Science.gov

Sample records for 5-ht3 receptor agonists

  1. Subunit rotation models activation of serotonin 5-HT3AB receptors by agonists

    NASA Astrophysics Data System (ADS)

    Maksay, Gábor; Simonyi, Miklós; Bikádi, Zsolt

    2004-10-01

    The N-terminal extracellular regions of heterooligomeric 3AB-type human 5-hydroxytryptamine receptors (5-HT 3ABR) were modelled based on the crystal structure of snail acetylcholine binding protein AChBP. Stepwise rotation of subunit A by 5° was performed between -10° and 15° to mimic agonist binding and receptor activation. Anticlockwise rotation reduced the size of the binding cavity in interface AB and reorganised the network of hydrogen bonds along the interface. AB subunit dimers with different rotations were applied for docking of ligands with different efficacies: 5-HT, m-chlorophenylbiguanide, SR 57227, quinolinyl piperazine and lerisetron derivatives. All ligands were docked into the dimer with -10° rotation representing ligand-free, open binding cavities similarly, without pharmacological discrimination. Their ammonium ions were in hydrogen bonding distance to the backbone carbonyl of W183. Anticlockwise rotation and contraction of the binding cavity led to distinctive docking interactions of agonists with E129 and cation-π interactions of their ammonium ions. Side chains of several further amino acids participating in docking (Y143, Y153, Y234 and E236) are in agreement with the effects of point mutations in the binding loops. Our model postulates that 5-HT binds to W183 in a hydrophobic cleft as well as to E236 in a hydrophilic vestibule. Then it elicits anticlockwise rotation to draw in loop C via π-cation-π interactions of␣its ammonium ion with W183 and Y234. Finally, closure of the binding cavity might end in rebinding of 5-HT to E129 in the hydrophilic vestibule.

  2. Superagonist, Full Agonist, Partial Agonist, and Antagonist Actions of Arylguanidines at 5-Hydroxytryptamine-3 (5-HT3) Subunit A Receptors.

    PubMed

    Alix, Katie; Khatri, Shailesh; Mosier, Philip D; Casterlow, Samantha; Yan, Dong; Nyce, Heather L; White, Michael M; Schulte, Marvin K; Dukat, Małgorzata

    2016-11-16

    Introduction of minor variations to the substitution pattern of arylguanidine 5-hydroxytryptamine-3 (5-HT3) receptor ligands resulted in a broad spectrum of functionally-active ligands from antagonist to superagonist. For example, (i) introduction of an additional Cl-substituent(s) to our lead full agonist N-(3-chlorophenyl)guanidine (mCPG, 2; efficacy % = 106) yielded superagonists 7-9 (efficacy % = 186, 139, and 129, respectively), (ii) a positional isomer of 2, p-Cl analog 11, displayed partial agonist actions (efficacy % = 12), and (iii) replacing the halogen atom at the meta or para position with an electron donating OCH3 group or a stronger electron withdrawing (i.e., CF3) group resulted in antagonists 13-16. We posit based on combined mutagenesis, crystallographic, and computational analyses that for the 5-HT3 receptor, the arylguanidines that are better able to simultaneously engage the primary and complementary subunits, thus keeping them in close proximity, have greater agonist character while those that are deficient in this ability are antagonists.

  3. Alpha-thujone reduces 5-HT3 receptor activity by an effect on the agonist-reduced desensitization.

    PubMed

    Deiml, T; Haseneder, R; Zieglgänsberger, W; Rammes, G; Eisensamer, B; Rupprecht, R; Hapfelmeier, G

    2004-02-01

    The convulsant effects of alpha-thujone, the psychotropic component of absinthe, were attributed to inhibitory actions at the GABAA receptor. Here, we investigated for the first time the 5-HT3 receptor as a potential site of the psychotropic actions of alpha-thujone. This cation permeable ligand-gated ion channel shows considerable homology to the GABAA receptor. We previously demonstrated that in homomeric assemblies of cloned human 5-HT,A receptor subunits. the endogenous agonist 5-HT induced desensitization via channel blockade. When the 5-HT3 B receptor subunit was co-expressed, the resulting heteromeric assemblies desensitized independent from channel blockade. In the present study, patch-clamp experiments revealed an inhibitory action of alpha-thujone on both homomeric and heteromeric 5-HT3 receptors. This inhibitory action was mediated via channel blockade. However, it was not alpha-thujone itself which blocked the channel. The present experiments suggested that, in homomeric receptors, alpha-thujone enhanced the inherent channel-blocking potency of the natural ligand. 5-HT. In heteromeric receptors, alpha-thujonerecruited an additional channel-blocking component of the agonist. By means of kinetic modeling, we simulated possible mechanisms by which alpha-thuljone decreased the 5-HT-induced responses. It is suggested that alpha-thujone reduced 5-HT3 receptor activity by an effect on mechanisms involved in receptor desensitization, which depend on receptor subunit composition. It remains to be shown if this inhibitory action on serotonergic responses contributes to behavioral effects of alpha-thujone.

  4. Role of 5-HT3 Receptors in the Antidepressant Response

    PubMed Central

    Bétry, Cécile; Etiévant, Adeline; Oosterhof, Chris; Ebert, Bjarke; Sanchez, Connie; Haddjeri, Nasser

    2011-01-01

    Serotonin (5-HT)3 receptors are the only ligand-gated ion channel of the 5-HT receptors family. They are present both in the peripheral and central nervous system and are localized in several areas involved in mood regulation (e.g., hippocampus or prefrontal cortex). Moreover, they are involved in regulation of neurotransmitter systems implicated in the pathophysiology of major depression (e.g., dopamine or GABA). Clinical and preclinical studies have suggested that 5-HT3 receptors may be a relevant target in the treatment of affective disorders. 5-HT3 receptor agonists seem to counteract the effects of antidepressants in non-clinical models, whereas 5-HT3 receptor antagonists, such as ondansetron, present antidepressant-like activities. In addition, several antidepressants, such as mirtazapine, also target 5-HT3 receptors. In this review, we will report major advances in the research of 5-HT3 receptor's roles in neuropsychiatric disorders, with special emphasis on mood and anxiety disorders.

  5. Structural basis of ligand recognition in 5-HT3 receptors

    PubMed Central

    Kesters, Divya; Thompson, Andrew J; Brams, Marijke; van Elk, René; Spurny, Radovan; Geitmann, Matthis; Villalgordo, Jose M; Guskov, Albert; Helena Danielson, U; Lummis, Sarah C R; Smit, August B; Ulens, Chris

    2013-01-01

    The 5-HT3 receptor is a pentameric serotonin-gated ion channel, which mediates rapid excitatory neurotransmission and is the target of a therapeutically important class of anti-emetic drugs, such as granisetron. We report crystal structures of a binding protein engineered to recognize the agonist serotonin and the antagonist granisetron with affinities comparable to the 5-HT3 receptor. In the serotonin-bound structure, we observe hydrophilic interactions with loop E-binding site residues, which might enable transitions to channel opening. In the granisetron-bound structure, we observe a critical cation–π interaction between the indazole moiety of the ligand and a cationic centre in loop D, which is uniquely present in the 5-HT3 receptor. We use a series of chemically tuned granisetron analogues to demonstrate the energetic contribution of this electrostatic interaction to high-affinity ligand binding in the human 5-HT3 receptor. Our study offers the first structural perspective on recognition of serotonin and antagonism by anti-emetics in the 5-HT3 receptor. PMID:23196367

  6. Differential effects of a short-term high-fat diet in an animal model of depression in rats treated with the 5-HT3 receptor antagonist, ondansetron, the 5-HT3 receptor agonist, 2-methyl-5-HT, and the SSRI, fluoxetine.

    PubMed

    Sumaya, Isabel C; Bailey, Dee; Catlett, Susan L

    2016-05-01

    Investigation into the effects of a high-fat diet on depression in the context of 5-HT3 receptor function is important given 5-HT3 antagonism may represent a novel candidate for drug discovery. To more fully understand the relationship between the 5-HT3 receptor system, depression, and high-fat intake, our main interest was to study the short-term effects of a high-fat diet on the 5-HT3 receptor antagonist, ondansetron, and the 5-HT3 receptor agonist, 2-methyl-5-HT, as well as the SSRI, fluoxetine, in an animal model of depression. Male Sprague Dawley rats were fed either a standard diet (11% fat) or a high-fat diet (32.5% fat) for seven days then treated with either fluoxetine (10mg/kg, ip), ondansetron (1mg/kg, ip), 2-methyl-5-HT (3mg/kg, ip), fluoxetine+ondansetron or, 2-methyl-5-HT+ondansetron prior to the Forced Swim Test. In the standard diet group, treatment with the 5HT3 receptor agonist, 2-methyl-5-HT, served to significantly decrease time of immobility as compared to controls thus showing anti-depressive-like effects. Treatment with the 5-HT3 receptor antagonist, ondansetron, served to enhance the anti-depressive like effects of the SSRI, fluoxetine, as treatment with both the SSRI and 5-HT3 receptor antagonist dramatically decreased immobility. Importantly, in the high-fat diet groups, a week of high-fat intake served to: 1) counteract the anti-depressive-like effect of the SSRI, fluoxetine, 2) reverse the anti-depressive-like effect of the 5HT3 receptor agonist, 2-methyl-5-HT and 3) provide protection against the depressive-like effects induced by the Forced Swim Test as rats fed a high-fat diet displayed the lowest amounts of immobility. In the aggregate, these data suggest that both SSRIs and the 5HT3 receptor system are affected by short-term high-fat intake and that a short-term high-fat diet protects against depressive-like effects in an animal model of depression.

  7. Involvement of nitric oxide in 5-HT(3) receptor agonist-induced fluid accumulation in jejunum and colon of anesthetized rats.

    PubMed

    Veeresh, B; Patil, Basanagouda M; Veeresh Babu, S V; Jeedi, Neelakanth M; Unger, Banappa S

    2009-10-01

    The aim of the present study was to investigate the involvement of nitric oxide in 5-HT(3) receptor agonist-induced fluid accumulation in jejunum and colon of anesthetized rats. Fluid movement in jejunum and colon were determined simultaneously in the same rat, by modifying the Beubler method. Nomega-nitro-L-arginine (L-NNA, 20 mg/kg, s.c) alone and in combination with L-arginine (L-Arg, 150 mg/kg s.c) or D-arginine (D-Arg, 150 mg/kg, s.c) were administered 30 min before administration of 1-PBG (18.5 mug/kg, i.v). Intravenous administration of 1-phenylbiguanide (1-PBG) induced a net secretion of fluid in both jejunum and colon. 1-PBG had a more prominent secretory effect in the colon, causing a three-fold increase in volume of fluid secreted/g of colon than in the jejunum. Pretreatment with (L-NNA) prevented the 1-PBG-induced fluid accumulation in both jejunum and colon. The inhibitory effect of L-NNA on 1-PBG-induced fluid accumulation was reversed by L-Arg but not by D-Arg. These results provide evidence that nitric oxide plays an important role in 5-HT(3) receptor agonist-induced fluid accumulation in jejunum and colon of anesthetized rats.

  8. Involvement of nitric oxide in 5-HT3 receptor agonist-induced fluid accumulation in jejunum and colon of anesthetized rats

    PubMed Central

    Veeresh, B.; Patil, Basanagouda M.; Veeresh Babu, S.V.; Jeedi, Neelakanth M.; Unger, Banappa S.

    2009-01-01

    Objectives: The aim of the present study was to investigate the involvement of nitric oxide in 5-HT3 receptor agonist-induced fluid accumulation in jejunum and colon of anesthetized rats. Materials and Methods: Fluid movement in jejunum and colon were determined simultaneously in the same rat, by modifying the Beubler method. Nω-nitro-L-arginine (L-NNA, 20 mg/kg, s.c) alone and in combination with L-arginine (L-Arg, 150 mg/kg s.c) or D-arginine (D-Arg, 150 mg/kg, s.c) were administered 30 min before administration of 1-PBG (18.5 μg/kg, i.v). Results: Intravenous administration of 1-phenylbiguanide (1-PBG) induced a net secretion of fluid in both jejunum and colon. 1-PBG had a more prominent secretory effect in the colon, causing a three-fold increase in volume of fluid secreted/g of colon than in the jejunum. Pretreatment with (L-NNA) prevented the 1-PBG-induced fluid accumulation in both jejunum and colon. The inhibitory effect of L-NNA on 1-PBG-induced fluid accumulation was reversed by L-Arg but not by D-Arg. Conclusion: These results provide evidence that nitric oxide plays an important role in 5-HT3 receptor agonist-induced fluid accumulation in jejunum and colon of anesthetized rats. PMID:20177493

  9. Effect of R3487/MEM3454, a novel nicotinic alpha7 receptor partial agonist and 5-HT3 antagonist on sustained attention in rats.

    PubMed

    Rezvani, Amir H; Kholdebarin, Ehsan; Brucato, Frederic H; Callahan, Patrick M; Lowe, David A; Levin, Edward D

    2009-03-17

    It is well established that nicotinic systems in the brain are critically involved in attentional processes in both animals and humans. The current study assessed the effects of a novel nicotinic alpha7 receptor partial agonist and 5-HT3 antagonist, R3487/MEM3454 (also referred to as R3487 or MEM 3454) on sustained attention in rats performing an operant visual signal detection task. The effects of R3487/MEM3454 were compared to those of the acetylcholinesterase inhibitor/nicotinic alpha7 allosteric positive modulator galanthamine. Adult female Sprague-Dawley rats were injected subcutaneously with R3487/MEM3454 (0.03, 0.1, 0.15, 0.3 and 0.6 mg/kg), galanthamine (0.25, 0.5, 1, 2 mg/kg) or vehicle 30 min before the attentional test. In the second study, the time-dependent effects of R3487/MEM3454 were assessed by injecting the compound (0.6 mg/kg, s.c.) at different pretreatment intervals (30, 60 or 90 min) before the start of the attentional task. Our results show a significant dose-effect for R3487/MEM3454 on percent hit accuracy performance without any significant alteration on percent correct rejection performance. In the time-dependent test, R3487/MEM3454 significantly increased the percent hit accuracy performance when animals were injected 60 min before the start of the attentional task. Administration of galanthamine failed to significantly increase percent hit accuracy performance and increasing the dose of galanthamine produced a decrease in percent correct rejection performance. The present findings with R3487/MEM3454 suggest that nicotinic alpha7 receptors and/or 5-HT3 receptors may play an important role in modulating sustained attention and that R3487/MEM3454 may have therapeutic potential in improving sustained attention in humans.

  10. Bivalent Ligands for the Serotonin 5-HT3 Receptor

    PubMed Central

    2011-01-01

    The serotonin 5-HT3 receptor is a ligand-gated ion channel, which by virtue of its pentameric architecture, can be considered to be an intriguing example of intrinsically multivalent biological receptors. This paper describes a general design approach to the study of multivalency in this multimeric ion channel. Bivalent ligands for 5-HT3 receptor have been designed by linking an arylpiperazine moiety to probes showing different functional features. Both homobivalent and heterobivalent ligands have shown 5-HT3 receptor affinity in the nanomolar range, providing evidence for the viability of our design approach. Moreover, the high affinity shown by homobivalent ligands suggests that bivalency is a promising approach in 5-HT3 receptor modulation and provides the rational basis for applying the concepts of multivalency to the study of 5-HT3 receptor function. PMID:24900351

  11. The serotonin 5-HT3 receptor: a novel neurodevelopmental target.

    PubMed

    Engel, Mareen; Smidt, Marten P; van Hooft, Johannes A

    2013-01-01

    Serotonin (5-hydroxytryptamine, 5-HT), next to being an important neurotransmitter, recently gained attention as a key-regulator of pre- and postnatal development in the mammalian central nervous system (CNS). Several receptors for 5-HT are expressed in the developing brain including a ligand-gated ion channel, the 5-HT3 receptor. Over the past years, evidence has been accumulating that 5-HT3 receptors are involved in the regulation of neurodevelopment by serotonin. Here, we review the spatial and temporal expression patterns of 5-HT3 receptors in the pre- and early postnatal rodent brain and its functional implications. First, 5-HT3 receptors are expressed on GABAergic interneurons in neocortex and limbic structures derived from the caudal ganglionic eminence. Mature inhibitory GABAergic interneurons fine-tune neuronal excitability and thus are crucial for the physiological function of the brain. Second, 5-HT3 receptors are expressed on specific glutamatergic neurons, Cajal-Retzius cells in the cortex and granule cells in the cerebellum, where they regulate morphology, positioning, and connectivity of the local microcircuitry. Taken together, the 5-HT3 receptor emerges as a potential key-regulator of network formation and function in the CNS, which could have a major impact on our understanding of neurodevelopmental disorders in which 5-HT plays a role.

  12. Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells

    PubMed Central

    Kim, Ki Jung; Jeun, Seung Hyun

    2017-01-01

    Lamotrigine is an antiepileptic drug widely used to treat epileptic seizures. Using whole-cell voltage clamp recordings in combination with a fast drug application approach, we investigated the effects of lamotrigine on 5-hydroxytryptamine (5-HT)3 receptors in NCB-20 neuroblastoma cells. Co-application of lamotrigine (1~300 µM) resulted in a concentration-dependent reduction in peak amplitude of currents induced by 3 µM of 5-HT for an IC50 value of 28.2±3.6 µM with a Hill coefficient of 1.2±0.1. These peak amplitude decreases were accompanied by the rise slope reduction. In addition, 5-HT3-mediated currents evoked by 1 mM dopamine, a partial 5-HT3 receptor agonist, were inhibited by lamotrigine co-application. The EC50 of 5-HT for 5-HT3 receptor currents were shifted to the right by co-application of lamotrigine without a significant change of maximal effect. Currents activated by 5-HT and lamotrigine co-application in the presence of 1 min pretreatment of lamotrigine were similar to those activated by 5-HT and lamotrigine co-application alone. Moreover, subsequent application of lamotrigine in the presence of 5-HT and 5-hydroxyindole, known to attenuate 5-HT3 receptor desensitization, inhibited 5-HT3 receptor currents in a concentration-dependent manner. The deactivation of 5-HT3 receptor was delayed by washing with an external solution containing lamotrigine. Lamotrigine accelerated the desensitization process of 5-HT3 receptors. There was no voltage-dependency in the inhibitory effects of lamotrigine on the 5-HT3 receptor currents. These results indicate that lamotrigine inhibits 5-HT3-activated currents in a competitive manner by binding to the open state of the channels and blocking channel activation or accelerating receptor desensitization. PMID:28280410

  13. Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells.

    PubMed

    Kim, Ki Jung; Jeun, Seung Hyun; Sung, Ki-Wug

    2017-03-01

    Lamotrigine is an antiepileptic drug widely used to treat epileptic seizures. Using whole-cell voltage clamp recordings in combination with a fast drug application approach, we investigated the effects of lamotrigine on 5-hydroxytryptamine (5-HT)3 receptors in NCB-20 neuroblastoma cells. Co-application of lamotrigine (1~300 µM) resulted in a concentration-dependent reduction in peak amplitude of currents induced by 3 µM of 5-HT for an IC50 value of 28.2±3.6 µM with a Hill coefficient of 1.2±0.1. These peak amplitude decreases were accompanied by the rise slope reduction. In addition, 5-HT3-mediated currents evoked by 1 mM dopamine, a partial 5-HT3 receptor agonist, were inhibited by lamotrigine co-application. The EC50 of 5-HT for 5-HT3 receptor currents were shifted to the right by co-application of lamotrigine without a significant change of maximal effect. Currents activated by 5-HT and lamotrigine co-application in the presence of 1 min pretreatment of lamotrigine were similar to those activated by 5-HT and lamotrigine co-application alone. Moreover, subsequent application of lamotrigine in the presence of 5-HT and 5-hydroxyindole, known to attenuate 5-HT3 receptor desensitization, inhibited 5-HT3 receptor currents in a concentration-dependent manner. The deactivation of 5-HT3 receptor was delayed by washing with an external solution containing lamotrigine. Lamotrigine accelerated the desensitization process of 5-HT3 receptors. There was no voltage-dependency in the inhibitory effects of lamotrigine on the 5-HT3 receptor currents. These results indicate that lamotrigine inhibits 5-HT3-activated currents in a competitive manner by binding to the open state of the channels and blocking channel activation or accelerating receptor desensitization.

  14. 5-Chloroindole: a potent allosteric modulator of the 5-HT3 receptor

    PubMed Central

    Newman, Amy S; Batis, Nikolaos; Grafton, Gillian; Caputo, Francesca; Brady, Catherine A; Lambert, Jeremy J; Peters, John A; Gordon, John; Brain, Keith L; Powell, Andrew D; Barnes, Nicholas M

    2013-01-01

    Background and Purpose The 5-HT3 receptor is a ligand-gated ion channel that is modulated allosterically by various compounds including colchicine, alcohols and volatile anaesthetics. However the positive allosteric modulators (PAMs) identified to date have low affinity, which hinders investigation because of non-selective effects at pharmacologically active concentrations. The present study identifies 5-chloroindole (Cl-indole) as a potent PAM of the 5-HT3 receptor. Experimental Approach 5-HT3 receptor function was assessed by the increase in intracellular calcium and single-cell electrophysiological recordings in HEK293 cells stably expressing the h5-HT3A receptor and also the mouse native 5-HT3 receptor that increases neuronal contraction of bladder smooth muscle. Key Results Cl-indole (1–100 μM) potentiated agonist (5-HT) and particularly partial agonist [(S)-zacopride, DDP733, RR210, quipazine, dopamine, 2-methyl-5-HT, SR57227A, meta chlorophenyl biguanide] induced h5-HT3A receptor-mediated responses. This effect of Cl-indole was also apparent at the mouse native 5-HT3 receptor. Radioligand-binding studies identified that Cl-indole induced a small (∼twofold) increase in the apparent affinity of 5-HT for the h5-HT3A receptor, whereas there was no effect upon the affinity of the antagonist, tropisetron. Cl-indole was able to reactivate desensitized 5-HT3 receptors. In contrast to its effect on the 5-HT3 receptor, Cl-indole did not alter human nicotinic α7 receptor responses. Conclusions and Implications The present study identifies Cl-indole as a relatively potent and selective PAM of the 5-HT3 receptor; such compounds will aid investigation of the molecular basis for allosteric modulation of the 5-HT3 receptor and may assist the discovery of novel therapeutic drugs targeting this receptor. Linked Articles Recent reviews on allosteric modulation can be found at: Kenakin, T (2013). New concepts in pharmacological efficacy at 7TM receptors: IUPHAR Review 2

  15. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.

    PubMed

    Larson, Eric D; Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C; Finger, Thomas E

    2015-12-02

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response.

  16. Menthol inhibits 5-HT3 receptor-mediated currents.

    PubMed

    Ashoor, Abrar; Nordman, Jacob C; Veltri, Daniel; Yang, Keun-Hang Susan; Shuba, Yaroslav; Al Kury, Lina; Sadek, Bassem; Howarth, Frank C; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-11-01

    The effects of alcohol monoterpene menthol, a major active ingredient of the peppermint plant, were tested on the function of human 5-hydroxytryptamine type 3 (5-HT3) receptors expressed in Xenopus laevis oocytes. 5-HT (1 μM)-evoked currents recorded by two-electrode voltage-clamp technique were reversibly inhibited by menthol in a concentration-dependent (IC50 = 163 μM) manner. The effects of menthol developed gradually, reaching a steady-state level within 10-15 minutes and did not involve G-proteins, since GTPγS activity remained unaltered and the effect of menthol was not sensitive to pertussis toxin pretreatment. The actions of menthol were not stereoselective as (-), (+), and racemic menthol inhibited 5-HT3 receptor-mediated currents to the same extent. Menthol inhibition was not altered by intracellular 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid injections and transmembrane potential changes. The maximum inhibition observed for menthol was not reversed by increasing concentrations of 5-HT. Furthermore, specific binding of the 5-HT3 antagonist [(3)H]GR65630 was not altered in the presence of menthol (up to 1 mM), indicating that menthol acts as a noncompetitive antagonist of the 5-HT3 receptor. Finally, 5-HT3 receptor-mediated currents in acutely dissociated nodose ganglion neurons were also inhibited by menthol (100 μM). These data demonstrate that menthol, at pharmacologically relevant concentrations, is an allosteric inhibitor of 5-HT3 receptors.

  17. [Medical economics evaluation of 5-HT3 receptor antagonist drugs].

    PubMed

    Utsunomiya, Junpei; Hirano, Shigeki; Fukui, Aiko; Funabashi, Kazuaki; Deguchi, Yuko; Yamada, Susumu; Naito, Kazuyuki

    2010-10-01

    At Komaki City Hospital, the drug cost in connection with cancer chemotherapy was re-examined as part of improved management along with the introduction of DPC in July 2008. With due attention to the 5-HT3 receptor antagonists, both the change from injections to oral drugs and the change from brand-name drugs to generic drugs were tried between July 2008 and June 2009. After that, in order to examine the economic impact of these changes, we investigated and analyzed the number of medications, the cost of medicine purchased, and the average drug cost per medication of the 5-HT3 receptor antagonists between April 2008 and September 2009. As a result, the cost of 5-HT3 receptor antagonists purchased decreased greatly, and the impact of the improvement was mainly due to the change to oral drugs, and partially to the change to generic drugs. Therefore, from the viewpoint of hospital economic improvement in DPC, it was thought that the change to oral drugs(5-HT3 receptor antagonists)is given top priority.

  18. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves

    PubMed Central

    Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C.; Finger, Thomas E.

    2015-01-01

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT3A promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT3A mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μm 5-HT and this response is blocked by 1 μm ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μm m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. SIGNIFICANCE STATEMENT Historically, serotonin (5-hydroxytryptamine; 5-HT) has been described as a candidate neurotransmitter in the gustatory system and recent studies show that type III taste receptor cells release 5-HT in response to various taste stimuli. In the present study, we demonstrate that a subset of gustatory sensory neurons express functional

  19. [5-HT3 receptor antagonist als analgetics in rheumatic diseases].

    PubMed

    Müller, W; Fiebich, B L; Stratz, T

    2006-10-01

    Various rheumatic diseases like fibromyalgia, systemic inflammatory rheumatic disorders and localized diseases, such as arthritides and activated arthroses, tendinopathies and periarthropathies, as well as trigger points can be improved considerably by treatment with the 5-HT3 receptor antagonist tropisetron. Particularly in the latter group of diseases, local injections have done surprisingly rapid analgesic action. This effect matches that of local anesthetics, but lasts considerably longer and is comparable to local injections of local anesthetics combined with corticosteroids. The action of the 5-HT3 receptor antagonists can be attributed to an antinociceptive effect that occurs at the same time as an antiphlogistic and probably also an immunosuppressive effect. Whereas an inhibited release of substance P from the nociceptors, and possibly some other neurokins as well, seems to be the most likely explanation for the antinociceptive action, the antiphlogistic effect is primarily due to an inhibited formation of various different phlogistic substances; in some conditions, like systemic inflammatory rheumatic diseases, for example, the 5-HT3 receptor antagonists may exert an immunosuppressive effect in addition to this.

  20. The antimalarial drug proguanil is an antagonist at 5-HT3 receptors.

    PubMed

    Lochner, Martin; Thompson, Andrew J

    2014-12-01

    Proguanil is an antimalarial prodrug that is metabolized to 4-chlorophenyl-1-biguanide (CPB) and the active metabolite cycloguanil (CG). These compounds are structurally related to meta-chlorophenyl biguanide (mCPBG), a 5-hydroxytryptamine 3 (5-HT3) receptor agonist. Here we examine the effects of proguanil and its metabolites on the electrophysiology and ligand-binding properties of human 5-HT3A receptors expressed in Xenopus oocytes and human embryonic kidney 293 cells, respectively. 5-HT3 receptor responses were reversibly inhibited by proguanil, with an IC50 of 1.81 μM. Competitive antagonism was shown by a lack of voltage-dependence, Schild plot (Kb = 1.70 μM), and radioligand competition (Ki = 2.61 μM) with the 5-HT3 receptor antagonist [(3)H]granisetron. Kinetic measurements (kon = 4.0 × 10(4) M(-1) s(-1) ; koff = 0.23 s(-1)) were consistent with a simple bimolecular reaction scheme with a Kb of 4.35 μM. The metabolites CG and CPB similarly inhibited 5-HT3 receptors as assessed by IC50 (1.48 and 4.36 μM, respectively), Schild plot (Kb = 2.97 and 11.4 μM), and radioligand competition (Ki = 4.89 and 0.41 μM). At higher concentrations, CPB was a partial agonist (EC50 = 14.1 μM; I/Imax = 0.013). These results demonstrate that proguanil competitively inhibits 5-HT3 receptors, with an IC50 that exceeds whole-blood concentrations following its oral administration. They may therefore be responsible for the occasional gastrointestinal side effects, nausea, and vomiting reported following its use. Clinical development of related compounds should therefore consider effects at 5-HT3 receptors as an early indication of possible unwanted gastrointestinal side effects.

  1. Seizure susceptibility alteration through 5-HT(3) receptor: modulation by nitric oxide.

    PubMed

    Gholipour, Taha; Ghasemi, Mehdi; Riazi, Kiarash; Ghaffarpour, Majid; Dehpour, Ahmad Reza

    2010-01-01

    There is some evidence that epileptic seizures could be induced or increased by 5-hydroxytryptamine (5-HT) attenuation, while augmentation of serotonin functions within the brain (e.g. by SSRIs) has been reported to be anticonvulsant. This study was performed to determine the effect of selective 5-HT(3) channel/receptor antagonist granisetron and agonist SR57227 hydrochloride on the pentylenetetrazole (PTZ)-induced seizure threshold in mice. The possible interaction of this effect with nitrergic system was also examined using the nitric oxide (NO) synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) and the NO precursor l-arginine. SR57227 (10mg/kg, i.p.) significantly increased the seizure threshold compared to control group, while high dose granisetron (10mg/kg, i.p.) proved proconvulsant. Co-administration of sub-effective doses of the 5-HT(3) agonist with l-NAME (5 and 60mg/kg, i.p., respectively) exerted a significant anticonvulsive effect, while sub-effective doses of granisetron (3mg/kg) was observed to have a proconvulsive action with the addition of l-arginine (75mg/kg, i.p.). Our data demonstrate that enhancement of 5-HT(3) receptor function results in as anticonvulsant effect in the PTZ-induced seizure model, and that selective antagonism at the 5-HT(3) receptor yields proconvulsive effects. Furthermore, the NO system may play a role in 5-HT(3) receptor function.

  2. The interaction of trichloroethanol with murine recombinant 5-HT3 receptors.

    PubMed Central

    Downie, D L; Hope, A G; Belelli, D; Lambert, J J; Peters, J A; Bentley, K R; Steward, L J; Chen, C Y; Barnes, N M

    1995-01-01

    108-15 cells or HEK 293 cells. Similarly, competition for [3H]-granisetron binding by the 5-HT3 receptor antagonists ondansetron and tropisetron was unaffected. However, competition for [3H]-granisetron binding by the 5-HT3 receptor agonists, 5-HT, 2-methyl-5-HT and phenylbiguanide was enhanced by trichloroethanol (2.5 mM).(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7541281

  3. Palonosetron-5-HT3 Receptor Interactions As Shown by a Binding Protein Cocrystal Structure.

    PubMed

    Price, Kerry L; Lillestol, Reidun K; Ulens, Chris; Lummis, Sarah C R

    2016-12-21

    Palonosetron is a potent 5-HT3 receptor antagonist and an effective therapeutic agent against emesis. Here we identify the molecular determinants of compound recognition in the receptor binding site by obtaining a high resolution structure of palonosetron bound to an engineered acetylcholine binding protein that mimics the 5-HT3 receptor binding site, termed 5-HTBP, and by examining the potency of palonosetron in a range of 5-HT3 receptors with mutated binding site residues. The structural data indicate that palonosetron forms a tight and effective wedge in the binding pocket, made possible by its rigid tricyclic ring structure and its interactions with binding site residues; it adopts a binding pose that is distinct from the related antiemetics granisetron and tropisetron. The functional data show many residues previously shown to interact with agonists and antagonists in the binding site are important for palonosetron binding, and indicate those of particular importance are W183 (a cation-π interaction and a hydrogen bond) and Y153 (a hydrogen bond). This information, and the availability of the structure of palonosetron bound to 5-HTBP, should aid the development of novel and more efficacious drugs that act via 5-HT3 receptors.

  4. Impact of intracellular domain flexibility upon properties of activated human 5-HT3 receptors*

    PubMed Central

    Kozuska, J L; Paulsen, I M; Belfield, W J; Martin, I L; Cole, D J; Holt, A; Dunn, S M J

    2014-01-01

    Background and Purpose It has been proposed that arginine residues lining the intracellular portals of the homomeric 5-HT3A receptor cause electrostatic repulsion of cation flow, accounting for a single-channel conductance substantially lower than that of the 5-HT3AB heteromer. However, comparison of receptor homology models for wild-type pentamers suggests that salt bridges in the intracellular domain of the homomer may impart structural rigidity, and we hypothesized that this rigidity could account for the low conductance. Experimental Approach Mutations were introduced into the portal region of the human 5-HT3A homopentamer, such that putative salt bridges were broken by neutralizing anionic partners. Single-channel and whole cell currents were measured in transfected tsA201 cells and in Xenopus oocytes respectively. Computational simulations of protein flexibility facilitated comparison of wild-type and mutant receptors. Key Results Single-channel conductance was increased substantially, often to wild-type heteromeric receptor values, in most 5-HT3A mutants. Conversely, introduction of arginine residues to the portal region of the heteromer, conjecturally creating salt bridges, decreased conductance. Gating kinetics varied significantly between different mutant receptors. EC50 values for whole-cell responses to 5-HT remained largely unchanged, but Hill coefficients for responses to 5-HT were usually significantly smaller in mutants. Computational simulations suggested increased flexibility throughout the protein structure as a consequence of mutations in the intracellular domain. Conclusions and Implications These data support a role for intracellular salt bridges in maintaining the quaternary structure of the 5-HT3 receptor and suggest a role for the intracellular domain in allosteric modulation of cooperativity and agonist efficacy. Linked Article This article is commented on by Vardy and Kenakin, pp. 1614–1616 of volume 171 issue 7. To view this commentary

  5. Structure-activity relationships of quinoxaline-based 5-HT3A and 5-HT3AB receptor-selective ligands.

    PubMed

    Thompson, Andrew J; Verheij, Mark H P; van Muijlwijk-Koezen, Jacqueline E; Lummis, Sarah C R; Leurs, Rob; de Esch, Iwan J P

    2013-06-01

    Until recently, discriminating between homomeric 5-HT3A and heteromeric 5-HT3AB receptors was only possible with ligands that bind in the receptor pore. This study describes the first series of ligands that can discriminate between these receptor types at the level of the orthosteric binding site. During a recent fragment screen, 2-chloro-3-(4-methylpiperazin-1-yl)quinoxaline (VUF10166) was identified as a ligand that displays an 83-fold difference in [(3)H]granisetron binding affinity between 5-HT3A and 5-HT3AB receptors. Fragment hit exploration, initiated from VUF10166 and 3-(4-methylpiperazin-1-yl)quinoxalin-2-ol, resulted in a series of compounds with higher affinity at either 5-HT3A or 5-HT3AB receptors. These ligands reveal that a single atom is sufficient to change the selectivity profile of a compound. At the extremes of the new compounds were 2-amino-3-(4-methylpiperazin-1-yl)quinoxaline, which showed 11-fold selectivity for the 5-HT3A receptor, and 2-(4-methylpiperazin-1-yl)quinoxaline, which showed an 8.3-fold selectivity for the 5-HT3AB receptor. These compounds represent novel molecular tools for studying 5-HT3 receptor subtypes and could help elucidate their physiological roles.

  6. Effects of serotonin 5-HT3 receptor antagonists on stress-induced colonic hyperalgesia and diarrhoea in rats: a comparative study with opioid receptor agonists, a muscarinic receptor antagonist and a synthetic polymer.

    PubMed

    Hirata, T; Keto, Y; Nakata, M; Takeuchi, A; Funatsu, T; Akuzawa, S; Sasamata, M; Miyata, K

    2008-05-01

    In this study, we examined the effects of serotonin (5-HT)3 receptor antagonists (5-HT3RAs) including ramosetron, alosetron, and cilansetron on colonic nociceptive threshold in rats. Furthermore, we established a restraint stress-induced colonic hyperalgesia model in rats, and compared the inhibitory effects of 5-HT3RAs on restraint stress-induced colonic hyperalgesia and diarrhoea with those of loperamide, trimebutine, tiquizium and polycarbophil. The colonic nociceptive threshold was measured as the balloon pressure at the time the rat showed a nociceptive response during colonic distension by an intrarectally inserted balloon. Oral administration of ramosetron (3-30 microg kg(-1)), alosetron (30-300 microg kg(-1)), or cilansetron (30-300 microg kg(-1)) increased the colonic nociceptive threshold in a dose-dependent manner in non-stressed rats. Restraint stress for 1 h significantly decreased the colonic nociceptive threshold, but ramosetron (0.3-3 microg kg(-1)), alosetron (3-30 microg kg(-1)), cilansetron (3-30 microg kg(-1)) and trimebutine (100-1000 mg kg(-1)) significantly inhibited the decrease in the threshold. Loperamide (3-30 mg kg(-1)), tiquizium (100-1000 mg kg(-1)) and polycarbophil (1000 mg kg(-1)) did not affect the restraint stress-induced decrease in the colonic nociceptive threshold. All drugs tested in this study showed dose-dependent inhibition of restraint stress-induced diarrhoea in rats. These results indicate that, unlike existing antidiarrhoeal and spasmolytic agents, 5-HT3RAs have inhibitory effects on colonic nociception, and prevented restraint stress-induced both diarrhoea and hyperalgesia at almost the same doses in rats. This suggests that the 5-HT3RAs may be useful in ameliorating both colonic hyperalgesia and diarrhoea in patients with irritable bowel syndrome.

  7. Downregulated hypothalamic 5-HT3 receptor expression and enhanced 5-HT3 receptor antagonist-mediated improvement in fatigue-like behaviour in cholestatic rats.

    PubMed

    Nguyen, H; Wang, H; le, T; Ho, W; Sharkey, K A; Swain, M G

    2008-03-01

    The serotonin neurotransmitter system, including the 5-HT(3) receptor, has been implicated in the genesis of fatigue in patients with liver disease. Therefore, we examined the possible role of 5-HT(3) receptors in cholestasis-associated fatigue. Rats were either bile duct resected (BDR) or sham resected and studied 10 days postsurgery. A significant decrease in hypothalamic 5-HT(3) receptor expression was detected by immunohistochemistry and Western blot in BDR vs sham rats, coupled with increased hypothalamic serotonin turnover identified by an elevated 5-hydroxyindoleacetic acid (5-HIAA) to 5-HT ratio in BDR vs sham rats. To examine fatigue-like behaviour, an activity meter was used. BDR rats exhibited significantly lower locomotor activity than did sham animals. Subcutaneous injection of the 5-HT(3) receptor antagonist tropisetron (0.1 mg kg(-1)) resulted in significantly increased locomotor activity in BDR rats compared to the activity in saline-treated controls, but was without effect in sham rats. However, a 10-fold higher dose of tropisetron significantly increased locomotor activity in both BDR and sham rats compared to saline-injected controls. These findings indicate that cholestasis in the rat is associated with increased hypothalamic serotonin turnover, decreased hypothalamic 5-HT(3) receptor expression, and enhanced sensitivity to locomotor activation induced by 5-HT(3) receptor antagonism, thereby implicating the 5-HT(3) receptor system in cholestasis associated fatigue.

  8. Unraveling mechanisms underlying partial agonism in 5-HT3A receptors.

    PubMed

    Corradi, Jeremías; Bouzat, Cecilia

    2014-12-10

    Partial agonists have emerged as attractive therapeutic molecules. 2-Me-5HT and tryptamine have been defined as partial agonists of 5-HT3 receptors on the basis of macroscopic measurements. Because several mechanisms may limit maximal responses, we took advantage of the high-conductance form of the mouse serotonin type 3A (5-HT3A) receptor to understand their molecular actions. Individual 5-HT-bound receptors activate in long episodes of high open probability, consisting of groups of openings in quick succession. The activation pattern is similar for 2-Me-5HT only at very low concentrations since profound channel blockade takes place within the activating concentration range. In contrast, activation episodes are significantly briefer in the presence of tryptamine. Generation of a full activation scheme reveals that the fully occupied receptor overcomes transitions to closed preopen states (primed states) before opening. Reduced priming explains the partial agonism of tryptamine. In contrast, 2-Me-5HT is not a genuine partial agonist since priming is not dramatically affected and its low apparent efficacy is mainly due to channel blockade. The analysis also shows that the first priming step is the rate-limiting step and partial agonists require an increased number of priming steps for activation. Molecular docking suggests that interactions are similar for 5-HT and 2-Me-5HT but slightly different for tryptamine. Our study contributes to understanding 5-HT3A receptor activation, extends the novel concept of partial agonism within the Cys-loop family, reveals novel aspects of partial agonism, and unmasks molecular actions of classically defined partial agonists. Unraveling mechanisms underlying partial responses has implications in the design of therapeutic compounds.

  9. Building a 5-HT3A Receptor Expression Map in the Mouse Brain

    PubMed Central

    Koyama, Yoshihisa; Kondo, Makoto; Shimada, Shoichi

    2017-01-01

    Of the many serotonin receptors, the type 3 receptors (5-HT3R) are the only ionotropic ones, playing a key role in fast synaptic transmission and cognitive and emotional brain function through controlled neuronal excitation. To better understand the various functions of 5-HT3Rs, it is very important to know their expression pattern in the central nervous system (CNS). To date, many distributional studies have shown localized 5-HT3R expression in the brain and spinal cord. However, an accurate pattern of 5-HT3R expression in the CNS remains to be elucidated. To investigate the distribution of 5-HT3R in the mouse brain in detail, we performed immunofluorescent staining using 5-HT3AR-GFP transgenic mice. We found strong 5-HT3AR expression in the olfactory bulb, cerebral cortex, hippocampus, and amygdala; and partial expression in the pons, medulla, and spinal cord. Meanwhile, the thalamus, hypothalamus, and midbrain exhibited a few 5-HT3AR-expressing cells, and no expression was detected in the cerebellum. Further, double-immunostaining using neural markers confirmed that 5-HT3AR is expressed in GABAergic interneurons containing somatostatin or calretinin. In the present study, we built a 5-HT3AR expression map in the mouse brain. Our findings make significant contributions in elucidating the novel functions of 5-HT3R in the CNS. PMID:28276429

  10. Is All Radiation-Induced Emesis Ameliorated by 5-HT3 Receptor Antagonists

    DTIC Science & Technology

    1992-01-01

    5 - HT3 receptor antagonists ;~// 9-72 Bernard M.I Rabin 0’) and Gregory L. Kingt2) -) Behavioral Sciences and 2 PhYSzo~o~y Dcpiarlrnvni . Arm,. ii - R...RY Exposing ferrets to gamuma rays or X-rays produces vomiting that can be attenuated by 5 - HT3 receptor antagonists and by subdiaphraqmatic vagotomy...Pretreating ferrets with serotonin type-3 ( 5 - HT3 ) receptor antagonists or performing bilateral subdiaphragmatic vagotomy reliably attenuates the

  11. Role of 5-HT3 Receptor on Food Intake in Fed and Fasted Mice

    PubMed Central

    Li, Bingjin; Shao, Dongyuan; Luo, Yungang; Wang, Pu; Liu, Changhong; Zhang, Xingyi; Cui, Ranji

    2015-01-01

    Background Many studies have shown that 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the regulation of feeding behavior. However, the relative contribution of 5-HT3 receptor remains unclear. The present study was aimed to investigate the role of 5-HT3 receptor in control of feeding behavior in fed and fasted mice. Methodology/Principal Findings Food intake and expression of c-Fos, tyrosine hydroxylase (TH), proopiomelanocortin (POMC) and 5-HT in the brain were examined after acute treatment with 5-HT3 receptor agonist SR-57227 alone or in combination with 5-HT3 receptor antagonist ondansetron. Food intake was significantly inhibited within 3 h after acute treatment with SR 57227 in fasted mice but not fed mice, and this inhibition was blocked by ondansetron. Immunohistochemical study revealed that fasting-induced c-Fos expression was further enhanced by SR 57227 in the brainstem and the hypothalamus, and this enhancement was also blocked by ondansetron. Furthermore, the fasting-induced downregulation of POMC expression in the hypothalamus and the TH expression in the brain stem was blocked by SR 57227 in the fasted mice, and this effect of SR 57227 was also antagonized by ondansetron. Conclusion/Significance Taken together, our findings suggest that the effect of SR 57227 on the control of feeding behavior in fasted mice may be, at least partially, related to the c-Fos expression in hypothalamus and brain stem, as well as POMC system in the hypothalamus and the TH system in the brain stem. PMID:25789930

  12. Functional evidence for the rapid desensitization of 5-HT(3) receptors on vagal afferents mediating the Bezold-Jarisch reflex

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    2000-01-01

    The aim of this study was to determine whether 5-hydroxytryptamine (5-HT)(3) receptors on cardiopulmonary afferents mediating the Bezold-Jarisch reflex (BJR) desensitize upon repeated exposure to selective agonists. BJR-mediated falls in heart rate, diastolic arterial blood pressure and cardiac output elicited by the 5-HT(3)-receptor agonists, phenylbiguanide (100 microg/kg, i.v.) or 2-methyl-5-HT (100 microg/kg, i.v.), progressively diminished upon repeated injection in conscious rats. The BJR responses elicited by 5-HT (40 microg/kg, i.v.) were markedly reduced in rats which had received the above injections of phenylbiguanide or 2-methyl-5-HT whereas the BJR responses elicited by L-S-nitrosocysteine (10 micromol/kg, i.v.) were similar before and after the injections of the 5-HT(3) receptor agonists. These findings suggest that tachyphylaxis to 5-HT(3) receptor agonists may be due to the desensitization of 5-HT(3) receptors on cardiopulmonary afferents rather than the impairment of the central or peripheral processing of the BJR.

  13. Functional evidence for the rapid desensitization of 5-HT(3) receptors on vagal afferents mediating the Bezold-Jarisch reflex

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    2000-01-01

    The aim of this study was to determine whether 5-hydroxytryptamine (5-HT)(3) receptors on cardiopulmonary afferents mediating the Bezold-Jarisch reflex (BJR) desensitize upon repeated exposure to selective agonists. BJR-mediated falls in heart rate, diastolic arterial blood pressure and cardiac output elicited by the 5-HT(3)-receptor agonists, phenylbiguanide (100 microg/kg, i.v.) or 2-methyl-5-HT (100 microg/kg, i.v.), progressively diminished upon repeated injection in conscious rats. The BJR responses elicited by 5-HT (40 microg/kg, i.v.) were markedly reduced in rats which had received the above injections of phenylbiguanide or 2-methyl-5-HT whereas the BJR responses elicited by L-S-nitrosocysteine (10 micromol/kg, i.v.) were similar before and after the injections of the 5-HT(3) receptor agonists. These findings suggest that tachyphylaxis to 5-HT(3) receptor agonists may be due to the desensitization of 5-HT(3) receptors on cardiopulmonary afferents rather than the impairment of the central or peripheral processing of the BJR.

  14. Involvement of 5-HT3 receptors in the action of vortioxetine in rat brain: Focus on glutamatergic and GABAergic neurotransmission.

    PubMed

    Riga, Maurizio S; Sánchez, Connie; Celada, Pau; Artigas, Francesc

    2016-09-01

    The antidepressant vortioxetine is a 5-HT3-R, 5-HT7-R and 5-HT1D-R antagonist, 5-HT1B-R partial agonist, 5-HT1A-R agonist, and serotonin (5-HT) transporter (SERT) inhibitor. Vortioxetine occupies all targets at high therapeutic doses and only SERT and 5-HT3-R at low doses. Vortioxetine increases extracellular monoamine concentrations in rat forebrain more than selective serotonin reuptake inhibitors (SSRI) and shows pro-cognitive activity in preclinical models. Given its high affinity for 5-HT3-R (Ki = 3.7 nM), selectively expressed in GABA interneurons, we hypothesized that vortioxetine may disinhibit glutamatergic and monoaminergic neurotransmission following 5-HT3-R blockade. Here we assessed vortioxetine effect on pyramidal neuron activity and extracellular 5-HT concentration using in vivo extracellular recordings of rat medial prefrontal cortex (mPFC) pyramidal neurons and microdialysis in mPFC and ventral hippocampus (vHPC). Vortioxetine, but not escitalopram, increased pyramidal neuron discharge in mPFC. This effect was prevented by SR57227A (5-HT3-R agonist) and was mimicked by ondansetron (5-HT3-R antagonist) and by escitalopram/ondansetron combinations. In microdialysis experiments, ondansetron augmented the 5-HT-enhancing effect of escitalopram in mPFC and vHPC. Local ondansetron in vHPC augmented escitalopram effect, indicating the participation of intrinsic mechanisms. Since 5-HT neurons express GABAB receptors, we examined their putative involvement in controlling 5-HT release after 5-HT3-R blockade. Co-perfusion of baclofen (but not muscimol) reversed the increased 5-HT levels produced by vortioxetine and escitalopram/ondansetron combinations in vHPC. The present results suggest that vortioxetine increases glutamatergic and serotonergic neurotransmission in rat forebrain by blocking 5-HT3 receptors in GABA interneurons.

  15. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production.

    PubMed

    Bhattarai, Yogesh; Schmidt, Bradley A; Linden, David R; Larson, Eric D; Grover, Madhusudan; Beyder, Arthur; Farrugia, Gianrico; Kashyap, Purna C

    2017-07-01

    Serotonin [5-hydroxytryptamine (5-HT)], an important neurotransmitter and a paracrine messenger in the gastrointestinal tract, regulates intestinal secretion by its action primarily on 5-HT3 and 5-HT4 receptors. Recent studies highlight the role of gut microbiota in 5-HT biosynthesis. In this study, we determine whether human-derived gut microbiota affects host secretory response to 5-HT and 5-HT receptor expression. We used proximal colonic mucosa-submucosa preparation from age-matched Swiss Webster germ-free (GF) and humanized (HM; ex-GF colonized with human gut microbiota) mice. 5-HT evoked a significantly greater increase in short-circuit current (ΔIsc) in GF compared with HM mice. Additionally, 5-HT3 receptor mRNA and protein expression was significantly higher in GF compared with HM mice. Ondansetron, a 5-HT3 receptor antagonist, inhibited 5-HT-evoked ΔIsc in GF mice but not in HM mice. Furthermore, a 5-HT3 receptor-selective agonist, 2-methyl-5-hydroxytryptamine hydrochloride, evoked a significantly higher ΔIsc in GF compared with HM mice. Immunohistochemistry in 5-HT3A-green fluorescent protein mice localized 5-HT3 receptor expression to enterochromaffin cells in addition to nerve fibers. The significant difference in 5-HT-evoked ΔIsc between GF and HM mice persisted in the presence of tetrodotoxin (TTX) but was lost after ondansetron application in the presence of TTX. Application of acetate (10 mM) significantly lowered 5-HT3 receptor mRNA in GF mouse colonoids. We conclude that host secretory response to 5-HT may be modulated by gut microbiota regulation of 5-HT3 receptor expression via acetate production. Epithelial 5-HT3 receptor may function as a mediator of gut microbiota-driven change in intestinal secretion.NEW & NOTEWORTHY We found that gut microbiota alters serotonin (5-HT)-evoked intestinal secretion in a 5-HT3 receptor-dependent mechanism and gut microbiota metabolite acetate alters 5-HT3 receptor expression in colonoids.View this article

  16. Partial Agonism of 5-HT3 Receptors: A Novel Approach to the Symptomatic Treatment of IBS-D

    PubMed Central

    2012-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by abdominal pain, discomfort, and altered bowel habits, which have a significant impact on quality of life for approximately 10–20% of the population. IBS can be divided into three main types IBS-D (diarrhea predominant), IBS-C (constipation predominant), and mixed or alternating IBS. 5-HT3 receptor antagonism has proved to be an efficacious treatment option for IBS-D. For example, alosetron displays efficacy in the treatment of multiple symptoms, including abdominal pain, discomfort, urgency, stool frequency and consistency. However, significant constipation occurred in approximately 25% of patients, leading to withdrawal of up to 10% of patients in clinical trials. Targeting compounds with partial agonist activity at the 5-HT3 receptor represents a mechanistic departure from the classic 5-HT3 receptor antagonist approach and should result in agents that are applicable to a broader array of IBS patient populations. Attenuation of the activity of the ion channel without completely abolishing its function may control or normalize bowel function without leading to a total block associated with severe constipation. We have identified a new class of selective, orally active 5-HT3 receptor ligands with high 5-HT3 receptor affinity and low partial agonist activity currently in preclinical development that should offer a significant advantage over existing therapies. PMID:23342199

  17. Design, Synthesis, and Structure–Activity Relationships of Highly Potent 5-HT3 Receptor Ligands

    PubMed Central

    2012-01-01

    The 5-HT3 receptor, a pentameric ligand-gated ion channel (pLGIC), is an important therapeutic target. During a recent fragment screen, 6-chloro-N-methyl-2-(4-methyl-1,4-diazepan-1-yl)quinazolin-4-amine (1) was identified as a 5-HT3R hit fragment. Here we describe the synthesis and structure–activity relationships (SAR) of a series of (iso)quinoline and quinazoline compounds that were synthesized and screened for 5-HT3R affinity using a [3H]granisetron displacement assay. These studies resulted in the discovery of several high affinity ligands of which compound 22 showed the highest affinity (pKi > 10) for the 5-HT3 receptor. The observed SAR is in agreement with established pharmacophore models for 5-HT3 ligands and is used for ligand–receptor binding mode prediction using homology modeling and in silico docking approaches. PMID:23006041

  18. Open probability of homomeric murine 5-HT3A serotonin receptors depends on subunit occupancy

    PubMed Central

    Mott, David D; Erreger, Kevin; Banke, Tue G; Traynelis, Stephen F

    2001-01-01

    The time course of macroscopic current responses of homomeric murine serotonin 5-HT3A receptors was studied in whole cells and excised membrane patches under voltage clamp in response to rapid application of serotonin. Serotonin activated whole cell currents with an EC50 value for the peak response of 2 μm and a Hill slope of 3.0 (n = 12), suggesting that the binding of at least three agonist molecules is required to open the channel. Homomeric 5-HT3A receptors in excised membrane patches had a slow activation time course (mean ±s.e.m. 10-90 % rise time 12.5 ± 1.6 ms; n = 9 patches) for 100 μm serotonin. The apparent activation rate was estimated by fitting an exponential function to the rising phase of responses to supramaximal serotonin to be 136 s−1. The 5-HT3A receptor response to 100 μm serotonin in outside-out patches (n = 19) and whole cells (n = 41) desensitized with a variable rate that accelerated throughout the experiment. The time course for desensitization was described by two exponential components (for patches τslow 1006 ± 139 ms, amplitude 31 % τfast 176 ± 25 ms, amplitude 69 %). Deactivation of the response following serotonin removal from excised membrane patches (n = 8) and whole cells (n = 29) was described by a dual exponential time course with time constants similar to those for desensitization (for patches τslow 838 ± 217 ms, 55 % amplitude; τfast 213 ± 44 ms, 45 % amplitude). In most patches (6 of 8), the deactivation time course in response to a brief 1-5 ms pulse of serotonin was similar to or slower than desensitization. This suggests that the continued presence of agonist can induce desensitization with a similar or more rapid time course than agonist unbinding. The difference between the time course for deactivation and desensitization was voltage independent over the range -100 to -40 mV in patches (n = 4) and -100 to +50 mV in whole cells (n = 4), suggesting desensitization of these receptors in the presence of

  19. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists.

    PubMed

    Fakhfouri, Gohar; Mousavizadeh, Kazem; Mehr, Sharam Ejtemaei; Dehpour, Ahmad Reza; Zirak, Mohammad Reza; Ghia, Jean-Eric; Rahimian, Reza

    2015-12-01

    5-HT3 receptor antagonists are extensively used as efficacious agents in counteracting chemotherapy-induced emesis. Recent investigations have shed light on other potential effects (analgesic, anxiolytic, and anti-psychotic). Some studies have reported neuroprotective properties for the 5-HT3 receptor antagonists in vitro and in vivo. When administered to Aβ-challenged rat cortical neurons, 5-HT3 receptor antagonists substantially abated apoptosis, elevation of cytosolic Ca(2), glutamate release, reactive oxygen species (ROS) generation, and caspase-3 activity. In addition, in vivo studies show that 5-HT3 receptor antagonists possess, alongside their anti-emetic effects, notable immunomodulatory properties in CNS. We found that pretreatment with tropisetron significantly improved neurological deficits and diminished leukocyte transmigration into the brain, TNF-α level, and brain infarction in a murine model of embolic stroke. Our recent investigation revealed that tropisetron protects against Aβ-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and -independent pathways. Tropisetron, in vitro, was found to be an efficacious inhibitor of the signaling pathway leading to the activation of pro-inflammatory NF-κB, a transcription factor pivotal to the upregulation of several neuroinflammatory mediators in brain. This mini review summarizes novel evidence concerning effects of 5-HT3 antagonists and their possible mechanisms of action in ameliorating neurodegenerative diseases including Alzheimer, multiple sclerosis, and stroke. Further, we discuss some newly synthesized 5-HT3 receptor antagonists with dual properties of 5-HT3 receptor blockade/alpha-7 nicotinic receptor activator and their potential in management of memory impairment. Since 5-HT3 receptor antagonists possess a large therapeutic window, they can constitute a scaffold for design and synthesis of new neuroprotective medications.

  20. Effects of serotonin on acid secretion in isolated rat stomach: the role of 5-HT3 receptors.

    PubMed

    Lai, Yung-Chih; Ho, Yih; Huang, Kai-Han; Tsai, Li Hsueh

    2009-11-30

    Serotonin (5-hydroxytryptamin; 5-HT) content has been measured using high-performance liquid chromatography with electrochemical detection (HPLC-ECD). The distributions of 5-HT-containing cells and 5-HT3 receptors have been determined with specific antibodies against 5-HT and 5-HT3 receptors, respectively. The effect of serotonin on acid secretion has been studied using an isolated rat stomach model. It has been shown that 5-HT concentrations in the fundus, mucosal layers of the corpus, remaining layer of the corpus and antrum are approximately 152, 498, 1494 and 972 nmol/mg protein, respectively. The distribution of 5-HT-containing cells is concentrated in the enteric plexus and enterochromaffin (EC) cells in the deep mucosal layer. Immunoreactivity to 5-HT3 receptors is localized in numerous neurons of the myenteric and submucosal plexus and concentrated in the neuronal plasma membrane, submucosa, endocrine cells and lamina propria. In the present study, the effect of 5-HT on gastric acid secretion was investigated on an everted preparation of isolated rat stomach. 5-HT at 1-100 microM reduced acid secretion stimulated by oxotremorine while 10 microM 5-HT did not modify the basal secretion of gastric acid. We further showed that 10 microM 5-HT reduced acid secretion and pepsin output stimulated by oxotremorine, histamine and pentagastrin; among the 5-HT receptors agonists tested, 2-methyl-5-HT (1-10 microM), a 5-HT3 receptor agonist, inhibited oxotremorine-, histamine- and pentagastrin-stimulated acid secretions, and this inhibitory effect was blocked by 1 microM MDL 72222, a specific 5-HT3 receptor antagonist. These results suggest that 5-HT is released from serotoninergic neurons, their processes and EC cells. The effect of 5-HT mediated by 5-HT3 receptors involves distinct neuronal and non-neuronal pathways which modulate gastric acid secretion.

  1. Fluorophore assisted light inactivation (FALI) of recombinant 5-HT3A receptor constitutive internalization and function

    PubMed Central

    Morton, Russell A.; Luo, Guoxiang; Davis, Margaret I.; Hales, Tim G.; Lovinger, David M.

    2011-01-01

    Fluorescent proteins and molecules are now widely used to tag and visualize proteins resulting in an improved understanding of protein trafficking, localization, and function. In addition, fluorescent tags have also been used to inactivate protein function in a spatially and temporally-defined manner, using a technique known as fluorophore-assisted light inactivation (FALI) or chromophore-assisted light inactivation (CALI). In this study we tagged the serotonin3 A subunit with the α-bungarotoxin binding sequence (BBS) and subsequently labeled 5-HT3A/BBS receptors with fluorescently conjugated α-bungarotoxin in live cells. We show that 5-HT3A/BBS receptors are constitutively internalized in the absence of an agonist and internalization as well as receptor function are inhibited by fluorescence. The fluorescence-induced disruption of function and internalization was reduced with oxygen radical scavengers suggesting the involvement of reactive oxygen species, implicating the FALI process. Furthermore, these data suggest that intense illumination during live-cell microscopy may result in inadvertent FALI and inhibition of protein trafficking. PMID:21338684

  2. Functional expression and properties of a nicotinic alpha9/5-HT3A chimeric receptor.

    PubMed

    Verbitsky, Miguel; Plazas, Paola V; Elgoyhen, A Belén

    2003-10-27

    We describe the functional properties of a nicotinic alpha9/serotonin subtype 3A (5HT3A) chimeric receptor expressed in Xenopus laevis oocytes. The chimera preserved ligand-binding properties of alpha9 and channel properties of 5HT3A. Thus, it responded to acetylcholine in a concentration-dependent manner with an EC50 of 70 microM but not to serotonin. It was blocked by methyllycaconitine, strychnine, atropine and nicotine, with the same rank order of potency as alpha9 receptors. The current-voltage relationship of currents through the alpha9/5HT3A chimera was similar to that of the 5HT3A receptors. These results are an evidence of functional coupling between the ligand-binding and the channel domains of the chimeric receptor.

  3. Immunohistochemical characterization of 5-HT(3A) receptors in the Syrian hamster forebrain.

    PubMed

    Carrillo, Maria; Ricci, Lesley A; Schwartzer, Jared J; Melloni, Richard H

    2010-05-06

    The Syrian hamster (Mesocricetus auratus) has been extensively used as an animal model to investigate neuronal networks underlying various behaviors where 5-HT(3A) receptors have been found to play a critical role. To date, however, there is no comprehensive description of the distribution of 5-HT(3A) receptors in the Syrian hamster brain. The current study examined the localization of 5-HT(3A) receptors across the neuraxis of the Syrian hamster forebrain using immunohistochemistry. Overall, 5-HT(3A) receptors were widely and heterogeneously distributed across the neuraxis of the Syrian hamster brain. Notably, the most intense 5-HT(3A) immunolabeling patterns were observed in the cerebral cortex and amygdala. In addition, high variability in receptor density and expression patterns (i.e., perikarya, fibers and/or neuropilar puncta) was observed within the majority of brain areas examined, indicating that the role this receptor has in the modulation of a particular neural function differs depending on brain region. In some regions (i.e., nucleus accumbens) differences in the immunolabeling pattern between rostral, medial and caudal portions were also observed, suggesting functional heterogeneity of this receptor within a single brain region. Together, these results and the localization of this receptor to brain areas involved in the regulation of sexual behavior, aggression, circadian rhythm, drug abuse and anxiety implicate 5-HT(3A) receptors in the modulation of various behaviors and neural functions in the Syrian hamster. Further, these results underscore the importance of evaluating 5-HT(3A) receptors as a pharmacological target for the treatment of various psychopathological disorders.

  4. Quantitation of 5HT3 receptors in forebrain of serotonin transporter deficient mice.

    PubMed

    Mössner, R; Schmitt, A; Hennig, T; Benninghoff, J; Gerlach, M; Riederer, P; Deckert, J; Lesch, K P

    2004-01-01

    Mice deficient in the serotonin transporter (5HTT) display highly elevated extracellular 5HT levels. 5HT exerts ist effects via at least fourteen different cloned 5HT receptors located pre- and postsynaptically. In contrast to the other 5HT receptors, the 5HT3 receptor is a ionotropic receptor with ligand-gated cation channel function. Since G-protein-coupled 5HT receptors show extensive adaptive changes in 5HTT-deficient mice, we investigated whether 5HT3 receptors are also altered in these mice. Using quantitative autoradiography, we found that 5HT3 receptors are upregulated in frontal cortex (+46%), parietal cortex (+42%), and in stratum oriens of the CA3 region of the hippocampus (+18%) of 5HTT knockout mice. Changes in 5HT3 receptor mRNA expression, as determined by quantitative in situ hybridisation, were less pronounced. The adaptive changes of 5HT3 receptor expression constitute a part of the complex regulatory pattern of 5HT receptors in 5HTT knockout mice.

  5. The role of 5-HT3 receptors in drug abuse and as a target for pharmacotherapy.

    PubMed

    Engleman, E A; Rodd, Z A; Bell, R L; Murphy, J M

    2008-11-01

    Alcohol and drug abuse continue to be a major public health problem in the United States and other industrialized nations. Extensive preclinical research indicates the mesolimbic dopamine (DA) pathway and associated regions mediate the rewarding and reinforcing effects of drugs of abuse and natural rewards, such as food and sex. The serotonergic (5-HT) system, in concert with others neurotransmitter systems, plays a key role in modulating neuronal systems within the mesolimbic pathway. A substantial portion of this modulation is mediated by activity at the 5-HT3 receptor. The 5-HT3 receptor is unique among the 5-HT receptors in that it directly gates an ion channel inducing rapid depolarization that, in turn, causes the release of neurotransmitters and/or peptides. Preclinical findings indicate that antagonism of the 5-HT3 receptor in the ventral tegmental area, nucleus accumbens or amygdala reduces alcohol self-administration and/or alcohol-associated effects. Less is known about the effects of 5-HT3 receptor activity on the self-administration of other drugs of abuse or their associated effects. Clinical findings parallel the preclinical findings such that antagonism of the 5-HT3 receptor reduces alcohol consumption and some of its subjective effects. This review provides an overview of the structure, function, and pharmacology of 5-HT3 receptors, the role of these receptors in regulating DA neurotransmission in mesolimbic brain areas, and discusses data from animal and human studies implicating 5-HT3 receptors as targets for the development of new pharmacological agents to treat addictions.

  6. The Role of 5-HT3 Receptors in Drug Abuse and as a Target for Pharmacotherapy

    PubMed Central

    Engleman, E.A.; Rodd, Z.A.; Bell, R.L.; Murphy, J.M.

    2010-01-01

    Alcohol and drug abuse continue to be a major public health problem in the United States and other industrialized nations. Extensive preclinical research indicates the mesolimbic dopamine (DA) pathway and associated regions mediate the rewarding and reinforcing effects of drugs of abuse and natural rewards, such as food and sex. The serotonergic (5-HT) system, in concert with others neurotransmitter systems, plays a key role in modulating neuronal systems within the mesolimbic pathway. A substantial portion of this modulation is mediated by activity at the 5-HT3 receptor. The 5-HT3 receptor is unique among the 5-HT receptors in that it directly gates an ion channel inducing rapid depolarization that, in turn, causes the release of neurotransmitters and/or peptides. Preclinical findings indicate that antagonism of the 5-HT3 receptor in the ventral tegmental area, nucleus accumbens or amygdala reduces alcohol self-administration and/or alcohol-associated effects. Less is known about the effects of 5-HT3 receptor activity on the self-administration of other drugs of abuse or their associated effects. Clinical findings parallel the preclinical findings such that antagonism of the 5-HT3 receptor reduces alcohol consumption and some of its subjective effects. This review provides an overview of the structure, function, and pharmacology of 5-HT3 receptors, the role of these receptors in regulating DA neurotransmission in mesolimbic brain areas, and discusses data from animal and human studies implicating 5-HT3 receptors as targets for the development of new pharmacological agents to treat addictions. PMID:19128203

  7. Role of central vagal 5-HT3 receptors in gastrointestinal physiology and pathophysiology

    PubMed Central

    Browning, Kirsteen N.

    2015-01-01

    Vagal neurocircuits are vitally important in the co-ordination and modulation of GI reflexes and homeostatic functions. 5-hydroxytryptamine (5-HT; serotonin) is critically important in the regulation of several of these autonomic gastrointestinal (GI) functions including motility, secretion and visceral sensitivity. While several 5-HT receptors are involved in these physiological responses, the ligand-gated 5-HT3 receptor appears intimately involved in gut-brain signaling, particularly via the afferent (sensory) vagus nerve. 5-HT is released from enterochromaffin cells in response to mechanical or chemical stimulation of the GI tract which leads to activation of 5-HT3 receptors on the terminals of vagal afferents. 5-HT3 receptors are also present on the soma of vagal afferent neurons, including GI vagal afferent neurons, where they can be activated by circulating 5-HT. The central terminals of vagal afferents also exhibit 5-HT3 receptors that function to increase glutamatergic synaptic transmission to second order neurons of the nucleus tractus solitarius within the brainstem. While activation of central brainstem 5-HT3 receptors modulates visceral functions, it is still unclear whether central vagal neurons, i.e., nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV) neurons themselves also display functional 5-HT3 receptors. Thus, activation of 5-HT3 receptors may modulate the excitability and activity of gastrointestinal vagal afferents at multiple sites and may be involved in several physiological and pathophysiological conditions, including distention- and chemical-evoked vagal reflexes, nausea, and vomiting, as well as visceral hypersensitivity. PMID:26578870

  8. Synergistic antiemetic interactions between serotonergic 5-HT3 and tachykininergic NK1-receptor antagonists in the least shrew (Cryptotis parva).

    PubMed

    Darmani, Nissar A; Chebolu, Seetha; Amos, Barry; Alkam, Tursun

    2011-10-01

    Significant electrophysiological and biochemical findings suggest that receptor cross-talk occurs between serotonergic 5-HT(3)- and tachykininergic NK(1)-receptors in which co-activation of either receptor by ineffective doses of their corresponding agonists (serotonin (5-HT) or substance P (SP), respectively) potentiates the activity of the other receptor to produce a response. In contrast, selective blockade of any one of these receptors attenuates the increase in abdominal vagal afferent activity caused by either 5-HT or SP. This interaction has important implications in chemotherapy-induced nausea and vomiting (CINV) since 5-HT(3)- and NK(1)-receptor antagonists are the major classes of antiemetics used in cancer patients receiving chemotherapy. The purpose of this study was to demonstrate whether the discussed interaction produces effects at the behavioral level in a vomit-competent species, the least shrew. Our results demonstrate that pretreatment with either a 5-HT(3) (tropisetron)- or an NK(1) (CP99,994)-receptor specific antagonist, attenuates vomiting caused by a selective agonist (2-methyl 5-HT or GR73632, respectively) of both emetic receptors. In addition, relative to each antagonist alone, their combined doses were 4-20 times more potent against vomiting caused by each emetogen. Moreover, combined sub-maximal doses of the agonists 2-methyl 5-HT and GR73632, produced 8-12 times greater number of vomits relative to each emetogen tested alone. However, due to large variability in vomiting caused by the combination doses, the differences failed to attain significance. The antiemetic dose-response curves of tropisetron against both emetogens were U-shaped probably because larger doses of this antagonist behave as a partial agonist. The data demonstrate that 5-HT(3)- and NK(1)-receptors cross-talk to produce vomiting, and that synergistic antiemetic effects occur when both corresponding antagonists are concurrently used against emesis caused by each

  9. Method for individualized evaluation of antiemetic effect induced by 5-HT3 receptor antagonist.

    PubMed

    Nakamura, Hironori; Yokoyama, Haruko; Yoshimoto, Koichi; Nakajima, Akihiro; Okuyama, Kiyoshi; Iwase, Osamu; Yamada, Yasuhiko

    2013-01-01

    5-HT3 receptor antagonists are widely used for prevention of chemotherapy-induced nausea and vomiting, though their antiemetic effects vary among patients. We investigated a method for evaluation of antiemetic effects in individual patients. We used the 5-HT3 receptor occupancy of serotonin for our evaluation, which was estimated based on the plasma concentration of granisetron and concentration of serotonin near the 5-HT3 receptor in the small intestine, obtained by measuring the urinary concentrations of granisetron and 5-hydroxyindoleacetic acid (5-HIAA)/creatinine (Cre). The mean cumulative percent for urinary excretion of granisetron at 24 h after administration and coefficient of variation were 16.19 ± 6.30% and 38.91%, respectively. The time course of urinary concentration of 5-HIAA/Cre also varied among the patients. The value for 5-HT3 receptor occupancy of serotonin without granisetron was higher than that prior to administration (blank), thus most treated patients had the possibility of induced emesis. In contrast, that with granisetron was lower than the blank value, indicating that those treated patients would not develop emesis. Furthermore, the estimated 5-HT3 receptor occupancy of serotonin in the small intestine and actual individual patient condition corresponded well, showing the validity of our method. Our results suggest that it is possible to evaluate individual antiemetic effects by estimating the 5-HT3 receptor occupancy of serotonin in the small intestine based on plasma concentrations of granisetron and serotonin near the 5-HT3 receptor in the small intestine using noninvasive urine samples. This method of individual evaluation is considered to be useful and effective.

  10. Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel

    PubMed Central

    Di Maio, Danilo; Chandramouli, Balasubramanian; Brancato, Giuseppe

    2015-01-01

    Pentameric ligand gated ion channels (pLGICs) are ionotropic receptors that mediate fast intercellular communications at synaptic level and include either cation selective (e.g., nAChR and 5-HT3) or anion selective (e.g., GlyR, GABAA and GluCl) membrane channels. Among others, 5-HT3 is one of the most studied members, since its first cloning back in 1991, and a large number of studies have successfully pinpointed protein residues critical for its activation and channel gating. In addition, 5-HT3 is also the target of a few pharmacological treatments due to the demonstrated benefits of its modulation in clinical trials. Nonetheless, a detailed molecular analysis of important protein features, such as the origin of its ion selectivity and the rather low conductance as compared to other channel homologues, has been unfeasible until the recent crystallization of the mouse 5-HT3A receptor. Here, we present extended molecular dynamics simulations and free energy calculations of the whole 5-HT3A protein with the aim of better understanding its ion transport properties, such as the pathways for ion permeation into the receptor body and the complex nature of the selectivity filter. Our investigation unravels previously unpredicted structural features of the 5-HT3A receptor, such as the existence of alternative intersubunit pathways for ion translocation at the interface between the extracellular and the transmembrane domains, in addition to the one along the channel main axis. Moreover, our study offers a molecular interpretation of the role played by an arginine triplet located in the intracellular domain on determining the characteristic low conductance of the 5-HT3A receptor, as evidenced in previous experiments. In view of these results, possible implications on other members of the superfamily are suggested. PMID:26465896

  11. Key role of 5-HT3 receptors in the nucleus tractus solitarii in cardiovagal stress reactivity.

    PubMed

    Sévoz-Couche, Caroline; Brouillard, Charly

    2017-03-01

    Serotonin plays a modulatory role in central control of the autonomic nervous system (ANS). The nucleus tractus solitarii (NTS) in the medulla is an area of viscerosomatic integration innervated by both central and peripheral serotonergic fibers. Influences from different origins therefore trigger the release of serotonin into the NTS and exert multiple influences on the ANS. This major influence on the ANS is also mediated by activation of several receptors in the NTS. In particular, the NTS is the central zone with the highest density of serotonin3 (5-HT3) receptors. In this review, we present evidence that 5-HT3 receptors in the NTS play a key role in one of the crucial homeostatic responses to acute and chronic stress: inhibitory modulation of the parasympathetic component of the ANS. The possible functional interactions of 5-HT3 receptors with GABAA and NK1 receptors in the NTS are also discussed.

  12. The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles.

    PubMed

    Kudryashev, Mikhail; Castaño-Díez, Daniel; Deluz, Cédric; Hassaine, Gherici; Grasso, Luigino; Graf-Meyer, Alexandra; Vogel, Horst; Stahlberg, Henning

    2016-01-05

    The function of membrane proteins is best understood if their structure in the lipid membrane is known. Here, we determined the structure of the mouse serotonin 5-HT3 receptor inserted in lipid bilayers to a resolution of 12 Å without stabilizing antibodies by cryo electron tomography and subtomogram averaging. The reconstruction reveals protein secondary structure elements in the transmembrane region, the extracellular pore, and the transmembrane channel pathway, showing an overall similarity to the available X-ray model of the truncated 5-HT3 receptor determined in the presence of a stabilizing nanobody. Structural analysis of the 5-HT3 receptor embedded in a lipid bilayer allowed the position of the membrane to be determined. Interactions between the densely packed receptors in lipids were visualized, revealing that the interactions were maintained by the short horizontal helices. In combination with methodological improvements, our approach enables the structural analysis of membrane proteins in response to voltage and ligand gating.

  13. Spinal 5-HT(3) receptor activation induces behavioral hypersensitivity via a neuronal-glial-neuronal signaling cascade.

    PubMed

    Gu, Ming; Miyoshi, Kan; Dubner, Ronald; Guo, Wei; Zou, Shiping; Ren, Ke; Noguchi, Koichi; Wei, Feng

    2011-09-07

    Recent studies indicate that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in the brainstem and the 5-HT(3) receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT(3) receptor and its contribution to facilitation of pain remain unclear. In the present study, activation of spinal 5-HT(3) receptor by intrathecal injection of a selective 5-HT(3) receptor agonist, SR57227, induced spinal glial hyperactivity, neuronal hyperexcitability, and pain hypersensitivity in rats. We found that there was neuron-to-microglia signaling via chemokine fractalkine, microglia to astrocyte signaling via the cytokine IL-18, astrocyte to neuronal signaling by IL-1β, and enhanced activation of GluN (NMDA) receptors in the spinal dorsal horn. In addition, exogenous brain-derived neurotrophic factor-induced descending pain facilitation was accompanied by upregulation of CD11b and GFAP expression in the spinal dorsal horn after microinjection in the RVM, and these events were significantly prevented by functional blockade of spinal 5-HT(3) receptors. Enhanced expression of spinal CD11b and GFAP after hindpaw inflammation was also attenuated by molecular depletion of the descending 5-HT system by intra-RVM Tph-2 shRNA interference. Thus, these findings offer new insights into the cellular and molecular mechanisms at the spinal level responsible for descending 5-HT-mediated pain facilitation during the development of persistent pain after tissue and nerve injury. New pain therapies should focus on prime targets of descending facilitation-induced glial involvement, and in particular the blocking of intercellular signaling transduction between neuron and glia.

  14. Spinal 5-HT3 receptor activation induces behavioral hypersensitivity via a neuronal-glial-neuronal signaling cascade

    PubMed Central

    Gu, Ming; Miyoshi, Kan; Dubner, Ronald; Guo, Wei; Zou, Shiping; Ren, Ke; Noguchi, Koichi; Wei, Feng

    2011-01-01

    Recent studies indicate that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in brainstem and the 5-HT3 receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT3 receptor and its contribution to facilitation of pain remain unclear. In the present study, activation of spinal 5-HT3 receptor by intrathecal injection of a selective 5-HT3 receptor agonist SR 57227 induced spinal glial hyperactivity, neuronal hyperexcitability and pain hypersensitivity in rats. We found that there was neuron-to-microglia signaling via chemokine fractalkine, microglia to astrocyte signaling via cytokine IL-18, astrocyte to neuronal signaling by IL-1β, and enhanced activation of GluN (NMDA) receptors in the spinal dorsal horn. In addition, exogenous BDNF-induced descending pain facilitation was accompanied with up-regulation of CD11b and GFAP expression in the spinal dorsal horn after microinjection in the RVM, which were significantly prevented by functional blockade of spinal 5-HT3 receptors. Enhanced expression of spinal CD11b and GFAP after hindpaw inflammation was also attenuated by molecular depletion of the descending 5-HT system by intra-RVM Tph-2 shRNA interference. Thus, these findings offer new insights into the cellular and molecular mechanisms at the spinal level responsible for descending 5-HT-mediated pain facilitation during the development of persistent pain after tissue and nerve injury. New pain therapies should focus on prime targets of descending facilitation-induced glial involvement, and in particular the blocking of intercellular signaling transduction between neuron and glia. PMID:21900561

  15. The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors.

    PubMed

    Lochner, Martin; Thompson, Andrew J

    2016-09-01

    Scopolamine is a high affinity muscarinic antagonist that is used for the prevention of post-operative nausea and vomiting. 5-HT3 receptor antagonists are used for the same purpose and are structurally related to scopolamine. To examine whether 5-HT3 receptors are affected by scopolamine we examined the effects of this drug on the electrophysiological and ligand binding properties of 5-HT3A receptors expressed in Xenopus oocytes and HEK293 cells, respectively. 5-HT3 receptor-responses were reversibly inhibited by scopolamine with an IC50 of 2.09 μM. Competitive antagonism was shown by Schild plot (pA2 = 5.02) and by competition with the 5-HT3 receptor antagonists [(3)H]granisetron (Ki = 6.76 μM) and G-FL (Ki = 4.90 μM). The related molecule, atropine, similarly inhibited 5-HT evoked responses in oocytes with an IC50 of 1.74 μM, and competed with G-FL with a Ki of 7.94 μM. The reverse experiment revealed that granisetron also competitively bound to muscarinic receptors (Ki = 6.5 μM). In behavioural studies scopolamine is used to block muscarinic receptors and induce a cognitive deficit, and centrally administered concentrations can exceed the IC50 values found here. It is therefore possible that 5-HT3 receptors are also inhibited. Studies that utilise higher concentrations of scopolamine should be mindful of these potential off-target effects.

  16. Synthesis and characterization of photoaffinity probes that target the 5-HT3 receptor.

    PubMed

    Jack, Thomas; Ruepp, Marc-David; Thompson, Andrew J; Mühlemann, Oliver; Lochner, Martin

    2014-01-01

    The 5-HT3 receptor is one of several ion channels responsible for the transmission of nerve impulses in the peripheral and central nervous systems. Until now, it has been difficult to characterize transmembrane receptors with classical structural biology approaches like X-ray crystallography. The use of photoaffinity probes is an alternative approach to identify regions in the protein where small molecules bind. To this end, we present two photoaffinity probes based on granisetron, a well known antagonist of the 5-HT3 receptor. These new probes show nanomolar binding affinity for the orthosteric binding site. In addition, we investigated their reactivity using irradiation experiments.

  17. Presynaptic 5-HT3 receptor-mediated modulation of synaptic GABA release in the mechanically dissociated rat amygdala neurons

    PubMed Central

    Koyama, Susumu; Matsumoto, Nozomu; Kubo, Chiharu; Akaike, Norio

    2000-01-01

    Nystatin-perforated patch recordings were made from mechanically dissociated basolateral amygdala neurons with preserved intact native presynaptic nerve terminals to study the mechanism of 5-HT3 receptor-mediated serotonergic modulation of GABAergic inhibition. The specific 5-HT3 agonist mCPBG (1 μM) rapidly facilitated the frequency of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) and this facilitation desensitized within 1 min. Tropisetron (30 nM), a specific 5-HT3 antagonist, blocked the mCPBG effect. mCPBG augmented mIPSC amplitude. However, no direct postsynaptic serotonergic currents were evoked by mCPBG. Neither GABA-evoked current amplitude nor the kinetics of individual GABAergic mIPSCs were affected by mCPBG. Therefore, the augmentation is unlikely to be due to postsynaptic effects evoked by mCPBG. At higher concentrations mCPBG produced shorter-duration facilitation of miniature events. While mCPBG increased the mIPSC frequency in calcium-containing solution with Cd2+, this increase was absent in Ca2+-free external solution. It appears that the Ca2+ influx through voltage-dependent calcium channels was not as crucial as that through 5-HT3 receptors for synaptic GABA release. When two pulses of mCPBG (each 1 μM, 1 min) were given, the response to the second pulse elicited full recovery when the interval between pulses was at least 9 min. Protein kinase A (PKA) activation by 8-Br-cAMP (300 μM) shortened and PKA inhibition by Rp-cAMP (100 μM) prolonged the recovery time. PKA activity did not affect the time course of fast desensitization. Our results suggest that a 5-HT3-specific agonist acts on presynaptic nerve terminals facilitating synaptic GABA release without postsynaptic effects. The facilitation requires calcium influx through presynaptic 5-HT3 receptors. PKA modulates the recovery process from desensitization of presynaptic 5-HT3 receptor-mediated regulation of synaptic GABA release. PMID:11101647

  18. Molecular dynamics simulation of the structure and dynamics of 5-HT3 serotonin receptor

    NASA Astrophysics Data System (ADS)

    Antonov, M. Yu.; Popinako, A. V.; Prokopiev, G. A.

    2016-10-01

    In this work, we investigated structure, dynamics and ion transportation in transmembrane domain of the 5-HT3 serotonin receptor. High-resolution (0.35 nm) structure of the 5-HT3 receptor in complex with stabilizing nanobodies was determined by protein crystallography in 2014 (Protein data bank (PDB) code 4PIR). Transmembrane domain of the structure was prepared in complex with explicit membrane environment (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC)) and solvent (TIP3P water model). Molecular dynamics protocols for simulation and stabilization of the transmembrane domain of the 5-HT3 receptor model were developed and 60 ns simulation of the structure was conducted in order to explore structural parameters of the system. We estimated the mean force profile for Na+ ions using umbrella sampling method.

  19. Anti-inflammatory effect of ondansetron through 5-HT3 receptors on TNBS-induced colitis in rat

    PubMed Central

    Motavallian-Naeini, Azadeh; Minaiyan, Mohsen; Rabbani, Mohammad; Mahzuni, Parvin

    2012-01-01

    Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the intestinal tract whose etiology has not yet been fully elucidated. Available medicines for treatment of IBD are not universally effective and result in marked deleterious effects. This challenge has thus heightened the need for research in order to adopt new therapeutic approaches for the treatment of IBD. 5-HT3 receptor antagonists have shown analgesic and anti-inflammatory properties in vitro and in vivo. Our aim was to investigate the effect of ondansetron, 5-HT3 receptor antagonist, in an immune-based animal model of IBD, trinitrobenzene sulfonic acid (TNBS)-induced rat colitis and probable involvement of 5-HT3 receptors. Two hours after induction of colitis (instillation of 50 mg/kg of TNBS dissolved in 0.25 ml of ethanol 50 % v/v) to male Wistar rats, ondansetron (2 mg/kg), dexamethasone (1 mg/kg), meta-chlorophenylbiguanide (mCPBG, 5 mg/kg), a 5-HT3 receptor agonist, or ondansetron + mCPBG were administrated intraperitoneally (ip) and continued daily for six days. The animals were sacrificed and distal colons were assessed macroscopically, histologically and biochemically [myeloperoxidase (MPO), tumor necrosis factor-alpha, interleukin-6 and interleukin-1 beta]. Ondansetron and dexamethasone resulted in a decrease in macroscopic and microscopic colonic damage significantly. In addition a dramatic reduction in MPO activity and colonic levels of inflammatory cytokines were seen. The protective effects of ondansetron were antagonized by concurrent administration of mCPBG. Our data suggests that the beneficial effects of ondansetron in TNBS-induced colitis could be mediated by 5-HT3 receptors. PMID:27350767

  20. Effects of repeated daily treatments with a 5-HT3 receptor antagonist on dopamine neurotransmission and functional activity of 5-HT3 receptors within the nucleus accumbens of Wistar rats.

    PubMed

    Liu, Wen; Thielen, Richard J; McBride, William J

    2006-06-01

    A previous study indicated that pretreatment with repeated daily injections of serotonin-3 (5-HT3) receptor antagonists subsequently reduced the effectiveness of the 5-HT3 antagonists to attenuate ethanol intake under 24-h free-choice conditions; one possibility to account for this is that the functional activity of the 5-HT3 receptor may have been altered by prior treatment with the antagonists. The present experiments were conducted to examine the effects of local perfusion of the 5-HT3 agonist 1-(m-chlorophenyl)-biguanide (CPBG) on the extracellular levels of dopamine (DA) in the nucleus accumbens (ACB) and ventral tegmental area (VTA) of adult male Wistar rats that had received repeated daily injections of the 5-HT3 antagonist, MDL 72222 (MDL). In vivo microdialysis was used to test the hypothesis that alterations in 5-HT3 receptor function have occurred with repeated antagonist injections. One group was given daily injections of MDL (1 mg/kg, s.c.) for 10 consecutive days (MDL group), and the other group was administered saline for 10 days (saline group). On the day after the last treatment, rats were implanted with a unilateral guide cannula aimed at either the ACB or VTA. Two days later, the microdialysis probe was inserted into the guide cannula; on the next day, microdialysis experiments were conducted to determine the extracellular levels of DA in the ACB or VTA. Local perfusion of CPBG (17.5, 35, 70 microM) in the ACB significantly stimulated DA release in the saline- and MDL-treated animals. In terms of percent baseline, the CPBG-stimulated DA release was higher in the MDL-treated group than in the saline-treated group in both the ACB and VTA; however, on the basis of the extracellular concentration, there were no significant differences in the ACB between the two groups. Using the no-net-flux microdialysis, it was determine that the basal extracellular concentration of DA in the ACB was approximately 60% lower in the MDL group than saline group; there

  1. Blockade of 5-Ht3 receptors in the septal area increases Fos expression in selected brain areas.

    PubMed

    Urzedo-Rodrigues, Lilia S; Ferreira, Hilda S; Santana, Rejane Conceição; Luz, Carla Patrícia; Perrone, Camila F; Fregoneze, Josmara B

    2014-04-01

    Serotonin is widely distributed throughout the brain and is involved in a multiplicity of visceral, cognitive and behavioral responses. It has been previously shown that injections of different doses of ondansetron, a 5-HT3 receptor antagonist, into the medial septum/vertical limb of the diagonal band complex (MS/vDB) induce a hypertensive response in rats. On the other hand, administration of m-CPBG, a 5-HT3 agonist, into the MS/vDB inhibits the increase of blood pressure during restraint stress. However, it is unclear which neuronal circuitry is involved in these responses. The present study investigated Fos immunoreactive nuclei (Fos-IR) in different brain areas following the blockade of 5-HT3 receptors located in the MS/vDB in sham and in sinoaortic denervated (SAD) rats. Ondansetron injection into the MS/vDB increases Fos-IR in different brain areas including the limbic system (central amygdala and ventral part of the bed nucleus of the stria terminalis), hypothalamus (medial parvocellular parts of the paraventricular nucleus, anterodorsal preoptic area, dorsomedial hypothalamic nucleus), mesencephalon (ventrolateral periaqueductal gray region) and rhombencephalon (lateral parabrachial nucleus) in sham rats. Barodenervation results in higher Fos expression at the parvocellular and magnocellular part of the paraventricular nucleus, the lateral parabrachial nucleus, the central nucleus of amygdala, the locus coeruleus, the medial part of the nucleus of the solitary tract, the rostral ventrolateral medulla and the caudal ventrolateral medulla following 5-HT3receptor blockade in the MS/vDB. Based on the present results and previous data showing a hypertensive response to ondansetron injected into the MS/vDB, it is reasonable to suggest that 5-HT3receptors in the MS/vDB exert an inhibitory drive that may oscillate as a functional regulatory part of the complex central neuronal network participating in the control of blood pressure.

  2. 5-HT3 receptors as important mediators of nausea and vomiting due to chemotherapy.

    PubMed

    Navari, Rudolph M

    2015-10-01

    Chemotherapy-induced nausea and vomiting (CINV) is associated with a significant deterioration in quality of life. The emetogenicity of the chemotherapeutic agents, repeated chemotherapy cycles, and patient risk factors significantly influence CINV. The use of a combination of a 5-hydroxytryptamine-3 (5-HT3) receptor antagonist, dexamethasone, and a neurokinin-1 (NK-1) receptor antagonist has significantly improved the control of acute and delayed emesis in single-day chemotherapy. The first generation 5-HT3 receptor antagonists have been very effective in the control of chemotherapy induced emesis in the first 24 h postchemotherapy (acute emesis), but have not been as effective against delayed emesis (24-120 h postchemotherapy). Palonosetron, a second generation 5-HT3 receptor antagonist with a different half-life, a different binding capacity, and a different mechanism of action than the first generation 5-HT3 receptor antagonists appears to be the most effective agent in its class. Despite the control of emesis, nausea has not been well controlled by current agents. Olanzapine, a FDA approved antipsychotic that blocks multiple neurotransmitters: dopamine at D1, D2, D3, D4 brain receptors, serotonin at 5-HT2a, 5-HT2c, 5-HT3, 5-HT6 receptors, catecholamines at alpha1 adrenergic receptors, acetylcholine at muscarinic receptors, and histamine at H1 receptors, has emerged in recent trials as an effective preventative agent for chemotherapy-induced emesis and nausea, as well as a very effective agent for the treatment of breakthrough emesis and nausea. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  3. New benzimidazole derivatives: selective and orally active 5-HT3 receptor antagonists.

    PubMed

    Pascual, David; Girón, Rocío; Alsasua, Angela; Benhamú, Belinda; López-Rodríguez, María Luz; Martín, María Isabel

    2003-02-21

    The synthesis of new 5-HT(3) receptor antagonists is an interesting field of research because of their wide therapeutic use. The aim of this work is to functionally characterise a new series of benzimidazole derivatives previously described. These compounds bind to 5-HT(3) receptors and have been evaluated using in vitro (rat tunica muscularis mucosae) and in vivo tests (Bezold-Jarisch reflex in rat and gastrointestinal motility and spontaneous motility in mice). Ondansetron and 1-[4-amino-5-chloro-2-(3,5-dimethoxyphenil)methyloxy]-3-[1-[2-methylsulfonylamino]piperidin-4-yl]propan-1-one hydrochloride (RS 39604) were used as well known 5-HT(3) and 5-HT(4) receptor antagonists. These benzimidazole derivatives have proved to be 5-HT(3) receptor antagonists. Interestingly, they are as active as ondansetron when they are intraperitoneally (i.p.) or orally (p.o.) administered and, in mice, they seem to induce fewer behavioural changes at similar effective doses than does ondansetron. The present results confirm the usefulness of the previously proposed pharmacophore and justify the interest in these new benzimidazole derivatives.

  4. Contrasting effects of 5-HT3 receptor stimulation of the nucleus accumbens or ventral tegmentum on food intake in the rat.

    PubMed

    Pratt, Wayne E; Lin, Peagan; Pierce-Messick, Zachary; Ilesanmi, Adeolu O; Clissold, Kara A

    2017-04-14

    Although serotonin (5-HT) signaling is known to regulate food intake and energy homeostasis, the roles of the 5-HT3 receptor in feeding processes have been elusive. 5-HT3 receptors are found throughout mesolimbic circuitry that promote feeding not only in response to hunger, but also to the palatable and rewarding properties of food. These experiments examined if stimulation or blockade of the 5-HT3 receptor of the nucleus accumbens (NAcc) or ventral tegmentum affected food intake in the rat in response to hunger or the presence of a palatable diet. Rats (N=6-9/group) received bilateral injections of the 5-HT3 agonist m-chlorophenylbiguanide hydrochloride (mCPBG; at 0.0, 10.0, or 20.0μg/0.5μl/side) or the 5-HT3 antagonist ondansetron hydrochloride (at 0.0, 1.0, 2.0, or 5.0μg/0.5μl/side) into either the NAcc or the ventral tegmentum. NAcc 5-HT3 receptor stimulation significantly increased 2-h food intake in food-deprived animals offered rat chow and in a separate group of unrestricted rats offered a sweetened fat diet. In contrast to the feeding increase seen with NAcc treatments, stimulation of 5-HT3 receptors of the ventral tegmentum significantly reduced food and water intake in food-restricted animals; reductions of intake in non-restricted rats offered the palatable diet did not approach significance. Blockade of the 5-HT3 receptor had no effect on feeding in either brain region. These data support a functional role for serotonergic signaling in the mesolimbic pathway on motivated behavior, and demonstrate that 5-HT3 receptors differentially modulate food consumption in a region-dependent manner.

  5. 5-HT3 receptors antagonists reduce serotonin-induced scratching in mice.

    PubMed

    Ostadhadi, Sattar; Kordjazy, Nastaran; Haj-Mirzaian, Arya; Mansouri, Parvin; Dehpour, Ahmad Reza

    2015-06-01

    Serotonin (5-hydroxytryptamine, 5-HT) acts as a pruritogen in humans and animals, but the mechanisms of action through that serotonin induces itch response have not been extensively discovered. In our study, we attempted to investigate the role of 5-HT3 receptors in scratching behavior due to intradermal serotonin injection. Intradermal injection of serotonin (14.1-235 nmol/site) into the nape of the neck of mice was performed to elicit itch. Scratching behavior was evaluated by measuring the number of bouts during 60 min after injection. We evaluated the effect of intraperitoneal pretreatment with ondansetron and tropisetron (0.1, 0.3, and 1 mg/kg) on itch induced by serotonin. Also, intradermal ondansetron and tropisetron at doses 50, 100, and 200 nmol/site were concurrently administrated with serotonin. Serotonin produced a significant enhancement in scratching at dose 141 nmol/site. Concurrent administration of ondansetron (50, 100, and 200 nmol/site) and tropisetron (100 and 200 nmol/site) with serotonin reduced scratching activity compared to the animals that only received serotonin. Also, pretreatment with intraperitoneal ondansetron and tropisetron (0.3 and 1 mg/kg) 30 min before serotonin attenuated the itch response. We showed that the scratching induced by intradermal serotonin is mediated by 5-HT3 receptors subtype. It can be concluded that 5-HT3 may play a role in mediating serotonin-associated itch responses, and we introduce 5-HT3 receptors as possible targets for antipruritic agents.

  6. The rapid recovery of 5-HT cell firing induced by the antidepressant vortioxetine involves 5-HT(3) receptor antagonism.

    PubMed

    Bétry, Cécile; Pehrson, Alan L; Etiévant, Adeline; Ebert, Bjarke; Sánchez, Connie; Haddjeri, Nasser

    2013-06-01

    The therapeutic effect of current antidepressant drugs appears after several weeks of treatment and a significant number of patients do not respond to treatment. Here, we report the effects of the multi-modal antidepressant vortioxetine (Lu AA21004), a 5-HT(3) and 5-HT(7) receptor antagonist, 5-HT(1B) receptor partial agonist, 5-HT(1A) receptor agonist and 5-HT transporter (SERT) inhibitor, on rat 5-HT neurotransmission. Using in vivo electrophysiological recordings in the dorsal raphe nucleus of anaesthetized rats, we assessed the acute and subchronic effects of vortioxetine and/or the selective 5-HT(3) receptor agonist, SR57227 or the selective 5-HT(1A) receptor agonist flesinoxan, on 5-HT neuronal firing activity. Using ex-vivo autoradiography, we correlated SERT occupancy and presumed 5-HT firing activity. The selective serotonin reuptake inhibitor, fluoxetine, was used as comparator. Importantly, the recovery of 5-HT neuronal firing was achieved after 1 d with vortioxetine and 14 d with fluoxetine. SR57227 delayed this recovery. In contrast, vortioxetine failed to alter the reducing action of 3 d treatment of flesinoxan. Acute dosing of vortioxetine inhibited neuronal firing activity more potently than fluoxetine. SR57227 prevented the suppressant effect of vortioxetine, but not of fluoxetine. In contrast, flesinoxan failed to modify the suppressant effect of vortioxetine acutely administered. Differently to fluoxetine, vortioxetine suppressed neuronal firing without saturating occupancy at the SERT. Vortioxetine produced a markedly faster recovery of 5-HT neuronal firing than fluoxetine. This is at least partly due to 5-HT(3) receptor antagonism of vortioxetine in association with its reduced SERT occupancy.

  7. Comparative receptor mapping of serotoninergic 5-HT3 and 5-HT4 binding sites*

    NASA Astrophysics Data System (ADS)

    López-Rodríguez, María L.; Morcillo, María José; Benhamú, Bellinda; Rosado, María Luisa

    1997-11-01

    The clinical use of currently available drugs acting at the5-HT4 receptor has been hampered by their lack of selectivityover 5-HT3 binding sites. For this reason, there is considerableinterest in the medicinal chemistry of these serotonin receptor subtypes, andsignificant effort has been made towards the discovery of potent and selectiveligands. Computer-aided conformational analysis was used to characterizeserotoninergic 5-HT3 and 5-HT4 receptorrecognition. On the basis of the generally accepted model of the5-HT3 antagonist pharmacophore, we have performed a receptormapping of this receptor binding site, following the active analog approach(AAA) defined by Marshall. The receptor excluded volume was calculated as theunion of the van der Waals density maps of nine active ligands(pKi ≥ 8.9), superimposed in pharmacophoric conformations.Six inactive analogs (pKi < 7.0) were subsequently used todefine the essential volume, which in its turn can be used to define theregions of steric intolerance of the 5-HT3 receptor. Five activeligands (pKi ≥ 9.3) at 5-HT4 receptors wereused to construct an antagonist pharmacophore for this receptor, and todetermine its excluded volume by superimposition of pharmacophoricconformations. The volume defined by the superimposition of five inactive5-HT4 receptor analogs that possess the pharmacophoric elements(pKi ≤ 6.6) did not exceed the excluded volume calculated forthis receptor. In this case, the inactivity may be due to the lack of positiveinteraction of the amino moiety with a hypothetical hydrophobic pocket, whichwould interact with the voluminous substituents of the basic nitrogen ofactive ligands. The difference between the excluded volumes of both receptorshas confirmed that the main difference is indeed in the basic moiety. Thus,the 5-HT3 receptor can only accommodate small substituents inthe position of the nitrogen atom, whereas the 5-HT4 receptorrequires more voluminous groups. Also, the basic nitrogen is located at ca

  8. Serotonin (5-HT3) receptor antagonists for the reduction of symptoms of low anterior resection syndrome

    PubMed Central

    Itagaki, Ryohei; Koda, Keiji; Yamazaki, Masato; Shuto, Kiyohiko; Kosugi, Chihiro; Hirano, Atsushi; Arimitsu, Hidehito; Shiragami, Risa; Yoshimura, Yukino; Suzuki, Masato

    2014-01-01

    Purpose Serotonin (5-hydroxytryptamine [5-HT])3 receptor antagonists are effective for the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D), in which exaggerated intestinal/colonic hypermotility is often observed. Recent studies have suggested that the motility disorder, especially spastic hypermotility, seen in the neorectum following sphincter-preserving operations for rectal cancer may be the basis of the postoperative defecatory malfunction seen in these patients. We investigated the efficacy of 5-HT3 receptor antagonists in patients suffering from severe low anterior resection syndrome. Patients and methods A total of 25 male patients with complaints of uncontrollable urgency or fecal incontinence following sphincter-preserving operations were enrolled in this study. Defecatory status, assessed on the basis of incontinence score (0–20), urgency grade (0–3), and number of toilet visits per day, was evaluated using a questionnaire before and 1 month after the administration of the 5-HT3 antagonist ramosetron. Results All the parameters assessed improved significantly after taking ramosetron for 1 month. The effect was more prominent in cases whose anastomotic line was lower, ie, inside the anal canal. Defecatory function was better in patients who commenced ramosetron therapy within 6 months postoperatively, as compared to those who were not prescribed ramosetron for more than 7 months postoperatively. Conclusion These results suggest that 5-HT3 antagonists are effective for the treatment of low anterior resection syndrome, as in diarrhea-predominant irritable bowel syndrome. The improvement in symptoms is not merely time dependent, but it is related to treatment with 5-HT3 antagonists. PMID:24648748

  9. The 5-HT3 receptor is essential for exercise-induced hippocampal neurogenesis and antidepressant effects.

    PubMed

    Kondo, M; Nakamura, Y; Ishida, Y; Shimada, S

    2015-11-01

    Exercise has a variety of beneficial effects on brain structure and function, such as hippocampal neurogenesis, mood and memory. Previous studies have shown that exercise enhances hippocampal neurogenesis, induces antidepressant effects and improves learning behavior. Brain serotonin (5-hydroxytryptamine, 5-HT) levels increase following exercise, and the 5-HT system has been suggested to have an important role in these exercise-induced neuronal effects. However, the precise mechanism remains unclear. In this study, analysis of the 5-HT type 3A receptor subunit-deficient (htr3a(-/-)) mice revealed that lack of the 5-HT type 3 (5-HT3) receptor resulted in loss of exercise-induced hippocampal neurogenesis and antidepressant effects, but not of learning enhancement. Furthermore, stimulation of the 5-HT3 receptor promoted neurogenesis. These findings demonstrate that the 5-HT3 receptor is the critical target of 5-HT action in the brain following exercise, and is indispensable for hippocampal neurogenesis and antidepressant effects induced by exercise. This is the first report of a pivotal 5-HT receptor subtype that has a fundamental role in exercise-induced morphological changes and psychological effects.

  10. 5-HT3 receptor influences the washing phenotype and visual organization in obsessive-compulsive disorder supporting 5-HT3 receptor antagonists as novel treatment option.

    PubMed

    Lennertz, Leonhard; Wagner, Michael; Grabe, Hans Jörgen; Franke, Petra E; Guttenthaler, Vera; Rampacher, Friederike; Schulze-Rauschenbach, Svenja; Vogeley, Andrea; Benninghoff, Jens; Ruhrmann, Stephan; Pukrop, Ralf; Klosterkötter, Joachim; Falkai, Peter; Maier, Wolfgang; Mössner, Rainald

    2014-01-01

    A role of the HTR3A-E genes in obsessive-compulsive disorder (OCD) can be expected based on promising effects of 5-HT3 receptor antagonists as adjunctive treatment of OCD. We therefore genotyped six common coding or promoter variants within the HTR3A-E genes in a case-control-sample consisting of N=236 OCD patients and N=310 control subjects and in N=58 parent-child-trios. Given the heterogeneous OCD phenotype, we also investigated OCD symptom dimensions and cognitive endophenotypes in subsamples. OCD patients scoring high for the washing subtype were significantly more likely to carry the c.256G-allele of the HTR3E variant rs7627615 (p=0.0001) as compared to OCD patients low for this symptom dimension. Visual organization was impaired in OCD patients and unaffected relatives as compared to healthy control subjects and carriers of the HTR3E c.256G/c.256G-genotype performed significantly worse (p=0.007). The case-control analyses revealed a nominal significant association of the HTR3D variant rs1000592 (p.H52R) with OCD (p=0.029) which was also evident after combination of the case-control and the trio-results (p=0.024). In male subjects, the variant rs6766410 (p.N163K) located in the HTR3C was significantly associated with OCD (p=0.007). The association findings of the HTR3C and the HTR3E remained significant after correction for the number of variants investigated. These findings indicate a role of common variants of the HTR3A-E genes in OCD and OCD-related phenotypes and further support the use of 5-HT3 receptor antagonists as novel treatment options. The HTR3E gene is a novel candidate gene impacting on the individual expression of OC symptoms and OCD-related cognitive dysfunction.

  11. Glucose-dependent trafficking of 5-HT3 receptors in rat gastrointestinal vagal afferent neurons

    PubMed Central

    Babic, Tanja; Troy, Amanda E; Fortna, Samuel R; Browning, Kirsteen N

    2012-01-01

    Background Intestinal glucose induces gastric relaxation via vagally mediated sensory-motor reflexes. Glucose can alter the activity of gastrointestinal (GI) vagal afferent (sensory) neurons directly, via closure of ATP-sensitive potassium channels, as well as indirectly, via the release of 5-hydroxytryptamine (5-HT) from mucosal enteroendocrine cells. We hypothesized that glucose may also be able to modulate the ability of GI vagal afferent neurons to respond to the released 5-HT, via regulation of neuronal 5-HT3 receptors. Methods Whole cell patch clamp recordings were made from acutely dissociated GI-projecting vagal afferent neurons exposed to equiosmolar Krebs’ solution containing different concentrations of D-glucose (1.25–20mM) and the response to picospritz application of 5-HT assessed. The distribution of 5-HT3 receptors in neurons exposed to different glucose concentrations was also assessed immunohistochemically. Key Results Increasing or decreasing extracellular D-glucose concentration increased or decreased, respectively, the 5-HT-induced inward current as well as the proportion of 5-HT3 receptors associated with the neuronal membrane. These responses were blocked by the Golgi-disrupting agent Brefeldin-A (5µM) suggesting involvement of a protein trafficking pathway. Furthermore, L-glucose did not mimic the response of D-glucose implying that metabolic events downstream of neuronal glucose uptake are required in order to observe the modulation of 5-HT3 receptor mediated responses. Conclusions & Inferences These results suggest that, in addition to inducing the release of 5-HT from enterochromaffin cells, glucose may also increase the ability of GI vagal sensory neurons to respond to the released 5-HT, providing a means by which the vagal afferent signal can be amplified or prolonged. PMID:22845622

  12. Influence of sodium substitutes on 5-HT-mediated effects at mouse 5-HT3 receptors

    PubMed Central

    Barann, M; Schmidt, K; Göthert, M; Urban, B W; Bönisch, H

    2004-01-01

    The influence of sodium ion substitutes on the 5-hydroxytryptamine (5-HT)-induced flux of the organic cation [14C]guanidinium through the ion channel of the mouse 5-HT3 receptor and on the competition of 5-HT with the selective 5-HT3 receptor antagonist [3H]GR 65630 was studied, unless stated otherwise, in mouse neuroblastoma N1E-115 cells. Under physiological conditions (135 mM sodium), 5-HT induced a concentration-dependent [14C]guanidinium influx with an EC50 (1.3 μM) similar to that in electrophysiological studies. The stepwise replacement of sodium by increasing concentrations of the organic cation hydroxyethyl trimethylammonium (choline) concentration dependently caused both a rightward shift of the 5-HT concentration–response curve and an increase in the maximum effect of 5-HT. Complete replacement of sodium resulted in a 34-fold lower potency of 5-HT and an almost two times higher maximal response. A low potency of 5-HT in choline buffer was also observed in other 5-HT3 receptor-expressing rodent cell lines (NG 108-15 or NCB 20). Replacement of Na+ by Li+ left the potency and maximal effects of 5-HT almost unchanged. Replacement by tris (hydroxymethyl) methylamine (Tris), tetramethylammonium (TMA) or N-methyl-D-glucamine (NMDG) caused an increase in maximal response to 5-HT similar to that caused by choline. The potency of 5-HT was only slightly reduced by Tris, to a high degree decreased by TMA (comparable to the decrease by choline), but not influenced by NMDG. The potency of 5-HT in inhibiting [3H]GR65630 binding to intact cells was 35-fold lower when sodium was completely replaced by choline, but remained unchanged after replacement by NMDG. The results are compatible with the suggestion that choline competes with 5-HT for the 5-HT3 receptor; the increase in maximal response may be partly due to a choline-mediated delay of the 5-HT-induced desensitization. For studies of 5-HT-evoked [14C]guanidinium flux through 5-HT3 receptor channels, NMDG appears

  13. Theoretical evaluation of antiemetic effects of 5-HT3 receptor antagonists for prevention of vomiting induced by cisplatin.

    PubMed

    Nakamura, Hironori; Yokoyama, Haruko; Takayanagi, Risa; Yoshimoto, Koichi; Nakajima, Akihiro; Okuyama, Kiyoshi; Iwase, Osamu; Yamada, Yasuhiko

    2015-03-01

    5-HT(3) receptor antagonists are widely used as antiemetic agents in clinical setting, of which palonosetron, with a long elimination half life (t(1/2)), has recently become available. It is important to evaluate the concentration of serotonin when investigating the antiemetic effects of 5-HT(3) receptor antagonists, as those effects are not based solely on the t(1/2) value. We theoretically evaluated the antiemetic effects of three 5-HT(3) receptor antagonists (granisetron, azasetron, palonosetron) on cisplatin-induced nausea and vomiting by estimating the time course of the 5-HT(3) receptor occupancy of serotonin. We estimated the 5-HT(3) receptor occupancy of serotonin in the small intestine, based on the time course of plasma concentration of each 5-HT(3) receptor antagonist and the time course of concentration of serotonin near the 5-HT(3) receptor in the small intestine after administration of cisplatin. The antiemetic effect of each 5-HT(3) receptor antagonist was evaluated based on the normal level of 5-HT(3) receptor occupancy of serotonin. Our results suggest that an adequate antiemetic effect will be provided when a dose of 75 mg/m(2) of cisplatin is given to patients along with any single administration of granisetron, azasetron, or palonosetron at a usual dose. On the other hand, the 5-HT(3) receptor occupancy of serotonin was found to be significantly lower than normal for several days after administration of palonosetron, as compared to granisetron and azasetron, indicating that constipation may be induced. Our results show that granisetron, azasetron, and palonosetron each have an adequate antiemetic effect after administration of 75 mg/m(2) of cisplatin.

  14. Anxiolytic-like effect of a serotonergic ligand with high affinity for 5-HT1A, 5-HT2A and 5-HT3 receptors.

    PubMed

    Delgado, Mercedes; Caicoya, Anne G; Greciano, Virginia; Benhamú, Bellinda; López-Rodríguez, María Luz; Fernández-Alfonso, María Soledad; Pozo, Miguel A; Manzanares, Jorge; Fuentes, José A

    2005-03-21

    S-(-)-2-[[4-(napht-1-yl)piperazin-1-yl]methyl]-1,4-dioxoperhydropyrrolo[1,2-alpha]-pyrazine (CSP-2503) is a serotonin (5-HT) receptor ligand with selectivity and high affinity for 5-HT1A, 5-HT2A and 5-HT3 receptors. CSP-2503 reduced rectal temperature and 5-HT neuronal hypothalamic activity in mice, decreased electrical activity of raphe nuclei cells in rats and blocked the enhancement of adenylate cyclase activity induced by forskolin in HeLa cells transfected with the human 5-HT1A receptor. This compound also blocked head-twitches induced by the 5-HT(2A/2C) receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI). Contractions of guinea pig ileum induced by the 5-HT3 receptor agonist 2-methyl-5-HT were prevented by CSP-2503. Moreover, it reduced the bradycardia reflex induced by 2-methyl-5-HT in anaesthetized rats. In the light/dark box and social interaction tests, CSP-2503 presented anxiolytic activity, an action shared by 5-HT1 agonists and 5-HT3 antagonists. Taken together, these results suggest that CSP-2503 is a new 5-HT1 receptor agonist with 5-HT2A and 5-HT3)receptor antagonist activities that might be useful in a number of conditions associated with anxiety.

  15. From mouse to man: the 5-HT3 receptor modulates physical dependence on opioid narcotics

    PubMed Central

    Chu, Larry F.; Liang, De-Yong; Li, Xiangqi; Sahbaie, Peyman; D'Arcy, Nicole; Liao, Guochun; Peltz, Gary; Clark, J. David

    2009-01-01

    Objectives Addiction to opioid narcotics represents a major public health challenge. Animal models of one component of addiction, physical dependence, show this trait to be highly heritable. The analysis of opioid dependence using contemporary in-silico techniques offers an approach to discover novel treatments for dependence and addiction. Methods In these experiments, opioid withdrawal behavior in 18 inbred strains of mice was assessed. Mice were treated for 4 days with escalating doses of morphine before the administration of naloxone allowing the quantification of opioid dependence. After haplotypic analysis, experiments were designed to evaluate the top gene candidate as a modulator of physical dependence. Behavioral studies as well as measurements of gene expression on the mRNA and protein levels were completed. Finally, a human model of opioid dependence was used to quantify the effects of the 5-HT3 antagonist ondansetron on signs and symptoms of withdrawal. Results The Htr3a gene corresponding to the 5-HT3 receptor emerged as the leading candidate. Pharmacological studies using the selective 5-HT3 antagonist ondansetron supported the link in mice. Morphine strongly regulated the expression of the Htr3a gene in various central nervous system regions including the amygdala, dorsal raphe, and periaqueductal gray nuclei, which have been linked to opioid dependence in previous studies. Using an acute morphine administration model, the role of 5-HT3 in controlling the objective signs of withdrawal in humans was confirmed. Conclusion These studies show the power of in-silico genetic mapping, and reveal a novel target for treating an important component of opioid addiction. PMID:19214139

  16. From mouse to man: the 5-HT3 receptor modulates physical dependence on opioid narcotics.

    PubMed

    Chu, Larry F; Liang, De-Yong; Li, Xiangqi; Sahbaie, Peyman; D'arcy, Nicole; Liao, Guochun; Peltz, Gary; David Clark, J

    2009-03-01

    Addiction to opioid narcotics represents a major public health challenge. Animal models of one component of addiction, physical dependence, show this trait to be highly heritable. The analysis of opioid dependence using contemporary in-silico techniques offers an approach to discover novel treatments for dependence and addiction. In these experiments, opioid withdrawal behavior in 18 inbred strains of mice was assessed. Mice were treated for 4 days with escalating doses of morphine before the administration of naloxone allowing the quantification of opioid dependence. After haplotypic analysis, experiments were designed to evaluate the top gene candidate as a modulator of physical dependence. Behavioral studies as well as measurements of gene expression on the mRNA and protein levels were completed. Finally, a human model of opioid dependence was used to quantify the effects of the 5-HT3 antagonist ondansetron on signs and symptoms of withdrawal. The Htr3a gene corresponding to the 5-HT3 receptor emerged as the leading candidate. Pharmacological studies using the selective 5-HT3 antagonist ondansetron supported the link in mice. Morphine strongly regulated the expression of the Htr3a gene in various central nervous system regions including the amygdala, dorsal raphe, and periaqueductal gray nuclei, which have been linked to opioid dependence in previous studies. Using an acute morphine administration model, the role of 5-HT3 in controlling the objective signs of withdrawal in humans was confirmed. These studies show the power of in-silico genetic mapping, and reveal a novel target for treating an important component of opioid addiction.

  17. Expression of 5-HT3 receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying.

    PubMed

    Raybould, Helen E; Glatzle, Jorg; Robin, Carla; Meyer, James H; Phan, Thomas; Wong, Helen; Sternini, Catia

    2003-03-01

    Intestinal perfusion with carbohydrates inhibits gastric emptying via vagal and spinal capsaicin-sensitive afferent pathways. The aim of the present study was to determine the role of 1) 5-hydroxytryptamine (5-HT)(3) receptors (5-HT(3)R) in mediating glucose-induced inhibition of gastric emptying and 2) 5-HT(3)R expression in vagal and spinal afferents in innervating the duodenum. In awake rats fitted with gastric and duodenal cannulas, perfusion of the duodenum with glucose (50 and 100 mg) inhibited gastric emptying. Intestinal perfusion of mannitol inhibited gastric emptying only at the highest concentration (990 mosm/kgH(2)O). Pretreatment with the 5-HT(3)R antagonist tropisetron abolished both glucose- and mannitol-induced inhibition of gastric emptying. Retrograde labeling of visceral afferents by injection of dextran-conjugated Texas Red into the duodenal wall was used to identify extrinsic primary afferents. Immunoreactivity for 5-HT(3)R, visualized with an antibody directed to the COOH terminus of the rat 5-HT(3)R, was found in >80% of duodenal vagal and spinal afferents. These results show that duodenal extrinsic afferents express 5-HT(3)R and that the receptor mediates specific glucose-induced inhibition of gastric emptying. These findings support the hypothesis that enterochromaffin cells in the intestinal mucosa release 5-HT in response to glucose, which activates 5-HT(3)R on afferent nerve terminals to evoke reflex changes in gastric motility. The primary glucose sensors of the intestine may be mucosal enterochromaffin cells.

  18. [Cost-effectiveness analysis of 5-HT3 receptor antagonist drugs in cancer chemotherapy].

    PubMed

    Ishimaru, Hiromasa; Takayama, Shinji; Shiokawa, Mitsuru; Inoue, Tadao

    2008-04-01

    Recently, ambulatory treatment centers (ATC) are markedly increasingboth in number and scale. It is therefore important to consolidate an efficient therapeutic system. A decrease in both treatment time and waitingtime leads to not only the improvement of the quality of life (QOL) for patients but also the efficient use of personnel and running costs for medical institutions by reducingthe bed occupation rate. In ATC, 5-HT3 receptor antagonists are extensively used for high emetic risk patients. However, their high cost and prolonged treatment causes one of the problems in improvingthe efficiency of the therapeutic system when they are administered by intravenous infusion. Amongthe 4 types of 5-HT3 receptor antagonists (injections) currently available in Japan, azasetron is the only drugthat is not designated as a powerful drug and that can be administered by bolus intravenous infusion. In this study, we investigated azasetron and granisetron from the standpoint of pharmacoeconomics with a simulation model using the results of clinical studies in Japan. Accordingto the results of cost-effectiveness analysis, therapeutic and time costs per patient for azasetron 10 mgand granisetron 2 mg (calculated in consideration of both medical institutions and patients) was 8,219 and 10,193 yen, respectively. This gap was attributable to the time loss due to the difference in administration methods. The result suggests that this time loss is more significant not only for patients but also for medical staff than the loss attributable to the drugcost. Furthermore, the bolus intravenous infusion of azasetron is considered superior to the non-bolus intravenous infusion of granisetron from a pharmacoeconomic standpoint. It is desirable to choose the appropriate administration method of 5-HT3 receptor antagonists in various chemotherapy regimens for the purpose of reducingthe treatment time and promotingthe efficiency of the therapeutic system at ATCs.

  19. Contribution of Hippocampal 5-HT3 Receptors in Hippocampal Autophagy and Extinction of Conditioned Fear Responses after a Single Prolonged Stress Exposure in Rats.

    PubMed

    Wu, Zhong-Min; Yang, Li-Hua; Cui, Rong; Ni, Gui-Lian; Wu, Feng-Tian; Liang, Yong

    2017-05-01

    One of the hypotheses about the pathogenesis of posttraumatic stress disorder (PTSD) is the dysfunction of serotonin (5-HT) neurotransmission. While certain 5-HT receptor subtypes are likely critical for the symptoms of PTSD, few studies have examined the role of 5-HT3 receptor in the development of PTSD, even though 5-HT3 receptor is critical for contextual fear extinction and anxiety-like behavior. Therefore, we hypothesized that stimulation of 5-HT3 receptor in the dorsal hippocampus (DH) could prevent hippocampal autophagy and the development of PTSD-like behavior in animals. To this end, we infused SR57227, selective 5-HT3 agonist, into the DH after a single prolonged stress (SPS) treatment in rats. Three weeks later, we evaluated the effects of this pharmacological treatment on anxiety-related behaviors and extinction of contextual fear memory. We also accessed hippocampal autophagy and the expression of 5-HT3A subunit, Beclin-1, LC3-I, and LC3-II in the DH. We found that SPS treatment did not alter anxiety-related behaviors but prolonged the extinction of contextual fear memory, and such a behavioral phenomenon was correlated with increased hippocampal autophagy, decreased 5-HT3A expression, and increased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. Furthermore, intraDH infusions of SR57227 dose-dependently promoted the extinction of contextual fear memory, prevented hippocampal autophagy, and decreased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. These results indicated that 5-HT3 receptor in the hippocampus may play a critical role in the pathogenesis of hippocampal autophagy, and is likely involved in the pathophysiology of PTSD.

  20. Molecular properties of psychopharmacological drugs determining non-competitive inhibition of 5-HT3A receptors.

    PubMed

    Kornhuber, Johannes; Terfloth, Lothar; Bleich, Stefan; Wiltfang, Jens; Rupprecht, Rainer

    2009-06-01

    We developed a structure-property-activity relationship (SPAR)-model for psychopharmacological drugs acting as non-competitive 5-HT(3A) receptor antagonists by using a decision-tree learner provided by the RapidMiner machine learning tool. A single molecular descriptor, namely the molecular dipole moment per molecular weight (mu/MW), predicts whether or not a substance non-competitively antagonizes 5-HT-induced Na(+) currents. A low mu/MW is compatible with drug-cumulation in apolar lipid rafts. This study confirms that size-intensive descriptors allow the development of compact SPAR models.

  1. Design, synthesis and structure-activity relationship of novel quinoxalin-2-carboxamides as 5-HT3 receptor antagonists for the management of depression.

    PubMed

    Mahesh, Radhakrishnan; Devadoss, Thangaraj; Pandey, Dilip Kumar; Bhatt, Shvetank; Yadav, Shushil Kumar

    2010-11-15

    A novel series of quinoxalin-2-carboxamides were designed based on the ligand-based approach, employing a three-point pharmacophore model; it consists of an aromatic residue and a linking carbonyl group and a basic nitrogen. The target new chemical entities were synthesized from the key intermediate, quinoxalin-2-carboxylic acid, by coupling it with various amines in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) and 1-hydroxybenzotriazole (HOBt). The obtained compounds' structures were confirmed by spectral data. The target new chemical entities were evaluated for their 5-HT(3) receptor antagonisms in longitudinal muscle myenteric plexus preparation from guinea pig ileum against 5-HT(3) agonist, 2-methyl-5-HT, which was expressed in the form of pA(2) value. All the synthesized compounds showed antagonism towards 5-HT(3) receptor; based on this result, a structure-activity relationship was derived, which reveals that the aromatic residue in 5-HT(3) receptor antagonists may have hydrophobic interaction with 5-HT(3) receptor. Regardless of their antagonistic potentials, all the synthesized molecules were screened for their anti-depressant potentials by using forced swim test in mice model; interestingly none of the tested compounds affect the locomotion of mice in the tested dose levels. Compounds with significant pA(2) values exhibited good anti-depressant-like activity as compared to the vehicle-treated group.

  2. Serotonin enhances urinary bladder nociceptive processing via a 5-HT3 receptor mechanism.

    PubMed

    Hall, Jason D; DeWitte, Cary; Ness, Timothy J; Robbins, Meredith T

    2015-09-14

    Serotonin from the descending pain modulatory pathway is critical to nociceptive processing. Its effects on pain modulation may either be inhibitory or facilitatory, depending on the type of pain and which receptors are involved. Little is known about the role of serotonergic systems in bladder nociceptive processing. These studies examined the effect of systemic administration of the serotonin precursor, 5-hydroxytryptophan (5-HTP), on normal bladder and somatic sensation in rats. ELISA was used to quantify peripheral and central changes in serotonin and its major metabolite following 5-HTP administration, and the potential role of the 5-HT3 receptor on changes in bladder sensation elicited by 5-HTP was investigated. 5-HTP produced bladder hypersensitivity and somatic analgesia. The pro-nociceptive effect of 5-HTP was attenuated by intrathecal, but not systemic, ondansetron. Peripheral increases in serotonin, its metabolism and rate of turnover were detectable within 30min of 5-HTP administration. Significant enhancement of serotonin metabolism was observed centrally. These findings suggest that 5-HTP increases serotonin, which may then affect descending facilitatory systems to produce bladder hypersensitivity via activation of spinal 5-HT3 receptors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Epigenetic and pharmacological regulation of 5HT3 receptors controls compulsive ethanol seeking in mice.

    PubMed

    Barker, Jacqueline M; Zhang, Huiping; Villafane, J Joshua; Wang, Tiffany L; Torregrossa, Mary M; Taylor, Jane R

    2014-03-01

    Factors underlying individual vulnerability to develop alcoholism are largely unknown. In humans, the risk for alcoholism is associated with elevated cue reactivity. Recent evidence suggests that in animal models, reactivity to reward-paired cues is predictive of addictive behaviors. To model cue reactivity in mice, we used a Pavlovian approach (PA) paradigm in which mice were trained to associate a cue with delivery of a food reinforcer. We then investigated the relationship between PA status with habitual and compulsive-like ethanol seeking. After training mice to respond for 10% ethanol, habitual behavior was investigated using both an outcome devaluation paradigm, in which ethanol was devalued via association with lithium chloride-induced malaise, and a contingency degradation paradigm in which the relationship between action and outcome was disrupted. Compulsive-like behavior was investigated in a modified conditioned place preference paradigm in which footshock was paired with the reward-paired chamber. PA was found to be predictive of habitual and compulsive-like ethanol seeking. Additionally, innate risk status was related to epigenetic changes in the gene encoding the requisite subunit of the 5HT3 receptor, Htr3a, as well as 5HT3A protein expression in the amygdala. We then used pharmacological tools to demonstrate that risk status determines the ability of a 5HT3 antagonist to reduce compulsive ethanol seeking. These data indicate that risk status can be identified prior to any alcohol exposure by assessment of cue reactivity, and further that this endophenotype may be predictive of response to pharmacological treatment for components of alcoholism.

  4. Epigenetic and pharmacological regulation of 5HT3 receptors controls compulsive ethanol seeking

    PubMed Central

    Barker, Jacqueline M; Zhang, Huiping; Villafane, J Joshua; Wang, Tiffany L; Torregrossa, Mary M; Taylor, Jane R

    2014-01-01

    Factors underlying individual vulnerability to develop alcoholism are largely unknown. In humans, risk for alcoholism is associated with elevated cue reactivity. Recent evidence suggests that in animal models, reactivity to reward-paired cues is predictive of addictive behaviors. To model cue reactivity in mice, we used a Pavlovian approach (PA) paradigm in which mice were trained to associate a cue with delivery of a food reinforcer. We then investigated the relationship between PA status with habitual and compulsive-like ethanol seeking. After training mice to respond for 10% ethanol, habitual behavior was investigated using both an outcome devaluation paradigm, in which ethanol was devalued via association with lithium chloride induced malaise, and a contingency degradation paradigm in which the relationship between action and outcome was disrupted. Compulsive-like behavior was investigated in a modified conditioned place preference paradigm in which footshock was paired with the reward-paired chamber. We saw that high PA was predictive of habitual and compulsive-like ethanol seeking. Additionally, innate risk status was related to epigenetic changes in the gene encoding the requisite subunit of the 5HT3 receptor, Htr3a, as well as 5HT3A protein expression in the amygdala. We then used pharmacological tools to demonstrate that risk status determines the ability of a 5HT3 antagonist to reduce compulsive ethanol seeking. These data indicate that risk status can be identified prior to any alcohol exposure by assessment of cue reactivity, and further, that this endophenotype may be predictive of response to pharmacological treatment for components of alcoholism. PMID:24772465

  5. 5-HT3 receptor blocking activity of arylalkanes isolated from the rhizome of Zingiber officinale.

    PubMed

    Abdel-Aziz, H; Nahrstedt, A; Petereit, F; Windeck, T; Ploch, M; Verspohl, E J

    2005-07-01

    Different extracts (ethanolic, hexane, aqueous) of ginger (rhizomes of Zingiber officinale) and the essential oil were tested using [14C]guanidinium influx into N1E-115 cells and the isolated rat ileum in order to identify their activity in inhibiting 5-HT3 receptor function. The hexane extract proved to be the most active and yielded upon bioassay-guided fractionation nine constituents: [6]-, [8]-, [10]-gingerols, [6]- and [8]-shogaols which were previously shown as active in vivo against cytotoxic drug-induced emesis; [4]-gingerol, [6]-gingerdiol, diacetyl-[6]-gingerdiol and [6]-dehydrogingerdione have not been previously tested for anti-emetic or 5-HT3 receptor antagonistic effects. Even though the latter four compounds are only minor constituents, their identification contributed towards the characterisation of a structure-activity relationship of this class of compounds. The order of potency for the nine constituents in the N1E-115 cell system was [6]-gingerdiol approximately diacetyl-[6]-gingerdiol approximately [6]-dehydrogingerdione approximately [6]-shogaol > or = [8]-shogaol approximately [8]-gingerol > [10]-gingerol > or = [6]-gingerol > [4]-gingerol.

  6. Piperazine analogs of naphthyridine-3-carboxamides and indole-2-carboxamides: novel 5-HT3 receptor antagonists with antidepressant-like activity.

    PubMed

    Dhar, Arghya K; Mahesh, Radhakrishnan; Jindal, Ankur; Bhatt, Shvetank

    2015-01-01

    Series of piperazine analogs of naphthyridine-3-carboxamides and indole-2-carboxamides were designed using a ligand-based approach with consideration of the pharmacophoric requirements for 5-HT3 receptor antagonists. The title carboxamides were synthesized using appropriate synthetic routes. Initially, the 5-HT3 receptor antagonistic activity of all the compounds was determined on isolated guinea pig ileum tissue against the 5-HT3 agonist, 2-methyl-5-hydroxytryptamine, which was denoted in the form of pA2 values. The structure-activity relationship regarding the influence of the aromatic part and basic moiety as features in the 5-HT3 pharmacophore was derived. Among all the compounds screened, the piperazine derivatives of indole-2-carboxamide 13i and naphthyridine-3-carboxamide 8h exhibited prominent 5-HT3 receptor antagonism with pA2 values of 7.5 and 7.3, respectively. Subsequent investigation of the antidepressant activities of selected compounds in the mouse forced swim test (FST) led to the identification of the piperazine analogs of indole-2-carboxamide 13i and naphthyridine-3-carboxamide 8h as the most promising compounds. Both 13i and 8h demonstrated significant reduction in the duration of immobility as compared to the control. Importantly, none of the tested compounds affected the baseline locomotion of mice at the tested dose levels.

  7. Psychotropic and Nonpsychotropic Cannabis Derivatives Inhibit Human 5-HT3A receptors through a Receptor Desensitization-Dependent Mechanism

    PubMed Central

    Xiong, Wei; Koo, Bon-Nyeo; Morton, Russell; Zhang, Li

    2011-01-01

    Δ9 tetrahydrocannabinol (THC) and cannabidiol (CBD) are the principal psychoactive and non-psychoactive components of cannabis. While most THC-induced behavioral effects are thought to depend on endogenous cannabinoid 1 (CB1) receptors, the molecular targets for CBD remain unclear. Here, we report that CBD and THC inhibited the function of human 5-HT3A receptors (h5-HT3ARs) expressed in HEK 293 cells. The magnitude of THC and CBD inhibition was maximal 5 min after a continuous incubation with cannabinoids. The EC50 values for CBD and THC-induced inhibition were 110 nM and 322 nM respectively in HEK 293 cells expressing h5-HT3ARs. In these cells, CBD and THC did not stimulate specific [35S]-GTP-γs binding in membranes, suggesting that the inhibition by cannabinoids is unlikely mediated by a G-protein dependent mechanism. On the other hand, both CBD and THC accelerated receptor desensitization kinetics without significantly changing activation time. The extent of cannabinoid inhibition appeared to depend on receptor desensitization. Reducing receptor desensitization by nocodazole, 5-hydroxyindole and a point-mutation in the large cytoplasmic domain of the receptor significantly decreased CBD-induced inhibition. Similarly, the magnitude of THC and CBD-induced inhibition varied with the apparent desensitization rate of h5-HT3ARs expressed in Xenopus oocytes. For instance, with increasing amount of h5-HT3AR cRNA injected into the oocytes, the receptor desensitization rate at steady state decreased. THC and CBD-induced inhibition was correlated with the change in the receptor desensitization rate. Thus, CBD and THC inhibit h5-HT3A receptors through a mechanism that is dependent on receptor desensitization. PMID:21477640

  8. 2-Amino-6-chloro-3,4-dihydroquinazoline: A novel 5-HT3 receptor antagonist with antidepressant character.

    PubMed

    Dukat, Małgorzata; Alix, Katie; Worsham, Jessica; Khatri, Shailesh; Schulte, Marvin K

    2013-11-01

    2-Amino-6-chloro-3,4-dihydroquinazoline HCl (A6CDQ, 4) binds at 5-HT3 serotonin receptors and displays antidepressant-like action in the mouse tail suspension test (TST). Empirically, 4 was demonstrated to be a 5-HT3 receptor antagonist (two-electrode voltage clamp recordings using frog oocytes; IC50=0.26μM), and one that should readily penetrate the blood-brain barrier (logP=1.86). 5-HT3 receptor antagonists represent a potential approach to the development of new antidepressants, and 4 is an example of a structurally novel 5-HT3 receptor antagonist that is active in a preclinical antidepressant model (i.e., the mouse TST).

  9. The involvement of 5-HT3 and 5-HT4 receptors in two models of gastrointestinal transit in mice.

    PubMed

    Pascual, D; Alsasua, A; Goicoechea, C; Martín, M I

    2002-07-05

    Our aim was to study the involvement of 5-hydroxytryptamine (5-HT)(3) and 5-HT(4) receptors in two models of gastrointestinal transit (GIT) in mice: the 5-hydroxytryptophan (5-HTP)-induced diarrhea and intestinal inflammation produced by an irritant agent, croton oil (CO). 5-HTP (10 mg/kg) produced diarrhea that was significantly inhibited after pretreatment with ondansetron (5-HT(3) antagonist) or RS 39604 (5-HT(4) antagonist) (1-5 mg/kg). The GIT speed was increased after CO and 5-HTP administration. 5-HT(3-4) antagonists decreased GIT after 5-HTP-treatment but not after CO-treatment. Our results show that 5-HT(3) and 5-HT(4) receptors are involved in 5-HTP-induced diarrhea. This may be the reason why 5-HT(3-4) antagonists could be useful in the treatment of carcinoid syndrome diarrhea. 5-HT(3-4) antagonists were not effective in the modifications of GIT; nevertheless, they could be useful in the treatment of inflammatory bowel diseases because some symptoms as abdominal pain, discomfort or abnormal bowel function are modulated via 5-HT(3).

  10. On the voltage-dependent Ca2+ block of serotonin 5-HT3 receptors: a critical role of intracellular phosphates

    PubMed Central

    Noam, Yoav; Wadman, Wytse J; van Hooft, Johannes A

    2008-01-01

    Natively expressed serotonin 5-HT3 receptors typically possess a negative-slope conductance region in their I–V curve, due to a voltage-dependent block by external Ca2+ ions. However, in almost all studies performed with heterologously expressed 5-HT3 receptors, this feature was not observed. Here we show that mere addition of ATP to the pipette solution is sufficient to reliably observe a voltage-dependent block in homomeric (h5-HT3A) and heteromeric (h5-HT3AB) receptors expressed in HEK293 cells. A similar block was observed with a plethora of molecules containing a phosphate moiety, thus excluding a role of phosphorylation. A substitution of three arginines in the intracellular vestibule of 5-HT3A with their counterpart residues from the 5-HT3B subunit (RRR-QDA) was previously shown to dramatically increase single channel conductance. We find this mutant to have a linear I–V curve that is unaffected by the presence of ATP, with a fractional Ca2+ current (Pf%) that is reduced (1.8 ± 0.2%) compared to that of the homomeric receptor (4.1 ± 0.2%), and similar to that of the heteromeric form (2.0 ± 0.3%). Moreover, whereas ATP decreased the Pf% of the homomeric receptor, this was not observed with the RRR-QDA mutant. Finally, ATP was found to be critical for voltage-dependent channel block also in hippocampal interneurons that natively express 5-HT3 receptors. Taken together, our results indicate a novel mechanism by which ATP, and similar molecules, modulate 5-HT3 receptors via interactions with the intracellular vestibule of the receptor. PMID:18566001

  11. Toward Biophysical Probes for the 5-HT3 Receptor: Structure−Activity Relationship Study of Granisetron Derivatives

    PubMed Central

    2010-01-01

    This report describes the synthesis and biological characterization of novel granisetron derivatives that are antagonists of the human serotonin (5-HT3A) receptor. Some of these substituted granisetron derivatives showed low nanomolar binding affinity and allowed the identification of positions on the granisetron core that might be used as attachment points for biophysical tags. A BODIPY fluorophore was appended to one such position and specifically bound to 5-HT3A receptors in mammalian cells. PMID:20146481

  12. Roles of serotonin 5-HT3 receptor in the formation of dendrites and axons in the rat cerebral cortex: an in vitro study.

    PubMed

    Hayashi, Takahiro; Ohtani, Akiko; Onuki, Fumiaki; Natsume, Masaki; Li, Fei; Satou, Tomomi; Yoshikawa, Masaaki; Senzaki, Kouji; Shiga, Takashi

    2010-01-01

    The serotonin type 3 (5-HT(3)) receptor is an only ligand-gated ion channel among 14 serotonin receptors. Here, we examined the roles of the 5-HT(3) receptor in the formation of dendrites and axons, using a dissociation culture of embryonic rat cerebral cortex. Cortical neurons at embryonic day 16 were cultured for 4 days in the presence of a selective 5-HT(3) receptor agonist with or without an antagonist. Neurons were then immunostained by antibodies against microtubule-associated protein 2 (MAP2) and glutamic acid decarboxylase (GAD) 65. All cells expressed MAP2, whereas only limited number of cells expressed GAD65. From the immunoreactivity and the cell shape, we tentatively divided neurons into 3 types; GAD-positive multipolar, GAD-positive bipolar/tripolar and GAD-negative neurons. The total length of axons and dendrites, the number of primary dendrites and the dendritic branching of GAD-negative neurons were decreased by the agonist (10 or 100nM), most of which were reversed by the concomitant treatment of the antagonist. In contrast, no or little effect was observed on the formation of dendrites and axons of GAD-positive multipolar neurons, and the neurite formation of GAD-positive bipolar/tripolar neurons. The present study revealed differential roles of the 5-HT(3) receptor in the formation of dendrites and axons of subtypes of cortical neurons.

  13. 5-HT3a Receptors Modulate Hippocampal Gamma Oscillations by Regulating Synchrony of Parvalbumin-Positive Interneurons.

    PubMed

    Huang, Ying; Yoon, Kristopher; Ko, Ho; Jiao, Song; Ito, Wataru; Wu, Jian-Young; Yung, Wing-Ho; Lu, Bai; Morozov, Alexei

    2016-02-01

    Gamma-frequency oscillatory activity plays an important role in information integration across brain areas. Disruption in gamma oscillations is implicated in cognitive impairments in psychiatric disorders, and 5-HT3 receptors (5-HT3Rs) are suggested as therapeutic targets for cognitive dysfunction in psychiatric disorders. Using a 5-HT3aR-EGFP transgenic mouse line and inducing gamma oscillations by carbachol in hippocampal slices, we show that activation of 5-HT3aRs, which are exclusively expressed in cholecystokinin (CCK)-containing interneurons, selectively suppressed and desynchronized firings in these interneurons by enhancing spike-frequency accommodation in a small conductance potassium (SK)-channel-dependent manner. Parvalbumin-positive interneurons therefore received diminished inhibitory input leading to increased but desynchronized firings of PV cells. As a consequence, the firing of pyramidal neurons was desynchronized and gamma oscillations were impaired. These effects were independent of 5-HT3aR-mediated CCK release. Our results therefore revealed an important role of 5-HT3aRs in gamma oscillations and identified a novel crosstalk among different types of interneurons for regulation of network oscillations. The functional link between 5-HT3aR and gamma oscillations may have implications for understanding the cognitive impairments in psychiatric disorders.

  14. Role of 5-HT3 receptors in basal and K(+)-evoked dopamine release from rat olfactory tubercle and striatal slices.

    PubMed Central

    Zazpe, A; Artaiz, I; Del Río, J

    1994-01-01

    1. The present study was aimed at examining the role of 5-HT3 receptors in basal and depolarization-evoked dopamine release from rat olfactory tubercle and striatal slices. [3H]-dopamine ([3H]-DA) release was measured in both brain regions and endogenous dopamine release from striatal slices was also studied. 2. The selective 5-HT3 receptor agonist 2-methyl-5-HT (0.5-10 microM) produced a concentration-dependent increase in [3H]-DA efflux evoked by K+ (20 mM) from slices of rat olfactory tubercle. 1-Phenylbiguanide (PBG) and 5-HT also increased K(+)-evoked [3H]-DA efflux. 3. 5-HT (1-100 microM) increased in a concentration-dependent manner basal [3H]-DA release from olfactory tubercle and striatal slices as well as endogenous DA release from striatal slices. The selective 5-HT3 receptor agonists 2-methyl-5-HT and 1-phenylbiguanide were weaker releasing agents. In all cases, the release was Ca2+ independent and tetrodotoxin insensitive. 4. 5-HT3 receptor antagonists such as ondansetron, granisetron and tropisetron (0.2 microM) significantly blocked the enhanced K(+)-evoked [3H]-DA efflux from rat olfactory tubercle slices induced by 2-methyl-5HT. A ten fold higher concentration of the 5-HT2 receptor antagonist ketanserin was ineffective. 5. Much higher concentrations, up to 50 microM, of the same 5-HT3 receptor antagonists did not block the increase in basal [3H]-DA release from striatal or olfactory tubercle slices induced by 5-HT or the release of endogenous DA induced by 5-HT from striatal slices.2+ off PMID:7858893

  15. Spinal 5-HT3 receptors mediate descending facilitation and contribute to behavioral hypersensitivity via a reciprocal neuron-glial signaling cascade

    PubMed Central

    2014-01-01

    Background It has been recently recognized that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in the brainstem and the 5-HT3 receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT3 receptor and its contribution to facilitation of pain remain unclear. Results In the present study, activation of spinal 5-HT3 receptors by intrathecal injection of a selective 5-HT3 receptor agonist SR 57227 induced spinal glial hyperactivity, neuronal hyperexcitability and pain hypersensitivity in rats. We found that there was neuron-to-microglia signaling via the chemokine fractalkine, microglia to astrocyte signaling via cytokine IL-18, astrocyte to neuronal signaling by IL-1β, and enhanced activation of NMDA receptors in the spinal dorsal horn. Glial hyperactivation in spinal dorsal horn after hindpaw inflammation was also attenuated by molecular depletion of the descending 5-HT system by intra-RVM Tph-2 shRNA interference. Conclusions These findings offer new insights into the cellular and molecular mechanisms at the spinal level responsible for descending 5-HT-mediated pain facilitation during the development of persistent pain after tissue and nerve injury. New pain therapies should focus on prime targets of descending facilitation-induced glial involvement, and in particular the blocking of intercellular signaling transduction between neurons and glia. PMID:24913307

  16. Comparative Pharmacology and Guide to the Use of the Serotonin 5-HT3 Receptor Antagonists for Postoperative Nausea and Vomiting.

    PubMed

    Kovac, Anthony L

    2016-12-01

    Since the introduction of the serotonin 5-hydroxy tryptamine 3 (5-HT3) receptor antagonists in the early 1990s, the incidence of postoperative nausea and vomiting (PONV) and post-discharge nausea and vomiting (PDNV) has decreased, yet continues to be a problem for the surgical patient. The clinical application of the 5-HT3 receptor antagonists has helped define the approach and role of these antiemetics in the prevention and treatment of PONV and PDNV. Pharmacological and clinical differences exist among these medications resulting in corresponding differences in effectiveness, safety, optimal dosage, time of administration, and use as combination and rescue antiemetic therapy. The clinical application of the 5-HT3 receptor antagonist antiemetics has improved the prevention and treatment of PONV and PDNV. The most recent consensus guidelines for PONV published in 2014 outline the use of these antiemetics. The 5-HT3 receptor antagonists play an important role to help prevent PONV and PDNV in perioperative care pathways such as Enhanced Recovery After Surgery (ERAS). Comparisons and guidelines for use of the 5-HT3 receptor antagonists in relation to the risk for PONV and PDNV are reviewed.

  17. Interactions of metoclopramide and ergotamine with human 5-HT3A receptors and human 5-HT reuptake carriers

    PubMed Central

    Walkembach, Jan; Brüss, Michael; Urban, Bernd W; Barann, Martin

    2005-01-01

    The actions of metoclopramide and ergotamine, drugs which are used as a combined migraine medication, on human (h)5-HT3A receptors and 5-HT reuptake carriers, stably expressed in HEK-293 cells, were studied with patch-clamp- and ([3H]5-HT)-uptake techniques. At clinical concentrations, metoclopramide inhibited peak and integrated currents through h5-HT3A receptors concentration-dependently (IC50=0.064 and 0.076 μM, respectively) when it was applied in equilibrium (60 s before and during 5-HT (30 μM) exposure). The onset and offset time constants of metoclopramide action were 1.3 and 2.1 s, respectively. The potency of metoclopramide when exclusively applied during the agonist pulse decreased more than 200-fold (IC50=19.0 μM, peak current suppression). Metoclopramide (0.10 μM) did not alter the EC50 of 5-HT-induced peak currents. In contrast to the lack of competitive interaction between metoclopramide and 5-HT in this functional assay, metoclopramide inhibited specific [3H]GR65630 binding to human h5-HT3A receptors in a surmountable manner. This seeming discrepancy between functional studies and radioligand binding experiments may be accounted for by (1) the slow kinetics of inhibition of peak currents by metoclopramide compared with the fast onset and offset kinetics of 5-HT-induced currents and (2) the low efficacy of metoclopramide in inhibiting radioligand binding (e.g. only 20% binding inhibition compared to 79% peak current suppression by 200 nM metoclopramide). At low concentrations (1–10 nM), ergotamine had no effect on 5-HT (30 μM)-induced peak currents. Above clinical concentrations, ergotamine (>3 μM) inhibited them. When both drugs were applied together (0.10 μM metoclopramide+0.001 to 0.01 μM ergotamine), an inhibition of both, peak and integrated current responses was observed. Neither metoclopramide (⩽30 μM) nor ergotamine (⩽30 μM) had an effect on the 5-HT reuptake carrier as they did not alter the

  18. Design, synthesis and evaluation of antidepressant activity of novel 2-methoxy 1, 8 naphthyridine 3-carboxamides as 5-HT3 receptor antagonists.

    PubMed

    Mahesh, Radhakrishnan; Dhar, Arghya Kusum; Jindal, Ankur; Bhatt, Shvetank

    2014-05-01

    A series of novel 1,8-naphthyridine-3-carboxamides as 5-HT3 receptor antagonists were synthesized with an intention to explore the antidepressant activity of these compounds. The title carboxamides were designed using ligand-based approach keeping in consideration the structural requirement of the pharmacophore of 5-HT3 receptor antagonists. The compounds were synthesized using appropriate synthetic route from the starting material nicotinamide. 5-HT3 receptor antagonism of all the compounds, which was denoted in the form of pA2 value, was determined in longitudinal muscle myenteric plexus preparation from guinea-pig ileum against 5-HT3 agonist, 2-methyl-5-HT. Compound 8g (2-methoxy-1, 8-naphthyridin-3-yl) (2-methoxy phenyl piperazine-1-yl) methanone was identified as the most active compound, which expressed a pA2 value of 7.67. The antidepressant activity of all the compounds was examined in mice model of forced swim test (FST); importantly, none of the compounds was found to cause any significant changes in the locomotor activity of mice at the tested dose levels. In FST, the compounds with considerably higher pA2 value exhibited promising antidepressant-like activity, whereas compounds with lower pA2 value did not show antidepressant-like activity as compared to the control group. © 2013 John Wiley & Sons A/S.

  19. Regulation of central noradrenergic activity by 5-HT(3) receptors located in the locus coeruleus of the rat.

    PubMed

    Ortega, Jorge E; Mendiguren, Aitziber; Pineda, Joseba; Meana, J Javier

    2012-06-01

    A functional interaction between serotonergic and noradrenergic systems has been shown in the locus coeruleus (LC). Noradrenaline (NA) levels in the prefrontal cortex (PFC) are dependent on the firing rate of LC neurons, which is controlled by α(2) adrenoceptors (α2ADR). The aim of the present study was to investigate the role of 5-HT(3) receptors (5HT3R) in the modulation of central noradrenergic activity. We measured extracellular NA concentrations in the LC and PFC by dual-probe microdialysis in awake rats and the firing rate of LC neurons by electrophysiological techniques in vitro. Administration of the 5HT3R agonists SR57227 (1-100 μM) and m-chlorophenylbiguanide (mCPBG, 1-100 μM) into the LC increased NA in this nucleus (E(max) = 675 ± 121% and E(max) = 5575 ± 1371%, respectively) and decreased NA in the PFC (E(max) = -49 ± 6% and E(max) = -25 ± 11%, respectively). Administration of the 5HT3R antagonist Y25130 (50 μM) into LC attenuated SR57227 effect in the LC (E(max) = 323 ± 28%) and PFC (E(max) = -37 ± 7%). The α2ADR antagonist RS79948 (1 μM) blocked the SR57227 effect in the PFC but it did not change the effect in the LC (E(max) = 677 ± 202%). In electrophysiological assays, both mCPBG (1-10 μM) and SR57227 (1-10 μM) reduced the firing rate of about 50% of tested LC neurons (maximal effect = -37 ± 2% and -31 ± 4%, respectively); this effect was partially blocked by Y25130 (50 μM). Administration of RS79948 (1 μM) reversed the inhibition induced by mCPBG. Competition radioligand assays against [(3)H]UK14304 and [(3)H]RX821002 (α2ADR selective drugs) in the rat brain cortex showed a very weak affinity of SR57227 for α2ADR, whereas the affinity of mCPBG for α2ADR was 17-fold higher than that of SR57227 for α2ADR. The present results suggest that 5HT3R stimulate NA release in the LC, which promotes simultaneously a decrease in the firing rate of LC neurons through α2ADR and then a decrease

  20. Investigation of 5-HT3 receptor-triggered serotonin release from guinea-pig isolated colonic mucosa: a role of PYY-containing endocrine cell.

    PubMed

    Kojima, Shu-Ichi; Kojima, Ken; Fujita, Tomoe

    2017-03-15

    The effect of a 5-HT3 receptor-selective agonist SR57227A was investigated on the outflow of 5-hydroxytryptamine (5-HT) from isolated muscle layer-free mucosal preparations of guinea-pig colon. The mucosal preparations were incubated in vitro and the outflow of 5-HT from these preparations was determined by high-performance liquid chromatography with electrochemical detection. SR57227A (100μM) produced a tetrodotoxin-resistant and sustained increase in the outflow of 5-HT from the mucosal preparations. The SR57227A-evoked sustained 5-HT outflow was completely inhibited by the 5-HT3 receptor antagonist ramosetron (1μM). The neuropeptide Y1 receptor antagonist BIBO3304 (100nM) partially inhibited the SR57227A-evoked sustained 5-HT outflow, but the Y2 receptor antagonist BIIE0246 (1μM) or the glucagon-like peptide-1 (GLP-1) receptor antagonist exendin-(9-39) (1μM), showed a minimal effect on the SR57227A-evoked sustained 5-HT outflow. In the presence of BIBO3304 (100nM) and exendin-(9-39) (1μM), SR57227A (100μM) failed to produce a sustained increase in the outflow of 5-HT. The Y1 receptor agonist [Leu(31), Pro(34)]-neuropeptide Y (10nM), but not GLP-1-(7-36) amide (100nM), produced a sustained increase in the outflow of 5-HT. We found that 5-HT3 receptor-triggered 5-HT release from guinea-pig colonic mucosa is mediated by the activation of 5-HT3 receptors located at endocrine cells (enterochromaffin cells and peptide YY (PYY)-containing endocrine cells). The activation of both Y1 and GLP-1 receptors appears to be required for the maintenance of 5-HT3 receptor-triggered 5-HT release. It is therefore considered that 5-HT3 receptors located at colonic mucosa play a crucial role in paracrine signaling between enterochromaffin cells and PYY-containing endocrine cells.

  1. Impact of 5-HT3 receptor antagonists on chemotherapy-induced nausea and vomiting: a retrospective cohort study

    PubMed Central

    2012-01-01

    Background 1st generation 5-hydroxytryptamine receptor antagonists (5-HT3 RAs), and palonosetron, a 2nd generation 5-HT3 RA, are indicated for the prevention of chemotherapy (CT)-induced nausea and vomiting (CINV) associated with moderately (MEC) and highly emetogenic CT agents (HEC). This study explores the impact of step therapy policies requiring use of an older 5-HT3 RA before palonosetron on risk of CINV associated with hospital or emergency department (ED) admissions. Methods Patients who received cyclophosphamide post breast cancer (BC) surgery or who were diagnosed with lung cancer on carboplatin (LC-carboplatin) or cisplatin (LC-cisplatin) were selected from PharMetrics’ (IMS LifeLink) claims dataset (2005-2008). Patients were followed for 6 months from initial CT administration for CINV events identified through ICD-9-CM codes. Patients were grouped into those initiated with older, generic 5-HT3 RAs (ondansetron, granisetron, and dolasetron) and those initiated and maintained on palonosetron throughout study follow-up. CINV events and CINV days were analyzed using multivariate regressions controlling for demographic and clinical variables. Results Eligible patients numbered 3,606 in BC, 4,497 in LC-carboplatin and 1,154 in LC-cisplatin cohorts, with 52%, 40%, and 34% in the palonosetron group, respectively. There was no significant difference between the two 5-HT3 RA groups in age or Charlson Comorbidity Index among the two MEC cohorts (BC and LC-carboplatin). Among the LC-cisplatin cohort, palonosetron users were older with more males than the older 5-HT3 RA group (age: 60.1 vs. 61.3; males, 66.9% vs. 56.9%). Compared to the older 5-HT3 RAs, the palonosetron groups incurred 22%-51% fewer 5-HT3 RA pharmacy claims, had fewer patients with CINV events (3.5% vs. 5.5% in BC, 9.5% vs. 12.8% in LC-carboplatin, 16.4% vs. 21.7% in LC-cisplatin), and had lower risk for CINV events (odds ratios 0.62, 0.71, or 0.71, respectively; p < 0.05). The BC and LC

  2. On the role of brain 5-HT7 receptor in the mechanism of hypothermia: comparison with hypothermia mediated via 5-HT1A and 5-HT3 receptor.

    PubMed

    Naumenko, Vladimir S; Kondaurova, Elena M; Popova, Nina K

    2011-12-01

    Intracerebroventricular administration of selective agonist of serotonin 5-HT(7) receptor LP44 (4-[2-(methylthio)phenyl]-N-(1,2,3,4-tetrahydro-1-naphthalenyl)-1-pyperasinehexanamide hydrochloride; 10.3, 20.5 or 41.0 nmol) produced considerable hypothermic response in CBA/Lac mice. LP44-induced (20.5 nmol) hypothermia was significantly attenuated by the selective 5-HT(7) receptor antagonist SB 269970 (16.1 fmol, i.c.v.) pretreatment. At the same time, intraperitoneal administration of LP44 in a wide range of doses 1.0, 2.0 or 10.0 mg/kg (2.0, 4.0, 20.0 μmol/kg) did not cause considerable hypothermic response. These findings indicate the implication of central, rather than peripheral 5-HT(7) receptors in the regulation of hypothermia. The comparison of LP44-induced (20.5 nmol) hypothermic reaction in eight inbred mouse strains (DBA/2J, CBA/Lac, C57BL/6, BALB/c, ICR, AKR/J, C3H and Asn) was performed and a significant effect of genotype was found. In the same eight mouse strains, functional activity of 5-HT(1A) and 5-HT(3) receptors was studied. The comparison of hypothermic responses produced by 5-HT(7) receptor agonist LP44 (20.5 nmol, i.c.v.) and 5-HT(1A) receptor agonist 8-OH-DPAT 1.0 mg/kg, i.p. (3.0 μmol/kg), 5-HT(3) receptor agonist m-CPBG (40.0 nmol, i.c.v.) did not reveal considerable interstrain correlations between 5-HT(7) and 5-HT(1A) or 5-HT(3) receptor-induced hypothermia. The selective 5-HT(7) receptor antagonist SB 269970 (16.1 fmol, i.c.v.) failed to attenuate the hypothermic effect of 8-OH-DPAT 1.0 mg/kg, i.p. (3.0 μmol/kg) and m-CPBG (40.0 nmol, i.c.v.) indicating that the brain 5-HT(7) receptor is not involved in the hypothermic effects of 8-OH-DPAT or m-CPBG. The obtained results suggest that the central 5-HT(7) receptor plays an essential role in the mediation of thermoregulation independent of 5-HT(1A) and 5-HT(3) receptors.

  3. P2X3 receptors induced inflammatory nociception modulated by TRPA1, 5-HT3 and 5-HT1A receptors.

    PubMed

    Krimon, Suzy; Araldi, Dionéia; do Prado, Filipe César; Tambeli, Cláudia Herrera; Oliveira-Fusaro, Maria Cláudia G; Parada, Carlos Amílcar

    2013-11-01

    It has been described that endogenous ATP via activation of P2X3 and P2X2/3 receptors contributes to inflammatory nociception in different models, including the formalin injected in subcutaneous tissue of the rat's hind paw. In this study, we have evaluated whether TRPA1, 5-HT3 and 5-HT1A receptors, whose activation is essential to formalin-induced inflammatory nociception, are involved in the nociception induced by activation of P2X3 receptors on subcutaneous tissue of the rat's hind paw. We have also evaluated whether the activation of P2X3 receptors increases the susceptibility of primary afferent neurons to formalin action modulated by activation of TRPA1, 5-HT3 or 5-HT1A receptors. Nociceptive response intensity was measured by observing the rat's behavior and considering the number of times the animal reflexively raised its hind paw (flinches) in 60min. Local subcutaneous administration of the selective TRPA1, 5-HT3 or 5-HT1A receptor antagonists HC 030031, tropisetron and WAY 100,135, respectively, prevented the nociceptive responses induced by the administration in the same site of the non-selective P2X3 receptor agonist αβmeATP. Administration of the selective P2X3 and P2X2/3 receptor antagonist A-317491 or pretreatment with oligonucleotides antisense against P2X3 receptor prevented the formalin-induced behavioral nociceptive responses during the first and second phases. Also, the co-administration of a subthreshold dose of αβmeATP with a subthreshold dose of formalin induced nociceptive behavior, which was prevented by local administration of tropisetron, HC 030031 or WAY 100, 135. These findings have demonstrated that the activation of P2X3 receptors induces inflammatory nociception modulated by TRPA1, 5-HT3 and 5-HT1A receptors. Also, they suggest that inflammatory nociception is modulated by the release of endogenous ATP and P2X3 receptor activation, which in turn, increases primary afferent nociceptor susceptibility to the action of inflammatory

  4. Presynaptic 5-HT3 receptors evoke an excitatory response in dorsal vagal preganglionic neurones in anaesthetized rats

    PubMed Central

    Wang, Yun; Ramage, Andrew G; Jordan, David

    1998-01-01

    Recordings were made from a total of sixty-four vagal preganglionic neurones in the dorsal vagal motor nucleus (DVMN) of pentobarbitone sodium anaesthetized rats. The effects of ionophoretic administration of Mg2+ and Cd2+, inhibitors of neurotransmitter release, and the selective NMDA and non-NMDA receptor antagonists (±)-2-amino-5-phosphono-pentanoic acid (AP5) and 6,7-dinitroquinoxaline-2,3-dione (DNQX) on the excitatory actions of the 5-HT3 receptor agonist 1-phenylbiguanide (PBG) were studied. In extracellular recording experiments, PBG (0-40 nA) increased the firing rate of thirty-five of the thirty-nine neurones tested. The PBG-evoked excitation was attenuated by application of Mg2+ (1-10 nA) in sixteen of seventeen neurones or Cd2+ (2-10 nA) in seven of eight neurones tested. At these low ejection currents neither Mg2+ nor Cd2+ altered baseline firing rates and Mg2+ had no effect on the excitations evoked by DL-homocysteic acid (n = 4), NMDA (n = 4) or (AMPA; n = 2). Ionophoresis of AP5 (2-10 nA), at currents which selectively inhibited NMDA-evoked excitations, attenuated PBG-evoked excitations in all eight neurones tested. DNQX (5-20 nA), at currents which selectively inhibited AMPA-evoked excitations, also attenuated PBG-evoked excitations (n = 3). Intracellular activity was recorded in nine DVMN neurones. In six neurones ionophoretic application of PBG (10-200 nA) depolarized the membrane and increased firing rate whilst in the other three neurones, PBG had no effect on membrane potential though it increased synaptic noise (n = 3) and firing rate (n = 2). In all six neurones tested, ionophoresis of Mg2+ (10-120 nA) attenuated the PBG-evoked increases in synaptic noise and firing rate. In conclusion, the data are consistent with the hypothesis that 5-HT3 receptor agonists activate DVMN neurones partly by acting on receptors located at sites presynaptic to the neurones. Activation of these receptors appears to facilitate release of glutamate, which, in

  5. Interaction of pyridostigmine with the 5-HT(3) receptor antagonist ondansetron in guinea pigs

    SciTech Connect

    Capacio, B.R.; Byers, C.E.; Matthews, R.L.; Anderson, D.R.; Anders, J.C.

    1993-05-13

    Serotonin receptor subtype three (5HT3) antagonists, such as the drug ondansetron (OND), have been developed as effective anti-emetic compounds. The purpose of this study was to assess the drug interactions of OND (10, 20 and 30 mg/kg) with the organophosphorus pretreatment compound pyridostigmine (PYR; 0.94 mg/kg) after simultaneous oral administration to guinea pigs. Compatibility was assessed by determining (1) OND pharmacokinetics in the absence (Phase 1) and presence (Phase 2) of pyridostigmine (PYR) and (2) PYR-induced acetylcholinesterase (AChE) inhibition kinetics in the absence (Phase 1) and the presence (Phase 2) of OND. AChE inhibition was examined because it has been shown to be an indicator of PYR efficacy against OP-induced lethality. The pharmacokinetics of OND alone and in the presence of PYR were linear and best described by a one-compartment model with first-order absorption and elimination rate kinetics. For OND 30 mg/kg the K10 was found to be significantly smaller in Phase 2 than Phase 1 (p < 0.05).

  6. Effects of iodoproxyfan, a potent and selective histamine H3 receptor antagonist, on alpha 2 and 5-HT3 receptors.

    PubMed

    Schlicker, E; Pertz, H; Bitschnau, H; Purand, K; Kathmann, M; Elz, S; Schunack, W

    1995-07-01

    We determined the affinity and/or potency of the novel H3 receptor antagonist iodoproxyfan at alpha 2 and 5-HT3 receptors. Iodoproxyfan and rauwolscine (a reference alpha 2 ligand) (i) monophasically displaced 3H-rauwolscine binding to rat brain cortex membranes (pKi 6.79 and 8.59); (ii) facilitated the electrically evoked tritium overflow from superfused mouse brain cortex slices preincubated with 3H-noradrenaline (pEC50 6.46 and 7.91) and (iii) produced rightward shifts of the concentration-response curve (CRC) of (unlabelled) noradrenaline for its inhibitory effect on the evoked overflow (pA2 6.65 and 7.88). In the guinea-pig ileum, iodoproxyfan 6.3 mumol/l failed to evoke a contraction by itself but depressed the maximum of the CRC of 5-hydroxytryptamine (pD'2 5.24). Tropisetron (a reference 5-HT3 antagonist) produced rightward shifts of the CRC of 5-hydroxytryptamine (pA2 7.84). In conclusion, the affinity/potency of iodoproxyfan at H3 receptors (range 8.3-9.7 [1]) exceeds that at alpha 2 receptors by at least 1.5 log units and that at 5-HT3 receptors by at least 3 log units.

  7. Cation-pi interactions in ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcholine receptors: the anomalous binding properties of nicotine.

    PubMed

    Beene, Darren L; Brandt, Gabriel S; Zhong, Wenge; Zacharias, Niki M; Lester, Henry A; Dougherty, Dennis A

    2002-08-13

    A series of tryptophan analogues has been introduced into the binding site regions of two ion channels, the ligand-gated nicotinic acetylcholine and serotonin 5-HT(3A) receptors, using unnatural amino acid mutagenesis and heterologous expression in Xenopus oocytes. A cation-pi interaction between serotonin and Trp183 of the serotonin channel 5-HT(3A)R is identified for the first time, precisely locating the ligand-binding site of this receptor. The energetic contribution of the observed cation-pi interaction between a tryptophan and the primary ammonium ion of serotonin is estimated to be approximately 4 kcal/mol, while the comparable interaction with the quaternary ammonium of acetylcholine is approximately 2 kcal/mol. The binding mode of nicotine to the nicotinic receptor of mouse muscle is examined by the same technique and found to differ significantly from that of the natural agonist, acetylcholine.

  8. The effects of varenicline on sensory gating and exploratory behavior with pretreatment with nicotinic or 5-HT3A receptor antagonists.

    PubMed

    Kucinski, Aaron; Wersinger, Scott; Stachowiak, Ewa K; Becker, Chani; Lippiello, Pat; Bencherif, Merouane; Stachowiak, Michal K

    2015-02-01

    Individuals with schizophrenia smoke at high frequency relative to the general population. Despite the harmful effects of cigarette smoking, smoking among schizophrenic patients improves cognitive impairments not addressed or worsened by common neuroleptics. Varenicline, a nonselective neuronal nicotinic receptor (NNR) agonist and full agonist of 5-HT3A receptors, helps reduce smoking among schizophrenic patients. To determine whether varenicline also improves a cognitive symptom of schizophrenia, namely, impaired sensory gating, a transgenic mouse with schizophrenia, th-fgfr1(tk-), was used. Varenicline dose-dependently increased prepulse inhibition (PPI) of the startle response, a measure of sensory gating, in th-fgfr1(tk-) mice and normalized PPI deficits relative to nontransgenic controls. With the highest dose (10 mg/kg), however, there was a robust elevation of PPI and startle response, as well as reduced exploratory behavior in the open field and elevated plus maze. Pretreatment with the nonspecific NNR antagonist mecamylamine attenuated the exaggerated PPI response and, similar to the 5-HT3A receptor antagonist ondansetron, it prevented the reduction in exploratory behavior. Collectively, these results indicate that varenicline at low-to-moderate doses may be beneficial against impaired sensory gating in schizophrenia; however, higher doses may induce anxiogenic effects, which can be prevented with antagonists of NNRs or 5-HT3A receptors.

  9. Synergistic effect between prelimbic 5-HT3 and CB1 receptors on memory consolidation deficit in adult male Sprague-Dawley rats: An isobologram analysis.

    PubMed

    Ahmadi-Mahmoodabadi, N; Nasehi, M; Emam Ghoreishi, M; Zarrindast, M-R

    2016-03-11

    The serotonergic system has often been defined as a neuromodulator system, and is specifically involved in learning and memory via its various receptors. Serotonin is involved in many of the same processes affected by cannabinoids. The present study investigated the influence of bilateral post-training intra-prelimbic (PL) administrations of serotonergic 5-hydroxytryptamine type-3 (5-HT3) receptor agents on arachidonylcyclopropylamide (ACPA) (cannabinoid CB1 receptor agonist)-induced amnesia, using the step-through inhibitory avoidance (IA) task to assess memory in adult male Sprague-Dawley rats. The results indicated that sole intra-PL microinjection of ACPA (0.1 and 0.5 μg/rat) and 5-HT3 serotonin receptor agonist (m-Chlorophenylbiguanide hydrochloride, m-CPBG; 0.001, 0.01 and 0.1 μg/rat) impaired, whereas Y-25130 (a selective 5-HT3 serotonin receptor antagonist; 0.001 and 0.01 and 0.1 μg/rat) did not alter IA memory consolidation, by itself. Moreover, intra-PL administration of subthreshold dose of m-CPBG (0.0005 μg/rat) potentiated, while Y-25130 (0. 1 μg/rat) restored ACPA-induced memory consolidation deficit. The isobologram analysis showed that there is a synergistic effect between ACPA and m-CPBG on memory consolidation deficit. These findings suggest that 5-HT3 receptor mechanism(s), at least partly, play(s) a role in modulating the effect of ACPA on memory consolidation in the PL area.

  10. MDL72222, a serotonin 5-HT3 receptor antagonist, blocks MDMA's ability to establish a conditioned place preference.

    PubMed

    Bilsky, E J; Reid, L D

    1991-06-01

    Methylenedioxymethamphetamine (MDMA) has previously been shown to produce a positive conditioned place preference (CPP) among rats. Here the effects of doses of a specific 5-HT3 antagonist, MDL72222, on MDMA's ability to produce a CPP were assessed. A dose of MDL72222 (0.03 mg/kg) blocked the establishment of a MDMA CPP. These results support the suggestions that compounds affecting the 5-HT3 receptor may be of particular interest in studying the pharmacology of self-administered drugs.

  11. Competitive interaction of agonists and antagonists with 5-HT3 recognition sites in membranes of neuroblastoma cells labelled with (/sup 3/H)ICS 205-930

    SciTech Connect

    Hoyer, D.; Neijt, H.C.; Karpf, A.

    1989-01-01

    (3H)ICS 205-930 labelled 5-HT3 recognition sites in membranes prepared from murine neuroblastoma N1E-115 cells. Binding was rapid, reversible, saturable and stereoselective to an apparently homogeneous population of sites. Kinetic studies revealed that agonists and antagonists produced a monophasic dissociation reaction of (3H)ICS 205-930 from its recognition sites. The dissociation rate constant of the radioligand was similar whether the dissociation was induced by an agonist or an antagonist. Competition studies carried out with agonists and antagonists also suggested the presence of a homogeneous population of (3H)ICS 205-930 recognition sites. Competition curves were best fit for a 1 site model. (3H)ICS 205-930 binding sites displayed the pharmacological profile of a 5-HT3 receptor. The interactions of agonists and antagonists with (3H)ICS 205-930 recognition sites were apparently competitive in nature, as demonstrated in kinetic and equilibrium experiments. In saturation experiments carried out with (3H)ICS 205-930 in the presence and the absence of unlabelled agonists and antagonists, apparent Bmax values were not reduced whereas apparent Kd values were increased in the presence of competing ligands. There was a good agreement between apparent pKB values calculated for the competing ligands in saturation experiments and pKd values calculated from competition experiments. The present data demonstrate that (3H)ICS 205-930 labels a homogeneous population of sites at which agonists and antagonists interact competitively.

  12. Wood creosote prevents CRF-induced motility via 5-HT3 receptors in proximal and 5-HT4 receptors in distal colon in rats.

    PubMed

    Ataka, Koji; Kuge, Tomoo; Fujino, Kazunori; Takahashi, Toku; Fujimiya, Mineko

    2007-05-30

    Wood creosote has been used as an herbal medicine against acute diarrhea caused by food poisoning and has an inhibitory effect on colonic motility and enterotoxin-induced ion secretion. Since no previous studies have examined the effects of wood creosote on stress-induced alteration of colonic motility, we examined the effects on the colonic motility altered by intracerebroventricular (i.c.v.) injection of corticotropin-releasing factor (CRF), which is a key mediator in responses to stress. We recorded motor activity in proximal and distal colon of unrestrained conscious rats via two manometory catheters. The frequencies of phase III-like contraction and the % motor indices in both proximal and distal colon were measured. At the same time the number of fecal pellets excreted was counted. I.c.v. injection of CRF increased the motor activity in both proximal and distal colon, and these effects were completely antagonized by i.c.v. injection of a selective CRF type 1 antagonist but not by a CRF type 2 antagonist. Changes in colonic motility induced by CRF were reversed by intravenously administered wood creosote. Intraluminal administration of the 5-HT(3) receptor antagonist granisetron, or the 5-HT(4) receptor antagonist SB 204070 blocked the increase in colonic motility induced by i.c.v. injection of CRF. Wood creosote prevented the increase in colonic motility induced by the 5-HT(3) receptor agonist SR57227A in the proximal colon, while it prevented the increase in colonic motility induced by the 5-HT(4) receptor agonist RS67506 in the distal colon. These results indicate that wood creosote prevents the increase in colonic motility induced by CRF via 5-HT(3) receptors in the proximal colon, and via 5-HT(4) receptors in the distal colon, suggesting that wood creosote might be useful to treat stress-induced diarrhea.

  13. 5-Hydroxytryptamine (5-HT) Cellular Sequestration during Chronic Exposure Delays 5-HT3 Receptor Resensitization due to Its Subsequent Release*

    PubMed Central

    Hothersall, J. Daniel; Alexander, Amy; Samson, Andrew J.; Moffat, Christopher; Bollan, Karen A.; Connolly, Christopher N.

    2014-01-01

    The serotonergic synapse is dynamically regulated by serotonin (5-hydroxytryptamine (5-HT)) with elevated levels leading to the down-regulation of the serotonin transporter and a variety of 5-HT receptors, including the 5-HT type-3 (5-HT3) receptors. We report that recombinantly expressed 5-HT3 receptor binding sites are reduced by chronic exposure to 5-HT (IC50 of 154.0 ± 45.7 μm, t½ = 28.6 min). This is confirmed for 5-HT3 receptor-induced contractions in the guinea pig ileum, which are down-regulated after chronic, but not acute, exposure to 5-HT. The loss of receptor function does not involve endocytosis, and surface receptor levels are unaltered. The rate and extent of down-regulation is potentiated by serotonin transporter function (IC50 of 2.3 ± 1.0 μm, t½ = 3.4 min). Interestingly, the level of 5-HT uptake correlates with the extent of down-regulation. Using TX-114 extraction, we find that accumulated 5-HT remains soluble and not membrane-bound. This cytoplasmically sequestered 5-HT is readily releasable from both COS-7 cells and the guinea pig ileum. Moreover, the 5-HT level released is sufficient to prevent recovery from receptor desensitization in the guinea pig ileum. Together, these findings suggest the existence of a novel mechanism of down-regulation where the chronic release of sequestered 5-HT prolongs receptor desensitization. PMID:25281748

  14. Kampo Medicine: Evaluation of the Pharmacological Activity of 121 Herbal Drugs on GABAA and 5-HT3A Receptors

    PubMed Central

    Hoffmann, Katrin M.; Herbrechter, Robin; Ziemba, Paul M.; Lepke, Peter; Beltrán, Leopoldo; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2016-01-01

    Kampo medicine is a form of Japanese phytotherapy originating from traditional Chinese medicine (TCM). During the last several decades, much attention has been paid to the pharmacological effects of these medical plants and their constituents. However, in many cases, a systematic screening of Kampo remedies to determine pharmacologically relevant targets is still lacking. In this study, a broad screening of Kampo remedies was performed to look for pharmacologically relevant 5-HT3A and GABAA receptor ligands. Several of the Kampo remedies are currently used for symptoms such as nausea, emesis, gastrointestinal motility disorders, anxiety, restlessness, or insomnia. Therefore, the pharmacological effects of 121 herbal drugs from Kampo medicine were analyzed as ethanol tinctures on heterologously expressed 5-HT3A and GABAA receptors, due to the involvement of these receptors in such pathophysiological processes. The tinctures of Lindera aggregata (radix) and Leonurus japonicus (herba) were the most effective inhibitory compounds on the 5-HT3A receptor. Further investigation of known ingredients in these compounds led to the identification of leonurine from Leonurus as a new natural 5-HT3A receptor antagonist. Several potentiating herbs (e.g., Magnolia officinalis (cortex), Syzygium aromaticum (flos), and Panax ginseng (radix)) were also identified for the GABAA receptor, which are all traditionally used for their sedative or anxiolytic effects. A variety of tinctures with antagonistic effects Salvia miltiorrhiza (radix) were also detected. Therefore, this study reveals new insights into the pharmacological action of a broad spectrum of herbal drugs from Kampo, allowing for a better understanding of their physiological effects and clinical applications. PMID:27524967

  15. Discovery of new anti-depressants from structurally novel 5-HT3 receptor antagonists: design, synthesis and pharmacological evaluation of 3-ethoxyquinoxalin-2-carboxamides.

    PubMed

    Mahesh, Radhakrishnan; Devadoss, Thangaraj; Pandey, Dilip Kumar; Bhatt, Shvetank

    2011-02-15

    A novel series of 3-ethoxyquinoxalin-2-carboxamides were designed as per the pharmacophoric requirements of 5-HT(3) receptor antagonist using ligand-based approach. The desired carboxamides were synthesized from the key intermediate, 3-ethoxyquinoxalin-2-carboxylic acid by coupling with appropriate amines in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) and 1-hydroxybenzotriazole (HOBt). The 5-HT(3) receptor antagonism was evaluated in longitudinal muscle myenteric plexus preparation from guinea pig ileum against 5-HT(3) agonist, 2-methy-5-HT, which was expressed in the form of pA(2) values. Compound 6h (3-ethoxyquinoxalin-2-yl)(4-methylpiperazin-1-yl)methanone was found to be the most active compound, which expressed a pA(2) value of 7.7. In forced swim test, the compounds with higher pA(2) value exhibited good anti-depressant-like activity and compounds with lower pA(2) value failed to show activity as compared to the vehicle-treated group.

  16. Dynamic Expression of Serotonin Receptor 5-HT3A in Developing Sensory Innervation of the Lower Urinary Tract

    PubMed Central

    Ritter, K. Elaine; Southard-Smith, E. Michelle

    2017-01-01

    Sensory afferent signaling is required for normal function of the lower urinary tract (LUT). Despite the wide prevalence of bladder dysfunction and pelvic pain syndromes, few effective treatment options are available. Serotonin receptor 5-HT3A is a known mediator of visceral afferent signaling and has been implicated in bladder function. However, basic expression patterns for this gene and others among developing bladder sensory afferents that could be used to inform regenerative efforts aimed at treating deficiencies in pelvic innervation are lacking. To gain greater insight into the molecular characteristics of bladder sensory innervation, we conducted a thorough characterization of Htr3a expression in developing and adult bladder-projecting lumbosacral dorsal root ganglia (DRG) neurons. Using a transgenic Htr3a-EGFP reporter mouse line, we identified 5-HT3A expression at 10 days post coitus (dpc) in neural crest derivatives and in 12 dpc lumbosacral DRG. Using immunohistochemical co-localization we observed Htr3a-EGFP expression in developing lumbosacral DRG that partially coincides with neuropeptides CGRP and Substance P and capsaicin receptor TRPV1. A majority of Htr3a-EGFP+ DRG neurons also express a marker of myelinated Aδ neurons, NF200. There was no co-localization of 5-HT3A with the TRPV4 receptor. We employed retrograde tracing in adult Htr3a-EGFP mice to quantify the contribution of 5-HT3A+ DRG neurons to bladder afferent innervation. We found that 5-HT3A is expressed in a substantial proportion of retrograde traced DRG neurons in both rostral (L1, L2) and caudal (L6, S1) axial levels that supply bladder innervation. Most bladder-projecting Htr3a-EGFP+ neurons that co-express CGRP, Substance P, or TRPV1 are found in L1, L2 DRG, whereas Htr3a-EGFP+, NF200+ bladder-projecting neurons are from the L6, S1 axial levels. Our findings contribute much needed information regarding the development of LUT innervation and highlight the 5-HT3A serotonin receptor as

  17. The antiemetic 5-HT3 receptor antagonist Palonosetron inhibits substance P-mediated responses in vitro and in vivo.

    PubMed

    Rojas, Camilo; Li, Ying; Zhang, Jie; Stathis, Marigo; Alt, Jesse; Thomas, Ajit G; Cantoreggi, Sergio; Sebastiani, Silvia; Pietra, Claudio; Slusher, Barbara S

    2010-11-01

    Palonosetron is the only 5-HT(3) receptor antagonist approved for the treatment of delayed chemotherapy-induced nausea and vomiting (CINV) in moderately emetogenic chemotherapy. Accumulating evidence suggests that substance P (SP), the endogenous ligand acting preferentially on neurokinin-1 (NK-1) receptors, not serotonin (5-HT), is the dominant mediator of delayed emesis. However, palonosetron does not bind to the NK-1 receptor. Recent data have revealed cross-talk between the NK-1 and 5HT(3) receptor signaling pathways; we postulated that if palonosetron differentially inhibited NK-1/5-HT(3) cross-talk, it could help explain its efficacy profile in delayed emesis. Consequently, we evaluated the effect of palonosetron, granisetron, and ondansetron on SP-induced responses in vitro and in vivo. NG108-15 cells were preincubated with palonosetron, granisetron, or ondansetron; antagonists were removed and the effect on serotonin enhancement of SP-induced calcium release was measured. In the absence of antagonist, serotonin enhanced SP-induced calcium-ion release. After preincubation with palonosetron, but not ondansetron or granisetron, the serotonin enhancement of the SP response was inhibited. Rats were treated with cisplatin and either palonosetron, granisetron, or ondansetron. At various times after dosing, single neuronal recordings from nodose ganglia were collected after stimulation with SP; nodose ganglia neuronal responses to SP were enhanced when the animals were pretreated with cisplatin. Palonosetron, but not ondansetron or granisetron, dose-dependently inhibited the cisplatin-induced SP enhancement. The results are consistent with previous data showing that palonosetron exhibits distinct pharmacology versus the older 5-HT(3) receptor antagonists and provide a rationale for the efficacy observed with palonosetron in delayed CINV in the clinic.

  18. Stability of tramadol with three 5-HT3 receptor antagonists in polyolefin bags for patient-controlled delivery systems

    PubMed Central

    Chen, Fu-chao; Zhu, Jun; Li, Bin; Yuan, Fang-jun; Wang, Lin-hai

    2016-01-01

    Background Mixing 5-hydroxytryptamine-3 (5-HT3) receptor antagonists with patient-controlled analgesia (PCA) solutions of tramadol has been shown to decrease the incidence of nausea and vomiting associated with the use of tramadol PCA for postoperative pain. However, such mixtures are not commercially available, and the stability of the drug combinations has not been duly studied. The study aimed to evaluate the stability of tramadol with three 5-HT3 receptor antagonists in 0.9% sodium chloride injection for PCA administration. Materials and methods Test samples were prepared by adding 1,000 mg tramadol hydrochloride, 8 mg ondansetron hydrochloride, and 6 mg granisetron hydrochloride or 5 mg tropisetron hydrochloride to 100 mL of 0.9% sodium chloride injection in polyolefin bags. The samples were prepared in triplicates, stored at either 25°C or 4°C for 14 days, and assessed using the following compatibility parameters: precipitation, cloudiness, discoloration, and pH. Chemical stability was also determined using a validated high-pressure liquid chromatography method. Results All of the mixtures were clear and colorless throughout the initial observation period. No change in the concentration of tramadol hydrochloride occurred with any of the 5-HT3 receptor antagonists during the 14 days. Similarly, little or no loss of the 5-HT3 receptor antagonists occurred over the 14-day period. Conclusion Our results suggest that mixtures of tramadol hydrochloride, ondansetron hydrochloride, granisetron hydrochloride, or tropisetron hydrochloride in 0.9% sodium chloride injection were physically and chemically stable for 14 days when stored in polyolefin bags at both 4°C and 25°C. PMID:27350741

  19. Antiemetic effects of YM060, a potent and selective serotonin (5HT)3-receptor antagonist, in ferrets and dogs.

    PubMed

    Kamato, T; Miyata, K; Ito, H; Yuki, H; Yamano, M; Honda, K

    1991-11-01

    YM060, (R)-5-[(1-methyl-3-indolyl)carbonyl]-4,5,6,7-tetrahydro-1H-benzimidazole hydrochloride, is a new serotonin (5HT)3-receptor antagonist. We examined the effects of YM060 on chemotherapeutic agent-, apomorphine- and copper sulfate-induced emesis. Intravenous YM060 potently prevented cisplatin (10 mg/kg, i.v.)-induced emesis with ED50 values of 0.06 (0.05-0.07) micrograms/kg, i.v. in ferrets. Based on the ED50 values, YM060 was 300, 20 and 100 times more potent than ondansetron, granisetron and the S-isomer of YM060, respectively. The relative potencies of these drugs described above were similar to those in the previously reported 5HT3-receptor antagonism. YM060 given orally also potently inhibited cisplatin (10 mg/kg, i.p.)- and cyclophosphamide (200 mg/kg, i.p.)-induced emesis in ferrets with ED50 values of 0.1 (0.09-0.11) and 0.02 (0.16-0.27) micrograms/kg, p.o., respectively. All tested 5HT3-receptor antagonists including YM060 failed to prevent apomorphine (0.1 mg/kg, s.c.)-induced emesis in dogs and copper sulfate (1%, 10 ml, p.o.)-induced emesis in ferrets. Our data indicate that YM060 is a highly potent inhibitor of chemotherapeutic agent-induced emesis and that the antiemetic effect of YM060 may be depend on 5HT3-receptor antagonism.

  20. Stability of tramadol with three 5-HT3 receptor antagonists in polyolefin bags for patient-controlled delivery systems.

    PubMed

    Chen, Fu-Chao; Zhu, Jun; Li, Bin; Yuan, Fang-Jun; Wang, Lin-Hai

    2016-01-01

    Mixing 5-hydroxytryptamine-3 (5-HT3) receptor antagonists with patient-controlled analgesia (PCA) solutions of tramadol has been shown to decrease the incidence of nausea and vomiting associated with the use of tramadol PCA for postoperative pain. However, such mixtures are not commercially available, and the stability of the drug combinations has not been duly studied. The study aimed to evaluate the stability of tramadol with three 5-HT3 receptor antagonists in 0.9% sodium chloride injection for PCA administration. Test samples were prepared by adding 1,000 mg tramadol hydrochloride, 8 mg ondansetron hydrochloride, and 6 mg granisetron hydrochloride or 5 mg tropisetron hydrochloride to 100 mL of 0.9% sodium chloride injection in polyolefin bags. The samples were prepared in triplicates, stored at either 25°C or 4°C for 14 days, and assessed using the following compatibility parameters: precipitation, cloudiness, discoloration, and pH. Chemical stability was also determined using a validated high-pressure liquid chromatography method. All of the mixtures were clear and colorless throughout the initial observation period. No change in the concentration of tramadol hydrochloride occurred with any of the 5-HT3 receptor antagonists during the 14 days. Similarly, little or no loss of the 5-HT3 receptor antagonists occurred over the 14-day period. Our results suggest that mixtures of tramadol hydrochloride, ondansetron hydrochloride, granisetron hydrochloride, or tropisetron hydrochloride in 0.9% sodium chloride injection were physically and chemically stable for 14 days when stored in polyolefin bags at both 4°C and 25°C.

  1. QoL evaluation of olanzapine for chemotherapy-induced nausea and vomiting comparing with 5-HT3 receptor antagonist.

    PubMed

    Liu, J; Tan, L; Zhang, H; Li, H; Liu, X; Yan, Z; Chen, J; Yang, H; Zhang, D

    2015-05-01

    This study evaluated the efficacy of olanzapine in preventing chemotherapy-induced nausea and vomiting (CINV) and improving the quality of life (QoL) of patients with cancer during chemotherapy. Two hundred twenty-nine patients with cancer who received chemotherapy from January 2008 to August 2008 were enrolled, and they were randomised to receive olanzapine or a 5-HT3 receptor antagonist. The patients completed a CINV questionnaire once daily on days 1-5 and a QoL questionnaire on days 0 and 6. The complete response (CR) rates for nausea (76.85% versus 46.2%) and vomiting (84.3% versus 67.6%) were significantly higher in the olanzapine group than in the 5-HT3 receptor antagonist group for delayed CINV but not for acute CINV. The CR rates for nausea (76.85% versus 44.44%) and vomiting (85.95% versus 67.59%) were also significantly higher in the olanzapine group for the 5 days post-chemotherapy. After chemotherapy, global health status, emotional functioning, and insomnia were improved in the olanzapine group but worsened in the 5-HT3 receptor antagonist group, whereas cognitive functioning and appetite loss were unchanged. Moreover, olanzapine significantly improved global health status, emotional functioning, social functioning, fatigue, nausea/vomiting, insomnia, and appetite loss. Olanzapine improved the QoL of patients with cancer during chemotherapy, in part by reducing the incidence of delayed CINV. © 2014 John Wiley & Sons Ltd.

  2. Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: a potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism.

    PubMed

    du Jardin, Kristian Gaarn; Jensen, Jesper Bornø; Sanchez, Connie; Pehrson, Alan L

    2014-01-01

    We previously reported that the investigational multimodal antidepressant, vortioxetine, reversed 5-HT depletion-induced memory deficits while escitalopram and duloxetine did not. The present report studied the effects of vortioxetine and the potential impact of its 5-HT1A receptor agonist and 5-HT3 receptor antagonist properties on 5-HT depletion-induced memory deficits. Recognition and spatial working memory were assessed in the object recognition (OR) and Y-maze spontaneous alternation (SA) tests, respectively. 5-HT depletion was induced in female Long-Evans rats using 4-cholro-DL-phenylalanine methyl ester HCl (PCPA) and receptor occupancies were determined by ex vivo autoradiography. Rats were acutely dosed with vortioxetine, ondansetron (5-HT3 receptor antagonist) or flesinoxan (5-HT1A receptor agonist). The effects of chronic vortioxetine administration on 5-HT depletion-induced memory deficits were also assessed. 5-HT depletion reliably impaired memory performance in both the tests. Vortioxetine reversed PCPA-induced memory deficits dose-dependently with a minimal effective dose (MED) ≤0.1mg/kg (∼80% 5-HT3 receptor occupancy; OR) and ≤3.0mg/kg (5-HT1A, 5-HT1B, 5-HT3 receptor occupancy: ∼15%, 60%, 95%) in SA. Ondansetron exhibited a MED ≤3.0μg/kg (∼25% 5-HT3 receptor occupancy; OR), but was inactive in the SA test. Flesinoxan had a MED ≤1.0mg/kg (∼25% 5-HT1A receptor occupancy; SA); only 1.0mg/kg ameliorated deficits in the NOR. Chronic p.o. vortioxetine administration significantly improved memory performance in OR and occupied 95%, 66%, and 9.5% of 5-HT3, 5-HT1B, and 5-HT1A receptors, respectively. Vortioxetine's effects on SA performance may involve 5-HT1A receptor agonism, but not 5-HT3 receptor antagonism, whereas the effects on OR performance may involve 5-HT3 receptor antagonism and 5-HT1A receptor agonism. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  3. Inhibition of temporomandibular joint input to medullary dorsal horn neurons by 5HT3 receptor antagonist in female rats.

    PubMed

    Okamoto, K; Katagiri, A; Rahman, M; Thompson, R; Bereiter, D A

    2015-07-23

    Repeated forced swim (FS) conditioning enhances nociceptive responses to temporomandibular joint (TMJ) stimulation in female rats. The basis for FS-induced TMJ hyperalgesia remains unclear. To test the hypothesis that serotonin 3 receptor (5HT3R) mechanisms contribute to enhanced TMJ nociception after FS, ovariectomized female rats were treated with estradiol and subjected to FS for three days. On day 4, rats were anesthetized with isoflurane and TMJ-responsive neurons were recorded from superficial and deep laminae at the trigeminal subnucleus caudalis/upper cervical (Vc/C1-2) region and electromyographic (EMG) activity was recorded from the masseter muscle. Only Vc/C1-2 neurons activated by intra-TMJ injections of ATP were included for further analysis. Although neurons in both superficial and deep laminae were activated by ATP, only neurons in deep laminae displayed enhanced responses after FS. Local application of the 5HT3R antagonist, ondansetron (OND), at the Vc/C1-2 region reduced the ATP-evoked responses of neurons in superficial and deep laminae and reduced the EMG response in both sham and FS rats. OND also decreased the spontaneous firing rate of neurons in deep laminae and reduced the high-threshold convergent cutaneous receptive field area of neurons in superficial and deep laminae in both sham and FS rats. These results revealed that central application of a 5HT3R antagonist, had widespread effects on the properties of TMJ-responsive neurons at the Vc/C1-2 region and on jaw muscle reflexes under sham and FS conditions. It is concluded that 5HT3R does not play a unique role in mediating stress-induced hyperalgesia related to TMJ nociception.

  4. Inhibition of temporomandibular joint input to medullary dorsal horn neurons by 5HT3 receptor antagonist in female rats

    PubMed Central

    Okamoto, Keiichiro; Katagiri, Ayano; Rahman, Mostafeezur; Thompson, Randall; Bereiter, David A.

    2015-01-01

    Repeated forced swim (FS) conditioning enhances nociceptive responses to temporomandibular joint (TMJ) stimulation in male and female rats. The basis for FS-induced TMJ hyperalgesia remains unclear. To test the hypothesis that serotonin 3 receptor (5HT3R) mechanisms contribute to enhanced TMJ nociception after FS, ovariectomized female rats were treated with estradiol and subjected to FS for three days. On day 4, rats were anesthetized with isoflurane and TMJ-responsive neurons were recorded from superficial and deep laminae at the trigeminal subnucleus caudalis/upper cervical (Vc/C1–2) region and electromyographic (EMG) activity was recorded from the masseter muscle. Only Vc/C1–2 neurons activated by intra-TMJ injections of ATP were included for further analysis. Although neurons in both superficial and deep laminae were activated by ATP, only neurons in deep laminae displayed enhanced responses after FS. Local application of the 5HT3R antagonist, ondansetron (OND), at the Vc/C1–2 region reduced the ATP-evoked responses of neurons in superficial and deep laminae and reduced the EMG response in both sham and FS rats. OND also decreased the spontaneous firing rate of neurons in deep laminae and reduced the high threshold convergent cutaneous receptive field area of neurons in superficial and deep laminae in both sham and FS rats. These results revealed that central application of a 5HT3R antagonist, had widespread effects on the properties of TMJ-responsive neurons at the Vc/C1–2 region and on jaw muscle reflexes under sham and FS conditions. It is concluded that 5HT3R does not play a unique role in mediating stress-induced hyperalgesia related to TMJ nociception. PMID:25913635

  5. Inhibitory effects of dextrorotatory morphinans on the human 5-HT(3A) receptor expressed in Xenopus oocytes: Involvement of the N-terminal domain of the 5-HT(3A) receptor.

    PubMed

    Lee, Byung-Hwan; Hwang, Sung-Hee; Choi, Sun-Hye; Shin, Tae-Joon; Kang, Jiyeon; Kim, Hyun-Joong; Kim, Hyoung-Chun; Lee, Joon-Hee; Nah, Seung-Yeol

    2012-07-05

    We previously developed a series of dextromethorphan (DM, 3-methoxy-17-methylmorphinan) analogs modified at positions 3 and 17 of the morphinan ring system. Recent reports have shown that DM attenuates abdominal pain caused by irritable bowel syndrome, and multidrug regimens that include DM prevent nausea/vomiting following cancer surgery. However, little is known regarding the molecular mechanisms underlying the beneficial effects of DM. Here, we investigated the effects of DM, 3 of its analogs (AM, 3-allyloxy-17-methoxymorphian; CM, 3-cyclopropyl-17-methoxymorphinan; and DF, 3-methyl-17-methylmorphinan), and 1 of its metabolites (HM, 3-methoxymorphinan) on the activity of the human 5-HT(3A) receptor channel expressed in Xenopus laevis oocytes, using the 2-microelectrode voltage clamp technique. We found that intra-oocyte injection of human 5-HT(3A) receptor cRNAs elicited an inward current (I(5-HT)) in the presence of 5-HT. Cotreatment with AM, CM, DF, DM, or HM inhibited I(5-HT) in a dose-dependent, voltage-independent, and reversible manner. The IC(50) values for AM, CM, DF, DM, and HM were 24.5±1.4, 21.5±4.2, 132.6±35.8, 181.3±23.5, and 191.3±31.5μM, respectively. The IC(50) values of AM and CM were 7-fold lower than that of DM, and mechanistic analysis revealed that DM, DF, HM, AM, and CM were competitive inhibitors of I(5-HT). Point mutations of Arg241 in the N-terminal, but not amino acids in the pore region, to other amino acid residues attenuated or abolished DM- and DM-analog-induced inhibition of I(5-HT). Together, these results demonstrated that dextrorotatory morphinans might regulate 5-HT(3A) receptor channel activity via interaction with its N-terminal domain.

  6. Noncompetitive Inhibition of 5-HT3 Receptors by Citral, Linalool, and Eucalyptol Revealed by Nonlinear Mixed-Effects Modeling.

    PubMed

    Jarvis, Gavin E; Barbosa, Roseli; Thompson, Andrew J

    2016-03-01

    Citral, eucalyptol, and linalool are widely used as flavorings, fragrances, and cosmetics. Here, we examined their effects on electrophysiological and binding properties of human 5-HT3 receptors expressed in Xenopus oocytes and human embryonic kidney 293 cells, respectively. Data were analyzed using nonlinear mixed-effects modeling to account for random variance in the peak current response between oocytes. The oils caused an insurmountable inhibition of 5-HT-evoked currents (citral IC50 = 120 µM; eucalyptol = 258 µM; linalool = 141 µM) and did not compete with fluorescently labeled granisetron, suggesting a noncompetitive mechanism of action. Inhibition was not use-dependent but required a 30-second preapplication. Compound washout caused a slow (∼180 seconds) but complete recovery. Coapplication of the oils with bilobalide or diltiazem indicated they did not bind at the same locations as these channel blockers. Homology modeling and ligand docking predicted binding to a transmembrane cavity at the interface of adjacent subunits. Liquid chromatography coupled to mass spectrometry showed that an essential oil extracted from Lippia alba contained 75.9% citral. This inhibited expressed 5-HT3 receptors (IC50 = 45 µg ml(-1)) and smooth muscle contractions in rat trachea (IC50 = 200 µg ml(-1)) and guinea pig ileum (IC50 = 20 µg ml(-1)), providing a possible mechanistic explanation for why this oil has been used to treat gastrointestinal and respiratory ailments. These results demonstrate that citral, eucalyptol, and linalool inhibit 5-HT3 receptors, and their binding to a conserved cavity suggests a valuable target for novel allosteric modulators.

  7. The effects of the 5-HT3 receptor antagonist tropisetron on cocaine-induced conditioned taste aversions.

    PubMed

    Briscione, Maria A; Serafine, Katherine M; Merluzzi, Andrew P; Rice, Kenner C; Riley, Anthony L

    2013-04-01

    Although cocaine readily induces taste aversions, little is known about the mechanisms underlying this effect. Recent work has shown that cocaine's actions on serotonin (5-HT) may be involved. To address this possibility, the present experiments examined a role of the specific 5-HT receptor, 5-HT3, in this effect given that it is implicated in a variety of behavioral effects of cocaine. This series of investigations first assessed the aversive effects of the 5-HT3 receptor antagonist tropisetron alone (Experiment 1). Specifically, in Experiment 1 male Sprague-Dawley rats were given repeated pairings of a novel saccharin solution and tropisetron (0, 0.056, 0.18 and 0.56mg/kg). Following this, a non-aversion-inducing dose of tropisetron (0.18mg/kg) was assessed for its ability to block aversions induced by a range of doses of cocaine (Experiment 2). Specifically, in Experiment 2 animals were given access to a novel saccharin solution and then injected with tropisetron (0 or 0.18mg/kg) followed by an injection of various doses of cocaine (0, 10, 18 and 32mg/kg). Cocaine induced dose-dependent taste aversions that were not blocked by tropisetron, suggesting that cocaine's aversive effects are not mediated by 5-HT, at least at this specific receptor subtype. At the intermediate dose of cocaine, aversions appeared to be potentiated, suggesting 5-HT3 may play a limiting role in cocaine's aversive effects. These data are discussed in the context of previous examinations of the roles of serotonin, dopamine, and norepinephrine in cocaine-induced aversions.

  8. Ondansetron reverses anti-hypersensitivity from clonidine in rats following peripheral nerve injury: Role of γ-amino butyric acid in α2-adrenoceptor and 5-HT3 serotonin receptor analgesia

    PubMed Central

    Hayashida, Ken-ichiro; Kimura, Masafumi; Yoshizumi, Masaru; Hobo, Shotaro; Obata, Hideaki; Eisenach, James C.

    2012-01-01

    Introduction Monoaminergic pathways, impinging an α2-adrenoceptors and 5-HT3 serotonin receptors, modulate nociceptive transmission, but their mechanisms and interactions after neuropathic injury are unknown. Here we examine these interactions in rodents after nerve injury. Methods Male Sprague-Dawley rats following L5-L6 spinal nerve ligation (SNL) were used for either behavioral testing, in vivo microdialysis for γ-amino butyric acid (GABA) and acetylcholine release, or synaptosome preparation for GABA release. Results Intrathecal administration of the α2-adrenoceptor agonist (clonidine) and 5-HT3 receptor agonist (chlorophenylbiguanide) reduced hypersensitivity in SNL rats via GABA receptor-mediated mechanisms. Clonidine increased GABA and acetylcholine release in vivo in the spinal cord of SNL rats but not in normal rats. Clonidine-induced spinal GABA release in SNL rats was blocked by α2-adrenergic and nicotinic cholinergic antagonists. The 5-HT3 receptor antagonist ondansetron decreased and chlorophenylbiguanide increased spinal GABA release in both normal and SNL rats. In synaptosomes from the spinal dorsal horn of SNL rats, pre-synaptic GABA release was increased by nicotinic agonists and decreased by muscarinic and α2-adrenergic agonists. Spinally administered ondansetron significantly reduced clonidine-induced anti-hypersensitivity and spinal GABA release in SNL rats. Conclusion These results suggest that spinal GABA contributes to anti-hypersensitivity from intrathecal α2-adrenergic and 5-HT3 receptor agonists in the neuropathic pain state, that cholinergic neuroplasticity after nerve injury is critical for α2-adrenoceptor-mediated GABA release, and that blockade of spinal 5-HT3 receptors reduces α2-adrenoceptor-mediated anti-hypersensitivity via reducing total GABA release. PMID:22722575

  9. A molecular dynamics approach to receptor mapping: application to the 5HT3 and beta 2-adrenergic receptors.

    PubMed

    Gouldson, P R; Winn, P J; Reynolds, C A

    1995-09-29

    A molecular dynamics-based approach to receptor mapping is proposed, based on the method of Rizzi (Rizzi, J. P.; et al. J. Med. Chem. 1990, 33, 2721). In Rizzi's method, the interaction energy between a series of drug molecules and probe atoms (which mimic functional groups on the receptor, such as hydrogen bond donors) was calculated. These interactions were calculated on a three-dimensional grid within a molecular mechanics parameters, were placed at these minima. The distances between the dummy atom sites were monitored during molecular dynamics simulations and plotted as distance distribution functions. Important distances within the receptor became apparent, as drugs with a common mode of binding share similar peaks in the distance distribution functions. In the case of specific 5HT3 ligands, the important donor--acceptor distance within the receptor has a range of ca. 7.9--8.9 A. In the case of specific beta 2-adrenergic ligands, the important donor--acceptor distances within the receptor lie between ca. 7--9 A and between 8 and 10 A. These distances distribution functions were used to assess three different models of the beta 2-adrenergic G-protein-coupled receptor. The comparison of the distance distribution functions for the simulation with the actual donor--acceptor distances in the receptor models suggested that two of the three receptor models were much more consistent with the receptor-mapping studies. These receptor-mapping studies gave support for the use of rhodopsin, rather than the bacteriorhodopsin template, for modeling G-protein-coupled receptors but also sounded a warning that agreement with binding data from site-directed mutagenesis experiments does not necessarily validate a receptor model.

  10. Spinal 5-HT3 receptor mediates nociceptive effect on central neuropathic pain; possible therapeutic role for tropisetron

    PubMed Central

    Nasirinezhad, Farinaz; Hosseini, Marjan; Karami, Zohre; Yousefifard, Mahmoud; Janzadeh, Autosa

    2016-01-01

    Objectives To test the analgesic effect of 5-HT-3 receptor antagonist, tropisetron, in a clip compression injury model of spinal cord pain in rats. Methods Four weeks post compression of the spinal cord at lumbar level, tropisetron was administered intrathecally at 100 μg and 150 μg dosages. Behavioral tests were assessed before administration. Fifteen minutes after injection, behavioral tests were repeated. Randall-Sellitto and plantar test was used for mechanical and thermal hyperalgesia, respectively. Mechanical and cold allodynia were evaluated by Von Frey filament and acetone droplets, respectively. The analgesic effect of tropisetron was compared with intrathecal administration of salicylate. Locomotor score was evaluated by Basso, Beattie and Bresnahan (BBB) test every week after spinal cord injury. Results Intrathecal administration of tropisetron, decreased hyperalgesia and mechanical allodynia, but not cold allodynia were observed after compression of the spinal cord. Conclusion Blockade of 5-HT-3 receptors by tropisetron at the spinal level induces an antinociceptive effect on chronic central neuropathic pain and suggests that this compound may have potential clinical utility for the management of central neuropathic pain, particularly in patients with hyperalgesia and tactile allodynia. PMID:26338446

  11. [Effect of the 5-HT3 receptor antagonist granisetron on estramustine phosphate sodium (Estracyt)-induced emesis in ferrets].

    PubMed

    Higashioka, Masaya; Yamaguchi, Emi; Takatori, Shingo; Tanaka, Mitsushi; Kyoi, Takashi

    2010-07-01

    Estracyt(R) is an antimitotic drug used for the treatment of prostate cancer, and its most common adverse effects are nausea and vomiting. In this study, we investigated the effect of a 5-HT3 receptor antagonist, granisetron, on emesis induced in ferrets by estramustine phosphate sodium (EMP), the active ingredient of Estracyt. To clarify the mechanism of action of EMP-induced emesis, we also investigated the effect of EMP on the release of serotonin (5-HT) in the isolated rat ileum. EMP (3 mg/kg, per os) induced 75.3+/-10.2 retching episodes and 7.5+/-1.3 vomiting episodes during a 2-h observation period. The latency to the first emetic response was 58.0+/-13.5 min. Granisetron (0.1 mg/kg, per os) administered 1 h before the administration of EMP reduced the number of EMP-induced retching and vomiting episodes to 1.3+/-1.3 and 1.0+/-1.0, respectively, and prolonged the latency by a factor of almost two. EMP (10-5 and 10-4 M) increased 5-HT release from isolated rat ileum, and 10 -7 M granisetron almost completely inhibited the increase induced by 10-4 M EMP. These results suggest that EMP induces nausea and vomiting via 5-HT release from the ileum, and that 5-HT3 receptor antagonists may be useful to prevent gastrointestinal adverse effects that occur during treatment with Estracyt.

  12. The 5-HT3 receptor antagonist, ondansetron, blocks the development and expression of ethanol-induced locomotor sensitization in mice.

    PubMed

    Umathe, Sudhir N; Bhutada, Pravinkumar S; Raut, Vivek S; Jain, Nishant S; Mundhada, Yogita R

    2009-02-01

    Manipulation of the serotonergic system has been shown to alter ethanol sensitization. Ondansetron is a 5-HT3 receptor antagonist, reported to attenuate cocaine and methamphetamine-induced behavioral sensitization, but no reports are available on its role in ethanol-induced behavioral sensitization. Therefore, an attempt has been made to assess this issue by using an earlier used animal model of ethanol-induced locomotor sensitization. Results indicated that ondansetron (0.25-1.0 mg/kg, subcutaneously) given before the challenge dose of ethanol (2.4 g/kg, intraperitoneally) injection, significantly and dose dependently attenuated the expression of sensitization. In addition, ondansetron (1.0 mg/kg, subcutaneously) given before ethanol injection on days 1, 4, 7, and 10 significantly blocked the development (days 1, 4, 7, and 10), and expression (day 15) of sensitization to the locomotor stimulant effect of ethanol injection. Ondansetron had no effect per se on locomotor activity and did not affect blood ethanol levels. Therefore, the results raise the possibility that ondansetron blocked the development and expression of ethanol-induced locomotor sensitization by acting on 5-HT3 receptors.

  13. A 5-HT3 receptor antagonist potentiates the behavioral, neurochemical and electrophysiological actions of an SSRI antidepressant.

    PubMed

    Bétry, C; Overstreet, D; Haddjeri, N; Pehrson, A L; Bundgaard, C; Sanchez, C; Mørk, A

    2015-04-01

    More effective treatments for major depression are needed. We studied if the selective 5-HT3 receptor antagonist ondansetron can potentiate the antidepressant potential of the selective serotonin (5-HT) reuptake inhibitor (SSRI) paroxetine using behavioral, neurochemical and electrophysiological methods. Flinders Sensitive Line (FSL) rats, treated with ondansetron, and/or a sub-effective dose of paroxetine, were assessed in the forced swim test. The effects of an acute intravenous administration of each compound alone and in combination were evaluated with respect to 5-HT neuronal firing rate in the dorsal raphe nucleus (DRN). Effects of s.c. administration of the compounds alone and in combination on extracellular levels of 5-HT were assessed in the ventral hippocampus of freely moving rats by microdialysis. The results showed that ondansetron enhanced the antidepressant activity of paroxetine in the forced swim test. It partially prevented the suppressant effect of paroxetine on DRN 5-HT neuronal firing and enhanced the paroxetine-induced increase of hippocampal extracellular 5-HT release. These findings indicate that 5-HT3 receptor blockade potentiates the antidepressant effects of SSRIs. Since both paroxetine and ondansetron are used clinically, it might be possible to validate this augmentation strategy in depressed patients.

  14. Identification of Glycyrrhiza as the rikkunshito constituent with the highest antagonistic potential on heterologously expressed 5-HT3A receptors due to the action of flavonoids

    PubMed Central

    Herbrechter, Robin; Ziemba, Paul M.; Hoffmann, Katrin M.; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2015-01-01

    The traditional Japanese phytomedicine rikkunshito is traditionally used for the treatment of gastrointestinal motility disorders, cachexia and nausea. These effects indicate 5-HT3 receptor antagonism, due to the involvement of these receptors in such pathophysiological processes. E.g., setrons, specific 5-HT3 receptor antagonists are the strongest antiemetics, developed so far. Therefore, the antagonistic effects of the eight rikkunshito constituents at heterologously expressed 5-HT3Areceptors were analyzed using the two-electrode voltage-clamp technique. The results indicate that tinctures from Aurantii, Ginseng, Zingiberis, Atractylodis and Glycyrrhiza inhibited the 5-HT3A receptor response, whereas the tinctures of Poria cocos, Jujubae and Pinellia exhibited no effect. Surprisingly, the strongest antagonism was found for Glycyrrhiza, whereas the Zingiberis tincture, which is considered to be primarily responsible for the effect of rikkunshito, exhibited the weakest antagonism of 5-HT3A receptors. Rikkunshito contains various vanilloids, ginsenosides and flavonoids, a portion of which show an antagonistic effect on 5-HT3 receptors. A screening of the established ingredients of the active rikkunshito constituents and related substances lead to the identification of new antagonists within the class of flavonoids. The flavonoids (-)-liquiritigenin, glabridin and licochalcone A from Glycyrrhiza species were found to be the most effective inhibitors of the 5-HT-induced currents in the screening. The flavonoids (-)-liquiritigenin and hesperetin from Aurantii inhibited the receptor response in a non-competitive manner, whereas glabridin and licochalcone A exhibited a potential competitive antagonism. Furthermore, licochalcone A acts as a partial antagonist of 5-HT3A receptors. Thus, this study reveals new 5-HT3A receptor antagonists with the aid of increasing the comprehension of the complex effects of rikkunshito. PMID:26191003

  15. Serotonin 5-HT3 Receptor-Mediated Vomiting Occurs via the Activation of Ca2+/CaMKII-Dependent ERK1/2 Signaling in the Least Shrew (Cryptotis parva)

    PubMed Central

    Zhong, Weixia; Hutchinson, Tarun E.; Chebolu, Seetha; Darmani, Nissar A.

    2014-01-01

    Stimulation of 5-HT3 receptors (5-HT3Rs) by 2-methylserotonin (2-Me-5-HT), a selective 5-HT3 receptor agonist, can induce vomiting. However, downstream signaling pathways for the induced emesis remain unknown. The 5-HT3R channel has high permeability to extracellular calcium (Ca2+) and upon stimulation allows increased Ca2+ influx. We examined the contribution of Ca2+/calmodulin-dependent protein kinase IIα (Ca2+/CaMKIIα), interaction of 5-HT3R with calmodulin, and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling to 2-Me-5-HT-induced emesis in the least shrew. Using fluo-4 AM dye, we found that 2-Me-5-HT augments intracellular Ca2+ levels in brainstem slices and that the selective 5-HT3R antagonist palonosetron, can abolish the induced Ca2+ signaling. Pre-treatment of shrews with either: i) amlodipine, an antagonist of L-type Ca2+ channels present on the cell membrane; ii) dantrolene, an inhibitor of ryanodine receptors (RyRs) Ca2+-release channels located on the endoplasmic reticulum (ER); iii) a combination of their less-effective doses; or iv) inhibitors of CaMKII (KN93) and ERK1/2 (PD98059); dose-dependently suppressed emesis caused by 2-Me-5-HT. Administration of 2-Me-5-HT also significantly: i) enhanced the interaction of 5-HT3R with calmodulin in the brainstem as revealed by immunoprecipitation, as well as their colocalization in the area postrema (brainstem) and small intestine by immunohistochemistry; and ii) activated CaMKIIα in brainstem and in isolated enterochromaffin cells of the small intestine as shown by Western blot and immunocytochemistry. These effects were suppressed by palonosetron. 2-Me-5-HT also activated ERK1/2 in brainstem, which was abrogated by palonosetron, KN93, PD98059, amlodipine, dantrolene, or a combination of amlodipine plus dantrolene. However, blockade of ER inositol-1, 4, 5-triphosphate receptors by 2-APB, had no significant effect on the discussed behavioral and biochemical parameters. This study demonstrates

  16. Serotonin 5-HT3 receptor-mediated vomiting occurs via the activation of Ca2+/CaMKII-dependent ERK1/2 signaling in the least shrew (Cryptotis parva).

    PubMed

    Zhong, Weixia; Hutchinson, Tarun E; Chebolu, Seetha; Darmani, Nissar A

    2014-01-01

    Stimulation of 5-HT3 receptors (5-HT3Rs) by 2-methylserotonin (2-Me-5-HT), a selective 5-HT3 receptor agonist, can induce vomiting. However, downstream signaling pathways for the induced emesis remain unknown. The 5-HT3R channel has high permeability to extracellular calcium (Ca(2+)) and upon stimulation allows increased Ca(2+) influx. We examined the contribution of Ca(2+)/calmodulin-dependent protein kinase IIα (Ca(2+)/CaMKIIα), interaction of 5-HT3R with calmodulin, and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling to 2-Me-5-HT-induced emesis in the least shrew. Using fluo-4 AM dye, we found that 2-Me-5-HT augments intracellular Ca(2+) levels in brainstem slices and that the selective 5-HT3R antagonist palonosetron, can abolish the induced Ca(2+) signaling. Pre-treatment of shrews with either: i) amlodipine, an antagonist of L-type Ca(2+) channels present on the cell membrane; ii) dantrolene, an inhibitor of ryanodine receptors (RyRs) Ca2+-release channels located on the endoplasmic reticulum (ER); iii) a combination of their less-effective doses; or iv) inhibitors of CaMKII (KN93) and ERK1/2 (PD98059); dose-dependently suppressed emesis caused by 2-Me-5-HT. Administration of 2-Me-5-HT also significantly: i) enhanced the interaction of 5-HT3R with calmodulin in the brainstem as revealed by immunoprecipitation, as well as their colocalization in the area postrema (brainstem) and small intestine by immunohistochemistry; and ii) activated CaMKIIα in brainstem and in isolated enterochromaffin cells of the small intestine as shown by Western blot and immunocytochemistry. These effects were suppressed by palonosetron. 2-Me-5-HT also activated ERK1/2 in brainstem, which was abrogated by palonosetron, KN93, PD98059, amlodipine, dantrolene, or a combination of amlodipine plus dantrolene. However, blockade of ER inositol-1, 4, 5-triphosphate receptors by 2-APB, had no significant effect on the discussed behavioral and biochemical parameters. This study

  17. Antidepressant and anti-anxiety like effects of 4i (N-(3-chloro-2-methylphenyl) quinoxalin-2-carboxamide), a novel 5-HT3 receptor antagonist in acute and chronic neurobehavioral rodent models.

    PubMed

    Gupta, Deepali; Radhakrishnan, Mahesh; Thangaraj, Devadoss; Kurhe, Yeshwant

    2014-07-15

    Depression and anxiety are the most debilitating mood disorders with poor therapeutic recovery rates. In the last decades, 5-HT3 receptor antagonists have been identified as potential agents for mood disorders. The current investigation focuses on evaluating the, antidepressant and anti-anxiety like effects of a novel 5-HT3 antagonist, 4i (N-(3-chloro-2-methylphenyl) quinoxalin-2-carboxamide). Preliminary, in vitro 5-HT3 receptor binding affinity was performed in isolated longitudinal muscle-myenteric plexus from the guinea pig ileum. Consequently, neurobehavioral effects of 4i in acute and chronic rodent models were evaluated. In addition, involvement of serotonergic system in the postulated effects of the compound was analyzed by in vivo assay. in vitro, 4i demonstrated high 5-HT3 receptor antagonistic activity (pA2, 7.6). in vivo acute study, 4i exhibited decreased duration of immobility in forced swim and tail suspension tests, and increased exploratory parameters as number and duration of nose-poking in hole board test and latency and time spent in aversive brightly illuminated light chamber in light-dark model. Moreover, in chronic model of depression, i.e., olfactory bulbectomy with behavioral deficits, 4i reversed depressive anhedonia in sucrose preference test and anxious hyperactive behavior in open field test in rats. Furthermore, synergistic effect of 4i with fluoxetine (a selective serotonin reuptake inhibitor) and inhibitory effect of 1-(m-chlorophenyl)-biguanide (a 5-HT3 receptor agonist) revealed serotonergic modulation by 4i mediated 5-HT3 receptor antagonism, which was further confirmed by potentiation of 5-hydroxytryptophan (a serotonin synthesis precursor) induced head twitch response. These findings suggest the potential antidepressant and anti-anxiety like effects of 4i, which may be related to the modulation of serotonergic system. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Spatial orientation of the antagonist granisetron in the ligand-binding site of the 5-HT3 receptor.

    PubMed

    Yan, Dong; White, Michael M

    2005-08-01

    The serotonin type 3 receptor (5-HT(3)R) is a member of the cys-loop ligand-gated ion channel (LGIC) superfamily. Like almost all membrane proteins, high-resolution structural data are unavailable for this class of receptors. We have taken advantage of the high degree of homology between LGICs and the acetylcholine binding protein (AChBP) from the freshwater snail Lymnea stagnalis, for which high-resolution structural data are available, to create a structural model for the extracellular (i.e., ligand-binding) domain of the 5-HT(3)R and to perform a series of ligand docking experiments to delineate the architecture of the ligand-binding site. Structural models were created using homology modeling with the AChBP as a template. Docking of the antagonist granisetron was carried out using a Lamarckian genetic algorithm to produce models of ligand-receptor complexes. Two energetically similar conformations of granisetron in the binding site were obtained from the docking simulations. In one model, the indazole ring of granisetron is near Trp90 and the tropane ring is near Arg92; in the other, the orientation is reversed. We used double-mutant cycle analysis to determine which of the two orientations is consistent with experimental data and found that the data are consistent with the model in which the indazole ring of granisetron interacts with Arg92 and the tropane ring interacts with Trp90. The combination of molecular modeling with double-mutant cycle analysis offers a powerful approach for the delineation of the architecture of the ligand-binding site.

  19. Noncompetitive Inhibition of 5-HT3 Receptors by Citral, Linalool, and Eucalyptol Revealed by Nonlinear Mixed-Effects Modeling

    PubMed Central

    Jarvis, Gavin E.; Barbosa, Roseli

    2016-01-01

    Citral, eucalyptol, and linalool are widely used as flavorings, fragrances, and cosmetics. Here, we examined their effects on electrophysiological and binding properties of human 5-HT3 receptors expressed in Xenopus oocytes and human embryonic kidney 293 cells, respectively. Data were analyzed using nonlinear mixed-effects modeling to account for random variance in the peak current response between oocytes. The oils caused an insurmountable inhibition of 5‐HT–evoked currents (citral IC50 = 120 µM; eucalyptol = 258 µM; linalool = 141 µM) and did not compete with fluorescently labeled granisetron, suggesting a noncompetitive mechanism of action. Inhibition was not use‐dependent but required a 30-second preapplication. Compound washout caused a slow (∼180 seconds) but complete recovery. Coapplication of the oils with bilobalide or diltiazem indicated they did not bind at the same locations as these channel blockers. Homology modeling and ligand docking predicted binding to a transmembrane cavity at the interface of adjacent subunits. Liquid chromatography coupled to mass spectrometry showed that an essential oil extracted from Lippia alba contained 75.9% citral. This inhibited expressed 5‐HT3 receptors (IC50 = 45 µg ml−1) and smooth muscle contractions in rat trachea (IC50 = 200 µg ml−1) and guinea pig ileum (IC50 = 20 µg ml−1), providing a possible mechanistic explanation for why this oil has been used to treat gastrointestinal and respiratory ailments. These results demonstrate that citral, eucalyptol, and linalool inhibit 5-HT3 receptors, and their binding to a conserved cavity suggests a valuable target for novel allosteric modulators. PMID:26669427

  20. Investigation of 5-HT3A receptor gene expression in peripheral blood mononuclear cells of individuals who had been exposed to air pollution.

    PubMed

    Ahangari, Ghasem; Amirabad, Leila Mohammadi; Mozafari, Sona; Majeidi, Ali; Deilami, Gholamreza Derkhshan

    2013-12-01

    The role of air pollution in exacerbation of allergic symptoms is well known. Several studies have shown the effect of air pollution on serotonergic system. The changes in serotonergic system could trigger several allergic symptoms. 5-HT(3A) is among serotonin receptors on the peripheral Blood Mononuclear Cells (PBMCs) as well as other cells. In the present study we compared the 5-HT(3A) gene expression in PBMCs of the asthmatic patients as well as individuals who had been exposed to the air pollution. Normal individuals were also included in the study as control for comparison of 5-HT(3A) gene expression. Following the synthesis of the cDNA using mRNA extracted from PBMCs the level of 5- HT(3A) gene expression was measured using real-time PCR. The results showed t a significant increase in the relative expression level of 5-HT(3A) receptor in PBMCs from asthmatic patients and individuals exposed to the air pollutants compared to normal controls. Our result indicates that significant increase in 5-HT(3A) receptor may contribute to the pathogenesis as well as allergic symptoms which resulted from air pollution.

  1. The effect of ondansetron, a 5-HT3 receptor antagonist, in chronic fatigue syndrome: a randomized controlled trial.

    PubMed

    The, Gerard K H; Bleijenberg, Gijs; Buitelaar, Jan K; van der Meer, Jos W M

    2010-05-01

    Accumulating data support the involvement of the serotonin (5-hydroxytryptamine [5-HT]) system in the pathophysiology of chronic fatigue syndrome. Neuropharmacologic studies point to a hyperactive 5-HT system, and open-label treatment studies with 5-HT(3) receptor antagonists have shown promising results. In this randomized controlled clinical trial, the effect of ondansetron, a 5-HT(3) receptor antagonist, was assessed on fatigue severity and functional impairment in adult patients with chronic fatigue syndrome. A randomized, placebo-controlled, double-blind clinical trial was conducted at Radboud University Nijmegen Medical Centre, The Netherlands. Sixty-seven adult patients who fulfilled the US Centers for Disease Control and Prevention (CDC) criteria for chronic fatigue syndrome and who were free from current psychiatric comorbidity participated in the clinical trial. Participants received either ondansetron 16 mg per day or placebo for 10 weeks. The primary outcome variables were fatigue severity (Checklist Individual Strength fatigue severity subscale [CIS-fatigue]) and functional impairment (Sickness Impact Profile-8 [SIP-8]). The effect of ondansetron was assessed by analysis of covariance. Data were analyzed on an intention-to-treat basis. All patients were recruited between June 2003 and March 2006. Thirty-three patients were allocated to the ondansetron condition, 34 to the placebo condition. The 2 groups were well matched in terms of age, sex, fatigue severity, functional impairment, and CDC symptoms. Analysis of covariance showed no significant differences between the ondansetron- and placebo-treated groups during the 10-week treatment period in fatigue severity and functional impairment. This clinical trial demonstrates no benefit of ondansetron compared to placebo in the treatment of chronic fatigue syndrome. www.trialregister.nl: ISRCTN02536681. ©Copyright 2010 Physicians Postgraduate Press, Inc.

  2. Interaction of Pyridostigmine with the 5-HT(3) Receptor Antagonist Ondansetron in Guinea Pigs

    DTIC Science & Technology

    1993-05-13

    associated with other anti- emetic compounds such as metoclopramide (6). Pyridostigmine (PYR) has been utilized as the drug of choice for pretreatment...Naylor RJ, Richardson BP. 5-Hydroxytryptamine Receptor Antagonism by Metoclopramide and ICS 205- 930 in the Guinea-Pig Leads to Enhancement of

  3. Bidirectional amygdaloid control of neuropathic hypersensitivity mediated by descending serotonergic pathways acting on spinal 5-HT3 and 5-HT1A receptors.

    PubMed

    Sagalajev, B; Bourbia, N; Beloushko, E; Wei, H; Pertovaara, A

    2015-04-01

    Amygdala is involved in processing of primary emotions and particularly its central nucleus (CeA) also in pain control. Here we studied mechanisms mediating the descending control of mechanical hypersensitivity by the CeA in rats with a peripheral neuropathy in the left hind limb. For drug administrations, the animals had a guide cannula in the right CeA and an intrathecal catheter or another guide cannula in the medullary raphe. Hypersensitivity was tested with monofilaments. Glutamate administration in the CeA produced a bidirectional effect on hypersensitivity that varied from an increase at a low-dose (9μg) to a reduction at high doses (30-100μg). The increase but not the reduction of hypersensitivity was prevented by blocking the amygdaloid NMDA receptor with a dose of MK-801 that alone had no effects. The glutamate-induced increase in hypersensitivity was reversed by blocking the spinal 5-HT3 receptor with ondansetron, whereas the reduction in hypersensitivity was reversed by blocking the spinal 5-HT1A receptor with WAY-100635. Both the increase and decrease of hypersensitivity induced by amygdaloid glutamate treatment were reversed by medullary administration of a 5-HT1A agonist, 8-OH-DPAT, that presumably produced autoinhibition of serotonergic cell bodies in the medullary raphe. The results indicate that depending on the dose, glutamate in the CeA has a descending facilitatory or inhibitory effect on neuropathic pain hypersensitivity. Serotoninergic raphe neurons are involved in mediating both of these effects. Spinally, the 5-HT3 receptor contributes to the increase and the 5-HT1A receptor to the decrease of neuropathic hypersensitivity induced by amygdaloid glutamate.

  4. Spinal 5-HT1A, not the 5-HT1B or 5-HT3 receptors, mediates descending serotonergic inhibition for late-phase mechanical allodynia of carrageenan-induced peripheral inflammation.

    PubMed

    Kim, Joung Min; Jeong, Seong Wook; Yang, Jihoon; Lee, Seong Heon; Kim, Woon Mo; Jeong, Seongtae; Bae, Hong Beom; Yoon, Myung Ha; Choi, Jeong Il

    2015-07-23

    Previous electrophysiological studies demonstrated a limited role of 5-hydroxytryptamine 3 receptor (5-HT3R), but facilitatory role of 5-HT1AR and 5-HT1BR in spinal nociceptive processing of carrageenan-induced inflammatory pain. The release of spinal 5-HT was shown to peak in early-phase and return to baseline in late-phase of carrageenan inflammation. We examined the role of the descending serotonergic projections involving 5-HT1AR, 5-HT1BR, and 5-HT3R in mechanical allodynia of early- (first 4h) and late-phase (24h after) carrageenan-induced inflammation. Intrathecal administration of 5-HT produced a significant anti-allodynic effect in late-phase, but not in early-phase. Similarly, intrathecal 5-HT1AR agonist (8-OH-DPAT) attenuated the intensity of late-phase allodynia in a dose dependent fashion which was antagonized by 5-HT1AR antagonist (WAY-100635), but produced no effect on the early-phase allodynia. However, other agonists or antagonists of 5-HT1BR (CP-93129, SB-224289) and 5-HT3R (m-CPBG, ondansetron) did not produce any anti- or pro-allodynic effect in both early- and late- phase allodynia. These results suggest that spinal 5-HT1A, but not 5-HT1B or 5-HT3 receptors mediate descending serotonergic inhibition on nociceptive processing of late-phase mechanical allodynia in carrageenan-induced inflammation.

  5. Spinal 5-HT2 and 5-HT3 receptors mediate low, but not high, frequency TENS-induced antihyperalgesia in rats

    PubMed Central

    Radhakrishnan, Rajan; King, Ellen W.; Dickman, Janelle K.; Herold, Carli A.; Johnston, Natalie F.; Spurgin, Megan L.; Sluka, Kathleen A.

    2009-01-01

    Transcutaneous electrical nerve stimulation (TENS) is a form of non-pharmacological treatment for pain. Involvement of descending inhibitory systems is implicated in TENS-induced analgesia. In the present study, the roles of spinal 5-HT and α2-adrenoceptors in TENS analgesia were investigated in rats. Hyperalgesia was induced by inflaming the knee joint with 3% kaolin—carrageenan mixture and assessed by measuring paw withdrawal latency (PWL) to heat before and 4 h after injection. The (1) α2-adrenergic antagonist yohimbine (30 μg), (2) 5-HT antagonist methysergide (5-HT1 and 5-HT2,30 μg), one of the 5-HT receptor subtype antagonists, (3) NAN-190 (5-HT1A, 15 μg), (4) ketanserin (5-HT2A, 30 μg), (5) MDL-72222 (5-HT3, 12 μg), or (6) vehicle was administered intrathecally prior to TENS treatment. Low (4 Hz) or high (100 Hz) frequency TENS at sensory intensity was then applied to the inflamed knee for 20 min and PWL was determined. Selectivity of the antagonists used was confirmed using respective agonists administered intrathecally. Yohimbine had no effect on the antihyperalgesia produced by low or high frequency TENS. Methysergide and MDL-72222 prevented the antihyperalgesia produced by low, but not high, frequency TENS. Ketanserin attenuated the antihyperalgesic effects of low frequency TENS whereas NAN-190 had no effect. The results from the present study show that spinal 5-HT receptors mediate low, but not high, frequency TENS-induced antihyperalgesia through activation of 5-HT2A and 5-HT3 receptors in rats. Furthermore, spinal noradrenergic receptors are not involved in either low or high frequency TENS antihyperalgesia. PMID:14499437

  6. Discovery of a novel allosteric modulator of 5-HT3 receptors: inhibition and potentiation of Cys-loop receptor signaling through a conserved transmembrane intersubunit site.

    PubMed

    Trattnig, Sarah M; Harpsøe, Kasper; Thygesen, Sarah B; Rahr, Louise M; Ahring, Philip K; Balle, Thomas; Jensen, Anders A

    2012-07-20

    The ligand-gated ion channels in the Cys-loop receptor superfamily mediate the effects of neurotransmitters acetylcholine, serotonin, GABA, and glycine. Cys-loop receptor signaling is susceptible to modulation by ligands acting through numerous allosteric sites. Here we report the discovery of a novel class of negative allosteric modulators of the 5-HT(3) receptors (5-HT(3)Rs). PU02 (6-[(1-naphthylmethyl)thio]-9H-purine) is a potent and selective antagonist displaying IC(50) values of ~1 μM at 5-HT(3)Rs and substantially lower activities at other Cys-loop receptors. In an elaborate mutagenesis study of the 5-HT(3)A receptor guided by a homology model, PU02 is demonstrated to act through a transmembrane intersubunit site situated in the upper three helical turns of TM2 and TM3 in the (+)-subunit and TM1 and TM2 in the (-)-subunit. The Ser(248), Leu(288), Ile(290), Thr(294), and Gly(306) residues are identified as important molecular determinants of PU02 activity with minor contributions from Ser(292) and Val(310), and we propose that the naphthalene group of PU02 docks into the hydrophobic cavity formed by these. Interestingly, specific mutations of Ser(248), Thr(294), and Gly(306) convert PU02 into a complex modulator, potentiating and inhibiting 5-HT-evoked signaling through these mutants at low and high concentrations, respectively. The PU02 binding site in the 5-HT(3)R corresponds to allosteric sites in anionic Cys-loop receptors, which emphasizes the uniform nature of the molecular events underlying signaling through the receptors. Moreover, the dramatic changes in the functional properties of PU02 induced by subtle changes in its binding site bear witness to the delicate structural discrimination between allosteric inhibition and potentiation of Cys-loop receptors.

  7. Electroacupuncture at ST-36 relieves visceral hypersensitivity and decreases 5-HT(3) receptor level in the colon in chronic visceral hypersensitivity rats.

    PubMed

    Chu, Dan; Cheng, Pengfei; Xiong, Huiling; Zhang, Junjun; Liu, Shi; Hou, Xiaohua

    2011-05-01

    Visceral hypersensitivity is an important pathological mechanism of irritable bowel syndrome. Electroacupuncture (EA) could relieve chronic visceral hypersensitivity (CVH) in rats. However, little information is available about the mechanism. The aim of this study was to confirm the effects of EA at acupoint ST-36 (Zusanli) on CVH induced by the chemical colorectal irritation during postnatal development of rats, and to explore the possible 5-HT(3) receptor mechanism. Rats were randomized into four groups, including the normal control group, CVH group, CVH with EA group, and CVH with sham EA group. The abdominal electromyogram (EMG) in response to colorectal distension was selected as the index for measurement of visceral hypersensitivity. 5-HT(3) receptors were analyzed through reverse transcription-polymerase chain reaction and western blot. EA at ST-36 significantly decreased evoked EMG. The expression of 5-HT(3) receptor in the colon was increased in rats with CVH, and decreased after EA treatment. EA at acupoint ST-36 attenuates CVH in rats and decreases 5-HT(3) receptor level in the colon. Decreased 5-HT(3) receptor level in the colon may mediate the beneficial effect of EA in rats with CVH.

  8. Review of palonosetron: emerging data distinguishing it as a novel 5-HT(3) receptor antagonist for chemotherapy-induced nausea and vomiting.

    PubMed

    Saito, Mitsue; Tsukuda, Mamoru

    2010-04-01

    Since the advent of the 5-hydroxytryptamine 3 receptor antagonists (5-HT3RAs) in the 1990s, dramatic improvements have been achieved in the field of antiemetic therapy. The enhanced prevention of delayed and overall chemotherapy-induced nausea and vomiting (CINV) offered by palonosetron, a second-generation 5-HT3RA and aprepitant, the first neurokinin-1 receptor antagonists (NK-1RA) represent the only significant treatment advances in the past decade. While initial trials of single-dose palonosetron indicated a potential benefit over first-generation 5-HT3RAs, only recently have new data become available, increasing the weight of evidence distinguishing it as a new 5-HT3RA in the class. History of antiemetics and palonosetron, including clinical trials and pharmacological research, and literature published between 1981 and 2010 are covered. Unique pharmacological characteristics of palonosetron exhibiting prolonged half-life, high receptor affinity, allosteric interactions and positive cooperativity with 5-HT3 receptor resulting in long-term alteration and internalization of this receptor may explain the clinical observation of palonosetron. This review of recent progress in antiemetic therapy focuses on the newest data on palonosetron and discusses future trials and implications for clinical practice, with the overall goal of learning from history.

  9. Effects of 5-HT2B, 5-HT3 and 5-HT4 receptor antagonists on gastrointestinal motor activity in dogs

    PubMed Central

    Morita, Hiroki; Mochiki, Erito; Takahashi, Nobuyuki; Kawamura, Kiyoshi; Watanabe, Akira; Sutou, Toshinaga; Ogawa, Atsushi; Yanai, Mitsuhiro; Ogata, Kyoichi; Fujii, Takaaki; Ohno, Tetsuro; Tsutsumi, Souichi; Asao, Takayuki; Kuwano, Hiroyuki

    2013-01-01

    AIM: To study the effects of 5-hydroxytryptamine (5-HT) receptor antagonists on normal colonic motor activity in conscious dogs. METHODS: Colonic motor activity was recorded using a strain gauge force transducer in 5 dogs before and after 5-HT2B, 5-HT3 and 5-HT4 receptor antagonist administration. The force transducers were implanted on the serosal surfaces of the gastric antrum, terminal ileum, ileocecal sphincter and colon. Test materials or vehicle alone was administered as an intravenous bolus injection during a quiescent period of the whole colon in the interdigestive state. The effects of these receptor antagonists on normal gastrointestinal motor activity were analyzed. RESULTS: 5-HT2B, 5-HT3 and 5-HT4 receptor antagonists had no contractile effect on the fasting canine terminal ileum. The 5-HT3 and 5-HT4 receptor antagonists inhibited phase III of the interdigestive motor complex of the antrum and significantly inhibited colonic motor activity. In the proximal colon, the inhibitory effect was dose dependent. Dose dependency, however, was not observed in the distal colon. The 5-HT2B receptor antagonist had no contractile effect on normal colonic motor activity. CONCLUSION: The 5-HT3 and 5-HT4 receptor antagonists inhibited normal colonic motor activity. The 5-HT2B receptor antagonist had no contractile effect on normal colonic motor activity. PMID:24151388

  10. Broad-spectrum antiemetic potential of the L-type calcium channel antagonist nifedipine and evidence for its additive antiemetic interaction with the 5-HT(3) receptor antagonist palonosetron in the least shrew (Cryptotis parva).

    PubMed

    Darmani, Nissar A; Zhong, Weixia; Chebolu, Seetha; Vaezi, Mariam; Alkam, Tursun

    2014-01-05

    Cisplatin-like chemotherapeutics cause vomiting via release of multiple neurotransmitters (dopamine, serotonin (5-HT), or substance P (SP)) from the gastrointestinal enterochromaffin cells and/or the brainstem via a calcium dependent process. Diverse channels in the plasma membrane allow extracellular Ca(2+) entry into cells for the transmitter release process. Agonists of 5-HT3 receptors increase calcium influx through both 5-HT3 receptors and L-type Ca(2+) channels. We envisaged that L-type calcium agonists such as FPL 64176 should cause vomiting and corresponding antagonists such as nifedipine would behave as broad-spectrum antiemetics. Administration of FPL 64176 did cause vomiting in the least shrew in a dose-dependent fashion. Nifedipine and the 5-HT3 receptor antagonist palonosetron, potently suppressed FPL 64176-induced vomiting, while a combination of ineffective doses of these antagonists was more efficacious. Subsequently, we investigated the broad-spectrum antiemetic potential of nifedipine against diverse emetogens including agonists of serotonergic 5-HT3- (e.g. 5-HT or 2-Me-5-HT), SP tachykinin NK1- (GR73632), dopamine D2- (apomorphine or quinpirole), and cholinergic M1- (McN-A-343) receptors, as well as the non-specific emetogen, cisplatin. Nifedipine by itself suppressed vomiting in a potent and dose-dependent manner caused by the above emetogens except cisplatin. Moreover, low doses of nifedipine potentiated the antiemetic efficacy of non-effective or semi-effective doses of palonosetron against vomiting caused by either 2-Me-5-HT or cisplatin. Thus, our findings demonstrate that activation of L-type calcium channels causes vomiting, whereas blockade of these ion channels by nifedipine-like antagonists not only provides broad-spectrum antiemetic activity but can also potentiate the antiemetic efficacy of well-established antiemetics such as palonosetron. L-type calcium channel antagonists should also provide antiemetic activity against drug

  11. Changes in characteristics of the specific binding of [3H]LY-278584, a 5-HT3-receptor antagonist, on differentiated NG108-15 cells.

    PubMed

    Matsushima, Kayoko; Imanishi, Takashi; Asano, Hajime; Funakami, Yoshinori; Wada, Tetsuyuki; Ichida, Seiji

    2010-01-01

    We have reported previously that the concentration of intracellular Ca2+ evoked by serotonin (5-HT) was significantly augmented in differentiated NG108-15 (NG) cells treated with dibutyryl cAMP and the enhanced response occurred via 5-HT3 receptors. We investigated changes in the characteristics for specific binding of [(3)H]LY-278584 (a specific antagonist of the 5-HT3 receptor) on membranes from differentiated NG cells. The results indicated that the K(d) and B(max) values for the specific binding to differentiated NG cells were significantly smaller and larger, respectively, than those for undifferentiated NG cells. The binding was significantly inhibited by 10 nM tropisetron, a specific 5-HT3-receptor antagonist, but not by any other types of 5-HT-receptor antagonists. These results suggested that the enhanced response by 5-HT in differentiated NG cells was due to both qualitative and quantitative changes in the 5-HT3 receptor.

  12. Design, synthesis, and pharmacological evaluation of novel 2-(4-substituted piperazin-1-yl)1, 8 naphthyridine 3-carboxylic acids as 5-HT3 receptor antagonists for the management of depression.

    PubMed

    Dhar, Arghya K; Mahesh, Radhakrishnan; Jindal, Ankur; Devadoss, Thangaraj; Bhatt, Shvetank

    2014-12-01

    1, 8-naphthyridine-3-carboxylic acid analogs were synthesized and found to possess potential 5-HT3 receptor antagonism as well as antidepressant-like activity. Initially, 5-HT3 receptor antagonism of all the compounds was determined in the form of pA2 value against agonist 2-methyl 5-HT in longitudinal muscle-myenteric plexus preparation from guinea-pig ileum. Among all the compounds tested, compound 7a demonstrated most promising pA2 value of 7.6. Subsequently, all the compounds were evaluated for antidepressant activity using forced swim test and tail suspension test in mice. Compounds 7a, 7d, 7f, 7h, and 7i exhibited significant (p < 0.05) antidepressant-like activity as compound to vehicle-treated group. Importantly, none of the tested compound affected locomotor activity of mice at tested dose levels.

  13. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): blocking 5HT3 receptors enhances release of serotonin, norepinephrine, and acetylcholine.

    PubMed

    Stahl, Stephen M

    2015-10-01

    Vortioxetine is an antidepressant with multiple pharmacologic modes of action at targets where serotonin neurons connect with other neurons. 5HT3 receptor antagonism is one of these actions, and this leads to increased release of norepinephrine (NE), acetylcholine (ACh), and serotonin (5HT) within various brain circuits.

  14. Comparative efficacy and safety of palonosetron with the first 5-HT3 receptor antagonists for the chemotherapy-induced nausea and vomiting: a meta-analysis.

    PubMed

    Jin, Y; Sun, W; Gu, D; Yang, J; Xu, Z; Chen, J

    2013-01-01

    A number of studies have reported the difference between the 5-HT3 receptor antagonists and palonosetron in preventing the chemotherapy-induced nausea and vomiting (CINV). Through analysing the efficacy and safety in palonosetron-treated patients, it can provide evidence for palonosetron administration. We identified randomised controlled clinical trials comparing palonosetron with the first-generation 5-HT3 receptor antagonists in the prevention of CINV in cancer patients. Nine studies investigated the outcomes in a total of 3463 cases. Compared with the first-generation 5-HT3 receptor antagonists, the cumulative incidences of emesis were significantly reduced in the patients treated with palonosetron (0.25 mg i.v.) on the first day [relative risk (RR) = 1.11, 95% confidence interval (CI): 1.05-1.17], from 2 to 5 days (RR = 1.26, 95% CI: 1.16-1.36) and the overall five days (RR = 1.23, 95% CI: 1.13-1.34). Regarding the drug safety, there was no significant difference between palonosetron-treated group and the first-generation 5-HT3 receptor antagonists-treated group. Results from the analysis suggest that palonosetron is highly effective in preventing nausea and vomiting in the days after administration of moderately or highly emetogenic chemotherapy agents. © 2012 Blackwell Publishing Ltd.

  15. Antidepressant Potential of 5-HT3 Receptor Antagonist, N-n- propyl-3-ethoxyquinoxaline-2-carboxamide (6n).

    PubMed

    Mahesh, R; Bhatt, S; Devadoss, T; Jindal, Ak; Gautam, Bk; Pandey, Dk

    2012-10-01

    The present study was designed to evaluate the antidepressant potential of 5-HT3 receptor antagonist N-n-propyl-3-ethoxyquinoxaline-2-carboxamide (6n). The compound '6n' with optimum log P and pA 2 value identified from a series of compounds synthesized in our laboratory was subjected to forced Swim Test (FST) (1, 2, and 4 mg/kg, i.p) and Tail Suspension Test (TST) (1, 2, and 4 mg/kg, i.p.). The compound '6n' significantly reduced the duration of immobility in mice without affecting the baseline locomotion. Moreover, '6n' (2 mg/kg, i.p.) potentiated the 5-hydroxytryptophan (5-HTP)-induced head twitch responses in mice and '6n' at tested dose (1 and 2 mg/kg, i.p.) reversed the reserpine-induced hypothermia in rats. In interaction studies of '6n' with various standard drugs/ligands using FST, '6n' (1 mg/kg, i.p.) potentiated the antidepressant effect of venlafaxine (4 and 8 mg/kg, i.p.) and fluoxetine (10 and 20 mg/kg, i.p.). Additionally, '6n' (1 and 2 mg/kg, i.p.) influenced the effect of harmane (5 mg/ kg, i.p.) as well as reversed the effect of parthenolide (1 mg/kg, i.p.) by reducing the duration of immobility in FST. Furthermore, '6n' (1 mg/kg, i.p.) potentiated the effect of bupropion (10 and 20 mg/kg, i.p.) in TST. Chronic '6n' (1 and 2 mg/kg, i.p.) treatment attenuated the behavioral abnormalities in olfactory bulbectomized rats. In conclusion, these various findings reiterated the antidepressant-like effects of '6n' in behavioral models of depression.

  16. Antidepressant Potential of 5-HT3 Receptor Antagonist, N-n- propyl-3-ethoxyquinoxaline-2-carboxamide (6n)

    PubMed Central

    Mahesh, R; Bhatt, S; Devadoss, T; Jindal, AK; Gautam, BK; Pandey, DK

    2012-01-01

    The present study was designed to evaluate the antidepressant potential of 5-HT3 receptor antagonist N-n-propyl-3-ethoxyquinoxaline-2-carboxamide (6n). The compound ‘6n’ with optimum log P and pA2 value identified from a series of compounds synthesized in our laboratory was subjected to forced Swim Test (FST) (1, 2, and 4 mg/kg, i.p) and Tail Suspension Test (TST) (1, 2, and 4 mg/kg, i.p.). The compound ‘6n’ significantly reduced the duration of immobility in mice without affecting the baseline locomotion. Moreover, ‘6n’ (2 mg/kg, i.p.) potentiated the 5-hydroxytryptophan (5-HTP)-induced head twitch responses in mice and ‘6n’ at tested dose (1 and 2 mg/kg, i.p.) reversed the reserpine-induced hypothermia in rats. In interaction studies of ‘6n’ with various standard drugs/ligands using FST, ‘6n’ (1 mg/kg, i.p.) potentiated the antidepressant effect of venlafaxine (4 and 8 mg/kg, i.p.) and fluoxetine (10 and 20 mg/kg, i.p.). Additionally, ‘6n’ (1 and 2 mg/kg, i.p.) influenced the effect of harmane (5 mg/ kg, i.p.) as well as reversed the effect of parthenolide (1 mg/kg, i.p.) by reducing the duration of immobility in FST. Furthermore, ‘6n’ (1 mg/kg, i.p.) potentiated the effect of bupropion (10 and 20 mg/kg, i.p.) in TST. Chronic ‘6n’ (1 and 2 mg/kg, i.p.) treatment attenuated the behavioral abnormalities in olfactory bulbectomized rats. In conclusion, these various findings reiterated the antidepressant-like effects of ‘6n’ in behavioral models of depression. PMID:23493308

  17. Local-anesthetic like inhibition of the cardiac sodium channel Nav1.5 α-subunit by 5-HT3 receptor antagonists.

    PubMed

    Van't Klooster, Mariet P; Foadi, Nilufar; Hage, Axel; Stoetzer, Carsten; Wegner, Florian; Eberhardt, Mirjam; Leffler, Andreas

    2016-10-15

    5-hydroxytryptamine 3 receptor (5-HT3 receptor) antagonists are administered for prevention and therapy of nausea and vomiting. Although regarded as safe therapeutics, they can also provoke arrhythmias by prolonging the QRS interval. However, the mechanisms mediating this cardiotoxicity are poorly understood. Here we investigated effects of 5-HT3 receptor antagonists on the cardiac Na(+) channel Nav1.5. We explored the interaction of dolasetron, tropisetron, granisetron and ondansetron on the human α-subunit Nav1.5 heterologously expressed in HEK293 cells. Sodium currents were explored by means of whole-cell patch clamp recordings. All four substances inhibited the Nav1.5 in a concentration and state-dependent manner. Dolasetron displayed the lowest blocking efficacy, and tropisetron was the most potent blocker with a half maximum blocking concentration of 18µM for tonic block of inactivated channels. Tropisetron was also the most potent use-dependent inhibitor, and it also induced a strong open -channel block. Both tonic and use-dependent block by tropisetron were abbreviated on the local-anesthetic insensitive mutant Nav1.5-F1760A. Co-administration of tropisetron and the local anesthetic bupivacaine or the hypnotic propofol augmented inhibition of Nav1.5. Our data demonstrate that 5-HT3 receptor antagonists induce a local-anesthetic like inhibition of Nav1.5, and that they display different blocking efficacies. Reports on a relevant cardiotoxicity of dolasetron as opposed to other 5-HT3 receptor antagonists do not seem to correlate with a block of Nav1.5. As inhibition of Nav1.5 was enhanced by propofol and bupivacaine however, it is possible that a combined administration of Na(+) channel blockers and 5-HT3 receptor antagonists can provoke arrhythmias.

  18. L-type calcium channels contribute to 5-HT3-receptor-evoked CaMKIIα and ERK activation and induction of emesis in the least shrew (Cryptotis parva).

    PubMed

    Hutchinson, Tarun E; Zhong, Weixia; Chebolu, Seetha; Wilson, Sean M; Darmani, Nissar A

    2015-05-15

    Activation of serotonergic 5-HT3 receptors by its selective agonist 2-methyl serotonin (2-Me-5-HT) induces vomiting, which is sensitive to selective antagonists of both 5-HT3 receptors (palonosetron) and L-type calcium channels (LTCC) (amlodipine or nifedipine). Previously we demonstrated that 5-HT3 receptor activation also causes increases in a palonosetron-sensitive manner in: i) intracellular Ca(2+) concentration, ii) attachment of calmodulin (CaM) to 5-HT3 receptor, and iii) phosphorylation of Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) and extracellular-signal-regulated kinase 1/2 (ERK1/2). Here, we investigate the role of the short-acting LTCC blocker nifedipine on 2-Me-5-HT-evoked intracellular Ca(2+) increase and on downstream intracellular emetic signaling, which have been shown to be coupled with 2-Me-5-HT׳s emetic effects in the least shrew. Using the cell-permeant Ca(2+) indicator fluo-4 AM, here we present evidence for the contribution of Ca(2+) influx through LTCCs (sensitive to nifedipine) in 2-Me-5-HT (1µM) -evoked rise in cytosolic Ca(2+) levels in least shrew brainstem slices. Nifedipine pretreatment (10mg/kg, s.c.) also suppressed 2-Me-5-HT-evoked interaction of 5-HT3 receptors with CaM as well as phosphorylation of CaMKIIα and ERK1/2 in the least shrew brainstem, and 5-HT3 receptors -CaM colocalization in jejunum of the small intestine. In vitro exposure of isolated enterochromaffin cells of the small intestine to 2-Me-5-HT (1µM) caused CaMKIIα phosphorylation, which was also abrogated by nifedipine pretreatment (0.1µM). In addition, pretreatment with the CaMKII inhibitor KN62 (10mg/kg, i.p.) suppressed emesis and also the activation of CaMKIIα, and ERK in brainstem caused by 2-Me-5-HT (5mg/kg, i.p.). This study provides further mechanistic explanation for our published findings that nifedipine can dose-dependently protect shrews from 2-Me-5-HT-induced vomiting.

  19. The role of second-generation 5-HT3 receptor antagonists in managing chemotherapy-induced nausea and vomiting in hematological malignancies.

    PubMed

    Schwartzberg, Lee S; Jacobs, Peter; Matsouka, Panagiota; Azevedo, Wellington; Pinto, Antonio

    2012-07-01

    Compared with solid tumor patients, those with hematological malignancies are at particular risk of chemotherapy-induced nausea and vomiting (CINV) because of their young age, exposure to highly-emetogenic induction, consolidation and salvage regimens, the high-dose conditioning regimens used before stem cell transplantation (SCT), and the heavy psychological burden of such treatments. In the absence of prophylaxis, around 75% of patients undergoing SCT experience delayed CINV. With first-generation 5-HT(3) receptor antagonists, only about 20% are completely protected from nausea and vomiting, and this frequent and debilitating adverse event has not been fully addressed. In contrast to solid tumors, there are no internationally agreed guidelines for the prevention and treatment of CINV in hematological malignancies. Work on a consensus is urgently required. The second-generation 5-HT(3) antagonist palonosetron is highly effective in preventing CINV in patients with solid tumors. The extended half-life of this agent and its mechanisms of action including allosteric binding, positive cooperativity and 5-HT(3) receptor internalization, may make it particularly effective in controlling delayed CINV. Although controlled comparisons against first-generation 5HT(3) agents have not yet been conducted in the setting of SCT, available evidence suggests that palonosetron may prove beneficial in preventing CINV in high risk patients with hematological malignancies. Copyright © 2012. Published by Elsevier Ireland Ltd.

  20. Dopamine neurotransmission is involved in the attenuating effects of 5-HT3 receptor antagonist MDL 72222 on acute methamphetamine-induced locomotor hyperactivity in mice.

    PubMed

    Yoo, Ji-Hoon; Nam, Yun-Sun; Lee, Seok-Yong; Jang, Choon-Gon

    2008-01-01

    We have previously shown that 5-HT3 receptors are involved in the development and expression of methamphetamine (MAP)-induced locomotor sensitization in mice. In the present study, we further examined whether the dopaminergic system is involved in the attenuating effects of MDL 72222, a 5-HT3 receptor antagonist, on acute MAP-induced locomotor hyperactivity. For this, we examined alterations of dopamine (DA) in the form of D1 receptor, D2 receptor, and dopamine transporter (DAT) binding labeled with [3H]SCH23390 for D1, [3H]raclopride for D2, and [3H]mazindol for DAT binding in the mouse brains with acute MAP exposure or pretreatment of MDL 72222 with MAP. No significant differences were detected in the D1 receptor, D2 receptor, or DAT binding between any of the groups studied. Interestingly, we found increased DA levels in the striatum following acute MAP exposure; these increased levels were reversed by pretreatment with MDL 72222, but did not affect 5-HT levels in the dorsal raphe. Overall, our results suggest that dopamine neurotransmission plays an important role in the attenuating effects of 5-HT3 receptor antagonist MDL 72222 on acute MAP-induced locomotor hyperactivity in mice.

  1. Importance of M2-M3 loop in governing properties of genistein at the α7 nicotinic acetylcholine receptor inferred from α7/5-HT3A chimera.

    PubMed

    Grønlien, Jens Halvard; Ween, Hilde; Thorin-Hagene, Kirsten; Cassar, Steven; Li, Jinhe; Briggs, Clark A; Gopalakrishnan, Murali; Malysz, John

    2010-11-25

    Genistein and 5-hydroxyindole (5-HI) potentiate the α7 nicotinic acetylcholine receptor current by primarily increasing peak amplitude, a property of type I α7 positive allosteric modulation. In this study, the effects of these two compounds were investigated at two different α7/5-HT(3) chimeras (chimera 1, comprising of extracellular α7 N-terminus fused to the remainder of 5-HT(3A), and chimera 2 containing an additional α7 encoded M2-M3 loop), and wild-type α7 and 5-HT(3A) receptors. Agonist-evoked responses, examined by expression of the chimeras in Xenopus laevis oocytes or HEK-293 cells, revealed that currents decayed slower and compounds {rank order: N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride (PNU-282987)~2-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-5-phenyl-1,3,4-oxadiazole (NS6784)>acetylcholine>choline} were more potent in chimera 2 than chimera 1 or α7 receptors. In chimera 2, genistein and 5-HI potentiated agonist-evoked responses (EC(50): 4-5 μM for genistein and 300-500 μM for 5-HI) and at higher concentrations evoked current directly consistent with ago-allosteric modulation. At chimera 1 and 5-HT(3A) receptors, neither compound directly evoked any current and 5-HI, only at chimera 1, was able to potentiate agonist-evoked responses. Genistein and 5-HI did not inhibit the binding of the α7 agonist [(3)H](1S,4S)-2,2-dimethyl-5-(6-phenylpyridazin-3-yl)-5-aza-2-azoniabicyclo[2.2.1] heptane ([(3)H]A-585539) to rat brain or chimera 2. In summary, this study supports the role of the M2-M3 loop being critical for the positive allosteric effect of genistein, but not 5-HI, and in agonist-evoked response fine-tuning. The identification of distinct α7 receptor modulatory sites offers unique opportunities for developing CNS therapeutics and understanding its pharmacology.

  2. Regulation of the 5-HT3A receptor-mediated current by alkyl 4-hydroxybenzoates isolated from the seeds of Nelumbo nucifera.

    PubMed

    Youn, Ui Joung; Lee, Jun-Ho; Lee, Yoo Jin; Nam, Joo Won; Bae, Hyunsu; Seo, Eun-Kyoung

    2010-09-01

    Four known alkyl 4-hydroxybenzoates, i.e., methyl 4-hydroxybenzoate (1), ethyl 4-hydroxybenzoate (2), propyl 4-hydroxybenzoate (3), and butyl 4-hydroxybenzoate (4), were isolated from the seeds of Nelumbo nucifera Gaertner (Nymphaeaceae) for the first time. The structures of the isolates were identified by 1D- and 2D-NMR spectroscopy and comparison with published values. The compounds were evaluated for their effects on the 5-HT-stimulated inward current (I(5-HT)) mediated by the human 5-HT(3)A receptors expressed in Xenopus oocytes. Compounds 1 and 2 enhanced the I(5-HT), but 4 reduced it. These results indicate that 4 is an inhibitor of the 5-HT(3)A receptors expressed in Xenopus oocytes.

  3. Synthesis and Pharmacological Evaluation of [(11)C]Granisetron and [(18)F]Fluoropalonosetron as PET Probes for 5-HT3 Receptor Imaging.

    PubMed

    Mu, Linjing; Müller Herde, Adrienne; Rüefli, Pascal M; Sladojevich, Filippo; Milicevic Sephton, Selena; Krämer, Stefanie D; Thompson, Andrew J; Schibli, Roger; Ametamey, Simon M; Lochner, Martin

    2016-11-16

    Serotonin-gated ionotropic 5-HT3 receptors are the major pharmacological targets for antiemetic compounds. Furthermore, they have become a focus for the treatment of irritable bowel syndrome (IBS) and there is some evidence that pharmacological modulation of 5-HT3 receptors might alleviate symptoms of other neurological disorders. Highly selective, high-affinity antagonists, such as granisetron (Kytril) and palonosetron (Aloxi), belong to a family of drugs (the "setrons") that are well established for clinical use. To enable us to better understand the actions of these drugs in vivo, we report the synthesis of 8-fluoropalonosetron (15) that has a binding affinity (Ki = 0.26 ± 0.05 nM) similar to the parent drug (Ki = 0.21 ± 0.03 nM). We radiolabeled 15 by nucleophilic (18)F-fluorination of an unsymmetrical diaryliodonium palonosetron precursor and achieved the radiosynthesis of 1-(methyl-(11)C)-N-granisetron ([(11)C]2) through N-alkylation with [(11)C]CH3I, respectively. Both compounds [(18)F]15 (chemical and radiochemical purity >95%, specific activity 41 GBq/μmol) and [(11)C]2 (chemical and radiochemical purity ≥99%, specific activity 170 GBq/μmol) were evaluated for their utility as positron emission tomography (PET) probes. Using mouse and rat brain slices, in vitro autoradiography with both [(18)F]15 and [(11)C]2 revealed a heterogeneous and displaceable binding in cortical and hippocampal regions that are known to express 5-HT3 receptors at significant levels. Subsequent PET experiments suggested that [(18)F]15 and [(11)C]2 are of limited utility for the PET imaging of brain 5-HT3 receptors in vivo.

  4. Effect of quipazine, a selective 5-HT3 agonist, on dietary self-selection of different macronutrient diets in male and female rats.

    PubMed

    Mok, E; Paquette, M; Thibault, L

    2000-06-01

    Macronutrient intakes, 2h and 12h, following administration of a selective 5-HT3 agonist, quipazine, N methyl, dimaleate (QUIPAZINE; 2.5, 5.0 and 7.5 mg/kg, i.p.) at dark onset were examined in three groups of adult male and female Wistar rats fed different sources of the three macronutrients: Group 1 (casein, corn starch, safflower oil), Group 2 (egg protein, corn starch/sucrose, lard) and Group S (casein hydrolysate, maltose dextrin, butter). QUIPAZINE decreased total food intake only in female rats from Group 1 (2 h) at a dose of 7.5 mg/kg and Group 2 (2h and 12h) with doses of 2.5 and 7.5 mg/kg. Intakes from corn starch and corn starch/sucrose diet (12h) were reduced in male and female rats, respectively, with doses of 2.5 and 7.5 mg/kg of QUIPAZINE. In conclusion, when provided with different sources of the three macronutrients, quipazine injection reduces specifically carbohydrate ingestion from corn starch-containing diets in male and female rats. Thus, the nature of the macronutrient source is of major importance to assess the effect of a drug on nutrient-specific selection.

  5. Dual role of serotonin in the pathogenesis of indomethacin-induced small intestinal ulceration: pro-ulcerogenic action via 5-HT3 receptors and anti-ulcerogenic action via 5-HT4 receptors.

    PubMed

    Kato, Shinichi; Matsuda, Narumi; Matsumoto, Kenjiro; Wada, Mai; Onimaru, Naoki; Yasuda, Masashi; Amagase, Kikuko; Horie, Syunji; Takeuchi, Koji

    2012-09-01

    Serotonin (5-HT) exerts multiple physiological functions not only in the central and peripheral nervous systems but also in the gastrointestinal tract, and these multiple functions are accounted for by a variety of 5-HT receptor subtypes. We investigated the role of 5-HT in the pathogenesis of indomethacin-induced intestinal lesions in mice, in relation to 5-HT receptor subtypes. A single oral administration of indomethacin (10 mg/kg) provoked damage in the small intestine of mice 24 h later, and this response was prevented by pretreatment with p-chlorophenylalanine (a 5-HT synthesis inhibitor). The administration of 5-HT3 receptor antagonists, such as ondansetron and ramosetron, dose-dependently reduced the severity of the intestinal lesions, whereas a high dose of GR113808 (a 5-HT4 receptor antagonist) significantly aggravated these lesions. In contrast, NAN-190 (a 5-HT1 receptor antagonist), ketanserin (a 5-HT2 receptor antagonist), and SB269970 (a 5-HT7 receptor antagonist) had no effect on these lesions. Mosapride (a 5-HT4 receptor agonist) significantly reduced the severity of indomethacin-induced intestinal lesions, and this protective effect was totally prevented by either GR113808 or methyllycaconitine (an α7-nicotinic acetylcholine receptor antagonist). Indomethacin increased the activity of myeloperoxidase and the expression of inducible nitric oxide synthase, inflammatory cytokines, and chemokines in the small intestine; these responses were significantly attenuated by ondansetron and mosapride. These findings suggest that endogenous 5-HT exerts a dual role in the pathogenesis of indomethacin-induced intestinal lesions: pro-ulcerogenic action via 5-HT3 receptors and anti-ulcerogenic action via 5-HT4 receptors, and the latter effect via 5-HT4 receptors may be mediated by activation of α7-nicotinic acetylcholine receptors.

  6. Intrathecal nefopam-induced antinociception through activation of descending serotonergic projections involving spinal 5-HT7 but not 5-HT3 receptors.

    PubMed

    Lee, Hyung Gon; Kim, Woong Mo; Kim, Joung Min; Bae, Hong-Beom; Choi, Jeong Il

    2015-02-05

    We examined the involvement of spinal 5-HT(5-hydroxytryptamine) receptor 3(5-HT3R) and 7(5-HT7R) as well as the overall role of descending serotonergic projections in the analgesic effects of intrathecal(i.t.) nefopam for two rat models of formalin and paw incision test. I.t. nefopam produced an antinociceptive effect in a dose-dependent manner in both tests. Lesioning the spinal serotonergic projections using i.t. 5,7-dihydroxytryptamine(5,7-DHT) did not influence the intensity of allodynia in the paw incision test, but i.t. 5,7-DHT abolished the effect of nefopam. In the formain test, i.t. 5,7-DHT alone significantly diminished the flinches, but the effect of nefopam was not affected by i.t. 5,7-DHT. Antagonism study showed that i.t. 5-HT7R antagonist, SB269970 significantly blocked the antinociceptive effect of nefopam in both tests, but i.t. 5-HT3R antagonist, ondansetron has no influence on the effect of nefopam. The present study demonstrates that descending spinal serotonergic projections play a vital role in antinociceptive effect of i.t. nefopam in the paw incision test, but indeterminate in the formalin test. In both tests, the antinociceptive effect of i.t. nefopam involves the spinal 5-HT7R, but not 5-HT3R.

  7. Review: 5-Ht1, 5-Ht2, 5-Ht3, And 5-Ht7 Receptors And Their Role In The Modulation Of Pain Response In The Central Nervous System.

    PubMed

    Cortes-Altamirano, José Luis; Olmos-Hernández, Adriana; Bonilla-Jaime, Herlinda; Carrillo-Mora, Paul; Bandala, Cindy; Reyes-Long, S; Alfaro-Rodríguez, Alfonso

    2017-09-11

    The aim of this review was to identify the mechanisms by which serotonin receptors involved at the central level are able to modulate the nociceptive response. Pain is a defense mechanism of the body that entails physiological, anatomical, neurochemical, and psychological changes, and is defined as an unpleasant sensory and emotional experience with potential risk of tissue damage, comprising the leading cause of appointments with Physicians worldwide. Treatment for this symptom has generated several neuropharmacological lines of research, due to the different types of pain and the various drugs employed to treat this condition. Serotonin [5-HydroxyTryptamine (5-HT)] is a neurotransmitter with seven families (5-HT1–5-HT7) and approximately 15 receptor subtypes. Serotonin modulates neuronal activity; however, this neurotransmitter is related with a number of physiological processes, such as cardiovascular function, gastric motility, renal function, etc. On the other hand, several researches reported that serotonin modulates nociceptive response through 5-HT1, 5-HT2, 5-HT3, and 5-HT7 receptors in the Central Nervous System (CNS). In this review, a search was conducted on PubMed, ProQuest, EBSCO, and the Science Citation Index for studies evaluating the effects of 5-HT1, 5-HT2, 5-HT3, and 5-HT7 receptors in the CNS on the modulation of different types of pain. Conclusions We concluded that 5-HT1, 5-HT2, 5-HT3, and 5-HT7 receptors in the CNS modulate the pain, but this depends on the distribution of the receptors, dose of agonists or antagonists, administration route, pain type and duration to order to inhibit, to excite, or even maintain the nociceptive response. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. 5-HT3 and 5-HT4 receptor-mediated facilitation of the emptying phase of the peristaltic reflex in the marmoset isolated ileum.

    PubMed Central

    Tuladhar, B. R.; Costall, B.; Naylor, R. J.

    1996-01-01

    .83 +/- 0.36 respectively in the presence of GR 113808 (30 nM). 6. In the presence of a high concentration of (10 microM) 5-methoxytryptamine the subsequent addition of 2-methyl-5-HT (3-10 microM) but not 5-methoxytryptamine (10 microM) facilitated peristalsis; the effect of 3 microM 2-methyl-5-HT was significantly decreased by 2 microM ondansetron. 7. It is concluded that the facilitation of the peristaltic reflex in the marmoset intestine induced by 5-HT at submicromolar concentrations involves a 5-HT4 receptor stimulation with an additional 5-HT3 receptor activation at higher concentrations. PMID:8732276

  9. Mode of action of peppermint oil and (-)-menthol with respect to 5-HT3 receptor subtypes: binding studies, cation uptake by receptor channels and contraction of isolated rat ileum.

    PubMed

    Heimes, Katharina; Hauk, Florian; Verspohl, Eugen J

    2011-05-01

    Peppermint oil (Mentha × piperita L. (Lamiaceae) has been shown to exert potent antiemetic properties, but its mode of action has not yet been elucidated. Among its active constituents (-)-menthol is the most important. Three different in vitro models were used to investigate the effects on 5-HT(3) receptors (serotonin receptor subtype): [(14)C]guanidinium influx into N1E-115 cells which express 5-HT(3) receptors, isotonic contractions of the isolated rat ileum and equilibrium competition binding studies using a radioactively labelled 5-HT(3) receptor antagonist ([(3)H]GR65630) (3-(5-methyl-1H-imidazol-4-yl)-1-(1-methyl-1H-indol-3-yl)-1-propanone). Both peppermint oil and (-)-menthol inhibited [(14)C]guanidinium influx through 5-HT(3) receptor channels as well as contractions of the ileum induced by serotonin. Neither the peppermint oil nor (-)-menthol, however, was able to displace [(3)H]GR65630 from 5-HT(3) binding sites. It may be concluded that peppermint oil and (-)-menthol exert their antiemetic effect at least partly by acting on the 5-HT(3) receptor ion-channel complex, probably by binding to a modulatory site distinct from the serotonin binding site. Copyright © 2010 John Wiley & Sons, Ltd.

  10. In silico investigation into the interactions between murine 5-HT3 receptor and the principle active compounds of ginger (Zingiber officinale).

    PubMed

    Lohning, Anna E; Marx, Wolfgang; Isenring, Liz

    2016-11-01

    Gingerols and shogaols are the primary non-volatile actives within ginger (Zingiber officinale). These compounds have demonstrated in vitro to exert 5-HT3 receptor antagonism which could benefit chemotherapy-induced nausea and vomiting (CINV). The site and mechanism of action by which these compounds interact with the 5-HT3 receptor is not fully understood although research indicates they may bind to a currently unidentified allosteric binding site. Using in silico techniques, such as molecular docking and GRID analysis, we have characterized the recently available murine 5-HT3 receptor by identifying sites of strong interaction with particular functional groups at both the orthogonal (serotonin) site and a proposed allosteric binding site situated at the interface between the transmembrane region and the extracellular domain. These were assessed concurrently with the top-scoring poses of the docked ligands and included key active gingerols, shogaols and dehydroshogaols as well as competitive antagonists (e.g. setron class of pharmacologically active drugs), serotonin and its structural analogues, curcumin and capsaicin, non-competitive antagonists and decoys. Unexpectedly, we found that the ginger compounds and their structural analogs generally outscored other ligands at both sites. Our results correlated well with previous site-directed mutagenesis studies in identifying key binding site residues. We have identified new residues important for binding the ginger compounds. Overall, the results suggest that the ginger compounds and their structural analogues possess a high binding affinity to both sites. Notwithstanding the limitations of such theoretical analyses, these results suggest that the ginger compounds could act both competitively or non-competitively as has been shown for palonosetron and other modulators of CYS loop receptors.

  11. A nanocomposite material formed by benzofulvene polymer nanoparticles loaded with a potent 5-HT3 receptor antagonist (CR3124)

    NASA Astrophysics Data System (ADS)

    Cappelli, Andrea; Galeazzi, Simone; Zanardi, Iacopo; Travagli, Valter; Anzini, Maurizio; Mendichi, Raniero; Petralito, Stefania; Memoli, Adriana; Paccagnini, Eugenio; Peris, Walter; Giordani, Antonio; Makovec, Francesco; Fresta, Massimo; Vomero, Salvatore

    2010-03-01

    Poly- BF3a, a new hydrophobic polymer obtained by spontaneous polymerization of 1-methylene-3-phenyl-1 H-indene, was found to give nanoparticles characterized by favorable shape and dimensions. Poly- BF3a nanoparticles were loaded with CR3124, a potent 5HT3 antagonist, as a drug model by desolvation methods either in the absence or in the presence of polyethylene glycol (PEG1000) as a wetting agent. The SEM studies showed that the introduction of CR3124 into the preparation led to a variable degree of aggregation-cementation, which afforded a sort of nanocomposite material. In the absence of PEG1000, the drug molecule was found to stay in the amorphous state (DSC studies) when its percentage is not higher than 10% by weight. In vitro release experiments showed that the formation and stability of the dispersion as well as the drug release were remarkably affected by the presence of PEG1000, demonstrating its beneficial effect to the nanoparticle morphology and disaggregation.

  12. Effect of acute and chronic treatment with QCF-3 (4-benzylpiperazin-1-yl) (quinoxalin-2-yl) methanone, a novel 5-HT(3) receptor antagonist, in animal models of depression.

    PubMed

    Devadoss, Thangaraj; Pandey, Dilip K; Mahesh, Radhakrishnan; Yadav, Shushil K

    2010-01-01

    The serotonin type 3 (5-HT(3)) receptor is unique among the seven recognized serotonin receptor "families". The existence serotonin type 3 receptor (5-HT(3)) in neuro-anatomical regions stimulated the research interest for novel therapeutic targets such as anxiety, depression, nociception and cognitive function. In the current study, (4-benzylpiperazin-1-yl) (quinoxalin-2-yl) methanone (QCF-3), a novel 5-HT(3) receptor antagonist, with an optimal log P (the logarithm of the ratio of the concentrations of the un-ionized solute in the solvents is called log P) and significant pA2 value (is a negative logarithm of the molar concentration of antagonist required to reduce the effect of multiple dose agonist to that of single dose) was screened for its anti-depressant potential using rodent behavioral models of depression. Psycho-pharmacological investigations involved acute and chronic treatment (14 days) with QCF-3 and assessment of behavior during the forced swim test (FST) and tail suspension test (TST) in mice and olfactory bulbectomised rats. A dose response study in mice revealed an initial anti-depressant-like effect of QCF-3 (0.5-4 mg/kg, ip) in the FST and TST. Interaction studies showed that QCF-3 (1 and 2 mg/kg) significantly enhanced the antidepressant action of fluoxetine and bupropion in the FST and TST, respectively. QCF-3 (1 and 2 mg/kg) potentiated the 5-hydroxytryptophan (5-HTP) induced head twitches response in mice and reversed reserpine-induced hypothermia in rats. Further, OBX rats exhibited behavioral anomalies in the open field and hyper-emotionality tests that were attenuated by chronic QCF-3 treatment. In conclusion, this behavioral study describes an antidepressant-like effect of QCF-3 in rodent behavioral models of depression.

  13. Fluvoxamine alleviates seizure activity and downregulates hippocampal GAP-43 expression in pentylenetetrazole-kindled mice: role of 5-HT3 receptors.

    PubMed

    Alhaj, Momen W; Zaitone, Sawsan A; Moustafa, Yasser M

    2015-06-01

    Epilepsy has been documented to lead to many changes in the nervous system including cell loss and mossy fiber sprouting. Neuronal loss and aberrant neuroplastic changes in the dentate gyrus of the hippocampus have been identified in the pentylenetetrazole (PTZ) kindling model. Antiseizure activity of selective serotonin reuptake inhibitors has been reported in several studies. In the current study, the protective effect of fluvoxamine against PTZ-kindling was investigated in terms of seizure scores, neuronal loss, and regulation of hippocampal neuroplasticity. Further, the role of 5-HT3 receptors was determined. Kindling was induced by repeated injections of PTZ (35 mg/kg) thrice weekly, for a total of 13 injections. One hundred male albino mice were allocated into 10 groups: (1) saline, (2) PTZ, (3) diazepam (1 mg/kg)+PTZ, (4-6) fluvoxamine (5, 10 or 20 mg/kg)+PTZ, (7) ondansetron+fluvoxamine (20 mg/kg)+PTZ, (8) ondansetron+PTZ group, (9) ondansetron (2 mg/kg, i.p.)+saline, and (10) fluvoxamine (20 mg/kg)+saline. PTZ-kindled mice showed high seizure activity, hippocampal neuronal loss, and expression of growth-associated phosphoprotein (GAP-43) compared with saline-treated mice. Repeated administration of fluvoxamine (20 mg/kg) in PTZ-kindled mice suppressed seizure scores, protected against hippocampal neuronal loss, and downregulated GAP-43 expression, without producing any signs of the 5-HT syndrome in healthy rats. Importantly, pretreatment with a selective 5-HT3 receptor blocker (ondansetron) attenuated the aforementioned effects of fluvoxamine. In conclusion, the ameliorating effect of fluvoxamine on hippocampal neurons and neuroplasticity in PTZ-kindled mice was, at least in part, dependent on enhancement of hippocampal serotoninergic transmission at 5-HT3 receptors.

  14. Safety of serotonin (5-HT3) receptor antagonists in patients undergoing surgery and chemotherapy: protocol for a systematic review and network meta-analysis

    PubMed Central

    2013-01-01

    Background Serotonin (5-HT3) receptor antagonists are a class of antiemetic medications often used to prevent nausea and vomiting among patients undergoing chemotherapy, radiotherapy or surgery. However, recent studies suggest that these agents might be associated with increased cardiac harm. To examine this further, we are proposing to conduct a systematic review and network meta-analysis on the comparative safety of 5-HT3 receptor antagonists among patients undergoing chemotherapy or surgery. Methods/Design Studies reporting one or more safety outcomes of interest for 5-HT3 receptor antagonists compared with each other, placebo, and/or other anti-emetic agents (for example, benzamides, phenothiazines, butyrophenones, antihistamines, and anticholinergics) among children and adult patients undergoing surgery or chemotherapy will be included. Our primary outcome of interest is arrhythmia. Our secondary outcomes include cardiac death, QT prolongation, PR prolongation, all-cause mortality, nausea, and vomiting. We will include experimental studies, quasi-experimental studies (namely controlled before-after and interrupted time series), and observational studies (namely cohort studies). We will not limit inclusion by publication status, time period, duration of follow-up or language of dissemination. Electronic databases (for example, MEDLINE, EMBASE) will be searched from inception onwards. These main searches will be supplemented by searching for difficult to locate and unpublished studies, such as dissertations, and governmental reports. The eligibility criteria will be pilot-tested and subsequently used to screen the literature search results by two reviewers in duplicate. A similar process will be followed for full-text screening, data abstraction, and risk of bias/methodological quality appraisal. The Cochrane Risk of Bias tool will be used to appraise experimental and quasi-experimental studies, and cohort studies will be assessed using the Newcastle Ottawa

  15. 5HT3 receptor antagonist (ondansetron) reverses depressive behavior evoked by chronic unpredictable stress in mice: modulation of hypothalamic-pituitary-adrenocortical and brain serotonergic system.

    PubMed

    Gupta, Deepali; Radhakrishnan, Mahesh; Kurhe, Yeshwant

    2014-09-01

    Chronic stress is one of the major causes of depression, associated with behavioral and biochemical impairments. 5HT3 receptor antagonists (such as ondansetron) have shown alleviation of depressive symptomology in preclinical and in few clinical studies. However, their effects in chronic stress-induced depressive behavior and the underlying mechanism(s) are yet to be known. In the present study, the effects of a 5HT3 receptor antagonist, ondansetron were evaluated in chronic unpredictable stress (CUS)-evoked depressive behavior. In addition, the possible mechanism was determined by measuring plasma corticosterone (CORT) as a marker of hypothalamic-pituitary-adrenocortical (HPA)-axis activity and serotonin levels in the discrete brain regions. Mice were subjected to a battery of unpredictable stressors for 28 days. Ondansetron (0.05, 0.1 and 1mg/kg, p.o.) and fluoxetine (10mg/kg, p.o.) were administered during the last 14 days (day 15-28th) of CUS testing paradigm. The results showed that the 4-week CUS produced significant depressive behavior in mice, which included increased despair effects in forced swim test (FST) and reward-related deficits in sucrose preference test. Biochemical assays demonstrated a significant increase in percentage of plasma CORT and decrease in percentage of serotonin levels in the discrete brain regions of CUS mice. Chronic ondansetron treatment, similar to that of positive control fluoxetine, significantly reversed despair effects in FST and reward-related deficits in sucrose preference test. In addition, ondansetron and fluoxetine treatments significantly increased percentage of serotonin levels in the measured brain regions and attenuated HPA-axis hyperactivity, as evidenced by low percentage of plasma CORT levels in CUS mice. These findings indicate the potential role of ondansetron (a 5HT3 receptor antagonist) in reversing CUS-induced depressive behavior, which is possibly mediated by its modulating effects on the HPA-axis and

  16. 2-(4-substituted piperazin-1-yl)-1,8-naphthyridine-3-carboxylic acids: novel 5-HT3 receptor antagonists with anxiolytic-like activity in rodent behavioral models.

    PubMed

    Mahesh, Radhakrishnan; Dhar, Arghya Kusum; Jindal, Ankur; Bhatt, Shvetank

    2013-10-01

    The aim of this study was to investigate the anxiolytic potential of a series of novel carboxylic acid based 1,8 naphthyridines as 5-HT3 receptor antagonists. The pA2 values of all the compounds were determined against agonist 2-methyl-5-hydroxytryptamine in longitudinal muscle myenteric plexus preparations from guinea pig ileum. Compounds with higher pA2 values, particularly those greater than ondansetron, a standard 5-HT3 receptor antagonist, and optimal log P values were screened in mice by using behavioral tests such as a light-dark (L/D) aversion test, elevated plus maze (EPM) test, and an open field test (OFT). In the L/D test, compounds 7a, 7b, 7d, 7e, and 7i (2 mg/kg body mass, intraperitoneal) significantly (P < 0.05) increased the latency time to leave the light compartment, total time spent in the light compartment, and the number of transitions between the light and dark compartments. Compounds 7a, 7d, 7f, 7h, and 7i (2 mg/kg, i.p.) significantly (P < 0.05) increased the time spent in the open arms and the number of entries into the open arms in the EPM test. In addition, compounds 7a, 7d, 7e, 7f, and 7h (2 mg/kg, i.p.) significantly (P < 0.05) increased the ambulation scores and the frequency of rearing in the OFT.

  17. Involvement of 5-HT1, 5-HT2, and 5-HT3 receptors in the mediation of the prolactin response to serotonin and 5-hydroxytryptophan.

    PubMed

    Jørgensen, H; Knigge, U; Warberg, J

    1992-03-01

    Serotonin (5-HT) is involved in the neuroendocrine regulation of prolactin (PRL) secretion as a stimulator. Within the last decade several 5-HT receptor types have been identified, but their individual role in the mediation of the PRL response to 5-HT is only partly understood. We investigated in conscious male rats the effect of different 5-HT1, 5-HT2, and 5-HT3 receptor antagonists on the PRL response to 5-HT or to the 5-HT precursor 5-hydroxytrytophan (5-HTP) which was administered in combination with the 5-HT reuptake inhibitor fluoxetine. 5-HT (0.5-5.0 mg/kg BW i.v.) or 5-HTP (25-100 mg/kg i.p.) in combination with saline or fluoxetine (10 mg/kg i.p.) increased the plasma PRL concentration dose-dependently. Pretreatment with the 5-HT1+2 receptor antagonist methysergide (2.5 mg/kg i.p.) prevented the stimulatory effect of 5-HT or 5-HTP + fluoxetine. Pretreatment with the 5-HT2 receptor antagonists ketanserin or LY 53857 (2.5 mg/kg i.p.) inhibited the PRL response to 5-HT by approximately 80% and to 5-HTP + fluoxetine approximately 100%. A higher dose (10 mg/kg) of the 5-HT2 receptor antagonists possessed only 50% inhibitory effect. Pretreatment with the 5-HT3 receptor antagonists ICS 205-930 or GR 38032F (0.05-2.5 mg/kg i.p.) inhibited the PRL response induced by 5-HT or by 5-HTP + fluoxetine. The maximal inhibitory effect (approximately 80%) was obtained by a dose of 0.1 mg/kg of both compounds.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Systemic injection of p-chloroamphetamine eliminates the effect of the 5-HT3 compounds on learning.

    PubMed

    Hong, E; Meneses, A

    1996-04-01

    There is evidence that 5-HT3 antagonists enhance learning and memory; however, their mechanisms of action are unknown. The aim of the present work was to investigate further the role of 5-HT3 receptors involved in learning, using the specific 5-HT3 agonist 1-(m-chlorophenyl)-biguanide (mCPBG) and the 5-HT3 antagonists ondansetron and tropisetron. p-Chloroamphetamine (PCA) pretreatment was used to determine whether pre- or postsynaptic 5-HT3 receptors are involved in learning. The posttraining intraperitoneal (IP) injection of each drug was analyzed on a lever-press response on autoshaping, which is an associative learning task. The results showed that mCPBG impaired retention of the conditioned response (CR), whereas tropisetron and ondansetron improved it. In other animals, PCA alone did not affect CR but was able to block the effects of the 5-HT3 ligands. The present data suggest that the actions of 5-HT3 compounds could be due to their interaction with presynaptic 5-HT3 receptors.

  19. Palonosetron versus other 5-HT(3) receptor antagonists for prevention of chemotherapy-induced nausea and vomiting in patients with cancer on chemotherapy in a hospital outpatient setting.

    PubMed

    Balu, Sanjeev; Buchner, Deborah; Craver, Chris; Gayle, Julie

    2011-04-01

    Despite favorable evidence from clinical trials for single-dose palonosetron versus other commercially available 5-HT(3)-receptor antagonists for the prophylaxis of chemotherapy-induced nausea and vomiting (CINV), clinical comparative data are scarce from hospital outpatient settings, where these antiemetic agents are used in patients diagnosed with cancer who are receiving chemotherapy (CTH). The purpose of our retrospective study was to assess the hospital claims to evaluate the rate of uncontrolled CINV with antiemetic prophylaxis using palonosetron versus other 5-HT(3)-receptor antagonists in patients diagnosed with cancer who are receiving CTH (highly emetogenic CTH, moderately emetogenic CTH, low-emetogenic CTH, or minimally emetogenic CTH) treatment in a hospital outpatient setting. Patients aged ≥18 years who had cancer and were being treated with CTH and antiemetic prophylaxis with palonosetron (Group 1) and other 5-HT(3) receptor antagonists (Group 2) for the first time between April 1, 2007, and March 31, 2009, were identified using a hospital-service database. Within each CTH cycle, CINV events were identified through International Classification of Diseases (ICD)-9 codes for nausea, vomiting, and/or volume depletion (from Day 1 of each CTH administration until the end of the CTH cycle) or for use of rescue medications (Day 2 until the end of the CTH cycle). A multivariate regression model was developed to predict uncontrolled CINV event rates per CTH cycle between Groups 1 and 2 matched on CTH emetogenicity distribution in the study follow-up period (first of 8 cycles or 6 months). A subgroup analysis of patients on CTH with the highest risk of nausea and vomiting (highly emetogenic CTH or moderately emetogenic CTH) was also conducted. Of 9144 identified patients, 1775 were prescribed palonosetron (Group 1). Group 1 patients were statistically younger (61.2 vs 62.8 years; P < 0.001), composed of more females (57.1% vs 51.9%; P < 0.001) and more

  20. X-ray analysis of the effect of the 5-HT3 receptor antagonist granisetron on gastrointestinal motility in rats repeatedly treated with the antitumoral drug cisplatin.

    PubMed

    Vera, Gema; López-Pérez, Ana Esther; Martínez-Villaluenga, María; Cabezos, Pablo Antonio; Abalo, Raquel

    2014-08-01

    Cancer chemotherapy is associated with the development of numerous adverse effects, including nausea, emesis and other alterations in gastrointestinal (GI) motility. The administration of 5-HT3 receptor antagonists has provided a clinical advance in the treatment of chemotherapy-induced vomiting but these drugs lose efficacy throughout chronic treatment. The effects of these drugs in experimental animals under chronic administration are not well known. Our aim was to study, using radiographic methods, the effect of the 5-HT3 receptor antagonist granisetron on GI dysmotility induced in the rat by repeated cisplatin administration. First, invasive methods were used to select a dose of granisetron capable of reducing increased stomach weight due to acute cisplatin administration (6 mg/kg, ip). Second, rats received two intraperitoneal (ip) injections once a week for 4 weeks: granisetron (1 mg/kg, ip) or saline and, thirty min later, saline or cisplatin (2 mg/kg, ip). Body weight gain was measured throughout treatment. Radiological techniques were used to determine the acute (after first dose) and chronic (after last dose) effects of cisplatin and/or granisetron on GI motility. Repeated cisplatin-induced weight loss which granisetron did not prevent. Gastric emptying was delayed after the first cisplatin administration. Granisetron completely prevented this effect. After weekly administration, cisplatin-induced gastric dysmotility was enhanced and granisetron was not capable of completely preventing this effect. Granisetron prevents gastric emptying alterations, but its efficacy decreases throughout antineoplastic treatment. This might be due to the enhanced effect of cisplatin.

  1. Emesis and Defecations Induced by the 5-Hydroxytryptamine (5-HT3) Receptor Anatagonist Zacopride in the Ferret

    DTIC Science & Technology

    1990-02-16

    vehicle pretreatment in order screened for evidence of disease prior to release from quarantine- to re-establish that a response to zacopride would occur...dorsal vagus primarily innervates the dorsal aspects reported here (n.033 mg/kg). In contrast, Costall et al. (1987) of the stomach and the coeliac ...receptor. This was anatomically beyond the coeliac ganglion (MacKay and An- demonstrated by the reduced emesis seen after pretreatment drews, 1983

  2. Effect of a novel 5-HT3 receptor antagonist 4i, in corticosterone-induced depression-like behavior and oxidative stress in mice.

    PubMed

    Gupta, Deepali; Radhakrishnan, Mahesh; Kurhe, Yeshwant

    2015-04-01

    Stress in our daily life severely affects the normal physiology of the biological system. Dysregulation of hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the development of depression-like behavior, which remains under diagnosed and poorly treated. Exogenous corticosterone (CORT) administration has been demonstrated to develop a depression model, which has shown to mimic HPA-axis induced depression-like state in rodents. In the present study, the effect of a novel 5HT3 receptor, 4i was examined on CORT induced depression in mice. CORT (30mg/kg, subcutaneously) was given for 4-weeks to mice in control group, while mice in drug treated group were given 4i (0.5-1mg/kg, intraperitoneally)/fluoxetine (as a positive control, 10mg/kg), for the last 2-weeks of CORT dosing. Repeated CORT dosing caused depression-like behavior in mice as indicated by increased despair effects in forced swim test (FST) and anhedonia in sucrose preference test. In addition, CORT administration induced oxidative load in the brain with significant increase in pro-oxidant (lipid peroxidation and nitrite levels) markers and a substantial decline in anti-oxidant defense (catalase and reduced glutathione levels) system, indicating a direct effect of stress hormones in the induction of the brain oxidative damage. On the other hand, 4i and fluoxetine treatment reversed the CORT induced depressive-like deficits. Furthermore, 4i and fluoxetine prevented CORT induced oxidative brain insults, which may plausibly demonstrate one of the key mechanisms for antidepressant-like effects of the compounds. Thus, the study suggests that 5HT3 antagonist; 4i may be implicated as pharmacological intervention targeting depressive-like anomaly associated with HPA-axis dysregulation.

  3. Synthesis and biochemical evaluation of tritium-labeled 1-methyl-N-(8-methyl-8-azabicyclo(3. 2. 1)oct-3-yl)-1H-indazole-3-carboxa mide, a useful radioligand for 5HT3 receptors

    SciTech Connect

    Robertson, D.W.; Bloomquist, W.; Cohen, M.L.; Reid, L.R.; Schenck, K.; Wong, D.T. )

    1990-12-01

    The advent of potent, highly selective 5HT3 receptor antagonists has stimulated considerable interest in 5HT3 receptor mediated physiology and pharmacology. To permit detailed biochemical studies regarding interaction of the indazole class of serotonin (5HT) antagonists with 5HT3 receptors in multiple tissues, we synthesized 1-methyl-N-(8-methyl-8-azabicyclo(3.2.1)oct-3-yl)-1H-indazole- 3-carboxamide (LY278584, compound 9) in high specific activity, tritium-labeled form. This radioligand was selected as a synthetic target because of its potency as a 5HT3-receptor antagonist, its selectivity for this receptor viz a viz other 5HT-receptor subtypes, and the ability to readily incorporate three tritia via the indazole N-CH3 substituent. Alkylation of N-(8-methyl-8-azabicyclo(3.2.1)oct-3-yl)-1H-indazole-3-carboxamide (8) with sodium hydride and tritium-labeled iodomethane, followed by HPLC purification, resulted in (3H)-9 with a radiochemical purity of 99% and a specific activity of 80.5 Ci/mmol. This radioligand bound with high affinity to a single class of saturable recognition sites in membranes isolated from cerebral cortex of rat brain. The Kd was 0.69 nM and the Bmax was 16.9 fmol/mg of protein. The specific binding was excellent, and accounted for 83-93% of total binding at concentrations of 2 nM or less. The potencies of known 5HT3-receptor antagonists as inhibitors of (3H)-9 binding correlated well with their pharmacological receptor affinities as antagonists of 5HT-induced decreases in heart rate and contraction of guinea pig ileum, suggesting the central recognition site for this radioligand may be extremely similar to or identical with peripheral 5HT3 receptors.

  4. Dual role of serotonin in the acquisition and extinction of reward-driven learning: involvement of 5-HT1A, 5-HT2A and 5-HT3 receptors.

    PubMed

    Frick, Luciana Romina; Bernardez-Vidal, Micaela; Hocht, Christian; Zanutto, Bonifacio Silvano; Rapanelli, Maximiliano

    2015-01-15

    Serotonin (5-HT) has been proposed as a possible encoder of reward. Nevertheless, the role of this neurotransmitter in reward-based tasks is not well understood. Given that the major serotonergic circuit in the rat brain comprises the dorsal raphe nuclei and the medial prefrontal cortex (mPFC), and because the latter structure is involved in the control of complex behaviors and expresses 1A (5-HT1A), 2A (5-HT2A), and 3 (5-HT3) receptors, the aim was to study the role of 5-HT and of these receptors in the acquisition and extinction of a reward-dependent operant conditioning task. Long Evans rats were trained in an operant conditioning task while receiving fluoxetine (serotonin reuptake inhibitor, 10mg/kg), tianeptine (serotonin reuptake enhancer, 10mg/kg), buspirone (5-HT1A partial agonist, 10mg/kg), risperidone (5-HT2A antagonist, 1mg/kg), ondansetron (5-HT3 antagonist, 2mg/kg) or vehicle. Then, animals that acquired the operant conditioning without any treatment were trained to extinct the task in the presence of the pharmacological agents. Fluoxetine impaired acquisition but improved extinction. Tianeptine administration induced the opposite effects. Buspirone induced a mild deficit in acquisition and had no effects during the extinction phase. Risperidone administration resulted in learning deficits during the acquisition phase, although it promoted improved extinction. Ondansetron treatment showed a deleterious effect in the acquisition phase and an overall improvement in the extinction phase. These data showed a differential role of 5-HT in the acquisition and extinction of an operant conditioning task, suggesting that it may have a dual function in reward encoding.

  5. Stimulation of 5-HT1A, 5-HT1B, 5-HT2A/2C, 5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition: short- and long-term memory.

    PubMed

    Meneses, Alfredo

    2007-11-22

    In order to determine whether short- (STM) and long-term memory (LTM) function in serial or parallel manner, serotonin (5-hydroxtryptamine, 5-HT) receptor agonists were tested in autoshaping task. Results show that control-vehicle animals were modestly but significantly mastering the autoshaping task as illustrated by memory scores between STM and LTM. Thus, post-training administration of 8-OHDPAT (agonist for 5-HT(1A/7) receptors) only at 0.250 and 0.500 mg/kg impaired both STM and LTM. CGS12066 (agonist for 5-HT(1B)) produced biphasic affects, at 5.0 mg/kg impaired STM but at 1.0 and 10.0 mg/kg, respectively, improved or impaired LTM. DOI (agonist for 5-HT(2A/2C) receptors) dose-dependently impaired STM and, at 10.0 mg/kg only impaired LTM. Both, STM and LTM were impaired by either mCPP (mainly agonist for 5-HT(2C) receptors) or mesulergine (mainly antagonist for 5-HT(2C) receptors) lower dose. The 5-HT(3) agonist mCPBG at 1.0 impaired STM and its higher dose impaired both STM and LTM. RS67333 (partial agonist for 5-HT(4) receptors), at 5.0 and 10.0 mg/kg facilitated both STM and LTM. The higher dose of fluoxetine (a 5-HT uptake inhibitor) improved both STM and LTM. Using as head-pokes during CS as an indirect measure of food-intake showed that of 30 memory changes, 21 of these were unrelated to the former. While some STM or LTM impairments can be attributed to decrements in food-intake, but not memory changes (either increase or decreases) produced by 8-OHDPAT, CGS12066, RS67333 or fluoxetine. Except for animals treated with DOI, mCPBG or fluoxetine, other groups treated with 5-HT agonists 6 h following autoshaping training showed similar LTM and unmodified CS-head-pokes scores.

  6. Acute treatment with 5-HT3 receptor antagonist, tropisetron, reduces immobility in intact female rats exposed to the forced swim test.

    PubMed

    Bravo, Gabriela; Maswood, Sharmin

    2006-10-01

    The effects of tropisetron, a 5-HT3 receptor antagonist, were evaluated in adult Fischer female rats exposed to the Forced Swim Test (FST). Rats selected on the days of proestrus or estrus was immersed in a cylinder of water for 2 consecutive days. Rats were exposed to the FST for 15 min on day 1 (pretest), followed by a 5-min session (test), 24 h later. The proestrous-estrous group consisted of rats that were exposed to the FST on their proestrous stage (pretest); then 24 h later the same rats were exposed to the FST on their estrous stage (test). Rats in the estrous-diestrous group were exposed to the FST on their estrous stage (pretest) and 24 h later on their diestrous stage (test). Rats were injected intraperitoneally with saline or 1.0 or 2.0 mg/kg tropisetron 30 min prior to exposure to the cylinder on the test day. Immobility, swimming, and struggling behaviors were scored for 5 min. There was a significant decline in immobility after treatment with 2.0 mg/kg tropisetron in both groups. In addition, a significant decline in swimming was observed in the estrous rats (proestrous-estrous group) after treatment with 2.0 mg/kg tropisetron. There were no significant effects of tropisetron on struggling in any groups examined.

  7. Antidepressant-like effect of novel 5-HT3 receptor antagonist N-n-butyl-3-ethoxyquinoxalin-2-carboxamide (6p): an approach using rodent behavioral antidepressant tests.

    PubMed

    Bhatt, Shvetank; Mahesh, Radhakrishnan; Devadoss, Thangaraj; Jindal, Ankur Kumar

    2013-01-01

    The present study was designed to investigate the antidepressant potential of N-n-butyl-3-ethoxyquinoxalin-2-carboxamide (6p), a novel 5-HT3 receptor antagonist in rodent behavioral models of depression. The compound 6p was examined in various behavioral models like forced swim test (FST), tail suspension test (TST), mechanistic models [5-hydroxytryptophan (5-HTP)-induced head twitch and reserpine-induced hypothermia (RIH)], and in chronic surgery model-olfactory bulbectomy in rats. Compound 6p (1, 2, and 4 mg/kg, i.p.) exhibited antidepressant-like effect in FST and TST after acute treatment without having an effect on baseline locomotor activity. Moreover, 6p (2 mg/kg, i.p.), potentiated the 5-HTP-induced head twitch responses in mice and inhibited the RIH in rats. Chronic treatment (14 days) with 6p (1 and 2 mg/kg, p.o.) and paroxetine (10 mg/kg, p.o.) in rats significantly reversed the behavioral anomalies induced by bilateral olfactory bulbectomy using open field exploration. The preliminary studies reveal that compound 6p exhibits antidepressant-like effect in behavioral rodent models of depression.

  8. Antidepressant and anxiolytic-like effects of 4n, a novel 5-HT3 receptor antagonist using behaviour based rodent models.

    PubMed

    Kumar, Baldev; Jindal, Ankur; Pandey, Dilip Kumar; Bhatt, Shvetank; Devadoss, Thangaraj; Mahesh, Radhakrishnan

    2012-09-01

    The present study was designed to investigate the putative antidepressant and anxiolytic-like effects of N-n-Butylquinoxalin-2-carboxamide (4n), a novel 5-HT3 receptor antagonist, with an optimal log P (2.01) and pA2 value (7.3) greater than ondansetron (6.9) using rodent behavioural models of depression and anxiety. Acute treatment of 4n (1-4 mg/kg, ip) in mice produced antidepressant-like effect in forced swim test (FST) without affecting the baseline locomotion in actophotometer test in mice. 4n (2-4 mg/kg, ip) treatment also potentiated the 5-hydroxytryptophan (5-HTP) induced head twitch response in mice. Further, 4n (1-4 mg/kg, ip) treatment antagonized reserpine induced hypothermia in rats. Chronic treatment (14 days) with 4n (1-4 mg/kg) and paroxetine (10 mg/kg) significantly attenuated the behavioural anomalies induced by bilateral olfactory bulbectomy in rats in modified open field paradigm. An anxiogenic-like behaviour was induced by light alone as the stimulus using light-dark aversion test. 4n (2-4 mg/kg, ip) treatment significantly increased no. of transitions between dark and lit area and the time spent in the lit area. In conclusion, these preliminary investigations confirm that 4n exhibited antidepressant and anxiolytic-like effects in rodent models of depression and anxiety.

  9. Antidepressant-like effect of novel 5-HT3 receptor antagonist N-n-butyl-3-ethoxyquinoxalin-2-carboxamide (6p): An approach using rodent behavioral antidepressant tests

    PubMed Central

    Bhatt, Shvetank; Mahesh, Radhakrishnan; Devadoss, Thangaraj; Jindal, Ankur Kumar

    2013-01-01

    Objective: The present study was designed to investigate the antidepressant potential of N-n-butyl-3-ethoxyquinoxalin-2-carboxamide (6p), a novel 5-HT3 receptor antagonist in rodent behavioral models of depression. Materials and Methods: The compound 6p was examined in various behavioral models like forced swim test (FST), tail suspension test (TST), mechanistic models [5-hydroxytryptophan (5-HTP)-induced head twitch and reserpine-induced hypothermia (RIH)], and in chronic surgery model-olfactory bulbectomy in rats. Results: Compound 6p (1, 2, and 4 mg/kg, i.p.) exhibited antidepressant-like effect in FST and TST after acute treatment without having an effect on baseline locomotor activity. Moreover, 6p (2 mg/kg, i.p.), potentiated the 5-HTP–induced head twitch responses in mice and inhibited the RIH in rats. Chronic treatment (14 days) with 6p (1 and 2 mg/kg, p.o.) and paroxetine (10 mg/kg, p.o.) in rats significantly reversed the behavioral anomalies induced by bilateral olfactory bulbectomy using open field exploration. Conclusion: The preliminary studies reveal that compound 6p exhibits antidepressant-like effect in behavioral rodent models of depression. PMID:24014909

  10. Evidence for an extra-abdominal site of action for the 5-HT3 receptor antagonist BRL24924 in the inhibition of radiation-evoked emesis in the ferret.

    PubMed

    Andrews, P L; Hawthorn, J

    1987-09-01

    Recent studies have implicated 5-HT3(5-HT-M) receptors in the genesis of retching and vomiting evoked by antineoplastic agents. Such receptors have so far only been located peripherally, notably on the vagus. Therefore, the effects of bilateral abdominal vagotomy and antagonism of 5-HT3 receptors have been investigated on retching and vomiting induced by radiation. The gastrokinetic substituted benzamide BRL24924, (Beecham Pharmaceuticals) which has 5-HT3 receptor antagonist properties, was used. Using the ferret, it was shown that whole body x-radiation produced retching and vomiting, which was most severe during the 30 min following irradiation, and continued for at least 90 min. Abdominal vagotomy almost totally abolished the retching and vomiting, occurring during the 30 min immediately after irradiation. The following 60 min period was similar to that of control animals. This would suggest that the emetic events can be divided into a vagally-dependent and independent phase. In a small dose, BRL 24924 mimicked abdominal vagtotomy, in a larger dose, it almost totally abolished the retching and vomiting throughout the entire 90 min period. These results suggest that 5-HT3 receptor antagonists are capable of ameliorating radiation-induced retching and vomiting and that, while an important site of their action could be the abdominal vagi, other areas are probably also involved.

  11. Ondansetron, a 5HT3 receptor antagonist reverses depression and anxiety-like behavior in streptozotocin-induced diabetic mice: possible implication of serotonergic system.

    PubMed

    Gupta, Deepali; Radhakrishnan, Mahesh; Kurhe, Yeshwant

    2014-12-05

    Increased prevalence and high comorbidity of depression-like mood disorders and diabetes have prompted investigation of new targets and potential contributing agents. There is considerable evidence supporting the inconsistent clinical efficacy and persistent undesirable effects of existing antidepressant therapy for depression associated with diabetes. Therefore, the present study was aimed at investigating the effect of ondansetron, a selective 5HT3 receptor antagonist in attenuating depression and anxiety-like behavior comorbid with diabetes. Experimentally, Swiss albino mice were rendered diabetic by a single intraperitoneal (i.p.) injection of streptozotocin (STZ, 200 mg/kg). After 8 weeks, diabetic mice received a single dose of vehicle/ondansetron (0.5 and 1 mg/kg, p.o.)/fluoxetine (the positive control, 10 mg/kg p.o.) for 28 days. Thereafter, behavioral studies were conducted to test depression-like behavior using forced swim test (FST) and anxiety-like deficits using hole-board and light-dark tests, followed by biochemical estimation of serotonin content in discrete brain regions. The results demonstrated that, STZ-induced diabetic mice exhibited increased duration of immobility and decreased swimming behavior in FST, reduced exploratory behavior during hole-board test and increased aversion to brightly illuminated light area in light-dark test as compared to non-diabetic mice, while ondansetron (similar to fluoxetine) treatment significantly reversed the same. Biochemical assay revealed that ondansetron administration attenuated diabetes-induced neurochemical impairment of serotonin function, indicated by elevated serotonin levels in discrete brain regions of diabetic mice. Collectively, the data indicate that ondansetron may reverse depression and anxiety-like behavioral deficits associated with diabetes in mice and modulation of serotonergic activity may be a key mechanism of the compound.

  12. Does a single intravenous injection of the 5HT3 receptor antagonist ondansetron have an analgesic effect in neuropathic pain? A double-blinded, placebo-controlled cross-over study.

    PubMed

    McCleane, Gary J; Suzuki, Rie; Dickenson, Anthony H

    2003-11-01

    Neurokinin-1-expressing neurones in lamina I to III of the spinal cord are intimately involved in the regulation of ascending and spino-bulbal pathways that regulate excitatory transmission. In experimental animals, ablation of these neurones reduces the responses to a variety of nociceptive stimuli. Furthermore, in animals, spinal application of the selective 5HT3 receptor antagonist ondansetron mimics these effects, indicating that 5HT3 receptors play a pronociceptive role and mediate descending excitatory controls that allow spinal neurones to fully code peripheral stimuli. In this study, we examined the potential analgesic effect of a single IV injection of ondansetron in humans with chronic neuropathic pain. Each consenting subject received a single IV injection of 8 mg ondansetron and placebo in varying order at least 1 wk apart with pain scores being recorded for the 48 h preceding and after each injection. Pain scores were significantly reduced 2 h after ondansetron injection (but at no other time point). This suggests that ondansetron can have an analgesic effect in neuropathic pain. Side effects were minor and infrequent. The selective 5HT3 receptor antagonist ondansetron, currently used as an antiemetic, may also have analgesic properties. Side effects with a single IV injection are infrequent and usually mild.

  13. Anti-depressant-like activity of a novel serotonin type-3 (5-HT3) receptor antagonist in rodent models of depression.

    PubMed

    Gupta, Deepali; Devadoss, Thangaraj; Bhatt, Shvetank; Gautam, Baldev; Jindal, Ankur; Pandey, Dilip; Mahesh, Radhakrishnan

    2011-08-01

    N-Cyclohexyl-3-methoxyquinoxalin-2-carboxamide (QCM-13), a novel 5-HT3 antagonist identified from a series of compounds with higher pA2 (7.6) and good log P (2.91) value was screened in rodent models of depression such as forced swim test (FST), tail suspension test (TST), interaction studies with standard anti-depressants and confirmatory studies such as reversal of parthenolide induced depression and reserpine induced hypothermia. In FST (2 and 4 mg/kg) and TST (2 and 4 mg/kg), QCM-13 significantly reduced the duration of immobility in mice without affecting the base line locomotion. QCM-13 (2 and 4 mg/kg) was also found to have significant interaction with standard anti-depressants (fluoxetine and bupropion in FST and TST respectively). Further, reversal of parthenolide induced depression in mice and reserpine induced hypothermia in rat models indicate the serotonergic influence of QCM-13 for anti-depressant potential.

  14. The N-methyl-D-aspartate receptor channel blockers memantine, MRZ 2/579 and other amino-alkyl-cyclohexanes antagonise 5-HT(3) receptor currents in cultured HEK-293 and N1E-115 cell systems in a non-competitive manner.

    PubMed

    Rammes, G; Rupprecht, R; Ferrari, U; Zieglgänsberger, W; Parsons, C G

    2001-06-22

    The type 3 serotonin (5-HT(3)) receptor is a ligand-gated ion channel. In concentration-clamp experiments, we investigated the effects of the uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists memantine, amantadine and MRZ 2/579 on 5-HT receptors stabley expressed in HEK-293 cells and on native 5-HT(3) receptors in the N1E-115 cell line. All agents antagonized serotonin (10 microM)-induced inward currents with similar potency to that reported for NMDA receptors. This effect was characterized by inducing a pronounced receptor desensitization, and was probably non-competitive and voltage-independent. In contrast, (S)-ketamine was much weaker as an antagonist of 5-HT(3) receptors than NMDA receptors. Similar effects on 5-HT(3) receptors have been reported previously for a variety of anti-depressants and it is possible that the clinical anti-depressant effects reported for both memantine and amantadine are mediated, at least in part, by antagonistic effects at 5-HT(3) receptors.

  15. Chemotherapy-induced nausea and vomiting and antiemetic prophylaxis with palonosetron versus other 5-HT3 receptor antagonists in patients with cancer treated with low emetogenic chemotherapy in a hospital outpatient setting in the United States.

    PubMed

    Schwartzberg, Lee; Morrow, Gary; Balu, Sanjeev; Craver, Chris; Gayle, Julie; Cox, David

    2011-08-01

    The incidence of overall (acute and delayed) chemotherapy-induced nausea and vomiting (CINV) events among patients treated with single- and multi-day low emetogenic chemotherapy (LEC) is not well established. We studied a cohort of patients receiving LEC and antiemetic prophylaxis with palonosetron (Group 1) versus other 5-HT(3) receptor antagonists (5-HT(3)-RAs) (Group 2), to determine the overall rate of CINV and the proportion of patients experiencing delayed CINV (days 2-7 of a CT cycle) in a hospital outpatient setting. Patients aged ≥18 years with cancer diagnosis initiating single-day and multi-day LEC for the first time between 4/1/2007 and 3/31/2009 were identified from the Premier Perspective database. CINV events (ICD-9-CM codes for nausea, vomiting, or volume depletion or CINV-related rescue medications) were assessed descriptively. A generalized linear multivariate regression model was developed, estimating the overall CINV event rate among Group 1 and 2 patients in the follow-up period (first of eight chemotherapy [CT] cycles or 6 months). In the follow-up period, out of a total of 10,137 overall CINV events (single-day and multi-day LEC), 8783 events (86.6%) were identified in single-day LEC treated patients. Within single-day LEC treated events, in the first cycle, of 3184 events, 2996 (94.1%) events were delayed. Average number of delayed events per patient remained consistent throughout the eight cycles (3.1 [1st cycle] vs. 2.9 [8th cycle]; P = 0.842]). Among 2439 patients on antiemetic prophylaxis with a 5-HT(3)-RA, 10.1% (n = 247) initiated palonosetron. Regression analysis indicated that Group 1 patients (versus Group 2) had a 15.2% reduction in CINV event rate per CT cycle; P = 0.0403. Study limitations include potential lack of generalizability, absence of data on certain confounders including alcohol consumption and prior history of motion sickness, potential underestimation of incidence of uncontrolled CINV, and inability to

  16. Evidence for the involvement of the serotonergic 5-HT2A/C and 5-HT3 receptors in the antidepressant-like effect caused by oral administration of bis selenide in mice.

    PubMed

    Jesse, Cristiano R; Wilhelm, Ethel A; Bortolatto, Cristiani F; Nogueira, Cristina W

    2010-03-17

    The present study investigated a possible antidepressant-like activity of bis selenide using two predictive tests for antidepressant effect on rodents: the forced swimming test (FST) and the tail suspension test (TST). Bis selenide (0.5-5 mg/kg, p.o.) decreased the immobility time in the mouse FST and TST. The anti-immobility effect of bis selenide (1 mg/kg, p.o.) in the TST was prevented by the pretreatment of mice with p-chlorophenylalanine methyl ester (PCPA; 100 mg/kg, i.p., an inhibitor of serotonin synthesis), ketanserin (1 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), and ondasentron (1 mg/kg, i.p., a 5-HT(3) receptor antagonist). Pretreatment of mice with prazosin (1 mg/kg, i.p., an alpha(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an alpha(2)-adrenoceptor antagonist), propranolol (2 mg/kg, i.p., a beta-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, s.c., a dopamine D(1) receptor antagonist), sulpiride (50 mg/kg, i.p., a dopamine D(2) receptor antagonist), or WAY 100635 (0.1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist) did not block the antidepressant-like effect of bis selenide (1 mg/kg, p.o.) in the TST. Administration of bis selenide (0.1 mg/kg, p.o.) and fluoxetine (1 mg/kg), at subeffective doses, produced an antidepressant-like effect in the TST. Bis selenide did not alter Na(+) K(+) ATPase, MAO-A and MAO-B activities in whole brains of mice. Bis selenide produced an antidepressant-like effect in the mouse TST and FST, which may be related to the serotonergic system (5-HT(2A/2C) and 5-HT(3) receptors).

  17. Neuropharmacological effect of novel 5-HT3 receptor antagonist, N-n-propyl-3-ethoxyquinoxaline-2-carboxamide (6n) on chronic unpredictable mild stress-induced molecular and cellular response: Behavioural and biochemical evidences.

    PubMed

    Bhatt, Shvetank; Mahesh, Radhakrishnan; Jindal, Ankur; Devadoss, Thangaraj

    2014-10-01

    Chronic unpredictable stressors can produce a situation similar to human depression and such animal models can be used for the preclinical evaluation of antidepressants. The 5-HT3 receptor antagonists modulate serotonergic pathways and show antidepressant-like effect in various animal models of depression. In this study, a novel and potential 5-HT3 receptor antagonist N-n-propyl-3-ethoxyquinoxaline-2-carboxamide (6n) with good Log P (2.52) value and pA2 (7.6) values, synthesized in our laboratory was explore to study the effects on CUMS-induced behavioural and biochemical alterations in mice. Mice were subjected to different stress paradigms daily for a period of 28 days to induce depressive-like behaviour. CUMS caused depression-like behaviour in mice, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test (FST) while there was no significant effect on spontaneous locomotor activity (SLA) observed. In addition it was found that lipid peroxide and nitrite levels were significantly increased, whereas glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels were decreased in brain tissue of CUMS-treated mice. Compound 6n (1 and 2mg/kg, po, 21 days) and fluoxetine treatment (20mg/kg, po, 21 days) significantly altered the CUMS-induced behavioural (increased immobility period, reduced sucrose preference) and biochemical (increased lipid peroxidation, increased brain nitrite; decreased GSH, SOD and CAT levels) parameters while there was no significant effect of observed on SLA. Compound 6n produced antidepressant-like effects in behavioural despair paradigm in chronically stressed mice by restoring antioxidant enzyme activity up to significant level. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. Analysis of free ACh and 5-HT in milk from four different species and their bioactivity on 5-HT(3) and nACh receptors.

    PubMed

    Gallegos-Perez, Jose-Luis; Limon, Agenor; Reyes-Ruiz, Jorge M; Alshanqeeti, Ali S; Aljohi, Mohammad A; Miledi, Ricardo

    2014-07-25

    Milk is one of the most beneficial aliments and is highly recommended in normal conditions; however, in certain disorders, like irritable bowel syndrome, cow milk and dairy products worsen the gastric symptoms and their use is not recommended. Among the most recognized milk-induced gatrointestinal symptoms are abdominal pain, nausea and vomiting, which are processes controlled by cholinergic and serotonergic transmission. Whether the presence of bioavailable ACh and 5-HT in milk may contribute to normal peristalsis, or to the developing of these symptoms, is not known. In this work we attempt to determine whether the content of free ACh and 5-HT is of physiological significance in milk from four different species: cow (bovine), goat, camel and human. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to identify and quantify free ACh and 5-HT in milk, and activation of the serotonergic and cholinergic ionotropic receptors was investigated using electrophysiological experiments. Our principal hypothesis was that milk from these four species had sufficient free ACh and 5-HT to activate their correspondent receptors expressed in a heterologous system. Our results showed a more complex picture, in which free ACh and 5-HT and their ability to activate cholinergic and serotonergic receptors are not correlated. This work is a first step to elucidate whether 5-HT and ACh, at the concentrations present in the milk, can be associated to a direct function in the GI.

  19. Neuropharmacological evaluation of a novel 5-HT3 receptor antagonist (6g) on chronic unpredictable mild stress-induced changes in behavioural and brain oxidative stress parameters in mice

    PubMed Central

    Bhatt, Shvetank; Radhakrishnan, Mahesh; Jindal, Ankur; Devadoss, Thangaraj; Dhar, Arghya Kusum

    2014-01-01

    Aim: The aim of the study was to evaluate a novel 5 HT3 receptor antagonist (6g) on chronic stress induced changes in behavioural and brain oxidative stress parameter in mice. A complicated relationship exists among stressful stimuli, body's reaction to stress and the onset of clinical depression. Chronic unpredictable stressors can produce a situation similar to human depression, and such animal models can be used for the preclinical evaluation of antidepressants. Materials and Methods: In the present study, a novel and potential 5-HT3 receptor antagonist (4-benzylpiperazin-1-yl)(3-methoxyquinoxalin-2-yl) methanone (6g) with good Log P (3.08) value and pA2(7.5) values, synthesized in our laboratory was investigated to study the effects on chronic unpredictable mild stress (CUMS)-induced behavioural and biochemical alterations in mice. Mice were subjected to different stress paradigms daily for a period of 28 days to induce depressive-like behaviour. Results: The results showed that CUMS caused depression-like behaviour in mice, as indicated by the significant (P < 0.05) decrease in sucrose consumption and locomotor activity and increase in immobility the forced swim test. In addition, it was found that lipid peroxidation and nitrite levels were significantly (P < 0.05) increased, whereas glutathione levels, superoxide dismutase and catalase activities decreased in brain tissue of CUMS-treated mice. ‘6g’ (1 and 2 mg/kg, p.o., 21 days) and fluoxetine treatment (20 mg/kg, p.o., 21 days) significantly (P < 0.05) reversed the CUMS-induced behavioural (increased immobility period, reduced sucrose preference and decreased locomotor activity) and biochemical (increased lipid peroxidation; decreased glutathione levels, superoxide dismutase and catalase activities). However fluoxetine treatment (20 mg/kg, p.o., 21 days) significantly decreased the nitrite level in the brain while ‘6g’ (1 and 2 mg/kg, p.o., 21 days) did not show significant (P < 0.05) effect on the

  20. Sleep Deprivation-Induced Blood-Brain Barrier Breakdown and Brain Dysfunction are Exacerbated by Size-Related Exposure to Ag and Cu Nanoparticles. Neuroprotective Effects of a 5-HT3 Receptor Antagonist Ondansetron.

    PubMed

    Sharma, Aruna; Muresanu, Dafin F; Lafuente, José V; Patnaik, Ranjana; Tian, Z Ryan; Buzoianu, Anca D; Sharma, Hari S

    2015-10-01

    Military personnel are often subjected to sleep deprivation (SD) during combat operations. Since SD is a severe stress and alters neurochemical metabolism in the brain, a possibility exists that acute or long-term SD will influence blood-brain barrier (BBB) function and brain pathology. This hypothesis was examined in young adult rats (age 12 to 14 weeks) using an inverted flowerpot model. Rats were placed over an inverted flowerpot platform (6.5 cm diameter) in a water pool where the water levels are just 3 cm below the surface. In this model, animals can go to sleep for brief periods but cannot achieve deep sleep as they would fall into water and thus experience sleep interruption. These animals showed leakage of Evans blue in the cerebellum, hippocampus, caudate nucleus, parietal, temporal, occipital, cingulate cerebral cortices, and brain stem. The ventricular walls of the lateral and fourth ventricles were also stained blue, indicating disruption of the BBB and the blood-cerebrospinal fluid barrier (BCSFB). Breakdown of the BBB or the BCSFB fluid barrier was progressive in nature from 12 to 48 h but no apparent differences in BBB leakage were seen between 48 and 72 h of SD. Interestingly, rats treated with metal nanoparticles, e.g., Cu or Ag, showed profound exacerbation of BBB disruption by 1.5- to 4-fold, depending on the duration of SD. Measurement of plasma and brain serotonin showed a close correlation between BBB disruption and the amine level. Repeated treatment with the serotonin 5-HT3 receptor antagonist ondansetron (1 mg/kg, s.c.) 4 and 8 h after SD markedly reduced BBB disruption and brain pathology after 12 to 24 h SD but not following 48 or 72 h after SD. However, TiO2-nanowired ondansetron (1 mg/kg, s.c) in an identical manner induced neuroprotection in rats following 48 or 72 h SD. However, plasma and serotonin levels were not affected by ondansetron treatment. Taken together, our observations are the first to show that (i) SD could induce BBB

  1. Antidepressant-like activity of (4-phenylpiperazin-1-yl) (quinoxalin-2-yl) methanone (4a), a novel 5-HT(3) receptor antagonist: an investigation in behaviour-based rodent models of depression.

    PubMed

    Mahesh, Radhakrishnan; Kumar, Baldev; Jindal, Ankur; Bhatt, Shvetank; Devadoss, Thangaraj; Pandey, Dilip Kumar

    2012-01-01

    The present study was designed to investigate the antidepressant potential of (4-phenylpiperazin-1-yl) (quinoxalin-3-yl) methanone (4a), a novel 5-HT(3) receptor antagonist, with an optimal log P (2.84) and pA(2) value (7.3) greater than ondansetron (6.9) using rodent behavioural models of depression. Swiss albino mice were used in actophotometer test, forced swim test (FST) and 5-hydroxytryptophan (5-HTP) induced head twitch response. Reserpine induced hypothermia (RIH) and olfactory bulbectomy were performed in male Wistar rats. Statistical analysis was carried out by using one-way analysis of variance followed by Tukey's test. Acute treatment of 4a (1-4 mg/kg, i.p.) in mice produced antidepressant-like effects in FST without affecting the baseline locomotion in actophotometer test. Further, 4a (2-4 mg/kg, i.p.) potentiated the 5-HTP induced head twitches response in mice and also antagonized RIH in rats. Furthermore, sub-chronic (14 days) treatment with 4a (2-4 mg/ kg, p.o.) significantly attenuated the behavioural anomalies induced by bilateral olfactory bulbectomy in rats in modified open field exploration. These preliminary investigations confirm that 4a exhibits antidepressant-like activity in behaviour based rodent models of depression.

  2. Inhibitory effects of ramosetron, a potent and selective 5-HT3-receptor antagonist, on conditioned fear stress-induced abnormal defecation and normal defecation in rats: comparative studies with antidiarrheal and spasmolytic agents.

    PubMed

    Hirata, Takuya; Funatsu, Toshiyuki; Keto, Yoshihiro; Akuzawa, Shinobu; Sasamata, Masao; Miyata, Keiji

    2008-02-01

    We examined the effect of ramosetron, a potent serotonin (5-HT)(3)-receptor antagonist for irritable bowel syndrome with diarrhea, on conditioned fear stress (CFS)-induced defecation and normal (non-stressed) defecation in rats and compared ramosetron with the antidiarrheal agent loperamide and the spasmolytic agents trimebutine and tiquizium. Ramosetron, loperamide, trimebutine, and tiquizium significantly inhibited CFS-induced defecation in a dose-dependent manner with ED(50) (95% confidence limit) values of 0.019 (0.01 - 0.028), 9.4 (4.0 - 22), 850 (520 - 2,400), and 300 (190 - 450) mg/kg, respectively. A significant effect of ramosetron on CFS-induced defecation appeared at 10 min after dosing and was sustained for 8 h. In contrast, loperamide, trimebutine, and tiquizium significantly inhibited CFS-induced defecation between 1 - 8, 1 - 4, and 1 - 8 h after administration, respectively. High doses of ramosetron did not affect normal defecation, whereas loperamide, trimebutine, and tiquizium significantly inhibited this process. In conclusion, ramosetron has potent, rapid-onset, and long-lasting inhibitory effects on CFS-induced defecation in rats, but does not influence normal defecation. The present findings indicate that ramosetron will be a useful therapeutic agent for irritable bowel syndrome with diarrhea, showing greater efficacy and safety than other antidiarrheal and spasmolytic agents.

  3. Effect of (4a) a novel 5-HT3 receptor antagonist on chronic unpredictable mild stress induced depressive-like behavior in mice: an approach using behavioral tests battery.

    PubMed

    Kurhe, Yeshwant; Mahesh, Radhakrishnan; Gupta, Deepali; Thangaraj, Devadoss

    2015-01-01

    The inconsistent therapeutic outcome necessitates designing and identifying novel therapeutic interventions for depression. Hence, the present study deals with the investigation of antidepressant-like effects of a novel 5-HT3 receptor antagonist (4-phenylpiperazin-1-yl) (quinoxalin-2-yl) methanone (4a) on chronic unpredictable mild stress (CUMS) induced behavioral and biochemical alterations. Animals were subjected to different stressors for a period of 28 days. On day 15 after the subsequent stress procedure, mice were administered with (4a) (2 and 4 mg/kg p.o.), escitalopram (10 mg/kg p.o.), or vehicle (10 mL/kg p.o.) until day 28 along with the CUMS. Thereafter, behavioral battery tests like locomotor score, sucrose preference test, forced swim test (FST), tail suspension test (TST), and elevated plus maze (EPM) were performed. Biochemical assays like lipid peroxidation, nitrite levels, reduced glutathione (GSH), catalase, and superoxide dismutase (SOD) were estimated in the mice brain homogenate. (4a) Dose dependently attenuated the behavioral alterations by increasing the sucrose consumption, reducing the immobility time in FST and TST, increasing the open arm number of entries and time in EPM. Furthermore, biochemical alterations were reversed by (4a) as examined by reduced lipid peroxidation and nitrite levels and elevated antioxidant enzyme levels like GSH, catalase and SOD. (4a) exhibits antidepressant potential by reversing the CUMS induced behavioral and biochemical changes in mice.

  4. Antidepressant-like effect of a novel 5-HT3 receptor antagonist N-(benzo[d] thiazol-2-yl)-3-ethoxyquinoxalin-2-carboxamide 6k using rodents behavioral battery tests.

    PubMed

    Kurhe, Yeshwant; Mahesh, Radhakrishnan; Devadoss, Thangaraj; Gupta, Deepali

    2014-07-01

    To investigate the antidepressant-like effect of N-(benzo[d] thiazol-2-yl)-3- ethoxyquinoxalin-2-carboxamide 6k, a 5-hydroxytryptamine type 3 (5-HT3) receptor antagonist using rodents behavioral battery tests. 6k screening was performed with behavioral assays for depression-like forced swim test (FST) at several single doses (0.25-4 mg/kg, intraperitoneal injection (i.p.)) to test the potency of 6k, in which 2 and 4 mg/kg doses were found to be most effective and hence, in further behavioral assays including mechanistic model like 5-hydroxytryptophan (5-HTP)-induced head twitches was performed in mice at acute doses of 6k (2 and 4 mg/kg, i.p.). Furthermore, olfactory bulbectomy (OBX), a surgical model-induced behavioral alterations was performed in rats, and the effect of 6k administered orally (2 and 4 mg/kg, p.o.) after subchronic treatment for 14 days starting from day 15 of postsurgery was examined by percent sucrose preference test and modified open field test (OFT). 6k (1, 2, and 4 mg/kg, i.p.) reduced the immobility time and increased the swimming behavior in FST without affecting the baseline locomotor score showing antidepressant-like effect. 5-HTP-induced head twitch response was potentiated by 6k (2 and 4 mg/kg, i.p.), which indicated rise in the serotonergic neurotransmission in the brain. 6k (2 and 4 mg/kg, p.o.) showed anti-anhedonia effect by increasing the sucrose consumption and reversed the behavioral alterations when exposed to modified open field in OBX rats after subchronic treatment for 14 days, thus exhibiting antidepressant-like effect. 6k attenuated the behavioral derangement in rodents-based behavioral battery tests for depression, indicating antidepressant-like potential.

  5. Antidepressant-like effect of a novel 5-HT3 receptor antagonist N-(benzo[d] thiazol-2-yl)-3-ethoxyquinoxalin-2-carboxamide 6k using rodents behavioral battery tests

    PubMed Central

    Kurhe, Yeshwant; Mahesh, Radhakrishnan; Devadoss, Thangaraj; Gupta, Deepali

    2014-01-01

    Objective: To investigate the antidepressant-like effect of N-(benzo[d] thiazol-2-yl)-3- ethoxyquinoxalin-2-carboxamide 6k, a 5-hydroxytryptamine type 3 (5-HT3) receptor antagonist using rodents behavioral battery tests. Materials and Methods: 6k screening was performed with behavioral assays for depression-like forced swim test (FST) at several single doses (0.25-4 mg/kg, intraperitoneal injection (i.p.)) to test the potency of 6k, in which 2 and 4 mg/kg doses were found to be most effective and hence, in further behavioral assays including mechanistic model like 5-hydroxytryptophan (5-HTP)-induced head twitches was performed in mice at acute doses of 6k (2 and 4 mg/kg, i.p.). Furthermore, olfactory bulbectomy (OBX), a surgical model-induced behavioral alterations was performed in rats, and the effect of 6k administered orally (2 and 4 mg/kg, p.o.) after subchronic treatment for 14 days starting from day 15 of postsurgery was examined by percent sucrose preference test and modified open field test (OFT). Results: 6k (1, 2, and 4 mg/kg, i.p.) reduced the immobility time and increased the swimming behavior in FST without affecting the baseline locomotor score showing antidepressant-like effect. 5-HTP-induced head twitch response was potentiated by 6k (2 and 4 mg/kg, i.p.), which indicated rise in the serotonergic neurotransmission in the brain. 6k (2 and 4 mg/kg, p.o.) showed anti-anhedonia effect by increasing the sucrose consumption and reversed the behavioral alterations when exposed to modified open field in OBX rats after subchronic treatment for 14 days, thus exhibiting antidepressant-like effect. Conclusion: 6k attenuated the behavioral derangement in rodents-based behavioral battery tests for depression, indicating antidepressant-like potential. PMID:25210400

  6. Design and validation of a homogeneous time-resolved fluorescence cell-based assay targeting the ligand-gated ion channel 5-HT3A.

    PubMed

    Blanc, Emilie; Wagner, Patrick; Plaisier, Fabrice; Schmitt, Martine; Durroux, Thierry; Bourguignon, Jean-Jacques; Partiseti, Michel; Dupuis, Elodie; Bihel, Frederic

    2015-09-01

    Ligand-gated ion channels (LGICs) are considered as attractive protein targets in the search for new therapeutic agents. Nowadays, this strategy involves the capability to screen large chemical libraries. We present a new Tag-lite ligand binding assay targeting LGICs on living cells. This technology combines the use of suicide enzyme tags fused to channels of interest with homogeneous time-resolved fluorescence (HTRF) as the detection readout. Using the 5-HT3 receptor as system model, we showed that the pharmacology of the HALO-5HT3 receptor was identical to that of the native receptor. After validation of the assay by using 5-HT3 agonists and antagonists of reference, a pilot screen enabled us to identify azelastine, a well-known histamine H1 antagonist, as a potent 5-HT3 antagonist. This interesting result was confirmed with electrophysiological experiments. The method described here is easy to implement and could be applicable for other LGICs, opening new ways for the screening of chemical libraries.

  7. Alcohols potentiate the function of 5-HT3 receptor–channels on NCB-20 neuroblastoma cells by favouring and stabilizing the open channel state

    PubMed Central

    Zhou, Qing; Verdoorn, Todd A; Lovinger, David M

    1998-01-01

    5-HT3 receptor-mediated ion current was recorded from NCB-20 neuroblastoma cells using the whole-cell patch-clamp technique. Rapid drug superfusion was used to study the mechanism of alcohol potentiation of 5-HT3 receptor function and to analyse effects of alcohols on receptor-channel kinetics in detail.Trichloroethanol (TCEt) increased in a dose-dependent way the initial slope, 20–80 % rise time and measured desensitization rate of the current induced by low concentrations (1–2 μm) of 5-HT. Ethanol (EtOH) and butanol (ButOH) had similar effects on the 5-HT3 receptor-induced current.TCEt and ButOH decreased the measured desensitization rate of current induced by 10 μm 5-HT, a maximally effective concentration of agonist. These alcohols also increased the relative amplitude of steady state to peak current induced by 2 or 10 μm 5-HT, indicating a possible decrease in the intrinsic rate of desensitization.TCEt also decreased the deactivation rate of the current activated by 2 μm 5-HT after a short pulse of agonist application.Current sweeps generated by 1 μm 5-HT in the presence or absence of 10 mm TCEt or 100 mm EtOH were well fitted using a modified standard kinetic model derived from the nicotinic acetylcholine receptor. This analysis indicated that potentiation by alcohols could be accounted for by increases in the association rate constant coupled with decreases in the dissociation and desensitization rate constants.This study suggests that alcohols potentiate 5-HT3 receptor-mediated current by both increasing the rate of channel activation and stabilizing the open state by decreasing the rates of channel deactivation and desensitization. PMID:9518697

  8. Effects of DAU 6215, a novel 5-hydroxytryptamine3 (5-HT3) antagonist on electrophysiological properties of the rat hippocampus.

    PubMed Central

    Passani, M. B.; Pugliese, A. M.; Azzurrini, M.; Corradetti, R.

    1994-01-01

    1. The aim of the present study was to test the effects of DAU 6215 (endo-N-(8-methyl-8-azabicyclo-[3.2.1]-octo-3-yl)-2,3-dihydro-2-ox o-1H- benzimidazole-1-carboxamide carboxamide hydrochloride), a newly synthesized, selective 5-hydroxytryptamine3 (5-HT3) antagonist, on the cell membrane properties and on characterized 5-HT-mediated responses of pyramidal neurones in the hippocampal CA1 region. 2. Administration of DAU 6215, even at concentrations several hundred fold its Ki, did not affect the cell membrane properties of pyramidal neurones, nor modify extracellularly recorded synaptic potentials, evoked by stimulating the Schaffer's collaterals. 3. Micromolar concentrations (15-30 microM) of 5-HT elicited several responses in pyramidal neurones that are mediated by distinct 5-HT receptor subtypes. DAU 6215 did not antagonize the 5-HT1A-induced membrane hyperpolarization and conductance increase, a response that was blocked by the selective 5-HT1A antagonist NAN-190 (1-(2-methoxyphenyl)-4-[4-(2-phtalamido)butyl- piperazine). Similarly, DAU 6215 did not affect the membrane depolarization and decrease in amplitude of the afterhyperpolarization, elicited by the activation of putative 5-HT4 receptors. 4. 5-HT increased the frequency of spontaneous postsynaptic potentials (s.p.s.ps) recorded in pyramidal neurones loaded with chloride. In agreement with previous observations, most of the s.p.s.ps were reversed GABAergic events, produced by the activation of 5-HT3 receptors on interneurones, because they persisted in the presence of the glutamate NMDA and non NMDA antagonists, D-aminophosphonovaleric acid (APV; 50 microM) and 6,7-dinitroquinoxaline-2,3-dione (DNQX; 25 microM), and were elicited by the selective 5-HT3 agonist, 2-methyl-5-HT (2-Me-5-HT, 50 microM).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8075890

  9. Shuyu Capsules Relieve Premenstrual Syndrome Depression by Reducing 5-HT3AR and 5-HT3BR Expression in the Rat Brain

    PubMed Central

    Li, Fang; Feng, Jizhen; Gao, Dongmei; Wang, Jieqiong; Song, Chunhong; Wei, Sheng

    2016-01-01

    The effects of the Shuyu capsule on 5-HT3AR and 5-HT3BR expression in a rat model of premenstrual syndrome (PMS) depression and on 5-HT3AR and 5-HT3BR expression and hippocampal neuron 5-HT3 channel current were investigated, to elucidate its mechanism of action against PMS depression. PMS depression model rats were divided into depression and Shuyu- and fluoxetine-treated groups, which were compared to control rats for frontal lobe and hippocampal 5-HT3AR and 5-HT3BR expression and behavior. The depressed model rats displayed symptoms of depression, which were reduced in treated and normal control rats. Frontal lobe and hippocampal 5-HT3AR and 5-HT3BR levels were significantly higher in the model versus the control group and were significantly lower in the Shuyu group. As compared to control rats, the 5-HT3R channel current in the model group was significantly higher; the 5-HT3R channel current in hippocampal neurons treated with serum from Shuyu group rats was significantly lower than that in those treated with model group serum. Thus, PMS depression may be related to 5-HT3AR and 5-HT3BR expression and increased 5-HT3 channel current. Shuyu capsules rectified abnormal 5-HT3AR and 5-HT3BR expression and 5-HT3 channel current changes in a rat model; this finding may provide insight into treating PMS depression. PMID:27725889

  10. Structural, conformational, biochemical, and pharmacological study of some amides derived from 3,7-dimethyl-3,7-diazabicyclo [3.3.1] nonan-9-amine as potential 5-HT 3 receptor antagonists

    NASA Astrophysics Data System (ADS)

    Fernández, M. J.; Huertas, R. M.; Gálvez, E.; Orjales, A.; Berisa, A.; Labeaga, L.; Garcia, A. G.; Uceda, G.; Server-Carrió, J.; Martinez-Ripoll, M.

    1995-12-01

    A series of amides derived from 3,7-dimethyl-3,7-diazabicyclo [3.3.1] nonan-9-amine have been synthesized and examined by 1H and 13C NMR spectroscopy and the crystal structure of 9-(2,4,6-trichlorobenzamido)-3,7-dimethyl-3,7-diazabicyclo[3.3.1] nonane hydrochloride ( 4a·HCl) has been determined by X-ray diffraction. These compounds adopt an almost perfect chair-chair conformation with the NCH 3 groups in equatorial position. This conformation is nearly the same as that observed for compound 4a in the solid state. From binding studies of compounds 4a-c, compound 4b demonstrated the ability to efficiently displace [ 3H]GR65630 bound to bovine brain area postrema membranes to an extent comparable to MDL 72222. In the von Bezold-Jarish reflex, compound 4b showed significant results at a dose of 25 mg Kg -1. It is shown for the first time that a series of compounds with a bispidine skeleton linked through an amide moiety to several aromatic rings, shows 5-HT 3 antagonistic profiles.

  11. Importance of phenylalanine 107 in agonist recognition by the 5-hydroxytryptamine(3A) receptor.

    PubMed

    Steward, L J; Boess, F G; Steele, J A; Liu, D; Wong, N; Martin, I L

    2000-06-01

    The 5-hydroxytryptamine (5-HT)(3) receptor is a member of the ligand-gated ion channel receptor family with significant homology to the nicotinic acetylcholine, gamma-aminobutyric acid(A), and glycine receptors. In this receptor class, the agonist binding site is formed by parts of the extracellular amino-terminal region. This study examines the effects of altering phenylalanine 107 (F107) of the 5-HT(3AL) subunit, obtained from NG108-15 cells, using site-directed mutagenesis. The wild-type (WT) and mutant receptors were expressed in HEK 293 cells and characterized using both whole-cell patch-clamp and radioligand binding. The tyrosine mutant F107Y exhibits a significantly lower affinity for the agonist 5-HT (K(i) = 203 versus 15.6 nM) and an increase of similar magnitude in the EC(50) value (10.6 versus 1.2 microM) compared with WT. The activation kinetics of the maximal currents generated by 5-HT with this mutant were markedly slower than those of the WT receptor, but application of supramaximal concentrations of the agonist markedly decreased the time to half-peak. The asparagine mutant F107N displayed a significantly higher affinity for 5-HT than the WT receptor (1.62 versus 15.6 nM), which was mirrored in direction and magnitude by changes in the EC(50) value for this agonist (0.2 versus 1.2 microM). In contrast to the WT receptor, the mutant F107N was activated by acetylcholine (EC(50) = 260 microM). The response to acetylcholine was blocked by the 5-HT(3) receptor antagonist renzapride with a similar IC(50) value as that determined against currents generated by 5-HT in the WT receptor. These data suggest that F107 is an important determinant of agonist recognition at the 5-HT(3) receptor.

  12. Spinal 5-HT3AR contributes to BmK I-induced inflammatory pain in rats.

    PubMed

    Fu, Jin; Jiao, Yun-Lu; Li, Zheng-Wei; Ji, Yong-Hua

    2015-06-25

    Subcutaneous injection of BmK I could be adopted to well establish a novel pain model. Moreover, 5-hydroxytryptamine (serotonin, 5-HT) receptor is involved in regulating animal pain-related behaviors. However, the underlying mechanism of 5-HT3R on BmK I-induced pain remains unclear. Animal behavioral testing, RT-PCR and Western blotting were used to yield the following results: first, intraplantar (i.pl.) injection of BmK I (10 μg) induced elevated mRNA and protein levels of 5-HT3AR in bilateral L4-L5 spinal cord; Second, intrathecal (i.t.) injection of ondansetron (a specific antagonist of 5-HT3AR) reduced spontaneous pain responses, attenuated unilateral thermal and bilateral mechanical hypersensitivity elicited by BmK I; Microglia could be activated by BmK I (i.pl.) in both sides of L4-L5 spinal cord, and this effect was reversed by intrathecal pre-treatment with 5-HT3AR antagonist. Meanwhile, the 5-HT3AR in L4-L5 spinal cord was almost co-localized with NeuN (a marker of nerve cell), but not co-expressed with Iba-1 (a marker of microglia). Finally, the expression level of CX3CL1 and CX3CR1 was reduced by intrathecal pre-treatment with ondansetron. Our results indicate that both 5-HT3AR signaling pathway and microglia are activated in the process of induction and maintenance of BmK I-induced pain nociception. Meanwhile, our results suggest that the neuronal 5-HT3AR may communicate with microglia indirectly via CX3CL1 which is involved in regulating the BmK I-induced hyperalgesia and sensitization.

  13. [Melatonin receptor agonist].

    PubMed

    Uchiyama, Makoto

    2015-06-01

    Melatonin is a hormone secreted by the pineal gland and is involved in the regulation of human sleep-wake cycle and circadian rhythms. The melatonin MT1 and MT2 receptors located in the suprachiasmatic nucleus in the hypothalamus play a pivotal role in the sleep-wake regulation. Based on the fact that MT1 receptors are involved in human sleep onset process, melatonin receptor agonists have been developed to treat insomnia. In this article, we first reviewed functions of melatonin receptors with special reference to MT1 and MT2, and properties and clinical application of melatonin receptor agonists as hypnotics.

  14. Protective effects of a novel 5-HT3 receptor antagonist, N-n-butyl-3-methoxy quinoxaline-2-carboxamide (6o) against chronic unpredictable mild stress-induced behavioral changes and biochemical alterations.

    PubMed

    Bhatt, Shvetank; Mahesh, Radhakrishnan; Jindal, Ankur; Devadoss, Thangaraj

    2014-07-01

    Stimulation of high oxidative stress in the brain is considered as an important factor for neurotoxicity towards the pathophysiology of chronic stress-induced depression disorder. In the present research, a potential 5-HT₃ receptor antagonist N-n-butyl-3-methoxy quinoxaline-2-carboxamide (6o) having good Log P (2.60) and pA₂ (7.7) values was examined for its effect on the behavioral and biochemical changes induced by the chronic unpredictable mild stress (CUMS) model. In the current investigation mice were introduced to different stress procedures daily for a period of 28 days to induce a depressive-like behavior. The results show that CUMS caused a depression-like behavior in mice, as indicated by the significant decrease in sucrose consumption and locomotor activity and increase in immobility in the forced swim test (FST). Moreover, it was found that oxidative stress markers such as lipid peroxide and nitrite levels were significantly increased, whereas, antioxidant enzymes such as glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels were decreased in the brain tissue of CUMS-subjected mice. "Compound 6o" (1 and 2 mg/kg, p.o.) and fluoxetine treatment (20 mg/kg, p.o.) for a period of 21 days altered the CUMS-induced behavioral (increased immobility period, reduced sucrose preference and decreased locomotor activity) and biochemical (increased lipid peroxide, increased brain nitrite; decreased GSH, SOD and CAT levels) alterations. Moreover normal mice treated with "compound 6o" (2 mg/kg, p.o.) showed a significant decrease in the duration of immobility in FST as compared to normal vehicle treated mice. In conclusion, "compound 6o" produced antidepressant-like effects in behavioral despair paradigm in chronically stressed mice by restoring antioxidant enzyme activity.

  15. Ondansetron, a selective 5-HT3 antagonist, antagonizes methamphetamine-induced anorexia in mice.

    PubMed

    Ginawi, O T; Al-Majed, A A; Al-Suwailem, A K

    2005-03-01

    Effects of some selective serotonergic (5-HT) antagonists on methamphetamine-induced anorexia were investigated in male mice. The least possible dose of methamphetamine alone that caused significant anorectic activity was 11 micromolkg(-1), i.p. (2 mgkg(-1)). Various doses of some selective serotonergic receptor antagonists were administered half an hour before the above mentioned dose of methamphetamine. Methiothepin potentiated, whereas NAN-190, methysergide, mianserin and ondansetron antagonized methamphetamine-induced anorectic activity. The least possible doses of these antagonists which modified methamphetamine-induced anorexia were as follows: methiothepin (1.1 micromolkg(-1), i.p.), NAN-190 (4.2 micromolkg(-1), i.p.), methysergide (2.1 micromolkg(-1), i.p.), mianserin (3.3 micromolkg(-1), i.p.) and ondansetron (0.003 micromolkg(-1), i.p.). The serotonergic antagonists at the above mentioned doses did not modify the food intake of animals not treated with methamphetamine, except for methiothepin, which produced a significant reduction, and mianserin, which produced a significant increase in food intake. The results of the present study indicated that the anorectic activity induced by methamphetamine is related to the interactions of methamphetamine with 5-HT receptor. Since a very small dose (0.003 micromolkg(-1)) of ondansetron (the 5-HT(3) antagonist), as compared with the other antagonists used in this study, antagonized the anorexia induced by methamphetamine, the 5-HT(3) receptor is likely to be the site for this interaction.

  16. Investigational melatonin receptor agonists.

    PubMed

    Hardeland, Rüdiger

    2010-06-01

    Melatonin is a major chronobiological regulator involved in circadian phasing, sleep, and numerous other functions including cyto-/neuroprotection, immune modulation, and energy metabolism. The suitability of melatonin as a drug is limited because of its short half-life. Therefore, various indolic and non-indolic melatonergic agonists have been developed. Frequent health problems such as sleep disturbances, neuropsychiatric disorders related to circadian dysphasing, and metabolic diseases associated with insulin resistance are targeted by melatonergic agonists. Various synthetic melatonergic drugs are compared with regard to receptor affinities, selectivity, effects on sleep, endogenous melatonin, circadian phase and insulin-related metabolism. The chemical design of melatonin receptor agonists is discussed in relation to consequences for receptor affinity, selectivity, metabolism, and spectrum of effects. Melatonergic agonists are suitable for phase-shifting circadian rhythms, and may be used for treating disorders related to circadian dysfunction including sleep difficulties. Facilitation of sleep onset is a general property, whereas promotion of sleep maintenance is demonstrable but not always fully sufficient. Details are especially available for tasimelteon. Support of insulin sensitivity may become a new area of application for compounds such as NEU-P11. Some drugs acting additionally as serotonergic antagonists display antidepressant properties.

  17. Ethanol Stabilizes the Open State of Single 5-Hydroxytryptamine3A(QDA) Receptors

    PubMed Central

    Feinberg-Zadek, Paula L.

    2010-01-01

    Ethanol enhancement of 5-hydroxytryptamine (5-HT)3A receptor-mediated responses may have important consequences in the intoxicating and addictive properties of ethanol. Although the exact mechanism is unknown, ethanol-mediated enhancement of 5-HT3 receptor current has been proposed to occur due to stabilization of the open-channel state. It has not been possible to directly measure the open state of the channel due to the extremely low single-channel conductance of 5-HT3A channels. Recently, three arginine residues within the large intracellular loop of the 5-HT3A subunit were substituted by their equivalent residues (glutamine, aspartate, and alanine) of the 5-HT3B subunit to produce a 5-HT3A(QDA) subunit that forms functional homomeric channels exhibiting a measurable single-channel conductance. Using whole-cell rapid-agonist application techniques and the cell-attached single-channel recording configuration, we examined human 5-HT3A(QDA) receptors expressed in human embryonic kidney 293 cells. The agonist sensitivity, macroscopic kinetics, and modulation by ethanol were similar between mutant and wild-type channels, suggesting the substitutions had not altered these channel structure-function properties. The open time histogram for single-channel events mediated by 5-HT3A(QDA) receptors in the presence of maximal 5-HT was best fit by three exponentials, but in the presence of ethanol a fourth open state was evident. In summary, the QDA substitution greatly enhanced single-channel conductance with little effect on 5-HT3A channel's kinetic properties and ethanol enhances agonist action on 5-HT3A receptors by inducing a new, long-lived open-channel state. Furthermore, the 5-HT3A(QDA) receptor appears to be suitable for pharmacological studies of 5-HT3A receptor modulation at a single-channel level. PMID:20200118

  18. 5-HT3A -driven green fluorescent protein delineates gustatory fibers innervating sour-responsive taste cells: A labeled line for sour taste?

    PubMed

    Stratford, J M; Larson, E D; Yang, R; Salcedo, E; Finger, T E

    2017-07-01

    Taste buds contain multiple cell types with each type expressing receptors and transduction components for a subset of taste qualities. The sour sensing cells, Type III cells, release serotonin (5-HT) in response to the presence of sour (acidic) tastants and this released 5-HT activates 5-HT3 receptors on the gustatory nerves. We show here, using 5-HT3A GFP mice, that 5-HT3 -expressing nerve fibers preferentially contact and receive synaptic contact from Type III taste cells. Further, these 5-HT3 -expressing nerve fibers terminate in a restricted central-lateral portion of the nucleus of the solitary tract (nTS)-the same area that shows increased c-Fos expression upon presentation of a sour tastant (30 mM citric acid). This acid stimulation also evokes c-Fos in the laterally adjacent mediodorsal spinal trigeminal nucleus (DMSp5), but this trigeminal activation is not associated with the presence of 5-HT3 -expressing nerve fibers as it is in the nTS. Rather, the neuronal activation in the trigeminal complex likely is attributable to direct depolarization of acid-sensitive trigeminal nerve fibers, for example, polymodal nociceptors, rather than through taste buds. Taken together, these findings suggest that transmission of sour taste information involves communication between Type III taste cells and 5-HT3 -expressing afferent nerve fibers that project to a restricted portion of the nTS consistent with a crude mapping of taste quality information in the primary gustatory nucleus. © 2017 Wiley Periodicals, Inc.

  19. The Impact of 5-HT3RA Use on Cost and Utilization in Patients with Chemotherapy-Induced Nausea and Vomiting: Systematic Review of the Literature

    PubMed Central

    Broder, Michael S.; Faria, Claudio; Powers, Annette; Sunderji, Jehangeer; Cherepanov, Dasha

    2014-01-01

    Background Individual studies have assessed the impact of standard prophylactic therapy with 5-hydroxytryptamine receptor antagonists (5-HT3RAs) for chemotherapy-induced nausea and vomiting (CINV) on cost and utilization, but no synthesis of the findings exists. Objective To systematically review published literature on costs and utilization associated with CINV prophylaxis with palonosetron and other 5-HT3RAs. Methods PubMed and the National Institute for Health Research Centre for Reviews and Dissemination databases, conferences of 4 organizations (ie, Academy of Managed Care Pharmacy, American Society of Clinical Oncology, International Society for Pharmacoeconomics and Outcomes Research, and Multinational Association of Supportive Care in Cancer), and the bibliographies of relevant articles were queried for the medical subject headings and key terms of “ondansetron,” “granisetron,” “palonosetron,” “dolasetron mesylate,” “costs,” “cost analysis,” and “economics.” We included records published (full-length articles after 1997 and conference presentations after 2010) in English and with human patients, reporting data on cost and utilization (rescue medication, outpatient and inpatient services) associated with the use of 5-HT3RAs for the treatment or prevention of CINV. Results Of the 434 identified studies, 32 are included in the current analysis: 7 studies report costs, 18 report utilization, and 7 studies report both. The costs are reported in US dollars (7 studies), in Euros (5 studies), and in Canadian dollars (2 studies). The studies vary in designs, patients, 5-HT3RA regimens, and the definition of outcomes. The US studies report higher drug costs for CINV prophylaxis with palonosetron compared with ondansetron, lower medical outpatient and inpatient costs for palonosetron versus other 5-HT3RAs, and higher acquisition costs for palonosetron versus ondansetron or other 5-HT3RAs. Fewer patients receiving palonosetron versus with

  20. Transcriptomic and anatomic parcellation of 5-HT3AR expressing cortical interneuron subtypes revealed by single-cell RNA sequencing

    PubMed Central

    Frazer, Sarah; Prados, Julien; Niquille, Mathieu; Cadilhac, Christelle; Markopoulos, Foivos; Gomez, Lucia; Tomasello, Ugo; Telley, Ludovic; Holtmaat, Anthony; Jabaudon, Denis; Dayer, Alexandre

    2017-01-01

    Cortical GABAergic interneurons constitute a highly diverse population of inhibitory neurons that are key regulators of cortical microcircuit function. An important and heterogeneous group of cortical interneurons specifically expresses the serotonin receptor 3A (5-HT3AR) but how this diversity emerges during development is poorly understood. Here we use single-cell transcriptomics to identify gene expression patterns operating in Htr3a-GFP+ interneurons during early steps of cortical circuit assembly. We identify three main molecular types of Htr3a-GFP+ interneurons, each displaying distinct developmental dynamics of gene expression. The transcription factor Meis2 is specifically enriched in a type of Htr3a-GFP+ interneurons largely confined to the cortical white matter. These MEIS2-expressing interneurons appear to originate from a restricted region located at the embryonic pallial–subpallial boundary. Overall, this study identifies MEIS2 as a subclass-specific marker for 5-HT3AR-containing interstitial interneurons and demonstrates that the transcriptional and anatomical parcellation of cortical interneurons is developmentally coupled. PMID:28134272

  1. Activation of serotonin 3 receptors changes in vivo auditory responses in the mouse inferior colliculus

    PubMed Central

    Bohorquez, Alexander; Hurley, Laura M.

    2009-01-01

    Metabotropic serotonin receptors such as 5-HT1A and 5-HT1B receptors shape the level, selectivity, and timing of auditory responses in the inferior colliculus (IC). Less is known about the effects of ionotropic 5-HT3 receptors, which are cation channels that depolarize neurons. In the current study, the influence of the 5-HT3 receptor on auditory responses in vivo was explored by locally iontophoresing a 5-HT3 receptor agonist and antagonists onto single neurons recorded extracellularly in mice. Three main findings emerge from these experiments. First, activation of the 5-HT3 receptor can either facilitate or suppress auditory responses, but response suppressions are not consistent with 5-HT3 effects on presynaptic GABAergic neurons. Both response facilitations and suppressions are less pronounced in neurons with high precision in response latency, suggesting functional differences in the role of receptor activation for different classes of neuron. Finally, the effects of 5-HT3 activation vary across repetition rate within a subset of single neurons, suggesting that the influence of receptor activation sometimes varies with the level of activity. These findings contribute to the view of the 5-HT3 receptor as an important component of the serotonergic infrastructure in the IC, with effects that are complex and neuron- selective. PMID:19236912

  2. Agonists for the Chemokine Receptor CXCR4

    PubMed Central

    2011-01-01

    The development of agonists for the chemokine receptor CXCR4 could provide promising therapeutic candidates. On the basis of previously forwarded two site model of chemokine–receptor interactions, we hypothesized that linking the agonistic N-terminus of SDF-1 to the T140 backbone would yield new high-affinity agonists of CXCR4. We developed chimeras with the agonistic SDF-1 N-terminus grafted to a T140 side chain and tested their binding affinity and chemotactic agonist activity. While chimeras with the peptide grafted onto position 12 of T140 remained high-affinity antagonists, those bearing the peptide on position 14 were in part agonists. One chimera was a full CXCR4 agonist with 25 nM affinity, and several chimeras showed low nanomolar affinities with partial agonist activity. Our results confirmed that we have developed high-affinity agonists of CXCR4. PMID:21841963

  3. Activation of the gut calcium-sensing receptor by peptide agonists reduces rapid elevation of plasma glucose in response to oral glucose load in rats.

    PubMed

    Muramatsu, Maya; Hira, Tohru; Mitsunaga, Arimi; Sato, Eri; Nakajima, Shingo; Kitahara, Yoshiro; Eto, Yuzuru; Hara, Hiroshi

    2014-06-15

    The calcium-sensing receptor (CaSR) is expressed in various tissues, including the gastrointestinal tract. To investigate the role of gut CaSR on glycemic control, we examined whether single oral administration of CaSR agonist peptides affected the glycemic response in rats. Glucose tolerance tests were performed under oral or duodenal administration of various CaSR agonist peptides (γGlu-Cys, protamine, and poly-d-lysine hydrobromide) in conscious rats. Involvement of CaSR was determined by using a CaSR antagonist. Signaling pathways underlying CaSR agonist-modified glycemia were investigated using gut hormone receptor antagonists. The gastric emptying rate after the administration of CaSR agonist peptides was measured by the phenol red recovery method. Oral and duodenal administration of CaSR agonist peptides attenuated glycemic responses under the oral glucose tolerance test, but the administration of casein did not. The promotive effect on glucose tolerance was weakened by luminal pretreatment with a CaSR antagonist. Treatment with a 5-HT3 receptor antagonist partially diminished the glucose-lowering effect of peptides. Furthermore, the gastric emptying rate was decreased by duodenal administration of CaSR agonist peptides. These results demonstrate that activation of the gut CaSR by peptide agonists promotes glucose tolerance in conscious rats. 5-HT3 receptor and the delayed gastric emptying rate appear to be involved in the glucose-lowering effect of CaSR agonist peptides. Thus, activation of gut CaSR by dietary peptides reduces glycemic responses so that gut CaSR may be a potential target for the improvement of postprandial glycemia.

  4. Design and Synthesis of a New Series of 4-Heteroarylamino-1'-azaspiro[oxazole-5,3'-bicyclo[2.2.2]octanes as α7 Nicotinic Receptor Agonists. 1. Development of Pharmacophore and Early Structure-Activity Relationship.

    PubMed

    Cook, James; Zusi, F Christopher; McDonald, Ivar M; King, Dalton; Hill, Matthew D; Iwuagwu, Christiana; Mate, Robert A; Fang, Haiquan; Zhao, Rulin; Wang, Bei; Cutrone, Jingfang; Ma, Baoqing; Gao, Qi; Knox, Ronald J; Matchett, Michele; Gallagher, Lizbeth; Ferrante, Meredith; Post-Munson, Debra; Molski, Thaddeus; Easton, Amy; Miller, Regina; Jones, Kelli; Digavalli, Siva; Healy, Francine; Lentz, Kimberley; Benitex, Yulia; Clarke, Wendy; Natale, Joanne; Siuciak, Judith A; Lodge, Nicholas; Zaczek, Robert; Denton, Rex; Morgan, Daniel; Bristow, Linda J; Macor, John E; Olson, Richard E

    2016-12-22

    The design and synthesis of a series of quinuclidine-containing spirooxazolidines ("spiroimidates") and their utility as α7 nicotinic acetylcholine receptor partial agonists are described. Selected members of the series demonstrated excellent selectivity for α7 over the highly homologous 5-HT3A receptor. Modification of the N-spiroimidate heterocycle substituent led to (1S,2R,4S)-N-isoquinolin-3-yl)-4'H-4-azaspiro[bicyclo[2.2.2]octane-2,5'oxazol]-2'-amine (BMS-902483), a potent α7 partial agonist, which improved cognition in preclinical rodent models.

  5. Functional Relationships between Agonist Binding Sites and Coupling Regions of Homomeric Cys-Loop Receptors

    PubMed Central

    Andersen, Natalia; Corradi, Jeremías; Bartos, Mariana

    2011-01-01

    Each subunit in a homopentameric Cys-loop receptor contains a specialized coupling region positioned between the agonist binding domain and the ion conductive channel. To determine the contribution of each coupling region to the stability of the open channel, we constructed a receptor subunit (α7-5-HT3A) with both a disabled coupling region and a reporter mutation that alters unitary conductance, and coexpressed normal and mutant subunits. The resulting receptors show single-channel current amplitudes that are quantized according to the number of reporter mutations per receptor, allowing correlation of the number of intact coupling regions with mean open time. We find that each coupling region contributes an equal increment to the stability of the open channel. However, by altering the numbers and locations of active coupling regions and binding sites, we find that a coupling region in a subunit flanked by inactive binding sites can still stabilize the open channel. We also determine minimal requirements for channel opening regardless of stability and find that channel opening can occur in a receptor with one active coupling region flanked by functional binding sites or with one active binding site flanked by functional coupling regions. The overall findings show that, whereas the agonist binding sites contribute interdependently and asymmetrically to open-channel stability, the coupling regions contribute independently and symmetrically. PMID:21389221

  6. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  7. Kappa Opioid Receptor Agonist and Brain Ischemia.

    PubMed

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury.

  8. Differences in regional cerebral blood flow response to a 5HT3 antagonist in early- and late-onset cocaine-dependent subjects.

    PubMed

    Adinoff, Bryon; Devous, Michael D; Williams, Mark J; Harris, Thomas S; Best, Susan E; Dong, Hongyun; Zielinski, Tanya

    2014-03-01

    5-hydroxytryptamine 3 (5HT3) receptors are important modulators of mesostriatal dopaminergic transmission and have been implicated in the pathophysiology of cocaine reward, withdrawal and self-administration. In addition, the 5HT3 antagonist ondansetron is effective in treating early-onset, but not late-onset, alcohol-dependent subjects. To explore the role of 5HT3 receptor systems in cocaine addiction using functioning imaging, we administered ondansetron to 23 abstinent, treatment-seeking cocaine-addicted and 22 sex-, age- and race-matched healthy control participants. Differences between early- (first use before 20 years, n = 10) and late-onset (first use after 20 years, n = 10) cocaine-addicted subjects were also assessed. On two separate days, subjects were administered ondansetron (0.15 mg/kg intravenously over 15 minutes) or saline. Regional cerebral blood flow (rCBF) was measured following each infusion with single photon emission computed tomography. No significant rCBF differences between the cocaine-addicted and control participants were observed following ondansetron relative to saline. Early-onset subjects, however, showed increased (P < 0.001) right posterior parahippocampal rCBF following ondansetron. In contrast, late-onset subjects showed decreased rCBF following ondansetron in an overlapping region of the right parahippocampal/hippocampal gyrus. Early-onset subjects also displayed increased rCBF in the left anterior insula and subthalamic nucleus following ondansetron; late-onset subjects showed decreased rCBF in the right anterior insula. These findings suggest that the age of drug use onset is associated with serotonergic biosignatures in cocaine-addicted subjects. Further clarification of these alterations may guide targeted treatment with serotonergic medications similar to those successfully used in alcohol-dependent patients.

  9. Alpha2-adrenergic receptor agonists as analgesics.

    PubMed

    Boyd, R E

    2001-08-01

    Alpha2-adrenergic receptor agonists are analgesic agents, and the alpha2-adrenergic agonist clonidine has been used in clinical studies for regional analgesia after intrathecal administration. We review here recent developments concerning the structure activity relationships of a new class of potent alpha2-adrenergic agonists and their use as analgesic agents. The effect of structure upon cardiovascular side-effects is also monitored, such as the prolongation of the QT portion of the cardiac action potential.

  10. Eegraphic and behavioural effects of ondansetron, a 5HT3 antagonist, in rabbits.

    PubMed

    Bo, P; Marchioni, E; Soragna, D; Murelli, R; Savoldi, F

    1993-09-01

    1. EEGraphic and behavioural effects of ondansetron, a 5HT3 antagonist, have been studied in the rabbit. Subsequently we tested the neurophysiological and behavioural interactions between ondansetron and L-5-HTP induced serotonergic syndrome. 2. The drug produced a dose-dependent (0.001, 0.01, 0.1 mg/kg i.v.) increase in the cortical power density spectrum, particularly in the range of the lowest frequencies bands. This effect is expression of cortical synchronization. 3. The lowest and mild dose, but not the highest, failed to produce behavioural sedation and to inhibit the arousal induced by vibroacustical stimulation. 4. L-5-HTP (10 mg/kg i.v.) administration generated a typical EEGraphic-behavioural pattern characterized by a decrease of cortical power spectrum density and stereotyped movements. The EEGraphic effects were significantly suppressed by administration of mild and higher doses of ondansetron, while the behavioural effects were inhibited by all doses tested. 5. It is concluded that ondansetron acts with considerably efficacy on central nervous system. The administration of low and mild doses shows a singular dissociation between EEGraphic and behavioural actions. The inhibition of the L-5-HTP behavioural syndrome by ondansetron suggests that this drug acts on behaviour only when there is an altered physiological pattern.

  11. 5-HT3 and 5-HT4 antagonists inhibit peristaltic contractions in guinea-pig distal colon by mechanisms independent of endogenous 5-HT

    PubMed Central

    Sia, Tiong C.; Whiting, Malcolm; Kyloh, Melinda; Nicholas, Sarah J.; Oliver, John; Brookes, Simon J.; Dinning, Phil G.; Wattchow, David A.; Spencer, Nick J.

    2013-01-01

    Recent studies have shown that endogenous serotonin is not required for colonic peristalsis in vitro, nor gastrointestinal (GI) transit in vivo. However, antagonists of 5-Hydroxytryptamine (5-HT) receptors can inhibit peristalsis and GI-transit in mammals, including humans. This raises the question of how these antagonists inhibit GI-motility and transit, if depletion of endogenous 5-HT does not cause any significant inhibitory changes to either GI-motility or transit? We investigated the mechanism by which 5-HT3 and 5-HT4 antagonists inhibit distension-evoked peristaltic contractions in guinea-pig distal colon. In control animals, repetitive peristaltic contractions of the circular muscle were evoked in response to fixed fecal pellet distension. Distension-evoked peristaltic contractions were unaffected in animals with mucosa and submucosal plexus removed, that were also treated with reserpine (to deplete neuronal 5-HT). In control animals, peristaltic contractions were blocked temporarily by ondansetron (1–10 μM) and SDZ-205–557 (1–10 μM) in many animals. Interestingly, after this temporary blockade, and whilst in the continued presence of these antagonists, peristaltic contractions recovered, with characteristics no different from controls. Surprisingly, similar effects were seen in mucosa-free preparations, which had no detectable 5-HT, as detected by mass spectrometry. In summary, distension-evoked peristaltic reflex contractions of the circular muscle layer of the guinea-pig colon can be inhibited temporarily, or permanently, in the same preparation by selective 5-HT3 and 5-HT4 antagonists, depending on the concentration of the antagonists applied. These effects also occur in preparations that lack any detectable 5-HT. We suggest caution should be exercised when interpreting the effects of 5-HT3 and 5-HT4 antagonists; and the role of endogenous 5-HT, in the generation of distension-evoked colonic peristalsis. PMID:23935564

  12. Adverse Effects of GLP-1 Receptor Agonists

    PubMed Central

    Filippatos, Theodosios D.; Panagiotopoulou, Thalia V.; Elisaf, Moses S.

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a class of injective anti-diabetic drugs that improve glycemic control and many other atherosclerosis-related parameters in patients with type 2 diabetes (T2D). However, the use of this relatively new class of drugs may be associated with certain adverse effects. Concerns have been expressed regarding the effects of these drugs on pancreatic and thyroid tissue, since animal studies and analyses of drug databases indicate an association of GLP-1 receptor agonists with pancreatitis, pancreatic cancer, and thyroid cancer. However, several meta-analyses failed to confirm a cause-effect relation between GLP-1 receptor agonists and the development of these adverse effects. One benefit of GLP-1 receptor agonists is that they do not cause hypoglycemia when combined with metformin or thiazolidinediones, but the dose of concomitant sulphonylurea or insulin may have to be decreased to reduce the risk of hypoglycemic episodes. On the other hand, several case reports have linked the use of these drugs, mainly exenatide, with the occurrence of acute kidney injury, primarily through hemodynamic derangement due to nausea, vomiting, and diarrhea. The most common symptoms associated with the use of GLP-1 receptor agonists are gastrointestinal symptoms, mainly nausea. Other common adverse effects include injection site reactions, headache, and nasopharyngitis, but these effects do not usually result in discontinuation of the drug. Current evidence shows that GLP-1 receptor agonists have no negative effects on the cardiovascular risk of patients with T2D. Thus, GLP-1 receptor agonists appear to have a favorable safety profile, but ongoing trials will further assess their cardiovascular effects. The aim of this review is to analyze critically the available data regarding adverse events of GLP-1 receptor agonists in different anatomic systems published in Pubmed and Scopus. Whenever possible, certain differences between GLP-1

  13. Cardiovascular effects of selective agonists and antagonists of histamine H3 receptors in the anaesthetized rat.

    PubMed

    Coruzzi, G; Gambarelli, E; Bertaccini, G; Timmerman, H

    1995-06-01

    The cardiovascular responses to a series of selective histamine H3 receptor agonists, (R) alpha-methylhistamine, imetit and immepip and selective antagonists, thioperamide, clobenpropit and clophenpropit, were studied in anaesthetized rats. At 0.003-1 mumol/kg i.v. doses, H3 agonists failed to produce any significant change in the basal blood pressure and heart rate. Larger doses of (R) alpha-methylhistamine increased the blood pressure and heart rate and higher doses of imetit caused vasodepressor responses and reduced heart rate, whereas immepip proved virtually inactive. While (R) alpha-methylhistamine-induced effects were not blocked by histamine H1-, H2- and H3-receptor antagonists, they were however reduced by idazoxan and propranolol, which indicates that the mechanisms involved are adrenergic. The effects induced by imetit are not related to histamine H3 receptors but are mediated by indirect (via 5HT3 receptors) cholinergic mechanisms, since these effects were prevented by 1 mg/kg i.v. atropine and by 0.1 mg/kg i.v. ondansetron. Similarly, the H3 antagonists per se failed to change basal cardiovascular function up to 10 mumol/kg i.v. and only at 30 mumol/kg i.v. were marked decreases observed in the blood pressure and heart rate with a significant reduction in the effects of noradrenaline. These data indicate that in anaesthetized rats, histamine H3 receptor activation or blockade has no effect on basal cardiovascular function. The effects recorded after the administration of large doses of (R) alpha-methylhistamine and imetit are clearly unrelated to histamine H3 receptors and should be taken into account when using these compounds as H3 ligands for "in vivo" experiments.

  14. Anxiolytic-like effects observed in rats exposed to the elevated zero-maze following treatment with 5-HT2/5-HT3/5-HT4 ligands

    PubMed Central

    Bell, Rob; Duke, Aaron A.; Gilmore, Paula E.; Page, Deaglan; Bègue, Laurent

    2014-01-01

    The present study examined the effects of administering selective 5-HT antagonists and agonists to rats tested in the elevated zero-maze (EZM) model of anxiety. The EZM paradigm has advantages over the elevated plus-maze (EPM) paradigm with respect to measuring anxiety, yet has been utilized less frequently. Three experiments were conducted each with a diazepam control (0.25, 0.5 and 0.75 mg/kg). In the first experiment, we administered the 5-HT2C antagonist RS 102221 (0.5, 1.0, and 2.0 mg/kg) and 5-HT2C agonist MK-212 (0.25, 0.5 and 0.75 mg/kg); in the second experiment, we administered the 5-HT3 antagonist Y-25130 (0.1, 1.0 and 3.0 mg/kg) and 5-HT3 agonist SR 57227A (0.1, 1.0 and 3.0 mg/kg), and in the third experiment, we administered the 5-HT4 antagonist RS 39604 (0.01, 0.1, 1.0 mg/kg) and 5-HT4 agonist RS 67333 (0.01, 0.1 and 0.5 mg/kg). The administration of 5-HT2/3/4 subtype antagonists all generated behavioral profiles indicative of anxiolytic-like effects in the EZM, which was apparent from examination of both traditional and ethological measures. While little effect was observed from 5-HT2 and 5-HT3 agonists, the 5-HT4 agonist RS 67333 was found to produce a paradoxical anxiolytic-like effect similar to that produced by the 5-HT4 antagonist RS 39604. We conclude by discussing the implications of these findings. PMID:24457553

  15. Gremlin: vexing VEGF receptor agonist.

    PubMed

    Claesson-Welsh, Lena

    2010-11-04

    Gremlins are mischievous creatures in English folklore, believed to be the cause of otherwise unexplainable breakdowns (the word gremlins is derived from the Old English "gremian" or "gremman," "to vex"). Gremlin (or Gremlin-1) is also the designation of a secreted protein that is known to regulate bone formation during development. In this issue of Blood, Mitola et al report the novel role of Gremlin as a VEGFR2 agonist and the function of the Gremlin protein seems vexing indeed.

  16. Muscimol as an ionotropic GABA receptor agonist.

    PubMed

    Johnston, Graham A R

    2014-10-01

    Muscimol, a psychoactive isoxazole from Amanita muscaria and related mushrooms, has proved to be a remarkably selective agonist at ionotropic receptors for the inhibitory neurotransmitter GABA. This historic overview highlights the discovery and development of muscimol and related compounds as a GABA agonist by Danish and Australian neurochemists. Muscimol is widely used as a ligand to probe GABA receptors and was the lead compound in the development of a range of GABAergic agents including nipecotic acid, tiagabine, 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, (Gaboxadol(®)) and 4-PIOL.

  17. Corepressors of agonist-bound nuclear receptors

    SciTech Connect

    Gurevich, Igor; Aneskievich, Brian J.

    2007-09-15

    Nuclear receptors (NRs) rely on coregulator proteins to modulate transcription of target genes. NR coregulators can be broadly subdivided into coactivators which potentiate transcription and corepressors which silence gene expression. The prevailing view of coregulator action holds that in the absence of agonist the receptor interacts with a corepressor via the corepressor nuclear receptor (CoRNR, 'corner') box motifs within the corepressor. Upon agonist binding, a conformational change in the receptor causes the shedding of corepressor and the binding of a coactivator which interacts with the receptor via NR boxes within the coregulator. This view was challenged with the discovery of RIP140 which acts as a NR corepressor in the presence of agonist and utilizes NR boxes. Since then a number of other corepressors of agonist-bound NRs have been discovered. Among them are LCoR, PRAME, REA, MTA1, NSD1, and COPR1 Although they exhibit a great diversity of structure, mechanism of repression and pathophysiological function, these corepressors frequently have one or more NR boxes and often recruit histone deacetylases to exert their repressive effects. This review highlights these more recently discovered corepressors and addresses their potential functions in transcription regulation, disease pharmacologic responses and xenobiotic metabolism.

  18. Activation and modulation of recombinantly expressed serotonin receptor type 3A by terpenes and pungent substances.

    PubMed

    Ziemba, Paul M; Schreiner, Benjamin S P; Flegel, Caroline; Herbrechter, Robin; Stark, Timo D; Hofmann, Thomas; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2015-11-27

    Serotonin receptor type 3 (5-HT3 receptor) is a ligand-gated ion channel that is expressed in the central nervous system (CNS) as well as in the peripheral nervous system (PNS). The receptor plays an important role in regulating peristalsis of the gastrointestinal tract and in functions such as emesis, cognition and anxiety. Therefore, a variety of pharmacologically active substances target the 5-HT3 receptor to treat chemotherapy-induced nausea and vomiting. The 5-HT3 receptors are activated, antagonized, or modulated by a wide range of chemically different substances, such as 2-methyl-serotonin, phenylbiguanide, setrones, or cannabinoids. Whereas the action of all of these substances is well described, less is known about the effect of terpenoids or fragrances on 5-HT3A receptors. In this study, we screened a large number of natural odorous and pungent substances for their pharmacological action on recombinantly expressed human 5-HT3A receptors. The receptors were functionally expressed in Xenopus oocytes and characterized by electrophysiological recordings using the two-electrode voltage-clamp technique. A screening of two odorous mixes containing a total of 200 substances revealed that the monoterpenes, thymol and carvacrol, act as both weak partial agonists and positive modulators on the 5-HT3A receptor. In contrast, the most effective blockers were the terpenes, citronellol and geraniol, as well as the pungent substances gingerol, capsaicin and polygodial. In our study, we identified new modulators of 5-HT3A receptors out of the classes of monoterpenes and vanilloid substances that frequently occur in various plants.

  19. Dopamine receptor agonists, partial agonists and psychostimulant addiction.

    PubMed

    Pulvirenti, L; Koob, G F

    1994-10-01

    Despite the epidemic growth of psychostimulant addiction over the past years, few pharmacological means of intervention are available to date for clinical treatment. This is of importance since the withdrawal syndrome that follows abstinence from drugs such as cocaine and the amphetamines is characterized, among other symptoms, by intense craving for the abused drug, and this is considered a critical factor leading into relapse of drug use. In this article, Luigi Pulvirenti and George Koob focus on the modulatory role shown by drugs acting at the dopamine receptor on the various phases of psychostimulant dependence in preclinical models and in human studies, and suggest that a class of compounds with partial agonist properties at the dopamine receptor may have therapeutic potential.

  20. Peripheral and spinal 5-HT receptors participate in cholestatic itch and antinociception induced by bile duct ligation in rats

    PubMed Central

    Tian, Bin; Wang, Xue-Long; Huang, Ya; Chen, Li-Hua; Cheng, Ruo-Xiao; Zhou, Feng-Ming; Guo, Ran; Li, Jun-Cheng; Liu, Tong

    2016-01-01

    Although 5-HT has been implicated in cholestatic itch and antinociception, two common phenomena in patients with cholestatic disease, the roles of 5-HT receptor subtypes are unclear. Herein, we investigated the roles of 5-HT receptors in itch and antinociception associated with cholestasis, which was induced by common bile duct ligation (BDL) in rats. 5-HT-induced enhanced scratching and antinociception to mechanical and heat stimuli were demonstrated in BDL rats. 5-HT level in the skin and spinal cord was significantly increased in BDL rats. Quantitative RT-PCR analysis showed 5-HT1B, 5-HT1D, 5-HT2A, 5-HT3A, 5-HT5B, 5-HT6, and 5-HT7 were up-regulated in peripheral nervous system and 5-HT1A, 5-HT1F, 5-HT2B, and 5-HT3A were down-regulated in the spinal cord of BDL rats. Intradermal 5-HT2, 5-HT3, and 5-HT7 receptor agonists induced scratching in BDL rats, whereas 5-HT3 agonist did not induce scratching in sham rats. 5-HT1A, 5-HT2, 5-HT3, and 5-HT7 agonists or antagonists suppressed itch in BDL rats. 5-HT1A agonist attenuated, but 5-HT1A antagonist enhanced antinociception in BDL rats. 5-HT2 and 5-HT3 agonists or antagonists attenuated antinociception in BDL rats. Our data suggested peripheral and central 5-HT system dynamically participated in itch and antinociception under cholestasis condition and targeting 5-HT receptors may be an effective treatment for cholestatic itch. PMID:27824106

  1. Transdermal delivery of dopamine receptor agonists.

    PubMed

    Reichmann, Heinz

    2009-12-01

    Conceptually, continuous dopaminergic stimulation is universally accepted to be the preferred therapeutic strategy to prevent or postpone dyskinesia in Parkinson's disease (PD). L-dopa has a short half-life of 2 hours and causes dyskinesia, whereas dopamine receptor agonists usually have a much longer half-life. Of the latter agents, cabergoline has the longest half-life of 68 hours and is ideal for the prevention of dyskinesia; but this is also true for other dopamine receptor agonists such as ropinirole or pramipexole, which have a shorter half-life of about 6-8 hours. Due to the possible development of valvular fibrosis, cabergoline is, however, only approved as a second-line treatment in PD, and patch technology has therefore gained major interest. So far, rotigotine is the only dopamine receptor agonist available as a patch. There is good evidence that once-daily patch usage provides patients with constant dopaminergic stimulation, and that patches are of equal potency to other oral non-ergot derivatives such as ropinirole and pramipexole. The disadvantages of patches are skin irritation and crystallization of the drug if not kept in the refrigerator. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Functional properties of a cloned 5-hydroxytryptamine ionotropic receptor subunit: comparison with native mouse receptors.

    PubMed Central

    Hussy, N; Lukas, W; Jones, K A

    1994-01-01

    1. A comparative study of the whole-cell and single-channel properties of cloned and native mouse 5-hydroxytryptamine ionotropic receptors (5-HT3) was undertaken using mammalian cell lines expressing the cloned 5-HT3 receptor subunit A (5-HT3R-A), superior cervical ganglia (SCG) neurones and N1E-115 cells. 2. No pharmacological difference was found in the sensitivity to the agonists 5-HT and 2-methyl-5-HT, or to the antagonists d-tubocurare and 3-tropanyl-3,5-dichlorobenzoate (MDL-72222). 3. Current-voltage (I-V) relationships of whole-cell currents showed inward rectification in the three preparations. Rectification was stronger both in cells expressing the 5-HT3R-A subunit and in N1E-115 cells when compared with SCG neurones. 4. No clear openings could be resolved in 5-HT-activated currents in patches excised from cells expressing the 5-HT3R-A subunit or N1E-115 cells. Current fluctuation analysis of whole-cell and excised-patch records revealed a slope conductance of 0.4-0.6 pS in both preparations. Current-voltage relationships of these channels showed strong rectification that fully accounted for the whole-cell voltage dependence. 5. In contrast, single channels of about 10 pS were activated by 5-HT in patches excised from SCG neurones. The weak voltage dependence of their conductance did not account completely for the rectification of whole-cell currents. A lower unitary conductance (3.4 pS) was inferred from whole-cell noise analysis. 6. We conclude that the receptor expressed from the cloned cDNA is indistinguishable from the 5-HT3 receptor of N1E-115 cells, suggesting an identical structure for these two receptors. The higher conductance and different voltage dependence of the 5-HT3 receptor in SCG neurones might indicate the participation of an additional subunit in the structure of native ganglionic 5-HT3 receptors. Homo-oligomeric 5-HT3R-A channels may also be present as suggested by the lower conductance estimated by whole-cell noise analysis. PMID

  3. Regulation of membrane cholecystokinin-2 receptor by agonists enables classification of partial agonists as biased agonists.

    PubMed

    Magnan, Rémi; Masri, Bernard; Escrieut, Chantal; Foucaud, Magali; Cordelier, Pierre; Fourmy, Daniel

    2011-02-25

    Given the importance of G-protein-coupled receptors as pharmacological targets in medicine, efforts directed at understanding the molecular mechanism by which pharmacological compounds regulate their presence at the cell surface is of paramount importance. In this context, using confocal microscopy and bioluminescence resonance energy transfer, we have investigated internalization and intracellular trafficking of the cholecystokinin-2 receptor (CCK2R) in response to both natural and synthetic ligands with different pharmacological features. We found that CCK and gastrin, which are full agonists on CCK2R-induced inositol phosphate production, rapidly and abundantly stimulate internalization. Internalized CCK2R did not rapidly recycle to plasma membrane but instead was directed to late endosomes/lysosomes. CCK2R endocytosis involves clathrin-coated pits and dynamin and high affinity and prolonged binding of β-arrestin1 or -2. Partial agonists and antagonists on CCK2R-induced inositol phosphate formation and ERK1/2 phosphorylation did not stimulate CCK2R internalization or β-arrestin recruitment to the CCK2R but blocked full agonist-induced internalization and β-arrestin recruitment. The extreme C-terminal region of the CCK2R (and more precisely phosphorylatable residues Ser(437)-Xaa(438)-Thr(439)-Thr(440)-Xaa(441)-Ser(442)-Thr(443)) were critical for β-arrestin recruitment. However, this region and β-arrestins were dispensable for CCK2R internalization. In conclusion, this study allowed us to classify the human CCK2R as a member of class B G-protein-coupled receptors with regard to its endocytosis features and identified biased agonists of the CCK2R. These new important insights will allow us to investigate the role of internalized CCK2R·β-arrestin complexes in cancers expressing this receptor and to develop new diagnosis and therapeutic strategies targeting this receptor.

  4. Multiple 5-HT receptors in the guinea-pig superior cervical ganglion.

    PubMed Central

    Watkins, C. J.; Newberry, N. R.

    1996-01-01

    1. We have studied the pharmacology of the depolarization by 5-hydroxytryptamine (5-HT) of the guinea-pig isolated superior cervical ganglion (SCG) using the grease-gap technique. We studied the effects of selective and non-selective antagonists on the responses to 5-HT and other 5-HT receptor agonists. 2. We have extended the pharmacology of the 5-HT3 receptor in this preparation by studying the effects of granisetron, BRL 46470 and mianserin on the concentration-response curve (CRC) to 2-methyl-5-HT. As with other 5-HT3 receptor antagonists, these compounds exhibited a lower affinity for guinea-pig 5-HT3 receptors than for rat 5-HT3 receptors. 3. We have confirmed that low concentrations of 5-HT (< or = 1 microM) mediate ketanserin-sensitive responses and higher concentrations of 5-HT also recruit 5-HT3 receptors. The responses to low concentrations of 5-HT were antagonized by low concentrations of ketanserin, spiperone, mianserin, DOI and LSD indicating probably mediation by 5-HT2A receptors. At high concentrations, the hallucinogen, DOI, but not LSD, evoked a ketanserin-sensitive depolarization. 4. Although mianserin could bind to the 5-HT2A receptors in this preparation, we could not demonstrate a down-regulation of depolarizations evoked by these receptors after a 10 day oral treatment with mianserin (10 mg kg-1, daily). 5. 5-Carboxamidotryptamine (5-CT) evoked a prolonged depolarization. Although high concentrations of 5-CT (> or = microM) appeared to activate 5-HT2A receptors, lower concentrations of 5-CT evoked a response with a distinct pharmacology. After studying the action of 20 selective and non-selective 5-HT receptor ligands we believe that this response may be mediated by a novel receptor; but its pharmacology is closest to that of receptors in the 5-HT2 receptor family. Like 5-CT, 5-HT (3-300 microM) could evoke an LSD-sensitive response in the presence of the 5-HT2 receptor antagonist, ketanserin and the 5-HT3 receptor antagonist, tropisetron

  5. Block of the delayed rectifier current (IK) by the 5-HT3 antagonists ondansetron and granisetron in feline ventricular myocytes.

    PubMed

    de Lorenzi, F G; Bridal, T R; Spinelli, W

    1994-10-01

    1. We investigated the effects of two 5-HT3 antagonists, ondansetron and granisetron, on the action potential duration (APD) and the delayed rectifier current (IK) of feline isolated ventricular myocytes. Whole-cell current and action potential recordings were performed at 37 degrees C with the patch clamp technique. 2. Ondansetron and granisetron blocked IK with a KD of 1.7 +/- 1.0 and 4.3 +/- 1.7 microM, respectively. At a higher concentration (30 microM), both drugs blocked the inward rectifier (IKl). 3. The block of IK was dependent on channel activation. Both drugs slowed the decay of IK tail currents and produced a crossover with the pre-drug current trace. These results are consistent with block and unblock from the open state of the channel. 4. Granisetron showed an intrinsic voltage-dependence as the block increased with depolarization. The equivalent voltage-dependency of block (delta) was 0.10 +/- 0.04, suggesting that granisetron blocks from the intracellular side at a binding site located 10% across the transmembrane electrical field. 5. Ondansetron (1 microM) and granisetron (3 microM) prolonged APD by about 30% at 0.5 Hz. The prolongation of APD by ondansetron was abolished at faster frequencies (3 Hz) showing reverse rate dependence. 6. In conclusion, the 5-HT3 antagonists, ondansetron and granisetron, are open state blockers of the ventricular delayed rectifier and show a clear class III action.

  6. Membrane Receptors Involved in Modulation of Responses of Spinal Dorsal Horn Interneurons Evoked by Feline Group II Muscle Afferents

    PubMed Central

    Dougherty, Kimberly J.; Bannatyne, B. Anne; Jankowska, Elzbieta; Krutki, Piotr; Maxwell, David J.

    2007-01-01

    Modulatory actions of a metabotropic 5-HT1A&7 membrane receptor agonist and antagonist [(+/−)-8-hydroxy-2-(di-n-propylamino)-tetralin; N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane-carboxamide] and an ionotropic 5-HT3 membrane receptor agonist and antagonist [2-methyl-serotonin (2-Me 5-HT); N-(1-azabicyclo[2.2.2]oct-3-yl)-6-chloro-4-methyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-8-carboxamide hydrochloride] were investigated on dorsal horn interneurons mediating reflex actions of group II muscle afferents. All drugs were applied ionophoretically in deeply anesthetized cats. Effects of agonists were tested on extracellularly recorded responses of individual interneurons evoked by electrical stimulation of group II afferents in a muscle nerve. Effects of antagonists were tested against the depression of these responses after stimulation of raphe nuclei. The results show that both 5-HT1A&7 and 5-HT3 membrane receptors are involved in counteracting the activation of dorsal horn interneurons by group II afferents. Because only quantitative differences were found within the sample of the tested neurons, these results suggest that modulatory actions of 5-HT on excitatory and inhibitory interneurons might be similar. The relationship between 5-HT axons and axons immunoreactive for the 5-HT3A receptor subunit, which contact dorsal horn interneurons, was analyzed using immunofluorescence and confocal microscopy. Contacts from both types of axons were found on all interneurons, but their distribution and density varied, and there was no obvious relationship between them. In two of six interneurons, 5-HT3A-immunoreactive axons formed ring-like arrangements around the cell bodies. In previous studies, axons possessing 5-HT3 receptors were found to be excitatory, and as 2-Me 5-HT depressed transmission to dorsal horn interneurons, the results indicate that 5-HT operates at 5-HT3 receptors presynaptic to these neurons to depress excitatory transmission

  7. Agonists block currents through acetylcholine receptor channels.

    PubMed Central

    Sine, S M; Steinbach, J H

    1984-01-01

    We have examined the effects of high concentrations of cholinergic agonists on currents through single acetylcholine receptor (AChR) channels on clonal BC3H1 cells. We find that raised concentrations of acetylcholine (ACh; above 300 microM) or carbamylcholine (Carb; above 1,000 microM) produce a voltage- and concentration-dependent reduction in the mean single-channel current. Raised concentrations of suberyldicholine (Sub; above 3 microM) produce a voltage- and concentration-dependent increase in the number of brief duration low-conductance interruptions of open-channel currents. These observations can be quantitatively described by a model in which agonist molecules enter and transiently occlude the ion-channel of the AChR. PMID:6478036

  8. Small-molecule AT2 receptor agonists.

    PubMed

    Hallberg, Mathias; Sumners, Colin; Steckelings, U Muscha; Hallberg, Anders

    2017-06-13

    The discovery of the first selective, small-molecule ATR receptor (AT2R) agonist compound 21 (C21) (8) that is now extensively studied in a large variety of in vitro and in vivo models is described. The sulfonylcarbamate derivative 8, encompassing a phenylthiofen scaffold is the drug-like agonist with the highest affinity for the AT2R reported to date (Ki = 0.4 nM). Structure-activity relationships (SAR), regarding different biaryl scaffolds and functional groups attached to these scaffolds and with a particular focus on the impact of various para substituents displacing the methylene imidazole group of 8, are discussed. Furthermore, the consequences of migration of the methylene imidazole group and presumed structural requirements for ligands that are aimed as AT2R agonists (e.g. 8) or AT2R antagonists (e.g. 9), respectively, are briefly addressed. A summary of the pharmacological actions of C21 (8) is also presented. © 2017 Wiley Periodicals, Inc.

  9. Agonists and antagonists for P2 receptors

    PubMed Central

    Jacobson, Kenneth A.; Costanzi, Stefano; Joshi, Bhalchandra V.; Besada, Pedro; Shin, Dae Hong; Ko, Hyojin; Ivanov, Andrei A.; Mamedova, Liaman

    2015-01-01

    Recent work has identified nucleotide agonists selective for P2Y1, P2Y2 and P2Y6 receptors and nucleotide antagonists selective for P2Y1, P2Y12 and P2X1 receptors. Selective non-nucleotide antagonists have been reported for P2Y1, P2Y2, P2Y6, P2Y12, P2Y13, P2X2/3/P2X3 and P2X7 receptors. For example, the dinucleotide INS 37217 (Up4dC) potently activates the P2Y2 receptor, and the non-nucleotide antagonist A-317491 is selective for P2X2/3/P2X3 receptors. Nucleotide analogues in which the ribose moiety is substituted by a variety of novel ring systems, including conformation-ally locked moieties, have been synthesized as ligands for P2Y receptors. The focus on conformational factors of the ribose-like moiety allows the inclusion of general modifications that lead to enhanced potency and selectivity. At P2Y1,2,4,11 receptors, there is a preference for the North conformation as indicated with (N)-methanocarba analogues. The P2Y1 antagonist MRS2500 inhibited ADP-induced human platelet aggregation with an IC50 of 0.95 nM. MRS2365, an (N)-methanocarba analogue of 2-MeSADP, displayed potency (EC50) of 0.4 nM at the P2Y1 receptor, with >10 000-fold selectivity in comparison to P2Y12 and P2Y13 receptors. At P2Y6 receptors there is a dramatic preference for the South conformation. Three-dimensional structures of P2Y receptors have been deduced from structure activity relationships (SAR), mutagenesis and modelling studies. Detailed three-dimensional structures of P2X receptors have not yet been proposed. PMID:16805423

  10. Development of 4-Heteroarylamino-1'-azaspiro[oxazole-5,3'-bicyclo[2.2.2]octanes] as α7 Nicotinic Receptor Agonists.

    PubMed

    Hill, Matthew D; Fang, Haiquan; King, H Dalton; Iwuagwu, Christiana I; McDonald, Ivar M; Cook, James; Zusi, F Christopher; Mate, Robert A; Knox, Ronald J; Post-Munson, Debra; Easton, Amy; Miller, Regina; Lentz, Kimberley; Clarke, Wendy; Benitex, Yulia; Lodge, Nicholas; Zaczek, Robert; Denton, Rex; Morgan, Daniel; Bristow, Linda; Macor, John E; Olson, Richard

    2017-01-12

    We describe the synthesis of quinuclidine-containing spiroimidates and their utility as α7 nicotinic acetylcholine receptor (nAChR) partial agonists. A convergent synthetic route allowed for rapid SAR investigation and provided a diverse set of fused 6,5-heteroaryl analogs. Two potent and selective α7 nAChR partial agonists, (1'S,3'R,4'S)-N-(7-bromopyrrolo[2,1-f][1,2,4]triazin-4-yl)-4H-1'-azaspiro[oxazole-5,3'-bicyclo[2.2.2]octan]-2-amine (20) and (1'S,3'R,4'S)-N-(7-chloropyrrolo[2,1-f][1,2,4]triazin-4-yl)-4H-1'-azaspiro[oxazole-5,3'-bicyclo[2.2.2]octan]-2-amine (21), were identified. Both agonists improved cognition in a preclinical rodent model of learning and memory. Additionally, 5-HT3A receptor SAR suggested the presence of a steric site that when engaged led to significant loss of affinity at that receptor.

  11. Fates of endocytosed somatostatin sst2 receptors and associated agonists.

    PubMed Central

    Koenig, J A; Kaur, R; Dodgeon, I; Edwardson, J M; Humphrey, P P

    1998-01-01

    Somatostatin agonists are rapidly and efficiently internalized with the somatostatin sst2 receptor. The fate of internalized agonists and receptors is of critical importance because the rate of ligand recycling back to the cell surface can limit the amount of radioligand accumulated inside the cells, whereas receptor recycling might be of vital importance in providing the cell surface with dephosphorylated, resensitized receptors. Furthermore the accumulation of radioisotope-conjugated somatostatin agonists inside cancer cells resulting from receptor-mediated internalization has been used as a treatment for cancers that overexpress somatostatin receptors. In the present study, radio-iodinated agonists at the sst2 somatostatin receptor were employed to allow quantitative analysis of the fate of endocytosed agonist. After endocytosis, recycling back to the cell surface was the main pathway for both 125I-labelled somatostatin-14 (SRIF-14) and the more stable agonist 125I-labelled cyclo(N-Me-Ala-Tyr-d-Trp-Lys-Abu-Phe) (BIM-23027; Abu stands for aminobutyric acid), accounting for 75-85% of internalized ligand when re-endocytosis of radioligand was prevented. We have shown that there is a dynamic cycling of both somatostatin agonist ligands and receptors between the cell surface and internal compartments both during agonist treatment and after surface-bound agonist has been removed, unless steps are taken to prevent the re-activation of receptors by recycled agonist. Internalization leads to increased degradation of 125I-labelled SRIF-14 but not 125I-labelled BIM-23027. The concentration of recycled agonist accumulating in the extracellular medium was sufficient to re-activate the receptor, as measured both by the inhibition of forskolin-stimulated adenylate cyclase and the recovery of surface receptor number after internalization. PMID:9820803

  12. Evolution of peroxisome proliferator-activated receptor agonists.

    PubMed

    Chang, Feng; Jaber, Linda A; Berlie, Helen D; O'Connell, Mary Beth

    2007-06-01

    To discuss the evolution of peroxisome proliferator-activated receptor (PPAR) agonists from single site to multiple subtype or partial agonists for the treatment of type 2 diabetes, dyslipidemia, obesity, and the metabolic syndrome. Information was obtained from MEDLINE (1966-March 2007) using search terms peroxisome proliferator-activated receptor agonist, PPAR dual agonist, PPAR alpha/gamma agonist, PPAR pan agonist, partial PPAR, and the specific compound names. Other sources included pharmaceutical companies, the Internet, and the American Diabetes Association 64th-66th Scientific Sessions abstract books. Animal data, abstracts, clinical trials, and review articles were reviewed and summarized. PPAR alpha, gamma, and delta receptors play an important role in lipid metabolism, regulation of adipocyte proliferation and differentiation, and insulin sensitivity. The PPAR dual agonists were developed to combine the triglyceride lowering and high-density lipoprotein cholesterol elevation from the PPAR-alpha agonists (fibrates) with the insulin sensitivity improvement from the PPAR-gamma agonists (thiazolidinediones). Although the dual agonists reduced hemoglobin A(1C) (A1C) and improved the lipid profile, adverse effects led to discontinued development. Currently, PPAR-delta agonists (GW501516 in Phase I trials), partial PPAR-gamma agonists (metaglidasen in Phase II and III trials), and pan agonists (alpha, gamma, delta; netoglitazone in Phase II and III trials) with improved cell and tissue selectivity are undergoing investigation to address multiple aspects of the metabolic syndrome with a single medication. By decreasing both A1C and triglycerides, metaglidasen did improve multiple aspects of the metabolic syndrome with fewer adverse effects than compared with placebo. Metaglidasen is now being compared with pioglitazone. Influencing the various PPARs results in improved glucose, lipid, and weight management, with effects dependent on full or partial agonist

  13. Cardiovascular effects of melatonin receptor agonists.

    PubMed

    Paulis, Ludovit; Simko, Fedor; Laudon, Moshe

    2012-11-01

    Melatonin synchronizes circadian rhythms with light/dark period and it was demonstrated to correct chronodisruption. Several melatonin receptor agonists with improved pharmacokinetics or increased receptor affinity are being developed, three of them are already in clinical use. However, the actions of melatonin extend beyond chronobiology to cardiovascular and metabolic systems as well. Given the high prevalence of cardiovascular disease and their common occurrence with chronodisruption, it is of utmost importance to classify the cardiometabolic effects of the newly approved and putative melatoninergic drugs. In the present review, the available (although very sparse) data on such effects, in particular by the approved (circadin, ramelteon, agomelatine) or clinically advanced (tasimelteon, piromelatine = Neu-P11, TIK-301) compounds are summarized. The authors have searched for an association with blood pressure, vascular reactivity, ischemia, myocardial and vascular remodeling and metabolic syndrome. The data suggest that cardiovascular effects of melatonin are at least partly mediated via MT(1)/MT(2) receptors and associated with its chronobiotic action. Therefore, despite the sparse direct evidence, it is believed that these effects will be shared by melatonin analogs as well. With the expected approval of novel melatoninergic compounds, it is suggested that the investigation of their cardiovascular effects should no longer be neglected.

  14. Investigation of the mechanism of agonist and inverse agonist action at D2 dopamine receptors.

    PubMed

    Roberts, David J; Lin, Hong; Strange, Philip G

    2004-05-01

    This study investigated, for the D2 dopamine receptor, the relation between the ability of agonists and inverse agonists to stabilise different states of the receptor and their relative efficacies. Ki values for agonists were determined in competition versus the binding of the antagonist [3H]spiperone. Competition data were fitted best by a two-binding site model (with the exception of bromocriptine, for which a one-binding site model provided the best fit) and agonist affinities for the higher (Kh) (G protein-coupled) and lower affinity (Kl) (G protein-uncoupled) sites determined. Ki values for agonists were also determined in competition versus the binding of the agonist [3H]N-propylnorapomorphine (NPA) to provide a second estimate of Kh. Maximal agonist effects (Emax) and their potencies (EC50) were determined from concentration-response curves for agonist stimulation of guanosine-5'-O-(3-[32S]thiotriphosphate) ([35S]GTPgammaS) binding. The ability of agonists to stabilise the G protein-coupled state of the receptor (Kl/Kh determined from ligand-binding assays) did not correlate with either of two measures of relative efficacy (relative Emax, Kl/EC50) of agonists determined in [35S]GTPgammaS-binding assays, when the data for all of the compounds tested were analysed. For a subset of compounds, however, there was a relation between Kl/Kh and Emax. Competition-binding data versus [3H]spiperone and [3H]NPA for a range of inverse agonists were fitted best by a one-binding site model. Ki values for the inverse agonists tested were slightly lower in competition versus [3H]NPA compared to [3H]spiperone. These data do not provide support for the idea that inverse agonists act by binding preferentially to the ground state of the receptor.

  15. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy

    PubMed Central

    Jakubík, J; Janíčková, H; El-Fakahany, EE; Doležal, V

    2011-01-01

    BACKGROUND AND PURPOSE Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5′-γ−thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M2 muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. EXPERIMENTAL APPROACH Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [35S]GTPγS and [3H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M2 muscarinic acetylcholine receptor. KEY RESULTS Agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [3H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from Gi/o G-proteins but only its dissociation from Gs/olf G-proteins. CONCLUSIONS AND IMPLICATIONS These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of Gi/o versus Gs/olf G-proteins that are not identified by conventional GTPγS binding. PMID:20958290

  16. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy.

    PubMed

    Jakubík, J; Janíčková, H; El-Fakahany, E E; Doležal, V

    2011-03-01

    Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5'-γ-thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M₂ muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [³⁵S]GTPγS and [³H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M₂ muscarinic acetylcholine receptor. Agonists displayed biphasic competition curves with the antagonist [³H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [³H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from G(i/o) G-proteins but only its dissociation from G(s/olf) G-proteins. These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of G(i/o) versus G(s/olf) G-proteins that are not identified by conventional GTPγS binding. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  17. Agonist-directed desensitization of the β2-adrenergic receptor.

    PubMed

    Goral, Vasiliy; Jin, Yan; Sun, Haiyan; Ferrie, Ann M; Wu, Qi; Fang, Ye

    2011-04-26

    The β(2)-adrenergic receptor (β(2)AR) agonists with reduced tachyphylaxis may offer new therapeutic agents with improved tolerance profile. However, receptor desensitization assays are often inferred at the single signaling molecule level, thus ligand-directed desensitization is poorly understood. Here we report a label-free biosensor whole cell assay with microfluidics to determine ligand-directed desensitization of the β(2)AR. Together with mechanistic deconvolution using small molecule inhibitors, the receptor desensitization and resensitization patterns under the short-term agonist exposure manifested the long-acting agonism of salmeterol, and differentiated the mechanisms of agonist-directed desensitization between a full agonist epinephrine and a partial agonist pindolol. This study reveals the cellular mechanisms of agonist-selective β(2)AR desensitization at the whole cell level.

  18. Agonist-Directed Desensitization of the β2-Adrenergic Receptor

    PubMed Central

    Goral, Vasiliy; Jin, Yan; Sun, Haiyan; Ferrie, Ann M.; Wu, Qi; Fang, Ye

    2011-01-01

    The β2-adrenergic receptor (β2AR) agonists with reduced tachyphylaxis may offer new therapeutic agents with improved tolerance profile. However, receptor desensitization assays are often inferred at the single signaling molecule level, thus ligand-directed desensitization is poorly understood. Here we report a label-free biosensor whole cell assay with microfluidics to determine ligand-directed desensitization of the β2AR. Together with mechanistic deconvolution using small molecule inhibitors, the receptor desensitization and resensitization patterns under the short-term agonist exposure manifested the long-acting agonism of salmeterol, and differentiated the mechanisms of agonist-directed desensitization between a full agonist epinephrine and a partial agonist pindolol. This study reveals the cellular mechanisms of agonist-selective β2AR desensitization at the whole cell level. PMID:21541288

  19. Discovery of G Protein-Biased EP2 Receptor Agonists

    PubMed Central

    2016-01-01

    To identify G protein-biased and highly subtype-selective EP2 receptor agonists, a series of bicyclic prostaglandin analogues were designed and synthesized. Structural hybridization of EP2/4 dual agonist 5 and prostacyclin analogue 6, followed by simplification of the ω chain enabled us to discover novel EP2 agonists with a unique prostacyclin-like scaffold. Further optimization of the ω chain was performed to improve EP2 agonist activity and subtype selectivity. Phenoxy derivative 18a showed potent agonist activity and excellent subtype selectivity. Furthermore, a series of compounds were identified as G protein-biased EP2 receptor agonists. These are the first examples of biased ligands of prostanoid receptors. PMID:26985320

  20. Quantifying agonist activity at G protein-coupled receptors.

    PubMed

    Ehlert, Frederick J; Suga, Hinako; Griffin, Michael T

    2011-12-26

    When an agonist activates a population of G protein-coupled receptors (GPCRs), it elicits a signaling pathway that culminates in the response of the cell or tissue. This process can be analyzed at the level of a single receptor, a population of receptors, or a downstream response. Here we describe how to analyze the downstream response to obtain an estimate of the agonist affinity constant for the active state of single receptors. Receptors behave as quantal switches that alternate between active and inactive states (Figure 1). The active state interacts with specific G proteins or other signaling partners. In the absence of ligands, the inactive state predominates. The binding of agonist increases the probability that the receptor will switch into the active state because its affinity constant for the active state (K(b)) is much greater than that for the inactive state (K(a)). The summation of the random outputs of all of the receptors in the population yields a constant level of receptor activation in time. The reciprocal of the concentration of agonist eliciting half-maximal receptor activation is equivalent to the observed affinity constant (K(obs)), and the fraction of agonist-receptor complexes in the active state is defined as efficacy (ε) (Figure 2). Methods for analyzing the downstream responses of GPCRs have been developed that enable the estimation of the K(obs) and relative efficacy of an agonist. In this report, we show how to modify this analysis to estimate the agonist K(b) value relative to that of another agonist. For assays that exhibit constitutive activity, we show how to estimate K(b) in absolute units of M(-1). Our method of analyzing agonist concentration-response curves consists of global nonlinear regression using the operational model. We describe a procedure using the software application, Prism (GraphPad Software, Inc., San Diego, CA). The analysis yields an estimate of the product of K(obs) and a parameter proportional to efficacy (

  1. Agonists at the δ-opioid receptor modify the binding of µ-receptor agonists to the µ–δ receptor hetero-oligomer

    PubMed Central

    Kabli, N; Martin, N; Fan, T; Nguyen, T; Hasbi, A; Balboni, G; O'Dowd, BF; George, SR

    2010-01-01

    BACKGROUND AND PURPOSE µ- and δ-opioid receptors form heteromeric complexes with unique ligand binding and G protein-coupling profiles linked to G protein α z-subunit (Gαz) activation. However, the mechanism of action of agonists and their regulation of the µ–δ receptor heteromer are not well understood. EXPERIMENTAL APPROACH Competition radioligand binding, cell surface receptor internalization in intact cells, confocal microscopy and receptor immunofluorescence techniques were employed to study the regulation of the µ–δ receptor heteromer in heterologous cells with and without agonist exposure. KEY RESULTS Gαz enhanced affinity of some agonists at µ–δ receptor heteromers, independent of agonist chemical structure. δ-Opioid agonists displaced µ-agonist binding with high affinity from µ–δ heteromers, but not µ receptor homomers, suggestive of δ-agonists occupying a novel µ-receptor ligand binding pocket within the heteromers. Also, δ-agonists induced internalization of µ-opioid receptors in cells co-expressing µ- and δ-receptors, but not those expressing µ-receptors alone, indicative of µ–δ heteromer internalization. This dose-dependent, Pertussis toxin-resistant and clathrin- and dynamin-dependent effect required agonist occupancy of both µ- and δ-opioid receptors. In contrast to µ-receptor homomers, agonist-induced internalization of µ–δ heteromers persisted following chronic morphine exposure. CONCLUSIONS AND IMPLICATIONS The µ–δ receptor heteromer may contain a novel δ-agonist-detected, high-affinity, µ-receptor ligand binding pocket and is regulated differently from the µ-receptor homomer following chronic morphine exposure. Occupancy of both µ- and δ-receptor binding pockets is required for δ-agonist-induced endocytosis of µ–δ receptor heteromers. δ-Opioid agonists target µ–δ receptor heteromers, and thus have a broader pharmacological specificity than previously identified. PMID:20977461

  2. The structural basis for agonist and partial agonist action on a β(1)-adrenergic receptor.

    PubMed

    Warne, Tony; Moukhametzianov, Rouslan; Baker, Jillian G; Nehmé, Rony; Edwards, Patricia C; Leslie, Andrew G W; Schertler, Gebhard F X; Tate, Christopher G

    2011-01-13

    β-adrenergic receptors (βARs) are G-protein-coupled receptors (GPCRs) that activate intracellular G proteins upon binding catecholamine agonist ligands such as adrenaline and noradrenaline. Synthetic ligands have been developed that either activate or inhibit βARs for the treatment of asthma, hypertension or cardiac dysfunction. These ligands are classified as either full agonists, partial agonists or antagonists, depending on whether the cellular response is similar to that of the native ligand, reduced or inhibited, respectively. However, the structural basis for these different ligand efficacies is unknown. Here we present four crystal structures of the thermostabilized turkey (Meleagris gallopavo) β(1)-adrenergic receptor (β(1)AR-m23) bound to the full agonists carmoterol and isoprenaline and the partial agonists salbutamol and dobutamine. In each case, agonist binding induces a 1 Å contraction of the catecholamine-binding pocket relative to the antagonist bound receptor. Full agonists can form hydrogen bonds with two conserved serine residues in transmembrane helix 5 (Ser(5.42) and Ser(5.46)), but partial agonists only interact with Ser(5.42) (superscripts refer to Ballesteros-Weinstein numbering). The structures provide an understanding of the pharmacological differences between different ligand classes, illuminating how GPCRs function and providing a solid foundation for the structure-based design of novel ligands with predictable efficacies.

  3. Histamine H3-receptor inverse agonists as novel antipsychotics.

    PubMed

    Ito, Chihiro

    2009-06-01

    Schizophrenia (SZ) that is resistant to treatment with dopamine (DA) D2 antagonists may involve changes other than those in the dopaminergic system. Recently, histamine (HA), which regulates arousal and cognitive functions, has been suggested to act as a neurotransmitter in the central nervous system. Four HA receptors-H1, H2, H3, and H4-have been identified. Our recent basic and clinical studies revealed that brain HA improved the symptoms of SZ. The H3 receptor is primarily localized in the central nervous system, and it acts not only as a presynaptic autoreceptor that modulates the HA release but also as a presynaptic heteroreceptor that regulates the release of other neurotransmitters such as monoamines and amino acids. H3-receptor inverse agonists have been considered to improve cognitive functions. Many atypical antipsychotics are H3-receptor antagonists. Imidazole-containing H3-receptor inverse agonists inhibit not only cytochrome P450 but also hERG potassium channels (encoded by the human ether-a-go-go-related gene). Several imidazole H3-receptor inverse agonists also have high affinity for H4 receptors, which are expressed at high levels in mast cells and leukocytes. Clozapine is an H4-receptor agonist; this agonist activity may be related to the serious side effect of agranulocytosis caused by clozapine. Therefore, selective non-imidazole H3-receptor inverse agonists can be considered as novel antipsychotics that may improve refractory SZ.

  4. Receptor-Selective Agonists Induce Emesis and Fos Expression in the Brain and Enteric Nervous System of the Least Shrew (Cryptotis parva)

    PubMed Central

    Ray, Andrew P.; Chebolu, Seetha; Darmani, Nissar A.

    2009-01-01

    Research on the mechanisms of emesis has implicated multiple neurotransmitters via both central (dorsal vagal complex) and peripheral (enteric neurons and enterochromaffin cells) anatomical substrates. Taking advantage of advances in receptor-specific agonists, and utilizing Fos expression as a functional activity marker, this study demonstrates a strong, but incomplete, overlap in anatomical substrates for a variety of emetogens. We used cisplatin and specific agonists to 5-HT3 serotonergic, D2/D3 dopaminergic, and NK1 tachykininergic receptors to induce vomiting in the least shrew (Cryptotis parva), and quantified the resulting Fos expression. The least shrew is a small mammal whose responses to emetic challenges are very similar to its human counterparts. In all cases, the enteric nervous system, nucleus of the solitary tract, and dorsal motor nucleus of the vagus demonstrated significantly increased Fos immunoreactivity (Fos-IR). However, Fos-IR induction was notably absent from the area postrema following the dopaminergic and NK1 receptor-specific agents. Two brain nuclei not usually discussed regarding emesis, the dorsal raphe nucleus and paraventricular thalamic nucleus, also demonstrated increased emesis-related Fos-IR. Taken together, these data suggest the dorsal vagal complex is part of a common pathway for a variety of distinct emetogens, but there are central emetic substrates, both medullary and diencephalic, that can be accessed without directly stimulating the area postrema. PMID:19699757

  5. The Novel, Nicotinic Alpha7 Receptor Partial Agonist, BMS-933043, Improves Cognition and Sensory Processing in Preclinical Models of Schizophrenia.

    PubMed

    Bristow, Linda J; Easton, Amy E; Li, Yu-Wen; Sivarao, Digavalli V; Lidge, Regina; Jones, Kelli M; Post-Munson, Debra; Daly, Christopher; Lodge, Nicholas J; Gallagher, Lizbeth; Molski, Thaddeus; Pieschl, Richard; Chen, Ping; Hendricson, Adam; Westphal, Ryan; Cook, James; Iwuagwu, Christiana; Morgan, Daniel; Benitex, Yulia; King, Dalton; Macor, John E; Zaczek, Robert; Olson, Richard

    2016-01-01

    The development of alpha7 nicotinic acetylcholine receptor agonists is considered a promising approach for the treatment of cognitive symptoms in schizophrenia patients. In the present studies we characterized the novel agent, (2R)-N-(6-(1H-imidazol-1-yl)-4-pyrimidinyl)-4'H-spiro[4-azabicyclo[2.2.2]octane-2,5'-[1,3]oxazol]-2'-amine (BMS-933043), in vitro and in rodent models of schizophrenia-like deficits in cognition and sensory processing. BMS-933043 showed potent binding affinity to native rat (Ki = 3.3 nM) and recombinant human alpha7 nicotinic acetylcholine receptors (Ki = 8.1 nM) and agonist activity in a calcium fluorescence assay (EC50 = 23.4 nM) and whole cell voltage clamp electrophysiology (EC50 = 0.14 micromolar (rat) and 0.29 micromolar (human)). BMS-933043 exhibited a partial agonist profile relative to acetylcholine; the relative efficacy for net charge crossing the cell membrane was 67% and 78% at rat and human alpha7 nicotinic acetylcholine receptors respectively. BMS-933043 showed no agonist or antagonist activity at other nicotinic acetylcholine receptor subtypes and was at least 300 fold weaker at binding to and antagonizing human 5-HT3A receptors (Ki = 2,451 nM; IC50 = 8,066 nM). BMS-933043 treatment i) improved 24 hour novel object recognition memory in mice (0.1-10 mg/kg, sc), ii) reversed MK-801-induced deficits in Y maze performance in mice (1-10 mg/kg, sc) and set shift performance in rats (1-10 mg/kg, po) and iii) reduced the number of trials required to complete the extradimensional shift discrimination in neonatal PCP treated rats performing the intra-dimensional/extradimensional set shifting task (0.1-3 mg/kg, po). BMS-933043 also improved auditory gating (0.56-3 mg/kg, sc) and mismatch negativity (0.03-3 mg/kg, sc) in rats treated with S(+)ketamine or neonatal phencyclidine respectively. Given this favorable preclinical profile BMS-933043 was selected for further development to support clinical evaluation in humans.

  6. The Novel, Nicotinic Alpha7 Receptor Partial Agonist, BMS-933043, Improves Cognition and Sensory Processing in Preclinical Models of Schizophrenia

    PubMed Central

    Bristow, Linda J.; Easton, Amy E.; Li, Yu-Wen; Sivarao, Digavalli V.; Lidge, Regina; Jones, Kelli M.; Post-Munson, Debra; Daly, Christopher; Lodge, Nicholas J.; Gallagher, Lizbeth; Molski, Thaddeus; Pieschl, Richard; Chen, Ping; Hendricson, Adam; Westphal, Ryan; Cook, James; Iwuagwu, Christiana; Morgan, Daniel; Benitex, Yulia; King, Dalton; Macor, John E.; Zaczek, Robert; Olson, Richard

    2016-01-01

    The development of alpha7 nicotinic acetylcholine receptor agonists is considered a promising approach for the treatment of cognitive symptoms in schizophrenia patients. In the present studies we characterized the novel agent, (2R)-N-(6-(1H-imidazol-1-yl)-4-pyrimidinyl)-4'H-spiro[4-azabicyclo[2.2.2]octane-2,5'-[1,3]oxazol]-2'-amine (BMS-933043), in vitro and in rodent models of schizophrenia-like deficits in cognition and sensory processing. BMS-933043 showed potent binding affinity to native rat (Ki = 3.3 nM) and recombinant human alpha7 nicotinic acetylcholine receptors (Ki = 8.1 nM) and agonist activity in a calcium fluorescence assay (EC50 = 23.4 nM) and whole cell voltage clamp electrophysiology (EC50 = 0.14 micromolar (rat) and 0.29 micromolar (human)). BMS-933043 exhibited a partial agonist profile relative to acetylcholine; the relative efficacy for net charge crossing the cell membrane was 67% and 78% at rat and human alpha7 nicotinic acetylcholine receptors respectively. BMS-933043 showed no agonist or antagonist activity at other nicotinic acetylcholine receptor subtypes and was at least 300 fold weaker at binding to and antagonizing human 5-HT3A receptors (Ki = 2,451 nM; IC50 = 8,066 nM). BMS-933043 treatment i) improved 24 hour novel object recognition memory in mice (0.1–10 mg/kg, sc), ii) reversed MK-801-induced deficits in Y maze performance in mice (1–10 mg/kg, sc) and set shift performance in rats (1–10 mg/kg, po) and iii) reduced the number of trials required to complete the extradimensional shift discrimination in neonatal PCP treated rats performing the intra-dimensional/extradimensional set shifting task (0.1–3 mg/kg, po). BMS-933043 also improved auditory gating (0.56–3 mg/kg, sc) and mismatch negativity (0.03–3 mg/kg, sc) in rats treated with S(+)ketamine or neonatal phencyclidine respectively. Given this favorable preclinical profile BMS-933043 was selected for further development to support clinical evaluation in humans. PMID

  7. Octopaminergic agonists for the cockroach neuronal octopamine receptor.

    PubMed

    Hirashima, Akinori; Morimoto, Masako; Kuwano, Eiichi; Eto, Morifusa

    2003-01-01

    The compounds 1-(2,6-diethylphenyl)imidazolidine-2-thione and 2-(2,6-diethylphenyl)imidazolidine showed the almost same activity as octopamine in stimulating adenylate cyclase of cockroach thoracic nervous system among 70 octopamine agonists, suggesting that only these compounds are full octopamine agonists and other compounds are partial octopamine agonists. The quantitative structure-activity relationship of a set of 22 octopamine agonists against receptor 2 in cockroach nervous tissue, was analyzed using receptor surface modeling. Three-dimensional energetics descriptors were calculated from receptor surface model/ligand interaction and these three-dimensional descriptors were used in quantitative structure-activity relationship analysis. A receptor surface model was generated using some subset of the most active structures and the results provided useful information in the characterization and differentiation of octopaminergic receptor.

  8. Agonist pharmacology of two Drosophila GABA receptor splice variants.

    PubMed Central

    Hosie, A. M.; Sattelle, D. B.

    1996-01-01

    1. The Drosophila melanogaster gamma-aminobutyric acid (GABA) receptor subunits, RDLac and DRC 17-1-2, form functional homo-oligomeric receptors when heterologously expressed in Xenopus laevis oocytes. The subunits differ in only 17 amino acids, principally in regions of the N-terminal domain which determine agonist pharmacology in vertebrate ionotropic neurotransmitter receptors. A range of conformationally restricted GABA analogues were tested on the two homo-oligomers and their agonists pharmacology compared with that of insect and vertebrate iontropic GABA receptors. 2. The actions of GABA, isoguvacine and isonipecotic acid on RDLac and DRC 17-1-2 homo-oligomers were compared, by use of two-electrode voltage-clamp. All three compounds were full agonists of both receptors, but were 4-6 fold less potent agonists of DRC 17-1-2 homo-oligomers than of RDLac. However, the relative potencies of these agonists on each receptor were very similar. 3. A more complete agonist profile was established for RDLac homo-oligomers. The most potent agonists of these receptors were GABA, muscimol and trans-aminocrotonic acid (TACA), which were approximately equipotent. RDLac homo-oligomers were fully activated by a range of GABA analogues, with the order of potency: GABA > ZAPA ((Z)-3-[(aminoiminomethyl)thio]prop-2-enoic acid) > isoguvacine > imidazole-4-acetic acid > or = isonipecotic acid > or = cis-aminocrotonic acid (CACA) > beta-alanine. 3-Aminopropane sulphonic acid (3-APS), a partial agonist of RDLac homo-oligomers, was the weakest agonist tested and 100 fold less potent than GABA. 4. SR95531, an antagonist of vertebrate GABAA receptors, competitively inhibited the GABA responses of RDLac homo-oligomers, which have previously been found to insensitive to bicuculline. However, its potency (IC50 500 microM) was much reduced when compared to GABAA receptors. 5. The agonist pharmacology of Drosophila RDLac homo-oligomers exhibits aspects of the characteristic pharmacology of

  9. BMS-933043, a Selective α7 nAChR Partial Agonist for the Treatment of Cognitive Deficits Associated with Schizophrenia.

    PubMed

    King, Dalton; Iwuagwu, Christiana; Cook, Jim; McDonald, Ivar M; Mate, Robert; Zusi, F Christopher; Hill, Matthew D; Fang, Haiquan; Zhao, Rulin; Wang, Bei; Easton, Amy E; Miller, Regina; Post-Munson, Debra; Knox, Ronald J; Gallagher, Lizbeth; Westphal, Ryan; Molski, Thaddeus; Fan, Jingsong; Clarke, Wendy; Benitex, Yulia; Lentz, Kimberley A; Denton, Rex; Morgan, Daniel; Zaczek, Robert; Lodge, Nicholas J; Bristow, Linda J; Macor, John E; Olson, Richard E

    2017-03-09

    The therapeutic treatment of negative symptoms and cognitive dysfunction associated with schizophrenia is a significant unmet medical need. Preclinical literature indicates that α7 neuronal nicotinic acetylcholine (nACh) receptor agonists may provide an effective approach to treating cognitive dysfunction in schizophrenia. We report herein the discovery and evaluation of 1c (BMS-933043), a novel and potent α7 nACh receptor partial agonist with high selectivity against other nicotinic acetylcholine receptor subtypes (>100-fold) and the 5-HT3A receptor (>300-fold). In vivo activity was demonstrated in a preclinical model of cognitive impairment, mouse novel object recognition. BMS-933043 has completed Phase I clinical trials.

  10. A pharmacological analysis of serotonergic receptors: effects of their activation of blockade in learning.

    PubMed

    Meneses, A; Hong, E

    1997-02-01

    1. The authors have tested several 5-HT selective agonists and antagonists (5-HT1A/1B, 5-HT2A/2B/2C, 5-HT3 or 5-HT4), an uptake inhibitor and 5-HT depletors in the autoshaping learning task. 2. The present work deals with the receptors whose stimulation increases or decreases learning. 3. Impaired consolidation of learning was observed after the presynaptic activation of 5-HT1B, 5-HT3 or 5-HT4 or the blockade of postsynaptic 5-HT2C/2B receptors. 4. In contrast, an improvement occurred after the presynaptic activation of 5-HT1A, 5-HT2C, and the blockade of presynaptic 5-HT2A, 5-HT2C and 5-HT3 receptors. 5. The blockade of postsynaptic 5-HT1A, 5-HT1B, 5-HT3 or 5-HT4 receptors and 5-HT inhibition of synthesis and its depletion did no alter learning by themselves. 6. The present data suggest that multiple pre- and postsynaptic serotonergic receptors are involved in the consolidation of learning. 7. Stimulation of most 5-HT receptors increases learning, however, some of 5-HT subtypes seem to limit the data storage. 8. Furthermore, the role of 5-HT receptors in learning seem to require an interaction with glutamatergic, GABAergic and cholinergic neurotransmission systems.

  11. Serotonergic agonists behave as partial agonists at the dopamine D2 receptor.

    PubMed

    Rinken, A; Ferré, S; Terasmaa, A; Owman, C; Fuxe, K

    1999-02-25

    RAT dopamine D2short receptors expressed in CHO cells were characterized by activation of [35S]GTPgammaS binding. There were no significant differences between the maximal effects seen in activation of [35S]GTPgammaS binding caused by dopaminergic agonists, but the effects of 5-HT, 8OH-DPAT and 5-methoxytryptamine amounted to 47 +/- 7%, 43 +/- 5% and 70 +/- 7% of the dopamine effect, respectively. The dopaminergic antagonist (+)butaclamol inhibited activations of both types of ligands with equal potency (pA2 = 8.9 +/- 0.1), indicating that only one type of receptor is involved. In competition with [3H]raclopride binding, dopaminergic agonists showed 53 +/- 2% of the binding sites in the GTP-dependent high-affinity state, whereas 5-HT showed only 20 +/- 3%. Taken together, the results indicate that serotonergic agonists behave as typical partial agonists for D2 receptors with potential antiparkinsonian activity.

  12. Role of the 5HT3 Receptor in Alcohol Drinking and Aggression Using a Transgenic Mouse Model

    DTIC Science & Technology

    2006-09-01

    regions such as the hippocampus and amygdala, demonstrating that expression of genes can be influenced by maternal behavior (Francis et al. 1999...Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA . Science 268:1763-6. Coccaro EF, Astill JL, Herbert

  13. Role of the 5HT3 Receptor in Alcohol Drinking and Aggression Using A Transgenic Mouse Model

    DTIC Science & Technology

    2005-09-01

    female rats have changes in mRNA in regions such as the hippocampus and amygdala, demonstrating that expression of genes can be influenced by maternal...norepinephrine in mice lacking MAOA . Science 268:1763-6. Coccaro EF, Astill JL, Herbert JL, and Schut AG. Fluoxetine Treatment of Impulsive Aggression in DSM

  14. 5HT3 Antagonists versus Dexamethasone in the Prevention of PONV in Patients Undergoing Laparoscopic Cholecystectomy: A Meta-Analysis of RCTs.

    PubMed

    Zhou, Chengmao; Zhu, Yu; Liu, Zhen; Ruan, Lin

    2016-01-01

    Background. 5HT3 antagonist, an antiemetic alternative to dexamethasone, is an effective drug for the prevention of postoperative nausea and vomiting (PONV). Methods. PubMed and The Cochrane Library (from inception to June 2016) were searched for relevant RCTs (randomized controlled trials). Results. Seven trials, totaling 682 patients, were included in this meta-analysis. This meta-analysis demonstrated that 5HT3 antagonist was as effective as dexamethasone in preventing PONV (RR, 1.12; 95% CI, [0.86, 1.45]; P = 0.40) within 24 hours of laparoscopic cholecystectomy, and no significant heterogeneity was observed among the studies (I(2) = 0%; P = 0.98). During the early postoperative period (0-6 h), 5HT3 antagonists were superior to dexamethasone in reducing POV (RR, 0.31; 95% CI, [0.11, 0.93]; P = 0.04), while, in other postoperative stages (6-12 h, 12-24 h, and 0-24 h), it was not more effective in the prevention of POV than dexamethasone. And no significant difference was found in the prevention of PON between 5HT3 antagonists and dexamethasone at different postoperative periods (0-6 h, 6-12 h, 12-24 h, and 0-24 h). Conclusions. As a result, it is advisable to encourage 5HT3 antagonists as an alternative to dexamethasone for the prevention of PONV in patients undergoing laparoscopic cholecystectomy.

  15. 5HT3 Antagonists versus Dexamethasone in the Prevention of PONV in Patients Undergoing Laparoscopic Cholecystectomy: A Meta-Analysis of RCTs

    PubMed Central

    Zhou, Chengmao; Zhu, Yu; Liu, Zhen

    2016-01-01

    Background. 5HT3 antagonist, an antiemetic alternative to dexamethasone, is an effective drug for the prevention of postoperative nausea and vomiting (PONV). Methods. PubMed and The Cochrane Library (from inception to June 2016) were searched for relevant RCTs (randomized controlled trials). Results. Seven trials, totaling 682 patients, were included in this meta-analysis. This meta-analysis demonstrated that 5HT3 antagonist was as effective as dexamethasone in preventing PONV (RR, 1.12; 95% CI, [0.86, 1.45]; P = 0.40) within 24 hours of laparoscopic cholecystectomy, and no significant heterogeneity was observed among the studies (I2 = 0%; P = 0.98). During the early postoperative period (0–6 h), 5HT3 antagonists were superior to dexamethasone in reducing POV (RR, 0.31; 95% CI, [0.11, 0.93]; P = 0.04), while, in other postoperative stages (6–12 h, 12–24 h, and 0–24 h), it was not more effective in the prevention of POV than dexamethasone. And no significant difference was found in the prevention of PON between 5HT3 antagonists and dexamethasone at different postoperative periods (0–6 h, 6–12 h, 12–24 h, and 0–24 h). Conclusions. As a result, it is advisable to encourage 5HT3 antagonists as an alternative to dexamethasone for the prevention of PONV in patients undergoing laparoscopic cholecystectomy. PMID:27891523

  16. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs.

  17. Anti-nociception mediated by a κ opioid receptor agonist is blocked by a δ receptor agonist.

    PubMed

    Taylor, A M W; Roberts, K W; Pradhan, A A; Akbari, H A; Walwyn, W; Lutfy, K; Carroll, F I; Cahill, C M; Evans, C J

    2015-01-01

    The opioid receptor family comprises four structurally homologous but functionally distinct sub-groups, the μ (MOP), δ (DOP), κ (KOP) and nociceptin (NOP) receptors. As most opioid agonists are selective but not specific, a broad spectrum of behaviours due to activation of different opioid receptors is expected. In this study, we examine whether other opioid receptor systems influenced KOP-mediated antinociception. We used a tail withdrawal assay in C57Bl/6 mice to assay the antinociceptive effect of systemically administered opioid agonists with varying selectivity at KOP receptors. Pharmacological and genetic approaches were used to analyse the interactions of the other opioid receptors in modulating KOP-mediated antinociception. Etorphine, a potent agonist at all four opioid receptors, was not anti-nociceptive in MOP knockout (KO) mice, although etorphine is an efficacious KOP receptor agonist and specific KOP receptor agonists remain analgesic in MOP KO mice. As KOP receptor agonists are aversive, we considered KOP-mediated antinociception might be a form of stress-induced analgesia that is blocked by the anxiolytic effects of DOP receptor agonists. In support of this hypothesis, pretreatment with the DOP antagonist, naltrindole (10 mg·kg(-1) ), unmasked etorphine (3 mg·kg(-1) ) antinociception in MOP KO mice. Further, in wild-type mice, KOP-mediated antinociception by systemic U50,488H (10 mg·kg(-1) ) was blocked by pretreatment with the DOP agonist SNC80 (5 mg·kg(-1) ) and diazepam (1 mg·kg(-1) ). Systemic DOP receptor agonists blocked systemic KOP antinociception, and these results identify DOP receptor agonists as potential agents for reversing stress-driven addictive and depressive behaviours mediated through KOP receptor activation. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The

  18. Anti-nociception mediated by a κ opioid receptor agonist is blocked by a δ receptor agonist

    PubMed Central

    Taylor, A M W; Roberts, K W; Pradhan, A A; Akbari, H A; Walwyn, W; Lutfy, K; Carroll, F I; Cahill, C M; Evans, C J

    2015-01-01

    BACKGROUND AND PURPOSE The opioid receptor family comprises four structurally homologous but functionally distinct sub-groups, the μ (MOP), δ (DOP), κ (KOP) and nociceptin (NOP) receptors. As most opioid agonists are selective but not specific, a broad spectrum of behaviours due to activation of different opioid receptors is expected. In this study, we examine whether other opioid receptor systems influenced KOP-mediated antinociception. EXPERIMENTAL APPROACH We used a tail withdrawal assay in C57Bl/6 mice to assay the antinociceptive effect of systemically administered opioid agonists with varying selectivity at KOP receptors. Pharmacological and genetic approaches were used to analyse the interactions of the other opioid receptors in modulating KOP-mediated antinociception. KEY RESULTS Etorphine, a potent agonist at all four opioid receptors, was not anti-nociceptive in MOP knockout (KO) mice, although etorphine is an efficacious KOP receptor agonist and specific KOP receptor agonists remain analgesic in MOP KO mice. As KOP receptor agonists are aversive, we considered KOP-mediated antinociception might be a form of stress-induced analgesia that is blocked by the anxiolytic effects of DOP receptor agonists. In support of this hypothesis, pretreatment with the DOP antagonist, naltrindole (10 mg·kg−1), unmasked etorphine (3 mg·kg−1) antinociception in MOP KO mice. Further, in wild-type mice, KOP-mediated antinociception by systemic U50,488H (10 mg·kg−1) was blocked by pretreatment with the DOP agonist SNC80 (5 mg·kg−1) and diazepam (1 mg·kg−1). CONCLUSIONS AND IMPLICATIONS Systemic DOP receptor agonists blocked systemic KOP antinociception, and these results identify DOP receptor agonists as potential agents for reversing stress-driven addictive and depressive behaviours mediated through KOP receptor activation. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles

  19. Toll-like receptor agonists in cancer therapy

    PubMed Central

    Adams, Sylvia

    2010-01-01

    Toll-like receptors (TLRs) are pattern-recognition receptors related to the Drosophila Toll protein. TLR activation alerts the immune system to microbial products and initiates innate and adaptive immune responses. The naturally powerful immunostimulatory property of TLR agonists can be exploited for active immunotherapy against cancer. Antitumor activity has been demonstrated in several cancers, and TLR agonists are now undergoing extensive clinical investigation. This review discusses recent advances in the field and highlights potential opportunities for the clinical development of TLR agonists as single agent immunomodulators, vaccine adjuvants and in combination with conventional cancer therapies. PMID:20563267

  20. Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity.

    PubMed

    Gurevich, V V; Pals-Rylaarsdam, R; Benovic, J L; Hosey, M M; Onorato, J J

    1997-11-14

    The rapid decrease of a response to a persistent stimulus, often termed desensitization, is a widespread biological phenomenon. Signal transduction by numerous G protein-coupled receptors appears to be terminated by a strikingly uniform two-step mechanism, most extensively characterized for the beta2-adrenergic receptor (beta2AR), m2 muscarinic cholinergic receptor (m2 mAChR), and rhodopsin. The model predicts that activated receptor is initially phosphorylated and then tightly binds an arrestin protein that effectively blocks further G protein interaction. Here we report that complexes of beta2AR-arrestin and m2 mAChR-arrestin have a higher affinity for agonists (but not antagonists) than do receptors not complexed with arrestin. The percentage of phosphorylated beta2AR in this high affinity state in the presence of full agonists varied with different arrestins and was enhanced by selective mutations in arrestins. The percentage of high affinity sites also was proportional to the intrinsic activity of an agonist, and the coefficient of proportionality varies for different arrestin proteins. Certain mutant arrestins can form these high affinity complexes with unphosphorylated receptors. Mutations that enhance formation of the agonist-receptor-arrestin complexes should provide useful tools for manipulating both the efficiency of signaling and rate and specificity of receptor internalization.

  1. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    PubMed

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. GABA receptor agonists: pharmacological spectrum and therapeutic actions.

    PubMed

    Bartholini, G

    1985-01-01

    From the data discussed in this review it appears that GABA receptor agonists exhibit a variety of actions in the central nervous system, some of which are therapeutically useful (Table V). GABA receptor agonists, by changing the firing rate of the corresponding neurons accelerate noradrenaline turnover without changes in postsynaptic receptor density and diminish serotonin liberation with an up-regulation of 5HT2 receptors. These effects differ from those of tricyclic antidepressants which primarily block monoamine re-uptake and cause down-regulation of beta-adrenergic and 5HT2 receptors. The GABA receptor agonist progabide has been shown to exert an antidepressant action which is indistinguishable from that of imipramine in patients with major affective disorders. The fact that: (a) GABA receptor agonists and tricyclic antidepressants affect noradrenergic and serotonergic transmission differently; and (b) tricyclic antidepressants alter GABA-related parameters challenges the classical monoamine hypothesis of depression and suggests that GABA-mediated mechanisms play a role in mood disorders. Decreases in cellular excitability produced by GABAergic stimulation leads to control of seizures in practically all animal models of epilepsy. GABA receptor agonists have a wide spectrum as they antagonize not only seizures which are dependent on decreased GABA synaptic activity but also convulsant states which are apparently independent of alterations in GABA-mediated events. These results in animals are confirmed in a wide range of human epileptic syndromes. GABA receptor agonists decrease dopamine turnover in the basal ganglia and antagonize neuroleptic-induced increase in dopamine release. On repeated treatment, progabide prevents or reverses the neuroleptic-induced up-regulation of dopamine receptors in the rat striatum and antagonizes the concomitant supersensitivity to dopaminomimetics. Behaviorally, GABA receptor agonists diminish the stereotypies induced by

  3. Characterization of the 5-HT receptor subtypes involved in the motor behaviours produced by intrathecal administration of 5-HT agonists in rats.

    PubMed Central

    Fone, K. C.; Robinson, A. J.; Marsden, C. A.

    1991-01-01

    1. The motor behavioural effects of intrathecal injections of 5-hydroxytryptamine (5-HT) and a variety of 5-HT receptor agonists were examined in adult Wistar rats to establish; (a) which 5-HT receptor subtype/s elicit each behaviour and (b) whether these receptors are located within the spinal cord. 2. Intrathecal injection of 5-methoxy-N,N'-dimethyltryptamine (5-MeODMT), (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI) or 2,5-dimethoxy-alpha,4-dimethylbenzene ethamine hydrochloride (DOM) produced dose-related back muscle contractions (BMC) and wet dog shakes (WDS) which were both markedly attenuated by intraperitoneal pretreatment with either ritanserin (1 mg kg-1), ketanserin (0.16 mg kg-1) or mianserin (0.6 mg kg-1) indicating the involvement of 5-HT2 receptors in both these motor behaviours. Both fluoxetine (1-20 mg kg-1, i.p.) and high doses of 5-HT (50 micrograms) following fluoxetine (5 mg kg-1, i.p.) also elicited BMC, further confirming the involvement of 5-HT in this behaviour. 3. Intrathecal 5-carboxamidotryptamine (5-CT) evoked a marked wet-dog shake response without producing any BMC. Intrathecal pretreatment with 8-hydroxy-2-(di-n-propylamino)tetraline (8-OH-DPAT) enhanced, while in contrast 2-methyl-5-HT pretreatment attenuated, 5-HT agonist-induced BMC without affecting WDS. These data suggest that the spinal 5-HT2 receptors mediating BMC are positively modulated by 5-HT1A but negatively influenced by 5-HT3 receptor activation and may be of a different subtype to the supra-spinal 5-HT2 receptors which elicit WDS.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 Figure 5 PMID:1832068

  4. Discovery of Highly Potent Liver X Receptor β Agonists.

    PubMed

    Kick, Ellen K; Busch, Brett B; Martin, Richard; Stevens, William C; Bollu, Venkataiah; Xie, Yinong; Boren, Brant C; Nyman, Michael C; Nanao, Max H; Nguyen, Lam; Plonowski, Artur; Schulman, Ira G; Yan, Grace; Zhang, Huiping; Hou, Xiaoping; Valente, Meriah N; Narayanan, Rangaraj; Behnia, Kamelia; Rodrigues, A David; Brock, Barry; Smalley, James; Cantor, Glenn H; Lupisella, John; Sleph, Paul; Grimm, Denise; Ostrowski, Jacek; Wexler, Ruth R; Kirchgessner, Todd; Mohan, Raju

    2016-12-08

    Introducing a uniquely substituted phenyl sulfone into a series of biphenyl imidazole liver X receptor (LXR) agonists afforded a dramatic potency improvement for induction of ATP binding cassette transporters, ABCA1 and ABCG1, in human whole blood. The agonist series demonstrated robust LXRβ activity (>70%) with low partial LXRα agonist activity (<25%) in cell assays, providing a window between desired blood cell ABCG1 gene induction in cynomolgus monkeys and modest elevation of plasma triglycerides for agonist 15. The addition of polarity to the phenyl sulfone also reduced binding to the plasma protein, human α-1-acid glycoprotein. Agonist 15 was selected for clinical development based on the favorable combination of in vitro properties, excellent pharmacokinetic parameters, and a favorable lipid profile.

  5. Pharmacological Studies of NOP Receptor Agonists as Novel Analgesics

    DTIC Science & Technology

    2009-05-01

    found in hot- chili peppers that evokes pain sensation by activating at the TRPV1. TRPV1 and the up-regulation of its expression have been strongly... anti - nociception against capsaicin-induced allodynia in mon- keys (Figure 3). Capsaicin evokes pain sensation by activating at the vanilloid receptor... activation of the NOP receptor produces strong antinociception without abuse liability, and (3) NOP receptor agonists possess a promising therapeutic

  6. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration

    PubMed Central

    Chakrabarti, Mrinmay; Haque, Azizul; Banik, Naren L.; Nagarkatti, Prakash; Nagarkatti, Mitzi; Ray, Swapan K.

    2014-01-01

    Recent results from laboratory investigations and clinical trials indicate important roles for estrogen receptor (ER) agonists in protecting the central nervous system (CNS) from noxious consequences of neuroinflammation and neurodegeneration. Neurodegenerative processes in several CNS disorders including spinal cord injury (SCI), multiple sclerosis (MS), Parkinson's disease (PD), and Alzheimer's disease (AD) are associated with activation of microglia and astrocytes, which drive the resident neuroinflammatory response. During neurodegenerative processes, activated microglia and astrocytes cause deleterious effects on surrounding neurons. The inhibitory activity of ER agonists on microglia activation might be a beneficial therapeutic option for delaying the onset or progression of neurodegenerative injuries and diseases. Recent studies suggest that ER agonists can provide neuroprotection by modulation of cell survival mechanisms, synaptic reorganization, regenerative responses to axonal injury, and neurogenesis process. The anti-inflammatory and neuroprotective actions of ER agonists are mediated mainly via two ERs known as ERα and ERβ. Although some studies have suggested that ER agonists may be deleterious to some neuronal populations, the potential clinical benefits of ER agonists for augmenting cognitive function may triumph over the associated side effects. Also, understanding the modulatory activities of ER agonists on inflammatory pathways will possibly lead to the development of selective anti-inflammatory molecules with neuroprotective roles in different CNS disorders such as SCI, MS, PD, and AD in humans. Future studies should be concentrated on finding the most plausible molecular pathways for enhancing protective functions of ER agonists in treating neuroinflammatory and neurodegenerative injuries and diseases in the CNS. PMID:25245209

  7. Opioid receptor agonists reduce brain edema in stroke.

    PubMed

    Yang, Li; Wang, Hezhen; Shah, Kaushik; Karamyan, Vardan T; Abbruscato, Thomas J

    2011-04-06

    Cerebral edema is a leading cause of mortality in stroke patients. The purpose of this study was to assess a non-selective opioid receptor agonist, biphalin, in decreasing reducing brain edema formation using both in vitro and in vivo models of stroke. For the in situ model of ischemia, hippocampal slices were exposed to oxygen glucose deprivation (OGD) conditions and we observed that hippocampal water content was increased, compared to normoxia. Treatment with the mu agonist, Tyr-D-Ala', N-CH, -Phe4, Glyol-Enkephalin (DAMGO), delta opioid agonists, D-pen(2), D-phe(5) enkephalin (DPDPE), and kappa agonist, U50 488, all significantly decreased brain slice water gain. Interestingly, the non-selective agonist, biphalin, exhibited a statistically significant (P<0.01) greater effect in decreasing water content in OGD-exposed hippocampal slices, compared with mu, delta, and kappa selective opioid agonists. Moreover, biphalin exhibited anti-edematous effects in a dose responsive manner. The non-selective opioid antagonist, naloxone, returned the water content nearly back to original OGD values for all opioid agonist treatments, supporting that these effects were mediated by an opioid receptor pathway. Furthermore, biphalin significantly decreased edema (53%) and infarct (48%) ratios, and neuronal recovery from stroke, compared with the vehicle-treated groups in a 12h permanent middle cerebral artery occlusion (MCAO) model of focal ischemia. Biphalin also significantly decreased the cell volume increase in primary neuronal cells exposed to OGD condition. These data suggest that opioid receptor activation may provide neuroprotection during stroke and further investigations are needed in the development of novel opioid agonist as efficacious treatments for brain ischemia.

  8. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  9. Pharmacogenetics of beta2 adrenergic receptor agonists in asthma management.

    PubMed

    Ortega, V E

    2014-07-01

    Beta2 (β2) adrenergic receptor agonists (beta agonists) are a commonly prescribed treatment for asthma despite the small increase in risk for life-threatening adverse responses associated with long-acting beta agonist (LABA). The concern for life-threatening adverse effects associated with LABA and the inter-individual variability of therapeutic responsiveness to LABA-containing combination therapies provide the rationale for pharmacogenetic studies of beta agonists. These studies primarily evaluated genes within the β2-adrenergic receptor and related pathways; however, recent genome-wide studies have identified novel loci for beta agonist response. Recent studies have identified a role for rare genetic variants in determining beta agonist response and, potentially, the risk for rare, adverse responses to LABA. Before genomics research can be applied to the development of genetic profiles for personalized medicine, it will be necessary to continue adapting to the analysis of an increasing volume of genetic data in larger cohorts with a combination of analytical methods and in vitro studies. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Emerging strategies for exploiting cannabinoid receptor agonists as medicines.

    PubMed

    Pertwee, Roger G

    2009-02-01

    Medicines that activate cannabinoid CB(1) and CB(2) receptor are already in the clinic. These are Cesamet (nabilone), Marinol (dronabinol; Delta(9)-tetrahydrocannabinol) and Sativex (Delta(9)-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol can also be prescribed to stimulate appetite, while Sativex is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB(2) receptors; or (v) 'multi-targeting'. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed.

  11. Emerging strategies for exploiting cannabinoid receptor agonists as medicines

    PubMed Central

    Pertwee, Roger G

    2009-01-01

    Medicines that activate cannabinoid CB1 and CB2 receptor are already in the clinic. These are Cesamet® (nabilone), Marinol® (dronabinol; Δ9-tetrahydrocannabinol) and Sativex® (Δ9-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol® can also be prescribed to stimulate appetite, while Sativex® is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB2 receptors; or (v) ‘multi-targeting’. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed. PMID:19226257

  12. Melatonin receptor agonists: new options for insomnia and depression treatment.

    PubMed

    Spadoni, Gilberto; Bedini, Annalida; Rivara, Silvia; Mor, Marco

    2011-12-01

    The circadian nature of melatonin (MLT) secretion, coupled with the localization of MLT receptors to the suprachiasmatic nucleus, has led to numerous studies of the role of MLT in modulation of the sleep-wake cycle and circadian rhythms in humans. Although much more needs to be understood about the various functions exerted by MLT and its mechanisms of action, three therapeutic agents (ramelteon, prolonged-release MLT, and agomelatine) are already in use, and MLT receptor agonists are now appearing as new promising treatment options for sleep and circadian-rhythm related disorders. In this review, emphasis has been placed on medicinal chemistry strategies leading to MLT receptor agonists, and on the evidence supporting therapeutic efficacy of compounds undergoing clinical evaluation. A wide range of clinical trials demonstrated that ramelteon, prolonged-release MLT and tasimelteon have sleep-promoting effects, providing an important treatment option for insomnia and transient insomnia, even if the improvements of sleep maintenance appear moderate. Well-documented effects of agomelatine suggest that this MLT agonist offers an attractive alternative for the treatment of depression, combining efficacy with a favorable side effect profile. Despite a large number of high affinity nonselective MLT receptor agonists, only limited data on MT₁ or MT₂ subtype-selective compounds are available up to now. Administration of the MT₂-selective agonist IIK7 to rats has proved to decrease NREM sleep onset latency, suggesting that MT₂ receptor subtype is involved in the acute sleep-promoting action of MLT; rigorous clinical studies are needed to demonstrate this hypothesis. Further clinical candidates based on selective activation of MT₁ or MT₂ receptors are expected in coming years. © 2010 Blackwell Publishing Ltd.

  13. Pharmacological Studies of NOP Receptor Agonists as Novel Analgesics

    DTIC Science & Technology

    2010-05-01

    irritant found in hot- chili peppers that evokes pain sensation by activating at the TRPV1. TRPV1 and the up-regulation of its expression have been 5...Capsaicin is a natural irritant found in hot- chili peppers that evokes pain sensation by activating at the TRPV1. TRPV1 and the up-regulation of its...2) activation of the NOP receptor produces strong antinociception without abuse liability, and (3) NOP receptor agonists possess a promising

  14. Discovery of orally available tetrahydroquinoline-based glucocorticoid receptor agonists.

    PubMed

    Hudson, Andrew R; Higuchi, Robert I; Roach, Steven L; Adams, Mark E; Vassar, Angela; Syka, Peter M; Mais, Dale E; Miner, Jeffrey N; Marschke, Keith B; Zhi, Lin

    2011-03-15

    A series of tetrahydroquinoline derivatives were synthesized and profiled for their ability to act as glucocorticoid receptor selective modulators. Structure-activity relationships of the tetrahydroquinoline B-ring lead to the discovery of orally available GR-selective agonists with high in vivo activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. The Interface between Extracellular and Transmembrane Domains of Homomeric Cys-Loop Receptors Governs Open-Channel Lifetime and Rate of Desensitization

    PubMed Central

    Bartos, Mariana; Corradi, Jeremías

    2008-01-01

    The lifetimes of activated postsynaptic receptor channels contribute to the efficiency of synaptic transmission. Here we show that structural differences within the interface dividing extracellular and transmembrane domains of homomeric α7 and 5-HT3A receptors account for the large differences in open-channel lifetime and time of desensitization onset between these contrasting members of the Cys-loop receptor superfamily. For α7 receptors, agonist-evoked single-channel currents appear mainly as isolated brief openings (τo = 0.35 ms), whereas macroscopic currents after a step pulse of agonist desensitize rapidly (τd = 0.4 ms). In contrast for 5-HT3A receptors, agonist-evoked single-channel currents appear as clusters of many long openings in quick succession (τcluster = 1.2 s), whereas macroscopic currents desensitize slowly (τd = 1.1 s). A chimeric α7-5HT3A receptor exhibits functional properties intermediate between those of the parent receptors, but the functional signatures of each parent are reconstituted after substituting the major loops within the interface of the extracellular and transmembrane domains from the corresponding parent receptor. Furthermore, these structural loops contribute to open-channel lifetime and time of desensitization onset in a nonadditive manner. The results suggest that desensitization is the major determinant of the lifetimes of activated α7 and 5-HT3A receptors and that functional differences between the two receptors arise primarily through structural differences at the interface between extracellular and transmembrane domains. PMID:18667613

  16. Physician perceptions of GLP-1 receptor agonists in the UK.

    PubMed

    Matza, Louis S; Curtis, Sarah E; Jordan, Jessica B; Adetunji, Omolara; Martin, Sherry A; Boye, Kristina S

    2016-05-01

    Objectives Glucagon-like peptide-1 (GLP-1) receptor agonists have been used to treat type 2 diabetes for almost a decade, and new treatments in this class have recently been introduced. The purpose of this study was to examine perceptions of GLP-1 receptor agonists among physicians who treat patients with type 2 diabetes in the UK. Methods A total of 670 physicians (226 diabetes specialists; 444 general practice [GP] physicians) completed a survey in 2014. Results Almost all physicians had prescribed GLP-1 receptor agonists (95.4% total sample; 99.1% specialists; 93.5% GP), most frequently to patients whose glucose levels are not adequately controlled with oral medications (85.9% of physicians) and obese/overweight patients (83.7%). Physicians' most common reasons for prescribing a GLP-1 receptor agonist were: associated with weight loss (65.8%), good efficacy (55.7%), less hypoglycemia risk than insulin (55.2%), not associated with weight gain (34.5%), and better efficacy than oral medications (32.7%). Factors that most commonly cause hesitation when prescribing this class were: not considered first line therapy according to guidelines (56.9%), injectable administration (44.6%), cost (36.7%), gastrointestinal side effects (33.4%), and risk of pancreatitis (26.7%). Almost all specialists (99.1%) believed they had sufficient knowledge to prescribe a GLP-1 receptor agonist, compared with 76.1% of GPs. Conclusions Results highlight the widespread use of GLP-1 receptor agonists for treatment of type 2 diabetes in the UK. However, almost a quarter of GPs reported that they do not have enough knowledge to prescribe GLP-1s, suggesting a need for increased dissemination of information to targeted groups of physicians. Study limitations were that the generalizability of the clinician sample is unknown; survey questions required clinicians to select answers from multiple response options rather than generating the responses themselves; and responses to this survey conducted

  17. Functional selectivity of dopamine D1 receptor agonists in regulating the fate of internalized receptors *

    PubMed Central

    Ryman-Rasmussen, Jessica P.; Griffith, Adam; Oloff, Scott; Vaidehi, Nagarajan; Brown, Justin T.; Goddard, William A.; Mailman, Richard B.

    2007-01-01

    Recently, we demonstrated that D1 agonists can cause functionally selective effects when the endpoints of receptor internalization and adenylate cyclase activation are compared. The present study was designed to probe the phenomenon of functional selectivity at the D1 receptor further by testing the hypothesis that structurally dissimilar agonists with efficacies at these endpoints that equal or exceed those of dopamine would differ in ability to influence receptor fate after internalization, a functional endpoint largely unexplored for the D1 receptor. We selected two novel agonists of therapeutic interest that meet these criteria (the isochroman A-77636, and the isoquinoline dinapsoline), and compared the fates of the D1 receptor after internalization in response to these two compounds with that of dopamine. We found that dopamine caused the receptor to be rapidly recycled to the cell surface within 1 h of removal. Conversely, A-77636 caused the receptor to be retained intracellularly up to 48 h after agonist removal. Most surprisingly, the D1 receptor recovered to the cell surface 48 h after removal of dinapsoline. Taken together, these data indicate that these agonists target the D1 receptor to different intracellular trafficking pathways, demonstrating that the phenomenon of functional selectivity at the D1 receptor is operative for cellular events that are temporally downstream of immediate receptor activation. We hypothesize that these differential effects result from interactions of the synthetic ligands with aspects of the D1 receptor that are distal from the ligand binding domain. PMID:17067639

  18. Thermodynamic analysis of antagonist and agonist interactions with dopamine receptors.

    PubMed

    Duarte, E P; Oliveira, C R; Carvalho, A P

    1988-03-01

    The binding of [3H]spiperone to dopamine D-2 receptors and its inhibition by antagonists and agonists were examined in microsomes derived from the sheep caudate nucleus, at temperatures between 37 and 1 degree C, and the thermodynamic parameters of the binding were evaluated. The affinity of the receptor for the antagonists, spiperone and (+)-butaclamol, decreased as the incubation temperature decreased; the affinity for haloperidol did not further decrease at temperatures below 15 degrees C. The binding of the antagonists was associated with very large increases in entropy, as expected for hydrophobic interactions. The enthalpy and entropy changes associated with haloperidol binding were dependent on temperature, in contrast to those associated with spiperone and (+)-butaclamol. The magnitude of the entropy increase associated with the specific binding of the antagonists did not correlate with the degree of lipophilicity of these drugs. The data suggest that, in addition to hydrophobic forces, other forces are also involved in the antagonist-dopamine receptor interactions, and that a conformational change of the receptor could occur when the antagonist binds. Agonist binding data are consistent with a two-state model of the receptor, a high-affinity state (RH) and a low-affinity state (RL). The affinity of dopamine binding to the RH decreased with decreasing temperatures below 20 degrees C, whereas the affinity for the RL increased at low temperatures. In contrast, the affinity of apomorphine for both states of receptor decreased as the temperature decreased from 30 to 8 degrees C. A clear distinction between the energetics of high-affinity and low-affinity agonist binding was observed. The formation of the high-affinity complex was associated with larger increases in enthalpy and entropy than the interaction with the low-affinity state was. The results suggest that the interaction of the receptor with the G-proteins, induced or stabilized by the binding of

  19. Specificity of the thrombin receptor for agonist peptide is defined by its extracellular surface

    NASA Astrophysics Data System (ADS)

    Gerszten, Robert E.; Chen, Ji; Ishli, Maki; Ishil, Kenji; Wang, Ling; Nanevicz, Tania; Turck, Christoph W.; Vu, Thien-Khai H.; Coughlin, Shaun R.

    1994-04-01

    G-PROTEIN-COUPLED receptors for catecholamines and some other small ligands are activated when agonists bind to the transmem-brane region of the receptor1. The docking interactions through which peptide agonists activate their receptors are less well characterized2-7. The thrombin receptor is a specialized peptide receptor. It is activated by binding its tethered ligand domain, which is unmasked upon receptor cleavage by thrombin8,9. Human and Xenopus thrombin receptor homologues are each selectively activated by the agonist peptide representing their respective tethered ligand domains. Here we identify receptor domains that confer this agonist specificity by replacing the Xenopus receptor's amino-terminal exodomain and three extracellular loops with the corresponding human structures. This switches receptor specificity from Xenopus to human. The specificity of these thrombin receptors for their respective peptide agonists is thus determined by their extracellular surfaces. Our results indicate that agonist interaction with extracellular domains is important for thrombin receptor activation.

  20. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism.

    PubMed

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L; Sanchez, Connie

    2015-10-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80-90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine's acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine's acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences.

  1. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism

    PubMed Central

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L; Sanchez, Connie

    2015-01-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80–90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine’s acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine’s acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences. PMID:26174134

  2. Cannabinoid receptors and their endogenous agonist, anandamide.

    PubMed

    Axelrod, J; Felder, C C

    1998-05-01

    Cannabinoids are a class of compound found in marijuana which have been known for their therapeutic and psychoactive properties for at least 4000 years. Isolation of the active principle in marijuana, delta9-THC, provided the lead structure in the development of highly potent congeners which were used to probe for the mechanism of marijuana action. Cannabinoids were shown to bind to selective binding sites in brain tissue thereby regulating second messenger formation. Such studies led to the cloning of three cannabinoid receptor subtypes, CB1, CB2, and CB1A all of which belong to the superfamily of G protein-coupled plasma membrane receptors. Analogous to the discovery of endogenous opiates, isolation of cannabinoid receptors provided the appropriate tool to isolate an endogenous cannabimimetic eicosanoid, anandamide, from porcine brain. Recent studies indicate that anandamide is a member of a family of fatty acid ethanolamides that may represent a novel class of lipid neurotransmitters. This review discusses recent progress in cannabinoid research with a focus on the receptors for delta9-THC, their coupling to second messenger responses, and the endogenous lipid cannabimimetic, anandamide.

  3. Insect Nicotinic Receptor Agonists as Flea Adulticides in Small Animals

    PubMed Central

    Vo, Dai Tan; Hsu, Walter H.; Martin, Richard J.

    2013-01-01

    Fleas are significant ectoparasites of small animals. They can be a severe irritant to animals and serve as a vector for a number of infectious diseases. In this article, we discuss the pharmacological characteristics of four insect nicotinic acetylcholine receptor (nAChR) agonists used as fleacides in dogs and cats, which include three neonicotinoids (imidacloprid, nitenpyram, and dinotefuran) and spinosad. Insect nAChR agonists are one of the most important new classes of insecticides, which are used to control sucking insects both on plants and on companion animals. These new compounds provide a new approach for practitioners to safely and effectively eliminate fleas. PMID:20646191

  4. Saralasin and Sarile Are AT2 Receptor Agonists

    PubMed Central

    2014-01-01

    Saralasin and sarile, extensively studied over the past 40 years as angiotensin II (Ang II) receptor blockers, induce neurite outgrowth in a NG108-15 cell assay to a similar extent as the endogenous Ang II. In their undifferentiated state, these cells express mainly the AT2 receptor. The neurite outgrowth was inhibited by preincubation with the AT2 receptor selective antagonist PD 123,319, which suggests that the observed outgrowth was mediated by the AT2 receptor. Neither saralasin nor sarile reduced the neurite outgrowth induced by Ang II proving that the two octapeptides do not act as antagonists at the AT2 receptor and may be considered as AT2 receptor agonists. PMID:25313325

  5. Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor*

    PubMed Central

    Bock, Andreas; Bermudez, Marcel; Krebs, Fabian; Matera, Carlo; Chirinda, Brian; Sydow, Dominique; Dallanoce, Clelia; Holzgrabe, Ulrike; De Amici, Marco; Lohse, Martin J.; Wolber, Gerhard; Mohr, Klaus

    2016-01-01

    G protein-coupled receptors constitute the largest family of membrane receptors and modulate almost every physiological process in humans. Binding of agonists to G protein-coupled receptors induces a shift from inactive to active receptor conformations. Biophysical studies of the dynamic equilibrium of receptors suggest that a portion of receptors can remain in inactive states even in the presence of saturating concentrations of agonist and G protein mimetic. However, the molecular details of agonist-bound inactive receptors are poorly understood. Here we use the model of bitopic orthosteric/allosteric (i.e. dualsteric) agonists for muscarinic M2 receptors to demonstrate the existence and function of such inactive agonist·receptor complexes on a molecular level. Using all-atom molecular dynamics simulations, dynophores (i.e. a combination of static three-dimensional pharmacophores and molecular dynamics-based conformational sampling), ligand design, and receptor mutagenesis, we show that inactive agonist·receptor complexes can result from agonist binding to the allosteric vestibule alone, whereas the dualsteric binding mode produces active receptors. Each agonist forms a distinct ligand binding ensemble, and different agonist efficacies depend on the fraction of purely allosteric (i.e. inactive) versus dualsteric (i.e. active) binding modes. We propose that this concept may explain why agonist·receptor complexes can be inactive and that adopting multiple binding modes may be generalized also to small agonists where binding modes will be only subtly different and confined to only one binding site. PMID:27298318

  6. Covalent agonists for studying G protein-coupled receptor activation

    PubMed Central

    Weichert, Dietmar; Kruse, Andrew C.; Manglik, Aashish; Hiller, Christine; Zhang, Cheng; Hübner, Harald; Kobilka, Brian K.; Gmeiner, Peter

    2014-01-01

    Structural studies on G protein-coupled receptors (GPCRs) provide important insights into the architecture and function of these important drug targets. However, the crystallization of GPCRs in active states is particularly challenging, requiring the formation of stable and conformationally homogeneous ligand-receptor complexes. Native hormones, neurotransmitters, and synthetic agonists that bind with low affinity are ineffective at stabilizing an active state for crystallogenesis. To promote structural studies on the pharmacologically highly relevant class of aminergic GPCRs, we here present the development of covalently binding molecular tools activating Gs-, Gi-, and Gq-coupled receptors. The covalent agonists are derived from the monoamine neurotransmitters noradrenaline, dopamine, serotonin, and histamine, and they were accessed using a general and versatile synthetic strategy. We demonstrate that the tool compounds presented herein display an efficient covalent binding mode and that the respective covalent ligand-receptor complexes activate G proteins comparable to the natural neurotransmitters. A crystal structure of the β2-adrenoreceptor in complex with a covalent noradrenaline analog and a conformationally selective antibody (nanobody) verified that these agonists can be used to facilitate crystallogenesis. PMID:25006259

  7. Endorphins and food intake: kappa opioid receptor agonists and hyperphagia.

    PubMed

    Cooper, S J; Jackson, A; Kirkham, T C

    1985-11-01

    Evidence from studies which utilise either opiate receptor agonists and antagonists strongly indicate a role for endorphinergic mechanisms in the control of feeding responses. Two means by which these compounds may exert an effect on feeding can be singled-out. Firstly, emerging evidence suggests that the process of achieving satiety (terminating a meal, or choice of a commodity) may be accelerated following treatments with opiate receptor antagonists. Secondly, the preference for highly palatable solutions (sweet solutions have received most attention) in two-bottle tests is blocked after injection of opiate receptor antagonists. This finding has been interpreted in terms of the abolition of the reward or incentive quality associated with the particularly attractive flavour. These two mechanisms of action may represent two aspects of a single, fundamental process. Following an introduction to rat urination model of in vivo kappa agonist activity, the consistent effect of several kappa agonists (including the highly selective U-50,488H) to stimulate food consumption is described. Recognising that members of the dynorphin group of endogenous opioid peptides are kappa receptor ligands, some with a high degree of selectivity, and the evidence the dynorphins and neo-endorphins produce hyperphagia in rats is particularly interesting. Such lines of evidence lead to the hypothesis that peptides of the dynorphin group may act endogenously to promote the expression of normal feeding behaviour.

  8. Dopamine receptor agonists for protection and repair in Parkinson's disease.

    PubMed

    Ferrari-Toninelli, Giulia; Bonini, Sara A; Cenini, Giovanna; Maccarinelli, Giuseppina; Grilli, Mariagrazia; Uberti, Daniela; Memo, Maurizio

    2008-01-01

    Dopamine agonists have been usually used as adjunctive therapy for the cure of Parkinson's disease. It is generally believed that treatment with these drugs is symptomatic rather than curative and it does not stop or delay the progression of neuronal degeneration. However, several dopamine agonists of the D2-receptor family have recently been shown to possess neuroprotective properties in different in vitro and in vivo experimental Parkinson's disease models. Here we summarize some recent molecular evidences underlining the wide pharmacological spectrum of dopamine agonists currently used for treating Parkinson's disease patients. In particular, the mechanism of action of different dopamine agonists does not always appear to be restricted to the stimulation of selective dopamine receptor subtypes since at least some of these drugs are endowed with antioxidant, antiapoptotic or neurotrophic properties. These neuroprotective activities are molecule-specific and may contribute to the clinical efficacy of these drugs for the treatment of chronic and progressive neurodegenerative diseases in which oxidative injury and/or protein misfolding and aggregation exert a primary role.

  9. Different serotonin receptor types participate in 5-hydroxytryptophan-induced gonadotropins and prolactin release in the female infantile rat.

    PubMed

    Lacau-Mengido, I M; Libertun, C; Becú-Villalobos, D

    1996-05-01

    Serotonin (5-HT) receptors can be classified into at least three, possibly up to seven, classes of receptors. They comprise the 5-HT1, 5-HT2, and 5-HT3 classes, the "uncloned' 5-HT4 receptor and the recombinant receptors 5-ht5, 5-ht6 and 5-ht7. We investigated the role of different serotonin receptor types in a neuroendocrine response to the activation of the serotonergic system. Female immature rats were chosen as an experimental model as it has been shown that during the 3rd week of life, and not at later developmental stages, 5-hydroxytryptophan (5-HTP, a serotonin precursor) induces gonadotropin release in females and not in males. Besides, at this age, serotonin releases prolactin in both sexes. 5-HTP (50 mg/kg) released prolactin, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) as expected. Ketanserin (5-HT2A antagonist) and methysergide (5-HT2C antagonist) blocked 5-HTP-induced prolactin release, but did not block the LH or FSH responses. Ondansetron (5-HT3 receptor antagonist) did not modify prolactin response to 5-HTP, whereas it blocked 5-HTP-induced LH and FSH release. Propranolol (5-HT1 and beta-adrenergic antagonist) blocked prolactin, LH and FSH release induced by 5-HTP. The 5-HT2C agonist 1-(3-chlorophenyl)piperazine dihydrochloride released prolactin, without modifying LH or FSH release. Methyl-quipazine and phenylbiguanide (5-HT3 agonists) increased both LH and FSH levels, without altering prolactin secretion. The present experiments indicate that serotonin acting at the 5-HT3 receptor mediates LH and FSH release in infantile female rats, whereas 5-HT2C or 2A receptor types participate in the release of prolactin at this age. 5-HT1 receptor type may be involved in the release of the three hormones, though a beta-adrenergic component of the response cannot be discarded.

  10. Receptors and Channels Targeted by Synthetic Cannabinoid Receptor Agonists and Antagonists

    PubMed Central

    Pertwee, R.G.

    2010-01-01

    It is widely accepted that non-endogenous compounds that target CB1 and/or CB2 receptors possess therapeutic potential for the clinical management of an ever growing number of disorders. Just a few of these disorders are already treated with Δ9-tetrahydrocannabinol or nabilone, both CB1/CB2 receptor agonists, and there is now considerable interest in expanding the clinical applications of such agonists and also in exploiting CB2-selective agonists, peripherally restricted CB1/CB2 receptor agonists and CB1/CB2 antagonists and inverse agonists as medicines. Already, numerous cannabinoid receptor ligands have been developed and their interactions with CB1 and CB2 receptors well characterized. This review describes what is currently known about the ability of such compounds to bind to, activate, inhibit or block non-CB1, non-CB2 G protein-coupled receptors such as GPR55, transmitter gated channels, ion channels and nuclear receptors in an orthosteric or allosteric manner. It begins with a brief description of how each of these ligands interacts with CB1 and/or CB2 receptors. PMID:20166927

  11. Improving the developability profile of pyrrolidine progesterone receptor partial agonists

    SciTech Connect

    Kallander, Lara S.; Washburn, David G.; Hoang, Tram H.; Frazee, James S.; Stoy, Patrick; Johnson, Latisha; Lu, Qing; Hammond, Marlys; Barton, Linda S.; Patterson, Jaclyn R.; Azzarano, Leonard M.; Nagilla, Rakesh; Madauss, Kevin P.; Williams, Shawn P.; Stewart, Eugene L.; Duraiswami, Chaya; Grygielko, Eugene T.; Xu, Xiaoping; Laping, Nicholas J.; Bray, Jeffrey D.; Thompson, Scott K.

    2010-09-17

    The previously reported pyrrolidine class of progesterone receptor partial agonists demonstrated excellent potency but suffered from serious liabilities including hERG blockade and high volume of distribution in the rat. The basic pyrrolidine amine was intentionally converted to a sulfonamide, carbamate, or amide to address these liabilities. The evaluation of the degree of partial agonism for these non-basic pyrrolidine derivatives and demonstration of their efficacy in an in vivo model of endometriosis is disclosed herein.

  12. Glucagon-like peptide-1 receptors agonists (GLP1 RA).

    PubMed

    Kalra, Sanjay

    2013-10-01

    The glucagon-like peptide-1 receptors agonists (GLP1RA) are a relatively new class of drugs, used for management of type 2 diabetes. This review studies the characteristics of these drugs, focusing upon their mechanism of action, intra-class differences, and utility in clinical practice. It compares them with other incretin based therapies, the dipeptidyl peptidase-IV inhibitors, and predicts future developments in the use of these molecules, while highlighting the robust indications for the use of these drugs.

  13. Serotonergic receptor mechanisms underlying antidepressant-like action in the progesterone withdrawal model of hormonally induced depression in rats.

    PubMed

    Li, Yan; Raaby, Kasper F; Sánchez, Connie; Gulinello, Maria

    2013-11-01

    Hormonally induced mood disorders such as premenstrual dysphoric disorder (PMDD) are characterized by a range of physical and affective symptoms including anxiety, irritability, anhedonia, social withdrawal and depression. Studies demonstrated rodent models of progesterone withdrawal (PWD) have a high level of constructive and descriptive validity to model hormonally-induced mood disorders in women. Here we evaluate the effects of several classes of antidepressants in PWD female Long-Evans rats using the forced swim test (FST) as a measure of antidepressant activity. The study included fluoxetine, duloxetine, amitriptyline and an investigational multimodal antidepressant, vortioxetine (5-HT(3), 5-HT(7) and 5-HT(1D) receptor antagonist; 5-HT(1B) receptor partial agonist; 5-HT(1A) receptor agonist; inhibitor of the serotonin transporter (SERT)). After 14 days of administration, amitriptyline and vortioxetine significantly reduced immobility in the FST whereas fluoxetine and duloxetine were ineffective. After 3 injections over 48 h, neither fluoxetine nor duloxetine reduced immobility, whereas amitriptyline and vortioxetine significantly reduced FST immobility during PWD. When administered acutely during PWD, the 5-HT(1A) receptor agonist, flesinoxan, significantly reduced immobility, whereas the 5-HT(1A) receptor antagonist, WAY-100635, increased immobility. The 5-HT(3) receptor antagonist, ondansetron, significantly reduced immobility, whereas the 5-HT(3) receptor agonist, SR-57227, increased immobility. The 5-HT(7) receptor antagonist, SB-269970, was inactive, although the 5-HT(7) receptor agonist, AS-19, significantly increased PWD-induced immobility. None of the compounds investigated (ondansetron, flesinoxan and SB-269970) improved the effect of fluoxetine during PWD. These data indicate that modulation of specific 5-HT receptor subtypes is critical for manipulating FST immobility in this model of hormone-induced depression.

  14. Impact of efficacy at the μ-opioid receptor on antinociceptive effects of combinations of μ-opioid receptor agonists and cannabinoid receptor agonists.

    PubMed

    Maguire, David R; France, Charles P

    2014-11-01

    Cannabinoid receptor agonists, such as Δ(9)-tetrahydrocannabinol (Δ(9)-THC), enhance the antinociceptive effects of μ-opioid receptor agonists, which suggests that combining cannabinoids with opioids would improve pain treatment. Combinations with lower efficacy agonists might be preferred and could avoid adverse effects associated with large doses; however, it is unclear whether interactions between opioids and cannabinoids vary across drugs with different efficacy. The antinociceptive effects of μ-opioid receptor agonists alone and in combination with cannabinoid receptor agonists were studied in rhesus monkeys (n = 4) using a warm water tail withdrawal procedure. Etorphine, fentanyl, morphine, buprenorphine, nalbuphine, Δ(9)-THC, and CP 55,940 (2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol) each increased tail withdrawal latency. Pretreatment with doses of Δ(9)-THC (1.0 mg/kg) or CP 55,940 (0.032 mg/kg) that were ineffective alone shifted the fentanyl dose-effect curve leftward 20.6- and 52.9-fold, respectively, and the etorphine dose-effect curve leftward 12.4- and 19.6-fold, respectively. Δ(9)-THC and CP 55,940 shifted the morphine dose-effect curve leftward only 3.4- and 7.9-fold, respectively, and the buprenorphine curve only 5.4- and 4.1-fold, respectively. Neither Δ(9)-THC nor CP 55,940 significantly altered the effects of nalbuphine. Cannabinoid receptor agonists increase the antinociceptive potency of higher efficacy opioid receptor agonists more than lower efficacy agonists; however, because much smaller doses of each drug can be administered in combinations while achieving adequate pain relief and that other (e.g., abuse-related) effects of opioids do not appear to be enhanced by cannabinoids, these results provide additional support for combining opioids with cannabinoids to treat pain.

  15. Differential opioid agonist regulation of the mouse mu opioid receptor.

    PubMed

    Blake, A D; Bot, G; Freeman, J C; Reisine, T

    1997-01-10

    Mu opioid receptors mediate the analgesia induced by morphine. Prolonged use of morphine causes tolerance development and dependence. To investigate the molecular basis of tolerance and dependence, the cloned mouse mu opioid receptor with an amino-terminal epitope tag was stably expressed in human embryonic kidney (HEK) 293 cells, and the effects of prolonged opioid agonist treatment on receptor regulation were examined. In HEK 293 cells the expressed mu receptor showed high affinity, specific, saturable binding of radioligands and a pertussis toxin-sensitive inhibition of adenylyl cyclase. Pretreatment (1 h, 3 h, or overnight) of cells with 1 microM morphine or [D-Ala2MePhe4,Gly(ol)5]enkephalin (DAMGO) resulted in no apparent receptor desensitization, as assessed by opioid inhibition of forskolin-stimulated cAMP levels. In contrast, the morphine and DAMGO pretreatments (3 h) resulted in a 3-4-fold compensatory increase in forskolin-stimulated cAMP accumulation. The opioid agonists methadone and buprenorphine are used in the treatment of addiction because of a markedly lower abuse potential. Pretreatment of mu receptor-expressing HEK 293 cells with methadone or buprenorphine abolished the ability of opioids to inhibit adenylyl cyclase. No compensatory increase in forskolin-stimulated cAMP accumulation was found with methadone or buprenorphine; these opioids blocked the compensatory effects observed with morphine and DAMGO. Taken together, these results indicate that methadone and buprenorphine interact differently with the mouse mu receptor than either morphine or DAMGO. The ability of methadone and buprenorphine to desensitize the mu receptor and block the compensatory rise in forskolin-stimulated cAMP accumulation may be an underlying mechanism by which these agents are effective in the treatment of morphine addiction.

  16. Role of nicotine receptor partial agonists in tobacco cessation

    PubMed Central

    Maity, Nivedita; Chand, Prabhat; Murthy, Pratima

    2014-01-01

    One in three adults in India uses tobacco, a highly addictive substance in one or other form. In addition to prevention of tobacco use, offering evidence-based cessation services to dependent tobacco users constitutes an important approach in addressing this serious public health problem. A combination of behavioral methods and pharmacotherapy has shown the most optimal results in tobacco dependence treatment. Among currently available pharmacological agents, drugs that preferentially act on the α4 β2-nicotinic acetyl choline receptor like varenicline and cytisine appear to have relatively better cessation outcomes. These drugs are in general well tolerated and have minimal drug interactions. The odds of quitting tobacco use are at the very least doubled with the use of partial agonists compared with placebo and the outcomes are also superior when compared to nicotine replacement therapy and bupropion. The poor availability of partial agonists and specifically the cost of varenicline, as well as the lack of safety data for cytisine has limited their use world over, particularly in developing countries. Evidence for the benefit of partial agonists is more robust for smoking rather than smokeless forms of tobacco. Although more studies are needed to demonstrate their effectiveness in different populations of tobacco users, present literature supports the use of partial agonists in addition to behavioral methods for optimal outcome in tobacco dependence. PMID:24574554

  17. Agonist Binding to Chemosensory Receptors: A Systematic Bioinformatics Analysis

    PubMed Central

    Fierro, Fabrizio; Suku, Eda; Alfonso-Prieto, Mercedes; Giorgetti, Alejandro; Cichon, Sven; Carloni, Paolo

    2017-01-01

    Human G-protein coupled receptors (hGPCRs) constitute a large and highly pharmaceutically relevant membrane receptor superfamily. About half of the hGPCRs' family members are chemosensory receptors, involved in bitter taste and olfaction, along with a variety of other physiological processes. Hence these receptors constitute promising targets for pharmaceutical intervention. Molecular modeling has been so far the most important tool to get insights on agonist binding and receptor activation. Here we investigate both aspects by bioinformatics-based predictions across all bitter taste and odorant receptors for which site-directed mutagenesis data are available. First, we observe that state-of-the-art homology modeling combined with previously used docking procedures turned out to reproduce only a limited fraction of ligand/receptor interactions inferred by experiments. This is most probably caused by the low sequence identity with available structural templates, which limits the accuracy of the protein model and in particular of the side-chains' orientations. Methods which transcend the limited sampling of the conformational space of docking may improve the predictions. As an example corroborating this, we review here multi-scale simulations from our lab and show that, for the three complexes studied so far, they significantly enhance the predictive power of the computational approach. Second, our bioinformatics analysis provides support to previous claims that several residues, including those at positions 1.50, 2.50, and 7.52, are involved in receptor activation. PMID:28932739

  18. Identification of agonists for a group of human odorant receptors

    PubMed Central

    Gonzalez-Kristeller, Daniela C.; do Nascimento, João B. P.; Galante, Pedro A. F.; Malnic, Bettina

    2015-01-01

    Olfaction plays a critical role in several aspects of the human life. Odorants are detected by hundreds of odorant receptors (ORs) which belong to the superfamily of G protein-coupled receptors. These receptors are expressed in the olfactory sensory neurons of the nose. The information provided by the activation of different combinations of ORs in the nose is transmitted to the brain, leading to odorant perception and emotional and behavioral responses. There are ~400 intact human ORs, and to date only a small percentage of these receptors (~10%) have known agonists. The determination of the specificity of the human ORs will contribute to a better understanding of how odorants are discriminated by the olfactory system. In this work, we aimed to identify human specific ORs, that is, ORs that are present in humans but absent from other species, and their corresponding agonists. To do this, we first selected 22 OR gene sequences from the human genome with no counterparts in the mouse, rat or dog genomes. Then we used a heterologous expression system to screen a subset of these human ORs against a panel of odorants of biological relevance, including foodborne aroma volatiles. We found that different types of odorants are able to activate some of these previously uncharacterized human ORs. PMID:25784876

  19. Peripheral biomarkers of cognitive response to dopamine receptor agonist treatment.

    PubMed

    Ersche, Karen D; Roiser, Jonathan P; Lucas, Mark; Domenici, Enrico; Robbins, Trevor W; Bullmore, Edward T

    2011-04-01

    Using biological markers to objectively measure addiction severity or to identify individuals who might benefit most from pro-cognitive treatment could potentially revolutionize neuropsychopharmacology. We investigated the use of dopamine receptor mRNA levels in circulating blood cells as predictors of cognitive response following dopamine agonist treatment, and as biomarkers of the severity of stimulant drug dependence. We employed a double-blind, placebo-controlled cross-over design, administering a single dose of the selective dopamine D(2/3) receptor agonist pramipexole (0.5 mg) to increase dopamine transmission in one session and a placebo treatment in another session in 36 volunteers. Half the volunteers had a formal diagnosis of stimulant dependence, while half had no psychiatric history. Participants performed neurocognitive tests from the CANTAB battery on both occasions, and stimulant-dependent individuals rated drug craving using visual analog scales. Whole-blood mRNA levels were measured for three dopamine-related genes: DRD3 and DRD4 (dopamine receptors), and catechol-O-methyltransferase (COMT; a dopamine catabolic enzyme). Stimulant users performed worse than healthy volunteers on the cognitive tests. The variation in peripheral dopamine D(3) receptor mRNA expression explained over one quarter of the variation in response to pramipexole on the spatial working memory test across all participants. The severity of stimulant dependence was also significantly associated with peripheral COMT mRNA expression in stimulant users. Peripheral expression of dopamine-related genes may be useful as a biomarker of cognitive response to dopamine agonist drugs and of severity of addiction to dopamine-releasing stimulant drugs.

  20. Involvement of serotonin receptor subtypes in the antidepressant-like effect of beta receptor agonist Amibegron (SR 58611A): an experimental study.

    PubMed

    Tanyeri, Pelin; Buyukokuroglu, Mehmet Emin; Mutlu, Oguz; Ulak, Güner; Yıldız Akar, Füruzan; Komsuoglu Celikyurt, Ipek; Erden, Bekir Faruk

    2013-04-01

    New therapeutic strategies against depression, with less side effects and thus greater efficacy in larger proportion of depressed patients, are needed. Amibegron (SR58611A) is the first selective β3 adrenergic agent that has been shown to possess a profile of antidepressant activity in rodents. To investigate the involvement of serotonin receptors in the effects of amibegron, we used the serotonin 5HT1A receptor antagonist WAY-100635 (WAY) or serotonin 5HT2A-2C receptor antagonist ketanserin or serotonin 5HT3 receptor antagonist ondansetron in mice forced swimming test (FST). The locomotor activity was evaluated by measuring the total distance moved in the apparatus and the speed of the animals in the open field test. Imipramine (30mg/kg) significantly reduced immobility time compared to vehicle-treated group while amibegron (5 and 10mg/kg) dose dependently reduced immobility time in the FST. WAY(0.1mg/kg), ondansetron (1mg/kg), ketanserin(5mg/kg) had no effect on immobility time in naive mice while all of the drugs partially and significantly reversed amibegron (10mg/kg) induced decreasement in the immobility time in FST. None of the drugs alter locomotor activity in the open field test. The antidepressant-like effect of amibegron in the FST seems to be mediated by an interaction with serotonin 5-HT1A, serotonin 5-HT2A-2C and serotonin 5-HT3 receptors.

  1. Effects of 5-HT3 Antagonists on Symptom Relief and Constipation in Non-constipated Irritable Bowel Syndrome: A Systematic Review and Meta-analysis of Randomized Controlled Trials

    PubMed Central

    Andresen, Viola; Montori, Victor M.; Keller, Jutta; West, Colin P.; Layer, Peter; Camilleri, Michael

    2008-01-01

    Background & Aims We performed a systematic review and meta-analyses to estimate treatment efficacy and constipation rate of 5-HT3 antagonists in patients with non-constipated (NC) or diarrhea-predominant (D) -IBS. Methods Two reviewers independently searched MEDLINE, EMBASE, and Web of Science (1966 to December 15th 2006) for randomized controlled trials (RCTs) of 5-HT3 antagonists in IBS reporting clinical endpoints of the IBS symptom complex and safety parameters. Study characteristics, markers of methodological quality, and outcomes for the intention-to-treat population for each RCT were extracted independently. Results We found 14 eligible RCTs of alosetron (n=3024) or cilansetron (n=1116) vs. placebo (n=3043) or mebeverine (n=304). Random effects meta-analyses found 5-HT3 antagonists more effective than the comparators in achieving global improvement in IBS symptoms (pooled relative risk 1.60, 95% CI 1.49, 1.72; I2=0%) and relief of abdominal pain and discomfort (pooled relative risk 1.30, 95% CI 1.22, 1.39, I2=22%). Benefit was apparent for both agents, in patients of either sex. These agents were more likely to cause constipation (pooled relative risk 4.28, 95% CI 3.28, 5.60, I2=65%); there was less constipation with 5-HT3 antagonists in D-IBS patients than in mixed populations (NC- and D-IBS; ratio of RR 0.65, 95% CI 0.41, 0.99). Nine patients (0.2%) using 5-HT3 antagonists had, at least, possible ischemic colitis versus none in control groups. Conclusions 5-HT3 antagonists significantly improve symptoms of NC- or D-IBS in men and women. There is increased risk of constipation with 5-HT3 antagonists, although the risk is lower in those with D-IBS. PMID:18242143

  2. Angiotensin receptor agonistic autoantibodies and hypertension: preeclampsia and beyond.

    PubMed

    Xia, Yang; Kellems, Rodney E

    2013-06-21

    Hypertensive disorders are life-threatening diseases with high morbidity and mortality, affecting billions of individuals worldwide. A multitude of underlying conditions may contribute to hypertension, thus the need for a plethora of treatment options to identify the approach that best meets the needs of individual patients. A growing body of evidence indicates that (1) autoantibodies that bind to and activate the major angiotensin II type I (AT₁) receptor exist in the circulation of patients with hypertensive disorders, (2) these autoantibodies contribute to disease pathophysiology, (3) antibody titers correlate to the severity of the disease, and (4) efforts to block or remove these pathogenic autoantibodies have therapeutic potential. These autoantibodies, termed AT₁ agonistic autoantibodies have been extensively characterized in preeclampsia, a life-threatening hypertensive condition of pregnancy. As reviewed here, these autoantibodies cause symptoms of preeclampsia when injected into pregnant mice. Somewhat surprisingly, these auto antibodies also appear in 3 animal models of preeclampsia. However, the occurrence of AT₁ agonistic autoantibodies is not restricted to pregnancy. These autoantibodies are prevalent among kidney transplant recipients who develop severe transplant rejection and malignant hypertension during the first week after transplantation. AT₁ agonistic autoantibodies are also highly abundant among a group of patients with essential hypertension that are refractory to standard therapy. More recently these autoantibodies have been seen in patients with the autoimmune disease, systemic sclerosis. These 3 examples extend the clinical impact of AT₁ agonistic autoantibodies beyond pregnancy. Research reviewed here raises the intriguing possibility that preeclampsia and other hypertensive conditions are autoimmune diseases characterized by the presence of pathogenic autoantibodies that activate the major angiotensin receptor, AT₁. These

  3. Triterpenes from Alisma orientalis act as androgen receptor agonists, progesterone receptor antagonists, and glucocorticoid receptor antagonists.

    PubMed

    Lin, Hsiang-Ru

    2014-08-01

    Alisma orientalis, a well-known traditional medicine, exerts numerous pharmacological effects including anti-diabetes, anti-hepatitis, and anti-diuretics but its bioactivity is not fully clear. Androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) are three members of nuclear receptor superfamily that has been widely targeted for developing treatments for essential diseases including prostate cancer and breast cancer. In this study, two triterpenes, alisol M 23-acetate and alisol A 23-acetate from Alisma orientalis were determined whether they may act as androgen receptor (AR), progesterone receptor (PR), or glucocorticoid receptor (GR) modulators. Indeed, in the transient transfection reporter assays, alisol M 23-acetate and alisol A 23-acetate transactivated AR in dose-dependent manner, while they transrepressed the transactivation effects exerted by agonist-activated PR and GR. Through molecular modeling docking studies, they were shown to respectively interact with AR, PR, or GR ligand binding pocket fairly well. All these results indicate that alisol M 23-acetate and alisol A 23-acetate from Alisma orientalis might possess therapeutic effects through their modulation of AR, PR, and GR pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Interaction of a radiolabeled agonist with cardiac muscarinic cholinergic receptors

    SciTech Connect

    Harden, T.K.; Meeker, R.B.; Martin, M.W.

    1983-12-01

    The interaction of a radiolabeled muscarinic cholinergic receptor agonist, (methyl-/sup 3/H)oxotremorine acetate ((/sup 3/H)OXO), with a washed membrane preparation derived from rat heart, has been studied. In binding assays at 4 degrees C, the rate constants for association and dissociation of (/sup 3/H)OXO were 2 X 10(7) M-1 min-1 and 5 X 10(-3) min-1, respectively, Saturation binding isotherms indicated that binding was to a single population of sites with a Kd of approximately 300 pM. The density of (/sup 3/H)OXO binding sites (90-100 fmol/mg of protein) was approximately 75% of that determined for the radiolabeled receptor antagonist (/sup 3/H)quinuclidinyl benzilate. Both muscarinic receptor agonists and antagonists inhibited the binding of (/sup 3/H)OXO with high affinity and Hill slopes of approximately one. Guanine nucleotides completely inhibited the binding of (/sup 3/H)OXO. This effect was on the maximum binding (Bmax) of (/sup 3/H)OXO with no change occurring in the Kd; the order of potency for five nucleotides was guanosine 5'-O-(3-thio-triphosphate) greater than 5'-guanylylimidodiphosphate greater than GTP greater than or equal to guanosine/diphosphate greater than GMP. The (/sup 3/H)OXO-induced interaction of muscarinic receptors with a guanine nucleotide binding protein was stable to solubilization. That is, membrane receptors that were prelabeled with (/sup 3/H)OXO could be solubilized with digitonin, and the addition of guanine nucleotides to the soluble, (/sup 3/H)OXO-labeled complex resulted in dissociation of (/sup 3/H)OXO from the receptor. Pretreatment of membranes with relatively low concentrations of N-ethylmaleimide inhibited (/sup 3/H)OXO binding by 85% with no change in the Kd of (/sup 3/H)OXO, and with no effect on (/sup 3/H)quinuclidinyl benzilate binding.

  5. GLP-1 receptor agonist-induced polyarthritis: a case report.

    PubMed

    Ambrosio, Maria Luisa; Monami, Matteo; Sati, Lavinia; Marchionni, Niccolò; Di Bari, Mauro; Mannucci, Edoardo

    2014-08-01

    Occasional cases of bilateral, symmetrical, seronegative polyarthritis have been reported in patients treated with dipeptidyl peptidase-4 inhibitors (Crickx et al. in Rheumatol Int, 2013). We report here a similar case observed during treatment with a GLP-1 receptor agonist. A 42-year-old man with type 2 diabetes treated with metformin 1,500 mg/day and liraglutide 1.8 mg/day. After 6 months from the beginning of treatment, the patient complained of bilateral arthralgia (hands, feet, ankles, knees, and hips). Erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and leukocytes were increased. Rheumatoid factor, anticyclic citrullinated protein antibody, antinuclear antibodies, anti-Borrelia, and burgdorferi antibodies were all negative, and myoglobin and calcitonin were normal. Liraglutide was withdrawn, and the symptoms completely disappeared within 1 week, with normalization of ESR, CRP, fibrinogen, and leukocytes. Previously described cases of polyarthritis associated with DPP4 inhibitors had been attributed to a direct effect of the drugs on inflammatory cells expressing the enzyme. The present case, occurred during treatment with a GLP-1 receptor agonists, suggests a possibly different mechanism, mediated by GLP-1 receptor stimulation, which deserved further investigation.

  6. Co-administration of delta- and mu-opioid receptor agonists promotes peripheral opioid receptor function

    PubMed Central

    Schramm, Cicely L.; Honda, Christopher N.

    2010-01-01

    Enhancement of peripheral opioid analgesia following tissue injury or inflammation in animal models is well-documented, but clinical results of peripheral opioid therapy remain inconsistent. Previous studies in the central nervous system have shown that co-administration of μ- and δ-opioid receptor agonists can enhance analgesic outcomes; however, less is known about the functional consequences of opioid receptor interactions in the periphery. The present study examines the effects of intraplantar injection of the μ- and δ-opioid receptor agonists, morphine and deltorphin, alone and in combination on behavioral tests of nociception in naïve rats and on potassium-evoked release of CGRP from sciatic nerves of naïve rats. Neither drug alone affected nociceptive behaviors or CGRP release. Two separate measures of mechanical nociceptive sensitivity remained unchanged after co-administration of the two drugs. In contrast, when deltorphin was co-injected with morphine, dose-dependent and peripherally-restricted increases in paw withdrawal latencies to radiant heat were observed. Similarly, concentration-dependent inhibition of CGRP release was observed when deltorphin and morphine were administered in sequence prior to potassium stimulation. However, no inhibition was observed when morphine was administered prior to deltorphin. All combined opioid effects were blocked by co-application of antagonists. Deltorphin exposure also enhanced the in vivo and in vitro effects of another μ-opioid receptor agonist, DAMGO. Together, these results suggest that under normal conditions, δ-opioid receptor agonists enhance the effect of μ-opioid receptor agonists in the periphery, and local co-administration of δ- and μ-opioid receptor agonists may improve results of peripheral opioid therapy for the treatment of pain. PMID:20970925

  7. Agonist Derived Molecular Probes for A2A Adenosine Receptors

    PubMed Central

    Jacobson, Kenneth A.; Pannell, Lewis K.; Ji, Xiao-duo; Jarvis, Michael F.; Williams, Michael; Hutchison, Alan J.; Barrington, William W.; Stiles, Gary L.

    2011-01-01

    The adenosine agonist 2-(4-(2-carboxyethyl)phenylethylamino)-5′-N-ethylcarboxamidoadenosine (CGS21680) was recently reported to be selective for the A2A adenosine receptor subtype, which mediates its hypotensive action. To investigate structurelactivity relationships at a distal site, CGS21680 was derivatized using a functionalized congener approach. The carboxylic group of CGS21680 has been esterified to form a methyl ester, which was then treated with ethylenediamine to produce an amine congener. The amine congener was an intermediate for acylation reactions, in which the reactive acyl species contained a reported group, or the precursor for such. For radioiodination, derivatives of p-hydroxyphenylpropionic, 2-thiophenylacetic, and p-aminophenylacetic acids were prepared. The latter derivative (PAPA-APEC) was iodinated electrophilically using [125I]iodide resulting in a radioligand which was used for studies of competition of binding to striatal A, adenosine receptors in bovine brain. A biotin conjugate and an aryl sulfonate were at least 350-fold selective for A, receptors. For spectroscopic detection, a derivative of the stable free radical tetramethyl-1-piperidinyloxy (TEMPO) was prepared. For irreversible inhibition of receptors, meta- and para-phenylenediisothiocyanate groups were incorporated in the analogs. We have demonstrated that binding at A2A receptors is relatively insensitive to distal structural changes at the 2-position, and we report high affinity molecular probes for receptor characterization by radioactive, spectroscopic and affinity labelling methodology. PMID:2561548

  8. Antidepressant-like Effects of δ Opioid Receptor Agonists in Animal Models

    PubMed Central

    Saitoh, Akiyoshi; Yamada, Mitsuhiko

    2012-01-01

    Recently, δ opioid receptor agonists have been proposed to be attractive targets for the development of novel antidepressants. Several studies revealed that single treatment of δ opioid receptor agonists produce antidepressant-like effects in the forced swimming test, which is one of the most popular animal models for screening antidepressants. In addition, subchronic treatment with δ opioid receptor agonists has been shown to completely attenuate the hyperemotional responses found in olfactory bulbectomized rats. This animal model exhibits hyperemotional behavior that may mimic the anxiety, aggression, and irritability found in depressed patients, suggesting that δ opioid receptor agonists could be effective in the treatment of these symptoms in depression. On the other hand, prototype δ opioid receptor agonists produce convulsive effects, which limit their therapeutic potential and clinical development. In this review, we presented the current knowledge regarding the antidepressant-like effects of δ opioid receptor agonists, which include some recently developed drugs lacking convulsive effects. PMID:23449756

  9. Pregnane X receptor agonists impair postprandial glucose tolerance.

    PubMed

    Rysä, J; Buler, M; Savolainen, M J; Ruskoaho, H; Hakkola, J; Hukkanen, J

    2013-06-01

    We conducted a randomized, open, placebo-controlled crossover trial to investigate the effects of the pregnane X receptor (PXR) agonist rifampin on an oral glucose tolerance test (OGTT) in 12 healthy volunteers. The subjects were administered 600 mg rifampin or placebo once daily for 7 days, and OGTT was performed on the eighth day. The mean incremental glucose and insulin areas under the plasma concentration-time curves (AUC(incr)) increased by 192% (P = 0.008) and 45% (P = 0.031), respectively. The fasting glucose, insulin, and C-peptide, and the homeostasis model assessment for insulin resistance, were not affected. The glucose AUC(incr) during OGTT was significantly increased in rats after 4-day treatment with pregnenolone 16α-carbonitrile (PCN), an agonist of the rat PXR. The hepatic level of glucose transporter 2 (Glut2) mRNA was downregulated by PCN. In conclusion, both human and rat PXR agonists elicited postprandial hyperglycemia, suggesting a detrimental role of PXR activation on glucose tolerance.

  10. Influence of Polymorphisms in the HTR3A and HTR3B Genes on Experimental Pain and the Effect of the 5-HT3 Antagonist Granisetron

    PubMed Central

    Hedenberg-Magnusson, Britt; List, Thomas; Svensson, Peter; Schalling, Martin

    2016-01-01

    The aim of this study was to investigate experimentally if 5-HT3 single nucleotide polymorphisms (SNP) contribute to pain perception and efficacy of the 5-HT3-antagonist granisetron and sex differences. Sixty healthy participants were genotyped regarding HTR3A (rs1062613) and HTR3B (rs1176744). First, pain was induced by bilateral hypertonic saline injections (HS, 5.5%, 0.2 mL) into the masseter muscles. Thirty min later the masseter muscle on one side was pretreated with 0.5 mL granisetron (1 mg/mL) and on the other side with 0.5 mL placebo (isotonic saline) followed by another HS injection (0.2 mL). Pain intensity, pain duration, pain area and pressure pain thresholds (PPTs) were assessed after each injection. HS evoked moderate pain, with higher intensity in the women (P = 0.023), but had no effect on PPTs. None of the SNPs influenced any pain variable in general, but compared to men, the pain area was larger in women carrying the C/C (HTR3A) (P = 0.015) and pain intensity higher in women with the A/C alleles (HTR3B) (P = 0.019). Pre-treatment with granisetron reduced pain intensity, duration and area to a lesser degree in women (P < 0.05), but the SNPs did not in general influence the efficacy of granisetron. Women carrying the C/T & T/T (HTR3A) genotype had less reduction of pain intensity (P = 0.041) and area (P = 0.005), and women with the C/C genotype (HTR3B) had less reduction of pain intensity (P = 0.030), duration (P = 0.030) and area compared to men (P = 0.017). In conclusion, SNPs did not influence experimental muscle pain or the effect of granisetron on pain variables in general, but there were some sex differences in pain variables that seem to be influenced by genotypes. However, due to the small sample size further research is needed before any firm conclusions can be drawn. PMID:28002447

  11. Newspapers and Newspaper Ink Contain Agonists for the Ah Receptor

    PubMed Central

    Bohonowych, Jessica E. S.; Zhao, Bin; Timme-Laragy, Alicia; Jung, Dawoon; Di Giulio, Richard T.; Denison, Michael S.

    2010-01-01

    Ligand-dependent activation of the aryl hydrocarbon receptor (AhR) pathway leads to a diverse array of biological and toxicological effects. The best-studied ligands for the AhR include polycyclic and halogenated aromatic hydrocarbons, the most potent of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, as new AhR ligands are identified and characterized, their structural and physiochemical diversity continues to expand. Our identification of AhR agonists in crude extracts from diverse materials raises questions as to the magnitude and extent of human exposure to AhR ligands through normal daily activities. We have found that solvent extracts of newspapers from countries around the world stimulate the AhR signaling pathway. AhR agonist activity was observed for dimethyl sulfoxide (DMSO), ethanol, and water extracts of printed newspaper, unprinted virgin paper, and black printing ink, where activation of luciferase reporter gene expression was transient, suggesting that the AhR active chemical(s) was metabolically labile. DMSO and ethanol extracts also stimulated AhR transformation and DNA binding, and also competed with [3H]TCDD for binding to the AhR. In addition, DMSO extracts of printed newspaper induced cytochrome P450 1A associated 7-ethoxyresorufin-O-deethylase activity in zebrafish embryos in vivo. Although the responsible bioactive chemical(s) remain to be identified, our results demonstrate that newspapers and printing ink contain relatively potent metabolically labile agonists of the AhR. Given the large amount of recycling and reprocessing of newspapers throughout the world, release of these easily extractable AhR agonists into the environment should be examined and their potential effects on aquatic organisms assessed. PMID:18203687

  12. Newspapers and newspaper ink contain agonists for the ah receptor.

    PubMed

    Bohonowych, Jessica E S; Zhao, Bin; Timme-Laragy, Alicia; Jung, Dawoon; Di Giulio, Richard T; Denison, Michael S

    2008-04-01

    Ligand-dependent activation of the aryl hydrocarbon receptor (AhR) pathway leads to a diverse array of biological and toxicological effects. The best-studied ligands for the AhR include polycyclic and halogenated aromatic hydrocarbons, the most potent of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, as new AhR ligands are identified and characterized, their structural and physiochemical diversity continues to expand. Our identification of AhR agonists in crude extracts from diverse materials raises questions as to the magnitude and extent of human exposure to AhR ligands through normal daily activities. We have found that solvent extracts of newspapers from countries around the world stimulate the AhR signaling pathway. AhR agonist activity was observed for dimethyl sulfoxide (DMSO), ethanol, and water extracts of printed newspaper, unprinted virgin paper, and black printing ink, where activation of luciferase reporter gene expression was transient, suggesting that the AhR active chemical(s) was metabolically labile. DMSO and ethanol extracts also stimulated AhR transformation and DNA binding, and also competed with [(3)H]TCDD for binding to the AhR. In addition, DMSO extracts of printed newspaper induced cytochrome P450 1A associated 7-ethoxyresorufin-O-deethylase activity in zebrafish embryos in vivo. Although the responsible bioactive chemical(s) remain to be identified, our results demonstrate that newspapers and printing ink contain relatively potent metabolically labile agonists of the AhR. Given the large amount of recycling and reprocessing of newspapers throughout the world, release of these easily extractable AhR agonists into the environment should be examined and their potential effects on aquatic organisms assessed.

  13. New Small Molecule Agonists to the Thyrotropin Receptor

    PubMed Central

    Ali, M. Rejwan; Ma, Risheng; David, Martine; Morshed, Syed A.; Ohlmeyer, Michael; Felsenfeld, Dan P.; Lau, Zerlina; Mezei, Mihaly; Davies, Terry F.

    2015-01-01

    Background Novel small molecular ligands (SMLs) to the thyrotropin receptor (TSHR) have potential as improved molecular probes and as therapeutic agents for the treatment of thyroid dysfunction and thyroid cancer. Methods To identify novel SMLs to the TSHR, we developed a transcription-based luciferase-cAMP high-throughput screening system and we screened 48,224 compounds from a 100K library in duplicate. Results We obtained 62 hits using the cut-off criteria of the mean±three standard deviations above the baseline. Twenty molecules with the greatest activity were rescreened against the parent CHO-luciferase cell for nonspecific activation, and we selected two molecules (MS437 and MS438) with the highest potency for further study. These lead molecules demonstrated no detectible cross-reactivity with homologous receptors when tested against luteinizing hormone (LH)/human chorionic gonadotropin receptor and follicle stimulating hormone receptor–expressing cells. Molecule MS437 had a TSHR-stimulating potency with an EC50 of 13×10−8 M, and molecule MS438 had an EC50 of 5.3×10−8 M. The ability of these small molecule agonists to bind to the transmembrane domain of the receptor and initiate signal transduction was suggested by their activation of a chimeric receptor consisting of an LHR ectodomain and a TSHR transmembrane. Molecular modeling demonstrated that these molecules bound to residues S505 and E506 for MS438 and T501 for MS437 in the intrahelical region of transmembrane helix 3. We also examined the G protein activating ability of these molecules using CHO cells co-expressing TSHRs transfected with luciferase reporter vectors in order to measure Gsα, Gβγ, Gαq, and Gα12 activation quantitatively. The MS437 and MS438 molecules showed potent activation of Gsα, Gαq, and Gα12 similar to TSH, but neither the small molecule agonists nor TSH showed activation of the Gβγ pathway. The small molecules MS437 and MS438 also showed upregulation of

  14. [Safety and tolerability of GLP-1 receptor agonists].

    PubMed

    Soldevila, Berta; Puig-Domingo, Manel

    2014-09-01

    Glucagon-like peptide-1 receptor agonists (GLP-1ra) are a new group of drugs with a glucose-lowering action due to their incretin effect. The GLP-1 receptor is expressed in various human tissues, which could be related to the pleiotropic effects of human GLP-1, as well as to the adverse effects described in patients treated with GLP-1ra. The risk of hypoglycaemia is low, which is one of the main considerations in the safety of this family of compounds and is also important to patients with diabetes. The most frequent adverse effect is nausea, which usually occurs at the start of treatment and is transient in 20-60% of affected patients. This article also reviews the information available on antibody formation, the potential effect on the thyroid gland, and the controversial association between this group of drugs with pancreatitis and cancer. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  15. [Safety and tolerability of GLP-1 receptor agonists].

    PubMed

    Soldevila, Berta; Puig-Domingo, Manel

    2014-01-01

    Glucagon-like peptide-1 receptor agonists (GLP-1ra) are a new group of drugs with a glucose-lowering action due to their incretin effect. The GLP-1 receptor is expressed in various human tissues, which could be related to the pleiotropic effects of human GLP-1, as well as to the adverse effects described in patients treated with GLP-1ra. The risk of hypoglycaemia is low, which is one of the main considerations in the safety of this family of compounds and is also important to patients with diabetes. The most frequent adverse effect is nausea, which usually occurs at the start of treatment and is transient in 20-60% of affected patients. This article also reviews the information available on antibody formation, the potential effect on the thyroid gland, and the controversial association between this group of drugs with pancreatitis and cancer.

  16. Can the sigma-1 receptor agonist fluvoxamine prevent schizophrenia?

    PubMed

    Hashimoto, Kenji

    2009-12-01

    In the past decade there has been increasing interest in the potential benefit of early pharmacological intervention in schizophrenia. Patients with schizophrenia show nonpsychotic and nonspecific prodromal symptoms (e.g., depression and cognitive deficits) for several years preceding the onset of frank psychosis. Several studies have demonstrated that medication with atypical antipsychotic drugs in people with prodromal symptoms may reduce the risk of subsequent transition to schizophrenia. Furthermore, a naturalistic treatment study in young people with prodromal symptoms demonstrated that medication with antidepressants could prevent the development of psychosis. Although the sample in this study was small, the results were striking. Some antidepressants, including selective serotonin reuptake inhibitors (SSRIs), had high to moderate affinities at the endoplasmic reticulum protein sigma-1 receptors, which are implicated in neuroprotection and neuronal plasticity. Among all antidepressants, fluvoxamine was the most potent sigma-1 receptor agonist. Since the effects of fluroxaming were antagonized by the selective sigma-1 receptor antagonist NE-100. Based on the role of sigma-1 receptors in the pathophysiology of cognition and depression, the author would like to propose a hypothesis that SSRIs (e.g., fluvoxamine) with sigma-1 receptor agonism may reduce the risk of subsequent transition to schizophrenia.

  17. β‐Arrestin 2 dependence of δ opioid receptor agonists is correlated with alcohol intake

    PubMed Central

    Chiang, T; Sansuk, K

    2016-01-01

    Background and Purpose δ Opioid receptor agonists are being developed as potential treatments for depression and alcohol use disorders. This is particularly interesting as depression is frequently co‐morbid with alcohol use disorders. Yet we have previously shown that δ receptor agonists range widely in their ability to modulate alcohol intake; certain δ receptor agonists actually increase alcohol consumption in mice. We propose that variations in β‐arrestin 2 recruitment contribute to the differential behavioural profile of δ receptor agonists. Experimental Approach We used three diarylmethylpiperazine‐based non‐peptidic δ receptor selective agonists (SNC80, SNC162 and ARM390) and three structurally diverse δ receptor agonists (TAN‐67, KNT127 and NIH11082). We tested these agonists in cAMP and β‐arrestin 2 recruitment assays and a behavioural assay of alcohol intake in male C57BL/6 mice. We used β‐arrestin 2 knockout mice and a model of depression‐like behaviour to further study the role of β‐arrestin 2 in δ receptor pharmacology. Key Results All six tested δ receptor agonists were full agonists in the cAMP assay but displayed distinct β‐arrestin 2 recruitment efficacy. The efficacy of δ receptor agonists to recruit β‐arrestin 2 positively correlated with their ability to increase alcohol intake (P < 0.01). The effects of the very efficacious recruiter SNC80 on alcohol intake, alcohol place preference and depression‐like behaviour were β‐arrestin 2‐dependent. Conclusions and Implications Our finding that δ receptor agonists that strongly recruit β‐arrestin 2 can increase alcohol intake carries important ramifications for drug development of δ receptor agonists for treatment of alcohol use disorders and depressive disorders. © 2015 The British Pharmacological Society PMID:26507558

  18. β-Arrestin 2 dependence of δ opioid receptor agonists is correlated with alcohol intake.

    PubMed

    Chiang, T; Sansuk, K; van Rijn, R M

    2016-01-01

    δ Opioid receptor agonists are being developed as potential treatments for depression and alcohol use disorders. This is particularly interesting as depression is frequently co-morbid with alcohol use disorders. Yet we have previously shown that δ receptor agonists range widely in their ability to modulate alcohol intake; certain δ receptor agonists actually increase alcohol consumption in mice. We propose that variations in β-arrestin 2 recruitment contribute to the differential behavioural profile of δ receptor agonists. We used three diarylmethylpiperazine-based non-peptidic δ receptor selective agonists (SNC80, SNC162 and ARM390) and three structurally diverse δ receptor agonists (TAN-67, KNT127 and NIH11082). We tested these agonists in cAMP and β-arrestin 2 recruitment assays and a behavioural assay of alcohol intake in male C57BL/6 mice. We used β-arrestin 2 knockout mice and a model of depression-like behaviour to further study the role of β-arrestin 2 in δ receptor pharmacology. All six tested δ receptor agonists were full agonists in the cAMP assay but displayed distinct β-arrestin 2 recruitment efficacy. The efficacy of δ receptor agonists to recruit β-arrestin 2 positively correlated with their ability to increase alcohol intake (P < 0.01). The effects of the very efficacious recruiter SNC80 on alcohol intake, alcohol place preference and depression-like behaviour were β-arrestin 2-dependent. Our finding that δ receptor agonists that strongly recruit β-arrestin 2 can increase alcohol intake carries important ramifications for drug development of δ receptor agonists for treatment of alcohol use disorders and depressive disorders. © 2015 The British Pharmacological Society

  19. Differences in serotonin receptor expression in the brainstem may explain the differential ability of a serotonin agonist to block seizure-induced sudden death in DBA/2 vs. DBA/1 mice.

    PubMed

    Faingold, Carl L; Randall, Marcus; Mhaskar, Yashanad; Uteshev, Victor V

    2011-10-18

    DBA mice are models of sudden unexpected death in epilepsy (SUDEP) that exhibit audiogenic generalized convulsive seizures (GCS), ending in death due to respiratory arrest (RA). Serotonin (5-HT) normally enhances respiration in response to elevated CO(2) levels, which occur during GCS in patients. Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), blocks GCS-induced SUDEP in both DBA/2 and DBA/1 mice. This study examined the effects of a 5-HT(2B/2C) agonist (m-chlorophenylpiperazine, mCPP) to test the generality of serotonergic effects on DBA mice. In DBA/2 mice mCPP pre-treatment [5 or 10 (but not 2) mg/kg, i.p.] significantly reduced RA incidence without blocking seizure susceptibility. However, in DBA/1 mice mCPP in doses up to 40mg/kg was ineffective in blocking seizure-induced RA, and 60mg/kg was toxic. The cause of this strain difference was perplexing. Previous studies showed that brainstem 5-HT receptor protein expression was abnormal in DBA/2 mice. Therefore, expression of 5-HT receptor proteins in the medial-caudal brainstem of DBA/1 mice was evaluated using Western blots. In DBA1/mice 5-HT(2C) and 5-HT(3B) receptor expression levels were significantly reduced, as seen previously in DBA/2 mice. However, 5-HT(2B) receptor expression was also reduced in DBA/1 mice, contrasting with the 5-HT(2B) receptor elevation seen in DBA/2 mice. This difference may explain the differential effects of the 5-HT(2B/2C) agonist in these SUDEP models. mCPP blocked RA in DBA/2 mice and concomitantly reduced tonic seizures, which also occurs. Fluoxetine is the only agent tested that blocks RA selectively in these SUDEP models, which may be clinically relevant. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Agonist photoaffinity label for the. beta. -adrenergic receptor

    SciTech Connect

    Resek, J.F.; Ruoho, A.E.

    1987-05-01

    An iodinated photosensitive derivative of norepinephrine, N-(p-azido-m-iodophenethylamidoisobutyryl)norepinephrine (NAIN), has been synthesized and characterized. Carrier-free radioiodinated NAIN ((/sup 125/I)-NAIN) was used at 1-2 x 10/sup -9/ M to photoaffinity label the ..beta..-adrenergic receptor in guinea pig lung membranes. SDS-PAGE analysis of (-)-alprenolol (10/sup -5/M) protectable (/sup 125/I)-NAIN labeling showed the same molecular weight polypeptide (65 kDa) that was specifically derivatized with the antagonist photolabel, (/sup 125/I)-IABP. Specific labeling of the ..beta..-adrenergic receptor with (/sup 125/I)-NAIN was dependent on the presence of MgCl/sub 2/ and the absence of guanyl nucleotide. GTP..gamma..S (10/sup -4/ M) abolished specific receptor labeling by (/sup 125/I)-NAIN. N-ethylmaleimide (2 mm) in the presence of (/sup 125/I)-NAIN protected against the guanyl nucleotide effect. These data are consistent with photolabeling by (/sup 125/I)-NAIN while the agonist, receptor, and GTP binding protein are in a high affinity complex.

  1. Therapeutic applications of TRAIL receptor agonists in cancer and beyond

    PubMed Central

    Amarante-Mendes, Gustavo P.; Griffith, Thomas S.

    2016-01-01

    TRAIL/Apo-2L is a member of the TNF superfamily first described as an apoptosis-inducing cytokine in 1995. Similar to TNF and Fas ligand, TRAIL induces apoptosis in caspase-dependent manner following TRAIL death receptor trimerization. Because tumor cells were shown to be particularly sensitive to this cytokine while normal cells/tissues proved to be resistant along with being able to synthesize and release TRAIL, it was rapidly appreciated that TRAIL likely served as one of our major physiologic weapons against cancer. In line with this, a number of research laboratories and pharmaceutical companies have attempted to exploit the ability of TRAIL to kill cancer cells by developing recombinant forms of TRAIL or TRAIL receptor agonists (e.g., receptor-specific mAb) for therapeutic purposes. In this review article we will describe the biochemical pathways used by TRAIL to induce different cell death programs. We will also summarize the clinical trials related to this pathway and discuss possible novel uses of TRAIL-related therapies. In recent years, the physiological importance of TRAIL has expanded beyond being a tumoricidal molecule to one critical for a number of clinical settings — ranging from infectious disease and autoimmunity to cardiovascular anomalies. We will also highlight some of these conditions where modulation of the TRAIL/TRAIL receptor system may be targeted in the future. PMID:26343199

  2. Glyoxalase 1 increases anxiety by reducing GABAA receptor agonist methylglyoxal

    PubMed Central

    Distler, Margaret G.; Plant, Leigh D.; Sokoloff, Greta; Hawk, Andrew J.; Aneas, Ivy; Wuenschell, Gerald E.; Termini, John; Meredith, Stephen C.; Nobrega, Marcelo A.; Palmer, Abraham A.

    2012-01-01

    Glyoxalase 1 (Glo1) expression has previously been associated with anxiety in mice; however, its role in anxiety is controversial, and the underlying mechanism is unknown. Here, we demonstrate that GLO1 increases anxiety by reducing levels of methylglyoxal (MG), a GABAA receptor agonist. Mice overexpressing Glo1 on a Tg bacterial artificial chromosome displayed increased anxiety-like behavior and reduced brain MG concentrations. Treatment with low doses of MG reduced anxiety-like behavior, while higher doses caused locomotor depression, ataxia, and hypothermia, which are characteristic effects of GABAA receptor activation. Consistent with these data, we found that physiological concentrations of MG selectively activated GABAA receptors in primary neurons. These data indicate that GLO1 increases anxiety by reducing levels of MG, thereby decreasing GABAA receptor activation. More broadly, our findings potentially link metabolic state, neuronal inhibitory tone, and behavior. Finally, we demonstrated that pharmacological inhibition of GLO1 reduced anxiety, suggesting that GLO1 is a possible target for the treatment of anxiety disorders. PMID:22585572

  3. Combined modality therapy with TRAIL or agonistic death receptor antibodies

    PubMed Central

    Amm, Hope M; Oliver, Patsy G; Lee, Choo Hyung; Li, Yufeng

    2011-01-01

    Molecularly targeted therapies, such as antibodies and small molecule inhibitors have emerged as an important breakthrough in the treatment of many human cancers. One targeted therapy under development is tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) due to its ability to induce apoptosis in a variety of human cancer cell lines and xenografts, while lacking toxicity in most normal cells. TRAIL and apoptosis-inducing agonistic antibodies to the TRAIL death receptors have been the subject of many preclinical and clinical studies in the past decade. However, the sensitivity of individual cancer cell lines of a particular tumor type to these agents varies from highly sensitive to resistant. Various chemotherapy agents have been shown to enhance the apoptosis-inducing capacity of TRAIL receptor-targeted therapies and induce sensitization of TRAIL-resistant cells. This review provides an overview of the mechanisms associated with chemotherapy enhancement of TRAIL receptor-targeted therapies including modulation of the apoptotic (death receptor expression, FLIP and Bcl-2 or inhibitors of apoptosis [IAP] families) as well as cell signaling (NFκB, Akt, p53) pathways. These mechanisms will be important in establishing effective combinations to pursue clinically and in determining relevant targets for future cancer therapies. PMID:21263219

  4. Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently of the CB2 Receptor

    PubMed Central

    Taylor, Lewis; Christou, Ivy; Kapellos, Theodore S.; Buchan, Alice; Brodermann, Maximillian H.; Gianella-Borradori, Matteo; Russell, Angela; Iqbal, Asif J.; Greaves, David R.

    2015-01-01

    Activation of CB2 has been demonstrated to induce directed immune cell migration. However, the ability of CB2 to act as a chemoattractant receptor in macrophages remains largely unexplored. Using a real-time chemotaxis assay and a panel of chemically diverse and widely used CB2 agonists, we set out to examine whether CB2 modulates primary murine macrophage chemotaxis. We report that of 12 agonists tested, only JWH133, HU308, L-759,656 and L-759,633 acted as macrophage chemoattractants. Surprisingly, neither pharmacological inhibition nor genetic ablation of CB2 had any effect on CB2 agonist-induced macrophage chemotaxis. As chemotaxis was pertussis toxin sensitive in both WT and CB2-/- macrophages, we concluded that a non-CB1/CB2, Gi/o-coupled GPCR must be responsible for CB2 agonist-induced macrophage migration. The obvious candidate receptors GPR18 and GPR55 could not mediate JWH133 or HU308-induced cytoskeletal rearrangement or JWH133-induced β-arrestin recruitment in cells transfected with either receptor, demonstrating that neither are the unidentified GPCR. Taken together our results conclusively demonstrate that CB2 is not a chemoattractant receptor for murine macrophages. Furthermore we show for the first time that JWH133, HU308, L-759,656 and L-759,633 have off-target effects of functional consequence in primary cells and we believe that our findings have wide ranging implications for the entire cannabinoid field. PMID:26033291

  5. Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently of the CB2 Receptor.

    PubMed

    Taylor, Lewis; Christou, Ivy; Kapellos, Theodore S; Buchan, Alice; Brodermann, Maximillian H; Gianella-Borradori, Matteo; Russell, Angela; Iqbal, Asif J; Greaves, David R

    2015-06-02

    Activation of CB2 has been demonstrated to induce directed immune cell migration. However, the ability of CB2 to act as a chemoattractant receptor in macrophages remains largely unexplored. Using a real-time chemotaxis assay and a panel of chemically diverse and widely used CB2 agonists, we set out to examine whether CB2 modulates primary murine macrophage chemotaxis. We report that of 12 agonists tested, only JWH133, HU308, L-759,656 and L-759,633 acted as macrophage chemoattractants. Surprisingly, neither pharmacological inhibition nor genetic ablation of CB2 had any effect on CB2 agonist-induced macrophage chemotaxis. As chemotaxis was pertussis toxin sensitive in both WT and CB2(-/-) macrophages, we concluded that a non-CB1/CB2, Gi/o-coupled GPCR must be responsible for CB2 agonist-induced macrophage migration. The obvious candidate receptors GPR18 and GPR55 could not mediate JWH133 or HU308-induced cytoskeletal rearrangement or JWH133-induced β-arrestin recruitment in cells transfected with either receptor, demonstrating that neither are the unidentified GPCR. Taken together our results conclusively demonstrate that CB2 is not a chemoattractant receptor for murine macrophages. Furthermore we show for the first time that JWH133, HU308, L-759,656 and L-759,633 have off-target effects of functional consequence in primary cells and we believe that our findings have wide ranging implications for the entire cannabinoid field.

  6. Is there a justification for classifying GLP-1 receptor agonists as basal and prandial?

    PubMed

    Miñambres, Inka; Pérez, Antonio

    2017-01-01

    Several GLP-1 receptor agonists are currently available for treatment of type 2 diabetic patients. Based on their pharmacokinetic/pharmacodynamic profile, these drugs are classified as short-acting GLP-1 receptor agonists (exenatide and lixisenatide) or long-acting GLP-1 receptor agonists (exenatide-LAR, liraglutide, albiglutide, and dulaglutide). In clinical practice, they are also classified as basal or prandial GLP-1 receptor agonists to differentiate between patients who would benefit more from one or another based on characteristics such as previous treatment and the predominance of fasting or postprandial hyperglycemia. In the present article we examine available data on the pharmacokinetic characteristics of the various GLP-1 agonists and compare their effects with respect to the main parameters used to evaluate glycemic control. The article also analyzes whether the differences between the different GLP-1 agonists justify their classification as basal or prandial.

  7. Fast Modulation of μ-Opioid Receptor (MOR) Recycling Is Mediated by Receptor Agonists*

    PubMed Central

    Roman-Vendrell, Cristina; Yu, Y. Joy; Yudowski, Guillermo Ariel

    2012-01-01

    The μ-opioid receptor (MOR) is a member of the G protein-coupled receptor family and the main target of endogenous opioid neuropeptides and morphine. Upon activation by ligands, MORs are rapidly internalized via clathrin-coated pits in heterologous cells and dissociated striatal neurons. After initial endocytosis, resensitized receptors recycle back to the cell surface by vesicular delivery for subsequent cycles of activation. MOR trafficking has been linked to opioid tolerance after acute exposure to agonist, but it is also involved in the resensitization process. Several studies describe the regulation and mechanism of MOR endocytosis, but little is known about the recycling of resensitized receptors to the cell surface. To study this process, we induced internalization of MOR with [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) and morphine and imaged in real time single vesicles recycling receptors to the cell surface. We determined single vesicle recycling kinetics and the number of receptors contained in them. Then we demonstrated that rapid vesicular delivery of recycling MORs to the cell surface was mediated by the actin-microtubule cytoskeleton. Recycling was also dependent on Rab4, Rab11, and the Ca2+-sensitive motor protein myosin Vb. Finally, we showed that recycling is acutely modulated by the presence of agonists and the levels of cAMP. Our work identifies a novel trafficking mechanism that increases the number of cell surface MORs during acute agonist exposure, effectively reducing the development of opioid tolerance. PMID:22378794

  8. Fast modulation of μ-opioid receptor (MOR) recycling is mediated by receptor agonists.

    PubMed

    Roman-Vendrell, Cristina; Yu, Y Joy; Yudowski, Guillermo Ariel

    2012-04-27

    The μ-opioid receptor (MOR) is a member of the G protein-coupled receptor family and the main target of endogenous opioid neuropeptides and morphine. Upon activation by ligands, MORs are rapidly internalized via clathrin-coated pits in heterologous cells and dissociated striatal neurons. After initial endocytosis, resensitized receptors recycle back to the cell surface by vesicular delivery for subsequent cycles of activation. MOR trafficking has been linked to opioid tolerance after acute exposure to agonist, but it is also involved in the resensitization process. Several studies describe the regulation and mechanism of MOR endocytosis, but little is known about the recycling of resensitized receptors to the cell surface. To study this process, we induced internalization of MOR with [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO) and morphine and imaged in real time single vesicles recycling receptors to the cell surface. We determined single vesicle recycling kinetics and the number of receptors contained in them. Then we demonstrated that rapid vesicular delivery of recycling MORs to the cell surface was mediated by the actin-microtubule cytoskeleton. Recycling was also dependent on Rab4, Rab11, and the Ca(2+)-sensitive motor protein myosin Vb. Finally, we showed that recycling is acutely modulated by the presence of agonists and the levels of cAMP. Our work identifies a novel trafficking mechanism that increases the number of cell surface MORs during acute agonist exposure, effectively reducing the development of opioid tolerance.

  9. Novel selective glucocorticoid receptor agonists (SEGRAs) with a covalent warhead for long-lasting inhibition.

    PubMed

    Ryabtsova, Oksana; Joossens, Jurgen; Van Der Veken, Pieter; Vanden Berghe, Wim; Augustyns, Koen; De Winter, Hans

    2016-10-15

    The synthesis and in vitro properties of six analogues of the selective glucocorticoid receptor (GR) agonist GSK866, bearing a warhead for covalent linkage to the glucocorticoid receptor, is described.

  10. Identification of Determinants Required for Agonistic and Inverse Agonistic Ligand Properties at the ADP Receptor P2Y12

    PubMed Central

    Schmidt, Philipp; Ritscher, Lars; Dong, Elizabeth N.; Hermsdorf, Thomas; Cöster, Maxi; Wittkopf, Doreen; Meiler, Jens

    2013-01-01

    The ADP receptor P2Y12 belongs to the superfamily of G protein–coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y12 displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y12 have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y12 and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y12. The potency at P2Y12 was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y12, with Y105, E188, R256, Y259, and K280 playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3′-OH of the 2′-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y12 and half of the constitutive active P2Y12 mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y12 but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands. PMID:23093496

  11. Biased signaling by peptide agonists of protease activated receptor 2.

    PubMed

    Jiang, Yuhong; Yau, Mei-Kwan; Kok, W Mei; Lim, Junxian; Wu, Kai-Chen; Liu, Ligong; Hill, Timothy A; Suen, Jacky Y; Fairlie, David P

    2017-02-07

    Protease activated receptor 2 (PAR2) is associated with metabolism, obesity, inflammatory, respiratory and gastrointestinal disorders, pain, cancer and other diseases. The extracellular N-terminus of PAR2 is a common target for multiple proteases, which cleave it at different sites to generate different N-termini that activate different PAR2-mediated intracellular signaling pathways. There are no synthetic PAR2 ligands that reproduce the same signaling profiles and potencies as proteases. Structure-activity relationships here for 26 compounds spanned a signaling bias over 3 log units, culminating in three small ligands as biased agonist tools for interrogating PAR2 functions. DF253 (2f-LAAAAI-NH2) triggered PAR2-mediated calcium release (EC50 2 μM) but not ERK1/2 phosphorylation (EC50 > 100 μM) in CHO cells transfected with hPAR2. AY77 (Isox-Cha-Chg-NH2) was a more potent calcium-biased agonist (EC50 40 nM, Ca2+; EC50 2 μM, ERK1/2), while its analogue AY254 (Isox-Cha-Chg-A-R-NH2) was an ERK-biased agonist (EC50 2 nM, ERK1/2; EC50 80 nM, Ca2+). Signaling bias led to different functional responses in human colorectal carcinoma cells (HT29). AY254, but not AY77 or DF253, attenuated cytokine-induced caspase 3/8 activation, promoted scratch-wound healing and induced IL-8 secretion, all via PAR2-ERK1/2 signaling. Different ligand components were responsible for different PAR2 signaling and functions, clues that can potentially lead to drugs that modulate different pathway-selective cellular and physiological responses.

  12. Thiazolidinediones are Partial Agonists for the Glucocorticoid Receptor

    PubMed Central

    Matthews, L; Berry, A; Tersigni, M; D’Acquisto, F; Ianaro, A; Ray, D

    2014-01-01

    Although thiazolidinediones were designed as specific PPARγ-ligands there is evidence for some off-target effects mediated by a non-PPARγ mechanism. Previously we have shown that Rosiglitazone has anti-inflammatory actions not explicable by activation of PPARγ, but possibly by the glucocorticoid receptor (GR). Rosiglitazone induces nuclear translocation both of GR-GFP, and endogenous GR in HeLa and U20S cells but with slower kinetics than Dexamethasone. Rosiglitazone also induces GR phosphorylation (Ser211), a GR ligand-binding specific effect. Rosiglitazone drives luciferase expression from a simple GRE containing reporter gene in a GR-dependent manner (EC50 4μM), with a similar amplitude response to the partial GR agonist RU486. Rosiglitazone also inhibits Dexamethasone driven reporter gene activity (IC50 2.9μM) in a similar fashion to RU486, suggesting partial agonist activity. Importantly we demonstrate a similar effect in PPARγ-null cells suggesting both GR-dependence and PPARγ-independence. Rosiglitazone also activates a GAL4-GR chimera, driving a UAS promoter, demonstrating DNA template sequence independence, and furthermore enhanced SRC1-GR interaction, measured by a mammalian two-hybrid assay. Both Ciglitazone and Pioglitazone, structurally related to Rosiglitazone, show similar effects on the GR. The antiproliferative effect of Rosiglitazone is increased in U20S cells that overexpress GR, suggesting a biologically important GR-dependent component of Rosiglitazone action. Rosiglitazone is a partial GR agonist, affecting GR activation and trafficking to influence engagement of target genes and affect cell function. This novel mode of action may explain some off-target effects observed in vivo. Additionally, antagonism of glucocorticoid action may contribute to the anti-diabetic actions of Rosiglitazone. PMID:18801908

  13. Benzodiazepine agonist and inverse agonist actions on GABAA receptor-operated chloride channels. II. Chronic effects of ethanol

    SciTech Connect

    Buck, K.J.; Harris, R.A. )

    1990-05-01

    Mice were made tolerant to and dependent on ethanol by administration of a liquid diet. Gamma-aminobutyric acid (GABA) receptor-dependent uptake of 36Cl- by mouse cortical microsacs was used to study the actions of benzodiazepine (BZ) agonists and inverse agonists. Chronic exposure to ethanol attenuated the ability of a BZ agonist, flunitrazepam, to augment muscimol-stimulated uptake of 36Cl- and enhanced the actions of BZ inverse agonists, Ro15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo(1,4)-benzodiazepine - 3-carboxylate) and DMCM (methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate), to inhibit GABAA receptor-operated chloride channels. Augmentation of chloride flux by pentobarbital was not reduced by chronic ethanol exposure. Attenuation of flunitrazepam efficacy was transient and returned to control levels within 6 to 24 hr after withdrawal from ethanol, but increased sensitivity to Ro15-4513 was observed as long as 8 days after withdrawal. Chronic exposure to ethanol did not alter (3H)SR 95531 (2-(3'-carbethoxy-2'propyl)-3-amino-6-p-methoxyphenylpyridazinium bromide) binding to low-affinity GABAA receptors or muscimol stimulation of chloride flux; and did not alter (3H)Ro15-4513 or (3H)flunitrazepam binding to central BZ receptors or allosteric modulation of this binding by muscimol (i.e., muscimol-shift). These results suggest that chronic exposure to ethanol reduces coupling between BZ agonist sites and the chloride channel, and may be responsible for the development of cross-tolerance between ethanol and BZ agonists. In contrast, coupling between BZ inverse agonist sites and the chloride channel is increased.

  14. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity

    PubMed Central

    Galle-Treger, Lauriane; Suzuki, Yuzo; Patel, Nisheel; Sankaranarayanan, Ishwarya; Aron, Jennifer L.; Maazi, Hadi; Chen, Lin; Akbari, Omid

    2016-01-01

    Allergic asthma is a complex and chronic inflammatory disorder that is associated with airway hyperreactivity (AHR) and driven by Th2 cytokine secretion. Type 2 innate lymphoid cells (ILC2s) produce large amounts of Th2 cytokines and contribute to the development of AHR. Here, we show that ILC2s express the α7-nicotinic acetylcholine receptor (α7nAChR), which is thought to have an anti-inflammatory role in several inflammatory diseases. We show that engagement of a specific agonist with α7nAChR on ILC2s reduces ILC2 effector function and represses ILC2-dependent AHR, while decreasing expression of ILC2 key transcription factor GATA-3 and critical inflammatory modulator NF-κB, and reducing phosphorylation of upstream kinase IKKα/β. Additionally, the specific α7nAChR agonist reduces cytokine production and AHR in a humanized ILC2 mouse model. Collectively, our data suggest that α7nAChR expressed by ILC2s is a potential therapeutic target for the treatment of ILC2-mediated asthma. PMID:27752043

  15. Toll-Like Receptor 9 Agonists for Cancer Therapy

    PubMed Central

    Melisi, Davide; Frizziero, Melissa; Tamburrino, Anna; Zanotto, Marco; Carbone, Carmine; Piro, Geny; Tortora, Giampaolo

    2014-01-01

    The immune system has acquired increasing importance as a key player in cancer maintenance and growth. Thus, modulating anti-tumor immune mediators has become an attractive strategy for cancer treatment. Toll-like receptors (TLRs) have gradually emerged as potential targets of newer immunotherapies. TLR-9 is preferentially expressed on endosome membranes of B-cells and plasmacytoid dendritic cells (pDC) and is known for its ability to stimulate specific immune reactions through the activation of inflammation-like innate responses. Several synthetic CpG oligonucleotides (ODNs) have been developed as TLR-9 agonists with the aim of enhancing cancer immune surveillance. In many preclinical models, CpG ODNs were found to suppress tumor growth and proliferation both in monotherapy and in addition to chemotherapies or target therapies. TLR-9 agonists have been also tested in several clinical trials in patients with solid tumors. These agents showed good tolerability and usually met activity endpoints in early phase trials. However, they have not yet been demonstrated to significantly impact survival, neither as single agent treatments, nor in combination with chemotherapies or cancer vaccines. Further investigations in larger prospective studies are required. PMID:28548068

  16. Toll-Like Receptor 9 Agonists for Cancer Therapy.

    PubMed

    Melisi, Davide; Frizziero, Melissa; Tamburrino, Anna; Zanotto, Marco; Carbone, Carmine; Piro, Geny; Tortora, Giampaolo

    2014-08-04

    The immune system has acquired increasing importance as a key player in cancer maintenance and growth. Thus, modulating anti-tumor immune mediators has become an attractive strategy for cancer treatment. Toll-like receptors (TLRs) have gradually emerged as potential targets of newer immunotherapies. TLR-9 is preferentially expressed on endosome membranes of B-cells and plasmacytoid dendritic cells (pDC) and is known for its ability to stimulate specific immune reactions through the activation of inflammation-like innate responses. Several synthetic CpG oligonucleotides (ODNs) have been developed as TLR-9 agonists with the aim of enhancing cancer immune surveillance. In many preclinical models, CpG ODNs were found to suppress tumor growth and proliferation both in monotherapy and in addition to chemotherapies or target therapies. TLR-9 agonists have been also tested in several clinical trials in patients with solid tumors. These agents showed good tolerability and usually met activity endpoints in early phase trials. However, they have not yet been demonstrated to significantly impact survival, neither as single agent treatments, nor in combination with chemotherapies or cancer vaccines. Further investigations in larger prospective studies are required.

  17. Trial Watch: Toll-like receptor agonists in oncological indications.

    PubMed

    Aranda, Fernando; Vacchelli, Erika; Obrist, Florine; Eggermont, Alexander; Galon, Jérôme; Sautès-Fridman, Catherine; Cremer, Isabelle; Henrik Ter Meulen, Jan; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    Toll-like receptors (TLRs) are an evolutionarily conserved group of enzymatically inactive, single membrane-spanning proteins that recognize a wide panel of exogenous and endogenous danger signals. Besides constituting a crucial component of the innate immune response to bacterial and viral pathogens, TLRs appear to play a major role in anticancer immunosurveillance. In line with this notion, several natural and synthetic TLR ligands have been intensively investigated for their ability to boost tumor-targeting immune responses elicited by a variety of immunotherapeutic and chemotherapeutic interventions. Three of these agents are currently approved by the US Food and Drug Administration (FDA) or equivalent regulatory agencies for use in cancer patients: the so-called bacillus Calmette-Guérin, monophosphoryl lipid A, and imiquimod. However, the number of clinical trials testing the therapeutic potential of both FDA-approved and experimental TLR agonists in cancer patients is stably decreasing, suggesting that drug developers and oncologists are refocusing their interest on alternative immunostimulatory agents. Here, we summarize recent findings on the use of TLR agonists in cancer patients and discuss how the clinical evaluation of FDA-approved and experimental TLR ligands has evolved since the publication of our first Trial Watch dealing with this topic.

  18. Muscarinic Receptor Agonists and Antagonists: Effects on Cancer

    PubMed Central

    2012-01-01

    Many epithelial and endothelial cells express a cholinergic autocrine loop in which acetylcholine acts as a growth factor to stimulate cell growth. Cancers derived from these tissues similarly express a cholinergic autocrine loop and ACh secreted by the cancer or neighboring cells interacts with M3 muscarinic receptors expressed on the cancer cells to stimulate tumor growth. Primary proliferative pathways involve MAPK and Akt activation. The ability of muscarinic agonists to stimulate, and M3 antagonists to inhibit tumor growth has clearly been demonstrated for lung and colon cancer. The ability of muscarinic agonists to stimulate growth has been shown for melanoma, pancreatic, breast, ovarian, prostate and brain cancers, suggesting that M3 antagonists will also inhibit growth of these tumors as well. As yet no clinical trials have proven the efficacy of M3 antagonists as cancer therapeutics, though the widespread clinical use and low toxicity of M3 antagonists support the potential role of these drugs as adjuvants to current cancer therapies. PMID:22222710

  19. Agonistic behavior in males and females: effects of an estrogen receptor beta agonist in gonadectomized and gonadally intact mice

    PubMed Central

    Allen, Amy E. Clipperton; Cragg, Cheryl L.; Wood, Alexis J.; Pfaff, Donald W.; Choleris, Elena

    2010-01-01

    Summary Affiliative and agonistic social interactions are mediated by gonadal hormones. Research with estrogen receptor alpha (ERα) or beta (ERβ) knockout (KO) mice show that long-term inactivation of ERα decreases, while inactivation of ERβ increases, male aggression. Opposite effects were found in female αERKO and βERKO mice. The role of acute activation of ERα or ERβ in the agonistic responses of adult non-KO mice is unknown. We report here the effects of the ERβ selective agonist WAY-200070 on agonistic and social behavior in gonadally intact and gonadectomized (gonadex) male and female CD-1 mice towards a gonadex, same-sex intruder. All 15 min resident-intruder tests were videotaped for comprehensive behavioral analysis. Separate analyses assessed: 1) effects of WAY-200070 on each sex and gonadal condition; 2) differences between sexes, and between gonadally intact and gonadex mice, in untreated animals. Results show that in gonadally intact male and female mice WAY-200070 increased agonistic behaviors such as pushing down and aggressive grooming, while leaving attacks unaffected. In untreated mice, males attacked more than females, and gonadex animals showed less agonistic behavior than same-sex, gonadally intact mice. Overall, our detailed behavioral analysis suggested that in gonadally intact male and female mice, ERβ mediates patterns of agonistic behavior that are not directly involved in attacks. This suggests that specific aspects of aggressive behavior are acutely mediated by ERβ in adult mice. Our results also showed that, in resident-intruder tests, female mice spend as much time in intrasexual agonistic interactions as males, but use agonistic behaviors that involve extremely low levels of direct attacks. This non-attack aggression in females is increased by acute activation of ERβ. Thus, acute activation of ERβ similarly mediates agonistic behavior in adult male and female CD-1 mice. PMID:20129736

  20. Basal Insulin Use With GLP-1 Receptor Agonists.

    PubMed

    Anderson, Sarah L; Trujillo, Jennifer M

    2016-08-01

    IN BRIEF The combination of basal insulin and a glucagon-like peptide 1 receptor agonist is becoming increasingly common and offers several potential benefits to patients with type 2 diabetes. Clinical studies have demonstrated improved glycemic control and low risks of hypoglycemia and weight gain with the combination, which provides a safe and effective alternative to basal-bolus insulin with less treatment burden. Fixed-ratio combination products that administer both agents in a single injection are in the pipeline and will offer additional options for clinicians and patients. This review focuses on the rationale for, clinical evidence on, and implications of using this combination of therapies in the treatment of type 2 diabetes.

  1. Anti-fibrotic Potential of AT2 Receptor Agonists

    PubMed Central

    Wang, Yan; Del Borgo, Mark; Lee, Huey W.; Baraldi, Dhaniel; Hirmiz, Baydaa; Gaspari, Tracey A.; Denton, Kate M.; Aguilar, Marie-Isabel; Samuel, Chrishan S.; Widdop, Robert E.

    2017-01-01

    There are a number of therapeutic targets to treat organ fibrosis that are under investigation in preclinical models. There is increasing evidence that stimulation of the angiotensin II type 2 receptor (AT2R) is a novel anti-fibrotic strategy and we have reviewed the published in vivo preclinical data relating to the effects of compound 21 (C21), which is the only nonpeptide AT2R agonist that is currently available for use in chronic preclinical studies. In particular, the differential influence of AT2R on extracellular matrix status in various preclinical fibrotic models is discussed. Collectively, these studies demonstrate that pharmacological AT2R stimulation using C21 decreases organ fibrosis, which has been most studied in the setting of cardiovascular and renal disease. In addition, AT2R-mediated anti-inflammatory effects may contribute to the beneficial AT2R-mediated anti-fibrotic effects seen in preclinical models. PMID:28912715

  2. Crystal Structures of the Nuclear Receptor, Liver Receptor Homolog 1, Bound to Synthetic Agonists.

    PubMed

    Mays, Suzanne G; Okafor, C Denise; Whitby, Richard J; Goswami, Devrishi; Stec, Józef; Flynn, Autumn R; Dugan, Michael C; Jui, Nathan T; Griffin, Patrick R; Ortlund, Eric A

    2016-12-02

    Liver receptor homolog 1 (NR5A2, LRH-1) is an orphan nuclear hormone receptor that regulates diverse biological processes, including metabolism, proliferation, and the resolution of endoplasmic reticulum stress. Although preclinical and cellular studies demonstrate that LRH-1 has great potential as a therapeutic target for metabolic diseases and cancer, development of LRH-1 modulators has been difficult. Recently, systematic modifications to one of the few known chemical scaffolds capable of activating LRH-1 failed to improve efficacy substantially. Moreover, mechanisms through which LRH-1 is activated by synthetic ligands are entirely unknown. Here, we use x-ray crystallography and other structural methods to explore conformational changes and receptor-ligand interactions associated with LRH-1 activation by a set of related agonists. Unlike phospholipid LRH-1 ligands, these agonists bind deep in the pocket and do not interact with residues near the mouth nor do they expand the pocket like phospholipids. Unexpectedly, two closely related agonists with similar efficacies (GSK8470 and RJW100) exhibit completely different binding modes. The dramatic repositioning is influenced by a differential ability to establish stable face-to-face π-π-stacking with the LRH-1 residue His-390, as well as by a novel polar interaction mediated by the RJW100 hydroxyl group. The differing binding modes result in distinct mechanisms of action for the two agonists. Finally, we identify a network of conserved water molecules near the ligand-binding site that are important for activation by both agonists. This work reveals a previously unappreciated complexity associated with LRH-1 agonist development and offers insights into rational design strategies. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Recent advances in the development of farnesoid X receptor agonists

    PubMed Central

    Carey, Elizabeth J.; Lindor, Keith D.

    2015-01-01

    Farnesoid X receptors (FXRs) are nuclear hormone receptors expressed in high amounts in body tissues that participate in bilirubin metabolism including the liver, intestines, and kidneys. Bile acids (BAs) are the natural ligands of the FXRs. FXRs regulate the expression of the gene encoding for cholesterol 7 alpha-hydroxylase, which is the rate-limiting enzyme in BA synthesis. In addition, FXRs play a critical role in carbohydrate and lipid metabolism and regulation of insulin sensitivity. FXRs also modulate live growth and regeneration during liver injury. Preclinical studies have shown that FXR activation protects against cholestasis-induced liver injury. Moreover, FXR activation protects against fatty liver injury in animal models of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), and improved hyperlipidemia, glucose intolerance, and insulin sensitivity. Obeticholic acid (OCA), a 6α-ethyl derivative of the natural human BA chenodeoxycholic acid (CDCA) is the first-in-class selective FXR agonist that is ~100-fold more potent than CDCA. Preliminary human clinical trials have shown that OCA is safe and effective. In a phase II clinical trial, administration of OCA was well-tolerated, increased insulin sensitivity and reduced markers of liver inflammation and fibrosis in patients with type II diabetes mellitus and NAFLD. In two clinical trials of OCA in patients with primary biliary cirrhosis (PBC), a progressive cholestatic liver disease, OCA significantly reduced serum alkaline phosphatase (ALP) levels, an important disease marker that correlates well with clinical outcomes of patients with PBC. Together, these studies suggest that FXR agonists could potentially be used as therapeutic tools in patients suffering from nonalcoholic fatty and cholestatic liver diseases. Larger and Longer-term studies are currently ongoing. PMID:25705637

  4. Combining a GLP-1 receptor agonist and basal insulin: study evidence and practical considerations.

    PubMed

    Carris, Nicholas W; Taylor, James R; Gums, John G

    2014-12-01

    Most patients with diabetes mellitus require multiple medications to achieve glycemic goals. Considering this and the increasing incidence of type 2 diabetes worldwide, the need for effective combination therapy is pressing. Basal insulin and glucagon-like peptide 1 (GLP-1) receptor agonists are frequently used to treat type 2 diabetes. Though both classes of medication are exclusively injectable, which may cause initial hesitation from providers, evidence for their combined use is substantial. This review summarizes the theoretical benefit, supporting evidence, and implementation of a combined basal insulin-GLP-1 receptor agonist regimen. Basal insulin added to a GLP-1 receptor agonist reduces hemoglobin A1c (HbA1c) without weight gain or significantly increased hypoglycemia. A GLP-1 receptor agonist added to basal insulin reduces HbA1c and body weight. Compared with the addition of meal-time insulin to basal insulin, a GLP-1 receptor agonist produces similar or greater reduction in HbA1c, weight loss instead of weight gain, and less hypoglycemia. Gastrointestinal adverse events are common with GLP-1 receptor agonists, especially during initiation and titration. However, combination with basal insulin is not expected to augment expected adverse events that come with using a GLP-1 receptor agonist. Basal insulin can be added to a GLP-1 receptor agonist with a slow titration to target goal fasting plasma glucose. In patients starting a GLP-1 receptor agonist, the dose of basal insulin should be decreased by 20 % in patients with an HbA1c ≤8 %. The evidence from 15 randomized prospective studies supports the combined use of a GLP-1 receptor agonist with basal insulin in a broad range of patients with uncontrolled type 2 diabetes.

  5. The dopamine D1 receptor agonist SKF-82958 effectively increases eye blinking count in common marmosets.

    PubMed

    Kotani, Manato; Kiyoshi, Akihiko; Murai, Takeshi; Nakako, Tomokazu; Matsumoto, Kenji; Matsumoto, Atsushi; Ikejiri, Masaru; Ogi, Yuji; Ikeda, Kazuhito

    2016-03-01

    Eye blinking is a spontaneous behavior observed in all mammals, and has been used as a well-established clinical indicator for dopamine production in neuropsychiatric disorders, including Parkinson's disease and Tourette syndrome [1,2]. Pharmacological studies in humans and non-human primates have shown that dopamine agonists/antagonists increase/decrease eye blinking rate. Common marmosets (Callithrix jacchus) have recently attracted a great deal of attention as suitable experimental animals in the psychoneurological field due to their more developed prefrontal cortex than rodents, easy handling compare to other non-human primates, and requirement for small amounts of test drugs. In this study, we evaluated the effects of dopamine D1-4 receptors agonists on eye blinking in common marmosets. Our results show that the dopamine D1 receptor agonist SKF-82958 and the non-selective dopamine receptor agonist apomorphine significantly increased common marmosets eye blinking count, whereas the dopamine D2 agonist (+)-PHNO and the dopamine D3 receptor agonist (+)-PD-128907 produced somnolence in common marmosets resulting in a decrease in eye blinking count. The dopamine D4 receptor agonists PD-168077 and A-41297 had no effect on common marmosets' eye blinking count. Finally, the dopamine D1 receptor antagonist SCH 39166 completely blocked apomorphine-induced increase in eye blinking count. These results indicate that eye blinking in common marmosets may be a useful tool for in vivo screening of novel dopamine D1 receptor agonists as antipsychotics.

  6. Identification of a naturally occurring retinoid X receptor agonist from Brazilian green propolis.

    PubMed

    Nakashima, Ken-Ichi; Murakami, Tohru; Tanabe, Hiroki; Inoue, Makoto

    2014-10-01

    Brazilian green propolis (BGP), a resinous substance produced from Baccharis dracunculifolia by Africanized honey bees (Apis mellifera), is used as a folk medicine. Our present study explores the retinoid X receptor (RXR) agonistic activity of BGP and the identification of an RXR agonist in its extract. RXRα agonistic activity was evaluated using a luciferase reporter gene assay. Isolation of the RXRα agonist from the ethanolic extract of BGP was performed using successive silica gel and a reversed phase column chromatography. The interaction between the isolated RXRα agonist and RXRα protein was predicted by a receptor-ligand docking simulation. The nuclear receptor (NR) cofactor assay was used to estimate whether the isolated RXRα agonist bound to various NRs, including RXRs and peroxisome proliferator-activated receptors (PPARs). We further examined its effect on adipogenesis in 3T3-L1 fibroblasts. We identified drupanin as an RXRα agonist with an EC50 value of 4.8 ± 1.0 μM. Drupanin activated three RXR subtypes by a similar amount and activated PPARγ moderately. Additionally, drupanin induced adipogenesis and elevated aP2 mRNA levels in 3T3-L1 fibroblasts. Drupanin, a component of BGP, is a novel RXR agonist with slight PPARγ agonistic activity. This study revealed for the first time that BGP activates RXR and drupanin is an RXR agonist in its extract. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time

    PubMed Central

    Guo, Dong; Mulder-Krieger, Thea; IJzerman, Adriaan P; Heitman, Laura H

    2012-01-01

    BACKGROUND AND PURPOSE The adenosine A2A receptor belongs to the superfamily of GPCRs and is a promising therapeutic target. Traditionally, the discovery of novel agents for the A2A receptor has been guided by their affinity for the receptor. This parameter is determined under equilibrium conditions, largely ignoring the kinetic aspects of the ligand-receptor interaction. The aim of this study was to assess the binding kinetics of A2A receptor agonists and explore a possible relationship with their functional efficacy. EXPERIMENTAL APPROACH We set up, validated and optimized a kinetic radioligand binding assay (a so-called competition association assay) at the A2A receptor from which the binding kinetics of unlabelled ligands were determined. Subsequently, functional efficacies of A2A receptor agonists were determined in two different assays: a novel label-free impedance-based assay and a more traditional cAMP determination. KEY RESULTS A simplified competition association assay yielded an accurate determination of the association and dissociation rates of unlabelled A2A receptor ligands at their receptor. A correlation was observed between the receptor residence time of A2A receptor agonists and their intrinsic efficacies in both functional assays. The affinity of A2A receptor agonists was not correlated to their functional efficacy. CONCLUSIONS AND IMPLICATIONS This study indicates that the molecular basis of different agonist efficacies at the A2A receptor lies within their different residence times at this receptor. PMID:22324512

  8. Agonist-induced internalization and desensitization of the apelin receptor.

    PubMed

    Pope, George R; Tilve, Sharada; McArdle, Craig A; Lolait, Stephen J; O'Carroll, Anne-Marie

    2016-12-05

    Apelin acts via the G protein-coupled apelin receptor (APJ) to mediate effects on cardiovascular and fluid homeostasis. G protein-coupled receptor (GPCR) trafficking has an important role in the regulation of receptor signalling pathways and cellular functions, however in the case of APJ the mechanisms and proteins involved in apelin-induced trafficking are not well understood. We generated a stable HEK-293 cell line expressing N-terminus HA-tagged mouse (m) APJ, and used a semi-automated imaging protocol to quantitate APJ trafficking and ERK1/2 activation following stimulation with [Pyr(1)]apelin-13. The mechanisms of [Pyr(1)]apelin-13-induced internalization and desensitization were explored using dominant-negative mutant (DNM) cDNA constructs of G protein-coupled receptor kinase 2 (GRK2), β-arrestin1, EPS15 and dynamin. The di-phosphorylated ERK1/2 (ppERK1/2) response to [Pyr(1)]apelin-13 desensitized during sustained stimulation, due to upstream APJ-specific adaptive changes. Furthermore, [Pyr(1)]apelin-13 stimulation caused internalization of mAPJ via clathrin coated vesicles (CCVs) and also caused a rapid reduction in cell surface and whole cell HA-mAPJ. Our data suggest that upon continuous agonist exposure GRK2-mediated phosphorylation targets APJ to CCVs that are internalized from the cell surface in a β-arrestin1-independent, EPS15- and dynamin-dependent manner. Internalization does not appear to contribute to the desensitization of APJ-mediated ppERK1/2 activation in these cells. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. GABAB receptor agonist baclofen improves methamphetamine-induced cognitive deficit in mice.

    PubMed

    Arai, Sawako; Takuma, Kazuhiro; Mizoguchi, Hiroyuki; Ibi, Daisuke; Nagai, Taku; Kamei, Hiroyuki; Kim, Hyoung-Chun; Yamada, Kiyofumi

    2009-01-05

    In this study, we investigated the effects of GABA(A) and GABA(B) receptor agonists on the methamphetamine-induced impairment of recognition memory in mice. Repeated treatment with methamphetamine at a dose of 1 mg/kg for 7 days induced an impairment of recognition memory. Baclofen, a GABA(B) receptor agonist, ameliorated the repeated methamphetamine-induced cognitive impairment, although gaboxadol, a GABA(A) receptor agonist, had no significant effect. GABA(B) receptors may constitute a putative new target in treating cognitive deficits in patients suffering from schizophrenia, as well as methamphetamine psychosis.

  10. Dihydromorphine-peptide hybrids with delta receptor agonistic and mu receptor antagonistic actions

    SciTech Connect

    Smith, C.B.; Medzihradsky, F.; Woods, J.H.

    1986-03-05

    The actions of two morphine derivatives with short peptide side chains were evaluated upon the contraction of the isolated mouse vas deferens and upon displacement of /sup 3/H-etorphine from rat brain membranes. NIH-9833 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-phenylalanyl-L-leucine ethyl ester HCl) was a potent agonist upon the vas deferens. Its EC50 for inhibition of the twitch was 1.2 +/- 0.1 nM. Both naltrexone (10/sup -7/ M) a relatively nonselective opioid antagonist, and ICI-174864 (10/sup -/' M) a highly selective delta receptor antagonist, blocked the actions of NIH-9833 which indicates that this drug is a delta receptor agonist. In contrast, NIH-9835 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-glycyl-L-phenylalanyl-L-leucine ethyl ester HCl), which differs from NIH-9835 by the presence of a single amino acid residue, was devoid of opioid agonistic activity but was a potent antagonist of the inhibitory actions on the vas deferens of morphine and sufentanil. NIH-9833 and NIH-9835 were potent displacers of /sup 3/H-etorphine from rat cerebral membranes with EC50's of 0.58 nM and 1.7 nM, respectively. The observation that addition of a single glycyl group changes a dihydromorphine-peptide analog from a potent delta receptor agonist to an equally potent mu receptor antagonist suggests that the two receptor sites might be structurally quite similar.

  11. PPAR δ agonist GW0742 interacts weakly with multiple nuclear receptors including the vitamin D receptor

    PubMed Central

    Nandhikonda, Premchendar; Yasgar, Adam; Baranowski, Athena M.; Sidhu, Preetpal S.; McCallum, Megan M.; Pawlak, Alan J.; Teske, Kelly; Feleke, Belaynesh; Yuan, Nina Y.; Kevin, Chinedum; Bikle, Daniel D.; Ayers, Steven D.; Webb, Paul; Rai, Ganesha; Simeonov, Anton; Jadhav, Ajit; Maloney, David; Arnold, Leggy A.

    2013-01-01

    A high throughput screening campaign was conducted to identify small molecules with the ability to inhibit the interaction between the vitamin D receptor (VDR) and steroid receptor coactivator 2. These inhibitors represent novel molecular probes to modulate gene regulation mediated by VDR. The peroxisome proliferator-activated receptor δ (PPARδ) agonist GW0742 was among the identified VDR-coactivator inhibitors and has been characterized herein as a pan nuclear receptor antagonist at concentrations higher than 12.1 µM. The highest antagonist activity for GW0742 was found for VDR and the androgen receptor (AR). Surprisingly, GW0742 behaved as PPAR agonist/antagonist activating transcription at lower concentration and inhibiting this effect at higher concentrations. A unique spectroscopic property of GW0742 was identified as well. In the presence of rhodamine-derived molecules, GW0742+ increased fluorescence intensity and fluorescence polarization at an excitation wavelength of 595 nm and emission wavelength of 615 nm in a dose dependent manner. The GW0742-inhibited NR-coactivator binding resulted in a reduced expression of five different NR target genes in LNCaP cells in the presence of agonist. Especially VDR target genes CYP24A1, IGFBP-3 and TRPV6 were negatively regulated by GW0742. GW0742 is the first VDR ligand inhibitor lacking the secosteroid structure of VDR ligand antagonists. Nevertheless, the VDR-meditated downstream process of cell differentiation was antagonized by GW0742 in HL-60 cells that were pretreated with the endogenous VDR agonist 1,25-dihydroxyvitamin D3. PMID:23713684

  12. Pleiotropic behavior of 5-HT2A and 5-HT2C receptor agonists.

    PubMed

    Berg, K A; Maayani, S; Goldfarb, J; Clarke, W P

    1998-12-15

    There is now considerable evidence that a single receptor subtype can couple to multiple effector pathways within a cell. Recently, Kenakin proposed a new concept, termed "agonist-directed trafficking of receptor stimulus", that suggests that agonists may be able to selectively activate a subset of multiple signaling pathways coupled to a single receptor subtype. 5-HT2A and 5-HT2C receptors couple to phospholipase C-(PLC) mediated inositol phosphate (IP) accumulation and PLA2-mediated arachidonic acid (AA) release. Relative efficacies of agonists (referenced to 5-HT) differed depending upon whether IP accumulation or AA release was measured. For the 5-HT2C receptor system, some agonists (e.g. TFMPP) preferentially activated the PLC-IP pathway, whereas others (e.g. LSD) favored PLA2-AA. As expected, EC50's of agonists did not differ between pathways. For the 5-HT2A receptor system, all agonists tested had greater relative efficacy for PLA2-AA than for PLC-IP. In contrast, relative efficacies were not different for 5-HT2A agonists when sequential effects in a pathway were measured (IP accumulation vs. calcium mobilization). These data strongly support the agonist-directed trafficking hypothesis.

  13. Cardiovascular selectivity of adenosine receptor agonists in anaesthetized dogs.

    PubMed Central

    Gerencer, R. Z.; Finegan, B. A.; Clanachan, A. S.

    1992-01-01

    1. In order to determine the relevance of adenosine (Ado) receptor classification obtained from in vitro methods to the cardiovascular actions of Ado agonists in vivo, the cardiovascular effects of adenosine 5'-monophosphate (AMP), N6-cyclohexyladenosine (CHA, 400 fold A1-selective), 5'-N-ethyl-carboxamidoadenosine (NECA, A1 approximately A2) and 2-phenylaminoadenosine (PAA, 5 fold A2-selective) were compared in open-chest, fentanyl-pentobarbitone anaesthetized dogs. 2. Graded doses of CHA (10 to 1000 micrograms kg-1), NECA (0.5 to 100 micrograms kg-1) or PAA (0.1 to 20 micrograms kg-1) were administered intravenously and changes in haemodynamics and myocardial contractility were assessed 10 min following each dose. The effects of graded infusions of AMP (200 to 1000 micrograms kg-1 min-1) were also evaluated. 3. AMP and each of the Ado analogues (NECA > PAA > CHA) increased the systemic vascular conductance index (SVCI) in a dose-dependent manner and reduced mean arterial pressure (MAP). At doses causing similar increases in SVCI, these agonists caused (i) similar reflex increases in heart rate (HR) and cardiac index (CI) and decreases in AV conduction interval (AVi) and (ii) similar increases in coronary vascular conductance (CVC). 4. After cardiac autonomic blockade with atropine (0.2 mg kg-1) and propranolol (1 mg kg-1), AMP, CHA and PAA still increased SVCI and CVC and decreased MAP. CHA and PAA had no marked effects on HR, CI or AVi. As in the absence of cardiac autonomic blockade, equieffective vasodilator doses of CHA and PAA had identical effects on CVC, CI and AVi.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1467827

  14. Novel actions of inverse agonists on 5-HT2C receptor systems.

    PubMed

    Berg, K A; Stout, B D; Cropper, J D; Maayani, S; Clarke, W P

    1999-05-01

    In cell systems where ligand-independent receptor activity is optimized (such as when receptors are overexpressed or mutated), acute treatment with inverse agonists reduces basal effector activity whereas prolonged exposure leads to sensitization of receptor systems and receptor up-regulation. Few studies, however, have reported effects of inverse agonists in systems where nonmutated receptors are expressed at relatively low density. Here, we investigated the effects of inverse agonists at human serotonin (5-HT)2C receptors expressed stably in Chinese hamster ovary cells ( approximately 250 fmol/mg protein). In these cells, there is no receptor reserve for 5-HT and 5-HT2C inverse agonists did not reduce basal inositol phosphate (IP) accumulation nor arachidonic acid (AA) release but behaved as simple competitive antagonists, suggesting that these receptors are not overexpressed. Prolonged treatment (24 h) with inverse agonists enhanced selectively 5-HT2C-mediated IP accumulation but not AA release. The enhancing effect occurred within 4 h of treatment, reversed within 3 to 4 h (after 24-h treatment), and could be blocked with neutral antagonists or weak positive agonists. The enhanced responsiveness was not due to receptor up-regulation but may involve changes in the expression of the G protein, Galphaq/11 and possibly Galpha12 and Galpha13. Interestingly, 24-h exposure to inverse agonists acting at 5-HT2C receptors also selectively enhanced IP accumulation, but not AA release, elicited by activation of endogenous purinergic receptors. These data suggest that actions of inverse agonists may be mediated through effects on receptor systems that are not direct targets for these drugs.

  15. Activation of single heteromeric GABAA receptor ion channels by full and partial agonists

    PubMed Central

    Mortensen, Martin; Kristiansen, Uffe; Ebert, Bjarke; Frølund, Bente; Krogsgaard-Larsen, Povl; Smart, Trevor G

    2004-01-01

    The linkage between agonist binding and the activation of a GABAA receptor ion channel is yet to be resolved. This aspect was examined on human recombinant α1β2γ2S GABAA receptors expressed in human embryonic kidney cells using the following series of receptor agonists: GABA, isoguvacine, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), isonipecotic acid, piperidine-4-sulphonic acid (P4S), imidazole-4-acetic acid (IAA), 5-(4-piperidyl)-3-isothiazolol (thio-4-PIOL) and 5-(4-piperidyl)-3-isoxazolol (4-PIOL). Whole-cell concentration–response curves enabled the agonists to be categorized into four classes based upon their maximum responses. Single channel analyses revealed that the channel conductance of 25–27 pS was unaffected by the agonists. However, two open states were resolved from the open period distributions with mean open times reduced 5-fold by the weakest partial agonists. Using saturating agonist concentrations, estimates of the channel shutting rate, α, ranged from 200 to 600 s−1. The shut period distributions were described by three or four components and for the weakest partial agonists, the interburst shut periods increased whilst the mean burst durations and longest burst lengths were reduced relative to the full agonists. From the burst analyses, the opening rates for channel activation, β, and the total dissociation rates, k−1, for the agonists leaving the receptor were estimated. The agonist efficacies were larger for the full agonists (E ∼7−9) compared to the weak partial agonists (∼0.4–0.6). Overall, changes in agonist efficacy largely determined the different agonist profiles with contributions from the agonist affinities and the degree of receptor desensitization. From this we conclude that GABAA receptor activation does not occur in a switch-like manner since the agonist recognition sites are flexible, accommodating diverse agonist structures which differentially influence the opening and shutting rates of the ion

  16. Identification and in vitro pharmacological characterization of a novel and selective α7 nicotinic acetylcholine receptor agonist, Br-IQ17B

    PubMed Central

    Tang, Jing-shu; Xie, Bing-xue; Bian, Xi-ling; Xue, Yu; Wei, Ning-ning; Zhou, Jing-heng; Hao, Yu-chen; Li, Gang; Zhang, Liang-ren; Wang, Ke-wei

    2015-01-01

    Aim: Alpha7-nicotinic acetylcholine receptor (α7 nAChR) is a ligand-gated Ca2+-permeable ion channel implicated in cognition and neuropsychiatric disorders. Activation of α7 nAChR improves learning, memory, and sensory gating in animal models. To identify novel α7 nAChR agonists, we synthesized a series of small molecules and characterized a representative compound, Br-IQ17B, N-[(3R)-1-azabicyclo[2,2,2]oct-3-yl]-5-bromoindolizine-2-carboxamide, which specifically activates α7 nAChR. Methods: Two-electrode voltage clamp (TEVC) recordings were primarily used for screening in Xenopus oocytes expressing human α7 nAChR. Assays, including radioisotope ligand binding, Western blots, whole-cell recordings of hippocampal culture neurons, and spontaneous IPSC recordings of brain slices, were also utilized to evaluate and confirm the specific activation of α7 nAChR by Br-IQ17B. Results: Br-IQ17B potently activates α7 nAChR with an EC50 of 1.8±0.2 μmol/L. Br-IQ17B is selective over other subtypes such as α4β2 and α3β4, but it blocks 5-HT3A receptors. Br-IQ17B displaced binding of the α7 blocker [3H]-MLA to hippocampal crude membranes with a Ki of 14.9±3.2 nmol/L. In hippocampal neurons, Br-IQ17B evoked α7-like currents that were inhibited by MLA and enhanced in the presence of the α7 PAM PNU-120596. In brain slice recordings, Br-IQ17B enhanced GABAergic synaptic transmission in CA1 neurons. Mechanistically, Br-IQ17B increased ERK1/2 phosphorylation that was MLA-sensitive. Conclusion: We identified the novel, potent, and selective α7 agonist Br-IQ17B, which enhances synaptic transmission. Br-IQ17B may be a helpful tool to understand new aspects of α7 nAChR function, and it also has potential for being developed as therapy for schizophrenia and cognitive deficits. PMID:25948478

  17. Tetrahydroquinoline glucocorticoid receptor agonists: discovery of a 3-hydroxyl for improving receptor selectivity.

    PubMed

    Roach, Steven L; Higuchi, Robert I; Hudson, Andrew R; Adams, Mark E; Syka, Peter M; Mais, Dale E; Miner, Jeffrey N; Marschke, Keith B; Zhi, Lin

    2011-01-01

    We have previously disclosed a series of glucocorticoid receptor (GR) ligands derived from 6-indole-1,2,3,4-tetrahydroquinolines through structure-activity relationship (SAR) of the pendent C6-indole ring. In parallel with this effort, we now report SAR of the tetrahydroquinoline A-ring that identified the importance of a C3 hydroxyl in improving GR selectivity within a series of non-steroidal GR agonists. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Classical and atypical agonists activate M1 muscarinic acetylcholine receptors through common mechanisms.

    PubMed

    Randáková, Alena; Dolejší, Eva; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; El-Fakahany, Esam E; Jakubík, Jan

    2015-07-01

    We mutated key amino acids of the human variant of the M1 muscarinic receptor that target ligand binding, receptor activation, and receptor-G protein interaction. We compared the effects of these mutations on the action of two atypical M1 functionally preferring agonists (N-desmethylclozapine and xanomeline) and two classical non-selective orthosteric agonists (carbachol and oxotremorine). Mutations of D105 in the orthosteric binding site and mutation of D99 located out of the orthosteric binding site decreased affinity of all tested agonists that was translated as a decrease in potency in accumulation of inositol phosphates and intracellular calcium mobilization. Mutation of D105 decreased the potency of the atypical agonist xanomeline more than that of the classical agonists carbachol and oxotremorine. Mutation of the residues involved in receptor activation (D71) and coupling to G-proteins (R123) completely abolished the functional responses to both classical and atypical agonists. Our data show that both classical and atypical agonists activate hM1 receptors by the same molecular switch that involves D71 in the second transmembrane helix. The principal difference among the studied agonists is rather in the way they interact with D105 in the orthosteric binding site. Furthermore, our data demonstrate a key role of D105 in xanomeline wash-resistant binding and persistent activation of hM1 by wash-resistant xanomeline. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Cannabinoid receptor interacting protein suppresses agonist-driven CB1 receptor internalization and regulates receptor replenishment in an agonist-biased manner.

    PubMed

    Blume, Lawrence C; Leone-Kabler, Sandra; Luessen, Deborah J; Marrs, Glen S; Lyons, Erica; Bass, Caroline E; Chen, Rong; Selley, Dana E; Howlett, Allyn C

    2016-11-01

    Cannabinoid receptor interacting protein 1a (CRIP1a) is a CB1 receptor (CB1 R) distal C-terminus-associated protein that modulates CB1 R signaling via G proteins, and CB1 R down-regulation but not desensitization (Blume et al. [2015] Cell Signal., 27, 716-726; Smith et al. [2015] Mol. Pharmacol., 87, 747-765). In this study, we determined the involvement of CRIP1a in CB1 R plasma membrane trafficking. To follow the effects of agonists and antagonists on cell surface CB1 Rs, we utilized the genetically homogeneous cloned neuronal cell line N18TG2, which endogenously expresses both CB1 R and CRIP1a, and exhibits a well-characterized endocannabinoid signaling system. We developed stable CRIP1a-over-expressing and CRIP1a-siRNA-silenced knockdown clones to investigate gene dose effects of CRIP1a on CB1 R plasma membrane expression. Results indicate that CP55940 or WIN55212-2 (10 nM, 5 min) reduced cell surface CB1 R by a dynamin- and clathrin-dependent process, and this was attenuated by CRIP1a over-expression. CP55940-mediated cell surface CB1 R loss was followed by a cycloheximide-sensitive recovery of surface receptors (30-120 min), suggesting the requirement for new protein synthesis. In contrast, WIN55212-2-mediated cell surface CB1 Rs recovered only in CRIP1a knockdown cells. Changes in CRIP1a expression levels did not affect a transient rimonabant (10 nM)-mediated increase in cell surface CB1 Rs, which is postulated to be as a result of rimonabant effects on 'non-agonist-driven' internalization. These studies demonstrate a novel role for CRIP1a in agonist-driven CB1 R cell surface regulation postulated to occur by two mechanisms: 1) attenuating internalization that is agonist-mediated, but not that in the absence of exogenous agonists, and 2) biased agonist-dependent trafficking of de novo synthesized receptor to the cell surface.

  20. Anti-depressant like activity of N-n-butyl-3-methoxyquinoxaline-2-carboxamide (6o) a 5-HT3 receptor antagonist.

    PubMed

    Bhatt, Shvetank; Mahesh, Radhakrishnan; Devadoss, Thangaraj; Jindal, Ankur

    2013-06-01

    The compound 6o (at 0.5, 1 and 2 mg/kg, ip) with optimum log P and pA2 value, was subjected to forced swim test (FST) and tail suspension test (TST). The compound 6o significantly reduced the duration of immobility in mice without affecting the base line locomotion in actophotometer. Moreover, 6o (2 mg/kg, ip), potentiated the 5-hydroxytryptophan (5-HTP)-induced head twitch responses in mice and at 1 and 2 mg/kg, ip antagonized the reserpine-induced hypothermia (RIH) in rats. In interaction studies with various standard drugs/ligands using FST, 6o (1 and 2 mg/kg, ip) potentiated the anti-depressant effect fluoxetine (5 mg/kg, ip) and reversed the depressant effect of parthenolide (1 mg/kg, ip) by reducing the duration of immobility. Furthermore, 6o (1 and 2 mg/kg, ip) potentiated the effect of bupropion (10 mg/kg, ip) in TST. The behavioural anomalies of the olfactory bulbectomised (OBX) rats were augmented by chronic 6o (1 and 2 mg/kg) treatment as observed from the modified open field test (parameters: ambulation, rearing, fecal pellet). The results suggest that compound 6o exhibited anti-depressant like effect in rodent models of depression.

  1. Intrinsic Relative Activities of Opioid Agonists in Activating Gα proteins and Internalizing Receptor: Differences between Human and Mouse Receptors

    PubMed Central

    DiMattio, Kelly M.; Ehlert, Frederick J.; Liu-Chen, Lee-Yuan

    2015-01-01

    Several investigators recently identified biased opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [35S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi−G) and receptor internalization (RAi−I) and the degree of functional selectivity between the two [Log RAi−G − Log RAi−I, RAi−G/RAi−I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1–17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed. PMID:26057692

  2. Serotonergic system and its role in epilepsy and neuropathic pain treatment: a review based on receptor ligands.

    PubMed

    Panczyk, Katarzyna; Golda, Sylwia; Waszkielewicz, Anna; Zelaszczyk, Dorota; Gunia-Krzyzak, Agnieszka; Marona, Henryk

    2015-01-01

    The serotonergic system is involved in pathomechanisms of both epilepsy and neuropathic pain. So far, participation in the epileptogenesis and maintenance of epilepsy was proved for 5-HT1A, 5-HT2C, 5-HT3, 5-HT4 and 5-HT7 receptors as well as 5-HTT serotonin transporter. Depending on the receptor type or its localization, its stimulation may increase or decrease neuronal excitability. According to the available data, neuropathic pain mechanisms involve 5-HT1A/1B/1D, 5-HT2A/2B/2C, 5-HT3, 5-HT4, 5-HT6, 5-HT7 receptors and 5-HTT serotonin transporter. Changes in their expression modulate pain mainly by affecting the transmission through serotonergic descending pathways. Several compounds, whose mechanisms of action base on influence on the serotonergic system, are already in use. These are 5-HT3 agonists (triptans) in case of migraine, tricyclic antidepressants or monoamine reuptake inhibitors in neuropathic pain treatment. In addition, selective and non-selective ligands are tested for their anticonvulsant or analgesic properties. Some ED50 values have been already obtained in such animal models as maximal electroshock (MES)-induced seizures (epilepsy), spinal nerve ligation (SNL), chronic constriction injury (CCI) or formalin (neuropathic pain). This review shows that in case of drug discovery within the serotonergic system one must take into account special significance of factors such as: the species, the type of model, the route of administration, and the dose range.

  3. Mechanical stress activates NMDA receptors in the absence of agonists

    PubMed Central

    Maneshi, Mohammad Mehdi; Maki, Bruce; Gnanasambandam, Radhakrishnan; Belin, Sophie; Popescu, Gabriela K.; Sachs, Frederick; Hua, Susan Z.

    2017-01-01

    While studying the physiological response of primary rat astrocytes to fluid shear stress in a model of traumatic brain injury (TBI), we found that shear stress induced Ca2+ entry. The influx was inhibited by MK-801, a specific pore blocker of N-Methyl-D-aspartic acid receptor (NMDAR) channels, and this occurred in the absence of agonists. Other NMDA open channel blockers ketamine and memantine showed a similar effect. The competitive glutamate antagonists AP5 and GluN2B-selective inhibitor ifenprodil reduced NMDA-activated currents, but had no effect on the mechanically induced Ca2+ influx. Extracellular Mg2+ at 2 mM did not significantly affect the shear induced Ca2+ influx, but at 10 mM it produced significant inhibition. Patch clamp experiments showed mechanical activation of NMDAR and inhibition by MK-801. The mechanical sensitivity of NMDARs may play a role in the normal physiology of fluid flow in the glymphatic system and it has obvious relevance to TBI. PMID:28045032

  4. Thrombopoietin-receptor agonists in haematological disorders: the Danish experience.

    PubMed

    Gudbrandsdottir, Sif; Frederiksen, Henrik; Hasselbalch, Hans

    2012-01-01

    The objective of this study was to investigate the use of thrombopoietin-receptor agonists (TPO-ra) in patients with refractory primary immune thrombocytopenia (ITP) as well as off-label use of TPO-ra in Danish haematology departments. Hospital medical records from 32 of the 39 patients having received TPO-ra from 2009 to 1 May 2011 were available for data collection and included in the study. Of these patients, 15 received TPO-ra for refractory primary ITP, 7 for secondary ITP (chronic lymphatic leukaemia, systemic lupus erythematosus, Evans syndrome, human immunodeficiency virus and celiac disease) and 10 were treated for non-ITP (chemotherapy-induced, acute myeloid leukaemia, myelodysplastic syndrome, hereditary spherocytosis and suspected chemically induced thrombocytopenia). Initial response to TPO-ra defined as platelet counts >30 × 10(9)/l after 4 weeks of treatment was found in 59% of primary ITP patients, 57% of patients with secondary ITP and 40% of patients with non-ITP. There were four deaths in the cohort, three of which were related to pre-existing medical conditions. Otherwise adverse effects were in general mild. This Danish retrospective registration study has demonstrated that in the off-protocol setting, the use of TPO-ra is associated with response rates largely similar to those seen in previous protocol-monitored studies and no new adverse events were reported.

  5. Agonist-Specific Recruitment of Arrestin Isoforms Differentially Modify Delta Opioid Receptor Function.

    PubMed

    Pradhan, Amynah A; Perroy, Julie; Walwyn, Wendy M; Smith, Monique L; Vicente-Sanchez, Ana; Segura, Laura; Bana, Alia; Kieffer, Brigitte L; Evans, Christopher J

    2016-03-23

    Ligand-specific recruitment of arrestins facilitates functional selectivity of G-protein-coupled receptor signaling. Here, we describe agonist-selective recruitment of different arrestin isoforms to the delta opioid receptor in mice. A high-internalizing delta opioid receptor agonist (SNC80) preferentially recruited arrestin 2 and, in arrestin 2 knock-outs (KOs), we observed a significant increase in the potency of SNC80 to inhibit mechanical hyperalgesia and decreased acute tolerance. In contrast, the low-internalizing delta agonists (ARM390, JNJ20788560) preferentially recruited arrestin 3 with unaltered behavioral effects in arrestin 2 KOs. Surprisingly, arrestin 3 KO revealed an acute tolerance to these low-internalizing agonists, an effect never observed in wild-type animals. Furthermore, we examined delta opioid receptor-Ca(2+)channel coupling in dorsal root ganglia desensitized by ARM390 and the rate of resensitization was correspondingly decreased in arrestin 3 KOs. Live-cell imaging in HEK293 cells revealed that delta opioid receptors are in pre-engaged complexes with arrestin 3 at the cell membrane and that ARM390 strengthens this membrane interaction. The disruption of these complexes in arrestin 3 KOs likely accounts for the altered responses to low-internalizing agonists. Together, our results show agonist-selective recruitment of arrestin isoforms and reveal a novel endogenous role of arrestin 3 as a facilitator of resensitization and an inhibitor of tolerance mechanisms. Agonists that bind to the same receptor can produce highly distinct signaling events and arrestins are a major mediator of this ligand bias. Here, we demonstrate that delta opioid receptor agonists differentially recruit arrestin isoforms. We found that the high-internalizing agonist SNC80 preferentially recruits arrestin 2 and knock-out (KO) of this protein results in increased efficacy of SNC80. In contrast, low-internalizing agonists (ARM390 and JNJ20788560) preferentially recruit

  6. Hydrogen/Deuterium Exchange Reveals Distinct Agonist/Partial Agonist Receptor Dynamics within the intact Vitamin D Receptor/Retinoid X Receptor Heterodimer

    PubMed Central

    Zhang, Jun; Chalmers, Michael J.; Stayrook, Keith R.; Burris, Lorri L.; Garcia-Ordonez, Ruben D.; Pascal, Bruce D.; Burris, Thomas P.; Dodge, Jeffery A.; Griffin, Patrick R.

    2010-01-01

    Summary Regulation of nuclear receptor (NR) activity is driven by alterations in the conformational dynamics of the receptor upon ligand binding. Previously we demonstrated that hydrogen/deuterium exchange (HDX) can be applied to determine novel mechanism of action of PPARγ ligands and in predicting tissue specificity of selective estrogen receptor modulators. Here we applied HDX to probe the conformational dynamics of the ligand binding domain (LBD) of the vitamin D receptor (VDR) upon binding its natural ligand 1α,25-dihydroxyvitamin D3 (1,25D3), and two analogs, alfacalcidol and ED-71. Comparison of HDX profiles from ligands in complex with the LBD with full-length receptor bound to its cognate receptor re