Science.gov

Sample records for 5-ht2c receptor gene

  1. 759C/T Variants of the Serotonin (5-HT2C) Receptor Gene and Weight Gain in Children and Adolescents in Long-Term Risperidone Treatment

    PubMed Central

    del Castillo, Nicole; Zimmerman M, Bridget; Tyler, Billie; Ellingrod, Vicki L; Calarge, Chadi

    2014-01-01

    Background Great inter-individual variability exists in the susceptibility to gain weight during antipsychotic treatment. Thus, we examined whether the −759C/T variants in the promoter region of the 5HT2C receptor gene were differentially associated with weight gain in children and adolescents in long-term risperidone treatment. Methods Medically healthy 7 to 17 year-olds, treated with risperidone for ≥ six months, were enrolled. Anthropometric measurements, laboratory tests, and treatment history were obtained upon enrollment and from medical records. The effect of the genotype on the trajectory of age-sex-adjusted weight and body mass index (BMI) z scores before and after the onset of risperidone treatment was investigated. Results In 124 subjects (90% males, mean age: 11.8 years) treated with risperidone for a mean of 2.8 years, weight and BMI z scores significantly increased after starting risperidone. This change was similar across the two genotype groups as were changes in several cardiometabolic variables. Conclusion In contrast to other reports, the T allele failed to confer protection against excessive weight gain or cardiometabolic abnormalities in this group of children and adolescents chronically treated with risperidone. PMID:24772381

  2. Compulsive behavior in the 5-HT2C receptor knockout mouse.

    PubMed

    Chou-Green, Jennifer M; Holscher, Todd D; Dallman, Mary F; Akana, Susan F

    2003-04-01

    The efficacy of serotonergic pharmacotherapy indicates that serotonin (5-HT) plays a role in the treatment, if not the etiology, of obsessive-compulsive disorder (OCD). While some clinical evidence implicates 5-HT(2C) receptors in this disorder, a definitive function has yet to be validated. We hypothesized that 5-HT(2C) receptor knockout (KO) mice may display compulsive-like behavior. This paper describes characterization of several distinct, highly organized behaviors in mice lacking functional 5-HT(2C) receptors, which supports a compulsive-like syndrome.Compulsive-like behavior was assessed in male 5-HT(2C) receptor KO and wildtype (WT) mice. Chewing of non-nutritive clay, chewing patterns on plastic-mesh screens, and the frequency of head dipping were measured. 5-HT(2C) receptor KO mice chewed more clay, produced a distinct pattern of "neat" chewing of plastic screens and exhibited reduced habituation of head dipping activity compared to WT mice. We conclude that the 5-HT(2C) receptor null mutant mouse provides a promising model of compulsive behavior and a means to further explore the role of 5-HT in OCD. PMID:12782219

  3. Design, Synthesis, and Evaluation of Tetrasubstituted Pyridines as Potent 5-HT2C Receptor Agonists

    PubMed Central

    2015-01-01

    A series of pyrido[3,4-d]azepines that are potent and selective 5-HT2C receptor agonists is disclosed. Compound 7 (PF-04781340) is identified as a suitable lead owing to good 5-HT2C potency, selectivity over 5-HT2B agonism, and in vitro ADME properties commensurate with an orally available and CNS penetrant profile. The synthesis of a novel bicyclic tetrasubstituted pyridine core template is outlined, including rationale to account for the unexpected formation of aminopyridine 13 resulting from an ammonia cascade cyclization. PMID:25815155

  4. Therapeutic Potential of 5-HT2C Receptor Agonists for Addictive Disorders.

    PubMed

    Higgins, Guy A; Fletcher, Paul J

    2015-07-15

    The neurotransmitter 5-hydroxytryptamine (5-HT; serotonin) has long been associated with the control of a variety of motivated behaviors, including feeding. Much of the evidence linking 5-HT and feeding behavior was obtained from studies of the effects of the 5-HT releaser (dex)fenfluramine in laboratory animals and humans. Recently, the selective 5-HT2C receptor agonist lorcaserin received FDA approval for the treatment of obesity. This review examines evidence to support the use of selective 5-HT2C receptor agonists as treatments for conditions beyond obesity, including substance abuse (particularly nicotine, psychostimulant, and alcohol dependence), obsessive compulsive, and excessive gambling disorder. Following a brief survey of the early literature supporting a role for 5-HT in modulating food and drug reinforcement, we propose that intrinsic differences between SSRI and serotonin releasers may have underestimated the value of serotonin-based pharmacotherapeutics to treat clinical forms of addictive behavior beyond obesity. We then highlight the critical involvement of the 5-HT2C receptor in mediating the effect of (dex)fenfluramine on feeding and body weight gain and the evidence that 5-HT2C receptor agonists reduce measures of drug reward and impulsivity. A recent report of lorcaserin efficacy in a smoking cessation trial further strengthens the idea that 5-HT2C receptor agonists may have potential as a treatment for addiction. This review was prepared as a contribution to the proceedings of the 11th International Society for Serotonin Research Meeting held in Hermanus, South Africa, July 9-12, 2014. PMID:25870913

  5. Serotonin 5-ht2c receptor agonists: potential for the treatment of obesity.

    PubMed

    Miller, Keith J

    2005-10-01

    Obesity continues to be a burgeoning health problem worldwide. Before their removal from the market, fenfluramine and the more active enantiomer dexfenfluramine were considered to be among the most effective of weight loss agents. Much of the weight loss produced by fenfluramine was attributed to the direct activation of serotonin 5-HT(2C) receptors in the central nervous system via the desmethyl-metabolite of fenfluramine, norfenfluramine. Norfenfluramine, however, is non-selective, activating additional serotonin receptors, such as 5-HT(2A) and 5-HT(2B), which likely mediated the heart valve hypertrophy seen in many patients. Development of highly selective 5-HT(2C) agonists may recapitulate the clinical anti-obesity properties observed with fenfluramine while avoiding the significant cardiovascular and pulmonary side effects. PMID:16249524

  6. Selective 5-HT2C receptor agonists: Design and synthesis of pyridazine-fused azepines.

    PubMed

    Green, Martin P; McMurray, Gordon; Storer, R Ian

    2016-08-15

    Heterocycle-fused azepines are discussed as potent 5-HT2C receptor agonists with excellent selectivity over 5-HT2B agonism. Synthesis and structure activity relationships are outlined for a series of bicyclic pyridazino[3,4-d]azepines. By comparison with earlier published work, in vitro assays predict a high probability for achieving CNS penetration for a potent and selective compound 15a, a pre-requisite to achieve in vivo efficacy. PMID:27381086

  7. SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist.

    PubMed

    Kennett, G A; Wood, M D; Bright, F; Trail, B; Riley, G; Holland, V; Avenell, K Y; Stean, T; Upton, N; Bromidge, S; Forbes, I T; Brown, A M; Middlemiss, D N; Blackburn, T P

    1997-01-01

    SB 242084 has a high affinity (pKi 9.0) for the cloned human 5-HT2C receptor and 100- and 158-fold selectivity over the closely related cloned human 5-HT2B and 5-HT2A subtypes respectively. SB 242084 had over 100-fold selectivity over a range of other 5-HT, dopamine and adrenergic receptors. In studies of 5-HT-stimulated phosphatidylinositol hydrolysis using SH-SY5Y cells stably expressing the cloned human 5-HT2C receptor, SB 242084 acted as an antagonist with a pKb of 9.3, which closely resembled its corresponding receptor binding affinity. SB 242084 potently inhibited m-chlorophenylpiperazine (mCPP, 7 mgkg i.p. 20 min pre-test)-induced hypolocomotion in rats, a model of in vivo central 5-HT2C receptor function, with an ID50 of 0.11 mg/kg i.p., and 2.0 mg/kg p.o. SB 242084 (0.1-1 mg/kg i.p.) exhibited an anxiolytic-like profile in the rat social interaction test, increasing time spent in social interaction, but having no effect on locomotion. SB 242084 (0.1-1 mg/kg i.p.) also markedly increased punished responding in a rat Geller-Seifter conflict test of anxiety, but had no consistent effect on unpunished responding. A large acute dose of SB 242084 (30 mg/kg p.o.) had no effect on seizure susceptibility in the rat maximal electroshock seizure threshold test. Also, while SB 242084 (2 and 6 mg/kg p.o. 1 hr pre-test) antagonized the hypophagic response to mCPP, neither acute nor subchronic administration of the drug, for 5 days at 2 or 6 mg/kg p.o. twice daily, affected food intake or weight gain. The results suggest that SB 242084 is the first reported selective potent and brain penetrant 5-HT2C receptor antagonist and has anxiolytic-like activity, but does not possess either proconvulsant or hyperphagic properties which are characteristic of mutant mice lacking the 5-HT2C receptor. PMID:9225286

  8. New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders.

    PubMed

    Di Giovanni, Giuseppe; De Deurwaerdère, Philippe

    2016-01-01

    The 5-HT2C receptor (R) displays a widespread distribution in the CNS and is involved in the action of 5-HT in all brain areas. Knowledge of its functional role in the CNS pathophysiology has been impaired for many years due to the lack of drugs capable of discriminating among 5-HT2R subtypes, and to a lesser extent to the 5-HT1B, 5-HT5, 5-HT6 and 5-HT7Rs. The situation has changed since the mid-90s due to the increased availability of new and selective synthesized compounds, the creation of 5-HT2C knock out mice, and the progress made in molecular biology. Many pharmacological classes of drugs including antipsychotics, antidepressants and anxiolytics display affinities toward 5-HT2CRs and new 5-HT2C ligands have been developed for various neuropsychiatric disorders. The 5-HT2CR is presumed to mediate tonic/constitutive and phasic controls on the activity of different central neurobiological networks. Preclinical data illustrate this complexity to a point that pharmaceutical companies developed either agonists or antagonists for the same disease. In order to better comprehend this complexity, this review will briefly describe the molecular pharmacology of 5-HT2CRs, as well as their cellular impacts in general, before addressing its central distribution in the mammalian brain. Thereafter, we review the preclinical efficacy of 5-HT2C ligands in numerous behavioral tests modeling human diseases, highlighting the multiple and competing actions of the 5-HT2CRs in neurobiological networks and monoaminergic systems. Notably, we will focus this evidence in the context of the physiopathology of psychiatric and neurological disorders including Parkinson's disease, levodopa-induced dyskinesia, and epilepsy. PMID:26617215

  9. Sound-induced seizures in serotonin 5-HT2c receptor mutant mice.

    PubMed

    Brennan, T J; Seeley, W W; Kilgard, M; Schreiner, C E; Tecott, L H

    1997-08-01

    The epilepsies are a heterogeneous collection of seizure disorders with a lifetime expectancy risk rate of 2-4%. A convergence of evidence indicates that heritable factors contribute significantly to seizure susceptibility. Genetically epilepsy-prone rodent strains have been frequently used to examine the effect of genetic factors on seizure susceptibility. The most extensively studied of these have been strains that are susceptible to sound-induced convulsions (audiogenic seizures, or AGSs). Early observations of the AGS phenomenon were made in the laboratory of Dr. Ivan Pavlov; in the course of appetite-conditioning experiments in mice, the loud bell used to signal food presentation unexpectedly produced seizures in some animals. In 1947, DBA/2 (D2) mice were found to exhibit a genetic susceptibility to AGSs stimulated by a doorbell mounted in an iron tub. Since this discovery, AGSs have been among the most intensively studied phenotypes in behavioural genetics. Although several genetic loci confer susceptibility to AGSs, the corresponding genes have not been cloned. We report that null mutant mice lacking serotonin 5-HT2C receptors are extremely susceptible to AGSs. The onset of susceptibility is between two and three months of age, with complete penetrance in adult animals. AGS-induced immediate early gene expression indicates that AGSs are subcortical phenomena in auditory circuits. This AGS syndrome is the first produced by a known genetic defect; it provides a robust model for the examination of serotoninergic mechanisms in epilepsy. PMID:9241279

  10. Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers.

    PubMed

    Kamal, Maud; Gbahou, Florence; Guillaume, Jean-Luc; Daulat, Avais M; Benleulmi-Chaachoua, Abla; Luka, Marine; Chen, Patty; Kalbasi Anaraki, Dina; Baroncini, Marc; Mannoury la Cour, Clotilde; Millan, Mark J; Prevot, Vincent; Delagrange, Philippe; Jockers, Ralf

    2015-05-01

    Inasmuch as the neurohormone melatonin is synthetically derived from serotonin (5-HT), a close interrelationship between both has long been suspected. The present study reveals a hitherto unrecognized cross-talk mediated via physical association of melatonin MT2 and 5-HT2C receptors into functional heteromers. This is of particular interest in light of the "synergistic" melatonin agonist/5-HT2C antagonist profile of the novel antidepressant agomelatine. A suite of co-immunoprecipitation, bioluminescence resonance energy transfer, and pharmacological techniques was exploited to demonstrate formation of functional MT2 and 5-HT2C receptor heteromers both in transfected cells and in human cortex and hippocampus. MT2/5-HT2C heteromers amplified the 5-HT-mediated Gq/phospholipase C response and triggered melatonin-induced unidirectional transactivation of the 5-HT2C protomer of MT2/5-HT2C heteromers. Pharmacological studies revealed distinct functional properties for agomelatine, which shows "biased signaling." These observations demonstrate the existence of functionally unique MT2/5-HT2C heteromers and suggest that the antidepressant agomelatine has a distinctive profile at these sites potentially involved in its therapeutic effects on major depression and generalized anxiety disorder. Finally, MT2/5-HT2C heteromers provide a new strategy for the discovery of novel agents for the treatment of psychiatric disorders. PMID:25770211

  11. Native serotonin 5-HT2C receptors are expressed as homodimers on the apical surface of choroid plexus epithelial cells.

    PubMed

    Herrick-Davis, Katharine; Grinde, Ellinor; Lindsley, Tara; Teitler, Milt; Mancia, Filippo; Cowan, Ann; Mazurkiewicz, Joseph E

    2015-04-01

    G protein-coupled receptors (GPCRs) are a prominent class of plasma membrane proteins that regulate physiologic responses to a wide variety of stimuli and therapeutic agents. Although GPCR oligomerization has been studied extensively in recombinant cells, it remains uncertain whether native receptors expressed in their natural cellular environment are monomers, dimers, or oligomers. The goal of this study was to determine the monomer/oligomer status of a native GPCR endogenously expressed in its natural cellular environment. Native 5-HT2C receptors in choroid plexus epithelial cells were evaluated using fluorescence correlation spectroscopy (FCS) with photon counting histogram (PCH). An anti-5-HT2C fragment antigen binding protein was used to label native 5-HT2C receptors. A known monomeric receptor (CD-86) served as a control for decoding the oligomer status of native 5-HT2C receptors by molecular brightness analysis. FCS with PCH revealed molecular brightness values for native 5-HT2C receptors equivalent to the molecular brightness of a homodimer. 5-HT2C receptors displayed a diffusion coefficient of 5 × 10(-9) cm(2)/s and were expressed at 32 receptors/μm(2) on the apical surface of choroid plexus epithelial cells. The functional significance and signaling capabilities of the homodimer were investigated in human embryonic kidney 293 cells using agonists that bind in a wash-resistant manner to one or both protomers of the homodimer. Whereas agonist binding to one protomer resulted in G protein activation, maximal stimulation required occupancy of both protomers. This study is the first to demonstrate the homodimeric structure of 5-HT2C receptors endogenously expressed in their native cellular environment, and identifies the homodimer as a functional signaling unit. PMID:25609374

  12. Native Serotonin 5-HT2C Receptors Are Expressed as Homodimers on the Apical Surface of Choroid Plexus Epithelial Cells

    PubMed Central

    Grinde, Ellinor; Lindsley, Tara; Teitler, Milt; Mancia, Filippo; Cowan, Ann; Mazurkiewicz, Joseph E.

    2015-01-01

    G protein–coupled receptors (GPCRs) are a prominent class of plasma membrane proteins that regulate physiologic responses to a wide variety of stimuli and therapeutic agents. Although GPCR oligomerization has been studied extensively in recombinant cells, it remains uncertain whether native receptors expressed in their natural cellular environment are monomers, dimers, or oligomers. The goal of this study was to determine the monomer/oligomer status of a native GPCR endogenously expressed in its natural cellular environment. Native 5-HT2C receptors in choroid plexus epithelial cells were evaluated using fluorescence correlation spectroscopy (FCS) with photon counting histogram (PCH). An anti–5-HT2C fragment antigen binding protein was used to label native 5-HT2C receptors. A known monomeric receptor (CD-86) served as a control for decoding the oligomer status of native 5-HT2C receptors by molecular brightness analysis. FCS with PCH revealed molecular brightness values for native 5-HT2C receptors equivalent to the molecular brightness of a homodimer. 5-HT2C receptors displayed a diffusion coefficient of 5 × 10−9 cm2/s and were expressed at 32 receptors/μm2 on the apical surface of choroid plexus epithelial cells. The functional significance and signaling capabilities of the homodimer were investigated in human embryonic kidney 293 cells using agonists that bind in a wash-resistant manner to one or both protomers of the homodimer. Whereas agonist binding to one protomer resulted in G protein activation, maximal stimulation required occupancy of both protomers. This study is the first to demonstrate the homodimeric structure of 5-HT2C receptors endogenously expressed in their native cellular environment, and identifies the homodimer as a functional signaling unit. PMID:25609374

  13. Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors.

    PubMed

    Smith, R L; Canton, H; Barrett, R J; Sanders-Bush, E

    1998-11-01

    Extensive behavioral and biochemical evidence suggests an agonist role at the 5-HT2A receptor, and perhaps the 5-HT2C receptor, in the mechanism of action of hallucinogenic drugs. However the published in vitro pharmacological properties of N,N-dimethyltryptamine (DMT), an hallucinogenic tryptamine analog, are not consistent with this hypothesis. We, therefore, undertook an extensive investigation into the properties of DMT at 5-HT2A and 5-HT2C receptors. In fibroblasts transfected with the 5-HT2A receptor or the 5-HT2C receptor, DMT activated the major intracellular signaling pathway (phosphoinositide hydrolysis) to an extent comparable to that produced by serotonin. Because drug efficacy changes with receptor density and cellular microenvironment, we also examined the properties of DMT in native preparations using a behavioral and biochemical approach. Rats were trained to discriminate an antagonist ketanserin from an agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in a two-lever choice paradigm. Pharmacological studies showed that responding on the DOI and ketanserin lever reflected agonist and antagonist activity at 5-HT2A receptors, and hence, was a suitable model for evaluating the in vivo functional properties of DMT. Like other 5-HT2A receptor agonists, DMT substituted fully for DOI. Intact choroid plexus was used to evaluate the agonist properties at endogenous 5-HT2C receptors; DMT was a partial agonist at 5-HT2C receptors in this native preparation. Thus, we conclude that DMT behaves as an agonist at both 5-HT2A and 5-HT2A receptors. One difference was evident in that the 5-HT2C, but not the 5-HT2A, receptor showed a profound desensitization to DMT over time. This difference is interesting in light of the recent report that the hallucinogenic activity of DMT does not tolerate in humans and suggests the 5-HT2C receptor plays a less prominent role in the action of DMT. PMID:9768567

  14. Modulation of dopamine transmission by 5HT2C and 5HT3 receptors: a role in the antidepressant response.

    PubMed

    Dremencov, Eliyahu; Weizmann, Yifat; Kinor, Noa; Gispan-Herman, Iris; Yadid, Gal

    2006-02-01

    Dopaminergic mesolimbic and mesocortical systems are fundamental in hedonia and motivation. Therefore their regulation should be central in understanding depression treatment. This review highlights the dopaminergic activity in relation to depressive behavior and suggests two putative receptors as potential targets for research and development of future antidepressants. In this article we review data that describe the role of serotonin in regulating dopamine release, via 5HT2C and 5HT3 receptors. This action of serotonin appears to be linked to depressive-like behavior and to onset of behavioral effects of antidepressants in an animal model of depression. We suggest that drugs or strategies that decrease 5HT2C and increase 5HT3 receptor-mediated dopamine release in the limbic areas of the brain may provide a fast onset of therapeutic effect. Clinical and basic research data supporting this hypothesis are discussed. PMID:16475958

  15. Effects of RO 60 0175, a 5-HT(2C) receptor agonist, in three animal models of anxiety.

    PubMed

    Kennett, G; Lightowler, S; Trail, B; Bright, F; Bromidge, S

    2000-01-10

    There is some controversy as to whether 5-HT(2C) receptor agonists are anxiogenic or anxiolytic. The effects of the novel 5-HT(2C) receptor agonist, (S)-2-chloro-5-fluoro-indol-1-yl)-1-methyl ethylamine fumarate (RO 60 0175), in three models of anxiety were therefore tested. RO 60 0175 was found to induce hypolocomotion in rats at doses greater than 0.5 mg/kg s.c., an effect reversed by the selective 5-HT(2C) receptor antagonist, SB-242084. RO 60 0175 did not elicit anxiolytic-like responses in the social interaction test under high light unfamiliar conditions, but suppressed both time spent in social interaction and locomotion at doses of 1 and 3 mg/kg s.c., suggesting a sedative response. In the Vogel conflict test, RO 60 0175 had no significant action on the number of shocks taken. In the Geller-Seifter test, RO 60 0175 (0.3 and 1 mg/kg s.c.) simultaneously reduced both unpunished and punished lever pressing, a profile consistent with sedation. Finally, RO 60 0175 was tested in a rat social interaction test under low light familiar conditions optimal for the detection of anxiogenic-like responses. At 1 and 3 mg/kg s.c., RO 60 0175 reduced both time spent in social interaction and concurrent locomotion, a profile more consistent with sedation than anxiogenesis. In conclusion, RO 60 0175 induced sedative-like responses via 5-HT(2C) receptor activation, but was neither anxiolytic, nor clearly anxiogenic at the doses tested. PMID:10650160

  16. Decreased Incentive Motivation Following Knockout or Acute Blockade of the Serotonin Transporter: Role of the 5-HT2C Receptor.

    PubMed

    Browne, Caleb J; Fletcher, Paul J

    2016-09-01

    Acute pharmacological elevation of serotonin (5-hydroxytryptamine; 5-HT) activity decreases operant responding for primary reinforcers, suggesting that 5-HT reduces incentive motivation. The mechanism by which 5-HT alters incentive motivation is unknown, but parallel evidence that 5-HT2C receptor agonists also reduce responding for primary reinforcers implicates this receptor as a potential candidate. These experiments examined whether chronic and acute disruptions of serotonin transporter (SERT) activity altered incentive motivation, and whether the 5-HT2C receptor mediated the effects of elevated 5-HT on behavior. To assess incentive motivation, we measured responding for three different reinforcers: a primary reinforcer (saccharin), a conditioned reinforcer (CRf), and an unconditioned sensory reinforcer (USRf). In the chronic condition, responding was compared between SERT knockout (SERT-KO) mice and their wild-type littermates. In the acute condition, responding was examined in wild-type mice following treatment with 10 or 20 mg/kg citalopram, or its vehicle. The ability of the selective 5-HT2C antagonist SB 242084 to prevent the effects of SERT-KO and citalopram on responding was subsequently examined. Both SERT-KO and citalopram reduced responding for saccharin, a CRf, and a USRf. Treatment with SB 242084 enhanced responding for a CRf and a USRf in SERT-KO mice and blocked the effects of citalopram on CRf and USRf responding. However, SB 242084 was unable to prevent the effects of SERT-KO or citalopram on responding for saccharin. These results support a powerful inhibitory function for 5-HT in the control of incentive motivation, and indicate that the 5-HT2C receptor mediates these effects of 5-HT in a reinforcer-dependent manner. PMID:27125304

  17. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity

    PubMed Central

    Bazovkina, Darya V.; Kondaurova, Elena M.; Naumenko, Vladimir S.; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  18. Genotype-Dependent Difference in 5-HT2C Receptor-Induced Hypolocomotion: Comparison with 5-HT2A Receptor Functional Activity.

    PubMed

    Bazovkina, Darya V; Kondaurova, Elena M; Naumenko, Vladimir S; Ponimaskin, Evgeni

    2015-01-01

    In the present study behavioral effects of the 5-HT2C serotonin receptor were investigated in different mouse strains. The 5-HT2C receptor agonist MK-212 applied intraperitoneally induced significant dose-dependent reduction of distance traveled in the open field test in CBA/Lac mice. This effect was receptor-specific because it was inhibited by the 5-HT2C receptor antagonist RS102221. To study the role of genotype in 5-HT2C receptor-induced hypolocomotion, locomotor activity of seven inbred mouse strains was measured after MK-212 acute treatment. We found that the 5-HT2C receptor stimulation by MK-212 decreased distance traveled in the open field test in CBA/Lac, C57Bl/6, C3H/He, and ICR mice, whereas it failed to affect locomotor activity in DBA/2J, Asn, and Balb/c mice. We also compared the interstrain differences in functional response to 5-HT2C and 5-HT2A receptors activation measured by the quantification of receptor-mediated head-twitches. These experiments revealed significant positive correlation between 5-HT2C and 5-HT2A receptors functional responses for all investigated mouse strains. Moreover, we found that 5-HT2A receptor activation with DOI did not change locomotor activity in CBA/Lac mice. Taken together, our data indicate the implication of 5-HT2C receptors in regulation of locomotor activity and suggest the shared mechanism for functional responses mediated by 5-HT2C and 5-HT2A receptors. PMID:26380122

  19. Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism

    PubMed Central

    Graves, Steven M.; Clark, Mary J.; Traynor, John R.; Hu, Xiu-Ti; Napier, T. Celeste

    2014-01-01

    Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq–mediated signaling pathways. PMID:25229719

  20. RNA editing of the human serotonin 5-HT(2C) receptor delays agonist-stimulated calcium release.

    PubMed

    Price, R D; Sanders-Bush, E

    2000-10-01

    RNA encoding the human 5-HT(2C) receptor undergoes adenosine-to-inosine RNA editing events at five positions in the putative second intracellular loop, with a corresponding reduction in receptor/G-protein coupling. Agonist-stimulated calcium release was examined in NIH-3T3 fibroblasts stably expressing the nonedited human INI (hINI) or the edited hVSV or hVGV variants. We hypothesized that different receptor isoforms would show altered dynamics of agonist-induced calcium release. The three isoforms showed a rightward shift in agonist concentration-response curves for eliciting calcium release (EC(50) values: hINI, 2.2 nM; hVSV, 15 nM; hVGV, 49 nM). Additionally, the hVGV receptor showed a blunted and delayed [Ca(2+)](i) peak compared with the hINI or hVSV receptor isoforms. These distinctions in agonist-induced [Ca(2+)](i) release imply that edited 5-HT(2C) receptors may produce distinct physiological responses within the central nervous system. PMID:10999958

  1. Role of 5-HT2C Receptors in Effects of Monoamine Releasers on Intracranial Self-Stimulation in Rats

    PubMed Central

    Bauer, Clayton T.; Banks, Matthew L.; Blough, Bruce E.; Negus, S. Stevens

    2015-01-01

    Rationale Many monoamine releasers are abused by humans and produce abuse-related facilitation of intracranial self-stimulation (ICSS) in rats. Facilitation of ICSS in rats can be limited by monoamine releaser-induced serotonin (5-HT) release, but receptors that mediate 5-HT effects of monoamine releasers are unknown. Objectives Investigate whether 5-HT2C receptor activation is necessary for rate-decreasing effects produced in an ICSS procedure in rats by the 5-HT-selective monoamine releaser fenfluramine and the non-selective releasers napthylisopropylamine (PAL-287) and (+)-3,4-methylenedioxymethamphetamine ((+)-MDMA). Methods Adult male Sprague-Dawley rats with electrodes implanted in the medial forebrain bundle were trained to lever press for brain stimulation under a “frequency-rate” ICSS procedure. Effectiveness of the 5-HT2C antagonist SB 242,084 was evaluated to block rate-decreasing effects produced by (1) the 5-HT2C agonist Ro 60-0175, (2) the 5-HT-selective releaser fenfluramine, and (3) the mixed-action dopamine (DA)/norepinephrine (NE)/5-HT releasers PAL-287 (1.0-5.6 mg/kg), and (+)-MDMA (1.0-3.2 mg/kg). For comparison, effectiveness of SB 242,084 to alter rate-decreasing effects of the kappa opioid receptor agonist U69,593 and rate-increasing effects of the DA>5-HT releaser amphetamine were also examined. Results SB 242,084 pretreatment blocked rate-decreasing effects of Ro 60-0175 and fenfluramine, but not the rate-decreasing effects of U69,593 or the rate-increasing effects of amphetamine. SB 242,084 blunted the rate-decreasing effects and enhanced expression of rate-increasing effects of PAL-287 and (+)-MDMA. Conclusions These data suggest that 5-HT2C receptor activation contributes to rate-decreasing effects that are produced by selective and mixed-action 5-HT releasers in rats and that may oppose and limit the expression of abuse-related ICSS facilitation by these compounds. PMID:26041338

  2. Stimulation of 5-HT2C Receptors Improves Cognitive Deficits Induced by Human Tryptophan Hydroxylase 2 Loss of Function Mutation

    PubMed Central

    Del'Guidice, Thomas; Lemay, Francis; Lemasson, Morgane; Levasseur-Moreau, Jean; Manta, Stella; Etievant, Adeline; Escoffier, Guy; Doré, François Y; Roman, François S; Beaulieu, Jean-Martin

    2014-01-01

    Polymorphisms in the gene encoding the serotonin synthesis enzyme Tph2 have been identified in mental illnesses, including bipolar disorder, major depression, autism, schizophrenia, and ADHD. Deficits in cognitive flexibility and perseverative behaviors are shared common symptoms in these disorders. However, little is known about the impact of Tph2 gene variants on cognition. Mice expressing a human TPH2 variant (Tph2-KI) were used to investigate cognitive consequences of TPH2 loss of function and pharmacological treatments. We applied a recently developed behavioral assay, the automated H-maze, to study cognitive functions in Tph2-KI mice. This assay involves the consecutive discovery of three different rules: a delayed alternation task, a non-alternation task, and a delayed reversal task. Possible contribution of locomotion, reward, and sensory perception were also investigated. The expression of loss-of-function mutant Tph2 in mice was associated with impairments in reversal learning and cognitive flexibility, accompanied by perseverative behaviors similar to those observed in human clinical studies. Pharmacological restoration of 5-HT synthesis with 5-hydroxytryptophan or treatment with the 5-HT2C receptor agonist CP809.101 reduced cognitive deficits in Tph2-KI mice and abolished perseveration. In contrast, treatment with the psychostimulant methylphenidate exacerbated cognitive deficits in mutant mice. Results from this study suggest a contribution of TPH2 in the regulation of cognition. Furthermore, identification of a role for a 5-HT2 receptor agonist as a cognition-enhancing agent in mutant mice suggests a potential avenue to explore for the personalized treatment of cognitive symptoms in humans with reduced 5-HT synthesis and TPH2 polymorphisms. PMID:24196946

  3. Stimulation of medial prefrontal cortex serotonin 2C (5-HT(2C)) receptors attenuates cocaine-seeking behavior.

    PubMed

    Pentkowski, Nathan S; Duke, Felicia D; Weber, Suzanne M; Pockros, Lara A; Teer, Andrew P; Hamilton, Elizabeth C; Thiel, Kenneth J; Neisewander, Janet L

    2010-09-01

    Serotonin 2C receptor (5-HT(2C)R) agonists administered systemically attenuate both cocaine-primed and cue-elicited reinstatement of extinguished cocaine-seeking behavior. To further elucidate the function of these receptors in addiction-like processes, this study examined the effects of microinfusing the 5-HT(2C)R agonist MK212 (0, 10, 30, 100 ng/side/0.2 microl) into the medial prefrontal cortex (mPFC) on cocaine self-administration and reinstatement of extinguished cocaine-seeking behavior. Male Sprague-Dawley rats were trained to self-administer cocaine (0.75 mg/kg, i.v.) paired with light and tone cues. Once responding stabilized, rats received MK212 microinfusions before tests for maintenance of cocaine self-administration. Next, extinction training to reduce cocaine-seeking behavior, defined as responses performed without cocaine reinforcement available, occurred until low extinction baselines were achieved. Rats then received MK212 microinfusions before tests for reinstatement of extinguished cocaine-seeking behavior elicited by cocaine-priming injections (10 mg/kg, i.p.) or response-contingent presentations of the cocaine-associated cues; operant responses during cocaine-primed reinstatement tests produced no consequences. MK212 microinfusions into the prelimbic and infralimbic, but not anterior cingulate, regions of the mPFC dose-dependently attenuated both cocaine-primed and cue-elicited reinstatement of extinguished cocaine-seeking behavior, but did not reliably affect cocaine self-administration. A subsequent experiment showed that the effects of MK212 (100 ng/side/0.2 microl) on reinstatement of extinguished cocaine-seeking behavior were blocked by co-administration of the 5-HT(2C)R antagonist SB242084 (200 ng/side/0.2 microl). MK212 administered alone into the mPFC as a drug prime produced no discernable effects on cocaine-seeking behavior. These findings suggest that stimulation of 5-HT(2C)Rs in the mPFC attenuates the incentive motivational effects

  4. Variation within the serotonin (5-HT) 5-HT2C receptor system aligns with vulnerability to cocaine cue reactivity

    PubMed Central

    Anastasio, N C; Liu, S; Maili, L; Swinford, S E; Lane, S D; Fox, R G; Hamon, S C; Nielsen, D A; Cunningham, K A; Moeller, F G

    2014-01-01

    Cocaine dependence remains a challenging public health problem with relapse cited as a major determinant in its chronicity and severity. Environmental contexts and stimuli become reliably associated with its use leading to durable conditioned responses (‘cue reactivity') that can predict relapse as well as treatment success. Individual variation in the magnitude and influence of cue reactivity over behavior in humans and animals suggest that cue-reactive individuals may be at greater risk for the progression to addiction and/or relapse. In the present translational study, we investigated the contribution of variation in the serotonin (5-HT) 5-HT2C receptor (5-HT2CR) system in individual differences in cocaine cue reactivity in humans and rodents. We found that cocaine-dependent subjects carrying a single nucleotide polymorphism (SNP) in the HTR2C gene that encodes for the conversion of cysteine to serine at codon 23 (Ser23 variant) exhibited significantly higher attentional bias to cocaine cues in the cocaine-word Stroop task than those carrying the Cys23 variant. In a model of individual differences in cocaine cue reactivity in rats, we identified that high cocaine cue reactivity measured as appetitive approach behavior (lever presses reinforced by the discrete cue complex) correlated with lower 5-HT2CR protein expression in the medial prefrontal cortex and blunted sensitivity to the suppressive effects of the selective 5-HT2CR agonist WAY163909. Our translational findings suggest that the functional status of the 5-HT2CR system is a mechanistic factor in the generation of vulnerability to cocaine-associated cues, an observation that opens new avenues for future development of biomarker and therapeutic approaches to suppress relapse in cocaine dependence. PMID:24618688

  5. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice.

    PubMed

    Zhang, Gongliang; Wu, Xian; Zhang, Yong-Mei; Liu, Huan; Jiang, Qin; Pang, Gang; Tao, Xinrong; Dong, Liuyi; Stackman, Robert W

    2016-02-01

    Opioid abuse and dependence have evolved into an international epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to the opioid, for example morphine, can induce profound, long-lasting behavioral sensitization and physical dependence, which are thought to reflect neuroplasticity in neural circuitry. Central serotonin (5-HT) neurotransmission participates in the development of dependence on and the expression of withdrawal from morphine. Serotonin 5-HT(2C) receptor (5-HT(2C)R) agonists suppress psychostimulant nicotine or cocaine-induced behavioral sensitization and drug-seeking behavior; however, the impact of 5-HT(2C)R agonists on behaviors relevant to opioid abuse and dependence has not been reported. In the present study, the effects of 5-HT(2C)R activation on the behavioral sensitization and naloxone-precipitated withdrawal symptoms were examined in mice underwent repeated exposure to morphine. Male mice received morphine (10 mg/kg, s.c.) to develop behavioral sensitization. Lorcaserin, a 5-HT(2C)R agonist, prevented the induction and expression, but not the development, of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. Pretreatment of lorcaserin, or the positive control clonidine (an alpha 2-adrenoceptor agonist), ameliorated the naloxone-precipitated withdrawal symptoms. SB 242084, a selective 5-HT(2C)R antagonist, prevented the lorcaserin-mediated suppression of behavioral sensitization and withdrawal. Chronic morphine treatment was associated with an increase in the expression of 5-HT(2C)R protein in the ventral tegmental area, locus coeruleus and nucleus accumbens. These findings suggest that 5-HT(2C)R can modulate behavioral sensitization and withdrawal in morphine-dependent mice, and the activation of 5-HT(2C)R may represent a new avenue for the treatment of opioid addiction. PMID:26432939

  6. We Need 2C but Not 2B: Developing Serotonin 2C (5-HT2C) Receptor Agonists for the Treatment of CNS Disorders

    PubMed Central

    Cheng, Jianjun; Kozikowski, Alan P.

    2016-01-01

    The serotonin 2C (5-HT2C) receptor has been identified as a potential drug target for the treatment of a variety of central nervous system (CNS) disorders, such as obesity, substance abuse, and schizophrenia. In this Viewpoint article, recent progress in developing selective 5-HT2C agonists for use in treating these disorders is summarized, including the work of our group. Challenges in this field and the possible future directions are described. Homology modeling as a method to predict the binding modes of 5-HT2C ligands to the receptor is also discussed. Compared to known ligands, the improved pharmacological profiles of the 2-phenylcyclopropylmethylamine-based 5-HT2C agonists make them preferred candidates for further studies. PMID:26507582

  7. Human Serotonin 5-HT2C G Protein-Coupled Receptor Homology Model from the β2 Adrenoceptor Structure: Ligand Docking and Mutagenesis Studies

    PubMed Central

    RDOVA-SINTJAGO, TANIA CÓ; VILLA, NANCY; CANAL, CLINTON; BOOTH, RAYMOND

    2013-01-01

    Activation of the serotonin (5-hydroxytryptamine, 5-HT) 5HT2C G protein-coupled receptor (GPCR) is proposed as novel pharmacotherapy for obesity and neuropsychiatric disorders. In contrast, activation of the 5-HT2A and 5-HT2B GPCRs is associated with untoward hallucinogenic and cardiopulmonary effects, respectively. There is no crystal structure available to guide design of 5-HT2C receptor-specific ligands. For this reason, a homology model of the 5-HT2C receptor was built based on the crystal structure of the human β2 adrenoceptor GPCR to delineate molecular determinants of ligand–receptor interactions for drug design purposes. Computational and experimental studies were carried out to validate the model. Binding of N(CH3)2-PAT [(1R, 3S)-(−)-trans-1-phenyl-3-N,N-dimethylamino-1,2,3,4-tetrahydronaphthalene], a novel 5-HT2C agonist/5-HT2A/2B inverse agonist, and its secondary [NH(CH3)-PAT] and primary (NH2-PAT) amine analogs were studied at the 5-HT2C wild type (WT) and D3.32A, S3.36A, and Y7.43A 5-HT2C point-mutated receptors. Reference ligands included the tertiary amines lisuride and mesulergine and the primary amine 5-HT. Modeling results indicated that 5-HT2C residues D3.32, S3.36, and Y7.43 play a role in ligand binding. Experimental ligand binding results with WT and point-mutated receptors confirmed the impact of D3.32, S3.36, and Y7.43 on ligand affinity. PMID:24244046

  8. A-to-I editing of the 5HT2C receptor and behaviour.

    PubMed

    Gardiner, Katheleen; Du, Yunzhi

    2006-03-01

    Site-specific deamination of five adenosine residues in the pre-mRNA of the serotonin 2C receptor, 5HT2CR, alters the amino acid sequence of the encoded protein. Such RNA editing can produce 32 mRNA variants, encoding 24 protein isoforms that vary in biochemical and pharmacological properties. Because serotonin functions in the regulation of mood and behaviour, modulation of serotonin signalling by RNA editing may be relevant to such psychiatric disorders as anxiety and depression. Several recent human studies have reported changes in 5HT2CR editing in schizophrenia, major depression or suicide, but results are variable and not conclusive. Rodent studies have begun to examine effects of drug treatments and stress. Understanding the importance of 5HT2CR editing in mood and behaviour will be assisted by experiments designed to analyse multiple strains of mice, in different behavioural tests, with optimal evaluation of the time course of molecular changes. PMID:16769676

  9. Effect of 5-HT2A and 5-HT2C receptors on temporal discrimination by mice.

    PubMed

    Halberstadt, Adam L; Sindhunata, Ivan S; Scheffers, Kees; Flynn, Aaron D; Sharp, Richard F; Geyer, Mark A; Young, Jared W

    2016-08-01

    Timing deficits are observed in patients with schizophrenia. Serotonergic hallucinogens can also alter the subjective experience of time. Characterizing the mechanism through which the serotonergic system regulates timing will increase our understanding of the linkage between serotonin (5-HT) and schizophrenia, and will provide insight into the mechanism of action of hallucinogens. We investigated whether interval timing in mice is altered by hallucinogens and other 5-HT2 receptor ligands. C57BL/6J mice were trained to perform a discrete-trials temporal discrimination task. In the discrete-trials task, mice were presented with two levers after a variable interval. Responding on lever A was reinforced if the interval was <6.5 s, and responding on lever B was reinforced if the interval was >6.5 s. A 2-parameter logistic function was fitted to the proportional choice for lever B (%B responding), yielding estimates of the indifference point (T50) and the Weber fraction (a measure of timing precision). The 5-HT2A antagonist M100907 increased T50, whereas the 5-HT2C antagonist SB-242,084 reduced T50. The results indicate that 5-HT2A and 5-HT2C receptors have countervailing effects on the speed of the internal pacemaker. The hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI; 3 mg/kg IP), a 5-HT2 agonist, flattened the response curve at long stimulus intervals and shifted it to the right, causing both T50 and the Weber fraction to increase. The effect of DOI was antagonized by M100907 (0.03 mg/kg SC) but was unaffected by SB-242,084 (0.1 mg/kg SC). Similar to DOI, the selective 5-HT2A agonist 25CN-NBOH (6 mg/kg SC) reduced %B responding at long stimulus intervals, and increased T50 and the Weber fraction. These results demonstrate that hallucinogens alter temporal perception in mice, effects that are mediated by the 5-HT2A receptor. It appears that 5-HT regulates temporal perception, suggesting that altered serotonergic signaling may contribute to the timing deficits

  10. Lorcaserin, a selective 5-HT(2C) receptor agonist, decreases alcohol intake in female alcohol preferring rats.

    PubMed

    Rezvani, Amir H; Cauley, Marty C; Levin, Edward D

    2014-10-01

    Serotonergic systems in the brain have been found to be important in the addiction to alcohol. The purpose of this study was to evaluate the efficacy of a novel 5-HT2c receptor agonist, lorcaserin for reducing alcohol consumption in alcohol-preferring (P) rats. Adult female rats were allowed to drink water or alcohol (12%, v/v) using a standard two-bottle choice procedure. Once stable baselines were established, the acute (0, 0.3125, 0.625 and 1.25 mg/kg, s.c.), and chronic (0, 0.625 mg/kg, sc for 10 days) effects of lorcaserin on alcohol intake and preference were assessed at different time points. In a separate experiment, the effects of lorcaserin on locomotor activity were determined. Our results show that both 0.625 and 1.25 mg/kg lorcaserin significantly reduced alcohol intake at 2, 4 and 6 h. after the drug administration. The chronic administration of 0.625 mg/kg lorcaserin significantly reduced alcohol intake up to 6h every day after the injection and there was no sign of diminished efficacy of the drug during 10-day treatment. To determine the effects of lorcaserin on sucrose intake, rats were put on a two-bottle choice of water vs a solution of 7% sucrose. The high dose of lorcaserin (1.25 mg/kg, s.c.) reduced sucrose intake only for up to 2 h. When tested for locomotor activity, lorcaserin injected 20 min before testing significantly reduced locomotor activity at all doses. However, when it was injected 5.5h before the start of the 1-h session, neither dose had a significant effect on locomotor activity. These results show the efficacy of lorcaserin in reducing alcohol intake without a significant effect on water intake and locomotion suggesting the involvement of 5-HT2c receptors in alcohol seeking behavior. Further research is warranted to determine the possible efficacy of lorcaserin or similar drugs as treatments for the treatment of alcoholism. PMID:25109272

  11. Ethanol induced adaptations in 5-HT2c receptor signaling in the bed nucleus of the stria terminalis: implications for anxiety during ethanol withdrawal.

    PubMed

    Marcinkiewcz, Catherine A; Dorrier, Cayce E; Lopez, Alberto J; Kash, Thomas L

    2015-02-01

    One of the hallmarks of alcohol dependence is the presence of a withdrawal syndrome during abstinence, which manifests as physical craving for alcohol accompanied by subjective feelings of anxiety. Using a model of chronic intermittent ethanol (CIE) vapor in mice, we investigated the role of serotonin2c receptor (5HT2c-R) signaling in the BNST as a neural substrate underlying ethanol-induced anxiety during withdrawal. Mice were subjected to a 5-day CIE regimen of 16 h of ethanol vapor exposure followed by an 8 h "withdrawal" period between exposures. After the 5th and final exposure, mice were withdrawn for 24 h or 1 week before experiments began. Anxiety-like behavior was assessed in the social approach, light dark, and open field tests with mice showing deficits in social, but not general anxiety-like behavior that was alleviated by pretreatment with the 5HT2c-R antagonist SB 242,084 (3 mg/kg, i.p.) 24 h and 1 week post-CIE. Using immunohistochemistry and whole cell patch clamp electrophysiology, we also found that CIE increased FOS-IR and enhanced neuronal excitability in the ventral BNST (vBNST) 24 h into withdrawal in a 5HT2c-R dependent manner. This enhanced excitability persisted for 1 week post-CIE. We also found that mCPP, a 5HT2c/b agonist, induced a more robust depolarization in cells of the vBNST in CIE mice, confirming that 5HT2c-R signaling is upregulated in the vBNST following CIE. Taken together, these results suggest that CIE upregulates 5HT2c-R signaling in the vBNST, leading to increased excitability. This enhanced excitability of the vBNST may drive increased anxiety-like behavior during ethanol withdrawal. PMID:25229718

  12. Lorcaserin, A 5-HT2C Receptor Agonist, Reduces Body Weight by Decreasing Energy Intake without Influencing Energy Expenditure

    PubMed Central

    Martin, Corby K.; Redman, Leanne M.; Zhang, Jinkun; Sanchez, Matilde; Anderson, Christen M.; Smith, Steven R.

    2011-01-01

    Context: Lorcaserin, a selective 5-hydroxytryptamine (5-HT)2C receptor agonist, reduces body weight. It is unclear whether weight loss is due to reduced energy intake (EI) or also to enhanced energy expenditure (EE). Objective: This study tested the effect of lorcaserin on EI and EE. Design, Participants, and Intervention: In a double-blind, randomized, placebo-controlled trial, 57 (39 women) overweight and obese (body mass index, 27–45 kg/m2) adults were randomized to placebo (n = 28) or 10 mg twice daily lorcaserin (n = 29) for 56 d. Weight maintenance was imposed during d 1–7. Beginning on d 8, participants followed a diet and exercise plan targeting a 600 kcal/d deficit. Outcomes: At baseline and after 7 and 56 d of treatment, we measured body weight, body composition (dual x-ray absorptiometry), blood pressure, heart rate, EI at lunch and dinner, subjective appetite ratings, and 24-h EE and 24-h-respiratory quotient (RQ), measured by indirect calorimetry in a respiratory chamber. Results: After 7 d of weight maintenance, EI was significantly (P < 0.01) reduced with lorcaserin but not placebo (mean ± sem for lorcaserin, −286 ± 86 kcal; placebo, −147 ± 89 kcal). After 56 d, lorcaserin resulted in significantly larger reductions in body weight (lorcaserin, −3.8 ± 0.4 kg; placebo, −2.2 ± 0.5 kg; P < 0.01), EI (lorcaserin, −470 ± 87 kcal; placebo, −205 ± 91 kcal; P < .05), and appetite ratings than in placebo. Changes in 24-h EE and 24-h RQ did not differ between groups, even after 24-h EE was adjusted for body weight and composition. Compared with placebo, lorcaserin had no effect on systolic or diastolic blood pressure or heart rate after 56 d. Conclusions: Lorcaserin reduces body weight through reduced EI, not altered EE or RQ. PMID:21190985

  13. Role of serotonin 5-HT2C and histamine H1 receptors in antipsychotic-induced diabetes: A pharmacoepidemiological-pharmacodynamic study in VigiBase.

    PubMed

    Montastruc, François; Palmaro, Aurore; Bagheri, Haleh; Schmitt, Laurent; Montastruc, Jean-Louis; Lapeyre-Mestre, Maryse

    2015-10-01

    Pharmacodynamic mechanisms of diabetes induced by antipsychotic drugs remain unclear, while numerous receptors have been suspected to be involved in the genesis of this Adverse Drug Reaction (ADR). We investigated potential relationships between antipsychotics׳ receptor occupancy (serotonin 5-HT1A, 5-HT2A, 5-HT2C, histamine H1, muscarinic M3, adrenergic α1, α2 or dopaminergic D2 D3 occupancies) and reports of diabetes using VigiBase(®), the World Health Organization (WHO) global Individual Case Safety Report (ICSR) database. All ADR reports from 15 first and second generation antipsychotic drugs recorded in VigiBase(®) were extracted. Logistic regression models, completed by disproportionality analysis, were used to determine the associations between antipsychotics׳ receptor occupancy and ICSRs of diabetes on VigiBase(®). During the study period, 94,460 ICSRs involved at least one of the 15 antipsychotics of interest. Diabetes was reported in 1799 (1.9%) patients. Clozapine was the most frequently suspected drug (n=953; 53.0%). A significant and positive association was found between histamine H1, muscarinic M3 and serotonin 5-HT2C, 5-HT2A receptor occupancies and reports of diabetes. A multivariable stepwise regression model showed that only serotonin 5-HT2c (AOR=2.13, CI 95% 1.72-2.64) and histamine H1 (AOR=1.91, CI 95% 1.38-2.64) predicted the risk for diabetes mellitus (p<0.001). Using an original pharmacoepidemiology-pharmacodynamic (PE-PD) approach, our study supports that antipsychotic drugs blocking simultaneously histamine H1 and serotonin 5-HT2C receptors are more frequently associated with diabetes reports in VigiBase(®) than other antipsychotics. These findings should encourage investigation of histamine H1 and serotonin 5-HT2C properties for predicting the risk of glycemic effects in candidate antipsychotics. PMID:26256010

  14. Food intake inhibition in rainbow trout induced by activation of serotonin 5-HT2C receptors is associated with increases in POMC, CART and CRF mRNA abundance in hypothalamus.

    PubMed

    Pérez-Maceira, Jorge J; Otero-Rodiño, Cristina; Mancebo, María J; Soengas, José L; Aldegunde, Manuel

    2016-04-01

    In rainbow trout, the food intake inhibition induced by serotonin occurs through 5-HT2C and 5-HT1A receptors, though the mechanisms involved are still unknown. Therefore, we assessed if a direct stimulation of 5-HT2C and 5-HT1A serotonin receptors (resulting in decreased food intake in rainbow trout), affects gene expression of neuropeptides involved in the control of food intake, such as pro-opiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), corticotrophin releasing factor (CRF), and agouti-related peptide (AgRP). In a first set of experiments, the injection of the 5-HT2C receptor agonists MK212 (60 μg kg(-1) icv) and WAY 161503 (1 mg kg(-1) ip), and of the 5-HT1A receptor agonist 8-OH-DPAT (1 mg kg(-1) ip and 30 μg kg(-1) icv) induced food intake inhibition. In a second set of experiments, we observed that the injection of MK212 or WAY 161503 (1 and 3 mg kg(-1)) significantly increased hypothalamic POMC mRNA abundance. CART mRNA abundance in hypothalamus was enhanced by treatment with MK212 and unaffected by WAY 161503. The administration of the 5-HT1A receptor agonist 8-OH-DPAT did not induce any significant variation in the hypothalamic POMC or CART mRNA levels. CRF mRNA abundance was only affected by MK212 that increased hypothalamic values. Finally, hypothalamic AgRP mRNA abundance was only evaluated with the agonist 5-HT2C MK212 resulting in no significant effects. The results show that the reduction in food intake mediated by 5-HT2C receptors is associated with increases in hypothalamic POMC, CART and CRF mRNA abundance. PMID:26832922

  15. 5-HT2C Receptor Desensitization Moderates Anxiety in 5-HTT Deficient Mice: From Behavioral to Cellular Evidence

    PubMed Central

    Martin, Cédric BP; Martin, Vincent S.; Trigo, José M.; Chevarin, Caroline; Maldonado, Rafael; Fink, Latham H.; Cunningham, Kathryn A.; Hamon, Michel; Lanfumey, Laurence

    2015-01-01

    Background: Desensitization and blockade of 5-HT2C receptors (5-HT2CR) have long been thought to be central in the therapeutic action of antidepressant drugs. However, besides behavioral pharmacology studies, there is little in vivo data documenting antidepressant-induced 5-HT2CR desensitization in specific brain areas. Methods: Mice lacking the 5-HT reuptake carrier (5-HTT-/-) were used to model the consequences of chronic 5-HT reuptake inhibition with antidepressant drugs. The effect of this mutation on 5-HT2CR was evaluated at the behavioral (social interaction, novelty-suppressed feeding, and 5-HT2CR–induced hypolocomotion tests), the neurochemical, and the cellular (RT-qPCR, mRNA editing, and c-fos–induced expression) levels. Results: Although 5-HTT-/- mice had an anxiogenic profile in the novelty-suppressed feeding test, they displayed less 5-HT2CR–mediated anxiety in response to the agonist m-chlorophenylpiperazine in the social interaction test. In addition, 5-HT2CR–mediated inhibition of a stress-induced increase in 5-HT turnover, measured in various brain areas, was markedly reduced in 5-HTT-/- mutants. These indices of tolerance to 5-HT2CR stimulation were associated neither with altered levels of 5-HT2CR protein and mRNA nor with changes in pre-mRNA editing in the frontal cortex. However, basal c-fos mRNA production in cells expressing 5-HT2CR was higher in 5-HTT-/- mutants, suggesting an altered basal activity of these cells following sustained 5-HT reuptake carrier inactivation. Furthermore, the increased c-fos mRNA expression in 5-HT2CR–like immune-positive cortical cells observed in wild-type mice treated acutely with the 5-HT2CR agonist RO-60,0175 was absent in 5-HTT-/- mutants. Conclusions: Such blunted responsiveness of the 5-HT2CR system, observed at the cell signaling level, probably contributes to the moderation of the anxiety phenotype in 5-HTT-/- mice. PMID:25522398

  16. Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors.

    PubMed

    Moya, Pablo R; Berg, Kelly A; Gutiérrez-Hernandez, Manuel A; Sáez-Briones, Patricio; Reyes-Parada, Miguel; Cassels, Bruce K; Clarke, William P

    2007-06-01

    2,5-Dimethoxy-4-substituted phenylisopropylamines and phenethylamines are 5-hydroxytryptamine (serotonin) (5-HT)(2A/2C) agonists. The former are partial to full agonists, whereas the latter are partial to weak agonists. However, most data come from studies analyzing phospholipase C (PLC)-mediated responses, although additional effectors [e.g., phospholipase A(2) (PLA(2))] are associated with these receptors. We compared two homologous series of phenylisopropylamines and phenethylamines measuring both PLA(2) and PLC responses in Chinese hamster ovary-K1 cells expressing human 5-HT(2A) or 5-HT(2C) receptors. In addition, we assayed both groups of compounds as head shake inducers in rats. At the 5-HT(2C) receptor, most compounds were partial agonists for both pathways. Relative efficacy of some phenylisopropylamines was higher for both responses compared with their phenethylamine counterparts, whereas for others, no differences were found. At the 5-HT(2A) receptor, most compounds behaved as partial agonists, but unlike findings at 5-HT(2C) receptors, all phenylisopropylamines were more efficacious than their phenethylamine counterparts. 2,5-Dimethoxyphenylisopropylamine activated only the PLC pathway at both receptor subtypes, 2,5-dimethoxyphenethylamine was selective for PLC at the 5-HT(2C) receptor, and 2,5-dimethoxy-4-nitrophenethylamine was PLA(2)-specific at the 5-HT(2A) receptor. For both receptors, the rank order of efficacy of compounds differed depending upon which response was measured. The phenylisopropylamines were strong head shake inducers, whereas their phenethylamine congeners were not, in agreement with in vitro results and the involvement of 5-HT(2A) receptors in the head shake response. Our results support the concept of functional selectivity and indicate that subtle changes in ligand structure can result in significant differences in the cellular signaling profile. PMID:17337633

  17. 5-HT(2A) receptor blockade and 5-HT(2C) receptor activation interact to reduce cocaine hyperlocomotion and Fos protein expression in the caudate-putamen.

    PubMed

    Pockros, Lara A; Pentkowski, Nathan S; Conway, Sineadh M; Ullman, Teresa E; Zwick, Kimberly R; Neisewander, Janet L

    2012-12-01

    Both the 5-HT(2A) receptor (R) antagonist M100907 and the 5-HT(2C) R agonist MK212 attenuate cocaine-induced dopamine release and hyperlocomotion. This study examined whether these drugs interact to reduce cocaine hyperlocomotion and Fos expression in the striatum and prefrontal cortex. We first determined from dose-effect functions a low dose of both M100907 and MK212 that failed to alter cocaine (15 mg/kg, i.p.) hyperlocomotion. Subsequently, we examined whether these subthreshold doses given together would attenuate cocaine hyperlocomotion, consistent with a 5-HT(2A)/5-HT(2C) R interaction. Separate groups of rats received two sequential drug injections 5 min apart immediately before a 1-h locomotion test as follows: (1) saline + saline, (2) saline + cocaine, (3) 0.025 mg/kg M100907 + cocaine, (4) 0.125 mg/kg MK212 + cocaine, or (5) cocktail combination of 0.025 mg/kg M100907 and 0.125 mg/kg MK212 + cocaine. Brains were extracted for Fos immunohistochemistry 90 min after the second injection. We next examined the effects of 0.025 mg/kg M100907 and 0.125 mg/kg MK212, alone and in combination, on spontaneous locomotor activity. While neither drug given alone produced any effects, the M100907/MK212 cocktail attenuated cocaine hyperlocomotion as well as cocaine-induced Fos expression in the dorsolateral caudate-putamen (CPu), but had no effect on spontaneous locomotion. The findings suggest that 5-HT(2A) Rs and 5-HT(2C) Rs interact to attenuate cocaine hyperlocomotion and Fos expression in the CPu, and that the CPu is a potential locus of the interactive effects between these 5-HT(2) R subtypes on behavior. Further research investigating combined 5-HT(2A) R antagonism and 5-HT(2C) R agonism as a treatment for cocaine dependence is warranted. PMID:22886755

  18. Serotonin 5-HT2C receptor-independent expression of hypothalamic NOR1, a novel modulator of food intake and energy balance, in mice

    SciTech Connect

    Nonogaki, Katsunori; Kaji, Takao; Ohba, Yukie; Sumii, Makiko; Wakameda, Mamoru; Tamari, Tomohiro

    2009-08-21

    NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese {beta}-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice. Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in {beta}-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.

  19. Rat exposure in mice with neuropathic pain induces fear and antinociception that is not reversed by 5-HT2C receptor activation in the dorsal periaqueductal gray.

    PubMed

    Furuya-da-Cunha, Elke Mayumi; Souza, Rimenez Rodrigues de; Canto-de-Souza, Azair

    2016-07-01

    Previous studies have demonstrated that serotonin 5-HT2C receptors in the dorsal periaqueductal gray (dPAG) mediate both anxiety and antinociception in mice submitted to the elevated plus maze. The present study examined the effects of intra-dPAG infusion of the serotonin 5-HT2C receptor agonist (MK-212) in the defensive reactions and antinociception in mice with neurophatic pain confronted by a predator. Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve, and predator confrontation was performed using the rat exposure test (RET). Our results demonstrated that both sham-operated and CCI mice exhibited intense defensive reactions when confronted by rats. However, rat-exposed CCI mice showed reduced pain reactivity in comparison to CCI mice exposed to a toy rat. Intra-dPAG infusion of MK-212 prior to predator exposure did not significantly alter defensive or antinociceptive responses. To our knowledge, our results represent the first evidence of RET-induced antinociception in mice. Moreover, the results of the present study suggest that 5-HT2C receptor activation in the dPAG is not critically involved in the control of predator-evoked fearful or antinociceptive responses. PMID:27059332

  20. 5-HT(2C) serotonin receptor blockade prevents tau protein hyperphosphorylation and corrects the defect in hippocampal synaptic plasticity caused by a combination of environmental stressors in mice.

    PubMed

    Busceti, Carla Letizia; Di Pietro, Paola; Riozzi, Barbara; Traficante, Anna; Biagioni, Francesca; Nisticò, Robert; Fornai, Francesco; Battaglia, Giuseppe; Nicoletti, Ferdinando; Bruno, Valeria

    2015-09-01

    Exposure to multimodal sensory stressors is an everyday occurrence and sometimes becomes very intense, such as during rave parties or other recreational events. A growing body of evidence suggests that strong environmental stressors might cause neuronal dysfunction on their own in addition to their synergistic action with illicit drugs. Mice were exposed to a combination of physical and sensory stressors that are reminiscent of those encountered in a rave party. However, this is not a model of rave because it lacks the rewarding properties of rave. A 14-h exposure to environmental stressors caused an impairment of hippocampal long-term potentiation (LTP) and spatial memory, and an enhanced phosphorylation of tau protein in the CA1 and CA3 regions. These effects were transient and critically depended on the activation of 5-HT2C serotonin receptors, which are highly expressed in the CA1 region. Acute systemic injection of the selective 5-HT2C antagonist, RS-102,221 (2 mg/kg, i.p., 2 min prior the onset of stress), prevented tau hyperphosphorylation and also corrected the defects in hippocampal LTP and spatial memory. These findings suggest that passive exposure to a combination of physical and sensory stressors causes a reversible hippocampal dysfunction, which might compromise mechanisms of synaptic plasticity and spatial memory for a few days. Drugs that block 5-HT2C receptors might protect the hippocampus against the detrimental effect of environmental stressors. PMID:26145279

  1. Regulation of Oligomeric Organization of the Serotonin 5-Hydroxytryptamine 2C (5-HT2C) Receptor Observed by Spatial Intensity Distribution Analysis*

    PubMed Central

    Ward, Richard J.; Pediani, John D.; Godin, Antoine G.; Milligan, Graeme

    2015-01-01

    The questions of whether G protein-coupled receptors exist as monomers, dimers, and/or oligomers and if these species interconvert in a ligand-dependent manner are among the most contentious current issues in biology. When employing spatial intensity distribution analysis to laser scanning confocal microscope images of cells stably expressing either a plasma membrane-associated form of monomeric enhanced green fluorescent protein (eGFP) or a tandem version of this fluorophore, the eGFP tandem was identified as a dimer. Similar studies on cells stably expressing an eGFP-tagged form of the epidermal growth factor receptor demonstrated that, although largely a monomer in the basal state, this receptor rapidly became predominantly dimeric upon the addition of its ligand epidermal growth factor. In cells induced to express an eGFP-tagged form of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor, global analysis of construct quantal brightness was consistent with the predominant form of the receptor being dimeric. However, detailed spatial intensity distribution analysis demonstrated the presence of multiple forms ranging from monomers to higher-order oligomers. Furthermore, treatment with chemically distinct 5-HT2C receptor antagonists resulted in a time-dependent change in the quaternary organization to one in which there was a preponderance of receptor monomers. This antagonist-mediated effect was reversible, because washout of the ligand resulted in the regeneration of many of the oligomeric forms of the receptor. PMID:25825490

  2. Expression of hippocampal serotonin receptors 5-HT2C and 5-HT5A in a rat model of diet-induced obesity supplemented with tryptophan.

    PubMed

    Lopez-Esparza, Sarahi; Berumen, Laura C; Padilla, Karla; Miledi, Ricardo; García-Alcocer, Guadalupe

    2015-05-01

    Food intake regulation is a complex mechanism that involves endogenous substances and central nervous system structures like hypothalamus or even hippocampus. The neurotransmitter serotonin is distinguished as food intake mediator; within its multiples receptors, the 5-HT2C type is characterized by its inhibitory appetite action but there is no information about 5-HT5A receptors involvement in obesity disease. It is also unknown if there are any changes in the receptors expression in rats hippocampus with induced obesity during development through a high energy diet (HED) supplemented with tryptophan (W). To appreciate the receptors expression pattern in the hippocampus, obesity was induced to young Sprague Dawley rats through a HED and supplemented with W. Immunocytochemical and western blot techniques were used to study the receptor distribution and quantify the protein expression. The rats with HED diet developed obesity until week 13 of treatment. The 5-HT2C receptor expression decreased in CA1, CA2, CA3 and DG of HED group; and also in CA2, CA3 and DG for HEDW group. The 5-HT5A receptor expression only decreased in DG for HED group. Variations of the two serotonin receptors subtypes support their potential role in obesity. PMID:25720309

  3. The 5-HT(2C) receptor agonist lorcaserin reduces cocaine self-administration, reinstatement of cocaine-seeking and cocaine induced locomotor activity.

    PubMed

    Harvey-Lewis, Colin; Li, Zhaoxia; Higgins, Guy A; Fletcher, Paul J

    2016-02-01

    Lorcaserin (Lorqess, Belviq(®)) is a selective 5-HT(2C) receptor agonist that has received FDA approval for the treatment of obesity. 5-HT(2C) receptor agonists are also efficacious in decreasing multiple aspects of cocaine motivation and reward in preclinical models. This would suggest that lorcaserin is a clinically available therapeutic with the potential to treat cocaine addiction. Here we report the effects of lorcaserin (0.1 mg/kg-1.0 mg/kg) on multiple aspects of cocaine-related behaviours in rats. We find that lorcaserin dose-dependently decreases cocaine self-administration on progressive and fixed ratio schedules of reinforcement. Lorcaserin also reduces reinstatement of cocaine-seeking behaviour in response to priming injections of cocaine and/or reintroduction of cocaine-associated cues. Finally, lorcaserin dose-dependently decreases cocaine-induced hyperlocomotion. Our results, when considered in concert with similar emergent findings in non-human primates, strongly support continued research into the potential of lorcaserin as a clinical treatment for cocaine addiction. PMID:26427596

  4. Role for serotonin2A (5-HT2A) and 2C (5-HT2C) receptors in experimental absence seizures.

    PubMed

    Venzi, Marcello; David, François; Bellet, Joachim; Cavaccini, Anna; Bombardi, Cristiano; Crunelli, Vincenzo; Di Giovanni, Giuseppe

    2016-09-01

    Absence seizures (ASs) are the hallmark of childhood/juvenile absence epilepsy. Monotherapy with first-line anti-absence drugs only controls ASs in 50% of patients, indicating the need for novel therapeutic targets. Since serotonin family-2 receptors (5-HT2Rs) are known to modulate neuronal activity in the cortico-thalamo-cortical loop, the main network involved in AS generation, we investigated the effect of selective 5-HT2AR and 5-HT2CR ligands on ASs in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a well established polygenic rat model of these non-convulsive seizures. GAERS rats were implanted with fronto-parietal EEG electrodes under general anesthesia, and their ASs were later recorded under freely moving conditions before and after intraperitoneal administration of various 5-HT2AR and 5-HT2CR ligands. The 5-HT2A agonist TCB-2 dose-dependently decreased the total time spent in ASs, an effect that was blocked by the selective 5-HT2A antagonist MDL11,939. Both MDL11,939 and another selective 5-HT2A antagonist (M100,907) increased the length of individual seizures when injected alone. The 5-HT2C agonists lorcaserin and CP-809,101 dose-dependently suppressed ASs, an effect blocked by the selective 5-HT2C antagonist SB 242984. In summary, 5-HT2ARs and 5-HT2CRs negatively control the expression of experimental ASs, indicating that selective agonists at these 5-HT2R subtypes might be potential novel anti-absence drugs. PMID:27085605

  5. (1R, 3S)-(−)-Trans-PAT: A novel full-efficacy serotonin 5-HT2C receptor agonist with 5-HT2A and 5-HT2B receptor inverse agonist/antagonist activity

    PubMed Central

    Booth, Raymond G.; Fang, Lijuan; Huang, Yingsu; Wilczynski, Andrzej; Sivendran, Sashikala

    2009-01-01

    The serotonin 5-HT2A, 5-HT2B, and 5-HT2C G protein-coupled receptors signal primarily through Gαq to activate phospholipase C (PLC) and formation of inositol phosphates (IP) and diacylglycerol. The human 5-HT2C receptor, expressed exclusively in the central nervous system, is involved in several physiological and psychological processes. Development of 5-HT2C agonists that do not also activate 5-HT2A or 5-HT2B receptors is challenging because transmembrane domain identity is about 75% among 5-HT2 subtypes. This paper reports 5-HT2 receptor affinity and function of (1R,3S)-(−)-trans-1-phenyl-3-dimethylamino-1,2,3,4-tetrahydronaphthalene (PAT), a small molecule that produces anorexia and weight-loss after peripheral administration to mice. (−)-Trans-PAT is a stereoselective full-efficacy agonist at human 5-HT2C receptors, plus, it is a 5-HT2A/5-HT2B inverse agonist and competitive antagonist. The Ki of (−)-trans-PAT at 5-HT2A, 5-HT2B, and 5-HT2C receptors is 410, 1200, and 37 nM, respectively. Functional studies measured activation of PLC/[3H]-IP formation in clonal cells expressing human 5-HT2 receptors. At 5-HT2C receptors, (−)-trans-PAT is an agonist (EC50 = 20 nM) comparable to serotonin in potency and efficacy. At 5-HT2A and 5-HT2B receptors, (−)-trans-PAT is an inverse agonist (IC50 = 490 and 1,000 nM, respectively) and competitive antagonist (KB = 460 and 1400 nM, respectively) of serotonin. Experimental results are interpreted in light of molecular modeling studies indicating the (−)-trans-PAT protonated amine can form an ionic bond with D3.32 of 5-HT2A and 5-HT2C receptors, but, not with 5-HT2B receptors. In addition to probing 5-HT2 receptor structure and function, (−)-trans-PAT is a novel lead regarding 5-HT2C agonist/5-HT2A inverse agonist drug development for obesity and neuropsychiatric disorders. PMID:19397907

  6. Stimulation of Medial Prefrontal Cortex Serotonin 2C (5-HT2C) Receptors Attenuates Cocaine-Seeking Behavior

    PubMed Central

    Pentkowski, Nathan S; Duke, Felicia D; Weber, Suzanne M; Pockros, Lara A; Teer, Andrew P; Hamilton, Elizabeth C; Thiel, Kenneth J; Neisewander, Janet L

    2010-01-01

    Serotonin 2C receptor (5-HT2CR) agonists administered systemically attenuate both cocaine-primed and cue-elicited reinstatement of extinguished cocaine-seeking behavior. To further elucidate the function of these receptors in addiction-like processes, this study examined the effects of microinfusing the 5-HT2CR agonist MK212 (0, 10, 30, 100 ng/side/0.2 μl) into the medial prefrontal cortex (mPFC) on cocaine self-administration and reinstatement of extinguished cocaine-seeking behavior. Male Sprague–Dawley rats were trained to self-administer cocaine (0.75 mg/kg, i.v.) paired with light and tone cues. Once responding stabilized, rats received MK212 microinfusions before tests for maintenance of cocaine self-administration. Next, extinction training to reduce cocaine-seeking behavior, defined as responses performed without cocaine reinforcement available, occurred until low extinction baselines were achieved. Rats then received MK212 microinfusions before tests for reinstatement of extinguished cocaine-seeking behavior elicited by cocaine-priming injections (10 mg/kg, i.p.) or response-contingent presentations of the cocaine-associated cues; operant responses during cocaine-primed reinstatement tests produced no consequences. MK212 microinfusions into the prelimbic and infralimbic, but not anterior cingulate, regions of the mPFC dose-dependently attenuated both cocaine-primed and cue-elicited reinstatement of extinguished cocaine-seeking behavior, but did not reliably affect cocaine self-administration. A subsequent experiment showed that the effects of MK212 (100 ng/side/0.2 μl) on reinstatement of extinguished cocaine-seeking behavior were blocked by co-administration of the 5-HT2CR antagonist SB242084 (200 ng/side/0.2 μl). MK212 administered alone into the mPFC as a drug prime produced no discernable effects on cocaine-seeking behavior. These findings suggest that stimulation of 5-HT2CRs in the mPFC attenuates the incentive motivational

  7. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats.

    PubMed

    Martin-Gronert, Malgorzata S; Stocker, Claire J; Wargent, Edward T; Cripps, Roselle L; Garfield, Alastair S; Jovanovic, Zorica; D'Agostino, Giuseppe; Yeo, Giles S H; Cawthorne, Michael A; Arch, Jonathan R S; Heisler, Lora K; Ozanne, Susan E

    2016-04-01

    Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus ofin uterogrowth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist. PMID:26769798

  8. 5-HT2A and 5-HT2C receptors as hypothalamic targets of developmental programming in male rats

    PubMed Central

    Martin-Gronert, Malgorzata S.; Stocker, Claire J.; Wargent, Edward T.; Cripps, Roselle L.; Garfield, Alastair S.; Jovanovic, Zorica; D'Agostino, Giuseppe; Yeo, Giles S. H.; Cawthorne, Michael A.; Arch, Jonathan R. S.; Heisler, Lora K.; Ozanne, Susan E.

    2016-01-01

    ABSTRACT Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus of in utero growth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist. PMID:26769798

  9. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  10. Molecular interactions of agonist and inverse agonist ligands at serotonin 5-HT2C G protein-coupled receptors: computational ligand docking and molecular dynamics studies validated by experimental mutagenesis results

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania C.; Liu, Yue; Booth, Raymond G.

    2015-02-01

    To understand molecular determinants for ligand activation of the serotonin 5-HT2C G protein-coupled receptor (GPCR), a drug target for obesity and neuropsychiatric disorders, a 5-HT2C homology model was built according to an adrenergic β2 GPCR (β2AR) structure and validated using a 5-HT2B GPCR crystal structure. The models were equilibrated in a simulated phosphatidyl choline membrane for ligand docking and molecular dynamics studies. Ligands included (2S, 4R)-(-)-trans-4-(3'-bromo- and trifluoro-phenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalene-2-amine (3'-Br-PAT and 3'-CF3-PAT), a 5-HT2C agonist and inverse agonist, respectively. Distinct interactions of 3'-Br-PAT and 3'-CF3-PAT at the wild-type (WT) 5-HT2C receptor model were observed and experimental 5-HT2C receptor mutagenesis studies were undertaken to validate the modelling results. For example, the inverse agonist 3'-CF3-PAT docked deeper in the WT 5-HT2C binding pocket and altered the orientation of transmembrane helices (TM) 6 in comparison to the agonist 3'-Br-PAT, suggesting that changes in TM orientation that result from ligand binding impact function. For both PATs, mutation of 5-HT2C residues S3.36, T3.37, and F5.47 to alanine resulted in significantly decreased affinity, as predicted from modelling results. It was concluded that upon PAT binding, 5-HT2C residues T3.37 and F5.47 in TMs 3 and 5, respectively, engage in inter-helical interactions with TMs 4 and 6, respectively. The movement of TMs 5 and 6 upon agonist and inverse agonist ligand binding observed in the 5-HT2C receptor modelling studies was similar to movements reported for the activation and deactivation of the β2AR, suggesting common mechanisms among aminergic neurotransmitter GPCRs.

  11. Oligomer size of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor revealed by fluorescence correlation spectroscopy with photon counting histogram analysis: evidence for homodimers without monomers or tetramers.

    PubMed

    Herrick-Davis, Katharine; Grinde, Ellinor; Lindsley, Tara; Cowan, Ann; Mazurkiewicz, Joseph E

    2012-07-01

    Fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) are techniques with single molecule sensitivity that are well suited for examining the biophysical properties of protein complexes in living cells. In the present study, FCS and PCH were applied to determine the diffusion coefficient and oligomeric size of G-protein-coupled receptors. FCS was used to record fluctuations in fluorescence intensity arising from fluorescence-tagged 5-hydroxytryptamine 2C (5-HT(2C)) receptors diffusing within the plasma membrane of HEK293 cells and rat hippocampal neurons. Autocorrelation analysis yielded diffusion coefficients ranging from 0.8 to 1.2 μm(2)/s for fluorescence-tagged receptors. Because the molecular brightness of a fluorescent protein is directly proportional to the number of fluorescent proteins traveling together within a protein complex, it can be used to determine the oligomeric size of the protein complex. FCS and PCH analysis of fluorescence-tagged 5-HT(2C) receptors provided molecular brightness values that were twice that of GFP and YFP monomeric controls, similar to a dimeric GFP control, and unaltered by 5-HT. Bimolecular fluorescence complementation of the N- and C-terminal halves of YFP attached to 5-HT(2C) receptors was observed in endoplasmic reticulum/Golgi and plasma membranes with a brightness equal to monomeric YFP. When GFP-tagged 5-HT(2C) receptors were co-expressed with a large excess of untagged, non-fluorescent 5-HT(2C) receptors, the molecular brightness was reduced by half. PCH analysis of the FCS data were best described by a one-component dimer model without monomers or tetramers. Therefore, it is concluded that 5-HT(2C) receptors freely diffusing within the plasma membrane are dimeric. PMID:22593582

  12. Activation of serotonin 5-HT(2C) receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice.

    PubMed

    Wu, Xian; Pang, Gang; Zhang, Yong-Mei; Li, Guangwu; Xu, Shengchun; Dong, Liuyi; Stackman, Robert W; Zhang, Gongliang

    2015-10-21

    Abuse and dependence to heroin has evolved into a global epidemic as a significant clinical and societal problem with devastating consequences. Repeated exposure to heroin can induce long-lasting behavioral sensitization and withdrawal. Pharmacological activation of 5-HT2C receptors (5-HT2CRs) suppresses psychostimulant-induced drug-seeking and behavioral sensitization. The present study examined the effect of a selective 5-HT2CR agonist lorcaserin on behavioral sensitization and naloxone-precipitated withdrawal symptoms in heroin-treated mice. Male mice received heroin (1.0 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of heroin (1.0 mg/kg) was administered to examine the expression of behavioral sensitization. Lorcaserin administered during the development, withdrawal or expression stage suppressed heroin-induced behavioral sensitization on day 9. Another cohort of mice received increasing doses of heroin over a 4.5-day period. Lorcaserin, or the positive control clonidine (an α2-adrenoceptor agonist) suppressed naloxone-precipitated withdrawal symptoms in heroin-treated mice. These findings suggest that activation of 5-HT2CRs suppresses behavioral sensitization and withdrawal in heroin-treated mice. Thus, pharmacological activation of 5-HT2CRs may represent a new avenue for the treatment of heroin addiction. PMID:26375926

  13. Serotonin (5-HT) 2C Receptor (5-HT2CR) Protein Expression is Enriched in Synaptosomal and Postsynaptic Compartments of Rat Cortex

    PubMed Central

    Anastasio, Noelle C.; Lanfranco, Maria Fe; Bubar, Marcy J.; Seitz, Patricia K.; Stutz, Sonja J.; McGinnis, Andrew G.; Watson, Cheryl S.; Cunningham, Kathryn A.

    2010-01-01

    The action of serotonin (5-HT) at the 5-HT2C receptor (5-HT2CR) in cerebral cortex is emerging as a candidate modulator of neural processes that mediate core phenotypic facets of several psychiatric and neurological disorders. However, our understanding of the neurobiology of the cortical 5-HT2CR protein complex is currently limited. The goal of the present study was to explore the subcellular localization of the 5-HT2CR in synaptosomes and the postsynaptic density, an electron-dense thickening specialized for postsynaptic signaling and neuronal plasticity. Utilizing multiples tissues (brain, peripheral tissues), protein fractions (synaptosomal, postsynaptic density), and controls (peptide neutralization, 5-HT2CR stable-expressing cells), we established the selectivity of two commercially available 5-HT2CR antibodies and employed the antibodies in Western blot and immunoprecipitation studies of PFC and motor cortex, two regions implicated in cognitive, emotional and motor dysfunction. For the first time, we demonstrated the expression of the 5-HT2CR in postsynaptic density-enriched fractions from both PFC and motor cortex. Co-immunoprecipitation studies revealed the presence of PSD-95 within the 5-HT2CR protein complex expressed in PFC and motor cortex. Taken together, these data support the hypothesis that the 5-HT2CR is localized within the postsynaptic thickening of synapses and is therefore positioned to directly modulate synaptic plasticity in cortical neurons. PMID:20345755

  14. Functional Status of the Serotonin 5-HT2C Receptor (5-HT2CR) Drives Interlocked Phenotypes that Precipitate Relapse-Like Behaviors in Cocaine Dependence

    PubMed Central

    Anastasio, Noelle C; Stutz, Sonja J; Fox, Robert G; Sears, Robert M; Emeson, Ronald B; DiLeone, Ralph J; O'Neil, Richard T; Fink, Latham H; Li, Dingge; Green, Thomas A; Gerard Moeller, F; Cunningham, Kathryn A

    2014-01-01

    Relapse vulnerability in cocaine dependence is rooted in genetic and environmental determinants, and propelled by both impulsivity and the responsivity to cocaine-linked cues (‘cue reactivity'). The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2C receptor (5-HT2CR) within the medial prefrontal cortex (mPFC) is uniquely poised to serve as a strategic nexus to mechanistically control these behaviors. The 5-HT2CR functional capacity is regulated by a number of factors including availability of active membrane receptor pools, the composition of the 5-HT2CR macromolecular protein complex, and editing of the 5-HT2CR pre-mRNA. The one-choice serial reaction time (1-CSRT) task was used to identify impulsive action phenotypes in an outbred rat population before cocaine self-administration and assessment of cue reactivity in the form of lever presses reinforced by the cocaine-associated discrete cue complex during forced abstinence. The 1-CSRT task reliably and reproducibly identified high impulsive (HI) and low impulsive (LI) action phenotypes; HI action predicted high cue reactivity. Lower cortical 5-HT2CR membrane protein levels concomitant with higher levels of 5-HT2CR:postsynaptic density 95 complex distinguished HI rats from LI rats. The frequency of edited 5-HT2CR mRNA variants was elevated with the prediction that the protein population in HI rats favors those isoforms linked to reduced signaling capacity. Genetic loss of the mPFC 5-HT2CR induced aggregate impulsive action/cue reactivity, suggesting that depressed cortical 5-HT2CR tone confers vulnerability to these interlocked behaviors. Thus, impulsive action and cue reactivity appear to neuromechanistically overlap in rodents, with the 5-HT2CR functional status acting as a neural rheostat to regulate, in part, the intersection between these vulnerability behaviors. PMID:23939424

  15. Peptide Inhibitors Disrupt the Serotonin 5-HT2C Receptor Interaction with Phosphatase and Tensin Homolog to Allosterically Modulate Cellular Signaling and Behavior

    PubMed Central

    Anastasio, Noelle C.; Gilbertson, Scott R.; Bubar, Marcy J.; Agarkov, Anton; Stutz, Sonja J.; Jeng, Yowjiun; Bremer, Nicole M.; Smith, Thressa D.; Fox, Robert G.; Swinford, Sarah E.; Seitz, Patricia K.; Charendoff, Marc N.; Craft, John W.; Laezza, Fernanda M.; Watson, Cheryl S.; Briggs, James M.; Cunningham, Kathryn A.

    2013-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) signaling through the 5-HT2C receptor (5-HT2CR) is essential in normal physiology, whereas aberrant 5-HT2CR function is thought to contribute to the pathogenesis of multiple neural disorders. The 5-HT2CR interacts with specific protein partners, but the impact of such interactions on 5-HT2CR function is poorly understood. Here, we report convergent cellular and behavioral data that the interaction between the 5-HT2CR and protein phosphatase and tensin homolog (PTEN) serves as a regulatory mechanism to control 5-HT2CR-mediated biology but not that of the closely homologous 5-HT2AR. A peptide derived from the third intracellular loop of the human 5-HT2CR [3L4F (third loop, fourth fragment)] disrupted the association, allosterically augmented 5-HT2CR-mediated signaling in live cells, and acted as a positive allosteric modulator in rats in vivo. We identified the critical residues within an 8 aa fragment of the 3L4F peptide that maintained efficacy (within the picomolar range) in live cells similar to that of the 3L4F peptide. Last, molecular modeling identified key structural features and potential interaction sites of the active 3L4F peptides against PTEN. These compelling data demonstrate the specificity and importance of this protein assembly in cellular events and behaviors mediated by 5-HT2CR signaling and provide a chemical guidepost to the future development of drug-like peptide or small-molecule inhibitors as neuroprobes to study 5-HT2CR allostery and therapeutics for 5-HT2CR-mediated disorders. PMID:23345234

  16. Synthesis and pharmacological evaluation of dual ligands for melatonin (MT1/MT2) and serotonin 5-HT2C receptor subtypes (II).

    PubMed

    Ettaoussi, Mohamed; Pérès, Basile; Errazani, Aïcha; Boutin, Jean A; Caignard, Daniel-Henri; Delagrange, Philippe; Melnyk, Patricia; Berthelot, Pascal; Yous, Saïd

    2015-01-27

    In this paper we report the investigation of C-3 and β-acetamide positions of agomelatine analogues. Concomitant insertion of a hydroxymethyl in the β-acetamide position and aliphatic groups in C-3 position produced a positive effect on both melatonin (MT1, MT2) and serotonin (5-HT2C) binding affinities. In particular, the allyl 6b and ethyl 15a represented the more interesting compounds of this series. Furthermore, the introduction of methyl cycloalkyl groups (compounds 11a, 12a) exhibited no change in both MT2 and 5-HT2C binding affinities while a decrease of MT1 binding affinity occurred leading to an MT2 selectivity. Finally, the acetamide modulation has led to methyl thiourea 11h, with a weak MT2 selectivity. PMID:25528336

  17. Characterization of the 5-HT2C receptor agonist lorcaserin on efficacy and safety measures in a rat model of diet-induced obesity

    PubMed Central

    Higgins, Guy A; Desnoyer, Jill; Van Niekerk, Annalise; Silenieks, Leo B; Lau, Winnie; Thevarkunnel, Sandy; Izhakova, Julia; DeLannoy, Ines AM; Fletcher, Paul J; DeLay, Josepha; Dobson, Howard

    2015-01-01

    The 5-HT2C receptor agonist lorcaserin (Belviq®) has been Food and Drug Administration (FDA) approved for the treatment of obesity. The present study is a back translational investigation into the effect of 28-day lorcaserin treatment in a diet-induced obesity (DIO) model using male, Sprague–Dawley rats. An assessment of drug effect on efficacy and multiple safety endpoints including cardiac function was undertaken. Lorcaserin (1–2 mg/kg SC b.i.d.) significantly reduced percentage body weight gain compared to vehicle-treated controls (VEH: 10.6 ± 0.4%; LOR 1: 7.6 ± 1.2%; LOR 2: 5.4 ± 0.6%). Measurement of body composition using quantitative magnetic resonance (QMR) imaging indicated this change was due to the selective reduction in body fat mass. Modest effects on food intake were recorded. At the completion of the treatment phase, echocardiography revealed no evidence for valvulopathy, that is, no aortic or mitral valve regurgitation. The pharmacokinetics of the present treatment regimen was determined over a 7-day treatment period; plasma Cmin and Cmax were in the range 13–160 ng/mL (1 mg/kg b.i.d.) and 34–264 ng/mL (2 mg/kg b.i.d.) with no evidence for drug accumulation. In sum, these studies show an effect of lorcaserin in the DIO model, that in the context of the primary endpoint measure of % body weight change was similar to that reported clinically (i.e., 3.0–5.2% vs. 3.2%). The present studies highlight the translational value of obesity models such as DIO, and suggest that assuming consideration is paid to nonspecific drug effects such as malaise, the DIO model has reasonable forward translational value to help predict clinical outcomes of a new chemical entity. PMID:25692009

  18. Characterization of the 5-HT2C receptor agonist lorcaserin on efficacy and safety measures in a rat model of diet-induced obesity.

    PubMed

    Higgins, Guy A; Desnoyer, Jill; Van Niekerk, Annalise; Silenieks, Leo B; Lau, Winnie; Thevarkunnel, Sandy; Izhakova, Julia; DeLannoy, Ines Am; Fletcher, Paul J; DeLay, Josepha; Dobson, Howard

    2015-02-01

    The 5-HT2C receptor agonist lorcaserin (Belviq®) has been Food and Drug Administration (FDA) approved for the treatment of obesity. The present study is a back translational investigation into the effect of 28-day lorcaserin treatment in a diet-induced obesity (DIO) model using male, Sprague-Dawley rats. An assessment of drug effect on efficacy and multiple safety endpoints including cardiac function was undertaken. Lorcaserin (1-2 mg/kg SC b.i.d.) significantly reduced percentage body weight gain compared to vehicle-treated controls (VEH: 10.6 ± 0.4%; LOR 1: 7.6 ± 1.2%; LOR 2: 5.4 ± 0.6%). Measurement of body composition using quantitative magnetic resonance (QMR) imaging indicated this change was due to the selective reduction in body fat mass. Modest effects on food intake were recorded. At the completion of the treatment phase, echocardiography revealed no evidence for valvulopathy, that is, no aortic or mitral valve regurgitation. The pharmacokinetics of the present treatment regimen was determined over a 7-day treatment period; plasma C min and C max were in the range 13-160 ng/mL (1 mg/kg b.i.d.) and 34-264 ng/mL (2 mg/kg b.i.d.) with no evidence for drug accumulation. In sum, these studies show an effect of lorcaserin in the DIO model, that in the context of the primary endpoint measure of % body weight change was similar to that reported clinically (i.e., 3.0-5.2% vs. 3.2%). The present studies highlight the translational value of obesity models such as DIO, and suggest that assuming consideration is paid to nonspecific drug effects such as malaise, the DIO model has reasonable forward translational value to help predict clinical outcomes of a new chemical entity. PMID:25692009

  19. A novel aminotetralin-type serotonin (5-HT) 2C receptor-specific agonist and 5-HT2A competitive antagonist/5-HT2B inverse agonist with preclinical efficacy for psychoses.

    PubMed

    Canal, Clinton E; Morgan, Drake; Felsing, Daniel; Kondabolu, Krishnakanth; Rowland, Neil E; Robertson, Kimberly L; Sakhuja, Rajeev; Booth, Raymond G

    2014-05-01

    Development of 5-HT2C agonists for treatment of neuropsychiatric disorders, including psychoses, substance abuse, and obesity, has been fraught with difficulties, because the vast majority of reported 5-HT2C selective agonists also activate 5-HT2A and/or 5-HT2B receptors, potentially causing hallucinations and/or cardiac valvulopathy. Herein is described a novel, potent, and efficacious human 5-HT2C receptor agonist, (-)-trans-(2S,4R)-4-(3'[meta]-bromophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (-)-MBP), that is a competitive antagonist and inverse agonist at human 5-HT2A and 5-HT2B receptors, respectively. (-)-MBP has efficacy comparable to the prototypical second-generation antipsychotic drug clozapine in three C57Bl/6 mouse models of drug-induced psychoses: the head-twitch response elicited by [2,5]-dimethoxy-4-iodoamphetamine; hyperlocomotion induced by MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine maleate)]; and hyperlocomotion induced by amphetamine. (-)-MBP, however, does not alter locomotion when administered alone, distinguishing it from clozapine, which suppresses locomotion. Finally, consumption of highly palatable food by mice was not increased by (-)-MBP at a dose that produced at least 50% maximal efficacy in the psychoses models. Compared with (-)-MBP, the enantiomer (+)-MBP was much less active across in vitro affinity and functional assays using mouse and human receptors and also translated in vivo with comparably lower potency and efficacy. Results indicate a 5-HT2C receptor-specific agonist, such as (-)-MBP, may be pharmacotherapeutic for psychoses, without liability for obesity, hallucinations, heart disease, sedation, or motoric disorders. PMID:24563531

  20. A Novel Aminotetralin-Type Serotonin (5-HT) 2C Receptor-Specific Agonist and 5-HT2A Competitive Antagonist/5-HT2B Inverse Agonist with Preclinical Efficacy for Psychoses

    PubMed Central

    Morgan, Drake; Felsing, Daniel; Kondabolu, Krishnakanth; Rowland, Neil E.; Robertson, Kimberly L.; Sakhuja, Rajeev; Booth, Raymond G.

    2014-01-01

    Development of 5-HT2C agonists for treatment of neuropsychiatric disorders, including psychoses, substance abuse, and obesity, has been fraught with difficulties, because the vast majority of reported 5-HT2C selective agonists also activate 5-HT2A and/or 5-HT2B receptors, potentially causing hallucinations and/or cardiac valvulopathy. Herein is described a novel, potent, and efficacious human 5-HT2C receptor agonist, (−)-trans-(2S,4R)-4-(3′[meta]-bromophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (−)-MBP), that is a competitive antagonist and inverse agonist at human 5-HT2A and 5-HT2B receptors, respectively. (−)-MBP has efficacy comparable to the prototypical second-generation antipsychotic drug clozapine in three C57Bl/6 mouse models of drug-induced psychoses: the head-twitch response elicited by [2,5]-dimethoxy-4-iodoamphetamine; hyperlocomotion induced by MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine maleate)]; and hyperlocomotion induced by amphetamine. (−)-MBP, however, does not alter locomotion when administered alone, distinguishing it from clozapine, which suppresses locomotion. Finally, consumption of highly palatable food by mice was not increased by (−)-MBP at a dose that produced at least 50% maximal efficacy in the psychoses models. Compared with (−)-MBP, the enantiomer (+)-MBP was much less active across in vitro affinity and functional assays using mouse and human receptors and also translated in vivo with comparably lower potency and efficacy. Results indicate a 5-HT2C receptor-specific agonist, such as (−)-MBP, may be pharmacotherapeutic for psychoses, without liability for obesity, hallucinations, heart disease, sedation, or motoric disorders. PMID:24563531

  1. 5-HT2A receptor blockade and 5-HT2C receptor activation interact to reduce cocaine hyperlocomotion and Fos protein expression in the caudate-putamen

    PubMed Central

    Pockros, Lara A.; Pentkowski, Nathan S.; Conway, Sineadh M.; Ullman, Teresa E.; Zwick, Kimberly R.; Neisewander, Janet L.

    2012-01-01

    Both the 5-HT2A receptor (R) antagonist M100907 and the 5-HT2CR agonist MK212 attenuate cocaine-induced dopamine release and hyperlocomotion. This study examined whether these drugs interact to reduce cocaine hyperlocomotion and Fos expression in the striatum and prefrontal cortex. We first determined from dose-effect functions a low dose of both M100907 and MK212 that failed to alter cocaine (15 mg/kg, i.p.) hyperlocomotion. Subsequently we examined whether these subthreshold doses given together would attenuate cocaine hyperlocomotion, consistent with a 5-HT2A/5-HT2CR interaction. Separate groups of rats received two sequential drug injections 5 min apart immediately before a 1-h locomotion test as follows: 1) saline + saline, 2) saline + cocaine, 3) 0.025 mg/kg M100907 + cocaine, 4) 0.125 mg/kg MK212 + cocaine, or 5) cocktail combination of 0.025 mg/kg M100907 and 0.125 mg/kg MK212 + cocaine. Brains were extracted for Fos immunohistochemistry 90 min after the second injection. We next examined the effects of 0.025 mg/kg M100907 and 0.125 mg/kg MK212, alone and in combination, on spontaneous locomotor activity. While neither drug given alone produced any effects, the M100907/MK212 cocktail attenuated cocaine hyperlocomotion as well as cocaine-induced Fos expression in the dorsolateral caudate-putamen (CPu), but had no effect on spontaneous locomotion. The findings suggest that 5-HT2ARs and 5-HT2CRs interact to attenuate cocaine hyperlocomotion and Fos expression in the CPu, and that the CPu is a potential locus of the interactive effects between these 5-HT2R subtypes on behavior. Further research investigating combined 5-HT2AR antagonism and 5-HT2CR agonism as a treatment for cocaine dependence is warranted. PMID:22886755

  2. The Role of 5-HT2A, 5-HT2C and mGlu2 Receptors in the Behavioral Effects of Tryptamine Hallucinogens N,N-Dimethyltryptamine and N,N-Diisopropyltryptamine in Rats and Mice

    PubMed Central

    Carbonaro, Theresa M.; Eshleman, Amy J.; Forster, Michael J.; Cheng, Kejun; Rice, Kenner C.; Gatch, Michael B.

    2014-01-01

    Rationale: Serotonin 5-HT2A and 5-HT2C receptors are thought to be the primary pharmacological mechanisms for serotonin-mediated hallucinogenic drugs, but recently there has been interest in metabotropic glutamate (mGluR2) receptors as contributors to the mechanism of hallucinogens. Objective: The present study assesses the role of these 5-HT and glutamate receptors as molecular targets for two tryptamine hallucinogens, N,N-dimethyltryptamine (DMT) and N,N-diisopropyltryptamine (DiPT). Methods: Drug discrimination, head twitch and radioligand binding assays were used. A 5-HT2AR inverse agonist (MDL100907), 5-HT2CR antagonist (SB242084) and mGluR2/3 agonist (LY379268) were tested for their ability to attenuate the discriminative stimulus effects of DMT and DiPT; an mGluR2/3 antagonist (LY341495) was tested for potentiation. MDL100907 was used to attenuate head twitches induced by DMT and DiPT. Radioligand binding studies and inosital-1-phosphate (IP-1) accumulation were performed at the 5-HT2CR for DiPT. Results: MDL100907 fully blocked the discriminative stimulus effects of DMT, but only partially blocked DiPT. SB242084 partially attenuated the discriminative stimulus effects of DiPT, but produced minimal attenuation of DMT’s effects. LY379268 produced potent, but only partial blockade of the discriminative stimulus effects of DMT. LY341495 facilitated DMT- and DiPT-like effects. Both compounds elicited head twitches (DiPT>DMT) which were blocked by MDL1000907. DiPT was a low potency full agonist at 5-HT2CR in vitro. Conclusions: The 5-HT2AR likely plays a major role in mediating the effects of both compounds. 5-HT2C and mGluR2 receptors likely modulate the discriminative stimulus effects of both compounds to some degree. PMID:24985890

  3. Endogenous 5-HT2C Receptors Phosphorylate the cAMP Response Element Binding Protein via Protein Kinase C-Promoted Activation of Extracellular-Regulated Kinases-1/2 in Hypothalamic mHypoA-2/10 Cells.

    PubMed

    Lauffer, Lisa; Glas, Evi; Gudermann, Thomas; Breit, Andreas

    2016-07-01

    Serotonin 5-HT2C receptors (5-HT2CR) activate Gq proteins and are expressed in the central nervous system (CNS). 5-HT2CR regulate emotion, feeding, reward, or cognition and may serve as promising drug targets to treat psychiatric disorders or obesity. Owing to technical difficulties in isolating cells from the CNS and the lack of suitable cell lines endogenously expressing 5-HT2CR, our knowledge about this receptor subtype in native environments is rather limited. The hypothalamic mHypoA-2/10 cell line was recently established and resembles appetite-regulating hypothalamic neurons of the paraventricular nucleus (PVN), where 5-HT2CR have been detected in vivo. Therefore, we tested mHypoA-2/10 cells for endogenous 5-HT2CR expression. Serotonin or the 5-HT2CR preferential agonist WAY-161,503 initiated cAMP response element (CRE)-dependent gene transcription with EC50 values of 15.5 ± 9.8 and 1.1 ± 0.9 nM, respectively. Both responses were blocked by two unrelated 5-HT2CR-selective antagonists (SB-242,084, RS-102,221) but not by a 5-HT2AR (EMD-281,014) or 5-HT2BR (RS-127,455) antagonists. By single-cell calcium imaging, we found that serotonin and WAY-161,503 induced robust calcium transients, which were also blunted by both 5-HT2CR antagonists. Additionally we revealed, first, that 5-HT2CR induced CRE activation via protein kinase C (PKC)-mediated engagement of extracellular-regulated kinases-1/2 and, second, that intrinsic activity of WAY-161,503 was in the range of 0.3-0.5 compared with serotonin, defining the frequently used 5-HT2CR agonist as a partial agonist of endogenous 5-HT2CR. In conclusion, we have shown that hypothalamic mHypoA-2/10 cells endogenously express 5-HT2CR and thus are the first cell line in which to analyze 5-HT2CR pharmacology, signaling, and regulation in its natural environment. PMID:27189964

  4. Agonist actions of dihydroergotamine at 5-HT2B and 5-HT2C receptors and their possible relevance to antimigraine efficacy

    PubMed Central

    Schaerlinger, B; Hickel, P; Etienne, N; Guesnier, L; Maroteaux, L

    2003-01-01

    The pharmaceutical compound, dihydroergotamine (DHE) is dispensed to prevent and reduce the occurrence of migraine attacks. Although still controversial, the prophylactic effect of this drug is believed to be caused through blockade and/or activation of numerous receptors including serotonin (5-HT) receptors of the 5-HT2 subtype. To elucidate if 5-HT2 receptors (5-HT2Rs) may be involved in DHE prophylactic effect, we performed investigations aimed to determine the respective pharmacological profile of DHE and of its major metabolite 8′-hydroxy-DHE (8′-OH-DHE) at the 5-HT2B and 5-HT2CRs by binding, inositol triphosphate (IP3) or cyclic GMP (cGMP) coupling studies in transfected fibroblasts. DHE and 8′-OH-DHE are competitive compounds at 5-HT2B and 5-HT2CRs. 8′-OH-DHE interaction at (5-HT2BRs) was best fitted by a biphasic competition curve and displayed the highest affinity with a Ki of 5 nM. These two compounds acted as agonists for both receptors in respect to cGMP production with pEC50 of 8.32±0.09 for 8′-OH-DHE at 5-HT2B and 7.83±0.06 at 5-HT2CRs. Knowing that the antimigraine prophylactic effect of DHE is only observed after long-term treatment, we chronically exposed the recombinant cells to DHE and 8′-OH-DHE. The number of 5-HT2BR-binding sites was always more affected than 5-HT2CRs. At 5-HT2BRs, 8′-OH-DHE was more effective than DHE, with an uncoupling that persisted for more than 40 h for IP3 or cGMP. By contrast, the 5-HT2CR coupling was reversible after either treatment. Chronic exposure to 8′-OH-DHE caused a persistent agonist-mediated desensitisation of 5-HT2B, but not 5-HT2CRs. This may be of relevance to therapeutic actions of the compound. PMID:12970106

  5. Effects of the 5-HT2C receptor agonist CP809101 in the amygdala on reinstatement of cocaine-seeking behavior and anxiety-like behavior.

    PubMed

    Pockros-Burgess, Lara A; Pentkowski, Nathan S; Der-Ghazarian, Taleen; Neisewander, Janet L

    2014-11-01

    Serotonin 2C receptor (5-HT2CR) agonists attenuate reinstatement of cocaine-seeking behavior. These receptors are found throughout the limbic system, including the basolateral amygdala (BlA), which is involved in forming associations between emotional stimuli and environmental cues, and the central amygdala (CeA), which is implicated in the expression of conditioned responding to emotional stimuli. This study investigated whether 5-HT2CRs in the amygdala are involved in cue and cocaine-primed reinstatement of cocaine-seeking behavior. Rats were trained to self-administer cocaine (0.75 mg/kg, i.v.) which that was paired with light and tone cues, and then subsequently they underwent daily extinction training. Rats then received bilateral microinfusions of the 5-HT2CR agonist CP809101 (0.01-1.0 μg/0.2 μl/side) into either the BlA or CeA prior to tests for cue or cocaine-primed (10 mg/kg, i.p.) reinstatement. Rats were also tested for CP809101 effects on anxiety-like behavior on the elevated plus-maze (EPM). Surprisingly, intra-BlA CP809101 had no effect on cue reinstatement, though it did increase anxiety-like behavior on the EPM. Intra-CeA infusions of CP809101 attenuated cocaine-primed reinstatement, an effect that was prevented with concurrent administration of the 5-HT2CR antagonist SB242084 (0.1 μg/0.2 μl/side). CP809101 had no effect on cue reinstatement or anxiety-like behavior on the EPM. These findings suggest that 5-HT2CRs in the BlA modulate anxiety, whereas those in the CeA modulate incentive motivational effects induced by cocaine priming injections. PMID:24984080

  6. Incubation of cocaine cue reactivity associates with neuroadaptations in the cortical serotonin (5-HT) 5-HT2C receptor (5-HT2CR) system.

    PubMed

    Swinford-Jackson, S E; Anastasio, N C; Fox, R G; Stutz, S J; Cunningham, K A

    2016-06-01

    Intensification of craving elicited by drug-associated cues during abstinence occurs over time in human cocaine users while elevation of cue reactivity ("incubation") is observed in rats exposed to extended forced abstinence from cocaine self-administration. Incubation in rodents has been linked to time-dependent neuronal plasticity in the medial prefrontal cortex (mPFC). We tested the hypothesis that incubation of cue reactivity during abstinence from cocaine self-administration is accompanied by lower potency and/or efficacy of the selective serotonin (5-HT) 5-HT2C​ receptor (5-HT2CR) agonist WAY163909 to suppress cue reactivity and a shift in the subcellular localization profile of the mPFC 5-HT2CR protein. We observed incubation of cue reactivity (measured as lever presses reinforced by the discrete cue complex) between Day 1 and Day 30 of forced abstinence from cocaine relative to sucrose self-administration. Pharmacological and biochemical analyses revealed that the potency of the selective 5-HT2CR agonist WAY163909 to suppress cue reactivity, the expression of synaptosomal 5-HT2CR protein in the mPFC, and the membrane to cytoplasmic expression of the 5-HT2CR in mPFC were lower on Day 30 vs. Day 1 of forced abstinence from cocaine self-administration. Incubation of cue reactivity assessed during forced abstinence from sucrose self-administration did not associate with 5-HT2CR protein expression in the mPFC. Collectively, these outcomes are the first indication that neuroadaptations in the 5-HT2CR system may contribute to incubation of cocaine cue reactivity. PMID:26926963

  7. The serotonin transporter (5-HTTLPR) but not serotonin receptor (5-HT2C Cys23Ser) variant is associated with bipolar I disorder in Kurdish population from Western Iran.

    PubMed

    Mohammadi, Sahar; Khazaie, Habibolah; Rahimi, Ziba; Vaisi-Raygani, Asad; Zargooshi, Newsha; Rahimi, Zohreh

    2015-03-17

    The role of 5-HTTLPR and 5-HT2C Cys23Ser polymorphisms in the psychopathology of mood disorders and suicide behavior is controversial. The aim of present study was to investigate the association between 5-HTTLPR and 5-HT2C Cys23Ser variants and susceptibility to bipolar I disorder (BID). The 5-HT2C genotypes were studied in 152 patients with BID and 173 gender- and age-matched healthy individuals with Kurds ethnic background from Western Iran using PCR and PCR-RFLP methods. In recessive model (SS vs. LL+LS) the SS genotype was associated with 1.79-fold increased risk of BID (p=0.018). Also, the presence of S allele increased the risk of adult-onset BID by 1.76-fold (p=0.027). No association was detected between 5-HTTLPR genotypes and alleles with suicide attempt. The frequency of 5-HT2C Ser allele in patients and controls were 12.3 and 12.5%, respectively. Mutant allele of HT2C Ser had higher frequency in female (14.7%) than male (10.5%, p=0.27) patients. The frequency of HT2C Ser allele in patients with a family history of BID tended to be higher (15.7%) than those without a family history of the disease (11.8%). The frequency of HT2C Ser allele in suicide attempter women was higher (16.7%) than those without a suicide attempt (14.3%). Our findings demonstrate 5-HTTLPR polymorphism might be a risk factor for BID and adult-onset BID in Kurds population. However, we found the lack of an association between 5-HT2C Cys/Ser variants and the risk of BID. PMID:25596490

  8. 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptor mRNA modulation by antidepressant treatment in the chronic mild stress model of depression: sex differences exposed.

    PubMed

    Pitychoutis, P M; Dalla, C; Sideris, A C; Tsonis, P A; Papadopoulou-Daifoti, Z

    2012-05-17

    It is well established that women experience major depression at roughly twice the rate of men. Interestingly, accumulating clinical and experimental evidence shows that the responsiveness of males and females to antidepressant pharmacotherapy, and particularly to tricyclic antidepressants (TCAs), is sex-differentiated. Herein, we investigated whether exposure of male and female rats to the chronic mild stress (CMS) model of depression, as well as treatment with the TCA clomipramine may affect serotonergic receptors' (5-HTRs) mRNA expression in a sex-dependent manner. Male and female rats were subjected to CMS for 4 weeks and during the next 4 weeks they concurrently received clomipramine treatment (10 mg/ml/kg). CMS and clomipramine's effects on 5-HT(1A)R, 5-HT(2A)R, and 5-HT(2C)R mRNA expression were assessed by in situ hybridization histochemistry in selected subfields of the hippocampus and in the lateral orbitofrontal cortex (OFC), two regions implicated in the pathophysiology of major depression. CMS and clomipramine treatment induced sex-differentiated effects on rats' hedonic status and enhanced 5-HT(1A)R mRNA expression in the cornu ammonis 1 (CA1) hippocampal region of male rats. Additionally, CMS attenuated 5-HT(1A)R mRNA expression in the OFC of male rats and clomipramine reversed this effect. Moreover, 5-HT(2A)R mRNA levels in the OFC were enhanced in females but decreased in males, while clomipramine reversed this effect only in females. CMS increased 5-HT2CR mRNA expression in the CA4 region of both sexes and this effect was attenuated by clomipramine. Present data exposed that both CMS and clomipramine treatment may induce sex-differentiated and region-distinctive effects on 5-HTRs mRNA expression and further implicate the serotonergic system in the manifestation of sexually dimorphic neurobehavioral responses to stress. PMID:22441040

  9. Selective 5-HT2C agonists as potential antidepressants.

    PubMed

    Leysen, D C

    1999-02-01

    The antidepressants currently used need improvement, especially in terms of efficacy, relapse rate and onset of action. In this review the clinical and experimental data which support the rationale for 5-HT2C agonists in the treatment of depression are listed. Next, the results obtained with the non-selective 5-HT2C agonists on the market and in clinical development are described. Finally, the preclinical data on the more selective 5-HT2C agonists are summarized. These recent preclinical results reveal a greater potency and effect size compared to fluoxetine, good tolerability and no evidence of tolerance development. Selective 5-HT2C agonists might become innovative drugs for the treatment of depression, panic, obsessive-compulsive disorder (OCD), some forms of aggression and eating disorders. PMID:16160946

  10. Application of an Integrated GPCR SAR-Modeling Platform To Explain the Activation Selectivity of Human 5-HT2C over 5-HT2B.

    PubMed

    Heifetz, Alexander; Storer, R Ian; McMurray, Gordon; James, Tim; Morao, Inaki; Aldeghi, Matteo; Bodkin, Mike J; Biggin, Philip C

    2016-05-20

    Agonism of the 5-HT2C serotonin receptor has been associated with the treatment of a number of diseases including obesity, psychiatric disorders, sexual health, and urology. However, the development of effective 5-HT2C agonists has been hampered by the difficulty in obtaining selectivity over the closely related 5-HT2B receptor, agonism of which is associated with irreversible cardiac valvulopathy. Understanding how to design selective agonists requires exploration of the structural features governing the functional uniqueness of the target receptor relative to related off targets. X-ray crystallography, the major experimental source of structural information, is a slow and challenging process for integral membrane proteins, and so is currently not feasible for every GPCR or GPCR-ligand complex. Therefore, the integration of existing ligand SAR data with GPCR modeling can be a practical alternative to provide this essential structural insight. To demonstrate this, we integrated SAR data from 39 azepine series 5-HT2C agonists, comprising both selective and unselective examples, with our hierarchical GPCR modeling protocol (HGMP). Through this work we have been able to demonstrate how relatively small differences in the amino acid sequences of GPCRs can lead to significant differences in secondary structure and function, as supported by experimental data. In particular, this study suggests that conformational differences in the tilt of TM7 between 5-HT2B and 5-HT2C, which result from differences in interhelical interactions, may be the major source of selectivity in G-protein activation between these two receptors. Our approach also demonstrates how the use of GPCR models in conjunction with SAR data can be used to explain activity cliffs. PMID:26900768

  11. Imaging Evaluation of 5HT2C Agonists, [11C]WAY-163909 and [11C]Vabicaserin, Formed by Pictet–Spengler Cyclization

    PubMed Central

    2015-01-01

    The serotonin subtype 2C (5HT2C) receptor is an emerging and promising drug target to treat several disorders of the human central nervous system. In this current report, two potent and selective 5HT2C full agonists, WAY-163909 (2) and vabicaserin (3), were radiolabeled with carbon-11 via Pictet–Spengler cyclization with [11C]formaldehyde and used in positron emission tomography (PET) imaging. Reaction conditions were optimized to exclude the major source of isotope dilution caused by the previously unknown breakdown of N,N-dimethylformamide (DMF) to formaldehyde at high temperature under mildly acid conditions. In vivo PET imaging was utilized to evaluate the pharmacokinetics and distribution of the carbon-11 labeled 5HT2C agonists. Both radiolabeled molecules exhibit high blood–brain barrier (BBB) penetration and nonspecific binding, which was unaltered by preadministration of the unlabeled agonist. Our work demonstrates that Pictet–Spengler cyclization can be used to label drugs with carbon-11 to study their pharmacokinetics and for evaluation as PET radiotracers. PMID:24491146

  12. Lorcaserin (APD356), a selective 5-HT(2C) agonist, reduces body weight in obese men and women.

    PubMed

    Smith, Steven R; Prosser, Warren A; Donahue, David J; Morgan, Michael E; Anderson, Christen M; Shanahan, William R

    2009-03-01

    Lorcaserin (APD356) is a potent, selective 5-HT(2C) agonist with ~15-fold and 100-fold selectivity vs. 5-HT(2A) and 5-HT(2B) receptors, respectively. This study evaluated the safety and efficacy of lorcaserin for weight reduction in obese patients during a 12-week period. The randomized, double-blind, placebo-controlled, parallel-arm study enrolled 469 men and women between ages 18 and 65 and with BMI 30-45 kg/m(2). Patients received placebo, lorcaserin 10 mg q.d., lorcaserin 15 mg q.d., or lorcaserin 10 mg b.i.d. for 12 weeks, and were counseled to maintain their usual diet and activity. The primary end point was change in weight from baseline to day 85 by completer analysis. Safety analyses included echocardiograms at Screening and day 85/study exit. Lorcaserin was associated with progressive weight loss of 1.8 kg, 2.6 kg, and 3.6 kg at 10 mg q.d., 15 mg q.d., and 10 mg b.i.d., respectively, compared to placebo weight loss of 0.3 kg (P < 0.001 for each group). Similar results were seen by intent-to-treat last observation-carried forward (ITT-LOCF) analysis. The proportions of completers achieving > or =5% of initial body weight were 12.8, 19.5, 31.2, and 2.3% in the 10 mg q.d., 15 mg q.d., 10 mg b.i.d., and placebo groups, respectively. The most frequent adverse events (AEs) were transient headache, nausea, and dizziness. Echocardiograms showed no apparent drug-related effects on heart valves or pulmonary artery pressure (PAP). Lorcaserin was well tolerated and efficacious for weight reduction in this 12-week study. Longer-term trials employing behavior modification will be needed to more fully assess its safety and efficacy. PMID:19057523

  13. 5-HT2 Receptor Regulation of Mitochondrial Genes: Unexpected Pharmacological Effects of Agonists and Antagonists.

    PubMed

    Harmon, Jennifer L; Wills, Lauren P; McOmish, Caitlin E; Demireva, Elena Y; Gingrich, Jay A; Beeson, Craig C; Schnellmann, Rick G

    2016-04-01

    In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney. The 5-HT2C receptor agonist CP-809,101 [2-[(3-chlorophenyl)methoxy]-6-(1-piperazinyl)pyrazine] and antagonist SB-242,084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] were used to examine the induction of renal mitochondrial genes and oxidative metabolism in RPTCs and in mouse kidneys in the presence and absence of the 5-HT2C receptor. Unexpectedly, both CP-809,101 and SB-242,084 increased RPTC respiration and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA expression in RPTCs at 1-10 nM. In addition, CP-809,101 and SB-242,084 increased mRNA expression of PGC-1α and the mitochondrial proteins NADH dehydrogenase subunit 1 and NADH dehydrogenase (ubiquinone) β subcomplex 8 in mice. These compounds increased mitochondrial genes in RPTCs in which the 5-HT2C receptor was downregulated with small interfering RNA and in the renal cortex of mice lacking the 5-HT2C receptor. By contrast, the ability of these compounds to increase PGC-1α mRNA and respiration was blocked in RPTCs treated with 5-HT2A receptor small interfering RNA or the 5-HT2A receptor antagonist eplivanserin. In addition, the 5-HT2A receptor agonist NBOH-2C-CN [4-[2-[[(2-hydroxyphenyl)methyl]amino]ethyl]-2,5-dimethoxybenzonitrile] increased RPTC respiration at 1-100 nM. These results suggest that agonism of the 5-HT2A receptor induces MB and that the classic 5-HT2C receptor agonist CP

  14. Social Behavioral Deficits Coincide with the Onset of Seizure Susceptibility in Mice Lacking Serotonin Receptor 2c.

    PubMed

    Séjourné, Julien; Llaneza, Danielle; Kuti, Orsolya J; Page, Damon T

    2015-01-01

    The development of social behavior is strongly influenced by the serotonin system. Serotonin 2c receptor (5-HT2cR) is particularly interesting in this context considering that pharmacological modulation of 5-HT2cR activity alters social interaction in adult rodents. However, the role of 5-HT2cR in the development of social behavior is unexplored. Here we address this using Htr2c knockout mice, which lack 5-HT2cR. We found that these animals exhibit social behavior deficits as adults but not as juveniles. Moreover, we found that the age of onset of these deficits displays similar timing as the onset of susceptibility to spontaneous death and audiogenic-seizures, consistent with the hypothesis that imbalanced excitation and inhibition (E/I) may contribute to social behavioral deficits. Given that autism spectrum disorder (ASD) features social behavioral deficits and is often co-morbid with epilepsy, and given that 5-HT2cR physically interacts with Pten, we tested whether a second site mutation in the ASD risk gene Pten can modify these phenotypes. The age of spontaneous death is accelerated in mice double mutant for Pten and Htr2c relative to single mutants. We hypothesized that pharmacological antagonism of 5-HT2cR activity in adult animals, which does not cause seizures, might modify social behavioral deficits in Pten haploinsufficient mice. SB 242084, a 5-HT2cR selective antagonist, can reverse the social behavior deficits observed in Pten haploinsufficient mice. Together, these results elucidate a role of 5-HT2cR in the modulation of social behavior and seizure susceptibility in the context of normal development and Pten haploinsufficiency. PMID:26308619

  15. Prediction of Efficacy of Vabicaserin, a 5-HT2C Agonist, for the Treatment of Schizophrenia Using a Quantitative Systems Pharmacology Model

    PubMed Central

    Liu, J; Ogden, A; Comery, T A; Spiros, A; Roberts, P; Geerts, H

    2014-01-01

    A quantitative systems pharmacology model that combines in vitro/preclinical neurophysiology data, human imaging data, and patient disease information was used to blindly predict steady-state clinical efficacy of vabicaserin, a 5-HT2C full agonist, in monotherapy and, subsequently, to assess adjunctive therapy in schizophrenia. The model predicted a concentration-dependent improvement of positive and negative syndrome scales (PANSS) in schizophrenia monotherapy with vabicaserin. At the exposures of 100 and 200 mg b.i.d., the predicted improvements on PANSS in virtual patient trials were 5.12 (2.20, 8.56) and 6.37 (2.27, 10.40) (mean (95% confidence interval)), respectively, which are comparable to the observed phase IIa results. At the current clinical exposure limit of vabicaserin, the model predicted an ~9-point PANSS improvement in monotherapy, and <4-point PANSS improvement adjunctive with various antipsychotics, suggesting limited clinical benefit of vabicaserin in schizophrenia treatment. In conclusion, the updated quantitative systems pharmacology model of PANSS informed the clinical development decision of vabicaserin in schizophrenia. PMID:24759548

  16. Alteration in 5-HT₂C, NMDA receptor and IP3 in cerebral cortex of epileptic rats: restorative role of Bacopa monnieri.

    PubMed

    Krishnakumar, Amee; Anju, T R; Abraham, Pretty Mary; Paulose, C S

    2015-01-01

    Bacopa monnieri is effective in stress management, brain function and a balanced mood. 5-HT2C receptors have been implicated in stress whereas NMDA receptors and mGlu5 play crucial role in memory and cognition. In the present study, we investigated the role of B. monnieri extract in ameliorating pilocarpine induced temporal lobe epilepsy through regulation of 5-HT2C and NMDA receptors in cerebral cortex. Our studies confirmed an increased 5-HT2C receptor function during epilepsy thereby facilitating IP3 release. We also observed an decreased NMDA receptor function with an elevated mGlu5 and GLAST gene expression in epileptic condition indicating the possibility for glutamate mediated excitotoxicity. These alterations lead to impaired behavioural functions as indicated by the Elevated Plus maze test. Carbamazepine and B. monnieri treatments to epileptic rats reversed the alterations in 5-HT2C, NMDA receptor functions and IP3 content thereby effectively managing the neurotransmitter balance in the cerebral cortex. PMID:25503823

  17. Serotonin-2C Receptor Agonists Decrease Potassium-Stimulated GABA Release In the Nucleus Accumbens

    PubMed Central

    Kasper, James M; Booth, Raymond G; Peris, Joanna

    2014-01-01

    The serotonin 5-HT2C receptor has shown promise in vivo as a pharmacotherapeutic target for alcoholism. For example, recently, a novel 4-phenyl-2-N,N-dimethylaminotetralin (PAT) drug candidate, that demonstrates 5-HT2C receptor agonist activity together with 5-HT2A/2B receptor inverse agonist activity, was shown to reduce operant responding for ethanol after peripheral administration to rats. Previous studies have shown that the 5-HT2C receptor is found throughout the mesoaccumbens pathway and that 5-HT2C receptor agonism causes activation of ventral tegmental area (VTA) GABA neurons. It is unknown what effect 5-HT2C receptor modulation has on GABA release in the nucleus accumbens core (NAcc). To this end, microdialysis coupled to capillary electrophoresis with laser-induced fluorescence was used to quantify extracellular neurotransmitter concentrations in the NAcc under basal and after potassium stimulation conditions, in response to PAT analogs and other 5-HT2C receptor modulators administered by reverse dialysis to rats. 5-HT2C receptor agonists specifically attenuated stimulated GABA release in the NAcc while 5-HT2C antagonists or inverse agonists had no effect. Agents with activity at 5-HT2A receptors had no effect on GABA release. Thus, in contrast to results reported for the VTA, current results suggest 5-HT2C receptor agonists decrease stimulated GABA release in the NAcc, and provide a possible mechanism of action for 5HT2C-mediated negative modulation of ethanol self-administration. PMID:25382408

  18. Serotonin activates the hypothalamic-pituitary-adrenal axis via serotonin 2C receptor stimulation.

    PubMed

    Heisler, Lora K; Pronchuk, Nina; Nonogaki, Katsunori; Zhou, Ligang; Raber, Jacob; Tung, Loraine; Yeo, Giles S H; O'Rahilly, Stephen; Colmers, William F; Elmquist, Joel K; Tecott, Laurence H

    2007-06-27

    The dynamic interplay between serotonin [5-hydroxytryptamine (5-HT)] neurotransmission and the hypothalamic-pituitary-adrenal (HPA) axis has been extensively studied over the past 30 years, but the underlying mechanism of this interaction has not been defined. A possibility receiving little attention is that 5-HT regulates upstream corticotropin-releasing hormone (CRH) signaling systems via activation of serotonin 2C receptors (5-HT(2C)Rs) in the paraventricular nucleus of the hypothalamus (PVH). Through complementary approaches in wild-type rodents and 5-HT(2C)R-deficient mice, we determined that 5-HT(2C)Rs are necessary for 5-HT-induced HPA axis activation. We used laser-capture PVH microdissection followed by microarray analysis to compare the expression of 13 5-HTRs. Only 5-HT(2C)R and 5-HT(1D)R transcripts were consistently identified as present in the PVH, and of these, the 5-HT(2C)R was expressed at a substantially higher level. The abundant expression of 5-HT(2C)Rs in the PVH was confirmed with in situ hybridization histochemistry. Dual-neurohistochemical labeling revealed that approximately one-half of PVH CRH-containing neurons coexpressed 5-HT(2C)R mRNA. We observed that PVH CRH neurons consistently depolarized in the presence of a high-affinity 5-HT(2C)R agonist, an effect blocked by a 5-HT(2C)R antagonist. Supporting the importance of 5-HT(2C)Rs in CRH neuronal activity, genetic inactivation of 5-HT(2C)Rs produced a downregulation of CRH mRNA and blunted CRH and corticosterone release after 5-HT compound administration. These findings thus provide a mechanistic explanation for the longstanding observation of HPA axis stimulation in response to 5-HT and thereby give insight into the neural circuitry mediating the complex neuroendocrine responses to stress. PMID:17596444

  19. Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice.

    PubMed

    Halberstadt, Adam L; Koedood, Liselore; Powell, Susan B; Geyer, Mark A

    2011-11-01

    Psilocin (4-hydroxy-N,N-dimethyltryptamine) is a hallucinogen that acts as an agonist at 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptors. Psilocin is the active metabolite of psilocybin, a hallucinogen that is currently being investigated clinically as a potential therapeutic agent. In the present investigation, we used a combination of genetic and pharmacological approaches to identify the serotonin (5-HT) receptor subtypes responsible for mediating the effects of psilocin on head twitch response (HTR) and the behavioral pattern monitor (BPM) in C57BL/6J mice. We also compared the effects of psilocin with those of the putative 5-HT(2C) receptor-selective agonist 1-methylpsilocin and the hallucinogen and non-selective serotonin receptor agonist 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT). Psilocin, 1-methylpsilocin, and 5-MeO-DMT induced the HTR, effects that were absent in mice lacking the 5-HT(2A) receptor gene. When tested in the BPM, psilocin decreased locomotor activity, holepoking, and time spent in the center of the chamber, effects that were blocked by the selective 5-HT(1A) antagonist WAY-100635 but were not altered by the selective 5-HT(2C) antagonist SB 242,084 or by 5-HT(2A) receptor gene deletion. 5-MeO-DMT produced similar effects when tested in the BPM, and the action of 5-MeO-DMT was significantly attenuated by WAY-100635. Psilocin and 5-MeO-DMT also decreased the linearity of locomotor paths, effects that were mediated by 5-HT(2C) and 5-HT(1A) receptors, respectively. In contrast to psilocin and 5-MeO-DMT, 1-methylpsilocin (0.6-9.6 mg/kg) was completely inactive in the BPM. These findings confirm that psilocin acts as an agonist at 5-HT(1A), 5-HT(2A), and 5-HT(2C) receptors in mice, whereas the behavioral effects of 1-methylpsilocin indicate that this compound is acting at 5-HT(2A) sites but is inactive at the 5-HT(1A) receptor. The fact that 1-methylpsilocin displays greater pharmacological selectivity than psilocin indicates that 1-methylpsilocin

  20. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  1. Prevention of 5-hydroxytryptamine2C receptor RNA editing and alternate splicing in C57BL/6 mice activates the hypothalamic-pituitary-adrenal axis and alters mood

    PubMed Central

    Bombail, Vincent; Qing, Wei; Chapman, Karen E; Holmes, Megan C

    2014-01-01

    The 5-hydroxytryptamine2C (5-HT)2C receptor is widely implicated in the aetiology of affective and eating disorders as well as regulation of the hypothalamo-pituitary-adrenal axis. Signalling through this receptor is regulated by A-to-I RNA editing, affecting three amino acids in the protein sequence, with unedited transcripts encoding a receptor (INI) that, in vitro, is hyperactive compared with edited isoforms. Targeted alteration (knock-in) of the Htr2c gene to generate ‘INI’ mice with no alternate splicing, solely expressing the full-length unedited isoform, did not produce an overt metabolic phenotype or altered anxiety behaviour, but did display reduced depressive-like and fear-associated behaviours. INI mice exhibited a hyperactive hypothalamo-pituitary-adrenal axis, with increased nadir plasma corticosterone and corticotrophin-releasing hormone expression in the hypothalamus but responded normally to chronic stress and showed normal circadian activity and activity in a novel environment. The circadian patterns of 5-HT2C receptor mRNA and mbii52, a snoRNA known to regulate RNA editing and RNA splicing of 5-HT2C receptor pre-mRNA, were altered in INI mice compared with wild-type control mice. Moreover, levels of 5-HT1A receptor mRNA were increased in the hippocampus of INI mice. These gene expression changes may underpin the neuroendocrine and behavioural changes observed in INI mice. However, the phenotype of INI mice was not consistent with a globally hyperactive INI receptor encoded by the unedited transcript in the absence of alternate splicing. Hence, the in vivo outcome of RNA editing may be neuronal cell type specific. PMID:25257581

  2. Ghrelin's Orexigenic Effect Is Modulated via a Serotonin 2C Receptor Interaction.

    PubMed

    Schellekens, Harriët; De Francesco, Pablo N; Kandil, Dalia; Theeuwes, Wessel F; McCarthy, Triona; van Oeffelen, Wesley E P A; Perelló, Mario; Giblin, Linda; Dinan, Timothy G; Cryan, John F

    2015-07-15

    Understanding the intricate pathways that modulate appetite and subsequent food intake is of particular importance considering the rise in the incidence of obesity across the globe. The serotonergic system, specifically the 5-HT2C receptor, has been shown to be of critical importance in the regulation of appetite and satiety. The GHS-R1a receptor is another key receptor that is well-known for its role in the homeostatic control of food intake and energy balance. We recently showed compelling evidence for an interaction between the GHS-R1a receptor and the 5-HT2C receptor in an in vitro cell line system heterologously expressing both receptors. Here, we investigated this interaction further. First, we show that the GHS-R1a/5-HT2C dimer-induced attenuation of calcium signaling is not due to coupling to GαS, as no increase in cAMP signaling is observed. Next, flow cytometry fluorescence resonance energy transfer (fcFRET) is used to further demonstrate the direct interaction between the GHS-R1a receptor and 5-HT2C receptor. In addition, we demonstrate colocalized expression of the 5-HT2C and GHS-R1a receptor in cultured primary hypothalamic and hippocampal rat neurons, supporting the biological relevance of a physiological interaction. Furthermore, we demonstrate that when 5-HT2C receptor signaling is blocked ghrelin's orexigenic effect is potentiated in vivo. In contrast, the specific 5-HT2C receptor agonist lorcaserin, recently approved for the treatment of obesity, attenuates ghrelin-induced food intake. This underscores the biological significance of our in vitro findings of 5-HT2C receptor-mediated attenuation of GHS-R1a receptor activity. Together, this study demonstrates, for the first time, that the GHS-R1a/5-HT2C receptor interaction translates into a biologically significant modulation of ghrelin's orexigenic effect. This data highlights the potential development of a combined GHS-R1a and 5-HT2C receptor treatment strategy in weight management. PMID:25727097

  3. How stress and fluoxetine modulate serotonin 2C receptor pre-mRNA editing.

    PubMed

    Englander, Michael T; Dulawa, Stephanie C; Bhansali, Punita; Schmauss, Claudia

    2005-01-19

    In two inbred strains of mice, C57BL/6 and 129Sv, the majority of forebrain neocortical pre-mRNA encoding the serotonin 2C (5-HT2C) receptor is altered by adenosine-to-inosine editing. As a result, >60% of all mRNAs encode receptors with reduced constitutive and agonist-stimulated activity. However, in the BALB/c strain, a genetically distinct inbred strain with lower forebrain serotonin levels, spontaneously elevated anxiety, and increased stress reactivity, the majority of 5-HT2C mRNA is nonedited and encodes receptors with the highest constitutive activity and the highest agonist affinity and potency. Neither acute stress (the forced swim test) nor chronic treatment with the serotonin-selective reuptake inhibitor fluoxetine elicit significant changes in 5-HT2C pre-mRNA editing in C57BL/6 mice. In contrast, exposure of BALB/c mice to acute stress and chronic treatment of nonstressed BALB/c mice with fluoxetine elicit significant, site-specific increases in 5-HT2C pre-mRNA editing that increase the pool of mRNA encoding receptors with reduced function. These changes in 5-HT2C pre-mRNA editing resemble those detected previously in the prefrontal cortex of subjects with major depression. However, when chronic fluoxetine treatment is combined with stress exposure of BALB/c mice, these changes in 5-HT2C pre-mRNA editing are no longer detected. These findings illustrate that 5-HT2C pre-mRNA editing responses to stress and chronic fluoxetine are modulated by the genetic background, as well as the behavioral state of the animal. They suggest further that the changes in 5-HT2C pre-mRNA editing found in major depression reflect a previously unrecognized molecular response to stress that can be prevented by chronic antidepressant treatment. PMID:15659601

  4. Serotonin2C receptors and drug addiction: focus on cocaine.

    PubMed

    Devroye, Céline; Filip, Malgorzata; Przegaliński, Edmund; McCreary, Andrew C; Spampinato, Umberto

    2013-10-01

    This review provides an overview of the role of central serotonin2C (5-HT2C) receptors in drug addiction, specifically focusing on their impact on the neurochemical and behavioral effects of cocaine, one of the most worldwide abused drug. First, we described the neurochemical and electrophysiological mechanisms underlying the interaction between 5-HT2C receptors and the mesocorticolimbic dopaminergic network, in keeping with the key role of this system in drug abuse and dependence. Thereafter, we focused on the role of 5-HT2C receptors in the effects of cocaine in various preclinical behavioral models used in drug addiction research, such as locomotor hyperactivity, locomotor sensitization, drug discrimination, and self-administration, to end with an overview of the neurochemical mechanisms underlying the interactions between 5-HT2C receptors, mesocorticolimbic dopamine system, and cocaine. On their whole, the presented data provide compelling preclinical evidence that 5-HT2C receptor agonists may have efficacy in the treatment of cocaine abuse and dependence, thereby underlying the need for additional clinical studies to ascertain whether preclinical data translate to the human. PMID:23748692

  5. Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms.

    PubMed

    Joung, Hye-Young; Kang, Young Mi; Lee, Bae-Jin; Chung, Sun Yong; Kim, Kyung-Soo; Shim, Insop

    2015-09-01

    This study was performed to investigate the sedative-hypnotic activity of γ-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the GABAA-benzodiazepine and 5-HT2C receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In GABAA and 5-HT2C receptor binding assays, FST displayed an effective concentration-dependent binding affinity to GABAA receptor, similar to the binding affinity to 5-HT2C receptor. FO exhibited higher affinity to 5-HT2C receptor, compared with the GABAA receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedative-hypnotic activity possibly by modulating GABAA and 5-HT2C receptors. We propose that FST and FO might be effective agents for treatment of insomnia. PMID:26336589

  6. Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms

    PubMed Central

    Joung, Hye-Young; Kang, Young Mi; Lee, Bae-Jin; Chung, Sun Yong; Kim, Kyung-Soo; Shim, Insop

    2015-01-01

    This study was performed to investigate the sedative-hypnotic activity of γ-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the GABAA-benzodiazepine and 5-HT2C receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In GABAA and 5-HT2C receptor binding assays, FST displayed an effective concentration-dependent binding affinity to GABAA receptor, similar to the binding affinity to 5-HT2C receptor. FO exhibited higher affinity to 5-HT2C receptor, compared with the GABAA receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedative-hypnotic activity possibly by modulating GABAA and 5-HT2C receptors. We propose that FST and FO might be effective agents for treatment of insomnia. PMID:26336589

  7. Serotonin-2C and -2A Receptor Co-expression on Cells in the Rat Medial Prefrontal Cortex

    PubMed Central

    Nocjar, Christine; Alex, Katherine D; Sonneborn, Alex; Abbas, Atheir I; Roth, Bryan L; Pehek, Elizabeth A

    2015-01-01

    Neural function within the medial prefrontal cortex (mPFC) regulates normal cognition, attention and impulse control, implicating neuroregulatory abnormalities within this region in mental dysfunction related to schizophrenia, depression and drug abuse. Both serotonin -2A (5-HT2A) and -2C (5-HT2C) receptors are known to be important in neuropsychiatric drug action and are distributed throughout the mPFC. However, their interactive role in serotonergic cortical regulation is poorly understood. While the main signal transduction mechanism for both receptors is stimulation of phosphoinositide production, they can have opposite effects downstream. 5-HT2A versus 5-HT2C receptor activation oppositely regulates behavior and can oppositely affect neurochemical release within the mPFC. These distinct receptor effects could be caused by their differential cellular distribution within the cortex and/or other areas. It is known that both receptors are located on GABAergic and pyramidal cells within the mPFC, but it is not clear whether they are expressed on the same or different cells. The present work employed immunofluorescence with confocal microscopy to examine this in layers V-VI of the prelimbic mPFC. The majority of GABA cells in the deep prelimbic mPFC expressed 5-HT2C receptor immunoreactivity. Furthermore, most cells expressing 5-HT2C receptor immunoreactivity notably co-expressed 5-HT2A receptors. However, 27% of 5-HT2C receptor immunoreactive cells were not GABAergic, indicating that a population of prelimbic pyramidal projection cells could express the 5-HT2C receptor. Indeed, some cells with 5-HT2C and 5-HT2A receptor co-labeling had a pyramidal shape and were expressed in the typical layered fashion of pyramidal cells. This indirectly demonstrates that 5-HT2C and 5-HT2A receptors may be commonly co-expressed on GABAergic cells within the deep layers of the prelimbic mPFC and perhaps co-localized on a small population of local pyramidal projection cells. Thus a

  8. Serotonin 2C receptor antagonists induce fast-onset antidepressant effects.

    PubMed

    Opal, M D; Klenotich, S C; Morais, M; Bessa, J; Winkle, J; Doukas, D; Kay, L J; Sousa, N; Dulawa, S M

    2014-10-01

    Current antidepressants must be administered for several weeks to produce therapeutic effects. We show that selective serotonin 2C (5-HT2C) antagonists exert antidepressant actions with a faster-onset (5 days) than that of current antidepressants (14 days) in mice. Subchronic (5 days) treatment with 5-HT2C antagonists induced antidepressant behavioral effects in the chronic forced swim test (cFST), chronic mild stress (CMS) paradigm and olfactory bulbectomy paradigm. This treatment regimen also induced classical markers of antidepressant action: activation of cAMP response element-binding protein (CREB) and induction of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (mPFC). None of these effects were induced by subchronic treatment with citalopram, a prototypical selective serotonin reuptake inhibitor (SSRI). Local infusion of 5-HT2C antagonists into the ventral tegmental area was sufficient to induce BDNF in the mPFC, and dopamine D1 receptor antagonist treatment blocked the antidepressant behavioral effects of 5-HT2C antagonists. 5-HT2C antagonists also activated mammalian target of rapamycin (mTOR) and eukaryotic elongation factor 2 (eEF2) in the mPFC, effects recently linked to rapid antidepressant action. Furthermore, 5-HT2C antagonists reversed CMS-induced atrophy of mPFC pyramidal neurons. Subchronic SSRI treatment, which does not induce antidepressant behavioral effects, also activated mTOR and eEF2 and reversed CMS-induced neuronal atrophy, indicating that these effects are not sufficient for antidepressant onset. Our findings reveal that 5-HT2C antagonists are putative fast-onset antidepressants, which act through enhancement of mesocortical dopaminergic signaling. PMID:24166413

  9. Synthesis and biological evaluation of 4-nitroindole derivatives as 5-HT2A receptor antagonists.

    PubMed

    Hayat, Faisal; Viswanath, Ambily Nath Indu; Pae, Ae Nim; Rhim, Hyewhon; Park, Woo-Kyu; Choo, Hea-Young Park

    2015-03-15

    A novel series of 4-nitroindole sulfonamides containing a methyleneamino-N,N-dimethylformamidine were prepared. The binding of these compounds to 5-HT2A and 5-HT2C was evaluated, and most of the compounds showed IC50 values of less than 1μM, and exhibited high selectivity for the 5-HT2C receptor. However, little selectivity was observed in the functional assay for 5-HT6 receptors. The computational modeling studies further validated the biological results and also demonstrated a reasonable correlation between the activity of compounds and the mode of superimposition with specified pharmacophoric features. PMID:25684421

  10. Phosphoinositide system-linked serotonin receptor subtypes and their pharmacological properties and clinical correlates.

    PubMed Central

    Pandey, S C; Davis, J M; Pandey, G N

    1995-01-01

    Serotonergic neurotransmission represents a complex mechanism involving pre- and post-synaptic events and distinct 5-HT receptor subtypes. Serotonin (5-HT) receptors have been classified into several categories, and they are termed as 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6 and 5-HT7 type receptors. 5-HT1 receptors have been further subdivided into 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F. 5-HT2 receptors have been divided into 5-HT2A, 5-HT2B and 5-HT2C receptors. All 5-HT2 receptor subtypes are linked to the multifunctional phosphoinositide (PI) signalling system. 5-HT3 receptors are considered ion-gated receptors and are also linked to the PI signalling system by an unknown mechanism. The 5-HT2A receptor subtype is the most widely studied of the 5-HT receptors in psychiatric disorders (for example, suicide, depression and schizophrenia) as well as in relation to the mechanism of action of antidepressant drugs. The roles of 5-HT2C and 5-HT3 receptors in psychiatric disorders are less clear. These 5-HT receptors also play an important role in alcoholism. It has been shown that 5-HT2A, 5-HT2C and 5-HT3 antagonists cause attenuation of alcohol intake in animals and humans. However, the exact mechanisms are unknown. The recent cloning of the cDNAs for 5-HT2A, 5-HT2C and 5-HT3 receptors provides the opportunity to explore the molecular mechanisms responsible for the alterations in these receptors during illness as well as pharmacotherapy. This review article will focus on the current research into the pharmacological properties, molecular biology, and clinical correlates of 5-HT2A, 5-HT2C and 5-HT3 receptors. PMID:7786883

  11. Association of Polymorphisms within the Serotonin Receptor Genes 5-HTR1A, 5-HTR1B, 5-HTR2A and 5-HTR2C and Migraine Susceptibility in a Turkish Population

    PubMed Central

    Yücel, Yavuz; Coşkun, Salih; Cengiz, Beyhan; Özdemir, Hasan H.; Uzar, Ertuğrul; Çim, Abdullah; Camkurt, M. Akif; Aluclu, M. Ufuk

    2016-01-01

    Objective Migraine, a highly prevelant headache disorder, is regarded as a polygenic multifactorial disease. Serotonin (5-HT) and their respective receptors have been implicated in the patogenesis. Methods We investigated the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT2C receptor gene polymorphisms and their association with migraine in Turkish patients. The rs6295, rs1300060, rs1228814, rs6311, rs6313, rs6314, rs6318, rs3813929 (−759C/T) and rs518147 polymorphisms were analyzed in 135 patients with migraine and 139 healthy subjects, using a BioMark 96.96 dynamic array system. Results We found no difference in the frequency of the analyzed eight out of nine polymorpisms between migraine and control groups. However, a significant association was found between the rs3813929 polymorphism in the promoter region of 5-HTR2C gene and migraine. Also, the allele of rs3813929 was more common in the migraine group. Conclusion This result suggests that the 5-HTR2C rs3813929 polymorphism can be a genetic risk factor for migraine in a Turkish population. PMID:27489378

  12. PSD-95 is Essential for Hallucinogen and Atypical Antipsychotic Drug Actions at Serotonin Receptors

    PubMed Central

    Abbas, Atheir I.; Yadav, Prem N.; Yao, Wei-Dong; Arbuckle, Margaret I.; Grant, Seth G.; Caron, Marc G.; Roth, Bryan L.

    2009-01-01

    Here we report that PSD-95, a postsynaptic density scaffolding protein classically conceptualized as being essential for the regulation of ionotropic glutamatergic signaling at the post-synaptic membrane, plays an unanticipated and essential role in mediating the actions of hallucinogens and atypical antipsychotic drugs at 5-HT2A and 5-HT2C serotonergic G protein-coupled receptors (GPCRs). We show that PSD-95 is crucial for normal 5-HT2A and 5- HT2C expression in vivo, and that PSD-95 maintains normal receptor expression by promoting apical dendritic targeting and stabilizing receptor turnover in vivo. Significantly, 5-HT2A and 5-HT2C-mediated downstream signaling is impaired in PSD-95null mice, and the 5-HT2A-mediated head twitch response is abnormal. Furthermore, the ability of 5-HT2A inverse agonists to normalize behavioral changes induced by glutamate receptor antagonists is abolished in the absence of PSD-95 in vivo. These results demonstrate that PSD-95, in addition to the well known role it plays in scaffolding macromolecular glutamatergic signaling complexes, profoundly modulates metabotropic 5-HT2A and 5-HT2C receptor function. PMID:19494135

  13. Taste Receptor Genes

    PubMed Central

    Bachmanov, Alexander A.; Beauchamp, Gary K.

    2009-01-01

    In the past several years, tremendous progress has been achieved with the discovery and characterization of vertebrate taste receptors from the T1R and T2R families, which are involved in recognition of bitter, sweet, and umami taste stimuli. Individual differences in taste, at least in some cases, can be attributed to allelic variants of the T1R and T2R genes. Progress with understanding how T1R and T2R receptors interact with taste stimuli and with identifying their patterns of expression in taste cells sheds light on coding of taste information by the nervous system. Candidate mechanisms for detection of salts, acids, fat, complex carbohydrates, and water have also been proposed, but further studies are needed to prove their identity. PMID:17444812

  14. Serotonin2C receptors modulate dopamine transmission in the nucleus accumbens independently of dopamine release: behavioral, neurochemical and molecular studies with cocaine.

    PubMed

    Cathala, Adeline; Devroye, Céline; Maitre, Marlène; Piazza, Pier Vincenzo; Abrous, Djoher Nora; Revest, Jean-Michel; Spampinato, Umberto

    2015-05-01

    In keeping with its ability to control the mesoaccumbens dopamine (DA) pathway, the serotonin2C receptor (5-HT2C R) plays a key role in mediating the behavioral and neurochemical effects of drugs of abuse. Studies assessing the influence of 5-HT2C R agonists on cocaine-induced responses have suggested that 5-HT2C Rs can modulate mesoaccumbens DA pathway activity independently of accumbal DA release, thereby controlling DA transmission in the nucleus accumbens (NAc). In the present study, we assessed this hypothesis by studying the influence of the 5-HT2C R agonist Ro 60-0175 on cocaine-induced behavioral, neurochemical and molecular responses. The i.p. administration of 1 mg/kg Ro 60-0175 inhibited hyperlocomotion induced by cocaine (15 mg/kg, i.p.), had no effect on cocaine-induced DA outflow in the shell, and increased it in the core subregion of the NAc. Furthermore, Ro 60-0175 inhibited the late-onset locomotion induced by the subcutaneous administration of the DA-D2 R agonist quinpirole (0.5 mg/kg), as well as cocaine-induced increase in c-Fos immunoreactivity in NAc subregions. Finally, Ro 60-0175 inhibited cocaine-induced phosphorylation of the DA and c-AMP regulated phosphoprotein of Mr 32 kDa (DARPP-32) at threonine residues in the NAc core, this effect being reversed by the selective 5-HT2C R antagonist SB 242084 (0.5 mg/kg, i.p.). Altogether, these findings demonstrate that 5-HT2C Rs are capable of modulating mesoaccumbens DA pathway activity at post-synaptic level by specifically controlling DA signaling in the NAc core subregion. In keeping with the tight relationship between locomotor activity and NAc DA function, this interaction could participate in the inhibitory control of cocaine-induced locomotor activity. PMID:24661380

  15. A developmental characterization of mesolimbocortical serotonergic gene expression changes following early immune challenge.

    PubMed

    Sidor, M M; Amath, A; MacQueen, G; Foster, J A

    2010-12-15

    An immunogenic challenge during early postnatal development leads to long-term changes in behavioural and physiological measures reflecting enhanced emotionality and anxiety. Altered CNS serotonin (5-HT) signalling during the third postnatal week is thought to modify the developing neurocircuitry governing anxiety-like behaviour. Changes in 5-HT signalling during this time window may underlie increased emotionality reported in early immune challenge rodents. Here we examine both the spatial and temporal profile of 5-HT related gene expression, including 5HT1A, 2A, 2C receptors, the 5-HT transporter (5HTT), and tryptophan hydroxylase 2 (TPH2) during early development (postnatal day [P]14, P17, P21, P28) in mice challenged with lipopolysaccharide (LPS) during the first postnatal week. Expression levels were measured using in situ hybridization in regions associated with mediating emotive behaviours: the dorsal raphe (DR), hippocampus, amygdala, and prefrontal cortex (PFC). Increased TPH2 and 5HTT expression in the ventrolateral region of the DR of LPS-mice accompanied decreased expression of ventral DR 5HT1A and dorsal DR 5HTT. In the forebrain, 5HT1A and 2A receptors were increased, whereas 5HT2C receptors were decreased in the hippocampus. Decreased mRNA expression of 5HT2C was detected in the amygdala and PFC of LPS-treated pups; 5HT1A was increased in the PFC. The majority of these changes were restricted to P14-21. These transient changes in 5-HT expression coincide with the critical time window in which 5-HT disturbance leads to permanent modification of anxiety-related behaviours. This suggests that alterations in CNS 5-HT during development may underlie the enhanced emotionality associated with an early immune challenge. PMID:20816924

  16. Activation of serotonin(2C) receptors in the lateral habenular nucleus increases the expression of depression-related behaviors in the hemiparkinsonian rat.

    PubMed

    Han, Ling-Na; Zhang, Li; Li, Li-Bo; Sun, Yi-Na; Wang, Yong; Chen, Li; Guo, Yuan; Zhang, Yu-Ming; Zhang, Qiao-Jun; Liu, Jian

    2015-06-01

    The roles of lateral habenular nucleus (LHb) glutamate neurons and serotonin2C (5-HT2C) receptors in depression are poorly understood, particularly in Parkinson's disease-associated depression. Here we assessed the importance of LHb glutamate neurons and 5-HT2C receptors for depressive-like behaviors in sham-operated rats and rats with unilateral 6-hydroxydopamine lesions of the substantia nigra. The lesion induced depressive-like responses compared to sham-operated rats. Intra-LHb injection of potent, selective 5-HT2C receptor agonist Ro60-0175 decreased sucrose consumption and increased immobility time in sham-operated rats, indicating the induction of depressive-like responses, and intra-LHb injection of Ro60-0175 further increased the expression of depressive-like behaviors in the lesioned rats. Activation of LHb 5-HT2C receptors by the local administration of Ro60-0175 increased the firing rate of EAAC1 (a neuronal glutamate transporter)-positive neurons and percentage of the neurons with burst-firing pattern in the two groups of rats. Compared to sham-operated rats, the duration of Ro60-0175 action on the firing rate of EAAC1-positive neurons was markedly prolonged in the lesioned rats. Intra-LHb injection of Ro60-0175 decreased dopamine, 5-HT and noradrenaline levels in the medial prefrontal cortex, habenula, hippocampus and amygdala in sham-operated and the lesioned rats. The lesion did not change the percentage of EAAC1/5-HT2C receptor co-expressing neurons in the LHb. These findings indicate that activation of 5-HT2C receptors in the LHb increases firing activity of LHb glutamate neurons and then decreases monoamine levels in several brain regions, which increase the expression of depressive-like behaviors. Further, our results also suggest that the lesion leads to hyperfunctionality of 5-HT2C receptors on glutamate neurons of the LHb. PMID:25661701

  17. Involvement of serotonin 2C receptor RNA editing in accumbal neuropeptide Y expression and behavioural despair.

    PubMed

    Aoki, Miku; Watanabe, Yoshihisa; Yoshimoto, Kanji; Tsujimura, Atsushi; Yamamoto, Toshiro; Kanamura, Narisato; Tanaka, Masaki

    2016-05-01

    Serotonin 2C receptors (5-HT2 C Rs) are widely expressed in the central nervous system, and are associated with various neurological disorders. 5-HT2 C R mRNA undergoes adenosine-to-inosine RNA editing at five sites within its coding sequence, resulting in expression of 24 different isoforms. Several edited isoforms show reduced activity, suggesting that RNA editing modulates serotonergic systems in the brain with causative relevance to neuropsychiatric disorders. Transgenic mice solely expressing the non-edited 5-HT2 C R INI-isoform (INI) or the fully edited VGV-isoform exhibit various phenotypes including metabolic abnormalities, aggressive behaviour, anxiety-like behaviour, and depression-like behaviour. Here, we examined the behavioural phenotype and molecular changes of INI mice on a C57BL/6J background. INI mice showed an enhanced behavioural despair in the forced swimming test, elevated sensitivity to the tricyclic antidepressant desipramine, and significantly decreased serotonin in the nucleus accumbens (NAc), amygdala, and striatum. They also showed reduced expression of neuropeptide Y (NPY) mRNA in the NAc. In addition, by stereotactic injection of adeno-associated virus encoding NPY into the NAc, we demonstrated that accumbal NPY overexpression relieved behavioural despair. Our results suggest that accumbal NPY expression may be regulated by 5-HT2 C R RNA editing, and its impairment may be linked to mood disorders. PMID:26950265

  18. A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains.

    PubMed Central

    Chen, C X; Cho, D S; Wang, Q; Lai, F; Carter, K C; Nishikura, K

    2000-01-01

    Members of the double-stranded RNA- (dsRNA) specific adenosine deaminase gene family convert adenosine residues into inosines in dsRNA and are involved in A-to-I RNA editing of transcripts of glutamate receptor (GluR) subunits and serotonin receptor subtype 2C (5-HT(2C)R). We have isolated hADAR3, the third member of this class of human enzyme and investigated its editing site selectivity using in vitro RNA editing assay systems. As originally reported for rat ADAR3 or RED2, purified ADAR3 proteins could not edit GluR-B RNA at the "Q/R" site, the "R/G" site, and the intronic "hot spot" site. In addition, ADAR3 did not edit any of five sites discovered recently within the intracellular loop II region of 5-HT(2C)R RNAs, confirming its total lack of editing activity for currently known substrate RNAs. Filter-binding analyses revealed that ADAR3 is capable of binding not only to dsRNA but also to single-stranded RNA (ssRNA). Deletion mutagenesis identified a region rich in arginine residues located in the N-terminus that is responsible for binding of ADAR3 to ssRNA. The presence of this ssRNA-binding domain as well as its expression in restricted brain regions and postmitotic neurons make ADAR3 distinct from the other two ADAR gene family members, editing competent ADAR1 and ADAR2. ADAR3 inhibited in vitro the activities of RNA editing enzymes of the ADAR gene family, raising the possibility of a regulatory role in RNA editing. PMID:10836796

  19. 5-Hydroxytryptamine-induced bladder hyperactivity via the 5-HT2A receptor in partial bladder outlet obstruction in rats.

    PubMed

    Sakai, Takumi; Kasahara, Ken-ichi; Tomita, Ken-ichi; Ikegaki, Ichiro; Kuriyama, Hiroshi

    2013-04-01

    We investigated the effects of partial bladder outlet obstruction (BOO) on the function and gene expression of 5-hydroxytryptamine (5-HT) receptor subtypes in rat bladder. Isometric contractions of the isolated bladders from sham-operated control and BOO rats were examined. The contractile responses to 5-HT were significantly increased in BOO rat bladder strips, while the responses to KCl, carbachol, or phenylephrine were not different from the control. The 5-HT-induced hypercontraction in BOO rat bladder strips was inhibited by ketanserin, a 5-HT(2A) receptor antagonist. The contractile responses to 5-HT in bladder strips were not affected by urothelium removal from the intact bladder. The gene expression of 5-HT receptor subtypes in the bladders was analyzed by RT-PCR. The mRNA expression of the 5-HT(2A), 5-HT(2B), 5-HT(2C), 5-HT(4), and 5-HT(7) receptors was detected in both the control and BOO rat bladders. Quantitative RT-PCR analysis showed there was a significant increase of 5-HT(2A) receptor mRNA in the BOO rat bladder compared with the control bladder. On the other hand, the gene expression of the 5-HT(4) receptor was not changed in the BOO rat bladder. These results suggest that the increased contractile responses to 5-HT in BOO rat bladder may be partly caused by 5-HT(2A) receptor upregulation in the detrusor smooth muscles. PMID:23344575

  20. Synergism between a serotonin 5-HT2A receptor (5-HT2AR) antagonist and 5-HT2CR agonist suggests new pharmacotherapeutics for cocaine addiction.

    PubMed

    Cunningham, Kathryn A; Anastasio, Noelle C; Fox, Robert G; Stutz, Sonja J; Bubar, Marcy J; Swinford, Sarah E; Watson, Cheryl S; Gilbertson, Scott R; Rice, Kenner C; Rosenzweig-Lipson, Sharon; Moeller, F Gerard

    2013-01-16

    Relapse to cocaine dependence, even after extended abstinence, involves a number of liability factors including impulsivity (predisposition toward rapid, unplanned reactions to stimuli without regard to negative consequences) and cue reactivity (sensitivity to cues associated with cocaine-taking which can promote cocaine-seeking). These factors have been mechanistically linked to serotonin (5-hydroxytryptamine, 5-HT) signaling through the 5-HT(2A) receptor (5-HT(2A)R) and 5-HT(2C)R; either a selective 5-HT(2A)R antagonist or a 5-HT(2C)R agonist suppresses impulsivity and cocaine-seeking in preclinical models. We conducted proof-of-concept analyses to evaluate whether a combination of 5-HT(2A)R antagonist plus 5-HT(2C)R agonist would have synergistic effects over these liability factors for relapse as measured in a 1-choice serial reaction time task and cocaine self-administration/reinstatement assay. Combined administration of a dose of the selective 5-HT(2A)R antagonist M100907 plus the 5-HT(2C)R agonist WAY163909, each ineffective alone, synergistically suppressed cocaine-induced hyperactivity, inherent and cocaine-evoked impulsive action, as well as cue- and cocaine-primed reinstatement of cocaine-seeking behavior. The identification of synergism between a 5-HT(2A)R antagonist plus a 5-HT(2C)R agonist to attenuate these factors important in relapse indicates the promise of a bifunctional ligand as an anti-addiction pharmacotherapeutic, setting the stage to develop new ligands with improved efficacy, potency, selectivity, and in vivo profiles over the individual molecules. PMID:23336050

  1. A Novel Translational Assay of Response Inhibition and Impulsivity: Effects of Prefrontal Cortex Lesions, Drugs Used in ADHD, and Serotonin 2C Receptor Antagonism

    PubMed Central

    Humby, Trevor; Eddy, Jessica B; Good, Mark A; Reichelt, Amy C; Wilkinson, Lawrence S

    2013-01-01

    Animal models are making an increasing contribution to our understanding of the psychology and brain mechanisms underlying behavioral inhibition and impulsivity. The aim here was to develop, for the first time, a mouse analog of the stop-signal reaction time task with high translational validity in order to be able to exploit this species in genetic and molecular investigations of impulsive behaviors. Cohorts of mice were trained to nose-poke to presentations of visual stimuli. Control of responding was manipulated by altering the onset of an auditory ‘stop-signal' during the go response. The anticipated systematic changes in action cancellation were observed as stopping was made more difficult by placing the stop-signal closer to the execution of the action. Excitotoxic lesions of medial prefrontal cortex resulted in impaired stopping, while the clinically effective drugs methylphenidate and atomoxetine enhanced stopping abilities. The specific 5-HT2C receptor antagonist SB242084 also led to enhanced response control in this task. We conclude that stop-signal reaction time task performance can be successfully modeled in mice and is sensitive to prefrontal cortex dysfunction and drug treatments in a qualitatively similar manner to humans and previous rat models. Additionally, using this model we show novel and highly discrete effects of 5-HT2C receptor antagonism that suggest manipulation of 5-HT2C receptor function may be of use in correcting maladaptive impulsive behaviors and provide further evidence for dissociable contributions of serotonergic transmission to response control. PMID:23657439

  2. The Serotonin 2C Receptor Agonist Lorcaserin Attenuates Intracranial Self-Stimulation and Blocks the Reward-Enhancing Effects of Nicotine.

    PubMed

    Zeeb, Fiona D; Higgins, Guy A; Fletcher, Paul J

    2015-07-15

    Lorcaserin, a serotonin (5-hydroxytryptamine, 5-HT) 2C receptor agonist, was recently approved for the treatment of obesity. We previously suggested that 5-HT2C receptor agonists affect reward processes and reduce the rewarding effects of drugs of abuse. Here, we determined whether lorcaserin (1) decreases responding for brain stimulation reward (BSR) and (2) prevents nicotine from enhancing the efficacy of BSR. Rats were trained on the intracranial self-stimulation (ICSS) paradigm to nosepoke for BSR of either the dorsal raphé nucleus or left medial forebrain bundle. In Experiment 1, lorcaserin (0.3-1.0 mg/kg) dose-dependently reduced the efficacy of BSR. This effect was blocked by prior administration of the 5-HT2C receptor antagonist SB242084. In Experiment 2, separate groups of rats received saline or nicotine (0.4 mg/kg) for eight sessions prior to testing. Although thresholds were unaltered in saline-treated rats, nicotine reduced reward thresholds. An injection of lorcaserin (0.3 mg/kg) prior to nicotine prevented the reward-enhancing effect of nicotine across multiple test sessions. These results demonstrated that lorcaserin reduces the rewarding value of BSR and also prevents nicotine from facilitating ICSS. Hence, lorcaserin may be effective in treating psychiatric disorders, including obesity and nicotine addiction, by reducing the value of food or drug rewards. PMID:25781911

  3. New halogenated tris-(phenylalkyl)amines as h5-HT2B receptor ligands.

    PubMed

    Kapadia, Nirav; Ahmed, Shahrear; Harding, Wayne W

    2016-07-15

    A series of compounds in which various halogen substituents were incorporated into a phenyl ring of a tris-(phenylalkyl)amine scaffold, was synthesized and evaluated for affinity to h5-HT2 receptors. In general, all compounds were found to have good affinity for the 5-HT2B receptor and were selective over 5-HT2A and 5-HT2C receptors. Compound 9i was the most selective compound in this study and is the highest affinity 5-HT2B receptor ligand bearing a tris-(phenylalkyl)amine scaffold to date. PMID:27261181

  4. Selective 5-Hydroxytrytamine 2C Receptor Agonists Derived from the Lead Compound Tranylcypromine – Identification of Drugs with Antidepressant-Like Action

    PubMed Central

    Cho, Sung Jin; Jensen, Niels H.; Kurome, Toru; Kadari, Sudhakar; Manzano, Michael L.; Malberg, Jessica E.; Caldarone, Barbara; Roth, Bryan L.; Kozikowski, Alan P.

    2009-01-01

    We report here the design, synthesis, and pharmacological properties of a series of compounds related to tranylcypromine (9), which itself was discovered as a lead compound in a high-throughput screening campaign. Starting from 9, which shows modest activity as a 5-HT2C agonist, a series of 1-aminomethyl-2-phenylcyclopropanes was investigated as 5-HT2C agonists through iterative structural modifications. Key pharmacophore feature of this new class of ligands is a 2-aminomethyl-trans-cyclopropyl side chain attached to a substituted benzene ring. Among the tested compounds, several were potent and efficacious 5-HT2C receptor agonists with selectivity over both 5-HT2A and 5-HT2B receptors in functional assays. The most promising compound is 37 with 120- and 14-fold selectivity over 5-HT2A and 5-HT2B, respectively (EC50 = 585, 65, and 4.8 nM at the 2A, 2B, and 2C subtypes, respectively). In animal studies, compound 37 (10–60 mg/kg) decreased immobility time in the mouse forced swim test. PMID:19284718

  5. Phylogenetic comparison of the pre-mRNA adenosine deaminase ADAR2 genes and transcripts: conservation and diversity in editing site sequence and alternative splicing patterns.

    PubMed

    Slavov, D; Gardiner, K

    2002-10-16

    Adenosine deaminase that acts on RNA -2 (ADAR2) is a member of a family of vertebrate genes that encode adenosine (A)-to-inosine (I) RNA deaminases, enzymes that deaminate specific A residues in specific pre-mRNAs to produce I. Known substrates of ADAR2 include sites within the coding regions of pre-mRNAs of the ionotropic glutamate receptors, GluR2-6, and the serotonin receptor, 5HT2C. Mammalian ADAR2 expression is itself regulated by A-to-I editing and by several alternative splicing events. Because the biological consequences of ADAR2 function are significant, we have undertaken a phylogenetic comparison of these features. Here we report a comparison of cDNA sequences, genomic organization, editing site sequences and patterns of alternative splicing of ADAR2 genes from human, mouse, chicken, pufferfish and zebrafish. Coding sequences and intron/exon organization are highly conserved. All ADAR2 genes show evidence of transcript editing with required sequences and predicted secondary structures very highly conserved. Patterns and levels of editing and alternative splicing vary among organisms, and include novel N-terminal exons and splicing events. PMID:12459255

  6. Serotonin and dopamine receptors in motivational and cognitive disturbances of schizophrenia.

    PubMed

    Sumiyoshi, Tomiki; Kunugi, Hiroshi; Nakagome, Kazuyuki

    2014-01-01

    Negative symptoms (e.g., decreased spontaneity, social withdrawal, blunt affect) and disturbances of cognitive function (e.g., several types of memory, attention, processing speed, executive function, fluency) provide a major determinant of long-term outcome in patients with schizophrenia. Specifically, motivation deficits, a type of negative symptoms, have been attracting interest as (1) a moderator of cognitive performance in schizophrenia and related disorders, and (2) a modulating factor of cognitive enhancers/remediation. These considerations suggest the need to clarify neurobiological substrates regulating motivation. Genetic studies indicate a role for the monoamine systems in motivation and key cognitive domains. For example, polymorphism of genes encoding catecholamine-O-methyltransferase, an enzyme catabolizing dopamine (DA), affects performance on tests of working memory and executive function in a phenotype (schizophrenia vs. healthy controls)-dependent fashion. On the other hand, motivation to maximize rewards has been shown to be influenced by other genes encoding DA-related substrates, such as DARPP-32 and DA-D2 receptors. Serotonin (5-HT) receptors may also play a significant role in cognitive and motivational disabilities in psychoses and mood disorders. For example, mutant mice over-expressing D2 receptors in the striatum, an animal model of schizophrenia, exhibit both decreased willingness to work for reward and up-regulation of 5-HT2C receptors. Taken together, genetic predisposition related to 5-HT receptors may mediate the diversity of incentive motivation that is impaired in patients receiving biological and/or psychosocial treatments. Thus, research into genetic and neurobiological measures of motivation, in association with 5-HT receptors, is likely to facilitate intervention into patients seeking better social consequences. PMID:25538549

  7. Structure of the human progesterone receptor gene.

    PubMed

    Misrahi, M; Venencie, P Y; Saugier-Veber, P; Sar, S; Dessen, P; Milgrom, E

    1993-11-16

    The complete organization of the human progesterone receptor (hPR) gene has been determined. It spans over 90 kbp and contains eight exons. The first exon encodes the N-terminal part of the receptor. The DNA binding domain is encoded by two exons, each exon corresponding to one zinc finger. The steroid binding domain is encoded by five exons. The nucleotide sequence of 1144 bp of the 5' flanking region has been determined. PMID:8241270

  8. Stimulation of serotonin2C receptors elicits abnormal oral movements by acting on pathways other than the sensorimotor one in the rat basal ganglia.

    PubMed

    Beyeler, A; Kadiri, N; Navailles, S; Boujema, M Ben; Gonon, F; Moine, C Le; Gross, C; De Deurwaerdère, P

    2010-08-11

    Serotonin2C (5-HT(2C)) receptors act in the basal ganglia, a group of sub-cortical structures involved in motor behavior, where they are thought to modulate oral activity and participate in iatrogenic motor side-effects in Parkinson's disease and Schizophrenia. Whether abnormal movements initiated by 5-HT(2C) receptors are directly consequent to dysfunctions of the motor circuit is uncertain. In the present study, we combined behavioral, immunohistochemical and extracellular single-cell recordings approaches in rats to investigate the effect of the 5-HT(2C) agonist Ro-60-0175 respectively on orofacial dyskinesia, the expression of the marker of neuronal activity c-Fos in basal ganglia and the electrophysiological activity of substantia nigra pars reticulata (SNr) neuron connected to the orofacial motor cortex (OfMC) or the medial prefrontal cortex (mPFC). The results show that Ro-60-0175 (1 mg/kg) caused bouts of orofacial movements that were suppressed by the 5-HT(2C) antagonist SB-243213 (1 mg/kg). Ro-60-0175 (0.3, 1, 3 mg/kg) dose-dependently enhanced Fos expression in the striatum and the nucleus accumbens. At the highest dose, it enhanced Fos expression in the subthalamic nucleus, the SNr and the entopeduncular nucleus but not in the external globus pallidus. However, the effect of Ro-60-0175 was mainly associated with associative/limbic regions of basal ganglia whereas subregions of basal ganglia corresponding to sensorimotor territories were devoid of Fos labeling. Ro-60-0175 (1-3 mg/kg) did not affect the electrophysiological activity of SNr neurons connected to the OfMC nor their excitatory-inhibitory-excitatory responses to the OfMC electrical stimulation. Conversely, Ro-60-0175 (1 mg/kg) enhanced the late excitatory response of SNr neurons evoked by the mPFC electrical stimulation. These results suggest that oral dyskinesia induced by 5-HT(2C) agonists are not restricted to aberrant signalling in the orofacial motor circuit and demonstrate discrete

  9. Role of IL-1 beta and 5-HT2 receptors in midbrain periaqueductal gray (PAG) in potentiating defensive rage behavior in cat.

    PubMed

    Bhatt, Suresh; Bhatt, Rekha; Zalcman, Steven S; Siegel, Allan

    2008-02-01

    Feline defensive rage, a form of aggressive behavior that occurs in response to a threat can be elicited by electrical stimulation of the medial hypothalamus or midbrain periaqueductal gray (PAG). Our laboratory has recently begun a systematic examination of the role of cytokines in the regulation of rage and aggressive behavior. It was shown that the cytokine, interleukin-2 (IL-2), differentially modulates defensive rage when microinjected into the medial hypothalamus and PAG by acting through separate neurotransmitter systems. The present study sought to determine whether a similar relationship exists with respect to interleukin 1-beta (IL-1 beta), whose receptor activation in the medial hypothalamus potentiates defensive rage. Thus, the present study identified the effects of administration of IL-1 beta into the PAG upon defensive rage elicited from the medial hypothalamus. Microinjections of IL-1 beta into the dorsal PAG significantly facilitated defensive rage behavior elicited from the medial hypothalamus in a dose and time dependent manner. In addition, the facilitative effects of IL-1 beta were blocked by pre-treatment with anti-IL-1 beta receptor antibody, while IL-1 beta administration into the PAG had no effect upon predatory attack elicited from the lateral hypothalamus. The findings further demonstrated that IL-1 beta's effects were mediated through 5-HT(2) receptors since pretreatment with a 5-HT(2C) receptors antagonist blocked the facilitating effects of IL-1 beta. An extensive pattern of labeling of IL-1 beta and 5-HT(2C) receptors in the dorsal PAG supported these findings. The present study demonstrates that IL-beta in the dorsal PAG, similar to the medial hypothalamus, potentiates defensive rage behavior and is mediated through a 5-HT(2C) receptor mechanism. PMID:17890051

  10. A molecular characterization of the choroid plexus and stress-induced gene regulation

    PubMed Central

    Sathyanesan, M; Girgenti, M J; Banasr, M; Stone, K; Bruce, C; Guilchicek, E; Wilczak-Havill, K; Nairn, A; Williams, K; Sass, S; Duman, J G; Newton, S S

    2012-01-01

    The role of the choroid plexus (CP) in brain homeostasis is being increasingly recognized and recent studies suggest that the CP has a more important role in physiological and pathological brain functions than currently appreciated. To obtain additional insight on the CP function, we performed a proteomics and transcriptomics characterization employing a combination of high resolution tandem mass spectrometry and gene expression analyses in normal rodent brain. Using multiple protein fractionation approaches, we identified 1400 CP proteins in adult CP. Microarray-based comparison of CP gene expression with the kidney, cortex and hippocampus showed significant overlap between the CP and the kidney. CP gene profiles were validated by in situ hybridization analysis of several target genes including klotho, CLIC 6, OATP 14 and Ezrin. Immunohistochemical analyses were performed for CP and enpendyma detection of several target proteins including cytokeratin, Rab7, klotho, tissue inhibitor of metalloprotease 1 (TIMP1), MMP9 and glial fibrillary acidic protein (GFAP). The molecular functions associated with various proteins of the CP proteome indicate that it is a blood–cerebrospinal fluid (CSF) barrier that exhibits high levels of metabolic activity. We also analyzed the gene expression changes induced by stress, an exacerbating factor for many illnesses, particularly mood disorders. Chronic stress altered the expression of several genes, downregulating 5HT2C, glucocorticoid receptor and the cilia genes IFT88 and smoothened while upregulating 5HT2A, BDNF, TNFα and IL-1b. The data presented here attach additional significance to the emerging importance of CP function in brain health and CNS disease states. PMID:22781172

  11. Affinity of Iresine herbstii and Brugmansia arborea extracts on different cerebral receptors.

    PubMed

    Nencini, Cristina; Cavallo, Federica; Bruni, Giancarlo; Capasso, Anna; De Feo, Vincenzo; De Martino, Laura; Giorgi, Giorgio; Micheli, Lucia

    2006-05-24

    Iresine herbstii Hook. (Amaranthaceae) and Brugmansia arborea (L.) Lagerheim (Solanaceae) are used in the northern Peruvian Andes for magic-therapeutical purposes. The traditional healers use Iresine herbstii with the ritual aim to expel bad spirits from the body. Furthermore, Iresine herbstii was used in association with other plants, such as Trichocereus pachanoi Britt. et Rose, for divination, to diagnose diseases, and to take possession of another identity. Also, species of Brugmansia have been reported to be used during ritual practices for magical and curative purposes. Given the above evidence, the aim of the present study is to evaluate if the central effects of Iresine herbstii and Brugmansia arborea could be associated with interaction with SNC receptors. Two Iresine herbstii extracts (methanolic and aqueous) and one Brugmansia arborea aqueous extract were tested for in vitro affinity on 5-HT(1A), 5-HT(2A), 5-HT(2C), D1, D2, alpha(1), and alpha(2) receptors by radioligand binding assays. The biological materials for binding assay (cerebral cortex) were taken from male Sprague-Dawley rats. The extracts affinity for receptors is definite as inhibition percentage of radioligand/receptor binding and measured as the radioactivity of remaining complex radioligand/receptor. The data obtained for Iresine extracts have shown a low affinity for the 5-HT(1A) receptor and no affinity for 5-HT(2A) receptor. Otherwise the methanolic extract showed affinity for 5-HT(2C) receptor (IC(50): 34.78 microg/ml) and for D1 receptor (IC(50): 19.63 microg/ml), instead the Iresine aqueous extract displayed a lower affinity for D1 (48.3% at the maximum concentration tested) and a higher value of affinity for D2 receptors (IC(50): 32.08 microg/ml). The Brugmansia aqueous extract displayed affinity for D1 receptors (IC(50): 17.68 microg/ml), D2 receptors (IC(50): 15.95 microg/ml) and weak affinity for the serotoninergic receptors. None of the three extracts showed relevant affinity

  12. Engineering AAV receptor footprints for gene therapy.

    PubMed

    Madigan, Victoria J; Asokan, Aravind

    2016-06-01

    Adeno-associated viruses (AAV) are currently at the forefront of human gene therapy clinical trials as recombinant vectors. Significant progress has been made in elucidating the structure, biology and tropisms of different naturally occurring AAV isolates in the past decade. In particular, a spectrum of AAV capsid interactions with host receptors have been identified and characterized. These studies have enabled a better understanding of key determinants of AAV cell recognition and entry in different hosts. This knowledge is now being applied toward engineering new, lab-derived AAV capsids with favorable transduction profiles. The current review conveys a structural perspective of capsid-glycan interactions and provides a roadmap for generating synthetic strains by engineering AAV receptor footprints. PMID:27262111

  13. Widespread ectopic expression of olfactory receptor genes

    PubMed Central

    Feldmesser, Ester; Olender, Tsviya; Khen, Miriam; Yanai, Itai; Ophir, Ron; Lancet, Doron

    2006-01-01

    Background Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information. PMID:16716209

  14. Effect of Nelumbo nucifera Petal Extracts on Lipase, Adipogenesis, Adipolysis, and Central Receptors of Obesity

    PubMed Central

    Velusami, Chandrasekaran Chinampudur; Mookambeswaran, Vijayalakshmi

    2013-01-01

    N. nucifera is one among the important medicinal plants assessed for its antiobesity action in various preclinical models. The present study was aimed at investigating the antiobesity effect of methanol and successive water extracts of petals of N. nucifera by studying its effect on adipogenesis, adipolysis, lipase, serotonin (5-HT2C), cannabinoid (CNR2), melanocyte concentrating hormone (MCHR1), and melanocortin (MC4R) receptors. Both methanol and successive water extracts of N. nucifera petals had an effect on inhibition of lipid storage in adipocytes and on increasing lipolysis. N. nucifera petal methanol extract exhibited the concentration-dependent inhibitory effect on lipase activity with an IC50 value of 47 µg/mL. N. nucifera petal extracts showed evident agonist and antagonist activity towards 5-HT2C and CNR2 receptors, respectively, while it showed no effect towards MCHR1 and MC4R receptors. Overall, methanol extract of N. nucifera petals showed better activity than successive water extract. PMID:24348689

  15. Androgen receptor gene polymorphism in zebra species

    PubMed Central

    Ito, Hideyuki; Langenhorst, Tanya; Ogden, Rob; Inoue-Murayama, Miho

    2015-01-01

    Androgen receptor genes (AR) have been found to have associations with reproductive development, behavioral traits, and disorders in humans. However, the influence of similar genetic effects on the behavior of other animals is scarce. We examined the loci AR glutamine repeat (ARQ) in 44 Grevy's zebras, 23 plains zebras, and three mountain zebras, and compared them with those of domesticated horses. We observed polymorphism among zebra species and between zebra and horse. As androgens such as testosterone influence aggressiveness, AR polymorphism among equid species may be associated with differences in levels of aggression and tameness. Our findings indicate that it would be useful to conduct further studies focusing on the potential association between AR and personality traits, and to understand domestication of equid species. PMID:26236645

  16. N-Benzyl-5-methoxytryptamines as Potent Serotonin 5-HT2 Receptor Family Agonists and Comparison with a Series of Phenethylamine Analogues

    PubMed Central

    2015-01-01

    A series of N-benzylated-5-methoxytryptamine analogues was prepared and investigated, with special emphasis on substituents in the meta position of the benzyl group. A parallel series of several N-benzylated analogues of 2,5-dimethoxy-4-iodophenethylamine (2C-I) also was included for comparison of the two major templates (i.e., tryptamine and phenethylamine). A broad affinity screen at serotonin receptors showed that most of the compounds had the highest affinity at the 5-HT2 family receptors. Substitution at the para position of the benzyl group resulted in reduced affinity, whereas substitution in either the ortho or the meta position enhanced affinity. In general, introduction of a large lipophilic group improved affinity, whereas functional activity often followed the opposite trend. Tests of the compounds for functional activity utilized intracellular Ca2+ mobilization. Function was measured at the human 5-HT2A, 5-HT2B, and 5-HT2C receptors, as well as at the rat 5-HT2A and 5-HT2C receptors. There was no general correlation between affinity and function. Several of the tryptamine congeners were very potent functionally (EC50 values from 7.6 to 63 nM), but most were partial agonists. Tests in the mouse head twitch assay revealed that many of the compounds induced the head twitch and that there was a significant correlation between this behavior and functional potency at the rat 5-HT2A receptor. PMID:25547199

  17. Serotonin 5-HT2 Receptors Induce a Long-Lasting Facilitation of Spinal Reflexes Independent of Ionotropic Receptor Activity

    PubMed Central

    Shay, Barbara L.; Sawchuk, Michael; Machacek, David W.; Hochman, Shawn

    2009-01-01

    Dorsal root-evoked stimulation of sensory afferents in the hemisected in vitro rat spinal cord produces reflex output, recorded on the ventral roots. Transient spinal 5-HT2C receptor activation induces a long-lasting facilitation of these reflexes (LLFR) by largely unknown mechanisms. Two Sprague-Dawley substrains were used to characterize network properties involved in this serotonin (5-HT) receptor-mediated reflex plasticity. Serotonin more easily produced LLFR in one substrain and a long-lasting depression of reflexes (LLDR) in the other. Interestingly, LLFR and LLDR were bidirectionally interconvertible using 5-HT2A/2C and 5-HT1A receptor agonists, respectively, regardless of substrain. LLFR was predominantly Aβ afferent fiber mediated, consistent with prominent 5-HT2C receptor expression in the Aβ fiber projection territories (deeper spinal laminae). Reflex facilitation involved an unmasking of polysynaptic pathways and an increased receptive field size. LLFR emerged even when reflexes were evoked three to five times/h, indicating an activity independent induction. Both the NMDA and AMPA/kainate receptor-mediated components of the reflex could be facilitated, and facilitation was dependent on 5-HT receptor activation alone, not on coincident reflex activation in the presence of 5-HT. Selective blockade of GABAA and/or glycine receptors also did not prevent reflex amplification and so are not required for LLFR. Indeed, a more robust response was seen after blockade of spinal inhibition, indicating that inhibitory processes serve to limit reflex amplification. Overall we demonstrate that the serotonergic system has the capacity to induce long-lasting bidirectional changes in reflex strength in a manner that is nonassociative and independent of evoked activity or activation of ionotropic excitatory and inhibitory receptors. PMID:16033939

  18. A dual physiological character for sexual function: the role of serotonergic receptors.

    PubMed

    Motofei, Ion G

    2008-03-01

    Anatomically, sexual reflexes are mixed (somatic-autonomic) circuits, represented by emission (sympathetic centre and somatic afferents), expulsion (parasympathetic centre and somatic efferents) and erection (parasympathetic centre and somatic afferents). Physiologically, ejaculation has a dual autonomic mediation, consisting of two distinct and opposite autonomic centres (emission and expulsion), both with a positive contribution to the respective function. Experimentally, serotonin (5HT) has two distinct, opposite and positive effects on sexual function, with 5HT-(1A) agonists decreasing intravaginal ejaculatory latency and erection, and 5HT-(2C) agonists increasing both erection and ejaculatory latency. In this review I assume that 5HT modulates sexual reflexes, establishing a functional connection between the involved somatic and autonomic structures. The 5HT-(1A) receptors are assumed to make the connection between somatic pathways and sympathetic centres while the 5HT-(2C) receptors could establish the connection between somatic pathways and parasympathetic centres. Further studies will develop the cerebral sexual duality, explaining the implication of psychological factors in sexual function and the role of sexuality in psychosocial behaviour. PMID:17922864

  19. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    NASA Astrophysics Data System (ADS)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  20. 5-HT2A receptor activation is necessary for CO2-induced arousal.

    PubMed

    Buchanan, Gordon F; Smith, Haleigh R; MacAskill, Amanda; Richerson, George B

    2015-07-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT(2A) receptors dose-dependently blocked CO2-induced arousal. The 5-HT(2C) receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1b(f/f/p)) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT(2A), but not 5-HT(2C), receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT(2A) receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  1. 5-HT2A receptor activation is necessary for CO2-induced arousal

    PubMed Central

    Smith, Haleigh R.; MacAskill, Amanda; Richerson, George B.

    2015-01-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT2A receptors dose-dependently blocked CO2-induced arousal. The 5-HT2C receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1bf/f/p) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT2A, but not 5-HT2C, receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT2A receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  2. Regulation of cytochrome P450 (CYP) genes by nuclear receptors.

    PubMed Central

    Honkakoski, P; Negishi, M

    2000-01-01

    Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks. PMID:10749660

  3. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    PubMed

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  4. Identification of chemosensory receptor genes from vertebrate genomes.

    PubMed

    Niimura, Yoshihito

    2013-01-01

    Chemical senses are essential for the survival of animals. In vertebrates, mainly three different types of receptors, olfactory receptors (ORs), vomeronasal receptors type 1 (V1Rs), and vomeronasal receptors type 2 (V2Rs), are responsible for the detection of chemicals in the environment. Mouse or rat genomes contain >1,000 OR genes, forming the largest multigene family in vertebrates, and have >100 V1R and V2R genes as well. Recent advancement in genome sequencing enabled us to computationally identify nearly complete repertories of OR, V1R, and V2R genes from various organisms, revealing that the numbers of these genes are highly variable among different organisms depending on each species' living environment. Here I would explain bioinformatic methods to identify the entire repertoires of OR, V1R, and V2R genes from vertebrate genome sequences. PMID:24014356

  5. Dopamine receptor genes: new tools for molecular psychiatry.

    PubMed Central

    Niznik, H B; Van Tol, H H

    1992-01-01

    For over a decade it has been generally assumed that all the pharmacological and biochemical actions of dopamine within the central nervous system and periphery were mediated by two distinct dopamine receptors. These receptors, termed D1 and D2, were defined as those coupled to the stimulation or inhibition of adenylate cyclase, respectively, and by their selectivity and avidity for various drugs and compounds. The concept that two dopamine receptors were sufficient to account for all the effects mediated by dopamine was an oversimplification. Recent molecular biological studies have identified five distinct genes which encode at least eight functional dopamine receptors. The members of the expanded dopamine receptor family, however, can still be codifed by way of the original D1 and D2 receptor dichotomy. These include two genes encoding dopamine D1-like receptors (D1 [D1A]/D5 [D1B]) and three genes encoding D2-like receptors (D2/D3/D4). We review here our recent work on the cloning and characterization of some of the members of the dopamine receptor gene family (D1, D2, D4, D5), their relationship to neuropsychiatric disorders and their potential role in antipsychotic drug action. Images Fig. 1 PMID:1450188

  6. The role of serotonin receptor subtypes in treating depression: a review of animal studies

    PubMed Central

    Carr, Gregory V.

    2012-01-01

    Rationale Serotonin reuptake inhibitors (SSRIs) are effective in treating depression. Given the existence of different families and subtypes of 5-HT receptors, multiple 5-HT receptors may be involved in the antidepressant-like behavioral effects of SSRIs. Objective Behavioral pharmacology studies investigating the role of 5-HT receptor subtypes in producing or blocking the effects of SSRIs were reviewed. Results Few animal behavior tests were available to support the original development of SSRIs. Since their development, a number of behavioral tests and models of depression have been developed that are sensitive to the effects of SSRIs, as well as to other types of antidepressant treatments. The rationale for the development and use of these tests is reviewed. Behavioral effects similar to those of SSRIs (antidepressant-like) have been produced by agonists at 5-HT1A, 5-HT1B, 5-HT2C, 5-HT4, and 5-HT6 receptors. Also, antagonists at 5-HT2A, 5-HT2C, 5-HT3, 5- HT6, and 5-HT7 receptors have been reported to produce antidepressant-like responses. Although it seems paradoxical that both agonists and antagonists at particular 5-HT receptors can produce antidepressant-like effects, they probably involve diverse neurochemical mechanisms. The behavioral effects of SSRIs and other antidepressants may also be augmented when 5-HT receptor agonists or antagonists are given in combination. Conclusions The involvement of 5-HT receptors in the antidepressant-like effects of SSRIs is complex and involves the orchestration of stimulation and blockade at different 5-HT receptor subtypes. Individual 5-HT receptors provide opportunities for the development of a newer generation of antidepressants that may be more beneficial and effective than SSRIs. PMID:21107537

  7. Deletion of CB2 Cannabinoid Receptor Induces Schizophrenia-Related Behaviors in Mice

    PubMed Central

    Ortega-Alvaro, Antonio; Aracil-Fernández, Auxiliadora; García-Gutiérrez, María S; Navarrete, Francisco; Manzanares, Jorge

    2011-01-01

    The possible role of the CB2 receptor (CB2r) in psychiatric disorders has been considered. Several animal models use knockout (KO) mice that display schizophrenia-like behaviors and this study evaluated the role of CB2r in the regulation of such behaviors. Mice lacking the CB2r (CB2KO) were challenged in open field, light–dark box, elevated plus-maze, tail suspension, step down inhibitory avoidance, and pre-pulse inhibition tests (PPI). Furthermore, the effects of treatment with cocaine and risperidone were evaluated using the OF and the PPI test. Gene expression of dopamine D2 (D2r), adrenergic-α2C (α2Cr), serotonergic 5-HT2A and 5-HT2C receptors (5-HT2Ar and 5-HT2Cr) were studied by RT-PCR in brain regions related to schizophrenia. Deletion of CB2r decreased motor activity in the OF test, but enhanced response to acute cocaine and produced mood-related alterations, PPI deficit, and cognitive impairment. Chronic treatment with risperidone tended to impair PPI in WT mice, whereas it ‘normalized' the PPI deficit in CB2KO mice. CB2KO mice presented increased D2r and α2Cr gene expressions in the prefrontal cortex (PFC) and locus coeruleus (LC), decreased 5-HT2Cr gene expression in the dorsal raphe (DR), and 5-HT2Ar gene expression in the PFC. Chronic risperidone treatment in WT mice left α2Cr gene expression unchanged, decreased D2r gene expression (15 μg/kg), and decreased 5-HT2Cr and 5-HT2Ar in PFC and DR. In CB2KO, the gene expression of D2r in the PFC, of α2Cr in the LC, and of 5-HT2Cr and 5-HT2Ar in PFC was reduced; 5-HT2Cr and 5-HT2Ar gene expressions in DR were increased after treatment with risperidone. These results suggest that deletion of CB2r has a relation with schizophrenia-like behaviors. Pharmacological manipulation of CB2r may merit further study as a potential therapeutic target for the treatment of schizophrenia-related disorders. PMID:21430651

  8. Adenovirus receptors and their implications in gene delivery

    PubMed Central

    Sharma, Anurag; Li, Xiaoxin; Bangari, Dinesh S.; Mittal, Suresh K.

    2010-01-01

    Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed. PMID:19647886

  9. The effect of the sigma-1 receptor selective compound LS-1-137 on the DOI-induced head twitch response in mice.

    PubMed

    Malik, Maninder; Rangel-Barajas, Claudia; Mach, Robert H; Luedtke, Robert R

    2016-09-01

    Several receptor mediated pathways have been shown to modulate the murine head twitch response (HTR). However, the role of sigma receptors in the murine (±)-2,5-dimethoxy-4-iodoamphetamine (DOI)-induced HTR has not been previously investigated. We examined the ability of LS-1-137, a novel sigma-1 vs. sigma-2 receptor selective phenylacetamide, to modulate the DOI-induced HTR in DBA/2J mice. We also assessed the in vivo efficacy of reference sigma-1 receptor antagonists and agonists PRE-084 and PPCC. The effect of the sigma-2 receptor selective antagonist RHM-1-86 was also examined. Rotarod analysis was performed to monitor motor coordination after LS-1-137 administration. Radioligand binding techniques were used to determine the affinity of LS-1-137 at 5-HT2A and 5-HT2C receptors. LS-1-137 and the sigma-1 receptor antagonists haloperidol and BD 1047 were able to attenuate a DOI-induced HTR, indicating that LS-1-137 was acting in vivo as a sigma-1 receptor antagonist. LS-1-137 did not compromise rotarod performance within a dose range capable of attenuating the effects of DOI. Radioligand binding studies indicate that LS-1-137 exhibits low affinity binding at both 5-HT2A and 5-HT2C receptors. Based upon the results from these and our previous studies, LS-1-137 is a neuroprotective agent that attenuates the murine DOI-induced HTR independent of activity at 5-HT2 receptor subtypes, D2-like dopamine receptors, sigma-2 receptors and NMDA receptors. LS-1-137 appears to act as a sigma-1 receptor antagonist to inhibit the DOI-induced HTR. Therefore, the DOI-induced HTR can be used to assess the in vivo efficacy of sigma-1 receptor selective compounds. PMID:27397487

  10. Multiple human D sub 5 dopamine receptor genes: A functional receptor and two pseudogenes

    SciTech Connect

    Grandy, D.K.; Yuan Zhang; Bouvier, C.; Qunyong Zhou; Johnson, R.A.; Allen, L.; Buck, K.; Bunzow, J.R.; Salon, J.; Civelli, O. )

    1991-10-15

    Three genes closely related to the D{sub 1} dopamine receptor were identified in the human genome. One of the genes lacks introns and encodes a functional human dopamine receptor, D{sub 5}, whose deduced amino acid sequence is 49% identical to that of the human D{sub 1} receptor. Compared with the human D{sub 1} dopamine receptor, the D{sub 5} receptor displayed a higher affinity for dopamine and was able to stimulate a biphasic rather than a monophasic intracellular accumulation of cAMP. Neither of the other two genes was able to direct the synthesis of a receptor. nucleotide sequence analysis revealed that these two genes are 98% identical to each other and 95% identical to the D{sub 5} sequence. Relative to the D{sub 5} sequence, both contain insertions and deletions that result in several in-frame termination codons. Premature termination of translation is the most likely explanation for the failure of these genes to produce receptors in COS-7 and 293 cells even though their messages are transcribed. The authors conclude that the two are pseudogenes. Blot hybridization experiments performed on rat genomic DNA suggest that there is one D{sub 5} gene in this species and that the pseudogenes may be the result of a relatively recent evolutionary event.

  11. Prolactin receptor and signal transduction to milk protein genes

    SciTech Connect

    Djiane, J.; Daniel, N.; Bignon, C.

    1994-06-01

    After cloning of the mammary gland prolactin (PRL) receptor cDNA, a functional assay was established using co-transfection of PRL receptor cDNA together with a milk protein promoter/chloramphenicol acetyl transferase (CAT) construct in Chinese hamster ovary (CHO) cells. Different mutants of the PRL receptor were tested in this CAT assay to delimit the domains in the receptor necessary for signal transduction to milk protein genes. In CHO cells stably transfected with PRL receptor cDNA, high numbers of PRL receptor are expressed. By metabolic labeling and immunoprecipitation, expressed PRL receptor was identified as a single species of 100 kDa. Using these cells, we analyzed the effects of PRL on intracellular free Ca{sup ++} concentration. PRL stimulates Ca{sup ++} entry and induces secondary Ca{sup ++} mobilization. The entry of Ca{sup ++} is a result of an increase in K{sup +} conductance that hyperpolarizes the membranes. We have also analyzed tyrosine phosphorylation induced by PRL. In CHO cells stably transfected with PRL receptor cDNA, PRL induced a very rapid and transient tyrosine phosphorylation of a 100-kDa protein which is most probably the PRL receptor. The same finding was obtained in mammary membranes after PRL injection to lactating rabbits. Whereas tyrosine kinase inhibitors genistein and lavendustin were without effect, PRL stimulation of milk protein gene promoters was partially inhibited by 2 {mu}M herbimycin in CHO cells co-transfected with PRL receptor cDNA and the {Beta} lactoglobulin CAT construct. Taken together these observations indicate that the cytoplasmic domain of the PRL receptor interacts with one or several tyrosine kinases, which may represent early postreceptor events necessary for PRL signal transduction to milk protein genes. 14 refs., 4 figs.

  12. Toll-like receptors 2 and 4 exert opposite effects on the contractile response induced by serotonin in mouse colon: role of serotonin receptors.

    PubMed

    Forcén, R; Latorre, E; Pardo, J; Alcalde, A I; Murillo, M D; Grasa, L

    2016-08-01

    What is the central question of this study? The action of Toll-like receptors (TLRs) 2 and 4 on the motor response to serotonin in mouse colon has not previously been reported. What is the main finding and its importance? Toll-like receptors 2 and 4 modulate the serotonin-induced contractile response in mouse colon by modifying the expression of serotonin (5-HT) receptors. Alterations in 5-HT2A and 5-HT2C receptors explain the increase of the response to serotonin in TLR2(-/-) mice. Alterations in 5-HT2C and 5-HT4 receptors explain the suppression of the response to serotonin in TLR4(-/-) mice. The microbiota, through Toll-like receptors (TLRs), may regulate gastrointestinal motility by activating neuroendocrine mechanisms. We evaluated the influence of TLR2 and TLR4 in spontaneous contractions and in the serotonin (5-HT)-induced motor response in mouse colon, and assessed the 5-HT receptors involved. Muscle contractility studies to evaluate the intestinal spontaneous motility and the response to 5-HT were performed in the colon from wild-type (WT), TLR2(-/-) , TLR4(-/-) and TLR2/4 double knockout (DKO) mice. The 5-HT receptor mRNA expression was determined by real-time PCR. The amplitude and frequency of the spontaneous contractions of the colon were smaller in TLR4(-/-) and TLR2/4 DKO mice with respect to WT mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 100 μm 5-HT evoked a contractile response. The contractile response induced by 5-HT was significantly higher in TLR2(-/-) than in WT mice. In TLR4(-/-) mice, 5-HT did not evoke any contractile response. The mRNA expression of 5-HT2A was increased in TLR2(-/-) and TLR2/4 DKO mice. The 5-HT2C and 5-HT4 mRNA expressions were increased in TLR4(-/-) and TLR2/4 DKO mice. The 5-HT2C mRNA expression was diminished in TLR2(-/-) mice. The 5-HT3 mRNA expression was increased in TLR2(-/-) , TLR4(-/-) and TLR2/4 DKO mice. The 5-HT7 mRNA expression was diminished in TLR2/4 DKO mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 5-HT2

  13. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    SciTech Connect

    Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; Bloch, B. )

    1990-01-01

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons.

  14. Targeted gene delivery via N-acetylglucosamine receptor mediated endocytosis.

    PubMed

    Singh, Bijay; Maharjan, Sushila; Kim, You-Kyoung; Jiang, Tai; Islam, Mohammad Ariful; Kang, Sang-Kee; Cho, Myung-Haing; Choi, Yun-Jaie; Cho, Chong-Su

    2014-11-01

    Receptor-mediated endocytosis is a promising approach of gene delivery into the target cells via receptor-ligand interaction. Vimentins at the cell surface are recently known to bind N-acetylglucosamine (GlcNAc) residue, therefore, the cell surfaces of vimentin-expressing cells could be targeted by using the GlcNAc residue as a specific ligand for receptor-mediated gene delivery. Here, we have developed polymeric gene delivery vectors, based on poly(ethylene oxide)(PEO) and poly(aspartamide), namely poly[(aspartamide)(diethylenetriamine)]-b-[PEO-(GlcNAc)] (PADPG) and poly[(aspartamide)(diethylenetriamine)]-b-[PEO] (PADP) to elucidate the efficiency of GlcNAc ligand for gene delivery through receptor mediated endocytosis. To determine the efficiency of these polymeric vectors for specific gene delivery, the DNA condensation ability of PADPG and PADP and the subsequent formation of polymeric nanoparticles were confirmed by gel retardation assay and transmission electron microscopy respectively. Both PADPG and PADP had lower cytotoxicity than polyethylenimine 25 K (PEI 25 K). However, their transfection efficiency was comparatively lower than PEI 25 K due to hydrophilic property of PEO in the vectors. To observe the stability of polymeric nanoparticles, the transfection of PADPG and PADP was carried out in the presence of serum. Favorably, the interfering effect of serum on the transfection efficiency of PADPG and PADP was also very low. Finally, when the cell specificity of these polymeric vectors was investigated, PADPG had high gene transfection in vimentin-expressing cells than vimentin-deficiency cells. The high transfection efficiency of PADPG was attributed to the GlcNAc in the polymeric vector which interact specifically with vimentin in the cells for the receptor-mediated endocytosis. The competitive inhibition assay further proved the receptor-mediated endocytosis of PADPG. Thus, this study demonstrates that conjugation of GlcNAc is an effective and rational

  15. The Mouse Solitary Odorant Receptor Gene Promoters as Models for the Study of Odorant Receptor Gene Choice

    PubMed Central

    Degl'Innocenti, Andrea

    2016-01-01

    Background In vertebrates, several anatomical regions located within the nasal cavity mediate olfaction. Among these, the main olfactory epithelium detects most conventional odorants. Olfactory sensory neurons, provided with cilia exposed to the air, detect volatile chemicals via an extremely large family of seven-transmembrane chemoreceptors named odorant receptors. Their genes are expressed in a monogenic and monoallelic fashion: a single allele of a single odorant receptor gene is transcribed in a given mature neuron, through a still uncharacterized molecular mechanism known as odorant receptor gene choice. Aim Odorant receptor genes are typically arranged in genomic clusters, but a few are isolated (we call them solitary) from the others within a region broader than 1 Mb upstream and downstream with respect to their transcript's coordinates. The study of clustered genes is problematic, because of redundancy and ambiguities in their regulatory elements: we propose to use the solitary genes as simplified models to understand odorant receptor gene choice. Procedures Here we define number and identity of the solitary genes in the mouse genome (C57BL/6J), and assess the conservation of the solitary status in some mammalian orthologs. Furthermore, we locate their putative promoters, predict their homeodomain binding sites (commonly present in the promoters of odorant receptor genes) and compare candidate promoter sequences with those of wild-caught mice. We also provide expression data from histological sections. Results In the mouse genome there are eight intact solitary genes: Olfr19 (M12), Olfr49, Olfr266, Olfr267, Olfr370, Olfr371, Olfr466, Olfr1402; five are conserved as solitary in rat. These genes are all expressed in the main olfactory epithelium of three-day-old mice. The C57BL/6J candidate promoter of Olfr370 has considerably varied compared to its wild-type counterpart. Within the putative promoter for Olfr266 a homeodomain binding site is predicted. As a

  16. Mouse T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D.; Clark, S.P.; Mak, T.W.

    1995-10-01

    All mouse T-cell receptor {alpha}/{delta}, {beta}, and {gamma} variable (Tcra/d-, b-, and g-V) gene segments were aligned to compare the sequences with one another, to group them into subfamilies, and to derive a name which complies with the standard nomenclature. it was necessary to change the names of some V gene segments because they conflicted with those of other segments. The traditional classification into subfamilies was re-evaluated using a much larger pool of sequences. In the mouse, most V gene segments can be grouped into subfamilies of closely related genes with significantly less similarity between different subfamilies. 118 refs., 11 figs., 4 tabs.

  17. Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors

    PubMed Central

    Watson, J; Brough, S; Coldwell, M C; Gager, T; Ho, M; Hunter, A J; Jerman, J; Middlemiss, D N; Riley, G J; Brown, A M

    1998-01-01

    Xanomeline [3(3-hexyloxy-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine] has been reported to act as a functionally selective muscarinic partial agonist with potential use in the treatment of Alzheimer's disease. This study examined the functional activity of xanomeline at 5-HT1 and 5-HT2 receptors in native tissue and/or human cloned receptors.Xanomeline had affinity for muscarinic receptors in rat cortical membranes where the ratio of the displacement affinity of [3H]-Quinuclidinyl benzilate vs that of [3H]-Oxotremorine-M was 16, indicative of partial agonist activity. Radioligand binding studies on human cloned receptors confirmed that xanomeline had substantial affinity for M1, M2, M3, M4, M5 receptors and also for 5-HT1 and 5-HT2 receptor subtypes.Carbachol and xanomeline stimulated basal [35S]-GTPγS binding in rat cortical membranes with micromolar affinity. The response to carbachol was attenuated by himbacine and pirenzepine with pA2 of 8.2, 6.9 respectively consistent with the response being mediated, predominantly, via M2 and M4 receptors. Xanomeline-induced stimulation of [35S]-GTPγS binding was inhibited by himbacine with an apparent pKb of 6.3, was not attenuated by pirenzepine up to 3 μM and was inhibited by the selective 5-HT1A antagonist WAY100635 with an apparent pKb of 9.4. These data suggest the agonist effect of xanomeline in this tissue is, in part, via 5-HT1A receptors. Similar studies on human cloned receptors confirmed that xanomeline is an agonist at human cloned 5-HT1A and 5-HT1B receptors.In studies using the fluorescent cytoplasmic Ca2+ indicator FLUO-3AM, xanomeline induced an increase in cytoplasmic Ca2+ concentration in SH-SY5Y cells expressing recombinant human 5-HT2C receptors. Atropine antagonized this response, consistent with mediation via endogenously-expressed muscarinic receptors. In the presence of atropine, xanomeline antagonized 5-HT-induced cytoplasmic changes in Ca2+ concentration in cells expressing h5

  18. Expression of serotonin receptor genes in cranial ganglia.

    PubMed

    Maeda, Naohiro; Ohmoto, Makoto; Yamamoto, Kurumi; Kurokawa, Azusa; Narukawa, Masataka; Ishimaru, Yoshiro; Misaka, Takumi; Matsumoto, Ichiro; Abe, Keiko

    2016-03-23

    Taste cells release neurotransmitters to gustatory neurons to transmit chemical information they received. Sweet, umami, and bitter taste cells use ATP as a neurotransmitter. However, ATP release from sour taste cells has not been observed so far. Instead, they release serotonin when they are activated by sour/acid stimuli. Thus it is still controversial whether sour taste cells use ATP, serotonin, or both. By reverse transcription-polymerase chain reaction and subsequent in situ hybridization (ISH) analyses, we revealed that of 14 serotonin receptor genes only 5-HT3A and 5-HT3B showed significant/clear signals in a subset of neurons of cranial sensory ganglia in which gustatory neurons reside. Double-fluorescent labeling analyses of ISH for serotonin receptor genes with wheat germ agglutinin (WGA) in cranial sensory ganglia of pkd1l3-WGA mice whose sour neural pathway is visualized by the distribution of WGA originating from sour taste cells in the posterior region of the tongue revealed that WGA-positive cranial sensory neurons rarely express either of serotonin receptor gene. These results suggest that serotonin receptors expressed in cranial sensory neurons do not play any role as neurotransmitter receptor from sour taste cells. PMID:26854841

  19. Chemosensory receptor genes in the Oriental tobacco budworm Helicoverpa assulta.

    PubMed

    Xu, W; Papanicolaou, A; Liu, N-Y; Dong, S-L; Anderson, A

    2015-04-01

    The Oriental tobacco budworm (Helicoverpa assulta) is a specialist herbivore moth and its larvae feed on Solanaceous plants. (Z)-9-hexadecenal (Z9-16: Ald) is the major sex pheromone component in H. assulta but the specific pheromone receptor (PR) against Z9-16: Ald has not yet been identified. In the present study, we integrated transcriptomic, bioinformatic and functional characterization approaches to investigate the chemosensory receptor genes of H. assulta. We identified seven potential PRs with 44 olfactory receptors, 18 gustatory receptors and 24 ionotropic receptors, which were further studied by in silico gene expression profile, phylogenetic analysis, reverse transcription PCR and calcium imaging assays. The candidate PR, HassOR13, showed a strong response to the minor sex pheromone component, (Z)-11-hexadecenal, but not the major component, Z9-16: Ald, in calcium imaging assays. This study provides the molecular basis for comparative studies of chemosensory receptors between H. assulta and other Helicoverpa species and will advance our understanding of the evolution and function of Lepidoptera insect chemosensation. PMID:25430896

  20. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism

    SciTech Connect

    Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J. )

    1991-07-01

    The allelic association of the human D2 dopamine receptor gene with the binding characteristics of the D2 dopamine receptor was determined in 66 brains of alcoholic and non-alcoholic subjects. In a blinded experiment, DNA from the cerebral cortex was treated with the restriction endonuclease Taql and probed with a 1.5-kilobase (kb) digest of a clone (lambda hD2G1) of the human D2 dopamine receptor gene. The binding characteristics (Kd (binding affinity) and Bmax (number of binding sites)) of the D2 dopamine receptor were determined in the caudate nuclei of these brains using tritiated spiperone as the ligand. The adjusted Kd was significantly lower in alcoholic than in nonalcoholic subjects. In subjects with the A1 allele, in whom a high association with alcoholism was found, the Bmax was significantly reduced compared with the Bmax of subjects with the A2 allele. Moreover, a progressively reduced Bmax was found in subjects with A2/A2, A1/A2, and A1/A1 alleles, with subjects with A2/A2 having the highest mean values, and subjects with A1/A1, the lowest. The polymorphic pattern of the D2 dopamine receptor gene and its differential expression of receptors suggests the involvement of the dopaminergic system in conferring susceptibility to at least one subtype of severe alcoholism.

  1. Evolution of an Expanded Mannose Receptor Gene Family

    PubMed Central

    Staines, Karen; Hunt, Lawrence G.; Young, John R.; Butter, Colin

    2014-01-01

    Sequences of peptides from a protein specifically immunoprecipitated by an antibody, KUL01, that recognises chicken macrophages, identified a homologue of the mammalian mannose receptor, MRC1, which we called MRC1L-B. Inspection of the genomic environment of the chicken gene revealed an array of five paralogous genes, MRC1L-A to MRC1L-E, located between conserved flanking genes found either side of the single MRC1 gene in mammals. Transcripts of all five genes were detected in RNA from a macrophage cell line and other RNAs, whose sequences allowed the precise definition of spliced exons, confirming or correcting existing bioinformatic annotation. The confirmed gene structures were used to locate orthologues of all five genes in the genomes of two other avian species and of the painted turtle, all with intact coding sequences. The lizard genome had only three genes, one orthologue of MRC1L-A and two orthologues of the MRC1L-B antigen gene resulting from a recent duplication. The Xenopus genome, like that of most mammals, had only a single MRC1-like gene at the corresponding locus. MRC1L-A and MRC1L-B genes had similar cytoplasmic regions that may be indicative of similar subcellular migration and functions. Cytoplasmic regions of the other three genes were very divergent, possibly indicating the evolution of a new functional repertoire for this family of molecules, which might include novel interactions with pathogens. PMID:25390371

  2. Selection for genes encoding secreted proteins and receptors.

    PubMed Central

    Klein, R D; Gu, Q; Goddard, A; Rosenthal, A

    1996-01-01

    Extracellular proteins play an essential role in the formation, differentiation, and maintenance of multicellular organisms. Despite that, the systematic identification of genes encoding these proteins has not been possible. We describe here a highly efficient method to isolate genes encoding secreted and membrane-bound proteins by using a single-step selection in yeast. Application of this method, termed signal peptide selection, to various tissues yielded 559 clones that appear to encode known or novel extracellular proteins. These include members of the transforming growth factor and epidermal growth factor protein families, endocrine hormones, tyrosine kinase receptors, serine/threonine kinase receptors, seven transmembrane receptors, cell adhesion molecules, extracellular matrix proteins, plasma proteins, and ion channels. The eventual identification of most, or all, extracellular signaling molecules will advance our understanding of fundamental biological processes and our ability to intervene in disease states. Images Fig. 1 PMID:8692953

  3. Characterization of the "CCR5" Chemokine Receptor Gene

    ERIC Educational Resources Information Center

    Thomas, John C.

    2004-01-01

    The life cycle of retroviruses is an essential topic of modern cell biology instruction. Furthermore, the process of HIV viral entry into the cell is a question of great interest in basic and clinical biology. This paper describes how students can easily recover their own DNA, amplify a portion of the "CCR5" chemokine receptor gene, characterize…

  4. Interleukin-1 receptor antagonist gene therapy for arthritis.

    PubMed

    Krishnan, B R

    1999-08-01

    Rheumtatoid arthritis (RA) is a crippling, autoimmune disease, and is characterized by inflammation and destruction of joint tissue. Interleukin-1 (IL-1) has been identified as a key pro-inflammatory cytokine responsible for inflammation. One of the mechanisms of regulation of activity of IL-1 is IL-1 receptor antagonist (IL-1ra)-mediated: IL-1RA competes with IL-1 for binding to the IL-1 receptor. Significant progress has been made in the potential application of IL-1ra gene therapyfor the treatment of arthritis. Various vectors have been tested for the delivery of the IL-1ra gene to the intra-articular region. Recent studies in humans have provided encouraging prospects for IL-1ra-mediated arthritis gene therapy. PMID:11713759

  5. Identification of Significant Association and Gene-Gene Interaction of GABA Receptor Subunit Genes in Autism

    PubMed Central

    Ma, D. Q.; Whitehead, P. L.; Menold, M. M.; Martin, E. R.; Ashley-Koch, A. E.; Mei, H.; Ritchie, M. D.; DeLong, G. R.; Abramson, R. K.; Wright, H. H.; Cuccaro, M. L.; Hussman, J. P.; Gilbert, J. R.; Pericak-Vance, M. A.

    2005-01-01

    Autism is a common neurodevelopmental disorder with a significant genetic component. Existing research suggests that multiple genes contribute to autism and that epigenetic effects or gene-gene interactions are likely contributors to autism risk. However, these effects have not yet been identified. Gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the adult brain, has been implicated in autism etiology. Fourteen known autosomal GABA receptor subunit genes were studied to look for the genes associated with autism and their possible interactions. Single-nucleotide polymorphisms (SNPs) were screened in the following genes: GABRG1, GABRA2, GABRA4, and GABRB1 on chromosome 4p12; GABRB2, GABRA6, GABRA1, GABRG2, and GABRP on 5q34-q35.1; GABRR1 and GABRR2 on 6q15; and GABRA5, GABRB3, and GABRG3 on 15q12. Intronic and/or silent mutation SNPs within each gene were analyzed in 470 white families with autism. Initially, SNPs were used in a family-based study for allelic association analysis—with the pedigree disequilibrium test and the family-based association test—and for genotypic and haplotypic association analysis—with the genotype-pedigree disequilibrium test (geno-PDT), the association in the presence of linkage (APL) test, and the haplotype family-based association test. Next, with the use of five refined independent marker sets, extended multifactor-dimensionality reduction (EMDR) analysis was employed to identify the models with locus joint effects, and interaction was further verified by conditional logistic regression. Significant allelic association was found for markers RS1912960 (in GABRA4; P = .01) and HCV9866022 (in GABRR2; P = .04). The geno-PDT found significant genotypic association for HCV8262334 (in GABRA2), RS1912960 and RS2280073 (in GABRA4), and RS2617503 and RS12187676 (in GABRB2). Consistent with the allelic and genotypic association results, EMDR confirmed the main effect at RS1912960 (in GABRA4). EMDR also identified a

  6. Activation of Melatonin Receptors Reduces Relapse-Like Alcohol Consumption.

    PubMed

    Vengeliene, Valentina; Noori, Hamid R; Spanagel, Rainer

    2015-12-01

    Melatonin is an endogenous synchronizer of biological rhythms and a modulator of physiological functions and behaviors of all mammals. Reduced levels of melatonin and a delay of its nocturnal peak concentration have been found in alcohol-dependent patients and rats. Here we investigated whether the melatonergic system is a novel target to treat alcohol addiction. Male Wistar rats were subjected to long-term voluntary alcohol consumption with repeated abstinence phases. Circadian drinking rhythmicity and patterns were registered with high temporal resolution by a drinkometer system and analyzed by Fourier analysis. We examined potential antirelapse effect of the novel antidepressant drug agomelatine. Given that agomelatine is a potent MT1 and MT2 receptor agonist and a 5-HT2C antagonist we also tested the effects of melatonin itself and the 5-HT2C antagonist SB242084. All drugs reduced relapse-like drinking. Agomelatine and melatonin administered at the end of the light phase led to very similar changes on all measures of the post-abstinence drinking behavior, suggesting that effects of agomelatine on relapse-like behavior are mostly driven by its melatonergic activity. Both drugs caused a clear phase advance in the diurnal drinking pattern when compared with the control vehicle-treated group and a reduced frequency of approaches to alcohol bottles. Melatonin given at the onset of the light phase had no effect on the circadian phase and very small effects on alcohol consumption. We conclude that targeting the melatonergic system in alcohol-dependent individuals can induce a circadian phase advance, which may restore normal sleep architecture and reduce relapse behavior. PMID:25994077

  7. Folate receptor gene variants and neural tube defect occurrence

    SciTech Connect

    Finnell, R.; Greer, K.; Lammer, E.

    1994-09-01

    Recent epidemiological evidence shows that periconceptional use of folic acid supplements may prevent 40-50% of neural tube defects (NTDs). The FDA has subsequently recommended folic acid supplementation of all women of childbearing potential, even though the mechanism by which folic acid prevents NTDs is unknown. We investigated genetic variation of a candidate gene, the 5-methyltetrahydrofolate (5-MeTHF) receptor, that may mediate this preventive effect. The receptor concentrates folate within cells and we have localized its mRNA to neuroepithelial cells during neurulation. Our hypothesis is that dysfunctional 5-MeTHF receptors inadequately concentrate folate intracellularly, predisposing infants to NTDs. We have completed SSCP analysis on 3 of the 4 coding exons of the 5-MeTHF receptor gene of 474 infants participating in a large population-based epidemiological case-control study of NTDs in California; genotyping of another 500 infants is ongoing. Genomic DNA was extracted from residual blood spots from newborn screening samples of cases and controls. Genotyping was done blinded to case status. Polymorphisms have been detected for exons 4 and 5; fourteen percent of the infants have exon 5 polymorphisms. Data will be presented on the prevalence of 5-MeTHF receptor polymorphisms among cases and controls. Relationships among the polymorphisms and NTD occurrence may shed light on how folic acid supplementation prevents NTDs.

  8. CRDB: database of chemosensory receptor gene families in vertebrate.

    PubMed

    Dong, Dong; Jin, Ke; Wu, Xiaoli; Zhong, Yang

    2012-01-01

    Chemosensory receptors (CR) are crucial for animals to sense the environmental changes and survive on earth. The emergence of whole-genome sequences provides us an opportunity to identify the entire CR gene repertoires. To completely gain more insight into the evolution of CR genes in vertebrates, we identified the nearly all CR genes in 25 vertebrates using homology-based approaches. Among these CR gene repertoires, nearly half of them were identified for the first time in those previously uncharacterized species, such as the guinea pig, giant panda and elephant, etc. Consistent with previous findings, we found that the numbers of CR genes vary extensively among different species, suggesting an extreme form of 'birth-and-death' evolution. For the purpose of facilitating CR gene analysis, we constructed a database with the goals to provide a resource for CR genes annotation and a web tool for exploring their evolutionary patterns. Besides a search engine for the gene extraction from a specific chromosome region, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of CR genes. Our work can provide a rigorous platform for further study on the evolution of CR genes in vertebrates. PMID:22393364

  9. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses

    PubMed Central

    Xavier, Andre Machado; Anunciato, Aparecida Kataryna Olimpio; Rosenstock, Tatiana Rosado; Glezer, Isaias

    2016-01-01

    Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GC’s effects on inflammation are generally mediated through GC receptors (GRs). Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade, the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive, or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective GC receptor modulators; SEGRMs), cell culture, animal treatment, or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive. PMID:27148162

  10. Gene Expression Control by Glucocorticoid Receptors during Innate Immune Responses.

    PubMed

    Xavier, Andre Machado; Anunciato, Aparecida Kataryna Olimpio; Rosenstock, Tatiana Rosado; Glezer, Isaias

    2016-01-01

    Glucocorticoids (GCs) are potent anti-inflammatory compounds that have been extensively used in clinical practice for several decades. GC's effects on inflammation are generally mediated through GC receptors (GRs). Signal transduction through these nuclear receptors leads to dramatic changes in gene expression programs in different cell types, typically due to GR binding to DNA or to transcription modulators. During the last decade, the view of GCs as exclusive anti-inflammatory molecules has been challenged. GR negative interference in pro-inflammatory gene expression was a landmark in terms of molecular mechanisms that suppress immune activity. In fact, GR can induce varied inhibitory molecules, including a negative regulator of Toll-like receptors pathway, or subject key transcription factors, such as NF-κB and AP-1, to a repressor mechanism. In contrast, the expression of some acute-phase proteins and other players of innate immunity generally requires GR signaling. Consequently, GRs must operate context-dependent inhibitory, permissive, or stimulatory effects on host defense signaling triggered by pathogens or tissue damage. This review aims to disclose how contradictory or comparable effects on inflammatory gene expression can depend on pharmacological approach (including selective GC receptor modulators; SEGRMs), cell culture, animal treatment, or transgenic strategies used as models. Although the current view of GR-signaling integrated many advances in the field, some answers to important questions remain elusive. PMID:27148162

  11. Killer cell immunoglobulin like receptor gene association with tuberculosis.

    PubMed

    Pydi, Satya Sudheer; Sunder, Sharada Ramaseri; Venkatasubramanian, Sambasivan; Kovvali, Srinivas; Jonnalagada, Subbanna; Valluri, Vijaya Lakshmi

    2013-01-01

    NK cells are vital components of innate immune system and are the first cells which come into picture mediating resistance against intracellular pathogens. NK cell cytotoxicity is modulated by a wide variety of cell surface receptors that recognize and respond towards infected cells. Activation of NK cells are controlled by both inhibitory and activating receptors, encoded by KIR genes and bind to HLA ligands. Not much is known about KIR genes and their influence on the pathogenesis with M. tuberculosis infection. Our study aimed at detecting the presence of 14 KIR genes, their distribution and their association with tuberculosis. Total 77 different genotype combinations were observed which belonged to B-haplotype. Fifteen genotypes were similar to those reported in other world populations while remaining 62 were unique to this study group. Inhibitory genes KIR3DL1, KIR2DL3 and activating genes KIR2DS1, KIR2DS5 conferred susceptibility towards TB either individually or in haplotype combinations. The complimentary MHC ligands need to be tested for the functional relevance of the associated genes. PMID:23073291

  12. The Role of Metabotropic Glutamate Receptor Genes in Schizophrenia.

    PubMed

    Maj, Carlo; Minelli, Alessandra; Giacopuzzi, Edoardo; Sacchetti, Emilio; Gennarelli, Massimo

    2016-01-01

    Genomic studies revealed two main components in the genetic architecture of schizophrenia, one constituted by common variants determining a distributed polygenic effect and one represented by a large number of heterogeneous rare and highly disruptive mutations. These gene modifications often affect neural transmission and different studies proved an involvement of metabotropic glutamate receptors in schizophrenia phenotype. Through the combination of literature information with genomic data from public repositories, we analyzed the current knowledge on the involvement of genetic variations of the human metabotropic glutamate receptors in schizophrenia and related endophenotypes. Despite the analysis did not reveal a definitive connection, different suggestive associations have been identified and in particular a relevant role has emerged for GRM3 in affecting specific schizophrenia endophenotypes. This supports the hypothesis that these receptors are directly involved in schizophrenia disorder. PMID:27296644

  13. [BCL1 POLYMORPHISM OF GLUCOCORTICOID RECEPTOR GENE AND RESPIRATORY DISEASES].

    PubMed

    Prystupa, L N; Garbuzova, V Yu; Kmyta, V V

    2015-01-01

    The article analyses the results of investigating the connection between BCL1-polymorphism of glucocorticoid receptor gene and respiratory diseases. Its role in increasing sensitivity to glucocorticoids is proved here. The authors investigated the association of Bcl1 polymorphism with predisposition to bronchial asthma, chronic obstructive pulmonary disease, with the nicotine addiction degree and with progressing disorders of pulmonary function in cystic fibrosis. PMID:26118026

  14. Mechanisms of oestrogen receptor (ER) gene regulation in breast cancer.

    PubMed

    Carroll, J S

    2016-07-01

    Most breast cancers are driven by a transcription factor called oestrogen receptor (ER). Understanding the mechanisms of ER activity in breast cancer has been a major research interest and recent genomic advances have revealed extraordinary insights into how ER mediates gene transcription and what occurs during endocrine resistance. This review discusses our current understanding on ER activity, with an emphasis on several evolving, but important areas of ER biology. PMID:26884552

  15. Behavioral and neurochemical pharmacology of six psychoactive substituted phenethylamines: Mouse locomotion, rat drug discrimination and in vitro receptor and transporter binding and function

    PubMed Central

    Eshleman, Amy J.; Forster, Michael J.; Wolfrum, Katherine M.; Johnson, Robert A.; Janowsky, Aaron; Gatch, Michael B.

    2014-01-01

    Rationale Psychoactive substituted phenethylamines 2,5-dimethoxy-4-chlorophenethylamine (2C-C); 2,5-dimethoxy-4-methylphenethylamine (2C-D); 2,5-dimethoxy-4-ethylphenethylamine (2C-E); 2,5-dimethoxy-4-iodophenethylamine (2C-I); 2,5-dimethoxy-4-ethylthiophenethylamine (2C-T-2) and 2,5-dimethoxy-4-chloroamphetamine (DOC) are used recreationally and may have deleterious side effects. Objectives This study compares behavioral effects and mechanisms of action of these substituted phenethylamines with those of hallucinogens and a stimulant. Methods The effects of these compounds on mouse locomotor activity and in rats trained to discriminate dimethyltryptamine, (−)DOM, (+)LSD, (±)MDMA and (S+)methamphetamine were assessed. Binding and functional activity of the phenethylamines at 5-HT1A, 5-HT2A, 5-HT2C receptors and monoamine transporters were assessed using cells heterologously expressing these proteins. Results The phenethylamines depressed mouse locomotor activity, although 2C-D and 2C-E stimulated activity at low doses. The phenethylamines except 2C-T-2 fully substituted for at least one hallucinogenic training compound but none fully substituted for (+)-methamphetamine. At 5-HT1A receptors, only 2C-T-2 and 2C-I were partial-to-full very low potency agonists. In 5-HT2A arachidonic acid release assays, the phenethylamines were partial to full agonists except 2C-I which was an antagonist. All compounds were full agonists at 5-HT2A and 5-HT2C receptor inositol phosphate assays. Only 2C-I had moderate affinity for, and very low potency at, the serotonin transporter. Conclusions The discriminative stimulus effects of 2C-C, 2C-D, 2C-E, 2C-I and DOC were similar to those of several hallucinogens but not methamphetamine. Additionally, the substituted phenethylamines were full agonists at 5-HT2A and 5-HT2C receptors, but for 2C-T-2, this was not sufficient to produce hallucinogenlike discriminative stimulus effects. Additionally, the 5-HT2A inositol phosphate pathway may

  16. Gene number determination and genetic polymorphism of the gamma delta T cell co-receptor WC1 genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background WC1 co-receptors belong to the scavenger receptor cysteine-rich superfamily and are encoded by a multi-gene family. Expression of particular WC1 genes defines functional subpopulations of WC1+ '' T cells. Our previous study identified partial sequences for 13 different WC1 genes by annota...

  17. Toll-Like Receptor Gene Expression during Trichinella spiralis Infection

    PubMed Central

    Kim, Sin; Park, Mi Kyung; Yu, Hak Sun

    2015-01-01

    In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T (Treg) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and Treg cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/TIRAP-/- MEF cells, and quite substantially decreased in TRIF-/- MEF cells. In contrast, IL-10 and TGF-β expression levels were not elevated in MyD88/TIRAP-/- MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and Treg cell mediated immune responses, although additional data are needed to convincingly prove this observation. PMID:26323841

  18. Toll-Like Receptor Gene Expression during Trichinella spiralis Infection.

    PubMed

    Kim, Sin; Park, Mi Kyung; Yu, Hak Sun

    2015-08-01

    In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T (Treg) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and Treg cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/TIRAP(-/-) MEF cells, and quite substantially decreased in TRIF(-/-) MEF cells. In contrast, IL-10 and TGF-β expression levels were not elevated in MyD88/TIRAP(-/-) MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and Treg cell mediated immune responses, although additional data are needed to convincingly prove this observation. PMID:26323841

  19. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    PubMed Central

    Teodorov, E.; Ferrari, M.F.R.; Fior-Chadi, D.R.; Camarini, R.; Felício, L.F.

    2012-01-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  20. Cannabinoid Receptor 1 Gene Association With Nicotine Dependence

    PubMed Central

    Chen, Xiangning; Williamson, Vernell S.; An, Seon-Sook; Hettema, John M.; Aggen, Steven H.; Neale, Michael C.; Kendler, Kenneth S.

    2009-01-01

    Context The endogenous cannabinoid system has been implicated in drug addiction in animal models. The cannabinoid receptor 1 (CNR1) gene is 1 of the 2 receptors expressed in the brain. It has been reported to be associated with alcoholism and multiple drug abuse and dependence. Objective To test the hypothesis that the CNR1 gene is associated with nicotine dependence. Design Genotype-phenotype association study. Ten single-nucleotide polymorphisms were genotyped in the CNR1 gene in 2 independent samples. For the first sample (n=688), a 3-group case-control design was used to test allele association with smoking initiation and nicotine dependence. For the second sample (n = 961), association was assessed with scores from the Fagerström Test for Nicotine Dependence (FTND). Settings Population samples selected from the Mid-Atlantic Twin Registry. Participants White patients aged 18 to 65 years who met the criteria of inclusion. Main Outcome Measures Fagerström Tolerance Questionnaire and FTND scores. Results Significant single-marker and haplotype associations were found in both samples, and the associations were female specific. Haplotype 1-1-2 of markers rs2023239-rs12720071-rs806368 was associated with nicotine dependence and FTND score in the 2 samples (P<.001 and P = .009, respectively). Conclusion Variants and haplotypes in the CNR1 gene may alter the risk for nicotine dependence, and the associations are likely sex specific. PMID:18606954

  1. Serotoninergic and dopaminergic modulation of cortico-striatal circuit in executive and attention deficits induced by NMDA receptor hypofunction in the 5-choice serial reaction time task

    PubMed Central

    Carli, Mirjana; Invernizzi, Roberto W.

    2014-01-01

    Executive functions are an emerging propriety of neuronal processing in circuits encompassing frontal cortex and other cortical and subcortical brain regions such as basal ganglia and thalamus. Glutamate serves as the major neurotrasmitter in these circuits where glutamate receptors of NMDA type play key role. Serotonin and dopamine afferents are in position to modulate intrinsic glutamate neurotransmission along these circuits and in turn to optimize circuit performance for specific aspects of executive control over behavior. In this review, we focus on the 5-choice serial reaction time task which is able to provide various measures of attention and executive control over performance in rodents and the ability of prefrontocortical and striatal serotonin 5-HT1A, 5-HT2A, and 5-HT2C as well as dopamine D1- and D2-like receptors to modulate different aspects of executive and attention disturbances induced by NMDA receptor hypofunction in the prefrontal cortex. These behavioral studies are integrated with findings from microdialysis studies. These studies illustrate the control of attention selectivity by serotonin 5-HT1A, 5-HT2A, 5-HT2C, and dopamine D1- but not D2-like receptors and a distinct contribution of these cortical and striatal serotonin and dopamine receptors to the control of different aspects of executive control over performance such as impulsivity and compulsivity. An association between NMDA antagonist-induced increase in glutamate release in the prefrontal cortex and attention is suggested. Collectively, this review highlights the functional interaction of serotonin and dopamine with NMDA dependent glutamate neurotransmission in the cortico-striatal circuitry for specific cognitive demands and may shed some light on how dysregulation of neuronal processing in these circuits may be implicated in specific neuropsychiatric disorders. PMID:24966814

  2. Extensive Rigid Analogue Design Maps the Binding Conformation of Potent N-Benzylphenethylamine 5-HT2A Serotonin Receptor Agonist Ligands

    PubMed Central

    2012-01-01

    Based on the structure of the superpotent 5-HT2A agonist 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine, which consists of a ring-substituted phenethylamine skeleton modified with an N-benzyl group, we designed and synthesized a small library of constrained analogues to identify the optimal arrangement of the pharmacophoric elements of the ligand. Structures consisted of diversely substituted tetrahydroisoquinolines, piperidines, and one benzazepine. Based on the structure of (S,S)-9b, which showed the highest affinity of the series, we propose an optimal binding conformation. (S,S)-9b also displayed 124-fold selectivity for the 5-HT2A over the 5-HT2C receptor, making it the most selective 5-HT2A receptor agonist ligand currently known. PMID:23336049

  3. Carbon dioxide receptor genes in cotton bollworm Helicoverpa armigera

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Anderson, Alisha

    2015-04-01

    Carbon dioxide (CO2) is important in insect ecology, eliciting a range of behaviours across different species. Interestingly, the numbers of CO2 gustatory receptors (GRs) vary among insect species. In the model organism Drosophila melanogaster, two GRs (DmelGR21a and DmelGR63a) have been shown to detect CO2. In the butterfly, moth, beetle and mosquito species studied so far, three CO2 GR genes have been identified, while in tsetse flies, four CO2 GR genes have been identified. In other species including honeybees, pea aphids, ants, locusts and wasps, no CO2 GR genes have been identified from the genome. These genomic differences may suggest different mechanisms for CO2 detection exist in different insects but, with the exception of Drosophila and mosquitoes, limited attention has been paid to the CO2 GRs in insects. Here, we cloned three putative CO2 GR genes from the cotton bollworm Helicoverpa armigera and performed phylogenetic and expression analysis. All three H. armigera CO2 GRs (HarmGR1, HarmGR2 and HarmGR3) are specifically expressed in labial palps, the CO2-sensing tissue of this moth. HarmGR3 is significantly activated by NaHCO3 when expressed in insect Sf9 cells but HarmGR1 and HarmGR2 are not. This is the first report characterizing the function of lepidopteran CO2 receptors, which contributes to our general understanding of the molecular mechanisms of insect CO2 gustatory receptors.

  4. Intracellular insulin-receptor dissociation and segregation in a rat fibroblast cell line transfected with a human insulin receptor gene

    SciTech Connect

    Levy, J.R.; Olefsky, J.M.

    1988-05-05

    The cellular processing of insulin and insulin receptors was studied using a rat fibroblast cell line that had been transfected with a normal human insulin receptor gene, expressing approximately 500 times the normal number of native fibroblasts insulin receptors. These cells bind and internalize insulin normally. Biochemically assays based on the selective precipitation by polyethylene glycol of intact insulin-receptor complexes but not of free intracellular insulin were developed to study the time course of intracellular insulin-receptor dissociation. Fibroblasts were incubated with radiolabeled insulin at 4/sup 0/C, and internalization of insulin-receptor complexes was initiated by warming the cells to 37/sup 0/C. Within 2 min, 90% of the internalized radioactivity was composed of intact insulin-receptor complexes. The dissociation of insulin from internalized insulin-receptor complexes was markedly inhibited by monensin and chloroquine. Furthermore, chloroquine markedly increased the number of cross-linkable intracellular insulin-receptor complexes, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography. These findings suggest that acidification of intracellular vesicles is responsible for insulin-receptor dissociation. Physical segregation of dissociated intracellular insulin from its receptor was monitored. The results are consistent with the view that segregation of insulin and receptor occurs 5-10 min after initiation of dissociation. These studies demonstrate the intracellular itinerary of insulin-receptor complexes, including internalization, dissociation of insulin from the internalized receptor within an acidified compartment, segregation of insulin from the receptor, and subsequent ligand degradation.

  5. Perilipin, a critical regulator of fat storage and breakdown, is a target gene of estrogen receptor-related receptor {alpha}

    SciTech Connect

    Akter, Mst. Hasina; Yamaguchi, Tomohiro; Hirose, Fumiko; Osumi, Takashi

    2008-04-11

    Perilipin is a protein localized on lipid droplet surfaces in adipocytes and steroidogenic cells, playing a central role in regulated lipolysis. Expression of the perilipin gene is markedly induced during adipogenesis. We found that transcription from the perilipin gene promoter is activated by an orphan nuclear receptor, estrogen receptor-related receptor (ERR){alpha}. A response element to this receptor was identified in the promoter region by a gene reporter assay, the electrophoretic-gel mobility-shift assay and the chromatin immunoprecipitation assay. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} enhanced, whereas small heterodimer partner (SHP) repressed, the transactivating function of ERR{alpha} on the promoter. Thus, the perilipin gene expression is regulated by a transcriptional network controlling energy metabolism, substantiating the functional importance of perilipin in the maintenance of body energy balance.

  6. Epigenetic regulation of the formyl peptide receptor 2 gene.

    PubMed

    Simiele, Felice; Recchiuti, Antonio; Patruno, Sara; Plebani, Roberto; Pierdomenico, Anna Maria; Codagnone, Marilina; Romano, Mario

    2016-10-01

    Lipoxin (LX) A4, a main stop signal of inflammation, exerts potent bioactions by activating a specific G protein-coupled receptor, termed formyl peptide receptor 2 and recently renamed ALX/FPR2. Knowledge of the regulatory mechanisms that drive ALX/FPR2 gene expression is key for the development of innovative anti-inflammatory pharmacology. Here, we examined chromatin patterns of the ALX/FPR2 gene. We report that in MDA-MB231 breast cancer cells, the ALX/FPR2 gene undergoes epigenetic silencing characterized by low acetylation at lysine 27 and trimethylation at lysine 4, associated with high methylation at lysine 27 of histone 3. This pattern, which is consistent with transcriptionally inaccessible chromatin leading to low ALX/FPR2 mRNA and protein expression, is reversed in polymorphonuclear leukocytes that express high ALX/FPR2 levels. Activation of p300 histone acetyltransferase and inhibition of DNA methyltransferase restored chromatin accessibility and significantly increased ALX/FPR2 mRNA transcription and protein levels in MDA-MB231 cells, as well as in pulmonary artery endothelial cells. In both cells types, changes in the histone acetylation/methylation status enhanced ALX/FPR2 signaling in response to LXA4. Collectively, these results uncover unappreciated epigenetic regulation of ALX/FPR2 expression that can be exploited for innovative approaches to inflammatory disorders. PMID:27424221

  7. Study of Toll-like receptor gene loci in sarcoidosis

    PubMed Central

    Schürmann, M; Kwiatkowski, R; Albrecht, M; Fischer, A; Hampe, J; Müller-Quernheim, J; Schwinger, E; Schreiber, S

    2008-01-01

    Sarcoidosis is a multi-factorial systemic disease of granulomatous inflammation. Current concepts of the aetiology include interactions of unknown environmental triggers with an inherited susceptibility. Toll-like receptors (TLRs) are main components of innate immunity and therefore TLR genes are candidate susceptibility genes in sarcoidosis. Ten members of the human TLR gene family have been identified and mapped to seven chromosomal segments. The aim of this study was to investigate all known TLR gene loci for genetic linkage with sarcoidosis and to follow positive signals with different methods. We analysed linkage of TLR gene loci to sarcoidosis by use of closely flanking microsatellite markers in 83 families with 180 affected siblings. We found significant linkage between sarcoidosis and markers of the TLR4 gene locus on chromosome 9q (non-parametric linkage score 2·63, P = 0·0043). No linkage was found for the remaining TLR gene loci. We subsequently genotyped 1203 sarcoidosis patients from 997 families, 1084 relatives and 537 control subjects for four single nucleotide polymorphisms of TLR4, including Asp299Gly and Thr399Ile. This genotype data set was studied by case–control comparisons and transmission disequilibrium tests, but showed no significant results. In summary, TLR4 − w ith significant genetic linkage results − appears to be the most promising member of the TLR gene family for further investigation in sarcoidosis. However, our results do not confirm the TLR4 polymorphisms Asp299Gly and Thr399Ile as susceptibility markers. Our results rather point to another as yet unidentified variant within or close to TLR4 that might confer susceptibility to sarcoidosis. PMID:18422738

  8. Diverse growth hormone receptor gene mutations in Laron syndrome

    SciTech Connect

    Berg, M.A.; Francke, U. ); Gracia, R.; Rosenbloom, A.; Toledo, S.P.A. ); Chernausek, S. ); Guevara-Aguirre, J. ); Hopp, M. ); Rosenbloom, A.; Argente, J. ); Toledo, S.P.A. )

    1993-05-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), the authors analysed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. They amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). They identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71+1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, they determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. The authors conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. 35 refs., 3 figs., 1 tab.

  9. Killer cell immunoglobulin-like receptor gene association with cryptorchidism.

    PubMed

    Niepiekło-Miniewska, Wanda; Kuśnierczyk, Piotr; Havrylyuk, Anna; Kamieniczna, Marzena; Nakonechnyy, Andrij; Chopyak, Valentyna; Kurpisz, Maciej

    2015-12-01

    Cryptorchidism is a condition where a testis persists in the abdominal cavity. Thus, due to elevated temperature we may expect induction of aberrant immune reactions depending on genetic constitution of individual. This may be reflected by development of anti-sperm antibodies (ASA) in cryptorchid males. Also, natural killer (NK) cells which belong to innate immunity may control adaptive immunity. Therefore, the gene system encoding polymorphic NK cell immunoglobulin receptors (KIRs) has been studied. 109 prepubertal boys with cryptorchidism and 136 ethnically matched young male donors were selected to study NK cell KIRs. DNA was isolated using automatic Maxwell(®) system from the peripheral venous blood drawn onto anticoagulant. Olerup SSP KIR Genotyping kit including Taq polymerase was used for detection of KIR genes. Human leukocyte antigen-C (HLA-C) groups, C1 and C2 were established using a Olerup SSP KIR HLA Ligand kit. KIR2DL2 (killer immunoglobulin-like receptor two-domain long 2) and KIR2DS2 (killer immunoglobulin-like receptor two-domain short 2) genes were less frequent in patients than in control individuals (corrected p values: 0.0110 and 0.0383, respectively). However, no significant differences were observed between ASA-positive and ASA-negative patients, or between bilateral or unilateral cryptorchidism. No association between KIR ligands C1 and C2, alone or together with KIR2DL2, was found. However, the results suggest that KIR2DL2+/KIR2DS2+ genotype may be, to some extent, protective against cryptorchidism. PMID:26679162

  10. Evolution of the chicken Toll-like receptor gene family: A story of gene gain and gene loss

    PubMed Central

    Temperley, Nicholas D; Berlin, Sofia; Paton, Ian R; Griffin, Darren K; Burt, David W

    2008-01-01

    Background Toll-like receptors (TLRs) perform a vital role in disease resistance through their recognition of pathogen associated molecular patterns (PAMPs). Recent advances in genomics allow comparison of TLR genes within and between many species. This study takes advantage of the recently sequenced chicken genome to determine the complete chicken TLR repertoire and place it in context of vertebrate genomic evolution. Results The chicken TLR repertoire consists of ten genes. Phylogenetic analyses show that six of these genes have orthologs in mammals and fish, while one is only shared by fish and three appear to be unique to birds. Furthermore the phylogeny shows that TLR1-like genes arose independently in fish, birds and mammals from an ancestral gene also shared by TLR6 and TLR10. All other TLRs were already present prior to the divergence of major vertebrate lineages 550 Mya (million years ago) and have since been lost in certain lineages. Phylogenetic analysis shows the absence of TLRs 8 and 9 in chicken to be the result of gene loss. The notable exception to the tendency of gene loss in TLR evolution is found in chicken TLRs 1 and 2, each of which underwent gene duplication about 147 and 65 Mya, respectively. Conclusion Comparative phylogenetic analysis of vertebrate TLR genes provides insight into their patterns and processes of gene evolution, with examples of both gene gain and gene loss. In addition, these comparisons clarify the nomenclature of TLR genes in vertebrates. PMID:18241342

  11. Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation.

    PubMed

    Foster, Simon R; Porrello, Enzo R; Stefani, Maurizio; Smith, Nicola J; Molenaar, Peter; dos Remedios, Cristobal G; Thomas, Walter G; Ramialison, Mirana

    2015-10-01

    G protein-coupled receptors are the principal mediators of the sweet, umami, bitter, and fat taste qualities in mammals. Intriguingly, the taste receptors are also expressed outside of the oral cavity, including in the gut, airways, brain, and heart, where they have additional functions and contribute to disease. However, there is little known about the mechanisms governing the transcriptional regulation of taste receptor genes. Following our recent delineation of taste receptors in the heart, we investigated the genomic loci encoding for taste receptors to gain insight into the regulatory mechanisms that drive their expression in the heart. Gene expression analyses of healthy and diseased human and mouse hearts showed coordinated expression for a subset of chromosomally clustered taste receptors. This chromosomal clustering mirrored the cardiac expression profile, suggesting that a common gene regulatory block may control the taste receptor locus. We identified unique domains with strong regulatory potential in the vicinity of taste receptor genes. We also performed de novo motif enrichment in the proximal promoter regions and found several overrepresented DNA motifs in cardiac taste receptor gene promoters corresponding to ubiquitous and cardiac-specific transcription factor binding sites. Thus, combining cardiac gene expression data with bioinformatic analyses, this study has provided insights into the noncoding regulatory landscape for taste GPCRs. These findings also have broader relevance for the study of taste GPCRs outside of the classical gustatory system, where understanding the mechanisms controlling the expression of these receptors may have implications for future therapeutic development. PMID:25986534

  12. Human T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D.; Clark, S.P.; Mak, T.W.

    1995-10-01

    Multiple DNA and protein sequence alignments have been constructed for the human T-cell receptor {alpha}/{delta}, {beta}, and {gamma} (TCRA/D, B, and G) variable (V) gene segments. The traditional classification into subfamilies was confirmed using a much larger pool of sequences. For each sequence, a name was derived which complies with the standard nomenclature. The traditional numbering of V gene segments in the order of their discovery was continued and changed when in conflict with names of other segments. By discriminating between alleles at the same locus versus genes from different loci, we were able to reduce the number of more than 150 different TCRBV sequences in the database to a repertoire of only 47 functional TCRBV gene segments. An extension of this analysis to the over 100 TCRAV sequences results in a predicted repertoire of 42 functional TCRAV gene segments. Our alignment revealed two residues that distinguish between the highly homologous V{delta} and V{alpha}, one at a site that in V{sub H} contacts the constant region, the other at the interface between immunoglobulin V{sub H} and V{sub L}. This site may be responsible for restricted pairing between certain V{delta} and V{gamma} chains. On the other hand, V{beta} and V{gamma} appear to be related by the fact that their CDR2 length is increased by four residues as compared with that of V{alpha}/{delta} peptides. 150 refs., 12 figs., 5 tabs.

  13. Evolution of galanin receptor genes: insights from the deuterostome genomes.

    PubMed

    Liu, Z; Xu, Y; Wu, L; Zhang, S

    2010-08-01

    Galanin exerts its biological activities through three different G protein-coupled receptors, Galr1, Galr2 and Galr3. To obtain insights into the evolution of Galrs, we searched the genomes of the deuterostomes by extensive BLAST survey and phylogenetic analyses. The Galr2 and Galr3 share similar genomic structures, and most of them are composed of 2 exons and 1 intron. However, most of Galr1 are composed of 3 extrons and 2 introns. We did not detect the typical Galr genes in the genomic databases of invertebrate deutserotomes, but three Galr1/Alstr homologs and two Galr1/Gpr151 homologs in amphioxus, two Galr1/Gpr151 homologs in sea squirt and one Galr1/Gpr151 homologs in sea urchin were identified. It is highly possible that the Galr genes in vertebrates may evolve from the homologous genes of Galr1/Alstr/Gpr151 in invertebrate deuterostomes. We also proposed that Galr3 genes were the products of Galr2 duplication during evolution, while Galr2 genes may evolve from Galr1. PMID:20476798

  14. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  15. First evidence for functional vomeronasal 2 receptor genes in primates.

    PubMed

    Hohenbrink, Philipp; Mundy, Nicholas I; Zimmermann, Elke; Radespiel, Ute

    2013-02-23

    Two classes of vomeronasal receptor genes, V1R and V2R, occur in vertebrates. Whereas, V1R loci are found in a wide variety of mammals, including primates, intact V2R genes have thus far only been described in rodents and marsupials. In primates, the V2R repertoire has been considered degenerate. Here, we identify for the first time two intact V2R loci in a strepsirrhine primate, the grey mouse lemur (Microcebus murinus), and demonstrate their expression in the vomeronasal organ. Putatively functional orthologues are present in two other strepsirrhines, whereas, both loci are pseudogenes in a range of anthropoid species. The functional significance of the loci is unknown, but positive selection on one of them is consistent with an adaptive role in pheromone detection. Finally, conservation of V2R loci in strepsirrhines is notable, given their high diversity and role in MUP and MHC detection in rodents. PMID:23269843

  16. 5-Hydroxytryptamine Receptor Subtypes and their Modulators with Therapeutic Potentials

    PubMed Central

    Pithadia, Anand B.; Jain, Sunita M.

    2009-01-01

    5-hydroxytryptamine (5-HT) has become one of the most investigated and complex biogenic amines. The main receptors and their subtypes, e.g., 5-HTI (5-HT1A, 5-HT1B, 5-HTID, 5-HTIE and 5-HT1F), 5-HT2 (5-HT2A, 5-HT2B and 5-HT2C), 5-HT3, 5-HT4, 5-HT5 (5-HT5A, 5-HT5B), 5-HT6 and 5-HT7 have been identified. Specific drugs which are capable of either selectively stimulating or inhibiting these receptor subtypes are being designed. This has generated therapeutic potentials of 5-HT receptor modulators in a variety of disease conditions. Conditions where 5-HT receptor modulators have established their use with distinct efficacy and advantages include migraine, anxiety, psychosis, obesity and cancer therapy-induced vomiting by cytotoxic drugs and radiation. Discovery of 5-HT, its biosynthesis, metabolism, physiological role and the potential of 5-HT receptor modulators in various nervous, cardiovascular and gastrointestinal tract disorders, bone growth and micturition have been discussed in this article. Keywords 5-hydroxytryptamine (5-HT) receptors; Modulators; Biogenic amines PMID:22505971

  17. Evolution of Dopamine Receptor Genes of the D1 Class in Vertebrates

    PubMed Central

    Yamamoto, Kei; Mirabeau, Olivier; Bureau, Charlotte; Blin, Maryline; Michon-Coudouel, Sophie; Demarque, Michaël; Vernier, Philippe

    2013-01-01

    The receptors of the dopamine neurotransmitter belong to two unrelated classes named D1 and D2. For the D1 receptor class, only two subtypes are found in mammals, the D1A and D1B, receptors, whereas additional subtypes, named D1C, D1D, and D1X, have been found in other vertebrate species. Here, we analyzed molecular phylogeny, gene synteny, and gene expression pattern of the D1 receptor subtypes in a large range of vertebrate species, which leads us to propose a new view of the evolution of D1 dopamine receptor genes. First, we show that D1C and D1D receptor sequences are encoded by orthologous genes. Second, the previously identified Cypriniform D1X sequence is a teleost-specific paralog of the D1B sequences found in all groups of jawed vertebrates. Third, zebrafish and several sauropsid species possess an additional D1-like gene, which is likely to form another orthology group of vertebrate ancestral genes, which we propose to name D1E. Ancestral jawed vertebrates are thus likely to have possessed four classes of D1 receptor genes—D1A, D1B(X), D1C(D), and D1E—which arose from large-scale gene duplications. The D1C receptor gene would have been secondarily lost in the mammalian lineage, whereas the D1E receptor gene would have been lost independently in several lineages of modern vertebrates. The D1A receptors are well conserved throughout jawed vertebrates, whereas sauropsid D1C receptors have rapidly diverged, to the point that they were misidentified as D1D. The functional significance of the D1C receptor loss is not known. It is possible that the function may have been substituted with D1A or D1B receptors in mammals, following the disappearance of D1C receptors in these species. PMID:23197594

  18. Vitamin D receptor gene polymorphisms in breast cancer.

    PubMed

    Buyru, Nur; Tezol, Ayda; Yosunkaya-Fenerci, Elif; Dalay, Nejat

    2003-12-31

    Breast cancer is the leading cause of cancer death among women around the world and its incidence is annually increasing. The vitamin D receptor (VDR) gene is a member of the nuclear receptor superfamily, which is expressed in breast tissue and known to modulate the rate of cell proliferation. Association between the VDR gene polymorphisms and cancer development has been suggested by several studies. However, the relationship between VDR polymorphisms and breast cancer is controversial and has not been confirmed by all studies. The purpose of this study was to investigate the genotype frequencies and association of the VDR Bsm I and Taq I polymorphisms with breast cancer in Turkish patients. In this study, 78 patients with breast cancer and 27 healthy individuals were enrolled. The prevalence of the VDR Taq I and Bsm I alleles and the genotype frequencies in patients with breast cancer was similar to that in the normal population. Our data indicate that no significant differences exist between the patients and control subjects. PMID:14749534

  19. The dopamine D3 receptor gene and posttraumatic stress disorder.

    PubMed

    Wolf, Erika J; Mitchell, Karen S; Logue, Mark W; Baldwin, Clinton T; Reardon, Annemarie F; Aiello, Alison; Galea, Sandro; Koenen, Karestan C; Uddin, Monica; Wildman, Derek; Miller, Mark W

    2014-08-01

    The dopamine D3 receptor (DRD3) gene has been implicated in schizophrenia, autism, and substance use-disorders and is related to emotion reactivity, executive functioning, and stress-responding, processes impaired in posttraumatic stress disorder (PTSD). The aim of this candidate gene study was to evaluate DRD3 polymorphisms for association with PTSD. The discovery sample was trauma-exposed White, non-Hispanic U.S. veterans and their trauma-exposed intimate partners (N = 491); 60.3% met criteria for lifetime PTSD. The replication sample was 601 trauma-exposed African American participants living in Detroit, Michigan; 23.6% met criteria for lifetime PTSD. Genotyping was based on high-density bead chips. In the discovery sample, 4 single nucleotide polymorphisms (SNPs), rs2134655, rs201252087, rs4646996, and rs9868039, showed evidence of association with PTSD and withstood correction for multiple testing. The minor alleles were associated with reduced risk for PTSD (OR range = 0.59 to 0.69). In the replication sample, rs2251177, located 149 base pairs away from the most significant SNP in the discovery sample, was nominally associated with PTSD in men (OR = 0.32). Although the precise role of the D3 receptor in PTSD is not yet known, its role in executive functioning and emotional reactivity, and the sensitivity of the dopamine system to environmental stressors could potentially explain this association. PMID:25158632

  20. The Dopamine D3 Receptor Gene and Posttraumatic Stress Disorder

    PubMed Central

    Wolf, Erika J.; Mitchell, Karen S.; Logue, Mark W.; Baldwin, Clinton T.; Reardon, Annemarie F.; Aiello, Alison; Galea, Sandro; Koenen, Karestan C.; Uddin, Monica; Wildman, Derek; Miller, Mark W.

    2014-01-01

    The dopamine D3 receptor (DRD3) gene has been implicated in schizophrenia, autism, and substance use-disorders and is related to emotion reactivity, executive functioning, and stress-responding, processes impaired in posttraumatic stress disorder (PTSD). This aim of this candidate gene study was to evaluate DRD3 polymorphisms for association with PTSD. The discovery sample was trauma-exposed white, non-Hispanic veterans and their trauma-exposed intimate partners (N = 491); 60% met criteria for lifetime PTSD. The replication sample was 601 trauma-exposed African American participants; 24% met criteria for lifetime PTSD. Genotyping was based on high-density bead chips. In the discovery sample, four single nucleotide polymorphisms (SNPs), rs2134655, rs201252087, rs4646996, and rs9868039, showed evidence of association with PTSD and withstood correction for multiple testing. The minor alleles were associated with reduced risk for PTSD (odds ratio range: 0.59 – 0.69). In the replication sample, rs2251177, located 149 base pairs away from the most significant SNP in the discovery sample, was nominally associated with PTSD in men (odds ratio: 0.32). Although the precise role of the D3 receptor in PTSD is not yet known, its role in executive functioning and emotional reactivity, and the sensitivity of the dopamine system to environmental stressors, could potentially explain this association. PMID:25158632

  1. Thyrotropin receptor gene alterations in thyroid hyperfunctioning adenomas

    SciTech Connect

    Russo, D.; Arturi, F.; Filetti, S.

    1996-04-01

    Forty-four thyroid autonomously hyperfunctioning adenomas were analyzed to assess the frequency of mutations occurring in the TSH receptor (TSHR). PCR-amplified fragments encompassing the entire exon 10 of the TSHR gene were obtained from the genomic DNA extracted from the tumors and their adjacent normal tissues and were examined by direct nucleotide sequencing. Point mutations were found in 9 of 44 adenomas examined (20%). One mutation occurred in codon 619 (Asp to Gly), four in codon 623 (three were Ala to Ser, one Ala to substitution), two in codon 632 (both Thr to Ile), and two in codon 633 (Asp to Tyr or His). All the alterations were located in a part of the gene coding for an area including the third intracellular loop and the sixth transmembrane domain of the TSH receptor. All mutations were somatic and heterozygotic, and none was simultaneous with alterations of ras or gsp oncogenes. Thus, our data show that in our series of 44 hyperfunctioning thyroid adenomas, a somatic mutation of the TSHR, responsible for the constitutive activation of the cAMP pathway, occurs in 20% of the tumors. 28 refs., 2 tabs.

  2. Oxytocin receptor and vasopressin receptor 1a genes are respectively associated with emotional and cognitive empathy.

    PubMed

    Uzefovsky, F; Shalev, I; Israel, S; Edelman, S; Raz, Y; Mankuta, D; Knafo-Noam, A; Ebstein, R P

    2015-01-01

    Empathy is the ability to recognize and share in the emotions of others. It can be considered a multifaceted concept with cognitive and emotional aspects. Little is known regarding the underlying neurochemistry of empathy and in the current study we used a neurogenetic approach to explore possible brain neurotransmitter pathways contributing to cognitive and emotional empathy. Both the oxytocin receptor (OXTR) and the arginine vasopressin receptor 1a (AVPR1a) genes contribute to social cognition in both animals and humans and hence are prominent candidates for contributing to empathy. The following research examined the associations between polymorphisms in these two genes and individual differences in emotional and cognitive empathy in a sample of 367 young adults. Intriguingly, we found that emotional empathy was associated solely with OXTR, whereas cognitive empathy was associated solely with AVPR1a. Moreover, no interaction was observed between the two genes and measures of empathy. The current findings contribute to our understanding of the distinct neurogenetic pathways involved in cognitive and emotional empathy and underscore the pervasive role of both oxytocin and vasopressin in modulating human emotions. PMID:25476609

  3. Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates

    PubMed Central

    Niimura, Yoshihito

    2007-01-01

    The numbers of functional olfactory receptor (OR) genes in humans and mice are about 400 and 1,000 respectively. In both humans and mice, these genes exist as genomic clusters and are scattered over almost all chromosomes. The difference in the number of genes between the two species is apparently caused by massive inactivation of OR genes in the human lineage and a substantial increase of OR genes in the mouse lineage after the human–mouse divergence. Compared with mammals, fishes have a much smaller number of OR genes. However, the OR gene family in fishes is much more divergent than that in mammals. Fishes have many different groups of genes that are absent in mammals, suggesting that the mammalian OR gene family is characterized by the loss of many group genes that existed in the ancestor of vertebrates and the subsequent expansion of specific groups of genes. Therefore, this gene family apparently changed dynamically depending on the evolutionary lineage and evolved under the birth-and-death model of evolution. Study of the evolutionary changes of two gene families for vomeronasal receptors and two gene families for taste receptors, which are structurally similar, but remotely related to OR genes, showed that some of the gene families evolved in the same fashion as the OR gene family. It appears that the number and types of genes in chemosensory receptor gene families have evolved in response to environmental needs, but they are also affected by fortuitous factors. PMID:16607462

  4. Estrogen receptor α can selectively repress dioxin receptor-mediated gene expression by targeting DNA methylation.

    PubMed

    Marques, Maud; Laflamme, Liette; Gaudreau, Luc

    2013-09-01

    Selective inhibitory crosstalk has been known to occur within the signaling pathways of the dioxin (AhR) and estrogen (ERα) receptors. More specifically, ERα represses a cytochrome P450-encoding gene (CYP1A1) that converts cellular estradiol into a metabolite that inhibits the cell cycle, while it has no effect on a P450-encoding gene (CYP1B1) that converts estrodiol into a genotoxic product. Here we show that ERα represses CYP1A1 by targeting the Dnmt3B DNA methyltransferase and concomitant DNA methylation of the promoter. We also find that histone H2A.Z can positively contribute to CYP1A1 gene expression, and its presence at that gene is inversely correlated with DNA methylation. Taken together, our results provide a framework for how ERα can repress transcription, and how that impinges on the production of an enzyme that generates genotoxic estradiol metabolites, and potential breast cancer progression. Finally, our results reveal a new mechanism for how H2A.Z can positively influence gene expression, which is by potentially competing with DNA methylation events in breast cancer cells. PMID:23828038

  5. Estrogen receptor α can selectively repress dioxin receptor-mediated gene expression by targeting DNA methylation

    PubMed Central

    Marques, Maud; Laflamme, Liette; Gaudreau, Luc

    2013-01-01

    Selective inhibitory crosstalk has been known to occur within the signaling pathways of the dioxin (AhR) and estrogen (ERα) receptors. More specifically, ERα represses a cytochrome P450-encoding gene (CYP1A1) that converts cellular estradiol into a metabolite that inhibits the cell cycle, while it has no effect on a P450-encoding gene (CYP1B1) that converts estrodiol into a genotoxic product. Here we show that ERα represses CYP1A1 by targeting the Dnmt3B DNA methyltransferase and concomitant DNA methylation of the promoter. We also find that histone H2A.Z can positively contribute to CYP1A1 gene expression, and its presence at that gene is inversely correlated with DNA methylation. Taken together, our results provide a framework for how ERα can repress transcription, and how that impinges on the production of an enzyme that generates genotoxic estradiol metabolites, and potential breast cancer progression. Finally, our results reveal a new mechanism for how H2A.Z can positively influence gene expression, which is by potentially competing with DNA methylation events in breast cancer cells. PMID:23828038

  6. Receptor protein kinase gene encoded at the self-incompatibility locus

    DOEpatents

    Nasrallah, June B.; Nasrallah, Mikhail E.; Stein, Joshua

    1996-01-01

    Described herein is a S receptor kinase gene (SRK), derived from the S locus in Brassica oleracea, having a extracellular domain highly similar to the secreted product of the S-locus glycoprotein gene.

  7. Transcriptional Characterization of Porcine Leptin and Leptin Receptor Genes.

    PubMed

    Pérez-Montarelo, Dafne; Fernández, Almudena; Barragán, Carmen; Noguera, Jose L; Folch, Josep M; Rodríguez, M Carmen; Ovilo, Cristina; Silió, Luis; Fernández, Ana I

    2013-01-01

    The leptin (LEP) and its receptor (LEPR) regulate food intake and energy balance through hypothalamic signaling. However, the LEP-LEPR axis seems to be more complex and its expression regulation has not been well described. In pigs, LEP and LEPR genes have been widely studied due to their relevance. Previous studies reported significant effects of SNPs located in both genes on growth and fatness traits. The aim of this study was to determine the expression profiles of LEP and LEPR across hypothalamic, adipose, hepatic and muscle tissues in Iberian x Landrace backcrossed pigs and to analyze the effects of gene variants on transcript abundance. To our knowledge, non porcine LEPR isoforms have been described rather than LEPRb. A short porcine LEPR isoform (LEPRa), that encodes a protein lacking the intracellular residues responsible of signal transduction, has been identified for the first time. The LEPRb isoform was only quantifiable in hypothalamus while LEPRa appeared widely expressed across tissues, but at higher levels in liver, suggesting that both isoforms would develop different roles. The unique LEP transcript showed expression in backfat and muscle. The effects of gene variants on transcript expression revealed interesting results. The LEPRc.1987C>T polymorphism showed opposite effects on LEPRb and LEPRa hypothalamic expression. In addition, one out of the 16 polymorphisms identified in the LEPR promoter region revealed high differential expression in hepatic LEPRa. These results suggest a LEPR isoform-specific regulation at tissue level. Conversely, non-differential expression of LEP conditional on the analyzed polymorphisms could be detected, indicating that its regulation is likely affected by other mechanisms rather than gene sequence variants. The present study has allowed a transcriptional characterization of LEP and LEPR isoforms on a range of tissues. Their expression patterns seem to indicate that both molecules develop peripheral roles apart from

  8. The Dopamine D2 Receptor Gene, Perceived Parental Support, and Adolescent Loneliness: Longitudinal Evidence for Gene-Environment Interactions

    ERIC Educational Resources Information Center

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods: Associations among the DRD2, sex, parental support,…

  9. Variants in the vitamin D receptor gene and asthma

    PubMed Central

    Wjst, Matthias

    2005-01-01

    Background Early lifetime exposure to dietary or supplementary vitamin D has been predicted to be a risk factor for later allergy. Twin studies suggest that response to vitamin D exposure might be influenced by genetic factors. As these effects are primarily mediated through the vitamin D receptor (VDR), single base variants in this gene may be risk factors for asthma or allergy. Results 951 individuals from 224 pedigrees with at least 2 asthmatic children were analyzed for 13 SNPs in the VDR. There was no preferential transmission to children with asthma. In their unaffected sibs, however, one allele in the 5' region was 0.5-fold undertransmitted (p = 0.049), while two other alleles in the 3' terminal region were 2-fold over-transmitted (p = 0.013 and 0.018). An association was also seen with bronchial hyperreactivity against methacholine and with specific immunoglobulin E serum levels. Conclusion The transmission disequilibrium in unaffected sibs of otherwise multiple-affected families seem to be a powerful statistical test. A preferential transmission of vitamin D receptor variants to children with asthma could not be confirmed but raises the possibility of a protective effect for unaffected children. PMID:15651992

  10. Models for antigen receptor gene rearrangement: CDR3 length.

    PubMed

    Saada, Ravit; Weinberger, Moran; Shahaf, Gitit; Mehr, Ramit

    2007-06-01

    Despite the various processing steps involved in V(D)J recombination, which could potentially introduce many biases in the length distribution of complementarity determining region 3 (CDR3) segments, the observed CDR3 length distributions for complete repertoires are very close to a normal-like distribution. This raises the question of whether this distribution is simply a result of the random steps included in the process of gene rearrangement, or has been optimized during evolution. We have addressed this issue by constructing a simulation of gene rearrangement, which takes into account the DNA modification steps included in the process, namely hairpin opening, nucleotide additions, and nucleotide deletions. We found that the near-Gaussian- shape of CDR3 length distribution can only be obtained under a relatively narrow set of parameter values, and thus our model suggests that specific biases govern the rearrangement process. In both B-cell receptor (BCR) heavy chain and T-cell receptor beta chain, we obtained a Gaussian distribution using identical parameters, despite the difference in the number and the lengths of the D segments. Hence our results suggest that these parameters most likely reflect the optimal conditions under which the rearrangement process occurs. We have subsequently used the insights gained in this study to estimate the probability of occurrence of two exactly identical BCRs over the course of a human lifetime. Whereas identical rearrangements of the heavy chain are highly unlikely to occur within one human lifetime, for the light chain we found that this probability is not negligible, and hence the light chain CDR3 alone cannot serve as an indicator of B-cell clonality. PMID:17404591

  11. Progesterone receptor gene variants and risk of endometrial cancer

    PubMed Central

    O'Mara, Tracy A.; Fahey, Paul; Ferguson, Kaltin; Marquart, Louise; Lambrechts, Diether; Despierre, Evelyn; Vergote, Ignace; Amant, Frederic; Hall, Per; Liu, Jianjun; Czene, Kamila; Rebbeck, Timothy R.; Ahmed, Shahana; Dunning, Alison M.; Gregory, Catherine S.; Shah, Mitul; Webb, Penelope M.; Spurdle, Amanda B.

    2011-01-01

    Prolonged excessive estrogen exposure unopposed by progesterone is widely accepted to be a risk factor for endometrial cancer development. The physiological function of progesterone is dependent upon the presence of its receptor [progesterone receptor (PGR)] and several studies have reported single nucleotide polymorphisms (SNPs) in the PGR gene to be associated with endometrial cancer risk. We sought to confirm the associations with endometrial cancer risk previously reported for four different PGR polymorphisms. A maximum of 2888 endometrial cancer cases and 4483 female control subjects from up to three studies were genotyped for four PGR polymorphisms (rs1042838, rs10895068, rs11224561 and rs471767). Logistic regression with adjustment for age, study, ethnicity and body mass index was performed to calculate odds ratios (ORs) and associated 95% confidence intervals (CIs) and P-values. Of the four SNPs investigated, only rs11224561 in the 3′ region of the PGR gene was found to be significantly associated with endometrial cancer risk. The A allele of the rs11224561 SNP was associated with increased risk of endometrial cancer (OR per allele 1.31; 95% CI 1.12–1.53, P = 0.001, adjusted for age and study), an effect of the same magnitude and direction as reported previously. We have validated the endometrial cancer risk association with a tagSNP in the 3′ untranslated region of PGR previously reported in an Asian population. Replication studies will be required to refine the risk estimate and to establish if this, or a correlated SNP, is the underlying causative variant. PMID:21148628

  12. Optimizing T-cell receptor gene therapy for hematologic malignancies.

    PubMed

    Morris, Emma C; Stauss, Hans J

    2016-06-30

    Recent advances in genetic engineering have enabled the delivery of clinical trials using patient T cells redirected to recognize tumor-associated antigens. The most dramatic results have been seen with T cells engineered to express a chimeric antigen receptor (CAR) specific for CD19, a differentiation antigen expressed in B cells and B lineage malignancies. We propose that antigen expression in nonmalignant cells may contribute to the efficacy of T-cell therapy by maintaining effector function and promoting memory. Although CAR recognition is limited to cell surface structures, T-cell receptors (TCRs) can recognize intracellular proteins. This not only expands the range of tumor-associated self-antigens that are amenable for T-cell therapy, but also allows TCR targeting of the cancer mutagenome. We will highlight biological bottlenecks that potentially limit mutation-specific T-cell therapy and may require high-avidity TCRs that are capable of activating effector function when the concentrations of mutant peptides are low. Unexpectedly, modified TCRs with artificially high affinities function poorly in response to low concentration of cognate peptide but pose an increased safety risk as they may respond optimally to cross-reactive peptides. Recent gene-editing tools, such as transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats, provide a platform to delete endogenous TCR and HLA genes, which removes alloreactivity and decreases immunogenicity of third-party T cells. This represents an important step toward generic off-the-shelf T-cell products that may be used in the future for the treatment of large numbers of patients. PMID:27207802

  13. An Expression Refinement Process Ensures Singular Odorant Receptor Gene Choice.

    PubMed

    Abdus-Saboor, Ishmail; Al Nufal, Mohammed J; Agha, Maha V; Ruinart de Brimont, Marion; Fleischmann, Alexander; Shykind, Benjamin M

    2016-04-25

    Odorant receptor (OR) gene choice in mammals is a paradigmatic example of monogenic and monoallelic transcriptional selection, in which each olfactory sensory neuron (OSN) chooses to express one OR allele from over 1,000 encoded in the genome [1-3]. This process, critical for generation of the circuit from nose to brain [4-6], is thought to occur in two steps: a slow initial phase that randomly activates a single OR allele, followed by a rapid feedback that halts subsequent expression [7-14]. Inherent in this model is a finite failure rate wherein multiple OR alleles may be activated prior to feedback suppression [15, 16]. Confronted with more than one receptor, the neuron would need to activate a refinement mechanism to eliminate multigenic OR expression and resolve unique neuronal identity [16], critical to the generation of the circuit from nose to olfactory bulb. Here we used a genetic approach in mice to reveal a new facet of OR regulation that corrects adventitious activation of multiple OR alleles, restoring monogenic OR expression and unique neuronal identity. Using the tetM71tg model system, in which the M71 OR is expressed in >95% of mature OSNs and potently suppresses the expression of the endogenous OR repertoire [10], we provide clear evidence of a post-selection refinement (PSR) process that winnows down the number of ORs. We further demonstrate that PSR efficiency is linked to OR expression level, suggesting an underlying competitive process and shedding light on OR gene switching and the fundamental mechanism of singular OR choice. PMID:27040780

  14. Melanoma risk is associated with vitamin D receptor gene polymorphisms.

    PubMed

    Zeljic, Katarina; Kandolf-Sekulovic, Lidija; Supic, Gordana; Pejovic, Janko; Novakovic, Marijan; Mijuskovic, Zeljko; Magic, Zvonko

    2014-06-01

    Previous studies have reported that vitamin D receptor (VDR) gene polymorphisms are associated with the occurrence of various cancers, including melanoma. The aim of the current study was to investigate the association of VDR gene polymorphisms with melanoma risk, clinicopathological characteristics, and vitamin D levels. The study group included 117 patients (84 patients with superficial spreading melanoma and 33 patients with nodular melanoma). The control group included 122 sex-matched and age-matched healthy-blood donors of the same ethnicity. VDR gene polymorphisms FokI, EcoRV, TaqI, and ApaI were genotyped by real-time PCR. In 60 patients, the total 25-hydroxyvitamin D levels were evaluated in serum samples by direct chemiluminescence. Associations among parameters were considered to be significant if the P value was less than 0.05. Significant differences in the frequencies of VDR genotypes were observed between cases and the control group for FokI and TaqI polymorphisms (P<0.0001; P=0.005, respectively). Heterozygous Ff as well as mutant FF genotypes of the FokI polymorphism were associated with increased melanoma risk compared with the wild-type form [odds ratio (OR)=3.035, P=0.003; OR=9.276, P<0.0001, respectively]. A significantly increased melanoma risk was observed for the heterozygous Tt (OR=2.302, P=0.011) and the mutated variant tt (OR=3.697, P=0.003) of the TaqI polymorphism in comparison with the wild-type genotype. None of the polymorphisms studied was associated with clinicopathological characteristics and vitamin D serum level. Our results suggest that FokI and TaqI polymorphisms in the VDR gene may be considered as potential biomarkers for melanoma susceptibility. Low vitamin D levels in melanoma patients indicate the need for vitamin D supplementation. PMID:24638155

  15. Association between the vitamin D receptor gene polymorphism and osteoporosis

    PubMed Central

    Wu, Ju; Shang, De-Peng; Yang, Sheng; Fu, Da-Peng; Ling, Hao-Yi; Hou, Shuang-Shuang; Lu, Jian-Min

    2016-01-01

    The influence of the vitamin D receptor (VDR) gene for the risk of osteoporosis remains to be elucidated. The aim of the present study was to understand the distribution of various single-nucleotide polymorphisms (SNPs) within the VDR gene and its association with the risk of osteoporosis. In total, 378 subjects without a genetic relationship were recruited to the study between January 2013 and July 2015. The subjects were divided into three groups, which were the normal (n=234), osteoporosis (n=65) and osteoporosis with osteoporotic fracture (n=79) groups. Three pertinent SNPs of the VDR gene rs17879735 (ApaI, Allele A/a, SNP C>A) were examined with polymerase chain reaction-restriction fragment length polymorphism. The bone mineral density (BMD) of the lumbar spine (L2-L4), femoral neck, Ward's and Tro was measured using dual-energy X-ray absorptiometry. The distributions of genotype frequencies aa, AA and Aa were 48.68, 42.86 and 8.46%, separately. Following analysis of each site, BMD, body mass index (BMI) and age, BMD for each site was negatively correlated with age (P<0.01) and positively correlated with BMI (P<0.01). Correction analysis revealed that there were significant differences in the Ward's triangle BMD among each genotype (P<0.05), in which the aa genotype exhibited the lower BMD (P<0.05). No significant difference was identified among the different genotypes in the occurrence of osteoporosis with osteoporotic fracture (P>0.05). In conclusion, these indicated that the VDR gene ApaI polymorphisms had an important role in the osteoporosis risk. PMID:27446548

  16. Liver X Receptor Gene Polymorphisms in Tuberculosis: Effect on Susceptibility

    PubMed Central

    Liu, Li-rong; Yue, Jun; Zhao, Yan-lin; Xiao, He-ping

    2014-01-01

    Objectives The Liver X receptors (LXRs), Liver X receptor A (LXRA) and Liver X receptor B (LXRB), regulate lipid metabolism and antimicrobial response. LXRs have a crucial role in the control of Mycobacterium tuberculosis (M.tb). Lacking LXRs mice is more susceptibility to infection M.tb, developing higher bacterial burdens and an increase in the size and number of granulomatous lesions. We aimed to assess the associations between single nucleotide polymorphisms (SNPs) in LXRs and risk of tuberculosis. Methods We sequenced the LXRs genes to detect SNPs and to examine genotypic frequencies in 600 patients and 620 healthy controls to investigate for associations with tuberculosis (TB) in the Chinese Han population. DNA re-sequencing revealed eight common variants in the LXRs genes. Results The G allele of rs1449627 and the T allele of rs1405655 demonstrated an increased risk of developing TB (p<0.001, p = 0.002), and the T allele of rs3758673, the T allele of rs2279238, and the C allele of rs1449626 in LXRA and the C allele of rs17373080, the G allele of rs2248949, and the C allele of rs1052677 in LXRB were protective against TB patients compared to healthy controls (p = 0.0002, p = 0.006, p<0.001, p = 0.004, p = 0.008, p = 0.003, respectively). All SNP genotypes were significantly associated with TB. An estimation of the frequencies of haplotypes revealed two potential risk haplotypes,GGCG in LXRB (p = 0.004,) and TTCG in LXRA (p<0.001, p = 0.004). Moreover, three protective haplotypes, TTAT and CCAT in LXRA and CATC in LXRB, were significantly “protective” (p = 0.008, p<0.001, p = 0.031) for TB. Furthermore, we determined that the LXRs SNPs were nominally associated with the clinical pattern of disease. Conclusions Our study data supported that LXRs play a fundamental role in the genetic susceptibility to TB and to different clinical patterns of disease. Thus, further investigation is required in larger populations and in

  17. Expression of the human ABCC6 gene is induced by retinoids through the retinoid X receptor

    SciTech Connect

    Ratajewski, Marcin; Bartosz, Grzegorz; Pulaski, Lukasz . E-mail: lpulaski@cbm.pan.pl

    2006-12-01

    Mutations in the human ABCC6 gene are responsible for the disease pseudoxanthoma elasticum, although Physiological function or substrate of the gene product (an ABC transporter known also as MRP6) is not known. We found that the expression of this gene in cells of hepatic origin (where this gene is predominantly expressed in the body) is significantly upregulated by retinoids, acting as agonists of the retinoid X receptor (RXR) rather than the retinoid A receptor (RAR). The direct involvement of this nuclear receptor in the transcriptional regulation of ABCC6 gene expression was confirmed by transient transfection and chromatin immunoprecipitation assays. This constitutes the first direct proof of previously suggested involvement of nuclear hormone receptors in ABCC6 gene expression and the first identification of a transcription factor which may be relevant to regulation of ABCC6 level in tissues and in some PXE patients.

  18. Leptin receptor gene polymorphisms in severely pre-eclamptic women.

    PubMed

    Rigó, János; Szendei, György; Rosta, Klára; Fekete, Andrea; Bögi, Krisztina; Molvarec, Attila; Rónai, Zsolt; Vér, Agota

    2006-09-01

    Variants of the leptin receptor gene (LEPR) may modulate the effect of elevated serum leptin levels in pre-eclampsia. The aim of our study was to evaluate the LEPR gene polymorphisms Lys109Arg (A109G) and Gln223Arg (A223G) in severely pre-eclamptic women. In a case-control study, we analyzed blood samples from 124 severely pre-eclamptic patients and 107 healthy control women by the polymerase chain reaction-restriction fragment length polymorphism method. The Pearson chi2 test was used to estimate odds ratios (OR) and 95% confidence intervals (CI). The association was adjusted for maternal age, pre-pregnancy body mass index and primiparity with logistic regression analysis. Pregnant women with the LEPR 223G allele (223A/G or 223G/G genotype) had almost double the risk of developing severe pre-eclampsia compared with patients with the 223A/A genotype (adjusted OR = 1.92, 95% CI: 1.07-3.41). Genotype variants of LEPR A109G alone did not affect the risk of severe pre-eclampsia. Haplotype estimation of A109G and A223G polymorphisms of the LEPR gene revealed that the G-A haplotype versus other pooled haplotypes was significantly less common in the pre-eclamptic group (p < 0.01), while the G-G haplotype versus others was overrepresented among severely pre-eclamptic patients (p < 0.01), compared with controls. In conclusion, our data indicate that LEPR A223G polymorphism may individually modify the risk of severe pre-eclampsia. PMID:17071538

  19. Olfactory Receptor Gene Polymorphisms and Nonallergic Vasomotor Rhinitis

    PubMed Central

    Bernstein, Jonathan A.; Zhang, Ge; Jin, Li; Abbott, Carol; Nebert, Daniel W.

    2009-01-01

    We sought a genotype-phenotype association: between single-nucleotide polymorphisms (SNPs) in olfactory receptor (OR) genes from the two largest OR gene clusters and odor-triggered nonallergic vasomotor rhinitis (nVMR). In the initial pedigree screen, using transmission disequilibrium test (TDT) analysis, six SNPs showed “significant” p-values between 0.0449 and 0.0043. In a second case-control population, the previously identified six SNPs did not re-emerge, whereas four new SNPs showed p-values between 0.0490 and 0.0001. Combining both studies, none of the SNPs in the TDT analysis survived the Bonferroni correction. In the population study, one SNP showed an empirical p-value of 0.0066 by shuffling cases and controls with 105 replicates; however, the p-value for this SNP was 0.83 in the pedigree study. This study emphasizes that underpowered studies having p-values between <0.05 and 0.0001 should be regarded as inconclusive and require further replication before concluding the study is “informative.” However, we believe that our hypothesis that an association between OR genotypes and the nVMR phenotype remains feasible. Future studies using either a genomewide association study of all OR gene-pseudogene regions throughout the genome—at the current recommended density of 2.5 to 5 kb per tag SNP—or studies incorporating microarray analyses of the entire “OR genome” in well-characterized nVMR patients are required. PMID:18446592

  20. Growth Hormone Secretagogue Receptor Dimers: A New Pharmacological Target1,2,3

    PubMed Central

    Abizaid, Alfonso

    2015-01-01

    Abstract The growth hormone secretagogue receptor (GHSR1a), the target of the ghrelin peptide, is widely distributed throughout the brain, and, while studies have often reported very low or absent levels of central ghrelin, it is now known that GHSR1a, even in the absence of a natural ligand, has physiological roles. Not only do these roles originate from the receptor’s constitutive activity, but recent data indicate that GHSR1a dimerizes with a wide array of other receptors. These include the dopamine 1 receptor (D1R), the dopamine 2 receptor (D2R), the melanocortin-3 receptor (MC3R), the serotonin 2C receptor (5-HT2C), and possibly the cannabinoid type 1 receptor (CB1). Within these dimers, signaling of the protomers involved are modified through facilitation, inhibition, and even modification of signaling pathways resulting in physiological consequences not seen in the absence of these dimers. While in some cases the ghrelin peptide is not required for these modifications to occur, in others, the presence is necessary for these changes to take effect. These heterodimers demonstrate the broad array of roles and complexity of the ghrelin system. By better understanding how these dimers work, it is hoped that improved treatments for a variety of disorders, including Parkinson’s disease, schizophrenia, addiction, obesity, diabetes, and more, can be devised. In this review, we examine the current state of knowledge surrounding GHSR heterodimers, and how we can apply this knowledge to various pharmacological treatments. PMID:26464979

  1. Functional Characterization of Soybean Glyma04g39610 as a Brassinosteroid Receptor Gene and Evolutionary Analysis of Soybean Brassinosteroid Receptors

    PubMed Central

    Peng, Suna; Tao, Ping; Xu, Feng; Wu, Aiping; Huo, Weige; Wang, Jinxiang

    2016-01-01

    Brassinosteroids (BR) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, the BR receptors in soybean remain largely unknown. Here, in addition to the known receptor gene Glyma06g15270 (GmBRI1a), we identified five putative BR receptor genes in the soybean genome: GmBRI1b, GmBRL1a, GmBRL1b, GmBRL2a, and GmBRL2b. Analysis of their expression patterns by quantitative real-time PCR showed that they are ubiquitously expressed in primary roots, lateral roots, stems, leaves, and hypocotyls. We used rapid amplification of cDNA ends (RACE) to clone GmBRI1b (Glyma04g39160), and found that the predicted amino acid sequence of GmBRI1b showed high similarity to those of AtBRI1 and pea PsBRI1. Structural modeling of the ectodomain also demonstrated similarities between the BR receptors of soybean and Arabidopsis. GFP-fusion experiments verified that GmBRI1b localizes to the cell membrane. We also explored GmBRI1b function in Arabidopsis through complementation experiments. Ectopic over-expression of GmBRI1b in Arabidopsis BR receptor loss-of-function mutant (bri1-5 bak1-1D) restored hypocotyl growth in etiolated seedlings; increased the growth of stems, leaves, and siliques in light; and rescued the developmental defects in leaves of the bri1-6 mutant, and complemented the responses of BR biosynthesis-related genes in the bri1-5 bak1-D mutant grown in light. Bioinformatics analysis demonstrated that the six BR receptor genes in soybean resulted from three gene duplication events during evolution. Phylogenetic analysis classified the BR receptors in dicots and monocots into three subclades. Estimation of the synonymous (Ks) and the nonsynonymous substitution rate (Ka) and selection pressure (Ka/Ks) revealed that the Ka/Ks of BR receptor genes from dicots and monocots were less than 1.0, indicating that BR receptor genes in plants experienced purifying selection during evolution. PMID:27338344

  2. Functional Characterization of Soybean Glyma04g39610 as a Brassinosteroid Receptor Gene and Evolutionary Analysis of Soybean Brassinosteroid Receptors.

    PubMed

    Peng, Suna; Tao, Ping; Xu, Feng; Wu, Aiping; Huo, Weige; Wang, Jinxiang

    2016-01-01

    Brassinosteroids (BR) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, the BR receptors in soybean remain largely unknown. Here, in addition to the known receptor gene Glyma06g15270 (GmBRI1a), we identified five putative BR receptor genes in the soybean genome: GmBRI1b, GmBRL1a, GmBRL1b, GmBRL2a, and GmBRL2b. Analysis of their expression patterns by quantitative real-time PCR showed that they are ubiquitously expressed in primary roots, lateral roots, stems, leaves, and hypocotyls. We used rapid amplification of cDNA ends (RACE) to clone GmBRI1b (Glyma04g39160), and found that the predicted amino acid sequence of GmBRI1b showed high similarity to those of AtBRI1 and pea PsBRI1. Structural modeling of the ectodomain also demonstrated similarities between the BR receptors of soybean and Arabidopsis. GFP-fusion experiments verified that GmBRI1b localizes to the cell membrane. We also explored GmBRI1b function in Arabidopsis through complementation experiments. Ectopic over-expression of GmBRI1b in Arabidopsis BR receptor loss-of-function mutant (bri1-5 bak1-1D) restored hypocotyl growth in etiolated seedlings; increased the growth of stems, leaves, and siliques in light; and rescued the developmental defects in leaves of the bri1-6 mutant, and complemented the responses of BR biosynthesis-related genes in the bri1-5 bak1-D mutant grown in light. Bioinformatics analysis demonstrated that the six BR receptor genes in soybean resulted from three gene duplication events during evolution. Phylogenetic analysis classified the BR receptors in dicots and monocots into three subclades. Estimation of the synonymous (Ks) and the nonsynonymous substitution rate (Ka) and selection pressure (Ka/Ks) revealed that the Ka/Ks of BR receptor genes from dicots and monocots were less than 1.0, indicating that BR receptor genes in plants experienced purifying selection during evolution. PMID:27338344

  3. Identification of Putative Chemosensory Receptor Genes from the Athetis dissimilis Antennal Transcriptome

    PubMed Central

    Dong, Junfeng; Song, Yueqin; Li, Wenliang; Shi, Jie; Wang, Zhenying

    2016-01-01

    Olfaction plays a crucial role in insect population survival and reproduction. Identification of the genes associated with the olfactory system, without the doubt will promote studying the insect chemical communication system. In this study, RNA-seq technology was used to sequence the antennae transcriptome of Athetis dissimilis, an emerging crop pest in China with limited genomic information, with the purpose of identifying the gene set involved in olfactory recognition. Analysis of the transcriptome of female and male antennae generated 13.74 Gb clean reads in total from which 98,001 unigenes were assembled, and 25,930 unigenes were annotated. Total of 60 olfactory receptors (ORs), 18 gustatory receptors (GRs), and 12 ionotropic receptors (IRs) were identified by Blast and sequence similarity analyzes. One obligated olfactory receptor co-receptor (Orco) and four conserved sex pheromone receptors (PRs) were annotated in 60 ORs. Among the putative GRs, five genes (AdisGR1, 6, 7, 8 and 94) clustered in the sugar receptor family, and two genes (AdisGR3 and 93) involved in CO2 detection were identified. Finally, AdisIR8a.1 and AdisIR8a.2 co-receptors were identified in the group of candidate IRs. Furthermore, expression levels of these chemosensory receptor genes in female and male antennae were analyzed by mapping the Illumina reads. PMID:26812239

  4. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression.

    PubMed

    Wissmann, Melanie; Yin, Na; Müller, Judith M; Greschik, Holger; Fodor, Barna D; Jenuwein, Thomas; Vogler, Christine; Schneider, Robert; Günther, Thomas; Buettner, Reinhard; Metzger, Eric; Schüle, Roland

    2007-03-01

    Posttranslational modifications of histones, such as methylation, regulate chromatin structure and gene expression. Recently, lysine-specific demethylase 1 (LSD1), the first histone demethylase, was identified. LSD1 interacts with the androgen receptor and promotes androgen-dependent transcription of target genes by ligand-induced demethylation of mono- and dimethylated histone H3 at Lys 9 (H3K9) only. Here, we identify the Jumonji C (JMJC) domain-containing protein JMJD2C as the first histone tridemethylase regulating androgen receptor function. JMJD2C interacts with androgen receptor in vitro and in vivo. Assembly of ligand-bound androgen receptor and JMJD2C on androgen receptor-target genes results in demethylation of trimethyl H3K9 and in stimulation of androgen receptor-dependent transcription. Conversely, knockdown of JMJD2C inhibits androgen-induced removal of trimethyl H3K9, transcriptional activation and tumour cell proliferation. Importantly, JMJD2C colocalizes with androgen receptor and LSD1 in normal prostate and in prostate carcinomas. JMJD2C and LSD1 interact and both demethylases cooperatively stimulate androgen receptor-dependent gene transcription. In addition, androgen receptor, JMJD2C and LSD1 assemble on chromatin to remove methyl groups from mono, di and trimethylated H3K9. Thus, our data suggest that specific gene regulation requires the assembly and coordinate action of demethylases with distinct substrate specificities. PMID:17277772

  5. Identification of Putative Chemosensory Receptor Genes from the Athetis dissimilis Antennal Transcriptome.

    PubMed

    Dong, Junfeng; Song, Yueqin; Li, Wenliang; Shi, Jie; Wang, Zhenying

    2016-01-01

    Olfaction plays a crucial role in insect population survival and reproduction. Identification of the genes associated with the olfactory system, without the doubt will promote studying the insect chemical communication system. In this study, RNA-seq technology was used to sequence the antennae transcriptome of Athetis dissimilis, an emerging crop pest in China with limited genomic information, with the purpose of identifying the gene set involved in olfactory recognition. Analysis of the transcriptome of female and male antennae generated 13.74 Gb clean reads in total from which 98,001 unigenes were assembled, and 25,930 unigenes were annotated. Total of 60 olfactory receptors (ORs), 18 gustatory receptors (GRs), and 12 ionotropic receptors (IRs) were identified by Blast and sequence similarity analyzes. One obligated olfactory receptor co-receptor (Orco) and four conserved sex pheromone receptors (PRs) were annotated in 60 ORs. Among the putative GRs, five genes (AdisGR1, 6, 7, 8 and 94) clustered in the sugar receptor family, and two genes (AdisGR3 and 93) involved in CO2 detection were identified. Finally, AdisIR8a.1 and AdisIR8a.2 co-receptors were identified in the group of candidate IRs. Furthermore, expression levels of these chemosensory receptor genes in female and male antennae were analyzed by mapping the Illumina reads. PMID:26812239

  6. Gene Expression Switching of Receptor Subunits in Human Brain Development

    PubMed Central

    Bar-Shira, Ossnat; Maor, Ronnie; Chechik, Gal

    2015-01-01

    Synaptic receptors in the human brain consist of multiple protein subunits, many of which have multiple variants, coded by different genes, and are differentially expressed across brain regions and developmental stages. The brain can tune the electrophysiological properties of synapses to regulate plasticity and information processing by switching from one protein variant to another. Such condition-dependent variant switch during development has been demonstrated in several neurotransmitter systems including NMDA and GABA. Here we systematically detect pairs of receptor-subunit variants that switch during the lifetime of the human brain by analyzing postmortem expression data collected in a population of donors at various ages and brain regions measured using microarray and RNA-seq. To further detect variant pairs that co-vary across subjects, we present a method to quantify age-corrected expression correlation in face of strong temporal trends. This is achieved by computing the correlations in the residual expression beyond a cubic-spline model of the population temporal trend, and can be seen as a nonlinear version of partial correlations. Using these methods, we detect multiple new pairs of context dependent variants. For instance, we find a switch from GLRA2 to GLRA3 that differs from the known switch in the rat. We also detect an early switch from HTR1A to HTR5A whose trends are negatively correlated and find that their age-corrected expression is strongly positively correlated. Finally, we observe that GRIN2B switch to GRIN2A occurs mostly during embryonic development, presumably earlier than observed in rodents. These results provide a systematic map of developmental switching in the neurotransmitter systems of the human brain. PMID:26636753

  7. Expression of glucocorticoid and progesterone nuclear receptor genes in archival breast cancer tissue

    PubMed Central

    Smith, Robert A; Lea, Rod A; Curran, Joanne E; Weinstein, Stephen R; Griffiths, Lyn R

    2003-01-01

    Background Previous studies in our laboratory have shown associations of specific nuclear receptor gene variants with sporadic breast cancer. In order to investigate these findings further, we conducted the present study to determine whether expression levels of the progesterone and glucocorticoid nuclear receptor genes vary in different breast cancer grades. Methods RNA was extracted from paraffin-embedded archival breast tumour tissue and converted into cDNA. Sample cDNA underwent PCR using labelled primers to enable quantitation of mRNA expression. Expression data were normalized against the 18S ribosomal gene multiplex and analyzed using analysis of variance. Results Analysis of variance indicated a variable level of expression of both genes with regard to breast cancer grade (P = 0.00033 for glucocorticoid receptor and P = 0.023 for progesterone receptor). Conclusion Statistical analysis indicated that expression of the progesterone nuclear receptor is elevated in late grade breast cancer tissue. PMID:12559052

  8. Genetic manipulation to analyze pheromone responses: knockouts of multiple receptor genes.

    PubMed

    Ishii, Tomohiro

    2013-01-01

    Gene targeting in the mouse is an essential technique to study gene function in vivo. Multigene families encoding vomeronasal receptor (VR) type 1 and type 2 consist of ~300 intact genes, which are clustered at multiple loci in the mouse genome. To understand the function of VRs and neurons expressing a particular VR in vivo, individual endogenous receptor genes can be manipulated by conventional gene targeting to create loss-of-function mutations or to visualize neurons and their axons expressing the VR. Multiple receptor genes in a cluster can also be deleted simultaneously by chromosome engineering, allowing analysis of function of a particular VR subfamily. Here, we describe protocols for conventional gene targeting and chromosome engineering for deleting a large genomic region in mouse embryonic stem (ES) cells. PMID:24014359

  9. Allelic association of human dopamine D sub 2 receptor gene in alcoholism

    SciTech Connect

    Blum, K.; Sheridan, P.J.; Montgomery, A.; Jagadeeswaran, P.; Nogami, H.; Briggs, A.H. ); Noble, E.P.; Ritchie, T.; Cohn, J.B. )

    1990-04-18

    In a blinded experiment, the authors report the first allelic association of the dopamine D{sub 2} receptor gene in alcoholism. From 70 brain samples of alcoholics and nonalcoholics, DNA was digested with restriction endonucleases and probed with a clone that contained the entire 3{prime} coding exon, the polyadenylation signal, and approximately 16.4 kilobases of noncoding 3{prime} sequence of the human dopamine D{sub 2} receptor gene ({lambda}hD2G1). In the present samples, the presence of A1 allele of the dopamine D{sub 2} receptor gene correctly classified 77% of alcoholics, and its absence classified 72% of nonalcoholics. The polymorphic pattern of this receptor gene suggests that a gene that confers susceptibility to at least one form of alcoholism is located on the q22-q23 region of chromosome 11.

  10. Glucocorticoids down-regulate beta 1-adrenergic-receptor expression by suppressing transcription of the receptor gene.

    PubMed Central

    Kiely, J; Hadcock, J R; Bahouth, S W; Malbon, C C

    1994-01-01

    The expression of beta 2-adrenergic receptors is up-regulated by glucocorticoids. In contrast, beta 1-adrenergic receptors display glucocorticoid-induced down-regulation. In rat C6 glioma cells, which express both of these subtypes of beta-adrenergic receptors, the synthetic glucocorticoid dexamethasone stimulates no change in the total beta-adrenergic receptor content, but rather shifts the beta 1:beta 2 ratio from 80:20 to 50:50. Radioligand binding and immunoblotting demonstrate a sharp decline in beta 1-adrenergic receptor expression. Metabolic labelling of cells with [35S]-methionine in tandem with immunoprecipitation by beta 1-adrenergic-receptor-specific antibodies reveals a sharp decline in the synthesis of the receptor within 48 h for cells challenged with glucocorticoid. Steady-state levels of beta 1-adrenergic-receptor mRNA declined from 0.47 to 0.26 amol/microgram of total cellular RNA within 2 h of dexamethasone challenge, as measured by DNA-excess solution hybridization. The stability of receptor mRNA was not influenced by glucocorticoid; the half-lives of the beta 1- and beta 2-subtype mRNAs were 1.7 and 1.5 h respectively. Nuclear run-on assays revealed the basis for the down-regulation of receptor expression, i.e. a sharp decline in the relative rate of transcription for the beta 1-adrenergic-receptor gene in nuclei from dexamethasone-treated as compared with vehicle-treated cells. These data demonstrate transcriptional suppression as a molecular explanation for glucocorticoid-induced down-regulation of beta 1-adrenergic receptors. Images Figure 1 Figure 2 Figure 6 PMID:8092990

  11. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    EPA Science Inventory

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  12. Endocytosis as a Biological Response in Receptor Pharmacology: Evaluation by Fluorescence Microscopy

    PubMed Central

    Varela, María J.; de la Rocha, Arlet M. Acanda; Fernandez-Troyano, Juan C.; Barreiro, R. Belén; Lopez-Gimenez, Juan F.

    2015-01-01

    The activation of G-protein coupled receptors by agonist compounds results in diverse biological responses in cells, such as the endocytosis process consisting in the translocation of receptors from the plasma membrane to the cytoplasm within internalizing vesicles or endosomes. In order to functionally evaluate endocytosis events resulted from pharmacological responses, we have developed an image analysis method –the Q-Endosomes algorithm– that specifically discriminates the fluorescent signal originated at endosomes from that one observed at the plasma membrane in images obtained from living cells by fluorescence microscopy. Mu opioid (MOP) receptor tagged at the carboxy-terminus with yellow fluorescent protein (YFP) and permanently expressed in HEK293 cells was used as experimental model to validate this methodology. Time-course experiments performed with several agonists resulted in different sigmoid curves depending on the drug used to initiate MOP receptor endocytosis. Thus, endocytosis resulting from the simultaneous activation of co-expressed MOP and serotonin 5-HT2C receptors by morphine plus serotonin was significantly different, in kinetics as well as in maximal response parameters, from the one caused by DAMGO, sufentanyl or methadone. Therefore, this analytical tool permits the pharmacological characterization of receptor endocytosis in living cells with functional and temporal resolution. PMID:25849355

  13. Positive association between a DNA sequence variant in the serotonin 2A receptor gene and schizophrenia

    SciTech Connect

    Inayama, Y.; Yoneda, H.; Sakai, T.

    1996-02-16

    Sixty-two patients with schizophrenia and 96 normal controls were investigated for genetic association with restriction fragment length polymorphisms (RFLPs) in the serotonin receptor genes. A positive association between the serotonin 2A receptor gene (HTR2A) and schizophrenia was found, but not between schizophrenia and the serotonin 1A receptor gene. The positive association we report here would suggest that the DNA region with susceptibility to schizophrenia lies in the HTR2A on the long arm of chromosome 13. 15 refs., 2 tabs.

  14. Differential regulation of interleukin-8 gene transcription by death receptor 3 (DR3) and type I TNF receptor (TNFRI).

    PubMed

    Su, Wenlynn B; Chang, Ying-Hsin; Lin, Wan-Wan; Hsieh, Shie-Liang

    2006-02-01

    TL1A induces interleukin-8 (IL-8) secretion in human peripheral blood monocyte-derived macrophage in a dose- and time-dependent manner. Overexpression of its cognate receptor DR3 can induce a higher amount of IL-8 protein secretion than that induced by TNFRI even though both receptors activate IL-8 gene transcription in a similar fashion. The underlying mechanism for the regulation of the IL-8 gene transcription by DR3 has not been investigated yet. Here, we used HEK293 cells as a model system to dissect the possible signaling components that are involved in the regulation of DR3-mediated IL-8 gene expression. Although both DR3 and TNFRI activated TRAF2 and NF-kappaB to induce IL-8 gene transcription, the kinase cascades that transduce signals for DR3- and TNFRI-induced IL-8 gene transcription are different. The axis TAK1/ASK1-MKK4/MKK7-JNK2 is responsible for DR3-mediated IL-8 gene expression whereas the axis ASK1-MKK4-JNK1/JNK2/p38MAPK is the choice for TNFRI-mediated activation of IL-8 gene expression. This indicates that the downstream signaling pathways of DR3 and TNFRI for IL-8 secretion are divergent even though both receptors contain death-domain and induce IL-8 secretion via TRAF2. PMID:16324699

  15. Targeting human melanoma neoantigens by T cell receptor gene therapy.

    PubMed

    Leisegang, Matthias; Kammertoens, Thomas; Uckert, Wolfgang; Blankenstein, Thomas

    2016-03-01

    In successful cancer immunotherapy, T cell responses appear to be directed toward neoantigens created by somatic mutations; however, direct evidence that neoantigen-specific T cells cause regression of established cancer is lacking. Here, we generated T cells expressing a mutation-specific transgenic T cell receptor (TCR) to target different immunogenic mutations in cyclin-dependent kinase 4 (CDK4) that naturally occur in human melanoma. Two mutant CDK4 isoforms (R24C, R24L) similarly stimulated T cell responses in vitro and were analyzed as therapeutic targets for TCR gene therapy. In a syngeneic HLA-A2-transgenic mouse model of large established tumors, we found that both mutations differed dramatically as targets for TCR-modified T cells in vivo. While T cells expanded efficiently and produced IFN-γ in response to R24L, R24C failed to induce an effective antitumor response. Such differences in neoantigen quality might explain why cancer immunotherapy induces tumor regression in some individuals, while others do not respond, despite similar mutational load. We confirmed the validity of the in vivo model by showing that the melan-A-specific (MART-1-specific) TCR DMF5 induces rejection of tumors expressing analog, but not native, MART-1 epitopes. The described model allows identification of those neoantigens in human cancer that serve as suitable T cell targets and may help to predict clinical efficacy. PMID:26808500

  16. Association study of dopamine D3 receptor gene and schizophrenia

    SciTech Connect

    Kennedy, J.L.; Billett, E.A.; Macciardi, F.M.

    1995-12-18

    Several groups have reported an association between schizophrenia and the MscI polymorphism in the first exon of the dopamine D3 receptor gene (DRD3). We studied this polymorphism using a North American sample (117 patients plus 188 controls) and an Italian sample (97 patients plus 64 controls). In the first part of the study, we compared allele frequencies of schizophrenia patients and unmatched controls and observed a significant difference in the total sample (P = 0.01). The second part of the study involved a case control approach in which each schizophrenia patient was matched to a control of the same sex, and of similar age and ethnic background. The DRD3 allele frequencies of patients and controls revealed no significant difference between the two groups in the Italian (N = 53) or the North American (N = 54) matched populations; however, when these two matched samples were combined, a significant difference was observed (P = 0.026). Our results suggest that the MscI polymorphism may be associated with schizophrenia in the populations studied. 32 refs., 2 tabs.

  17. Penguins reduced olfactory receptor genes common to other waterbirds

    PubMed Central

    Lu, Qin; Wang, Kai; Lei, Fumin; Yu, Dan; Zhao, Huabin

    2016-01-01

    The sense of smell, or olfaction, is fundamental in the life of animals. However, penguins (Aves: Sphenisciformes) possess relatively small olfactory bulbs compared with most other waterbirds such as Procellariiformes and Gaviiformes. To test whether penguins have a reduced reliance on olfaction, we analyzed the draft genome sequences of the two penguins, which diverged at the origin of the order Sphenisciformes; we also examined six closely related species with available genomes, and identified 29 one-to-one orthologous olfactory receptor genes (i.e. ORs) that are putatively functionally conserved and important across the eight birds. To survey the 29 one-to-one orthologous ORs in penguins and their relatives, we newly generated 34 sequences that are missing from the draft genomes. Through the analysis of totaling 378 OR sequences, we found that, of these functionally important ORs common to other waterbirds, penguins have a significantly greater percentage of OR pseudogenes than other waterbirds, suggesting a reduction of olfactory capability. The penguin-specific reduction of olfactory capability arose in the common ancestor of penguins between 23 and 60 Ma, which may have resulted from the aquatic specializations for underwater vision. Our study provides genetic evidence for a possible reduction of reliance on olfaction in penguins. PMID:27527385

  18. Penguins reduced olfactory receptor genes common to other waterbirds.

    PubMed

    Lu, Qin; Wang, Kai; Lei, Fumin; Yu, Dan; Zhao, Huabin

    2016-01-01

    The sense of smell, or olfaction, is fundamental in the life of animals. However, penguins (Aves: Sphenisciformes) possess relatively small olfactory bulbs compared with most other waterbirds such as Procellariiformes and Gaviiformes. To test whether penguins have a reduced reliance on olfaction, we analyzed the draft genome sequences of the two penguins, which diverged at the origin of the order Sphenisciformes; we also examined six closely related species with available genomes, and identified 29 one-to-one orthologous olfactory receptor genes (i.e. ORs) that are putatively functionally conserved and important across the eight birds. To survey the 29 one-to-one orthologous ORs in penguins and their relatives, we newly generated 34 sequences that are missing from the draft genomes. Through the analysis of totaling 378 OR sequences, we found that, of these functionally important ORs common to other waterbirds, penguins have a significantly greater percentage of OR pseudogenes than other waterbirds, suggesting a reduction of olfactory capability. The penguin-specific reduction of olfactory capability arose in the common ancestor of penguins between 23 and 60 Ma, which may have resulted from the aquatic specializations for underwater vision. Our study provides genetic evidence for a possible reduction of reliance on olfaction in penguins. PMID:27527385

  19. Ultraviolet B suppresses vitamin D receptor gene expression in keratinocytes.

    PubMed

    Courtois, S J; Segaert, S; Degreef, H; Bouillon, R; Garmyn, M

    1998-05-01

    Keratinocytes not only produce vitamin D3 in response to ultraviolet B light (UVB) and convert 25-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D) but also possess the vitamin D receptor (VDR) and respond to 1,25(OH)2D. We characterized the regulation of the expression of the VDR gene in primary human keratinocytes following UVB irradiation. We report a marked dose-dependent down-regulation of the VDR mRNA and protein within a few hours after irradiation. This occurs independently of de novo protein synthesis and is not due to a change in the half-life of the VDR mRNA. Interestingly, treatment of the cells with sodium salicylate, caffeic acid phenethyl ester and tosylphenylchloromethylketone inhibited this down-regulation. Our results strongly suggest the existence of a feedback mechanism in that UVB initiates vitamin D synthesis in keratinocytes and at the same time limits VDR abundance. They also provide a rational explanation for the reported lack of any additive effect between 1,25(OH)2D and UVB phototherapy in the treatment of psoriasis. PMID:9600069

  20. The vitamin D receptor gene is associated with Alzheimer's disease.

    PubMed

    Lehmann, Donald J; Refsum, Helga; Warden, Donald R; Medway, Christopher; Wilcock, Gordon K; Smith, A David

    2011-10-24

    Vitamin D may have a role in brain function. Low levels have been frequently associated with cognitive decline and may contribute to diseases of the nervous system. The vitamin D receptor (VDR) is widely expressed in human brain. Vitamin D appears to be neuroprotective and may regulate inflammation in the brain. We examined two VDR polymorphisms, Apa1 and Taq1. We used DNA from 255 Alzheimer's disease (AD) cases and 260 cognitively screened elderly controls from the longitudinal cohort of the Oxford Project to Investigate Memory and Ageing (OPTIMA). The presence of each of the linked alleles, Apa1 T and Taq1 G, was associated with the risk of AD, particularly in people <75 years old: odds ratios ≥3.0 and p≤0.005. We also found preliminary evidence of interactions associated with AD between these polymorphisms and two other genes involved in the regulation of inflammation, interleukin-10 (IL10) and dopamine β-hydroxylase (DBH): synergy factors ≥3.4, uncorrected p<0.05. These associations are biologically plausible and are consistent with a role for vitamin D in AD. Nevertheless, we consider this to be a hypothesis-generating study, which needs to be replicated in a larger dataset. PMID:21911036

  1. Identification and Expression Analysis of Putative Chemosensory Receptor Genes in Microplitis mediator by Antennal Transcriptome Screening

    PubMed Central

    Wang, Shan-Ning; Peng, Yong; Lu, Zi-Yun; Dhiloo, Khalid Hussain; Gu, Shao-Hua; Li, Rui-Jun; Zhou, Jing-Jiang; Zhang, Yong-Jun; Guo, Yu-Yuan

    2015-01-01

    Host-seeking, ovipositional behavior and mating of insects are controlled mainly by odor perception through sensory organs such as antennae. Antennal chemoreception is extremely important for insect survival. Several antennal chemosensory receptors are involved in mediating the odor detection in insects, especially the odorant receptors (ORs) and ionotropic receptors (IRs), to ensure the specificity of the olfactory sensory neuron responses. In the present study, we identified the chemosensory receptor gene repertoire of the parasitoid wasp Microplitis mediator, a generalist endoparasitoid that infests more than 40 types of Lepidopterous larvae and is widely distributed in the Palaearctic region. By transcriptome sequencing of male and female antennae we identified 60 candidate odorant receptors, six candidate ionotropic receptors and two gustatory receptors in M. mediator. The full-length sequences of these putative chemosensory receptor genes were obtained by using the rapid amplification of cDNA ends PCR (RACE-PCR) method. We also conducted reverse transcription PCR (RT-PCR) combined with real-time quantitative PCR (qPCR) for investigating the expression profiles of these chemosensory receptor genes in olfactory and non-olfactory tissues. The tissue- and sex-biased expression patterns may provide insights into the roles of the chemosensory receptor in M. mediator. Our findings support possible future study of the chemosensory behavior of M. mediator at the molecular level. PMID:26078716

  2. Profiling of olfactory receptor gene expression in whole human olfactory mucosa.

    PubMed

    Verbeurgt, Christophe; Wilkin, Françoise; Tarabichi, Maxime; Gregoire, Françoise; Dumont, Jacques E; Chatelain, Pierre

    2014-01-01

    Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems), containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men). Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose) were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were found in the

  3. Profiling of Olfactory Receptor Gene Expression in Whole Human Olfactory Mucosa

    PubMed Central

    Tarabichi, Maxime; Gregoire, Françoise; Dumont, Jacques E.; Chatelain, Pierre

    2014-01-01

    Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems), containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men). Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose) were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were found in the

  4. A novel human gene encoding a G-protein-coupled receptor (GPR15) is located on chromosome 3

    SciTech Connect

    Heiber, M.; Marchese, A.; O`Dowd, B.F.

    1996-03-05

    We used sequence similarities among G-protein-coupled receptor genes to discover a novel receptor gene. Using primers based on conserved regions of the opioid-related receptors, we isolated a PCR product that was used to locate the full-length coding region of a novel human receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor encoded by GPR15 with other receptors revealed that it shared sequence identity with the angiotensin II AT1 and AT2 receptors, the interleukin 8b receptor, and the orphan receptors GPR1 and AGTL1. GPR15 was mapped to human chromosome 3q11.2-q13.1. 12 refs., 2 figs.

  5. A nonsense mutation in the LDL receptor gene leads to familial hypercholesterolemia in the Druze sect

    SciTech Connect

    Landsberger, D.; Meiner, V.; Reshef, A.; Leitersdorf, E. ); Levy, Yishai ); Westhytzen, D.R. van der; Coetzee, G.A. )

    1992-02-01

    Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the LDL receptor gene. Here the authors characterize and LDL receptor mutation that is associated with a distinct haplotype and causes FH in the Druze, a small Middle Eastern Islamic sect with a high degree of inbreeding. The mutation was found in FH families from two distinct Druze villages from the Golan Heights (northern Israel). It was not found either in another Druze FH family residing in a different geographical area nor in eight Arab and four Jewish FH heterozygote index cases whose hypercholesterolemia cosegregates with an identical LDL receptor gene haplotype. The mutation, a single-base substitution, results in a termination codon in exon 4 of the LDL receptor gene that encodes for the fourth repeat of the binding domain of the mature receptor. It can be diagnosed by allele-specific oligonucleotide hybridization of PCR-amplified DNA from FH patients.

  6. Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene.

    PubMed Central

    Le Moine, C; Normand, E; Bloch, B

    1991-01-01

    In situ hybridization experiments were performed in rat brain sections from normal and 6-hydroxydopamine-treated rats in order to map and identify the neurons expressing the D1 receptor gene in the striatum and the substantia nigra. Procedures of combined in situ hybridization, allowing the simultaneous detection of two mRNAs in the same section or in adjacent sections, were used to characterize the phenotypes of the neurons expressing the D1 receptor gene. D1 receptor mRNA was found in neurons all over the caudate-putamen, the accumbens nucleus, and the olfactory tubercle but not in the substantia nigra. In the caudate-putamen and accumbens nucleus, most of the neurons containing D1 receptor mRNA were characterized as medium-sized substance P neurons and distinct from those containing D2 receptor mRNA. Nevertheless, 15-20% of the substance P neurons did not contain D1 receptor mRNA. The neurons containing preproenkephalin A mRNA did not contain D1 receptor mRNA but contained D2 receptor mRNA. A small number of cholinergic and somatostatinergic neurons exhibited a weak reaction for D1 receptor mRNA. These results demonstrate that dopamine acts on efferent striatal neurons through expression of distinct receptors--namely, D1 and D2 in separate cell populations (substance P and preproenkephalin A neurons, respectively)--and can also act on nonprojecting neurons through D1 receptor expression. Images PMID:1827915

  7. Observations on the Evolution of the Melanocortin Receptor Gene Family: Distinctive Features of the Melanocortin-2 Receptor

    PubMed Central

    Dores, Robert M.

    2013-01-01

    The melanocortin receptors (MCRs) are a gene family in the rhodopsin class of G protein-coupled receptors. Based on the analysis of several metazoan genome databases it appears that the MCRs are only found in chordates. The presence of five genes in the family (i.e., mc1r, mc2r, mc3r, mc4r, mc5r) in representatives of the tetrapods indicates that the gene family is the result of two genome duplication events and one local gene duplication event during the evolution of the chordates. The MCRs are activated by melanocortin ligands (i.e., ACTH, α-MSH, β-MSH, γ-MSH, δ-MSH) which are all derived from the polypeptide hormone/neuropeptide precursor, POMC, and as a result the functional evolution of the MCRs is intimately associated with the co-evolution of POMC endocrine and neuronal circuits. This review will consider the origin of the MCRs, and discuss the evolutionary relationship between MC2R, MC5R, and MC4R. In addition, this review will analyze the functional evolution of the mc2r gene in light of the co-evolution of the MRAP (Melanocortin-2 Receptor Accessory Protein) gene family. PMID:23596380

  8. The D2 dopamine receptor gene as a determinant of reward deficiency syndrome.

    PubMed Central

    Blum, K; Sheridan, P J; Wood, R C; Braverman, E R; Chen, T J; Cull, J G; Comings, D E

    1996-01-01

    The dopaminergic system, and in particular the dopamine D2 receptor, has been profoundly implicated in reward mechanisms in the brain. Dysfunction of the D2 dopamine receptors leads to aberrant substance seeking behaviour (alcohol, drug, tobacco, and food) and other related behaviours (pathological gambling, Tourette's syndrome, and attention deficit hyperactivity disorder). We propose that variants of the D2 dopamine receptor gene are important common genetic determinants of the 'reward deficiency syndrome'. PMID:8774539

  9. Identification of microsatellite markers linked to the human leptin receptor gene on chromosome 1

    SciTech Connect

    Winick, J.D.; Friedman, J.M.; Stoffel, M.

    1996-08-15

    This report describes the localization of the human leptin receptor gene to human chromosome 1 using polymerase chain reaction of somatic cell hybrids. Leptin is a secreted protein important in the regulation of body weight. 16 refs., 1 fig.

  10. Different serotonin receptor agonists have distinct effects on sound-evoked responses in inferior colliculus.

    PubMed

    Hurley, Laura M

    2006-11-01

    The neuromodulator serotonin has a complex set of effects on the auditory responses of neurons within the inferior colliculus (IC), a midbrain auditory nucleus that integrates a wide range of inputs from auditory and nonauditory sources. To determine whether activation of different types of serotonin receptors is a source of the variability in serotonergic effects, four selective agonists of serotonin receptors in the serotonin (5-HT) 1 and 5-HT2 families were iontophoretically applied to IC neurons, which were monitored for changes in their responses to auditory stimuli. Different agonists had different effects on neural responses. The 5-HT1A agonist had mixed facilitatory and depressive effects, whereas 5-HT1B and 5-HT2C agonists were both largely facilitatory. Different agonists changed threshold and frequency tuning in ways that reflected their effects on spike count. When pairs of agonists were applied sequentially to the same neurons, selective agonists sometimes affected neurons in ways that were similar to serotonin, but not to other selective agonists tested. Different agonists also differentially affected groups of neurons classified by the shapes of their frequency-tuning curves, with serotonin and the 5-HT1 receptors affecting proportionally more non-V-type neurons relative to the other agonists tested. In all, evidence suggests that the diversity of serotonin receptor subtypes in the IC is likely to account for at least some of the variability of the effects of serotonin and that receptor subtypes fulfill specialized roles in auditory processing. PMID:16870843

  11. Specific repertoire of olfactory receptor genes in the male germ cells of several mammalian species

    SciTech Connect

    Vanderhaeghen, P.; Schurmans, S.; Vassart, G.; Parmentier, M.

    1997-02-01

    Olfactory receptors constitute the largest family among G protein-coupled receptors, with up to 1000 members expected. We have previously shown that genes belonging to this family were expressed in the male germ line from both dog and human. We have subsequently demonstrated the presence of one of the corresponding olfactory receptor proteins during dog spermatogenesis and in mature sperm cells. In this study, we investigated whether the unexpected pattern of expression of olfactory receptors in the male germ line was conserved in other mammalian species. Using reverse transcription-PCR with primers specific for the olfactory receptor gene family, about 20 olfactory receptor cDNA fragments were cloned from the testis of each mammalian species tested. As a whole, they displayed no sequence specificity compared to other olfactory receptors, but highly homologous, possibly orthologous, genes were amplified from different species. Finally, their pattern of expression, as determined by RNase protection assay, revealed that many but not all of these receptors were expressed predominantly in testis. The male germ line from each mammalian species tested is thus characterized by a specific repertoire of olfactory receptors, which display a pattern of expression suggestive of their potential implication in the control of sperm maturation, migration, or fertilization. 34 refs., 4 figs., 1 tab.

  12. Olfactory receptor-like genes are located in the human major histocompatibility complex

    SciTech Connect

    Fan, W.; Liu, Y.C.; Parimoo, S.

    1995-05-01

    The murine major histocompatibility complex (MHC) includes sequences that are responsible for haplotype-specific odor types that, in turn, influence mating preference. The authors report that there are several olfactory receptor genes or pseudogenes in the Class I region of the human MHC. At least one of these genes is intact, appears to encode an mRNA, and is quite homologous to a previously reported murine olfactory receptor. 14 refs., 4 figs.

  13. CC chemokine receptor 5 gene polymorphisms in beryllium disease.

    PubMed

    Sato, H; Silveira, L; Spagnolo, P; Gillespie, M; Gottschall, E B; Welsh, K I; du Bois, R M; Newman, L S; Maier, L A

    2010-08-01

    CC chemokine receptor 5 (CCR5) is expressed on type-1 T-helper cells, which are involved in the pathogenesis of the granulomatous lung disease chronic beryllium disease (CBD). CCR5 gene (CCR5) polymorphisms are associated with sarcoidosis severity. The present study explores associations between CCR5 polymorphisms and CBD and its disease progression. Eight CCR5 polymorphisms were genotyped in CBD (n = 88), beryllium sensitisation (BeS; n = 86) and beryllium-exposed nondiseased controls (n = 173) using PCR with sequence-specific primers. Pulmonary function and bronchoalveolar lavage data were examined for associations with genotypes. There were no significant differences in genotype and allele frequency between CBD, BeS individuals and controls. In CBD, associations were found with decline in forced expiratory volume in 1 s and forced vital capacity and the CCR5 -3458 thymidine (T)T genotype (p<0.0001), and an increase in alveolar-arterial oxygen tension difference at rest (p = 0.003) and at maximum exercise (p = 0.01) and the -5663 adenine allele. Increased bronchoalveolar lavage lymphocyte numbers were associated with CCR5 -2459 guanine/-2135T (p = 0.01) only in the combined CBD and BeS group. This is the first study showing that CCR5 polymorphisms are associated with worsening pulmonary function over time in CBD, suggesting that CCR5 is important in the progression of pulmonary function in CBD. Further studies would be useful to clarify the mechanism whereby CCR5 polymorphisms affect progression of CBD. PMID:20075058

  14. In vivo modulation of vagal-identified dorsal medullary neurones by activation of different 5-Hydroxytryptamine2 receptors in rats

    PubMed Central

    Sévoz-Couche, Caroline; Spyer, K Michael; Jordan, David

    2000-01-01

    In in vivo experiments, DOI (a 5-HT2 receptor agonist), MK-212 (a 5-HT2C receptor agonist), and BW-723C86 (a 5-HT2B receptor agonist) were applied by ionophoresis to neurones in the rat nucleus tractus solitarius (NTS) receiving vagal afferent input. The majority of the putative ‘monosynaptically' vagal activated cells were inhibited by both MK-212 (4/6) and DOI (2/4), but unaffected by BW-723C86 (12/14). In contrast, ‘polysynaptically' activated NTS cells were excited by both BW-723C86 (13/19) and DOI (9/10). Inactive ‘intermediate' cells were inhibited by BW-723C86 (9/12), MK-212 (5/6) and DOI (3/4), whilst active cells of this group were excited by BW-723C86 (7/13) and DOI (5/5). The selective 5-HT2B receptor antagonist LY-202715 significantly reduced the excitatory actions of BW-723C86 on ‘intermediate' and ‘polysynaptic' cells (13/13), but not the inhibitory effects observed on inactive Group 2 cells (n=5) whereas the selective 5-HT2C receptor antagonist RS-102221 reversed the inhibitory effects of MK-212 and DOI on ‘monosynaptic and ‘intermediate' neurones. Cardio-pulmonary afferent stimulation inhibited two of four putative ‘monosynaptically' activated calls and all four inactive intermediate cells. These were also inhibited by DOI and MK-212. In contrast, cardio-pulmonary afferents excited all five active intermediate cells and all six putative ‘polysynaptically' activated NTS cells, while all were also previously excited by BW-723C86 and/or DOI. In conclusion, these data demonstrate that neurones in the NTS are affected differently by 5-HT2 receptor ligands, in regard of their vagal postsynaptic location, the type of cardio-pulmonary afferent they receive and the different 5-HT2 receptors activated. PMID:11090119

  15. Cloning of human genes encoding novel G protein-coupled receptors

    SciTech Connect

    Marchese, A.; Docherty, J.M.; Heiber, M.

    1994-10-01

    We report the isolation and characterization of several novel human genes encoding G protein-coupled receptors. Each of the receptors contained the familiar seven transmembrane topography and most closely resembled peptide binding receptors. Gene GPR1 encoded a receptor protein that is intronless in the coding region and that shared identity (43% in the transmembrane regions) with the opioid receptors. Northern blot analysis revealed that GPR1 transcripts were expressed in the human hippocampus, and the gene was localized to chromosome 15q21.6. Gene GPR2 encoded a protein that most closely resembled an interleukin-8 receptor (51% in the transmembrane regions), and this gene, not expressed in the six brain regions examined, was localized to chromosome 17q2.1-q21.3. A third gene, GPR3, showed identity (56% in the transmembrane regions) with a previously characterized cDNA clone from rat and was localized to chromosome 1p35-p36.1. 31 refs., 5 figs., 1 tab.

  16. Dopamine Receptor Gene Expression in Human Amygdaloid Nuclei: Elevated D4 Receptor mRNAs in Major Depression

    PubMed Central

    Xiang, Lianbin; Szebeni, Katalin; Szebeni, Attila; Klimek, Violetta; Stockmeier, Craig A; Karolewicz, Beata; Kalbfleisch, John; Ordway, Gregory A

    2008-01-01

    Previous findings from this laboratory demonstrating changes in dopamine (DA) transporter and D2 receptors in the amygdaloid complex of subjects with major depression indicate that disruption of dopamine neurotransmission to the amygdala may contribute to behavioral symptoms associated with depression. Quantitative real-time RT-PCR was used to investigate the regional distribution of gene expression of DA receptors in the human amygdala. In addition, relative levels of mRNA of DA receptors in the basal amygdaloid nucleus were measured postmortem in subjects with major depression and normal control subjects. All five subtypes of DA receptor mRNA were detected in all amygdaloid subnuclei, although D1, D2, and D4 receptor mRNAs were more abundant than D3 and D5 mRNAs by an order of magnitude. The highest level of D1 mRNA was found in the central nucleus, whereas D2 mRNA was the most abundant in the basal nucleus. Levels of D4 mRNA were highest in the basal and central nuclei. In the basal nucleus, amounts of D4, but not D1 or D2, mRNAs were significantly higher in subjects with major depression and depressed suicide victims, as compared to control subjects. These findings demonstrate that the D1, D2 and D4 receptors are the major subtypes of DA receptors in the human amygdala. Elevated DA receptor gene expression in depressive subjects further implicates altered dopaminergic transmission in the amygdala in depression. PMID:18371940

  17. Structure and chromosomal localization of the human antidiuretic hormone receptor gene

    SciTech Connect

    Seibold, A.; Brabet, P.; Rosenthal, W.; Birnbaumer, M. )

    1992-11-01

    Applying a genomic DNA-expression approach, the authors cloned the gene and cDNA coding for the human antidiuretic hormone receptor, also called vasopressin V2 receptor' (V2R). The nucleotide sequence of both cloned DNAs provided the information to elucidate the structure of the isolated transcriptional unit. The structure of this gene is unusual in that it is the first G protein-coupled receptor gene that contains two very small intervening sequences, the second of which separates the region encoding the seventh transmembrane region from the rest of the open reading frame. The sequence information was used to synthesize appropriate oligonucleotides to be used as primers in the PCR. The V2R gene was localized by PCR using DNA from hybrid cells as template. The gene was found to reside in the q28-qter portion of the human X chromosome, a region identified as the locus for congential nephrogenic diabetes insipidus. 27 refs., 4 figs.

  18. Molecular Pathways: Breaking the Epithelial Cancer Barrier for Chimeric Antigen Receptor and T-cell Receptor Gene Therapy.

    PubMed

    Hinrichs, Christian S

    2016-04-01

    Adoptive transfer of T cells genetically engineered to express a tumor-targeting chimeric antigen receptor (CAR) or T-cell receptor (TCR) can mediate cancer regression in some patients. CARs are synthetic single-chain proteins that use antibody domains to target cell surface antigens. TCRs are natural heterodimeric proteins that can target intracellular antigens through recognition of peptides bound to human leukocyte antigens. CARs have shown promise in B-cell malignancies and TCRs in melanoma, but neither approach has achieved clear success in an epithelial cancer. Treatment of epithelial cancers may be particularly challenging because of a paucity of target antigens expressed by carcinomas and not by important healthy tissues. In addition, epithelial cancers may be protected by inhibitory ligands and soluble factors in the tumor microenvironment. One strategy to overcome these negative regulators is to modulate expression of T-cell genes to enhance intrinsic T-cell function. Programmable nucleases, which can suppress inhibitory genes, and inducible gene expression systems, which can enhance stimulatory genes, are entering clinical testing. Other work is delineating whether control of genes for immune checkpoint receptors (e.g.,PDCD1, CTLA4) and cytokine and TCR signaling regulators (e.g.,CBLB, CISH, IL12, IL15) can increase the antitumor activity of therapeutic T cells.Clin Cancer Res; 22(7); 1559-64. ©2016 AACR. PMID:27037253

  19. Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes

    PubMed Central

    Kambere, Marijo B; Lane, Robert P

    2007-01-01

    The olfactory system meets niche- and species-specific demands by an accelerated evolution of its odorant receptor repertoires. In this review, we describe evolutionary processes that have shaped olfactory and vomeronasal receptor gene families in vertebrate genomes. We emphasize three important periods in the evolution of the olfactory system evident by comparative genomics: the adaptation to land in amphibian ancestors, the decline of olfaction in primates, and the delineation of putative pheromone receptors concurrent with rodent speciation. The rapid evolution of odorant receptor genes, the sheer size of the repertoire, as well as their wide distribution in the genome, presents a developmental challenge: how are these ever-changing odorant receptor repertoires coordinated within the olfactory system? A central organizing principle in olfaction is the specialization of sensory neurons resulting from each sensory neuron expressing only ~one odorant receptor allele. In this review, we also discuss this mutually exclusive expression of odorant receptor genes. We have considered several models to account for co-regulation of odorant receptor repertoires, as well as discussed a new hypothesis that invokes important epigenetic properties of the system. PMID:17903278

  20. Cloning of the cDNA and gene for a human D sub 2 dopamine receptor

    SciTech Connect

    Grady, D.K.; Makam, H.; Stofko, R.E.; Bunzow, J.R.; Civelli, O. ); Marchionni, M.A.; Alfano, M.; Frothingham, L.; Fischer, J.B.; Burke-Howie, K.J.; Server, A.C. )

    1989-12-01

    A clone encoding a human D{sub 2} dopamine receptor was isolated from a pituitary cDNA library and sequenced. The deduced protein sequence is 96% identical with that of the cloned rat receptor with one major difference: the human receptor contains an additional 29 amino acids in its putative third cytoplasmic loop. Southern blotting demonstrated the presence of only one human D{sub 2} receptor gene. Two overlapping phage containing the gene were isolated and characterized. DNA sequence analysis of these clones showed that the coding sequence is interrupted by six introns and that the additional amino acids present in the human pituitary receptor are encoded by a single exon of 87 base pairs. The involvement of this sequence in alternative splicing and its biological significance are discussed.

  1. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression.

    PubMed

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-Il; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y L; Choi, Hueng-Sik

    2015-09-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ-binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. PMID:26348907

  2. Expression of the transferrin receptor gene during the process of mononuclear phagocyte maturation

    SciTech Connect

    Hirata, T.; Bitterman, P.B.; Mornex, J.; Crystal, R.G.

    1986-02-15

    The expression of transferrin receptors by blood monocytes, human alveolar macrophages, and in vitro matured macrophages was evaluated by immunofluorescence, radioligand binding, and Northern analysis, using the monoclonal anti-human transferrin receptor antibody OKT9, (/sup 125/I)-labeled human transferrin and a (/sup 32/P)-labeled human transferrin receptor cDNA probe, respectively. By immunofluorescence, the majority of alveolar macrophages expressed transferrin receptors (86 +/- 3%). The radioligand binding assay demonstrated the affinity constant (K/sub a/) of the alveolar macrophage transferrin receptor was 4.4 +/- 0.7 x 10/sup 8/ M/sup -1/, and the number of receptors per cell was 4.4 +/- 1.2 x 10/sup 4/. In marked contrast, transferrin receptors were not present on the surface or in the cytoplasm of blood monocytes, the precursors of the alveolar macrophages. However, when monocytes were cultured in vitro and allowed to mature, > 80% expressed transferrin receptors by day 6, and the receptors could be detected by day 3. Consistent with these observations, a transferrin receptor mRNA with a molecular size of 4.9 kb was demonstrated in alveolar macrophages and in vitro matured macrophages but not in blood monocytes. Thus, although blood monocytes do not express the transferrin receptor gene, it is expressed by mature macrophages, an event that probably occurs relatively early in the process of monocyte differentiation to macrophages.

  3. Estrogen Receptor beta binds Sp1 and recruits a Corepressor Complex to the Estrogen Receptor alpha Gene Promoter

    PubMed Central

    Bartella, V; Rizza, P; Barone, I; Zito, D; Giordano, F; Giordano, C; Catalano, S; Mauro, L; Sisci, D; Panno, ML; Fuqua, SA; Andò, Sebastiano

    2015-01-01

    Human estrogen receptors (ERs) alpha and beta are crucially involved in the regulation of mammary growth and development. Normal breast tissues display a prevalently expression of ER beta than ER alpha, which drastically increases during breast tumorogenesis. So, it is reasonable to assume how a dysregulation of the two estrogen receptor subtypes may induce breast cancer development. However, the molecular mechanism underlying the opposite role played by the two estrogen receptors on tumor cell growth remains to be elucidated. In the present study, we have demonstrated that ER beta overexpression in breast cancer cells decreases cell proliferation and down-regulates ER alpha mRNA and protein content along with a concomitant repression of estrogen-regulated genes. Transient transfection experiments, using a vector containing the human ER alpha promoter region, showed that elevated levels of the ER beta down-regulated basal ER alpha promoter activity. Furthermore, side-directed mutagenesis and deletion analysis have revealed that the proximal GC-rich motifs at −223 and −214 is crucial for the ER beta-induced ER alpha down-regulation in breast cancer cells. This occurred through ER beta-Sp1 protein-protein interaction within the ER alpha promoter region and the recruitment of a corepressor complex containing NCoR/SMRT (nuclear receptor corepressor/silencing mediator of retinoic acid and thyroid hormone receptor), accompanied by hypoacetylation of histone H4 and displacement of RNA polymerase II. Silencing of NCoR gene expression by RNA interference reversed the down-regulatory effect of ER beta on ER alpha gene expression and cell proliferation. Our results provide evidence for a novel mechanism by which overexpression of ER beta through NCoR is able to down regulate ER alpha gene expression, thus inhibiting ER alpha’s driving role on breast cancer cell growth. PMID:22622808

  4. Substituted methcathinones differ in transporter and receptor interactions.

    PubMed

    Eshleman, Amy J; Wolfrum, Katherine M; Hatfield, Meagan G; Johnson, Robert A; Murphy, Kevin V; Janowsky, Aaron

    2013-06-15

    The use of synthetic methcathinones, components of "bath salts," is a world-wide health concern. These compounds, structurally similar to methamphetamine (METH) and 3,4-methylendioxymethamphetamine (MDMA), cause tachycardia, hallucinations and psychosis. We hypothesized that these potentially neurotoxic and abused compounds display differences in their transporter and receptor interactions as compared to amphetamine counterparts. 3,4-Methylenedioxypyrovalerone and naphyrone had high affinity for radioligand binding sites on recombinant human dopamine (hDAT), serotonin (hSERT) and norepinephrine (hNET) transporters, potently inhibited [³H]neurotransmitter uptake, and, like cocaine, did not induce transporter-mediated release. Butylone was a lower affinity uptake inhibitor. In contrast, 4-fluoromethcathinone, mephedrone and methylone had higher inhibitory potency at uptake compared to binding and generally induced release of preloaded [³H]neurotransmitter from hDAT, hSERT and hNET (highest potency at hNET), and thus are transporter substrates, similar to METH and MDMA. At hNET, 4-fluoromethcathinone was a more efficacious releaser than METH. These substituted methcathinones had low uptake inhibitory potency and low efficacy at inducing release via human vesicular monoamine transporters (hVMAT2). These compounds were low potency (1) h5-HT(1A) receptor partial agonists, (2) h5-HT(2A) receptor antagonists, (3) weak h5-HT(2C) receptor antagonists. This is the first report on aspects of substituted methcathinone efficacies at serotonin (5-HT) receptors and in superfusion release assays. Additionally, the drugs had no affinity for dopamine receptors, and high-nanomolar to mid-micromolar affinity for hSigma1 receptors. Thus, direct interactions with hVMAT2 and serotonin, dopamine, and hSigma1 receptors may not explain psychoactive effects. The primary mechanisms of action may be as inhibitors or substrates of DAT, SERT and NET. PMID:23583454

  5. Substituted methcathinones differ in transporter and receptor interactions

    PubMed Central

    Eshleman, Amy J; Wolfrum, Katherine M; Hatfield, Meagan G; Johnson, Robert A; Murphy, Kevin V; Janowsky, Aaron

    2013-01-01

    The use of synthetic methcathinones, components of “bath salts,” is a world-wide health concern. These compounds, structurally similar to methamphetamine (METH) and 3,4-methylendioxymethamphetamine (MDMA), cause tachycardia, hallucinations and psychosis. We hypothesized that these potentially neurotoxic and abused compounds display differences in their transporter and receptor interactions as compared to amphetamine counterparts. 3,4-Methylenedioxypyrovalerone and naphyrone had high affinity for radioligand binding sites on recombinant human dopamine (hDAT), serotonin (hSERT) and norepinephrine (hNET) transporters, potently inhibited [3H]neurotransmitter uptake, and, like cocaine, did not induce transporter-mediated release. Butylone was a lower affinity uptake inhibitor. In contrast, 4-fluoromethcathinone, mephedrone and methylone had higher inhibitory potency at uptake compared to binding and generally induced release of preloaded [3H]neurotransmitter from hDAT, hSERT and hNET (highest potency at hNET), and thus are transporter substrates, similar to METH and MDMA. At hNET, 4-fluoromethcathinone was a more efficacious releaser than METH. These substituted methcathinones had low uptake inhibitory potency and low efficacy at inducing release via human vesicular monoamine transporters (hVMAT2). These compounds were low potency 1) h5-HT1A receptor partial agonists, 2) h5-HT2A receptor antagonists, 3) weak h5-HT2C receptor antagonists. This is the first report on aspects of substituted methcathinone efficacies at serotonin (5-HT) receptors and in superfusion release assays. Additionally, the drugs had no affinity for dopamine receptors, and high- mid-micromolar affinity for hSigma1 receptors. Thus, direct interactions with hVMAT2 and serotonin, dopamine, and hSigma1 receptors may not explain psychoactive effects. The primary mechanisms of action may be as inhibitors or substrates of DAT, SERT and NET. PMID:23583454

  6. Identification of a null mutation in the human dopamine D4 receptor gene

    SciTech Connect

    Noethen, M.M.; Cichon, S.; Hebebrand, J.

    1994-09-01

    Dopamine receptors belong to the family of G protein-coupled receptors. Five different dopamine receptor genes have thus far been identified. These receptors are classified into two main subfamilies: D1, which includes the D1 and D5 receptors, and D2, which includes the D2, D3, and D4 receptors. The dopamine D4 receptor is of great interest for research into neuropsychiatric disorders and psychopharmacology in light of the fact that it binds the antipsychotic medication clozapine with higher affinity than does any other dopamine receptor. In addition, among the dopamine receptors, the D4 receptor shows a uniquely high degree of genetic variation in the human population. We identified a new 13 bp deletion in exon 1 of the D4 gene. This frameshift creates a terminator codon at amino acid position 98. mRNA isolated from brain tissue of two heterozygous persons showed both alleles to be expressed. The deletion occurs with a frequency of 2% in the German population. One person was identified to be homozygous for the deletion. Interestingly, he has a normal intelligence and did not exhibit a major psychiatric disorder as defined by DSM III-R. The 13 bp deletion is the first mutation resulting in premature translation termination reported for a dopamine receptor gene so far. This mutation is a good candidate to test for potential effects on disease and/or individual response to pharmacotherapy. Association studies in patients with various psychiatric illnesses and differences in response to clozapine are underway.

  7. The Association of Polymorphisms in Leptin/Leptin Receptor Genes and Ghrelin/Ghrelin Receptor Genes With Overweight/Obesity and the Related Metabolic Disturbances: A Review

    PubMed Central

    Ghalandari, Hamid; Hosseini-Esfahani, Firoozeh; Mirmiran, Parvin

    2015-01-01

    Context: Leptin and ghrelin are two important appetite and energy balance-regulating peptides. Common polymorphisms in the genes coding these peptides and their related receptors are shown to be associated with body weight, different markers of obesity and metabolic abnormalities. This review article aims to investigate the association of common polymorphisms of these genes with overweight/obesity and the metabolic disturbances related to it. Evidence Acquisition: The keywords leptin, ghrelin, polymorphism, single-nucleotide polymorphism (SNP), obesity, overweight, Body Mass Index, metabolic syndrome, and type 2 diabetes mellitus (T2DM) (MeSH headings) were used to search in the following databases: Pubmed, Sciencedirect (Elsevier), and Google scholar. Overall, 24 case-control studies, relevant to our topic, met the criteria and were included in the review. Results: The most prevalent leptin/leptin receptor genes (LEP/LEPR) and ghrelin/ghrelin receptor genes (GHRL/GHSR) single nucleotide polymorphisms studied were LEP G-2548A, LEPR Q223R, and Leu72Met, respectively. Nine studies of the 17 studies on LEP/LEPR, and three studies of the seven studies on GHRL/GHSR showed significant relationships. Conclusions: In general, our study suggests that the association between LEP/LEPR and GHRL/GHSR with overweight/obesity and the related metabolic disturbances is inconclusive. These results may be due to unidentified gene-environment interactions. More investigations are needed to further clarify this association. PMID:26425125

  8. Positive and negative regulation of odor receptor gene choice in Drosophila by acj6.

    PubMed

    Bai, Lei; Goldman, Aaron L; Carlson, John R

    2009-10-14

    Little is known about how individual olfactory receptor neurons (ORNs) select, from among many odor receptor genes, which genes to express. Abnormal chemosensory jump 6 (Acj6) is a POU domain transcription factor essential for the specification of ORN identity and odor receptor (Or) gene expression in the Drosophila maxillary palp, one of the two adult olfactory organs. However, the mechanism by which Acj6 functions in this process has not been investigated. Here, we systematically examine the role of Acj6 in the maxillary palp and in a major subset of antennal ORNs. We define an Acj6 binding site by a reiterative in vitro selection process. The site is found upstream of Or genes regulated by Acj6, and Acj6 binds to the site in Or promoters. Mutational analysis shows that the site is essential for Or regulation in vivo. Surprisingly, a novel ORN class in acj6 adults is found to arise from ectopic expression of a larval Or gene, which is repressed in wild type via an Acj6 binding site. Thus, Acj6 acts directly in the process of receptor gene choice; it plays a dual role, positive and negative, in the logic of the process, and acts in partitioning the larval and adult receptor repertoires. PMID:19828808

  9. Anxiolytic-like actions of BW 723C86 in the rat Vogel conflict test are 5-HT2B receptor mediated.

    PubMed

    Kennett, G A; Trail, B; Bright, F

    1998-12-01

    The 5-HT2B receptor agonist, BW 723C86 (10, 30(mg/kg i.p. 30 min pre-test), increased the number of punishments accepted in a rat Vogel drinking conflict paradigm over 3 min, as did the benzodiazepine anxiolytics, chlordiazepoxide (2.5-10 mg/kg p.o. 1 h pre-test) and alprazolam (0.2-5 mg/kg p.o. 1 h pre-test), but not the 5-HT2C/2B receptor agonist, m-chlorophenylpiperazine (mCPP, 0.3-3 mg/kg i.p) or the 5-HT1A receptor agonist, buspirone (5-20 mg/kg p.o. 1 h pre-test). The effect of BW 723C86 was unlikely to be secondary to enhanced thirst, as BW 723C86 did not increase the time that rats with free access to water spent drinking, nor did it reduce sensitivity to shock in the apparatus. The anti-punishment effect of BW 723C86 was opposed by prior treatment with the 5-HT2/2B receptor antagonist, SB-206553 (10 and 20 mg/kg p.o. 1 h pre-test), and the selective 5-HT2B receptor antagonist, SB-215505 (1 and 3 mg/kg p.o. 1 h pre-test), but not by the selective 5-HT2C receptor antagonist, SB-242084 (5 mg/kg p.o.), or the 5-HT1A receptor antagonist, WAY 100635 (0.1 or 0.3 mg/kg s.c. 30 min pre-test). Thus, the anti-punishment action of BW 723C86 is likely to be 5-HT2B receptor mediated. This is consistent with previous reports that BW 723C86 exhibited anxiolytic-like properties in both the social interaction and Geller-Seifter conflict tests. PMID:9886683

  10. Elevated Resistin Gene Expression in African American Estrogen and Progesterone Receptor Negative Breast Cancer

    PubMed Central

    Vallega, Karin A.; Liu, NingNing; Myers, Jennifer S.; Yu, Kaixian; Sang, Qing-Xiang Amy

    2016-01-01

    Introduction African American (AA) women diagnosed with breast cancer are more likely to have aggressive subtypes. Investigating differentially expressed genes between patient populations may help explain racial health disparities. Resistin, one such gene, is linked to inflammation, obesity, and breast cancer risk. Previous studies indicated that resistin expression is higher in serum and tissue of AA breast cancer patients compared to Caucasian American (CA) patients. However, resistin expression levels have not been compared between AA and CA patients in a stage- and subtype-specific context. Breast cancer prognosis and treatments vary by subtype. This work investigates differential resistin gene expression in human breast cancer tissues of specific stages, receptor subtypes, and menopause statuses in AA and CA women. Methods Differential gene expression analysis was performed using human breast cancer gene expression data from The Cancer Genome Atlas. We performed inter-race resistin gene expression level comparisons looking at receptor status and stage-specific data between AA and CA samples. DESeq was run to test for differentially expressed resistin values. Results Resistin RNA was higher in AA women overall, with highest values in receptor negative subtypes. Estrogen-, progesterone-, and human epidermal growth factor receptor 2- negative groups showed statistically significant elevated resistin levels in Stage I and II AA women compared to CA women. In inter-racial comparisons, AA women had significantly higher levels of resistin regardless of menopause status. In whole population comparisons, resistin expression was higher among Stage I and III estrogen receptor negative cases. In comparisons of molecular subtypes, resistin levels were significant higher in triple negative than in luminal A breast cancer. Conclusion Resistin gene expression levels were significantly higher in receptor negative subtypes, especially estrogen receptor negative cases in AA

  11. Multimodality Imaging of Gene Transfer with a Receptor-Based Reporter Gene

    PubMed Central

    Chen, Ron; Parry, Jesse J.; Akers, Walter J.; Berezin, Mikhail Y.; El Naqa, Issam M.; Achilefu, Samuel; Edwards, W. Barry; Rogers, Buck E.

    2010-01-01

    Gene therapy trials have traditionally used tumor and tissue biopsies for assessing the efficacy of gene transfer. Non-invasive imaging techniques offer a distinct advantage over tissue biopsies in that the magnitude and duration of gene transfer can be monitored repeatedly. Human somatostatin receptor subtype 2 (SSTR2) has been used for the nuclear imaging of gene transfer. To extend this concept, we have developed a somatostatin receptor–enhanced green fluorescent protein fusion construct (SSTR2-EGFP) for nuclear and fluorescent multimodality imaging. Methods An adenovirus containing SSTR2-EGFP (AdSSTR2-EGFP) was constructed and evaluated in vitro and in vivo. SCC-9 human squamous cell carcinoma cells were infected with AdEGFP, AdSSTR2, or AdSSTR2-EGFP for in vitro evaluation by saturation binding, internalization, and fluorescence spectroscopy assays. In vivo biodistribution and nano-SPECT imaging studies were conducted with mice bearing SCC-9 tumor xenografts directly injected with AdSSTR2-EGFP or AdSSTR2 to determine the tumor localization of 111In-diethylenetriaminepentaacetic acid (DTPA)-Tyr3-octreotate. Fluorescence imaging was conducted in vivo with mice receiving intratumoral injections of AdSSTR2, AdSSTR2-EGFP, or AdEGFP as well as ex vivo with tissues extracted from mice. Results The similarity between AdSSTR2-EGFP and wild-type AdSSTR2 was demonstrated in vitro by the saturation binding and internalization assays, and the fluorescence emission spectra of cells infected with AdSSTR2-EGFP was almost identical to the spectra of cells infected with wild-type AdEGFP. Biodistribution studies demonstrated that the tumor uptake of 111In-DTPA-Tyr3-octreotate was not significantly different (P > 0.05) when tumors (n = 5) were injected with AdSSTR2 or AdSSTR2-EGFP but was significantly greater than the uptake in control tumors. Fluorescence was observed in tumors injected with AdSSTR2-EGFP and AdEGFP in vivo and ex vivo but not in tumors injected with AdSSTR2

  12. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    NASA Astrophysics Data System (ADS)

    Hofmann, M.; Gazdhar, A.; Weitzel, T.; Schmid, R.; Krause, T.

    2006-12-01

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and humans.

  13. Targeting the urokinase plasminogen activator receptor enhances gene transfer to human airway epithelia

    PubMed Central

    Drapkin, Paola T.; O’Riordan, Catherine R.; Yi, Su Min; Chiorini, John A.; Cardella, Jonathan; Zabner, Joseph; Welsh, Michael J.

    2000-01-01

    Developing gene therapy for cystic fibrosis has been hindered by limited binding and endocytosis of vectors by human airway epithelia. Here we show that the apical membrane of airway epithelia express the urokinase plasminogen activator receptor (uPAR). Urokinase plasminogen activator (uPA), or a 7-residue peptide derived from this protein (u7-peptide), bound the receptor and stimulated apical endocytosis. Both ligands enhanced gene transfer by nonspecifically bound adenovirus and adeno-associated virus vectors and by a modified adenovirus vector that had been coupled to the u7-peptide. These data provide the first evidence that targeting an apical receptor can circumvent the two most important barriers to gene transfer in airway epithelia. Thus, the uPA/uPAR system may offer significant advantages for delivering genes and other pharmaceuticals to airway epithelia. PMID:10712430

  14. Targeting the urokinase plasminogen activator receptor enhances gene transfer to human airway epithelia.

    PubMed

    Drapkin, P T; O'Riordan, C R; Yi, S M; Chiorini, J A; Cardella, J; Zabner, J; Welsh, M J

    2000-03-01

    Developing gene therapy for cystic fibrosis has been hindered by limited binding and endocytosis of vectors by human airway epithelia. Here we show that the apical membrane of airway epithelia express the urokinase plasminogen activator receptor (uPAR). Urokinase plasminogen activator (uPA), or a 7-residue peptide derived from this protein (u7-peptide), bound the receptor and stimulated apical endocytosis. Both ligands enhanced gene transfer by nonspecifically bound adenovirus and adeno-associated virus vectors and by a modified adenovirus vector that had been coupled to the u7-peptide. These data provide the first evidence that targeting an apical receptor can circumvent the two most important barriers to gene transfer in airway epithelia. Thus, the uPA/uPAR system may offer significant advantages for delivering genes and other pharmaceuticals to airway epithelia. PMID:10712430

  15. Transcription factor assembly on the nicotinic receptor beta4 subunit gene promoter.

    PubMed

    Scofield, Michael D; Brüschweiler-Li, Lei; Mou, Zhongming; Gardner, Paul D

    2008-04-16

    Nicotinic acetylcholine receptors are involved in a plethora of fundamental biological processes ranging from muscle contraction to formation of memories. The receptors are pentameric proteins whose subunits are encoded by distinct genes. Subunit composition of a mature nicotinic receptor is governed in part by the transcriptional regulation of each subunit gene. Here, using chromatin immunoprecipitation assays, we report the interaction of the transcription factors Sp1, Sp3, c-Jun and Sox10 with the beta4 subunit gene promoter in neuronal-like cell lines and rodent brain tissue. Our results corroborate previous in-vitro data demonstrating that these transcription factors interact with the beta4 promoter. Taken together, these data suggest that Sp1, Sp3, c-Jun and Sox10 regulate expression of the beta4 subunit gene in the mammalian brain. PMID:18382288

  16. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    EPA Science Inventory

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  17. Genes encoding putative natural killer cell C-type lectin receptors in teleostean fishes

    PubMed Central

    Sato, Akie; Mayer, Werner E.; Overath, Peter; Klein, Jan

    2003-01-01

    Mammalian natural killer (NK) cells are cytotoxic lymphocytes that express receptors specific for MHC class I molecules. The NK cell receptors belong to two structurally unrelated families, the killer cell Ig-like receptors and the killer cell C-type lectin receptors. We describe a cDNA clone derived from the bony (cichlid) fish Paralabidochromis chilotes and show that it encodes a protein related to the CD94/NK cell group 2 (NKG2) subfamily of the killer cell C-type lectin receptors. The gene encoding this receptor in a related species, Oreochromis niloticus, has a similar structure to the human CD94/NKG2 genes and is a member of a multigene cluster that resembles the mammalian NK cell gene complex. Thus, the CD94/NKG2 subfamily of NK cell receptors must have arisen before the divergence of fish and tetrapods and may have retained its function (possibly monitoring the expression of MHC class I molecules) for >400 million years. PMID:12802013

  18. The nuclear receptors pregnane X receptor and constitutive androstane receptor contribute to the impact of fipronil on hepatic gene expression linked to thyroid hormone metabolism.

    PubMed

    Roques, Béatrice B; Leghait, Julien; Lacroix, Marlène Z; Lasserre, Frédéric; Pineau, Thierry; Viguié, Catherine; Martin, Pascal G P

    2013-10-01

    Fipronil is described as a thyroid disruptor in rat. Based on the hypothesis that this results from a perturbation of hepatic thyroid hormone metabolism, our goal was to investigate the pathways involved in fipronil-induced liver gene expression regulations. First, we performed a microarray screening in the liver of rats treated with fipronil or vehicle. Fipronil treatment led to the upregulation of several genes involved in the metabolism of xenobiotics, including the cytochrome P450 Cyp2b1, Cyp2b2 and Cyp3a1, the carboxylesterases Ces2 and Ces6, the phase II enzymes Ugt1a1, Sult1b1 and Gsta2, and the membrane transporters Abcc2, Abcc3, Abcg5, Abcg8, Slco1a1 and Slco1a4. Based on a large overlap with the target genes of constitutive androstane receptor (CAR) and pregnane X receptor (PXR), we postulated that these two nuclear receptors are involved in mediating the effects of fipronil on liver gene expression in rodents. We controlled that liver gene expression changes induced by fipronil were generally reproduced in mice, and then studied the effects of fipronil in wild-type, CAR- and PXR-deficient mice. For most of the genes studied, the gene expression modulations were abolished in the liver of PXR-deficient mice and were reduced in the liver of CAR-deficient mice. However, CAR and PXR activation in mouse liver was not associated with a marked increase of thyroid hormone clearance, as observed in rat. Nevertheless, our data clearly indicate that PXR and CAR are key modulators of the hepatic gene expression profile following fipronil treatment which, in rats, may contribute to increase thyroid hormone clearance. PMID:23962444

  19. Molecular Characterization of the Aphis gossypii Olfactory Receptor Gene Families

    PubMed Central

    Walker, William B.; Li, Jianhong; Wang, Guirong

    2014-01-01

    The cotton aphid, Aphis gossypii Glover, is a polyphagous pest that inflicts great damage to cotton yields worldwide. Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim is to identify chemosensory receptors in the cotton aphid genome, as a means to uncover olfactory encoding of the polyphagous feeding habits as well as to aid the discovery of new targets for behavioral interference. We identified a total of 45 candidate ORs and 14 IRs in the cotton aphid genome. Among the candidate AgoORs, 9 are apparent pseudogenes, while 19 can be clustered with ORs from the pea aphid, forming 16 AgoOR/ApOR orthologous subgroups. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a; no AgoIR retain the complete glutamic acid binding domain, suggesting that putative AgoIRs bind different ligands. Our results provide the necessary information for functional characterization of the chemosensory receptors of A. gossypii, with potential for new or refined applications of semiochemicals-based control of this pest insect. PMID:24971460

  20. Regulation of the human thromboxane A2 receptor gene in human megakaryoblastic MEG-01 cells.

    PubMed

    Saffak, T; Schäfer, S; Haas, C; Nüsing, R M

    2003-11-01

    Thromboxane A(2) (TXA(2)) is an important mediator for platelet aggregation and blood vessel constriction. TXA(2) receptor (TP receptor) is expressed in different cell types including smooth muscle cells, endothelial cells and platelets. Expression level of TP receptor may modulate the action of TXA(2) on target cells. In megakaryoblastic MEG-01 cells, a cell line representing a model for platelet precursor cells, addition of phorbolester 12-O-tetradecanoylphorbol-13-acetate (TPA) caused an increase in transcriptional activity of TP receptor gene promoter. Within 20 h a rise in expression of TP receptor mRNA and protein was observed. The effect of TPA was concentration-dependent and was blocked by specific inhibitors of protein kinase C. Flow cytometry analysis indicated that the increase in TP receptor expression appeared to be one of the earliest events in the course of TPA-induced maturation of MEG-01 cells. Stimulation of the protein kinase A pathway by incubation with forskolin or IBMX caused a decrease in transcriptional activity. Promoter deletion experiments indicated that the responsive elements for protein kinase A and C are located upstream and downstream, respectively, of -700 bp of the TP receptor gene. These experiments indicate that the expression of the human thromboxane receptor is differently regulated in platelet precursor cells by the protein kinase A and C pathway. PMID:14580363

  1. Massive losses of taste receptor genes in toothed and baleen whales.

    PubMed

    Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J; Wang, Ding; Zhao, Huabin

    2014-06-01

    Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared premature stop codon in 10 of the 13 genes, which demonstrated massive losses of taste receptor genes in the common ancestor of whales. Furthermore, we analyzed three genome sequences from two toothed whales and one baleen whale and found that the sour taste marker gene Pkd2l1 is a pseudogene, whereas the candidate salty taste receptor genes are intact and putatively functional. Additionally, we examined three genes that are responsible for taste signal transduction and found the relaxation of functional constraints on taste signaling pathways along the ancestral branch leading to whales. Together, our results strongly suggest extensive losses of sweet, umami, bitter, and sour tastes in whales, and the relaxation of taste function most likely arose in the common ancestor of whales between 36 and 53 Ma. Therefore, whales represent the first animal group to lack four of five primary tastes, probably driven by the marine environment with high concentration of sodium, the feeding behavior of swallowing prey whole, and the dietary switch from plants to meat in the whale ancestor. PMID:24803572

  2. Massive Losses of Taste Receptor Genes in Toothed and Baleen Whales

    PubMed Central

    Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J.; Wang, Ding; Zhao, Huabin

    2014-01-01

    Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared premature stop codon in 10 of the 13 genes, which demonstrated massive losses of taste receptor genes in the common ancestor of whales. Furthermore, we analyzed three genome sequences from two toothed whales and one baleen whale and found that the sour taste marker gene Pkd2l1 is a pseudogene, whereas the candidate salty taste receptor genes are intact and putatively functional. Additionally, we examined three genes that are responsible for taste signal transduction and found the relaxation of functional constraints on taste signaling pathways along the ancestral branch leading to whales. Together, our results strongly suggest extensive losses of sweet, umami, bitter, and sour tastes in whales, and the relaxation of taste function most likely arose in the common ancestor of whales between 36 and 53 Ma. Therefore, whales represent the first animal group to lack four of five primary tastes, probably driven by the marine environment with high concentration of sodium, the feeding behavior of swallowing prey whole, and the dietary switch from plants to meat in the whale ancestor. PMID:24803572

  3. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    PubMed

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  4. A complement receptor locus: genes encoding C3b/C4b receptor and C3d/Epstein-Barr virus receptor map to 1q32.

    PubMed

    Weis, J H; Morton, C C; Bruns, G A; Weis, J J; Klickstein, L B; Wong, W W; Fearon, D T

    1987-01-01

    The alternative or classical pathways for complement system component C3 may be triggered by microorganisms and antigen-antibody complexes. In particular, an activated fragment of C3, C3b, covalently attaches to microorganisms or antigen-antibody complexes, which in turn bind to the C3b receptor, also known as complement receptor 1. The genes encoding the proteins that constitute the C3-activating enzymes have been cloned and mapped to a "complement activation" locus in the major histocompatibility complex, and we demonstrate in this study such a locus on the long arm of chromosome 1 at band 1q32. PMID:3782802

  5. Sulfotransferase genes: Regulation by nuclear receptors in response to xeno/endo-biotics

    PubMed Central

    Kodama, Susumu; Negishi, Masahiko

    2014-01-01

    Pregnane X receptor (PXR) and constitutive active/androstane receptor (CAR), members of the nuclear receptor superfamily, are two major xeno-sensing transcription factors. They can be activated by a broad range of lipophilic xenobiotics including therapeutics drugs. In addition to xenobiotics, endogenous compounds such as steroid hormones and bile acids can also activate PXR and/or CAR. These nuclear receptors regulate genes that encode enzymes and transporters that metabolize and excrete both xenobiotics and endobiotics. Sulfotransferases (SULTs) are a group of these enzymes and sulfate xenobiotics for detoxification. In general, inactivation by sulfation constitutes the mechanism to maintain homeostasis of endobiotics. Thus, deciphering the molecular mechanism by which PXR and CAR regulate SULT genes is critical for understanding the roles of SULTs in the alterations of physiological and pathophysiological processes caused by drug treatment or environmental exposures. PMID:24025090

  6. Form follows function - the three-dimensional structure of antigen receptor gene loci.

    PubMed

    Fugmann, Sebastian D

    2014-04-01

    Antigen receptor genes are assembled during lymphocyte development from individual gene segments by a somatic gene rearrangement process named V(D)J recombination. This process is tightly regulated to ensure the generation of an unbiased broad primary repertoire of immunoglobulins and T cell receptors, and to prevent aberrant recombination products that could initiate lymphomagenesis. One important mode of regulation that has recently been discovered for the immunoglobulin heavy chain (IGH) gene locus is the adoption of distinct three-dimensional structures of the locus. Changes in the spatial conformation are thought to ensure the appropriate access of the V(D)J recombinase machinery at each developmental stage, and the formation of extensive chromosome loops has been implicated in allowing equal access to widely dispersed gene elements. PMID:24549092

  7. The Relationship Between Gene Polymorphism of Leptin and Leptin Receptor and Growth Hormone Deficiency.

    PubMed

    He, Jinshui; Fang, Yanling; Lin, Xinfu; Zhou, Huowang; Zhu, Shaobo; Zhang, Yugui; Yang, Huicong; Ye, Xiaoling

    2016-01-01

    BACKGROUND Growth hormone deficiency (GHD) is a major cause of congenital short stature. GHD patients have significantly decreased serum leptin levels, which are regulated by gene polymorphism of leptin and leptin receptor. This study thus investigated the relationship between gene polymorphism and susceptibility to GHD. MATERIAL AND METHODS A case-control study was performed using 180 GHD children in addition to 160 healthy controls. After the extraction of whole genomic DNA, the genotypes of leptin and leptin receptor gene loci were analyzed by sequencing for single-nucleotide polymorphism. RESULTS The frequency distribution of all alleles identified in leptin gene (loci rs7799039) and leptin receptor gene (loci rs1137100 and rs1137101) fit Hardy-Weinberg equilibrium. There was a significant difference in allele frequency at loci rs7799039 or rs1137101, as individuals with heterozygous GA allele had lower (rs7799039) or higher (rs1137101) GHD risk. No significant difference in allele frequency was discovered at loci rs1137100 (p>0.05), which was unrelated to GHD susceptibility. CONCLUSIONS Gene polymorphism of leptin (loci rs7799039) and leptin receptor (loci rs1137101) are correlated with GHD susceptibility. PMID:26915772

  8. The Relationship Between Gene Polymorphism of Leptin and Leptin Receptor and Growth Hormone Deficiency

    PubMed Central

    He, Jinshui; Fang, Yanling; Lin, Xinfu; Zhou, Huowang; Zhu, Shaobo; Zhang, Yugui; Yang, Huicong; Ye, Xiaoling

    2016-01-01

    Backgrounds Growth hormone deficiency (GHD) is a major cause of congenital short stature. GHD patients have significantly decreased serum leptin levels, which are regulated by gene polymorphism of leptin and leptin receptor. This study thus investigated the relationship between gene polymorphism and susceptibility to GHD. Material/Methods A case-control study was performed using 180 GHD children in addition to 160 healthy controls. After the extraction of whole genomic DNA, the genotypes of leptin and leptin receptor gene loci were analyzed by sequencing for single-nucleotide polymorphism. Results The frequency distribution of all alleles identified in leptin gene (loci rs7799039) and leptin receptor gene (loci rs1137100 and rs1137101) fit Hardy-Weinberg equilibrium. There was a significant difference in allele frequency at loci rs7799039 or rs1137101, as individuals with heterozygous GA allele had lower (rs7799039) or higher (rs1137101) GHD risk. No significant difference in allele frequency was discovered at loci rs1137100 (p>0.05), which was unrelated to GHD susceptibility. Conclusions Gene polymorphism of leptin (loci rs7799039) and leptin receptor (loci rs1137101) are correlated with GHD susceptibility. PMID:26915772

  9. Serotonin 5-HT2 Receptor Interactions with Dopamine Function: Implications for Therapeutics in Cocaine Use Disorder

    PubMed Central

    Cunningham, Kathryn A.

    2015-01-01

    Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder. PMID:25505168

  10. Molecular characterization of a mouse prostaglandin D receptor and functional expression of the cloned gene.

    PubMed

    Hirata, M; Kakizuka, A; Aizawa, M; Ushikubi, F; Narumiya, S

    1994-11-01

    Prostanoid receptors belong to the family of G protein-coupled receptors with seven transmembrane domains. By taking advantage of nucleotide sequence homology among the prostanoid receptors, we have isolated and identified a cDNA fragment and its gene encoding a mouse prostaglandin (PG) D receptor by reverse transcription polymerase chain reaction and gene cloning. This gene codes for a polypeptide of 357 amino acids, with a calculated molecular weight of 40,012. The deduced amino acid sequence has a high degree of similarity with the mouse PGI receptor and the EP2 subtype of the PGE receptor, which together form a subgroup of the prostanoid receptors. Chinese hamster ovary cells stably expressing the gene showed a single class of binding sites for [#H]PGD2 with a Kd of 40 nM. This binding was displaced by unlabeled ligands in the following order: PGD2 > BW 245C (a PGD agonist) > BW A868C (a PGD antagonist) > STA2 (a thromboxane A2 agonist). PGE2, PGF2 alpha, and iloprost showed little displacement activity at concentrations up to 10 microM. PGD2 and BW 245C also increased cAMP levels in Chinese hamster ovary cells expressing the receptor, in a concentration-dependent manner. BW A868C showed a partial agonist activity in the cAMP assay. Northern blotting analysis with mouse poly(A)+ RNA identified a major mRNA species of 3.5 kb that was most abundantly expressed in the ileum, followed by lung, stomach, and uterus. PMID:7972033

  11. MAPPING OF TOLL LIKE RECEPTOR (TLR) GENES IN RAINBOW TROUT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toll-like receptors (TLRs) are a family of transmembrane proteins that recognize conserved pathogen structures to induce innate immune effector molecules. In vertebrates, TLRs can distinguish among classes of pathogens and serve an important role in orchestrating the appropriate adaptive immune resp...

  12. Ecdysone Receptor-Based Gene Switches for Applications in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are a number of circumstances in which it is advantageous to use an inducible gene regulation system, the most obvious being when introducing transgenes whose constitutive expression is detrimental or even lethal to the host plants. The selective induction of gene expression is typically accom...

  13. Identification of liver receptor homolog-1 as a novel regulator of apolipoprotein AI gene transcription.

    PubMed

    Delerive, Philippe; Galardi, Cristin M; Bisi, John E; Nicodeme, Edwige; Goodwin, Bryan

    2004-10-01

    The orphan nuclear receptor liver receptor homolog-1 (LRH-1) has been reported to play a role in bile acid biosynthesis and reverse cholesterol transport. In this study, we examined the role of LRH-1 in the regulation of the apolipoprotein AI (APOAI) gene. Using RNA interference and adenovirus-mediated overexpression, we show that LRH-1 directly regulates APOAI gene transcription. Transient transfection experiments and EMSAs revealed that LRH-1 directly regulates APOAI transcription by binding to an LRH-1 response element located in the proximal APOAI promoter region. Chromatin immunoprecipitation experiments revealed that LRH-1 binds to the human APO AI promoter in vivo. Finally, we show that the transcriptional repressor SHP (small heterodimer partner) suppressed APOAI gene expression by inhibiting LRH-1 transcriptional activity. Taken together, our results demonstrate that LRH-1 is a novel regulator of APOAI transcription and underscore the role of this receptor in cholesterol homeostasis. PMID:15218078

  14. Mineralocorticoid receptor interaction with SP1 generates a new response element for pathophysiologically relevant gene expression

    PubMed Central

    Meinel, Sandra; Ruhs, Stefanie; Schumann, Katja; Strätz, Nicole; Trenkmann, Kay; Schreier, Barbara; Grosse, Ivo; Keilwagen, Jens; Gekle, Michael; Grossmann, Claudia

    2013-01-01

    The mineralocorticoid receptor (MR) is a ligand-induced transcription factor belonging to the steroid receptor family and involved in water-electrolyte homeostasis, blood pressure regulation, inflammation and fibrosis in the renocardiovascular system. The MR shares a common hormone-response-element with the glucocorticoid receptor but nevertheless elicits MR-specific effects including enhanced epidermal growth factor receptor (EGFR) expression via unknown mechanisms. The EGFR is a receptor tyrosine kinase that leads to activation of MAP kinases, but that can also function as a signal transducer for other signaling pathways. In the present study, we mechanistically investigate the interaction between a newly discovered MR- but not glucocorticoid receptor- responsive-element (=MRE1) of the EGFR promoter, specificity protein 1 (SP1) and MR to gain general insights into MR-specificity. Biological relevance of the interaction for EGFR expression and consequently for different signaling pathways in general is demonstrated in human, rat and murine vascular smooth muscle cells and cells of EGFR knockout mice. A genome-wide promoter search for identical binding regions followed by quantitative PCR validation suggests that the identified MR-SP1–MRE1 interaction might be applicable to other genes. Overall, a novel principle of MR-specific gene expression is explored that applies to the pathophysiologically relevant expression of the EGFR and potentially also to other genes. PMID:23821666

  15. Molecular cloning and functional analysis of Photobacterium damselae subsp. piscicida haem receptor gene.

    PubMed

    Naka, H; Hirono, I; Aoki, T

    2005-02-01

    A haem receptor gene from Photobacterium damselae subsp. piscicida (formerly known as Pasteurella piscicida) has been cloned, sequenced and analysed for its function. The gene, designated as pph, has an open reading frame consisting of 2154 bp, a predicted 718 amino acid residues and exists as a single copy. It is homologous with the haem receptors of Vibrio anguillarum hupA, V. cholerae hutA, V. mimicus mhuA and V. vulnificus hupA at 32.7, 32.7, 45.6 and 30.9%, respectively, and is highly conserved, consisting of a Phe-Arg-Ala-Pro sequence (FRAP), an iron transport related molecule (TonB) and a Asn-Pron-Asn-Leu sequence (NPNL), binding motifs associated with haem receptors. As a single gene knockout mutant P. damselae subsp. piscicida was able to bind haem in the absence of pph, suggesting that other receptors may be involved in its iron transport system. This study shows that the P. damselae subsp. piscicida pph belongs to the haem receptor family, is conserved and that its iron-binding system may involve more than one receptor. PMID:15705153

  16. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions

    PubMed Central

    2008-01-01

    Background One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY) receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes) and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10. Results Chromosome regions with conserved synteny were identified and confirmed by phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene families, including the NPY receptor genes, (plus 3 described recently by other labs) showed a tree topology consistent with duplications in early vertebrate evolution and in the actinopterygian lineage, thereby supporting expansion through block duplications. Eight gene families had complications that precluded analysis (such as short sequence length or variable number of repeated domains) and another eight families did not support block duplications (because the paralogs in these families seem to have originated in another time window than the proposed genome duplication events). RT-PCR carried out with several tissues in T. rubripes revealed that all five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed in peripheral organs. Conclusion We conclude that the phylogenetic analyses and chromosomal locations of these gene families support duplications of large blocks of genes or even entire chromosomes. Thus, these results are consistent with two early vertebrate tetraploidizations forming a

  17. Dopamine D4 receptor gene polymorphism and personality traits in healthy volunteers.

    PubMed

    Persson, M L; Wasserman, D; Geijer, T; Frisch, A; Rockah, R; Michaelovsky, E; Apter, A; Weizman, A; Jönsson, E G; Bergman, H

    2000-01-01

    An association between long alleles of a variable number tandem repeat (VNTR) polymorphism in the dopamine receptor D4 gene and the extraversion related personality traits Excitement and Novelty Seeking has been reported in healthy subjects. In an attempt to replicate the previous findings, 256 healthy Caucasian volunteers were analysed for a potential relationship between the dopamine receptor D4 exon III VNTR polymorphism and Extraversion as assessed by the Revised Neo Personality Inventory (NEO PI-R). The present study did not yield evidence for an association between Extraversion and the dopamine receptor D4 polymorphism. PMID:11009073

  18. Juvenile hormone and its receptor, methoprene-tolerant, control the dynamics of mosquito gene expression

    PubMed Central

    Zou, Zhen; Saha, Tusar T.; Roy, Sourav; Shin, Sang Woon; Backman, Tyler W. H.; Girke, Thomas; White, Kevin P.; Raikhel, Alexander S.

    2013-01-01

    Juvenile hormone III (JH) plays a key role in regulating the reproduction of female mosquitoes. Microarray time-course analysis revealed dynamic changes in gene expression during posteclosion (PE) development in the fat body of female Aedes aegypti. Hierarchical clustering identified three major gene clusters: 1,843 early-PE (EPE) genes maximally expressed at 6 h PE, 457 mid-PE (MPE) genes at 24 h PE, and 1,815 late-PE (LPE) genes at 66 h PE. The RNAi microarray screen for the JH receptor Methoprene-tolerant (Met) showed that 27% of EPE and 40% of MPE genes were up-regulated whereas 36% of LPE genes were down-regulated in the absence of this receptor. Met repression of EPE and MPE and activation of LPE genes were validated by an in vitro fat-body culture experiment using Met RNAi. Sequence motif analysis revealed the consensus for a 9-mer Met-binding motif, CACGC/TGA/GT/AG. Met-binding motif variants were overrepresented within the first 300 bases of the promoters of Met RNAi–down-regulated (LPE) genes but not in Met RNAi–up-regulated (EPE) genes. EMSAs using a combination of mutational and anti-Met antibody supershift analyses confirmed the binding properties of the Met consensus motif variants. There was a striking temporal separation of expression profiles among major functional gene groups, with carbohydrate, lipid, and xenobiotics metabolism belonging to the EPE and MPE clusters and transcription and translation to the LPE cluster. This study represents a significant advancement in the understanding of the regulation of gene expression by JH and its receptor Met during female mosquito reproduction. PMID:23633570

  19. Generation of systemin signaling in tobacco by transformation with the tomato systemin receptor kinase gene

    PubMed Central

    Scheer, Justin M.; Pearce, Gregory; Ryan, Clarence A.

    2003-01-01

    The tomato systemin receptor, SR160, a plasma membrane-bound, leucine-rich repeat receptor kinase that signals systemic plant defense, and the brassinolide (BL) receptor, BRI1, that regulates developmental processes, have been shown recently to have identical amino acid sequences. We report herein that tobacco, a solanaceous species that does not express a systemin precursor gene nor responds to systemin, when transformed with the SR160 receptor gene, expresses the gene in suspension-cultured cells, evidenced by mRNA and protein analyses and photoaffinity-labeling experiments. Additionally, systemin induced an alkalinization response in the transgenic tobacco cells similar to that found in tomato cells, but not in WT cells. The gain in function in tobacco cells indicates that early steps of the systemin signaling pathway found in tomato are present in tobacco cells. A tomato line, cu-3, in which a mutation in the BRI1 gene has rendered the plant nonfunctional in BL signaling, exhibits a severely reduced response to systemin. In leaves of WT tomato plants, BL strongly and reversibly antagonized systemic signaling by systemin. The results suggest that the systemin-mediated systemic defense response may have evolved in some solanaceous species by co-opting the BRI1 receptor and associated components for defense signaling. PMID:12900501

  20. Sequence variation in the androgen receptor gene is not a common determinant of male sexual orientation.

    PubMed Central

    Macke, J P; Hu, N; Hu, S; Bailey, M; King, V L; Brown, T; Hamer, D; Nathans, J

    1993-01-01

    To test the hypothesis that DNA sequence variation in the androgen receptor gene plays a causal role in the development of male sexual orientation, we have (1) measured the degree of concordance of androgen receptor alleles in 36 pairs of homosexual brothers, (2) compared the lengths of polyglutamine and polyglycine tracts in the amino-terminal domain of the androgen receptor in a sample of 197 homosexual males and 213 unselected subjects, and (3) screened the the entire androgen receptor coding region for sequence variation by PCR and denaturing gradient-gel electrophoresis (DGGE) and/or single-strand conformation polymorphism analysis in 20 homosexual males with homosexual or bisexual brothers and one homosexual male with no homosexual brothers, and screened the amino-terminal domain of the receptor for sequence variation in an additional 44 homosexual males, 37 of whom had one or more first- or second-degree male relatives who were either homosexual or bisexual. These analyses show that (1) homosexual brothers are as likely to be discordant as concordant for androgen receptor alleles; (2) there are no large-scale differences between the distributions of polyglycine or polyglutamine tract lengths in the homosexual and control groups; and (3) coding region sequence variation is not commonly found within the androgen receptor gene of homosexual men. The DGGE screen identified two rare amino acid substitutions, ser205-to-arg and glu793-to-asp, the biological significance of which is unknown. Images Figure 2 PMID:8213813

  1. Gene set of chemosensory receptors in the polyembryonic endoparasitoid Macrocentrus cingulum

    PubMed Central

    Ahmed, Tofael; Zhang, Tiantao; Wang, Zhenying; He, Kanglai; Bai, Shuxiong

    2016-01-01

    Insects are extremely successful animals whose odor perception is very prominent due to their sophisticated olfactory system. The main chemosensory organ, antennae play a critical role in detecting odor in ambient environment before initiating appropriate behavioral responses. The antennal chemosensory receptor genes families have been suggested to be involved in olfactory signal transduction pathway as a sensory neuron response. The Macrocentrus cingulum is deployed successfully as a biological control agent for corn pest insects from the Lepidopteran genus Ostrinia. In this research, we assembled antennal transcriptomes of M. cingulum by using next generation sequencing to identify the major chemosensory receptors gene families. In total, 112 olfactory receptors candidates (79 odorant receptors, 20 gustatory receptors, and 13 ionotropic receptors) have been identified from the male and female antennal transcriptome. The sequences of all of these transcripts were confirmed by RT-PCR, and direct DNA sequencing. Expression profiles of gustatory receptors in olfactory and non-olfactory tissues were measured by RT-qPCR. The sex-specific and sex-biased chemoreceptors expression patterns suggested that they may have important functions in sense detection which behaviorally relevant to odor molecules. This reported result provides a comprehensive resource of the foundation in semiochemicals driven behaviors at molecular level in polyembryonic endoparasitoid. PMID:27090020

  2. Sequence variation in the androgen receptor gene is not a common determinant of male sexual orientation

    SciTech Connect

    Macke, J.P.; Nathans, J.; King, V.L. ); Hu, N.; Hu, S.; Hamer, D.; Bailey, M. ); Brown, T. )

    1993-10-01

    To test the hypothesis that DNA sequence variation in the androgen receptor gene plays a causal role in the development of male sexual orientation, the authors have (1) measured the degree of concordance of androgen receptor alleles in 36 pairs of homosexual brothers, (2) compared the lengths of polyglutamine and polyglycine tracts in the amino-terminal domain of the androgen receptor in a sample of 197 homosexual males and 213 unselected subjects, and (3) screened the entire androgen receptor coding region for sequence variation by PCR and denaturing gradient-gel electrophoresis (DGGE) and/or single-strand conformation polymorphism analysis in 20 homosexual males with homosexual or bisexual brothers and one homosexual male with no homosexual brothers, and screened the amino-terminal domain of the receptor for sequence variation in an additional 44 homosexual males, 37 of whom had one or more first- or second-degree male relatives who were either homosexual or bisexual. These analyses show that (1) homosexual brothers are as likely to be discordant as concordant for androgen receptor alleles; (2) there are no large-scale differences between the distributions of polyglycine or polyglutamine tract lengths in the homosexual and control groups; and (3) coding region sequence variation is not commonly found within the androgen receptor gene of homosexual men. The DGGE screen identified two rare amino acid substitutions, ser[sup 205] -to-arg and glu[sup 793]-to-asp, the biological significance of which is unknown. 32 refs., 2 figs., 2 tabs.

  3. Gene set of chemosensory receptors in the polyembryonic endoparasitoid Macrocentrus cingulum.

    PubMed

    Ahmed, Tofael; Zhang, Tiantao; Wang, Zhenying; He, Kanglai; Bai, Shuxiong

    2016-01-01

    Insects are extremely successful animals whose odor perception is very prominent due to their sophisticated olfactory system. The main chemosensory organ, antennae play a critical role in detecting odor in ambient environment before initiating appropriate behavioral responses. The antennal chemosensory receptor genes families have been suggested to be involved in olfactory signal transduction pathway as a sensory neuron response. The Macrocentrus cingulum is deployed successfully as a biological control agent for corn pest insects from the Lepidopteran genus Ostrinia. In this research, we assembled antennal transcriptomes of M. cingulum by using next generation sequencing to identify the major chemosensory receptors gene families. In total, 112 olfactory receptors candidates (79 odorant receptors, 20 gustatory receptors, and 13 ionotropic receptors) have been identified from the male and female antennal transcriptome. The sequences of all of these transcripts were confirmed by RT-PCR, and direct DNA sequencing. Expression profiles of gustatory receptors in olfactory and non-olfactory tissues were measured by RT-qPCR. The sex-specific and sex-biased chemoreceptors expression patterns suggested that they may have important functions in sense detection which behaviorally relevant to odor molecules. This reported result provides a comprehensive resource of the foundation in semiochemicals driven behaviors at molecular level in polyembryonic endoparasitoid. PMID:27090020

  4. Localization of the receptor gene for type D simian retroviruses on human chromosome 19.

    PubMed Central

    Sommerfelt, M A; Williams, B P; McKnight, A; Goodfellow, P N; Weiss, R A

    1990-01-01

    Simian retrovirus (SRV) serotypes 1 to 5 are exogenous type D viruses causing immune suppression in macaque monkeys. These viruses exhibit receptor interference with each other, with two endogenous type D viruses of the langur (PO-1-Lu) and squirrel monkey, and with two type C retroviruses, feline endogenous virus (RD114/CCC) and baboon endogenous virus (BaEV), indicating that each utilizes the same cell surface receptor (M. A. Sommerfelt and R. A. Weiss, Virology 176:58-69, 1990). Vesicular stomatitis virus pseudotype particles bearing envelope glycoproteins of RD114, BaEV, and the seven SRV strains were employed to detect receptors expressed in human-rodent somatic cell hybrids segregating human chromosomes. The only human chromosome common to all the susceptible hybrids was chromosome 19. By using hybrids retaining different fragments of chromosome 19, a provisional subchromosomal localization of the receptor gene was made to 19q13.1-13.2. Antibodies previously reported to be specific to a BaEV receptor (L. Thiry, J. Cogniaux-Leclerc, R. Olislager, S. Sprecher-Goldberger, and P. Burkens, J. Virol. 48:697-708, 1983) did not block BaEV, RD114, or SRV pseudotypes or syncytia. Antibodies to known surface markers determined by genes mapped to chromosome 19 did not block virus-receptor interaction. The identity of the receptor remains to be determined. PMID:2173788

  5. Improving lipoprotein profiles by liver-directed gene transfer of low density lipoprotein receptor gene in hypercholesterolaemia mice.

    PubMed

    Ou, Hailong; Zhang, Qinghai; Zeng, Jia

    2016-06-01

    The defect of low density lipoprotein receptor disturbs cholesterol metabolism and causes familial hypercholesterolaemia (FH). In this study, we directly delivered exogenous Ldlr gene into the liver of FH model mice (Ldlr(-/-)) by lentiviral gene transfer system. The results showed that the Ldlr gene controlled by hepatocyte-specific human thyroxine-binding globulin (TBG) promoter successfully and exclusively expressed in livers.We found that, although, the content of high density lipoprotein in serum was not significantly affected by the Ldlr gene expression, the serum low density lipoprotein level was reduced by 46%, associated with a 30% and 28% decrease in triglyceride and total cholesterol, respectively, compared to uninjected Ldlr(-/-) mice. Moreover, the TBG directed expression of Ldlr significantly decreased the lipid accumulation in liver and reduced plaque burden in aorta (32%). Our results indicated that the hepatocyte-specific expression of Ldlr gene strikingly lowered serum lipid levels and resulted in amelioration of hypercholesterolaemia. PMID:27350674

  6. Possible association between the prolactin receptor gene and callous-unemotional traits among aggressive children.

    PubMed

    Hirata, Yuko; Zai, Clement C; Nowrouzi, Behdin; Shaikh, Sajid A; Kennedy, James L; Beitchman, Joe H

    2016-02-01

    This study examined the possible association between prolactin (PRL) system genes and callous-unemotional (CU) traits in childhood-onset aggression. Two markers for the PRL peptide gene and three markers for the prolactin receptor (PRLR) gene were genotyped. The participants were assessed on the CU subscale using five items from the Antisocial Process Screening Device. Genotype analysis showed nominally significant results with PRLR_rs187490 (uncorrected P=0.01), with the GG genotype associated with higher CU scores. This is the first paper to evaluate the relationship of PRL system genes with CU traits in childhood-onset aggression. PMID:26513615

  7. Evidence for a previously unidentified upstream exon in the human oestrogen receptor gene.

    PubMed

    Keaveney, M; Klug, J; Dawson, M T; Nestor, P V; Neilan, J G; Forde, R C; Gannon, F

    1991-02-01

    The presence of a previously unidentified exon upstream of the originally described human oestrogen receptor (hOR) gene is demonstrated. This is shown to be spliced to the 5' untranslated region of the previously designated exon I. The resulting genomic structure of the human gene is thus in agreement with the structure of the mouse OR gene and highlights the conservation of an 18 amino acid upstream open-reading frame formed from the above splicing event. Taken in conjunction with previous publications this would suggest that the hOR gene is a complex transcriptional unit that contains two promoters. PMID:2015052

  8. Potential of GRID2 receptor gene for preventing TNF-induced neurodegeneration in autism.

    PubMed

    Kalkan, Zeynep; Durasi, İlknur Melis; Sezerman, Ugur; Atasever-Arslan, Belkis

    2016-05-01

    Autism is one of the most common subtypes of autism spectrum disorder (ASD). Recent studies suggested a relationship between immune-dependent coding genes and ASD, indicating that long term neuroimmunological anomalies affect brain development and synaptic transmission among neural networks. Furthermore, various studies focused on biomarker potential of TNF-α in autism. Ionotropic receptors are also studied as potential marker for autism since altered gene expression levels are observed in autistic patients. GRID2 is a candidate ionotropic receptor which is involved glutamate transfer. In this study, to propose TNF-α dependent cellular processes involved in autism aetiology in relation to GRID2 we performed a bioinformatic network analysis and identified potential pathways and genes that are involved in TNF-α induced changes at GRID2 receptor levels. As a result, we ascertained the GRID2 receptor gene as a candidate gene and further studied the association between GRID2 expression levels and TNF-induced neurodegeneration. Our bioinformatic analyses and experimental results revealed that TNF-α regulates GRID2 gene expression by activating Cdc42 and GOPC genes. Moreover, increased TNF-α levels leads to increase of caspase-3 protein levels triggering neuronal apoptosis leading to neuronal deficiency, which is one of the major symptoms of autism. The study is the first to show the role of TNF-α in regulation of GRID2 gene expression and its signalling pathway. As a result, GRID2 gene can be a suppressor in TNF-induced neurodegeneration which may help to understand the main factors leading to autism. PMID:27019035

  9. Mutations in Melanocortin-3 Receptor Gene and Human Obesity.

    PubMed

    Yang, Z; Tao, Y-X

    2016-01-01

    The prevalence of obesity calls for novel therapeutic targets. The melanocortin-3 receptor (MC3R) has been increasingly recognized as an important regulator of energy homeostasis and MC3R has been intensively analyzed in molecular genetic studies for obesity-related traits. Twenty-seven MC3R mutations and two common polymorphic variants have been identified so far in different cohorts. The mutant MC3Rs demonstrate multiple defects in functional analysis and can be cataloged into different classes according to receptor life cycle based classification system. Although the pathogenic role of MC3R in human obesity remains controversial, recent findings in the noncanonical signaling pathway of MC3R mutants have provided new insights. Potential therapeutic strategies for obesity related to MC3R mutations are highlighted. PMID:27288827

  10. The Aryl Hydrocarbon Receptor Complex and the Control of Gene Expression

    PubMed Central

    Beischlag, Timothy V.; Morales, J. Luis; Hollingshead, Brett D.; Perdew, Gary H.

    2008-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that controls the expression of a diverse set of genes. The toxicity of the potent AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin is almost exclusively mediated through this receptor. However, the key alterations in gene expression that mediate toxicity are poorly understood. It has been established through characterization of AhR-null mice that the AhR has a required physiological function, yet how endogenous mediators regulate this orphan receptor remains to be established. A picture as to how the AhR/ARNT heterodimer actually mediates gene transcription is starting to emerge. The AhR/ARNT complex can alter transcription both by binding to its cognate response element and through tethering to other transcription factors. In addition, many of the coregulatory proteins necessary for AhR-mediated transcription have been identified. Cross talk between the estrogen receptor and the AhR at the promoter of target genes appears to be an important mode of regulation. Inflammatory signaling pathways and the AhR also appear to be another important site of cross talk at the level of transcription. A major focus of this review is to highlight experimental efforts to characterize nonclassical mechanisms of AhR-mediated modulation of gene transcription. PMID:18540824

  11. Differentiation of Murine Embryonic Stem Cells Induces Progesterone Receptor Gene Expression

    PubMed Central

    Sauter, Carley N.; McDermid, Rebecca L.; Weinberg, Amy L.; Greco, Tamara L.; Xu, Xiaojie; Murdoch, Fern E.; Fritsch, Michael K.

    2005-01-01

    The role of steroid hormone receptors in very early embryonic development remains unknown. Clearly, expression during organogenesis is important for tissue-specific development. However, progesterone receptor (PR) and estrogen receptors (ERα, ERβ), are expressed during early development through the blastocyst stage in mice and other species, and yet are not essential for embryonic viability. We have utilized the mouse embryonic stem (mES) cell model to investigate the regulated expression of these receptors during differentiation. Surprisingly, one of the earliest changes in gene expression in response to a differentiation signal observed is PR gene induction. It parallels the time course of expression for the patterning genes Hoxb1 and Hoxa5. Unexpectedly, PR gene expression is not regulated in an estrogen dependent manner by endogenous ERs or by transiently overexpressed ERα. Our results suggest a potentially novel mechanism of PR gene regulation within mES cells compared to adult tissues and the possibility of unique targets of PR action during early mES cell differentiation PMID:16223481

  12. The 5' region of the human thromboxane A(2) receptor gene.

    PubMed

    Saffak, T; Nüsing, R M

    2002-07-01

    Thromboxane is an important modulator of hemostasis and smooth muscle tonus and signals via G-protein-coupled thromboxane receptor. Previously, we characterized the TP receptor gene and suggested the presence of three promoter regions within the gene. The aim of the present study was to examine the regulation of transcriptional gene expression. By primer extension experiments the major transcription initiation site was shown to be a doublet at -160/165 bp upstream of the ATG codon in human megakaryoblastic MEG-01 cells, endothelial ECV 304 cells and in human myometrium smooth muscle cells. In the erythroleukemic HEL 1 cells transcription initiation site was identified at -10 bp. Transcriptional activity of the three 5'flanking regions of TP receptor gene representing the putative promoter regions was evaluated by transfection of MEG-01 cells with chimeric constructs containing luciferase gene-encoding sequence. Promoter region I displayed highest transcriptional activity and RT-PCR analysis confirmed the transcription of TP receptor mRNA driven by promoter I. Although, weak transcriptional activity was also observed regarding promoter region II, we were unable to amplify cDNA fragments representing promoter II-driven mRNA synthesis. Considering promoter region III, transcriptional activity was barely detectable. Various deletions of the 3.9 kb promoter I region revealed a size-dependent transcriptional activity. Further, for full activity a 'core' promoter corresponding to the region from -160/165 to -588 bp appeared to be necessary for full transcriptional activity of promoter 1. PMID:12213432

  13. Differential expression of olfactory genes in the southern house mosquito and insights into unique odorant receptor gene isoforms

    PubMed Central

    Leal, Walter S.; Choo, Young-Moo; Xu, Pingxi; da Silva, Cherre S. B.; Ueira-Vieira, Carlos

    2013-01-01

    The southern house mosquito, Culex quinquefasciatus, has one of the most acute and eclectic olfactory systems of all mosquito species hitherto studied. Here, we used Illumina sequencing to identify olfactory genes expressed predominantly in antenna, mosquito’s main olfactory organ. Less than 50% of the trimmed reads generated by high-quality libraries aligned to a transcript, but approximately 70% of them aligned to the genome. Differential expression analysis, which was validated by quantitative real-time PCR on a subset of genes, showed that approximately half of the 48 odorant-binding protein genes were enriched in antennae, with the other half being predominantly expressed in legs. Similar patterns were observed with chemosensory proteins, “plus-C” odorant-binding proteins, and sensory neuron membrane proteins. Transcripts for as many as 43 ionotropic receptors were enriched in female antennae, thus making the ionotropic receptor family the largest of antennae-rich olfactory genes, second only to odorant receptor (OR) genes. As many as 177 OR genes have been identified, including 36 unique transcripts. The unique OR genes differed from previously annotated ORs in internal sequences, splice variants, and extended N or C terminus. One of the previously unknown transcripts was validated by cloning and functional expression. When challenged with a large panel of physiologically relevant compounds, CquiOR95b responded in a dose-dependent manner to ethyl 2-phenylacteate, which was demonstrated to repel Culex mosquitoes, and secondarily to citronellal, a known insect repellent. This transcriptome study led to identification of key molecular components and a repellent for the southern house mosquito. PMID:24167245

  14. Linkage analysis of schizophrenia with five dopamine receptor genes in nine pedigrees

    SciTech Connect

    Coon, H.; Byerley, W.; Holik, J.; Hoff, M.; Myles-Worsley, M.; Plaetke, R. ); Lannfelt, L. ); Sokoloff, P.; Schwartz, J.C. ); Waldo, M.; Freedman, R. )

    1993-02-01

    Alterations in dopamine neurotransmission have been strongly implicated in the pathogenesis of schizophrenia for nearly 2 decades. Recently, the genes for five dopamine receptors have been cloned and characterized, and genetic and physical map information has become available. Using these five loci as candidate genes, the authors have tested for genetic linkage to schizophrenia in nine multigenerational families which include multiple affected individuals. In addition to testing conservative disease models, the have used a neurophysiological indicator variable, the P50 auditory evoked response. Deficits in gating of the P50 response have been shown to segregate with schizophrenia in this sample and may identify carriers of gene(s) predisposing for schizophrenia. Linkage results were consistently negative, indicating that a defect at any of the actual receptor sites is unlikely to be a major contributor to schizophrenia in the nine families studied. 47 refs., 1 fig., 4 tabs.

  15. 5-HT3 receptors as important mediators of nausea and vomiting due to chemotherapy.

    PubMed

    Navari, Rudolph M

    2015-10-01

    Chemotherapy-induced nausea and vomiting (CINV) is associated with a significant deterioration in quality of life. The emetogenicity of the chemotherapeutic agents, repeated chemotherapy cycles, and patient risk factors significantly influence CINV. The use of a combination of a 5-hydroxytryptamine-3 (5-HT3) receptor antagonist, dexamethasone, and a neurokinin-1 (NK-1) receptor antagonist has significantly improved the control of acute and delayed emesis in single-day chemotherapy. The first generation 5-HT3 receptor antagonists have been very effective in the control of chemotherapy induced emesis in the first 24 h postchemotherapy (acute emesis), but have not been as effective against delayed emesis (24-120 h postchemotherapy). Palonosetron, a second generation 5-HT3 receptor antagonist with a different half-life, a different binding capacity, and a different mechanism of action than the first generation 5-HT3 receptor antagonists appears to be the most effective agent in its class. Despite the control of emesis, nausea has not been well controlled by current agents. Olanzapine, a FDA approved antipsychotic that blocks multiple neurotransmitters: dopamine at D1, D2, D3, D4 brain receptors, serotonin at 5-HT2a, 5-HT2c, 5-HT3, 5-HT6 receptors, catecholamines at alpha1 adrenergic receptors, acetylcholine at muscarinic receptors, and histamine at H1 receptors, has emerged in recent trials as an effective preventative agent for chemotherapy-induced emesis and nausea, as well as a very effective agent for the treatment of breakthrough emesis and nausea. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. PMID:25838122

  16. Oxytocin and Vasopressin Receptor Gene Polymorphisms: Role in Social and Psychiatric Traits

    PubMed Central

    Aspé-Sánchez, Mauricio; Moreno, Macarena; Rivera, Maria Ignacia; Rossi, Alejandra; Ewer, John

    2016-01-01

    Oxytocin (OXT) and arginine-vasopressin (AVP) are two phylogenetically conserved neuropeptides that have been implicated in a wide range of social behaviors. Although a large body of research, ranging from rodents to humans, has reported on the effects of OXT and AVP administration on affiliative and trust behaviors, and has highlighted the genetic contributions of OXT and AVP receptor polymorphisms to both social behaviors and to diseases related to social deficits, the consequences of peptide administration on psychiatric symptoms, and the impact of receptor polymorphisms on receptor function, are still unclear. Despite the exciting advances that these reports have brought to social neuroscience, they remain preliminary and suffer from the problems that are inherent to monogenetic linkage and association studies. As an alternative, some studies are using polygenic approaches, and consider the contributions of other genes and pathways, including those involving DA, 5-HT, and reelin, in addition to OXT and AVP; a handful of report are also using genome-wide association studies. This review summarizes findings on the associations between OXT and AVP receptor polymorphism, social behavior, and psychiatric diseases. In addition, we discuss reports on the interactions of OXT and AVP receptor genes and genes involved in other pathways (such as those of dopamine, serotonin, and reelin), as well as research that has shed some light on the impact of gene polymorphisms on the volume, connectivity, and activation of specific neural structures, differential receptor expression, and plasma levels of the OXT and AVP peptides. We hope that this effort will be helpful for understanding the studies performed so far, and for encouraging the inclusion of other candidate genes not explored to date. PMID:26858594

  17. Oxytocin and Vasopressin Receptor Gene Polymorphisms: Role in Social and Psychiatric Traits.

    PubMed

    Aspé-Sánchez, Mauricio; Moreno, Macarena; Rivera, Maria Ignacia; Rossi, Alejandra; Ewer, John

    2015-01-01

    Oxytocin (OXT) and arginine-vasopressin (AVP) are two phylogenetically conserved neuropeptides that have been implicated in a wide range of social behaviors. Although a large body of research, ranging from rodents to humans, has reported on the effects of OXT and AVP administration on affiliative and trust behaviors, and has highlighted the genetic contributions of OXT and AVP receptor polymorphisms to both social behaviors and to diseases related to social deficits, the consequences of peptide administration on psychiatric symptoms, and the impact of receptor polymorphisms on receptor function, are still unclear. Despite the exciting advances that these reports have brought to social neuroscience, they remain preliminary and suffer from the problems that are inherent to monogenetic linkage and association studies. As an alternative, some studies are using polygenic approaches, and consider the contributions of other genes and pathways, including those involving DA, 5-HT, and reelin, in addition to OXT and AVP; a handful of report are also using genome-wide association studies. This review summarizes findings on the associations between OXT and AVP receptor polymorphism, social behavior, and psychiatric diseases. In addition, we discuss reports on the interactions of OXT and AVP receptor genes and genes involved in other pathways (such as those of dopamine, serotonin, and reelin), as well as research that has shed some light on the impact of gene polymorphisms on the volume, connectivity, and activation of specific neural structures, differential receptor expression, and plasma levels of the OXT and AVP peptides. We hope that this effort will be helpful for understanding the studies performed so far, and for encouraging the inclusion of other candidate genes not explored to date. PMID:26858594

  18. A comparison of reptilian and avian olfactory receptor gene repertoires: Species-specific expansion of group γ genes in birds

    PubMed Central

    Steiger, Silke S; Kuryshev, Vladimir Y; Stensmyr, Marcus C; Kempenaers, Bart; Mueller, Jakob C

    2009-01-01

    Background The detection of odorants is mediated by olfactory receptors (ORs). ORs are G-protein coupled receptors that form a remarkably large protein superfamily in vertebrate genomes. We used data that became available through recent sequencing efforts of reptilian and avian genomes to identify the complete OR gene repertoires in a lizard, the green anole (Anolis carolinensis), and in two birds, the chicken (Gallus gallus) and the zebra finch (Taeniopygia guttata). Results We identified 156 green anole OR genes, including 42 pseudogenes. The OR gene repertoire of the two bird species was substantially larger with 479 and 553 OR gene homologs in the chicken and zebra finch, respectively (including 111 and 221 pseudogenes, respectively). We show that the green anole has a higher fraction of intact OR genes (~72%) compared with the chicken (~66%) and the zebra finch (~38%). We identified a larger number and a substantially higher proportion of intact OR gene homologs in the chicken genome than previously reported (214 versus 82 genes and 66% versus 15%, respectively). Phylogenetic analysis showed that lizard and bird OR gene repertoires consist of group α, θ and γ genes. Interestingly, the vast majority of the avian OR genes are confined to a large expansion of a single branch (the so called γ-c clade). An analysis of the selective pressure on the paralogous genes of each γ-c clade revealed that they have been subjected to adaptive evolution. This expansion appears to be bird-specific and not sauropsid-specific, as it is lacking from the lizard genome. The γ-c expansions of the two birds do not intermix, i.e., they are lineage-specific. Almost all (group γ-c) OR genes mapped to the unknown chromosome. The remaining OR genes mapped to six homologous chromosomes plus three to four additional chromosomes in the zebra finch and chicken. Conclusion We identified a surprisingly large number of potentially functional avian OR genes. Our data supports recent

  19. Vitamin D receptor gene polymorphisms and steroid receptor status among Saudi women with breast cancer.

    PubMed

    Nemenqani, Dalal M; Karam, Rehab A; Amer, Mona G; Abd El Rahman, Tamer M

    2015-03-10

    The vitamin D receptor (VDR) is a mediator for the cellular effects of vitamin D and interacts with other cell signaling pathways that influence cancer development. We evaluated the associations of the FOK1 and Taq1 VDR polymorphisms and breast cancer risk and possible effect modification by steroid receptor status of the tumor. This case-control study includes 95 breast cancer patients and 100 age-matched controls. Genotyping for VDR FOK1 and Taq1 polymorphisms was performed using polymerase chain reaction-based restriction fragment length polymorphism. Level of 25(OH)D in serum was determined using ELISA. Immunohistochemical studies were performed for estrogen receptors (ER) and progesterone receptors (PR). The frequencies of ff genotype were significantly increased in the breast cancer group compared to the control group. Carriers of the f allele were significantly more likely to develop BC. We observed a statistically significant interaction for the Fok1 polymorphism and ER status. Our results demonstrated that FOK1 f. genotype and f allele have an important role in breast cancer risk in Saudi patients. PMID:25560187

  20. Urokinase receptor is a multifunctional protein: influence of receptor occupancy on macrophage gene expression.

    PubMed Central

    Rao, N K; Shi, G P; Chapman, H A

    1995-01-01

    Binding of urokinase to the glycolipid-anchored urokinase receptor (uPAR) has been implicated in macrophage differentiation. However, no biochemical markers of differentiation have yet been directly linked to uPAR occupancy. As extensive changes in proteolytic profile characterize monocytic differentiation, we have examined the role of uPAR occupancy on protease expression by differentiating phagocytes. Antibodies to either urokinase or to uPAR that prevent receptor binding inhibited induction of cathepsin B in cultured monocytes and both cathepsin B and 92-kD gelatinase mRNA and protein in phorbol diester-stimulated myeloid cells. Mannosamine, an inhibitor of glycolipid anchor assembly, also blocked protease expression. Anti-catalytic urokinase antibodies, excess inactive urokinase, or aprotinin had no effect, indicating that receptor occupancy per se regulated protease expression. Antibodies to the integrins CD11a and CD29 or to the glycolipid-anchored proteins CD14 and CD55 also had no effect. Protease induction was independent of matrix attachment. Antibodies to urokinase or uPAR affected neither the decrease in cathepsin G nor the increase in tumor necrosis factor-alpha in phorbol ester-stimulated cells. These data establish that uPAR is a multifunctional receptor, not only promoting pericellular proteolysis and matrix attachment, but also effecting cysteine- and metallo-protease expression during macrophage differentiation. Images PMID:7615819

  1. Identification of N-terminal receptor activity-modifying protein residues important for calcitonin gene-related peptide, adrenomedullin, and amylin receptor function.

    PubMed

    Qi, Tao; Christopoulos, George; Bailey, Richard J; Christopoulos, Arthur; Sexton, Patrick M; Hay, Debbie L

    2008-10-01

    Calcitonin-family receptors comprise calcitonin receptor-like receptor (CL) or calcitonin receptor and receptor activity-modifying protein (RAMP) pairings. Calcitonin gene-related peptide (CGRP) receptors are CL/RAMP1, whereas adrenomedullin (AM) receptors are CL/RAMP2 (AM1 receptor) or CL/RAMP3 (AM2 receptor). Amylin (Amy) receptors are RAMP hetero-oligomers with the calcitonin receptor (AMY1, AMY2, and AMY3, respectively). How RAMPs change G protein-coupled receptor pharmacology is not fully understood. We exploited sequence differences between RAMP1 and RAMP3 to identify individual residues capable of altering receptor pharmacology. Alignment of human RAMPs revealed eight residues that are conserved in RAMP2 and RAMP3 but are different in RAMP1. We hypothesized that residues in RAMP2 and RAMP3, but not RAMP1, are responsible for making CL/RAMP2 and CL/RAMP3 AM receptors. Using site-directed mutagenesis, we introduced individual RAMP3 residues into RAMP1 and vice versa in these eight positions. Mutant or wild-type RAMPs were transfected into Cos7 cells with CL or the insert-negative form of the calcitonin receptor [CT(a)]. Agonist-stimulated cAMP production and cell-surface expression of constructs were measured. Position 74 in RAMP1 and RAMP3 was critical for determining AM potency and affinity, and Phe93 in RAMP1 was an important contributor to alphaCGRP potency at CGRP receptors. Mutant RAMP/CT(a) receptor complexes displayed different phenotypes. It is noteworthy that RAMP1 S103N and W74E mutations led to enhanced rAmy potency, probably related to increased cell-surface expression of these complexes. This differs from the effect on CL-based receptors where expression was unchanged. Targeted substitution has emphasized the importance of position 74 in RAMP1/RAMP3 as a key determinant of AM pharmacology. PMID:18593822

  2. Genetic basis of endocrine disease 4: The spectrum of mutations in the androgen receptor gene that causes androgen resistance

    SciTech Connect

    McPhaul, M.J.; Marcelli, M.; Zoppi, S.; Griffin, J.E.; Wilson, J.D. )

    1993-01-01

    Mutations in the androgen receptor gene cause phenotypic abnormalities of male sexual development that range from a female phenotype (complete testicular feminization) to that of undervirilized or infertile men. Using the tools of molecular biology, the authors have analyzed androgen receptor gene mutations in 31 unrelated subjects with androgen resistance syndromes. Most of the defects are due to nucleotide changes that cause premature termination codons or single amino acid substitutions within the open reading frame encoding the androgen receptor, and the majority of these substitutions are localized in three regions of the androgen receptor: the DNA-binding domain and two segments of the androgen-binding domain. Less frequently, partial or complete gene deletions have been identified. Functional studies and immunoblot assays of the androgen receptors in patients with androgen resistance indicate that in most cases the phenotypic abnormalities are the result of impairment of receptor function or decreases in receptor abundance or both. 34 refs., 2 figs.

  3. Targeting the oncogenic Met receptor by antibodies and gene therapy.

    PubMed

    Vigna, E; Comoglio, P M

    2015-04-01

    The receptor for hepatocyte growth factor (HGF), a tyrosine kinase encoded by the Met oncogene, has a crucial role in cancer growth, invasion and metastasis. It is a validated therapeutic target for 'personalized' treatment of a number of malignancies. Therapeutic tools prompting selective, robust and highly effective Met inhibition potentially represent a major step in the battle against cancer. Antibodies targeting either Met or its ligand HGF, although challenging, demonstrate to be endowed with promising features. Here we briefly review and discuss the state of the art in the field. PMID:24882574

  4. No association of primary Sjögren's syndrome with Fcγ receptor gene variants.

    PubMed

    Haldorsen, K; Appel, S; Le Hellard, S; Bruland, O; Brun, J G; Omdal, R; Kristjansdottir, G; Theander, E; Fernandes, C P D; Kvarnström, M; Eriksson, P; Rönnblom, L; Herlenius, M W; Nordmark, G; Jonsson, R; Bolstad, A I

    2013-06-01

    The genetic background of primary Sjögren's syndrome (pSS) is partly shared with systemic lupus erythematosus (SLE). Immunoglobulin G Fc receptors are important for clearance of immune complexes. Fcγ receptor variants and gene deletion have been found to confer SLE risk. In this study, four Fcγ receptor single-nucleotide polymorphisms (SNPs) and one copy number variation (CNV) were studied. Swedish and Norwegian pSS patients (N=527) and controls (N=528) were genotyped for the Fcγ receptor gene variant FCGR2A H131R (rs1801274) by the Illumina GoldenGate assay. FCGR3A F158V (rs396991) was analysed in 488 patients and 485 controls, FCGR3B rs447536 was analysed in 471 patients and 467 controls, and FCGR3B rs448740 was analysed in 478 cases and 455 controls, using TaqMan SNP genotyping assays. FCGR3B CNV was analysed in 124 patients and 139 controls using a TaqMan copy number assay. None of the SNPs showed any association with pSS. Also, no FCGR3B CNV association was detected. The lack of association of pSS with Fcγ receptor gene variants indicates that defective immune complex clearance may not be as important in pSS pathogenesis as in SLE, and may point to important differences between SLE and pSS. PMID:23552400

  5. Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer.

    PubMed

    Field, Anne-Christine; Vink, Conrad; Gabriel, Richard; Al-Subki, Roua; Schmidt, Manfred; Goulden, Nicholas; Stauss, Hans; Thrasher, Adrian; Morris, Emma; Qasim, Waseem

    2013-01-01

    Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm's tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies. PMID:23840834

  6. Comparison of Lentiviral and Sleeping Beauty Mediated αβ T Cell Receptor Gene Transfer

    PubMed Central

    Field, Anne-Christine; Vink, Conrad; Gabriel, Richard; Al-Subki, Roua; Schmidt, Manfred; Goulden, Nicholas; Stauss, Hans; Thrasher, Adrian; Morris, Emma; Qasim, Waseem

    2013-01-01

    Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm’s tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies. PMID:23840834

  7. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    NASA Astrophysics Data System (ADS)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  8. Sequence and diversity of rabbit T-cell receptor gamma chain genes

    SciTech Connect

    Isono, T.; Kim, C.J.; Seto, A.

    1995-03-01

    The nucleotide sequences of one constant (C), six variable (V), and two joining (J) gene segments coding for the rabbit T-cell receptor gamma chain (Tcrg) were determined by directly sequencing fragments amplified by the cassette-ligation mediated polymerase chain reaction. The Tcrg-C gene segment did not encode a cysteine residue for connection to the Tcr delta chain in the connecting region, and two variant forms of the Tcrg-C gene segment were generated by alternative splicing, like the human Tcrg-C2 gene. Five of six rabbit Tcrg-V gene segments belonged to the same family and displayed similarity to five productive human Tcrg-V1 family genes as well as the mouse Tcrg-V5 gene. The remaining rabbit Tcrg-V gene segment displayed similarity to the human Tcrg-V3 gene. Both rabbit Tcrg-J gene segments displayed similarity to the human Tcrg-J2.1 and 2.3, respectively. These findings suggested that the genomic organization of rabbit Tcrg genes is more similar to that of human than of mouse Tcrg genes. 18 refs., 4 figs., 1 tab.

  9. An evolutionarily mobile antigen receptor variable region gene: Doubly rearranging NAR-TcR genes in sharks

    PubMed Central

    Criscitiello, Michael F.; Saltis, Mark; Flajnik, Martin F.

    2006-01-01

    Distinctive Ig and T cell receptor (TcR) chains define the two major lineages of vertebrate lymphocyte yet similarly recognize antigen with a single, membrane-distal variable (V) domain. Here we describe the first antigen receptor chain that employs two V domains, which are generated by separate VDJ gene rearrangement events. These molecules have specialized “supportive” TcRδV domains membrane-proximal to domains with most similarity to IgNAR V. The ancestral NAR V gene encoding this domain is hypothesized to have recombined with the TRD locus in a cartilaginous fish ancestor >200 million years ago and encodes the first V domain shown to be used in both Igs and TcRs. Furthermore, these data support the view that γ/δ TcRs have for long used structural conformations recognizing free antigen. PMID:16549799

  10. Association of a nicotinic receptor gene polymorphism with spontaneous eyeblink rates

    PubMed Central

    Nakano, Tamami; Kuriyama, Chiho; Himichi, Toshiyuki; Nomura, Michio

    2015-01-01

    Spontaneous eyeblink rates greatly vary among individuals from several blinks to a few dozen blinks per minute. Because dopamine agonists immediately increase the blink rate, individual differences in blink rate are used as a behavioral index of central dopamine functioning. However, an association of the blink rate with polymorphisms in dopamine-related genes has yet not been found. In this study, we demonstrated that a genetic variation of the nicotinic acetylcholine receptor CHRNA4 (rs1044396) increased the blink rate while watching a video. A receiver operating characteristic analysis revealed that the blink rate predicts a genetic variation in the nicotinic receptor gene with a significant discrimination level (0.66, p < 0.004). The present study suggests that differences in sensitivity to acetylcholine because of the genetic variation of the nicotinic receptor are associated with individual differences in spontaneous eye blink rate. PMID:25729002

  11. Mapping toll-like receptor signaling pathway genes of Zhikong scallop ( Chlamys farreri) with FISH

    NASA Astrophysics Data System (ADS)

    Zhao, Bosong; Zhao, Liang; Liao, Huan; Cheng, Jie; Lian, Shanshan; Li, Xuan; Huang, Xiaoting; Bao, Zhenmin

    2015-12-01

    Toll-like receptor (TLR) signaling pathway plays a pivotal role in the innate immune system. Studies on TLR signaling pathway genes in Zhikong scallop ( Chlamys farreri) have mainly focused on sequence analysis and expression profiling, no research has been carried out on their localization. The chromosomal position of TLR signaling pathway genes can be valuable for assemblying scallop genome and analysizing gene regulatory networks. In the present study, five key TLR signaling pathway genes ( CfTLR, CfMyd88, CfTRAF6, CfNFκB, and CfIκB) containing bacterial artificial chromosomes (BACs) were isolated and physically mapped through fluorescence in situ hybridization on five non-homologous chromosome pairs, showing a similar distribution to another five model species. The isolation and mapping of these key immune genes of C. farreri will aid to the research on innate immunity, assignment of interested genes to chromosomes, and integration of physical, linkage and cytogenetic maps of this species.

  12. The human insulin receptor substrate-1 gene (IRS1) is localized on 2q36

    SciTech Connect

    Nishiyama, Masaki; Matsufuji, Senya; Hayashi, Shin-ichi; Furusaka, Akihiro; Tanaka, Teruji ); Inazawa, J.; Nakamura, Yusuke ); Ariyama, Takeshi ); Wands, J.R. )

    1994-03-01

    The chromosomal localization of some of the genes participating in the insulin signaling pathway is known. The insulin and insulin receptor genes have been mapped to chromosomes 11 and 19, respectively. To identify the chromosomal localization of the human IRS1 gene, the fluorescence in situ hybridization technique was employed with Genomic Clone B-10. A total of 50 metaphase cells exhibiting either single or double spots of hybridization signals were examined. Among them, 32 showed the specific signals on 2q36. Therefore, the authors assigned the human IRS1 gene to 2q36. The genes for homeobox sequence (HOX4), fibronectin 1, alkaline phosphatase (intestinal), transition protein 1, villin 1, collagen (type IV), Waardenburg syndrome (type 1), alanine-glyoxylate aminotransferase, and glucagon have been localized in the vicinity of the IRS1 gene.

  13. Identification of a Bitter-Taste Receptor Gene Repertoire in Different Lagomorphs Species

    PubMed Central

    Ferreira, Ana M.; Marques, Andreia T.; Fontanesi, Luca; Thulin, Carl-Gustaf; Sales-Baptista, Elvira; Araújo, Susana S.; Almeida, André M.

    2016-01-01

    The repertoires of bitter-taste receptor (T2R) gene have been described for several animal species, but these data are still scarce for Lagomorphs. The aim of the present work is to identify potential repertoires of T2R in several Lagomorph species, covering a wide geographical distribution. We studied these genes in Lepus timidus, L. europaeus, Oryctolagus cuniculus algirus, Romerolagus diazi, and Sylvilagus floridanus, using O. cuniculus cuniculus as control species for PCR and DNA sequencing. We studied the identities of the DNA sequences and built the corresponding phylogenetic tree. Sequencing was successful for both subspecies of O. cuniculus for all T2R genes studied, for five genes in Lepus, and for three genes in R. diazi and S. floridanus. We describe for the first time the partial repertoires of T2R genes for Lagomorphs species, other than the common rabbit. Our phylogenetic analyses indicate that sequence proximity levels follow the established taxonomic classification. PMID:27092177

  14. Identification of a Bitter-Taste Receptor Gene Repertoire in Different Lagomorphs Species.

    PubMed

    Ferreira, Ana M; Marques, Andreia T; Fontanesi, Luca; Thulin, Carl-Gustaf; Sales-Baptista, Elvira; Araújo, Susana S; Almeida, André M

    2016-01-01

    The repertoires of bitter-taste receptor (T2R) gene have been described for several animal species, but these data are still scarce for Lagomorphs. The aim of the present work is to identify potential repertoires of T2R in several Lagomorph species, covering a wide geographical distribution. We studied these genes in Lepus timidus, L. europaeus, Oryctolagus cuniculus algirus, Romerolagus diazi, and Sylvilagus floridanus, using O. cuniculus cuniculus as control species for PCR and DNA sequencing. We studied the identities of the DNA sequences and built the corresponding phylogenetic tree. Sequencing was successful for both subspecies of O. cuniculus for all T2R genes studied, for five genes in Lepus, and for three genes in R. diazi and S. floridanus. We describe for the first time the partial repertoires of T2R genes for Lagomorphs species, other than the common rabbit. Our phylogenetic analyses indicate that sequence proximity levels follow the established taxonomic classification. PMID:27092177

  15. Reappraisal of the serotonin 5-HT(1B) receptor gene in alcoholism: of mice and men.

    PubMed

    Gorwood, Philip; Aissi, Franck; Batel, Philippe; Adès, Jean; Cohen-Salmon, Charles; Hamon, Michel; Boni, Claudette; Lanfumey, Laurence

    2002-01-01

    Because pharmacological and genetic data supported the idea that serotonin receptors of the 5-HT(1B) type can play a modulatory role in alcohol consumption in both human and rodents, the 5-HT(1B) receptor gene is considered as a candidate gene for alcohol dependence. However, contradictory results have been reported as a positive association between alcohol dependence, and either the 861C or the 861G allele of the G861C polymorphism of the 5-HT(1B) receptor gene can be found in the literature. Further investigations in a population of 136 male alcoholics compared with 72 male control subjects demonstrated that none of these alleles was actually associated with alcohol dependence. In addition, in contrast with previous results of the literature, ethanol intake under free choice conditions (i.e., ethanol solution vs. water) was found to be similar in 5-HT(1B)-/- knock mice and paired wild-type controls. The 5-HT(1B) receptor gene may thus not be a key component in the genetic background underlying alcohol dependence in human and alcohol preference in rodents, although these results should be considered as preliminary according to the small size of our sample. PMID:11827742

  16. Methylation of the Glucocorticoid Receptor Gene Promoter in Preschoolers: Links with Internalizing Behavior Problems

    ERIC Educational Resources Information Center

    Parade, Stephanie H.; Ridout, Kathryn K.; Seifer, Ronald; Armstrong, David A.; Marsit, Carmen J.; McWilliams, Melissa A.; Tyrka, Audrey R.

    2016-01-01

    Accumulating evidence suggests that early adversity is linked to methylation of the glucocorticoid receptor (GR) gene, "NR3C1," which is a key regulator of the hypothalamic-pituitary-adrenal axis. Yet no prior work has considered the contribution of methylation of "NR3C1" to emerging behavior problems and psychopathology in…

  17. Distribution of cells responsive to 5-HT6 receptor antagonist-induced hypophagia

    PubMed Central

    Garfield, Alastair S.; Burke, Luke K.; Shaw, Jill; Evans, Mark L.; Heisler, Lora K.

    2014-01-01

    The central 5-hydroxytryptamine (5-HT; serotonin) system is well established as an important regulator of appetite and continues to remain a focus of obesity research. While much emphasis has focussed on the 5-HT2C receptor (5-HT2CR) in 5-HT's anorectic effect, pharmacological manipulation of the 5-HT6 receptor (5-HT6R) also reduces appetite and body weight and may be amenable to obesity treatment. However, the neurological circuits that underlie 5-HT6R-induced hypophagia remain to be identified. Using c-fos immunoreactivity (FOS-IR) as a marker of neuronal activation, here we mapped the neuroanatomical targets activated by an anorectic dose of the 5-HT6R antagonist SB-399885 throughout the brain. Furthermore, we quantified SB-399855 activated cells within brain appetitive nuclei, the hypothalamus, dorsal raphe nucleus (DRN) and nucleus of the solitary tract (NTS). Our results reveal that 5-HT6R antagonist-induced hypophagia is associated with significantly increased neuronal activation in two nuclei with an established role in the central control of appetite, the paraventricular nucleus of the hypothalamus (PVH) and the NTS. In contrast, no changes in FOS-IR were observed between treatment groups within other hypothalamic nuclei or DRN. The data presented here provide a first insight into the neural circuitry underlying 5-HT6R antagonist-induced appetite suppression and highlight the PVH and NTS in the coordination of 5-HT6R hypophagia. PMID:24566060

  18. Comparison of synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors and their gene expression in response to feeding in Ixodes scapularis (Ixodidae) vs. Ornithodoros turicata (Argasidae).

    PubMed

    Egekwu, N; Sonenshine, D E; Garman, H; Barshis, D J; Cox, N; Bissinger, B W; Zhu, J; M Roe, R

    2016-02-01

    Illumina GAII high-throughput sequencing was used to compare expressed genes for female synganglion neuropeptides, neuropeptide receptors and neurotransmitter receptors of the soft tick Ornithodoros turicata with the hard tick Ixodes scapularis. Gene ontology molecular level three mapping revealed no significant differences amongst the same categories represented in O. turicata and I. scapularis. Transcripts predicting 22 neuropeptides or their receptors in the O. turicata synganglion were similar to annotations for 23 neuropeptides or receptors previously identified from I scapularis, with minor exceptions. A transcript predicting ecdysis triggering hormone receptor was identified in O. turicata; transcripts encoding for proprotein convertase and glycoprotein B were identified in both species. Transcripts predicting the same neurotransmitter receptors were found in the synganglion of both species. Gene expression of the transcripts showed numerous differences in response to feeding. Major differences were observed in expression of genes believed important in regulating slow vs. rapid feeding, blood water elimination, cuticle synthesis plasticity and in signalling reproductive activity. Although the glutamate receptor was strongly upregulated in both species, the gamma aminobutyric acid receptor, which inhibits glutamate, was upregulated significantly only in I. scapularis. These differences are consistent with the slow vs. rapid action of the pharyngeal pump in the two species. PMID:26783017

  19. Somatic and germline mutations of the TSH receptor gene in thyroid diseases

    SciTech Connect

    Van Sande, J.; Parma, J.; Tonacchera, M.

    1995-09-01

    Under physiological circumstances, thyrotropin (TSH) is the primary hormone that controls thyroid function and growth. TSH acts by binding to its receptor at the basolateral membrane of thyroid follicular cells. The TSH receptor is a member of the large family of G protein-coupled receptors, which share a similar structural pattern: seven transmembrane segments connected by three extra and three intracellular loops. Together with the receptors for other glycoprotein hormones LH/CG and FSH, the TSH receptor has a long aminoterminal domain that has been shown to encode the specificity for hormone recognition and binding. The G protein-coupled receptors share a common mode of intracellular signalling: They control the on/off state of a variety of trimeric G proteins (G{alpha}{beta}{gamma}) by stimulating the exchange of GDP for GTP on the {alpha} subunit (G{alpha}). The result is that G{alpha} or G{beta}{gamma}, after dissociation of the trimer, will interact with downstream effectors of the receptor. In the case of the TSH receptor, the main G protein involved is Gs, which activates adenylyl cyclase via Gs{alpha}. In some species, including man, the TSH receptor is also capable of activating phospholipase C (via Gq), thus stimulating the production of diacylglycerol and inositolphosphate (IP{sub 3}). However, higher concentrations of TSH are required to activate phospholipase C, compared with adenylyl cyclase. As a consequence, the main second messenger of TSH effects on the human thyroid is cyclic AMP. The present review will summarize recent findings identifying mutations of the TSH receptor gene as a cause for thyroid diseases. 59 refs., 4 figs.

  20. Meiotic recombination generates rich diversity in NK cell receptor genes, alleles, and haplotypes.

    PubMed

    Norman, Paul J; Abi-Rached, Laurent; Gendzekhadze, Ketevan; Hammond, John A; Moesta, Achim K; Sharma, Deepti; Graef, Thorsten; McQueen, Karina L; Guethlein, Lisbeth A; Carrington, Christine V F; Chandanayingyong, Dasdayanee; Chang, Yih-Hsin; Crespí, Catalina; Saruhan-Direskeneli, Güher; Hameed, Kamran; Kamkamidze, Giorgi; Koram, Kwadwo A; Layrisse, Zulay; Matamoros, Nuria; Milà, Joan; Park, Myoung Hee; Pitchappan, Ramasamy M; Ramdath, D Dan; Shiau, Ming-Yuh; Stephens, Henry A F; Struik, Siske; Tyan, Dolly; Verity, David H; Vaughan, Robert W; Davis, Ronald W; Fraser, Patricia A; Riley, Eleanor M; Ronaghi, Mostafa; Parham, Peter

    2009-05-01

    Natural killer (NK) cells contribute to the essential functions of innate immunity and reproduction. Various genes encode NK cell receptors that recognize the major histocompatibility complex (MHC) Class I molecules expressed by other cells. For primate NK cells, the killer-cell immunoglobulin-like receptors (KIR) are a variable and rapidly evolving family of MHC Class I receptors. Studied here is KIR3DL1/S1, which encodes receptors for highly polymorphic human HLA-A and -B and comprises three ancient allelic lineages that have been preserved by balancing selection throughout human evolution. While the 3DS1 lineage of activating receptors has been conserved, the two 3DL1 lineages of inhibitory receptors were diversified through inter-lineage recombination with each other and with 3DS1. Prominent targets for recombination were D0-domain polymorphisms, which modulate enhancer function, and dimorphism at position 283 in the D2 domain, which influences inhibitory function. In African populations, unequal crossing over between the 3DL1 and 3DL2 genes produced a deleted KIR haplotype in which the telomeric "half" was reduced to a single fusion gene with functional properties distinct from its 3DL1 and 3DL2 parents. Conversely, in Eurasian populations, duplication of the KIR3DL1/S1 locus by unequal crossing over has enabled individuals to carry and express alleles of all three KIR3DL1/S1 lineages. These results demonstrate how meiotic recombination combines with an ancient, preserved diversity to create new KIR phenotypes upon which natural selection acts. A consequence of such recombination is to blur the distinction between alleles and loci in the rapidly evolving human KIR gene family. PMID:19411600

  1. Meiotic recombination generates rich diversity in NK cell receptor genes, alleles, and haplotypes

    PubMed Central

    Norman, Paul J.; Abi-Rached, Laurent; Gendzekhadze, Ketevan; Hammond, John A.; Moesta, Achim K.; Sharma, Deepti; Graef, Thorsten; McQueen, Karina L.; Guethlein, Lisbeth A.; Carrington, Christine V.F.; Chandanayingyong, Dasdayanee; Chang, Yih-Hsin; Crespí, Catalina; Saruhan-Direskeneli, Güher; Hameed, Kamran; Kamkamidze, Giorgi; Koram, Kwadwo A.; Layrisse, Zulay; Matamoros, Nuria; Milà, Joan; Park, Myoung Hee; Pitchappan, Ramasamy M.; Ramdath, D. Dan; Shiau, Ming-Yuh; Stephens, Henry A.F.; Struik, Siske; Tyan, Dolly; Verity, David H.; Vaughan, Robert W.; Davis, Ronald W.; Fraser, Patricia A.; Riley, Eleanor M.; Ronaghi, Mostafa; Parham, Peter

    2009-01-01

    Natural killer (NK) cells contribute to the essential functions of innate immunity and reproduction. Various genes encode NK cell receptors that recognize the major histocompatibility complex (MHC) Class I molecules expressed by other cells. For primate NK cells, the killer-cell immunoglobulin-like receptors (KIR) are a variable and rapidly evolving family of MHC Class I receptors. Studied here is KIR3DL1/S1, which encodes receptors for highly polymorphic human HLA-A and -B and comprises three ancient allelic lineages that have been preserved by balancing selection throughout human evolution. While the 3DS1 lineage of activating receptors has been conserved, the two 3DL1 lineages of inhibitory receptors were diversified through inter-lineage recombination with each other and with 3DS1. Prominent targets for recombination were D0-domain polymorphisms, which modulate enhancer function, and dimorphism at position 283 in the D2 domain, which influences inhibitory function. In African populations, unequal crossing over between the 3DL1 and 3DL2 genes produced a deleted KIR haplotype in which the telomeric “half” was reduced to a single fusion gene with functional properties distinct from its 3DL1 and 3DL2 parents. Conversely, in Eurasian populations, duplication of the KIR3DL1/S1 locus by unequal crossing over has enabled individuals to carry and express alleles of all three KIR3DL1/S1 lineages. These results demonstrate how meiotic recombination combines with an ancient, preserved diversity to create new KIR phenotypes upon which natural selection acts. A consequence of such recombination is to blur the distinction between alleles and loci in the rapidly evolving human KIR gene family. PMID:19411600

  2. Expression of somatostatin receptor genes and acetylcholine receptor development in rat skeletal muscle during postnatal development.

    PubMed

    Peng, M; Conforti, L; Millhorn, D E

    1998-05-01

    Our laboratory reported previously that somatostatin (SST) is transiently expressed in rat motoneurons during the first 14 days after birth. We investigated the possibility that the SST receptor (SSTR) is expressed in skeletal muscle. We found that two of the five subtypes of SSTR (SSTR3 and SSTR4) are expressed in skeletal muscle with a time course that correlates with the transient expression of SST in motoneurons. In addition, SSTR2A is expressed from birth to adulthood in skeletal muscle. Both SSTR2A and SSTR4 are also expressed in L6 cells, a skeletal muscle cell line. Somatostatin acting through its receptors has been shown to stimulate tyrosine phosphatase activity in a number of different tissues. We found that several proteins (50, 65, 90, 140, 180 and 200 kDa) exhibited a reduced degree of tyrosine phosphorylation following SST treatment. Inhibition of tyrosine phosphatase activity with sodium orthovanadate increased expression of the nicotinic acetyl-choline receptor (nAChR) epsilon subunit mRNA by three fold. Somatostatin reversed the elevated epsilon mRNA following orthovanadate treatment. These findings show that SSTR is expressed in skeletal muscle and that SST acting via the SSTR regulates tyrosine phosphorylation and expression of the epsilon subunit of the AChR in the rat skeletal muscle. PMID:9852305

  3. 5-HT2 receptor affinity, docking studies and pharmacological evaluation of a series of 1,3-disubstituted thiourea derivatives.

    PubMed

    Bielenica, Anna; Kędzierska, Ewa; Koliński, Michał; Kmiecik, Sebastian; Koliński, Andrzej; Fiorino, Ferdinando; Severino, Beatrice; Magli, Elisa; Corvino, Angela; Rossi, Ilaria; Massarelli, Paola; Kozioł, Anna E; Sawczenko, Aleksandra; Struga, Marta

    2016-06-30

    A series of 10 thiourea derivatives have been synthesized by the reaction of aromatic amine with a substituted aryl (compounds 1-3, 6-8) and alkylphenyl (4, 5, 9, 10) isothiocyanates. Their in vitro and in vivo pharmacological properties were studied. Among the evaluated compounds, two displayed very high affinity for the 5-HT2A receptor (1-0.043 nM and 5-0.6 nM), being selective over the 5-HT2C receptor. Derivatives 3, 5, 9, 10 by 70-89% diminished L-5-HTP-induced head twitch episodes. Compounds 1 and 5 as the 5-HT2A receptor antagonists produced a dose-dependent decrease in the number of DOI-elicited HTR. Compounds 1-5 strongly reduced amphetamine-evoked hyperactivity in rodents. In another test, 1 and 2 caused hyperthermia in mice, whereas 9 and 10 led to hypothermia. Antinociceptive and anticonvulsant properties of selected derivatives were demonstrated. Molecular docking studies using a homology model of 5-HT2A revealed a significant role of hydrogen bonds between both thiourea NH groups and Asp155/Tyr370 residues, as well as π-π interaction with Phe339. PMID:27061981

  4. Identification of potential regulatory motifs in odorant receptor genes by analysis of promoter sequences

    PubMed Central

    Michaloski, Jussara S.; Galante, Pedro A.F.

    2006-01-01

    Mouse odorant receptors (ORs) are encoded by >1000 genes dispersed throughout the genome. Each olfactory neuron expresses one single OR gene, while the rest of the genes remain silent. The mechanisms underlying OR gene expression are poorly understood. Here, we investigated if OR genes share common cis-regulatory sequences in their promoter regions. We carried out a comprehensive analysis in which the upstream regions of a large number of OR genes were compared. First, using RLM-RACE, we generated cDNAs containing the complete 5′-untranslated regions (5′-UTRs) for a total number of 198 mouse OR genes. Then, we aligned these cDNA sequences to the mouse genome so that the 5′ structure and transcription start sites (TSSs) of the OR genes could be precisely determined. Sequences upstream of the TSSs were retrieved and browsed for common elements. We found DNA sequence motifs that are overrepresented in the promoter regions of the OR genes. Most motifs resemble O/E-like sites and are preferentially localized within 200 bp upstream of the TSSs. Finally, we show that these motifs specifically interact with proteins extracted from nuclei prepared from the olfactory epithelium, but not from brain or liver. Our results show that the OR genes share common promoter elements. The present strategy should provide information on the role played by cis-regulatory sequences in OR gene regulation. PMID:16902085

  5. Genomic imprinting of the human serotonin-receptor (HTR2) gene involved in development of retinoblastoma

    SciTech Connect

    Kato, Mitsuo V.; Nagayoshi, Mariko; Shimuzu, Takashi

    1996-11-01

    Epidemiological and genetic studies of retinoblastoma (RB) suggested that imprinted genes might be genetically linked to the RB gene. In this study, we found that the human serotonin-receptor, HTR2, gene, which had been mapped nearby the RB gene on chromosome 13, was expressed only in human fibroblasts with a maternal allele and not in cells without a maternal allele. The 5{prime} genomic region of the human HTR2 gene was cloned by PCR-mediated method. Only the 5{prime} region of the gene was methylated in cells with the maternal gene, and it was not methylated in cells without the maternal gene. A polymorphism of PvuII site of the gene was also found and useful for the segregation analysis in a family of an RB patient and for analysis of loss of heterozygosity on chromosome 13 in tumor and its parental origin. These results suggest that the human HTR2 gene might be affected by genomic imprinting and that exclusive expression of the maternal HTR2 gene may be associated with the delayed occurrence of RB, which had lost the maternal chromosome 13. 33 refs., 5 figs., 2 tabs.

  6. The T cell receptor beta genes of Xenopus.

    PubMed

    Chretien, I; Marcuz, A; Fellah, J; Charlemagne, J; Du Pasquier, L

    1997-03-01

    cDNA of the T cell receptor beta (TCRB) have been isolated from the anuran amphibian Xenopus and they show strong structural homology to TCRB sequences of other vertebrates. Ten BV families, two D segments, ten J segments, and a single C region have been defined so far. Each V family consists of one to two members per haploid genome. A unique feature of the Xenopus TCRB constant region is the lack of N-linked carbohydrate glycosylation sites. The recombination signal sequences suggest that the mechanism of rearrangements are identical to those of mammals. The locus is inherited in a diploid manner despite the pseudotetraploidy of the Xenopus laevis and X. gilli used in this study. PMID:9079820

  7. Effects of prenatal and postnatal depression, and maternal stroking, at the glucocorticoid receptor gene.

    PubMed

    Murgatroyd, C; Quinn, J P; Sharp, H M; Pickles, A; Hill, J

    2015-01-01

    In animal models, prenatal and postnatal stress is associated with elevated hypothalamic-pituitary axis (HPA) reactivity mediated via altered glucocorticoid receptor (GR) gene expression. Postnatal tactile stimulation is associated with reduced HPA reactivity mediated via increased GR gene expression. In this first study in humans to examine the joint effects of prenatal and postnatal environmental exposures, we report that GR gene (NR3C1) 1-F promoter methylation in infants is elevated in the presence of increased maternal postnatal depression following low prenatal depression, and that this effect is reversed by self-reported stroking of the infants by their mothers over the first weeks of life. PMID:25942041

  8. Polo-like kinase 2 gene expression is regulated by the orphan nuclear receptor estrogen receptor-related receptor gamma (ERRgamma).

    PubMed

    Park, Yun-Yong; Kim, Seok-Ho; Kim, Yong Joo; Kim, Sun Yee; Lee, Tae-Hoon; Lee, In-Kyu; Park, Seung Bum; Choi, Hueng-Sik

    2007-10-12

    Estrogen receptor-related receptor gamma (ERRgamma) is a member of the nuclear receptor family of transcriptional activators. To date, the target genes and physiological functions of ERRgamma are not well understood. In the current study, we identify that Plk2 is a novel target of ERRgamma. Northern blot analysis showed that overexpression of ERRgamma induced Plk2 expression in cancer cell lines. ERRgamma activated the Plk2 gene promoter, and deletion and mutational analysis of the Plk2 promoter revealed that the ERRgamma-response region is located between nucleotides (nt) -2327 and -2229 and -441 and -432 (relative to the transcriptional start site at +1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis demonstrated that ERRgamma binds directly to the Plk2 promoter. Overexpression of ERRgamma in the presence of the mitotic inhibitor nocodazole significantly decreased apoptosis, and induced S-phase cell cycle progression through the induction of Plk2 expression. Taken together, these results demonstrated that Plk2 is a novel target of ERRgamma, and suggest that this interaction is crucial for cancer cell proliferation. PMID:17706602

  9. Neuronal-type alpha-bungarotoxin receptors and the alpha 5-nicotinic receptor subunit gene are expressed in neuronal and nonneuronal human cell lines.

    PubMed Central

    Chini, B; Clementi, F; Hukovic, N; Sher, E

    1992-01-01

    alpha-Bungarotoxin (alpha Bgtx) is a toxin known to interact with muscle nicotinic receptors and with some neuronal nicotinic receptors. We show that alpha Bgtx binding sites are also expressed in nonmuscle and nonneuronal human cells, including small cell lung carcinoma and several epithelial cell lines. These receptors are immunologically related to the alpha Bgtx receptors of unknown function described in the nervous system and in the IMR32 neuroblastoma cell line and are distinct from muscle nicotinic receptors. We have also cloned from IMR32 cells the human alpha 5-nicotinic receptor subunit, which is supposed to participate in the formation of alpha Bgtx receptors. Transcripts corresponding to the alpha 5-subunit gene were found not only in neuroblastoma cells but also in all the cell lines expressing alpha Bgtx receptors, with the exception of the TE671 cell line, whose nicotinic receptor subunits are of the muscle type. We conclude that both alpha Bgtx receptors and the alpha 5-nicotinic subunit gene are not neuron-specific, as previously thought, but are expressed in a number of human cell lines of various origin. Images PMID:1542648

  10. Identification and evolution of two insulin receptor genes involved in Tribolium castaneum development and reproduction.

    PubMed

    Sang, Ming; Li, Chengjun; Wu, Wei; Li, Bin

    2016-07-10

    The insulin and insulin-like signaling (IIS) pathway exists in a wide range of organisms from mammals to invertebrates and regulates several vital physiological functions. A phylogenetic analysis have indicated that insulin receptors have been duplicated at least twice among vertebrates, whereas only one duplication occurred in insects before the differentiation of Coleoptera, Hymenoptera, and Hemiptera. Thus, we cloned two putative insulin receptor genes, T.cas-ir1 and T.cas-ir2, from T. castaneum and determined that T.cas-ir1 is most strongly expressed during the late adult and early pupal stages, whereas T.cas-ir2 is most strongly expressed during the late larval stage. We found that larval RNAi against T.cas-ir1 and T.cas-ir2 causes 100% and 42.0% insect death, respectively, and that parental RNAi against T.cas-ir1 and T.cas-ir2 leads to 100% and 33.3% reductions in beetle fecundity, respectively. The hatching rate of ds-ir2 insects was 66.2%. Moreover, RNAi against these two genes increased the expression of the pkc, foxo, jnk, cdc42, ikk, and mekk genes but decreased erk gene expression. Despite these similarities, these two genes act via distinct regulatory pathways. These results indicate that these two receptors have functionally diverged with respect to the development and reproduction of T. castaneum, even though they retain some common regulatory signaling pathways. PMID:26923187

  11. Distinct, genome-wide, gene-specific selectivity patterns of four glucocorticoid receptor coregulators.

    PubMed

    Wu, Dai-Ying; Ou, Chen-Yin; Chodankar, Rajas; Siegmund, Kimberly D; Stallcup, Michael R

    2014-01-01

    Glucocorticoids are a class of steroid hormones that bind to and activate the glucocorticoid receptor (GR), which then positively or negatively regulates transcription of many genes that govern multiple important physiological pathways such as inflammation and metabolism of glucose, fat and bone. The remodeling of chromatin and regulated assembly or disassembly of active transcription complexes by GR and other DNA-binding transcription factors is mediated and modulated by several hundred transcriptional coregulator proteins. Previous studies focusing on single coregulators demonstrated that each coregulator is required for regulation of only a subset of all the genes regulated by a steroid hormone. We hypothesized that the gene-specific patterns of coregulators may correspond to specific physiological pathways such that different coregulators modulate the pathway-specificity of hormone action, thereby providing a mechanism for fine tuning of the hormone response. We tested this by direct comparison of multiple coregulators, using siRNA to deplete the products of four steroid hormone receptor coregulator genes (CCAR1, CCAR2, CALCOCO1 and ZNF282). Global analysis of glucocorticoid-regulated gene expression after siRNA mediated depletion of coregulators confirmed that each coregulator acted in a selective and gene-specific manner and demonstrated both positive and negative effects on glucocorticoid-regulated expression of different genes. We identified several classes of hormone-regulated genes based on the effects of coregulator depletion. Each coregulator supported hormonal regulation of some genes and opposed hormonal regulation of other genes (coregulator-modulated genes), blocked hormonal regulation of a second class of genes (coregulator-blocked genes), and had no effect on hormonal regulation of a third gene class (coregulator-independent genes). In spite of previously demonstrated physical and functional interactions among these four coregulators, the majority

  12. A polymorphism in the nuclear receptor coactivator 7 gene and breast cancer susceptibility.

    PubMed

    Süllner, Julia; Lattrich, Claus; Häring, Julia; Görse, Regina; Ortmann, Olaf; Treeck, Oliver

    2012-01-01

    The nuclear receptor coactivator 7 (NCoA7) gene codes for an estrogen receptor-associated protein that plays a significant role in the cellular response to estrogens. Given that NCoA7 is expressed in the mammary gland, alterations in this gene may affect breast cancer risk. In this study, we compared the genotype and allele frequencies of the missense single nucleotide polymorphism (SNP) rs1567, located in the coding region of the NCoA7 gene and resulting in an amino acid exchange from asparagine to glutamine, in 305 women with sporadic breast cancer and 346 women without any malignancy. Statistical analysis of the observed frequencies did not reveal a significant difference between the cancer and control groups, nor did a comparison between histological breast cancer subgroups. In conclusion, the results of our phenotype-genotype association study indicate that NCoA7 SNP rs1567 does not affect breast cancer susceptibility. PMID:22740868

  13. A polymorphism in the nuclear receptor coactivator 7 gene and breast cancer susceptibility

    PubMed Central

    SÜLLNER, JULIA; LATTRICH, CLAUS; HÄRING, JULIA; GÖRSE, REGINA; ORTMANN, OLAF; TREECK, OLIVER

    2012-01-01

    The nuclear receptor coactivator 7 (NCoA7) gene codes for an estrogen receptor-associated protein that plays a significant role in the cellular response to estrogens. Given that NCoA7 is expressed in the mammary gland, alterations in this gene may affect breast cancer risk. In this study, we compared the genotype and allele frequencies of the missense single nucleotide polymorphism (SNP) rs1567, located in the coding region of the NCoA7 gene and resulting in an amino acid exchange from asparagine to glutamine, in 305 women with sporadic breast cancer and 346 women without any malignancy. Statistical analysis of the observed frequencies did not reveal a significant difference between the cancer and control groups, nor did a comparison between histological breast cancer subgroups. In conclusion, the results of our phenotype-genotype association study indicate that NCoA7 SNP rs1567 does not affect breast cancer susceptibility. PMID:22740868

  14. Polymorphism in the melatonin receptor gene in buffalo populations of the Brazilian Amazon.

    PubMed

    Machado, E B; Souza, B B; Guimarães, R C; Azevedo, J S N; Gonçalves, E C; Ribeiro, H F L; Rolim Filho, S T; Silva Filho, E

    2016-01-01

    Buffalo farming in Brazil is increasing, as is the challenge of identifying molecular markers that will improve productivity. Therefore, the aim of this study was to analyze single nucleotide polymorphisms of the receptor gene for the hormone melatonin in buffaloes from northern Brazil by polymerase chain reactions (PCRs) and restriction fragment length polymorphism assays. The PCR products exhibited a cutting point for HpaI at the 318th position of the gene, indicating a transition substitution (T↔C). This substitution was synonymic, and did not alter the stability of the mRNA structure. Allelic and genotypic frequencies differed between the populations studied, and all of the populations demonstrated endogamy and were in Hardy-Weinberg equilibrium. Therefore, the HpaI restriction marker in the melatonin receptor gene cannot be used for genetic improvement, but is an excellent marker for population genetic studies. PMID:27173294

  15. NMDA receptor gene variations as modifiers in Huntington disease: a replication study.

    PubMed

    Saft, Carsten; Epplen, Jörg T; Wieczorek, Stefan; Landwehrmeyer, G Bernhard; Roos, Raymund A C; de Yebenes, Justo Garcia; Dose, Matthias; Tabrizi, Sarah J; Craufurd, David; Arning, Larissa

    2011-01-01

    Several candidate modifier genes which, in addition to the pathogenic CAG repeat expansion, influence the age at onset (AO) in Huntington disease (HD) have already been described. The aim of this study was to replicate association of variations in the N-methyl D-aspartate receptor subtype genes GRIN2A and GRIN2B in the "REGISTRY" cohort from the European Huntington Disease Network (EHDN). The analyses did replicate the association reported between the GRIN2A rs2650427 variation and AO in the entire cohort. Yet, when subjects were stratified by AO subtypes, we found nominally significant evidence for an association of the GRIN2A rs1969060 variation and the GRIN2B rs1806201 variation. These findings further implicate the N-methyl D-aspartate receptor subtype genes as loci containing variation associated with AO in HD. PMID:21989477

  16. Short-chain fructooligosaccharide regulates hepatic peroxisome proliferator-activated receptor alpha and farnesoid X receptor target gene expression in rats.

    PubMed

    Fukasawa, Tomoyuki; Kamei, Asuka; Watanabe, Yuki; Koga, Jinichiro; Abe, Keiko

    2010-06-01

    Prebiotic short-chain fructooligosaccharide (scFOS) is known to have various beneficial effects in humans and animals. Using a nutrigenomic approach, we have previously identified marker genes for the intestinal immunomodulatory and lipid-lowering effects of scFOS. The present study aimed to predict novel physiological effects of scFOS through nutrigenomic analyses. DNA microarray analysis revealed that administration of scFOS changed the expression of the nuclear receptors peroxisome proliferator-activated receptor alpha (PPARalpha) and farnesoid X receptor (FXR) target genes in the rat liver. Gene expression analysis provided some new interesting hypotheses, for instance, the possible improvement of bile secretion via FXR target genes, and regulation of amino acid metabolism and the urea cycle via PPARalpha and/or FXR target genes. Our findings clearly indicated that nutrigenomics may make it possible to screen for novel physiological effects of dietary ingredients. PMID:20465258

  17. Smallest bitter taste receptor (T2Rs) gene repertoire in carnivores.

    PubMed

    Hu, Ling-Ling; Shi, Peng

    2013-06-01

    Bitter taste reception is presumably associated with dietary selection, preventing animals from ingesting potentially harmful compounds. Accordingly, carnivores, who encounter these toxic substances less often, should have fewer genes associated with bitter taste reception compared with herbivores and omnivores. To investigate the genetic basis of bitter taste reception, we confirmed bitter taste receptor (T2R) genes previously found in the genome sequences of two herbivores (cow and horse), two omnivores (mouse and rat) and one carnivore (dog). We also identified, for the first time, the T2R repertoire from the genome of other four carnivore species (ferret, giant panda, polar bear and cat) and detected 17-20 bitter receptor genes from the five carnivore genomes, including 12-16 intact genes, 0-1 partial but putatively functional genes, and 3-8 pseudogenes. Both the intact T2R genes and the total T2R gene number among carnivores were the smallest among the tested species, supporting earlier speculations that carnivores have fewer T2R genes, herbivores an intermediate number, and omnivores the largest T2R gene repertoire. To further explain the genetic basis for this disparity, we constructed a phylogenetic tree, which showed most of the T2R genes from the five carnivores were one-to-one orthologs across the tree, suggesting that carnivore T2Rs were conserved among mammals. Similarly, the small carnivore T2R family size was likely due to rare duplication events. Collectively, these results strengthen arguments for the connection between T2R gene family size, diet and habit. PMID:23776004

  18. Structural and phylogenetic analysis of the MHC class I-like Fc receptor gene

    SciTech Connect

    Kandil, Eman; Ishibashi, Teruo; Kasahara, Masanori

    1995-06-01

    The intestinal epithelium of neonatal mice and rats expresses an Fc receptor that mediates selective uptake of IgG in mothers`milk. This receptor (FcRn), which helps newborn animals to acquire passive immunity, is an MHC class I-like heterodimer made up of a heavy chain and {beta}{sub 2}-microglobulin. In the present study, we determined the genomic structure of a mouse gene (FcRn) encoding the heavy of FcRn. The overall exon-intron organization of the Fcrn gene was similar to that of the Fcrn gene, thus providing structural evidence that Fcrn os a bona fide class I gene. The 5{prime}-flanking region of the Fcrn gene contained the binding motifs for two cytokine-inducible transcription factors, NF-IL6 and NF1. However, regulatory elements found in MHC class I genes (enhancer A, enhancer B, and the IFN response element) were absent. Phylogenetic tree analysis suggested that, like the MICA, AZGP1, and CD1 genes, the Fcrn gene diverged form MHC class I genes after the emergence of amphibians but before the split of placental and marsupial mammals. Consistent with this result, Southern blot analysis with a mouse Fcrn cDNA probe detected cross-hybridizing bands in various mammalian species and chickens. Sequence analysis of the Fcrn gene isolated from eight mouse strains showed that the membrane-distal domain of FcRn has at least three amino acid variants. The fact that Fcrn is a single copy gene indicates that it is expressed in both the neonatal intestine and the fetal yolk sac. 74 refs., 7 figs., 2 tabs.

  19. Inflammatory and steroid receptor gene methylation in the human amnion and decidua.

    PubMed

    Mitchell, Carolyn M; Sykes, Shane D; Pan, Xin; Pringle, Kirsty G; Lumbers, Eugenie R; Hirst, Jonathan J; Zakar, Tamas

    2013-04-01

    Correct timing of parturition requires inflammatory gene activation in the gestational tissues at term and repression during pregnancy. Promoter methylation at CpG dinucleotides represses gene activity; therefore, we examined the possibility that DNA methylation is involved in the regulation of labour-associated genes in human pregnancy. Amnion and decidua were collected at 11-17 weeks of gestation and at term following elective Caesarean delivery or spontaneous labour. Methylation of the inflammatory genes PTGS2, BMP2, NAMPT and CXCL2 was analysed using the Methyl-Profiler PCR System and bisulphite sequencing. Methylation of the glucocorticoid, progesterone and oestrogen receptor genes, involved in the hormonal regulation of gestational tissue function, and the expression of the DNA methyltransferases DNMT1, -3A and -3B were also determined. Variable proportions of inflammatory and steroid receptor gene copies, to a maximum of 50.9%, were densely methylated in both tissues consistent with repression. Densely methylated copy proportions were significantly different between genes showing no relationship with varying expression during pregnancy, between tissues and in individuals. Methylated copy proportions of all genes in amnion and most genes in decidua were highly correlated in individuals. DNMT1 and -3A were expressed in both tissues with significantly higher levels in the amnion at 11-17 weeks than at term. We conclude that the unmethylated portion of gene copies is responsible for the full range of regulated expression in the amnion and decidua during normal pregnancy. Dense methylation of individually variable gene copy proportions happens in the first trimester amnion influenced by sequence context and affected strongly by individual circumstances. PMID:23393306

  20. Stepwise loss of motilin and its specific receptor genes in rodents.

    PubMed

    He, Jing; Irwin, David M; Chen, Rui; Zhang, Ya-Ping

    2010-01-01

    Specific interactions among biomolecules drive virtually all cellular functions and underlie phenotypic complexity and diversity. Biomolecules are not isolated particles, but are elements of integrated interaction networks, and play their roles through specific interactions. Simultaneous emergence or loss of multiple interacting partners is unlikely. If one of the interacting partners is lost, then what are the evolutionary consequences for the retained partner? Taking advantages of the availability of the large number of mammalian genome sequences and knowledge of phylogenetic relationships of the species, we examined the evolutionary fate of the motilin (MLN) hormone gene, after the pseudogenization of its specific receptor, MLN receptor (MLNR), on the rodent lineage. We speculate that the MLNR gene became a pseudogene before the divergence of the squirrel and other rodents about 75 mya. The evolutionary consequences for the MLN gene were diverse. While an intact open reading frame for the MLN gene, which appears functional, was preserved in the kangaroo rat, the MLN gene became inactivated independently on the lineages leading to the guinea pig and the common ancestor of the mouse and rat. Gain and loss of specific interactions among biomolecules through the birth and death of genes for biomolecules point to a general evolutionary dynamic: gene birth and death are widespread phenomena in genome evolution, at the genetic level; thus, once mutations arise, a stepwise process of elaboration and optimization ensues, which gradually integrates and orders mutations into a coherent pattern. PMID:19696113

  1. Organization of the mouse 5-HT3 receptor gene and functional expression of two splice variants.

    PubMed

    Werner, P; Kawashima, E; Reid, J; Hussy, N; Lundström, K; Buell, G; Humbert, Y; Jones, K A

    1994-10-01

    The structure of the mouse 5-HT3 receptor gene, 5-HT3R-A, is most similar to nicotinic acetylcholine receptor (nAChR) genes, in particular to the gene encoding the neuronal nAChR subunit alpha 7. These genes share among other things the location of three adjacent introns, suggesting that 5-HT3R-A and nAChR genes arose from a common precursor gene. The alternative use of two adjacent splice acceptor sites in intron 8 creates, in addition to the original 5-HT3R-A cDNA (5-HT3R-AL), a shorter isoform (5-HT3R-AS) which lacks six codons in the segment that translates into the major intracellular domain. This splice consensus sequence is not found in human genomic DNA. In mouse, we demonstrate by RNAse protection assay that 5-HT3R-AS mRNA is approximately 5 times more abundant than 5-HT3R-AL mRNA in both neuroblastoma cell lines and neuronal tissues. We used the Semliki Forest virus expression system for electrophysiological characterization of 5-HT3R-AS and 5-HT3R-AL in mammalian cells. No differences in electrophysiological characteristics, such as voltage dependence, desensitization kinetics, or unitary conductance were found between homomeric 5-HT3R-AS and 5-HT3R-AL receptors. Their properties are very similar to those of 5-HT3 receptors in mouse neuroblastoma cell lines. PMID:7854052

  2. Identification and Functional Analysis of Pheromone and Receptor Genes in the B3 Mating Locus of Pleurotus eryngii

    PubMed Central

    Kim, Kyung-Hee; Kang, Young Min; Im, Chak Han; Ali, Asjad; Kim, Sun Young; Je, Hee-Jeong; Kim, Min-Keun; Rho, Hyun Su; Lee, Hyun Sook; Kong, Won-Sik; Ryu, Jae-San

    2014-01-01

    Pleurotus eryngii has recently become a major cultivated mushroom; it uses tetrapolar heterothallism as a part of its reproductive process. Sexual development progresses only when the A and B mating types are compatible. Such mating incompatibility occasionally limits the efficiency of breeding programs in which crossing within loci-shared strains or backcrossing strategies are employed. Therefore, understanding the mating system in edible mushroom fungi will help provide a short cut in the development of new strains. We isolated and identified pheromone and receptor genes in the B3 locus of P. eryngii and performed a functional analysis of the genes in the mating process by transformation. A genomic DNA library was constructed to map the entire mating-type locus. The B3 locus was found to contain four pheromone precursor genes and four receptor genes. Remarkably, receptor PESTE3.3.1 has just 34 amino acid residues in its C-terminal cytoplasmic region; therefore, it seems likely to be a receptor-like gene. Real-time quantitative RT-PCR (real-time qRT-PCR) revealed that most pheromone and receptor genes showed significantly higher expression in monokaryotic cells than dikaryotic cells. The pheromone genes PEphb3.1 and PEphb3.3 and the receptor gene PESTE3.3.1 were transformed into P5 (A3B4). The transformants were mated with a tester strain (A4B4), and the progeny showed clamp connections and a normal fruiting body, which indicates the proposed role of these genes in mating and fruiting processes. This result also confirms that PESTE3.3.1 is a receptor gene. In this study, we identified pheromone and receptor genes in the B3 locus of P. eryngii and found that some of those genes appear to play a role in the mating and fruiting processes. These results might help elucidate the mechanism of fruiting differentiation and improve breeding efficiency. PMID:25133513

  3. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    PubMed

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. PMID:25027621

  4. Expression of apoptosis-related genes in liver-specific growth hormone receptor gene-disrupted mice is sex dependent.

    PubMed

    Gesing, Adam; Wang, Feiya; List, Edward O; Berryman, Darlene E; Masternak, Michal M; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Kopchick, John J; Bartke, Andrzej

    2015-01-01

    Apoptosis is a process that affects life span and health. Mice with liver-specific disruption of the growth hormone receptor (GHR) gene (ie, Ghr gene) liver-specific growth hormone receptor knockout [LiGHRKO] mice), as opposed to mice with global deletion of the Ghr gene (GHRKO; Ghr-/-), are characterized by severe hepatic steatosis and lack of improved insulin sensitivity. We have previously shown that levels of proapoptotic factors are decreased in long-lived and insulin-sensitive GHRKO mice. In the current study, expression of specific apoptosis-related genes was assessed in brains, kidneys, and livers of male and female LiGHRKO and wild-type mice using real-time PCR. In the brain, expression of Caspase 3, Caspase 9, Smac/DIABLO, and p53 was decreased in females compared with males. Renal expression of Caspase 3 and Noxa also decreased in female mice. In the liver, no differences were seen between males and females. Also, no significant genotype effects were detected in the examined organs. Lack of significant genotype effect in kidneys contrasts with previous observations in GHRKO mice. Apparently, global GHR deletion induces beneficial changes in apoptotic factors, whereas liver-specific GHR disruption does not. Furthermore, sexual dimorphism may play an important role in regulating apoptosis during liver-specific suppression of the somatotrophic signaling. PMID:24550353

  5. Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors.

    PubMed Central

    Nef, P; Oneyser, C; Alliod, C; Couturier, S; Ballivet, M

    1988-01-01

    Four genes encode the related protein subunits that assemble to form the nicotinic acetylcholine receptor (nAChR) at the motor endplate of vertebrates. We have isolated from the chicken genome four additional members of the same gene family whose protein products, termed alpha 2, alpha 3, alpha 4 and n alpha (non-alpha) probably define three distinct neuronal nAChR subtypes. The neuronal nAChR genes have identical structures consisting of six protein-coding exons and specify proteins that are best aligned with the chicken endplate alpha subunit, whose gene we have also characterized. mRNA transcripts encoding alpha 4 and n alpha are abundant in embryonic and in adult avian brain, whereas alpha 2 and alpha 3 transcripts are much scarcer. The same set of neuronal genes probably exists in all vertebrates since their counterparts have also been identified in the rat genome. Images PMID:3267226

  6. Methuselah/Methuselah-like G protein-coupled receptors constitute an ancient metazoan gene family

    PubMed Central

    de Mendoza, Alexandre; Jones, Jeffery W.; Friedrich, Markus

    2016-01-01

    Inconsistent conclusions have been drawn regarding the phylogenetic age of the Methuselah/Methuselah-like (Mth/Mthl) gene family of G protein-coupled receptors, the founding member of which regulates development and lifespan in Drosophila. Here we report the results from a targeted homolog search of 39 holozoan genomes and phylogenetic analysis of the conserved seven transmembrane domain. Our findings reveal that the Mth/Mthl gene family is ancient, has experienced numerous extinction and expansion events during metazoan evolution, and acquired the current definition of the Methuselah ectodomain during its exceptional expansion in arthropods. In addition, our findings identify Mthl1, Mthl5, Mthl14, and Mthl15 as the oldest Mth/Mthl gene family paralogs in Drosophila. Future studies of these genes have the potential to define ancestral functions of the Mth/Mthl gene family. PMID:26915348

  7. Diet shapes the evolution of the vertebrate bitter taste receptor gene repertoire.

    PubMed

    Li, Diyan; Zhang, Jianzhi

    2014-02-01

    Vertebrate Tas2r taste receptors bind to bitter compounds, which are typically poisonous, to elicit bitter sensation to prevent the ingestion of toxins. Previous studies noted a marked variation in the number of Tas2r genes among species, but the underlying cause is unclear. To address this question, we compile the Tas2r gene repertoires from 41 mammals, 4 birds, 2 reptiles, 1 amphibian, and 6 fishes. The number of intact Tas2r genes varies from 0 in the bottlenose dolphin to 51 in the Western clawed frog, with numerous expansions and contractions of the gene family throughout vertebrates, especially among tetrapods. The Tas2r gene number in a species correlates with the fraction of plants in its diet. Because plant tissues contain more toxic compounds than animal tissues do, our observation supports the hypothesis that dietary toxins are a major selective force shaping the diversity of the Tas2r repertoire. PMID:24202612

  8. Lack of imprinting of the human dopamine D4 receptor (DRD4) gene

    SciTech Connect

    Cichon, S.; Noethen, M.M.; Propping, P.; Wolf, H.K.

    1996-04-09

    The term genomic imprinting has been used to refer to the differential expression of genetic material depending on whether it has come from the male or female parent. In humans, the chromosomal region 11p15.5 has been shown to contain 2 imprinted genes (H19 and IGF2). The gene for the dopamine D4 receptor (DRD4), which is of great interest for research into neuropsychiatric disorders and psychopharmacology, is also located in this area. In the present study, we have examined the imprinting status of the DRD4 gene in brain tissue of an epileptic patient who was heterozygous for a 12 bp repeat polymorphism in exon 1 of the DRD4 gene. We show that both alleles are expressed in equivalent amounts. We therefore conclude that the DRD4 gene is not imprinted in the human brain. 30 refs., 1 fig.

  9. Diet Shapes the Evolution of the Vertebrate Bitter Taste Receptor Gene Repertoire

    PubMed Central

    Li, Diyan; Zhang, Jianzhi

    2014-01-01

    Vertebrate Tas2r taste receptors bind to bitter compounds, which are typically poisonous, to elicit bitter sensation to prevent the ingestion of toxins. Previous studies noted a marked variation in the number of Tas2r genes among species, but the underlying cause is unclear. To address this question, we compile the Tas2r gene repertoires from 41 mammals, 4 birds, 2 reptiles, 1 amphibian, and 6 fishes. The number of intact Tas2r genes varies from 0 in the bottlenose dolphin to 51 in the Western clawed frog, with numerous expansions and contractions of the gene family throughout vertebrates, especially among tetrapods. The Tas2r gene number in a species correlates with the fraction of plants in its diet. Because plant tissues contain more toxic compounds than animal tissues do, our observation supports the hypothesis that dietary toxins are a major selective force shaping the diversity of the Tas2r repertoire. PMID:24202612

  10. Exchange factors directly activated by cAMP mediate melanocortin 4 receptor-induced gene expression

    PubMed Central

    Glas, Evi; Mückter, Harald; Gudermann, Thomas; Breit, Andreas

    2016-01-01

    Gs protein-coupled receptors regulate many vital body functions by activation of cAMP response elements (CRE) via cAMP-dependent kinase A (PKA)-mediated phosphorylation of the CRE binding protein (CREB). Melanocortin 4 receptors (MC4R) are prototypical Gs-coupled receptors that orchestrate the hypothalamic control of food-intake and metabolism. Remarkably, the significance of PKA for MC4R-induced CRE-dependent transcription in hypothalamic cells has not been rigorously interrogated yet. In two hypothalamic cell lines, we observed that blocking PKA activity had only weak or no effects on reporter gene expression. In contrast, inhibitors of exchange factors directly activated by cAMP-1/2 (EPAC-1/2) mitigated MC4R-induced CRE reporter activation and mRNA induction of the CREB-dependent genes c-fos and thyrotropin-releasing hormone. Furthermore, we provide first evidence that extracellular-regulated kinases-1/2 (ERK-1/2) activated by EPACs and not PKA are the elusive CREB kinases responsible for MC4R-induced CREB/CRE activation in hypothalamic cells. Overall, these data emphasize the pivotal role of EPACs rather than PKA in hypothalamic gene expression elicited by a prototypical Gs-coupled receptor. PMID:27612207

  11. Esophageal Cancer Related Gene-4 (ECRG4) Interactions with the Innate Immunity Receptor Complex

    PubMed Central

    Podvin, Sonia; Dang, Xitong; Meads, Morgan; Kurabi, Arwa; Costantini, Todd; Eliceiri, Brian P.; Baird, Andrew; Coimbra, Raul

    2014-01-01

    Objective and design The human c2orf40 gene encodes a tumor suppressor gene called esophageal cancer-related gene-4 (ECRG4) with pro- and anti-inflammatory activities that depend on cell surface processing. Here, we investigated its physical and functional association with the innate immunity receptor complex. Methods Interactions between ECRG4 and the innate immunity receptor complex were assessed by flow cytometry, immunohistochemistry, confocal microscopy, co-immunoprecipitation. Phage display was used for ligand-targeting to cells that over express the TLR4-MD2-CD14. Results Immunoprecipitation and immunohistochemical studies demonstrate a physical interaction between ECRG4 and TLR4-MD2-CD14 on human granulocytes. Flow cytometry shows ECRG4 on the cell surface of a subset of CD14+ and CD16+ leukocytes. In a cohort of trauma patients, the C-terminal 16 amino acid domain of ECRG4 (ECRG4133–148), appears processed and shed, presumably at a thrombin-like consensus sequence. Phage targeting this putative ligand shows that this peptide sequence can internalizes into cells through the TLR4/CD14/MD2 complex but modulates inflammation through non-canonical, NFκB signal transduction. Conclusions ECRG4 is present on the surface of human monocytes and granulocytes. Its interaction with the human innate immunity receptor complex supports a role for cell surface activation of ECRG4 during inflammation and implicates this receptor in its mechanism of action. PMID:25511108

  12. Molecular cloning and characterization of a Toll receptor gene from Macrobrachium rosenbergii.

    PubMed

    Srisuk, Chutima; Longyant, Siwaporn; Senapin, Saengchan; Sithigorngul, Paisarn; Chaivisuthangkura, Parin

    2014-02-01

    Toll receptors are cell surface molecules acting as pattern recognition receptors (PRRs) that have been implicated in the signaling pathway of innate immune responses. In this study, the full-length cDNA of a Toll receptor gene of Macrobrachium rosenbergii, designated MrToll, was successfully isolated using designed degenerate primers and the rapid amplification of cDNA ends (RACE). The MrToll gene sequence contained an open reading frame (ORF) of 2799 nucleotides encoding a protein of 932 amino acid residues. The protein contained distinct structural motifs of the Toll-like receptor (TLR) family, including an extracellular domain containing 15 leucine-rich repeats (LRRs), a transmembrane segment of 23 amino acids, and a cytoplasmic Toll/interleukin-1R (TIR) domain of 139 residues. Phylogenetic analysis revealed that MrToll and Toll receptor of Marsupenaeus japonicus (MjToll) evolved closely. However, the MrToll ORF demonstrated only 48-49% identity with shrimp Toll1, suggesting that MrToll isolated from a palaemonid shrimp might belong to a novel class of Toll receptors in shrimp. The transcripts of the MrToll gene were constitutively expressed in various tissues, with high levels in hemocytes, the stomach and muscle. A reverse transcriptase PCR assay demonstrated that the expression patterns of MrToll were distinctly modulated after Aeromonas caviae stimulation, with significant enhancement at 3-12 h post-challenge and a decline to basal levels at 24 h post-challenge. In addition, when MrToll-silenced shrimp were challenged with A. caviae, there was a significant increase in mortality and bacterial CFU counts. These results suggest that MrToll might be involved in host innate defense, especially against the pathogen A. caviae. PMID:24398262

  13. Molecular Background of Estrogen Receptor Gene Expression in Endometriotic Cells.

    PubMed

    Izawa, Masao; Taniguchi, Fuminori; Harada, Tasuku

    2016-07-01

    The molecular background of estrogen receptor (ER) expression is important to understand the pathophysiology of the high estrogen environment in endometriosis. However, the molecular details have not been fully understood. The objective of this study is to evaluate the molecular background of ERα and ERβ messenger RNA (mRNA) expression in endometriotic cells. The following summarizes our observations: (1) ERα mRNA expression in endometriotic cells was estimated to be approximately one-tenth of that in endometrial cells. (2) Three mRNAs, which include 3 different 5'-untranslated exons tagged to an open reading frame of wild-type ERα, were detected. (3) Expression of ERβ mRNA depends mostly on 0N promoter and includes 2 open reading frames: one for a wild-type ERβ1 and another for a splice variant ERβ2. (4) Expression of ERβ1 mRNA was approximately 40-fold higher than that in endometrial cells. (5) Expression of ERβ2 mRNA was almost at a comparable level of the ERβ1. 9 (6) ERα and ERβ mRNAs are equivalently expressed in endometriotic cells. These observations show the molecular background of ER mRNA expression in endometriotic cells and provide a clue to further understanding the estrogen-dependent pathophysiology leading to clinical application in endometriosis. PMID:26704524

  14. Endothelial Protein C Receptor Gene Variants and Risk of Thrombosis.

    PubMed

    Anastasiou, Georgia; Politou, Marianna; Rallidis, Loukianos; Grouzi, Elisavet; Karakitsos, Petros; Merkouri, Efrosini; Travlou, Anthi; Gialeraki, Argyri

    2016-03-01

    Endothelial protein C receptor (EPCR) is a candidate mediator in the pathogenesis of thrombosis, as several data in the literature indicate that polymorphisms such as EPCR 4678G/C and 4600A/G are associated with either protective effect or increased risk of thrombosis, respectively. We investigated the prevalence of these polymorphisms in patients with thrombotic disorders as well as their impact on the risk of thrombosis, the age of first thrombotic episode, and recurrence. The prevalence of the rare EPCR alleles 4600G and 4678C was comparable in patients and controls. However, in a subset analysis, we observed that 4600G allele was more prevalent among patients who developed thrombosis at younger age (<35 years). Moreover, the prevalence of 4678C allele was significantly lower in younger patients compared to older patients. Neither polymorphism seemed to have an impact on recurrence regardless of age. Soluble EPCR levels were elevated in 4600AG patients compared to controls while 4678CC patients presented with lower levels of soluble form of EPCR compared to carriers of at least 1 4678G allele. Our data suggest that either the lack of the protective EPCR 4678C allele or the presence of EPCR 4600G allele may be associated with earlier development of thrombosis. PMID:25760048

  15. Dopamine inhibits somatolactin gene expression in tilapia pituitary cells through the dopamine D2 receptors.

    PubMed

    Jiang, Quan; Lian, Anji; He, Qi

    2016-07-01

    Dopamine (DA) is an important neurotransmitter in the central nervous system of vertebrates and possesses key hypophysiotropic functions. Early studies have shown that DA has a potent inhibitory effect on somatolactin (SL) release in fish. However, the mechanisms responsible for DA inhibition of SL gene expression are largely unknown. To this end, tilapia DA type-1 (D1) and type-2 (D2) receptor transcripts were examined in the neurointermediate lobe (NIL) of the tilapia pituitary by real-time PCR. In tilapia, DA not only was effective in inhibiting SL mRNA levels in vivo and in vitro, but also could abolish pituitary adenylate cyclase-activating polypeptide (PACAP)- and salmon gonadotropin-releasing hormone (sGnRH)-stimulated SL gene expression at the pituitary level. In parallel studies, the specific D2 receptor agonists quinpirole and bromocriptine could mimic the DA-inhibited SL gene expression. Furthermore, the D2 receptor antagonists domperidone and (-)-sulpiride could abolish the SL response to DA or the D2 agonist quinpirole, whereas D1 receptor antagonists SCH23390 and SKF83566 were not effective in this respect. In primary cultures of tilapia NIL cells, D2 agonist quinpirole-inhibited cAMP production could be blocked by co-treatment with the D2 antagonist domperidone and the ability of forskolin to increase cAMP production was also inhibited by quinpirole. Using a pharmacological approach, the AC/cAMP pathway was shown to be involved in quinpirole-inhibited SL mRNA expression. These results provide evidence that DA can directly inhibit SL gene expression at the tilapia pituitary level via D2 receptor through the AC/cAMP-dependent mechanism. PMID:26970582

  16. Arsenic disruption of steroid receptor gene activation: Complex dose-response effects are shared by several steroid receptors.

    PubMed

    Bodwell, Jack E; Gosse, Julie A; Nomikos, Athena P; Hamilton, Joshua W

    2006-12-01

    Chronic intake of arsenic (As) has been associated with increased risk of cancer, diabetes, developmental and reproductive problems, and cardiovascular disease. Recent studies suggest increased health risks with drinking water levels as low as 5-10 ppb. We previously reported that As disrupts glucocorticoid receptor (GR) mediated transcription in a very complex fashion. Low As levels (0.1-0.7 microM) stimulated transcription, whereas slightly higher levels (1-3 microM) were inhibitory. The DNA binding domain (DBD) was the minimal region of GR required for the response to As. Mutations in the DBD that alter the conformation of the dimerization domain (D-loop) to a DNA-bound GR conformation abolished the stimulatory effect and enhanced the inhibitory response to As. Here we report that receptors for progesterone (PR) and mineralocorticoids display a complex As response similar to that of the GR, suggesting a common mechanism for this effect. The complex response to As is not due to altered steroid or receptor levels. Moreover, a well-characterized GR dimerization mutant displayed a wild-type biphasic response to As for several divergent reporter genes, suggesting that dimerization is not critical for the response to As. Fluorescence polarization studies with purified PR and GR demonstrated that the specific PR/GR-DNA interaction is not altered in the presence of As. These results indicate that the numerous and diverse human health effects associated with As exposure may be mediated, at least in part, through its ability to simultaneously disrupt multiple hormone receptor systems. PMID:17173375

  17. Arsenic Disruption of Steroid Receptor Gene Activation: Complex Dose-Response Effects Are Shared by Several Steroid Receptors*

    PubMed Central

    Bodwell, Jack E.; Gosse, Julie A.; Nomikos, Athena P.; Hamilton, Joshua W.

    2008-01-01

    Chronic intake of arsenic (As) has been associated with increased risk of cancer, diabetes, developmental and reproductive problems, and cardiovascular disease. Recent studies suggest increased health risks with drinking water levels as low as 5–10 ppb. We previously reported that As disrupts glucocorticoid receptor (GR) mediated transcription in a very complex fashion. Low As levels (0.1 to 0.7 μM) stimulated transcription whereas slightly higher levels (1 to 3 μM) were inhibitory. The DNA Binding Domain (DBD) was the minimal region of GR required for the response to As. Mutations in the DBD that alter the conformation of the dimerization domain (D-Loop) to a DNA-bound GR conformation abolished the stimulatory effect and enhanced the inhibitory response to As. Here we report that receptors for progesterone (PR) and mineralocorticoids (MR) display a similar complex As response as the GR, suggesting a common mechanism for this effect. The complex response to As is not due to altered steroid or receptor levels. Moreover, a well-characterized GR dimerization mutant displayed a wild-type biphasic response to As for several divergent reporter genes, suggesting that dimerization is not critical for the response to As. Fluorescence polarization studies with purified PR and GR demonstrated that the specific PR/GR-DNA interaction is not altered in the presence of As. These results indicate that the numerous and diverse human health effects associated with As exposure maybe mediated, at least in part, through its ability to simultaneously disrupt multiple hormone receptor systems. PMID:17173375

  18. Concerted Gene Expression of Hippocampal Steroid Receptors during Spatial Learning in Male Wistar Rats: A Correlation Analysis

    PubMed Central

    Lubec, Gert; Korz, Volker

    2016-01-01

    Adrenal and gonadal steroid receptor activities are significantly involved and interact in the regulation of learning, memory and stress. Thus, a coordinated expression of steroid receptor genes during a learning task can be expected. Although coexpression of steroid receptors in response to behavioral tasks has been reported the correlative connection is unclear. According to the inverted U-shape model of the impact of stress upon learning and memory we hypothesized that glucocorticoid (GR) receptor expression should be correlated to corticosterone levels in a linear or higher order manner. Other cognition modulating steroid receptors like estrogen receptors (ER) should be correlated to GR receptors in a quadratic manner, which describes a parabola and thus a U-shaped connection. Therefore, we performed a correlational meta-analyis of data of a previous study (Meyer and Korz, 2013a) of steroid receptor gene expressions during spatial learning, which provides a sufficient data basis in order to perform such correlational connections. In that study male rats of different ages were trained in a spatial holeboard or remained untrained and the hippocampal gene expression of different steroid receptors as well as serum corticosterone levels were measured. Expressions of mineralocorticoid (MR) and GR receptors were positively and linearly correlated with blood serum corticosterone levels in spatially trained but not in untrained animals. Training induced a cubic (best fit) relationship between mRNA levels of estrogen receptor α (ERα) and androgen receptor (AR) with MR mRNA. GR gene expression was linearly correlated with MR expression under both conditions. ERα m RNA levels were negatively and linearily and MR and GR gene expressions were cubicely correlated with reference memory errors (RME). Due to only three age classes correlations with age could not be performed. The findings support the U-shape theory of steroid receptor interaction, however the cubic fit

  19. Genes controlling receptors for ecotropic and xenotropic type C virus in Mus cervicolor and Mus musculus.

    PubMed Central

    Marshall, T H; Rapp, U R

    1979-01-01

    Gene loci controlling cell surface receptors for murine leukemia virus were studied by using murine X Chinese hamster hybrid cells. Hybrids which exclusively segregate murine chromosomes were made by fusing Mus cervicolor and Mus musculus lymphocytes to hamster fibroblasts. Sensitivity to Moloney murine leukemia virus infecotion and specific binding of the envelope glycoprotein of Rauscher murine leukemia virus (gp70) cosegregate and isozyme analysis show an association with chromosome 5 in both species. With the possible exception of one clone, no evidence was found for a proviral integration site independent of chromosome 5. Evidence is presented for additional unlinked ectropic and xenotropic receptors independent of chromosome 5. PMID:219245

  20. Expression of the rat muscarinic receptor gene m3 in Dictyostelium discoideum.

    PubMed

    Voith, G; Kramm, H; Zündorf, I; Winkler, T; Dingermann, T

    1998-10-01

    We functionally expressed the rat muscarinic m3 receptor (rm3) in the cellular slime mold Dictyostelium discoideum under the control of the homologous discoidin I gamma promoter. Cells transfected with the authentic rm3 receptor gene expressed about 100 functional receptor molecules per cell, corresponding to a Bmax for [3H]-NMS of 36 +/- 9 fmol/mg of protein in isolated membranes. Genetic fusion of the Dictyostelium contact site A (csA) leader peptide to the amino terminus of rm3 increased the receptor expression by about 17-fold. Remarkable, in [3H]-NMS ligand binding experiments performed with whole cells no characteristic saturable binding was observed and there was no significant difference in [3H]-NMS binding to whole cells of rm3 and csA/rm3 transformants. The recombinant rm3 receptor showed an about 10-fold higher affinity to the M3-selective antagonist p-F-HHSiD compared to the M2-selective antagonist AQ-RA 741, suggesting that membranes derived from transgenic D. discoideum cells may be useful for the search of new subtype-specific muscarinic receptor ligands. PMID:9812338

  1. Behavioural evidence of agonist-like effect of isoteoline at 5-HT1B serotonergic receptors in mice.

    PubMed

    Zhelyazkova-Savova, Maria D; Zhelyazkov, Delcho K

    2003-01-01

    Isoteoline is a compound of aporphine structure derived from the alkaloid glaucine. Previous studies with isoteoline have shown antagonistic activity at 5-HT(2C) serotonergic receptors. We have investigated whether isoteoline interacts with 5-HT(1B) receptors. An isolation-induced social behavioural deficit test in mice was used as a model of stimulation of these receptors. The deficit in the behaviour of isolated mice in this experimental procedure was reported to be sensitive to 5-HT(1B)-receptor stimulation, since agonists at these receptors are capable of reversing it. In our study, we used N-(3-trifluoromethylphenyl)piperazine (TFMPP) (2 mg kg(-1)) as a reference agonist at these receptor sites. TFMPP completely restored the normal behaviour of the isolated mice. Its effect was prevented by propranolol (4 mg kg(-1)), a beta-adrenergic receptor antagonist with a high affinity for 5-HT(1B) receptors, which was inactive by itself. When isoteoline was given before TFMPP, it did not prevent the effect of the latter. Given alone at doses of 0.25, 1, 4 or 8 mg kg(-1), isoteoline showed an effect of its own to normalize the behaviour of isolated mice. The effect of isoteoline (1 mg kg(-1), i.p.) was antagonized by pretreatment with propranolol, indicating that it was mediated through stimulation of 5-HT(1B) receptors. Repeated treatment with isoteoline (1 mg kg(-1), 2 x 3 days, i.p.) produced tolerance to its effect and significantly attenuated the effect of TFMPP, when animals were tested 16 h after the last injection. In conclusion, the results provided functional evidence of agonist-like activity of isoteoline at the 5-HT(1B) receptors. PMID:12625876

  2. Co-regulated gene expression by oestrogen receptor α and liver receptor homolog-1 is a feature of the oestrogen response in breast cancer cells

    PubMed Central

    Lai, Chun-Fui; Flach, Koen D.; Alexi, Xanthippi; Fox, Stephen P.; Ottaviani, Silvia; Thiruchelvam, Paul T.R.; Kyle, Fiona J.; Thomas, Ross S.; Launchbury, Rosalind; Hua, Hui; Callaghan, Holly B.; Carroll, Jason S.; Charles Coombes, R.; Zwart, Wilbert; Buluwela, Laki; Ali, Simak

    2013-01-01

    Oestrogen receptor α (ERα) is a nuclear receptor that is the driving transcription factor expressed in the majority of breast cancers. Recent studies have demonstrated that the liver receptor homolog-1 (LRH-1), another nuclear receptor, regulates breast cancer cell proliferation and promotes motility and invasion. To determine the mechanisms of LRH-1 action in breast cancer, we performed gene expression microarray analysis following RNA interference for LRH-1. Interestingly, gene ontology (GO) category enrichment analysis of LRH-1–regulated genes identified oestrogen-responsive genes as the most highly enriched GO categories. Remarkably, chromatin immunoprecipitation coupled to massively parallel sequencing (ChIP-seq) to identify genomic targets of LRH-1 showed LRH-1 binding at many ERα binding sites. Analysis of select binding sites confirmed regulation of ERα−regulated genes by LRH-1 through binding to oestrogen response elements, as exemplified by the TFF1/pS2 gene. Finally, LRH-1 overexpression stimulated ERα recruitment, while LRH-1 knockdown reduced ERα recruitment to ERα binding sites. Taken together, our findings establish a key role for LRH-1 in the regulation of ERα target genes in breast cancer cells and identify a mechanism in which co-operative binding of LRH-1 and ERα at oestrogen response elements controls the expression of oestrogen-responsive genes. PMID:24049078

  3. Androgen Receptor Repression of GnRH Gene Transcription

    PubMed Central

    Brayman, Melissa J.; Pepa, Patricia A.; Berdy, Sara E.

    2012-01-01

    Alterations in androgen levels lead to reproductive defects in both males and females, including hypogonadotropic hypogonadism, anovulation, and infertility. Androgens have been shown to down-regulate GnRH mRNA levels through an androgen receptor (AR)-dependent mechanism. Here, we investigate how androgen regulates expression from the GnRH regulatory region in the GT1-7 cell line, a model of GnRH neurons. A synthetic androgen, R1881, repressed transcription from the GnRH promoter (GnRH-P) in an AR-dependent manner, and liganded AR associated with the chromatin at the GnRH-P in live GT1-7 cells. The three known octamer-binding transcription factor-1 (Oct-1) binding sites in GnRH-P were required for AR-mediated repression, although other sequences were also involved. Although a multimer of the consensus Oct-1 binding site was not repressed, a multimer of the cluster of Oct-1, Pre-B cell leukemia transcription factor (Pbx)/Prep, and NK2 homeobox 1 (Nkx2.1) binding sites, found at −106/−91 in GnRH-P, was sufficient for repression. In fact, overexpression of any of these factors disrupted the androgen response, indicating that a balance of factors in this tripartite complex is required for AR repression. AR bound to this region in EMSA, indicating a direct interaction of AR with DNA or with other transcription factors bound to GnRH-P at this sequence. Collectively, our data demonstrate that GnRH transcription is repressed by AR via multiple sequences in GnRH-P, including three Oct-1 binding sites, and that this repression requires the complex interaction of several transcription factors. PMID:22074952

  4. Characterization of leptin receptor gene in Bubalus bubalis and association analysis with body measurement traits.

    PubMed

    De Matteis, Giovanna; Scatà, Maria Carmela; Catillo, Gennaro; Terzano, Giuseppina Maria; Grandoni, Francesco; Napolitano, Francesco

    2015-06-01

    Leptin has a pleiotropic effect on regulating appetite, energy metabolism, growth, reproduction, body composition and immunity. This property supports leptin and its receptor as candidate genes for evaluating genetic polymorphisms to associate with growth, milk yield and other economic traits. The aim of this study is to characterize the leptin receptor gene in Bubalus bubalis, to identify single-nucleotide polymorphism (SNP) sites in different coding and non-coding regions and to analyse potential associations between SNPs identified and the body measurements traits of growing buffalo heifers. A group of 64 animals were genotyped by direct sequencing and twenty-eight SNPs were detected. A sequence analysis revealed the presence of nine interesting SNPs in gene sequence. The association analysis of polymorphisms with the body measurements traits of growing buffalo heifers shows significant statistical effects on chest depth and sacrum height. Therefore according to the results obtained from this study, the leptin receptor gene appears to have potential effects on the body measurement traits of Bubalus bubalis. PMID:25431006

  5. Sweet Taste Receptor Gene Variation and Aspartame Taste in Primates and Other Species

    PubMed Central

    Li, Xia; Bachmanov, Alexander A.; Maehashi, Kenji; Li, Weihua; Lim, Raymond; Brand, Joseph G.; Beauchamp, Gary K.; Reed, Danielle R.; Thai, Chloe

    2011-01-01

    Aspartame is a sweetener added to foods and beverages as a low-calorie sugar replacement. Unlike sugars, which are apparently perceived as sweet and desirable by a range of mammals, the ability to taste aspartame varies, with humans, apes, and Old World monkeys perceiving aspartame as sweet but not other primate species. To investigate whether the ability to perceive the sweetness of aspartame correlates with variations in the DNA sequence of the genes encoding sweet taste receptor proteins, T1R2 and T1R3, we sequenced these genes in 9 aspartame taster and nontaster primate species. We then compared these sequences with sequences of their orthologs in 4 other nontasters species. We identified 9 variant sites in the gene encoding T1R2 and 32 variant sites in the gene encoding T1R3 that distinguish aspartame tasters and nontasters. Molecular docking of aspartame to computer-generated models of the T1R2 + T1R3 receptor dimer suggests that species variation at a secondary, allosteric binding site in the T1R2 protein is the most likely origin of differences in perception of the sweetness of aspartame. These results identified a previously unknown site of aspartame interaction with the sweet receptor and suggest that the ability to taste aspartame might have developed during evolution to exploit a specialized food niche. PMID:21414996

  6. Association of Toll-like receptors 2, 3, and 4 genes polymorphisms with periapical pathosis risk

    PubMed Central

    Özan, Ülkü; Ocak, Zeynep; Özan, Fatih; Oktay, Elif-Aybala; Şahman, Halil; Yikilgan, İhsan; Oruçoğlu, Hasan; Er, Kürşat

    2016-01-01

    Background The aim of this study was to investigate the role of gene variations of Toll-like receptors (TLR) 2, 3, and 4 on genetic susceptibility to periapical pathosis. Material and Methods One hundred patients were included in the study and divided into two groups as follows; Control Group (n=50) that have root canal treatment and no periapical lesion, Patient Group (n=50) that have root canal treatment and periapical lesion. TLR2 Arg753Gln, TLR3 (c.1377C/T) and TLR4 Asp299Gly and Thr399Ile polymorphisms were genotyped by using PCR-RFLP. Genotypical analysis of control and patient groups were investigated to disclose whether there is any association between periapical lesions and gene variations. Results There are no significant statistical differences between control and patient groups according to TLR 2 and 4 gene sequence. On the contrary, CC allele detected 74% for TLR 3 in patient group, and this difference was found to be statistically significant (p < 0.005). Conclusions According to these results, it can be suggested that patients with Toll-like receptor 3 gene polymorphisms could be susceptible to periapical pathosis. Key words:Toll-like receptors, periapical pathosis, endodontics. PMID:27031066

  7. Polymorphism and genetic mapping of the human oxytocin receptor gene on chromosome 3

    SciTech Connect

    Michelini, S.; Urbanek, M.; Goldman, D.

    1995-06-19

    Centrally administered oxytocin has been reported to facilitate affiliative and social behaviors, in functional harmony with its well-known peripheral effects on uterine contraction and milk ejection. The biological effects of oxytocin could be perturbed by mutations occurring in the sequence of the oxytocin receptor gene, and it would be of interest to establish the position of this gene on the human linkage map. Therefore we identified a polymorphism at the human oxytocin receptor gene. A portion of the 3{prime} untranslated region containing a 30 bp CA repeat was amplified by polymerase chain reaction (PCR), revealing a polymorphism with two alleles occurring with frequencies of 0.77 and 0.23 in a sample of Caucasian CEPH parents (n = 70). The CA repeat polymorphism we detected was used to map the human oxytocin receptor to chromosome 3p25-3p26, in a region which contains several important genes, including loci for Von Hippel-Lindau disease (VHL) and renal cell carcinoma. 53 refs., 2 figs., 1 tab.

  8. Association study between schizophrenia and dopamine D3 receptor gene polymorphism

    SciTech Connect

    Tanaka, Toshihisa; Takahashi, Makoto; Maeda, Masaya

    1996-07-26

    Crocq et al. reported the existence of an association between schizophrenia and homozygosity of a BalI polymorphism in the first exon of the dopamine D3 receptor (DRD3) gene. In response to this report, further studies were conducted; however, these studies yielded conflicting results. In the present study, we examined 100 unrelated Japanese schizophrenics and 100 normal controls to determine any association between this polymorphism and schizophrenia. Results suggest that neither allele nor genotype frequencies of the DRD3 gene in the schizophrenics as a whole are significantly different from those of the controls. Further, we found no association between any allele or genotype and any clinical subtype based on family history of schizophrenia and age-at-onset. A significantly high frequency of homozygosity of a dopamine D3 receptor gene allele was not observed in the schizophrenics as a whole, or in clinical subtypes. Our results suggest that an association between the dopamine D3 receptor gene and schizophrenia is unlikely to exist. 26 refs., 1 tab.

  9. Lack of association between dopamine D4 receptor gene and schizophrenia

    SciTech Connect

    Tanaka, Toshihisa; Kameda, K.; Ihda, S.

    1995-12-18

    An intriguing property of the dopamine D4 receptor gene is a hypervariable segment in the coding region characterized by a varying number of direct imperfect 48 bp repeats (2-8 or 10 repeats) in the third exon of the gene. The authors analyzed 70 unrelated schizophrenics and 70 normal controls to determine the allele and genotype frequencies created by length polymorphism of dopamine D4 receptor gene. All patients and controls were unrelated and from the Japanese population. Patients were divided into three groups with regard to age at onset, familial loading, and severity of symptoms assessed strictly with Manchester scale. There were no statistically significant differences if the distributions of alleles and genotypes were analyzed in consideration of those clinical subtypes. Lichter and colleagues [1993] have reported that at least 25 haplotypes exist for this polymorphic region of the dopamine receptor D4 gene. In this study only the alleles created by length polymorphism were analyzed, and further investigation to determine the haplotypes of patients and controls on using a much larger sample size will be required. 11 refs., 1 fig., 1 tab.

  10. Systematic analysis of dopamine receptor genes (DRD1-DRD5) in antipsychotic-induced weight gain.

    PubMed

    Müller, D J; Zai, C C; Sicard, M; Remington, E; Souza, R P; Tiwari, A K; Hwang, R; Likhodi, O; Shaikh, S; Freeman, N; Arenovich, T; Heinz, A; Meltzer, H Y; Lieberman, J A; Kennedy, J L

    2012-04-01

    Antipsychotic-induced weight gain has emerged as a serious complication in the treatment of patients with most antipsychotics. We have conducted the first in-depth examination of dopamine receptor genes in antipsychotic-induced weight gain. A total of 206 patients (139 of European descent and 56 African Americans) who underwent treatment for chronic schizophrenia or schizoaffective disorder were evaluated after on average over 6 weeks of treatment. Thirty-six tag single nucleotide polymorphisms (SNPs) and one variable-number tandem repeat, spanning the five dopamine receptor genes (DRD1-DRD5) were analyzed. In the total sample, we found a nominally significant association between the DRD2 rs1079598 marker and weight change using a cutoff of 7% gain (P=0.03). When stratifying the sample according to ethnicity and antipsychotics with highest risk for weight gain, we found significant associations in three DRD2 SNPs: rs6277 (C957T), rs1079598 and rs1800497 (TaqIA). The other genes were primarily negative. We provide evidence that dopamine receptor DRD2 gene variants might be associated with antipsychotic-induced weight gain in chronic schizophrenia patients. PMID:20714340

  11. An altered repertoire of T cell receptor V gene expression by rheumatoid synovial fluid T lymphocytes.

    PubMed

    Lunardi, C; Marguerie, C; So, A K

    1992-12-01

    The pattern of T cell receptor V gene expression by lymphocytes from rheumatoid synovial fluid and paired peripheral blood samples was compared using a polymerase chain reaction (PCR)-based assay. Eight rheumatoid arthritis (RA) patients who had varying durations of disease (from 2 to 20 years) were studied. In all patients there was evidence of a different pattern of V gene expression between the two compartments. Significantly increased expression of at least one V alpha or V beta gene family by synovial fluid T cells was observed in all the patients studied. Three different V alpha (V alpha 10, 15 and 18) and three V beta (V beta 4, 5 and 13) families were commonly elevated. Sequencing of synovial V beta transcripts demonstrated that the basis of increased expression of selected V gene families in the synovial fluid was due to the presence of dominant clonotypes within those families, which constituted up to 53% of the sequences isolated from one particular synovial V gene family. There were considerable differences in the NDJ sequences found in synovial and peripheral blood T cell receptor (TCR) transcripts of the same V beta gene family. These data suggest that the TCR repertoire in the two compartments differs, and that antigen-driven expansion of particular synovial T cell populations is a component of rheumatoid synovitis, and is present in all stages of the disease. PMID:1458680

  12. Effects of retinoic acid on growth hormone-releasing hormone receptor, growth hormone secretagogue receptor gene expression and growth hormone secretion in rat anterior pituitary cells.

    PubMed

    Maliza, Rita; Fujiwara, Ken; Tsukada, Takehiro; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2016-06-30

    Retinoic acid (RA) is an important signaling molecule in embryonic development and adult tissue. The actions of RA are mediated by the nuclear receptors retinoic acid receptor (RAR) and retinoid X receptor (RXR), which regulate gene expression. RAR and RXR are widely expressed in the anterior pituitary gland. RA was reported to stimulate growth hormone (GH) gene expression in the anterior pituitary cells. However, current evidence is unclear on the role of RA in gene expression of growth hormone-releasing hormone receptor (Ghrh-r), growth hormone secretagogue receptor (Ghs-r) and somatostatin receptors (Sst-rs). Using isolated anterior pituitary cells of rats, we examined the effects of RA on gene expression of these receptors and GH release. Quantitative real-time PCR revealed that treatment with all-trans retinoic acid (ATRA; 10(-6) M) for 24 h increased gene expression levels of Ghrh-r and Ghs-r; however, expressions of Sst-r2 and Sst-r5 were unchanged. Combination treatment with the RAR-agonist Am80 and RXR-agonist PA024 mimicked the effects of ATRA on Ghrh-r and Ghs-r gene expressions. Exposure of isolated pituitary cells to ATRA had no effect on basal GH release. In contrast, ATRA increased growth hormone-releasing hormone (GHRH)- and ghrelin-stimulated GH release from cultured anterior pituitary cells. Our results suggest that expressions of Ghrh-r and Ghs-r are regulated by RA through the RAR-RXR receptor complex and that RA enhances the effects of GHRH and ghrelin on GH release from the anterior pituitary gland. PMID:27052215

  13. Diversity and impact of rare variants in genes encoding the platelet G protein-coupled receptors.

    PubMed

    Jones, Matthew L; Norman, Jane E; Morgan, Neil V; Mundell, Stuart J; Lordkipanidzé, Marie; Lowe, Gillian C; Daly, Martina E; Simpson, Michael A; Drake, Sian; Watson, Steve P; Mumford, Andrew D

    2015-04-01

    Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70 % had global minor allele frequency (MAF) < 0.05 %. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21 %) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF< 1 % and 22 with MAF≥ 1 %). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes. PMID:25567036

  14. Diversity and impact of rare variants in genes encoding the platelet G protein-coupled receptors

    PubMed Central

    Jones, Matthew L.; Norman, Jane E.; Morgan, Neil V.; Mundell, Stuart J.; Lordkipanidzé, Marie; Lowe, Gillian C.; Daly, Martina E.; Simpson, Michael A.; Drake, Sian; Watson, Steve P.; Mumford, Andrew D.

    2015-01-01

    Summary Platelet responses to activating agonists are influenced by common population variants within or near G protein-coupled receptor (GPCR) genes that affect receptor activity. However, the impact of rare GPCR gene variants is unknown. We describe the rare single nucleotide variants (SNVs) in the coding and splice regions of 18 GPCR genes in 7,595 exomes from the 1,000-genomes and Exome Sequencing Project databases and in 31 cases with inherited platelet function disorders (IPFDs). In the population databases, the GPCR gene target regions contained 740 SNVs (318 synonymous, 410 missense, 7 stop gain and 6 splice region) of which 70% had global minor allele frequency (MAF) < 0.05%. Functional annotation using six computational algorithms, experimental evidence and structural data identified 156/740 (21%) SNVs as potentially damaging to GPCR function, most commonly in regions encoding the transmembrane and C-terminal intracellular receptor domains. In 31 index cases with IPFDs (Gi-pathway defect n=15; secretion defect n=11; thromboxane pathway defect n=3 and complex defect n=2) there were 256 SNVs in the target regions of 15 stimulatory platelet GPCRs (34 unique; 12 with MAF<1% and 22 with MAF≥1%). These included rare variants predicting R122H, P258T and V207A substitutions in the P2Y12 receptor that were annotated as potentially damaging, but only partially explained the platelet function defects in each case. Our data highlight that potentially damaging variants in platelet GPCR genes have low individual frequencies, but are collectively abundant in the population. Potentially damaging variants are also present in pedigrees with IPFDs and may contribute to complex laboratory phenotypes. PMID:25567036

  15. Pituitary and Brain Dopamine D2 Receptors Regulate Liver Gene Sexual Dimorphism

    PubMed Central

    Ramirez, Maria Cecilia; Ornstein, Ana Maria; Luque, Guillermina Maria; Perez Millan, Maria Ines; Garcia-Tornadu, Isabel; Rubinstein, Marcelo

    2015-01-01

    Liver sexual gene dimorphism, which depends mainly on specific patterns of GH secretion, may underlie differential susceptibility to some liver diseases. Because GH and prolactin secretion are regulated by dopaminergic pathways, we studied the participation of brain and lactotrope dopamine 2 receptors (D2Rs) on liver gene sexual dimorphism, to explore a link between the brain and liver gene expression. We used global D2R knockout mice (Drd2−/−) and conducted a functional dissection strategy based on cell-specific Drd2 inactivation in neurons (neuroDrd2KO) or pituitary lactotropes. Disruption of neuronal D2Rs (which impaired the GH axis) decreased most of male or female-predominant class I liver genes and increased female–predominant class II genes in males, consistent with the positive (class I) or negative (class II) regulation of these genes by GH. Notably, sexual dimorphism was lost for class I and II genes in neuroDrd2KO mice. Disruption of lactotrope D2Rs did not modify class I or II genes in either sex, because GH axis was preserved. But surprisingly, 1 class II gene (Prlr) and female-predominant class I genes were markedly up-regulated in lacDrd2KO females, pointing to direct or indirect effects of prolactin in the regulation of selected female-predominant liver genes. This suggestion was strengthened in the hyperprolactinemic Drd2−/− female mouse, in which increased expression of the same 4 liver genes was observed, despite a decreased GH axis. We hereby demonstrate endocrine-mediated D2R actions on sexual dimorphic liver gene expression, which may be relevant during chronic dopaminergic medications in psychiatric disease. PMID:25545383

  16. Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: implications for their adaptation and speciation.

    PubMed

    Engsontia, Patamarerk; Sangket, Unitsa; Chotigeat, Wilaiwan; Satasook, Chutamas

    2014-08-01

    Lepidoptera (comprised of butterflies and moths) is one of the largest groups of insects, including more than 160,000 described species. Chemoreception plays important roles in the adaptation of these species to a wide range of niches, e.g., plant hosts, egg-laying sites, and mates. This study investigated the molecular evolution of the lepidopteran odorant (Or) and gustatory receptor (Gr) genes using recently identified genes from Bombyx mori, Danaus plexippus, Heliconius melpomene, Plutella xylostella, Heliothis virescens, Manduca sexta, Cydia pomonella, and Spodoptera littoralis. A limited number of cases of large lineage-specific gene expansion are observed (except in the P. xylostella lineage), possibly due to selection against tandem gene duplication. There has been strong purifying selection during the evolution of both lepidopteran odorant and gustatory genes, as shown by the low ω values estimated through CodeML analysis, ranging from 0.0093 to 0.3926. However, purifying selection has been relaxed on some amino acid sites in these receptors, leading to sequence divergence, which is a precursor of positive selection on these sequences. Signatures of positive selection were detected only in a few loci from the lineage-specific analysis. Estimation of gene gains and losses suggests that the common ancestor of the Lepidoptera had fewer Or genes compared to extant species and an even more reduced number of Gr genes, particularly within the bitter receptor clade. Multiple gene gains and a few gene losses occurred during the evolution of Lepidoptera. Gene family expansion may be associated with the adaptation of lepidopteran species to plant hosts, especially after angiosperm radiation. Phylogenetic analysis of the moth sex pheromone receptor genes suggested that chromosomal translocations have occurred several times. New sex pheromone receptors have arisen through tandem gene duplication. Positive selection was detected at some amino acid sites predicted to be

  17. Comprehensive gene expression analysis of rice aleurone cells: probing the existence of an alternative gibberellin receptor.

    PubMed

    Yano, Kenji; Aya, Koichiro; Hirano, Ko; Ordonio, Reynante Lacsamana; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto

    2015-02-01

    Current gibberellin (GA) research indicates that GA must be perceived in plant nuclei by its cognate receptor, GIBBERELLIN INSENSITIVE DWARF1 (GID1). Recognition of GA by GID1 relieves the repression mediated by the DELLA protein, a model known as the GID1-DELLA GA perception system. There have been reports of potential GA-binding proteins in the plasma membrane that perceive GA and induce α-amylase expression in cereal aleurone cells, which is mechanistically different from the GID1-DELLA system. Therefore, we examined the expression of the rice (Oryza sativa) α-amylase genes in rice mutants impaired in the GA receptor (gid1) and the DELLA repressor (slender rice1; slr1) and confirmed their lack of response to GA in gid1 mutants and constitutive expression in slr1 mutants. We also examined the expression of GA-regulated genes by genome-wide microarray and quantitative reverse transcription-polymerase chain reaction analyses and confirmed that all GA-regulated genes are modulated by the GID1-DELLA system. Furthermore, we studied the regulatory network involved in GA signaling by using a set of mutants defective in genes involved in GA perception and gene expression, namely gid1, slr1, gid2 (a GA-related F-box protein mutant), and gamyb (a GA-related trans-acting factor mutant). Almost all GA up-regulated genes were regulated by the four named GA-signaling components. On the other hand, GA down-regulated genes showed different expression patterns with respect to GID2 and GAMYB (e.g. a considerable number of genes are not controlled by GAMYB or GID2 and GAMYB). Based on these observations, we present a comprehensive discussion of the intricate network of GA-regulated genes in rice aleurone cells. PMID:25511432

  18. Genomic architecture of MHC-linked odorant receptor gene repertoires among 16 vertebrate species.

    PubMed

    Santos, Pablo Sandro Carvalho; Kellermann, Thomas; Uchanska-Ziegler, Barbara; Ziegler, Andreas

    2010-09-01

    The recent sequencing and assembly of the genomes of different organisms have shown that almost all vertebrates studied in detail so far have one or more clusters of genes encoding odorant receptors (OR) in close physical linkage to the major histocompatibility complex (MHC). It has been postulated that MHC-linked OR genes could be involved in MHC-influenced mate choice, comprising both pre- as well as post-copulatory mechanisms. We have therefore carried out a systematic comparison of protein sequences of these receptors from the genomes of man, chimpanzee, gorilla, orangutan, rhesus macaque, mouse, rat, dog, cat, cow, pig, horse, elephant, opossum, frog and zebra fish (amounting to a total of 559 protein sequences) in order to identify OR families exhibiting evolutionarily conserved MHC linkage. In addition, we compared the genomic structure of this region within these 16 species, accounting for presence or absence of OR gene families, gene order, transcriptional orientation and linkage to the MHC or framework genes. The results are presented in the form of gene maps and phylogenetic analyses that reveal largely concordant repertoires of gene families, at least among tetrapods, although each of the eight taxa studied (primates, rodents, ungulates, carnivores, proboscids, marsupials, amphibians and teleosts) exhibits a typical architecture of MHC (or MHC framework loci)-linked OR genes. Furthermore, the comparison of the genomic organization of this region has implications for phylogenetic relationships between closely related taxa, especially in disputed cases such as the evolutionary history of even- and odd-toed ungulates and carnivores. Finally, the largely conserved linkage between distinct OR genes and the MHC supports the concept that particular alleles within a given haplotype function in a concerted fashion during self-/non-self-discrimination processes in reproduction. PMID:20680261

  19. Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii).

    PubMed

    van der Kraan, Lauren E; Wong, Emily S W; Lo, Nathan; Ujvari, Beata; Belov, Katherine

    2013-01-01

    Within the mammalian immune system, natural killer (NK) cells contribute to the first line of defence against infectious agents and tumours. Their activity is regulated, in part, by cell surface NK cell receptors. NK receptors can be divided into two unrelated, but functionally analogous superfamilies based on the structure of their extracellular ligand-binding domains. Receptors belonging to the C-type lectin superfamily are predominantly encoded in the natural killer complex (NKC), while receptors belonging to the immunoglobulin superfamily are predominantly encoded in the leukocyte receptor complex (LRC). Natural killer cell receptors are emerging as a rapidly evolving gene family which can display significant intra- and interspecific variation. To date, most studies have focused on eutherian mammals, with significantly less known about the evolution of these receptors in marsupials. Here, we describe the identification of 43 immunoglobulin domain-containing LRC genes in the genome of the Tasmanian devil (Sarcophilus harrisii), the largest remaining marsupial carnivore and only the second marsupial species to be studied. We also identify orthologs of NKC genes KLRK1, CD69, CLEC4E, CLEC1B, CLEC1A and an ortholog of an opossum NKC receptor. Characterisation of these regions in a second, distantly related marsupial provides new insights into the dynamic evolutionary histories of these receptors in mammals. Understanding the functional role of these genes is also important for the development of therapeutic agents against Devil Facial Tumour Disease, a contagious cancer that threatens the Tasmanian devil with extinction. PMID:23007952

  20. Chromosomal localization of the human V3 pituitary vasopressin receptor gene (AVPR3) to 1q32

    SciTech Connect

    Rousseau-Merck, M.F.; Derre, J.; Berger, R.

    1995-11-20

    Vasopressin exerts its physiological effects on liver metabolism, fluid osmolarity, and corticotrophic response to stress through a set of at least three receptors, V1a, V2, and V3 (also called V1b), respectively. These receptors constitute a distinct group of the superfamily of G-protein-coupled cell surface receptors. When bound to vasopressin, they couple to G proteins activating phospholipase C for the V1a and V3 types and adenylate cyclase for the V2. The vasopressin receptor subfamily also includes the receptor for oxytocin, a structurally related hormone that signals through the activation of phospholipase C. The chromosomal position of the V2 receptor gene has been assigned to Xq28-qter by PCR-based screening of somatic cell hybrids, whereas the oxytocin receptor gene has been mapped to chromosome 3q26.2 by fluorescence in situ hybridization (FISH). The chromosomal location of the V1a gene is currently unknown. We recently cloned the cDNA and the gene coding for the human pituitary-specific V3 receptor (HGMW-approved symbol AVPR3). We report here the chromosomal localization of this gene by two distinct in situ hybridization techniques using radioactive and fluorescent probes. 11 refs., 1 fig.

  1. Regulation of AMPA Receptor Function by the Human Memory-Associated Gene KIBRA

    PubMed Central

    Makuch, Lauren; Volk, Lenora; Anggono, Victor; Johnson, Richard C.; Yu, Yilin; Duning, Kerstin; Kremerskothen, Joachim; Xia, Jun; Takamiya, Kogo; Huganir, Richard L.

    2011-01-01

    KIBRA has recently been identified as a gene associated with human memory performance. Despite the elucidation of the role of KIBRA in several diverse processes in non-neuronal cells, the molecular function of KIBRA in neurons is unknown. We found that KIBRA directly binds to the protein interacting with C-kinase 1 (PICK1) and forms a complex with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs), the major excitatory neurotransmitter receptors in the brain. KIBRA knockdown accelerates the rate of AMPAR recycling following N-methyl-D-aspartate receptor induced internalization. Genetic deletion of KIBRA in mice impairs both long-term depression and long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Moreover, KIBRA knockout mice have severe deficits in contextual fear learning and memory. These results indicate that KIBRA regulates higher brain function by regulating AMPAR trafficking and synaptic plasticity. PMID:21943600

  2. Transferrin protein nanospheres: a nanoplatform for receptor-mediated cancer cell labeling and gene delivery

    NASA Astrophysics Data System (ADS)

    McDonald, Michael A.; Spurlin, Tighe A.; Tona, Alessandro; Elliott, John T.; Halter, Michael; Plant, Anne L.

    2010-02-01

    This paper presents preliminary results on the use of transferrin protein nanospheres (TfpNS) for targeting cancer cells in vitro. Protein nanospheres represent an easily prepared and modifiable nanoplatform for receptor-specific targeting, molecular imaging and gene delivery. Rhodamine B isothiocyanate conjugated TfpNS (RBITC-TfpNS) show significantly enhanced uptake in vitro in SK-MEL-28 human malignant melanoma cells known to overexpress transferrin receptors compared to controls. RBITCTfpNS labeling of the cancer cells is due to transferrin receptor-mediated uptake, as demonstrated by competitive inhibition with native transferrin. Initial fluorescence microscopy studies indicate GFP plasmid can be transfected into melanoma cells via GFP plasmid encapsulated by TfpNS.

  3. Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation

    PubMed Central

    2011-01-01

    Background Since a substantial percentage of ovarian cancers express gonadotropin receptors and are responsive to the relatively high concentrations of pituitary gonadotropins during the postmenopausal years, it has been suggested that receptor activation may contribute to the etiology and/or progression of the neoplasm. The goal of the present study was to develop a cell model to determine the impact of luteinizing hormone (LH) receptor (LHR) expression and LH-mediated LHR activation on gene expression and thus obtain insights into the mechanism of gonadotropin action on ovarian surface epithelial (OSE) carcinoma cells. Methods The human ovarian cancer cell line, SKOV-3, was stably transfected to express functional LHR and incubated with LH for various periods of time (0-20 hours). Transcriptomic profiling was performed on these cells to identify LHR expression/activation-dependent changes in gene expression levels and pathways by microarray and qRT-PCR analyses. Results Through comparative analysis on the LHR-transfected SKOV-3 cells exposed to LH, we observed the differential expression of 1,783 genes in response to LH treatment, among which five significant families were enriched, including those of growth factors, translation regulators, transporters, G-protein coupled receptors, and ligand-dependent nuclear receptors. The most highly induced early and intermediate responses were found to occupy a network impacting transcriptional regulation, cell growth, apoptosis, and multiple signaling transductions, giving indications of LH-induced apoptosis and cell growth inhibition through the significant changes in, for example, tumor necrosis factor, Jun and many others, supportive of the observed cell growth reduction in in vitro assays. However, other observations, e.g. the substantial up-regulation of the genes encoding the endothelin-1 subtype A receptor, stromal cell-derived factor 1, and insulin-like growth factor II, all of which are potential therapeutic

  4. Deviation from major codons in the Toll-like receptor genes is associated with low Toll-like receptor expression

    PubMed Central

    Zhong, Fei; Cao, Weiping; Chan, Edmund; Tay, Puei Nam; Cahya, Florence Feby; Zhang, Haifeng; Lu, Jinhua

    2005-01-01

    Microbial structures activate Toll-like receptors (TLRs) and TLR-mediated cell signalling elicits and regulates host immunity. Most TLRs are poorly expressed but the underlying expression mechanism is not clear. Examination TLR sequences revealed that most human TLR genes deviated from using major human codons. CD14 resembles TLRs in sequence but its gene preferentially uses major codons. Indeed, CD14 expression on monocytes was higher than expression of TLR1 and TLR2. The TLR9 gene is abundant in major codons and it also showed higher expression than TLR1, TLR2 and TLR7 in transfected 293T cells. Change of the 5′-end 302 base pairs of the TLR2 sequence into major human codons markedly increased TLR2 expression, which led to increased TLR2-mediated constitutive nuclear factor-κB activation. Change of the 5′-end 381 base pairs of the CD14 sequence into prevalent TLR codons markedly reduced CD14 expression. These results collectively show that the deviation of TLR sequences from using major codons dictates the low TLR expression and this may protect the host against excessive inflammation and tissue damages. PMID:15606798

  5. Differential expression of genes for aromatase and estrogen receptor during the gonadal development in chicken embryos.

    PubMed

    Nakabayashi, O; Kikuchi, H; Kikuchi, T; Mizuno, S

    1998-04-01

    In birds, differentiation of embryonic gonads is not as strictly determined by the genetic sex as it is in mammals, and can be influenced by early manipulation with a sex steroid hormone. Thus administration of an aromatase inhibitor induces testis development in the genetic female, and administration of estrogen induces a left ovotestis in the genetic male embryo. Another feature of avian gonadogenesis is that only the left ovary develops in most species. Molecular mechanisms underlying these features at the level of gene expression have not been elucidated. In this paper, we present evidence that a gene for aromatase cytochrome P-450, an enzyme required for the last step in the synthesis of estradiol-17beta, is expressed in medullae of the left and right gonads of a female chicken embryo, but not in those of a male chicken embryo, and that an estrogen receptor gene is expressed only in epithelium (and cortex later, in the female) of the left, not the right, gonad of both sexes, but the expression in the male left gonad is temporary and restricted to an early stage of development. Differential expression of these two genes serves well to explain the above features of gonadal development in birds. Furthermore, in ovo administration of estradiol-17beta from the 5th to the 14th day of incubation does not cause expression of the estrogen receptor gene in the right gonad of chicken embryos of either sex, suggesting that the absence of expression of the estrogen receptor gene in the right gonad is not the result of down-regulation, but may be regarded as an important cause of the unilateral ovarian development. PMID:9584834

  6. Genetic Variations in the Human Cannabinoid Receptor Gene Are Associated with Happiness

    PubMed Central

    Matsunaga, Masahiro; Isowa, Tokiko; Yamakawa, Kaori; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Ohira, Hideki

    2014-01-01

    Happiness has been viewed as a temporary emotional state (e.g., pleasure) and a relatively stable state of being happy (subjective happiness level). As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater magnitude

  7. Control of Energy Balance by Hypothalamic Gene Circuitry Involving Two Nuclear Receptors, Neuron-Derived Orphan Receptor 1 and Glucocorticoid Receptor

    PubMed Central

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Soo-Kyung

    2013-01-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance. PMID:23897430

  8. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    PubMed

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance. PMID:23897430

  9. Structure and chromosomal localization of the gene (BDKRB2) encoding human bradykinin B{sub 2} receptor

    SciTech Connect

    Jian-Xing Ma; Dan-Zhao Wang; Limei Chen

    1994-09-15

    The bradykinin B{sub 2} receptor (BDKRB2) has high affinity for the intact kinins, which mediate a wide spectrum of biological effects, including pain, inflammation, vasodilation, and smooth muscle contraction and relaxation. In the present study, the authors have cloned and sequenced the gene encoding human bradykinin B{sub 2} receptor from a human genomic library. The B{sub 2} receptor gene contains three exons separated by two introns. The first and second exons are noncoding, while the third exon contains the full-length coding region, which encodes a protein of 364 amino acids forming 7 transmembrane domains. The human B{sub 2} gene shares high sequence identity with rat and mouse B{sub 2} receptor genes and significant similarity with the gene encoding the angiotensin II type I receptor in the nucleotide sequence and exon-intron arrangement. In the 5` flanking region, a consensus TATA box and several putative transcription factor-binding sites have been identified. Genomic Southern blot analysis showed that the B{sub 2} receptor is encoded by a single-copy gene that was localized to chromosome 14q32 by in situ hybridization. In a Southern blot analysis following reverse transcription and polymerase chain reaction, the human B{sub 2} receptor was found to be expressed in most human tissues. 30 refs., 7 figs.

  10. Ovarian steroids regulate tachykinin and tachykinin receptor gene expression in the mouse uterus

    PubMed Central

    Pinto, Francisco M; Pintado, C Oscar; Pennefather, Jocelyn N; Patak, Eva; Candenas, Luz

    2009-01-01

    Background In the mouse uterus, pregnancy is accompanied by changes in tachykinin and tachykinin receptor gene expression and in the uterotonic effects of endogenous tachykinins. In this study we have investigated whether changes in tachykinin expression and responses are a result of changes in ovarian steroid levels. Methods We quantified the mRNAs of tachykinins and tachykinin receptors in uteri from ovariectomized mice and studied their regulation in response to estrogen and progesterone using real-time quantitative RT-PCR. Early (3 h) and late (24 h) responses to estrogen were evaluated and the participation of the estrogen receptors (ER), ERalpha and ERbeta, was analyzed by treating mice with propylpyrazole triol, a selective ERalpha agonist, or diarylpropionitrile, a selective agonist of ERbeta. Results All genes encoding tachykinins (Tac1, Tac2 and Tac4) and tachykinin receptors (Tacr1, Tacr2 and Tacr3) were expressed in uteri from ovariectomized mice. Estrogen increased Tac1 and Tacr1 mRNA after 3 h and decreased Tac1 and Tac4 expression after 24 h. Tac2 and Tacr3 mRNA levels were decreased by estrogen at both 3 and 24 h. Most effects of estrogen were also observed in animals treated with propylpyrazole triol. Progesterone treatment increased the levels of Tac2. Conclusion These results show that the expression of tachykinins and their receptors in the mouse uterus is tightly and differentially regulated by ovarian steroids. Estrogen effects are mainly mediated by ERalpha supporting an essential role for this estrogen receptor in the regulation of the tachykinergic system in the mouse uterus. PMID:19627578

  11. Individual differences in flow proneness are linked to a dopamine D2 receptor gene variant.

    PubMed

    Gyurkovics, Mate; Kotyuk, Eszter; Katonai, Eniko Rozsa; Horvath, Erzsebet Zsofia; Vereczkei, Andrea; Szekely, Anna

    2016-05-01

    Flow is a special mental state characterized by deep concentration that occurs during the performance of optimally challenging tasks. In prior studies, proneness to experience flow has been found to be moderately heritable. In the present study, we investigated whether individual differences in flow proneness are related to a polymorphism of the dopamine D2 receptor coding gene (DRD2 C957T rs6277). This polymorphism affects striatal D2 receptor availability, a factor that has been shown to be related to flow proneness. To our knowledge, this is the first study to investigate the association between this trait and a specific gene variant. In a sample of 236 healthy Hungarian adults, we found that CC homozygotes report higher flow proneness than do T allele carriers, but only during mandatory activities (i.e., studying and working), not during leisure time. We discuss implications of this result, e.g., the potential mediators of the relationship. PMID:26954487

  12. Enhancement of gene transactivation activity of androgen receptor by hepatitis B virus X protein

    SciTech Connect

    Zheng Yanyan; Chen Wenling; Ma, W.-L. Maverick; Chang Chawnshang; Ou, J.-H. James . E-mail: jamesou@hsc.usc.edu

    2007-07-05

    Hepatitis B virus (HBV) X protein (HBx) is a regulatory protein that is required for efficient replication of HBV in its natural host. In this report, we demonstrate by co-immunoprecipitation experiments that HBx can physically bind to the androgen receptor (AR), which is a nuclear hormone receptor that is expressed in many different tissues including the liver. This observation is further supported by confocal microscopy, which reveals that HBx can alter the subcellular localization of the AR both in the presence and in the absence of dihydrotestosterone (DHT). Further studies indicate that HBx can enhance the gene transactivation activity of AR by enhancing its DNA binding activity in a DHT-dependent manner. However, HBx does not remain associated with AR on the DNA. As AR can regulate the expression of a number of cellular genes, our results raise the possibility that HBV pathogenesis may be mediated in part via the interaction between HBx and AR.

  13. Role of recombination activating genes in the generation of antigen receptor diversity and beyond.

    PubMed

    Nishana, Mayilaadumveettil; Raghavan, Sathees C

    2012-12-01

    V(D)J recombination is the process by which antibody and T-cell receptor diversity is attained. During this process, antigen receptor gene segments are cleaved and rejoined by non-homologous DNA end joining for the generation of combinatorial diversity. The major players of the initial process of cleavage are the proteins known as RAG1 (recombination activating gene 1) and RAG2. In this review, we discuss the physiological function of RAGs as a sequence-specific nuclease and its pathological role as a structure-specific nuclease. The first part of the review discusses the basic mechanism of V(D)J recombination, and the last part focuses on how the RAG complex functions as a sequence-specific and structure-specific nuclease. It also deals with the off-target cleavage of RAGs and its implications in genomic instability. PMID:23039142

  14. Diversity in the Toll-like receptor genes of the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Cui, Jian; Cheng, Yuanyuan; Belov, Katherine

    2015-03-01

    The Tasmanian devil is an endangered marsupial species that has survived several historical bottlenecks and now has low genetic diversity. Here we characterize the Toll-like receptor (TLR) genes and their diversity in the Tasmanian devil. TLRs are a key innate immune gene family found in all animals. Ten TLR genes were identified in the Tasmanian devil genome. Unusually low levels of diversity were found in 25 devils from across Tasmania. We found two alleles at TLR2, TLR3 and TLR6. The other seven genes were monomorphic. The insurance population, which safeguards the species from extinction, has successfully managed to capture all of these TLR alleles, but concerns remain for the long-term survival of this species. PMID:25563844

  15. Regulation of the vitamin D receptor gene by environment, genetics and epigenetics.

    PubMed

    Saccone, Donovan; Asani, Furaha; Bornman, Liza

    2015-05-01

    The vitamin D receptor (VDR) plays a pivotal role as a mediator of 1α,25(OH)2D signalling. Besides its role in calcium homeostasis, ligand- bound VDR supports immunity and cell cycle control. While VDR regulates numerous genes across the genome, much remains to be learned about the regulation of the VDR gene itself. Hindered VDR expression and function have a broad impact, contributing to diverse diseases, including cancer, multiple sclerosis, type 1 diabetes and tuberculosis. A better understanding of the three main factors regulating the VDR, namely environment, genetics and epigenetics, may facilitate the development of improved strategies for treatment and prevention of diseases associated with impaired VDR function. This review aims to illuminate the complex interaction and contributions of the three levels of VDR gene regulation to endorse consideration of all three regulatory factors when studying gene regulation. PMID:25682935

  16. Androgen Receptor Gene Polymorphism, Aggression, and Reproduction in Tanzanian Foragers and Pastoralists

    PubMed Central

    Butovskaya, Marina L.; Lazebny, Oleg E.; Vasilyev, Vasiliy A.; Dronova, Daria A.; Karelin, Dmitri V.; Mabulla, Audax Z. P.; Shibalev, Dmitri V.; Shackelford, Todd K.; Fink, Bernhard; Ryskov, Alexey P.

    2015-01-01

    The androgen receptor (AR) gene polymorphism in humans is linked to aggression and may also be linked to reproduction. Here we report associations between AR gene polymorphism and aggression and reproduction in two small-scale societies in northern Tanzania (Africa)—the Hadza (monogamous foragers) and the Datoga (polygynous pastoralists). We secured self-reports of aggression and assessed genetic polymorphism of the number of CAG repeats for the AR gene for 210 Hadza men and 229 Datoga men (aged 17–70 years). We conducted structural equation modeling to identify links between AR gene polymorphism, aggression, and number of children born, and included age and ethnicity as covariates. Fewer AR CAG repeats predicted greater aggression, and Datoga men reported more aggression than did Hadza men. In addition, aggression mediated the identified negative relationship between CAG repeats and number of children born. PMID:26291982

  17. Distribution of killer cell immunoglobulin-like receptor genes in Poles.

    PubMed

    Majorczyk, E; Łuszczek, W; Nowak, I; Pawlik, A; Wiśniewski, A; Jasek, M; Kuśnierczyk, P

    2008-08-01

    Killer cell immunoglobulin-like receptors (KIRs) present on natural killer cells and minor subpopulations of T cells recognize class I human leucocyte antigen (HLA) molecules on the surface of target cells. Humans differ by the presence or absence of some KIR genes on their chromosomes. As KIRs are important for the outcome of tissue transplantation (particularly for haematopoietic stem cell transplantation) and possibly for pregnancy and autoimmune diseases, knowledge of the KIR gene distribution in a given human population is of practical value. Therefore, we tested 363 healthy individuals from Western Poland for the presence or absence of KIR genes. Results are compared with those published for other human populations. KIR gene frequencies in Poles are close to these in other Caucasoids but different from those in Asian and African populations, and particularly distant from those in Australian Aborigines. PMID:18976447

  18. Group I Metabotropic Glutamate Receptor-Mediated Gene Transcription and Implications for Synaptic Plasticity and Diseases

    PubMed Central

    Wang, Hansen; Zhuo, Min

    2012-01-01

    Stimulation of group I metabotropic glutamate receptors (mGluRs) initiates a wide variety of signaling pathways. Group I mGluR activation can regulate gene expression at both translational and transcriptional levels, and induces translation or transcription-dependent synaptic plastic changes in neurons. The group I mGluR-mediated translation-dependent neural plasticity has been well reviewed. In this review, we will highlight group I mGluR-induced gene transcription and its role in synaptic plasticity. The signaling pathways (PKA, CaMKs, and MAPKs) which have been shown to link group I mGluRs to gene transcription, the relevant transcription factors (CREB and NF-κB), and target proteins (FMRP and ARC) will be documented. The significance and future direction for characterizing group I mGluR-mediated gene transcription in fragile X syndrome, schizophrenia, drug addiction, and other neurological disorders will also be discussed. PMID:23125836

  19. Gene receptor polymorphism as a risk factor for BMD deterioration in adolescent girls with anorexia nervosa.

    PubMed

    Stergioti, E; Deligeoroglou, E; Economou, E; Tsitsika, A; Dimopoulos, K D; Daponte, A; Katsioulis, A; Creatsas, G

    2013-07-01

    Anorexia nervosa is a serious eating disorder that is associated with decreased bone mineral density and greater lifetime risk for fractures. This case-controlled study, analyzed single nucleotide polymorphisms of genes encoding vitamin D receptor, estrogen receptor alpha (ESR1), collagen type I and calcitonin receptor (CTR). Relationships between genotype and body mass index, cycling status and lumbar spine bone mineral density (LBMD) were determined in 40 adolescent girls with anorexia nervosa and 10 age-matched controls. The distribution of CTR-AluI genotypes differed between groups, but this polymorphism was not associated with LBMD Z-score. Distribution of ESR1-XbaI genotypes did not differ between groups, but the AA genotype was associated with decreased LBMD Z-score (≤-1) (OR = 24.79, 95% CI, 1.01-606.08). Carriers of the A allele were more likely to have decreased LBMD Z-scores compared with carriers of the G allele (OR = 4.12, 95% CI, 1.23-13.85, p = 0.022). In conclusion, our study shows that anorexic patients with wild-type genotype ESR-XbaI receptor are in greater risk for decreased BMD in relation to those with the mutated gene. Prompt recognition of these patients is crucial because early administration of the proper therapeutic treatment may contribute to the prevention of adverse sequelae on bone metabolism. PMID:23772785

  20. Gene silencing of HIV chemokine receptors using ribozymes and single-stranded antisense RNA.

    PubMed

    Qureshi, Amer; Zheng, Richard; Parlett, Terry; Shi, Xiaoju; Balaraman, Priyadhashini; Cheloufi, Sihem; Murphy, Brendan; Guntermann, Christine; Eagles, Peter

    2006-03-01

    The chemokine receptors CXCR4 and CCR5 are required for HIV-1 to enter cells, and the progression of HIV-1 infection to AIDS involves a switch in the co-receptor usage of the virus from CCR5 to CXCR4. These receptors therefore make attractive candidates for therapeutic intervention, and we have investigated the silencing of their genes by using ribozymes and single-stranded antisense RNAs. In the present study, we demonstrate using ribozymes that a depletion of CXCR4 and CCR5 mRNAs can be achieved simultaneously in human PBMCs (peripheral blood mononuclear cells), cells commonly used by the virus for infection and replication. Ribozyme activity leads to an inhibition of the cell-surface expression of both CCR5 and CXCR4, resulting in a significant inhibition of HIV-1 replication when PBMCs are challenged with the virus. In addition, we show that small single-stranded antisense RNAs can also be used to silence CCR5 and CXCR4 genes when delivered to PBMCs. This silencing is caused by selective degradation of receptor mRNAs. PMID:16293105

  1. Gene silencing of HIV chemokine receptors using ribozymes and single-stranded antisense RNA

    PubMed Central

    Qureshi, Amer; Zheng, Richard; Parlett, Terry; Shi, Xiaoju; Balaraman, Priyadhashini; Cheloufi, Sihem; Murphy, Brendan; Guntermann, Christine; Eagles, Peter

    2005-01-01

    The chemokine receptors CXCR4 and CCR5 are required for HIV-1 to enter cells, and the progression of HIV-1 infection to AIDS involves a switch in the co-receptor usage of the virus from CCR5 to CXCR4. These receptors therefore make attractive candidates for therapeutic intervention, and we have investigated the silencing of their genes by using ribozymes and single-stranded antisense RNAs. In the present study, we demonstrate using ribozymes that a depletion of CXCR4 and CCR5 mRNAs can be achieved simultaneously in human PBMCs (peripheral blood mononuclear cells), cells commonly used by the virus for infection and replication. Ribozyme activity leads to an inhibition of the cell-surface expression of both CCR5 and CXCR4, resulting in a significant inhibition of HIV-1 replication when PBMCs are challenged with the virus. In addition, we show that small single-stranded antisense RNAs can also be used to silence CCR5 and CXCR4 genes when delivered to PBMCs. This silencing is caused by selective degradation of receptor mRNAs. PMID:16293105

  2. The dopamine D sub 2 receptor locus as a modifying gene in neuropsychiatric disorders

    SciTech Connect

    Comings, D.E.; Comings, B.G.; Muhleman, D.; Dietz, G.; Shahbahrami, B.; Tast, D.; Knell, E.; Kocsis, P.; Baumgarten, R.; Kovacs, B.W.; Gysin, R.; Flanagan, S.D. ); Levy, D.L. ); Smith, M. ); Klein, D.N. ); MacMurray, J.; Tosk, J.M. ); Sverd, J. Cornell Univ. Medical College, Manhasset, NY ); Borison, R.L.; Evans, D.D. )

    1991-10-02

    The A1 allele of the Taq I polymorphism of the dopamine D{sub 2} receptor (DRD2) gene has been earlier reported to occur in 69% of alcoholics, compared with 20% of controls. Other research has reported no significant difference in the prevalence of the A1 allele in alcoholics vs controls and no evidence that the DRD2 gene was linked to alcoholism. The authors hypothesized that these seemingly conflicting results might be because increases in the prevalence of the A1 allele may not be specific to alcoholism. Thus, they examined other disorders frequently associated with alcoholism or those believed to involve defects in dopaminergic neurotransmission.

  3. Association study of schizophrenia and IL-2 receptor {beta} chain gene

    SciTech Connect

    Nimgaonkar, V.L.; Yang, Z.W.; Zhang, X.R.; Brar, J.S.

    1995-10-09

    A case-control association study was conducted in Caucasian patients with schizophrenia (DSM-III-R, n = 42) and unaffected controls (n = 47) matched for ethnicity and area of residence. Serum interleukin-2 receptor (IL-2R) concentrations, as well as a dinucleotide repeat polymorphism in the IL-2RP chain gene, were examined in both groups. No significant differences in IL-2R concentrations or in the distribution of the polymorphism were noted. This study does not support an association between schizophrenia and the IL-2RP gene locus, contrary to the suggestive evidence from linkage analysis in multicase families. 17 refs., 2 tabs.

  4. Localization of the gene for the ciliary neutrotrophic factor receptor (CNTFR) to human chromosome 9

    SciTech Connect

    Donaldson, D.H.; Jones, C.; Patterson, D. Univ. of Colorado Health Science Center, Denver, CO ); Britt, D.E.; Jackson, C.L. )

    1993-09-01

    Ciliary neurotrophic factor (CNTF) has recently been found to be important for the survival of motor neurons and has shown activity in animal models of amyotrophic lateral sclerosis (ALS). CNTF therefore holds promise as a treatment for ALS, and it and its receptor (CNTFR) are candidates for a gene involved in familial ALS. The CNTFR gene was mapped to chromosome 9 by PCR on a panel of human/CHO somatic cell hybrids and localized to 9p13 by PCR on a panel of radiation hybrids. 18 ref., 1 fig., 2 tabs.

  5. Linkage disequilibrium between the beta frequency of the human EEG and a GABAA receptor gene locus

    PubMed Central

    Porjesz, Bernice; Almasy, Laura; Edenberg, Howard J.; Wang, Kongming; Chorlian, David B.; Foroud, Tatiana; Goate, Alison; Rice, John P.; O'Connor, Sean J.; Rohrbaugh, John; Kuperman, Samuel; Bauer, Lance O.; Crowe, Raymond R.; Schuckit, Marc A.; Hesselbrock, Victor; Conneally, P. Michael; Tischfield, Jay A.; Li, Ting-Kai; Reich, Theodore; Begleiter, Henri

    2002-01-01

    Human brain oscillations represent important features of information processing and are highly heritable. A common feature of beta oscillations (13–28 Hz) is the critical involvement of networks of inhibitory interneurons as pacemakers, gated by γ-aminobutyric acid type A (GABAA) action. Advances in molecular and statistical genetics permit examination of quantitative traits such as the beta frequency of the human electroencephalogram in conjunction with DNA markers. We report a significant linkage and linkage disequilibrium between beta frequency and a set of GABAA receptor genes. Uncovering the genes influencing brain oscillations provides a better understanding of the neural function involved in information processing. PMID:11891318

  6. Dopamine D4 receptor gene DRD4 and its association with psychiatric disorders.

    PubMed

    Ptácek, Radek; Kuzelová, Hana; Stefano, George B

    2011-09-01

    Dopamine receptors control neural signals that modulates behavior. Dopamine plays an important role in normal attention; that is the reason for studying the genes of the dopaminergic system, mainly in connection with disorders of attention. DRD4 influences the postsynaptic action of dopamine and is implicated in many neurological processes, exhibits polymorphism and is one of the most studied genes in connection with psychiatric disorders. Associations were found with ADHD (attention deficit hyperactivity disorder), substance dependences, several specific personality traits, and reaction to stress. These findings have implications for pharmacogenetics. This article reviews the principle published associations of DRD4 variants with psychiatric disorders. PMID:21873960

  7. Are serotonin 3A and 3B receptor genes associated with suicidal behavior in schizophrenia subjects?

    PubMed

    Souza, Renan P; De Luca, Vincenzo; Manchia, Mirko; Kennedy, James L

    2011-02-11

    Suicide is a major contributor to the morbidity and mortality of schizophrenia, accounting for approximately 10% of deaths in these patients. Genetic factors have been reported to modulate the risk for suicide, although the precise mechanism and magnitude of the genetic contribution are unknown. Further, suicide attempters present abnormalities in the serotonergic system. We evaluated whether genetic variants in the serotonin receptors HTR3A (rs897692, rs1150226, rs1176724, rs2276302, rs3737457, rs897687 and rs1176713) and HTR3B (rs3758987, rs10502180, rs11606194, rs17116121, rs1176744, rs17116138, rs2276307, rs3782025 and rs1176761) were susceptibility components for suicidal behavior in 154 Caucasians schizophrenia subjects (20.1% of suicide attempters). In a second step, we compared haplotype and gene-gene interaction approaches because both genes are located in the chromosome 11q23 approximately 28Kbp apart. We did not observe allelic or genotypic associations. Six haplotypes were nominally significant associated with suicide. Gene-gene interaction using Helix Tree software showed two nominally significant interactions reproduced by haplotype association. Likewise, haplotypes composed by the markers included in the best multidimensional reduction three-locus model were nominally significant. Our results suggest that HTR3A and HTR3B polymorphisms may not play a major role in the susceptibility for suicidal behavior in schizophrenia subjects. Moreover, gene-gene interaction and haplotype association may have consistent results for genes located in the same chromosome. PMID:21184810

  8. The neuronal nicotinic acetylcholine receptor {alpha}7 subunit gene: Cloning, mapping, structure, and targeting in mouse

    SciTech Connect

    Orr-Urtreger, A.; Baldini, A.; Beaudet, A.L.

    1994-09-01

    The neuronal nicotinic acetylcholine receptor {alpha}7 subunit is a member of a family of ligand-gated ion channels, and is the only subunit know to bind {alpha}-bungarotoxin in mammalian brain. {alpha}-Bungarotoxin binding sites are known to be more abundant in the hippocampus of mouse strains that are particularly sensitive to nicotine-induced seizures. The {alpha}7 receptor is highly permeable to calcium, which could suggest a role in synaptic plasticity in the nervous system. Auditory gating deficiency, an abnormal response to a second auditory stimulus, is characteristic of schizophrenia. Mouse strains that exhibit a similar gating deficit have reduced hippocampal expression of the {alpha}7 subunit. We have cloned and sequenced the full length cDNA for the mouse {alpha}7 gene (Acra-7) and characterized its gene structure. The murine {alpha}7 shares amino acid identity of 99% and 93% with the rat and human {alpha}7 subunits, respectively. Using an interspecies backcross panel, the murine gene was mapped to chromosome 7 near the p locus, a region syntenic with human chromosome 15; the human gene (CHRNA7) was confirmed to map to 15q13-q14 by FISH. To generate a mouse {alpha}7 mutant by homologous recombination, we have constructed a replacement vector which will delete transmembrane domains II-IV and the cytoplasmic domain from the gene product. Recombinant embryonic stem (ES) cell clones were selected and used to develop mouse chimeras that are currently being bred to obtain germline transmission.

  9. Hypoxia induces PDK4 gene expression through induction of the orphan nuclear receptor ERRγ.

    PubMed

    Lee, Ja Hee; Kim, Eun-Jin; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Lee, In-Kyu; Harris, Robert A; Lee, Mi-Ock; Choi, Hueng-Sik

    2012-01-01

    Multiple cellular signaling pathways that control metabolism and survival are activated when cell are incubated under hypoxic conditions. Activation of the hypoxia inducible factor (HIF)-1 promotes expression of genes that increase the capacity to cope with the stress imposed by a reduced oxygen environment. Here we show that the orphan nuclear receptor estrogen related receptor γ (ERRγ) plays a critical role in hypoxia-mediated activation of pyruvate dehydrogenase kinase 4 (PDK4) gene expression. ERRγ mRNA and protein levels were increased by hypoxia or desferrioxamine (DFO) treatment in hepatoma cell lines. Co-expression of HIF-1α and β increased ERRγ promoter activity as well as mRNA expression, while knockdown of endogenous HIF-1α reduced the hypoxia-mediated induction of ERRγ. In addition, hypoxia also increased the promoter activity and mRNA level of PDK4 in HepG2 cells. Adenovirus mediated-overexpression of ERRγ specifically increased PDK4 gene expression, while ablation of endogenous ERRγ significantly decreased hypoxia-mediated induction of PDK4 gene expression. Finally, GSK5182, an inverse agonist of ERRγ, strongly inhibited the hypoxia-mediated induction of PDK4 protein and promoter activity. Regulation of the transcriptional activity of ERRγ may provide a therapeutic approach for the regulation of PDK4 gene expression under hypoxia. PMID:23050013

  10. Modulation of adipogenesis-related gene expression by estrogen-related receptor gamma during adipocytic differentiation.

    PubMed

    Kubo, Mayumi; Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Takeda, Satoru; Inoue, Satoshi

    2009-02-01

    Estrogen-related receptor gamma (ERRgamma) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in oxidative metabolism and mitochondrial biogenesis in brown adipose tissue and heart. However, the physiological role of ERRgamma in adipogenesis and the development of white adipose tissue has not been well studied. Here we show that ERRgamma was up-regulated in murine mesenchyme-derived cells, especially in ST2 and C3H10T1/2 cells, at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. The up-regulation of ERRgamma mRNA was also observed in inguinal white adipose and brown adipose tissues of mice fed a high-fat diet. Gene knockdown by ERRgamma-specific siRNA results in mRNA down-regulation of adipogenic marker genes including fatty acid binding protein 4, PPARgamma, and PGC-1beta in a preadipocyte cell line 3T3-L1 preadipocytes and mesenchymal ST2 and C3H10T1/2 cells in the adipogenesis medium. In contrast, stable expression of ERRgamma in 3T3-L1 cells resulted in up-regulation of these adipogenic marker genes under the adipogenic condition. These results suggest that ERRgamma positively regulate the adipocyte differentiation with modulating the expression of various adipogenesis-related genes. PMID:18809516

  11. Hypoxia Induces PDK4 Gene Expression through Induction of the Orphan Nuclear Receptor ERRγ

    PubMed Central

    Lee, Ji-Min; Park, Seung Bum; Lee, In-Kyu; Harris, Robert A.; Lee, Mi-Ock; Choi, Hueng-Sik

    2012-01-01

    Multiple cellular signaling pathways that control metabolism and survival are activated when cell are incubated under hypoxic conditions. Activation of the hypoxia inducible factor (HIF)-1 promotes expression of genes that increase the capacity to cope with the stress imposed by a reduced oxygen environment. Here we show that the orphan nuclear receptor estrogen related receptor γ (ERRγ) plays a critical role in hypoxia–mediated activation of pyruvate dehydrogenase kinase 4 (PDK4) gene expression. ERRγ mRNA and protein levels were increased by hypoxia or desferrioxamine (DFO) treatment in hepatoma cell lines. Co-expression of HIF-1α and β increased ERRγ promoter activity as well as mRNA expression, while knockdown of endogenous HIF-1α reduced the hypoxia-mediated induction of ERRγ. In addition, hypoxia also increased the promoter activity and mRNA level of PDK4 in HepG2 cells. Adenovirus mediated-overexpression of ERRγ specifically increased PDK4 gene expression, while ablation of endogenous ERRγ significantly decreased hypoxia-mediated induction of PDK4 gene expression. Finally, GSK5182, an inverse agonist of ERRγ, strongly inhibited the hypoxia-mediated induction of PDK4 protein and promoter activity. Regulation of the transcriptional activity of ERRγ may provide a therapeutic approach for the regulation of PDK4 gene expression under hypoxia. PMID:23050013

  12. Farnesoid X receptor directly regulates xenobiotic detoxification genes in the long-lived Little mice

    PubMed Central

    Jiang, Yanjun; Jin, Jingling; Iakova, Polina; Hernandez, Julio Cesar; Jawanmardi, Nicole; Sullivan, Emily; Guo, Grace L.; Timchenko, Nikolai A.; Darlington, Gretchen J.

    2013-01-01

    Activation of xenobiotic metabolism pathways has been linked to lifespan extension in different models of aging. However, the mechanisms underlying activation of xenobiotic genes remain largely unknown. Here we showed that although FXR mRNA levels do not change significantly, FXR (farnesoid X receptor, Nr1h4) protein levels are elevated in the livers of the long-lived Little mice, leading to increased DNA binding activity of FXR. Hepatic FXR expression is sex-dependent in wild-type mice but not in Little mice, implying that up-regulation of FXR might be dependent on the reduction of growth hormone in Little mice. Growth hormone treatment decreased hepatic expression of FXR and xenobiotic genes Abcb1a, Fmo3 and Gsta2 in both wild-type and Little mice, suggesting an association between FXR and xenobiotic gene expression. We found that Abcb1a is transactivated by FXR via direct binding of FXR/retinoid X receptor α (RXRα) heterodimer to a response element at the proximal promoter. FXR also positively controls Fmo3 and Gsta2 expression through direct interaction with the response elements in these genes. Our study demonstrates that xenobiotic genes are direct transcriptional targets of FXR and suggests that FXR signaling may play a critical role in the lifespan extension observed in Little mice. PMID:24007921

  13. Life Beyond Kinases: Structure-based Discovery of Sorafenib as Nanomolar Antagonist of 5-HT Receptors

    PubMed Central

    Lin, Xingyu; Huang, Xi-Ping; Chen, Gang; Whaley, Ryan; Peng, Shiming; Wang, Yanli; Zhang, Guoliang; Wang, Simon X.; Wang, Shaohui; Roth, Bryan L.; Huang, Niu

    2012-01-01

    Of great interest in recent years has been computationally predicting the novel polypharmacology of drug molecules. Here, we applied an “induced-fit” protocol to improve the homology models of 5-HT2A receptor, and we assessed the quality of these models in retrospective virtual screening. Subsequently, we computationally screened the FDA approved drug molecules against the best induced-fit 5-HT2A models, and chose six top scoring hits for experimental assays. Surprisingly, one well-known kinase inhibitor, sorafenib has shown unexpected promiscuous 5-HTRs binding affinities, Ki = 1959, 56 and 417 nM against 5-HT2A, 5-HT2B and 5-HT2C, respectively. Our preliminary SAR exploration supports the predicted binding mode, and further suggests sorafenib to be a novel lead compound for 5HTR ligand discovery. Although it has been well known that sorafenib produces anticancer effects through targeting multiple kinases, carefully designed experimental studies are desirable to fully understand whether its “off-target” 5-HTR binding activities contribute to its therapeutic efficacy or otherwise undesirable side effects. PMID:22694093

  14. Detection of circulating tumor cells using GeneScan analysis for antigen receptor gene rearrangements in canine lymphoma patients

    PubMed Central

    HIYOSHI-KANEMOTO, Saaya; GOTO-KOSHINO, Yuko; FUKUSHIMA, Kenjiro; TAKAHASHI, Masashi; KANEMOTO, Hideyuki; UCHIDA, Kazuyuki; FUJINO, Yasuhito; OHNO, Koichi; TSUJIMOTO, Hajime

    2016-01-01

    The presence of circulating tumor cells (CTCs) serves as a prognostic marker and indicator of disease relapse, as well as a means of evaluating treatment efficacy in human and canine lymphoma patients. As an extension of our previous study for the construction of clinically useful GeneScan system, we utilized the GeneScan system for detecting CTCs in canine lymphoma patients. Samples from the primary lesion and peripheral blood mononuclear cells (PBMCs) were obtained from 32 dogs with lymphoma at initial diagnosis. All samples were subjected to polymerase chain reaction (PCR) for antigen receptor gene rearrangements (PARR) followed by GeneScan analysis. Common clonal rearrangements with identical amplified fragments were detected in both the primary lesion and PBMCs in 19 of the 32 dogs (59.4%). However, the detection rate of CTCs varied among the anatomical classification of lymphoma studied. GeneScan analysis following PARR would facilitate studies on determining the clinical significance of CTCs in canine lymphoma patients. PMID:26888583

  15. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium

    PubMed Central

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R.; Aleksunes, Lauren M.; Thomas, Russell S.; Applegate, Dawn; Klaassen, Curtis D.; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher’s algorithm (p-value ≤ 10-4)) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  16. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium.

    PubMed

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R; Aleksunes, Lauren M; Thomas, Russell S; Applegate, Dawn; Klaassen, Curtis D; Corton, J Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher's algorithm (p-value ≤ 10(-4))) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  17. Direct and Indirect 5-HT receptor agonists produce gender-specific effects on locomotor and vertical activity in C57 BL/6J mice

    PubMed Central

    Brookshire, Bethany R.; Jones, Sara R.

    2009-01-01

    It is well established that the dopamine (DA) and serotonin (5-HT) systems have extensive and complex interactions. However, the effects of specific 5-HT receptor agonists on traditionally DA-related behaviors remain unclear. Our goal in these studies was to characterize the effects of 5-HT receptor agonists on measures of locomotor activity and vertical rearing. The SSRIs fluoxetine and citalopram produced significant decreases in locomotor activity and vertical rearing at the highest doses used with females significant more sensitive to citalopram. The 5-HT1A agonist 8-OH-DPAT and the 5-HT2C agonist MK 212 significantly decreased activity in both male and female mice, with females more sensitive to 8-OH-DPAT. In contrast, the 5-HT1B agonist RU 24969 and the 5-HT2A agonist DOI both increased activity, with DOI exhibiting differential effects with regard to sex. Finally, the 5-HT3 agonist SR 57227 produced significant locomotor increases only in female mice at the lowest dose. The results of these experiments define locomotor profiles of several 5-HT agonists in male and female C57BL/6J mice, providing a foundation for further explorations of 5-HT receptor effects on activity. PMID:19698737

  18. In Vivo Phenotypic Screening for Treating Chronic Neuropathic Pain: Modification of C2-Arylethynyl Group of Conformationally Constrained A3 Adenosine Receptor Agonists

    PubMed Central

    2015-01-01

    (N)-Methanocarba adenosine 5′-methyluronamides containing 2-arylethynyl groups were synthesized as A3 adenosine receptor (AR) agonists and screened in vivo (po) for reduction of neuropathic pain. A small N6-methyl group maintained binding affinity, with human > mouse A3AR and MW < 500 and other favorable physicochemical properties. Emax (maximal efficacy in a mouse chronic constriction injury pain model) of previously characterized A3AR agonist, 2-(3,4-difluorophenylethynyl)-N6-(3-chlorobenzyl) derivative 6a, MRS5698, was surpassed. More efficacious analogues (in vivo) contained the following C2-arylethynyl groups: pyrazin-2-yl 23 (binding Ki, hA3AR, nM 1.8), fur-2-yl 27 (0.6), thien-2-yl 32 (0.6) and its 5-chloro 33, MRS5980 (0.7) and 5-bromo 34 (0.4) equivalents, and physiologically unstable ferrocene 36, MRS5979 (2.7). 33 and 36 displayed particularly long in vivo duration (>3 h). Selected analogues were docked to an A3AR homology model to explore the environment of receptor-bound C2 and N6 groups. Various analogues bound with μM affinity at off-target biogenic amine (M2, 5HT2A, β3, 5HT2B, 5HT2C, and α2C) or other receptors. Thus, we have expanded the structural range of orally active A3AR agonists for chronic pain treatment. PMID:25422861

  19. Determination of ligand-binding specificity by alternative splicing: Two distinct growth factor receptors encoded by a single gene

    SciTech Connect

    Miki, T.; Bottaro, D.P.; Fleming, T.P.; Smith, C.L.; Chan, A.M.L.; Aaronson, S.A. ); Burgess, W.H. )

    1992-01-01

    Expression cDNA cloning and structural analysis of the human keratinocyte growth factor receptor (KGFR) revealed identity with one of the fibroblast growth factor (FGF) receptors encoded by the bek gene (FGFR-2), except for a divergent stretch of 49 amino acids in their extracellular domains. Binding assays demonstrated that the KGFR was a high-affinity receptor for both KGF and acidic FGF, while FGFR-2 showed high affinity for basic and acidic FGF but no detectable binding by KGF. Genomic analysis of the bek gene revealed two alternative exons responsible for the region of divergence between the two receptors. The KGFR transcript was specific to epithelial cells, and it appeared to be differentially regulated with respect to the alternative FGFR-2 transcript. Thus, two growth factor receptors with different ligand-binding specificities and expression patterns are encoded by alternative transcripts of the same gene.

  20. Molecular Characterization and Sex Distribution of Chemosensory Receptor Gene Family Based on Transcriptome Analysis of Scaeva pyrastri

    PubMed Central

    Li, Xiao-Ming; Zhu, Xiu-Yun; He, Peng; Xu, Lu; Sun, Liang; Chen, Li; Wang, Zhi-Qiang; Deng, Dao-Gui

    2016-01-01

    Chemosensory receptors play key roles in insect behavior. Thus, genes encoding these receptors have great potential for use in integrated pest management. The hover fly Scaeva pyrastri (L.) is an important pollinating insect and a natural enemy of aphids, mainly distributed in the Palearctic and Nearctic regions. However, a systematic identification of their chemosensory receptor genes in the antennae has not been reported. In the present study, we assembled the antennal transcriptome of S. pyrastri by using Illumina sequencing technology. Analysis of the transcriptome data identified 60 candidate chemosensory genes, including 38 for odorant receptors (ORs), 16 for ionotropic receptors (IRs), and 6 for gustatory receptors (GRs). The numbers are similar to those of other Diptera species, suggesting that we were able to successfully identify S. pyrastri chemosensory genes. We analyzed the expression patterns of all genes by using reverse transcriptase PCR (RT-PCR), and found that some genes exhibited sex-biased or sex-specific expression. These candidate chemosensory genes and their tissue expression profiles provide information for further studies aimed at fully understanding the molecular basis behind chemoreception-related behaviors in S. pyrastri. PMID:27171401

  1. Molecular Characterization and Sex Distribution of Chemosensory Receptor Gene Family Based on Transcriptome Analysis of Scaeva pyrastri.

    PubMed

    Li, Xiao-Ming; Zhu, Xiu-Yun; He, Peng; Xu, Lu; Sun, Liang; Chen, Li; Wang, Zhi-Qiang; Deng, Dao-Gui; Zhang, Ya-Nan

    2016-01-01

    Chemosensory receptors play key roles in insect behavior. Thus, genes encoding these receptors have great potential for use in integrated pest management. The hover fly Scaeva pyrastri (L.) is an important pollinating insect and a natural enemy of aphids, mainly distributed in the Palearctic and Nearctic regions. However, a systematic identification of their chemosensory receptor genes in the antennae has not been reported. In the present study, we assembled the antennal transcriptome of S. pyrastri by using Illumina sequencing technology. Analysis of the transcriptome data identified 60 candidate chemosensory genes, including 38 for odorant receptors (ORs), 16 for ionotropic receptors (IRs), and 6 for gustatory receptors (GRs). The numbers are similar to those of other Diptera species, suggesting that we were able to successfully identify S. pyrastri chemosensory genes. We analyzed the expression patterns of all genes by using reverse transcriptase PCR (RT-PCR), and found that some genes exhibited sex-biased or sex-specific expression. These candidate chemosensory genes and their tissue expression profiles provide information for further studies aimed at fully understanding the molecular basis behind chemoreception-related behaviors in S. pyrastri. PMID:27171401

  2. AB46. Screening and identification for the target genes of androgen receptor in mouse Sertoli cells

    PubMed Central

    Gui, Yaoting; Mou, Lisha; Zhang, Qiaoxia; Yang, Lihua; Wang, Yadong; Cai, Zhiming

    2014-01-01

    Androgen and androgen receptor (AR) play important roles in spermatogenesis, yet detailed androgen/AR signals in Sertoli cells remain unclear. To identify AR target genes in Sertoli cells, we analyzed the gene expression profiles of testis between mice lacking AR in Sertoli cells (S-AR) and their littermate wild-type (WT) mice. Digital gene expression analysis identified 2,276 genes downregulated and 2,865 genes upregulated in the S-AR mice testis compared to WT ones. To further nail down the difference within Sertoli cells, we first constructed Sertoli cell line TM4 with stably transfected AR (named as TM4/AR) and found androgens failed to transactivate AR in Sertoli TM4 and TM4/AR cells. Interestingly, additional transient transfection of AR-cDNA resulted in significant androgen responsiveness with TM4/AR cells showing ten times more androgen sensitivity than TM4 cells. In the condition where maximal androgen response was demonstrated, we then analyzed gene expression and found the expression levels of 2313 genes were changed more than twofold by transient transfection of AR-cDNA in the presence of testosterone. Among these genes, 603 androgen-/AR-regulated genes, including 164 up-regulated and 439 down-regulated, were found in both S-AR mice testis and TM4/AR cells. Ubiquitin-conjugating enzyme E2B (Ube2b) is one of the regulated genes from the digital gene expression analysis. The expression of UBE2B was decreased in the testes of the S-AR mice analyzed by quantitative RT-PCR (qRT-PCR) and immunofluorescence. The up-regulation of Ube2b gene by testosterone was further demonstrated by Western blot and qRT-PCR in TM4 cells. Moreover, luciferase assay, electrophoretic mobility shift assay, and chromatin immunoprecipitation assay validated that the ligand-bound AR activated Ube2b transcription via directly binding to the androgen-responsive element of the Ube2b promoter. In vitro analyses showed that testosterone increased UBE2B expression and activated H2A

  3. Insulin receptor-like ectodomain genes and splice variants are found in both arthropods and human brain cDNA

    PubMed Central

    VÄSTERMARK, Åke; RASK-ANDERSEN, Mathias; SAWANT, Rahul S.; REITER, Jill L.; SCHIÖTH, Helgi B.; WILLIAMS, Michael J.

    2016-01-01

    Truncated receptor ectodomains have been described for several classes of cell surface receptors, including those that bind to growth factors, cytokines, immunoglobulins, and adhesion molecules. Soluble receptor isoforms are typically generated by proteolytic cleavage of the cell surface receptor or by alternative splicing of RNA transcripts arising from the same gene encoding the full-length receptor. Both the epidermal growth factor receptor (EGFR) and the insulin receptor (INSR) families produce soluble receptor splice variants in vertebrates and truncated forms of insulin receptor-like sequences have previously been described in Drosophila. The EGFR and INSR ectodomains share significant sequence homology with each other suggestive of a common evolutionary origin. We discovered novel truncated insulin receptor-like variants in several arthropod species. We performed a phylogenetic analysis of the conserved extracellular receptor L1 and L2 subdomains in invertebrate species. While the segregation of insulin receptor-like L1 and L2 domains indicated that an internal domain duplication had occurred only once, the generation of truncated insulin receptor-like sequences has occurred multiple times. The significance of this work is the previously unknown and widespread occurrence of truncated isoforms in arthropods, signifying that these isoforms play an important functional role, potentially related to such isoforms in mammals. PMID:27375681

  4. Role of the Ada adaptor complex in gene activation by the glucocorticoid receptor.

    PubMed Central

    Henriksson, A; Almlöf, T; Ford, J; McEwan, I J; Gustafsson, J A; Wright, A P

    1997-01-01

    We have shown that the Ada adaptor complex is important for the gene activation capacity of the glucocorticoid receptor in yeast. The recently isolated human Ada2 protein also increases the potency of the receptor protein in mammalian cells. The Ada pathway is of key significance for the tau1 core transactivation domain (tau1c) of the receptor, which requires Ada for activity in vivo and in vitro. Ada2 can be precipitated from nuclear extracts by a glutathione S-transferase-tau1 fusion protein coupled to agarose beads, and a direct interaction between Ada2 and tau1c can be shown by using purified proteins. This interaction is strongly reduced by a mutation in tau1c that reduces transactivation activity. Mutations affecting the Ada complex do not reverse transcriptional squelching by the tau1 domain, as they do for the VP16 transactivation domain, and thus these powerful acidic activators differ in at least some important aspects of gene activation. Mutations that reduce the activity of the tau1c domain in wild-type yeast strains cause similar reductions in ada mutants that contain little or no Ada activity. Thus, gene activation mechanisms, in addition to the Ada pathway, are involved in the activity of the tau1c domain. PMID:9154805

  5. Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals.

    PubMed

    Thongkum, Monthathip; Burns, Parichart; Bhunchoth, Anjana; Warin, Nuchnard; Chatchawankanphanich, Orawan; van Doorn, Wouter G

    2015-03-15

    We studied the expression of a gene encoding an ethylene receptor, called Ethylene Response Sensor 1 (Den-ERS1), in the petals of Dendrobium orchid flowers. Transcripts accumulated during the young floral bud stage and declined by the time the flowers had been open for several days. Pollination or exposure to exogenous ethylene resulted in earlier flower senescence, an increase in ethylene production and a lower Den-ERS1 transcript abundance. Treatment with 1-methylcyclopropene (1-MCP), an inhibitor of the ethylene receptor, decreased ethylene production and resulted in high transcript abundance. The literature indicates two kinds of ethylene receptor genes with regard to the effects of ethylene. One group shows ethylene-induced down-regulated transcription, while the other has ethylene-induced up-regulation. The present gene is an example of the first group. The 5' flanking region showed binding sites for Myb and myb-like, homeodomain, MADS domain, NAC, TCP, bHLH and EIN3-like transcription factors. The binding site for the EIN3-like factor might explain the ethylene effect on transcription. A few other transcription factors (RAV1 and NAC) seem also related to ethylene effects. PMID:25590685

  6. Sequence Analysis of Bitter Taste Receptor Gene Repertoires in Different Ruminant Species.

    PubMed

    Monteiro Ferreira, Ana; Tomás Marques, Andreia; Bhide, Mangesh; Cubric-Curik, Vlatka; Hollung, Kristin; Knight, Christopher Harold; Raundrup, Katrine; Lippolis, John; Palmer, Mitchell; Sales-Baptista, Elvira; Araújo, Susana Sousa; de Almeida, André Martinho

    2015-01-01

    Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste receptor cells in the gustatory papillae. Our work aims at exploring the phylogenetic relationships of T2R gene sequences within different ruminant species. To accomplish this goal, we gathered a collection of ruminant species with different feeding behaviors and for which no genome data is available: American bison, chamois, elk, European bison, fallow deer, goat, moose, mouflon, muskox, red deer, reindeer and white tailed deer. The herbivores chosen for this study belong to different taxonomic families and habitats, and hence, exhibit distinct foraging behaviors and diet preferences. We describe the first partial repertoires of T2R gene sequences for these species obtained by direct sequencing. We then consider the homology and evolutionary history of these receptors within this ruminant group, and whether it relates to feeding type classification, using MEGA software. Our results suggest that phylogenetic proximity of T2R genes corresponds more to the traditional taxonomic groups of the species rather than reflecting a categorization by feeding strategy. PMID:26061084

  7. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells

    NASA Technical Reports Server (NTRS)

    Chen, J.; Fabry, B.; Schiffrin, E. L.; Wang, N.; Ingber, D. E. (Principal Investigator)

    2001-01-01

    A magnetic twisting stimulator was developed based on the previously published technique of magnetic twisting cytometry. Using ligand-coated ferromagnetic microbeads, this device can apply mechanical stresses with varying amplitudes, duration, frequencies, and waveforms to specific cell surface receptors. Biochemical and biological responses of the cells to the mechanical stimulation can be assayed. Twisting integrin receptors with RGD (Arg-Gly-Asp)-containing peptide-coated beads increased endothelin-1 (ET-1) gene expression by >100%. In contrast, twisting scavenger receptors with acetylated low-density lipoprotein-coated beads or twisting HLA antigen with anti-HLA antibody-coated beads did not lead to alterations in ET-1 gene expression. In situ hybridization showed that the increase in ET-1 mRNA was localized in the cells that were stressed with the RGD-coated beads. Blocking stretch-activated ion channels with gadolinium, chelating Ca2+ with EGTA, or inhibiting tyrosine phosphorylation with genistein abolished twist-induced ET-1 mRNA elevation. Abolishing cytoskeletal tension with an inhibitor of the myosin ATPase, with an inhibitor of myosin light chain kinase, or with an actin microfilament disrupter blocked twisted-induced increases in ET-1 expression. Our results are consistent with the hypothesis that the molecular structural linkage of integrin-cytoskeleton is an important pathway for stress-induced ET-1 gene expression.

  8. Evidence for an indirect transcriptional regulation of glucose-6-phosphatase gene expression by liver X receptors

    SciTech Connect

    Grempler, Rolf . E-mail: rolfgrempler@yahoo.de; Guenther, Susanne; Steffensen, Knut R.; Nilsson, Maria; Barthel, Andreas; Schmoll, Dieter

    2005-12-16

    Liver X receptor (LXR) paralogues {alpha} and {beta} (LXR{alpha} and LXR{beta}) are members of the nuclear hormone receptor family and have oxysterols as endogenous ligands. LXR activation reduces hepatic glucose production in vivo through the inhibition of transcription of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase and glucose-6-phosphatase (G6Pase). In the present study, we investigated the molecular mechanisms involved in the regulation of G6Pase gene expression by LXR. Both T0901317, a synthetic LXR agonist, and the adenoviral overexpression of either LXR{alpha} or LXR{beta} suppressed G6Pase gene expression in H4IIE hepatoma cells. However, compared to the suppression of G6Pase expression seen by insulin, the decrease of G6Pase mRNA by LXR activation was delayed and was blocked by cycloheximide, an inhibitor of protein synthesis. These observations, together with the absence of a conserved LXR-binding element within the G6Pase promoter, suggest an indirect inhibition of G6Pase gene expression by liver X receptors.

  9. Isolation and characterization of the brassinosteroid receptor gene (GmBRI1) from Glycine max.

    PubMed

    Wang, Miao; Sun, Shi; Wu, Cunxiang; Han, Tianfu; Wang, Qingyu

    2014-01-01

    Brassinosteroids (BRs) constitute a group of steroidal phytohormones that contribute to a wide range of plant growth and development functions. The genetic modulation of BR receptor genes, which play major roles in the BR signaling pathway, can create semi-dwarf plants that have great advantages in crop production. In this study, a brassinosteroid insensitive gene homologous with AtBRI1 and other BRIs was isolated from Glycine max and designated as GmBRI1. A bioinformatic analysis revealed that GmBRI1 shares a conserved kinase domain and 25 tandem leucine-rich repeats (LRRs) that are characteristic of a BR receptor for BR reception and reaction and bear a striking similarity in protein tertiary structure to AtBRI1. GmBRI1 transcripts were more abundant in soybean hypocotyls and could be upregulated in response to exogenous BR treatment. The transformation of GmBRI1 into the Arabidopsis dwarf mutant bri1-5 restored the phenotype, especially regarding pod size and plant height. Additionally, this complementation is a consequence of a restored BR signaling pathway demonstrated in the light/dark analysis, root inhibition assay and BR-response gene expression. Therefore, GmBRI1 functions as a BR receptor to alter BR-mediated signaling and is valuable for improving plant architecture and enhancing the yield of soybean. PMID:24599079

  10. Growth hormone receptor gene mutations in two Italian patients with Laron Syndrome.

    PubMed

    Fassone, L; Corneli, G; Bellone, S; Camacho-Hübner, C; Aimaretti, G; Cappa, M; Ubertini, G; Bona, G

    2007-05-01

    Laron Syndrome (LS) represents a condition characterized by GH insensitivity caused by molecular defects in the GH receptor (GHR) gene or in the post-receptor signalling pathway. We report the molecular characterization of two unrelated Italian girls from Sicily diagnosed with LS. The DNA sequencing of the GHR gene revealed the presence of different nonsense mutations, occurring in the same background haplotype. The molecular defects occurred in the extracellular domain of the GHR leading to a premature termination signal and to a truncated non-functional receptor. In one patient, a homozygous G to T transversion, in exon 6, led to the mutation GAA to TAA at codon 180 (E180X), while in the second patient a homozygous C to T transition in exon 7 was detected, causing the CGA to TAA substitution at codon 217 (R217X). Both probands presented the polymorphisms Gly168Gly and Ile544Leu in a homozygous state in exons 6 and 10, respectively. The E180X represents a novel defect of the GHR gene, while the R217X mutation has been previously reported in several patients from different ethnic backgrounds but all from countries located in the Mediterranean and Middle Eastern region. PMID:17598975

  11. Mutated human androgen receptor gene detected in a prostatic cancer patient is also activated by estradiol

    SciTech Connect

    Elo, J.P.; Kvist, L.; Leinonen, K.; Isomaa, V.

    1995-12-01

    Androgens are necessary for the development of prostatic cancer. The mechanisms by which the originally androgen-dependent prostatic cancer cells are relieved of the requirement to use androgen for their growth are largely unknown. The human prostatic cancer cell line LNCaP has been shown to contain a point mutation in the human androgen receptor gene (hAR),