-state magnetic resonance spectroscopy (MRS). Participants reported a reduced feeling of social exclusion after Psi vs. Pla administration, and the neural response to social exclusion was decreased in the dorsal anterior cingulate cortex (dACC) and the middle frontal gyrus, key regions for social pain processing. The reduced neural response in the dACC was significantly correlated with Psi-induced changes in self-processing and decreased aspartate (Asp) content. In conclusion, 5-HT2A/1A receptor stimulation with psilocybin seems to reduce social pain processing in association with changes in self-experience. These findings may be relevant to the normalization of negative social interaction processing in psychiatric disorders characterized by increased rejection sensitivity. The current results also emphasize the importance of 5-HT2A/1A receptor subtypes and the Asp system in the control of social functioning, and as prospective targets in the treatment of sociocognitive impairments in psychiatric illnesses.

  18. Effects of serotonin 2A/1A receptor stimulation on social exclusion processing

    PubMed Central

    Preller, Katrin H.; Pokorny, Thomas; Hock, Andreas; Kraehenmann, Rainer; Stämpfli, Philipp; Seifritz, Erich; Scheidegger, Milan; Vollenweider, Franz X.

    2016-01-01

    Social ties are crucial for physical and mental health. However, psychiatric patients frequently encounter social rejection. Moreover, an increased reactivity to social exclusion influences the development, progression, and treatment of various psychiatric disorders. Nevertheless, the neuromodulatory substrates of rejection experiences are largely unknown. The preferential serotonin (5-HT) 2A/1A receptor agonist, psilocybin (Psi), reduces the processing of negative stimuli, but whether 5-HT2A/1A receptor stimulation modulates the processing of negative social interactions remains unclear. Therefore, this double-blind, randomized, counterbalanced, cross-over study assessed the neural response to social exclusion after the acute administration of Psi (0.215 mg/kg) or placebo (Pla) in 21 healthy volunteers by using functional magnetic resonance imaging (fMRI) and resting-state magnetic resonance spectroscopy (MRS). Participants reported a reduced feeling of social exclusion after Psi vs. Pla administration, and the neural response to social exclusion was decreased in the dorsal anterior cingulate cortex (dACC) and the middle frontal gyrus, key regions for social pain processing. The reduced neural response in the dACC was significantly correlated with Psi-induced changes in self-processing and decreased aspartate (Asp) content. In conclusion, 5-HT2A/1A receptor stimulation with psilocybin seems to reduce social pain processing in association with changes in self-experience. These findings may be relevant to the normalization of negative social interaction processing in psychiatric disorders characterized by increased rejection sensitivity. The current results also emphasize the importance of 5-HT2A/1A receptor subtypes and the Asp system in the control of social functioning, and as prospective targets in the treatment of sociocognitive impairments in psychiatric illnesses. PMID:27091970

  19. Platelet-Derived Serotonin Mediates Liver Regeneration

    NASA Astrophysics Data System (ADS)

    Lesurtel, Mickael; Graf, Rolf; Aleil, Boris; Walther, Diego J.; Tian, Yinghua; Jochum, Wolfram; Gachet, Christian; Bader, Michael; Clavien, Pierre-Alain

    2006-04-01

    The liver can regenerate its volume after major tissue loss. In a mouse model of liver regeneration, thrombocytopenia, or impaired platelet activity resulted in the failure to initiate cellular proliferation in the liver. Platelets are major carriers of serotonin in the blood. In thrombocytopenic mice, a serotonin agonist reconstituted liver proliferation. The expression of 5-HT2A and 2B subtype serotonin receptors in the liver increased after hepatectomy. Antagonists of 5-HT2A and 2B receptors inhibited liver regeneration. Liver regeneration was also blunted in mice lacking tryptophan hydroxylase 1, which is the rate-limiting enzyme for the synthesis of peripheral serotonin. This failure of regeneration was rescued by reloading serotonin-free platelets with a serotonin precursor molecule. These results suggest that platelet-derived serotonin is involved in the initiation of liver regeneration.

  20. Serotonin-2C and -2A Receptor Co-expression on Cells in the Rat Medial Prefrontal Cortex

    PubMed Central

    Nocjar, Christine; Alex, Katherine D; Sonneborn, Alex; Abbas, Atheir I; Roth, Bryan L; Pehek, Elizabeth A

    2015-01-01

    Neural function within the medial prefrontal cortex (mPFC) regulates normal cognition, attention and impulse control, implicating neuroregulatory abnormalities within this region in mental dysfunction related to schizophrenia, depression and drug abuse. Both serotonin -2A (5-HT2A) and -2C (5-HT2C) receptors are known to be important in neuropsychiatric drug action and are distributed throughout the mPFC. However, their interactive role in serotonergic cortical regulation is poorly understood. While the main signal transduction mechanism for both receptors is stimulation of phosphoinositide production, they can have opposite effects downstream. 5-HT2A versus 5-HT2C receptor activation oppositely regulates behavior and can oppositely affect neurochemical release within the mPFC. These distinct receptor effects could be caused by their differential cellular distribution within the cortex and/or other areas. It is known that both receptors are located on GABAergic and pyramidal cells within the mPFC, but it is not clear whether they are expressed on the same or different cells. The present work employed immunofluorescence with confocal microscopy to examine this in layers V-VI of the prelimbic mPFC. The majority of GABA cells in the deep prelimbic mPFC expressed 5-HT2C receptor immunoreactivity. Furthermore, most cells expressing 5-HT2C receptor immunoreactivity notably co-expressed 5-HT2A receptors. However, 27% of 5-HT2C receptor immunoreactive cells were not GABAergic, indicating that a population of prelimbic pyramidal projection cells could express the 5-HT2C receptor. Indeed, some cells with 5-HT2C and 5-HT2A receptor co-labeling had a pyramidal shape and were expressed in the typical layered fashion of pyramidal cells. This indirectly demonstrates that 5-HT2C and 5-HT2A receptors may be commonly co-expressed on GABAergic cells within the deep layers of the prelimbic mPFC and perhaps co-localized on a small population of local pyramidal projection cells. Thus a

  1. Differential effects of serotonin (5-HT)2 receptor-targeting ligands on locomotor responses to nicotine-repeated treatment.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Wydra, Karolina; Filip, Małgorzata

    2010-07-01

    We verified the hypothesis that serotonin (5-HT)(2) receptors control the locomotor effects of nicotine (0.4 mg kg(-1)) in rats by using the 5-HT(2A) receptor antagonist M100907, the preferential 5-HT(2A) receptor agonist DOI, the 5-HT(2C) receptor antagonist SB 242084, and the 5-HT(2C) receptor agonists Ro 60-0175 and WAY 163909. Repeated pairings of a test environment with nicotine for 5 days, on Day 10 significantly augmented the locomotor activity following nicotine administration. Of the investigated 5-HT(2) receptor ligands, M100907 (2 mg kg(-1)) or DOI (1 mg kg(-1)) administered during the first 5 days in combination with nicotine attenuated or enhanced, respectively, the development of nicotine sensitization. Given acutely on Day 10, M100907 (2 mg kg(-1)), Ro 60-0175 (1 mg kg(-1)), and WAY 163909 (1.5 mg kg(-1)) decreased the expression of nicotine sensitization. In another set of experiments, where the nicotine challenge test was performed on Day 15 in animals treated repeatedly (Days: 1-5, 10) with nicotine, none of 5-HT(2) receptor ligands administered during the second withdrawal period (Days: 11-14) to nicotine-treated rats altered the sensitizing effect of nicotine given on Day 15. Our data indicate that 5-HT(2A) receptors (but not 5-HT(2C) receptors) play a permissive role in the sensitizing effects of nicotine, while stimulation of 5-HT(2A) receptors enhances the development of nicotine sensitization and activation of 5-HT(2C) receptors is essential for the expression of nicotine sensitization. Repeated treatment with the 5-HT(2) receptor ligands within the second nicotine withdrawal does not inhibit previously established sensitization.

  2. Involvement of local serotonin-2A but not serotonin-1B receptors in the reinforcing effects of ethanol within the posterior ventral tegmental area of female Wistar rats

    PubMed Central

    Ding, Zheng-Ming; Toalston, Jamie E.; Oster, Scott M.; McBride, William J.; Rodd, Zachary A.

    2010-01-01

    Rationale Previous studies indicated that ethanol could be self-infused into the posterior ventral tegmental area (p-VTA) and that activation of local serotonin-3 (5-HT3) receptors was involved. 5-HT1B and 5-HT2A receptors are involved in the effects of 5-HT and ethanol on VTA dopamine neurons. Objective The current study used the intracranial self-administration (ICSA) procedure to determine the involvement of local 5-HT1B and 5-HT2A receptors in the self-infusion of ethanol into the p-VTA. Materials and methods Female Wistar rats were implanted unilaterally with a guide cannula aimed at the p-VTA. Seven days after surgery, rats were placed into the two-lever operant conditioning chambers for ICSA tests. The tests consisted of four acquisition sessions with self-infusion of 200 mg% ethanol alone, two or three sessions with co-infusion of the 5-HT1B antagonist GR 55562 (10, 100, or 200 μM) or the 5-HT2A antagonist R-96544 (10, 100, or 200 μM) with 200 mg% ethanol, and one final session with 200 mg% ethanol alone. Results During the acquisition sessions, all rats readily self-infused ethanol and discriminated the active from inactive lever. Co-infusion of GR 55562, at all three doses, had no effect on the self-infusion of ethanol. In contrast, co-infusion of R-96544, at the two higher doses, attenuated responding on the active lever for ethanol infusion (p<0.05). Conclusion The results suggest that the reinforcing effects of ethanol within the p-VTA are modulated, at least in part, by activation of local 5-HT2A, but not 5-HT1B, receptors. PMID:19165471

  3. Hippocampal serotonin-2A receptor-immunoreactive neurons density increases after testosterone therapy in the gonadectomized male mice

    PubMed Central

    Nikmahzar, Emsehgol; Ghaemi, Amir; Naseri, Gholam Reza; Moharreri, Ali Reza; Lotfinia, Ahmad Ali

    2016-01-01

    The change of steroid levels may also exert different modulatory effects on the number and class of serotonin receptors present in the plasma membrane. The effects of chronic treatment of testosterone for anxiety were examined and expression of 5-HT2A serotonergic receptor, neuron, astrocyte, and dark neuron density in the hippocampus of gonadectomized male mice was determined. Thirty-six adult male NMRI mice were randomly divided into six groups: intact-no testosterone treatment (No T), gonadectomy (GDX)-No T, GDX-Vehicle, GDX-6.25 mg/kg testosterone (T), GDX-12.5 mg/kg T, and GDX-25 mg/kg T. Anxiety-related behavior was evaluated using elevated plus maze apparatus. The animals were anesthetized after 48 hours after behavioral testing, and decapitated and micron slices were prepared for immunohistochemical as well as histopathological assessment. Subcutaneous injection of testosterone (25 mg/kg) may induce anxiogenic-like behavior in male mice. In addition, immunohistochemical data reveal reduced expression of 5-HT2A serotonergic receptor after gonadectomy in all areas of the hippocampus. However, treatment with testosterone could increase the mean number of dark neurons as well as immunoreactive neurons in CA1 and CA3 area, dose dependently. The density of 5-HT2A receptor-immunoreactive neurons may play a crucial role in the induction of anxiety like behavior. As reduction in such receptor expression have shown to significantly enhance anxiety behaviors. However, replacement of testosterone dose dependently enhances the number of 5-HT2A receptor-immunoreactive neurons and interestingly also reduced anxiety like behaviors. PMID:28127501

  4. Familial risk for mood disorder and the personality risk factor, neuroticism, interact in their association with frontolimbic serotonin 2A receptor binding.

    PubMed

    Frokjaer, Vibe G; Vinberg, Maj; Erritzoe, David; Baaré, William; Holst, Klaus Kähler; Mortensen, Erik Lykke; Arfan, Haroon; Madsen, Jacob; Jernigan, Terry L; Kessing, Lars Vedel; Knudsen, Gitte Moos

    2010-04-01

    Life stress is a robust risk factor for later development of mood disorders, particularly for individuals at familial risk. Likewise, scoring high on the personality trait neuroticism is associated with an increased risk for mood disorders. Neuroticism partly reflects stress vulnerability and is positively correlated to frontolimbic serotonin 2A (5-HT(2A)) receptor binding. Here, we investigate whether neuroticism interacts with familial risk in relation to frontolimbic 5-HT(2A) receptor binding. Twenty-one healthy twins with a co-twin history of mood disorder and 16 healthy twins without a co-twin history of mood disorder were included. They answered self-report personality questionnaires and underwent [(18)F]altanserin positron emission tomography. We found a significant interaction between neuroticism and familial risk in predicting the frontolimbic 5-HT(2A) receptor binding (p=0.026) in an analysis adjusting for age and body mass index. Within the high-risk group only, neuroticism and frontolimbic 5-HT(2A) receptor binding was positively associated (p=0.0037). In conclusion, our data indicate that familial risk and neuroticism interact in their relation to frontolimbic 5-HT(2A) receptor binding. These findings point at a plausible neurobiological link between genetic and personality risk factors and vulnerability to developing mood disorders. It contributes to our understanding of why some people at high risk develop mood disorders while others do not. We speculate that an increased stress reactivity in individuals at high familial risk for mood disorders might enhance the effect of neuroticism in shaping the impact of potential environmental stress and thereby influence serotonergic neurotransmission.

  5. Activation of serotonin2A receptors in the medial septum-diagonal band of Broca complex enhanced working memory in the hemiparkinsonian rats.

    PubMed

    Li, Li-Bo; Zhang, Li; Sun, Yi-Na; Han, Ling-Na; Wu, Zhong-Heng; Zhang, Qiao-Jun; Liu, Jian

    2015-04-01

    Serotonin2A (5-HT2A) receptors are highly expressed in the medial septum-diagonal band of Broca complex (MS-DB), especially in parvalbumin (PV)-positive neurons linked to hippocampal theta rhythm, which is involved in cognition. Cognitive impairments commonly occur in Parkinson's disease. Here we performed behavioral, electrophysiological, neurochemical and immunohistochemical studies in rats with complete unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB) to assess the importance of dopamine (DA) depletion and MS-DB 5-HT2A receptors for working memory. The MFB lesions resulted in working memory impairment and decreases in firing rate and density of MS-DB PV-positive neurons, peak frequency of hippocampal theta rhythm, and DA levels in septohippocampal system and medial prefrontal cortex (mPFC) compared to control rats. Intra-MS-DB injection of high affinity 5-HT2A receptor agonist TCB-2 enhanced working memory, increased firing rate of PV-positive neurons and peak frequency of hippocampal theta rhythm, elevated DA levels in the hippocampus and mPFC, and decreased 5-HT level in the hippocampus in control and lesioned rats. Compared to control rats, the duration of the excitatory effect produced by TCB-2 on the firing rate of PV-positive neurons was markedly shortened in lesioned rats, indicating dysfunction of 5-HT2A receptors. These findings suggest that unilateral lesions of the MFB in rats induced working memory deficit, and activation of MS-DB 5-HT2A receptors enhanced working memory, which may be due to changes in the activity of septohippocampal network and monoamine levels in the hippocampus and mPFC.

  6. Mammal-like striatal functions in Anolis. I. Distribution of serotonin receptor subtypes, and absence of striosome and matrix organization.

    PubMed

    Clark, E C; Baxter, L R

    2000-11-01

    Serotonin (5-HT) 5-HT(2A) and 5-HT(2C) receptors are thought to play important roles in the mammalian striatum. As basal ganglia functions in general are thought highly conserved among amniotes, we decided to use in situ autoradiographic methods to determine the occurrence and distribution of pharmacologically mammal-like 5-HT(2A) and 5-HT(2C) receptors in the lizard, Anolis carolinensis, with particular attention to the striatum. We also determined the distributions of 5-HT(1A), 5-HT(1B/D), 5 HT(3), and 5-HT(uptake) receptors for comparison. All 5-HT receptors examined showed pharmacological binding specificity, and forebrain binding density distributions that resembled those reported for mammals. Anolis 5 HT(2A/C) and 5-HT(1A) site distributions were similar in both in vivo and ex vivo binding experiments. 5-HT(2A & C) receptors occur in both high and low affinity states, the former having preferential affinity for (125)I-(+/-)-2,5-dimethoxy-4-iodo-amphetamine hydrochloride ((125)I-DOI). In mammals (125)I-DOI binding shows a patchy density distribution in the striatum, being more dense in striosomes than in surrounding matrix. There was no evidence of any such patchy density of (125)I-DOI binding in the anole striatum, however. As a further indication that anoles do not possess a striosome and matrix striatal organization, neither (3)H-naloxone binding nor histochemical staining for acetylcholinesterase activity (AChE) were patchy. AChE did show a band-like striatal distribution, however, similar to that seen in birds.

  7. Effects of the 5-HT2A agonist psilocybin on mismatch negativity generation and AX-continuous performance task: implications for the neuropharmacology of cognitive deficits in schizophrenia.

    PubMed

    Umbricht, Daniel; Vollenweider, Franz X; Schmid, Liselotte; Grübel, Claudia; Skrabo, Anja; Huber, Theo; Koller, Rene

    2003-01-01

    Previously the NMDA (N-methyl-D-aspartate) receptor (NMDAR) antagonist ketamine was shown to disrupt generation of the auditory event-related potential (ERP) mismatch negativity (MMN) and the performance of an 'AX'-type continuous performance test (AX-CPT)--measures of auditory and visual context-dependent information processing--in a similar manner as observed in schizophrenia. This placebo-controlled study investigated effects of the 5-HT(2A) receptor agonist psilocybin on the same measures in 18 healthy volunteers. Psilocybin administration induced significant performance deficits in the AX-CPT, but failed to reduce MMN generation significantly. These results indirectly support evidence that deficient MMN generation in schizophrenia may be a relatively distinct manifestation of deficient NMDAR functioning. In contrast, secondary pharmacological effects shared by NMDAR antagonists and the 5-HT(2A) agonist (ie disruption of glutamatergic neurotransmission) may be the mechanism underlying impairments in AX-CPT performance observed during both psilocybin and ketamine administration. Comparable deficits in schizophrenia may result from independent dysfunctions of 5-HT(2A) and NMDAR-related neurotransmission.

  8. Modulating the rate and rhythmicity of perceptual rivalry alternations with the mixed 5-HT2A and 5-HT1A agonist psilocybin.

    PubMed

    Carter, Olivia L; Pettigrew, John D; Hasler, Felix; Wallis, Guy M; Liu, Guang B; Hell, Daniel; Vollenweider, Franz X

    2005-06-01

    Binocular rivalry occurs when different images are presented simultaneously to corresponding points within the left and right eyes. Under these conditions, the observer's perception will alternate between the two perceptual alternatives. Motivated by the reported link between the rate of perceptual alternations, symptoms of psychosis and an incidental observation that the rhythmicity of perceptual alternations during binocular rivalry was greatly increased 10 h after the consumption of LSD, this study aimed to investigate the pharmacology underlying binocular rivalry and to explore the connection between the timing of perceptual switching and psychosis. Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine, PY) was chosen for the study because, like LSD, it is known to act as an agonist at serotonin (5-HT)1A and 5-HT2A receptors and to produce an altered state sometimes marked by psychosis-like symptoms. A total of 12 healthy human volunteers were tested under placebo, low-dose (115 microg/kg) and high-dose (250 microg/kg) PY conditions. In line with predictions, under both low- and high-dose conditions, the results show that at 90 min postadministration (the peak of drug action), rate and rhythmicity of perceptual alternations were significantly reduced from placebo levels. Following the 90 min testing period, the perceptual switch rate successively increased, with some individuals showing increases well beyond pretest levels at the final testing, 360 min postadministration. However, as some subjects had still not returned to pretest levels by this time, the mean phase duration at 360 min was not found to differ significantly from placebo. Reflecting the drug-induced changes in rivalry phase durations, subjects showed clear changes in psychological state as indexed by the 5D-ASC (altered states of consciousness) rating scales. This study suggests the involvement of serotonergic pathways in binocular rivalry and supports the previously proposed role of a brainstem

  9. Reversal of amphetamine-induced behaviours by MDL 100,907, a selective 5-HT2A antagonist.

    PubMed

    Moser, P C; Moran, P M; Frank, R A; Kehne, J H

    1996-01-01

    MDL 100,907 is a potent and selective antagonist of the 5-HT2A receptor which, unlike other antagonists at this receptor, has little affinity for the 5-HT2C receptor. We have investigated the antipsychotic potential of MDL 100,907 by examining its ability to antagonise different behavioural effects of amphetamine in rats. MDL 100,907 reversed the locomotor stimulant effects of amphetamine in rats without itself having any effect on locomotor activity. It also antagonised the disruptive effects of amphetamine on the development of latent inhibition. In contrast, MDL 100,907 had no effect on the discriminative stimulus properties of amphetamine, nor did it affect the ability of amphetamine to reduce the threshold required to sustain rewarding brain stimulation in the ventral tegmental area. This profile is different from that of typical and atypical neuroleptics, and also from other 5-HT2 receptor antagonists, which lack the selectivity of MDL 100,907. These results suggest that MDL 100,907 may have a unique interaction with dopaminergic systems and support the further development of selective 5-HT2 receptor antagonists as a novel therapeutic strategy for schizophrenia.

  10. Effect of dopamine and serotonin receptor antagonists on fencamfamine-induced abolition of latent inhibition.

    PubMed

    de Aguiar, Cilene Rejane Ramos Alves; de Aguiar, Marlison José Lima; DeLucia, Roberto; Silva, Maria Teresa Araujo

    2013-01-05

    The purpose of this investigation was to verify the role of dopamine and serotonin receptors in the effect of fencamfamine (FCF) on latent inhibition. FCF is a psychomotor stimulant with an indirect dopaminergic action. Latent inhibition is a model of attention. Latent inhibition is blocked by dopaminergic agents and facilitated by dopamine receptor agonists. FCF has been shown to abolish latent inhibition. The serotonergic system may also participate in the neurochemical mediation of latent inhibition. The selective dopamine D(1) receptor antagonist SCH 23390 (7-chloro-3-methyl-1-phenyl-1,2,4,5-tetrahydro-3-benzazepin-8-ol), D(2) receptor antagonists pimozide (PIM) and methoclopramide (METH), and serotonin 5-HT(2A/C) receptor antagonist ritanserin (RIT) were used in the present study. Latent inhibition was evaluated using a conditioned emotional response procedure. Male Wistar rats that were water-restricted were subjected to a three-phase procedure: preexposure to a tone, tone-shock conditioning, and a test of the effect of the tone on licking frequency. All of the drugs were administered before the preexposure and conditioning phases. The results showed that FCF abolished latent inhibition, and this effect was clearly antagonized by PIM and METH and moderately attenuated by SCH 23390. At the doses used in the present study, RIT pretreatment did not affect latent inhibition and did not eliminate the effect of FCF, suggesting that the FCF-induced abolition of latent inhibition is not mediated by serotonin 5-HT(2A/C) receptors. These results suggest that the effect of FCF on latent inhibition is predominantly related to dopamine D(2) receptors and that dopamine D(2) receptors participate in attention processes.

  11. Interactions of serotonin (5-HT)2 receptor-targeting ligands and nicotine: locomotor activity studies in rats.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Filip, Małgorzata

    2009-08-01

    Male Wistar rats were used to verify the hypothesis that serotonin (5-HT)(2A) or 5-HT(2C) receptors may control the locomotor effects evoked by nicotine (0.4 mg/kg). The 5-HT(2A) receptor antagonist (M100,907), the 5-HT(2A) receptor agonist (DOI), the 5-HT(2C) receptor antagonist (SB 242,084), and the 5-HT(2C) receptor agonists (Ro 60-0175 and WAY 163,909) were used. M100,907 (0.5-2mg/kg) did not alter, while DOI (1 mg/kg) enhanced the nicotine-induced hyperlocomotion. The effect of DOI was antagonized by M100,907 (1 mg/kg). SB 242,084 (0.25-1 mg/kg) augmented, while Ro 60-0175 (1 and 3 mg/kg) and WAY 163,909 (1.5 mg/kg) decreased the overall effect of acute nicotine; effects of Ro 60-0175 and WAY 163,909 were attenuated by SB 242,084 (0.125 mg/kg). In another set of experiments, M100,907 (2 mg/kg) on Day 10 attenuated, while DOI (0.1-1 mg/kg) enhanced the nicotine-evoked conditioned hyperlocomotion in rats repeatedly (Days 1-5) treated with nicotine in experimental chambers. SB 242,084 (0.125 or 1 mg/kg) did not change, while Ro 60-0175 (1 mg/kg) or WAY 163,909 (1.5 mg/kg) decreased the expression of nicotine-induced conditioned hyperactivity. Only DOI (0.3 and 1 mg/kg) and SB 242,084 (1 mg/kg) enhanced the basal locomotion. The present data indicate that 5-HT(2A) receptors are significant for the expression of nicotine-evoked conditioned hyperactivity. Conversely, 5-HT(2C) receptors play a pivotal role in the acute effects of nicotine. Pharmacological stimulation of 5-HT(2A) receptors enhances the conditioned hyperlocomotion, while activation of 5-HT(2C) receptors decreases both the response to acute nicotine and conditioned hyperactivity.

  12. Lack of association between serotonin-2A receptor gene (HTR2A) polymorphisms and tardive dyskinesia in schizophrenia.

    PubMed

    Basile, V S; Ozdemir, V; Masellis, M; Meltzer, H Y; Lieberman, J A; Potkin, S G; Macciardi, F M; Petronis, A; Kennedy, J L

    2001-03-01

    Tardive dyskinesia (TD) is a disabling neurological side effect associated with long-term treatment with typical antipsychotics. Family studies and animal models lend evidence for hereditary predisposition to TD. The newer atypical antipsychotics pose a minimal risk for TD which is in part attributed to their ability to block the serotonin-2A (5-HT(2A)) receptor. 5-HT(2A) receptors were also identified in the basal ganglia; a brain region that plays a critical role in antipsychotic-induced movement disorders. We tested the significance of variation in the 5-HT(2A) receptor gene (HTR2A) in relation to the TD phenotype. Three polymorphisms in HTR2A, one silent (C102T), one that alters the amino acid sequence (his452tyr) and one in the promoter region (A-1437G) were investigated in 136 patients refractory or intolerant to treatment with typical antipsychotics and with a DSM-IIIR diagnosis of schizophrenia. We did not find any significant difference in allele, genotype or haplotype frequencies of polymorphisms in HTR2A among patients with or without TD (P > 0.05). Further analysis using the ANCOVA statistic with a continuous measure of the TD phenotype (Abnormal Involuntary Movement Scale (AIMS) score) found that the AIMS scores were not significantly influenced by HTR2A polymorphisms, despite controlling for potential confounders such as age, gender and ethnicity (P > 0.05). Theoretically, central serotonergic function can be subject to genetic control at various other mechanistic levels including the rate of serotonin synthesis (tryptophane hydroxylase gene), release, reuptake (serotonin transporter gene) and degradation (monoamine oxidase gene). Analyses of these other serotonergic genes are indicated. In summary, polymorphisms in HTR2A do not appear to influence the risk for TD. Further studies evaluating in tandem multiple candidate genes relevant for the serotonergic system are warranted to dissect the genetic basis of the complex TD phenotype.

  13. Serotonin 2A Receptors, Citalopram and Tryptophan-Depletion: a Multimodal Imaging Study of their Interactions During Response Inhibition

    PubMed Central

    Macoveanu, Julian; Hornboll, Bettina; Elliott, Rebecca; Erritzoe, David; Paulson, Olaf B; Siebner, Hartwig; Knudsen, Gitte M; Rowe, James B

    2013-01-01

    Poor behavioral inhibition is a common feature of neurological and psychiatric disorders. Successful inhibition of a prepotent response in ‘NoGo' paradigms requires the integrity of both the inferior frontal gyrus (IFG) and the serotonergic system. We investigated individual differences in serotonergic regulation of response inhibition. In 24 healthy adults, we used 18F-altanserin positron emission tomography to assess cerebral 5-HT2A receptors, which have been related to impulsivity. We then investigated the impact of two acute manipulations of brain serotonin levels on behavioral and neural correlates of inhibition using intravenous citalopram and acute tryptophan depletion during functional magnetic resonance imaging. We adapted the NoGo paradigm to isolate effects on inhibition per se as opposed to other aspects of the NoGo paradigm. Successful NoGo inhibition was associated with greater activation of the right IFG compared to control trials with alternative responses, indicating that the IFG is activated with inhibition in NoGo trials rather than other aspects of invoked cognitive control. Activation of the left IFG during NoGo trials was greater with citalopram than acute tryptophan depletion. Moreover, with the NoGo-type of response inhibition, the right IFG displayed an interaction between the type of serotonergic challenge and neocortical 5-HT2A receptor binding. Specifically, acute tryptophan depletion (ATD) produced a relatively larger NoGo response in the right IFG in subjects with low 5-HT2A BPP but reduced the NoGo response in those with high 5-HT2A BPP. These links between serotonergic function and response inhibition in healthy subjects may help to interpret serotonergic abnormalities underlying impulsivity in neuropsychiatric disorders. PMID:23303045

  14. Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors.

    PubMed

    Narla, Chakravarthi; Dunn, Henry A; Ferguson, Stephen S G; Poulter, Michael O

    2015-01-01

    The piriform cortex (PC) is richly innervated by corticotropin-releasing factor (CRF) and serotonin (5-HT) containing axons arising from central amygdala and Raphe nucleus. CRFR1 and 5-HT2A/2CRs have been shown to interact in manner where CRFR activation subsequently potentiates the activity of 5-HT2A/2CRs. The purpose of this study was to determine how the activation of CRFR1 and/or 5-HT2Rs modulates PC activity at both the circuit and cellular level. Voltage sensitive dye imaging showed that CRF acting through CRFR1 dampened activation of the Layer II of PC and interneurons of endopiriform nucleus. Application of the selective 5-HT2A/CR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) following CRFR1 activation potentiated this effect. Blocking the interaction between CRFR1 and 5-HT2R with a Tat-CRFR1-CT peptide abolished this potentiation. Application of forskolin did not mimic CRFR1 activity but instead blocked it, while a protein kinase A antagonist had no effect. However, activation and antagonism of protein kinase C (PKC) either mimicked or blocked CRF modulation, respectively. DOI had no effect when applied alone indicating that the prior activation of CRFR1 receptors was critical for DOI to show significant effects similar to CRF. Patch clamp recordings showed that both CRF and DOI reduced the synaptic responsiveness of Layer II pyramidal neurons. CRF had highly variable effects on interneurons within Layer III, both increasing and decreasing their excitability, but DOI had no effect on the excitability of this group of neurons. These data show that CRF and 5-HT, acting through both CRFR1 and 5-HT2A/CRs, reduce the activation of the PC. This modulation may be an important blunting mechanism of stressor behaviors mediated through the olfactory cortex.

  15. N-Benzyl-5-methoxytryptamines as Potent Serotonin 5-HT2 Receptor Family Agonists and Comparison with a Series of Phenethylamine Analogues

    PubMed Central

    2015-01-01

    A series of N-benzylated-5-methoxytryptamine analogues was prepared and investigated, with special emphasis on substituents in the meta position of the benzyl group. A parallel series of several N-benzylated analogues of 2,5-dimethoxy-4-iodophenethylamine (2C-I) also was included for comparison of the two major templates (i.e., tryptamine and phenethylamine). A broad affinity screen at serotonin receptors showed that most of the compounds had the highest affinity at the 5-HT2 family receptors. Substitution at the para position of the benzyl group resulted in reduced affinity, whereas substitution in either the ortho or the meta position enhanced affinity. In general, introduction of a large lipophilic group improved affinity, whereas functional activity often followed the opposite trend. Tests of the compounds for functional activity utilized intracellular Ca2+ mobilization. Function was measured at the human 5-HT2A, 5-HT2B, and 5-HT2C receptors, as well as at the rat 5-HT2A and 5-HT2C receptors. There was no general correlation between affinity and function. Several of the tryptamine congeners were very potent functionally (EC50 values from 7.6 to 63 nM), but most were partial agonists. Tests in the mouse head twitch assay revealed that many of the compounds induced the head twitch and that there was a significant correlation between this behavior and functional potency at the rat 5-HT2A receptor. PMID:25547199

  16. Serotonin Transporter and Receptor Expression in Osteocytic MLO-Y4 Cells

    PubMed Central

    BLIZIOTES, M.; ESHLEMAN, A.; BURT-PICHAT, B.; ZHANG, X.-W.; HASHIMOTO, J.; WIREN, K.; CHENU, C.

    2006-01-01

    Neurotransmitter regulation of bone metabolism has been a subject of increasing interest and investigation. We reported previously that osteoblastic cells express a functional serotonin (5-HT) signal transduction system, with mechanisms for responding to and regulating uptake of 5-HT. The clonal murine osteocytic cell line, MLO-Y4, demonstrates expression of the serotonin transporter (5-HTT), and the 5-HT1A, and 5-HT2A receptors by real-time RT-PCR and immunoblot analysis. Immunohistochemistry using antibodies for the 5-HTT, and the 5-HT1A and 5-HT2A receptors reveals expression of all three proteins in both osteoblasts and osteocytes in rat tibia. 5-HTT binding sites were demonstrated in the MLO-Y4 cells with nanomolar affinity for the stable cocaine analog [125I]RTI-55. Imipramine and fluoxetine, antagonists with specificity for 5-HTT, show the highest potency to antagonize [125I]RTI-55 binding in the MLO-Y4 cells. GBR-12935, a relatively selective dopamine transporter antagonist, had a much lower potency, as did desipramine, a selective norepinephrine transporter antagonist. The maximal [3H]5-HT uptake rate in MLO-Y4 cells was 2.85 pmol/15 min/well, with a Km value of 290 nM. Imipramine and fluoxetine inhibited specific [3H]5-HT uptake with IC50 values in the nanomolar range. 5-HT rapidly stimulated PGE2 release from MLO-Y4 cells; the EC50 for 5-HT was 0.1 μM, with a 3-fold increase seen at 60 min. The rate limiting enzyme for serotonin synthesis, tryptophan hydroxylase, is expressed in MLO-Y4 cells as well as osteoblastic MC3T3-E1 cells. Thus, osteocytes, as well as osteoblasts, are capable of 5-HT synthesis, and express functional receptor and transporter components of the 5-HT signal transduction system. PMID:16884969

  17. Chronic betahistine co-treatment reverses olanzapine's effects on dopamine D₂ but not 5-HT2A/2C bindings in rat brains.

    PubMed

    Lian, Jiamei; Huang, Xu-Feng; Pai, Nagesh; Deng, Chao

    2015-01-02

    Olanzapine is widely prescribed for treating schizophrenia and other mental disorders, although it leads to severe body weight gain/obesity. Chronic co-treatment with betahistine has been found to significantly decrease olanzapine-induced weight gain; however, it is not clear whether this co-treatment affects the therapeutic effects of olanzapine. This study investigated the effects of chronic treatment of olanzapine and/or betahistine on the binding density of the serotonergic 5-HT2A (5-HT2AR) and 5-HT2C (5-HT2CR) receptors, 5-HT transporter (5-HTT), and dopaminergic D₂ receptors (D₂R) in the brain regions involved in antipsychotic efficacy, including the prefrontal cortex (PFC), cingulate cortex (Cg), nucleus accumbens (NAc), and caudate putamen (CPu). Rats were treated with olanzapine (1 mg/kg, t.i.d.) or vehicle for 3.5 weeks, and then olanzapine treatment was withdrawn for 19 days. From week 6, the two groups were divided into 4 groups (n=6) for 5 weeks' treatment: (1) olanzapine-only (1 mg/kg, t.i.d.), (2) betahistine-only (9.6 mg/kg, t.i.d.), (3) olanzapine and betahistine co-treatment (O+B), and (4) vehicle. Compared to the control, the olanzapine-only treatment significantly decreased the bindings of 5-HT2AR, 5-HT2CR, and 5-HTT in the PFC, Cg, and NAc. Similar changes were observed in the rats receiving the O+B co-treatment. The olanzapine-only treatment significantly increased the D₂R binding in the Cg, NAc, and CPu, while the betahistine-only treatment reduced D₂R binding. The co-treatment of betahistine reversed the D₂R bindings in the NAc and CPu that were increased by olanzapine. Therefore, chronic O+B co-treatment has similar effects on serotonin transmission as the olanzapine-only treatment, but reverses the D₂R that is up-regulated by chronic olanzapine treatment. The co-treatment maintains the therapeutic effects of olanzapine but decreases/prevents the excess weight gain.

  18. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  19. Behavioral tolerance to lysergic acid diethylamide is associated with reduced serotonin-2A receptor signaling in rat cortex.

    PubMed

    Gresch, Paul J; Smith, Randy L; Barrett, Robert J; Sanders-Bush, Elaine

    2005-09-01

    Tolerance is defined as a decrease in responsiveness to a drug after repeated administration. Tolerance to the behavioral effects of hallucinogens occurs in humans and animals. In this study, we used drug discrimination to establish a behavioral model of lysergic acid diethylamide (LSD) tolerance and examined whether tolerance to the stimulus properties of LSD is related to altered serotonin receptor signaling. Rats were trained to discriminate 60 microg/kg LSD from saline in a two-lever drug discrimination paradigm. Two groups of animals were assigned to either chronic saline treatment or chronic LSD treatment. For chronic treatment, rats from each group were injected once per day with either 130 microg/kg LSD or saline for 5 days. Rats were tested for their ability to discriminate either saline or 60 microg/kg LSD, 24 h after the last chronic injection. Rats receiving chronic LSD showed a 44% reduction in LSD lever selection, while rats receiving chronic vehicle showed no change in percent choice on the LSD lever. In another group of rats receiving the identical chronic LSD treatment, LSD-stimulated [35S]GTPgammaS binding, an index of G-protein coupling, was measured in the rat brain by autoradiography. After chronic LSD, a significant reduction in LSD-stimulated [35S]GTPgammaS binding was observed in the medial prefrontal cortex and anterior cingulate cortex. Furthermore, chronic LSD produced a significant reduction in 2,5-dimethoxy-4-iodoamphetamine-stimulated [35S]GTPgammaS binding in medial prefrontal cortex and anterior cingulate cortex, which was blocked by MDL 100907, a selective 5-HT2A receptor antagonist, but not SB206553, a 5-HT2C receptor antagonist, indicating a reduction in 5-HT2A receptor signaling. 125I-LSD binding to 5-HT2A receptors was reduced in cortical regions, demonstrating a reduction in 5-HT2A receptor density. Taken together, these results indicate that adaptive changes in LSD-stimulated serotonin receptor signaling may mediate tolerance

  20. Effect of GABAergic ligands on the anxiolytic-like activity of DOI (a 5-HT(2A/2C) agonist) in the four-plate test in mice.

    PubMed

    Massé, Fabienne; Hascoët, Martine; Bourin, Michel

    2007-01-01

    5-HTergic and GABAergic systems are involved in neurobiology of anxiety. Precedent studies have demonstrated that SSRIs possessed an anxiolytic-like effect in the four-plate test (FPT) at doses that did not modify spontaneous locomotor activity. This effect seems to be mediated through the activation of 5-HT(2A) postsynaptic receptors. The purpose of the present study was to examine the implication of GABA system in the anxiolytic-like activity of DOI in the FPT. To achieve this, the co-administration of DOI (5-HT(2A/2C) receptor agonists) with GABA(A) and GABA(B) receptor ligands was evaluated in the FPT. Alprazolam, diazepam and muscimol (for higher dose) potentiated the anxiolytic-like effect of DOI. Bicuculline, picrotoxin and baclofen inhibited the anxiolytic-like effect of DOI. Flumazenil and CGP 35348 had no effect on the anxiolytic-like activity of DOI. These results suggest that the GABA system seems to be strongly implicated in the anxiolytic-like activity of DOI in the FPT.

  1. Evidence for a common biological basis of the Absorption trait, hallucinogen effects, and positive symptoms: epistasis between 5-HT2a and COMT polymorphisms.

    PubMed

    Ott, Ulrich; Reuter, Martin; Hennig, Juergen; Vaitl, Dieter

    2005-08-05

    Absorption represents a disposition to experience altered states of consciousness characterized by intensively focused attention. It is correlated with hypnotic susceptibility and includes phenomena ranging from vivid perceptions and imaginations to mystical experiences. Based on the assumption that drug-induced and naturally occurring mystical experiences share common neural mechanisms, we hypothesized that Absorption is influenced by the T102C polymorphism affecting the 5-HT2a receptor, which is known to be an important target site of hallucinogens like LSD. Based on the pivotal role ascribed to the prefrontal executive control network for absorbed attention and positive symptoms in schizophrenia, it was further hypothesized that Absorption is associated with the VAL158MET polymorphism of the catechol-O-methyltransferase (COMT) gene affecting the dopaminergic neurotransmitter system. The Tellegen Absorption Scale was administered to 336 subjects (95 male, 241 female). Statistical analysis revealed that the group with the T/T genotype of the T102C polymorphism, implying a stronger binding potential of the 5-HT2a receptor, indeed had significantly higher Absorption scores (F = 10.00, P = 0.002), while no main effect was found for the COMT polymorphism. However, the interaction between T102C and COMT genotypes yielded significance (F = 3.89; P = 0.049), underlining the known functional interaction between the 5-HT and the dopaminergic system. These findings point to biological foundations of the personality trait of Absorption.

  2. Effects of chronic fluoxetine treatment on catalepsy and the immune response in mice with a genetic predisposition to freezing reactions: the roles of types 1A and 2A serotonin receptors and the tph2 and SERT genes.

    PubMed

    Tikhonova, M A; Alperina, E L; Tolstikova, T G; Bazovkina, D V; Di, V Y; Idova, G V; Kulikov, A V; Popova, N K

    2010-06-01

    ASC (Antidepressant-Sensitive Catalepsy) mice, bred for a high predisposition to catalepsy, are characterized by depression-like behavior and decreased immune responses. Chronic administration of fluoxetine, which is a selective serotonin reuptake inhibitor antidepressant widely used in clinical practice, to mice of this strain weakened catalepsy and normalized the number of rosette-forming cells in the spleen. In mice of the parental cataleptic strain CBA/Lac, fluoxetine had no effect on the level of catalepsy or the immune response. Analysis of the effects of fluoxetine on the functional activity of 5-HT(1A) and 5-HT(2A) receptors, and the expression of 5-HT(1A) receptor genes in the frontal cortex and midbrain and 5-HT(2A) receptors in the frontal cortex, as well as the tryptophan hydroxylase-2 and the serotonin transporter genes in the midbrain showed that the antidepressant had no effect on these parameters in ASC mice, but decreased the functional activity of 5-HT(2A) receptors in CBA/Lac mice. The possibility that the actions of fluoxetine on catalepsy and the immune response in mice with depression-like states are mediated via other serotoninergic mechanisms is discussed.

  3. Antidepressant-like activity of aroxyalkyl derivatives of 2-methoxyphenylpiperazine and evidence for the involvement of serotonin receptor subtypes in their mechanism of action.

    PubMed

    Kubacka, Monika; Mogilski, Szczepan; Bednarski, Marek; Nowiński, Leszek; Dudek, Magdalena; Żmudzka, Elżbieta; Siwek, Agata; Waszkielewicz, Anna M; Marona, Henryk; Satała, Grzegorz; Bojarski, Andrzej; Filipek, Barbara; Pytka, Karolina

    2016-02-01

    Since serotonin (5-HT) is strongly involved in the etiology and pathophysiology of depression, the development of new antidepressants is still based on the serotonergic system. The complexity of serotonergic system provides an opportunity for the development of compounds with multiple and complementary mechanism of action. This study describes serotonin receptor profile, functional characterization, and pharmacological in vivo evaluation of new aroxyalkyl derivatives of 2-methoxyphenylpiperazine. The obtained results allowed for the identification of compound 3, (1-[3-(2,6-dimethylphenoxy)propyl]-4-(2-methoxyphenyl)piperazine hydrochloride), a partial 5-HT1A receptor agonist, and 5-HT2A receptor antagonist, with high affinity toward 5-HT7 receptors, showing antidepressant- and anxiolytic-like properties. Moreover, 5-HT1A receptor activation is crucial for the antidepressant-like activity of compound 3. The rest of the compounds (except compounds 1 and 9) showed antidepressant but not anxiolytic-like properties, which did not result from 5-HT1A receptors activation. Furthermore, the compounds are 5-HT1A and weak 5-HT3 receptors antagonists, and some of them 5-HT2A antagonists. Moreover, none of the studied compounds impaired motor coordination at antidepressant-like doses. Since the studied compounds exhibited activity in behavioral assays and interacted with various receptors, the results of our experiments are very promising and require further studies.

  4. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands.

    PubMed

    Chilmonczyk, Zdzisław; Bojarski, Andrzej Jacek; Pilc, Andrzej; Sylte, Ingebrigt

    2015-08-07

    Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies.

  5. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands

    PubMed Central

    Chilmonczyk, Zdzisław; Bojarski, Andrzej Jacek; Pilc, Andrzej; Sylte, Ingebrigt

    2015-01-01

    Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies. PMID:26262615

  6. 5-HT2 receptors mediate functional modulation of GABAa receptors and inhibitory synaptic transmissions in human iPS-derived neurons

    PubMed Central

    Wang, Haitao; Hu, Lingli; Liu, Chunhua; Su, Zhenghui; Wang, Lihui; Pan, Guangjin; Guo, Yiping; He, Jufang

    2016-01-01

    Neural progenitors differentiated from induced pluripotent stem cells (iPS) hold potentials for treating neurological diseases. Serotonin has potent effects on neuronal functions through multiple receptors, underlying a variety of neural disorders. Glutamate and GABA receptors have been proven functional in neurons differentiated from iPS, however, little is known about 5-HT receptor-mediated modulation in such neuronal networks. In the present study, human iPS were differentiated into cells possessing featured physiological properties of cortical neurons. Whole-cell patch-clamp recording was used to examine the involvement of 5-HT2 receptors in functional modulation of GABAergic synaptic transmission. We found that serotonin and DOI (a selective agonist of 5-HT2A/C receptor) reversibly reduced GABA-activated currents, and this 5-HT2A/C receptor mediated inhibition required G protein, PLC, PKC, and Ca2+ signaling. Serotonin increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs), which could be mimicked by α-methylserotonin, a 5-HT2 receptor agonist. In contrast, DOI reduced both frequency and amplitude of mIPSCs. These findings suggested that in iPS-derived human neurons serotonin postsynaptically reduced GABAa receptor function through 5-HT2A/C receptors, but presynaptically other 5-HT2 receptors counteracted the action of 5-HT2A/C receptors. Functional expression of serotonin receptors in human iPS-derived neurons provides a pre-requisite for their normal behaviors after grafting. PMID:26837719

  7. Toll-like receptors 2 and 4 exert opposite effects on the contractile response induced by serotonin in mouse colon: role of serotonin receptors.

    PubMed

    Forcén, R; Latorre, E; Pardo, J; Alcalde, A I; Murillo, M D; Grasa, L

    2016-08-01

    What is the central question of this study? The action of Toll-like receptors (TLRs) 2 and 4 on the motor response to serotonin in mouse colon has not previously been reported. What is the main finding and its importance? Toll-like receptors 2 and 4 modulate the serotonin-induced contractile response in mouse colon by modifying the expression of serotonin (5-HT) receptors. Alterations in 5-HT2A and 5-HT2C receptors explain the increase of the response to serotonin in TLR2(-/-) mice. Alterations in 5-HT2C and 5-HT4 receptors explain the suppression of the response to serotonin in TLR4(-/-) mice. The microbiota, through Toll-like receptors (TLRs), may regulate gastrointestinal motility by activating neuroendocrine mechanisms. We evaluated the influence of TLR2 and TLR4 in spontaneous contractions and in the serotonin (5-HT)-induced motor response in mouse colon, and assessed the 5-HT receptors involved. Muscle contractility studies to evaluate the intestinal spontaneous motility and the response to 5-HT were performed in the colon from wild-type (WT), TLR2(-/-) , TLR4(-/-) and TLR2/4 double knockout (DKO) mice. The 5-HT receptor mRNA expression was determined by real-time PCR. The amplitude and frequency of the spontaneous contractions of the colon were smaller in TLR4(-/-) and TLR2/4 DKO mice with respect to WT mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 100 μm 5-HT evoked a contractile response. The contractile response induced by 5-HT was significantly higher in TLR2(-/-) than in WT mice. In TLR4(-/-) mice, 5-HT did not evoke any contractile response. The mRNA expression of 5-HT2A was increased in TLR2(-/-) and TLR2/4 DKO mice. The 5-HT2C and 5-HT4 mRNA expressions were increased in TLR4(-/-) and TLR2/4 DKO mice. The 5-HT2C mRNA expression was diminished in TLR2(-/-) mice. The 5-HT3 mRNA expression was increased in TLR2(-/-) , TLR4(-/-) and TLR2/4 DKO mice. The 5-HT7 mRNA expression was diminished in TLR2/4 DKO mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 5-HT2

  8. Do serotonin(1-7) receptors modulate short and long-term memory?

    PubMed

    Meneses, A

    2007-05-01

    Evidence from invertebrates to human studies indicates that serotonin (5-hydroxytryptamine; 5-HT) system modulates short- (STM) and long-term memory (LTM). This work is primarily focused on analyzing the contribution of 5-HT, cholinergic and glutamatergic receptors as well as protein synthesis to STM and LTM of an autoshaping learning task. It was observed that the inhibition of hippocampal protein synthesis or new mRNA did not produce a significant effect on autoshaping STM performance but it did impair LTM. Both non-contingent protein inhibition and 5-HT depletion showed no effects. It was basically the non-selective 5-HT receptor antagonist cyproheptadine, which facilitated STM. However, the blockade of glutamatergic and cholinergic transmission impaired STM. In contrast, the selective 5-HT(1B) receptor antagonist SB-224289 facilitated both STM and LTM. Selective receptor antagonists for the 5-HT(1A) (WAY100635), 5-HT(1D) (GR127935), 5-HT(2A) (MDL100907), 5-HT(2C/2B) (SB-200646), 5-HT(3) (ondansetron) or 5-HT(4) (GR125487), 5-HT(6) (Ro 04-6790, SB-399885 and SB-35713) or 5-HT(7) (SB-269970) did not impact STM. Nevertheless, WAY100635, MDL100907, SB-200646, GR125487, Ro 04-6790, SB-399885 or SB-357134 facilitated LTM. Notably, some of these changes shown to be independent of food-intake. Concomitantly, these data indicate that '5-HT tone via 5-HT(1B) receptors' might function in a serial manner from STM to LTM, whereas working in parallel using 5-HT(1A), 5-HT(2A), 5-HT(2B/2C), 5-HT(4), or 5-HT(6) receptors.

  9. Regulating prefrontal cortex activation: an emerging role for the 5-HT₂A serotonin receptor in the modulation of emotion-based actions?

    PubMed

    Aznar, Susana; Klein, Anders B

    2013-12-01

    The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala and the striatal circuitry, areas involved in emotion and reward processing. The PFC, however, is able to modulate amygdala reactivity via a feedback loop to this area. A role for serotonin in adjusting for this circuitry of cognitive regulation of emotion has long been suggested based primarily on the positive pharmacological effect of elevating serotonin levels in anxiety regulation. Recent animal and human functional magnetic resonance studies have pointed to a specific involvement of the 5-hydroxytryptamine (5-HT)2A serotonin receptor in the PFC feedback regulatory projection onto the amygdala. This receptor is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings of a regulatory effect of the PFC on the emotional control of our actions.

  10. Stimulation of glutamate receptors in the ventral tegmental area is necessary for serotonin-2 receptor-induced increases in mesocortical dopamine release

    PubMed Central

    Pehek, E.A.; Hernan, A.E.

    2017-01-01

    Modulation of dopamine (DA) released by serotonin-2 (5-HT2) receptors has been implicated in the mechanism of action of antipsychotic drugs. The mesocortical DA system has been implicated particularly in the cognitive deficits observed in schizophrenia. Agonism at 5-HT2A receptors in the prefrontal cortex is associated with increases in cortical DA release. Evidence indicates that 5-HT2A receptors in the cortex regulate mesocortical DA release through stimulation of a “long-loop” feedback system from the PFC to the VTA and back. However, a causal role for VTA glutamate in the 5-HT2-induced increases in PFC DA has not been established. The present study does so by measuring 5-HT2 agonist-induced DA release in the cortex after infusions of glutamate antagonists into the VTA. Infusions of a combination of a NMDA (AP-5: 2-amino-5-phosphopentanoic acid) and an AMPA/kainate (CNQX: 6-cyano-7-nitroquinoxaline-2,3-dione) receptor antagonist into the VTA blocked the increases in cortical DA produced by administration of the 5-HT2 agonist DOI [(±)-2,5-Dimethoxy-4-iodoamphetamine] (2.5 mg/kg s.c.). These results demonstrate that stimulation of glutamate receptors in the VTA is necessary for 5-HT2 agonist-induced increases in cortical DA. PMID:25637799

  11. The effects of the preferential 5-HT2A agonist psilocybin on prepulse inhibition of startle in healthy human volunteers depend on interstimulus interval.

    PubMed

    Vollenweider, Franz X; Csomor, Philipp A; Knappe, Bernhard; Geyer, Mark A; Quednow, Boris B

    2007-09-01

    Schizophrenia patients exhibit impairments in prepulse inhibition (PPI) of the startle response. Hallucinogenic 5-HT(2A) receptor agonists are used for animal models of schizophrenia because they mimic some symptoms of schizophrenia in humans and induce PPI deficits in animals. Nevertheless, one report indicates that the 5-HT(2A) receptor agonist psilocybin increases PPI in healthy humans. Hence, we investigated these inconsistent results by assessing the dose-dependent effects of psilocybin on PPI in healthy humans. Sixteen subjects each received placebo or 115, 215, and 315 microg/kg of psilocybin at 4-week intervals in a randomized and counterbalanced order. PPI at 30-, 60-, 120-, 240-, and 2000-ms interstimulus intervals (ISIs) was measured 90 and 165 min after drug intake, coinciding with the peak and post-peak effects of psilocybin. The effects of psilocybin on psychopathological core dimensions and sustained attention were assessed by the Altered States of Consciousness Rating Scale (5D-ASC) and the Frankfurt Attention Inventory (FAIR). Psilocybin dose-dependently reduced PPI at short (30 ms), had no effect at medium (60 ms), and increased PPI at long (120-2000 ms) ISIs, without affecting startle reactivity or habituation. Psilocybin dose-dependently impaired sustained attention and increased all 5D-ASC scores with exception of Auditory Alterations. Moreover, psilocybin-induced impairments in sustained attention performance were positively correlated with reduced PPI at the 30 ms ISI and not with the concomitant increases in PPI observed at long ISIs. These results confirm the psilocybin-induced increase in PPI at long ISIs and reveal that psilocybin also produces a decrease in PPI at short ISIs that is correlated with impaired attention and consistent with deficient PPI in schizophrenia.

  12. Prophylactic and therapeutic effects of acute systemic injections of EMD 281014, a selective serotonin 2A receptor antagonist on anxiety induced by predator stress in rats.

    PubMed

    Adamec, Robert; Creamer, Katherine; Bartoszyk, Gerd D; Burton, Paul

    2004-11-03

    We examined the effect of the selective serotonin 2A (5-HT(2A)) receptor antagonist 7-[4-[2-(4-fluoro-phenyl)-ethyl]-piperazine-1-carbonyl]-1H-indole-3-carbon itrile HCl (EMD 281014) [Bartoszyk, G.D., van Amsterdam, C., Bottcher, H., Seyfried, C.A., 2003. EMD 281014, a new selective serotonin 5-HT2A receptor antagonist. Eur. J. Pharmacol. 473, 229-230.] on change in affect following predator stress. Predator stress involved a 5 min unprotected exposure of rats to a domestic cat. Behavioral effects of stress were evaluated with hole board, plus maze, light/dark box and acoustic startle tests 1 week after stress. Predator stress increased anxiety-like behavior in the plus maze, light/dark box, and elevated response to acoustic startle. EMD 281014 (0.001, 0.01, 0.1, 1 or 10 mg/kg) and vehicle injection (ip) occurred either 10 min after predator stress (prophylactic testing), or 90 min prior to behavioral testing for the effects of predator stress (therapeutic testing 1 week after predator stress). In prophylactic testing, EMD 281014 prevented stress potentiation of startle in a dose dependent manner, though the most effective doses were midrange (0.01 and 0.1 mg/kg). Prophylactic administration of EMD 281014 also prevented stress-induced increase of open arm avoidance in the plus maze in a clear dose dependent manner (from 0.01 mg/kg onward). In therapeutic testing, EMD 281014 had no clear drug dependent effects on stress elevation of startle or on behavior of stressed rats in the elevated plus maze. Finally, EMD 281014 did not block the effects of stress on behavior in the light/dark box when given prophylactically or therapeutically. Findings implicate 5-HT(2A) receptors in initiation of some but not all lasting changes in anxiety-like behavior following predator stress. Potential clinical significance of findings are discussed.

  13. Two Distinct Central Serotonin Receptors with Different Physiological Functions

    NASA Astrophysics Data System (ADS)

    Peroutka, Stephen J.; Lebovitz, Richard M.; Snyder, Solomon H.

    1981-05-01

    Two distinct serotonin (5-hydroxytryptamine) receptors designated serotonin 1 and serotonin 2 bind tritium-labeled serotonin and tritium-labeled spiroperidol, respectively. Drug potencies at serotonin 2 sites, but not at serotonin 1 sites, predict their effects on the ``serotonin behavioral syndrome,'' indicating that serotonin 2 sites mediate these behaviors. The limited correlation of drug effects with regulation by guanine nucleotides suggests that serotonin 1 sites might be linked to adenylate cyclase. Drug specificities of serotonin-elicited synaptic inhibition and excitation may reflect serotonin 1 and serotonin 2 receptor interactions, respectively.

  14. Serotonin induces peripheral mechanical antihyperalgesic effects in mice.

    PubMed

    Diniz, Danielle A; Petrocchi, Júlia Alvarenga; Navarro, Larissa Caldeira; Souza, Tâmara Cristina; Castor, Marina G M; Perez, Andrea C; Duarte, Igor D G; Romero, Thiago R L

    2015-11-15

    The role of serotonin (5-HT) in nociception will vary according to the subtypes of receptors activated. When administered peripherally, it induces pain in humans and in rats by activation of 5-HT1, 5-HT2 and 5-HT3 receptors. In addition, endogenous 5-HT produced in situ, is involved in the nociceptive response induced by formalin in rat's paw inflammation, possibly via 5-HT3 receptors. Moreover, it has been shown that 5-HT released in the dorsal horn of the spinal cord by stimulation of the periaqueductal gray causes activation of inhibitory interneurons, resulting in inhibition of spinal neurons. In the present study we evaluated the effect of serotonin and its receptors at peripheral antinociception. The mice paw pressure test was used in animals that had increased sensitivity by an intraplantar injection of PGE2 (2 µg). We used selective antagonists of serotonin receptors (isamoltan 5-HT1B, BRL 15572 5-HT1D, ketanserin 5-HT2A, ondansetron 5-HT3 and SB-269970 5-HT7). Administration of serotonin into the right hind paw (62.5, 125, 250 and 500 ng and 1 µg) produced a dose-dependent peripheral mechanical antihyperalgesic effect of serotonin in mice. Selective antagonists for 5-HT1B, 5-HT2A, 5-HT3 receptors at doses of 0.1, 1 and 10 µg, reversed the antihyperalgesic effect induced by 250 ng serotonin. In contrast, selective antagonists for 5-HT1D and 5-HT7 receptors were unable to reverse the antihyperalgesic effect induced by serotonin. These results demonstrated for the first time, the peripheral mechanical antihyperalgesic effect of serotonin, and participation of 5-HT1B, 5-HT2A and 5-HT3 receptors in this event.

  15. Glucagon-Like Peptide 1 and Its Analogs Act in the Dorsal Raphe and Modulate Central Serotonin to Reduce Appetite and Body Weight.

    PubMed

    Anderberg, Rozita H; Richard, Jennifer E; Eerola, Kim; López-Ferreras, Lorena; Banke, Elin; Hansson, Caroline; Nissbrandt, Hans; Berqquist, Filip; Gribble, Fiona M; Reimann, Frank; Wernstedt Asterholm, Ingrid; Lamy, Christophe M; Skibicka, Karolina P

    2017-04-01

    Glucagon-like peptide 1 (GLP-1) and serotonin play critical roles in energy balance regulation. Both systems are exploited clinically as antiobesity strategies. Surprisingly, whether they interact in order to regulate energy balance is poorly understood. Here we investigated mechanisms by which GLP-1 and serotonin interact at the level of the central nervous system. Serotonin depletion impaired the ability of exendin-4, a clinically used GLP-1 analog, to reduce body weight in rats, suggesting that serotonin is a critical mediator of the energy balance impact of GLP-1 receptor (GLP-1R) activation. Serotonin turnover and expression of 5-hydroxytryptamine (5-HT) 2A (5-HT2A) and 5-HT2C serotonin receptors in the hypothalamus were altered by GLP-1R activation. We demonstrate that the 5-HT2A, but surprisingly not the 5-HT2C, receptor is critical for weight loss, anorexia, and fat mass reduction induced by central GLP-1R activation. Importantly, central 5-HT2A receptors are also required for peripherally injected liraglutide to reduce feeding and weight. Dorsal raphe (DR) harbors cell bodies of serotonin-producing neurons that supply serotonin to the hypothalamic nuclei. We show that GLP-1R stimulation in DR is sufficient to induce hypophagia and increase the electrical activity of the DR serotonin neurons. Finally, our results disassociate brain metabolic and emotionality pathways impacted by GLP-1R activation. This study identifies serotonin as a new critical neural substrate for GLP-1 impact on energy homeostasis and expands the current map of brain areas impacted by GLP-1R activation.

  16. 5-HT2 receptors modulate the expression of antipsychotic-induced dopamine supersensitivity.

    PubMed

    Charron, Alexandra; Hage, Cynthia El; Servonnet, Alice; Samaha, Anne-Noël

    2015-12-01

    Antipsychotic treatment can produce supersensitivity to dopamine receptor stimulation. This compromises the efficacy of ongoing treatment and increases the risk of relapse to psychosis upon treatment cessation. Serotonin 5-HT2 receptors modulate dopamine function and thereby influence dopamine-dependent responses. Here we evaluated the hypothesis that 5-HT2 receptors modulate the behavioural expression of antipsychotic-induced dopamine supersensitivity. To this end, we first treated rats with the antipsychotic haloperidol using a clinically relevant treatment regimen. We then assessed the effects of a 5-HT2 receptor antagonist (ritanserin; 0.01 and 0.1mg/kg) and of a 5-HT2A receptor antagonist (MDL100,907; 0.025-0.1mg/kg) on amphetamine-induced psychomotor activity. Antipsychotic-treated rats showed increased amphetamine-induced locomotion relative to antipsychotic-naïve rats, indicating a dopamine supersensitive state. At the highest dose tested (0.1mg/kg for both antagonists), both ritanserin and MDL100,907 suppressed amphetamine-induced locomotion in antipsychotic-treated rats, while having no effect on this behaviour in control rats. In parallel, antipsychotic treatment decreased 5-HT2A receptor density in the prelimbic cortex and nucleus accumbens core and increased 5-HT2A receptor density in the caudate-putamen. Thus, activation of either 5-HT2 receptors or of 5-HT2A receptors selectively is required for the full expression of antipsychotic-induced dopamine supersensitivity. In addition, antipsychotic-induced dopamine supersensitivity enhances the ability of 5-HT2/5-HT2A receptors to modulate dopamine-dependent behaviours. These effects are potentially linked to changes in 5-HT2A receptor density in the prefrontal cortex and the striatum. These observations raise the possibility that blockade of 5-HT2A receptors might overcome some of the behavioural manifestations of antipsychotic-induced dopamine supersensitivity.

  17. Quantitative mapping shows that serotonin rather than dopamine receptor mRNA expressions are affected after repeated intermittent administration of MDMA in rat brain.

    PubMed

    Kindlundh-Högberg, Anna M S; Svenningsson, Per; Schiöth, Helgi B

    2006-09-01

    Ecstasy, (+/-)-3,4-methylenedioxy-metamphetamine (MDMA), is a popular recreational drug among young people. The present study aims to mimic MDMA intake among adolescents at dance clubs, taking repeated doses in the same evening on an intermittent basis. Male Sprague-Dawley rats received either 3x1 or 3x5 mg/kg/day (3 h apart) every seventh day during 4 weeks. We used real-time RT-PCR to determine the gene expression of serotonin 5HT1A, 5HT1B, 5HT2A, 5HT2C, 5HT3, 5HT6 receptors and dopamine D1, D2, D3 receptors in seven brain nuclei. The highest dose of MDMA extensively increased the 5HT1B-receptor mRNA in the cortex, caudate putamen, nucleus accumbens, and hypothalamus. The 5HT2A-receptor mRNA was reduced at the highest MDMA dose in the cortex. The 5HT2C mRNA was significantly increased in a dose-dependent manner in the cortex and the hypothalamus, as well as the 5HT3-receptor mRNA was in the hypothalamus. The 5HT6 mRNA level was increased in the forebrain cortex and the amygdala. Dopamine receptor mRNAs were only affected in the hypothalamus. In conclusion, this study provides evidence for a unique implication of serotonin rather than dopamine receptor mRNA levels, in response to repeated intermittent MDMA administration. We therefore suggest that serotonin regulated functions also primarily underlie repeated MDMA intake at rave parties.

  18. Sleep Deprivation Increases Cerebral Serotonin 2A Receptor Binding in Humans

    PubMed Central

    Elmenhorst, David; Kroll, Tina; Matusch, Andreas; Bauer, Andreas

    2012-01-01

    Study Objectives: Serotonin and its cerebral receptors play an important role in sleep-wake regulation. The aim of the current study is to investigate the effect of 24-h total sleep deprivation on the apparent serotonin 2A receptor (5-HT2AR) binding capacity in the human brain to test the hypothesis that sleep deprivation induces global molecular alterations in the cortical serotonergic receptor system. Design: Volunteers were tested twice with the subtype-selective radiotracer [18F]altanserin and positron emission tomography (PET) for imaging of 5-HT2ARs at baseline and after 24 h of sleep deprivation. [18F]Altanserin binding potentials were analyzed in 13 neocortical regions of interest. The efficacy of sleep deprivation was assessed by questionnaires, waking electroencephalography, and cognitive performance measurements. Setting: Sleep laboratory and neuroimaging center. Patients or Participants: Eighteen healthy volunteers. Interventions: Sleep deprivation. Measurements and Results: A total of 24 hours of sleep deprivation led to a 9.6% increase of [18F]altanserin binding on neocortical 5-HT2A receptors. Significant region-specific increases were found in the medial inferior frontal gyrus, insula, and anterior cingulate, parietal, sensomotoric, and ventrolateral prefrontal cortices. Conclusions: This study demonstrates that a single night of total sleep deprivation causes significant increases of 5-HT2AR binding potentials in a variety of cortical regions although the increase declines as sleep deprivation continued. It provides in vivo evidence that total sleep deprivation induces adaptive processes in the serotonergic system of the human brain. Citation: Elmenhorst D; Kroll T; Matusch A; Bauer A. Sleep Deprivation Increases Cerebral Serotonin 2A Receptor Binding in Humans. SLEEP 2012;35(12):1615-1623. PMID:23204604

  19. Expression and Function of Serotonin 2A and 2B Receptors in the Mammalian Respiratory Network

    PubMed Central

    Koch, Uwe R.; Bischoff, Anna-Maria; Kron, Miriam; Bock, Nathalie; Manzke, Till

    2011-01-01

    Neurons of the respiratory network in the lower brainstem express a variety of serotonin receptors (5-HTRs) that act primarily through adenylyl cyclase. However, there is one receptor family including 5-HT2A, 5-HT2B, and 5-HT2C receptors that are directed towards protein kinase C (PKC). In contrast to 5-HT2ARs, expression and function of 5-HT2BRs within the respiratory network are still unclear. 5-HT2BR utilizes a Gq-mediated signaling cascade involving calcium and leading to activation of phospholipase C and IP3/DAG pathways. Based on previous studies, this signal pathway appears to mediate excitatory actions on respiration. In the present study, we analyzed receptor expression in pontine and medullary regions of the respiratory network both at the transcriptional and translational level using quantitative RT-PCR and self-made as well as commercially available antibodies, respectively. In addition we measured effects of selective agonists and antagonists for 5-HT2ARs and 5-HT2BRs given intra-arterially on phrenic nerve discharges in juvenile rats using the perfused brainstem preparation. The drugs caused significant changes in discharge activity. Co-administration of both agonists revealed a dominance of the 5-HT2BR. Given the nature of the signaling pathways, we investigated whether intracellular calcium may explain effects observed in the respiratory network. Taken together, the results of this study suggest a significant role of both receptors in respiratory network modulation. PMID:21789169

  20. Design and Discovery of Functionally Selective Serotonin 2C (5-HT2C) Receptor Agonists.

    PubMed

    Cheng, Jianjun; McCorvy, John D; Giguere, Patrick M; Zhu, Hu; Kenakin, Terry; Roth, Bryan L; Kozikowski, Alan P

    2016-11-10

    On the basis of the structural similarity of our previous 5-HT2C agonists with the melatonin receptor agonist tasimelteon and the putative biological cross-talk between serotonergic and melatonergic systems, a series of new (2,3-dihydro)benzofuran-based compounds were designed and synthesized. The compounds were evaluated for their selectivity toward 5-HT2A, 5-HT2B, and 5-HT2C receptors in the calcium flux assay with the ultimate goal to generate selective 5-HT2C agonists. Selected compounds were studied for their functional selectivity by comparing their transduction efficiency at the G protein signaling pathway versus β-arrestin recruitment. The most functionally selective compound (+)-7e produced weak β-arrestin recruitment and also demonstrated less receptor desensitization compared to serotonin in both calcium flux and phosphoinositide (PI) hydrolysis assays. We report for the first time that selective 5-HT2C agonists possessing weak β-arrestin recruitment can produce distinct receptor desensitization properties.

  1. Use of LC/MS to assess brain tracer distribution in preclinical, in vivo receptor occupancy studies: dopamine D2, serotonin 2A and NK-1 receptors as examples.

    PubMed

    Chernet, Eyassu; Martin, Laura J; Li, Dominic; Need, Anne B; Barth, Vanessa N; Rash, Karen S; Phebus, Lee A

    2005-12-12

    High performance liquid chromatography combined with either single quad or triple quad mass spectral detectors (LC/MS) was used to measure the brain distribution of receptor occupancy tracers targeting dopamine D2, serotonin 5-HT2A and neurokinin NK-1 receptors using the ligands raclopride, MDL-100907 and GR205171, respectively. All three non-radiolabeled tracer molecules were easily detectable in discrete rat brain areas after intravenous doses of 3, 3 and 30 microg/kg, respectively. These levels showed a differential brain distribution caused by differences in receptor density, as demonstrated by the observation that pretreatment with compounds that occupy these receptors reduced this differential distribution in a dose-dependent manner. Intravenous, subcutaneous and oral dose-occupancy curves were generated for haloperidol at the dopamine D2 receptor as were oral curves for the antipsychotic drugs olanzapine and clozapine. In vivo dose-occupancy curves were also generated for orally administered clozapine, olanzapine and haloperidol at the cortical 5-HT2A binding site. In vivo occupancy at the striatal neurokinin NK-1 binding site by various doses of orally administered MK-869 was also measured. Our results demonstrate the utility of LC/MS to quantify tracer distribution in preclinical brain receptor occupancy studies.

  2. Hypothesis: is infantile autism a hypoglutamatergic disorder? Relevance of glutamate - serotonin interactions for pharmacotherapy.

    PubMed

    Carlsson, M L

    1998-01-01

    Based on 1) neuroanatomical and neuroimaging studies indicating aberrations in brain regions that are rich in glutamate neurons and 2) similarities between symptoms produced by N-methyl-D-aspartate (NMDA) antagonists in healthy subjects and those seen in autism, it is proposed in the present paper that infantile autism is a hypoglutamatergic disorder. Possible future pharmacological interventions in autism are discussed in the light of the intimate interplay between central glutamate and serotonin, notably the serotonin (5-HT) 2A receptor. The possible benefit of treatment with glutamate agonists [e.g. agents acting on the modulatory glycine site of the NMDA receptor, or so-called ampakines acting on the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor] is discussed, as well as the potential usefulness of a selective 5-HT2A receptor antagonist.

  3. A systematic investigation of the differential roles for ventral tegmentum serotonin 1- and 2-type receptors on food intake in the rat.

    PubMed

    Pratt, Wayne E; Clissold, Kara A; Lin, Peagan; Cain, Amanda E; Ciesinski, Alexa F; Hopkins, Thomas R; Ilesanmi, Adeolu O; Kelly, Erin A; Pierce-Messick, Zachary; Powell, Daniel S; Rosner, Ian A

    2016-10-01

    Central serotonin (5-HT) pathways are known to influence feeding and other ingestive behaviors. Although the ventral tegmentum is important for promoting the seeking and consumption of food and drugs of abuse, the roles of 5-HT receptor subtypes in this region on food intake have yet to be comprehensively examined. In these experiments, food restricted rats were given 2-h access to rat chow; separate groups of non-restricted animals had similar access to a sweetened fat diet. Feeding and locomotor activity were monitored following ventral tegmentum stimulation or blockade of 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, or 5-HT2C receptors. 5-HT1A receptor stimulation transiently inhibited rearing behavior and chow intake in food-restricted rats, and had a biphasic effect on non-restricted rats offered the palatable diet. 5-HT1B receptor agonism transiently inhibited feeding in restricted animals, but did not affect intake of non-restricted rats. In contrast, 5-HT1B receptor antagonism decreased palatable feeding. Although stimulation of ventral tegmental 5-HT2B receptors with BW723C86 did not affect hunger-driven food intake, it significantly affected palatable feeding, with a trend for an increasing intake at 2.0µg/side but not at 5.0µg/side. Antagonism of the same receptor modestly but significantly inhibited feeding of the palatable diet at 5.0µg/side ketanserin. Neither stimulation nor blockade of 5-HT2A or 5-HT2C receptors caused prolonged effects on intake or locomotion. These data suggest that serotonin's effects on feeding within the ventral tegmentum depend upon the specific receptor targeted, as well as whether intake is motivated by food restriction or the palatable nature of the offered diet.

  4. Effects of serotonin (5-HT)2 receptor ligands on depression-like behavior during nicotine withdrawal.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Wydra, Karolina; Filip, Małgorzata

    2010-06-01

    A pronounced withdrawal syndrome including depressed mood prevents cigarette smoking cessation. We tested if blockade or activation of serotonin (5-HT)(2) receptors affected the time of immobility (as an indirect measure of depression-like behavior) in naïve animals and in those withdrawn from chronic nicotine in the forced swim test (FST). The antidepressant imipramine was used as a control. In the FST, the selective 5-HT(2A) receptor antagonist M100,907 (1-2 mg/kg, but not 0.5 mg/kg), the selective 5-HT(2C) receptor antagonist SB 242,084 (0.3-1 mg/kg, but not 0.1 mg/kg), the 5-HT(2C) receptor agonists Ro 60-0175 (10 mg/kg, but not 3 mg/kg) and WAY 163,909 (1.5-10 mg/kg, but not 0.75 mg/kg) as well as imipramine (30 mg/kg, but not 15 mg/kg) decreased the immobility time while the non-selective 5-HT(2) receptor agonist DOI (0.1-1 mg/kg) was inactive in naïve rats. We found an increase in immobility time in rats that were withdrawn from nicotine exposure after 5 days of chronic nicotine treatment. This effect increased from day 1 until day 10 following withdrawal of nicotine, with maximal withdrawal effects on day 3. M100,907 (1 mg/kg), SB 242,084 (0.3 mg/kg), Ro 60-0175 (3 mg/kg), WAY 163,909 (0.75-1.5 mg/kg) and imipramine (15-30 mg/kg) shortened the immobility time in rats that had been removed from nicotine exposure for 3 days. Locomotor activity studies indicated that the effects of SB 242,084 might have been non-specific, as we noticed enhanced basal locomotion in naïve rats. This data set demonstrates that 5-HT(2A) receptor antagonist and 5-HT(2C) receptor agonists exhibited effects similar to antidepressant drugs and abolished the depression-like effects in nicotine-withdrawn rats. These drugs should be considered as adjuncts to smoking cessation therapy, to ameliorate abstinence-induced depressive symptoms.

  5. Serotonin 5-HT2 Receptor Interactions with Dopamine Function: Implications for Therapeutics in Cocaine Use Disorder

    PubMed Central

    Cunningham, Kathryn A.

    2015-01-01

    Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder. PMID:25505168

  6. Investigation of serotonin-1A receptor function in the human psychopharmacology of MDMA.

    PubMed

    Hasler, F; Studerus, E; Lindner, K; Ludewig, S; Vollenweider, F X

    2009-11-01

    Serotonin (5-HT) release is the primary pharmacological mechanism of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') action in the primate brain. Dopamine release and direct stimulation of dopamine D2 and serotonin 5-HT2A receptors also contributes to the overall action of MDMA. The role of 5-HT1A receptors in the human psychopharmacology of MDMA, however, has not yet been elucidated. In order to reveal the consequences of manipulation at the 5-HT1A receptor system on cognitive and subjective effects of MDMA, a receptor blocking study using the mixed beta-adrenoreceptor blocker/5-HT1A antagonist pindolol was performed. Using a double-blind, placebo-controlled within-subject design, 15 healthy male subjects were examined under placebo (PL), 20 mg pindolol (PIN), MDMA (1.6 mg/kg b.wt.), MDMA following pre-treatment with pindolol (PIN-MDMA). Tasks from the Cambridge Neuropsychological Test Automated Battery were used for the assessment of cognitive performance. Psychometric questionnaires were applied to measure effects of treatment on core dimensions of Altered States of Consciousness, mood and state anxiety. Compared with PL, MDMA significantly impaired sustained attention and visual-spatial memory, but did not affect executive functions. Pre-treatment with PIN did not significantly alter MDMA-induced impairment of cognitive performance and only exerted a minor modulating effect on two psychometric scales affected by MDMA treatment ('positive derealization' and 'dreaminess'). Our findings suggest that MDMA differentially affects higher cognitive functions, but does not support the hypothesis from animal studies, that some of the MDMA effects are causally mediated through action at the 5-HT1A receptor system.

  7. The role of serotonin receptor subtypes in treating depression: a review of animal studies

    PubMed Central

    Carr, Gregory V.

    2012-01-01

    Rationale Serotonin reuptake inhibitors (SSRIs) are effective in treating depression. Given the existence of different families and subtypes of 5-HT receptors, multiple 5-HT receptors may be involved in the antidepressant-like behavioral effects of SSRIs. Objective Behavioral pharmacology studies investigating the role of 5-HT receptor subtypes in producing or blocking the effects of SSRIs were reviewed. Results Few animal behavior tests were available to support the original development of SSRIs. Since their development, a number of behavioral tests and models of depression have been developed that are sensitive to the effects of SSRIs, as well as to other types of antidepressant treatments. The rationale for the development and use of these tests is reviewed. Behavioral effects similar to those of SSRIs (antidepressant-like) have been produced by agonists at 5-HT1A, 5-HT1B, 5-HT2C, 5-HT4, and 5-HT6 receptors. Also, antagonists at 5-HT2A, 5-HT2C, 5-HT3, 5- HT6, and 5-HT7 receptors have been reported to produce antidepressant-like responses. Although it seems paradoxical that both agonists and antagonists at particular 5-HT receptors can produce antidepressant-like effects, they probably involve diverse neurochemical mechanisms. The behavioral effects of SSRIs and other antidepressants may also be augmented when 5-HT receptor agonists or antagonists are given in combination. Conclusions The involvement of 5-HT receptors in the antidepressant-like effects of SSRIs is complex and involves the orchestration of stimulation and blockade at different 5-HT receptor subtypes. Individual 5-HT receptors provide opportunities for the development of a newer generation of antidepressants that may be more beneficial and effective than SSRIs. PMID:21107537

  8. Reduced Serotonin Receptor Subtypes in a Limbic and a Neocortical Region in Autism

    PubMed Central

    Oblak, Adrian; Gibbs, Terrell T.; Blatt, Gene J.

    2013-01-01

    Autism is a behaviorally defined, neurological disorder with symptom onset before the age of three. Abnormalities in social-emotional behaviors are a core deficit in autism and are characterized by impaired reciprocal social interaction, lack of facial expressions, and the inability to recognize familiar faces. The posterior cingulate cortex (PCC) and fusiform gyrus (FG) are two regions within an extensive limbic-cortical network that contribute to social-emotional behaviors. Evidence indicates that changes in brains of individuals with autism begin prenatally. Serotonin (5HT) is one of the earliest expressed neurotransmitters, and plays an important role in synaptogenesis, neurite outgrowth, and neuronal migration. Abnormalities in 5HT systems have been implicated in several psychiatric disorders including autism, as evidenced by immunology, imaging, genetics, pharmacotherapy, and neuropathology. Although information is known regarding peripheral 5HT in autism, there is emerging evidence that 5HT systems in the CNS, including various 5HT receptor subtypes and transporters, are affected in autism. The present study demonstrated significant reductions in 5HT1A receptor binding density in superficial and deep layers of the PCC and FG, and in the density of 5HT2A receptors in superficial layers of the PCC and FG. Significant reduction in the density of serotonin transporters (5-HTT) was also found in the deep layers of the FG, but normal levels were demonstrated in both layers of the PCC and superficial layers of the FG. These studies provide potential substrates for decreased 5-HT modulation/innervation in the autism brain, and implicate two 5-HT receptor subtypes as potential neuromarkers for novel or existing pharmacotherapies. PMID:23894004

  9. The serotonin 5-HT₁A receptor agonist tandospirone improves executive function in common marmosets.

    PubMed

    Baba, Satoko; Murai, Takeshi; Nakako, Tomokazu; Enomoto, Takeshi; Ono, Michiko; Shimizu, Isao; Ikeda, Kazuhito

    2015-01-01

    Previous pilot clinical studies have shown that the serotonin 5-HT1A receptor agonist tandospirone has beneficial effect on cognitive deficits associated with schizophrenia. In the present study, we evaluated the cognitive efficacy of tandospirone, given alone or in combination with the antipsychotic blonanserin, risperidone or haloperidol, on executive function in marmosets using the object retrieval with detour (ORD) task. Treatment with tandospirone alone at 20 and 40 mg/kg increased the number of correct responses in the difficult trial, while risperidone (0.3mg/kg) and haloperidol (0.3mg/kg) decreased the number of correct responses in this trial. On the other hand, blonanserin (0.1-0.3mg/kg), an atypical antipsychotic highly selective for dopamine D2/D3 and serotonin 5-HT2A receptors, did not affect the number of correct responses in both the easy and difficult trials. Co-treatment with tandospirone (20mg/kg) and risperidone (0.1-0.3mg/kg) or haloperidol (0.1-0.3mg/kg) did not improve animals' performance in the difficult trial. However, co-treatment with tandospirone and blonanserin (0.1-0.3mg/kg) increased the number of correct responses in the difficult trial. In addition, treatment with the dopamine D1 receptor agonist SKF-81297 at 1mg/kg increased marmosets correct responses in the difficult trial. These results suggest that tandospirone is a promising candidate for the treatment of cognitive deficits associated with schizophrenia and that adjunctive treatment with tandospirone and blonanserin is more appropriate for cognitive deficits than combination therapy with tandospirone and risperidone or haloperidol. The results of this study also indicate that the putative mechanism of action of tandospirone might be related to enhancement of dopamine neurotransmission via activation of the 5-HT1A receptor.

  10. Expression of Serotonin2C Receptors in Pyramidal and GABAergic Neurons of Rat Prefrontal Cortex: A Comparison with Striatum.

    PubMed

    Santana, Noemí; Artigas, Francesc

    2016-06-01

    The prefrontal cortex (PFC) is enriched in several serotonin receptors, including 5-HT1A-R, 5-HT2A-R, and 5-HT3-R. These receptors modulate PFC activity due to their expression in large neuronal populations (5-HT1A-R, 5-HT2A-R) or in selected GABAergic populations (5-HT3-R). They are also relevant for antidepressant and antipsychotic drug action. Less is known about the localization of 5-HT2C-R, for which atypical antipsychotics show high affinity. Here, we report on the cellular distribution of 5-HT2C-R in rat PFC and striatum, using double in situ hybridization histochemistry. In PFC, 5-HT2C-R are expressed in pyramidal (VGLUT1-positive) and GABAergic (GAD-positive) neurons, including parvalbumin-positive neurons. There is a marked dorso-ventral gradient in the proportion of VGLUT1-positive cells expressing 5-HT2C-R (9% in the cingulate cortex, 61% in the tenia tecta and 66% in the piriform cortex), less marked for GABAergic neurons (13-27%). There is also a laminar gradient, with more cells expressing 5-HT2C-R in deep (V-VI) than in intermediate (II-III) layers. In common with 5-HT3-R, layer I GABAergic cells express 5-HT2C-R. The proportion of 5-HT2C-R-expressing striatal neurons was 23% (dorsolateral caudate-putamen), 37% (ventromedial caudate-putamen), 53% (nucleus accumbens-core), and 49% (nucleus accumbens-shell). These results help to better understand the serotonergic modulation of PFC-based networks, including basal ganglia circuits, and atypical antipsychotic drug action.

  11. Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior.

    PubMed

    Veenstra-VanderWeele, Jeremy; Muller, Christopher L; Iwamoto, Hideki; Sauer, Jennifer E; Owens, W Anthony; Shah, Charisma R; Cohen, Jordan; Mannangatti, Padmanabhan; Jessen, Tammy; Thompson, Brent J; Ye, Ran; Kerr, Travis M; Carneiro, Ana M; Crawley, Jacqueline N; Sanders-Bush, Elaine; McMahon, Douglas G; Ramamoorthy, Sammanda; Daws, Lynette C; Sutcliffe, James S; Blakely, Randy D

    2012-04-03

    Fifty years ago, increased whole-blood serotonin levels, or hyperserotonemia, first linked disrupted 5-HT homeostasis to Autism Spectrum Disorders (ASDs). The 5-HT transporter (SERT) gene (SLC6A4) has been associated with whole blood 5-HT levels and ASD susceptibility. Previously, we identified multiple gain-of-function SERT coding variants in children with ASD. Here we establish that transgenic mice expressing the most common of these variants, SERT Ala56, exhibit elevated, p38 MAPK-dependent transporter phosphorylation, enhanced 5-HT clearance rates and hyperserotonemia. These effects are accompanied by altered basal firing of raphe 5-HT neurons, as well as 5HT(1A) and 5HT(2A) receptor hypersensitivity. Strikingly, SERT Ala56 mice display alterations in social function, communication, and repetitive behavior. Our efforts provide strong support for the hypothesis that altered 5-HT homeostasis can impact risk for ASD traits and provide a model with construct and face validity that can support further analysis of ASD mechanisms and potentially novel treatments.

  12. Long-term administration of fluvoxamine attenuates neuropathic pain and involvement of spinal serotonin receptors in diabetic model rats.

    PubMed

    Kato, Takahiro; Kajiyama, Seiji; Hamada, Hiroshi; Kawamoto, Masashi

    2013-12-01

    Diabetic neuropathic pain management is difficult even with non-steroidal anti-inflammatory drugs and narcotic analgesics such as morphine. Fluvoxamine, a class of selective serotonin reuptake inhibitors (SSRIs), is widely used to treat depression. Its analgesic effects are also documented for diabetic neuropathic pain, but they are limited because it is administered as a single-dose. In this study, we examined the time course of the antiallodynic effect of fluvoxamine in a rat model of diabetic neuropathic pain, which was induced by a single intraperitoneal administration of streptozotocin (75 mg/kg). In addition, the involvement of spinal serotonin (5-HT) receptors in long-term fluvoxamine treatment was studied by intrathecal administration of 5-HT receptor antagonists. In this study the development of mechanical hyperalgesia was assessed by measuring the hind paw withdrawal threshold using von Frey filaments. The results demonstrated that daily oral administration of fluvoxamine (10, 30, and 100 mg/kg) to diabetic rats from 3 to 8 weeks after streptozotocin administration resulted in a dose-dependent antiallodynic effect. The antiallodynic effect was sustained from 2 to 5 weeks after fluvoxamine administration. The antiallodynic effect of fluvoxamine in the diabetic rats was attenuated by WAY-100635 (a 5-HT(1A) receptor antagonist) intrathecally administered 1 week after the onset of daily administration of fluvoxamine, whereas no significant attenuation was seen when the antagonist was administered 3 and 5 weeks after fluvoxamine administration. The antiallodynic effect of fluvoxamine was also attenuated by ketanserin (a 5-HT(2A/2C) receptor antagonist) and ondansetron (a 5-HT3 receptor antagonist) intrathecally administered 1 and 3 weeks after the onset of daily fluvoxamine administration. However, no significant attenuation was observed when the antagonist was administered 5 weeks after fluvoxamine administration. This study demonstrated that daily oral

  13. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens.

    PubMed

    Rickli, Anna; Moning, Olivier D; Hoener, Marius C; Liechti, Matthias E

    2016-08-01

    The present study investigated interactions between the novel psychoactive tryptamines DiPT, 4-OH-DiPT, 4-OH-MET, 5-MeO-AMT, and 5-MeO-MiPT at monoamine receptors and transporters compared with the classic hallucinogens lysergic acid diethylamide (LSD), psilocin, N,N-dimethyltryptamine (DMT), and mescaline. We investigated binding affinities at human monoamine receptors and determined functional serotonin (5-hydroxytryptamine [5-HT]) 5-HT2A and 5-HT2B receptor activation. Binding at and the inhibition of human monoamine uptake transporters and transporter-mediated monoamine release were also determined. All of the novel tryptamines interacted with 5-HT2A receptors and were partial or full 5-HT2A agonists. Binding affinity to the 5-HT2A receptor was lower for all of the tryptamines, including psilocin and DMT, compared with LSD and correlated with the reported psychoactive doses in humans. Several tryptamines, including psilocin, DMT, DiPT, 4-OH-DiPT, and 4-OH-MET, interacted with the serotonin transporter and partially the norepinephrine transporter, similar to 3,4-methylenedioxymethamphetamine but in contrast to LSD and mescaline. LSD but not the tryptamines interacted with adrenergic and dopaminergic receptors. In conclusion, the receptor interaction profiles of the tryptamines predict hallucinogenic effects that are similar to classic serotonergic hallucinogens but also MDMA-like psychoactive properties.

  14. Brain Serotonin Receptors and Transporters: Initiation vs. Termination of Escalated Aggression

    PubMed Central

    Takahashi, Aki; Quadros, Isabel M.; de Almeida, Rosa M. M.; Miczek, Klaus A.

    2013-01-01

    Rationale Recent findings have shown a complexly regulated 5-HT system as it is linked to different kinds of aggression. Objective We focus on (1) phasic and tonic changes of 5-HT and (2) state and trait of aggression, and emphasize the different receptor subtypes, their role in specific brain regions, feed-back regulation and modulation by other amines, acids and peptides. Results New pharmacological tools differentiate the first three 5-HT receptor families and their modulation by GABA, glutamate and CRF. Activation of 5-HT1A, 5-HT1B and 5-HT2A/2C receptors in mesocorticolimbic areas, reduce species-typical and other aggressive behaviors. In contrast, agonists at 5-HT1A and 5-HT1B receptors in the medial prefrontal cortex or septal area can increase aggressive behavior under specific conditions. Activation of serotonin transporters reduce mainly pathological aggression. Genetic analyses of aggressive individuals have identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT1B, 5-HT transporter, Pet1, MAOA) or indirectly (e.g., Neuropeptide Y, αCaMKII, NOS, BDNF). Dysfunction in genes for MAOA escalates pathological aggression in rodents and humans, particularly in interaction with specific experiences. Conclusions Feedback to autoreceptors of the 5-HT1 family and modulation via heteroreceptors are important in the expression of aggressive behavior. Tonic increase of the 5-HT2 family expression may cause escalated aggression, whereas the phasic increase of 5-HT2 receptors inhibits aggressive behaviors. Polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT modulate aggression, often requiring interaction with the rearing environment. PMID:20938650

  15. Serotonin modulates insect hemocyte phagocytosis via two different serotonin receptors

    PubMed Central

    Qi, Yi-xiang; Huang, Jia; Li, Meng-qi; Wu, Ya-su; Xia, Ren-ying; Ye, Gong-yin

    2016-01-01

    Serotonin (5-HT) modulates both neural and immune responses in vertebrates, but its role in insect immunity remains uncertain. We report that hemocytes in the caterpillar, Pieris rapae are able to synthesize 5-HT following activation by lipopolysaccharide. The inhibition of a serotonin-generating enzyme with either pharmacological blockade or RNAi knock-down impaired hemocyte phagocytosis. Biochemical and functional experiments showed that naive hemocytes primarily express 5-HT1B and 5-HT2B receptors. The blockade of 5-HT1B significantly reduced phagocytic ability; however, the blockade of 5-HT2B increased hemocyte phagocytosis. The 5-HT1B-null Drosophila melanogaster mutants showed higher mortality than controls when infected with bacteria, due to their decreased phagocytotic ability. Flies expressing 5-HT1B or 5-HT2B RNAi in hemocytes also showed similar sensitivity to infection. Combined, these data demonstrate that 5-HT mediates hemocyte phagocytosis through 5-HT1B and 5-HT2B receptors and serotonergic signaling performs critical modulatory functions in immune systems of animals separated by 500 million years of evolution. DOI: http://dx.doi.org/10.7554/eLife.12241.001 PMID:26974346

  16. Serotonin modulates insect hemocyte phagocytosis via two different serotonin receptors.

    PubMed

    Qi, Yi-Xiang; Huang, Jia; Li, Meng-Qi; Wu, Ya-Su; Xia, Ren-Ying; Ye, Gong-Yin

    2016-03-14

    Serotonin (5-HT) modulates both neural and immune responses in vertebrates, but its role in insect immunity remains uncertain. We report that hemocytes in the caterpillar, Pieris rapae are able to synthesize 5-HT following activation by lipopolysaccharide. The inhibition of a serotonin-generating enzyme with either pharmacological blockade or RNAi knock-down impaired hemocyte phagocytosis. Biochemical and functional experiments showed that naive hemocytes primarily express 5-HT1B and 5-HT2B receptors. The blockade of 5-HT1B significantly reduced phagocytic ability; however, the blockade of 5-HT2B increased hemocyte phagocytosis. The 5-HT1B-null Drosophila melanogaster mutants showed higher mortality than controls when infected with bacteria, due to their decreased phagocytotic ability. Flies expressing 5-HT1B or 5-HT2B RNAi in hemocytes also showed similar sensitivity to infection. Combined, these data demonstrate that 5-HT mediates hemocyte phagocytosis through 5-HT1B and 5-HT2B receptors and serotonergic signaling performs critical modulatory functions in immune systems of animals separated by 500 million years of evolution.

  17. Involvement of serotonin receptor subtypes in the antidepressant-like effect of TRIM in the rat forced swimming test.

    PubMed

    Ulak, Güner; Mutlu, Oguz; Tanyeri, Pelin; Komsuoglu, F Ipek; Akar, Füruzan Yildiz; Erden, B Faruk

    2010-05-01

    Depression is a common illness with severe morbidity and mortality. Nitric oxide synthase (NOS) inhibitors are shown to elicit antidepressant-like effect in various animals models. It is widely known that serotonin plays an important role in the antidepressant-like effect of drugs. The aim of this study is to investigate the involvement of 5-HT(1) and 5-HT(2) receptor subtypes in the antidepressant-like effect of TRIM, a nNOS inhibitor, in the rat forced swimming test (FST). TRIM displays an antidepressant-like activity in FST which is blocked by pretreatment with the NOS substrate l-arginine. Depletion of endogenous serotonin using para-chlorophenylalanine (pCPA; 3x150mg/kg, i.p.) partially attenuated TRIM (50mg/kg)-induced reductions in immobility time in FST. Pretreatment with methiothepin (0.1mg/kg, i.p, a non-selective 5-HT receptor antagonist), cyproheptadine (3mg/kg i.p, a 5-HT(2) receptor antagonist) or ketanserin (5mg/kg i.p, a 5HT(2A/2C) receptor antagonist) prevented the effect of TRIM (50mg/kg) in the FST. WAY 100635 (0.1mg/kg i.p, a selective 5-HT(1A) receptor antagonist) and GR 127935 (3mg/kg i.p, a selective 5-HT(1B/1D) receptor antagonist) slightly reversed the immobility-reducing effect of TRIM in the FST, but this failed to reach a statistically significant level. The results of this study demonstrate that antidepressant-like effect of TRIM in the FST seems to be mediated, at least in part, by an interaction with 5-HT(2) receptors while non-significant effects were obtained with 5-HT(1) receptors.

  18. Effects of developmental hyperserotonemia on juvenile play behavior, oxytocin and serotonin receptor expression in the hypothalamus are age and sex dependent.

    PubMed

    Madden, Amanda M K; Zup, Susan L

    2014-04-10

    There is a striking sex difference in the diagnosis of Autism Spectrum Disorder (ASD), such that males are diagnosed more often than females, usually in early childhood. Given that recent research has implicated elevated blood serotonin (hyperserotonemia) in perinatal development as a potential factor in the pathogenesis of ASD, we sought to evaluate the effects of developmental hyperserotonemia on social behavior and relevant brain morphology in juvenile males and females. Administration of 5-methoxytryptamine (5-MT) both pre- and postnatally was found to disrupt normal social play behavior in juveniles. In addition, alterations in the number of oxytocinergic cells in the lateral and medial paraventricular nucleus (PVN) were evident on postnatal day 18 (PND18) in 5-MT treated females, but not treated males. 5-MT treatment also changed the relative expression of 5-HT(1A) and 5-HT(2A) receptors in the PVN, in males at PND10 and in females at PND18. These data suggest that serotonin plays an organizing role in the development of the PVN in a sexually dimorphic fashion, and that elevated serotonin levels during perinatal development may disrupt normal organization, leading to neurochemical and behavioral changes. Importantly, these data also suggest that the inclusion of both juvenile males and females in studies will be necessary to fully understand the role of serotonin in development, especially in relation to ASD.

  19. Neuronal localization of the 5-HT2 receptor family in the amygdaloid complex.

    PubMed

    Bombardi, Cristiano

    2014-01-01

    The amygdaloid complex (or amygdala), a heterogeneous structure located in the medial portion of the temporal lobe, is composed of deep, superficial, and "remaining" nuclei. This structure is involved in the generation of emotional behavior, in the formation of emotional memories and in the modulation of the consolidation of explicit memories for emotionally arousing events. The serotoninergic fibers originating in the dorsal and medial raphe nuclei are critically involved in amygdalar functions. Serotonin (5-hydroxytryptamine, 5-HT) regulates amygdalar activity through the activation of the 5-HT2 receptor family, which includes three receptor subtypes: 5-HT2A, 5-HT2B, and 5-HT2C. The distribution and the functional activity of the 5-HT2 receptor family has been studied more extensively than that of the 5-HT2A receptor subtypes, especially in the deep nuclei. In these nuclei, the 5-HT2A receptor is expressed on both pyramidal and non-pyramidal neurons, and could play a critical role in the formation of emotional memories. However, the exact role of the 5-HT2A receptor subtypes, as well as that of the 5-HT2B and 5-HT2C receptor subtypes, in the modulation of the amygdalar microcircuits requires additional study. The present review reports data concerning the distribution and the functional roles of the 5-HT2 receptor family in the amygdala.

  20. Dorsal prefrontal cortical serotonin 2A receptor binding indices are differentially related to individual scores on harm avoidance.

    PubMed

    Baeken, Chris; Bossuyt, Axel; De Raedt, Rudi

    2014-02-28

    Although the serotonergic system has been implicated in healthy as well as in pathological emotional states, knowledge about its involvement in personality is limited. Earlier research on this topic suggests that post-synaptic 5-HT2A receptors could be involved in particular in frontal cortical areas. In drug-naïve healthy individuals, we examined the relationship between these 5-HT2A receptors and the temperament dimension harm avoidance (HA) using 123I-5-I-R91150 single photon emission computed tomography (SPECT). HA is a personality feature closely related to stress, anxiety and depression proneness, and it is thought to be mediated by the serotonergic system. We focused on the prefrontal cortices as these regions are frequently implicated in cognitive processes related to a variety of affective disorders. We found a positive relationship between dorsal prefrontal cortical (DPFC) 5-HT2A receptor binding indices (BI) and individual HA scores. Further, our results suggest that those individuals with a tendency to worry or to ruminate are particularly prone to display significantly higher 5-HT2A receptor BI in the left DPFC. Although we only examined psychologically healthy individuals, this relationship suggests a possible vulnerability for affective disorders.

  1. Lateral/basolateral amygdala serotonin type-2 receptors modulate operant self-administration of a sweetened ethanol solution via inhibition of principal neuron activity

    PubMed Central

    McCool, Brian A.; Christian, Daniel T.; Fetzer, Jonathan A.; Chappell, Ann M.

    2014-01-01

    The lateral/basolateral amygdala (BLA) forms an integral part of the neural circuitry controlling innate anxiety and learned fear. More recently, BLA dependent modulation of self-administration behaviors suggests a much broader role in the regulation of reward evaluation. To test this, we employed a self-administration paradigm that procedurally segregates “seeking” (exemplified as lever-press behaviors) from consumption (drinking) directed at a sweetened ethanol solution. Microinjection of the nonselective serotonin type-2 receptor agonist, alpha-methyl-5-hydroxytryptamine (α-m5HT) into the BLA reduced lever pressing behaviors in a dose-dependent fashion. This was associated with a significant reduction in the number of response-bouts expressed during non-reinforced sessions without altering the size of a bout or the rate of responding. Conversely, intra-BLA α-m5HT only modestly effected consumption-related behaviors; the highest dose reduced the total time spent consuming a sweetened ethanol solution but did not inhibit the total number of licks, number of lick bouts, or amount of solution consumed during a session. In vitro neurophysiological characterization of BLA synaptic responses showed that α-m5HT significantly reduced extracellular field potentials. This was blocked by the 5-HT2A/C antagonist ketanserin suggesting that 5-HT2-like receptors mediate the behavioral effect of α-m5HT. During whole-cell patch current-clamp recordings, we subsequently found that α-m5HT increased action potential threshold and hyperpolarized the resting membrane potential of BLA pyramidal neurons. Together, our findings show that the activation of BLA 5-HT2A/C receptors inhibits behaviors related to reward-seeking by suppressing BLA principal neuron activity. These data are consistent with the hypothesis that the BLA modulates reward-related behaviors and provides specific insight into BLA contributions during operant self-administration of a sweetened ethanol solution

  2. Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors.

    PubMed

    Carter, Olivia L; Burr, David C; Pettigrew, John D; Wallis, Guy M; Hasler, Felix; Vollenweider, Franz X

    2005-10-01

    Increasing evidence suggests a link between attention, working memory, serotonin (5-HT), and prefrontal cortex activity. In an attempt to tease out the relationship between these elements, this study tested the effects of the hallucinogenic mixed 5-HT1A/2A receptor agonist psilocybin alone and after pretreatment with the 5-HT2A antagonist ketanserin. Eight healthy human volunteers were tested on a multiple-object tracking task and spatial working memory task under the four conditions: placebo, psilocybin (215 microg/kg), ketanserin (50 mg), and psilocybin and ketanserin. Psilocybin significantly reduced attentional tracking ability, but had no significant effect on spatial working memory, suggesting a functional dissociation between the two tasks. Pretreatment with ketanserin did not attenuate the effect of psilocybin on attentional performance, suggesting a primary involvement of the 5-HT1A receptor in the observed deficit. Based on physiological and pharmacological data, we speculate that this impaired attentional performance may reflect a reduced ability to suppress or ignore distracting stimuli rather than reduced attentional capacity. The clinical relevance of these results is also discussed.

  3. Effect of glial cell line-derived neurotrophic factor on behavior and key members of the brain serotonin system in mouse strains genetically predisposed to behavioral disorders.

    PubMed

    Naumenko, Vladimir S; Bazovkina, Daria V; Semenova, Alina A; Tsybko, Anton S; Il'chibaeva, Tatyana V; Kondaurova, Elena M; Popova, Nina K

    2013-12-01

    The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and on the serotonin (5-HT) system of a mouse strain predisposed to depressive-like behavior, ASC/Icg (Antidepressant Sensitive Cataleptics), in comparison with the parental "nondepressive" CBA/Lac mice was studied. Within 7 days after acute administration, GDNF (800 ng, i.c.v.) decreased cataleptic immobility but increased depressive-like behavioral traits in both investigated mouse strains and produced anxiolytic effects in ASC mice. The expression of the gene encoding the key enzyme for 5-HT biosynthesis in the brain, tryptophan hydroxylase-2 (Tph-2), and 5-HT1A receptor gene in the midbrain as well as 5-HT2A receptor gene in the frontal cortex were increased in GDNF-treated ASC mice. At the same time, GDNF decreased 5-HT1A and 5-HT2A receptor gene expression in the hippocampus of ASC mice. GDNF failed to change Tph2, 5-HT1A , or 5-HT2A receptor mRNA levels in CBA mice as well as 5-HT transporter gene expression and 5-HT1A and 5-HT2A receptor functional activity in both investigated mouse strains. The results show 1) a GDNF-induced increase in the expression of key genes of the brain 5-HT system, Tph2, 5-HT1A , and 5-HT2A receptors, and 2) significant genotype-dependent differences in the 5-HT system response to GDNF treatment. The data suggest that genetically defined cross-talk between neurotrophic factors and the brain 5-HT system underlies the variability in behavioral response to GDNF.

  4. Quantitative structure-activity relationship of phenoxyphenyl-methanamine compounds with 5HT2A, SERT, and hERG activities.

    PubMed

    Mente, Scot; Gallaschun, Randall; Schmidt, Anne; Lebel, Lorrie; Vanase-Frawley, Michelle; Fliri, Anton

    2008-12-01

    QSAR models have been used to evaluate activities for compounds in the phenoxyphenyl-methanamine (PPMA) class of compounds. These models utilize Hammett-type donating-withdrawing substituent values as well as simple parameters to describe substituent size and elucidate the SAR of the 'A' and 'B' rings. Using this methodology, intuitive QSAR relationships were found for the three biological activities with R(2) values of 0.73, 0.45, and 0.58 for 5HT(2A), SerT, and hERG activities.

  5. 5-Hydroxytryptamine (serotonin)2A receptors in rat anterior cingulate cortex mediate the discriminative stimulus properties of d-lysergic acid diethylamide.

    PubMed

    Gresch, Paul J; Barrett, Robert J; Sanders-Bush, Elaine; Smith, Randy L

    2007-02-01

    d-Lysergic acid diethylamide (LSD), an indoleamine hallucinogen, produces profound alterations in mood, thought, and perception in humans. The brain site(s) that mediates the effects of LSD is currently unknown. In this study, we combine the drug discrimination paradigm with intracerebral microinjections to investigate the anatomical localization of the discriminative stimulus of LSD in rats. Based on our previous findings, we targeted the anterior cingulate cortex (ACC) to test its involvement in mediating the discriminative stimulus properties of LSD. Rats were trained to discriminate systemically administered LSD (0.085 mg/kg s.c.) from saline. Following acquisition of the discrimination, bilateral cannulae were implanted into the ACC (AP, +1.2 mm; ML, +/-1.0 mm; DV, -2.0 mm relative to bregma). Rats were tested for their ability to discriminate varying doses of locally infused LSD (0.1875, 0.375, and 0.75 microg/side) or artificial cerebrospinal fluid (n = 3-7). LSD locally infused into ACC dose-dependently substituted for systemically administered LSD, with 0.75 microg/side LSD substituting completely (89% correct). Systemic administration of the selective 5-hydroxytryptamine (serotonin) (5-HT)(2A) receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol (M100907; 0.4 mg/kg) blocked the discriminative cue of LSD (0.375 microg/side) infused into ACC (from 68 to 16% drug lever responding). Furthermore, M100907 (0.5 microg/microl/side) locally infused into ACC completely blocked the stimulus effects of systemic LSD (0.04 mg/kg; from 80 to 12% on the LSD lever). Taken together, these data indicate that 5-HT(2A) receptors in the ACC are a primary target mediating the discriminative stimulus properties of LSD.

  6. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2.

    PubMed

    Perez-Aguilar, Jose Manuel; Shan, Jufang; LeVine, Michael V; Khelashvili, George; Weinstein, Harel

    2014-11-12

    With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT(2A)R) in the absence of ligand and bound to four distinct serotonergic agonists. The 5-HT(2A)R is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT(2A)R agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT(2A)R interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. The findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT(2A)R activation.

  7. Serotonin modulation of cortical neurons and networks

    PubMed Central

    Celada, Pau; Puig, M. Victoria; Artigas, Francesc

    2013-01-01

    The serotonergic pathways originating in the dorsal and median raphe nuclei (DR and MnR, respectively) are critically involved in cortical function. Serotonin (5-HT), acting on postsynaptic and presynaptic receptors, is involved in cognition, mood, impulse control and motor functions by (1) modulating the activity of different neuronal types, and (2) varying the release of other neurotransmitters, such as glutamate, GABA, acetylcholine and dopamine. Also, 5-HT seems to play an important role in cortical development. Of all cortical regions, the frontal lobe is the area most enriched in serotonergic axons and 5-HT receptors. 5-HT and selective receptor agonists modulate the excitability of cortical neurons and their discharge rate through the activation of several receptor subtypes, of which the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT3 subtypes play a major role. Little is known, however, on the role of other excitatory receptors moderately expressed in cortical areas, such as 5-HT2C, 5-HT4, 5-HT6, and 5-HT7. In vitro and in vivo studies suggest that 5-HT1A and 5-HT2A receptors are key players and exert opposite effects on the activity of pyramidal neurons in the medial prefrontal cortex (mPFC). The activation of 5-HT1A receptors in mPFC hyperpolarizes pyramidal neurons whereas that of 5-HT2A receptors results in neuronal depolarization, reduction of the afterhyperpolarization and increase of excitatory postsynaptic currents (EPSCs) and of discharge rate. 5-HT can also stimulate excitatory (5-HT2A and 5-HT3) and inhibitory (5-HT1A) receptors in GABA interneurons to modulate synaptic GABA inputs onto pyramidal neurons. Likewise, the pharmacological manipulation of various 5-HT receptors alters oscillatory activity in PFC, suggesting that 5-HT is also involved in the control of cortical network activity. A better understanding of the actions of 5-HT in PFC may help to develop treatments for mood and cognitive disorders associated with an abnormal function of the frontal lobe

  8. Serotonin modulation of cortical neurons and networks.

    PubMed

    Celada, Pau; Puig, M Victoria; Artigas, Francesc

    2013-01-01

    The serotonergic pathways originating in the dorsal and median raphe nuclei (DR and MnR, respectively) are critically involved in cortical function. Serotonin (5-HT), acting on postsynaptic and presynaptic receptors, is involved in cognition, mood, impulse control and motor functions by (1) modulating the activity of different neuronal types, and (2) varying the release of other neurotransmitters, such as glutamate, GABA, acetylcholine and dopamine. Also, 5-HT seems to play an important role in cortical development. Of all cortical regions, the frontal lobe is the area most enriched in serotonergic axons and 5-HT receptors. 5-HT and selective receptor agonists modulate the excitability of cortical neurons and their discharge rate through the activation of several receptor subtypes, of which the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT3 subtypes play a major role. Little is known, however, on the role of other excitatory receptors moderately expressed in cortical areas, such as 5-HT2C, 5-HT4, 5-HT6, and 5-HT7. In vitro and in vivo studies suggest that 5-HT1A and 5-HT2A receptors are key players and exert opposite effects on the activity of pyramidal neurons in the medial prefrontal cortex (mPFC). The activation of 5-HT1A receptors in mPFC hyperpolarizes pyramidal neurons whereas that of 5-HT2A receptors results in neuronal depolarization, reduction of the afterhyperpolarization and increase of excitatory postsynaptic currents (EPSCs) and of discharge rate. 5-HT can also stimulate excitatory (5-HT2A and 5-HT3) and inhibitory (5-HT1A) receptors in GABA interneurons to modulate synaptic GABA inputs onto pyramidal neurons. Likewise, the pharmacological manipulation of various 5-HT receptors alters oscillatory activity in PFC, suggesting that 5-HT is also involved in the control of cortical network activity. A better understanding of the actions of 5-HT in PFC may help to develop treatments for mood and cognitive disorders associated with an abnormal function of the frontal lobe.

  9. Regulation of Serotonin-Induced Trafficking and Migration of Eosinophils

    PubMed Central

    Kang, Bit Na; Ha, Sung Gil; Bahaie, Nooshin S.; Hosseinkhani, M. Reza; Ge, Xiao Na; Blumenthal, Malcolm N.; Rao, Savita P.; Sriramarao, P.

    2013-01-01

    Association of the neurotransmitter serotonin (5-HT) with the pathogenesis of allergic asthma is well recognized and its role as a chemoattractant for eosinophils (Eos) in vitro and in vivo has been previously demonstrated. Here we have examined the regulation of 5-HT-induced human and murine Eos trafficking and migration at a cellular and molecular level. Eos from allergic donors and bone marrow-derived murine Eos (BM-Eos) were found to predominantly express the 5-HT2A receptor. Exposure to 5-HT or 2,5-dimethoxy-4-iodoamphetamine (DOI), a 5-HT2A/C selective agonist, induced rolling of human Eos and AML14.3D10 human Eos-like cells on vascular cell adhesion molecule (VCAM)-1 under conditions of flow in vitro coupled with distinct cytoskeletal and cell shape changes as well as phosphorylation of MAPK. Blockade of 5-HT2A or of ROCK MAPK, PI3K, PKC and calmodulin, but not Gαi-proteins, with specific inhibitors inhibited DOI-induced rolling, actin polymerization and changes in morphology of VCAM-1-adherent AML14.3D10 cells. More extensive studies with murine BM-Eos demonstrated the role of 5-HT in promoting rolling in vivo within inflamed post-capillary venules of the mouse cremaster microcirculation and confirmed that down-stream signaling of 5-HT2A activation involves ROCK, MAPK, PI3K, PKC and calmodulin similar to AML14.3D10 cells. DOI-induced migration of BM-Eos is also dependent on these signaling molecules and requires Ca2+. Further, activation of 5-HT2A with DOI led to an increase in intracellular Ca2+ levels in murine BM-Eos. Overall, these data demonstrate that 5-HT (or DOI)/5-HT2A interaction regulates Eos trafficking and migration by promoting actin polymerization associated with changes in cell shape/morphology that favor cellular trafficking and recruitment via activation of specific intracellular signaling molecules (ROCK, MAPK, PI3K and the PKC-calmodulin pathway). PMID:23372779

  10. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress

    PubMed Central

    Jiang, De-guo; Jin, Shi-li; Li, Gong-ying; Li, Qing-qing; Li, Zhi-ruo; Ma, Hong-xia; Zhuo, Chuan-jun; Jiang, Rong-huan; Ye, Min-jie

    2016-01-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry and in situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no significant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our findings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress. PMID:27857753

  11. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress.

    PubMed

    Jiang, De-Guo; Jin, Shi-Li; Li, Gong-Ying; Li, Qing-Qing; Li, Zhi-Ruo; Ma, Hong-Xia; Zhuo, Chuan-Jun; Jiang, Rong-Huan; Ye, Min-Jie

    2016-09-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry and in situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no significant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our findings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress.

  12. Endogenous hallucinogens as ligands of the trace amine receptors: a possible role in sensory perception.

    PubMed

    Wallach, J V

    2009-01-01

    While the endogenous hallucinogens, N,N-dimethyltryptamine, 5-hydroxy-N,N-dimethyl-tryptamine and 5-methoxy-N,N-dimethyltryptamine, have been acknowledged as naturally occurring components of the mammalian body for decades, their biological function remains as elusive now as it was at the time of their discovery. The recent discovery of the trace amine associated receptors and the activity of DMT and other hallucinogenic compounds at these receptor sites leads to the hypothesis that the endogenous hallucinogens act as neurotransmitters of a subclass of these trace amine receptors. Additionally, while activity at the serotonin 5-HT2A receptor has been proposed as being responsible for the hallucinogenic affects of administered hallucinogens, in their natural setting the 5-HT2A receptor may not interact with the endogenous hallucinogens at all. Additionally 5-HT2A agonist activity is unable to account for the visual altering effects of many of the administered hallucinogens; these effects may be mediated by one of the endogenous hallucinogen trace amine receptors rather than the serotonin 5-HT2A receptor. Therefore, activity at the trace amine receptors, in addition to serotonin receptors, may play a large role in the sensory altering effects of administered hallucinogens and the trace amine receptors along with their endogenous hallucinogen ligands may serve an endogenous role in mediating sensory perception in the mammalian central nervous system. Thus the theory proposed states that these compounds act as true endogenous hallucinogenic transmitters acting in regions of the central nervous system involved in sensory perception.

  13. Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans.

    PubMed

    Valle, Marta; Maqueda, Ana Elda; Rabella, Mireia; Rodríguez-Pujadas, Aina; Antonijoan, Rosa Maria; Romero, Sergio; Alonso, Joan Francesc; Mañanas, Miquel Àngel; Barker, Steven; Friedlander, Pablo; Feilding, Amanda; Riba, Jordi

    2016-07-01

    Ayahuasca is an Amazonian psychotropic plant tea typically obtained from two plants, Banisteriopsis caapi and Psychotria viridis. It contains the psychedelic 5-HT2A and sigma-1 agonist N,N-dimethyltryptamine (DMT) plus β-carboline alkaloids with monoamine-oxidase (MAO)-inhibiting properties. Although the psychoactive effects of ayahuasca have commonly been attributed solely to agonism at the 5-HT2A receptor, the molecular target of classical psychedelics, this has not been tested experimentally. Here we wished to study the contribution of the 5-HT2A receptor to the neurophysiological and psychological effects of ayahuasca in humans. We measured drug-induced changes in spontaneous brain oscillations and subjective effects in a double-blind randomized placebo-controlled study involving the oral administration of ayahuasca (0.75mg DMT/kg body weight) and the 5-HT2A antagonist ketanserin (40mg). Twelve healthy, experienced psychedelic users (5 females) participated in four experimental sessions in which they received the following drug combinations: placebo+placebo, placebo+ayahuasca, ketanserin+placebo and ketanserin+ayahuasca. Ayahuasca induced EEG power decreases in the delta, theta and alpha frequency bands. Current density in alpha-band oscillations in parietal and occipital cortex was inversely correlated with the intensity of visual imagery induced by ayahuasca. Pretreatment with ketanserin inhibited neurophysiological modifications, reduced the correlation between alpha and visual effects, and attenuated the intensity of the subjective experience. These findings suggest that despite the chemical complexity of ayahuasca, 5-HT2A activation plays a key role in the neurophysiological and visual effects of ayahuasca in humans.

  14. Serotonin control of sleep-wake behavior.

    PubMed

    Monti, Jaime M

    2011-08-01

    Based on electrophysiological, neurochemical, genetic and neuropharmacological approaches, it is currently accepted that serotonin (5-HT) functions predominantly to promote wakefulness (W) and to inhibit REM (rapid eye movement) sleep (REMS). Yet, under certain circumstances the neurotransmitter contributes to the increase in sleep propensity. Most of the serotonergic innervation of the cerebral cortex, amygdala, basal forebrain (BFB), thalamus, preoptic and hypothalamic areas, raphe nuclei, locus coeruleus and pontine reticular formation comes from the dorsal raphe nucleus (DRN). The 5-HT receptors can be classified into at least seven classes, designated 5-HT(1-7). The 5-HT(1A) and 5-HT(1B) receptor subtypes are linked to the inhibition of adenylate cyclase, and their activation evokes a membrane hyperpolarization. The actions of the 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptor subtypes are mediated by the activation of phospholipase C, with a resulting depolarization of the host cell. The 5-HT(3) receptor directly activates a 5-HT-gated cation channel which leads to the depolarization of monoaminergic, aminoacidergic and cholinergic cells. The primary signal transduction pathway of 5-HT(6) and 5-HT(7) receptors is the stimulation of adenylate cyclase which results in the depolarization of the follower neurons. Mutant mice that do not express 5-HT(1A) or 5-HT(1B) receptor exhibit greater amounts of REMS than their wild-type counterparts, which could be related to the absence of a postsynaptic inhibitory effect on REM-on neurons of the laterodorsal and pedunculopontine tegmental nuclei (LDT/PPT). 5-HT(2A) and 5-HT(2C) receptor knock-out mice show a significant increase of W and a reduction of slow wave sleep (SWS) which has been ascribed to the increase of catecholaminergic neurotransmission involving mainly the noradrenergic and dopaminergic systems. Sleep variables have been characterized, in addition, in 5-HT(7) receptor knock-out mice; the mutants spend less time

  15. Serotonin 2c receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor a...

  16. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    SciTech Connect

    Brann, M.R.

    1985-12-31

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor.

  17. Modulation of anxiety by cortical serotonin 1A receptors

    PubMed Central

    Piszczek, Lukasz; Piszczek, Agnieszka; Kuczmanska, Joanna; Audero, Enrica; Gross, Cornelius T.

    2015-01-01

    Serotonin (5-HT) plays an important role in the modulation of behavior across animal species. The serotonin 1A receptor (Htr1a) is an inhibitory G-protein coupled receptor that is expressed both on serotonin and non-serotonin neurons in mammals. Mice lacking Htr1a show increased anxiety behavior suggesting that its activation by serotonin has an anxiolytic effect. This outcome can be mediated by either Htr1a population present on serotonin (auto-receptor) or non-serotonin neurons (hetero-receptor), or both. In addition, both transgenic and pharmacological studies have shown that serotonin acts on Htr1a during development to modulate anxiety in adulthood, demonstrating a function for this receptor in the maturation of anxiety circuits in the brain. However, previous studies have been equivocal about which Htr1a population modulates anxiety behavior, with some studies showing a role of Htr1a hetero-receptor and others implicating the auto-receptor. In particular, cell-type specific rescue and suppression of Htr1a expression in either forebrain principal neurons or brainstem serotonin neurons reached opposite conclusions about the role of the two populations in the anxiety phenotype of the knockout. One interpretation of these apparently contradictory findings is that the modulating role of these two populations depends on each other. Here we use a novel Cre-dependent inducible allele of Htr1a in mice to show that expression of Htr1a in cortical principal neurons is sufficient to modulate anxiety. Together with previous findings, these results support a hetero/auto-receptor interaction model for Htr1a function in anxiety. PMID:25759645

  18. Gender, personality, and serotonin-2A receptor binding in healthy subjects

    PubMed Central

    Soloff, Paul H.; Price, Julie C.; Mason, Neale Scott; Becker, Carl; Meltzer, Carolyn C.

    2009-01-01

    The vulnerability to mood disorders, impulsive-aggression, eating disorders, and suicidal behavior varies greatly with gender, and may reflect gender differences in central serotonergic function. We investigated the relationships of gender, mood, impulsivity, aggression and temperament to 5HT2A receptor binding in 21 healthy subjects using [18F]altanserin and PET neuro-imaging. Binding potentials in pre-defined Regions of Interest (ROI) were calculated using the Logan graphical method, corrected for partial volume effects, and compared by gender with age co-varied. SPM analysis was used for voxel level comparisons. Altanserin binding (BPp) was greater in male than female subjects in 9 ROIs: hippocampus (HIP) and Lt. HIP, lateral orbital frontal cortex (LOF) and Lt.LOF, left medial frontal cortex (Lt.MFC), left medial temporal cortex (Lt. MTC), left occipital cortex (Lt. OCC), thalamus (THL) and Lt. THL. Differences in Lt. HIP and Lt. MTL remained significant after Bonferroni correction. Gender differences were noted in the co-variation of psychological traits with BPp values in specific ROIs. Among males alone, aggression was negatively correlated with BPp values in Lt. LOF and Lt. MFC, and Suspiciousness positively correlated in LOF, Lt. LOF and Lt. MFC. Among female subjects alone, Negativism was positively correlated with BPp values in HIP, and Verbal Hostility in Lt. HIP. Altanserin binding in Lt. MTC was positively correlated with Persistence, with no significant gender effect. Gender differences in 5HT2A receptor function in specific ROIs may mediate expression of psychological characteristics such as aggression, suspiciousness and negativism. Future studies of 5HT2A receptor function and its relationship to behavior should control for gender. PMID:19959344

  19. Schizophrenia-like disruptions of sensory gating by serotonin receptor stimulation in rats: effect of MDMA, DOI and 8-OH-DPAT.

    PubMed

    Thwaites, Shane J; Gogos, Andrea; Van den Buuse, Maarten

    2013-11-01

    Schizophrenia pathophysiology is associated with alterations in several neurotransmitter systems, particularly dopamine, glutamate and serotonin (5-HT). Schizophrenia patients also have disruptions in sensory gating, a brain information filtering mechanism in response to repeated sensory stimuli. Dopamine and glutamate have been implicated in sensory gating; however, little is known about the contribution of serotonin. We therefore investigated the effects of several psychoactive compounds that alter serotonergic neuronal activity on event-related potentials (ERP) to paired auditory pulses. Male Sprague-Dawley rats were implanted with cortical surface electrodes to measure ERPs to 150 presentations of two 85 dB bursts of white noise, 500 ms apart (S1 and S2). Saline-treated animals suppressed the response to S2 to less than 50% of S1. In contrast, treatment with the serotonin releaser, MDMA (ecstasy; 2.0mg/kg), the 5-HT2A/2C receptor agonist, DOI (0.5mg/kg), or the 5-HT1A/7 receptor agonist, 8-OH-DPAT (0.5mg/kg), caused an increase in S2/S1 ratios. Analysis of waveform components suggested that the S2/S1 ratio disruption by MDMA was due to subtle effects on the ERPs to S1 and S2; DOI caused the disruption primarily by reducing the ERP to S1; 8-OH-DPAT-induced disruptions were due to an increase in the ERP to S2. These results show that 5-HT receptor stimulation alters S2/S1 ERP ratios in rats. These results may help to elucidate the sensory gating deficits observed in schizophrenia patients.

  20. Serotonin receptors in depression: from A to B

    PubMed Central

    Nautiyal, Katherine M.; Hen, René

    2017-01-01

    The role of serotonin in major depressive disorder (MDD) is the focus of accumulating clinical and preclinical research. The results of these studies reflect the complexity of serotonin signaling through many receptors, in a large number of brain regions, and throughout the lifespan. The role of the serotonin transporter in MDD has been highlighted in gene by environment association studies as well as its role as a critical player in the mechanism of the most effective antidepressant treatments – selective serotonin reuptake inhibitors. While the majority of the 15 known receptors for serotonin have been implicated in depression or depressive-like behavior, the serotonin 1A (5-HT 1A) and 1B (5-HT 1B) receptors are among the most studied. Human brain imaging and genetic studies point to the involvement of 5-HT 1A and 5-HT 1B receptors in MDD and the response to antidepressant treatment. In rodents, the availability of tissue-specific and inducible knockout mouse lines has made possible the identification of the involvement of 5-HT 1A and 5-HT 1B receptors throughout development and in a cell-type specific manner. This, and other preclinical pharmacology work, shows that autoreceptor and heteroreceptor populations of these receptors have divergent roles in modulating depression-related behavior as well as responses to antidepressants and also have different functions during early postnatal development compared to during adulthood. PMID:28232871

  1. Disease-specific expression of the serotonin-receptor 5-HT(2C) in natural killer cells in Alzheimer's dementia.

    PubMed

    Martins, Luiza Conceição Amorim; Rocha, Natália Pessoa; Torres, Karen Cecília Lima; Dos Santos, Rodrigo Ribeiro; França, Giselle Sabrina; de Moraes, Edgar Nunes; Mukhamedyarov, Marat Alexandrovich; Zefirov, Andrey Lvovich; Rizvanov, Albert Anatolyevich; Kiyasov, Andrey Pavlovich; Vieira, Luciene Bruno; Guimarães, Melissa Monteiro; Yalvaç, Mehmet Emir; Teixeira, Antônio Lúcio; Bicalho, Maria Aparecida Camargo; Janka, Zoltán; Romano-Silva, Marco Aurélio; Palotás, András; Reis, Helton José

    2012-10-15

    Alzheimer's dementia (AD) is a degenerative brain disorder characterized mainly by cholinergic failure, but other neuro-transmitters are also deficient especially at late stages of the disease. Misfolded β-amyloid peptide has been identified as a causative agent, however inflammatory changes also play a pivotal role. Even though the most prominent pathology is seen in the cognitive functions, specific abnormalities of the central nervous system (CNS) are also reflected in the periphery, particularly in the immune responses of the body. The aim of this study was to characterize the dopaminergic and serotonergic systems in AD, which are also markedly disrupted along with the hallmark acetyl-choline dysfunction. Peripheral blood mono-nuclear cells (PBMCs) from demented patients were judged against comparison groups including individuals with late-onset depression (LOD), as well as non-demented and non-depressed subjects. Cellular sub-populations were evaluated by mono-clonal antibodies against various cell surface receptors: CD4/CD8 (T-lymphocytes), CD19 (B-lymphocytes), CD14 (monocytes), and CD56 (natural-killer (NK)-cells). The expressions of dopamine D(3) and D(4), as well as serotonin 5-HT(1A), 5-HT(2A), 5-HT(2B) and 5-HT(2C) were also assessed. There were no significant differences among the study groups with respect to the frequency of the cellular sub-types, however a unique profound increase in 5-HT(2C) receptor exclusively in NK-cells was observed in AD. The disease-specific expression of 5-HT(2C), as well as the NK-cell cyto-toxicity, has been linked with cognitive derangement in dementia. These changes not only corroborate the existence of bi-directional communication between the immune system and the CNS, but also elucidate the role of inflammatory activity in AD pathology, and may serve as potential biomarkers for less invasive and early diagnostic purposes as well.

  2. The serotonin 5-HT7 receptors: two decades of research.

    PubMed

    Gellynck, Evelien; Heyninck, Karen; Andressen, Kjetil W; Haegeman, Guy; Levy, Finn Olav; Vanhoenacker, Peter; Van Craenenbroeck, Kathleen

    2013-10-01

    Like most neurotransmitters, serotonin possesses a simple structure. However, the pharmacological consequences are more complex and diverse. Serotonin is involved in numerous functions in the human body including the control of appetite, sleep, memory and learning, temperature regulation, mood, behavior, cardiovascular function, muscle contraction, endocrine regulation, and depression. Low levels of serotonin may be associated with several disorders, namely increase in aggressive and angry behaviors, clinical depression, Parkinson's disease, obsessive-compulsive disorder, eating disorders, migraine, irritable bowel syndrome, tinnitus, and bipolar disease. These effects are mediated via different serotonin (5-HT) receptors. In this review, we will focus on the last discovered member of this serotonin receptor family, the 5-HT7 receptor. This receptor belongs to the G protein-coupled receptor superfamily and was cloned two decades ago. Later, different splice variants were described but no major functional differences have been described so far. All 5-HT7 receptor variants are coupled to Gαs proteins and stimulate cAMP formation. Recently, several interacting proteins have been reported, which can influence receptor signaling and trafficking.

  3. Antagonism of lateral saphenous vein serotonin receptors from steers grazing endophyte-free, wild-type, or novel endophyte-infected tall fescue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pharmacologic profiling of 5-hydroxytryptamine (5HT) receptors of bovine lateral saphenous vein has shown that cattle grazing endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have altered responses to ergovaline (ERV), 5HT, 5HT2A and 5HT7 agonists. To determine if 5HT...

  4. Effects of postischemic environment on transcription factor and serotonin receptor expression after permanent focal cortical ischemia in rats.

    PubMed

    Dahlqvist, P; Rönnbäck, A; Risedal, A; Nergårdh, R; Johansson, I-M; Seckl, J R; Johansson, B B; Olsson, T

    2003-01-01

    Housing rats in an enriched environment improves functional outcome after ischemic stroke, this may reflect neuronal plasticity in brain regions outside the lesion. Which components of the enriched environment that are of greatest importance for recovery after brain ischemia is uncertain. We have previously found that enriched environment and social interaction alone both improve functional recovery after focal cerebral ischemia, compared with isolated housing with voluntary wheel-running. In this study, the aim was to separate components of the enriched environment and investigate the effects on some potential mediators of improved functional recovery; such as the inducible transcription factors nerve growth factor-induced gene A (NGFI-A) and NGFI-B, and the glucocorticoid and serotonin systems. After permanent middle cerebral artery occlusion, rats were divided into four groups: individually housed with no equipment (deprived group), individually housed with free access to a running wheel (running group), housed together in a large cage with no equipment (social group) or in a large cage furnished with exchangeable bars, chains and other objects (enriched group). mRNA expression of inducible transcription factors, serotonin and glucocorticoid receptors was determined with in situ hybridisation 1 month after cerebral ischemia. Rats housed in enriched or social environments showed significantly higher mRNA expression of NGFI-A and NGFI-B in cortical regions outside the lesion and in the CA1 (cornu ammonis region of the hippocampus), compared with isolated rats with or without a running wheel. NGFI-A and NGFI-B mRNA expression in cortex and in CA1 was significantly correlated to functional outcome. 5-Hydroxytryptamine receptor 1A (5-HT(1A)) mRNA expression and binding, as well as 5-HT(2A) receptor mRNA expression were decreased in the hippocampus (CA4 region) of the running wheel rats. Mineralocorticoid receptor gene expression was increased in the dentate gyrus

  5. Modulation of auditory brainstem responses by serotonin and specific serotonin receptors.

    PubMed

    Papesh, Melissa A; Hurley, Laura M

    2016-02-01

    The neuromodulator serotonin is found throughout the auditory system from the cochlea to the cortex. Although effects of serotonin have been reported at the level of single neurons in many brainstem nuclei, how these effects correspond to more integrated measures of auditory processing has not been well-explored. In the present study, we aimed to characterize the effects of serotonin on far-field auditory brainstem responses (ABR) across a wide range of stimulus frequencies and intensities. Using a mouse model, we investigated the consequences of systemic serotonin depletion, as well as the selective stimulation and suppression of the 5-HT1 and 5-HT2 receptors, on ABR latency and amplitude. Stimuli included tone pips spanning four octaves presented over a forty dB range. Depletion of serotonin reduced the ABR latencies in Wave II and later waves, suggesting that serotonergic effects occur as early as the cochlear nucleus. Further, agonists and antagonists of specific serotonergic receptors had different profiles of effects on ABR latencies and amplitudes across waves and frequencies, suggestive of distinct effects of these agents on auditory processing. Finally, most serotonergic effects were more pronounced at lower ABR frequencies, suggesting larger or more directional modulation of low-frequency processing. This is the first study to describe the effects of serotonin on ABR responses across a wide range of stimulus frequencies and amplitudes, and it presents an important step in understanding how serotonergic modulation of auditory brainstem processing may contribute to modulation of auditory perception.

  6. Effects of serotonin on expression of the LDL receptor family member LR11 and 7-ketocholesterol-induced apoptosis in human vascular smooth muscle cells

    SciTech Connect

    Nagayama, Daiji; Ishihara, Noriko; Bujo, Hideaki; Shirai, Kohji; Tatsuno, Ichiro

    2014-04-18

    Highlights: • The dedifferentiation of VSMCs in arterial intima is involved in atherosclerosis. • 5-HT showed proliferative effect on VSMCs which was abolished by sarpogrelate. • 5-HT enhanced expression of LR11 mRNA in VSMCs which was abolished by sarpogrelate. • 5-HT suppressed 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. • The mechanisms explain the 5-HT-induced remodeling of arterial structure. - Abstract: Serotonin (5-HT) is a known mitogen for vascular smooth muscle cells (VSMCs). The dedifferentiation and proliferation/apoptosis of VSMCs in the arterial intima represent one of the atherosclerotic changes. LR11, a member of low-density lipoprotein receptor family, may contribute to the proliferation of VSMCs in neointimal hyperplasia. We conducted an in vitro study to investigate whether 5-HT is involved in LR11 expression in human VSMCs and apoptosis of VSMCs induced by 7-ketocholesterol (7KCHO), an oxysterol that destabilizes plaque. 5-HT enhanced the proliferation of VSMCs, and this effect was abolished by sarpogrelate, a selective 5-HT2A receptor antagonist. Sarpogrelate also inhibited the 5-HT-enhanced LR11 mRNA expression in VSMCs. Furthermore, 5-HT suppressed the 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. These findings provide new insights on the changes in the differentiation stage of VSMCs mediated by 5-HT.

  7. Structure and Function of Serotonin G protein Coupled Receptors

    PubMed Central

    McCorvy, John D.; Roth, Bryan L.

    2015-01-01

    Serotonin receptors are prevalent throughout the nervous system and the periphery, and remain one of the most lucrative and promising drug discovery targets for disorders ranging from migraine headaches to neuropsychiatric disorders such as schizophrenia and depression. There are 14 distinct serotonin receptors, of which 13 are G protein coupled receptors (GPCRs), which are targets for approximately 40% of the approved medicines. Recent crystallographic and biochemical evidence has provided a converging understanding of the basic structure and functional mechanics of GPCR activation. Currently, two GPCR crystal structures exist for the serotonin family, the 5-HT1B and 5-HT2B receptor, with the antimigraine and valvulopathic drug ergotamine bound. The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism. This review will detail the findings of these crystal structures from a molecular and mutagenesis perspective for driving rational drug design for novel therapeutics incorporating biased signaling. PMID:25601315

  8. Serotonin and Prefrontal Cortex Function: Neurons, Networks, and Circuits

    PubMed Central

    Puig, M. Victoria; Gulledge, Allan T.

    2012-01-01

    Higher-order executive tasks such as learning, working memory, and behavioral flexibility depend on the prefrontal cortex (PFC), the brain region most elaborated in primates. The prominent innervation by serotonin neurons and the dense expression of serotonergic receptors in the PFC suggest that serotonin is a major modulator of its function. The most abundant serotonin receptors in the PFC, 5-HT1A, 5-HT2A and 5-HT3A receptors, are selectively expressed in distinct populations of pyramidal neurons and inhibitory interneurons, and play a critical role in modulating cortical activity and neural oscillations (brain waves). Serotonergic signaling is altered in many psychiatric disorders such as schizophrenia and depression, where parallel changes in receptor expression and brain waves have been observed. Furthermore, many psychiatric drug treatments target serotonergic receptors in the PFC. Thus, understanding the role of serotonergic neurotransmission in PFC function is of major clinical importance. Here we review recent findings concerning the powerful influences of serotonin on single neurons, neural networks, and cortical circuits in the PFC of the rat, where the effects of serotonin have been most thoroughly studied. PMID:22076606

  9. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    NASA Astrophysics Data System (ADS)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  10. Signal Transduction Mechanism for Serotonin 5-HT2B Receptor-Mediated DNA Synthesis and Proliferation in Primary Cultures of Adult Rat Hepatocytes.

    PubMed

    Naito, Kota; Tanaka, Chizuru; Mitsuhashi, Manami; Moteki, Hajime; Kimura, Mitsutoshi; Natsume, Hideshi; Ogihara, Masahiko

    2016-01-01

    The involvement of serotonin (5-hydroxytryptamine; 5-HT) and the 5-HT2 receptor subtypes in the induction of DNA synthesis and proliferation was investigated in primary cultures of adult rat hepatocytes to elucidate the intracellular signal transduction mechanisms. Hepatocyte parenchymal cells maintained in a serum-free, defined medium, synthesized DNA and proliferated in the presence of 5-HT or a selective 5-HT2B receptor agonist, BW723C86, but not in the presence of 5-HT2A, or 5-HT2C receptor agonists (TCB-2 and CP809101, respectively), in a time- and dose-dependent manner. A selective 5-HT2B receptor antagonist, LY272015 (10(-7) M), and a specific phospholipase C (PLC) inhibitor, U-73122 (10(-6) M), as well as specific inhibitors of growth-related signal transducers-including AG1478, LY294002, PD98059, and rapamycin-completely inhibited 5-HT (10(-6) M)- or BW723C86 (10(-6) M)-induced hepatocyte DNA synthesis and proliferation. Both 5-HT and BW723C86 were shown to significantly stimulate the phosphorylation of epidermal growth factor (EGF)/transforming growth factor (TGF)-α receptor tyrosine kinase (p175 kDa) and extracellular signal-regulated kinase (ERK) 2 on Western blot analysis. These results suggest that the proliferative mechanism of activating 5-HT is mediated mainly through 5-HT2B receptor-stimulated Gq/PLC and EGF/TGF-α-receptor/phosphatidylinositol 3-kinase (PI3K)/ERK2/mammalian target of rapamycin (mTOR) signaling pathways in primary cultured hepatocytes.

  11. Electrophysiological examination of the effects of sustained flibanserin administration on serotonin receptors in rat brain

    PubMed Central

    Rueter, Lynne E; Blier, Pierre

    1999-01-01

    5-HT1A receptor agonists have proven to be effective antidepressant medications, however they suffer from a significant therapeutic lag before depressive symptoms abate. Flibanserin is a 5-HT1A receptor agonist and 5-HT2A receptor antagonist developed to possibly induce a more rapid onset of antidepressant action through its preferential postsynaptic 5-HT1A receptor agonism. Flibanserin antagonized the effect of microiontophoretically-applied DOI in the medial prefrontal cortex (mPFC) following 2 days of administration, indicating antagonism of postsynaptic 5-HT2A receptors. This reduction in the effect of locally-applied DOI was no longer present following 7-day flibanserin administration. Two-day flibanserin administration only marginally reduced the firing activity of dorsal raphe (DRN) 5-HT neurons. Following 7 days of administration, 5-HT neuronal firing activity had returned to normal and the somatodendritic 5-HT1A autoreceptors were desensitized. The responsiveness of postsynaptic 5-HT1A receptors located on CA3 hippocampus pyramidal neurons and mPFC neurons, examined using microiontophoretically-applied 5-HT and gepirone, was unchanged following a 7-day flibanserin treatment. As demonstrated by the ability of the 5-HT1A receptor antagonist WAY 100635 to selectively increase the firing of hippocampal neurons in 2- and 7-day treated rats, flibanserin enhanced the tonic activation of postsynaptic 5-HT1A receptors in this brain region. The results suggest that flibanserin could be a therapeutically useful compound putatively endowed with a more rapid onset of antidepressant action. PMID:10188973

  12. Effect of brain-derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains.

    PubMed

    Naumenko, V S; Kondaurova, E M; Bazovkina, D V; Tsybko, A S; Tikhonova, M A; Kulikov, A V; Popova, N K

    2012-07-12

    The effect of brain-derived neurotrophic factor (BDNF) on depressive-like behavior and serotonin (5-HT) system in the brain of antidepressant sensitive cataleptics (ASC)/Icg mouse strain, characterized by depressive-like behavior, in comparison with the parental nondepressive CBA/Lac mouse strain was examined. Significant decrease of catalepsy and tail suspension test (TST) immobility was shown 17days after acute central BDNF administration (300ng i.c.v.) in ASC mice. In CBA mouse strain, BDNF moderately decreased catalepsy without any effect on TST immobility time. Significant difference between ASC and CBA mice in the effect of BDNF on 5-HT system was revealed. It was shown that central administration of BDNF led to increase of 5-HT(1A) receptor gene expression but not 5-HT(1A) functional activity in ASC mice. Increased tryptophan hydroxylase-2 (Tph-2) and 5-HT(2A) receptor genes expression accompanied by 5-HT(2A) receptor sensitization was shown in BDNF-treated ASC but not in CBA mouse strain, suggesting BDNF-induced increase of the brain 5-HT system functional activity and activation of neurogenesis in "depressive" ASC mice. There were no changes found in the 5-HT transporter mRNA level in BDNF-treated ASC and CBA mice. In conclusion, central administration of BDNF produced prolonged ameliorative effect on depressive-like behavior accompanied by increase of the Tph-2, 5-HT(1A) and 5-HT(2A) genes expression and 5-HT(2A) receptor functional activity in animal model of hereditary behavior disorders.

  13. Role of catecholamines and serotonin receptor subtypes in nefopam-induced antinociception.

    PubMed

    Girard, Philippe; Coppé, Marie-Claude; Verniers, Danielle; Pansart, Yannick; Gillardin, Jean-Marie

    2006-09-01

    The non-opiate analgesic nefopam has been shown to inhibit monoamines uptake, but little is known about receptor subtypes effectively involved in its analgesic effect. In vitro binding assays yielded the following measures of affinity (IC(50)): serotonergic 5-HT(2C) (1.4 microM), 5-HT(2A) (5.1 microM), 5-HT(3) (22.3 microM), 5-HT(1B) (41.7 microM), 5-HT(1A) (64.9 microM), adrenergic alpha(1) (15.0 microM) and dopaminergic D(1) (100 microM). Subcutaneous nefopam administration dose-dependently inhibited pain in acetic acid-induced writhing (1-30 mg kg(-1)) and formalin (1-10 mg kg(-1)) tests in the mouse. Pretreatments with adrenergic alpha(1) (prazosin) and alpha(2) (yohimbine), and serotonergic 5-HT(1B) (GR127935) receptor antagonists significantly increased the nefopam ED(50) in the writhing test. The serotonergic 5-HT(2C) (RS102221) and the dopaminergic D(2) (sulpiride) receptor antagonists inhibited nefopam antinociception in the formalin test. However, in both tests, nefopam analgesic activity was not modified by the following receptor antagonists: dopaminergic D(1) (SCH23390), serotonergic 5-HT(1A) (NAN-190, WAY100635), 5-HT(2A) (R96544, ketanserin), 5-HT(3) (tropisetron), and 5-HT(4) (SDZ205557). In conclusion, nefopam analgesic activity could be modulated by the adrenergic alpha(1) and alpha(2) receptors, the dopaminergic D(2) receptors, and the serotonergic 5-HT(1B) and 5-HT(2C) receptor subtypes.

  14. Gastric pentadecapeptide BPC 157 effective against serotonin syndrome in rats.

    PubMed

    Boban Blagaic, Alenka; Blagaic, Vladimir; Mirt, Mirela; Jelovac, Nikola; Dodig, Goran; Rucman, Rudolf; Petek, Marijan; Turkovic, Branko; Anic, Tomislav; Dubovecak, Miroslav; Staresinic, Mario; Seiwerth, Sven; Sikiric, Predrag

    2005-04-11

    Serotonin syndrome commonly follows irreversible monoamine oxidase (MAO)-inhibition and subsequent serotonin (5-HT) substrate (in rats with fore paw treading, hind limbs abduction, wet dog shake, hypothermia followed by hyperthermia). A stable gastric pentadecapeptide BPC 157 with very safe profile (inflammatory bowel disease clinical phase II, PL-10, PLD-116, PL-14736, Pliva) reduced the duration of immobility to a greater extent than imipramine, and, given peripherally, has region specific influence on brain 5-HT synthesis (alpha-[14C]methyl-L-tryptophan autoradiographic measurements) in rats, different from any other serotonergic drug. Thereby, we investigate this peptide (10 microg, 10 ng, 10 pg/kg i.p.) in (i) full serotonin syndrome in rat combining pargyline (irreversible MAO-inhibition; 75 mg/kg i.p.) and subsequent L-tryptophan (5-HT precursor; 100 mg/kg i.p.; BPC 157 as a co-treatment), or (ii, iii) using pargyline or L-tryptophan given separately, as a serotonin-substrate with (ii) pargyline (BPC 157 as a 15-min posttreatment) or as a potential serotonin syndrome inductor with (iii) L-tryptophan (BPC 157 as a 15 min-pretreatment). In all experiments, gastric pentadecapeptide BPC 157 contrasts with serotonin-syndrome either (i) presentation (i.e., particularly counteracted) or (ii) initiation (i.e., neither a serotonin substrate (counteraction of pargyline), nor an inductor for serotonin syndrome (no influence on L-tryptophan challenge)). Indicatively, severe serotonin syndrome in pargyline + L-tryptophan rats is considerably inhibited even by lower pentadecapeptide BPC 157 doses regimens (particularly disturbances such as hyperthermia and wet dog shake thought to be related to stimulation of 5-HT2A receptors), while the highest pentadecapeptide dose counteracts mild disturbances present in pargyline rats (mild hypothermia, feeble hind limbs abduction). Thereby, in severe serotonin syndrome, gastric pentadecapeptide BPC 157 (alone, no behavioral or

  15. Changes in intensity of serotonin syndrome caused by adverse interaction between monoamine oxidase inhibitors and serotonin reuptake blockers.

    PubMed

    Tao, Rui; Rudacille, Mary; Zhang, Gongliang; Ma, Zhiyuan

    2014-07-01

    Drug interaction between inhibitors of monoamine oxidase (MAOIs) and selective serotonin (5-hydroxytryptamine, 5-HT) reuptake (SSRIs) induces serotonin syndrome, which is usually mild but occasionally severe in intensity. However, little is known about neural mechanisms responsible for the syndrome induction and intensification. In this study, we hypothesized that the syndrome induction and intensity utilize two different but inter-related mechanisms. Serotonin syndrome is elicited by excessive 5-HT in the brain (presynaptic mechanism), whereas syndrome intensity is attributed to neural circuits involving 5-HT2A and NMDA receptors (postsynaptic mechanism). To test this hypothesis, basal 5-HT efflux and postsynaptic circuits were pharmacologically altered in rats by once daily pretreatment of the MAOI clorgyline for 3, 6, or 13 days. Syndrome intensity was estimated by measuring 5-HT efflux, neuromuscular activity, and body-core temperature in response to challenge injection of clorgyline combined with the SSRI paroxetine. Results showed that the onset of serotonin syndrome is caused by 5-HT efflux exceeding 10-fold above baseline, confirming the presynaptic hypothesis. The neuromuscular and body-core temperature abnormalities, which were otherwise mild in drug-naive rats, were significantly intensified to a severe level in rats pretreated with daily clorgyline for 3 and 6 days but not in rats pretreated for 13 days. The intensified effect was blocked by M100907 and MK-801, suggesting that variation in syndrome intensity was mediated through a 5-HT2A and NMDA receptor-engaged circuit. Therefore, we concluded that pretreatments of MAOI pharmacologically alter the activity of postsynaptic circuits, which is responsible for changes in syndrome intensity.

  16. Individual vulnerability to escalated aggressive behavior by a low dose of alcohol: decreased serotonin receptor mRNA in the prefrontal cortex of male mice.

    PubMed

    Chiavegatto, S; Quadros, I M H; Ambar, G; Miczek, K A

    2010-02-01

    Low to moderate doses of alcohol consumption induce heightened aggressive behavior in some, but not all individuals. Individual vulnerability for this nonadaptive behavior may be determined by an interaction of genetic and environmental factors with the sensitivity of alcohol's effects on brain and behavior. We used a previously established protocol for alcohol oral self-administration and characterized alcohol-heightened aggressive (AHA) mice as compared with alcohol non-heightened (ANA) counterparts. A week later, we quantified mRNA steady state levels of several candidate genes in the serotonin [5-hydroxytryptamine (5-HT)] system in different brain areas. We report a regionally selective and significant reduction of all 5-HT receptor subtype transcripts, except for 5-HT(3), in the prefrontal cortex of AHA mice. Comparable gene expression profile was previously observed in aggressive mice induced by social isolation or by an anabolic androgenic steroid. Additional change in the 5-HT(1B) receptor transcripts was seen in the amygdala and hypothalamus of AHA mice. In both these areas, 5-HT(1B) mRNA was elevated when compared with ANA mice. In the hypothalamus, AHA mice also showed increased transcripts for 5-HT(2A) receptor. In the midbrain, 5-HT synthetic enzyme, 5-HT transporter and 5-HT receptors mRNA levels were similar between groups. Our results emphasize a role for postsynaptic over presynaptic 5-HT receptors in mice which showed escalated aggression after the consumption of a moderate dose of alcohol. This gene expression profile of 5-HT neurotransmission components in the brain of mice may suggest a vulnerability trait for alcohol-heightened aggression.

  17. Dual Role of Endogenous Serotonin in 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis

    PubMed Central

    Rapalli, Alberto; Bertoni, Simona; Arcaro, Valentina; Saccani, Francesca; Grandi, Andrea; Vivo, Valentina; Cantoni, Anna M.; Barocelli, Elisabetta

    2016-01-01

    Background and Aims: Changes in gut serotonin (5-HT) content have been described in Inflammatory Bowel Disease (IBD) and in different experimental models of colitis: the critical role of this monoamine in the pathogenesis of chronic gastrointestinal inflammation is gradually emerging. Aim of the present study was to evaluate the contribution of endogenous 5-HT through the activation of its specific receptor subtypes to the local and systemic inflammatory responses in an experimental model of IBD. Materials and Methods: Colitis was induced by intrarectal 2,4,6-TriNitroBenzene Sulfonic acid in mice subacutely treated with selective antagonists of 5-HT1A (WAY100135), 5-HT2A (Ketanserin), 5-HT3 (Ondansetron), 5-HT4 (GR125487), 5-HT7 (SB269970) receptors and with 5-HT1A agonist 8-Hydroxy-2-(di-n-propylamino)tetralin. Results: Blockade of 5-HT1A receptors worsened TNBS-induced local and systemic neutrophil recruitment while 5-HT1A agonist delayed and mitigated the severity of colitis, counteracting the increase in colonic 5-HT content. On the contrary, blockade of 5-HT2A receptors improved global health conditions, reduced colonic morphological alterations, down-regulated neutrophil recruitment, inflammatory cytokines levels and colonic apoptosis. Antagonism of 5-HT3, 5-HT4, and 5-HT7 receptor sites did not remarkably affect the progression and outcome of the pathology or only slightly improved it. Conclusion: The prevailing deleterious contribution given by endogenous 5-HT to inflammation in TNBS-induced colitis is seemingly mediated by 5-HT2A and, to a lesser extent, by 5-HT4 receptors and coexists with the weak beneficial effect elicited by 5-HT1A stimulation. These findings suggest how only a selective interference with 5-HT pro-inflammatory actions may represent an additional potential therapeutic option for intestinal inflammatory disorders. PMID:27047383

  18. Maternal influenza viral infection causes schizophrenia-like alterations of 5-HT₂A and mGlu₂ receptors in the adult offspring.

    PubMed

    Moreno, José L; Kurita, Mitsumasa; Holloway, Terrell; López, Javier; Cadagan, Richard; Martínez-Sobrido, Luis; García-Sastre, Adolfo; González-Maeso, Javier

    2011-02-02

    Epidemiological studies indicate that maternal influenza viral infection increases the risk for schizophrenia in the adult offspring. The serotonin and glutamate systems are suspected in the etiology of schizophrenia, as well as in the mechanism of action of antipsychotic drugs. The effects of hallucinogens, such as psilocybin and mescaline, require the serotonin 5-HT(2A) receptor, and induce schizophrenia-like psychosis in humans. In addition, metabotropic glutamate receptor mGlu(2/3) agonists show promise as a new treatment for schizophrenia. Here, we investigated the level of expression and behavioral function of 5-HT(2A) and mGlu(2) receptors in a mouse model of maternal influenza viral infection. We show that spontaneous locomotor activity is diminished by maternal infection with the mouse-adapted influenza A/WSN/33 (H1N1) virus. The behavioral responses to hallucinogens and glutamate antipsychotics are both affected by maternal exposure to influenza virus, with increased head-twitch response to hallucinogens and diminished antipsychotic-like effect of the glutamate agonist. In frontal cortex of mice born to influenza virus-infected mothers, the 5-HT(2A) receptor is upregulated and the mGlu(2) receptor is downregulated, an alteration that may be involved in the behavioral changes observed. Additionally, we find that the cortical 5-HT(2A) receptor-dependent signaling pathways are significantly altered in the offspring of infected mothers, showing higher c-fos, egr-1, and egr-2 expression in response to the hallucinogenic drug DOI. Identifying a biochemical alteration that parallels the behavioral changes observed in a mouse model of prenatal viral infection may facilitate targeting therapies for treatment and prevention of schizophrenia.

  19. Serotonin increases synaptic activity in olfactory bulb glomeruli.

    PubMed

    Brill, Julia; Shao, Zuoyi; Puche, Adam C; Wachowiak, Matt; Shipley, Michael T

    2016-03-01

    Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determined its effects on the two major classes of glomerular interneurons: GABAergic/dopaminergic short axon cells (SACs) and GABAergic periglomerular cells (PGCs). In SACs, 5HT evoked a depolarizing current mediated by 5HT2C receptors but did not significantly impact spike rate. 5HT had no measurable direct effect in PGCs. Serotonin increased spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) in PGCs and SACs. Increased sEPSCs were mediated by 5HT2A receptors, suggesting that they are primarily due to enhanced excitatory drive from ETCs. Increased sIPSCs resulted from elevated excitatory drive onto GABAergic interneurons and augmented GABA release from SACs. Serotonin-mediated GABA release from SACs was action potential independent and significantly increased miniature IPSC frequency in glomerular neurons. When focally applied to a glomerulus, 5HT increased MC spontaneous firing greater than twofold but did not increase olfactory nerve-evoked responses. Taken together, 5HT modulates glomerular network activity in several ways: 1) it increases ETC-mediated feed-forward excitation onto MCs, SACs, and PGCs; 2) it increases inhibition of glomerular interneurons; 3) it directly triggers action potential-independent GABA release from SACs; and 4) these network actions increase spontaneous MC firing without enhancing responses to suprathreshold sensory input. This may enhance MC sensitivity while maintaining dynamic range.

  20. Agonist-directed signaling of serotonin 5-HT2C receptors: differences between serotonin and lysergic acid diethylamide (LSD).

    PubMed

    Backstrom, J R; Chang, M S; Chu, H; Niswender, C M; Sanders-Bush, E

    1999-08-01

    For more than 40 years the hallucinogen lysergic acid diethylamide (LSD) has been known to modify serotonin neurotransmission. With the advent of molecular and cellular techniques, we are beginning to understand the complexity of LSD's actions at the serotonin 5-HT2 family of receptors. Here, we discuss evidence that signaling of LSD at 5-HT2C receptors differs from the endogenous agonist serotonin. In addition, RNA editing of the 5-HT2C receptor dramatically alters the ability of LSD to stimulate phosphatidylinositol signaling. These findings provide a unique opportunity to understand the mechanism(s) of partial agonism.

  1. Optimization of 2-phenylcyclopropylmethylamines as selective serotonin 2C receptor agonists and their evaluation as potential antipsychotic agents.

    PubMed

    Cheng, Jianjun; Giguère, Patrick M; Onajole, Oluseye K; Lv, Wei; Gaisin, Arsen; Gunosewoyo, Hendra; Schmerberg, Claire M; Pogorelov, Vladimir M; Rodriguiz, Ramona M; Vistoli, Giulio; Wetsel, William C; Roth, Bryan L; Kozikowski, Alan P

    2015-02-26

    The discovery of a new series of compounds that are potent, selective 5-HT2C receptor agonists is described herein as we continue our efforts to optimize the 2-phenylcyclopropylmethylamine scaffold. Modifications focused on the alkoxyl substituent present on the aromatic ring led to the identification of improved ligands with better potency at the 5-HT2C receptor and excellent selectivity against the 5-HT2A and 5-HT2B receptors. ADMET studies coupled with a behavioral test using the amphetamine-induced hyperactivity model identified four compounds possessing drug-like profiles and having antipsychotic properties. Compound (+)-16b, which displayed an EC50 of 4.2 nM at 5-HT2C, no activity at 5-HT2B, and an 89-fold selectivity against 5-HT2A, is one of the most potent and selective 5-HT2C agonists reported to date. The likely binding mode of this series of compounds to the 5-HT2C receptor was also investigated in a modeling study, using optimized models incorporating the structures of β2-adrenergic receptor and 5-HT2B receptor.

  2. Serotonin receptor modulators in the treatment of irritable bowel syndrome

    PubMed Central

    Fayyaz, Mohammad; Lackner, Jeffrey M

    2008-01-01

    The aim of this article is to review the pathophysiology and clinical role of serotonin receptor modulators used in the treatment of irritable bowel syndrome. Serotonin is an important monoamine neurotransmitter that plays a key role in the initiation of peristaltic and secretory refl exes, and in modulation of visceral sensations. Several serotonin receptor subtypes have been characterized, of which 5HT3, 5HT4, and 5HT1b are the most important for GI function. 5HT4 agonists (eg, tegaserod) potentiate peristalsis initiated by 5HT1 receptor stimulation. 5HT4 agonists are therefore useful in constipation predominant form of IBS and in chronic constipation. 5HT3 antagonists (Alosetron and Cilansetron) prevent the activation of 5HT3 receptors on extrinsic afferent neurons and can decrease the visceral pain associated with IBS. These agents also retard small intestinal and colonic transit, and are therefore useful in diarrhea-predominant IBS. Tegaserod has been demonstrated in several randomized, placebo controlled trials to relieve global IBS symptoms as well as individual symptoms of abdominal discomfort, number of bowel movements and stool consistency. Several randomized, controlled trials have shown that alosetron relieves pain, improves bowel function, and provides global symptom improvement in women with diarrhea-predominant irritable bowel syndrome. However, ischemic colitis and severe complications of constipation have been major concerns leading to voluntary withdrawal of Alosetron from the market followed by remarketing with a comprehensive risk management program. PMID:18728719

  3. Bivalent Ligands for the Serotonin 5-HT3 Receptor

    PubMed Central

    2011-01-01

    The serotonin 5-HT3 receptor is a ligand-gated ion channel, which by virtue of its pentameric architecture, can be considered to be an intriguing example of intrinsically multivalent biological receptors. This paper describes a general design approach to the study of multivalency in this multimeric ion channel. Bivalent ligands for 5-HT3 receptor have been designed by linking an arylpiperazine moiety to probes showing different functional features. Both homobivalent and heterobivalent ligands have shown 5-HT3 receptor affinity in the nanomolar range, providing evidence for the viability of our design approach. Moreover, the high affinity shown by homobivalent ligands suggests that bivalency is a promising approach in 5-HT3 receptor modulation and provides the rational basis for applying the concepts of multivalency to the study of 5-HT3 receptor function. PMID:24900351

  4. The serotonin 5-HT3 receptor: a novel neurodevelopmental target.

    PubMed

    Engel, Mareen; Smidt, Marten P; van Hooft, Johannes A

    2013-01-01

    Serotonin (5-hydroxytryptamine, 5-HT), next to being an important neurotransmitter, recently gained attention as a key-regulator of pre- and postnatal development in the mammalian central nervous system (CNS). Several receptors for 5-HT are expressed in the developing brain including a ligand-gated ion channel, the 5-HT3 receptor. Over the past years, evidence has been accumulating that 5-HT3 receptors are involved in the regulation of neurodevelopment by serotonin. Here, we review the spatial and temporal expression patterns of 5-HT3 receptors in the pre- and early postnatal rodent brain and its functional implications. First, 5-HT3 receptors are expressed on GABAergic interneurons in neocortex and limbic structures derived from the caudal ganglionic eminence. Mature inhibitory GABAergic interneurons fine-tune neuronal excitability and thus are crucial for the physiological function of the brain. Second, 5-HT3 receptors are expressed on specific glutamatergic neurons, Cajal-Retzius cells in the cortex and granule cells in the cerebellum, where they regulate morphology, positioning, and connectivity of the local microcircuitry. Taken together, the 5-HT3 receptor emerges as a potential key-regulator of network formation and function in the CNS, which could have a major impact on our understanding of neurodevelopmental disorders in which 5-HT plays a role.

  5. Crystal Structure of an LSD-Bound Human Serotonin Receptor

    SciTech Connect

    Wacker, Daniel; Wang, Sheng; McCorvy, John D.; Betz, Robin M.; Venkatakrishnan, A. J.; Levit, Anat; Lansu, Katherine; Schools, Zachary L.; Che, Tao; Nichols, David E.; Shoichet, Brian K.; Dror, Ron O.; Roth, Bryan L.

    2017-01-01

    The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT2B. The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD’s key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT2BR and 5-HT2AR—a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD’s slow binding kinetics may be due to a “lid” formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD’s binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD’s actions at human serotonin receptors.

  6. Effect of local anesthetics on serotonin1A receptor function.

    PubMed

    Rao, Bhagyashree D; Shrivastava, Sandeep; Chattopadhyay, Amitabha

    2016-12-01

    The fundamental mechanism behind the action of local anesthetics is still not clearly understood. Phenylethanol (PEtOH) is a constituent of essential oils with a pleasant odor and can act as a local anesthetic. In this work, we have explored the effect of PEtOH on the function of the hippocampal serotonin1A receptor, a representative neurotransmitter receptor belonging to the G protein-coupled receptor (GPCR) family. Our results show that PEtOH induces reduction in ligand binding to the serotonin1A receptor due to lowering of binding affinity, along with a concomitant decrease in the degree of G-protein coupling. Analysis of membrane order using the environment-sensitive fluorescent probe DPH revealed decrease in membrane order with increasing PEtOH concentration, as evident from reduction in rotational correlation time of the probe. Analysis of results obtained shows that the action of local anesthetics could be attributed to the combined effects of specific interaction of the receptor with anesthetics and alteration of membrane properties (such as membrane order). These results assume relevance in the perspective of anesthetic action and could be helpful to achieve a better understanding of the possible role of anesthetics in the function of membrane receptors.

  7. Sex differences in the serotonin 1A receptor and serotonin transporter binding in the human brain measured by PET.

    PubMed

    Jovanovic, Hristina; Lundberg, Johan; Karlsson, Per; Cerin, Asta; Saijo, Tomoyuki; Varrone, Andrea; Halldin, Christer; Nordström, Anna-Lena

    2008-02-01

    Women and men differ in serotonin associated psychiatric conditions, such as depression, anxiety and suicide. Despite this, very few studies focus on sex differences in the serotonin system. Of the biomarkers in the serotonin system, serotonin(1A) (5-HT(1A)) receptor is implicated in depression, and anxiety and serotonin transporter (5-HTT) is a target for selective serotonin reuptake inhibitors, psychotropic drugs used in the treatment of these disorders. The objective of the present study was to study sex related differences in the 5-HT(1A) receptor and 5-HTT binding potentials (BP(ND)s) in healthy humans, in vivo. Positron emission tomography and selective radioligands [(11)C]WAY100635 and [(11)C]MADAM were used to evaluate binding potentials for 5-HT(1A) receptors (14 women and 14 men) and 5-HTT (8 women and 10 men). The binding potentials were estimated both on the level of anatomical regions and voxel wise, derived by the simplified reference tissue model and wavelet/Logan plot parametric image techniques respectively. Compared to men, women had significantly higher 5-HT(1A) receptor and lower 5-HTT binding potentials in a wide array of cortical and subcortical brain regions. In women, there was a positive correlation between 5-HT(1A) receptor and 5-HTT binding potentials for the region of hippocampus. Sex differences in 5-HT(1A) receptor and 5-HTT BP(ND) may reflect biological distinctions in the serotonin system contributing to sex differences in the prevalence of psychiatric disorders such as depression and anxiety. The result of the present study may help in understanding sex differences in drug treatment responses to drugs affecting the serotonin system.

  8. Mapping the binding site pocket of the serotonin 5-Hydroxytryptamine2A receptor. Ser3.36(159) provides a second interaction site for the protonated amine of serotonin but not of lysergic acid diethylamide or bufotenin.

    PubMed

    Almaula, N; Ebersole, B J; Zhang, D; Weinstein, H; Sealfon, S C

    1996-06-21

    Like other amine neurotransmitters that activate G-protein-coupled receptors, 5-hydroxytryptamine (5-HT) binds to the 5-HT2A receptor through the interaction of its cationic primary amino group with the conserved Asp3.32(155) in transmembrane helix 3. Computational experiments with a 5-HT2A receptor model suggest that the same functional group of 5-hydroxytryptamine also forms a hydrogen bond with the side chain of Ser3.36(159), which is adjacent in space to Asp3.32(155). However, other 5-HT2A receptor ligands like lysergic acid diethylamide (LSD), in which the amine nitrogen is embedded in a heterocycle, or N,N-dimethyl 5-HT, in which the side chain is a tertiary amine, are found in the computational simulations to interact with the aspartate but not with the serine, due mainly to steric hindrance. The predicted difference in the interaction of various ligands in the same receptor binding pocket was tested with site-directed mutagenesis of Ser3.36(159) --> Ala and Ser3.36(159) --> Cys. The alanine substitution led to an 18-fold reduction in 5-HT affinity and the cysteine substitution to an intermediate 5-fold decrease. LSD affinity, in contrast, was unaffected by either mutation. N,N-Dimethyl 5-HT affinity was unaffected by the cysteine mutation and had a comparatively small 3-fold decrease in affinity for the alanine mutant. These findings identify a mode of ligand-receptor complexation that involves two receptor side chains interacting with the same functional group of specific serotonergic ligands. This interaction serves to orient the ligands in the binding pocket and may influence the degree of receptor activation.

  9. The Serotonin-6 Receptor as a Novel Therapeutic Target

    PubMed Central

    Yun, Hyung-Mun

    2011-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter that is found in both the central and peripheral nervous systems. 5-HT mediates its diverse physiological responses through 7 different 5-HT receptor families: 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6, and 5-HT7 receptors. Among them, the 5-HT6 receptor (5-HT6R) is the most recently cloned serotonin receptor and plays important roles in the central nervous system (CNS) and in the etiology of neurological diseases. Compared to other 5-HT receptors, the 5-HT6R has been considered as an attractive CNS therapeutic target because it is expressed exclusively in the CNS and has no known isoforms. This review evaluates in detail the role of the 5-HT6R in the physiology and pathophysiology of the CNS and the potential usefulness of 5-HT6R ligands in the development of therapeutic strategies for the treatment of CNS disorders. Preclinical studies provide support for the use of 5-HT6R ligands as promising medications to treat the cognitive dysfunction associated with Alzheimer's disease, obesity, depression, and anxiety. PMID:22355260

  10. 5-HT3 receptors antagonists reduce serotonin-induced scratching in mice.

    PubMed

    Ostadhadi, Sattar; Kordjazy, Nastaran; Haj-Mirzaian, Arya; Mansouri, Parvin; Dehpour, Ahmad Reza

    2015-06-01

    Serotonin (5-hydroxytryptamine, 5-HT) acts as a pruritogen in humans and animals, but the mechanisms of action through that serotonin induces itch response have not been extensively discovered. In our study, we attempted to investigate the role of 5-HT3 receptors in scratching behavior due to intradermal serotonin injection. Intradermal injection of serotonin (14.1-235 nmol/site) into the nape of the neck of mice was performed to elicit itch. Scratching behavior was evaluated by measuring the number of bouts during 60 min after injection. We evaluated the effect of intraperitoneal pretreatment with ondansetron and tropisetron (0.1, 0.3, and 1 mg/kg) on itch induced by serotonin. Also, intradermal ondansetron and tropisetron at doses 50, 100, and 200 nmol/site were concurrently administrated with serotonin. Serotonin produced a significant enhancement in scratching at dose 141 nmol/site. Concurrent administration of ondansetron (50, 100, and 200 nmol/site) and tropisetron (100 and 200 nmol/site) with serotonin reduced scratching activity compared to the animals that only received serotonin. Also, pretreatment with intraperitoneal ondansetron and tropisetron (0.3 and 1 mg/kg) 30 min before serotonin attenuated the itch response. We showed that the scratching induced by intradermal serotonin is mediated by 5-HT3 receptors subtype. It can be concluded that 5-HT3 may play a role in mediating serotonin-associated itch responses, and we introduce 5-HT3 receptors as possible targets for antipruritic agents.

  11. The alpha2 adrenergic receptor antagonist idazoxan, but not the serotonin-2A receptor antagonist M100907, partially attenuated reward deficits associated with nicotine, but not amphetamine, withdrawal in rats.

    PubMed

    Semenova, Svetlana; Markou, Athina

    2010-10-01

    Based on phenomenological similarities between anhedonia (reward deficits) associated with drug withdrawal and the negative symptoms of schizophrenia, we showed previously that the atypical antipsychotic clozapine attenuated reward deficits associated with psychostimulant withdrawal. Antagonism of alpha(2) adrenergic and 5-HT(2A) receptors may contribute to these effects of clozapine. We investigated here whether blockade of alpha(2) or 5-HT(2A) receptors by idazoxan and M100907, respectively, would reverse anhedonic aspects of psychostimulant withdrawal. Idazoxan treatment facilitated recovery from spontaneous nicotine, but not amphetamine, withdrawal by attenuating reward deficits and increase the number of somatic signs. Thus, alpha(2) adrenoceptor blockade may have beneficial effects against nicotine withdrawal and may be involved in the effects of clozapine previously observed. M100907 worsened the anhedonia associated with nicotine and amphetamine withdrawal, suggesting that monotherapy with M100907 may exacerbate the expression of the negative symptoms of schizophrenia or nicotine withdrawal symptoms in people, including schizophrenia patients, attempting to quit smoking.

  12. Effects of direct- and indirect-acting serotonin receptor agonists on the antinociceptive and discriminative stimulus effects of morphine in rhesus monkeys.

    PubMed

    Li, Jun-Xu; Koek, Wouter; Rice, Kenner C; France, Charles P

    2011-04-01

    Serotonergic (5-HT) systems modulate pain, and drugs acting on 5-HT systems are used with opioids to treat pain. This study examined the effects of 5-HT receptor agonists on the antinociceptive and discriminative stimulus effects of morphine in monkeys. Morphine increased tail-withdrawal latency in a dose-related manner; 5-HT receptor agonists alone increased tail-withdrawal latency at 50 °C but not 55 °C water. The antinociceptive effects of morphine occurred with smaller doses when monkeys received an indirect-acting (fenfluramine) or direct acting (8-OH-DPAT, F13714, buspirone, quipazine, DOM, and 2C-T-7) agonist. The role of 5-HT receptor subtypes in these interactions was confirmed with selective 5-HT(1A) (WAY100635) and 5-HT(2A) (MDL100907) receptor antagonists. None of the 5-HT drugs had morphine-like discriminative stimulus effects; however, fenfluramine and 5-HT(2A) receptor agonists attenuated the discriminative stimulus effects of morphine and this attenuation was prevented by MDL100907. The 5-HT(1A) receptor agonists did not alter the discriminative stimulus effects of morphine. Thus, 5-HT receptor agonists increase the potency of morphine in an assay of antinociception, even under conditions where 5-HT agonists are themselves without effect (ie, 55 °C water), without increasing (and in some cases decreasing) the potency of morphine in a drug discrimination assay. Whereas 5-HT(2A) receptor agonists increase the potency of morphine for antinociception at doses that have no effect on the rate of operant responding, 5-HT(1A) receptor agonists increase the potency of morphine only at doses that eliminate operant responding. These data suggest that drugs acting selectively on 5-HT receptor subtypes could help to improve the use of opioids for treating pain.

  13. Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis.

    PubMed

    Berglund, Eric D; Liu, Chen; Sohn, Jong-Woo; Liu, Tiemin; Kim, Mi Hwa; Lee, Charlotte E; Vianna, Claudia R; Williams, Kevin W; Xu, Yong; Elmquist, Joel K

    2013-12-01

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor agonists on energy and glucose homeostasis are unknown. Here, we show that mice lacking serotonin 2C receptors (Htr2c) specifically in pro-opiomelanocortin (POMC) neurons had normal body weight but developed glucoregulatory defects including hyperinsulinemia, hyperglucagonemia, hyperglycemia, and insulin resistance. Moreover, these mice did not show anorectic responses to serotonergic agents that suppress appetite and developed hyperphagia and obesity when they were fed a high-fat/high-sugar diet. A requirement of serotonin 2C receptors in POMC neurons for the maintenance of normal energy and glucose homeostasis was further demonstrated when Htr2c loss was induced in POMC neurons in adult mice using a tamoxifen-inducible POMC-cre system. These data demonstrate that serotonin 2C receptor-expressing POMC neurons are required to control energy and glucose homeostasis and implicate POMC neurons as the target for the effect of serotonin 2C receptor agonists on weight-loss induction and improved glycemic control.

  14. 5-Hydroxytryptamine-2A receptor gene (HTR 2 A) candidate polymorphism (T 102 C): Role for human platelet function under pharmacological challenge ex vivo.

    PubMed

    Ozdener, F; Gülbas, Z; Erol, K; Ozdemir, V

    2005-01-01

    Although the environmental and life-style factors influencing individual predisposition to acute myocardial infarction (AMI) have been well documented, little is known on the identity of genetic loci that may contribute to risk for AMI. Recently, genetic studies in patients with nonfatal AMI have suggested an association with the T 102 C polymorphism in the serotonin 5-HT(2A) receptor gene (HTR 2 A). Considering the significant role of the 5-HT(2A) receptor in serotonin-induced platelet responses and the contribution of platelet (patho)physiology to thromboembolic events, we postulated that the increased susceptibility to AMI in patients with the T 102 homozygosity may be attributable, in part, to altered serotonin-mediated platelet function. In a group of healthy volunteers recruited from the Eskisehir region in central Turkey (N=37), we investigated the functional consequences of HTR 2 A T 102 C polymorphism in relation to platelet pharmacodynamics ex vivo. The platelet shape change and aggregation response to serotonin were measured with use of the platelet aggregometry and expressed as aggregometer output (mm). Because the circulating catecholamine hormone epinephrine can augment platelet aggregation, pharmacodynamic response (aggregation and its inhibition by 5-HT(2A) receptor antagonist cyproheptadine) was measured in the presence of both serotonin and epinephrine, to mimic the clinical situation in patients. The mean platelet aggregation was higher by 38% in subjects with T 10 2 homozygosity (T/T genotype, N=13) when compared with the carriers of the 102 C-allele (T/C and the C/C genotypic groups, N=24) (39.5 mm+/-12.3 vs. 28.7 mm+/-16.8, respectively) (mean+/-SD) (p<0.05). On the other hand, neither the serotonin-induced platelet shape change nor the cyproheptadine inhibition of platelet aggregation was influenced by the HTR 2 A T 102 C genetic variation (p>0.05). These findings in healthy subjects may provide a mechanistic explanation for the previously

  15. Serotonin receptor 3A controls interneuron migration into the neocortex

    PubMed Central

    Murthy, Sahana; Niquille, Mathieu; Hurni, Nicolas; Limoni, Greta; Frazer, Sarah; Chameau, Pascal; van Hooft, Johannes A.; Vitalis, Tania; Dayer, Alexandre

    2014-01-01

    Neuronal excitability has been shown to control the migration and cortical integration of reelin-expressing cortical interneurons (INs) arising from the caudal ganglionic eminence (CGE), supporting the possibility that neurotransmitters could regulate this process. Here we show that the ionotropic serotonin receptor 3A (5-HT3AR) is specifically expressed in CGE-derived migrating interneurons and upregulated while they invade the developing cortex. Functional investigations using calcium imaging, electrophysiological recordings and migration assays indicate that CGE-derived INs increase their response to 5-HT3AR activation during the late phase of cortical plate invasion. Using genetic loss-of-function approaches and in vivo grafts, we further demonstrate that the 5-HT3AR is cell autonomously required for the migration and proper positioning of reelin-expressing CGE-derived INs in the neocortex. Our findings reveal a requirement for a serotonin receptor in controlling the migration and laminar positioning of a specific subtype of cortical IN. PMID:25409778

  16. Serotonin Is Involved in Autoimmune Arthritis through Th17 Immunity and Bone Resorption.

    PubMed

    Chabbi-Achengli, Yasmine; Coman, Tereza; Collet, Corinne; Callebert, Jacques; Corcelli, Michelangelo; Lin, Hilène; Rignault, Rachel; Dy, Michel; de Vernejoul, Marie-Christine; Côté, Francine

    2016-04-01

    Rheumatoid arthritis is a chronic disease that results in a disabling and painful condition as it progresses to destruction of the articular cartilage and ankylosis of the joints. Although the cause of the disease is still unknown, evidence argues that autoimmunity plays an important part. There are increasing but contradictory views regarding serotonin being associated with activation of immunoinflammatory pathways and the onset of autoimmune reactions. We studied serotonin's involvement during collagen-induced arthritis in wild-type and Tph1(-/-) mice, which have markedly reduced peripheral serotonin levels. In wild-type mice, induction of arthritis triggered a robust increase in serotonin content in the paws combined with less inflammation. In Tph1(-/-) mice with arthritis, a marked increase in the clinical and pathologic arthritis scores was noticed. Specifically, in Tph1(-/-) mice with arthritis, a significant increase in osteoclast differentiation and bone resorption was observed with an increase in IL-17 levels in the paws and in Th17 lymphocytes in the draining lymph nodes, whereas T-regulatory cells were dampened. Ex vivo serotonin and agonists of the 5-HT2A and 5-HT2B receptors restored IL-17 secretion from splenocytes and Th17 cell differentiation in Tph1(-/-) mice. These findings indicate that serotonin plays a fundamental role in arthritis through the regulation of the Th17/T-regulatory cell balance and osteoclastogenesis.

  17. Prenatal nicotine exposure enhances the trigeminocardiac reflex via serotonin receptor facilitation in brainstem pathways.

    PubMed

    Gorini, C; Jameson, H; Woerman, A L; Perry, D C; Mendelowitz, D

    2013-08-15

    In this study we used a rat model for prenatal nicotine exposure to test whether clinically relevant concentrations of brain nicotine and cotinine are passed from dams exposed to nicotine to her pups, whether this changes the trigeminocardiac reflex (TCR), and whether serotonergic function in the TCR brainstem circuitry is altered. Pregnant Sprague-Dawley dams were exposed to 6 mg·kg(-1)·day(-1) of nicotine via osmotic minipumps for the duration of pregnancy. Following birth dams and pups were killed, blood was collected, and brain nicotine and cotinine levels were measured. A separate group of prenatal nicotine-exposed pups was used for electrophysiological recordings. A horizontal brainstem slice was obtained by carefully preserving the trigeminal nerve with fluorescent identification of cardiac vagal neurons (CVNs) in the nucleus ambiguus. Stimulation of the trigeminal nerve evoked excitatory postsynaptic current in CVNs. Our data demonstrate that prenatal nicotine exposure significantly exaggerates both the TCR-evoked changes in heart rate in conscious unrestrained pups, and the excitatory neurotransmission to CVNs upon trigeminal afferent nerve stimulation within this brainstem reflex circuit. Application of the 5-HT1A receptor antagonist WAY 100635 (100 μM) and 5-HT2A/C receptor antagonist ketanserin (10 μM)significantly decreased neurotransmission, indicating an increased facilitation of 5-HT function in prenatal nicotine-exposed animals. Prenatal nicotine exposure enhances activation of 5-HT receptors and exaggerates the trigeminocardiac reflex.

  18. Prenatal nicotine exposure enhances the trigeminocardiac reflex via serotonin receptor facilitation in brainstem pathways

    PubMed Central

    Gorini, C.; Jameson, H.; Woerman, A. L.; Perry, D. C.

    2013-01-01

    In this study we used a rat model for prenatal nicotine exposure to test whether clinically relevant concentrations of brain nicotine and cotinine are passed from dams exposed to nicotine to her pups, whether this changes the trigeminocardiac reflex (TCR), and whether serotonergic function in the TCR brainstem circuitry is altered. Pregnant Sprague-Dawley dams were exposed to 6 mg·kg−1·day−1 of nicotine via osmotic minipumps for the duration of pregnancy. Following birth dams and pups were killed, blood was collected, and brain nicotine and cotinine levels were measured. A separate group of prenatal nicotine-exposed pups was used for electrophysiological recordings. A horizontal brainstem slice was obtained by carefully preserving the trigeminal nerve with fluorescent identification of cardiac vagal neurons (CVNs) in the nucleus ambiguus. Stimulation of the trigeminal nerve evoked excitatory postsynaptic current in CVNs. Our data demonstrate that prenatal nicotine exposure significantly exaggerates both the TCR-evoked changes in heart rate in conscious unrestrained pups, and the excitatory neurotransmission to CVNs upon trigeminal afferent nerve stimulation within this brainstem reflex circuit. Application of the 5-HT1A receptor antagonist WAY 100635 (100 μM) and 5-HT2A/C receptor antagonist ketanserin (10 μM)significantly decreased neurotransmission, indicating an increased facilitation of 5-HT function in prenatal nicotine-exposed animals. Prenatal nicotine exposure enhances activation of 5-HT receptors and exaggerates the trigeminocardiac reflex. PMID:23766497

  19. [Effect of domestication of the silver fox on the main enzymes of serotonin metabolism and serotonin receptors].

    PubMed

    Popova, N K; Kulikov, A V; Avgustinovich, D F; Voĭtenko, N N; Trut, L N

    1997-03-01

    In silver foxes significant alterations in the activities of basic enzymes of neurotransmitter serotonin metabolism as well as in the densities of receptors caused by selection for the absence of the aggressive defensive reaction to man were demonstrated. In the midbrain and hypothalamus of animals selected for the absence of aggressive behavior, the activity of tryptophan hydroxylase, the key enzyme of serotonin biosynthesis, was found to be remarkably higher than in animals selected for highly aggressive behavior. Domesticated animals were characterized by low activity of the main enzyme of serotonin catabolism, monoamine oxidase type A, increased Michaelis constant km, and an unchanged maximum reaction rate (Vmax). No changes in the specific binding of [3H]-ketanserin and [3H]-8-OH-DPAT in the frontal cortex of domesticated foxes were revealed; however, in the hypothalamus, the low values of Bmax for the [3H]-8-OH-DPAT specific binding were observed, indicating the decreased density of the 5-HT1A receptors. It is assumed that the transformation of a wild aggressive animal into a domesticated one taking place during directional selection is caused by hereditary alterations favored by artificial selection in the activity of the main enzymes of serotonin metabolism and serotonin receptors.

  20. The antidepressant-like action of metabotropic glutamate 7 receptor agonist N,N'-bis(diphenylmethyl)-1,2-ethanediamine (AMN082) is serotonin-dependent.

    PubMed

    Pałucha-Poniewiera, Agnieszka; Brański, Piotr; Lenda, Tomasz; Pilc, Andrzej

    2010-09-01

    Behavioral studies show that modulation of the glutamatergic system might be an efficient way to achieve antidepressant activity. Among the group III metabotropic glutamate (mGlu) receptors, the mGlu7 receptor subtype seems to be the most promising target for potential antidepressants. It has been shown that a selective, allosteric mGlu7 receptor agonist, N,N'-bis (diphenylmethyl)-1,2-ethanediamine (AMN082), induced antidepressant-like action in behavioral tests in mice, although the mechanisms responsible for this action remained unknown. Here, we decided to investigate the possible role of the serotonergic system in the antidepressant-like activity of AMN082 in both the forced swim test (FST) in rats and the tail suspension test (TST) in mice. We found that AMN082 (1-10 mg/kg i.p.) induced a dose-dependent reduction in the immobility of rats and an increase in their swimming behavior, whereas there were not any changes in climbing behavior in the FST in rats. In the TST in mice we found that AMN082 (3 mg/kg i.p.) did not induce an antidepressant-like effect after depletion of serotonin (5-HT) with para-chlorophenylalanine. Moreover, we revealed that citalopram, but not reboxetine, when combined with AMN082 (all compounds used at low subeffective doses), induced a significant antidepressant-like effect in the TST. We also discovered that the 5-HT1A receptor antagonist N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridynyl) cyclohexane-carboxamide (WAY100635) (0.1 mg/kg s.c.), but not the 5-HT2A/2C receptor antagonist ritanserin (0.5 mg/kg i.p.), blocked the antidepressant-like action of AMN082. Altogether, the results of our studies show that the antidepressant-like action of the mGlu7 receptor-positive modulator AMN082 depends on the activation of the serotonergic system.

  1. Serotonin2C receptors and drug addiction: focus on cocaine.

    PubMed

    Devroye, Céline; Filip, Malgorzata; Przegaliński, Edmund; McCreary, Andrew C; Spampinato, Umberto

    2013-10-01

    This review provides an overview of the role of central serotonin2C (5-HT2C) receptors in drug addiction, specifically focusing on their impact on the neurochemical and behavioral effects of cocaine, one of the most worldwide abused drug. First, we described the neurochemical and electrophysiological mechanisms underlying the interaction between 5-HT2C receptors and the mesocorticolimbic dopaminergic network, in keeping with the key role of this system in drug abuse and dependence. Thereafter, we focused on the role of 5-HT2C receptors in the effects of cocaine in various preclinical behavioral models used in drug addiction research, such as locomotor hyperactivity, locomotor sensitization, drug discrimination, and self-administration, to end with an overview of the neurochemical mechanisms underlying the interactions between 5-HT2C receptors, mesocorticolimbic dopamine system, and cocaine. On their whole, the presented data provide compelling preclinical evidence that 5-HT2C receptor agonists may have efficacy in the treatment of cocaine abuse and dependence, thereby underlying the need for additional clinical studies to ascertain whether preclinical data translate to the human.

  2. Sulfonyl-containing modulators of serotonin 5-HT6 receptors and their pharmacophore models

    NASA Astrophysics Data System (ADS)

    Ivachtchenko, A. V.

    2014-05-01

    Data published in recent years on the synthesis of serotonin 5-HT6 receptor modulators are summarized. Modulators with high affinity for 5-HT6 receptors exhibiting different degrees of selectivity — from highly selective to semiselective and multimodal — are described. Clinical trial results are reported for the most promising serotonin 5-HT6 receptor modulators attracting special attention of medicinal chemists. The bibliography includes 128 references.

  3. Increased Serotonin Transporter Expression Reduces Fear and Recruitment of Parvalbumin Interneurons of the Amygdala.

    PubMed

    Bocchio, Marco; Fucsina, Giulia; Oikonomidis, Lydia; McHugh, Stephen B; Bannerman, David M; Sharp, Trevor; Capogna, Marco

    2015-12-01

    Genetic association studies suggest that variations in the 5-hydroxytryptamine (5-HT; serotonin) transporter (5-HTT) gene are associated with susceptibility to psychiatric disorders such as anxiety or posttraumatic stress disorder. Individuals carrying high 5-HTT-expressing gene variants display low amygdala reactivity to fearful stimuli. Mice overexpressing the 5-HTT (5-HTTOE), an animal model of this human variation, show impaired fear, together with reduced fear-evoked theta oscillations in the basolateral amygdala (BLA). However, it is unclear how variation in 5-HTT gene expression impacts on the microcircuitry of the BLA to change behavior. We addressed this issue by investigating the activity of parvalbumin (PV)-expressing interneurons (PVINs), the biggest IN population in the basal amygdala (BA). We found that increased 5-HTT expression impairs the recruitment of PVINs (measured by their c-Fos immunoreactivity) during fear. Ex vivo patch-clamp recordings demonstrated that the depolarizing effect of 5-HT on PVINs was mediated by 5-HT2A receptor. In 5-HTTOE mice, 5-HT-evoked depolarization of PVINs and synaptic inhibition of principal cells, which provide the major output of the BA, were impaired. This deficit was because of reduced 5-HT2A function and not because of increased 5-HT uptake. Collectively, these findings provide novel cellular mechanisms that are likely to contribute to differences in emotional behaviors linked with genetic variations of the 5-HTT.

  4. [Serotonin and its receptors in the cardiovascular system].

    PubMed

    Nadeev, A D; Zharkikh, I L; Avdonin, P V; Goncharov, N V

    2014-01-01

    Serotonin in cardiovascular system plays an important role in blood coagulation, allergy, and inflammation, as well as in blood vessel tone regulation. In this review, the mechanisms of serotonin effects upon the cells of blood vessels are considered and the list of main agonists and antagonists is presented. The signaling pathways activated by serotonin and their interaction in normal and pathological states are described.

  5. Positive association between a DNA sequence variant in the serotonin 2A receptor gene and schizophrenia

    SciTech Connect

    Inayama, Y.; Yoneda, H.; Sakai, T.

    1996-02-16

    Sixty-two patients with schizophrenia and 96 normal controls were investigated for genetic association with restriction fragment length polymorphisms (RFLPs) in the serotonin receptor genes. A positive association between the serotonin 2A receptor gene (HTR2A) and schizophrenia was found, but not between schizophrenia and the serotonin 1A receptor gene. The positive association we report here would suggest that the DNA region with susceptibility to schizophrenia lies in the HTR2A on the long arm of chromosome 13. 15 refs., 2 tabs.

  6. Comodulation of dopamine and serotonin on prefrontal cortical rhythms: a theoretical study

    PubMed Central

    Wang, Da-Hui; Wong-Lin, KongFatt

    2013-01-01

    The prefrontal cortex (PFC) is implicated to play an important role in cognitive control. Abnormal PFC activities and rhythms have been observed in some neurological and neuropsychiatric disorders, and evidences suggest influences from the neuromodulators dopamine (DA) and serotonin (5-HT). Despite the high level of interest in these brain systems, the combined effects of DA and 5-HT modulation on PFC dynamics remain unknown. In this work, we build a mathematical model that incorporates available experimental findings to systematically study the comodulation of DA and 5-HT on the network behavior, focusing on beta and gamma band oscillations. Single neuronal model shows pyramidal cells with 5-HT1A and 2A receptors can be non-monotonically modulated by 5-HT. Two-population excitatory-inhibitory type network consisting of pyramidal cells with D1 receptors can provide rich repertoires of oscillatory behavior. In particular, 5-HT and DA can modulate the amplitude and frequency of the oscillations, which can emerge or cease, depending on receptor types. Certain receptor combinations are conducive for the robustness of the oscillatory regime, or the existence of multiple discrete oscillatory regimes. In a multi-population heterogeneous model that takes into account possible combination of receptors, we demonstrate that robust network oscillations require high DA concentration. We also show that selective D1 receptor antagonists (agonists) tend to suppress (enhance) network oscillations, increase the frequency from beta toward gamma band, while selective 5-HT1A antagonists (agonists) act in opposite ways. Selective D2 or 5-HT2A receptor antagonists (agonists) can lead to decrease (increase) in oscillation amplitude, but only 5-HT2A antagonists (agonists) can increase (decrease) the frequency. These results are comparable to some pharmacological effects. Our work illustrates the complex mechanisms of DA and 5-HT when operating simultaneously through multiple receptors

  7. Identification and characterization of a truncated variant of the 5-hydroxytryptamine(2A) receptor produced by alternative splicing.

    PubMed

    Guest, P C; Salim, K; Skynner, H A; George, S E; Bresnick, J N; McAllister, G

    2000-09-08

    We have identified an alternatively spliced 5-hydroxytryptamine 2A receptor (5-HT(2A)-R) transcript by PCR of human brain cDNA using degenerate oligonucleotide primers to transmembrane (TM) domains 3 and 7 of the 5-HT(2)-R subfamily. The variant contains a 118-bp insertion at the exon II/III boundary of the 5-HT(2A)-R, which produces a frame shift in the coding sequence and a premature stop codon. PCR analysis showed that the truncated receptor (5-HT(2A-tr)) and native 5-HT(2A)-R were co-expressed in most brain tissues, with the highest levels being found in hippocampus, corpus collosum, amygdala and caudate nucleus. Western blot analysis of HEK-293 cells transfected transiently with a 5-HT(2A-tr) construct showed that a 30-kDa protein was expressed on cell membranes. Co-transfection studies showed no effect of the 5-HT(2A-tr) variant on 3H-ketanserin binding to the native 5-HT(2A)-R or on functional coupling of the 5-HT(2A)-R to 5-HT-stimulated Ca(2+) mobilization. The functional significance of the 5-HT(2A-tr) variant and other truncated receptors remains to be established.

  8. Fluoxetine (Prozac) and Serotonin Act on Excitatory Synaptic Transmission to Suppress Single Layer 2/3 Pyramidal Neuron-Triggered Cell Assemblies in the Human Prefrontal Cortex

    PubMed Central

    Komlósi, Gergely; Molnár, Gábor; Rózsa, Márton; Oláh, Szabolcs; Barzó, Pál

    2012-01-01

    Selective serotonin reuptake inhibitors are the most widely prescribed drugs targeting the CNS with acute and chronic effects in cognitive, emotional and behavioral processes. This suggests that microcircuits of the human cerebral cortex are powerfully modulated by selective serotonin reuptake inhibitors, however, direct measurements of serotonergic regulation on human synaptic interactions are missing. Using multiple whole-cell patch-clamp recordings from neurons in acute cortical slices derived from nonpathological human samples of the prefrontal cortex, we show that neuronal assemblies triggered by single action potentials of individual neurons in the human cortex are suppressed by therapeutic doses of fluoxetine (Prozac). This effect is boosted and can be mimicked by physiological concentrations of serotonin through 5HT-2A and 5HT-1A receptors. Monosynaptic excitatory connections from pyramidal cells to interneurons were suppressed by application of serotonin leaving the monosynaptic output of GABAergic cells unaffected. Changes in failure rate, in paired-pulse ratio, and in the coefficient of variation of the amplitude of EPSPs suggest a presynaptic action of serotonin. In conclusion, activation of neuronal assemblies, which were suggested as building blocks of high order cognitive processes, are effectively downregulated by the acute action of selective serotonin reuptake inhibitors or serotonin at the site of pyramidal output in human microcircuits. PMID:23152619

  9. PET Tracers for Serotonin Receptors and Their Applications

    PubMed Central

    Kumar, J.S. Dileep; Mann, J. John

    2015-01-01

    Serotonin receptors (5-HTRs) are implicated in the pathophysiology of a variety of neuropsychiatric and neurodegenerative disorders and are also targets for drug therapy. In the CNS, most of these receptors are expressed in high abundance in specific brain regions reflecting their role in brain functions. Quantifying binding to 5-HTRs in vivo may permit assessment of physiologic and pathologic conditions, and monitoring disease progression, evaluating treatment response, and for investigating new treatment modalities. Positron emission tomography (PET) molecular imaging has the sensitivity to quantify binding of 5-HTRs in CNS disorders and to measure drug occupancy as part of a process of new drug development. Although research on PET imaging of 5-HTRs have been performed more than two decades, the successful radiotracers so far developed for human studies are limited to 5-HT1AR, 5-HT1BR, 5-HT2AR, 5-HT4R and 5-HT6R. Herein we review the development and application of radioligands for PET imaging of 5-HTRs in living brain. PMID:25360773

  10. Pharmacological profile of hypericum extract. Effect on serotonin uptake by postsynaptic receptors.

    PubMed

    Perovic, S; Müller, W E

    1995-11-01

    In the present study is is reported that the methanolic Hypericum extract LI 160 (Jarsin 300) exerts no protective effect against N-methyl-D-aspartate (NMDA-) or gp120- (from the HIV virus) induced cytotoxicity. Moreover, it is established that Hypericum extract causes no activation of arachidonic acid release from neurons activated by gp120; hence it displays no sensitization effect on the NMDA receptor channel. The main outcome of this study is the finding that Hypericum extract causes a 50% inhibition (IC50 value) of serotonin uptake by rat synaptosomes at a concentration of 6.2 microglml. Therefore it is concluded that the antidepressant activity of Hypericum extract is due to an inhibition of serotonin uptake by postsynaptic receptors. Future studies might focus on the effect of Hypericum extract on serotonin binding to neurons, serotonin storage in granules, the rate of synthesis of serotonin, and on the activity of monoamine oxidase.

  11. Novel 4-Substituted-N,N-dimethyltetrahydronaphthalen-2-amines: Synthesis, Affinity, and In Silico Docking Studies at Serotonin 5-HT2-type and Histamine H1 G Protein-Coupled Receptors

    PubMed Central

    Sakhuja, Rajeev; Kondabolu, Krishnakanth; Córdova-Sintjago, Tania; Travers, Sean; Vincek, Adam S.; Kim, Myong Sang; Abboud, Khalil A.; Fang, Lijuan; Sun, Zhuming; Canal, Clinton E.; Booth, Raymond G.

    2015-01-01

    Syntheses were undertaken of derivatives of (2S, 4R)-(−)-trans-4-phenyl-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (4-phenyl-2-dimethylaminotetralin, PAT), a stereospecific agonist at the serotonin 5-HT2C G protein-coupled receptor (GPCR), with inverse agonist activity at 5-HT2A and 5-HT2B GPCRs. Molecular changes were made at the PAT C(4)-position, while preserving N, N-dimethyl substitution at the 2-position as well as trans-stereochemistry, structural features previously shown to be optimal for 5-HT2 binding. Affinities of analogs were determined at recombinant human 5-HT2 GPCRs in comparison to the phylogenetically closely-related histamine H1 GPCR, and in silico ligand docking studies were conducted at receptor molecular models to help interpret pharmacological results and guide future ligand design. In most cases, C(4)-substituted PAT analogs exhibited the same stereoselectivity ([−]-trans > [+]-trans) as the parent PAT across 5-HT2 and H1 GPCRs, albeit, with variable receptor selectivity. 4-(4′-substituted)-PAT analogs, however, demonstrated reversed stereoselectivity ([2S, 4R]-[+]-trans > [2S, 4R]-[−]-trans), with absolute configuration confirmed by single X-ray crystallographic data for the 4-(4′-Cl)-PAT analog. Pharmacological affinity results and computational results herein support further PAT drug development studies and provide a basis for predicting and interpreting translational results, including, for (+)-trans-4-(4′-Cl)-PAT and (−)-trans-4-(3′-Br)-PAT that were previously shown to be more potent and efficacious than their corresponding enantiomers in rodent models of psychoses, psychostimulant-induced behaviors, and compulsive feeding (‘binge-eating’). PMID:25703249

  12. The role of 5-HT7 receptor antagonism in the amelioration of MK-801-induced learning and memory deficits by the novel atypical antipsychotic drug lurasidone.

    PubMed

    Horisawa, Tomoko; Nishikawa, Hiroyuki; Toma, Satoko; Ikeda, Atsushi; Horiguchi, Masakuni; Ono, Michiko; Ishiyama, Takeo; Taiji, Mutsuo

    2013-05-01

    Lurasidone is a novel atypical antipsychotic with high affinity for dopamine D2, serotonin 5-HT7 and 5-HT2A receptors. We previously reported that lurasidone and the selective 5-HT7 receptor antagonist, SB-656104-A improved learning and memory deficits induced by MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist, in the rat passive avoidance test. In this study, we first examined the role of the 5-HT7 receptor antagonistic activity of lurasidone in its pro-cognitive effect to ameliorate MK-801-induced deficits in the rat passive avoidance test. The 5-HT7 receptor agonist, AS19, (2S)-(+)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino) tetralin, (3 mg/kg, s.c.) completely blocked the attenuating effects of lurasidone (3 mg/kg, p.o.), highlighting the importance of 5-HT7 receptor antagonism in the pro-cognitive effect of lurasidone. AS19 (3 mg/kg, s.c.) also blocked the ameliorating effect of SB-656104-A (10 mg/kg, i.p.) in the same experimental paradigm. To further extend our observation, we next tested whether 5-HT7 receptor antagonism still led to the amelioration of MK-801-induced deficits when combined with D2 and 5-HT2A receptor antagonists, and found that SB-656104-A (10 mg/kg, i.p.) significantly ameliorated MK-801-induced deficits even in the presence of the D2 receptor antagonist raclopride (0.1 mg/kg, s.c.) and 5-HT2A receptor antagonist ketanserin (1 mg/kg, s.c.). Taken together, these results suggest that the 5-HT7 receptor antagonistic activity of lurasidone plays an important role in its effectiveness against MK-801-induced deficits, and may contribute to its pharmacological actions in patients with schizophrenia.

  13. Studies on rat intestinal epithelial cell receptors for serotonin and opiates.

    PubMed Central

    Gaginella, T S; Rimele, T J; Wietecha, M

    1983-01-01

    We have employed the receptor-ligand binding technique in an attempt to determine if specific binding sites (receptors) for serotonin and opiates are present on rat intestinal epithelial cell membranes. A wide variety of ligands for serotonin and opiate receptors bound to specific receptor sites in rat brain. However, the same ligands failed to bind in a specific (receptor-related) manner to isolated membranes of rat ileal and colonic cells. Additional washing of the tissue pellet (to remove soluble peptidases), pretreatment with p-chlorophenylalanine (to deplete endogenous serotonin), alteration of sodium concentration (to antagonize the effects of putative endogenous inhibitors of opiate ligand binding), changes in incubation time, temperature, tissue protein and tritiated ligand concentration failed to yield meaningful results with the enterocyte membranes. We conclude that, as assessed under the present conditions, serotonergic and opiate receptors are not present or are not accessible on rat intestinal epithelial cell membranes. PMID:6308215

  14. Role of melatonin, serotonin 2B, and serotonin 2C receptors in modulating the firing activity of rat dopamine neurons.

    PubMed

    Chenu, Franck; Shim, Stacey; El Mansari, Mostafa; Blier, Pierre

    2014-02-01

    Melatonin has been widely used for the management of insomnia, but is devoid of antidepressant effect in the clinic. In contrast, agomelatine which is a potent melatonin receptor agonist is an effective antidepressant. It is, however, a potent serotonin 2B (5-HT(2B)) and serotonin 2C (5-HT(2C)) receptor antagonist as well. The present study was aimed at investigating the in vivo effects of repeated administration of melatonin (40 mg/kg/day), the 5-HT(2C) receptor antagonist SB 242084 (0.5 mg/kg/day), the selective 5-HT(2B) receptor antagonist LY 266097 (0.6 mg/kg/day) and their combination on ventral tegmental area (VTA) dopamine (DA), locus coeruleus (LC) norepinephrine (NE), and dorsal raphe nucleus (DRN) serotonin (5-HT) firing activity. Administration of melatonin twice daily increased the number of spontaneously active DA neurons but left the firing of NE neurons unaltered. Long-term administration of melatonin and SB 242084, by themselves, had no effect on the firing rate and burst parameters of 5-HT and DA neurons. Their combination, however, enhanced only the number of spontaneously active DA neurons, while leaving the firing of 5-HT neurons unchanged. The addition of LY 266097, which by itself is devoid of effect, to the previous regimen increased for DA neurons the number of bursts per minute and the percentage of spikes occurring in bursts. In conclusion, the combination of melatonin receptor activation as well as 5-HT(2C) receptor blockade resulted in a disinhibition of DA neurons. When 5-HT(2B) receptors were also blocked, the firing and the bursting activity of DA neurons were both enhanced, thus reproducing the effect of agomelatine.

  15. Attenuated methamphetamine-induced locomotor sensitization in serotonin transporter knockout mice is restored by serotonin 1B receptor antagonist treatment.

    PubMed

    Igari, Moe; Shen, Hao-Wei; Hagino, Yoko; Fukushima, Setsu; Kasahara, Yoshiyuki; Lesch, Klaus-Peter; Murphy, Dennis L; Hall, Frank Scott; Uhl, George R; Ikeda, Kazutaka; Yaegashi, Nobuo; Sora, Ichiro

    2015-02-01

    Repeated administration of methamphetamine (METH) enhances acute locomotor responses to METH administered in the same context, a phenomenon termed as 'locomotor sensitization'. Although many of the acute effects of METH are mediated by its influences on the compartmentalization of dopamine, serotonin systems have also been suggested to influence the behavioral effects of METH in ways that are not fully understood. The present experiments examined serotonergic roles in METH-induced locomotor sensitization by assessing: (a) the effect of serotonin transporter (SERT; Slc6A4) knockout (KO) on METH-induced locomotor sensitization; (b) extracellular monoamine levels in METH-treated animals as determined by in-vivo microdialysis; and (c) effects of serotonin (5-HT) receptor antagonists on METH-induced behavioral sensitization, with focus on effects of the 5-HT1B receptor antagonist SB 216641 and a comparison with the 5-HT2 receptor antagonist ketanserin. Repeated METH administration failed to induce behavioral sensitization in homozygous SERT KO (SERT-/-) mice under conditions that produced substantial sensitization in wild-type or heterozygous SERT KO (SERT+/-) mice. The selective 5-HT1B antagonist receptor SB 216641 restored METH-induced locomotor sensitization in SERT-/- mice, whereas ketanserin was ineffective. METH-induced increases in extracellular 5-HT (5-HTex) levels were substantially reduced in SERT-/- mice, although SERT genotype had no effect on METH-induced increases in extracellular dopamine. These experiments demonstrate that 5-HT actions, including those at 5-HT1B receptors, contribute to METH-induced locomotor sensitization. Modulation of 5-HT1B receptors might aid therapeutic approaches to the sequelae of chronic METH use.

  16. Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens.

    PubMed

    Halberstadt, Adam L; Geyer, Mark A

    2011-09-01

    Serotonergic hallucinogens produce profound changes in perception, mood, and cognition. These drugs include phenylalkylamines such as mescaline and 2,5-dimethoxy-4-methylamphetamine (DOM), and indoleamines such as (+)-lysergic acid diethylamide (LSD) and psilocybin. Despite their differences in chemical structure, the two classes of hallucinogens produce remarkably similar subjective effects in humans, and induce cross-tolerance. The phenylalkylamine hallucinogens are selective 5-HT(2) receptor agonists, whereas the indoleamines are relatively non-selective for serotonin (5-HT) receptors. There is extensive evidence, from both animal and human studies, that the characteristic effects of hallucinogens are mediated by interactions with the 5-HT(2A) receptor. Nevertheless, there is also evidence that interactions with other receptor sites contribute to the psychopharmacological and behavioral effects of the indoleamine hallucinogens. This article reviews the evidence demonstrating that the effects of indoleamine hallucinogens in a variety of animal behavioral paradigms are mediated by both 5-HT(2) and non-5-HT(2) receptors.

  17. A Characterization of the Manduca sexta Serotonin Receptors in the Context of Olfactory Neuromodulation

    PubMed Central

    Dacks, Andrew M.; Reale, Vincenzina; Pi, Yeli; Zhang, Wujie; Dacks, Joel B.; Nighorn, Alan J.; Evans, Peter D.

    2013-01-01

    Neuromodulation, the alteration of individual neuron response properties, has dramatic consequences for neural network function and is a phenomenon observed across all brain regions and taxa. However, the mechanisms underlying neuromodulation are made complex by the diversity of neuromodulatory receptors expressed within a neural network. In this study we begin to examine the receptor basis for serotonergic neuromodulation in the antennal lobe of Manduca sexta. To this end we cloned all four known insect serotonin receptor types from Manduca (the Ms5HTRs). We used phylogenetic analyses to classify the Ms5HTRs and to establish their relationships to other insect serotonin receptors, other insect amine receptors and the vertebrate serotonin receptors. Pharmacological assays demonstrated that each Ms5HTR was selective for serotonin over other endogenous amines and that serotonin had a similar potency at all four Ms5HTRs. The pharmacological assays also identified several agonists and antagonists of the different Ms5HTRs. Finally, we found that the Ms5HT1A receptor was expressed in a subpopulation of GABAergic local interneurons suggesting that the Ms5HTRs are likely expressed heterogeneously within the antennal lobe based on functional neuronal subtype. PMID:23922709

  18. Exclusion of linkage between the serotonin2 receptor and schizophrenia in a large Swedish kindred.

    PubMed

    Hallmayer, J; Kennedy, J L; Wetterberg, L; Sjögren, B; Kidd, K K; Cavalli-Sforza, L L

    1992-03-01

    Family, twin, and adoption studies suggest that genetic factors play an important role in the etiology of schizophrenia. Detection of single gene(s) involved in a higher susceptibility to a hereditary disease is possible with linkage analysis. The effects of serotonin2-receptor antagonists on symptoms of schizophrenia suggest that a mutation in the gene coding for this receptor subtype might be involved in the pathophysiology of this disease. Recently a copy DNA encoding the serotonin 5-HT2 receptor has been isolated and with a human 5-HT2 receptor copy DNA probe the HTR2 locus has been mapped to chromosome 13. Using multipoint linkage analysis between schizophrenia and genetic markers spanning the region of the HTR2 locus, we were able to exclude linkage between this candidate gene and schizophrenia in a Swedish kindred. Given this result, we conclude that the serotonin 5-HT2 receptor gene itself is not a major susceptibility gene for schizophrenia in this family.

  19. [Serotonin receptors in the brain of animals selected for their domesticated type of behavior].

    PubMed

    Maslova, G B; Avgustinovich, D F

    1989-01-01

    Participation was studied of central serotonin receptors of the first and second types in behaviour change of animals selected by the character of defensive reaction to man. Serotonin receptors were determined by radioligand method by binding of the brain preparations 3H-serotonin and 3H-spiperone. An increase of C2 receptors number was found in the frontal brain cortex of the tame brown rats in comparison with the aggressive ones. Differences were not found in specific C1-receptor binding in the frontal brain cortex of tame and aggressive brown rats, silver foxes and American minks in various relatively early selection stages. It is supposed that disappearance of aggressive reaction to man at domestication is connected with an increase of C2 receptors number.

  20. Serotonin stimulates secretion of exosomes from microglia cells.

    PubMed

    Glebov, Konstantin; Löchner, Marie; Jabs, Ronald; Lau, Thorsten; Merkel, Olaf; Schloss, Patrick; Steinhäuser, Christian; Walter, Jochen

    2015-04-01

    Microglia are resident immune cells in the brain and exert important functions in the regulation of inflammatory processes during infection or cellular damage. Upon activation, microglia undergo complex morphological and functional transitions, including increased motility, phagocytosis and cytokine secretion. Recent findings indicate that exosomes, small vesicles that derive from fusion of multivesicular bodies with the plasma membrane, are involved in secretion of certain cytokines. The presence of specific receptors on the surface of microglia suggests communication with neurons by neurotransmitters. Here, we demonstrate expression of serotonin receptors, including 5-HT2a,b and 5-HT4 in microglial cells and their functional involvement in the modulation of exosome release by serotonin. Our data demonstrate the involvement of cAMP and Ca(2+) dependent signaling pathways in the regulation of exosome secretion. Co-culture of microglia with embryonic stem cell-derived serotonergic neurons further demonstrated functional signaling between neurons and microglia. Together, these data provide evidence for neurotransmitter-dependent signaling pathways in microglial cells that regulate exosome release.

  1. Exposure to serotonin adversely affects oligodendrocyte development and myelination in vitro.

    PubMed

    Fan, Lir-Wan; Bhatt, Abhay; Tien, Lu-Tai; Zheng, Baoying; Simpson, Kimberly L; Lin, Rick C S; Cai, Zhengwei; Kumar, Praveen; Pang, Yi

    2015-05-01

    Serotonin (5-hydroxytryptamine, 5-HT) has been implicated to play critical roles in early neural development. Recent reports have suggested that perinatal exposure to selective serotonin reuptake inhibitors (SSRIs) resulted in cortical network miswiring, abnormal social behavior, callosal myelin malformation, as well as oligodendrocyte (OL) pathology in rats. To gain further insight into the cellular and molecular mechanisms underlying SSRIs-induced OL and myelin abnormalities, we investigated the effect of 5-HT exposure on OL development, cell death, and myelination in cell culture models. First, we showed that 5-HT receptor 1A and 2A subtypes were expressed in OL lineages, using immunocytochemistry, Western blot, as well as intracellular Ca(2+) measurement. We then assessed the effect of serotonin exposure on the lineage development, expression of myelin proteins, cell death, and myelination, in purified OL and neuron-OL myelination cultures. For pure OL cultures, our results showed that 5-HT exposure led to disturbance of OL development, as indicated by aberrant process outgrowth and reduced myelin proteins expression. At higher doses, such exposure triggered a development-dependent cell death, as immature OLs exhibited increasing susceptibility to 5-HT treatment compared to OL progenitor cells (OPC). We showed further that 5-HT-induced immature OL death was mediated at least partially via 5-HT2A receptor, since cell death could be mimicked by 5-HT2A receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride, (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride, but atten-uated by pre-treatment with 5-HT2A receptor antagonist ritanserin. Utilizing a neuron-OL myelination co-culture model, our data showed that 5-HT exposure significantly reduced the number of myelinated internodes. In contrast to cell injury observed in pure OL cultures, 5-HT exposure did not lead to OL death or reduced OL density in neuron-OL co-cultures. However, abnormal

  2. Dopamine and Serotonin Modulate Human GABAρ1 Receptors Expressed in Xenopus laevis Oocytes

    PubMed Central

    2011-01-01

    GABAρ1 receptors are highly expressed in bipolar neurons of the retina and to a lesser extent in several areas of the central nervous system (CNS), and dopamine and serotonin are also involved in the modulation of retinal neural transmission. Whether these biogenic amines have a direct effect on ionotropic GABA receptors was not known. Here, we report that GABAρ1 receptors, expressed in X. laevis oocytes, were negatively modulated by dopamine and serotonin and less so by octopamine and tyramine. Interestingly, these molecules did not have effects on GABAA receptors. 5-Carboxamido-tryptamine and apomorphine did not exert evident effects on any of the receptors. Schild plot analyses of the inhibitory actions of dopamine and serotonin on currents elicited by GABA showed slopes of 2.7 ± 0.3 and 6.1 ± 1.8, respectively, indicating a noncompetitive mechanism of inhibition. The inhibition of GABAρ1 currents was independent of the membrane potential and was insensitive to picrotoxin, a GABA receptor channel blocker and to the GABAρ-specific antagonist (1,2,5,6-tetrahydropyridine-4-yl)methyl phosphinic acid (TPMPA). Dopamine and serotonin changed the sensitivity of GABAρ1 receptors to the inhibitory actions of Zn2+. In contrast, La3+ potentiated the amplitude of the GABA currents generated during negative modulation by dopamine (EC50 146 μM) and serotonin (EC50 196 μM). The functional role of the direct modulation of GABAρ receptors by dopamine and serotonin remains to be elucidated; however, it may represent an important modulatory pathway in the retina, where GABAρ receptors are highly expressed and where these biogenic amines are abundant. PMID:22860179

  3. Support for 5-HT2C receptor functional selectivity in vivo utilizing structurally diverse, selective 5-HT2C receptor ligands and the 2,5-dimethoxy-4-iodoamphetamine elicited head-twitch response model.

    PubMed

    Canal, Clinton E; Booth, Raymond G; Morgan, Drake

    2013-07-01

    There are seemingly conflicting data in the literature regarding the role of serotonin (5-HT) 5-HT2C receptors in the mouse head-twitch response (HTR) elicited by the hallucinogenic 5-HT2A/2B/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI). Namely, both 5-HT2C receptor agonists and antagonists, regarding 5-HT2C receptor-mediated Gq-phospholipase C (PLC) signaling, reportedly attenuate the HTR response. The present experiments tested the hypothesis that both classes of 5-HT2C receptor compounds could attenuate the DOI-elicited-HTR in a single strain of mice, C57Bl/6J. The expected results were considered in accordance with ligand functional selectivity. Commercially-available 5-HT2C agonists (CP 809101, Ro 60-0175, WAY 161503, mCPP, and 1-methylpsilocin), novel 4-phenyl-2-N,N-dimethyl-aminotetralin (PAT)-type 5-HT2C agonists (with 5-HT2A/2B antagonist activity), and antagonists selective for 5-HT2A (M100907), 5-HT2C (SB-242084), and 5-HT2B/2C (SB-206553) receptors attenuated the DOI-elicited-HTR. In contrast, there were differential effects on locomotion across classes of compounds. The 5-HT2C agonists and M100907 decreased locomotion, SB-242084 increased locomotion, SB-206553 resulted in dose-dependent biphasic effects on locomotion, and the PATs did not alter locomotion. In vitro molecular pharmacology studies showed that 5-HT2C agonists potent for attenuating the DOI-elicited-HTR also reduced the efficacy of DOI to activate mouse 5-HT2C receptor-mediated PLC signaling in HEK cells. Although there were differences in affinities of a few compounds at mouse compared to human 5-HT2A or 5-HT2C receptors, all compounds tested retained their selectivity for either receptor, regardless of receptor species. Results indicate that 5-HT2C receptor agonists and antagonists attenuate the DOI-elicited-HTR in C57Bl/6J mice, and suggest that structurally diverse 5-HT2C ligands result in different 5-HT2C receptor signaling outcomes compared to DOI.

  4. Behavioral and neurochemical pharmacology of six psychoactive substituted phenethylamines: Mouse locomotion, rat drug discrimination and in vitro receptor and transporter binding and function

    PubMed Central

    Eshleman, Amy J.; Forster, Michael J.; Wolfrum, Katherine M.; Johnson, Robert A.; Janowsky, Aaron; Gatch, Michael B.

    2014-01-01

    Rationale Psychoactive substituted phenethylamines 2,5-dimethoxy-4-chlorophenethylamine (2C-C); 2,5-dimethoxy-4-methylphenethylamine (2C-D); 2,5-dimethoxy-4-ethylphenethylamine (2C-E); 2,5-dimethoxy-4-iodophenethylamine (2C-I); 2,5-dimethoxy-4-ethylthiophenethylamine (2C-T-2) and 2,5-dimethoxy-4-chloroamphetamine (DOC) are used recreationally and may have deleterious side effects. Objectives This study compares behavioral effects and mechanisms of action of these substituted phenethylamines with those of hallucinogens and a stimulant. Methods The effects of these compounds on mouse locomotor activity and in rats trained to discriminate dimethyltryptamine, (−)DOM, (+)LSD, (±)MDMA and (S+)methamphetamine were assessed. Binding and functional activity of the phenethylamines at 5-HT1A, 5-HT2A, 5-HT2C receptors and monoamine transporters were assessed using cells heterologously expressing these proteins. Results The phenethylamines depressed mouse locomotor activity, although 2C-D and 2C-E stimulated activity at low doses. The phenethylamines except 2C-T-2 fully substituted for at least one hallucinogenic training compound but none fully substituted for (+)-methamphetamine. At 5-HT1A receptors, only 2C-T-2 and 2C-I were partial-to-full very low potency agonists. In 5-HT2A arachidonic acid release assays, the phenethylamines were partial to full agonists except 2C-I which was an antagonist. All compounds were full agonists at 5-HT2A and 5-HT2C receptor inositol phosphate assays. Only 2C-I had moderate affinity for, and very low potency at, the serotonin transporter. Conclusions The discriminative stimulus effects of 2C-C, 2C-D, 2C-E, 2C-I and DOC were similar to those of several hallucinogens but not methamphetamine. Additionally, the substituted phenethylamines were full agonists at 5-HT2A and 5-HT2C receptors, but for 2C-T-2, this was not sufficient to produce hallucinogenlike discriminative stimulus effects. Additionally, the 5-HT2A inositol phosphate pathway may

  5. Compositions and methods related to serotonin 5-HT1A receptors

    DOEpatents

    Mukherjee, Jogeshwar [Irvine, CA; Saigal, Neil [Fresno, CA; Saigal, legal representative, Harsh

    2012-09-25

    Contemplated substituted arylpiperazinyl compounds, and most preferably .sup.18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with .sup.18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  6. Compositions and methods related to serotonin 5-HT1A receptors

    DOEpatents

    Mukherjee, Jogeshwar; Saigal, Neil

    2010-06-08

    Contemplated substituted arylpiperazinyl compounds, and most preferably 18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with 18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  7. Compositions and methods related to serotonin 5-HT1A receptors

    DOEpatents

    Mukherjee, Jogeshwar; Saigal, Neil; Saigal, legal representative, Harsh

    2012-09-25

    Contemplated substituted arylpiperazinyl compounds, and most preferably 18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with 18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  8. Serotoninergic and dopaminergic modulation of cortico-striatal circuit in executive and attention deficits induced by NMDA receptor hypofunction in the 5-choice serial reaction time task.

    PubMed

    Carli, Mirjana; Invernizzi, Roberto W

    2014-01-01

    Executive functions are an emerging propriety of neuronal processing in circuits encompassing frontal cortex and other cortical and subcortical brain regions such as basal ganglia and thalamus. Glutamate serves as the major neurotrasmitter in these circuits where glutamate receptors of NMDA type play key role. Serotonin and dopamine afferents are in position to modulate intrinsic glutamate neurotransmission along these circuits and in turn to optimize circuit performance for specific aspects of executive control over behavior. In this review, we focus on the 5-choice serial reaction time task which is able to provide various measures of attention and executive control over performance in rodents and the ability of prefrontocortical and striatal serotonin 5-HT1A, 5-HT2A, and 5-HT2C as well as dopamine D1- and D2-like receptors to modulate different aspects of executive and attention disturbances induced by NMDA receptor hypofunction in the prefrontal cortex. These behavioral studies are integrated with findings from microdialysis studies. These studies illustrate the control of attention selectivity by serotonin 5-HT1A, 5-HT2A, 5-HT2C, and dopamine D1- but not D2-like receptors and a distinct contribution of these cortical and striatal serotonin and dopamine receptors to the control of different aspects of executive control over performance such as impulsivity and compulsivity. An association between NMDA antagonist-induced increase in glutamate release in the prefrontal cortex and attention is suggested. Collectively, this review highlights the functional interaction of serotonin and dopamine with NMDA dependent glutamate neurotransmission in the cortico-striatal circuitry for specific cognitive demands and may shed some light on how dysregulation of neuronal processing in these circuits may be implicated in specific neuropsychiatric disorders.

  9. Serotonin 2B Receptor Antagonism Prevents Heritable Pulmonary Arterial Hypertension

    PubMed Central

    Schroer, Alison K.; Chen, Peter; Ryzhova, Larisa M.; Gladson, Santhi; Shay, Sheila; Hutcheson, Joshua D.; Merryman, W. David

    2016-01-01

    Serotonergic anorexigens are the primary pharmacologic risk factor associated with pulmonary arterial hypertension (PAH), and the resulting PAH is clinically indistinguishable from the heritable form of disease, associated with BMPR2 mutations. Both BMPR2 mutation and agonists to the serotonin receptor HTR2B have been shown to cause activation of SRC tyrosine kinase; conversely, antagonists to HTR2B inhibit SRC trafficking and downstream function. To test the hypothesis that a HTR2B antagonist can prevent BMRP2 mutation induced PAH by restricting aberrant SRC trafficking and downstream activity, we exposed BMPR2 mutant mice, which spontaneously develop PAH, to a HTR2B antagonist, SB204741, to block the SRC activation caused by BMPR2 mutation. SB204741 prevented the development of PAH in BMPR2 mutant mice, reduced recruitment of inflammatory cells to their lungs, and reduced muscularization of their blood vessels. By atomic force microscopy, we determined that BMPR2 mutant mice normally had a doubling of vessel stiffness, which was substantially normalized by HTR2B inhibition. SB204741 reduced SRC phosphorylation and downstream activity in BMPR2 mutant mice. Gene expression arrays indicate that the primary changes were in cytoskeletal and muscle contractility genes. These results were confirmed by gel contraction assays showing that HTR2B inhibition nearly normalizes the 400% increase in gel contraction normally seen in BMPR2 mutant smooth muscle cells. Heritable PAH results from increased SRC activation, cellular contraction, and vascular resistance, but antagonism of HTR2B prevents SRC phosphorylation, downstream activity, and PAH in BMPR2 mutant mice. PMID:26863209

  10. Antidepressant-like effect of chromium chloride in the mouse forced swim test: involvement of glutamatergic and serotonergic receptors.

    PubMed

    Piotrowska, Anna; Młyniec, Katarzyna; Siwek, Agata; Dybała, Małgorzata; Opoka, Włodzimierz; Poleszak, Ewa; Nowak, Gabriel

    2008-01-01

    Chromium (Cr) (III), an essential microelement of living organisms, was reported to exhibit potential antidepressant properties in preclinical and clinical studies. The aim of the present study was to examine the effect of CrCl(3) ip administration in the forced swim test (FST) in mice and the involvement of glutamatergic and serotonergic receptors in the antidepressant-like activity of chromium. CrCl(3) in a dose of 12 mg/kg, but not in doses of 6 or 32 mg/kg, reduced the immobility time in the FST. The locomotor activity was reduced by CrCl(3) in a dose of 32 mg/kg. Moreover, the reduction of the immobility time induced by the active dose (12 mg/kg) of CrCl(3) was completely abolished by NBQX (10 mg/kg; an antagonist of the AMPA receptor) pretreatment and partially inhibited by ritanserin (4 mg/kg; an antagonist of 5-HT(2A/C) receptor), WAY 1006335 (0.1 mg/kg; an antagonist of 5-HT(1A) receptor) and N-methyl-D-aspartate (75 mg/kg; agonist of NMDA receptor) administration. The present study demonstrates the antidepressant-like activity of chromium in the mouse FST and indicates the major role of the AMPA receptor and participation of NMDA glutamatergic and 5-HT(1) and 5-HT(2A/C) serotonin receptors in this activity.

  11. Structure and variation of three canine genes involved in serotonin binding and transport: the serotonin receptor 1A gene (htr1A), serotonin receptor 2A gene (htr2A), and serotonin transporter gene (slc6A4).

    PubMed

    van den Berg, L; Kwant, L; Hestand, M S; van Oost, B A; Leegwater, P A J

    2005-01-01

    Aggressive behavior is the most frequently encountered behavioral problem in dogs. Abnormalities in brain serotonin metabolism have been described in aggressive dogs. We studied canine serotonergic genes to investigate genetic factors underlying canine aggression. Here, we describe the characterization of three genes of the canine serotonergic system: the serotonin receptor 1A and 2A gene (htr1A and htr2A) and the serotonin transporter gene (slc6A4). We isolated canine bacterial artificial chromosome clones containing these genes and designed oligonucleotides for genomic sequencing of coding regions and intron-exon boundaries. Golden retrievers were analyzed for DNA sequence variations. We found two nonsynonymous single nucleotide polymorphisms (SNPs) in the coding sequence of htr1A; one SNP close to a splice site in htr2A; and two SNPs in slc6A4, one in the coding sequence and one close to a splice site. In addition, we identified a polymorphic microsatellite marker for each gene. Htr1A is a strong candidate for involvement in the domestication of the dog. We genotyped the htr1A SNPs in 41 dogs of seven breeds with diverse behavioral characteristics. At least three SNP haplotypes were found. Our results do not support involvement of the gene in domestication.

  12. Larvae of small white butterfly, Pieris rapae, express a novel serotonin receptor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter in vertebrates and invertebrates. It acts in regulation and modulation of many physiological and behavioral processes through G protein-coupled receptors. Insects express five 5-HT receptor subtypes that share high simila...

  13. Neuroticism and serotonin 5-HT1A receptors in healthy subjects.

    PubMed

    Hirvonen, Jussi; Tuominen, Lauri; Någren, Kjell; Hietala, Jarmo

    2015-10-30

    Neuroticism is a personality trait associated with vulnerability for mood and anxiety disorders. Serotonergic mechanisms likely contribute to neuroticism. Serotonin 5-HT1A receptors are altered in mood and anxiety disorders, but whether 5-HT1A receptors are associated with neuroticism in healthy subjects is unclear. We measured brain serotonin 5-HT1A receptor in 34 healthy subjects in vivo using positron emission tomography (PET) and [carbonyl-(11)C]WAY-100635. Binding potential (BPP) was determined using the golden standard of kinetic compartmental modeling using arterial blood samples and radiometabolite determination. Personality traits were assessed using the Karolinska Scales of Personality. We found a strong negative association between serotonin 5-HT1A receptor BPP and neuroticism. That is, individuals with high neuroticism tended to have lower 5-HT1A receptor binding than individuals with low neuroticism. This finding was confirmed with an independent voxel-based whole-brain analysis. Other personality traits did not correlate with 5-HT1A receptor BPP. Previous observations have reported lower serotonin 5-HT1A receptor density in major depression. This neurobiological finding may be a trait-like phenomenon and partly explained by higher neuroticism in patients with affective disorders. The link between personality traits and 5-HT1A receptors should be studied in patients with major depression.

  14. Serotonin enhances urinary bladder nociceptive processing via a 5-HT3 receptor mechanism.

    PubMed

    Hall, Jason D; DeWitte, Cary; Ness, Timothy J; Robbins, Meredith T

    2015-09-14

    Serotonin from the descending pain modulatory pathway is critical to nociceptive processing. Its effects on pain modulation may either be inhibitory or facilitatory, depending on the type of pain and which receptors are involved. Little is known about the role of serotonergic systems in bladder nociceptive processing. These studies examined the effect of systemic administration of the serotonin precursor, 5-hydroxytryptophan (5-HTP), on normal bladder and somatic sensation in rats. ELISA was used to quantify peripheral and central changes in serotonin and its major metabolite following 5-HTP administration, and the potential role of the 5-HT3 receptor on changes in bladder sensation elicited by 5-HTP was investigated. 5-HTP produced bladder hypersensitivity and somatic analgesia. The pro-nociceptive effect of 5-HTP was attenuated by intrathecal, but not systemic, ondansetron. Peripheral increases in serotonin, its metabolism and rate of turnover were detectable within 30min of 5-HTP administration. Significant enhancement of serotonin metabolism was observed centrally. These findings suggest that 5-HTP increases serotonin, which may then affect descending facilitatory systems to produce bladder hypersensitivity via activation of spinal 5-HT3 receptors.

  15. Effects of various serotonin agonists, antagonists, and uptake inhibitors on the discriminative stimulus effects of methamphetamine in rats.

    PubMed

    Munzar, P; Laufert, M D; Kutkat, S W; Nováková, J; Goldberg, S R

    1999-10-01

    Neurochemical studies indicate that methamphetamine increases central serotonin (5-HT) levels more markedly than other psychomotor stimulants such as amphetamine or cocaine. In the present study, we investigated 5-HT involvement in the discriminative stimulus effects of methamphetamine. In Sprague-Dawley rats trained to discriminate 1.0 mg/kg methamphetamine i.p. from saline under a fixed-ratio schedule of food presentation, the effects of selected 5-HT agonists, antagonists, and uptake inhibitors were tested. Fluoxetine (1.8-18.0 mg/kg) and clomipramine (3.0-18.0 mg/kg), selective serotonin uptake inhibitors, did not produce any methamphetamine-like discriminative stimulus effects when administered alone, but fluoxetine (5.6 mg/kg), unlike clomipramine (5.6 mg/kg), significantly shifted the methamphetamine dose-response curve to the left. Both 8-hydroxy-2-dipropylaminotetralin (0.03-0.56 mg/kg), a full agonist, and buspirone (1.0-10.0 mg/kg), a partial agonist at 5-HT(1A) receptors, partially generalized to the training dose of methamphetamine but only at high doses that decreased response rate. This generalization was antagonized by the coadministration of the 5-HT(1A) antagonist WAY-100635 (1.0 mg/kg). WAY-100635 (1.0 mg/kg) also partially reversed the leftward shift of the methamphetamine dose-response curve produced by fluoxetine. (+/-)-1-(2, 5-Dimethoxy-4-iodophenyl)-2-aminopropane (0.3 mg/kg), a 5-HT(2A/2C) agonist, shifted the methamphetamine dose-response curve to the left, and this leftward shift was antagonized by the coadministration of ketanserin (3.0 mg/kg), a 5-HT(2A/2C) antagonist. Ketanserin (3.0 mg/kg) also produced a shift to the right in the methamphetamine dose-response curve and completely reversed the leftward shift in the methamphetamine dose-response curve produced by fluoxetine. In contrast, tropisetron (1.0 mg/kg), a 5-HT(3) antagonist, produced a shift to the left of the methamphetamine dose-response curve, and this effect of tropisetron

  16. A Xanthine-Derivative K+-Channel Opener Protects against Serotonin-Induced Cardiomyocyte Hypertrophy via the Modulation of Protein Kinases

    PubMed Central

    Kuo, Hsuan-Fu; Lai, Yan-Jie; Wu, Jung-Chou; Lee, Kun-Tai; Chu, Chih-Sheng; Chen, Ing-Jun; Wu, Jiunn-Ren; Wu, Bin-Nan

    2014-01-01

    This study investigated whether KMUP-1, a xanthine-derivative K+ channel opener, could prevent serotonin-induced hypertrophy in H9c2 cardiomyocytes via L-type Ca2+ channels (LTCCs). Rat heart-derived H9c2 cells were incubated with serotonin (10 μM) for 4 days. The cell size increased by 155.5%, and this was reversed by KMUP-1 (≥1 μM), and attenuated by the LTCC blocker verapamil (1 μM) and the 5-HT2A antagonist ketanserin (0.1 μM), but unaffected by the 5-HT2B antagonist SB206553. A perforated whole-cell patch-clamp technique was used to investigate Ca2+ currents through LTCCs in serotonin-induced H9c2 hypertrophy, in which cell capacitance and current density were increased. The LTCC current (ICa,L) increased ~2.9-fold in serotonin-elicited H9c2 hypertrophy, which was attenuated by verapamil and ketanserin, but not affected by SB206553 (0.1 μM). Serotonin-increased ICa,L was reduced by KMUP-1, PKA and PKC inhibitors (H-89, 1 μM and chelerythrine, 1 μM) while the current was enhanced by the PKC activator PMA, (1 μM) but not the PKA activator 8-Br-cAMP (100 μM), and was abolished by KMUP-1. In contrast, serotonin-increased ICa,L was blunted by the PKG activator 8-Br-cGMP (100 μM), but unaffected by the PKG inhibitor KT5823 (1 μM). Notably, KMUP-1 blocked serotonin-increased ICa,L but this was partially reversed by KT5823. In conclusion, serotonin-increased ICa,L could be due to activated 5-HT2A receptor-mediated PKA and PKC cascades, and/or indirect interaction with PKG. KMUP-1 prevents serotonin-induced H9c2 cardiomyocyte hypertrophy, which can be attributed to its PKA and PKC inhibition, and/or PKG stimulation. PMID:24391452

  17. Expression of serotonin, chromogranin-A, serotonin receptor-2B, tryptophan hydroxylase-1, and serotonin reuptake transporter in the intestine of dogs with chronic enteropathy.

    PubMed

    Bailey, Candice; Ruaux, Craig; Stang, Bernadette V; Valentine, Beth A

    2016-05-01

    Serotonin regulates many intestinal motor and sensory functions. Altered serotonergic metabolism has been described in human gastrointestinal diseases. The objective of our study was to compare expression of several components of the serotonergic system [serotonin (5-HT), serotonin reuptake transporter protein (SERT), tryptophan hydroxylase-1 (TPH-1), 5-HT receptor2B (5-HT2B)] and the enterochromaffin cell marker chromogranin-A (CgA) in the intestinal mucosa between dogs with chronic enteropathy and healthy controls. Serotonin and CgA expression were determined by immunohistochemistry using banked and prospectively obtained, paraffin-embedded canine gastrointestinal biopsies (n = 11), and compared to a control group of canine small intestinal sections (n = 10). Expression of SERT, TPH-1, and 5-HT2B were determined via real-time reverse transcription (qRT)-PCR using prospectively collected endoscopic duodenal biopsies (n = 10) and compared to an additional control group of control duodenal biopsies (n = 8, control group 2) showing no evidence of intestinal inflammation. Dogs with chronic enteropathies showed strong staining for both 5-HT and CgA. Mean positive cells per high power field (HPF) were significantly increased for both compounds in dogs with chronic enteropathies (p < 0.001 for 5-HT; p < 0.05 for CgA). The number of 5-HT-positive and CgA-positive cells/HPF showed significant correlation in the entire group of dogs, including both diseased and healthy individuals (Pearson r(2) = 0.2433, p = 0.016). No significant differences were observed for SERT, TPH-1, or 5-HT2B expression; however, dogs with chronic enteropathy showed greater variability in expression of TPH-1 and 5-HT2B We conclude that components of the neuroendocrine system show altered expression in the intestinal mucosa of dogs with chronic enteropathy. These changes may contribute to nociception and clinical signs in these patients.

  18. Effect of long-term actual spaceflight on the expression of key genes encoding serotonin and dopamine system

    NASA Astrophysics Data System (ADS)

    Popova, Nina; Shenkman, Boris; Naumenko, Vladimir; Kulikov, Alexander; Kondaurova, Elena; Tsybko, Anton; Kulikova, Elisabeth; Krasnov, I. B.; Bazhenova, Ekaterina; Sinyakova, Nadezhda

    The effect of long-term spaceflight on the central nervous system represents important but yet undeveloped problem. The aim of our work was to study the effect of 30-days spaceflight of mice on Russian biosatellite BION-M1 on the expression in the brain regions of key genes of a) serotonin (5-HT) system (main enzymes in 5-HT metabolism - tryptophan hydroxylase-2 (TPH-2), monoamine oxydase A (MAO A), 5-HT1A, 5-HT2A and 5-HT3 receptors); b) pivotal enzymes in DA metabolism (tyrosine hydroxylase, COMT, MAO A, MAO B) and D1, D2 receptors. Decreased expression of genes encoding the 5-HT catabolism (MAO A) and 5-HT2A receptor in some brain regions was shown. There were no differences between “spaceflight” and control mice in the expression of TPH-2 and 5-HT1A, 5-HT3 receptor genes. Significant changes were found in genetic control of DA system. Long-term spaceflight decreased the expression of genes encoding the enzyme in DA synthesis (tyrosine hydroxylase in s.nigra), DA metabolism (MAO B in the midbrain and COMT in the striatum), and D1 receptor in hypothalamus. These data suggested that 1) microgravity affected genetic control of 5-HT and especially the nigrostriatal DA system implicated in the central regulation of muscular tonus and movement, 2) the decrease in the expression of genes encoding key enzyme in DA synthesis, DA degradation and D1 receptor contributes to the movement impairment and dyskinesia produced by the spaceflight. The study was supported by Russian Foundation for Basic Research grant № 14-04-00173.

  19. Serotonin signaling mediates protein valuation and aging

    PubMed Central

    Ro, Jennifer; Pak, Gloria; Malec, Paige A; Lyu, Yang; Allison, David B; Kennedy, Robert T; Pletcher, Scott D

    2016-01-01

    Research into how protein restriction improves organismal health and lengthens lifespan has largely focused on cell-autonomous processes. In certain instances, however, nutrient effects on lifespan are independent of consumption, leading us to test the hypothesis that central, cell non-autonomous processes are important protein restriction regulators. We characterized a transient feeding preference for dietary protein after modest starvation in the fruit fly, Drosophila melanogaster, and identified tryptophan hydroxylase (Trh), serotonin receptor 2a (5HT2a), and the solute carrier 7-family amino acid transporter, JhI-21, as required for this preference through their role in establishing protein value. Disruption of any one of these genes increased lifespan up to 90% independent of food intake suggesting the perceived value of dietary protein is a critical determinant of its effect on lifespan. Evolutionarily conserved neuromodulatory systems that define neural states of nutrient demand and reward are therefore sufficient to control aging and physiology independent of food consumption. DOI: http://dx.doi.org/10.7554/eLife.16843.001 PMID:27572262

  20. Identification, functional characterization, and pharmacological profile of a serotonin type-2b receptor in the medically important insect, Rhodnius prolixus

    PubMed Central

    Paluzzi, Jean-Paul V.; Bhatt, Garima; Wang, Chang-Hui J.; Zandawala, Meet; Lange, Angela B.; Orchard, Ian

    2015-01-01

    In the Chagas disease vector, Rhodnius prolixus, two diuretic hormones act synergistically to dramatically increase fluid secretion by the Malpighian tubules (MTs) during the rapid diuresis that is initiated upon engorgement of vertebrate blood. One of these diuretic hormones is the biogenic amine, serotonin (5-hydroxytryptamine, 5-HT), which controls a variety of additional activities including cuticle plasticization, salivary gland secretion, anterior midgut absorption, cardioacceleratory activity, and myotropic activities on a number of visceral tissues. To better understand the regulatory mechanisms linked to these various physiological actions of serotonin, we have isolated and characterized a serotonin type 2b receptor in R. prolixus, Rhopr5HTR2b, which shares sequence similarity to the vertebrate serotonin type 2 receptors. Rhopr5HTR2b transcript is enriched in well-recognized physiological targets of serotonin, including the MTs, salivary glands and dorsal vessel (i.e., insect heart). Notably, Rhopr5HTR2b was not enriched in the anterior midgut where serotonin stimulates absorption and elicits myotropic control. Using a heterologous functional receptor assay, we examined Rhopr5HTR2b activation characteristics and its sensitivity to potential agonists, antagonists, and other biogenic amines. Rhopr5HTR2b is dose-dependently activated by serotonin with an EC50 in the nanomolar range. Rhopr5HTR2b is sensitive to alpha-methyl serotonin and is inhibited by a variety of serotonin receptor antagonists, including propranolol, spiperone, ketanserin, mianserin, and cyproheptadine. In contrast, the cardioacceleratory activity of serotonin revealed a unique pharmacological profile, with no significant response induced by alpha-methyl serotonin and insensitivity to ketanserin and mianserin. This distinct agonist/antagonist profile indicates that a separate serotonin receptor type may mediate cardiomodulatory effects controlled by serotonin in R. prolixus. PMID:26041983

  1. Oligonucleotide-induced alternative splicing of serotonin 2C receptor reduces food intake.

    PubMed

    Zhang, Zhaiyi; Shen, Manli; Gresch, Paul J; Ghamari-Langroudi, Masoud; Rabchevsky, Alexander G; Emeson, Ronald B; Stamm, Stefan

    2016-08-01

    The serotonin 2C receptor regulates food uptake, and its activity is regulated by alternative pre-mRNA splicing. Alternative exon skipping is predicted to generate a truncated receptor protein isoform, whose existence was confirmed with a new antiserum. The truncated receptor sequesters the full-length receptor in intracellular membranes. We developed an oligonucleotide that promotes exon inclusion, which increases the ratio of the full-length to truncated receptor protein. Decreasing the amount of truncated receptor results in the accumulation of full-length, constitutively active receptor at the cell surface. After injection into the third ventricle of mice, the oligonucleotide accumulates in the arcuate nucleus, where it changes alternative splicing of the serotonin 2C receptor and increases pro-opiomelanocortin expression. Oligonucleotide injection reduced food intake in both wild-type and ob/ob mice. Unexpectedly, the oligonucleotide crossed the blood-brain barrier and its systemic delivery reduced food intake in wild-type mice. The physiological effect of the oligonucleotide suggests that a truncated splice variant regulates the activity of the serotonin 2C receptor, indicating that therapies aimed to change pre-mRNA processing could be useful to treat hyperphagia, characteristic for disorders like Prader-Willi syndrome.

  2. 5-HT(2B) receptors are required for serotonin-selective antidepressant actions.

    PubMed

    Diaz, S L; Doly, S; Narboux-Nême, N; Fernández, S; Mazot, P; Banas, S M; Boutourlinsky, K; Moutkine, I; Belmer, A; Roumier, A; Maroteaux, L

    2012-02-01

    The therapeutic effects induced by serotonin-selective reuptake inhibitor (SSRI) antidepressants are initially triggered by blocking the serotonin transporter and rely on long-term adaptations of pre- and post-synaptic receptors. We show here that long-term behavioral and neurogenic SSRI effects are abolished after either genetic or pharmacological inactivation of 5-HT(2B) receptors. Conversely, direct agonist stimulation of 5-HT(2B) receptors induces an SSRI-like response in behavioral and neurogenic assays. Moreover, the observation that (i) this receptor is expressed by raphe serotonergic neurons, (ii) the SSRI-induced increase in hippocampal extracellular serotonin concentration is strongly reduced in the absence of functional 5-HT(2B) receptors and (iii) a selective 5-HT(2B) agonist mimics SSRI responses, supports a positive regulation of serotonergic neurons by 5-HT(2B) receptors. The 5-HT(2B) receptor appears, therefore, to positively modulate serotonergic activity and to be required for the therapeutic actions of SSRIs. Consequently, the 5-HT(2B) receptor should be considered as a new tractable target in the combat against depression.

  3. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB. 20

    SciTech Connect

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT{sub 1C} receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing ({sup 3}H)serotonin, ({sup 3}H)lysergic acid diethylamide or ({sup 3}H)dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor.

  4. Serotonin increases GABA release in rat entorhinal cortex by inhibiting interneuron TASK-3 K+ channels.

    PubMed

    Deng, Pan-Yue; Lei, Saobo

    2008-10-01

    Whereas the entorhinal cortex (EC) receives profuse serotonergic innervations from the raphe nuclei in the brain stem and is critically involved in the generation of temporal lobe epilepsy, the function of serotonin (5-hydroxytryptamine, 5-HT) in the EC and particularly its roles in temporal lobe epilepsy are still elusive. Here we explored the cellular and molecular mechanisms underlying 5-HT-mediated facilitation of GABAergic transmission and depression of epileptic activity in the superficial layers of the EC. Application of 5-HT increased sIPSC frequency and amplitude recorded from the principal neurons in the EC with no effects on mIPSCs recorded in the presence of TTX. However, 5-HT reduced the amplitude of IPSCs evoked by extracellular field stimulation and in synaptically connected interneuron and pyramidal neuron pairs. Application of 5-HT generated membrane depolarization and increased action potential firing frequency but reduced the amplitude of action potentials in presynaptic interneurons suggesting that 5-HT still increases GABA release whereas the depressant effects of 5-HT on evoked IPSCs could be explained by 5-HT-induced reduction in action potential amplitude. The depolarizing effect of 5-HT was mediated by inhibition of TASK-3 K(+) channels in interneurons and required the functions of 5-HT(2A) receptors and Galpha(q/11) but was independent of phospholipase C activity. Application of 5-HT inhibited low-Mg(2+)-induced seizure activity in slices via 5-HT(1A) and 5-HT(2A) receptors suggesting that 5-HT-mediated depression of neuronal excitability and increase in GABA release contribute to its anti-epileptic effects in the EC.

  5. Cortical Serotonin Type-2 Receptor Density in Parents of Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Goldberg, Jeremy; Anderson, George M.; Zwaigenbaum, Lonnie; Hall, Geoffrey B. C.; Nahmias, Claude; Thompson, Ann; Szatmari, Peter

    2009-01-01

    Parents (N = 19) of children with autism spectrum disorders (ASD) and adult controls (N = 17) underwent positron emission tomography (PET) using [[superscript 18]F]setoperone to image cortical serotonin type-2 (5-HT2) receptors. The 5-HT2 binding potentials (BPs) were calculated by ratioing [[superscript 18]F]setoperone intensity in regions of…

  6. Effect of grazing seedhead-suppressed tall fescue pasture on the vasoactivity of serotonin receptors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research has demonstrated that exposure to ergot alkaloids reduces vasoactivity of serotonin (5HT) receptors. Chemical suppression of tall fescue seedhead production is a tool to reduce the level of exposure to ergot alkaloids by a grazing animal. Therefore, the objective was to evaluate co...

  7. Antagonizing 5-HT₂A receptors with M100907 and stimulating 5-HT₂C receptors with Ro60-0175 blocks cocaine-induced locomotion and zif268 mRNA expression in Sprague-Dawley rats.

    PubMed

    Burton, Christie L; Rizos, Zoë; Diwan, Mustansir; Nobrega, José N; Fletcher, Paul J

    2013-03-01

    Serotonin (5-HT) plays a role in several psychiatric disorders including drug addiction. The 5-HT system modulates the activity of midbrain dopamine (DA) systems, and the behavioural effects of psychostimulants mediated by these systems. The direction of this modulation depends upon the 5-HT receptor subtypes involved, with 5-HT(2A) and 5-HT(2C) receptors having opposing effects. For example the 5-HT(2A) receptor antagonist M100907 and the 5-HT(2C) receptor agonist Ro60-0175 both attenuate several cocaine-induced behavioural and neurochemical effects. To investigate the possible brain regions involved in the interactions between 5-HT(2A) or 5-HT(2C) receptor ligands and cocaine-induced behaviour, we examined the effects of M100907 or Ro60-0175 on cocaine-induced locomotion and mRNA expression of the immediate early gene zif268. Sprague-Dawley rats were pre-treated with M100907 (0.5mg/kg), Ro60-0175 (1.0mg/kg) or vehicle, and then injected with cocaine (15mg/kg) or vehicle. Locomotor activity was monitored for 60 min before rats were sacrificed for zif268 mRNA in situ hybridization mapping. Cocaine increased locomotor activity and zif268 mRNA expression consistently in the nucleus accumbens core, the orbitofrontal cortex and the caudate. M100907 attenuated cocaine-induced locomotion and zif268 mRNA expression in these brain regions in a defined subset of rats but failed to alter any effects of cocaine in another defined subset of rats. Ro60-0175 blocked cocaine-induced locomotion and zif268 mRNA expression in similar brain regions. Our results suggest that despite the opposing actions of 5-HT at 5-HT(2A) and 5-HT(2C) receptors, ligands acting on these receptors likely modulate cocaine-induced locomotion via a common mechanism to influence DA-dependent circuitry.

  8. Interaction between Serotonin Transporter and Serotonin Receptor 1 B genes polymorphisms may be associated with antisocial alcoholism

    PubMed Central

    2012-01-01

    Background Several studies have hypothesized that genes regulating the components of the serotonin system, including serotonin transporter (5-HTTLPR) and serotonin 1 B receptor (5-HT1B), may be associated with alcoholism, but their results are contradictory because of alcoholism’s heterogeneity. Therefore, we examined whether the 5-HTTLPR gene and 5-HT1B gene G861C polymorphism are susceptibility factors for a specific subtype of alcoholism, antisocial alcoholism in Han Chinese in Taiwan. Methods We recruited 273 Han Chinese male inmates with antisocial personality disorder (ASPD) [antisocial alcoholism (AS-ALC) group (n = 120) and antisocial non-alcoholism (AS-N-ALC) group (n = 153)] and 191 healthy male controls from the community. Genotyping was done using PCR-RFLP. Results There were no significant differences in the genotypic frequency of the 5-HT1B G861C polymorphism between the 3 groups. Although AS-ALC group members more frequently carried the 5-HTTLPR S/S, S/LG, and LG/LG genotypes than controls, the difference became non-significant after controlling for the covarying effects of age. However, the 5-HTTLPR S/S, S/LG, and LG/LG genotypes may have interacted with the 5-HT1B G861C C/C polymorphism and increased the risk of becoming antisocial alcoholism. Conclusion Our study suggests that neither the 5-HTTLPR gene nor the 5-HT1B G861C polymorphism alone is a risk factor for antisocial alcoholism in Taiwan’s Han Chinese population, but that the interaction between both genes may increase susceptibility to antisocial alcoholism. PMID:22550993

  9. Open probability of homomeric murine 5-HT3A serotonin receptors depends on subunit occupancy

    PubMed Central

    Mott, David D; Erreger, Kevin; Banke, Tue G; Traynelis, Stephen F

    2001-01-01

    The time course of macroscopic current responses of homomeric murine serotonin 5-HT3A receptors was studied in whole cells and excised membrane patches under voltage clamp in response to rapid application of serotonin. Serotonin activated whole cell currents with an EC50 value for the peak response of 2 μm and a Hill slope of 3.0 (n = 12), suggesting that the binding of at least three agonist molecules is required to open the channel. Homomeric 5-HT3A receptors in excised membrane patches had a slow activation time course (mean ±s.e.m. 10-90 % rise time 12.5 ± 1.6 ms; n = 9 patches) for 100 μm serotonin. The apparent activation rate was estimated by fitting an exponential function to the rising phase of responses to supramaximal serotonin to be 136 s−1. The 5-HT3A receptor response to 100 μm serotonin in outside-out patches (n = 19) and whole cells (n = 41) desensitized with a variable rate that accelerated throughout the experiment. The time course for desensitization was described by two exponential components (for patches τslow 1006 ± 139 ms, amplitude 31 % τfast 176 ± 25 ms, amplitude 69 %). Deactivation of the response following serotonin removal from excised membrane patches (n = 8) and whole cells (n = 29) was described by a dual exponential time course with time constants similar to those for desensitization (for patches τslow 838 ± 217 ms, 55 % amplitude; τfast 213 ± 44 ms, 45 % amplitude). In most patches (6 of 8), the deactivation time course in response to a brief 1-5 ms pulse of serotonin was similar to or slower than desensitization. This suggests that the continued presence of agonist can induce desensitization with a similar or more rapid time course than agonist unbinding. The difference between the time course for deactivation and desensitization was voltage independent over the range -100 to -40 mV in patches (n = 4) and -100 to +50 mV in whole cells (n = 4), suggesting desensitization of these receptors in the presence of

  10. Serotonin 1A receptors and sexual behavior in male rats: a review.

    PubMed

    Snoeren, Eelke M S; Veening, Jan G; Olivier, Berend; Oosting, Ronald S

    2014-06-01

    Serotonin plays an important role in male sexual behavior. Many studies have been performed on the pivotal role of 5-HT₁A receptors in sexual behavior. Overall, 5-HT₁A receptors do not appear to be involved under normal circumstances, but become very important under conditions of elevated serotonin levels in sexual behavior. 5-HT₁A receptor agonists facilitate ejaculatory behavior in male rats, while inhibiting copulatory behavior. Three different phases can be distinguished in rats' sexual cycle, the introductory (precopulatory), the copulatory and the executive (ejaculatory) phases. Different mechanisms and brain regions are involved in these phases. The mechanisms, brain regions and the possible involvement of 5-HT and 5-HT₁A receptors in the appropriate phases in male rat sexual behavior will be discussed in the current review.

  11. Role of Serotonin via 5-HT2B Receptors in the Reinforcing Effects of MDMA in Mice

    PubMed Central

    Doly, Stéphane; Bertran-Gonzalez, Jesus; Callebert, Jacques; Bruneau, Alexandra; Banas, Sophie Marie; Belmer, Arnauld; Boutourlinsky, Katia; Hervé, Denis; Launay, Jean-Marie; Maroteaux, Luc

    2009-01-01

    The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) reverses dopamine and serotonin transporters to produce efflux of dopamine and serotonin, respectively, in regions of the brain that have been implicated in reward. However, the role of serotonin/dopamine interactions in the behavioral effects of MDMA remains unclear. We previously showed that MDMA-induced locomotion, serotonin and dopamine release are 5-HT2B receptor-dependent. The aim of the present study was to determine the contribution of serotonin and 5-HT2B receptors to the reinforcing properties of MDMA. We show here that 5-HT2B−/− mice do not exhibit behavioral sensitization or conditioned place preference following MDMA (10 mg/kg) injections. In addition, MDMA-induced reinstatement of conditioned place preference after extinction and locomotor sensitization development are each abolished by a 5-HT2B receptor antagonist (RS127445) in wild type mice. Accordingly, MDMA-induced dopamine D1 receptor-dependent phosphorylation of extracellular regulated kinase in nucleus accumbens is abolished in mice lacking functional 5-HT2B receptors. Nevertheless, high doses (30 mg/kg) of MDMA induce dopamine-dependent but serotonin and 5-HT2B receptor-independent behavioral effects. These results underpin the importance of 5-HT2B receptors in the reinforcing properties of MDMA and illustrate the importance of dose-dependent effects of MDMA on serotonin/dopamine interactions. PMID:19956756

  12. The serotonin receptor 5-HT₇R regulates the morphology and migratory properties of dendritic cells.

    PubMed

    Holst, Katrin; Guseva, Daria; Schindler, Susann; Sixt, Michael; Braun, Armin; Chopra, Himpriya; Pabst, Oliver; Ponimaskin, Evgeni

    2015-08-01

    Dendritic cells are potent antigen-presenting cells endowed with the unique ability to initiate adaptive immune responses upon inflammation. Inflammatory processes are often associated with an increased production of serotonin, which operates by activating specific receptors. However, the functional role of serotonin receptors in regulation of dendritic cell functions is poorly understood. Here, we demonstrate that expression of serotonin receptor 5-HT7 (5-HT7R) as well as its downstream effector Cdc42 is upregulated in dendritic cells upon maturation. Although dendritic cell maturation was independent of 5-HT7R, receptor stimulation affected dendritic cell morphology through Cdc42-mediated signaling. In addition, basal activity of 5-HT7R was required for the proper expression of the chemokine receptor CCR7, which is a key factor that controls dendritic cell migration. Consistent with this, we observed that 5-HT7R enhances chemotactic motility of dendritic cells in vitro by modulating their directionality and migration velocity. Accordingly, migration of dendritic cells in murine colon explants was abolished after pharmacological receptor inhibition. Our results indicate that there is a crucial role for 5-HT7R-Cdc42-mediated signaling in the regulation of dendritic cell morphology and motility, suggesting that 5-HT7R could be a new target for treatment of a variety of inflammatory and immune disorders.

  13. Molecular imaging of the serotonin 5-HT7 receptors: from autoradiography to positron emission tomography.

    PubMed

    Zimmer, Luc; Billard, Thierry

    2014-01-01

    Serotonin and its various receptors are involved in numerous brain functions and neuropsychiatric disorders. Of the 14 known serotoninergic receptors, the 5-HT7 receptor is the most recently identified and characterized. It is closely involved in the pathogenesis of depression, anxiety, epilepsy and pain and is therefore an important target for drug therapy. It is a crucial target in neuroscience, and there is a clear need for radioligands for in vitro and in vivo visualization and quantification, first in animal models and ultimately in humans. This review focuses on the main radioligands suggested for in vitro and in vivo imaging of the 5-HT7 receptor.

  14. Low nanomolar serotonin inhibits the glutamate receptor/nitric oxide/cyclic GMP pathway in slices from adult rat cerebellum.

    PubMed

    Maura, G; Guadagnin, A; Raiteri, M

    1995-09-01

    The function of serotonin afferents to the cerebellum has been investigated by monitoring the effects of serotoninergic drugs on the production of cyclic GMP elicited in cerebellar slices by activation of ionotropic glutamate receptors. Exposure of adult rat cerebellar slices to N-methyl-D-aspartate (1 nM to 1 microM) or to (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA; 1 nM to 10 microM) elicited concentration-dependent and saturable rises in the levels of cyclic GMP. These responses were blocked by selective antagonists at the N-methyl-D-aspartate or AMPA receptors and by inhibiting nitric oxide synthase, but were insensitive to tetrodotoxin. When tested between 0.1 and 10 nM, serotonin, the serotonin1A receptor agonist (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin and the serotonin2 receptor agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane inhibited, concentration-dependently, the cyclic GMP responses evoked by near-maximal (0.1 microM) concentrations of N-methyl-D-aspartate or AMPA. The EC50 values (concentrations causing half-maximal effect) ranged between 0.7 and 2.1 nM. The actions of serotonin were totally abolished by methiothepin, a mixed-type serotonin receptor antagonist. Thus, the serotonergic cerebellar afferents may exert a potent inhibitory control on the excitatory transmission mediated by N-methyl-D-aspartate and AMPA receptors; the inhibition occurs through both serotonin1A and serotonin2 receptors. As the glutamate receptor-dependent cyclic GMP responses involve production of nitric oxide, a diffusible activator of guanylate cyclase, the above inhibitory serotonin receptors may have multiple localization.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. The nuclear receptor PPARγ individually responds to serotonin- and fatty acid-metabolites

    PubMed Central

    Waku, Tsuyoshi; Shiraki, Takuma; Oyama, Takuji; Maebara, Kanako; Nakamori, Rinna; Morikawa, Kosuke

    2010-01-01

    The nuclear receptor, peroxisome proliferator-activated receptor γ (PPARγ), recognizes various synthetic and endogenous ligands by the ligand-binding domain. Fatty-acid metabolites reportedly activate PPARγ through conformational changes of the Ω loop. Here, we report that serotonin metabolites act as endogenous agonists for PPARγ to regulate macrophage function and adipogenesis by directly binding to helix H12. A cyclooxygenase inhibitor, indomethacin, is a mimetic agonist of these metabolites. Crystallographic analyses revealed that an indole acetate functions as a common moiety for the recognition by the sub-pocket near helix H12. Intriguingly, a serotonin metabolite and a fatty-acid metabolite each bind to distinct sub-pockets, and the PPARγ antagonist, T0070907, blocked the fatty-acid agonism, but not that of the serotonin metabolites. Mutational analyses on receptor-mediated transcription and coactivator binding revealed that each metabolite individually uses coregulator and/or heterodimer interfaces in a ligand-type-specific manner. Furthermore, the inhibition of the serotonin metabolism reduced the expression of the endogenous PPARγ-target gene. Collectively, these results suggest a novel agonism, in which PPARγ functions as a multiple sensor in response to distinct metabolites. PMID:20717101

  16. Retinal Neuroprotective Effects of Flibanserin, an FDA-Approved Dual Serotonin Receptor Agonist-Antagonist

    PubMed Central

    Ryals, Renee C.; Ku, Cristy A.; Fischer, Cody M.; Patel, Rachel C.; Datta, Shreya; Yang, Paul; Wen, Yuquan; Hen, René; Pennesi, Mark E.

    2016-01-01

    Purpose To assess the neuroprotective effects of flibanserin (formerly BIMT-17), a dual 5-HT1A agonist and 5-HT2A antagonist, in a light-induced retinopathy model. Methods Albino BALB/c mice were injected intraperitoneally with either vehicle or increasing doses of flibanserin ranging from 0.75 to 15 mg/kg flibanserin. To assess 5-HT1A-mediated effects, BALB/c mice were injected with 10 mg/kg WAY 100635, a 5-HT1A antagonist, prior to 6 mg/kg flibanserin and 5-HT1A knockout mice were injected with 6 mg/kg flibanserin. Injections were administered once immediately prior to light exposure or over the course of five days. Light exposure lasted for one hour at an intensity of 10,000 lux. Retinal structure was assessed using spectral domain optical coherence tomography and retinal function was assessed using electroretinography. To investigate the mechanisms of flibanserin-mediated neuroprotection, gene expression, measured by RT-qPCR, was assessed following five days of daily 15 mg/kg flibanserin injections. Results A five-day treatment regimen of 3 to 15 mg/kg of flibanserin significantly preserved outer retinal structure and function in a dose-dependent manner. Additionally, a single-day treatment regimen of 6 to 15 mg/kg of flibanserin still provided significant protection. The action of flibanserin was hindered by the 5-HT1A antagonist, WAY 100635, and was not effective in 5-HT1A knockout mice. Creb, c-Jun, c-Fos, Bcl-2, Cast1, Nqo1, Sod1, and Cat were significantly increased in flibanserin-injected mice versus vehicle-injected mice. Conclusions Intraperitoneal delivery of flibanserin in a light-induced retinopathy mouse model provides retinal neuroprotection. Mechanistic data suggests that this effect is mediated through 5-HT1A receptors and that flibanserin augments the expression of genes capable of reducing mitochondrial dysfunction and oxidative stress. Since flibanserin is already FDA-approved for other indications, the potential to repurpose this drug for

  17. Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders.

    PubMed

    Naumenko, Vladimir S; Popova, Nina K; Lacivita, Enza; Leopoldo, Marcello; Ponimaskin, Evgeni G

    2014-07-01

    Serotonin (5-hydroxytryptamine or 5-HT) is an important neurotransmitter regulating a wide range of physiological and pathological functions via activation of heterogeneously expressed 5-HT receptors. Besides the important role of 5-HT receptors in the pathogenesis of depressive disorders and in their clinical medications, underlying mechanisms are far from being completely understood. This review focuses on possible cross talk between two serotonin receptors, 5-HT1A and the 5-HT7 . Although these receptors are highly co-expressed in brain regions implicated in depression, and most agonists developed for the 5-HT1A or 5-HT7 receptors have cross-reactivity, their functional interaction has not been yet established. It has been recently shown that 5-HT1A and 5-HT7 receptors form homo- and heterodimers both in vitro and in vivo. From the functional point of view, heterodimerization has been shown to play an important role in regulation of receptor-mediated signaling and internalization, suggesting the implication of heterodimerization in the development and maintenance of depression. Interaction between these receptors is also of clinical interest, because both receptors represent an important pharmacological target for the treatment of depression and anxiety.

  18. A high-resolution in vivo atlas of the human brain's serotonin system.

    PubMed

    Beliveau, Vincent; Ganz, Melanie; Feng, Ling; Ozenne, Brice; Højgaard, Liselotte; Fisher, Patrick M; Svarer, Claus; Greve, Douglas N; Knudsen, Gitte M

    2016-11-17

    The serotonin (5-HT) system modulates many important brain functions and is critically involved in many neuropsychiatric disorders. We here present a high-resolution multi-dimensional in vivo atlas of four of the human brain's 5-HT receptors (5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4) as well as of the 5-HT transporter (5-HTT). The atlas is created from molecular and structural high-resolution neuroimaging data consisting of Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) scans, acquired in a total of 210 healthy individuals. Comparison of the regional PET binding measures with postmortem human brain autoradiography outcomes showed a high correlation for the five 5-HT targets and this enabled us to transform the atlas to represent protein densities (pmol/ml). We also assessed the regional association between protein concentration and mRNA expression in the human brain by comparing the 5-HT density across the atlas to data from the Allen Human Brain atlas and identified receptor- and transporter specific associations which inform about the regional relation between the two measures. Together, these data provide unparalleled insight into the serotonin system of the human brain.

  19. A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System.

    PubMed

    Beliveau, Vincent; Ganz, Melanie; Feng, Ling; Ozenne, Brice; Højgaard, Liselotte; Fisher, Patrick M; Svarer, Claus; Greve, Douglas N; Knudsen, Gitte M

    2017-01-04

    The serotonin (5-hydroxytryptamine, 5-HT) system modulates many important brain functions and is critically involved in many neuropsychiatric disorders. Here, we present a high-resolution, multidimensional, in vivo atlas of four of the human brain's 5-HT receptors (5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4) and the 5-HT transporter (5-HTT). The atlas is created from molecular and structural high-resolution neuroimaging data consisting of positron emission tomography (PET) and magnetic resonance imaging (MRI) scans acquired in a total of 210 healthy individuals. Comparison of the regional PET binding measures with postmortem human brain autoradiography outcomes showed a high correlation for the five 5-HT targets and this enabled us to transform the atlas to represent protein densities (in picomoles per milliliter). We also assessed the regional association between protein concentration and mRNA expression in the human brain by comparing the 5-HT density across the atlas with data from the Allen Human Brain atlas and identified receptor- and transporter-specific associations that show the regional relation between the two measures. Together, these data provide unparalleled insight into the serotonin system of the human brain.

  20. Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens.

    PubMed

    Clotfelter, Ethan D; O'Hare, Erin P; McNitt, Meredith M; Carpenter, Russ E; Summers, Cliff H

    2007-01-01

    The role of the monoamine neurotransmitter serotonin (5-HT) in the modulation of conspecific aggression in the fighting fish (Betta splendens) was investigated using pharmacological manipulations. We used a fish's response to its mirror image as our index of aggressive behavior. We also investigated the effects of some manipulations on monoamine levels in the B. splendens brain. Acute treatment with 5-HT and with the 5-HT1A receptor agonist 8-OH-DPAT both decreased aggressive behavior; however, treatment with the 5-HT1A receptor antagonist WAY-100635 did not increase aggression. Chronic treatment with the selective serotonin reuptake inhibitor fluoxetine caused no significant changes in aggressive behavior and a significant decline in 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations. Treatment with the serotonin synthesis inhibitor p-chlorophenylalanine resulted in no change in aggression, yet serotonergic activity decreased significantly. Finally, a diet supplemented with L-tryptophan (Trp), the precursor to 5-HT, showed no consistent effects on aggressive behavior or brain monoamine concentrations. These results suggest a complex role for serotonin in the expression of aggression in teleost fishes, and that B. splendens may be a useful model organism in pharmacological and toxicological studies.

  1. Serotonin stimulates lateral habenula via activation of the post-synaptic serotonin 2/3 receptors and transient receptor potential channels

    PubMed Central

    Zuo, Wanhong; Zhang, Yong; Xie, Guiqin; Gregor, Danielle; Bekker, Alex; Ye, Jiang-Hong

    2015-01-01

    There is growing interest on the role of the lateral habenula (LHb) in depression, because it closely and bilaterally connects with the serotoninergic raphe nuclei. The LHb sends glutamate efferents to the raphe nuclei, while it receives serotoninergic afferents, and expresses a high density of serotonin (5-HT) receptors. Recent studies suggest that 5-HT receptors exist both in the presynaptic and postsynaptic sites of LHb neurons, and activation of these receptors may have different effects on the activity of LHb neurons. The current study focused on the effect of 5-HT on the postsynaptic membrane. We found that 5-HT initiated a depolarizing inward current (I(5-HTi)) and accelerated spontaneous firing in ~80% of LHb neurons in rat brain slices. I(5-HTi) was also induced by the 5-HT uptake blocker citalopram, indicating activity of endogenous 5-HT. I(5-HTi) was diminished by 5-HT2/3 receptor antagonists (ritanserin, SB-200646 or ondansetron), and activated by the selective 5-HT2/3 agonists 1-(3- Chlorophenyl) piperazine hydrochloride or 1-(3-Chlorophenyl) biguanide hydrochloride. Furthermore, I(5-HTi) was attenuated by 2-Aminoethyl diphenylborinate, a blocker of transient receptor potential channels, and an IP3 receptor inhibitor, indicating the involvement of transient receptor potential channels. These results demonstrate that the reciprocal connection between the LHb and the 5-HT system highlights a key role for 5-HT stimulation of LHb neurons that may be important in the pathogenesis of depression. PMID:26471419

  2. Serotonin stimulates lateral habenula via activation of the post-synaptic serotonin 2/3 receptors and transient receptor potential channels.

    PubMed

    Zuo, Wanhong; Zhang, Yong; Xie, Guiqin; Gregor, Danielle; Bekker, Alex; Ye, Jiang-Hong

    2016-02-01

    There is growing interest on the role of the lateral habenula (LHb) in depression, because it closely and bilaterally connects with the serotoninergic raphe nuclei. The LHb sends glutamate efferents to the raphe nuclei, while it receives serotoninergic afferents, and expresses a high density of serotonin (5-HT) receptors. Recent studies suggest that 5-HT receptors exist both in the presynaptic and postsynaptic sites of LHb neurons, and activation of these receptors may have different effects on the activity of LHb neurons. The current study focused on the effect of 5-HT on the postsynaptic membrane. We found that 5-HT initiated a depolarizing inward current (I((5-HTi))) and accelerated spontaneous firing in ∼80% of LHb neurons in rat brain slices. I((5-HTi)) was also induced by the 5-HT uptake blocker citalopram, indicating activity of endogenous 5-HT. I((5-HTi)) was diminished by 5-HT(2/3) receptor antagonists (ritanserin, SB-200646 or ondansetron), and activated by the selective 5-HT(2/3) agonists 1-(3-Chlorophenyl) piperazine hydrochloride or 1-(3-Chlorophenyl) biguanide hydrochloride. Furthermore, I((5-HTi)) was attenuated by 2-Aminoethyl diphenylborinate, a blocker of transient receptor potential channels, and an IP3 receptor inhibitor, indicating the involvement of transient receptor potential channels. These results demonstrate that the reciprocal connection between the LHb and the 5-HT system highlights a key role for 5-HT stimulation of LHb neurons that may be important in the pathogenesis of depression.

  3. [Antidepressants, stressors and the serotonin 1A receptor].

    PubMed

    Kirilly, Eszter; Gonda, Xénia; Bagdy, György

    2015-06-01

    5-HT(1A) receptor is a receptor of surprises. Buspirone, an anxiolytic drug with a then yet unidentified mechanism of action had been marketed for years when it was discovered that it is a 5-HT(1A) partial agonist. Several more years had to pass before it was accepted that this receptor plays the key role in the action mechanism of buspirone. This was followed by further surprises. It was discovered that in spite of its anxiolytic effect buspirone activates the hypothalamic-pituitary-adrenal (HPA) stress axis, furthermore, it increases peripheral noradrenaline and adrenaline concentration via a central mechanism. Thus activation of this receptor leads to ACTH/corticosterone and catecholamine release and also increases beta-endorphine, oxytocin and prolactin secretion while decreasing body temperature, increasing food uptake, eliciting characteristic behavioural responses in rodents and also playing a role in the development of certain types of epilepsy. Human genetic studies revealed the role of 5-HT(1A) receptors in cognitive processes playing a role in the development of depression such as impulsiveness or response to environmental stress. This exceptionally wide spectrum of effects is attributable to the presence of 5-HT1A receptors in serotonergic as well as other, for example glutamatergic, cholinergic, dopaminergic and noradrenergic neurons. The majority of the effects of 5-HT(1A) receptors is manifested via the mediation of Gi proteins through the hyperpolarisation or inhibition of the neuron carrying the receptor. 5-HT(1A) receptors on serotonergic neurons can be found in the somatodendritic area and play a significant role in delaying the effects of antidepressants which is an obvious disadvantage. Therefore the newest serotonergic antidepressants including vilazodone and vortioxetine have been designed to possess 5-HT(1A) receptor partial agonist properties. In the present paper we focus primarily on the role of 5-HT(1A) receptors in stress and

  4. Serotonin Receptors and Heart Valve Disease – it was meant 2B

    PubMed Central

    Hutcheson, Joshua D.; Setola, Vincent; Roth, Bryan L.; Merryman, W. David

    2011-01-01

    Carcinoid heart disease was one of the first valvular pathologies studied in molecular detail, and early research identified serotonin produced by oncogenic enterochromaffin cells as the likely culprit in causing changes in heart valve tissue. Researchers and physicians in the mid-1960s noted a connection between the use of several ergot-derived medications with structures similar to serotonin and the development of heart valve pathologies similar to those observed in carcinoid patients. The exact serotonergic target that mediated valvular pathogenesis remained a mystery for many years until similar cases were reported in patients using the popular diet drug Fen-Phen in the late 1990s. The Fen-Phen episode sparked renewed interest in serotonin-mediated valve disease, and studies led to the identification of the 5-HT2B receptor as the likely molecular target leading to heart valve tissue fibrosis. Subsequent studies have identified numerous other activators of the 5-HT2B receptor, and consequently, the use of many of these molecules has been linked to heart valve disease. Herein, we: review the molecular properties of the 5-HT2B receptor including factors that differentiate the 5-HT2B receptor from other 5-HT receptor subtypes, discuss the studies that led to the identification of the 5-HT2B receptor as the mediator of heart valve disease, present current efforts to identify potential valvulopathogens by screening for 5-HT2B receptor activity, and speculate on potential therapeutic benefits of 5-HT2B receptor targeting. PMID:21440001

  5. Biaryls as potent, tunable dual neurokinin 1 receptor antagonists and serotonin transporter inhibitors.

    PubMed

    Degnan, Andrew P; Tora, George O; Han, Ying; Rajamani, Ramkumar; Bertekap, Robert; Krause, Rudolph; Davis, Carl D; Hu, Joanna; Morgan, Daniel; Taylor, Sarah J; Krause, Kelly; Li, Yu-Wen; Mattson, Gail; Cunningham, Melissa A; Taber, Matthew T; Lodge, Nicholas J; Bronson, Joanne J; Gillman, Kevin W; Macor, John E

    2015-08-01

    Depression is a serious illness that affects millions of patients. Current treatments are associated with a number of undesirable side effects. Neurokinin 1 receptor (NK1R) antagonists have recently been shown to potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs) in a number of animal models. Herein we describe the optimization of a biaryl chemotype to provide a series of potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors. Through the choice of appropriate substituents, the SERT/NK1R ratio could be tuned to afford a range of target selectivity profiles. This effort culminated in the identification of an analog that demonstrated oral bioavailability, favorable brain uptake, and efficacy in the gerbil foot tap model. Ex vivo occupancy studies with compound 58 demonstrated the ability to maintain NK1 receptor saturation (>88% occupancy) while titrating the desired level of SERT occupancy (11-84%) via dose selection.

  6. PET imaging of cortical S2 serotonin receptors after stroke: lateralized changes and relationship to depression

    SciTech Connect

    Mayberg, H.S.; Robinson, R.G.; Wong, D.F.; Parikh, R.; Bolduc, P.; Starkstein, S.E.; Price, T.; Dannals, R.F.; Links, J.M.; Wilson, A.A.

    1988-08-01

    Patients with right-hemisphere strokes (N = 9) more than 1 year after injury had greater cortical binding of (3-N-(/sup 11/C)methyl)spiperone than a similar group of patients with left-hemisphere strokes (N = 8) or normal control subjects (N = 17). The higher S2 serotonin receptor binding occurred in uninjured regions of the right parietal and temporal cortex. The ratio of binding in the ipsilateral to contralateral cortex showed a significant negative correlation with severity of depression scores in the left temporal cortex. These findings suggest that the biochemical response of the brain may be different depending on which hemisphere is injured and that some depressions may be a consequence of the failure to upregulate serotonin receptors after stroke.

  7. Serotonin (5-HT) receptor 5A sequence variants affect human plasma triglyceride levels

    PubMed Central

    Zhang, Y.; Smith, E. M.; Baye, T. M.; Eckert, J. V.; Abraham, L. J.; Moses, E. K.; Kissebah, A. H.; Martin, L. J.

    2010-01-01

    Neurotransmitters such as serotonin (5-hydroxytryptamine, 5-HT) work closely with leptin and insulin to fine-tune the metabolic and neuroendocrine responses to dietary intake. Losing the sensitivity to excess food intake can lead to obesity, diabetes, and a multitude of behavioral disorders. It is largely unclear how different serotonin receptor subtypes respond to and integrate metabolic signals and which genetic variations in these receptor genes lead to individual differences in susceptibility to metabolic disorders. In an obese cohort of families of Northern European descent (n = 2,209), the serotonin type 5A receptor gene, HTR5A, was identified as a prominent factor affecting plasma levels of triglycerides (TG), supported by our data from both genome-wide linkage and targeted association analyses using 28 publicly available and 12 newly discovered single nucleotide polymorphisms (SNPs), of which 3 were strongly associated with plasma TG levels (P < 0.00125). Bayesian quantitative trait nucleotide (BQTN) analysis identified a putative causal promoter SNP (rs3734967) with substantial posterior probability (P = 0.59). Functional analysis of rs3734967 by electrophoretic mobility shift assay (EMSA) showed distinct binding patterns of the two alleles of this SNP with nuclear proteins from glioma cell lines. In conclusion, sequence variants in HTR5A are strongly associated with high plasma levels of TG in a Northern European population, suggesting a novel role of the serotonin receptor system in humans. This suggests a potential brain-specific regulation of plasma TG levels, possibly by alteration of the expression of HTR5A. PMID:20388841

  8. Linezolid-induced serotonin toxicity in a patient not taking monoamine oxidase inhibitors or serotonin receptor antagonists

    PubMed Central

    Sutton, Jacob; Stroup, Jeff

    2016-01-01

    Linezolid is an oxazolidinone antibiotic with weak monoamine oxidase (MAO) type A and MAO type B inhibitory effects. Linezolid has been associated with serotonin toxicity when used concomitantly with multiple medications that are known to increase serotonin concentrations. We report the case of a 65-year-old woman with signs and symptoms of serotonin toxicity following administration of linezolid for treatment of methicillin-resistant Staphylococcus aureus pneumonia. PMID:27034576

  9. Serotonin receptor expression along the dorsal–ventral axis of mouse hippocampus

    PubMed Central

    Tanaka, Kenji F.; Samuels, Benjamin Adam; Hen, René

    2012-01-01

    Using in situ hybridization, we describe, for the first time, the profiles of expression of serotonin receptors (Htr/5-HTR) along the dorsal–ventral axis of mouse hippocampus. cRNA probes for most Htrs, excluding Htr6, were used. All hippocampal subregions and the entorhinal cortex cells providing input into the hippocampus were examined. The study shows that some, but not all, Htrs are expressed in the cells of the hippocampal circuitry. At both the subfield and the cell type levels, a somewhat overlapping pattern is observed. Four serotonin receptors, Htr1a, Htr2a, Htr2c and Htr7, display an expression pattern that changes along the dorsal–ventral axis of the hippocampus. Given the proposed functional differentiation of the hippocampus along its long axis, with the dorsal pole more involved in cognitive functions and the ventral pole more involved in mood and anxiety, our results suggest that serotonin receptors enriched in the ventral pole probably contribute to mood- and anxiety-related behaviours. PMID:22826340

  10. Headache, Raynaud's syndrome and serotonin receptor agonists in systemic lupus erythematosus.

    PubMed

    Bernatsky, S; Pineau, C A; Lee, J L; Clarke, A E

    2006-01-01

    There are potential concerns regarding serotonin receptor agonists in SLE patients with migraine, particularly patients with concomitant Raynaud's syndrome. We estimated the prevalence of lupus-related headache and Raynaud's syndrome in the Montreal General Hospital SLE clinic cohort and evaluated the relationship between these two variables in multivariable logistic regression models, controlling for age, sex, race, SLE duration and the presence of lupus anticoagulant and antibodies to cardiolipin and beta2 glycoprotein I. We also assessed, through chart review in those individuals with both Raynaud's syndrome and migraine, a history of serotonin receptor agonist use, and any associated worsening vasospasm. Based on Systemic Lupus Activity Measure (SLAM) scores, the cumulative incidence of lupus-related headache in our sample (n = 391) was 46.1%; the prevalence of Raynaud's syndrome was 49.4%. The adjusted odds ratio (OR) for lupus-related headache and Raynaud's syndrome was 1.7 (95% CI 1.1, 2.5). In addition, there was a strong independent relationship between headache and anti-beta2 glycoprotein I antibodies (adjusted OR 5.6 [95% CI 1.8, 17.0]). The data from our chart review suggest that careful use of serotonin receptor agonists in patients with both Raynaud's syndrome and migraines may be undertaken, although caution would necessitate that these agents not be used in individuals with very severe Raynaud's (eg, digital ulcerations, and so on).

  11. In vivo binding of /sup 3/H-N-methylspiperone to dopamine and serotonin receptors

    SciTech Connect

    Frost, J.J.; Smith, A.C.; Kuhar, M.J.; Dannals, R.F.; Wagner, H.N. Jr.

    1987-03-09

    /sup 3/H-N-methylspiperone (/sup 3/H-NMSP) was used to label dopamine-2 and serotonin-2 in vivo in the mouse. The striatum/cerebellum binding ratio reached a maximum of 80 eight hours after intravenous administration of /sup 3/H-NMSP. The frontal cortex/cerebellum ratio was 5 one hour after injection. The binding of /sup 3/H-NMSP was saturable in the frontal cortex and cerebellum between doses of 10 and 1000 ..mu..g/kg. Between 0.01 and 10 ..mu..g/kg the ratio total/nonspecific binding increased from 14 to 21. Inhibition of /sup 3/H-NMSP binding in the frontal cortex and striatum by ketanserin, a selective serotonin-2 antagonist, demonstrated that 20% of the total binding in the striatum was to serotonin-2 rectors and 91% of the total binding in the frontal cortex was to serotonin-2 receptors. Compared to /sup 3/H-spiperone, /sup 3/H-NMSP 1) results in a much higher specific/nonspecific binding ratio in the striatum and frontal cortex and 2) displays more than a two-fold higher brain uptake. 18 references, 4 figures.

  12. Enhanced brain stem 5HT₂A receptor function under neonatal hypoxic insult: role of glucose, oxygen, and epinephrine resuscitation.

    PubMed

    Anju, T R; Korah, P K; Jayanarayanan, S; Paulose, C S

    2011-08-01

    Molecular processes regulating brain stem serotonergic receptors play an important role in the control of respiration. We evaluated 5-HT(2A) receptor alterations in the brain stem of neonatal rats exposed to hypoxic insult and the effect of glucose, oxygen, and epinephrine resuscitation in ameliorating these alterations. Hypoxic stress increased the total 5-HT and 5-HT(2A) receptor number along with an up regulation of 5-HT Transporter and 5-HT(2A) receptor gene in the brain stem of neonates. These serotonergic alterations were reversed by glucose supplementation alone and along with oxygen to hypoxic neonates. The enhanced brain stem 5-HT(2A) receptors act as a modulator of ventilatory response to hypoxia, which can in turn result in pulmonary vasoconstriction and cognitive dysfunction. The adverse effects of 100% oxygenation and epinephrine administration to hypoxic neonates were also reported. This has immense clinical significance in neonatal care.

  13. Activation and modulation of recombinantly expressed serotonin receptor type 3A by terpenes and pungent substances.

    PubMed

    Ziemba, Paul M; Schreiner, Benjamin S P; Flegel, Caroline; Herbrechter, Robin; Stark, Timo D; Hofmann, Thomas; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2015-11-27

    Serotonin receptor type 3 (5-HT3 receptor) is a ligand-gated ion channel that is expressed in the central nervous system (CNS) as well as in the peripheral nervous system (PNS). The receptor plays an important role in regulating peristalsis of the gastrointestinal tract and in functions such as emesis, cognition and anxiety. Therefore, a variety of pharmacologically active substances target the 5-HT3 receptor to treat chemotherapy-induced nausea and vomiting. The 5-HT3 receptors are activated, antagonized, or modulated by a wide range of chemically different substances, such as 2-methyl-serotonin, phenylbiguanide, setrones, or cannabinoids. Whereas the action of all of these substances is well described, less is known about the effect of terpenoids or fragrances on 5-HT3A receptors. In this study, we screened a large number of natural odorous and pungent substances for their pharmacological action on recombinantly expressed human 5-HT3A receptors. The receptors were functionally expressed in Xenopus oocytes and characterized by electrophysiological recordings using the two-electrode voltage-clamp technique. A screening of two odorous mixes containing a total of 200 substances revealed that the monoterpenes, thymol and carvacrol, act as both weak partial agonists and positive modulators on the 5-HT3A receptor. In contrast, the most effective blockers were the terpenes, citronellol and geraniol, as well as the pungent substances gingerol, capsaicin and polygodial. In our study, we identified new modulators of 5-HT3A receptors out of the classes of monoterpenes and vanilloid substances that frequently occur in various plants.

  14. Down regulation of cerebellar serotonergic receptors in streptozotocin induced diabetic rats: Effect of pyridoxine and Aegle marmelose.

    PubMed

    Abraham, Pretty Mary; Paul, Jes; Paulose, C S

    2010-04-29

    Oxidative stress plays an important role in cerebellar damage caused by diabetes, leading to deterioration in glucose homeostasis causing metabolic disorders. The present study was carried out to find the effects of Aegle marmelose leaf extract and insulin alone and in combination with pyridoxine on the cerebellar 5-HT through 5-HT(2A) receptor subtype, gene expression studies on the status of antioxidants-superoxide dismutase (SOD), glutathione peroxidase (GPx), 5-HT(2A) and 5-HT transporter (5-HTT) and immunohistochemical studies in streptozotocin induced diabetic rats. 5-HT and 5-HT(2A) receptor binding parameters, B(max) and K(d), showed a significant decrease (p<0.001) in the cerebellum of diabetic rats compared to control. Gene expression studies of SOD, GPx, 5-HT(2A) and 5-HTT in cerebellum showed a significant down regulation (p<0.001) in diabetic rats compared to control. Pyridoxine treated alone and in combination with insulin, A. marmelose to diabetic rats reversed the B(max), K(d) of 5-HT, 5-HT(2A) and the gene expression of SOD, GPx, 5-HT(2A) and 5-HTT in cerebellum to near control. The gene expression of 5-HT(2A) and 5-HTT were confirmed by immunohistochemical studies. Also, the Rotarod test confirms the motor dysfunction and recovery by treatment. These data suggest the antioxidant and neuroprotective role of pyridoxine and A. marmelose through the up regulation of 5-HT through 5-HT(2A) receptor in diabetic rats. Our results suggest that pyridoxine treated alone and in combination with insulin and A. marmelose has a role in the regulation of insulin synthesis and release, normalizing diabetic related oxidative stress and neurodegeneration affecting the motor ability of an individual by serotonergic receptors through 5-HT(2A) function. This has clinical significance in the management of diabetes.

  15. Repeated lysergic acid diethylamide in an animal model of depression: Normalisation of learning behaviour and hippocampal serotonin 5-HT2 signalling.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Höllt, Volker; Grecksch, Gisela

    2014-06-01

    A re-balance of postsynaptic serotonin (5-HT) receptor signalling, with an increase in 5-HT1A and a decrease in 5-HT2A signalling, is a final common pathway multiple antidepressants share. Given that the 5-HT1A/2A agonist lysergic acid diethylamide (LSD), when repeatedly applied, selectively downregulates 5-HT2A, but not 5-HT1A receptors, one might expect LSD to similarly re-balance the postsynaptic 5-HT signalling. Challenging this idea, we use an animal model of depression specifically responding to repeated antidepressant treatment (olfactory bulbectomy), and test the antidepressant-like properties of repeated LSD treatment (0.13 mg/kg/d, 11 d). In line with former findings, we observe that bulbectomised rats show marked deficits in active avoidance learning. These deficits, similarly as we earlier noted with imipramine, are largely reversed by repeated LSD administration. Additionally, bulbectomised rats exhibit distinct anomalies of monoamine receptor signalling in hippocampus and/or frontal cortex; from these, only the hippocampal decrease in 5-HT2 related [(35)S]-GTP-gamma-S binding is normalised by LSD. Importantly, the sham-operated rats do not profit from LSD, and exhibit reduced hippocampal 5-HT2 signalling. As behavioural deficits after bulbectomy respond to agents classified as antidepressants only, we conclude that the effect of LSD in this model can be considered antidepressant-like, and discuss it in terms of a re-balance of hippocampal 5-HT2/5-HT1A signalling.

  16. High-throughput chemiluminometric genotyping of single nucleotide polymorphisms of histamine, serotonin, and adrenergic receptor genes.

    PubMed

    Toubanaki, Dimitra K; Christopoulos, Theodore K; Ioannou, Penelope C; Flordellis, Christodoulos S

    2009-02-01

    Several pharmacogenetic studies are focused on the investigation of the relation between the efficacy of various antipsychotic agents (e.g., clozapine) and the genetic profile of the patient with an emphasis on genes that code for neurotransmitter receptors such as histamine, serotonin, and adrenergic receptors. We report a high-throughput method for genotyping of single nucleotide polymorphisms (SNPs) within the genes of histamine H2 receptor (HRH2), serotonin receptor (HTR2A1 and HTR2A2), and beta(3) adrenergic receptor (ADRB3). The method combines the high specificity of allele discrimination by oligonucleotide ligation reaction (OLR) and the superior sensitivity and simplicity of chemiluminometric detection in a microtiter well assay configuration. The genomic region that spans the locus of interest is first amplified by polymerase chain reaction (PCR). Subsequently, an oligonucleotide ligation reaction is performed using a biotinylated common probe and two allele-specific probes that are labeled at the 3' end with digoxigenin and fluorescein. The ligation products are immobilized in polystyrene wells via biotin-streptavidin interaction, and the hybrids are denatured. Detection is accomplished by the addition of alkaline phosphatase-conjugated anti-digoxigenin or anti-fluorescein antibodies in combination with a chemiluminogenic substrate. The ratio of the luminescence signals obtained from digoxigenin and fluorescein indicates the genotype of the sample. The method was applied successfully to the genotyping of 23 blood samples for all four SNPs. The results were in concordance with both PCR-restriction fragment length polymorphism analysis and sequencing.

  17. A Novel Role of Serotonin Receptor 2B Agonist as an Anti-Melanogenesis Agent

    PubMed Central

    Oh, Eun Ju; Park, Jong Il; Lee, Ji Eun; Myung, Cheol Hwan; Kim, Su Yeon; Chang, Sung Eun; Hwang, Jae Sung

    2016-01-01

    BW723C86, a serotonin receptor 2B agonist, has been investigated as a potential therapeutic for various conditions such as anxiety, hyperphagia and hypertension. However, the functional role of BW723C86 against melanogenesis remains unclear. In this study, we investigate the effect of serotonin receptor 2B (5-HTR2B) agonist on melanogenesis and elucidate the mechanism involved. BW723C86 reduced melanin synthesis and intracellular tyrosinase activity in melan-A cells and normal human melanocytes. The expression of melanogenesis-related proteins (tyrosinase, TRP-1 and TRP-2) and microphthalmia-associated transcription factor (MITF) in melan-A cells decreased after BW723C86 treatment. The promoter activity of MITF was also reduced by BW723C86 treatment. The reduced level of MITF was associated with inhibition of protein kinase A (PKA) and cAMP response element-binding protein (CREB) activation by BW723C86 treatment. These results suggest that the serotonin agonist BW723C86 could be a potential therapeutic agent for skin hyperpigmentation disorders. PMID:27077852

  18. Quantitation of 5HT3 receptors in forebrain of serotonin transporter deficient mice.

    PubMed

    Mössner, R; Schmitt, A; Hennig, T; Benninghoff, J; Gerlach, M; Riederer, P; Deckert, J; Lesch, K P

    2004-01-01

    Mice deficient in the serotonin transporter (5HTT) display highly elevated extracellular 5HT levels. 5HT exerts ist effects via at least fourteen different cloned 5HT receptors located pre- and postsynaptically. In contrast to the other 5HT receptors, the 5HT3 receptor is a ionotropic receptor with ligand-gated cation channel function. Since G-protein-coupled 5HT receptors show extensive adaptive changes in 5HTT-deficient mice, we investigated whether 5HT3 receptors are also altered in these mice. Using quantitative autoradiography, we found that 5HT3 receptors are upregulated in frontal cortex (+46%), parietal cortex (+42%), and in stratum oriens of the CA3 region of the hippocampus (+18%) of 5HTT knockout mice. Changes in 5HT3 receptor mRNA expression, as determined by quantitative in situ hybridisation, were less pronounced. The adaptive changes of 5HT3 receptor expression constitute a part of the complex regulatory pattern of 5HT receptors in 5HTT knockout mice.

  19. Age-dependent effects of the 5-hydroxytryptamine-2a-receptor polymorphism (His452Tyr) on human memory.

    PubMed

    Papassotiropoulos, Andreas; Henke, Katharina; Aerni, Amanda; Coluccia, Daniel; Garcia, Esmeralda; Wollmer, Marc A; Huynh, Kim-Dung; Monsch, Andreas U; Stähelin, Hannes B; Hock, Christoph; Nitsch, Roger M; de Quervain, Dominique J-F

    2005-05-31

    A polymorphism (His452Tyr) of the 5-hydroxytryptamine (5-HT)2a receptor is associated with episodic memory in healthy young humans. Because 5-HT2a-receptor density decreases with increasing age, we tested whether the 5-HT2a receptor genotype effect on memory is influenced by age. We investigated the association of the His452Tyr genotype with memory performance in 622 healthy study participants aged from 18 to 90 years. In young to middle-aged participants, age significantly influenced genotype effects on episodic memory: the His452Tyr genotype exerted a significant influence on memory only in young participants. In the group of elderly cognitively healthy participants, the His452Tyr genotype did not affect memory performance. We conclude that age strongly modulates the effect of the 5-HT2a receptor polymorphism at residue 452 on episodic memory.

  20. The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles.

    PubMed

    Kudryashev, Mikhail; Castaño-Díez, Daniel; Deluz, Cédric; Hassaine, Gherici; Grasso, Luigino; Graf-Meyer, Alexandra; Vogel, Horst; Stahlberg, Henning

    2016-01-05

    The function of membrane proteins is best understood if their structure in the lipid membrane is known. Here, we determined the structure of the mouse serotonin 5-HT3 receptor inserted in lipid bilayers to a resolution of 12 Å without stabilizing antibodies by cryo electron tomography and subtomogram averaging. The reconstruction reveals protein secondary structure elements in the transmembrane region, the extracellular pore, and the transmembrane channel pathway, showing an overall similarity to the available X-ray model of the truncated 5-HT3 receptor determined in the presence of a stabilizing nanobody. Structural analysis of the 5-HT3 receptor embedded in a lipid bilayer allowed the position of the membrane to be determined. Interactions between the densely packed receptors in lipids were visualized, revealing that the interactions were maintained by the short horizontal helices. In combination with methodological improvements, our approach enables the structural analysis of membrane proteins in response to voltage and ligand gating.

  1. Activation of serotonin 3 receptors changes in vivo auditory responses in the mouse inferior colliculus

    PubMed Central

    Bohorquez, Alexander; Hurley, Laura M.

    2009-01-01

    Metabotropic serotonin receptors such as 5-HT1A and 5-HT1B receptors shape the level, selectivity, and timing of auditory responses in the inferior colliculus (IC). Less is known about the effects of ionotropic 5-HT3 receptors, which are cation channels that depolarize neurons. In the current study, the influence of the 5-HT3 receptor on auditory responses in vivo was explored by locally iontophoresing a 5-HT3 receptor agonist and antagonists onto single neurons recorded extracellularly in mice. Three main findings emerge from these experiments. First, activation of the 5-HT3 receptor can either facilitate or suppress auditory responses, but response suppressions are not consistent with 5-HT3 effects on presynaptic GABAergic neurons. Both response facilitations and suppressions are less pronounced in neurons with high precision in response latency, suggesting functional differences in the role of receptor activation for different classes of neuron. Finally, the effects of 5-HT3 activation vary across repetition rate within a subset of single neurons, suggesting that the influence of receptor activation sometimes varies with the level of activity. These findings contribute to the view of the 5-HT3 receptor as an important component of the serotonergic infrastructure in the IC, with effects that are complex and neuron- selective. PMID:19236912

  2. Brain Serotonin 1A Receptor Binding as a Predictor of Treatment Outcome in Major Depressive Disorder

    PubMed Central

    Miller, Jeffrey M.; Hesselgrave, Natalie; Ogden, R. Todd; Zanderigo, Francesca; Oquendo, Maria A.; Mann, J. John; Parsey, Ramin V.

    2013-01-01

    Background We previously reported higher serotonin 1A receptor (5-HT1A) binding in subjects with major depressive disorder (MDD) during a major depressive episode using positron emission tomography imaging with [11C]WAY-100635. 5-HT1A receptor binding is also associated with treatment outcome after nonstandardized antidepressant treatment. We examined whether pretreatment 5-HT1A binding is associated with treatment outcome following standardized escitalopram treatment in MDD. We also compared 5-HT1A binding between all MDD subjects in this cohort and a sample of healthy control subjects. Methods Twenty-four MDD subjects in a current major depressive episode and 51 previously studied healthy control subjects underwent positron emission tomography scanning with [11C]WAY-100635, acquiring a metabolite-corrected arterial input function and free-fraction measurement to estimate 5-HT1A binding potential (BPF = Bmax/KD, where Bmax = available receptors and KD = dissociation constant). Major depressive disorder subjects then received 8 weeks of treatment with escitalopram; remission was defined as a posttreatment 24-item Hamilton Depression Rating Scale <10 and ≥50% reduction in Hamilton Depression Rating Scale. Results Remitters to escitalopram had 33% higher baseline 5-HT1A binding in the raphe nuclei than nonremitters (p = .047). Across 12 cortical and subcortical regions, 5-HT1A binding did not differ between remitters and nonremitters (p = .86). Serotonin 1A receptor binding was higher in MDD than control subjects across all regions (p = .0003). Remitters did not differ from nonremitters in several relevant clinical measures. Conclusions Elevated 5-HT1A binding in raphe nuclei is associated with subsequent remission with the selective serotonin reuptake inhibitor escitalopram; this is consistent with data from a separate cohort receiving naturalistic antidepressant treatment. We confirmed our previous findings of higher 5-HT1A binding in current MDD compared with

  3. Effects of age of serotonin 5-HT2 receptors in cocaine abusers and normal subjects

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Logan, J.

    1995-05-01

    We measured the effect of age on serotonin 5-HT2 receptor availability and compared it with the effects on dopamine D2 receptors on 19 chronic cocaine abusers (35.2{plus_minus}9.8 years, range 18-54 years old) and 19 age matched normal controls using positron emission tomography (PET) and F-18 N-methylspiperone (NMS). 5-HT2 Receptor availability was measure din frontal (FR), occipital (OC), cingulate (CI) and orbitofrontal (OF) cortices using the ratio of the distribution volume in the region of interest to that in the cerebelium (CB) which is a function of Bmax/Kd. D2 receptor availability in the basal ganglia was measured using the {open_quotes}ratio index{close_quotes} (slope of striatum/CB versus time over 180 min of the scan) which is a function of Bmax. 5-HT2 Receptor availability differed among regions and were as follows: CI>OF>OC>FC.5-HT2 Receptor availability decreased significantly with age. This effect was more accentuated for 5-HT2 receptor availability in FR than in OC(df=1, p<0.025). Striatal dopamine D2 receptors were also found to decrease significantly with age (r=0.63, p<0.007). In a given subject, D2 receptor availability was significantly correlated with 5-HT2 receptor availability in FR (r=0.51, p<0.035) but not in OC. The values for 5-HT2 receptor availability were not different in normal subjects and cocaine abusers. These results document a decline in 5-HT2 and D2 receptors with age and document an association between frontal 5-HT2 and striatal D2 receptor availability. These results did not show any changes in 5-HT2 receptor availability in cocaine abusers as compared to control subjects.

  4. Signalling properties and pharmacology of a 5-HT7 -type serotonin receptor from Tribolium castaneum.

    PubMed

    Vleugels, R; Lenaerts, C; Vanden Broeck, J; Verlinden, H

    2014-04-01

    In the last decade, genome sequence data and gene structure information on invertebrate receptors has been greatly expanded by large sequencing projects and cloning studies. This information is of great value for the identification of receptors; however, functional and pharmacological data are necessary for an accurate receptor classification and for practical applications. In insects, an important group of neurotransmitter and neurohormone receptors, for which ample sequence information is available but pharmacological information is missing, are the biogenic amine G protein-coupled receptors (GPCRs). In the present study, we investigated the sequence information, pharmacology and signalling properties of a 5-HT7 -type serotonin receptor from the red flour beetle, Tribolium castaneum (Trica5-HT7 ). The receptor encoding cDNA shows considerable sequence similarity with cognate 5-HT7 receptors and phylogenetic analysis also clusters the receptor within this 5-HT receptor group. Real-time reverse transcription PCR demonstrated high expression levels in the brain, indicating the possible importance of this receptor in neural processes. Trica5-HT7 was dose-dependently activated by 5-HT, which induced elevated intracellular cyclic AMP levels but had no effect on calcium signalling. The synthetic agonists, α-methyl 5-HT, 5-methoxytryptamine, 5-carboxamidotryptamine and 8-hydroxy-2-(dipropylamino)tetralin hydrobromide, showed a response, although with a much lower potency and efficacy than 5-HT. Ketanserin and methiothepin were the most potent antagonists. Both showed characteristics of competitive inhibition on Trica5-HT7 . The signalling pathway and pharmacological profile offer important information that will facilitate functional and comparative studies of 5-HT receptors in insects and other invertebrates. The pharmacology of invertebrate 5-HT receptors differs considerably from that of vertebrates. The present study may therefore contribute to establishing a more

  5. Serotonin Receptor Agonist 5-Nonyloxytryptamine Alters the Kinetics of Reovirus Cell Entry

    PubMed Central

    Mainou, Bernardo A.; Ashbrook, Alison W.; Smith, Everett Clinton; Dorset, Daniel C.; Denison, Mark R.

    2015-01-01

    ABSTRACT Mammalian orthoreoviruses (reoviruses) are nonenveloped double-stranded RNA viruses that infect most mammalian species, including humans. Reovirus binds to cell surface glycans, junctional adhesion molecule A (JAM-A), and the Nogo-1 receptor (depending on the cell type) and enters cells by receptor-mediated endocytosis. Within the endocytic compartment, reovirus undergoes stepwise disassembly, which is followed by release of the transcriptionally active viral core into the cytoplasm. In a small-molecule screen to identify host mediators of reovirus infection, we found that treatment of cells with 5-nonyloxytryptamine (5-NT), a prototype serotonin receptor agonist, diminished reovirus cytotoxicity. 5-NT also blocked reovirus infection. In contrast, treatment of cells with methiothepin mesylate, a serotonin antagonist, enhanced infection by reovirus. 5-NT did not alter cell surface expression of JAM-A or attachment of reovirus to cells. However, 5-NT altered the distribution of early endosomes with a concomitant impairment of reovirus transit to late endosomes and a delay in reovirus disassembly. Consistent with an inhibition of viral disassembly, 5-NT treatment did not alter infection by in vitro-generated infectious subvirion particles, which bind to JAM-A but bypass a requirement for proteolytic uncoating in endosomes to infect cells. We also found that treatment of cells with 5-NT decreased the infectivity of alphavirus chikungunya virus and coronavirus mouse hepatitis virus. These data suggest that serotonin receptor signaling influences cellular activities that regulate entry of diverse virus families and provides a new, potentially broad-spectrum target for antiviral drug development. IMPORTANCE Identification of well-characterized small molecules that modulate viral infection can accelerate development of antiviral therapeutics while also providing new tools to increase our understanding of the cellular processes that underlie virus-mediated cell

  6. Involvement of serotonin 2A receptor activation in modulating medial prefrontal cortex and amygdala neuronal activation during novelty-exposure.

    PubMed

    Hervig, Mona El-Sayed; Jensen, Nadja Cecilie Hvid; Rasmussen, Nadja Bredo; Rydbirk, Rasmus; Olesen, Mikkel Vestergaard; Hay-Schmidt, Anders; Pakkenberg, Bente; Aznar, Susana

    2017-03-02

    The medial prefrontal cortex (PFC) plays a major role in executive function by exerting a top-down control onto subcortical areas. Novelty-induced frontal cortex activation is 5-HT2A receptor (5-HT2AR) dependent. Here, we further investigated how blockade of 5-HT2ARs in mice exposed to a novel open-field arena affects medial PFC activation and basolateral amygdala (BLA) reactivity. We used c-Fos immunoreactivity (IR) as a marker of neuronal activation and stereological quantification for obtaining the total number of c-Fos-IR neurons as a measure of regional activation. We further examined the impact of 5-HT2AR blockade on the striatal-projecting BLA neurons. Systemic administration of ketanserin (0.5mg/kg) prior to novel open-field exposure resulted in reduced total numbers of c-Fos-IR cells in dorsomedial PFC areas and the BLA. Moreover, there was a positive correlation between the relative time spent in the centre of the open-field and BLA c-Fos-IR in the ketanserin-treated animals. Unilateral medial PFC lesions blocked this effect, ascertaining an involvement of this frontal cortex area. On the other hand, medial PFC lesioning exacerbated the more anxiogenic-like behaviour of the ketanserin-treated animals, upholding its involvement in modulating averseness. Ketanserin did not affect the number of activated striatal-projecting BLA neurons (measured by number of Cholera Toxin b (CTb) retrograde labelled neurons also being c-Fos-IR) following CTb injection in the ventral striatum. These results support a role of 5-HT2AR activation in modulating mPFC and BLA activation during exposure to a novel environment, which may be interrelated. Conversely, 5-HT2AR blockade does not seem to affect the amygdala-striatal projection.

  7. Serotonin Modulates Developmental Microglia via 5-HT2B Receptors: Potential Implication during Synaptic Refinement of Retinogeniculate Projections.

    PubMed

    Kolodziejczak, Marta; Béchade, Catherine; Gervasi, Nicolas; Irinopoulou, Theano; Banas, Sophie M; Cordier, Corinne; Rebsam, Alexandra; Roumier, Anne; Maroteaux, Luc

    2015-07-15

    Maturation of functional neuronal circuits during central nervous system development relies on sophisticated mechanisms. First, axonal and dendritic growth should reach appropriate targets for correct synapse elaboration. Second, pruning and neuronal death are required to eliminate redundant or inappropriate neuronal connections. Serotonin, in addition to its role as a neurotransmitter, actively participates in postnatal establishment and refinement of brain wiring in mammals. Brain resident macrophages, that is, microglia, also play an important role in developmentally regulated neuronal death as well as in synaptic maturation and elimination. Here, we tested the hypothesis of cross-regulation between microglia and serotonin during postnatal brain development in a mouse model of synaptic refinement. We found expression of the serotonin 5-HT2B receptor on postnatal microglia, suggesting that serotonin could participate in temporal and spatial synchronization of microglial functions. Using two-photon microscopy, acute brain slices, and local delivery of serotonin, we observed that microglial processes moved rapidly toward the source of serotonin in Htr2B(+/+) mice, but not in Htr2B(-/-) mice lacking the 5-HT2B receptor. We then investigated whether some developmental steps known to be controlled by serotonin could potentially result from microglia sensitivity to serotonin. Using an in vivo model of synaptic refinement during early brain development, we investigated the maturation of the retinal projections to the thalamus and observed that Htr2B(-/-) mice present anatomical alterations of the ipsilateral projecting area of retinal axons into the thalamus. In addition, activation markers were upregulated in microglia from Htr2B(-/-) compared to control neonates, in the absence of apparent morphological modifications. These results support the hypothesis that serotonin interacts with microglial cells and these interactions participate in brain maturation.

  8. Serotonin 5-HT7 Receptor in the Ventral Hippocampus Modulates the Retrieval of Fear Memory and Stress-Induced Defecation

    PubMed Central

    Yoshida, Takayuki; Konno, Kohtarou; Minami, Masabumi; Watanabe, Masahiko; Yoshioka, Mitsuhiro

    2016-01-01

    Background: Patients with posttraumatic stress disorder or panic disorder are often troubled by inappropriate retrieval of fear memory. Moreover, these disorders are often comorbid with irritable bowel syndrome. The main aim of the present study is to elucidate the involvement of hippocampal serotonergic systems in fear memory retrieval and stress-induced defecation. Methods and Results: Microinjection of serotonin7 receptor antagonist, but not other serotonin receptor antagonists (serotonin 1A, 2A, 2C, 3, 4, and 6), into the rat ventral hippocampus significantly suppressed the expression of freezing behavior, an index of fear memory retrieval, and decreased the amount of feces, an index of stress-induced defecation, in the contextual fear conditioning test. Electrophysiological data indicated that the serotonin7 receptor agonist increased the frequency of action potentials in the ventral hippocampal CA3 pyramidal neuron via the activation of the hyperpolarization-activated nonselective cation current Ih. Moreover, in situ hybridization demonstrated that Htr7 mRNA was abundantly expressed in the CA3 compared with other subregions of the hippocampus and that these Htr7 mRNA-positive cells coexpressed hyperpolarization-activated cyclic nucleotide-gated channel 2 and 4 mRNAs, which are components of the Ih channel. Conclusions: These results indicated that the released serotonin activates the serotonin7 receptor in the CA3 ventral hippocampus subregion, enhances the sensitivity to inputs via hyperpolarization-activated cyclic nucleotide 2 and 4 channels, and thereby facilitates fear memory retrieval. The serotonin7 receptor might be a target of drug development for the treatment of mental disorders involving fear memory and gastrointestinal problems. PMID:26647382

  9. Molecular dynamics simulation of the structure and dynamics of 5-HT3 serotonin receptor

    NASA Astrophysics Data System (ADS)

    Antonov, M. Yu.; Popinako, A. V.; Prokopiev, G. A.

    2016-10-01

    In this work, we investigated structure, dynamics and ion transportation in transmembrane domain of the 5-HT3 serotonin receptor. High-resolution (0.35 nm) structure of the 5-HT3 receptor in complex with stabilizing nanobodies was determined by protein crystallography in 2014 (Protein data bank (PDB) code 4PIR). Transmembrane domain of the structure was prepared in complex with explicit membrane environment (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC)) and solvent (TIP3P water model). Molecular dynamics protocols for simulation and stabilization of the transmembrane domain of the 5-HT3 receptor model were developed and 60 ns simulation of the structure was conducted in order to explore structural parameters of the system. We estimated the mean force profile for Na+ ions using umbrella sampling method.

  10. In vivo regulation of the serotonin-2 receptor in rat brain

    SciTech Connect

    Stockmeier, C.A.; Kellar, K.J.

    1986-01-13

    Serotonin-2 (5-HT-2) receptors in brain were measured using (/sup 3/H)ketanserin. The authors examined the effects of amitriptyline, an anti-depressant drug, of electroconvulsive shock (ECS) and of drug-induced alterations in presynaptic 5-HT function on (/sup 3/H)ketanserin binding to 5-HT-2 receptors in rat brain. The importance of intact 5-HT axons to the up-regulation of 5-HT-2 receptors by ECS was also investigated, and an attempt was made to relate the ECS-induced increase in this receptor to changes in 5-HT presynaptic mechanisms. Twelve days of ECS increased the number of 5-HT-2 receptors in frontal cortex. Neither the IC/sub 50/ nor the Hill coefficient of 5-HT in competing for (/sup 3/H)ketanserin binding sites was altered by ECS. Repeated injections of amitriptyline reduced the number of 5-HT-2 receptors in frontal cortex. Reserpine, administered daily for 12 days, caused a significant increase in 5-HT-2 receptors, but neither daily injections of p-chlorophenylalanine (PCPA) nor lesions of 5-HT axons with 5,7-dihydroxytryptamine (5,7-DHT) affected 5-HT-2 receptors. However, regulation of 5-HT-2 receptors by ECS was dependent on intact 5-HT axons since ECS could not increase the number of 5-HT-2 receptors in rats previously lesioned with 5,7-DHT. Repeated ECS, however, does not appear to affect either the high-affinity uptake of (/sup 3/H)5-HT or (/sup 3/H)imipramine binding, two presynaptic markers of 5-HT neuronal function. 5-HT-2 receptors appear to be under complex control. ECS or drug treatments such as reserpine or amitriptyline, which affect several monoamine neurotransmission systems including 5-HT, can alter 5-HT-2 receptors. 28 references, 1 figure, 7 tables.

  11. Presynaptic CB(1) cannabinoid receptors control frontocortical serotonin and glutamate release--species differences.

    PubMed

    Ferreira, Samira G; Teixeira, Filipe M; Garção, Pedro; Agostinho, Paula; Ledent, Catherine; Cortes, Luísa; Mackie, Ken; Köfalvi, Attila

    2012-07-01

    Both the serotonergic and endocannabinoid systems modulate frontocortical glutamate release; thus they are well positioned to participate in the pathogenesis of psychiatric disorders. With the help of fluorescent and confocal microscopy, we localized the CB(1) cannabinoid receptor (CB(1)R) in VGLUT1- and 2- (i.e. glutamatergic) and serotonin transporter- (i.e. serotonergic) -positive fibers and nerve terminals in the mouse and rat frontal cortex. CB(1)R activation by the synthetic agonists, WIN55212-2 (1 μM) and R-methanandamide (1 μM) inhibited the simultaneously measured evoked Ca(2+)-dependent release of [(14)C]glutamate and [(3)H]serotonin from frontocortical nerve terminals of Wistar rats, in a fashion sensitive to the CB(1)R antagonists, O-2050 (1 μM) and LY320135 (5 μM). CB(1)R agonists also inhibited the evoked release of [(14)C]glutamate in C57BL/6J mice in a reversible fashion upon washout. Interestingly, the evoked release of [(14)C]glutamate and [(3)H]serotonin was significantly greater in the CB(1)R knockout CD-1 mice. Furthermore, CB(1)R binding experiments revealed similar frontocortical CB(1)R density in the rat and the CD-1 mouse. Still, the evoked release of [(3)H]serotonin was modulated by neither CB(1)R agonists nor antagonists in wild-type CD-1 or C57BL/6J mice. Altogether, this is the first study to demonstrate functional presynaptic CB(1)Rs in frontocortical glutamatergic and serotonergic terminals, revealing species differences.

  12. Mefloquine and Psychotomimetics Share Neurotransmitter Receptor and Transporter Interactions In Vitro

    PubMed Central

    Janowsky, Aaron; Eshleman, Amy J.; Johnson, Robert A.; Wolfrum, Katherine M.; Hinrichs, David J.; Yang, Jongtae; Zabriskie, T. Mark; Smilkstein, Martin J.; Riscoe, Michael K.

    2014-01-01

    Rationale Mefloquine is used for the prevention and treatment of chloroquine-resistant malaria, but its use is associated with nightmares, hallucinations, and exacerbation of symptoms of post-traumatic stress disorder. We hypothesized that potential mechanisms of action for the adverse psychotropic effects of mefloquine resemble those of other known psychotomimetics. Objectives Using in vitro radioligand binding and functional assays, we examined the interaction of (+)- and (−)-mefloquine enantiomers, the non-psychotomimetic anti-malarial agent, chloroquine, and several hallucinogens and psychostimulants with recombinant human neurotransmitter receptors and transporters. Results Hallucinogens and mefloquine bound stereoselectively and with relatively high affinity (Ki = 0.71–341 nM) to serotonin (5-HT) 2A but not 5-HT1A or 5-HT2C receptors. Mefloquine but not chloroquine was a partial 5-HT2A agonist and a full 5-HT2C agonist, stimulating inositol phosphate accumulation, with similar potency and efficacy as the hallucinogen dimethyltryptamine (DMT). 5-HT receptor antagonists blocked mefloquine’s effects. Mefloquine had low or no affinity for dopamine D1, D2, D3, and D4.4 receptors, or dopamine and norepinephrine transporters. However, mefloquine was a very low potency antagonist at the D3 receptor and mefloquine but not chloroquine or hallucinogens blocked [3H]5-HT uptake by the 5-HT transporter. Conclusions Mefloquine but not chloroquine shares an in vitro receptor interaction profile with some hallucinogens and this neurochemistry may be relevant to the adverse neuropsychiatric effects associated with mefloquine use by a small percentage of patients. Additionally, evaluating interactions with this panel of receptors and transporters may be useful for characterizing effects of other psychotropic drugs and for avoiding psychotomimetic effects for new pharmacotherapies, including antimalarial quinolines. PMID:24488404

  13. Crucial interactions between selective serotonin uptake inhibitors and sigma-1 receptor in heart failure.

    PubMed

    Bhuiyan, Md Shenuarin; Tagashira, Hideaki; Fukunaga, Kohji

    2013-01-01

    Depression is associated with a substantial increase in the risk of developing heart failure and is independently associated with increased cardiovascular morbidity and mortality. Inversely, cardiovascular disease can lead to severe depression. Thus, therapy with selective serotonin reuptake inhibitors (SSRIs) is strongly recommended to reduce cardiovascular disease-induced morbidity and mortality. However, molecular mechanisms to support evidence-based SSRI treatment of cardiovascular disease have not been elucidated. We recently found very high expression of the sigma-1 receptor, an orphan receptor, in rat heart tissue and defined the cardiac sigma-1 receptor as a direct SSRI target in eliciting cardioprotection in both pressure overload (PO)induced and transverse aortic constriction (TAC)-induced myocardial hypertrophy models in rodents. Our findings suggest that SSRIs such as fluvoxamine protect against PO- and TAC-induced cardiac dysfunction by upregulating sigma-1 receptor expression and stimulating sigma-1 receptor-mediated Akt-eNOS signaling. Here, we discuss the association of depression and cardiovascular diseases, the protective mechanism of SSRIs in heart failure patients, and the pathophysiological relevance of sigma-1 receptors to progression of heart failure. These findings should promote development of clinical therapeutics targeting the sigma-1 receptor in cardiovascular diseases.

  14. Serotonin 1A receptors and sexual behavior in a genetic model of depression.

    PubMed

    Schijven, D; Sousa, V C; Roelofs, J; Olivier, B; Olivier, J D A

    2014-06-01

    The Flinder Sensitive Line (FSL) is a rat strain that displays distinct behavioral and neurochemical features of major depression. Chronic selective serotonin reuptake inhibitors (SSRIs) are able to reverse these symptoms in FSL rats. It is well known that several abnormalities in the serotonergic system have been found in FSL rats, including increased 5-HT brain tissue levels and reduced 5-HT synthesis. SSRIs are known to exert (part of) their effects by desensitization of the 5-HT₁A receptor and FSL rats appear to have lower 5-HT1A receptor densities compared with Flinder Resistant Line (FRL) rats. We therefore studied the sensitivity of this receptor on the sexual behavior performance in both FRL and FSL rats. First, basal sexual performance was studied after saline treatment followed by treatment of two different doses of the 5-HT₁A receptor agonist ±8-OH-DPAT. Finally we measured the effect of a 5-HT₁A receptor antagonist to check for specificity of the 5-HT₁A rec