Science.gov

Sample records for 5-ht3 receptor subtypes

  1. Mode of action of peppermint oil and (-)-menthol with respect to 5-HT3 receptor subtypes: binding studies, cation uptake by receptor channels and contraction of isolated rat ileum.

    PubMed

    Heimes, Katharina; Hauk, Florian; Verspohl, Eugen J

    2011-05-01

    Peppermint oil (Mentha × piperita L. (Lamiaceae) has been shown to exert potent antiemetic properties, but its mode of action has not yet been elucidated. Among its active constituents (-)-menthol is the most important. Three different in vitro models were used to investigate the effects on 5-HT(3) receptors (serotonin receptor subtype): [(14)C]guanidinium influx into N1E-115 cells which express 5-HT(3) receptors, isotonic contractions of the isolated rat ileum and equilibrium competition binding studies using a radioactively labelled 5-HT(3) receptor antagonist ([(3)H]GR65630) (3-(5-methyl-1H-imidazol-4-yl)-1-(1-methyl-1H-indol-3-yl)-1-propanone). Both peppermint oil and (-)-menthol inhibited [(14)C]guanidinium influx through 5-HT(3) receptor channels as well as contractions of the ileum induced by serotonin. Neither the peppermint oil nor (-)-menthol, however, was able to displace [(3)H]GR65630 from 5-HT(3) binding sites. It may be concluded that peppermint oil and (-)-menthol exert their antiemetic effect at least partly by acting on the 5-HT(3) receptor ion-channel complex, probably by binding to a modulatory site distinct from the serotonin binding site.

  2. Interaction of Pyridostigmine with the 5-HT(3) Receptor Antagonist Ondansetron in Guinea Pigs

    DTIC Science & Technology

    1993-05-13

    5 - HT3 RECEPTOR - ANTAGONIST .ONDANSETRON IN GUINEA PIGS BR. Capacio, CE. Byers...apart. REFERENCES 1. Fozard JR. 5 -HT; The Enigma Variations. =JE, 8, 501-506 (December 1987). 2. Watling KJ. 5 - HT3 Receptor Agonists and Antagonists . In... 5 -HT receptor subtype three antagonists (5HT 3 ) such as the compound ondansetron (OND) have been identified as useful in the treatment of

  3. Structure-activity relationships of quinoxaline-based 5-HT3A and 5-HT3AB receptor-selective ligands.

    PubMed

    Thompson, Andrew J; Verheij, Mark H P; van Muijlwijk-Koezen, Jacqueline E; Lummis, Sarah C R; Leurs, Rob; de Esch, Iwan J P

    2013-06-01

    Until recently, discriminating between homomeric 5-HT3A and heteromeric 5-HT3AB receptors was only possible with ligands that bind in the receptor pore. This study describes the first series of ligands that can discriminate between these receptor types at the level of the orthosteric binding site. During a recent fragment screen, 2-chloro-3-(4-methylpiperazin-1-yl)quinoxaline (VUF10166) was identified as a ligand that displays an 83-fold difference in [(3)H]granisetron binding affinity between 5-HT3A and 5-HT3AB receptors. Fragment hit exploration, initiated from VUF10166 and 3-(4-methylpiperazin-1-yl)quinoxalin-2-ol, resulted in a series of compounds with higher affinity at either 5-HT3A or 5-HT3AB receptors. These ligands reveal that a single atom is sufficient to change the selectivity profile of a compound. At the extremes of the new compounds were 2-amino-3-(4-methylpiperazin-1-yl)quinoxaline, which showed 11-fold selectivity for the 5-HT3A receptor, and 2-(4-methylpiperazin-1-yl)quinoxaline, which showed an 8.3-fold selectivity for the 5-HT3AB receptor. These compounds represent novel molecular tools for studying 5-HT3 receptor subtypes and could help elucidate their physiological roles.

  4. Bivalent Ligands for the Serotonin 5-HT3 Receptor

    PubMed Central

    2011-01-01

    The serotonin 5-HT3 receptor is a ligand-gated ion channel, which by virtue of its pentameric architecture, can be considered to be an intriguing example of intrinsically multivalent biological receptors. This paper describes a general design approach to the study of multivalency in this multimeric ion channel. Bivalent ligands for 5-HT3 receptor have been designed by linking an arylpiperazine moiety to probes showing different functional features. Both homobivalent and heterobivalent ligands have shown 5-HT3 receptor affinity in the nanomolar range, providing evidence for the viability of our design approach. Moreover, the high affinity shown by homobivalent ligands suggests that bivalency is a promising approach in 5-HT3 receptor modulation and provides the rational basis for applying the concepts of multivalency to the study of 5-HT3 receptor function. PMID:24900351

  5. The serotonin 5-HT3 receptor: a novel neurodevelopmental target.

    PubMed

    Engel, Mareen; Smidt, Marten P; van Hooft, Johannes A

    2013-01-01

    Serotonin (5-hydroxytryptamine, 5-HT), next to being an important neurotransmitter, recently gained attention as a key-regulator of pre- and postnatal development in the mammalian central nervous system (CNS). Several receptors for 5-HT are expressed in the developing brain including a ligand-gated ion channel, the 5-HT3 receptor. Over the past years, evidence has been accumulating that 5-HT3 receptors are involved in the regulation of neurodevelopment by serotonin. Here, we review the spatial and temporal expression patterns of 5-HT3 receptors in the pre- and early postnatal rodent brain and its functional implications. First, 5-HT3 receptors are expressed on GABAergic interneurons in neocortex and limbic structures derived from the caudal ganglionic eminence. Mature inhibitory GABAergic interneurons fine-tune neuronal excitability and thus are crucial for the physiological function of the brain. Second, 5-HT3 receptors are expressed on specific glutamatergic neurons, Cajal-Retzius cells in the cortex and granule cells in the cerebellum, where they regulate morphology, positioning, and connectivity of the local microcircuitry. Taken together, the 5-HT3 receptor emerges as a potential key-regulator of network formation and function in the CNS, which could have a major impact on our understanding of neurodevelopmental disorders in which 5-HT plays a role.

  6. Menthol inhibits 5-HT3 receptor-mediated currents.

    PubMed

    Ashoor, Abrar; Nordman, Jacob C; Veltri, Daniel; Yang, Keun-Hang Susan; Shuba, Yaroslav; Al Kury, Lina; Sadek, Bassem; Howarth, Frank C; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-11-01

    The effects of alcohol monoterpene menthol, a major active ingredient of the peppermint plant, were tested on the function of human 5-hydroxytryptamine type 3 (5-HT3) receptors expressed in Xenopus laevis oocytes. 5-HT (1 μM)-evoked currents recorded by two-electrode voltage-clamp technique were reversibly inhibited by menthol in a concentration-dependent (IC50 = 163 μM) manner. The effects of menthol developed gradually, reaching a steady-state level within 10-15 minutes and did not involve G-proteins, since GTPγS activity remained unaltered and the effect of menthol was not sensitive to pertussis toxin pretreatment. The actions of menthol were not stereoselective as (-), (+), and racemic menthol inhibited 5-HT3 receptor-mediated currents to the same extent. Menthol inhibition was not altered by intracellular 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid injections and transmembrane potential changes. The maximum inhibition observed for menthol was not reversed by increasing concentrations of 5-HT. Furthermore, specific binding of the 5-HT3 antagonist [(3)H]GR65630 was not altered in the presence of menthol (up to 1 mM), indicating that menthol acts as a noncompetitive antagonist of the 5-HT3 receptor. Finally, 5-HT3 receptor-mediated currents in acutely dissociated nodose ganglion neurons were also inhibited by menthol (100 μM). These data demonstrate that menthol, at pharmacologically relevant concentrations, is an allosteric inhibitor of 5-HT3 receptors.

  7. [Medical economics evaluation of 5-HT3 receptor antagonist drugs].

    PubMed

    Utsunomiya, Junpei; Hirano, Shigeki; Fukui, Aiko; Funabashi, Kazuaki; Deguchi, Yuko; Yamada, Susumu; Naito, Kazuyuki

    2010-10-01

    At Komaki City Hospital, the drug cost in connection with cancer chemotherapy was re-examined as part of improved management along with the introduction of DPC in July 2008. With due attention to the 5-HT3 receptor antagonists, both the change from injections to oral drugs and the change from brand-name drugs to generic drugs were tried between July 2008 and June 2009. After that, in order to examine the economic impact of these changes, we investigated and analyzed the number of medications, the cost of medicine purchased, and the average drug cost per medication of the 5-HT3 receptor antagonists between April 2008 and September 2009. As a result, the cost of 5-HT3 receptor antagonists purchased decreased greatly, and the impact of the improvement was mainly due to the change to oral drugs, and partially to the change to generic drugs. Therefore, from the viewpoint of hospital economic improvement in DPC, it was thought that the change to oral drugs(5-HT3 receptor antagonists)is given top priority.

  8. [5-HT3 receptor antagonist als analgetics in rheumatic diseases].

    PubMed

    Müller, W; Fiebich, B L; Stratz, T

    2006-10-01

    Various rheumatic diseases like fibromyalgia, systemic inflammatory rheumatic disorders and localized diseases, such as arthritides and activated arthroses, tendinopathies and periarthropathies, as well as trigger points can be improved considerably by treatment with the 5-HT3 receptor antagonist tropisetron. Particularly in the latter group of diseases, local injections have done surprisingly rapid analgesic action. This effect matches that of local anesthetics, but lasts considerably longer and is comparable to local injections of local anesthetics combined with corticosteroids. The action of the 5-HT3 receptor antagonists can be attributed to an antinociceptive effect that occurs at the same time as an antiphlogistic and probably also an immunosuppressive effect. Whereas an inhibited release of substance P from the nociceptors, and possibly some other neurokins as well, seems to be the most likely explanation for the antinociceptive action, the antiphlogistic effect is primarily due to an inhibited formation of various different phlogistic substances; in some conditions, like systemic inflammatory rheumatic diseases, for example, the 5-HT3 receptor antagonists may exert an immunosuppressive effect in addition to this.

  9. 5-HT3 receptors antagonists reduce serotonin-induced scratching in mice.

    PubMed

    Ostadhadi, Sattar; Kordjazy, Nastaran; Haj-Mirzaian, Arya; Mansouri, Parvin; Dehpour, Ahmad Reza

    2015-06-01

    Serotonin (5-hydroxytryptamine, 5-HT) acts as a pruritogen in humans and animals, but the mechanisms of action through that serotonin induces itch response have not been extensively discovered. In our study, we attempted to investigate the role of 5-HT3 receptors in scratching behavior due to intradermal serotonin injection. Intradermal injection of serotonin (14.1-235 nmol/site) into the nape of the neck of mice was performed to elicit itch. Scratching behavior was evaluated by measuring the number of bouts during 60 min after injection. We evaluated the effect of intraperitoneal pretreatment with ondansetron and tropisetron (0.1, 0.3, and 1 mg/kg) on itch induced by serotonin. Also, intradermal ondansetron and tropisetron at doses 50, 100, and 200 nmol/site were concurrently administrated with serotonin. Serotonin produced a significant enhancement in scratching at dose 141 nmol/site. Concurrent administration of ondansetron (50, 100, and 200 nmol/site) and tropisetron (100 and 200 nmol/site) with serotonin reduced scratching activity compared to the animals that only received serotonin. Also, pretreatment with intraperitoneal ondansetron and tropisetron (0.3 and 1 mg/kg) 30 min before serotonin attenuated the itch response. We showed that the scratching induced by intradermal serotonin is mediated by 5-HT3 receptors subtype. It can be concluded that 5-HT3 may play a role in mediating serotonin-associated itch responses, and we introduce 5-HT3 receptors as possible targets for antipruritic agents.

  10. Downregulated hypothalamic 5-HT3 receptor expression and enhanced 5-HT3 receptor antagonist-mediated improvement in fatigue-like behaviour in cholestatic rats.

    PubMed

    Nguyen, H; Wang, H; le, T; Ho, W; Sharkey, K A; Swain, M G

    2008-03-01

    The serotonin neurotransmitter system, including the 5-HT(3) receptor, has been implicated in the genesis of fatigue in patients with liver disease. Therefore, we examined the possible role of 5-HT(3) receptors in cholestasis-associated fatigue. Rats were either bile duct resected (BDR) or sham resected and studied 10 days postsurgery. A significant decrease in hypothalamic 5-HT(3) receptor expression was detected by immunohistochemistry and Western blot in BDR vs sham rats, coupled with increased hypothalamic serotonin turnover identified by an elevated 5-hydroxyindoleacetic acid (5-HIAA) to 5-HT ratio in BDR vs sham rats. To examine fatigue-like behaviour, an activity meter was used. BDR rats exhibited significantly lower locomotor activity than did sham animals. Subcutaneous injection of the 5-HT(3) receptor antagonist tropisetron (0.1 mg kg(-1)) resulted in significantly increased locomotor activity in BDR rats compared to the activity in saline-treated controls, but was without effect in sham rats. However, a 10-fold higher dose of tropisetron significantly increased locomotor activity in both BDR and sham rats compared to saline-injected controls. These findings indicate that cholestasis in the rat is associated with increased hypothalamic serotonin turnover, decreased hypothalamic 5-HT(3) receptor expression, and enhanced sensitivity to locomotor activation induced by 5-HT(3) receptor antagonism, thereby implicating the 5-HT(3) receptor system in cholestasis associated fatigue.

  11. Comparative receptor mapping of serotoninergic 5-HT3 and 5-HT4 binding sites*

    NASA Astrophysics Data System (ADS)

    López-Rodríguez, María L.; Morcillo, María José; Benhamú, Bellinda; Rosado, María Luisa

    1997-11-01

    The clinical use of currently available drugs acting at the5-HT4 receptor has been hampered by their lack of selectivityover 5-HT3 binding sites. For this reason, there is considerableinterest in the medicinal chemistry of these serotonin receptor subtypes, andsignificant effort has been made towards the discovery of potent and selectiveligands. Computer-aided conformational analysis was used to characterizeserotoninergic 5-HT3 and 5-HT4 receptorrecognition. On the basis of the generally accepted model of the5-HT3 antagonist pharmacophore, we have performed a receptormapping of this receptor binding site, following the active analog approach(AAA) defined by Marshall. The receptor excluded volume was calculated as theunion of the van der Waals density maps of nine active ligands(pKi ≥ 8.9), superimposed in pharmacophoric conformations.Six inactive analogs (pKi < 7.0) were subsequently used todefine the essential volume, which in its turn can be used to define theregions of steric intolerance of the 5-HT3 receptor. Five activeligands (pKi ≥ 9.3) at 5-HT4 receptors wereused to construct an antagonist pharmacophore for this receptor, and todetermine its excluded volume by superimposition of pharmacophoricconformations. The volume defined by the superimposition of five inactive5-HT4 receptor analogs that possess the pharmacophoric elements(pKi ≤ 6.6) did not exceed the excluded volume calculated forthis receptor. In this case, the inactivity may be due to the lack of positiveinteraction of the amino moiety with a hypothetical hydrophobic pocket, whichwould interact with the voluminous substituents of the basic nitrogen ofactive ligands. The difference between the excluded volumes of both receptorshas confirmed that the main difference is indeed in the basic moiety. Thus,the 5-HT3 receptor can only accommodate small substituents inthe position of the nitrogen atom, whereas the 5-HT4 receptorrequires more voluminous groups. Also, the basic nitrogen is located at ca

  12. The 5-HT3 receptor is essential for exercise-induced hippocampal neurogenesis and antidepressant effects.

    PubMed

    Kondo, M; Nakamura, Y; Ishida, Y; Shimada, S

    2015-11-01

    Exercise has a variety of beneficial effects on brain structure and function, such as hippocampal neurogenesis, mood and memory. Previous studies have shown that exercise enhances hippocampal neurogenesis, induces antidepressant effects and improves learning behavior. Brain serotonin (5-hydroxytryptamine, 5-HT) levels increase following exercise, and the 5-HT system has been suggested to have an important role in these exercise-induced neuronal effects. However, the precise mechanism remains unclear. In this study, analysis of the 5-HT type 3A receptor subunit-deficient (htr3a(-/-)) mice revealed that lack of the 5-HT type 3 (5-HT3) receptor resulted in loss of exercise-induced hippocampal neurogenesis and antidepressant effects, but not of learning enhancement. Furthermore, stimulation of the 5-HT3 receptor promoted neurogenesis. These findings demonstrate that the 5-HT3 receptor is the critical target of 5-HT action in the brain following exercise, and is indispensable for hippocampal neurogenesis and antidepressant effects induced by exercise. This is the first report of a pivotal 5-HT receptor subtype that has a fundamental role in exercise-induced morphological changes and psychological effects.

  13. Building a 5-HT3A Receptor Expression Map in the Mouse Brain

    PubMed Central

    Koyama, Yoshihisa; Kondo, Makoto; Shimada, Shoichi

    2017-01-01

    Of the many serotonin receptors, the type 3 receptors (5-HT3R) are the only ionotropic ones, playing a key role in fast synaptic transmission and cognitive and emotional brain function through controlled neuronal excitation. To better understand the various functions of 5-HT3Rs, it is very important to know their expression pattern in the central nervous system (CNS). To date, many distributional studies have shown localized 5-HT3R expression in the brain and spinal cord. However, an accurate pattern of 5-HT3R expression in the CNS remains to be elucidated. To investigate the distribution of 5-HT3R in the mouse brain in detail, we performed immunofluorescent staining using 5-HT3AR-GFP transgenic mice. We found strong 5-HT3AR expression in the olfactory bulb, cerebral cortex, hippocampus, and amygdala; and partial expression in the pons, medulla, and spinal cord. Meanwhile, the thalamus, hypothalamus, and midbrain exhibited a few 5-HT3AR-expressing cells, and no expression was detected in the cerebellum. Further, double-immunostaining using neural markers confirmed that 5-HT3AR is expressed in GABAergic interneurons containing somatostatin or calretinin. In the present study, we built a 5-HT3AR expression map in the mouse brain. Our findings make significant contributions in elucidating the novel functions of 5-HT3R in the CNS. PMID:28276429

  14. Is All Radiation-Induced Emesis Ameliorated by 5-HT3 Receptor Antagonists

    DTIC Science & Technology

    1992-01-01

    5 - HT3 receptor antagonists ;~// 9-72 Bernard M.I Rabin 0’) and Gregory L. Kingt2) -) Behavioral Sciences and 2 PhYSzo~o~y Dcpiarlrnvni . Arm,. ii - R...RY Exposing ferrets to gamuma rays or X-rays produces vomiting that can be attenuated by 5 - HT3 receptor antagonists and by subdiaphraqmatic vagotomy...Pretreating ferrets with serotonin type-3 ( 5 - HT3 ) receptor antagonists or performing bilateral subdiaphragmatic vagotomy reliably attenuates the

  15. Role of 5-HT3 Receptor on Food Intake in Fed and Fasted Mice

    PubMed Central

    Li, Bingjin; Shao, Dongyuan; Luo, Yungang; Wang, Pu; Liu, Changhong; Zhang, Xingyi; Cui, Ranji

    2015-01-01

    Background Many studies have shown that 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the regulation of feeding behavior. However, the relative contribution of 5-HT3 receptor remains unclear. The present study was aimed to investigate the role of 5-HT3 receptor in control of feeding behavior in fed and fasted mice. Methodology/Principal Findings Food intake and expression of c-Fos, tyrosine hydroxylase (TH), proopiomelanocortin (POMC) and 5-HT in the brain were examined after acute treatment with 5-HT3 receptor agonist SR-57227 alone or in combination with 5-HT3 receptor antagonist ondansetron. Food intake was significantly inhibited within 3 h after acute treatment with SR 57227 in fasted mice but not fed mice, and this inhibition was blocked by ondansetron. Immunohistochemical study revealed that fasting-induced c-Fos expression was further enhanced by SR 57227 in the brainstem and the hypothalamus, and this enhancement was also blocked by ondansetron. Furthermore, the fasting-induced downregulation of POMC expression in the hypothalamus and the TH expression in the brain stem was blocked by SR 57227 in the fasted mice, and this effect of SR 57227 was also antagonized by ondansetron. Conclusion/Significance Taken together, our findings suggest that the effect of SR 57227 on the control of feeding behavior in fasted mice may be, at least partially, related to the c-Fos expression in hypothalamus and brain stem, as well as POMC system in the hypothalamus and the TH system in the brain stem. PMID:25789930

  16. Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells

    PubMed Central

    Kim, Ki Jung; Jeun, Seung Hyun

    2017-01-01

    Lamotrigine is an antiepileptic drug widely used to treat epileptic seizures. Using whole-cell voltage clamp recordings in combination with a fast drug application approach, we investigated the effects of lamotrigine on 5-hydroxytryptamine (5-HT)3 receptors in NCB-20 neuroblastoma cells. Co-application of lamotrigine (1~300 µM) resulted in a concentration-dependent reduction in peak amplitude of currents induced by 3 µM of 5-HT for an IC50 value of 28.2±3.6 µM with a Hill coefficient of 1.2±0.1. These peak amplitude decreases were accompanied by the rise slope reduction. In addition, 5-HT3-mediated currents evoked by 1 mM dopamine, a partial 5-HT3 receptor agonist, were inhibited by lamotrigine co-application. The EC50 of 5-HT for 5-HT3 receptor currents were shifted to the right by co-application of lamotrigine without a significant change of maximal effect. Currents activated by 5-HT and lamotrigine co-application in the presence of 1 min pretreatment of lamotrigine were similar to those activated by 5-HT and lamotrigine co-application alone. Moreover, subsequent application of lamotrigine in the presence of 5-HT and 5-hydroxyindole, known to attenuate 5-HT3 receptor desensitization, inhibited 5-HT3 receptor currents in a concentration-dependent manner. The deactivation of 5-HT3 receptor was delayed by washing with an external solution containing lamotrigine. Lamotrigine accelerated the desensitization process of 5-HT3 receptors. There was no voltage-dependency in the inhibitory effects of lamotrigine on the 5-HT3 receptor currents. These results indicate that lamotrigine inhibits 5-HT3-activated currents in a competitive manner by binding to the open state of the channels and blocking channel activation or accelerating receptor desensitization. PMID:28280410

  17. Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells.

    PubMed

    Kim, Ki Jung; Jeun, Seung Hyun; Sung, Ki-Wug

    2017-03-01

    Lamotrigine is an antiepileptic drug widely used to treat epileptic seizures. Using whole-cell voltage clamp recordings in combination with a fast drug application approach, we investigated the effects of lamotrigine on 5-hydroxytryptamine (5-HT)3 receptors in NCB-20 neuroblastoma cells. Co-application of lamotrigine (1~300 µM) resulted in a concentration-dependent reduction in peak amplitude of currents induced by 3 µM of 5-HT for an IC50 value of 28.2±3.6 µM with a Hill coefficient of 1.2±0.1. These peak amplitude decreases were accompanied by the rise slope reduction. In addition, 5-HT3-mediated currents evoked by 1 mM dopamine, a partial 5-HT3 receptor agonist, were inhibited by lamotrigine co-application. The EC50 of 5-HT for 5-HT3 receptor currents were shifted to the right by co-application of lamotrigine without a significant change of maximal effect. Currents activated by 5-HT and lamotrigine co-application in the presence of 1 min pretreatment of lamotrigine were similar to those activated by 5-HT and lamotrigine co-application alone. Moreover, subsequent application of lamotrigine in the presence of 5-HT and 5-hydroxyindole, known to attenuate 5-HT3 receptor desensitization, inhibited 5-HT3 receptor currents in a concentration-dependent manner. The deactivation of 5-HT3 receptor was delayed by washing with an external solution containing lamotrigine. Lamotrigine accelerated the desensitization process of 5-HT3 receptors. There was no voltage-dependency in the inhibitory effects of lamotrigine on the 5-HT3 receptor currents. These results indicate that lamotrigine inhibits 5-HT3-activated currents in a competitive manner by binding to the open state of the channels and blocking channel activation or accelerating receptor desensitization.

  18. 5-HT3 receptor influences the washing phenotype and visual organization in obsessive-compulsive disorder supporting 5-HT3 receptor antagonists as novel treatment option.

    PubMed

    Lennertz, Leonhard; Wagner, Michael; Grabe, Hans Jörgen; Franke, Petra E; Guttenthaler, Vera; Rampacher, Friederike; Schulze-Rauschenbach, Svenja; Vogeley, Andrea; Benninghoff, Jens; Ruhrmann, Stephan; Pukrop, Ralf; Klosterkötter, Joachim; Falkai, Peter; Maier, Wolfgang; Mössner, Rainald

    2014-01-01

    A role of the HTR3A-E genes in obsessive-compulsive disorder (OCD) can be expected based on promising effects of 5-HT3 receptor antagonists as adjunctive treatment of OCD. We therefore genotyped six common coding or promoter variants within the HTR3A-E genes in a case-control-sample consisting of N=236 OCD patients and N=310 control subjects and in N=58 parent-child-trios. Given the heterogeneous OCD phenotype, we also investigated OCD symptom dimensions and cognitive endophenotypes in subsamples. OCD patients scoring high for the washing subtype were significantly more likely to carry the c.256G-allele of the HTR3E variant rs7627615 (p=0.0001) as compared to OCD patients low for this symptom dimension. Visual organization was impaired in OCD patients and unaffected relatives as compared to healthy control subjects and carriers of the HTR3E c.256G/c.256G-genotype performed significantly worse (p=0.007). The case-control analyses revealed a nominal significant association of the HTR3D variant rs1000592 (p.H52R) with OCD (p=0.029) which was also evident after combination of the case-control and the trio-results (p=0.024). In male subjects, the variant rs6766410 (p.N163K) located in the HTR3C was significantly associated with OCD (p=0.007). The association findings of the HTR3C and the HTR3E remained significant after correction for the number of variants investigated. These findings indicate a role of common variants of the HTR3A-E genes in OCD and OCD-related phenotypes and further support the use of 5-HT3 receptor antagonists as novel treatment options. The HTR3E gene is a novel candidate gene impacting on the individual expression of OC symptoms and OCD-related cognitive dysfunction.

  19. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.

    PubMed

    Larson, Eric D; Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C; Finger, Thomas E

    2015-12-02

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response.

  20. 5-Chloroindole: a potent allosteric modulator of the 5-HT3 receptor

    PubMed Central

    Newman, Amy S; Batis, Nikolaos; Grafton, Gillian; Caputo, Francesca; Brady, Catherine A; Lambert, Jeremy J; Peters, John A; Gordon, John; Brain, Keith L; Powell, Andrew D; Barnes, Nicholas M

    2013-01-01

    Background and Purpose The 5-HT3 receptor is a ligand-gated ion channel that is modulated allosterically by various compounds including colchicine, alcohols and volatile anaesthetics. However the positive allosteric modulators (PAMs) identified to date have low affinity, which hinders investigation because of non-selective effects at pharmacologically active concentrations. The present study identifies 5-chloroindole (Cl-indole) as a potent PAM of the 5-HT3 receptor. Experimental Approach 5-HT3 receptor function was assessed by the increase in intracellular calcium and single-cell electrophysiological recordings in HEK293 cells stably expressing the h5-HT3A receptor and also the mouse native 5-HT3 receptor that increases neuronal contraction of bladder smooth muscle. Key Results Cl-indole (1–100 μM) potentiated agonist (5-HT) and particularly partial agonist [(S)-zacopride, DDP733, RR210, quipazine, dopamine, 2-methyl-5-HT, SR57227A, meta chlorophenyl biguanide] induced h5-HT3A receptor-mediated responses. This effect of Cl-indole was also apparent at the mouse native 5-HT3 receptor. Radioligand-binding studies identified that Cl-indole induced a small (∼twofold) increase in the apparent affinity of 5-HT for the h5-HT3A receptor, whereas there was no effect upon the affinity of the antagonist, tropisetron. Cl-indole was able to reactivate desensitized 5-HT3 receptors. In contrast to its effect on the 5-HT3 receptor, Cl-indole did not alter human nicotinic α7 receptor responses. Conclusions and Implications The present study identifies Cl-indole as a relatively potent and selective PAM of the 5-HT3 receptor; such compounds will aid investigation of the molecular basis for allosteric modulation of the 5-HT3 receptor and may assist the discovery of novel therapeutic drugs targeting this receptor. Linked Articles Recent reviews on allosteric modulation can be found at: Kenakin, T (2013). New concepts in pharmacological efficacy at 7TM receptors: IUPHAR Review 2

  1. The binding characteristics and orientation of a novel radioligand with distinct properties at 5-HT3A and 5-HT3AB receptors

    PubMed Central

    Thompson, Andrew J.; Verheij, Mark H.P.; Verbeek, Joost; Windhorst, Albert D.; de Esch, Iwan J.P.; Lummis, Sarah C.R.

    2014-01-01

    VUF10166 (2-chloro-3-(4-methyl piperazin-1-yl)quinoxaline) is a ligand that binds with high affinity to 5-HT3 receptors. Here we synthesise [3H]VUF10166 and characterise its binding properties at 5-HT3A and 5-HT3AB receptors. At 5-HT3A receptors [3H]VUF10166 displayed saturable binding with a Kd of 0.18 nM. Kinetic measurements gave monophasic association (6.25 × 107 M−1 min−1) and dissociation (0.01 min−1) rates that yielded a similar Kd value (0.16 nM). At 5-HT3AB receptors two association (6.15 × 10−7, 7.23 M−1 min−1) and dissociation (0.024, 0.162 min−1) rates were seen, yielding Kd values (0.38 nM and 22 nM) that were consistent with values obtained in saturation (Kd = 0.74 nM) and competition (Ki = 37 nM) binding experiments respectively. At both receptor types, specific binding was inhibited by classical 5-HT3 receptor-selective orthosteric ligands (5-HT, allosetron, d-tubocurarine, granisetron, mCPBG, MDL72222, quipazine), but not by non-competitive antagonists (bilobalide, ginkgolide B, picrotoxin) or competitive ligands of other Cys-loop receptors (ACh, bicuculline, glycine, gabazine). To explore VUF10166 ligand–receptor interactions we used in silico modelling and docking, and tested the predictions using site directed mutagenesis. The data suggest that VUF10166 adopts a similar orientation to 5-HT3 receptor agonists bound in AChBP (varenicline) and 5HTBP (5-HT) crystal structures. PMID:25174552

  2. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists.

    PubMed

    Fakhfouri, Gohar; Mousavizadeh, Kazem; Mehr, Sharam Ejtemaei; Dehpour, Ahmad Reza; Zirak, Mohammad Reza; Ghia, Jean-Eric; Rahimian, Reza

    2015-12-01

    5-HT3 receptor antagonists are extensively used as efficacious agents in counteracting chemotherapy-induced emesis. Recent investigations have shed light on other potential effects (analgesic, anxiolytic, and anti-psychotic). Some studies have reported neuroprotective properties for the 5-HT3 receptor antagonists in vitro and in vivo. When administered to Aβ-challenged rat cortical neurons, 5-HT3 receptor antagonists substantially abated apoptosis, elevation of cytosolic Ca(2), glutamate release, reactive oxygen species (ROS) generation, and caspase-3 activity. In addition, in vivo studies show that 5-HT3 receptor antagonists possess, alongside their anti-emetic effects, notable immunomodulatory properties in CNS. We found that pretreatment with tropisetron significantly improved neurological deficits and diminished leukocyte transmigration into the brain, TNF-α level, and brain infarction in a murine model of embolic stroke. Our recent investigation revealed that tropisetron protects against Aβ-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and -independent pathways. Tropisetron, in vitro, was found to be an efficacious inhibitor of the signaling pathway leading to the activation of pro-inflammatory NF-κB, a transcription factor pivotal to the upregulation of several neuroinflammatory mediators in brain. This mini review summarizes novel evidence concerning effects of 5-HT3 antagonists and their possible mechanisms of action in ameliorating neurodegenerative diseases including Alzheimer, multiple sclerosis, and stroke. Further, we discuss some newly synthesized 5-HT3 receptor antagonists with dual properties of 5-HT3 receptor blockade/alpha-7 nicotinic receptor activator and their potential in management of memory impairment. Since 5-HT3 receptor antagonists possess a large therapeutic window, they can constitute a scaffold for design and synthesis of new neuroprotective medications.

  3. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves

    PubMed Central

    Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C.; Finger, Thomas E.

    2015-01-01

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT3A promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT3A mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μm 5-HT and this response is blocked by 1 μm ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μm m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. SIGNIFICANCE STATEMENT Historically, serotonin (5-hydroxytryptamine; 5-HT) has been described as a candidate neurotransmitter in the gustatory system and recent studies show that type III taste receptor cells release 5-HT in response to various taste stimuli. In the present study, we demonstrate that a subset of gustatory sensory neurons express functional

  4. Immunohistochemical characterization of 5-HT(3A) receptors in the Syrian hamster forebrain.

    PubMed

    Carrillo, Maria; Ricci, Lesley A; Schwartzer, Jared J; Melloni, Richard H

    2010-05-06

    The Syrian hamster (Mesocricetus auratus) has been extensively used as an animal model to investigate neuronal networks underlying various behaviors where 5-HT(3A) receptors have been found to play a critical role. To date, however, there is no comprehensive description of the distribution of 5-HT(3A) receptors in the Syrian hamster brain. The current study examined the localization of 5-HT(3A) receptors across the neuraxis of the Syrian hamster forebrain using immunohistochemistry. Overall, 5-HT(3A) receptors were widely and heterogeneously distributed across the neuraxis of the Syrian hamster brain. Notably, the most intense 5-HT(3A) immunolabeling patterns were observed in the cerebral cortex and amygdala. In addition, high variability in receptor density and expression patterns (i.e., perikarya, fibers and/or neuropilar puncta) was observed within the majority of brain areas examined, indicating that the role this receptor has in the modulation of a particular neural function differs depending on brain region. In some regions (i.e., nucleus accumbens) differences in the immunolabeling pattern between rostral, medial and caudal portions were also observed, suggesting functional heterogeneity of this receptor within a single brain region. Together, these results and the localization of this receptor to brain areas involved in the regulation of sexual behavior, aggression, circadian rhythm, drug abuse and anxiety implicate 5-HT(3A) receptors in the modulation of various behaviors and neural functions in the Syrian hamster. Further, these results underscore the importance of evaluating 5-HT(3A) receptors as a pharmacological target for the treatment of various psychopathological disorders.

  5. The interaction of trichloroethanol with murine recombinant 5-HT3 receptors.

    PubMed Central

    Downie, D L; Hope, A G; Belelli, D; Lambert, J J; Peters, J A; Bentley, K R; Steward, L J; Chen, C Y; Barnes, N M

    1995-01-01

    1. The effects of ethanol, chloral hydrate and trichloroethanol upon the 5-HT3 receptor have been investigated by use of electrophysiological techniques applied to recombinant 5-HT3 receptor subunits (5-HT3R-A or 5-HT3R-As) expressed in Xenopus laevis oocytes. Additionally, the influence of trichloroethanol upon the specific binding of [3H]-granisetron to membrane preparations of HEK 293 cells stably transfected with the murine 5-HT3R-As subunit and 5-HT3 receptors endogenous to NG 108-15 cell membranes was assessed. 2. Ethanol (30-300 mM), chloral hydrate (1-30 mM) and trichloroethanol (0.3-10 mM), produced a reversible, concentration-dependent, enhancement of 5-HT-mediated currents recorded from oocytes expressing either the 5-HT3R-A, or the 5-HT3R-As subunit. 3. Trichloroethanol (5 mM) produced a parallel leftward shift of the 5-HT concentration-response curve, reducing the EC50 for 5-HT from 1 +/- 0.04 microM (n = 4) to 0.5 +/- 0.01 microM (n = 4) for oocytes expressing the 5-HT3R-A. A similar shift, from 2.1 +/- 0.05 microM (n = 11) to 1.3 +/- 0.1 microM (n = 4), was observed in oocytes expressing the 5-HT3R-As subunit. Trichloroethanol (5 mM) had little or no effect upon the maximum current produced by 5-HT for either recombinant receptor. 4. Trichloroethanol (5 mM) similarly reduced the EC50 for 2-methyl-5-HT from 13 +/- 0.4 microM (n = 4) to 4.6 +/- 0.2 microM (n = 4) and from 15 +/- 2 microM (n = 4) to 5 +/- 0.4 microM (n = 4) for oocytes expressing the 5-HT3R-A and 5-HT3R-As subunit respectively. Additionally, trichloroethanol (5 mM) produced a clear enhancement of the maximal current to 2-methyl-5-HT (expressed as a percentage of the maximal current to 5-HT) from 63 +/- 0.7% (n = 4) to 101 +/- 1.6% (n = 4) and from 9 +/- 0.2% (n = 4) to 74 +/- 2% (n = 4) for oocytes expressing the 5-HT3R-A and 5-HT3R-As subunit respectively. 5. Trichloroethanol (2.5 mM) had no effect upon the Kd, or Bmax, of specific [3H]-granisetron binding to membrane homogenates of NG

  6. Quantitation of 5HT3 receptors in forebrain of serotonin transporter deficient mice.

    PubMed

    Mössner, R; Schmitt, A; Hennig, T; Benninghoff, J; Gerlach, M; Riederer, P; Deckert, J; Lesch, K P

    2004-01-01

    Mice deficient in the serotonin transporter (5HTT) display highly elevated extracellular 5HT levels. 5HT exerts ist effects via at least fourteen different cloned 5HT receptors located pre- and postsynaptically. In contrast to the other 5HT receptors, the 5HT3 receptor is a ionotropic receptor with ligand-gated cation channel function. Since G-protein-coupled 5HT receptors show extensive adaptive changes in 5HTT-deficient mice, we investigated whether 5HT3 receptors are also altered in these mice. Using quantitative autoradiography, we found that 5HT3 receptors are upregulated in frontal cortex (+46%), parietal cortex (+42%), and in stratum oriens of the CA3 region of the hippocampus (+18%) of 5HTT knockout mice. Changes in 5HT3 receptor mRNA expression, as determined by quantitative in situ hybridisation, were less pronounced. The adaptive changes of 5HT3 receptor expression constitute a part of the complex regulatory pattern of 5HT receptors in 5HTT knockout mice.

  7. The Role of 5-HT3 Receptors in Drug Abuse and as a Target for Pharmacotherapy

    PubMed Central

    Engleman, E.A.; Rodd, Z.A.; Bell, R.L.; Murphy, J.M.

    2010-01-01

    Alcohol and drug abuse continue to be a major public health problem in the United States and other industrialized nations. Extensive preclinical research indicates the mesolimbic dopamine (DA) pathway and associated regions mediate the rewarding and reinforcing effects of drugs of abuse and natural rewards, such as food and sex. The serotonergic (5-HT) system, in concert with others neurotransmitter systems, plays a key role in modulating neuronal systems within the mesolimbic pathway. A substantial portion of this modulation is mediated by activity at the 5-HT3 receptor. The 5-HT3 receptor is unique among the 5-HT receptors in that it directly gates an ion channel inducing rapid depolarization that, in turn, causes the release of neurotransmitters and/or peptides. Preclinical findings indicate that antagonism of the 5-HT3 receptor in the ventral tegmental area, nucleus accumbens or amygdala reduces alcohol self-administration and/or alcohol-associated effects. Less is known about the effects of 5-HT3 receptor activity on the self-administration of other drugs of abuse or their associated effects. Clinical findings parallel the preclinical findings such that antagonism of the 5-HT3 receptor reduces alcohol consumption and some of its subjective effects. This review provides an overview of the structure, function, and pharmacology of 5-HT3 receptors, the role of these receptors in regulating DA neurotransmission in mesolimbic brain areas, and discusses data from animal and human studies implicating 5-HT3 receptors as targets for the development of new pharmacological agents to treat addictions. PMID:19128203

  8. The role of 5-HT3 receptors in drug abuse and as a target for pharmacotherapy.

    PubMed

    Engleman, E A; Rodd, Z A; Bell, R L; Murphy, J M

    2008-11-01

    Alcohol and drug abuse continue to be a major public health problem in the United States and other industrialized nations. Extensive preclinical research indicates the mesolimbic dopamine (DA) pathway and associated regions mediate the rewarding and reinforcing effects of drugs of abuse and natural rewards, such as food and sex. The serotonergic (5-HT) system, in concert with others neurotransmitter systems, plays a key role in modulating neuronal systems within the mesolimbic pathway. A substantial portion of this modulation is mediated by activity at the 5-HT3 receptor. The 5-HT3 receptor is unique among the 5-HT receptors in that it directly gates an ion channel inducing rapid depolarization that, in turn, causes the release of neurotransmitters and/or peptides. Preclinical findings indicate that antagonism of the 5-HT3 receptor in the ventral tegmental area, nucleus accumbens or amygdala reduces alcohol self-administration and/or alcohol-associated effects. Less is known about the effects of 5-HT3 receptor activity on the self-administration of other drugs of abuse or their associated effects. Clinical findings parallel the preclinical findings such that antagonism of the 5-HT3 receptor reduces alcohol consumption and some of its subjective effects. This review provides an overview of the structure, function, and pharmacology of 5-HT3 receptors, the role of these receptors in regulating DA neurotransmission in mesolimbic brain areas, and discusses data from animal and human studies implicating 5-HT3 receptors as targets for the development of new pharmacological agents to treat addictions.

  9. Role of central vagal 5-HT3 receptors in gastrointestinal physiology and pathophysiology

    PubMed Central

    Browning, Kirsteen N.

    2015-01-01

    Vagal neurocircuits are vitally important in the co-ordination and modulation of GI reflexes and homeostatic functions. 5-hydroxytryptamine (5-HT; serotonin) is critically important in the regulation of several of these autonomic gastrointestinal (GI) functions including motility, secretion and visceral sensitivity. While several 5-HT receptors are involved in these physiological responses, the ligand-gated 5-HT3 receptor appears intimately involved in gut-brain signaling, particularly via the afferent (sensory) vagus nerve. 5-HT is released from enterochromaffin cells in response to mechanical or chemical stimulation of the GI tract which leads to activation of 5-HT3 receptors on the terminals of vagal afferents. 5-HT3 receptors are also present on the soma of vagal afferent neurons, including GI vagal afferent neurons, where they can be activated by circulating 5-HT. The central terminals of vagal afferents also exhibit 5-HT3 receptors that function to increase glutamatergic synaptic transmission to second order neurons of the nucleus tractus solitarius within the brainstem. While activation of central brainstem 5-HT3 receptors modulates visceral functions, it is still unclear whether central vagal neurons, i.e., nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV) neurons themselves also display functional 5-HT3 receptors. Thus, activation of 5-HT3 receptors may modulate the excitability and activity of gastrointestinal vagal afferents at multiple sites and may be involved in several physiological and pathophysiological conditions, including distention- and chemical-evoked vagal reflexes, nausea, and vomiting, as well as visceral hypersensitivity. PMID:26578870

  10. Method for individualized evaluation of antiemetic effect induced by 5-HT3 receptor antagonist.

    PubMed

    Nakamura, Hironori; Yokoyama, Haruko; Yoshimoto, Koichi; Nakajima, Akihiro; Okuyama, Kiyoshi; Iwase, Osamu; Yamada, Yasuhiko

    2013-01-01

    5-HT3 receptor antagonists are widely used for prevention of chemotherapy-induced nausea and vomiting, though their antiemetic effects vary among patients. We investigated a method for evaluation of antiemetic effects in individual patients. We used the 5-HT3 receptor occupancy of serotonin for our evaluation, which was estimated based on the plasma concentration of granisetron and concentration of serotonin near the 5-HT3 receptor in the small intestine, obtained by measuring the urinary concentrations of granisetron and 5-hydroxyindoleacetic acid (5-HIAA)/creatinine (Cre). The mean cumulative percent for urinary excretion of granisetron at 24 h after administration and coefficient of variation were 16.19 ± 6.30% and 38.91%, respectively. The time course of urinary concentration of 5-HIAA/Cre also varied among the patients. The value for 5-HT3 receptor occupancy of serotonin without granisetron was higher than that prior to administration (blank), thus most treated patients had the possibility of induced emesis. In contrast, that with granisetron was lower than the blank value, indicating that those treated patients would not develop emesis. Furthermore, the estimated 5-HT3 receptor occupancy of serotonin in the small intestine and actual individual patient condition corresponded well, showing the validity of our method. Our results suggest that it is possible to evaluate individual antiemetic effects by estimating the 5-HT3 receptor occupancy of serotonin in the small intestine based on plasma concentrations of granisetron and serotonin near the 5-HT3 receptor in the small intestine using noninvasive urine samples. This method of individual evaluation is considered to be useful and effective.

  11. The antimalarial drug proguanil is an antagonist at 5-HT3 receptors.

    PubMed

    Lochner, Martin; Thompson, Andrew J

    2014-12-01

    Proguanil is an antimalarial prodrug that is metabolized to 4-chlorophenyl-1-biguanide (CPB) and the active metabolite cycloguanil (CG). These compounds are structurally related to meta-chlorophenyl biguanide (mCPBG), a 5-hydroxytryptamine 3 (5-HT3) receptor agonist. Here we examine the effects of proguanil and its metabolites on the electrophysiology and ligand-binding properties of human 5-HT3A receptors expressed in Xenopus oocytes and human embryonic kidney 293 cells, respectively. 5-HT3 receptor responses were reversibly inhibited by proguanil, with an IC50 of 1.81 μM. Competitive antagonism was shown by a lack of voltage-dependence, Schild plot (Kb = 1.70 μM), and radioligand competition (Ki = 2.61 μM) with the 5-HT3 receptor antagonist [(3)H]granisetron. Kinetic measurements (kon = 4.0 × 10(4) M(-1) s(-1) ; koff = 0.23 s(-1)) were consistent with a simple bimolecular reaction scheme with a Kb of 4.35 μM. The metabolites CG and CPB similarly inhibited 5-HT3 receptors as assessed by IC50 (1.48 and 4.36 μM, respectively), Schild plot (Kb = 2.97 and 11.4 μM), and radioligand competition (Ki = 4.89 and 0.41 μM). At higher concentrations, CPB was a partial agonist (EC50 = 14.1 μM; I/Imax = 0.013). These results demonstrate that proguanil competitively inhibits 5-HT3 receptors, with an IC50 that exceeds whole-blood concentrations following its oral administration. They may therefore be responsible for the occasional gastrointestinal side effects, nausea, and vomiting reported following its use. Clinical development of related compounds should therefore consider effects at 5-HT3 receptors as an early indication of possible unwanted gastrointestinal side effects.

  12. Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel

    PubMed Central

    Di Maio, Danilo; Chandramouli, Balasubramanian; Brancato, Giuseppe

    2015-01-01

    Pentameric ligand gated ion channels (pLGICs) are ionotropic receptors that mediate fast intercellular communications at synaptic level and include either cation selective (e.g., nAChR and 5-HT3) or anion selective (e.g., GlyR, GABAA and GluCl) membrane channels. Among others, 5-HT3 is one of the most studied members, since its first cloning back in 1991, and a large number of studies have successfully pinpointed protein residues critical for its activation and channel gating. In addition, 5-HT3 is also the target of a few pharmacological treatments due to the demonstrated benefits of its modulation in clinical trials. Nonetheless, a detailed molecular analysis of important protein features, such as the origin of its ion selectivity and the rather low conductance as compared to other channel homologues, has been unfeasible until the recent crystallization of the mouse 5-HT3A receptor. Here, we present extended molecular dynamics simulations and free energy calculations of the whole 5-HT3A protein with the aim of better understanding its ion transport properties, such as the pathways for ion permeation into the receptor body and the complex nature of the selectivity filter. Our investigation unravels previously unpredicted structural features of the 5-HT3A receptor, such as the existence of alternative intersubunit pathways for ion translocation at the interface between the extracellular and the transmembrane domains, in addition to the one along the channel main axis. Moreover, our study offers a molecular interpretation of the role played by an arginine triplet located in the intracellular domain on determining the characteristic low conductance of the 5-HT3A receptor, as evidenced in previous experiments. In view of these results, possible implications on other members of the superfamily are suggested. PMID:26465896

  13. Key role of 5-HT3 receptors in the nucleus tractus solitarii in cardiovagal stress reactivity.

    PubMed

    Sévoz-Couche, Caroline; Brouillard, Charly

    2017-03-01

    Serotonin plays a modulatory role in central control of the autonomic nervous system (ANS). The nucleus tractus solitarii (NTS) in the medulla is an area of viscerosomatic integration innervated by both central and peripheral serotonergic fibers. Influences from different origins therefore trigger the release of serotonin into the NTS and exert multiple influences on the ANS. This major influence on the ANS is also mediated by activation of several receptors in the NTS. In particular, the NTS is the central zone with the highest density of serotonin3 (5-HT3) receptors. In this review, we present evidence that 5-HT3 receptors in the NTS play a key role in one of the crucial homeostatic responses to acute and chronic stress: inhibitory modulation of the parasympathetic component of the ANS. The possible functional interactions of 5-HT3 receptors with GABAA and NK1 receptors in the NTS are also discussed.

  14. Spinal 5-HT(3) receptor activation induces behavioral hypersensitivity via a neuronal-glial-neuronal signaling cascade.

    PubMed

    Gu, Ming; Miyoshi, Kan; Dubner, Ronald; Guo, Wei; Zou, Shiping; Ren, Ke; Noguchi, Koichi; Wei, Feng

    2011-09-07

    Recent studies indicate that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in the brainstem and the 5-HT(3) receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT(3) receptor and its contribution to facilitation of pain remain unclear. In the present study, activation of spinal 5-HT(3) receptor by intrathecal injection of a selective 5-HT(3) receptor agonist, SR57227, induced spinal glial hyperactivity, neuronal hyperexcitability, and pain hypersensitivity in rats. We found that there was neuron-to-microglia signaling via chemokine fractalkine, microglia to astrocyte signaling via the cytokine IL-18, astrocyte to neuronal signaling by IL-1β, and enhanced activation of GluN (NMDA) receptors in the spinal dorsal horn. In addition, exogenous brain-derived neurotrophic factor-induced descending pain facilitation was accompanied by upregulation of CD11b and GFAP expression in the spinal dorsal horn after microinjection in the RVM, and these events were significantly prevented by functional blockade of spinal 5-HT(3) receptors. Enhanced expression of spinal CD11b and GFAP after hindpaw inflammation was also attenuated by molecular depletion of the descending 5-HT system by intra-RVM Tph-2 shRNA interference. Thus, these findings offer new insights into the cellular and molecular mechanisms at the spinal level responsible for descending 5-HT-mediated pain facilitation during the development of persistent pain after tissue and nerve injury. New pain therapies should focus on prime targets of descending facilitation-induced glial involvement, and in particular the blocking of intercellular signaling transduction between neuron and glia.

  15. Spinal 5-HT3 receptor activation induces behavioral hypersensitivity via a neuronal-glial-neuronal signaling cascade

    PubMed Central

    Gu, Ming; Miyoshi, Kan; Dubner, Ronald; Guo, Wei; Zou, Shiping; Ren, Ke; Noguchi, Koichi; Wei, Feng

    2011-01-01

    Recent studies indicate that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in brainstem and the 5-HT3 receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT3 receptor and its contribution to facilitation of pain remain unclear. In the present study, activation of spinal 5-HT3 receptor by intrathecal injection of a selective 5-HT3 receptor agonist SR 57227 induced spinal glial hyperactivity, neuronal hyperexcitability and pain hypersensitivity in rats. We found that there was neuron-to-microglia signaling via chemokine fractalkine, microglia to astrocyte signaling via cytokine IL-18, astrocyte to neuronal signaling by IL-1β, and enhanced activation of GluN (NMDA) receptors in the spinal dorsal horn. In addition, exogenous BDNF-induced descending pain facilitation was accompanied with up-regulation of CD11b and GFAP expression in the spinal dorsal horn after microinjection in the RVM, which were significantly prevented by functional blockade of spinal 5-HT3 receptors. Enhanced expression of spinal CD11b and GFAP after hindpaw inflammation was also attenuated by molecular depletion of the descending 5-HT system by intra-RVM Tph-2 shRNA interference. Thus, these findings offer new insights into the cellular and molecular mechanisms at the spinal level responsible for descending 5-HT-mediated pain facilitation during the development of persistent pain after tissue and nerve injury. New pain therapies should focus on prime targets of descending facilitation-induced glial involvement, and in particular the blocking of intercellular signaling transduction between neuron and glia. PMID:21900561

  16. The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles.

    PubMed

    Kudryashev, Mikhail; Castaño-Díez, Daniel; Deluz, Cédric; Hassaine, Gherici; Grasso, Luigino; Graf-Meyer, Alexandra; Vogel, Horst; Stahlberg, Henning

    2016-01-05

    The function of membrane proteins is best understood if their structure in the lipid membrane is known. Here, we determined the structure of the mouse serotonin 5-HT3 receptor inserted in lipid bilayers to a resolution of 12 Å without stabilizing antibodies by cryo electron tomography and subtomogram averaging. The reconstruction reveals protein secondary structure elements in the transmembrane region, the extracellular pore, and the transmembrane channel pathway, showing an overall similarity to the available X-ray model of the truncated 5-HT3 receptor determined in the presence of a stabilizing nanobody. Structural analysis of the 5-HT3 receptor embedded in a lipid bilayer allowed the position of the membrane to be determined. Interactions between the densely packed receptors in lipids were visualized, revealing that the interactions were maintained by the short horizontal helices. In combination with methodological improvements, our approach enables the structural analysis of membrane proteins in response to voltage and ligand gating.

  17. Seizure susceptibility alteration through 5-HT(3) receptor: modulation by nitric oxide.

    PubMed

    Gholipour, Taha; Ghasemi, Mehdi; Riazi, Kiarash; Ghaffarpour, Majid; Dehpour, Ahmad Reza

    2010-01-01

    There is some evidence that epileptic seizures could be induced or increased by 5-hydroxytryptamine (5-HT) attenuation, while augmentation of serotonin functions within the brain (e.g. by SSRIs) has been reported to be anticonvulsant. This study was performed to determine the effect of selective 5-HT(3) channel/receptor antagonist granisetron and agonist SR57227 hydrochloride on the pentylenetetrazole (PTZ)-induced seizure threshold in mice. The possible interaction of this effect with nitrergic system was also examined using the nitric oxide (NO) synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) and the NO precursor l-arginine. SR57227 (10mg/kg, i.p.) significantly increased the seizure threshold compared to control group, while high dose granisetron (10mg/kg, i.p.) proved proconvulsant. Co-administration of sub-effective doses of the 5-HT(3) agonist with l-NAME (5 and 60mg/kg, i.p., respectively) exerted a significant anticonvulsive effect, while sub-effective doses of granisetron (3mg/kg) was observed to have a proconvulsive action with the addition of l-arginine (75mg/kg, i.p.). Our data demonstrate that enhancement of 5-HT(3) receptor function results in as anticonvulsant effect in the PTZ-induced seizure model, and that selective antagonism at the 5-HT(3) receptor yields proconvulsive effects. Furthermore, the NO system may play a role in 5-HT(3) receptor function.

  18. The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors.

    PubMed

    Lochner, Martin; Thompson, Andrew J

    2016-09-01

    Scopolamine is a high affinity muscarinic antagonist that is used for the prevention of post-operative nausea and vomiting. 5-HT3 receptor antagonists are used for the same purpose and are structurally related to scopolamine. To examine whether 5-HT3 receptors are affected by scopolamine we examined the effects of this drug on the electrophysiological and ligand binding properties of 5-HT3A receptors expressed in Xenopus oocytes and HEK293 cells, respectively. 5-HT3 receptor-responses were reversibly inhibited by scopolamine with an IC50 of 2.09 μM. Competitive antagonism was shown by Schild plot (pA2 = 5.02) and by competition with the 5-HT3 receptor antagonists [(3)H]granisetron (Ki = 6.76 μM) and G-FL (Ki = 4.90 μM). The related molecule, atropine, similarly inhibited 5-HT evoked responses in oocytes with an IC50 of 1.74 μM, and competed with G-FL with a Ki of 7.94 μM. The reverse experiment revealed that granisetron also competitively bound to muscarinic receptors (Ki = 6.5 μM). In behavioural studies scopolamine is used to block muscarinic receptors and induce a cognitive deficit, and centrally administered concentrations can exceed the IC50 values found here. It is therefore possible that 5-HT3 receptors are also inhibited. Studies that utilise higher concentrations of scopolamine should be mindful of these potential off-target effects.

  19. Synthesis and characterization of photoaffinity probes that target the 5-HT3 receptor.

    PubMed

    Jack, Thomas; Ruepp, Marc-David; Thompson, Andrew J; Mühlemann, Oliver; Lochner, Martin

    2014-01-01

    The 5-HT3 receptor is one of several ion channels responsible for the transmission of nerve impulses in the peripheral and central nervous systems. Until now, it has been difficult to characterize transmembrane receptors with classical structural biology approaches like X-ray crystallography. The use of photoaffinity probes is an alternative approach to identify regions in the protein where small molecules bind. To this end, we present two photoaffinity probes based on granisetron, a well known antagonist of the 5-HT3 receptor. These new probes show nanomolar binding affinity for the orthosteric binding site. In addition, we investigated their reactivity using irradiation experiments.

  20. Molecular dynamics simulation of the structure and dynamics of 5-HT3 serotonin receptor

    NASA Astrophysics Data System (ADS)

    Antonov, M. Yu.; Popinako, A. V.; Prokopiev, G. A.

    2016-10-01

    In this work, we investigated structure, dynamics and ion transportation in transmembrane domain of the 5-HT3 serotonin receptor. High-resolution (0.35 nm) structure of the 5-HT3 receptor in complex with stabilizing nanobodies was determined by protein crystallography in 2014 (Protein data bank (PDB) code 4PIR). Transmembrane domain of the structure was prepared in complex with explicit membrane environment (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC)) and solvent (TIP3P water model). Molecular dynamics protocols for simulation and stabilization of the transmembrane domain of the 5-HT3 receptor model were developed and 60 ns simulation of the structure was conducted in order to explore structural parameters of the system. We estimated the mean force profile for Na+ ions using umbrella sampling method.

  1. 5-HT3 receptors as important mediators of nausea and vomiting due to chemotherapy.

    PubMed

    Navari, Rudolph M

    2015-10-01

    Chemotherapy-induced nausea and vomiting (CINV) is associated with a significant deterioration in quality of life. The emetogenicity of the chemotherapeutic agents, repeated chemotherapy cycles, and patient risk factors significantly influence CINV. The use of a combination of a 5-hydroxytryptamine-3 (5-HT3) receptor antagonist, dexamethasone, and a neurokinin-1 (NK-1) receptor antagonist has significantly improved the control of acute and delayed emesis in single-day chemotherapy. The first generation 5-HT3 receptor antagonists have been very effective in the control of chemotherapy induced emesis in the first 24 h postchemotherapy (acute emesis), but have not been as effective against delayed emesis (24-120 h postchemotherapy). Palonosetron, a second generation 5-HT3 receptor antagonist with a different half-life, a different binding capacity, and a different mechanism of action than the first generation 5-HT3 receptor antagonists appears to be the most effective agent in its class. Despite the control of emesis, nausea has not been well controlled by current agents. Olanzapine, a FDA approved antipsychotic that blocks multiple neurotransmitters: dopamine at D1, D2, D3, D4 brain receptors, serotonin at 5-HT2a, 5-HT2c, 5-HT3, 5-HT6 receptors, catecholamines at alpha1 adrenergic receptors, acetylcholine at muscarinic receptors, and histamine at H1 receptors, has emerged in recent trials as an effective preventative agent for chemotherapy-induced emesis and nausea, as well as a very effective agent for the treatment of breakthrough emesis and nausea. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  2. Palonosetron-5-HT3 Receptor Interactions As Shown by a Binding Protein Cocrystal Structure.

    PubMed

    Price, Kerry L; Lillestol, Reidun K; Ulens, Chris; Lummis, Sarah C R

    2016-12-21

    Palonosetron is a potent 5-HT3 receptor antagonist and an effective therapeutic agent against emesis. Here we identify the molecular determinants of compound recognition in the receptor binding site by obtaining a high resolution structure of palonosetron bound to an engineered acetylcholine binding protein that mimics the 5-HT3 receptor binding site, termed 5-HTBP, and by examining the potency of palonosetron in a range of 5-HT3 receptors with mutated binding site residues. The structural data indicate that palonosetron forms a tight and effective wedge in the binding pocket, made possible by its rigid tricyclic ring structure and its interactions with binding site residues; it adopts a binding pose that is distinct from the related antiemetics granisetron and tropisetron. The functional data show many residues previously shown to interact with agonists and antagonists in the binding site are important for palonosetron binding, and indicate those of particular importance are W183 (a cation-π interaction and a hydrogen bond) and Y153 (a hydrogen bond). This information, and the availability of the structure of palonosetron bound to 5-HTBP, should aid the development of novel and more efficacious drugs that act via 5-HT3 receptors.

  3. Impact of intracellular domain flexibility upon properties of activated human 5-HT3 receptors*

    PubMed Central

    Kozuska, J L; Paulsen, I M; Belfield, W J; Martin, I L; Cole, D J; Holt, A; Dunn, S M J

    2014-01-01

    Background and Purpose It has been proposed that arginine residues lining the intracellular portals of the homomeric 5-HT3A receptor cause electrostatic repulsion of cation flow, accounting for a single-channel conductance substantially lower than that of the 5-HT3AB heteromer. However, comparison of receptor homology models for wild-type pentamers suggests that salt bridges in the intracellular domain of the homomer may impart structural rigidity, and we hypothesized that this rigidity could account for the low conductance. Experimental Approach Mutations were introduced into the portal region of the human 5-HT3A homopentamer, such that putative salt bridges were broken by neutralizing anionic partners. Single-channel and whole cell currents were measured in transfected tsA201 cells and in Xenopus oocytes respectively. Computational simulations of protein flexibility facilitated comparison of wild-type and mutant receptors. Key Results Single-channel conductance was increased substantially, often to wild-type heteromeric receptor values, in most 5-HT3A mutants. Conversely, introduction of arginine residues to the portal region of the heteromer, conjecturally creating salt bridges, decreased conductance. Gating kinetics varied significantly between different mutant receptors. EC50 values for whole-cell responses to 5-HT remained largely unchanged, but Hill coefficients for responses to 5-HT were usually significantly smaller in mutants. Computational simulations suggested increased flexibility throughout the protein structure as a consequence of mutations in the intracellular domain. Conclusions and Implications These data support a role for intracellular salt bridges in maintaining the quaternary structure of the 5-HT3 receptor and suggest a role for the intracellular domain in allosteric modulation of cooperativity and agonist efficacy. Linked Article This article is commented on by Vardy and Kenakin, pp. 1614–1616 of volume 171 issue 7. To view this commentary

  4. Serotonin (5-HT3) receptor antagonists for the reduction of symptoms of low anterior resection syndrome

    PubMed Central

    Itagaki, Ryohei; Koda, Keiji; Yamazaki, Masato; Shuto, Kiyohiko; Kosugi, Chihiro; Hirano, Atsushi; Arimitsu, Hidehito; Shiragami, Risa; Yoshimura, Yukino; Suzuki, Masato

    2014-01-01

    Purpose Serotonin (5-hydroxytryptamine [5-HT])3 receptor antagonists are effective for the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D), in which exaggerated intestinal/colonic hypermotility is often observed. Recent studies have suggested that the motility disorder, especially spastic hypermotility, seen in the neorectum following sphincter-preserving operations for rectal cancer may be the basis of the postoperative defecatory malfunction seen in these patients. We investigated the efficacy of 5-HT3 receptor antagonists in patients suffering from severe low anterior resection syndrome. Patients and methods A total of 25 male patients with complaints of uncontrollable urgency or fecal incontinence following sphincter-preserving operations were enrolled in this study. Defecatory status, assessed on the basis of incontinence score (0–20), urgency grade (0–3), and number of toilet visits per day, was evaluated using a questionnaire before and 1 month after the administration of the 5-HT3 antagonist ramosetron. Results All the parameters assessed improved significantly after taking ramosetron for 1 month. The effect was more prominent in cases whose anastomotic line was lower, ie, inside the anal canal. Defecatory function was better in patients who commenced ramosetron therapy within 6 months postoperatively, as compared to those who were not prescribed ramosetron for more than 7 months postoperatively. Conclusion These results suggest that 5-HT3 antagonists are effective for the treatment of low anterior resection syndrome, as in diarrhea-predominant irritable bowel syndrome. The improvement in symptoms is not merely time dependent, but it is related to treatment with 5-HT3 antagonists. PMID:24648748

  5. Theoretical evaluation of antiemetic effects of 5-HT3 receptor antagonists for prevention of vomiting induced by cisplatin.

    PubMed

    Nakamura, Hironori; Yokoyama, Haruko; Takayanagi, Risa; Yoshimoto, Koichi; Nakajima, Akihiro; Okuyama, Kiyoshi; Iwase, Osamu; Yamada, Yasuhiko

    2015-03-01

    5-HT(3) receptor antagonists are widely used as antiemetic agents in clinical setting, of which palonosetron, with a long elimination half life (t(1/2)), has recently become available. It is important to evaluate the concentration of serotonin when investigating the antiemetic effects of 5-HT(3) receptor antagonists, as those effects are not based solely on the t(1/2) value. We theoretically evaluated the antiemetic effects of three 5-HT(3) receptor antagonists (granisetron, azasetron, palonosetron) on cisplatin-induced nausea and vomiting by estimating the time course of the 5-HT(3) receptor occupancy of serotonin. We estimated the 5-HT(3) receptor occupancy of serotonin in the small intestine, based on the time course of plasma concentration of each 5-HT(3) receptor antagonist and the time course of concentration of serotonin near the 5-HT(3) receptor in the small intestine after administration of cisplatin. The antiemetic effect of each 5-HT(3) receptor antagonist was evaluated based on the normal level of 5-HT(3) receptor occupancy of serotonin. Our results suggest that an adequate antiemetic effect will be provided when a dose of 75 mg/m(2) of cisplatin is given to patients along with any single administration of granisetron, azasetron, or palonosetron at a usual dose. On the other hand, the 5-HT(3) receptor occupancy of serotonin was found to be significantly lower than normal for several days after administration of palonosetron, as compared to granisetron and azasetron, indicating that constipation may be induced. Our results show that granisetron, azasetron, and palonosetron each have an adequate antiemetic effect after administration of 75 mg/m(2) of cisplatin.

  6. Influence of sodium substitutes on 5-HT-mediated effects at mouse 5-HT3 receptors

    PubMed Central

    Barann, M; Schmidt, K; Göthert, M; Urban, B W; Bönisch, H

    2004-01-01

    The influence of sodium ion substitutes on the 5-hydroxytryptamine (5-HT)-induced flux of the organic cation [14C]guanidinium through the ion channel of the mouse 5-HT3 receptor and on the competition of 5-HT with the selective 5-HT3 receptor antagonist [3H]GR 65630 was studied, unless stated otherwise, in mouse neuroblastoma N1E-115 cells. Under physiological conditions (135 mM sodium), 5-HT induced a concentration-dependent [14C]guanidinium influx with an EC50 (1.3 μM) similar to that in electrophysiological studies. The stepwise replacement of sodium by increasing concentrations of the organic cation hydroxyethyl trimethylammonium (choline) concentration dependently caused both a rightward shift of the 5-HT concentration–response curve and an increase in the maximum effect of 5-HT. Complete replacement of sodium resulted in a 34-fold lower potency of 5-HT and an almost two times higher maximal response. A low potency of 5-HT in choline buffer was also observed in other 5-HT3 receptor-expressing rodent cell lines (NG 108-15 or NCB 20). Replacement of Na+ by Li+ left the potency and maximal effects of 5-HT almost unchanged. Replacement by tris (hydroxymethyl) methylamine (Tris), tetramethylammonium (TMA) or N-methyl-D-glucamine (NMDG) caused an increase in maximal response to 5-HT similar to that caused by choline. The potency of 5-HT was only slightly reduced by Tris, to a high degree decreased by TMA (comparable to the decrease by choline), but not influenced by NMDG. The potency of 5-HT in inhibiting [3H]GR65630 binding to intact cells was 35-fold lower when sodium was completely replaced by choline, but remained unchanged after replacement by NMDG. The results are compatible with the suggestion that choline competes with 5-HT for the 5-HT3 receptor; the increase in maximal response may be partly due to a choline-mediated delay of the 5-HT-induced desensitization. For studies of 5-HT-evoked [14C]guanidinium flux through 5-HT3 receptor channels, NMDG appears

  7. Unraveling mechanisms underlying partial agonism in 5-HT3A receptors.

    PubMed

    Corradi, Jeremías; Bouzat, Cecilia

    2014-12-10

    Partial agonists have emerged as attractive therapeutic molecules. 2-Me-5HT and tryptamine have been defined as partial agonists of 5-HT3 receptors on the basis of macroscopic measurements. Because several mechanisms may limit maximal responses, we took advantage of the high-conductance form of the mouse serotonin type 3A (5-HT3A) receptor to understand their molecular actions. Individual 5-HT-bound receptors activate in long episodes of high open probability, consisting of groups of openings in quick succession. The activation pattern is similar for 2-Me-5HT only at very low concentrations since profound channel blockade takes place within the activating concentration range. In contrast, activation episodes are significantly briefer in the presence of tryptamine. Generation of a full activation scheme reveals that the fully occupied receptor overcomes transitions to closed preopen states (primed states) before opening. Reduced priming explains the partial agonism of tryptamine. In contrast, 2-Me-5HT is not a genuine partial agonist since priming is not dramatically affected and its low apparent efficacy is mainly due to channel blockade. The analysis also shows that the first priming step is the rate-limiting step and partial agonists require an increased number of priming steps for activation. Molecular docking suggests that interactions are similar for 5-HT and 2-Me-5HT but slightly different for tryptamine. Our study contributes to understanding 5-HT3A receptor activation, extends the novel concept of partial agonism within the Cys-loop family, reveals novel aspects of partial agonism, and unmasks molecular actions of classically defined partial agonists. Unraveling mechanisms underlying partial responses has implications in the design of therapeutic compounds.

  8. Contribution of Hippocampal 5-HT3 Receptors in Hippocampal Autophagy and Extinction of Conditioned Fear Responses after a Single Prolonged Stress Exposure in Rats.

    PubMed

    Wu, Zhong-Min; Yang, Li-Hua; Cui, Rong; Ni, Gui-Lian; Wu, Feng-Tian; Liang, Yong

    2017-05-01

    One of the hypotheses about the pathogenesis of posttraumatic stress disorder (PTSD) is the dysfunction of serotonin (5-HT) neurotransmission. While certain 5-HT receptor subtypes are likely critical for the symptoms of PTSD, few studies have examined the role of 5-HT3 receptor in the development of PTSD, even though 5-HT3 receptor is critical for contextual fear extinction and anxiety-like behavior. Therefore, we hypothesized that stimulation of 5-HT3 receptor in the dorsal hippocampus (DH) could prevent hippocampal autophagy and the development of PTSD-like behavior in animals. To this end, we infused SR57227, selective 5-HT3 agonist, into the DH after a single prolonged stress (SPS) treatment in rats. Three weeks later, we evaluated the effects of this pharmacological treatment on anxiety-related behaviors and extinction of contextual fear memory. We also accessed hippocampal autophagy and the expression of 5-HT3A subunit, Beclin-1, LC3-I, and LC3-II in the DH. We found that SPS treatment did not alter anxiety-related behaviors but prolonged the extinction of contextual fear memory, and such a behavioral phenomenon was correlated with increased hippocampal autophagy, decreased 5-HT3A expression, and increased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. Furthermore, intraDH infusions of SR57227 dose-dependently promoted the extinction of contextual fear memory, prevented hippocampal autophagy, and decreased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. These results indicated that 5-HT3 receptor in the hippocampus may play a critical role in the pathogenesis of hippocampal autophagy, and is likely involved in the pathophysiology of PTSD.

  9. Expression of 5-HT3 receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying.

    PubMed

    Raybould, Helen E; Glatzle, Jorg; Robin, Carla; Meyer, James H; Phan, Thomas; Wong, Helen; Sternini, Catia

    2003-03-01

    Intestinal perfusion with carbohydrates inhibits gastric emptying via vagal and spinal capsaicin-sensitive afferent pathways. The aim of the present study was to determine the role of 1) 5-hydroxytryptamine (5-HT)(3) receptors (5-HT(3)R) in mediating glucose-induced inhibition of gastric emptying and 2) 5-HT(3)R expression in vagal and spinal afferents in innervating the duodenum. In awake rats fitted with gastric and duodenal cannulas, perfusion of the duodenum with glucose (50 and 100 mg) inhibited gastric emptying. Intestinal perfusion of mannitol inhibited gastric emptying only at the highest concentration (990 mosm/kgH(2)O). Pretreatment with the 5-HT(3)R antagonist tropisetron abolished both glucose- and mannitol-induced inhibition of gastric emptying. Retrograde labeling of visceral afferents by injection of dextran-conjugated Texas Red into the duodenal wall was used to identify extrinsic primary afferents. Immunoreactivity for 5-HT(3)R, visualized with an antibody directed to the COOH terminus of the rat 5-HT(3)R, was found in >80% of duodenal vagal and spinal afferents. These results show that duodenal extrinsic afferents express 5-HT(3)R and that the receptor mediates specific glucose-induced inhibition of gastric emptying. These findings support the hypothesis that enterochromaffin cells in the intestinal mucosa release 5-HT in response to glucose, which activates 5-HT(3)R on afferent nerve terminals to evoke reflex changes in gastric motility. The primary glucose sensors of the intestine may be mucosal enterochromaffin cells.

  10. The effects of the 5-HT3 receptor antagonist tropisetron on cocaine-induced conditioned taste aversions.

    PubMed

    Briscione, Maria A; Serafine, Katherine M; Merluzzi, Andrew P; Rice, Kenner C; Riley, Anthony L

    2013-04-01

    Although cocaine readily induces taste aversions, little is known about the mechanisms underlying this effect. Recent work has shown that cocaine's actions on serotonin (5-HT) may be involved. To address this possibility, the present experiments examined a role of the specific 5-HT receptor, 5-HT3, in this effect given that it is implicated in a variety of behavioral effects of cocaine. This series of investigations first assessed the aversive effects of the 5-HT3 receptor antagonist tropisetron alone (Experiment 1). Specifically, in Experiment 1 male Sprague-Dawley rats were given repeated pairings of a novel saccharin solution and tropisetron (0, 0.056, 0.18 and 0.56mg/kg). Following this, a non-aversion-inducing dose of tropisetron (0.18mg/kg) was assessed for its ability to block aversions induced by a range of doses of cocaine (Experiment 2). Specifically, in Experiment 2 animals were given access to a novel saccharin solution and then injected with tropisetron (0 or 0.18mg/kg) followed by an injection of various doses of cocaine (0, 10, 18 and 32mg/kg). Cocaine induced dose-dependent taste aversions that were not blocked by tropisetron, suggesting that cocaine's aversive effects are not mediated by 5-HT, at least at this specific receptor subtype. At the intermediate dose of cocaine, aversions appeared to be potentiated, suggesting 5-HT3 may play a limiting role in cocaine's aversive effects. These data are discussed in the context of previous examinations of the roles of serotonin, dopamine, and norepinephrine in cocaine-induced aversions.

  11. [Cost-effectiveness analysis of 5-HT3 receptor antagonist drugs in cancer chemotherapy].

    PubMed

    Ishimaru, Hiromasa; Takayama, Shinji; Shiokawa, Mitsuru; Inoue, Tadao

    2008-04-01

    Recently, ambulatory treatment centers (ATC) are markedly increasingboth in number and scale. It is therefore important to consolidate an efficient therapeutic system. A decrease in both treatment time and waitingtime leads to not only the improvement of the quality of life (QOL) for patients but also the efficient use of personnel and running costs for medical institutions by reducingthe bed occupation rate. In ATC, 5-HT3 receptor antagonists are extensively used for high emetic risk patients. However, their high cost and prolonged treatment causes one of the problems in improvingthe efficiency of the therapeutic system when they are administered by intravenous infusion. Amongthe 4 types of 5-HT3 receptor antagonists (injections) currently available in Japan, azasetron is the only drugthat is not designated as a powerful drug and that can be administered by bolus intravenous infusion. In this study, we investigated azasetron and granisetron from the standpoint of pharmacoeconomics with a simulation model using the results of clinical studies in Japan. Accordingto the results of cost-effectiveness analysis, therapeutic and time costs per patient for azasetron 10 mgand granisetron 2 mg (calculated in consideration of both medical institutions and patients) was 8,219 and 10,193 yen, respectively. This gap was attributable to the time loss due to the difference in administration methods. The result suggests that this time loss is more significant not only for patients but also for medical staff than the loss attributable to the drugcost. Furthermore, the bolus intravenous infusion of azasetron is considered superior to the non-bolus intravenous infusion of granisetron from a pharmacoeconomic standpoint. It is desirable to choose the appropriate administration method of 5-HT3 receptor antagonists in various chemotherapy regimens for the purpose of reducingthe treatment time and promotingthe efficiency of the therapeutic system at ATCs.

  12. Molecular properties of psychopharmacological drugs determining non-competitive inhibition of 5-HT3A receptors.

    PubMed

    Kornhuber, Johannes; Terfloth, Lothar; Bleich, Stefan; Wiltfang, Jens; Rupprecht, Rainer

    2009-06-01

    We developed a structure-property-activity relationship (SPAR)-model for psychopharmacological drugs acting as non-competitive 5-HT(3A) receptor antagonists by using a decision-tree learner provided by the RapidMiner machine learning tool. A single molecular descriptor, namely the molecular dipole moment per molecular weight (mu/MW), predicts whether or not a substance non-competitively antagonizes 5-HT-induced Na(+) currents. A low mu/MW is compatible with drug-cumulation in apolar lipid rafts. This study confirms that size-intensive descriptors allow the development of compact SPAR models.

  13. Serotonin enhances urinary bladder nociceptive processing via a 5-HT3 receptor mechanism.

    PubMed

    Hall, Jason D; DeWitte, Cary; Ness, Timothy J; Robbins, Meredith T

    2015-09-14

    Serotonin from the descending pain modulatory pathway is critical to nociceptive processing. Its effects on pain modulation may either be inhibitory or facilitatory, depending on the type of pain and which receptors are involved. Little is known about the role of serotonergic systems in bladder nociceptive processing. These studies examined the effect of systemic administration of the serotonin precursor, 5-hydroxytryptophan (5-HTP), on normal bladder and somatic sensation in rats. ELISA was used to quantify peripheral and central changes in serotonin and its major metabolite following 5-HTP administration, and the potential role of the 5-HT3 receptor on changes in bladder sensation elicited by 5-HTP was investigated. 5-HTP produced bladder hypersensitivity and somatic analgesia. The pro-nociceptive effect of 5-HTP was attenuated by intrathecal, but not systemic, ondansetron. Peripheral increases in serotonin, its metabolism and rate of turnover were detectable within 30min of 5-HTP administration. Significant enhancement of serotonin metabolism was observed centrally. These findings suggest that 5-HTP increases serotonin, which may then affect descending facilitatory systems to produce bladder hypersensitivity via activation of spinal 5-HT3 receptors.

  14. Open probability of homomeric murine 5-HT3A serotonin receptors depends on subunit occupancy

    PubMed Central

    Mott, David D; Erreger, Kevin; Banke, Tue G; Traynelis, Stephen F

    2001-01-01

    The time course of macroscopic current responses of homomeric murine serotonin 5-HT3A receptors was studied in whole cells and excised membrane patches under voltage clamp in response to rapid application of serotonin. Serotonin activated whole cell currents with an EC50 value for the peak response of 2 μm and a Hill slope of 3.0 (n = 12), suggesting that the binding of at least three agonist molecules is required to open the channel. Homomeric 5-HT3A receptors in excised membrane patches had a slow activation time course (mean ±s.e.m. 10-90 % rise time 12.5 ± 1.6 ms; n = 9 patches) for 100 μm serotonin. The apparent activation rate was estimated by fitting an exponential function to the rising phase of responses to supramaximal serotonin to be 136 s−1. The 5-HT3A receptor response to 100 μm serotonin in outside-out patches (n = 19) and whole cells (n = 41) desensitized with a variable rate that accelerated throughout the experiment. The time course for desensitization was described by two exponential components (for patches τslow 1006 ± 139 ms, amplitude 31 % τfast 176 ± 25 ms, amplitude 69 %). Deactivation of the response following serotonin removal from excised membrane patches (n = 8) and whole cells (n = 29) was described by a dual exponential time course with time constants similar to those for desensitization (for patches τslow 838 ± 217 ms, 55 % amplitude; τfast 213 ± 44 ms, 45 % amplitude). In most patches (6 of 8), the deactivation time course in response to a brief 1-5 ms pulse of serotonin was similar to or slower than desensitization. This suggests that the continued presence of agonist can induce desensitization with a similar or more rapid time course than agonist unbinding. The difference between the time course for deactivation and desensitization was voltage independent over the range -100 to -40 mV in patches (n = 4) and -100 to +50 mV in whole cells (n = 4), suggesting desensitization of these receptors in the presence of

  15. 2-Amino-6-chloro-3,4-dihydroquinazoline: A novel 5-HT3 receptor antagonist with antidepressant character.

    PubMed

    Dukat, Małgorzata; Alix, Katie; Worsham, Jessica; Khatri, Shailesh; Schulte, Marvin K

    2013-11-01

    2-Amino-6-chloro-3,4-dihydroquinazoline HCl (A6CDQ, 4) binds at 5-HT3 serotonin receptors and displays antidepressant-like action in the mouse tail suspension test (TST). Empirically, 4 was demonstrated to be a 5-HT3 receptor antagonist (two-electrode voltage clamp recordings using frog oocytes; IC50=0.26μM), and one that should readily penetrate the blood-brain barrier (logP=1.86). 5-HT3 receptor antagonists represent a potential approach to the development of new antidepressants, and 4 is an example of a structurally novel 5-HT3 receptor antagonist that is active in a preclinical antidepressant model (i.e., the mouse TST).

  16. Toward Biophysical Probes for the 5-HT3 Receptor: Structure−Activity Relationship Study of Granisetron Derivatives

    PubMed Central

    2010-01-01

    This report describes the synthesis and biological characterization of novel granisetron derivatives that are antagonists of the human serotonin (5-HT3A) receptor. Some of these substituted granisetron derivatives showed low nanomolar binding affinity and allowed the identification of positions on the granisetron core that might be used as attachment points for biophysical tags. A BODIPY fluorophore was appended to one such position and specifically bound to 5-HT3A receptors in mammalian cells. PMID:20146481

  17. 5-HT3a Receptors Modulate Hippocampal Gamma Oscillations by Regulating Synchrony of Parvalbumin-Positive Interneurons.

    PubMed

    Huang, Ying; Yoon, Kristopher; Ko, Ho; Jiao, Song; Ito, Wataru; Wu, Jian-Young; Yung, Wing-Ho; Lu, Bai; Morozov, Alexei

    2016-02-01

    Gamma-frequency oscillatory activity plays an important role in information integration across brain areas. Disruption in gamma oscillations is implicated in cognitive impairments in psychiatric disorders, and 5-HT3 receptors (5-HT3Rs) are suggested as therapeutic targets for cognitive dysfunction in psychiatric disorders. Using a 5-HT3aR-EGFP transgenic mouse line and inducing gamma oscillations by carbachol in hippocampal slices, we show that activation of 5-HT3aRs, which are exclusively expressed in cholecystokinin (CCK)-containing interneurons, selectively suppressed and desynchronized firings in these interneurons by enhancing spike-frequency accommodation in a small conductance potassium (SK)-channel-dependent manner. Parvalbumin-positive interneurons therefore received diminished inhibitory input leading to increased but desynchronized firings of PV cells. As a consequence, the firing of pyramidal neurons was desynchronized and gamma oscillations were impaired. These effects were independent of 5-HT3aR-mediated CCK release. Our results therefore revealed an important role of 5-HT3aRs in gamma oscillations and identified a novel crosstalk among different types of interneurons for regulation of network oscillations. The functional link between 5-HT3aR and gamma oscillations may have implications for understanding the cognitive impairments in psychiatric disorders.

  18. Spinal 5-HT3 receptors mediate descending facilitation and contribute to behavioral hypersensitivity via a reciprocal neuron-glial signaling cascade

    PubMed Central

    2014-01-01

    Background It has been recently recognized that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in the brainstem and the 5-HT3 receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT3 receptor and its contribution to facilitation of pain remain unclear. Results In the present study, activation of spinal 5-HT3 receptors by intrathecal injection of a selective 5-HT3 receptor agonist SR 57227 induced spinal glial hyperactivity, neuronal hyperexcitability and pain hypersensitivity in rats. We found that there was neuron-to-microglia signaling via the chemokine fractalkine, microglia to astrocyte signaling via cytokine IL-18, astrocyte to neuronal signaling by IL-1β, and enhanced activation of NMDA receptors in the spinal dorsal horn. Glial hyperactivation in spinal dorsal horn after hindpaw inflammation was also attenuated by molecular depletion of the descending 5-HT system by intra-RVM Tph-2 shRNA interference. Conclusions These findings offer new insights into the cellular and molecular mechanisms at the spinal level responsible for descending 5-HT-mediated pain facilitation during the development of persistent pain after tissue and nerve injury. New pain therapies should focus on prime targets of descending facilitation-induced glial involvement, and in particular the blocking of intercellular signaling transduction between neurons and glia. PMID:24913307

  19. Roles of serotonin 5-HT3 receptor in the formation of dendrites and axons in the rat cerebral cortex: an in vitro study.

    PubMed

    Hayashi, Takahiro; Ohtani, Akiko; Onuki, Fumiaki; Natsume, Masaki; Li, Fei; Satou, Tomomi; Yoshikawa, Masaaki; Senzaki, Kouji; Shiga, Takashi

    2010-01-01

    The serotonin type 3 (5-HT(3)) receptor is an only ligand-gated ion channel among 14 serotonin receptors. Here, we examined the roles of the 5-HT(3) receptor in the formation of dendrites and axons, using a dissociation culture of embryonic rat cerebral cortex. Cortical neurons at embryonic day 16 were cultured for 4 days in the presence of a selective 5-HT(3) receptor agonist with or without an antagonist. Neurons were then immunostained by antibodies against microtubule-associated protein 2 (MAP2) and glutamic acid decarboxylase (GAD) 65. All cells expressed MAP2, whereas only limited number of cells expressed GAD65. From the immunoreactivity and the cell shape, we tentatively divided neurons into 3 types; GAD-positive multipolar, GAD-positive bipolar/tripolar and GAD-negative neurons. The total length of axons and dendrites, the number of primary dendrites and the dendritic branching of GAD-negative neurons were decreased by the agonist (10 or 100nM), most of which were reversed by the concomitant treatment of the antagonist. In contrast, no or little effect was observed on the formation of dendrites and axons of GAD-positive multipolar neurons, and the neurite formation of GAD-positive bipolar/tripolar neurons. The present study revealed differential roles of the 5-HT(3) receptor in the formation of dendrites and axons of subtypes of cortical neurons.

  20. Involvement of 5-HT3 receptors in the action of vortioxetine in rat brain: Focus on glutamatergic and GABAergic neurotransmission.

    PubMed

    Riga, Maurizio S; Sánchez, Connie; Celada, Pau; Artigas, Francesc

    2016-09-01

    The antidepressant vortioxetine is a 5-HT3-R, 5-HT7-R and 5-HT1D-R antagonist, 5-HT1B-R partial agonist, 5-HT1A-R agonist, and serotonin (5-HT) transporter (SERT) inhibitor. Vortioxetine occupies all targets at high therapeutic doses and only SERT and 5-HT3-R at low doses. Vortioxetine increases extracellular monoamine concentrations in rat forebrain more than selective serotonin reuptake inhibitors (SSRI) and shows pro-cognitive activity in preclinical models. Given its high affinity for 5-HT3-R (Ki = 3.7 nM), selectively expressed in GABA interneurons, we hypothesized that vortioxetine may disinhibit glutamatergic and monoaminergic neurotransmission following 5-HT3-R blockade. Here we assessed vortioxetine effect on pyramidal neuron activity and extracellular 5-HT concentration using in vivo extracellular recordings of rat medial prefrontal cortex (mPFC) pyramidal neurons and microdialysis in mPFC and ventral hippocampus (vHPC). Vortioxetine, but not escitalopram, increased pyramidal neuron discharge in mPFC. This effect was prevented by SR57227A (5-HT3-R agonist) and was mimicked by ondansetron (5-HT3-R antagonist) and by escitalopram/ondansetron combinations. In microdialysis experiments, ondansetron augmented the 5-HT-enhancing effect of escitalopram in mPFC and vHPC. Local ondansetron in vHPC augmented escitalopram effect, indicating the participation of intrinsic mechanisms. Since 5-HT neurons express GABAB receptors, we examined their putative involvement in controlling 5-HT release after 5-HT3-R blockade. Co-perfusion of baclofen (but not muscimol) reversed the increased 5-HT levels produced by vortioxetine and escitalopram/ondansetron combinations in vHPC. The present results suggest that vortioxetine increases glutamatergic and serotonergic neurotransmission in rat forebrain by blocking 5-HT3 receptors in GABA interneurons.

  1. Partial Agonism of 5-HT3 Receptors: A Novel Approach to the Symptomatic Treatment of IBS-D

    PubMed Central

    2012-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by abdominal pain, discomfort, and altered bowel habits, which have a significant impact on quality of life for approximately 10–20% of the population. IBS can be divided into three main types IBS-D (diarrhea predominant), IBS-C (constipation predominant), and mixed or alternating IBS. 5-HT3 receptor antagonism has proved to be an efficacious treatment option for IBS-D. For example, alosetron displays efficacy in the treatment of multiple symptoms, including abdominal pain, discomfort, urgency, stool frequency and consistency. However, significant constipation occurred in approximately 25% of patients, leading to withdrawal of up to 10% of patients in clinical trials. Targeting compounds with partial agonist activity at the 5-HT3 receptor represents a mechanistic departure from the classic 5-HT3 receptor antagonist approach and should result in agents that are applicable to a broader array of IBS patient populations. Attenuation of the activity of the ion channel without completely abolishing its function may control or normalize bowel function without leading to a total block associated with severe constipation. We have identified a new class of selective, orally active 5-HT3 receptor ligands with high 5-HT3 receptor affinity and low partial agonist activity currently in preclinical development that should offer a significant advantage over existing therapies. PMID:23342199

  2. Functional evidence for the rapid desensitization of 5-HT(3) receptors on vagal afferents mediating the Bezold-Jarisch reflex

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    2000-01-01

    The aim of this study was to determine whether 5-hydroxytryptamine (5-HT)(3) receptors on cardiopulmonary afferents mediating the Bezold-Jarisch reflex (BJR) desensitize upon repeated exposure to selective agonists. BJR-mediated falls in heart rate, diastolic arterial blood pressure and cardiac output elicited by the 5-HT(3)-receptor agonists, phenylbiguanide (100 microg/kg, i.v.) or 2-methyl-5-HT (100 microg/kg, i.v.), progressively diminished upon repeated injection in conscious rats. The BJR responses elicited by 5-HT (40 microg/kg, i.v.) were markedly reduced in rats which had received the above injections of phenylbiguanide or 2-methyl-5-HT whereas the BJR responses elicited by L-S-nitrosocysteine (10 micromol/kg, i.v.) were similar before and after the injections of the 5-HT(3) receptor agonists. These findings suggest that tachyphylaxis to 5-HT(3) receptor agonists may be due to the desensitization of 5-HT(3) receptors on cardiopulmonary afferents rather than the impairment of the central or peripheral processing of the BJR.

  3. Comparative Pharmacology and Guide to the Use of the Serotonin 5-HT3 Receptor Antagonists for Postoperative Nausea and Vomiting.

    PubMed

    Kovac, Anthony L

    2016-12-01

    Since the introduction of the serotonin 5-hydroxy tryptamine 3 (5-HT3) receptor antagonists in the early 1990s, the incidence of postoperative nausea and vomiting (PONV) and post-discharge nausea and vomiting (PDNV) has decreased, yet continues to be a problem for the surgical patient. The clinical application of the 5-HT3 receptor antagonists has helped define the approach and role of these antiemetics in the prevention and treatment of PONV and PDNV. Pharmacological and clinical differences exist among these medications resulting in corresponding differences in effectiveness, safety, optimal dosage, time of administration, and use as combination and rescue antiemetic therapy. The clinical application of the 5-HT3 receptor antagonist antiemetics has improved the prevention and treatment of PONV and PDNV. The most recent consensus guidelines for PONV published in 2014 outline the use of these antiemetics. The 5-HT3 receptor antagonists play an important role to help prevent PONV and PDNV in perioperative care pathways such as Enhanced Recovery After Surgery (ERAS). Comparisons and guidelines for use of the 5-HT3 receptor antagonists in relation to the risk for PONV and PDNV are reviewed.

  4. Impact of 5-HT3 receptor antagonists on chemotherapy-induced nausea and vomiting: a retrospective cohort study

    PubMed Central

    2012-01-01

    Background 1st generation 5-hydroxytryptamine receptor antagonists (5-HT3 RAs), and palonosetron, a 2nd generation 5-HT3 RA, are indicated for the prevention of chemotherapy (CT)-induced nausea and vomiting (CINV) associated with moderately (MEC) and highly emetogenic CT agents (HEC). This study explores the impact of step therapy policies requiring use of an older 5-HT3 RA before palonosetron on risk of CINV associated with hospital or emergency department (ED) admissions. Methods Patients who received cyclophosphamide post breast cancer (BC) surgery or who were diagnosed with lung cancer on carboplatin (LC-carboplatin) or cisplatin (LC-cisplatin) were selected from PharMetrics’ (IMS LifeLink) claims dataset (2005-2008). Patients were followed for 6 months from initial CT administration for CINV events identified through ICD-9-CM codes. Patients were grouped into those initiated with older, generic 5-HT3 RAs (ondansetron, granisetron, and dolasetron) and those initiated and maintained on palonosetron throughout study follow-up. CINV events and CINV days were analyzed using multivariate regressions controlling for demographic and clinical variables. Results Eligible patients numbered 3,606 in BC, 4,497 in LC-carboplatin and 1,154 in LC-cisplatin cohorts, with 52%, 40%, and 34% in the palonosetron group, respectively. There was no significant difference between the two 5-HT3 RA groups in age or Charlson Comorbidity Index among the two MEC cohorts (BC and LC-carboplatin). Among the LC-cisplatin cohort, palonosetron users were older with more males than the older 5-HT3 RA group (age: 60.1 vs. 61.3; males, 66.9% vs. 56.9%). Compared to the older 5-HT3 RAs, the palonosetron groups incurred 22%-51% fewer 5-HT3 RA pharmacy claims, had fewer patients with CINV events (3.5% vs. 5.5% in BC, 9.5% vs. 12.8% in LC-carboplatin, 16.4% vs. 21.7% in LC-cisplatin), and had lower risk for CINV events (odds ratios 0.62, 0.71, or 0.71, respectively; p < 0.05). The BC and LC

  5. Effects of iodoproxyfan, a potent and selective histamine H3 receptor antagonist, on alpha 2 and 5-HT3 receptors.

    PubMed

    Schlicker, E; Pertz, H; Bitschnau, H; Purand, K; Kathmann, M; Elz, S; Schunack, W

    1995-07-01

    We determined the affinity and/or potency of the novel H3 receptor antagonist iodoproxyfan at alpha 2 and 5-HT3 receptors. Iodoproxyfan and rauwolscine (a reference alpha 2 ligand) (i) monophasically displaced 3H-rauwolscine binding to rat brain cortex membranes (pKi 6.79 and 8.59); (ii) facilitated the electrically evoked tritium overflow from superfused mouse brain cortex slices preincubated with 3H-noradrenaline (pEC50 6.46 and 7.91) and (iii) produced rightward shifts of the concentration-response curve (CRC) of (unlabelled) noradrenaline for its inhibitory effect on the evoked overflow (pA2 6.65 and 7.88). In the guinea-pig ileum, iodoproxyfan 6.3 mumol/l failed to evoke a contraction by itself but depressed the maximum of the CRC of 5-hydroxytryptamine (pD'2 5.24). Tropisetron (a reference 5-HT3 antagonist) produced rightward shifts of the CRC of 5-hydroxytryptamine (pA2 7.84). In conclusion, the affinity/potency of iodoproxyfan at H3 receptors (range 8.3-9.7 [1]) exceeds that at alpha 2 receptors by at least 1.5 log units and that at 5-HT3 receptors by at least 3 log units.

  6. Transcriptomic and anatomic parcellation of 5-HT3AR expressing cortical interneuron subtypes revealed by single-cell RNA sequencing

    PubMed Central

    Frazer, Sarah; Prados, Julien; Niquille, Mathieu; Cadilhac, Christelle; Markopoulos, Foivos; Gomez, Lucia; Tomasello, Ugo; Telley, Ludovic; Holtmaat, Anthony; Jabaudon, Denis; Dayer, Alexandre

    2017-01-01

    Cortical GABAergic interneurons constitute a highly diverse population of inhibitory neurons that are key regulators of cortical microcircuit function. An important and heterogeneous group of cortical interneurons specifically expresses the serotonin receptor 3A (5-HT3AR) but how this diversity emerges during development is poorly understood. Here we use single-cell transcriptomics to identify gene expression patterns operating in Htr3a-GFP+ interneurons during early steps of cortical circuit assembly. We identify three main molecular types of Htr3a-GFP+ interneurons, each displaying distinct developmental dynamics of gene expression. The transcription factor Meis2 is specifically enriched in a type of Htr3a-GFP+ interneurons largely confined to the cortical white matter. These MEIS2-expressing interneurons appear to originate from a restricted region located at the embryonic pallial–subpallial boundary. Overall, this study identifies MEIS2 as a subclass-specific marker for 5-HT3AR-containing interstitial interneurons and demonstrates that the transcriptional and anatomical parcellation of cortical interneurons is developmentally coupled. PMID:28134272

  7. MDL72222, a serotonin 5-HT3 receptor antagonist, blocks MDMA's ability to establish a conditioned place preference.

    PubMed

    Bilsky, E J; Reid, L D

    1991-06-01

    Methylenedioxymethamphetamine (MDMA) has previously been shown to produce a positive conditioned place preference (CPP) among rats. Here the effects of doses of a specific 5-HT3 antagonist, MDL72222, on MDMA's ability to produce a CPP were assessed. A dose of MDL72222 (0.03 mg/kg) blocked the establishment of a MDMA CPP. These results support the suggestions that compounds affecting the 5-HT3 receptor may be of particular interest in studying the pharmacology of self-administered drugs.

  8. Subunit rotation models activation of serotonin 5-HT3AB receptors by agonists

    NASA Astrophysics Data System (ADS)

    Maksay, Gábor; Simonyi, Miklós; Bikádi, Zsolt

    2004-10-01

    The N-terminal extracellular regions of heterooligomeric 3AB-type human 5-hydroxytryptamine receptors (5-HT 3ABR) were modelled based on the crystal structure of snail acetylcholine binding protein AChBP. Stepwise rotation of subunit A by 5° was performed between -10° and 15° to mimic agonist binding and receptor activation. Anticlockwise rotation reduced the size of the binding cavity in interface AB and reorganised the network of hydrogen bonds along the interface. AB subunit dimers with different rotations were applied for docking of ligands with different efficacies: 5-HT, m-chlorophenylbiguanide, SR 57227, quinolinyl piperazine and lerisetron derivatives. All ligands were docked into the dimer with -10° rotation representing ligand-free, open binding cavities similarly, without pharmacological discrimination. Their ammonium ions were in hydrogen bonding distance to the backbone carbonyl of W183. Anticlockwise rotation and contraction of the binding cavity led to distinctive docking interactions of agonists with E129 and cation-π interactions of their ammonium ions. Side chains of several further amino acids participating in docking (Y143, Y153, Y234 and E236) are in agreement with the effects of point mutations in the binding loops. Our model postulates that 5-HT binds to W183 in a hydrophobic cleft as well as to E236 in a hydrophilic vestibule. Then it elicits anticlockwise rotation to draw in loop C via π-cation-π interactions of␣its ammonium ion with W183 and Y234. Finally, closure of the binding cavity might end in rebinding of 5-HT to E129 in the hydrophilic vestibule.

  9. Effects of repeated daily treatments with a 5-HT3 receptor antagonist on dopamine neurotransmission and functional activity of 5-HT3 receptors within the nucleus accumbens of Wistar rats.

    PubMed

    Liu, Wen; Thielen, Richard J; McBride, William J

    2006-06-01

    A previous study indicated that pretreatment with repeated daily injections of serotonin-3 (5-HT3) receptor antagonists subsequently reduced the effectiveness of the 5-HT3 antagonists to attenuate ethanol intake under 24-h free-choice conditions; one possibility to account for this is that the functional activity of the 5-HT3 receptor may have been altered by prior treatment with the antagonists. The present experiments were conducted to examine the effects of local perfusion of the 5-HT3 agonist 1-(m-chlorophenyl)-biguanide (CPBG) on the extracellular levels of dopamine (DA) in the nucleus accumbens (ACB) and ventral tegmental area (VTA) of adult male Wistar rats that had received repeated daily injections of the 5-HT3 antagonist, MDL 72222 (MDL). In vivo microdialysis was used to test the hypothesis that alterations in 5-HT3 receptor function have occurred with repeated antagonist injections. One group was given daily injections of MDL (1 mg/kg, s.c.) for 10 consecutive days (MDL group), and the other group was administered saline for 10 days (saline group). On the day after the last treatment, rats were implanted with a unilateral guide cannula aimed at either the ACB or VTA. Two days later, the microdialysis probe was inserted into the guide cannula; on the next day, microdialysis experiments were conducted to determine the extracellular levels of DA in the ACB or VTA. Local perfusion of CPBG (17.5, 35, 70 microM) in the ACB significantly stimulated DA release in the saline- and MDL-treated animals. In terms of percent baseline, the CPBG-stimulated DA release was higher in the MDL-treated group than in the saline-treated group in both the ACB and VTA; however, on the basis of the extracellular concentration, there were no significant differences in the ACB between the two groups. Using the no-net-flux microdialysis, it was determine that the basal extracellular concentration of DA in the ACB was approximately 60% lower in the MDL group than saline group; there

  10. Blockade of 5-Ht3 receptors in the septal area increases Fos expression in selected brain areas.

    PubMed

    Urzedo-Rodrigues, Lilia S; Ferreira, Hilda S; Santana, Rejane Conceição; Luz, Carla Patrícia; Perrone, Camila F; Fregoneze, Josmara B

    2014-04-01

    Serotonin is widely distributed throughout the brain and is involved in a multiplicity of visceral, cognitive and behavioral responses. It has been previously shown that injections of different doses of ondansetron, a 5-HT3 receptor antagonist, into the medial septum/vertical limb of the diagonal band complex (MS/vDB) induce a hypertensive response in rats. On the other hand, administration of m-CPBG, a 5-HT3 agonist, into the MS/vDB inhibits the increase of blood pressure during restraint stress. However, it is unclear which neuronal circuitry is involved in these responses. The present study investigated Fos immunoreactive nuclei (Fos-IR) in different brain areas following the blockade of 5-HT3 receptors located in the MS/vDB in sham and in sinoaortic denervated (SAD) rats. Ondansetron injection into the MS/vDB increases Fos-IR in different brain areas including the limbic system (central amygdala and ventral part of the bed nucleus of the stria terminalis), hypothalamus (medial parvocellular parts of the paraventricular nucleus, anterodorsal preoptic area, dorsomedial hypothalamic nucleus), mesencephalon (ventrolateral periaqueductal gray region) and rhombencephalon (lateral parabrachial nucleus) in sham rats. Barodenervation results in higher Fos expression at the parvocellular and magnocellular part of the paraventricular nucleus, the lateral parabrachial nucleus, the central nucleus of amygdala, the locus coeruleus, the medial part of the nucleus of the solitary tract, the rostral ventrolateral medulla and the caudal ventrolateral medulla following 5-HT3receptor blockade in the MS/vDB. Based on the present results and previous data showing a hypertensive response to ondansetron injected into the MS/vDB, it is reasonable to suggest that 5-HT3receptors in the MS/vDB exert an inhibitory drive that may oscillate as a functional regulatory part of the complex central neuronal network participating in the control of blood pressure.

  11. Emesis and Defecations Induced by the 5-Hydroxytryptamine (5-HT3) Receptor Anatagonist Zacopride in the Ferret

    DTIC Science & Technology

    1990-02-16

    and Defecations Induced by the 5 -Hydroxytryptamine ( 5 -HT 3) Receptor Antagonist Zacopride in the Ferret1 GREGORY L. KING Department of Physiology...benzamides and 5 -hydroxytryptamine ( 5 - Zacopride (4-amino-N-[ 1-azabicyclo(2.2.2)oct-3-yl]- 5 -chloro- HT:i) receptor antagonists are effective...prompted development of 5 - the dose-response properties of zacop -ide-induced emesis and HT, receptor antagonist antiemetics with limited gastric

  12. 5-Hydroxytryptamine (5-HT) Cellular Sequestration during Chronic Exposure Delays 5-HT3 Receptor Resensitization due to Its Subsequent Release*

    PubMed Central

    Hothersall, J. Daniel; Alexander, Amy; Samson, Andrew J.; Moffat, Christopher; Bollan, Karen A.; Connolly, Christopher N.

    2014-01-01

    The serotonergic synapse is dynamically regulated by serotonin (5-hydroxytryptamine (5-HT)) with elevated levels leading to the down-regulation of the serotonin transporter and a variety of 5-HT receptors, including the 5-HT type-3 (5-HT3) receptors. We report that recombinantly expressed 5-HT3 receptor binding sites are reduced by chronic exposure to 5-HT (IC50 of 154.0 ± 45.7 μm, t½ = 28.6 min). This is confirmed for 5-HT3 receptor-induced contractions in the guinea pig ileum, which are down-regulated after chronic, but not acute, exposure to 5-HT. The loss of receptor function does not involve endocytosis, and surface receptor levels are unaltered. The rate and extent of down-regulation is potentiated by serotonin transporter function (IC50 of 2.3 ± 1.0 μm, t½ = 3.4 min). Interestingly, the level of 5-HT uptake correlates with the extent of down-regulation. Using TX-114 extraction, we find that accumulated 5-HT remains soluble and not membrane-bound. This cytoplasmically sequestered 5-HT is readily releasable from both COS-7 cells and the guinea pig ileum. Moreover, the 5-HT level released is sufficient to prevent recovery from receptor desensitization in the guinea pig ileum. Together, these findings suggest the existence of a novel mechanism of down-regulation where the chronic release of sequestered 5-HT prolongs receptor desensitization. PMID:25281748

  13. Synergistic antiemetic interactions between serotonergic 5-HT3 and tachykininergic NK1-receptor antagonists in the least shrew (Cryptotis parva).

    PubMed

    Darmani, Nissar A; Chebolu, Seetha; Amos, Barry; Alkam, Tursun

    2011-10-01

    Significant electrophysiological and biochemical findings suggest that receptor cross-talk occurs between serotonergic 5-HT(3)- and tachykininergic NK(1)-receptors in which co-activation of either receptor by ineffective doses of their corresponding agonists (serotonin (5-HT) or substance P (SP), respectively) potentiates the activity of the other receptor to produce a response. In contrast, selective blockade of any one of these receptors attenuates the increase in abdominal vagal afferent activity caused by either 5-HT or SP. This interaction has important implications in chemotherapy-induced nausea and vomiting (CINV) since 5-HT(3)- and NK(1)-receptor antagonists are the major classes of antiemetics used in cancer patients receiving chemotherapy. The purpose of this study was to demonstrate whether the discussed interaction produces effects at the behavioral level in a vomit-competent species, the least shrew. Our results demonstrate that pretreatment with either a 5-HT(3) (tropisetron)- or an NK(1) (CP99,994)-receptor specific antagonist, attenuates vomiting caused by a selective agonist (2-methyl 5-HT or GR73632, respectively) of both emetic receptors. In addition, relative to each antagonist alone, their combined doses were 4-20 times more potent against vomiting caused by each emetogen. Moreover, combined sub-maximal doses of the agonists 2-methyl 5-HT and GR73632, produced 8-12 times greater number of vomits relative to each emetogen tested alone. However, due to large variability in vomiting caused by the combination doses, the differences failed to attain significance. The antiemetic dose-response curves of tropisetron against both emetogens were U-shaped probably because larger doses of this antagonist behave as a partial agonist. The data demonstrate that 5-HT(3)- and NK(1)-receptors cross-talk to produce vomiting, and that synergistic antiemetic effects occur when both corresponding antagonists are concurrently used against emesis caused by each

  14. Kampo Medicine: Evaluation of the Pharmacological Activity of 121 Herbal Drugs on GABAA and 5-HT3A Receptors

    PubMed Central

    Hoffmann, Katrin M.; Herbrechter, Robin; Ziemba, Paul M.; Lepke, Peter; Beltrán, Leopoldo; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2016-01-01

    Kampo medicine is a form of Japanese phytotherapy originating from traditional Chinese medicine (TCM). During the last several decades, much attention has been paid to the pharmacological effects of these medical plants and their constituents. However, in many cases, a systematic screening of Kampo remedies to determine pharmacologically relevant targets is still lacking. In this study, a broad screening of Kampo remedies was performed to look for pharmacologically relevant 5-HT3A and GABAA receptor ligands. Several of the Kampo remedies are currently used for symptoms such as nausea, emesis, gastrointestinal motility disorders, anxiety, restlessness, or insomnia. Therefore, the pharmacological effects of 121 herbal drugs from Kampo medicine were analyzed as ethanol tinctures on heterologously expressed 5-HT3A and GABAA receptors, due to the involvement of these receptors in such pathophysiological processes. The tinctures of Lindera aggregata (radix) and Leonurus japonicus (herba) were the most effective inhibitory compounds on the 5-HT3A receptor. Further investigation of known ingredients in these compounds led to the identification of leonurine from Leonurus as a new natural 5-HT3A receptor antagonist. Several potentiating herbs (e.g., Magnolia officinalis (cortex), Syzygium aromaticum (flos), and Panax ginseng (radix)) were also identified for the GABAA receptor, which are all traditionally used for their sedative or anxiolytic effects. A variety of tinctures with antagonistic effects Salvia miltiorrhiza (radix) were also detected. Therefore, this study reveals new insights into the pharmacological action of a broad spectrum of herbal drugs from Kampo, allowing for a better understanding of their physiological effects and clinical applications. PMID:27524967

  15. Dynamic Expression of Serotonin Receptor 5-HT3A in Developing Sensory Innervation of the Lower Urinary Tract

    PubMed Central

    Ritter, K. Elaine; Southard-Smith, E. Michelle

    2017-01-01

    Sensory afferent signaling is required for normal function of the lower urinary tract (LUT). Despite the wide prevalence of bladder dysfunction and pelvic pain syndromes, few effective treatment options are available. Serotonin receptor 5-HT3A is a known mediator of visceral afferent signaling and has been implicated in bladder function. However, basic expression patterns for this gene and others among developing bladder sensory afferents that could be used to inform regenerative efforts aimed at treating deficiencies in pelvic innervation are lacking. To gain greater insight into the molecular characteristics of bladder sensory innervation, we conducted a thorough characterization of Htr3a expression in developing and adult bladder-projecting lumbosacral dorsal root ganglia (DRG) neurons. Using a transgenic Htr3a-EGFP reporter mouse line, we identified 5-HT3A expression at 10 days post coitus (dpc) in neural crest derivatives and in 12 dpc lumbosacral DRG. Using immunohistochemical co-localization we observed Htr3a-EGFP expression in developing lumbosacral DRG that partially coincides with neuropeptides CGRP and Substance P and capsaicin receptor TRPV1. A majority of Htr3a-EGFP+ DRG neurons also express a marker of myelinated Aδ neurons, NF200. There was no co-localization of 5-HT3A with the TRPV4 receptor. We employed retrograde tracing in adult Htr3a-EGFP mice to quantify the contribution of 5-HT3A+ DRG neurons to bladder afferent innervation. We found that 5-HT3A is expressed in a substantial proportion of retrograde traced DRG neurons in both rostral (L1, L2) and caudal (L6, S1) axial levels that supply bladder innervation. Most bladder-projecting Htr3a-EGFP+ neurons that co-express CGRP, Substance P, or TRPV1 are found in L1, L2 DRG, whereas Htr3a-EGFP+, NF200+ bladder-projecting neurons are from the L6, S1 axial levels. Our findings contribute much needed information regarding the development of LUT innervation and highlight the 5-HT3A serotonin receptor as

  16. The antiemetic 5-HT3 receptor antagonist Palonosetron inhibits substance P-mediated responses in vitro and in vivo.

    PubMed

    Rojas, Camilo; Li, Ying; Zhang, Jie; Stathis, Marigo; Alt, Jesse; Thomas, Ajit G; Cantoreggi, Sergio; Sebastiani, Silvia; Pietra, Claudio; Slusher, Barbara S

    2010-11-01

    Palonosetron is the only 5-HT(3) receptor antagonist approved for the treatment of delayed chemotherapy-induced nausea and vomiting (CINV) in moderately emetogenic chemotherapy. Accumulating evidence suggests that substance P (SP), the endogenous ligand acting preferentially on neurokinin-1 (NK-1) receptors, not serotonin (5-HT), is the dominant mediator of delayed emesis. However, palonosetron does not bind to the NK-1 receptor. Recent data have revealed cross-talk between the NK-1 and 5HT(3) receptor signaling pathways; we postulated that if palonosetron differentially inhibited NK-1/5-HT(3) cross-talk, it could help explain its efficacy profile in delayed emesis. Consequently, we evaluated the effect of palonosetron, granisetron, and ondansetron on SP-induced responses in vitro and in vivo. NG108-15 cells were preincubated with palonosetron, granisetron, or ondansetron; antagonists were removed and the effect on serotonin enhancement of SP-induced calcium release was measured. In the absence of antagonist, serotonin enhanced SP-induced calcium-ion release. After preincubation with palonosetron, but not ondansetron or granisetron, the serotonin enhancement of the SP response was inhibited. Rats were treated with cisplatin and either palonosetron, granisetron, or ondansetron. At various times after dosing, single neuronal recordings from nodose ganglia were collected after stimulation with SP; nodose ganglia neuronal responses to SP were enhanced when the animals were pretreated with cisplatin. Palonosetron, but not ondansetron or granisetron, dose-dependently inhibited the cisplatin-induced SP enhancement. The results are consistent with previous data showing that palonosetron exhibits distinct pharmacology versus the older 5-HT(3) receptor antagonists and provide a rationale for the efficacy observed with palonosetron in delayed CINV in the clinic.

  17. Antiemetic effects of YM060, a potent and selective serotonin (5HT)3-receptor antagonist, in ferrets and dogs.

    PubMed

    Kamato, T; Miyata, K; Ito, H; Yuki, H; Yamano, M; Honda, K

    1991-11-01

    YM060, (R)-5-[(1-methyl-3-indolyl)carbonyl]-4,5,6,7-tetrahydro-1H-benzimidazole hydrochloride, is a new serotonin (5HT)3-receptor antagonist. We examined the effects of YM060 on chemotherapeutic agent-, apomorphine- and copper sulfate-induced emesis. Intravenous YM060 potently prevented cisplatin (10 mg/kg, i.v.)-induced emesis with ED50 values of 0.06 (0.05-0.07) micrograms/kg, i.v. in ferrets. Based on the ED50 values, YM060 was 300, 20 and 100 times more potent than ondansetron, granisetron and the S-isomer of YM060, respectively. The relative potencies of these drugs described above were similar to those in the previously reported 5HT3-receptor antagonism. YM060 given orally also potently inhibited cisplatin (10 mg/kg, i.p.)- and cyclophosphamide (200 mg/kg, i.p.)-induced emesis in ferrets with ED50 values of 0.1 (0.09-0.11) and 0.02 (0.16-0.27) micrograms/kg, p.o., respectively. All tested 5HT3-receptor antagonists including YM060 failed to prevent apomorphine (0.1 mg/kg, s.c.)-induced emesis in dogs and copper sulfate (1%, 10 ml, p.o.)-induced emesis in ferrets. Our data indicate that YM060 is a highly potent inhibitor of chemotherapeutic agent-induced emesis and that the antiemetic effect of YM060 may be depend on 5HT3-receptor antagonism.

  18. QoL evaluation of olanzapine for chemotherapy-induced nausea and vomiting comparing with 5-HT3 receptor antagonist.

    PubMed

    Liu, J; Tan, L; Zhang, H; Li, H; Liu, X; Yan, Z; Chen, J; Yang, H; Zhang, D

    2015-05-01

    This study evaluated the efficacy of olanzapine in preventing chemotherapy-induced nausea and vomiting (CINV) and improving the quality of life (QoL) of patients with cancer during chemotherapy. Two hundred twenty-nine patients with cancer who received chemotherapy from January 2008 to August 2008 were enrolled, and they were randomised to receive olanzapine or a 5-HT3 receptor antagonist. The patients completed a CINV questionnaire once daily on days 1-5 and a QoL questionnaire on days 0 and 6. The complete response (CR) rates for nausea (76.85% versus 46.2%) and vomiting (84.3% versus 67.6%) were significantly higher in the olanzapine group than in the 5-HT3 receptor antagonist group for delayed CINV but not for acute CINV. The CR rates for nausea (76.85% versus 44.44%) and vomiting (85.95% versus 67.59%) were also significantly higher in the olanzapine group for the 5 days post-chemotherapy. After chemotherapy, global health status, emotional functioning, and insomnia were improved in the olanzapine group but worsened in the 5-HT3 receptor antagonist group, whereas cognitive functioning and appetite loss were unchanged. Moreover, olanzapine significantly improved global health status, emotional functioning, social functioning, fatigue, nausea/vomiting, insomnia, and appetite loss. Olanzapine improved the QoL of patients with cancer during chemotherapy, in part by reducing the incidence of delayed CINV.

  19. Inhibition of temporomandibular joint input to medullary dorsal horn neurons by 5HT3 receptor antagonist in female rats

    PubMed Central

    Okamoto, Keiichiro; Katagiri, Ayano; Rahman, Mostafeezur; Thompson, Randall; Bereiter, David A.

    2015-01-01

    Repeated forced swim (FS) conditioning enhances nociceptive responses to temporomandibular joint (TMJ) stimulation in male and female rats. The basis for FS-induced TMJ hyperalgesia remains unclear. To test the hypothesis that serotonin 3 receptor (5HT3R) mechanisms contribute to enhanced TMJ nociception after FS, ovariectomized female rats were treated with estradiol and subjected to FS for three days. On day 4, rats were anesthetized with isoflurane and TMJ-responsive neurons were recorded from superficial and deep laminae at the trigeminal subnucleus caudalis/upper cervical (Vc/C1–2) region and electromyographic (EMG) activity was recorded from the masseter muscle. Only Vc/C1–2 neurons activated by intra-TMJ injections of ATP were included for further analysis. Although neurons in both superficial and deep laminae were activated by ATP, only neurons in deep laminae displayed enhanced responses after FS. Local application of the 5HT3R antagonist, ondansetron (OND), at the Vc/C1–2 region reduced the ATP-evoked responses of neurons in superficial and deep laminae and reduced the EMG response in both sham and FS rats. OND also decreased the spontaneous firing rate of neurons in deep laminae and reduced the high threshold convergent cutaneous receptive field area of neurons in superficial and deep laminae in both sham and FS rats. These results revealed that central application of a 5HT3R antagonist, had widespread effects on the properties of TMJ-responsive neurons at the Vc/C1–2 region and on jaw muscle reflexes under sham and FS conditions. It is concluded that 5HT3R does not play a unique role in mediating stress-induced hyperalgesia related to TMJ nociception. PMID:25913635

  20. Inhibition of temporomandibular joint input to medullary dorsal horn neurons by 5HT3 receptor antagonist in female rats.

    PubMed

    Okamoto, K; Katagiri, A; Rahman, M; Thompson, R; Bereiter, D A

    2015-07-23

    Repeated forced swim (FS) conditioning enhances nociceptive responses to temporomandibular joint (TMJ) stimulation in female rats. The basis for FS-induced TMJ hyperalgesia remains unclear. To test the hypothesis that serotonin 3 receptor (5HT3R) mechanisms contribute to enhanced TMJ nociception after FS, ovariectomized female rats were treated with estradiol and subjected to FS for three days. On day 4, rats were anesthetized with isoflurane and TMJ-responsive neurons were recorded from superficial and deep laminae at the trigeminal subnucleus caudalis/upper cervical (Vc/C1-2) region and electromyographic (EMG) activity was recorded from the masseter muscle. Only Vc/C1-2 neurons activated by intra-TMJ injections of ATP were included for further analysis. Although neurons in both superficial and deep laminae were activated by ATP, only neurons in deep laminae displayed enhanced responses after FS. Local application of the 5HT3R antagonist, ondansetron (OND), at the Vc/C1-2 region reduced the ATP-evoked responses of neurons in superficial and deep laminae and reduced the EMG response in both sham and FS rats. OND also decreased the spontaneous firing rate of neurons in deep laminae and reduced the high-threshold convergent cutaneous receptive field area of neurons in superficial and deep laminae in both sham and FS rats. These results revealed that central application of a 5HT3R antagonist, had widespread effects on the properties of TMJ-responsive neurons at the Vc/C1-2 region and on jaw muscle reflexes under sham and FS conditions. It is concluded that 5HT3R does not play a unique role in mediating stress-induced hyperalgesia related to TMJ nociception.

  1. The rapid recovery of 5-HT cell firing induced by the antidepressant vortioxetine involves 5-HT(3) receptor antagonism.

    PubMed

    Bétry, Cécile; Pehrson, Alan L; Etiévant, Adeline; Ebert, Bjarke; Sánchez, Connie; Haddjeri, Nasser

    2013-06-01

    The therapeutic effect of current antidepressant drugs appears after several weeks of treatment and a significant number of patients do not respond to treatment. Here, we report the effects of the multi-modal antidepressant vortioxetine (Lu AA21004), a 5-HT(3) and 5-HT(7) receptor antagonist, 5-HT(1B) receptor partial agonist, 5-HT(1A) receptor agonist and 5-HT transporter (SERT) inhibitor, on rat 5-HT neurotransmission. Using in vivo electrophysiological recordings in the dorsal raphe nucleus of anaesthetized rats, we assessed the acute and subchronic effects of vortioxetine and/or the selective 5-HT(3) receptor agonist, SR57227 or the selective 5-HT(1A) receptor agonist flesinoxan, on 5-HT neuronal firing activity. Using ex-vivo autoradiography, we correlated SERT occupancy and presumed 5-HT firing activity. The selective serotonin reuptake inhibitor, fluoxetine, was used as comparator. Importantly, the recovery of 5-HT neuronal firing was achieved after 1 d with vortioxetine and 14 d with fluoxetine. SR57227 delayed this recovery. In contrast, vortioxetine failed to alter the reducing action of 3 d treatment of flesinoxan. Acute dosing of vortioxetine inhibited neuronal firing activity more potently than fluoxetine. SR57227 prevented the suppressant effect of vortioxetine, but not of fluoxetine. In contrast, flesinoxan failed to modify the suppressant effect of vortioxetine acutely administered. Differently to fluoxetine, vortioxetine suppressed neuronal firing without saturating occupancy at the SERT. Vortioxetine produced a markedly faster recovery of 5-HT neuronal firing than fluoxetine. This is at least partly due to 5-HT(3) receptor antagonism of vortioxetine in association with its reduced SERT occupancy.

  2. Inhibitory effects of dextrorotatory morphinans on the human 5-HT(3A) receptor expressed in Xenopus oocytes: Involvement of the N-terminal domain of the 5-HT(3A) receptor.

    PubMed

    Lee, Byung-Hwan; Hwang, Sung-Hee; Choi, Sun-Hye; Shin, Tae-Joon; Kang, Jiyeon; Kim, Hyun-Joong; Kim, Hyoung-Chun; Lee, Joon-Hee; Nah, Seung-Yeol

    2012-07-05

    We previously developed a series of dextromethorphan (DM, 3-methoxy-17-methylmorphinan) analogs modified at positions 3 and 17 of the morphinan ring system. Recent reports have shown that DM attenuates abdominal pain caused by irritable bowel syndrome, and multidrug regimens that include DM prevent nausea/vomiting following cancer surgery. However, little is known regarding the molecular mechanisms underlying the beneficial effects of DM. Here, we investigated the effects of DM, 3 of its analogs (AM, 3-allyloxy-17-methoxymorphian; CM, 3-cyclopropyl-17-methoxymorphinan; and DF, 3-methyl-17-methylmorphinan), and 1 of its metabolites (HM, 3-methoxymorphinan) on the activity of the human 5-HT(3A) receptor channel expressed in Xenopus laevis oocytes, using the 2-microelectrode voltage clamp technique. We found that intra-oocyte injection of human 5-HT(3A) receptor cRNAs elicited an inward current (I(5-HT)) in the presence of 5-HT. Cotreatment with AM, CM, DF, DM, or HM inhibited I(5-HT) in a dose-dependent, voltage-independent, and reversible manner. The IC(50) values for AM, CM, DF, DM, and HM were 24.5±1.4, 21.5±4.2, 132.6±35.8, 181.3±23.5, and 191.3±31.5μM, respectively. The IC(50) values of AM and CM were 7-fold lower than that of DM, and mechanistic analysis revealed that DM, DF, HM, AM, and CM were competitive inhibitors of I(5-HT). Point mutations of Arg241 in the N-terminal, but not amino acids in the pore region, to other amino acid residues attenuated or abolished DM- and DM-analog-induced inhibition of I(5-HT). Together, these results demonstrated that dextrorotatory morphinans might regulate 5-HT(3A) receptor channel activity via interaction with its N-terminal domain.

  3. Noncompetitive Inhibition of 5-HT3 Receptors by Citral, Linalool, and Eucalyptol Revealed by Nonlinear Mixed-Effects Modeling.

    PubMed

    Jarvis, Gavin E; Barbosa, Roseli; Thompson, Andrew J

    2016-03-01

    Citral, eucalyptol, and linalool are widely used as flavorings, fragrances, and cosmetics. Here, we examined their effects on electrophysiological and binding properties of human 5-HT3 receptors expressed in Xenopus oocytes and human embryonic kidney 293 cells, respectively. Data were analyzed using nonlinear mixed-effects modeling to account for random variance in the peak current response between oocytes. The oils caused an insurmountable inhibition of 5-HT-evoked currents (citral IC50 = 120 µM; eucalyptol = 258 µM; linalool = 141 µM) and did not compete with fluorescently labeled granisetron, suggesting a noncompetitive mechanism of action. Inhibition was not use-dependent but required a 30-second preapplication. Compound washout caused a slow (∼180 seconds) but complete recovery. Coapplication of the oils with bilobalide or diltiazem indicated they did not bind at the same locations as these channel blockers. Homology modeling and ligand docking predicted binding to a transmembrane cavity at the interface of adjacent subunits. Liquid chromatography coupled to mass spectrometry showed that an essential oil extracted from Lippia alba contained 75.9% citral. This inhibited expressed 5-HT3 receptors (IC50 = 45 µg ml(-1)) and smooth muscle contractions in rat trachea (IC50 = 200 µg ml(-1)) and guinea pig ileum (IC50 = 20 µg ml(-1)), providing a possible mechanistic explanation for why this oil has been used to treat gastrointestinal and respiratory ailments. These results demonstrate that citral, eucalyptol, and linalool inhibit 5-HT3 receptors, and their binding to a conserved cavity suggests a valuable target for novel allosteric modulators.

  4. Role of the 5HT3 Receptor in Alcohol Drinking and Aggression Using A Transgenic Mouse Model

    DTIC Science & Technology

    2005-09-01

    F(1,35) = 33.85, P < 0.0005] and N5 generations [F(1,35) = 6.33, P < 0.017]. Interactions of background and transgene presence were found for N1 [F... interaction was found for the N5 generation as well [F(2,51) = 4.55, P < 0.15]. Figure 2. Contextual conditioning is influenced by 5-HT3 receptor...2,51) = 164.56, P < 0.0005] and transgene presence [F(1,51) = 51.66, P < 0.0005] were found, as was an interaction between background and transgene

  5. Contrasting effects of 5-HT3 receptor stimulation of the nucleus accumbens or ventral tegmentum on food intake in the rat.

    PubMed

    Pratt, Wayne E; Lin, Peagan; Pierce-Messick, Zachary; Ilesanmi, Adeolu O; Clissold, Kara A

    2017-04-14

    Although serotonin (5-HT) signaling is known to regulate food intake and energy homeostasis, the roles of the 5-HT3 receptor in feeding processes have been elusive. 5-HT3 receptors are found throughout mesolimbic circuitry that promote feeding not only in response to hunger, but also to the palatable and rewarding properties of food. These experiments examined if stimulation or blockade of the 5-HT3 receptor of the nucleus accumbens (NAcc) or ventral tegmentum affected food intake in the rat in response to hunger or the presence of a palatable diet. Rats (N=6-9/group) received bilateral injections of the 5-HT3 agonist m-chlorophenylbiguanide hydrochloride (mCPBG; at 0.0, 10.0, or 20.0μg/0.5μl/side) or the 5-HT3 antagonist ondansetron hydrochloride (at 0.0, 1.0, 2.0, or 5.0μg/0.5μl/side) into either the NAcc or the ventral tegmentum. NAcc 5-HT3 receptor stimulation significantly increased 2-h food intake in food-deprived animals offered rat chow and in a separate group of unrestricted rats offered a sweetened fat diet. In contrast to the feeding increase seen with NAcc treatments, stimulation of 5-HT3 receptors of the ventral tegmentum significantly reduced food and water intake in food-restricted animals; reductions of intake in non-restricted rats offered the palatable diet did not approach significance. Blockade of the 5-HT3 receptor had no effect on feeding in either brain region. These data support a functional role for serotonergic signaling in the mesolimbic pathway on motivated behavior, and demonstrate that 5-HT3 receptors differentially modulate food consumption in a region-dependent manner.

  6. Synthesis and biochemical evaluation of tritium-labeled 1-methyl-N-(8-methyl-8-azabicyclo(3. 2. 1)oct-3-yl)-1H-indazole-3-carboxa mide, a useful radioligand for 5HT3 receptors

    SciTech Connect

    Robertson, D.W.; Bloomquist, W.; Cohen, M.L.; Reid, L.R.; Schenck, K.; Wong, D.T. )

    1990-12-01

    The advent of potent, highly selective 5HT3 receptor antagonists has stimulated considerable interest in 5HT3 receptor mediated physiology and pharmacology. To permit detailed biochemical studies regarding interaction of the indazole class of serotonin (5HT) antagonists with 5HT3 receptors in multiple tissues, we synthesized 1-methyl-N-(8-methyl-8-azabicyclo(3.2.1)oct-3-yl)-1H-indazole- 3-carboxamide (LY278584, compound 9) in high specific activity, tritium-labeled form. This radioligand was selected as a synthetic target because of its potency as a 5HT3-receptor antagonist, its selectivity for this receptor viz a viz other 5HT-receptor subtypes, and the ability to readily incorporate three tritia via the indazole N-CH3 substituent. Alkylation of N-(8-methyl-8-azabicyclo(3.2.1)oct-3-yl)-1H-indazole-3-carboxamide (8) with sodium hydride and tritium-labeled iodomethane, followed by HPLC purification, resulted in (3H)-9 with a radiochemical purity of 99% and a specific activity of 80.5 Ci/mmol. This radioligand bound with high affinity to a single class of saturable recognition sites in membranes isolated from cerebral cortex of rat brain. The Kd was 0.69 nM and the Bmax was 16.9 fmol/mg of protein. The specific binding was excellent, and accounted for 83-93% of total binding at concentrations of 2 nM or less. The potencies of known 5HT3-receptor antagonists as inhibitors of (3H)-9 binding correlated well with their pharmacological receptor affinities as antagonists of 5HT-induced decreases in heart rate and contraction of guinea pig ileum, suggesting the central recognition site for this radioligand may be extremely similar to or identical with peripheral 5HT3 receptors.

  7. A molecular dynamics approach to receptor mapping: application to the 5HT3 and beta 2-adrenergic receptors.

    PubMed

    Gouldson, P R; Winn, P J; Reynolds, C A

    1995-09-29

    A molecular dynamics-based approach to receptor mapping is proposed, based on the method of Rizzi (Rizzi, J. P.; et al. J. Med. Chem. 1990, 33, 2721). In Rizzi's method, the interaction energy between a series of drug molecules and probe atoms (which mimic functional groups on the receptor, such as hydrogen bond donors) was calculated. These interactions were calculated on a three-dimensional grid within a molecular mechanics parameters, were placed at these minima. The distances between the dummy atom sites were monitored during molecular dynamics simulations and plotted as distance distribution functions. Important distances within the receptor became apparent, as drugs with a common mode of binding share similar peaks in the distance distribution functions. In the case of specific 5HT3 ligands, the important donor--acceptor distance within the receptor has a range of ca. 7.9--8.9 A. In the case of specific beta 2-adrenergic ligands, the important donor--acceptor distances within the receptor lie between ca. 7--9 A and between 8 and 10 A. These distances distribution functions were used to assess three different models of the beta 2-adrenergic G-protein-coupled receptor. The comparison of the distance distribution functions for the simulation with the actual donor--acceptor distances in the receptor models suggested that two of the three receptor models were much more consistent with the receptor-mapping studies. These receptor-mapping studies gave support for the use of rhodopsin, rather than the bacteriorhodopsin template, for modeling G-protein-coupled receptors but also sounded a warning that agreement with binding data from site-directed mutagenesis experiments does not necessarily validate a receptor model.

  8. [Effect of the 5-HT3 receptor antagonist granisetron on estramustine phosphate sodium (Estracyt)-induced emesis in ferrets].

    PubMed

    Higashioka, Masaya; Yamaguchi, Emi; Takatori, Shingo; Tanaka, Mitsushi; Kyoi, Takashi

    2010-07-01

    Estracyt(R) is an antimitotic drug used for the treatment of prostate cancer, and its most common adverse effects are nausea and vomiting. In this study, we investigated the effect of a 5-HT3 receptor antagonist, granisetron, on emesis induced in ferrets by estramustine phosphate sodium (EMP), the active ingredient of Estracyt. To clarify the mechanism of action of EMP-induced emesis, we also investigated the effect of EMP on the release of serotonin (5-HT) in the isolated rat ileum. EMP (3 mg/kg, per os) induced 75.3+/-10.2 retching episodes and 7.5+/-1.3 vomiting episodes during a 2-h observation period. The latency to the first emetic response was 58.0+/-13.5 min. Granisetron (0.1 mg/kg, per os) administered 1 h before the administration of EMP reduced the number of EMP-induced retching and vomiting episodes to 1.3+/-1.3 and 1.0+/-1.0, respectively, and prolonged the latency by a factor of almost two. EMP (10-5 and 10-4 M) increased 5-HT release from isolated rat ileum, and 10 -7 M granisetron almost completely inhibited the increase induced by 10-4 M EMP. These results suggest that EMP induces nausea and vomiting via 5-HT release from the ileum, and that 5-HT3 receptor antagonists may be useful to prevent gastrointestinal adverse effects that occur during treatment with Estracyt.

  9. The 5-HT3 receptor antagonist, ondansetron, blocks the development and expression of ethanol-induced locomotor sensitization in mice.

    PubMed

    Umathe, Sudhir N; Bhutada, Pravinkumar S; Raut, Vivek S; Jain, Nishant S; Mundhada, Yogita R

    2009-02-01

    Manipulation of the serotonergic system has been shown to alter ethanol sensitization. Ondansetron is a 5-HT3 receptor antagonist, reported to attenuate cocaine and methamphetamine-induced behavioral sensitization, but no reports are available on its role in ethanol-induced behavioral sensitization. Therefore, an attempt has been made to assess this issue by using an earlier used animal model of ethanol-induced locomotor sensitization. Results indicated that ondansetron (0.25-1.0 mg/kg, subcutaneously) given before the challenge dose of ethanol (2.4 g/kg, intraperitoneally) injection, significantly and dose dependently attenuated the expression of sensitization. In addition, ondansetron (1.0 mg/kg, subcutaneously) given before ethanol injection on days 1, 4, 7, and 10 significantly blocked the development (days 1, 4, 7, and 10), and expression (day 15) of sensitization to the locomotor stimulant effect of ethanol injection. Ondansetron had no effect per se on locomotor activity and did not affect blood ethanol levels. Therefore, the results raise the possibility that ondansetron blocked the development and expression of ethanol-induced locomotor sensitization by acting on 5-HT3 receptors.

  10. Superagonist, Full Agonist, Partial Agonist, and Antagonist Actions of Arylguanidines at 5-Hydroxytryptamine-3 (5-HT3) Subunit A Receptors.

    PubMed

    Alix, Katie; Khatri, Shailesh; Mosier, Philip D; Casterlow, Samantha; Yan, Dong; Nyce, Heather L; White, Michael M; Schulte, Marvin K; Dukat, Małgorzata

    2016-11-16

    Introduction of minor variations to the substitution pattern of arylguanidine 5-hydroxytryptamine-3 (5-HT3) receptor ligands resulted in a broad spectrum of functionally-active ligands from antagonist to superagonist. For example, (i) introduction of an additional Cl-substituent(s) to our lead full agonist N-(3-chlorophenyl)guanidine (mCPG, 2; efficacy % = 106) yielded superagonists 7-9 (efficacy % = 186, 139, and 129, respectively), (ii) a positional isomer of 2, p-Cl analog 11, displayed partial agonist actions (efficacy % = 12), and (iii) replacing the halogen atom at the meta or para position with an electron donating OCH3 group or a stronger electron withdrawing (i.e., CF3) group resulted in antagonists 13-16. We posit based on combined mutagenesis, crystallographic, and computational analyses that for the 5-HT3 receptor, the arylguanidines that are better able to simultaneously engage the primary and complementary subunits, thus keeping them in close proximity, have greater agonist character while those that are deficient in this ability are antagonists.

  11. A 5-HT3 receptor antagonist potentiates the behavioral, neurochemical and electrophysiological actions of an SSRI antidepressant.

    PubMed

    Bétry, C; Overstreet, D; Haddjeri, N; Pehrson, A L; Bundgaard, C; Sanchez, C; Mørk, A

    2015-04-01

    More effective treatments for major depression are needed. We studied if the selective 5-HT3 receptor antagonist ondansetron can potentiate the antidepressant potential of the selective serotonin (5-HT) reuptake inhibitor (SSRI) paroxetine using behavioral, neurochemical and electrophysiological methods. Flinders Sensitive Line (FSL) rats, treated with ondansetron, and/or a sub-effective dose of paroxetine, were assessed in the forced swim test. The effects of an acute intravenous administration of each compound alone and in combination were evaluated with respect to 5-HT neuronal firing rate in the dorsal raphe nucleus (DRN). Effects of s.c. administration of the compounds alone and in combination on extracellular levels of 5-HT were assessed in the ventral hippocampus of freely moving rats by microdialysis. The results showed that ondansetron enhanced the antidepressant activity of paroxetine in the forced swim test. It partially prevented the suppressant effect of paroxetine on DRN 5-HT neuronal firing and enhanced the paroxetine-induced increase of hippocampal extracellular 5-HT release. These findings indicate that 5-HT3 receptor blockade potentiates the antidepressant effects of SSRIs. Since both paroxetine and ondansetron are used clinically, it might be possible to validate this augmentation strategy in depressed patients.

  12. Spinal 5-HT3 receptor mediates nociceptive effect on central neuropathic pain; possible therapeutic role for tropisetron

    PubMed Central

    Nasirinezhad, Farinaz; Hosseini, Marjan; Karami, Zohre; Yousefifard, Mahmoud; Janzadeh, Autosa

    2016-01-01

    Objectives To test the analgesic effect of 5-HT-3 receptor antagonist, tropisetron, in a clip compression injury model of spinal cord pain in rats. Methods Four weeks post compression of the spinal cord at lumbar level, tropisetron was administered intrathecally at 100 μg and 150 μg dosages. Behavioral tests were assessed before administration. Fifteen minutes after injection, behavioral tests were repeated. Randall-Sellitto and plantar test was used for mechanical and thermal hyperalgesia, respectively. Mechanical and cold allodynia were evaluated by Von Frey filament and acetone droplets, respectively. The analgesic effect of tropisetron was compared with intrathecal administration of salicylate. Locomotor score was evaluated by Basso, Beattie and Bresnahan (BBB) test every week after spinal cord injury. Results Intrathecal administration of tropisetron, decreased hyperalgesia and mechanical allodynia, but not cold allodynia were observed after compression of the spinal cord. Conclusion Blockade of 5-HT-3 receptors by tropisetron at the spinal level induces an antinociceptive effect on chronic central neuropathic pain and suggests that this compound may have potential clinical utility for the management of central neuropathic pain, particularly in patients with hyperalgesia and tactile allodynia. PMID:26338446

  13. Regulation of central noradrenergic activity by 5-HT(3) receptors located in the locus coeruleus of the rat.

    PubMed

    Ortega, Jorge E; Mendiguren, Aitziber; Pineda, Joseba; Meana, J Javier

    2012-06-01

    A functional interaction between serotonergic and noradrenergic systems has been shown in the locus coeruleus (LC). Noradrenaline (NA) levels in the prefrontal cortex (PFC) are dependent on the firing rate of LC neurons, which is controlled by α(2) adrenoceptors (α2ADR). The aim of the present study was to investigate the role of 5-HT(3) receptors (5HT3R) in the modulation of central noradrenergic activity. We measured extracellular NA concentrations in the LC and PFC by dual-probe microdialysis in awake rats and the firing rate of LC neurons by electrophysiological techniques in vitro. Administration of the 5HT3R agonists SR57227 (1-100 μM) and m-chlorophenylbiguanide (mCPBG, 1-100 μM) into the LC increased NA in this nucleus (E(max) = 675 ± 121% and E(max) = 5575 ± 1371%, respectively) and decreased NA in the PFC (E(max) = -49 ± 6% and E(max) = -25 ± 11%, respectively). Administration of the 5HT3R antagonist Y25130 (50 μM) into LC attenuated SR57227 effect in the LC (E(max) = 323 ± 28%) and PFC (E(max) = -37 ± 7%). The α2ADR antagonist RS79948 (1 μM) blocked the SR57227 effect in the PFC but it did not change the effect in the LC (E(max) = 677 ± 202%). In electrophysiological assays, both mCPBG (1-10 μM) and SR57227 (1-10 μM) reduced the firing rate of about 50% of tested LC neurons (maximal effect = -37 ± 2% and -31 ± 4%, respectively); this effect was partially blocked by Y25130 (50 μM). Administration of RS79948 (1 μM) reversed the inhibition induced by mCPBG. Competition radioligand assays against [(3)H]UK14304 and [(3)H]RX821002 (α2ADR selective drugs) in the rat brain cortex showed a very weak affinity of SR57227 for α2ADR, whereas the affinity of mCPBG for α2ADR was 17-fold higher than that of SR57227 for α2ADR. The present results suggest that 5HT3R stimulate NA release in the LC, which promotes simultaneously a decrease in the firing rate of LC neurons through α2ADR and then a decrease

  14. Spatial orientation of the antagonist granisetron in the ligand-binding site of the 5-HT3 receptor.

    PubMed

    Yan, Dong; White, Michael M

    2005-08-01

    The serotonin type 3 receptor (5-HT(3)R) is a member of the cys-loop ligand-gated ion channel (LGIC) superfamily. Like almost all membrane proteins, high-resolution structural data are unavailable for this class of receptors. We have taken advantage of the high degree of homology between LGICs and the acetylcholine binding protein (AChBP) from the freshwater snail Lymnea stagnalis, for which high-resolution structural data are available, to create a structural model for the extracellular (i.e., ligand-binding) domain of the 5-HT(3)R and to perform a series of ligand docking experiments to delineate the architecture of the ligand-binding site. Structural models were created using homology modeling with the AChBP as a template. Docking of the antagonist granisetron was carried out using a Lamarckian genetic algorithm to produce models of ligand-receptor complexes. Two energetically similar conformations of granisetron in the binding site were obtained from the docking simulations. In one model, the indazole ring of granisetron is near Trp90 and the tropane ring is near Arg92; in the other, the orientation is reversed. We used double-mutant cycle analysis to determine which of the two orientations is consistent with experimental data and found that the data are consistent with the model in which the indazole ring of granisetron interacts with Arg92 and the tropane ring interacts with Trp90. The combination of molecular modeling with double-mutant cycle analysis offers a powerful approach for the delineation of the architecture of the ligand-binding site.

  15. Investigation of 5-HT3A receptor gene expression in peripheral blood mononuclear cells of individuals who had been exposed to air pollution.

    PubMed

    Ahangari, Ghasem; Amirabad, Leila Mohammadi; Mozafari, Sona; Majeidi, Ali; Deilami, Gholamreza Derkhshan

    2013-12-01

    The role of air pollution in exacerbation of allergic symptoms is well known. Several studies have shown the effect of air pollution on serotonergic system. The changes in serotonergic system could trigger several allergic symptoms. 5-HT(3A) is among serotonin receptors on the peripheral Blood Mononuclear Cells (PBMCs) as well as other cells. In the present study we compared the 5-HT(3A) gene expression in PBMCs of the asthmatic patients as well as individuals who had been exposed to the air pollution. Normal individuals were also included in the study as control for comparison of 5-HT(3A) gene expression. Following the synthesis of the cDNA using mRNA extracted from PBMCs the level of 5- HT(3A) gene expression was measured using real-time PCR. The results showed t a significant increase in the relative expression level of 5-HT(3A) receptor in PBMCs from asthmatic patients and individuals exposed to the air pollutants compared to normal controls. Our result indicates that significant increase in 5-HT(3A) receptor may contribute to the pathogenesis as well as allergic symptoms which resulted from air pollution.

  16. Discovery of a novel allosteric modulator of 5-HT3 receptors: inhibition and potentiation of Cys-loop receptor signaling through a conserved transmembrane intersubunit site.

    PubMed

    Trattnig, Sarah M; Harpsøe, Kasper; Thygesen, Sarah B; Rahr, Louise M; Ahring, Philip K; Balle, Thomas; Jensen, Anders A

    2012-07-20

    The ligand-gated ion channels in the Cys-loop receptor superfamily mediate the effects of neurotransmitters acetylcholine, serotonin, GABA, and glycine. Cys-loop receptor signaling is susceptible to modulation by ligands acting through numerous allosteric sites. Here we report the discovery of a novel class of negative allosteric modulators of the 5-HT(3) receptors (5-HT(3)Rs). PU02 (6-[(1-naphthylmethyl)thio]-9H-purine) is a potent and selective antagonist displaying IC(50) values of ~1 μM at 5-HT(3)Rs and substantially lower activities at other Cys-loop receptors. In an elaborate mutagenesis study of the 5-HT(3)A receptor guided by a homology model, PU02 is demonstrated to act through a transmembrane intersubunit site situated in the upper three helical turns of TM2 and TM3 in the (+)-subunit and TM1 and TM2 in the (-)-subunit. The Ser(248), Leu(288), Ile(290), Thr(294), and Gly(306) residues are identified as important molecular determinants of PU02 activity with minor contributions from Ser(292) and Val(310), and we propose that the naphthalene group of PU02 docks into the hydrophobic cavity formed by these. Interestingly, specific mutations of Ser(248), Thr(294), and Gly(306) convert PU02 into a complex modulator, potentiating and inhibiting 5-HT-evoked signaling through these mutants at low and high concentrations, respectively. The PU02 binding site in the 5-HT(3)R corresponds to allosteric sites in anionic Cys-loop receptors, which emphasizes the uniform nature of the molecular events underlying signaling through the receptors. Moreover, the dramatic changes in the functional properties of PU02 induced by subtle changes in its binding site bear witness to the delicate structural discrimination between allosteric inhibition and potentiation of Cys-loop receptors.

  17. Design, synthesis and structure-activity relationship of novel quinoxalin-2-carboxamides as 5-HT3 receptor antagonists for the management of depression.

    PubMed

    Mahesh, Radhakrishnan; Devadoss, Thangaraj; Pandey, Dilip Kumar; Bhatt, Shvetank; Yadav, Shushil Kumar

    2010-11-15

    A novel series of quinoxalin-2-carboxamides were designed based on the ligand-based approach, employing a three-point pharmacophore model; it consists of an aromatic residue and a linking carbonyl group and a basic nitrogen. The target new chemical entities were synthesized from the key intermediate, quinoxalin-2-carboxylic acid, by coupling it with various amines in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) and 1-hydroxybenzotriazole (HOBt). The obtained compounds' structures were confirmed by spectral data. The target new chemical entities were evaluated for their 5-HT(3) receptor antagonisms in longitudinal muscle myenteric plexus preparation from guinea pig ileum against 5-HT(3) agonist, 2-methyl-5-HT, which was expressed in the form of pA(2) value. All the synthesized compounds showed antagonism towards 5-HT(3) receptor; based on this result, a structure-activity relationship was derived, which reveals that the aromatic residue in 5-HT(3) receptor antagonists may have hydrophobic interaction with 5-HT(3) receptor. Regardless of their antagonistic potentials, all the synthesized molecules were screened for their anti-depressant potentials by using forced swim test in mice model; interestingly none of the tested compounds affect the locomotion of mice in the tested dose levels. Compounds with significant pA(2) values exhibited good anti-depressant-like activity as compared to the vehicle-treated group.

  18. Piperazine analogs of naphthyridine-3-carboxamides and indole-2-carboxamides: novel 5-HT3 receptor antagonists with antidepressant-like activity.

    PubMed

    Dhar, Arghya K; Mahesh, Radhakrishnan; Jindal, Ankur; Bhatt, Shvetank

    2015-01-01

    Series of piperazine analogs of naphthyridine-3-carboxamides and indole-2-carboxamides were designed using a ligand-based approach with consideration of the pharmacophoric requirements for 5-HT3 receptor antagonists. The title carboxamides were synthesized using appropriate synthetic routes. Initially, the 5-HT3 receptor antagonistic activity of all the compounds was determined on isolated guinea pig ileum tissue against the 5-HT3 agonist, 2-methyl-5-hydroxytryptamine, which was denoted in the form of pA2 values. The structure-activity relationship regarding the influence of the aromatic part and basic moiety as features in the 5-HT3 pharmacophore was derived. Among all the compounds screened, the piperazine derivatives of indole-2-carboxamide 13i and naphthyridine-3-carboxamide 8h exhibited prominent 5-HT3 receptor antagonism with pA2 values of 7.5 and 7.3, respectively. Subsequent investigation of the antidepressant activities of selected compounds in the mouse forced swim test (FST) led to the identification of the piperazine analogs of indole-2-carboxamide 13i and naphthyridine-3-carboxamide 8h as the most promising compounds. Both 13i and 8h demonstrated significant reduction in the duration of immobility as compared to the control. Importantly, none of the tested compounds affected the baseline locomotion of mice at the tested dose levels.

  19. Effects of 5-HT2B, 5-HT3 and 5-HT4 receptor antagonists on gastrointestinal motor activity in dogs

    PubMed Central

    Morita, Hiroki; Mochiki, Erito; Takahashi, Nobuyuki; Kawamura, Kiyoshi; Watanabe, Akira; Sutou, Toshinaga; Ogawa, Atsushi; Yanai, Mitsuhiro; Ogata, Kyoichi; Fujii, Takaaki; Ohno, Tetsuro; Tsutsumi, Souichi; Asao, Takayuki; Kuwano, Hiroyuki

    2013-01-01

    AIM: To study the effects of 5-hydroxytryptamine (5-HT) receptor antagonists on normal colonic motor activity in conscious dogs. METHODS: Colonic motor activity was recorded using a strain gauge force transducer in 5 dogs before and after 5-HT2B, 5-HT3 and 5-HT4 receptor antagonist administration. The force transducers were implanted on the serosal surfaces of the gastric antrum, terminal ileum, ileocecal sphincter and colon. Test materials or vehicle alone was administered as an intravenous bolus injection during a quiescent period of the whole colon in the interdigestive state. The effects of these receptor antagonists on normal gastrointestinal motor activity were analyzed. RESULTS: 5-HT2B, 5-HT3 and 5-HT4 receptor antagonists had no contractile effect on the fasting canine terminal ileum. The 5-HT3 and 5-HT4 receptor antagonists inhibited phase III of the interdigestive motor complex of the antrum and significantly inhibited colonic motor activity. In the proximal colon, the inhibitory effect was dose dependent. Dose dependency, however, was not observed in the distal colon. The 5-HT2B receptor antagonist had no contractile effect on normal colonic motor activity. CONCLUSION: The 5-HT3 and 5-HT4 receptor antagonists inhibited normal colonic motor activity. The 5-HT2B receptor antagonist had no contractile effect on normal colonic motor activity. PMID:24151388

  20. Differential effects of a short-term high-fat diet in an animal model of depression in rats treated with the 5-HT3 receptor antagonist, ondansetron, the 5-HT3 receptor agonist, 2-methyl-5-HT, and the SSRI, fluoxetine.

    PubMed

    Sumaya, Isabel C; Bailey, Dee; Catlett, Susan L

    2016-05-01

    Investigation into the effects of a high-fat diet on depression in the context of 5-HT3 receptor function is important given 5-HT3 antagonism may represent a novel candidate for drug discovery. To more fully understand the relationship between the 5-HT3 receptor system, depression, and high-fat intake, our main interest was to study the short-term effects of a high-fat diet on the 5-HT3 receptor antagonist, ondansetron, and the 5-HT3 receptor agonist, 2-methyl-5-HT, as well as the SSRI, fluoxetine, in an animal model of depression. Male Sprague Dawley rats were fed either a standard diet (11% fat) or a high-fat diet (32.5% fat) for seven days then treated with either fluoxetine (10mg/kg, ip), ondansetron (1mg/kg, ip), 2-methyl-5-HT (3mg/kg, ip), fluoxetine+ondansetron or, 2-methyl-5-HT+ondansetron prior to the Forced Swim Test. In the standard diet group, treatment with the 5HT3 receptor agonist, 2-methyl-5-HT, served to significantly decrease time of immobility as compared to controls thus showing anti-depressive-like effects. Treatment with the 5-HT3 receptor antagonist, ondansetron, served to enhance the anti-depressive like effects of the SSRI, fluoxetine, as treatment with both the SSRI and 5-HT3 receptor antagonist dramatically decreased immobility. Importantly, in the high-fat diet groups, a week of high-fat intake served to: 1) counteract the anti-depressive-like effect of the SSRI, fluoxetine, 2) reverse the anti-depressive-like effect of the 5HT3 receptor agonist, 2-methyl-5-HT and 3) provide protection against the depressive-like effects induced by the Forced Swim Test as rats fed a high-fat diet displayed the lowest amounts of immobility. In the aggregate, these data suggest that both SSRIs and the 5HT3 receptor system are affected by short-term high-fat intake and that a short-term high-fat diet protects against depressive-like effects in an animal model of depression.

  1. P2X3 receptors induced inflammatory nociception modulated by TRPA1, 5-HT3 and 5-HT1A receptors.

    PubMed

    Krimon, Suzy; Araldi, Dionéia; do Prado, Filipe César; Tambeli, Cláudia Herrera; Oliveira-Fusaro, Maria Cláudia G; Parada, Carlos Amílcar

    2013-11-01

    It has been described that endogenous ATP via activation of P2X3 and P2X2/3 receptors contributes to inflammatory nociception in different models, including the formalin injected in subcutaneous tissue of the rat's hind paw. In this study, we have evaluated whether TRPA1, 5-HT3 and 5-HT1A receptors, whose activation is essential to formalin-induced inflammatory nociception, are involved in the nociception induced by activation of P2X3 receptors on subcutaneous tissue of the rat's hind paw. We have also evaluated whether the activation of P2X3 receptors increases the susceptibility of primary afferent neurons to formalin action modulated by activation of TRPA1, 5-HT3 or 5-HT1A receptors. Nociceptive response intensity was measured by observing the rat's behavior and considering the number of times the animal reflexively raised its hind paw (flinches) in 60min. Local subcutaneous administration of the selective TRPA1, 5-HT3 or 5-HT1A receptor antagonists HC 030031, tropisetron and WAY 100,135, respectively, prevented the nociceptive responses induced by the administration in the same site of the non-selective P2X3 receptor agonist αβmeATP. Administration of the selective P2X3 and P2X2/3 receptor antagonist A-317491 or pretreatment with oligonucleotides antisense against P2X3 receptor prevented the formalin-induced behavioral nociceptive responses during the first and second phases. Also, the co-administration of a subthreshold dose of αβmeATP with a subthreshold dose of formalin induced nociceptive behavior, which was prevented by local administration of tropisetron, HC 030031 or WAY 100, 135. These findings have demonstrated that the activation of P2X3 receptors induces inflammatory nociception modulated by TRPA1, 5-HT3 and 5-HT1A receptors. Also, they suggest that inflammatory nociception is modulated by the release of endogenous ATP and P2X3 receptor activation, which in turn, increases primary afferent nociceptor susceptibility to the action of inflammatory

  2. Changes in characteristics of the specific binding of [3H]LY-278584, a 5-HT3-receptor antagonist, on differentiated NG108-15 cells.

    PubMed

    Matsushima, Kayoko; Imanishi, Takashi; Asano, Hajime; Funakami, Yoshinori; Wada, Tetsuyuki; Ichida, Seiji

    2010-01-01

    We have reported previously that the concentration of intracellular Ca2+ evoked by serotonin (5-HT) was significantly augmented in differentiated NG108-15 (NG) cells treated with dibutyryl cAMP and the enhanced response occurred via 5-HT3 receptors. We investigated changes in the characteristics for specific binding of [(3)H]LY-278584 (a specific antagonist of the 5-HT3 receptor) on membranes from differentiated NG cells. The results indicated that the K(d) and B(max) values for the specific binding to differentiated NG cells were significantly smaller and larger, respectively, than those for undifferentiated NG cells. The binding was significantly inhibited by 10 nM tropisetron, a specific 5-HT3-receptor antagonist, but not by any other types of 5-HT-receptor antagonists. These results suggested that the enhanced response by 5-HT in differentiated NG cells was due to both qualitative and quantitative changes in the 5-HT3 receptor.

  3. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): blocking 5HT3 receptors enhances release of serotonin, norepinephrine, and acetylcholine.

    PubMed

    Stahl, Stephen M

    2015-10-01

    Vortioxetine is an antidepressant with multiple pharmacologic modes of action at targets where serotonin neurons connect with other neurons. 5HT3 receptor antagonism is one of these actions, and this leads to increased release of norepinephrine (NE), acetylcholine (ACh), and serotonin (5HT) within various brain circuits.

  4. Role of 5-HT3 receptors in basal and K(+)-evoked dopamine release from rat olfactory tubercle and striatal slices.

    PubMed Central

    Zazpe, A; Artaiz, I; Del Río, J

    1994-01-01

    1. The present study was aimed at examining the role of 5-HT3 receptors in basal and depolarization-evoked dopamine release from rat olfactory tubercle and striatal slices. [3H]-dopamine ([3H]-DA) release was measured in both brain regions and endogenous dopamine release from striatal slices was also studied. 2. The selective 5-HT3 receptor agonist 2-methyl-5-HT (0.5-10 microM) produced a concentration-dependent increase in [3H]-DA efflux evoked by K+ (20 mM) from slices of rat olfactory tubercle. 1-Phenylbiguanide (PBG) and 5-HT also increased K(+)-evoked [3H]-DA efflux. 3. 5-HT (1-100 microM) increased in a concentration-dependent manner basal [3H]-DA release from olfactory tubercle and striatal slices as well as endogenous DA release from striatal slices. The selective 5-HT3 receptor agonists 2-methyl-5-HT and 1-phenylbiguanide were weaker releasing agents. In all cases, the release was Ca2+ independent and tetrodotoxin insensitive. 4. 5-HT3 receptor antagonists such as ondansetron, granisetron and tropisetron (0.2 microM) significantly blocked the enhanced K(+)-evoked [3H]-DA efflux from rat olfactory tubercle slices induced by 2-methyl-5HT. A ten fold higher concentration of the 5-HT2 receptor antagonist ketanserin was ineffective. 5. Much higher concentrations, up to 50 microM, of the same 5-HT3 receptor antagonists did not block the increase in basal [3H]-DA release from striatal or olfactory tubercle slices induced by 5-HT or the release of endogenous DA induced by 5-HT from striatal slices.2+ off PMID:7858893

  5. Local-anesthetic like inhibition of the cardiac sodium channel Nav1.5 α-subunit by 5-HT3 receptor antagonists.

    PubMed

    Van't Klooster, Mariet P; Foadi, Nilufar; Hage, Axel; Stoetzer, Carsten; Wegner, Florian; Eberhardt, Mirjam; Leffler, Andreas

    2016-10-15

    5-hydroxytryptamine 3 receptor (5-HT3 receptor) antagonists are administered for prevention and therapy of nausea and vomiting. Although regarded as safe therapeutics, they can also provoke arrhythmias by prolonging the QRS interval. However, the mechanisms mediating this cardiotoxicity are poorly understood. Here we investigated effects of 5-HT3 receptor antagonists on the cardiac Na(+) channel Nav1.5. We explored the interaction of dolasetron, tropisetron, granisetron and ondansetron on the human α-subunit Nav1.5 heterologously expressed in HEK293 cells. Sodium currents were explored by means of whole-cell patch clamp recordings. All four substances inhibited the Nav1.5 in a concentration and state-dependent manner. Dolasetron displayed the lowest blocking efficacy, and tropisetron was the most potent blocker with a half maximum blocking concentration of 18µM for tonic block of inactivated channels. Tropisetron was also the most potent use-dependent inhibitor, and it also induced a strong open -channel block. Both tonic and use-dependent block by tropisetron were abbreviated on the local-anesthetic insensitive mutant Nav1.5-F1760A. Co-administration of tropisetron and the local anesthetic bupivacaine or the hypnotic propofol augmented inhibition of Nav1.5. Our data demonstrate that 5-HT3 receptor antagonists induce a local-anesthetic like inhibition of Nav1.5, and that they display different blocking efficacies. Reports on a relevant cardiotoxicity of dolasetron as opposed to other 5-HT3 receptor antagonists do not seem to correlate with a block of Nav1.5. As inhibition of Nav1.5 was enhanced by propofol and bupivacaine however, it is possible that a combined administration of Na(+) channel blockers and 5-HT3 receptor antagonists can provoke arrhythmias.

  6. Design, synthesis and evaluation of antidepressant activity of novel 2-methoxy 1, 8 naphthyridine 3-carboxamides as 5-HT3 receptor antagonists.

    PubMed

    Mahesh, Radhakrishnan; Dhar, Arghya Kusum; Jindal, Ankur; Bhatt, Shvetank

    2014-05-01

    A series of novel 1,8-naphthyridine-3-carboxamides as 5-HT3 receptor antagonists were synthesized with an intention to explore the antidepressant activity of these compounds. The title carboxamides were designed using ligand-based approach keeping in consideration the structural requirement of the pharmacophore of 5-HT3 receptor antagonists. The compounds were synthesized using appropriate synthetic route from the starting material nicotinamide. 5-HT3 receptor antagonism of all the compounds, which was denoted in the form of pA2 value, was determined in longitudinal muscle myenteric plexus preparation from guinea-pig ileum against 5-HT3 agonist, 2-methyl-5-HT. Compound 8g (2-methoxy-1, 8-naphthyridin-3-yl) (2-methoxy phenyl piperazine-1-yl) methanone was identified as the most active compound, which expressed a pA2 value of 7.67. The antidepressant activity of all the compounds was examined in mice model of forced swim test (FST); importantly, none of the compounds was found to cause any significant changes in the locomotor activity of mice at the tested dose levels. In FST, the compounds with considerably higher pA2 value exhibited promising antidepressant-like activity, whereas compounds with lower pA2 value did not show antidepressant-like activity as compared to the control group.

  7. [The effects of selective 5HT3 receptor blockade on physiological markers of abdominal pain in awake dogs].

    PubMed

    Panteleev, S S; Busygina, I I; Liubashina, O A

    2013-04-01

    In awake dogs, the visceromotor and cardioautonomic responses to the rectal balloon distension were studied before and after intravenous administration of a selective 5HT3 receptor antagonist granisetron. It was shown that balloon distension level up to 60 mmHg caused neither noticeable muscle responses nor substantial changes in heart rate. In turn, distending pressures of 80 mmHg and higher induced vigorous abdominal muscle contractions and tachycardia that were graded with increasing intensities of stimulation. Thus, the rectal stimulation with pressures 80 mmHg and more produced the changes in visceromotor and cardiovascular indices which could be considered as suitable indicators of visceral nociception in conscious animals. Based on monitoring of these physiological markers in a model of abdominal pain the dose-dependent antinociceptive effect of granisetron in awake dogs has been demonstrated for the first time. It was determined that granisetron in doses of 0.25, 0.5 or 1.0 mg/kg induced correspondingly 33.6 +/- 9.2, 58.0+/- 8.6 [see text] 76.7 +/- 5.5 % decrease in visceromotor response of dogs to nociceptive visceral stimulation. The effect occurred immediately after the drug administration and was lasting more than 90 min. In turn, the dose-dependent suppression of the rectal distension-induced tachycardia was less prominent and only observed during the initial period of granisetron action. The described model of abdominal pain in awake dogs might be useful for preclinical screening of new pharmacological substances, whereas the obtained data could contribute to the development of more efficient analgesics aimed in patients with irritable bowel syndrome.

  8. Antidepressant Potential of 5-HT3 Receptor Antagonist, N-n- propyl-3-ethoxyquinoxaline-2-carboxamide (6n).

    PubMed

    Mahesh, R; Bhatt, S; Devadoss, T; Jindal, Ak; Gautam, Bk; Pandey, Dk

    2012-10-01

    The present study was designed to evaluate the antidepressant potential of 5-HT3 receptor antagonist N-n-propyl-3-ethoxyquinoxaline-2-carboxamide (6n). The compound '6n' with optimum log P and pA 2 value identified from a series of compounds synthesized in our laboratory was subjected to forced Swim Test (FST) (1, 2, and 4 mg/kg, i.p) and Tail Suspension Test (TST) (1, 2, and 4 mg/kg, i.p.). The compound '6n' significantly reduced the duration of immobility in mice without affecting the baseline locomotion. Moreover, '6n' (2 mg/kg, i.p.) potentiated the 5-hydroxytryptophan (5-HTP)-induced head twitch responses in mice and '6n' at tested dose (1 and 2 mg/kg, i.p.) reversed the reserpine-induced hypothermia in rats. In interaction studies of '6n' with various standard drugs/ligands using FST, '6n' (1 mg/kg, i.p.) potentiated the antidepressant effect of venlafaxine (4 and 8 mg/kg, i.p.) and fluoxetine (10 and 20 mg/kg, i.p.). Additionally, '6n' (1 and 2 mg/kg, i.p.) influenced the effect of harmane (5 mg/ kg, i.p.) as well as reversed the effect of parthenolide (1 mg/kg, i.p.) by reducing the duration of immobility in FST. Furthermore, '6n' (1 mg/kg, i.p.) potentiated the effect of bupropion (10 and 20 mg/kg, i.p.) in TST. Chronic '6n' (1 and 2 mg/kg, i.p.) treatment attenuated the behavioral abnormalities in olfactory bulbectomized rats. In conclusion, these various findings reiterated the antidepressant-like effects of '6n' in behavioral models of depression.

  9. Antidepressant Potential of 5-HT3 Receptor Antagonist, N-n- propyl-3-ethoxyquinoxaline-2-carboxamide (6n)

    PubMed Central

    Mahesh, R; Bhatt, S; Devadoss, T; Jindal, AK; Gautam, BK; Pandey, DK

    2012-01-01

    The present study was designed to evaluate the antidepressant potential of 5-HT3 receptor antagonist N-n-propyl-3-ethoxyquinoxaline-2-carboxamide (6n). The compound ‘6n’ with optimum log P and pA2 value identified from a series of compounds synthesized in our laboratory was subjected to forced Swim Test (FST) (1, 2, and 4 mg/kg, i.p) and Tail Suspension Test (TST) (1, 2, and 4 mg/kg, i.p.). The compound ‘6n’ significantly reduced the duration of immobility in mice without affecting the baseline locomotion. Moreover, ‘6n’ (2 mg/kg, i.p.) potentiated the 5-hydroxytryptophan (5-HTP)-induced head twitch responses in mice and ‘6n’ at tested dose (1 and 2 mg/kg, i.p.) reversed the reserpine-induced hypothermia in rats. In interaction studies of ‘6n’ with various standard drugs/ligands using FST, ‘6n’ (1 mg/kg, i.p.) potentiated the antidepressant effect of venlafaxine (4 and 8 mg/kg, i.p.) and fluoxetine (10 and 20 mg/kg, i.p.). Additionally, ‘6n’ (1 and 2 mg/kg, i.p.) influenced the effect of harmane (5 mg/ kg, i.p.) as well as reversed the effect of parthenolide (1 mg/kg, i.p.) by reducing the duration of immobility in FST. Furthermore, ‘6n’ (1 mg/kg, i.p.) potentiated the effect of bupropion (10 and 20 mg/kg, i.p.) in TST. Chronic ‘6n’ (1 and 2 mg/kg, i.p.) treatment attenuated the behavioral abnormalities in olfactory bulbectomized rats. In conclusion, these various findings reiterated the antidepressant-like effects of ‘6n’ in behavioral models of depression. PMID:23493308

  10. The role of second-generation 5-HT3 receptor antagonists in managing chemotherapy-induced nausea and vomiting in hematological malignancies.

    PubMed

    Schwartzberg, Lee S; Jacobs, Peter; Matsouka, Panagiota; Azevedo, Wellington; Pinto, Antonio

    2012-07-01

    Compared with solid tumor patients, those with hematological malignancies are at particular risk of chemotherapy-induced nausea and vomiting (CINV) because of their young age, exposure to highly-emetogenic induction, consolidation and salvage regimens, the high-dose conditioning regimens used before stem cell transplantation (SCT), and the heavy psychological burden of such treatments. In the absence of prophylaxis, around 75% of patients undergoing SCT experience delayed CINV. With first-generation 5-HT(3) receptor antagonists, only about 20% are completely protected from nausea and vomiting, and this frequent and debilitating adverse event has not been fully addressed. In contrast to solid tumors, there are no internationally agreed guidelines for the prevention and treatment of CINV in hematological malignancies. Work on a consensus is urgently required. The second-generation 5-HT(3) antagonist palonosetron is highly effective in preventing CINV in patients with solid tumors. The extended half-life of this agent and its mechanisms of action including allosteric binding, positive cooperativity and 5-HT(3) receptor internalization, may make it particularly effective in controlling delayed CINV. Although controlled comparisons against first-generation 5HT(3) agents have not yet been conducted in the setting of SCT, available evidence suggests that palonosetron may prove beneficial in preventing CINV in high risk patients with hematological malignancies.

  11. Investigation of 5-HT3 receptor-triggered serotonin release from guinea-pig isolated colonic mucosa: a role of PYY-containing endocrine cell.

    PubMed

    Kojima, Shu-Ichi; Kojima, Ken; Fujita, Tomoe

    2017-03-15

    The effect of a 5-HT3 receptor-selective agonist SR57227A was investigated on the outflow of 5-hydroxytryptamine (5-HT) from isolated muscle layer-free mucosal preparations of guinea-pig colon. The mucosal preparations were incubated in vitro and the outflow of 5-HT from these preparations was determined by high-performance liquid chromatography with electrochemical detection. SR57227A (100μM) produced a tetrodotoxin-resistant and sustained increase in the outflow of 5-HT from the mucosal preparations. The SR57227A-evoked sustained 5-HT outflow was completely inhibited by the 5-HT3 receptor antagonist ramosetron (1μM). The neuropeptide Y1 receptor antagonist BIBO3304 (100nM) partially inhibited the SR57227A-evoked sustained 5-HT outflow, but the Y2 receptor antagonist BIIE0246 (1μM) or the glucagon-like peptide-1 (GLP-1) receptor antagonist exendin-(9-39) (1μM), showed a minimal effect on the SR57227A-evoked sustained 5-HT outflow. In the presence of BIBO3304 (100nM) and exendin-(9-39) (1μM), SR57227A (100μM) failed to produce a sustained increase in the outflow of 5-HT. The Y1 receptor agonist [Leu(31), Pro(34)]-neuropeptide Y (10nM), but not GLP-1-(7-36) amide (100nM), produced a sustained increase in the outflow of 5-HT. We found that 5-HT3 receptor-triggered 5-HT release from guinea-pig colonic mucosa is mediated by the activation of 5-HT3 receptors located at endocrine cells (enterochromaffin cells and peptide YY (PYY)-containing endocrine cells). The activation of both Y1 and GLP-1 receptors appears to be required for the maintenance of 5-HT3 receptor-triggered 5-HT release. It is therefore considered that 5-HT3 receptors located at colonic mucosa play a crucial role in paracrine signaling between enterochromaffin cells and PYY-containing endocrine cells.

  12. On the role of brain 5-HT7 receptor in the mechanism of hypothermia: comparison with hypothermia mediated via 5-HT1A and 5-HT3 receptor.

    PubMed

    Naumenko, Vladimir S; Kondaurova, Elena M; Popova, Nina K

    2011-12-01

    Intracerebroventricular administration of selective agonist of serotonin 5-HT(7) receptor LP44 (4-[2-(methylthio)phenyl]-N-(1,2,3,4-tetrahydro-1-naphthalenyl)-1-pyperasinehexanamide hydrochloride; 10.3, 20.5 or 41.0 nmol) produced considerable hypothermic response in CBA/Lac mice. LP44-induced (20.5 nmol) hypothermia was significantly attenuated by the selective 5-HT(7) receptor antagonist SB 269970 (16.1 fmol, i.c.v.) pretreatment. At the same time, intraperitoneal administration of LP44 in a wide range of doses 1.0, 2.0 or 10.0 mg/kg (2.0, 4.0, 20.0 μmol/kg) did not cause considerable hypothermic response. These findings indicate the implication of central, rather than peripheral 5-HT(7) receptors in the regulation of hypothermia. The comparison of LP44-induced (20.5 nmol) hypothermic reaction in eight inbred mouse strains (DBA/2J, CBA/Lac, C57BL/6, BALB/c, ICR, AKR/J, C3H and Asn) was performed and a significant effect of genotype was found. In the same eight mouse strains, functional activity of 5-HT(1A) and 5-HT(3) receptors was studied. The comparison of hypothermic responses produced by 5-HT(7) receptor agonist LP44 (20.5 nmol, i.c.v.) and 5-HT(1A) receptor agonist 8-OH-DPAT 1.0 mg/kg, i.p. (3.0 μmol/kg), 5-HT(3) receptor agonist m-CPBG (40.0 nmol, i.c.v.) did not reveal considerable interstrain correlations between 5-HT(7) and 5-HT(1A) or 5-HT(3) receptor-induced hypothermia. The selective 5-HT(7) receptor antagonist SB 269970 (16.1 fmol, i.c.v.) failed to attenuate the hypothermic effect of 8-OH-DPAT 1.0 mg/kg, i.p. (3.0 μmol/kg) and m-CPBG (40.0 nmol, i.c.v.) indicating that the brain 5-HT(7) receptor is not involved in the hypothermic effects of 8-OH-DPAT or m-CPBG. The obtained results suggest that the central 5-HT(7) receptor plays an essential role in the mediation of thermoregulation independent of 5-HT(1A) and 5-HT(3) receptors.

  13. Dopamine neurotransmission is involved in the attenuating effects of 5-HT3 receptor antagonist MDL 72222 on acute methamphetamine-induced locomotor hyperactivity in mice.

    PubMed

    Yoo, Ji-Hoon; Nam, Yun-Sun; Lee, Seok-Yong; Jang, Choon-Gon

    2008-01-01

    We have previously shown that 5-HT3 receptors are involved in the development and expression of methamphetamine (MAP)-induced locomotor sensitization in mice. In the present study, we further examined whether the dopaminergic system is involved in the attenuating effects of MDL 72222, a 5-HT3 receptor antagonist, on acute MAP-induced locomotor hyperactivity. For this, we examined alterations of dopamine (DA) in the form of D1 receptor, D2 receptor, and dopamine transporter (DAT) binding labeled with [3H]SCH23390 for D1, [3H]raclopride for D2, and [3H]mazindol for DAT binding in the mouse brains with acute MAP exposure or pretreatment of MDL 72222 with MAP. No significant differences were detected in the D1 receptor, D2 receptor, or DAT binding between any of the groups studied. Interestingly, we found increased DA levels in the striatum following acute MAP exposure; these increased levels were reversed by pretreatment with MDL 72222, but did not affect 5-HT levels in the dorsal raphe. Overall, our results suggest that dopamine neurotransmission plays an important role in the attenuating effects of 5-HT3 receptor antagonist MDL 72222 on acute MAP-induced locomotor hyperactivity in mice.

  14. Wood creosote prevents CRF-induced motility via 5-HT3 receptors in proximal and 5-HT4 receptors in distal colon in rats.

    PubMed

    Ataka, Koji; Kuge, Tomoo; Fujino, Kazunori; Takahashi, Toku; Fujimiya, Mineko

    2007-05-30

    Wood creosote has been used as an herbal medicine against acute diarrhea caused by food poisoning and has an inhibitory effect on colonic motility and enterotoxin-induced ion secretion. Since no previous studies have examined the effects of wood creosote on stress-induced alteration of colonic motility, we examined the effects on the colonic motility altered by intracerebroventricular (i.c.v.) injection of corticotropin-releasing factor (CRF), which is a key mediator in responses to stress. We recorded motor activity in proximal and distal colon of unrestrained conscious rats via two manometory catheters. The frequencies of phase III-like contraction and the % motor indices in both proximal and distal colon were measured. At the same time the number of fecal pellets excreted was counted. I.c.v. injection of CRF increased the motor activity in both proximal and distal colon, and these effects were completely antagonized by i.c.v. injection of a selective CRF type 1 antagonist but not by a CRF type 2 antagonist. Changes in colonic motility induced by CRF were reversed by intravenously administered wood creosote. Intraluminal administration of the 5-HT(3) receptor antagonist granisetron, or the 5-HT(4) receptor antagonist SB 204070 blocked the increase in colonic motility induced by i.c.v. injection of CRF. Wood creosote prevented the increase in colonic motility induced by the 5-HT(3) receptor agonist SR57227A in the proximal colon, while it prevented the increase in colonic motility induced by the 5-HT(4) receptor agonist RS67506 in the distal colon. These results indicate that wood creosote prevents the increase in colonic motility induced by CRF via 5-HT(3) receptors in the proximal colon, and via 5-HT(4) receptors in the distal colon, suggesting that wood creosote might be useful to treat stress-induced diarrhea.

  15. Dual role of serotonin in the pathogenesis of indomethacin-induced small intestinal ulceration: pro-ulcerogenic action via 5-HT3 receptors and anti-ulcerogenic action via 5-HT4 receptors.

    PubMed

    Kato, Shinichi; Matsuda, Narumi; Matsumoto, Kenjiro; Wada, Mai; Onimaru, Naoki; Yasuda, Masashi; Amagase, Kikuko; Horie, Syunji; Takeuchi, Koji

    2012-09-01

    Serotonin (5-HT) exerts multiple physiological functions not only in the central and peripheral nervous systems but also in the gastrointestinal tract, and these multiple functions are accounted for by a variety of 5-HT receptor subtypes. We investigated the role of 5-HT in the pathogenesis of indomethacin-induced intestinal lesions in mice, in relation to 5-HT receptor subtypes. A single oral administration of indomethacin (10 mg/kg) provoked damage in the small intestine of mice 24 h later, and this response was prevented by pretreatment with p-chlorophenylalanine (a 5-HT synthesis inhibitor). The administration of 5-HT3 receptor antagonists, such as ondansetron and ramosetron, dose-dependently reduced the severity of the intestinal lesions, whereas a high dose of GR113808 (a 5-HT4 receptor antagonist) significantly aggravated these lesions. In contrast, NAN-190 (a 5-HT1 receptor antagonist), ketanserin (a 5-HT2 receptor antagonist), and SB269970 (a 5-HT7 receptor antagonist) had no effect on these lesions. Mosapride (a 5-HT4 receptor agonist) significantly reduced the severity of indomethacin-induced intestinal lesions, and this protective effect was totally prevented by either GR113808 or methyllycaconitine (an α7-nicotinic acetylcholine receptor antagonist). Indomethacin increased the activity of myeloperoxidase and the expression of inducible nitric oxide synthase, inflammatory cytokines, and chemokines in the small intestine; these responses were significantly attenuated by ondansetron and mosapride. These findings suggest that endogenous 5-HT exerts a dual role in the pathogenesis of indomethacin-induced intestinal lesions: pro-ulcerogenic action via 5-HT3 receptors and anti-ulcerogenic action via 5-HT4 receptors, and the latter effect via 5-HT4 receptors may be mediated by activation of α7-nicotinic acetylcholine receptors.

  16. Cation-pi interactions in ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcholine receptors: the anomalous binding properties of nicotine.

    PubMed

    Beene, Darren L; Brandt, Gabriel S; Zhong, Wenge; Zacharias, Niki M; Lester, Henry A; Dougherty, Dennis A

    2002-08-13

    A series of tryptophan analogues has been introduced into the binding site regions of two ion channels, the ligand-gated nicotinic acetylcholine and serotonin 5-HT(3A) receptors, using unnatural amino acid mutagenesis and heterologous expression in Xenopus oocytes. A cation-pi interaction between serotonin and Trp183 of the serotonin channel 5-HT(3A)R is identified for the first time, precisely locating the ligand-binding site of this receptor. The energetic contribution of the observed cation-pi interaction between a tryptophan and the primary ammonium ion of serotonin is estimated to be approximately 4 kcal/mol, while the comparable interaction with the quaternary ammonium of acetylcholine is approximately 2 kcal/mol. The binding mode of nicotine to the nicotinic receptor of mouse muscle is examined by the same technique and found to differ significantly from that of the natural agonist, acetylcholine.

  17. Synergistic effect between prelimbic 5-HT3 and CB1 receptors on memory consolidation deficit in adult male Sprague-Dawley rats: An isobologram analysis.

    PubMed

    Ahmadi-Mahmoodabadi, N; Nasehi, M; Emam Ghoreishi, M; Zarrindast, M-R

    2016-03-11

    The serotonergic system has often been defined as a neuromodulator system, and is specifically involved in learning and memory via its various receptors. Serotonin is involved in many of the same processes affected by cannabinoids. The present study investigated the influence of bilateral post-training intra-prelimbic (PL) administrations of serotonergic 5-hydroxytryptamine type-3 (5-HT3) receptor agents on arachidonylcyclopropylamide (ACPA) (cannabinoid CB1 receptor agonist)-induced amnesia, using the step-through inhibitory avoidance (IA) task to assess memory in adult male Sprague-Dawley rats. The results indicated that sole intra-PL microinjection of ACPA (0.1 and 0.5 μg/rat) and 5-HT3 serotonin receptor agonist (m-Chlorophenylbiguanide hydrochloride, m-CPBG; 0.001, 0.01 and 0.1 μg/rat) impaired, whereas Y-25130 (a selective 5-HT3 serotonin receptor antagonist; 0.001 and 0.01 and 0.1 μg/rat) did not alter IA memory consolidation, by itself. Moreover, intra-PL administration of subthreshold dose of m-CPBG (0.0005 μg/rat) potentiated, while Y-25130 (0. 1 μg/rat) restored ACPA-induced memory consolidation deficit. The isobologram analysis showed that there is a synergistic effect between ACPA and m-CPBG on memory consolidation deficit. These findings suggest that 5-HT3 receptor mechanism(s), at least partly, play(s) a role in modulating the effect of ACPA on memory consolidation in the PL area.

  18. Regulation of the 5-HT3A receptor-mediated current by alkyl 4-hydroxybenzoates isolated from the seeds of Nelumbo nucifera.

    PubMed

    Youn, Ui Joung; Lee, Jun-Ho; Lee, Yoo Jin; Nam, Joo Won; Bae, Hyunsu; Seo, Eun-Kyoung

    2010-09-01

    Four known alkyl 4-hydroxybenzoates, i.e., methyl 4-hydroxybenzoate (1), ethyl 4-hydroxybenzoate (2), propyl 4-hydroxybenzoate (3), and butyl 4-hydroxybenzoate (4), were isolated from the seeds of Nelumbo nucifera Gaertner (Nymphaeaceae) for the first time. The structures of the isolates were identified by 1D- and 2D-NMR spectroscopy and comparison with published values. The compounds were evaluated for their effects on the 5-HT-stimulated inward current (I(5-HT)) mediated by the human 5-HT(3)A receptors expressed in Xenopus oocytes. Compounds 1 and 2 enhanced the I(5-HT), but 4 reduced it. These results indicate that 4 is an inhibitor of the 5-HT(3)A receptors expressed in Xenopus oocytes.

  19. The effects of varenicline on sensory gating and exploratory behavior with pretreatment with nicotinic or 5-HT3A receptor antagonists.

    PubMed

    Kucinski, Aaron; Wersinger, Scott; Stachowiak, Ewa K; Becker, Chani; Lippiello, Pat; Bencherif, Merouane; Stachowiak, Michal K

    2015-02-01

    Individuals with schizophrenia smoke at high frequency relative to the general population. Despite the harmful effects of cigarette smoking, smoking among schizophrenic patients improves cognitive impairments not addressed or worsened by common neuroleptics. Varenicline, a nonselective neuronal nicotinic receptor (NNR) agonist and full agonist of 5-HT3A receptors, helps reduce smoking among schizophrenic patients. To determine whether varenicline also improves a cognitive symptom of schizophrenia, namely, impaired sensory gating, a transgenic mouse with schizophrenia, th-fgfr1(tk-), was used. Varenicline dose-dependently increased prepulse inhibition (PPI) of the startle response, a measure of sensory gating, in th-fgfr1(tk-) mice and normalized PPI deficits relative to nontransgenic controls. With the highest dose (10 mg/kg), however, there was a robust elevation of PPI and startle response, as well as reduced exploratory behavior in the open field and elevated plus maze. Pretreatment with the nonspecific NNR antagonist mecamylamine attenuated the exaggerated PPI response and, similar to the 5-HT3A receptor antagonist ondansetron, it prevented the reduction in exploratory behavior. Collectively, these results indicate that varenicline at low-to-moderate doses may be beneficial against impaired sensory gating in schizophrenia; however, higher doses may induce anxiogenic effects, which can be prevented with antagonists of NNRs or 5-HT3A receptors.

  20. Synthesis and Pharmacological Evaluation of [(11)C]Granisetron and [(18)F]Fluoropalonosetron as PET Probes for 5-HT3 Receptor Imaging.

    PubMed

    Mu, Linjing; Müller Herde, Adrienne; Rüefli, Pascal M; Sladojevich, Filippo; Milicevic Sephton, Selena; Krämer, Stefanie D; Thompson, Andrew J; Schibli, Roger; Ametamey, Simon M; Lochner, Martin

    2016-11-16

    Serotonin-gated ionotropic 5-HT3 receptors are the major pharmacological targets for antiemetic compounds. Furthermore, they have become a focus for the treatment of irritable bowel syndrome (IBS) and there is some evidence that pharmacological modulation of 5-HT3 receptors might alleviate symptoms of other neurological disorders. Highly selective, high-affinity antagonists, such as granisetron (Kytril) and palonosetron (Aloxi), belong to a family of drugs (the "setrons") that are well established for clinical use. To enable us to better understand the actions of these drugs in vivo, we report the synthesis of 8-fluoropalonosetron (15) that has a binding affinity (Ki = 0.26 ± 0.05 nM) similar to the parent drug (Ki = 0.21 ± 0.03 nM). We radiolabeled 15 by nucleophilic (18)F-fluorination of an unsymmetrical diaryliodonium palonosetron precursor and achieved the radiosynthesis of 1-(methyl-(11)C)-N-granisetron ([(11)C]2) through N-alkylation with [(11)C]CH3I, respectively. Both compounds [(18)F]15 (chemical and radiochemical purity >95%, specific activity 41 GBq/μmol) and [(11)C]2 (chemical and radiochemical purity ≥99%, specific activity 170 GBq/μmol) were evaluated for their utility as positron emission tomography (PET) probes. Using mouse and rat brain slices, in vitro autoradiography with both [(18)F]15 and [(11)C]2 revealed a heterogeneous and displaceable binding in cortical and hippocampal regions that are known to express 5-HT3 receptors at significant levels. Subsequent PET experiments suggested that [(18)F]15 and [(11)C]2 are of limited utility for the PET imaging of brain 5-HT3 receptors in vivo.

  1. Blockade of peripheral 5HT3 receptor attenuates the formalin-induced nocifensive behavior in persistent temporomandibular joint inflammation of rat.

    PubMed

    Okamoto, Keiichiro; Imbe, Hiroki; Tashiro, Akimasa; Kumabe, Shunji; Senba, Emiko

    2004-09-02

    The role of peripheral 5HT3 receptors in the orofacial nocifensive behavior induced by the injection of formalin into masseter muscle was evaluated. The behavioral activities evoked by the formalin injection exhibited a biphasic response in the rats with or without temporomandibular joint (TMJ) inflammation (CFA group or non-CFA group). The orofacial nocifensive behavioral activity was enhanced after TMJ inflammation. Systemic administration of tropisetron, 5HT3 receptor antagonist, reduced the nocifensive behavioral activities in the late phase of orofacial formalin test in CFA group, but not in non-CFA group. Local administration of tropisetron into the masseter muscle in CFA group, but not in non-CFA group also attenuated the behavioral activities in the late phase. Unexpectedly, low dose of local tropisetron reduced the nocifensive behavioral activities in the early phase of orofacial formalin test in CFA group. These data suggest that induction of TMJ inflammation causes the elevation of the orofacial nocifensive behavioral activities evoked by formalin injection into masseter muscle, and that peripheral 5HT3 receptors may play a critical role in nociception and the transmission of orofacial pain.

  2. Discovery of new anti-depressants from structurally novel 5-HT3 receptor antagonists: design, synthesis and pharmacological evaluation of 3-ethoxyquinoxalin-2-carboxamides.

    PubMed

    Mahesh, Radhakrishnan; Devadoss, Thangaraj; Pandey, Dilip Kumar; Bhatt, Shvetank

    2011-02-15

    A novel series of 3-ethoxyquinoxalin-2-carboxamides were designed as per the pharmacophoric requirements of 5-HT(3) receptor antagonist using ligand-based approach. The desired carboxamides were synthesized from the key intermediate, 3-ethoxyquinoxalin-2-carboxylic acid by coupling with appropriate amines in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) and 1-hydroxybenzotriazole (HOBt). The 5-HT(3) receptor antagonism was evaluated in longitudinal muscle myenteric plexus preparation from guinea pig ileum against 5-HT(3) agonist, 2-methy-5-HT, which was expressed in the form of pA(2) values. Compound 6h (3-ethoxyquinoxalin-2-yl)(4-methylpiperazin-1-yl)methanone was found to be the most active compound, which expressed a pA(2) value of 7.7. In forced swim test, the compounds with higher pA(2) value exhibited good anti-depressant-like activity and compounds with lower pA(2) value failed to show activity as compared to the vehicle-treated group.

  3. Intrathecal nefopam-induced antinociception through activation of descending serotonergic projections involving spinal 5-HT7 but not 5-HT3 receptors.

    PubMed

    Lee, Hyung Gon; Kim, Woong Mo; Kim, Joung Min; Bae, Hong-Beom; Choi, Jeong Il

    2015-02-05

    We examined the involvement of spinal 5-HT(5-hydroxytryptamine) receptor 3(5-HT3R) and 7(5-HT7R) as well as the overall role of descending serotonergic projections in the analgesic effects of intrathecal(i.t.) nefopam for two rat models of formalin and paw incision test. I.t. nefopam produced an antinociceptive effect in a dose-dependent manner in both tests. Lesioning the spinal serotonergic projections using i.t. 5,7-dihydroxytryptamine(5,7-DHT) did not influence the intensity of allodynia in the paw incision test, but i.t. 5,7-DHT abolished the effect of nefopam. In the formain test, i.t. 5,7-DHT alone significantly diminished the flinches, but the effect of nefopam was not affected by i.t. 5,7-DHT. Antagonism study showed that i.t. 5-HT7R antagonist, SB269970 significantly blocked the antinociceptive effect of nefopam in both tests, but i.t. 5-HT3R antagonist, ondansetron has no influence on the effect of nefopam. The present study demonstrates that descending spinal serotonergic projections play a vital role in antinociceptive effect of i.t. nefopam in the paw incision test, but indeterminate in the formalin test. In both tests, the antinociceptive effect of i.t. nefopam involves the spinal 5-HT7R, but not 5-HT3R.

  4. In silico investigation into the interactions between murine 5-HT3 receptor and the principle active compounds of ginger (Zingiber officinale).

    PubMed

    Lohning, Anna E; Marx, Wolfgang; Isenring, Liz

    2016-11-01

    Gingerols and shogaols are the primary non-volatile actives within ginger (Zingiber officinale). These compounds have demonstrated in vitro to exert 5-HT3 receptor antagonism which could benefit chemotherapy-induced nausea and vomiting (CINV). The site and mechanism of action by which these compounds interact with the 5-HT3 receptor is not fully understood although research indicates they may bind to a currently unidentified allosteric binding site. Using in silico techniques, such as molecular docking and GRID analysis, we have characterized the recently available murine 5-HT3 receptor by identifying sites of strong interaction with particular functional groups at both the orthogonal (serotonin) site and a proposed allosteric binding site situated at the interface between the transmembrane region and the extracellular domain. These were assessed concurrently with the top-scoring poses of the docked ligands and included key active gingerols, shogaols and dehydroshogaols as well as competitive antagonists (e.g. setron class of pharmacologically active drugs), serotonin and its structural analogues, curcumin and capsaicin, non-competitive antagonists and decoys. Unexpectedly, we found that the ginger compounds and their structural analogs generally outscored other ligands at both sites. Our results correlated well with previous site-directed mutagenesis studies in identifying key binding site residues. We have identified new residues important for binding the ginger compounds. Overall, the results suggest that the ginger compounds and their structural analogues possess a high binding affinity to both sites. Notwithstanding the limitations of such theoretical analyses, these results suggest that the ginger compounds could act both competitively or non-competitively as has been shown for palonosetron and other modulators of CYS loop receptors.

  5. A nanocomposite material formed by benzofulvene polymer nanoparticles loaded with a potent 5-HT3 receptor antagonist (CR3124)

    NASA Astrophysics Data System (ADS)

    Cappelli, Andrea; Galeazzi, Simone; Zanardi, Iacopo; Travagli, Valter; Anzini, Maurizio; Mendichi, Raniero; Petralito, Stefania; Memoli, Adriana; Paccagnini, Eugenio; Peris, Walter; Giordani, Antonio; Makovec, Francesco; Fresta, Massimo; Vomero, Salvatore

    2010-03-01

    Poly- BF3a, a new hydrophobic polymer obtained by spontaneous polymerization of 1-methylene-3-phenyl-1 H-indene, was found to give nanoparticles characterized by favorable shape and dimensions. Poly- BF3a nanoparticles were loaded with CR3124, a potent 5HT3 antagonist, as a drug model by desolvation methods either in the absence or in the presence of polyethylene glycol (PEG1000) as a wetting agent. The SEM studies showed that the introduction of CR3124 into the preparation led to a variable degree of aggregation-cementation, which afforded a sort of nanocomposite material. In the absence of PEG1000, the drug molecule was found to stay in the amorphous state (DSC studies) when its percentage is not higher than 10% by weight. In vitro release experiments showed that the formation and stability of the dispersion as well as the drug release were remarkably affected by the presence of PEG1000, demonstrating its beneficial effect to the nanoparticle morphology and disaggregation.

  6. Fluvoxamine alleviates seizure activity and downregulates hippocampal GAP-43 expression in pentylenetetrazole-kindled mice: role of 5-HT3 receptors.

    PubMed

    Alhaj, Momen W; Zaitone, Sawsan A; Moustafa, Yasser M

    2015-06-01

    Epilepsy has been documented to lead to many changes in the nervous system including cell loss and mossy fiber sprouting. Neuronal loss and aberrant neuroplastic changes in the dentate gyrus of the hippocampus have been identified in the pentylenetetrazole (PTZ) kindling model. Antiseizure activity of selective serotonin reuptake inhibitors has been reported in several studies. In the current study, the protective effect of fluvoxamine against PTZ-kindling was investigated in terms of seizure scores, neuronal loss, and regulation of hippocampal neuroplasticity. Further, the role of 5-HT3 receptors was determined. Kindling was induced by repeated injections of PTZ (35 mg/kg) thrice weekly, for a total of 13 injections. One hundred male albino mice were allocated into 10 groups: (1) saline, (2) PTZ, (3) diazepam (1 mg/kg)+PTZ, (4-6) fluvoxamine (5, 10 or 20 mg/kg)+PTZ, (7) ondansetron+fluvoxamine (20 mg/kg)+PTZ, (8) ondansetron+PTZ group, (9) ondansetron (2 mg/kg, i.p.)+saline, and (10) fluvoxamine (20 mg/kg)+saline. PTZ-kindled mice showed high seizure activity, hippocampal neuronal loss, and expression of growth-associated phosphoprotein (GAP-43) compared with saline-treated mice. Repeated administration of fluvoxamine (20 mg/kg) in PTZ-kindled mice suppressed seizure scores, protected against hippocampal neuronal loss, and downregulated GAP-43 expression, without producing any signs of the 5-HT syndrome in healthy rats. Importantly, pretreatment with a selective 5-HT3 receptor blocker (ondansetron) attenuated the aforementioned effects of fluvoxamine. In conclusion, the ameliorating effect of fluvoxamine on hippocampal neurons and neuroplasticity in PTZ-kindled mice was, at least in part, dependent on enhancement of hippocampal serotoninergic transmission at 5-HT3 receptors.

  7. 5HT3 receptor antagonist (ondansetron) reverses depressive behavior evoked by chronic unpredictable stress in mice: modulation of hypothalamic-pituitary-adrenocortical and brain serotonergic system.

    PubMed

    Gupta, Deepali; Radhakrishnan, Mahesh; Kurhe, Yeshwant

    2014-09-01

    Chronic stress is one of the major causes of depression, associated with behavioral and biochemical impairments. 5HT3 receptor antagonists (such as ondansetron) have shown alleviation of depressive symptomology in preclinical and in few clinical studies. However, their effects in chronic stress-induced depressive behavior and the underlying mechanism(s) are yet to be known. In the present study, the effects of a 5HT3 receptor antagonist, ondansetron were evaluated in chronic unpredictable stress (CUS)-evoked depressive behavior. In addition, the possible mechanism was determined by measuring plasma corticosterone (CORT) as a marker of hypothalamic-pituitary-adrenocortical (HPA)-axis activity and serotonin levels in the discrete brain regions. Mice were subjected to a battery of unpredictable stressors for 28 days. Ondansetron (0.05, 0.1 and 1mg/kg, p.o.) and fluoxetine (10mg/kg, p.o.) were administered during the last 14 days (day 15-28th) of CUS testing paradigm. The results showed that the 4-week CUS produced significant depressive behavior in mice, which included increased despair effects in forced swim test (FST) and reward-related deficits in sucrose preference test. Biochemical assays demonstrated a significant increase in percentage of plasma CORT and decrease in percentage of serotonin levels in the discrete brain regions of CUS mice. Chronic ondansetron treatment, similar to that of positive control fluoxetine, significantly reversed despair effects in FST and reward-related deficits in sucrose preference test. In addition, ondansetron and fluoxetine treatments significantly increased percentage of serotonin levels in the measured brain regions and attenuated HPA-axis hyperactivity, as evidenced by low percentage of plasma CORT levels in CUS mice. These findings indicate the potential role of ondansetron (a 5HT3 receptor antagonist) in reversing CUS-induced depressive behavior, which is possibly mediated by its modulating effects on the HPA-axis and

  8. Safety of serotonin (5-HT3) receptor antagonists in patients undergoing surgery and chemotherapy: protocol for a systematic review and network meta-analysis

    PubMed Central

    2013-01-01

    Background Serotonin (5-HT3) receptor antagonists are a class of antiemetic medications often used to prevent nausea and vomiting among patients undergoing chemotherapy, radiotherapy or surgery. However, recent studies suggest that these agents might be associated with increased cardiac harm. To examine this further, we are proposing to conduct a systematic review and network meta-analysis on the comparative safety of 5-HT3 receptor antagonists among patients undergoing chemotherapy or surgery. Methods/Design Studies reporting one or more safety outcomes of interest for 5-HT3 receptor antagonists compared with each other, placebo, and/or other anti-emetic agents (for example, benzamides, phenothiazines, butyrophenones, antihistamines, and anticholinergics) among children and adult patients undergoing surgery or chemotherapy will be included. Our primary outcome of interest is arrhythmia. Our secondary outcomes include cardiac death, QT prolongation, PR prolongation, all-cause mortality, nausea, and vomiting. We will include experimental studies, quasi-experimental studies (namely controlled before-after and interrupted time series), and observational studies (namely cohort studies). We will not limit inclusion by publication status, time period, duration of follow-up or language of dissemination. Electronic databases (for example, MEDLINE, EMBASE) will be searched from inception onwards. These main searches will be supplemented by searching for difficult to locate and unpublished studies, such as dissertations, and governmental reports. The eligibility criteria will be pilot-tested and subsequently used to screen the literature search results by two reviewers in duplicate. A similar process will be followed for full-text screening, data abstraction, and risk of bias/methodological quality appraisal. The Cochrane Risk of Bias tool will be used to appraise experimental and quasi-experimental studies, and cohort studies will be assessed using the Newcastle Ottawa

  9. Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: a potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism.

    PubMed

    du Jardin, Kristian Gaarn; Jensen, Jesper Bornø; Sanchez, Connie; Pehrson, Alan L

    2014-01-01

    We previously reported that the investigational multimodal antidepressant, vortioxetine, reversed 5-HT depletion-induced memory deficits while escitalopram and duloxetine did not. The present report studied the effects of vortioxetine and the potential impact of its 5-HT1A receptor agonist and 5-HT3 receptor antagonist properties on 5-HT depletion-induced memory deficits. Recognition and spatial working memory were assessed in the object recognition (OR) and Y-maze spontaneous alternation (SA) tests, respectively. 5-HT depletion was induced in female Long-Evans rats using 4-cholro-DL-phenylalanine methyl ester HCl (PCPA) and receptor occupancies were determined by ex vivo autoradiography. Rats were acutely dosed with vortioxetine, ondansetron (5-HT3 receptor antagonist) or flesinoxan (5-HT1A receptor agonist). The effects of chronic vortioxetine administration on 5-HT depletion-induced memory deficits were also assessed. 5-HT depletion reliably impaired memory performance in both the tests. Vortioxetine reversed PCPA-induced memory deficits dose-dependently with a minimal effective dose (MED) ≤0.1mg/kg (∼80% 5-HT3 receptor occupancy; OR) and ≤3.0mg/kg (5-HT1A, 5-HT1B, 5-HT3 receptor occupancy: ∼15%, 60%, 95%) in SA. Ondansetron exhibited a MED ≤3.0μg/kg (∼25% 5-HT3 receptor occupancy; OR), but was inactive in the SA test. Flesinoxan had a MED ≤1.0mg/kg (∼25% 5-HT1A receptor occupancy; SA); only 1.0mg/kg ameliorated deficits in the NOR. Chronic p.o. vortioxetine administration significantly improved memory performance in OR and occupied 95%, 66%, and 9.5% of 5-HT3, 5-HT1B, and 5-HT1A receptors, respectively. Vortioxetine's effects on SA performance may involve 5-HT1A receptor agonism, but not 5-HT3 receptor antagonism, whereas the effects on OR performance may involve 5-HT3 receptor antagonism and 5-HT1A receptor agonism.

  10. Bidirectional amygdaloid control of neuropathic hypersensitivity mediated by descending serotonergic pathways acting on spinal 5-HT3 and 5-HT1A receptors.

    PubMed

    Sagalajev, B; Bourbia, N; Beloushko, E; Wei, H; Pertovaara, A

    2015-04-01

    Amygdala is involved in processing of primary emotions and particularly its central nucleus (CeA) also in pain control. Here we studied mechanisms mediating the descending control of mechanical hypersensitivity by the CeA in rats with a peripheral neuropathy in the left hind limb. For drug administrations, the animals had a guide cannula in the right CeA and an intrathecal catheter or another guide cannula in the medullary raphe. Hypersensitivity was tested with monofilaments. Glutamate administration in the CeA produced a bidirectional effect on hypersensitivity that varied from an increase at a low-dose (9μg) to a reduction at high doses (30-100μg). The increase but not the reduction of hypersensitivity was prevented by blocking the amygdaloid NMDA receptor with a dose of MK-801 that alone had no effects. The glutamate-induced increase in hypersensitivity was reversed by blocking the spinal 5-HT3 receptor with ondansetron, whereas the reduction in hypersensitivity was reversed by blocking the spinal 5-HT1A receptor with WAY-100635. Both the increase and decrease of hypersensitivity induced by amygdaloid glutamate treatment were reversed by medullary administration of a 5-HT1A agonist, 8-OH-DPAT, that presumably produced autoinhibition of serotonergic cell bodies in the medullary raphe. The results indicate that depending on the dose, glutamate in the CeA has a descending facilitatory or inhibitory effect on neuropathic pain hypersensitivity. Serotoninergic raphe neurons are involved in mediating both of these effects. Spinally, the 5-HT3 receptor contributes to the increase and the 5-HT1A receptor to the decrease of neuropathic hypersensitivity induced by amygdaloid glutamate.

  11. Effect of R3487/MEM3454, a novel nicotinic alpha7 receptor partial agonist and 5-HT3 antagonist on sustained attention in rats.

    PubMed

    Rezvani, Amir H; Kholdebarin, Ehsan; Brucato, Frederic H; Callahan, Patrick M; Lowe, David A; Levin, Edward D

    2009-03-17

    It is well established that nicotinic systems in the brain are critically involved in attentional processes in both animals and humans. The current study assessed the effects of a novel nicotinic alpha7 receptor partial agonist and 5-HT3 antagonist, R3487/MEM3454 (also referred to as R3487 or MEM 3454) on sustained attention in rats performing an operant visual signal detection task. The effects of R3487/MEM3454 were compared to those of the acetylcholinesterase inhibitor/nicotinic alpha7 allosteric positive modulator galanthamine. Adult female Sprague-Dawley rats were injected subcutaneously with R3487/MEM3454 (0.03, 0.1, 0.15, 0.3 and 0.6 mg/kg), galanthamine (0.25, 0.5, 1, 2 mg/kg) or vehicle 30 min before the attentional test. In the second study, the time-dependent effects of R3487/MEM3454 were assessed by injecting the compound (0.6 mg/kg, s.c.) at different pretreatment intervals (30, 60 or 90 min) before the start of the attentional task. Our results show a significant dose-effect for R3487/MEM3454 on percent hit accuracy performance without any significant alteration on percent correct rejection performance. In the time-dependent test, R3487/MEM3454 significantly increased the percent hit accuracy performance when animals were injected 60 min before the start of the attentional task. Administration of galanthamine failed to significantly increase percent hit accuracy performance and increasing the dose of galanthamine produced a decrease in percent correct rejection performance. The present findings with R3487/MEM3454 suggest that nicotinic alpha7 receptors and/or 5-HT3 receptors may play an important role in modulating sustained attention and that R3487/MEM3454 may have therapeutic potential in improving sustained attention in humans.

  12. X-ray analysis of the effect of the 5-HT3 receptor antagonist granisetron on gastrointestinal motility in rats repeatedly treated with the antitumoral drug cisplatin.

    PubMed

    Vera, Gema; López-Pérez, Ana Esther; Martínez-Villaluenga, María; Cabezos, Pablo Antonio; Abalo, Raquel

    2014-08-01

    Cancer chemotherapy is associated with the development of numerous adverse effects, including nausea, emesis and other alterations in gastrointestinal (GI) motility. The administration of 5-HT3 receptor antagonists has provided a clinical advance in the treatment of chemotherapy-induced vomiting but these drugs lose efficacy throughout chronic treatment. The effects of these drugs in experimental animals under chronic administration are not well known. Our aim was to study, using radiographic methods, the effect of the 5-HT3 receptor antagonist granisetron on GI dysmotility induced in the rat by repeated cisplatin administration. First, invasive methods were used to select a dose of granisetron capable of reducing increased stomach weight due to acute cisplatin administration (6 mg/kg, ip). Second, rats received two intraperitoneal (ip) injections once a week for 4 weeks: granisetron (1 mg/kg, ip) or saline and, thirty min later, saline or cisplatin (2 mg/kg, ip). Body weight gain was measured throughout treatment. Radiological techniques were used to determine the acute (after first dose) and chronic (after last dose) effects of cisplatin and/or granisetron on GI motility. Repeated cisplatin-induced weight loss which granisetron did not prevent. Gastric emptying was delayed after the first cisplatin administration. Granisetron completely prevented this effect. After weekly administration, cisplatin-induced gastric dysmotility was enhanced and granisetron was not capable of completely preventing this effect. Granisetron prevents gastric emptying alterations, but its efficacy decreases throughout antineoplastic treatment. This might be due to the enhanced effect of cisplatin.

  13. Effect of a novel 5-HT3 receptor antagonist 4i, in corticosterone-induced depression-like behavior and oxidative stress in mice.

    PubMed

    Gupta, Deepali; Radhakrishnan, Mahesh; Kurhe, Yeshwant

    2015-04-01

    Stress in our daily life severely affects the normal physiology of the biological system. Dysregulation of hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the development of depression-like behavior, which remains under diagnosed and poorly treated. Exogenous corticosterone (CORT) administration has been demonstrated to develop a depression model, which has shown to mimic HPA-axis induced depression-like state in rodents. In the present study, the effect of a novel 5HT3 receptor, 4i was examined on CORT induced depression in mice. CORT (30mg/kg, subcutaneously) was given for 4-weeks to mice in control group, while mice in drug treated group were given 4i (0.5-1mg/kg, intraperitoneally)/fluoxetine (as a positive control, 10mg/kg), for the last 2-weeks of CORT dosing. Repeated CORT dosing caused depression-like behavior in mice as indicated by increased despair effects in forced swim test (FST) and anhedonia in sucrose preference test. In addition, CORT administration induced oxidative load in the brain with significant increase in pro-oxidant (lipid peroxidation and nitrite levels) markers and a substantial decline in anti-oxidant defense (catalase and reduced glutathione levels) system, indicating a direct effect of stress hormones in the induction of the brain oxidative damage. On the other hand, 4i and fluoxetine treatment reversed the CORT induced depressive-like deficits. Furthermore, 4i and fluoxetine prevented CORT induced oxidative brain insults, which may plausibly demonstrate one of the key mechanisms for antidepressant-like effects of the compounds. Thus, the study suggests that 5HT3 antagonist; 4i may be implicated as pharmacological intervention targeting depressive-like anomaly associated with HPA-axis dysregulation.

  14. Effects of serotonin 5-HT3 receptor antagonists on stress-induced colonic hyperalgesia and diarrhoea in rats: a comparative study with opioid receptor agonists, a muscarinic receptor antagonist and a synthetic polymer.

    PubMed

    Hirata, T; Keto, Y; Nakata, M; Takeuchi, A; Funatsu, T; Akuzawa, S; Sasamata, M; Miyata, K

    2008-05-01

    In this study, we examined the effects of serotonin (5-HT)3 receptor antagonists (5-HT3RAs) including ramosetron, alosetron, and cilansetron on colonic nociceptive threshold in rats. Furthermore, we established a restraint stress-induced colonic hyperalgesia model in rats, and compared the inhibitory effects of 5-HT3RAs on restraint stress-induced colonic hyperalgesia and diarrhoea with those of loperamide, trimebutine, tiquizium and polycarbophil. The colonic nociceptive threshold was measured as the balloon pressure at the time the rat showed a nociceptive response during colonic distension by an intrarectally inserted balloon. Oral administration of ramosetron (3-30 microg kg(-1)), alosetron (30-300 microg kg(-1)), or cilansetron (30-300 microg kg(-1)) increased the colonic nociceptive threshold in a dose-dependent manner in non-stressed rats. Restraint stress for 1 h significantly decreased the colonic nociceptive threshold, but ramosetron (0.3-3 microg kg(-1)), alosetron (3-30 microg kg(-1)), cilansetron (3-30 microg kg(-1)) and trimebutine (100-1000 mg kg(-1)) significantly inhibited the decrease in the threshold. Loperamide (3-30 mg kg(-1)), tiquizium (100-1000 mg kg(-1)) and polycarbophil (1000 mg kg(-1)) did not affect the restraint stress-induced decrease in the colonic nociceptive threshold. All drugs tested in this study showed dose-dependent inhibition of restraint stress-induced diarrhoea in rats. These results indicate that, unlike existing antidiarrhoeal and spasmolytic agents, 5-HT3RAs have inhibitory effects on colonic nociception, and prevented restraint stress-induced both diarrhoea and hyperalgesia at almost the same doses in rats. This suggests that the 5-HT3RAs may be useful in ameliorating both colonic hyperalgesia and diarrhoea in patients with irritable bowel syndrome.

  15. Serotonin 5-HT3 receptor-mediated vomiting occurs via the activation of Ca2+/CaMKII-dependent ERK1/2 signaling in the least shrew (Cryptotis parva).

    PubMed

    Zhong, Weixia; Hutchinson, Tarun E; Chebolu, Seetha; Darmani, Nissar A

    2014-01-01

    Stimulation of 5-HT3 receptors (5-HT3Rs) by 2-methylserotonin (2-Me-5-HT), a selective 5-HT3 receptor agonist, can induce vomiting. However, downstream signaling pathways for the induced emesis remain unknown. The 5-HT3R channel has high permeability to extracellular calcium (Ca(2+)) and upon stimulation allows increased Ca(2+) influx. We examined the contribution of Ca(2+)/calmodulin-dependent protein kinase IIα (Ca(2+)/CaMKIIα), interaction of 5-HT3R with calmodulin, and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling to 2-Me-5-HT-induced emesis in the least shrew. Using fluo-4 AM dye, we found that 2-Me-5-HT augments intracellular Ca(2+) levels in brainstem slices and that the selective 5-HT3R antagonist palonosetron, can abolish the induced Ca(2+) signaling. Pre-treatment of shrews with either: i) amlodipine, an antagonist of L-type Ca(2+) channels present on the cell membrane; ii) dantrolene, an inhibitor of ryanodine receptors (RyRs) Ca2+-release channels located on the endoplasmic reticulum (ER); iii) a combination of their less-effective doses; or iv) inhibitors of CaMKII (KN93) and ERK1/2 (PD98059); dose-dependently suppressed emesis caused by 2-Me-5-HT. Administration of 2-Me-5-HT also significantly: i) enhanced the interaction of 5-HT3R with calmodulin in the brainstem as revealed by immunoprecipitation, as well as their colocalization in the area postrema (brainstem) and small intestine by immunohistochemistry; and ii) activated CaMKIIα in brainstem and in isolated enterochromaffin cells of the small intestine as shown by Western blot and immunocytochemistry. These effects were suppressed by palonosetron. 2-Me-5-HT also activated ERK1/2 in brainstem, which was abrogated by palonosetron, KN93, PD98059, amlodipine, dantrolene, or a combination of amlodipine plus dantrolene. However, blockade of ER inositol-1, 4, 5-triphosphate receptors by 2-APB, had no significant effect on the discussed behavioral and biochemical parameters. This study

  16. Serotonin 5-HT3 Receptor-Mediated Vomiting Occurs via the Activation of Ca2+/CaMKII-Dependent ERK1/2 Signaling in the Least Shrew (Cryptotis parva)

    PubMed Central

    Zhong, Weixia; Hutchinson, Tarun E.; Chebolu, Seetha; Darmani, Nissar A.

    2014-01-01

    Stimulation of 5-HT3 receptors (5-HT3Rs) by 2-methylserotonin (2-Me-5-HT), a selective 5-HT3 receptor agonist, can induce vomiting. However, downstream signaling pathways for the induced emesis remain unknown. The 5-HT3R channel has high permeability to extracellular calcium (Ca2+) and upon stimulation allows increased Ca2+ influx. We examined the contribution of Ca2+/calmodulin-dependent protein kinase IIα (Ca2+/CaMKIIα), interaction of 5-HT3R with calmodulin, and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling to 2-Me-5-HT-induced emesis in the least shrew. Using fluo-4 AM dye, we found that 2-Me-5-HT augments intracellular Ca2+ levels in brainstem slices and that the selective 5-HT3R antagonist palonosetron, can abolish the induced Ca2+ signaling. Pre-treatment of shrews with either: i) amlodipine, an antagonist of L-type Ca2+ channels present on the cell membrane; ii) dantrolene, an inhibitor of ryanodine receptors (RyRs) Ca2+-release channels located on the endoplasmic reticulum (ER); iii) a combination of their less-effective doses; or iv) inhibitors of CaMKII (KN93) and ERK1/2 (PD98059); dose-dependently suppressed emesis caused by 2-Me-5-HT. Administration of 2-Me-5-HT also significantly: i) enhanced the interaction of 5-HT3R with calmodulin in the brainstem as revealed by immunoprecipitation, as well as their colocalization in the area postrema (brainstem) and small intestine by immunohistochemistry; and ii) activated CaMKIIα in brainstem and in isolated enterochromaffin cells of the small intestine as shown by Western blot and immunocytochemistry. These effects were suppressed by palonosetron. 2-Me-5-HT also activated ERK1/2 in brainstem, which was abrogated by palonosetron, KN93, PD98059, amlodipine, dantrolene, or a combination of amlodipine plus dantrolene. However, blockade of ER inositol-1, 4, 5-triphosphate receptors by 2-APB, had no significant effect on the discussed behavioral and biochemical parameters. This study demonstrates

  17. Antidepressant and anti-anxiety like effects of 4i (N-(3-chloro-2-methylphenyl) quinoxalin-2-carboxamide), a novel 5-HT3 receptor antagonist in acute and chronic neurobehavioral rodent models.

    PubMed

    Gupta, Deepali; Radhakrishnan, Mahesh; Thangaraj, Devadoss; Kurhe, Yeshwant

    2014-07-15

    Depression and anxiety are the most debilitating mood disorders with poor therapeutic recovery rates. In the last decades, 5-HT3 receptor antagonists have been identified as potential agents for mood disorders. The current investigation focuses on evaluating the, antidepressant and anti-anxiety like effects of a novel 5-HT3 antagonist, 4i (N-(3-chloro-2-methylphenyl) quinoxalin-2-carboxamide). Preliminary, in vitro 5-HT3 receptor binding affinity was performed in isolated longitudinal muscle-myenteric plexus from the guinea pig ileum. Consequently, neurobehavioral effects of 4i in acute and chronic rodent models were evaluated. In addition, involvement of serotonergic system in the postulated effects of the compound was analyzed by in vivo assay. in vitro, 4i demonstrated high 5-HT3 receptor antagonistic activity (pA2, 7.6). in vivo acute study, 4i exhibited decreased duration of immobility in forced swim and tail suspension tests, and increased exploratory parameters as number and duration of nose-poking in hole board test and latency and time spent in aversive brightly illuminated light chamber in light-dark model. Moreover, in chronic model of depression, i.e., olfactory bulbectomy with behavioral deficits, 4i reversed depressive anhedonia in sucrose preference test and anxious hyperactive behavior in open field test in rats. Furthermore, synergistic effect of 4i with fluoxetine (a selective serotonin reuptake inhibitor) and inhibitory effect of 1-(m-chlorophenyl)-biguanide (a 5-HT3 receptor agonist) revealed serotonergic modulation by 4i mediated 5-HT3 receptor antagonism, which was further confirmed by potentiation of 5-hydroxytryptophan (a serotonin synthesis precursor) induced head twitch response. These findings suggest the potential antidepressant and anti-anxiety like effects of 4i, which may be related to the modulation of serotonergic system.

  18. Antidepressant and anxiolytic-like effects of 4n, a novel 5-HT3 receptor antagonist using behaviour based rodent models.

    PubMed

    Kumar, Baldev; Jindal, Ankur; Pandey, Dilip Kumar; Bhatt, Shvetank; Devadoss, Thangaraj; Mahesh, Radhakrishnan

    2012-09-01

    The present study was designed to investigate the putative antidepressant and anxiolytic-like effects of N-n-Butylquinoxalin-2-carboxamide (4n), a novel 5-HT3 receptor antagonist, with an optimal log P (2.01) and pA2 value (7.3) greater than ondansetron (6.9) using rodent behavioural models of depression and anxiety. Acute treatment of 4n (1-4 mg/kg, ip) in mice produced antidepressant-like effect in forced swim test (FST) without affecting the baseline locomotion in actophotometer test in mice. 4n (2-4 mg/kg, ip) treatment also potentiated the 5-hydroxytryptophan (5-HTP) induced head twitch response in mice. Further, 4n (1-4 mg/kg, ip) treatment antagonized reserpine induced hypothermia in rats. Chronic treatment (14 days) with 4n (1-4 mg/kg) and paroxetine (10 mg/kg) significantly attenuated the behavioural anomalies induced by bilateral olfactory bulbectomy in rats in modified open field paradigm. An anxiogenic-like behaviour was induced by light alone as the stimulus using light-dark aversion test. 4n (2-4 mg/kg, ip) treatment significantly increased no. of transitions between dark and lit area and the time spent in the lit area. In conclusion, these preliminary investigations confirm that 4n exhibited antidepressant and anxiolytic-like effects in rodent models of depression and anxiety.

  19. Acute treatment with 5-HT3 receptor antagonist, tropisetron, reduces immobility in intact female rats exposed to the forced swim test.

    PubMed

    Bravo, Gabriela; Maswood, Sharmin

    2006-10-01

    The effects of tropisetron, a 5-HT3 receptor antagonist, were evaluated in adult Fischer female rats exposed to the Forced Swim Test (FST). Rats selected on the days of proestrus or estrus was immersed in a cylinder of water for 2 consecutive days. Rats were exposed to the FST for 15 min on day 1 (pretest), followed by a 5-min session (test), 24 h later. The proestrous-estrous group consisted of rats that were exposed to the FST on their proestrous stage (pretest); then 24 h later the same rats were exposed to the FST on their estrous stage (test). Rats in the estrous-diestrous group were exposed to the FST on their estrous stage (pretest) and 24 h later on their diestrous stage (test). Rats were injected intraperitoneally with saline or 1.0 or 2.0 mg/kg tropisetron 30 min prior to exposure to the cylinder on the test day. Immobility, swimming, and struggling behaviors were scored for 5 min. There was a significant decline in immobility after treatment with 2.0 mg/kg tropisetron in both groups. In addition, a significant decline in swimming was observed in the estrous rats (proestrous-estrous group) after treatment with 2.0 mg/kg tropisetron. There were no significant effects of tropisetron on struggling in any groups examined.

  20. Antidepressant-like effect of novel 5-HT3 receptor antagonist N-n-butyl-3-ethoxyquinoxalin-2-carboxamide (6p): An approach using rodent behavioral antidepressant tests

    PubMed Central

    Bhatt, Shvetank; Mahesh, Radhakrishnan; Devadoss, Thangaraj; Jindal, Ankur Kumar

    2013-01-01

    Objective: The present study was designed to investigate the antidepressant potential of N-n-butyl-3-ethoxyquinoxalin-2-carboxamide (6p), a novel 5-HT3 receptor antagonist in rodent behavioral models of depression. Materials and Methods: The compound 6p was examined in various behavioral models like forced swim test (FST), tail suspension test (TST), mechanistic models [5-hydroxytryptophan (5-HTP)-induced head twitch and reserpine-induced hypothermia (RIH)], and in chronic surgery model-olfactory bulbectomy in rats. Results: Compound 6p (1, 2, and 4 mg/kg, i.p.) exhibited antidepressant-like effect in FST and TST after acute treatment without having an effect on baseline locomotor activity. Moreover, 6p (2 mg/kg, i.p.), potentiated the 5-HTP–induced head twitch responses in mice and inhibited the RIH in rats. Chronic treatment (14 days) with 6p (1 and 2 mg/kg, p.o.) and paroxetine (10 mg/kg, p.o.) in rats significantly reversed the behavioral anomalies induced by bilateral olfactory bulbectomy using open field exploration. Conclusion: The preliminary studies reveal that compound 6p exhibits antidepressant-like effect in behavioral rodent models of depression. PMID:24014909

  1. 5-HT3 and 5-HT4 receptor-mediated facilitation of the emptying phase of the peristaltic reflex in the marmoset isolated ileum.

    PubMed Central

    Tuladhar, B. R.; Costall, B.; Naylor, R. J.

    1996-01-01

    .83 +/- 0.36 respectively in the presence of GR 113808 (30 nM). 6. In the presence of a high concentration of (10 microM) 5-methoxytryptamine the subsequent addition of 2-methyl-5-HT (3-10 microM) but not 5-methoxytryptamine (10 microM) facilitated peristalsis; the effect of 3 microM 2-methyl-5-HT was significantly decreased by 2 microM ondansetron. 7. It is concluded that the facilitation of the peristaltic reflex in the marmoset intestine induced by 5-HT at submicromolar concentrations involves a 5-HT4 receptor stimulation with an additional 5-HT3 receptor activation at higher concentrations. PMID:8732276

  2. Ondansetron reverses anti-hypersensitivity from clonidine in rats following peripheral nerve injury: Role of γ-amino butyric acid in α2-adrenoceptor and 5-HT3 serotonin receptor analgesia

    PubMed Central

    Hayashida, Ken-ichiro; Kimura, Masafumi; Yoshizumi, Masaru; Hobo, Shotaro; Obata, Hideaki; Eisenach, James C.

    2012-01-01

    Introduction Monoaminergic pathways, impinging an α2-adrenoceptors and 5-HT3 serotonin receptors, modulate nociceptive transmission, but their mechanisms and interactions after neuropathic injury are unknown. Here we examine these interactions in rodents after nerve injury. Methods Male Sprague-Dawley rats following L5-L6 spinal nerve ligation (SNL) were used for either behavioral testing, in vivo microdialysis for γ-amino butyric acid (GABA) and acetylcholine release, or synaptosome preparation for GABA release. Results Intrathecal administration of the α2-adrenoceptor agonist (clonidine) and 5-HT3 receptor agonist (chlorophenylbiguanide) reduced hypersensitivity in SNL rats via GABA receptor-mediated mechanisms. Clonidine increased GABA and acetylcholine release in vivo in the spinal cord of SNL rats but not in normal rats. Clonidine-induced spinal GABA release in SNL rats was blocked by α2-adrenergic and nicotinic cholinergic antagonists. The 5-HT3 receptor antagonist ondansetron decreased and chlorophenylbiguanide increased spinal GABA release in both normal and SNL rats. In synaptosomes from the spinal dorsal horn of SNL rats, pre-synaptic GABA release was increased by nicotinic agonists and decreased by muscarinic and α2-adrenergic agonists. Spinally administered ondansetron significantly reduced clonidine-induced anti-hypersensitivity and spinal GABA release in SNL rats. Conclusion These results suggest that spinal GABA contributes to anti-hypersensitivity from intrathecal α2-adrenergic and 5-HT3 receptor agonists in the neuropathic pain state, that cholinergic neuroplasticity after nerve injury is critical for α2-adrenoceptor-mediated GABA release, and that blockade of spinal 5-HT3 receptors reduces α2-adrenoceptor-mediated anti-hypersensitivity via reducing total GABA release. PMID:22722575

  3. Ondansetron, a 5HT3 receptor antagonist reverses depression and anxiety-like behavior in streptozotocin-induced diabetic mice: possible implication of serotonergic system.

    PubMed

    Gupta, Deepali; Radhakrishnan, Mahesh; Kurhe, Yeshwant

    2014-12-05

    Increased prevalence and high comorbidity of depression-like mood disorders and diabetes have prompted investigation of new targets and potential contributing agents. There is considerable evidence supporting the inconsistent clinical efficacy and persistent undesirable effects of existing antidepressant therapy for depression associated with diabetes. Therefore, the present study was aimed at investigating the effect of ondansetron, a selective 5HT3 receptor antagonist in attenuating depression and anxiety-like behavior comorbid with diabetes. Experimentally, Swiss albino mice were rendered diabetic by a single intraperitoneal (i.p.) injection of streptozotocin (STZ, 200 mg/kg). After 8 weeks, diabetic mice received a single dose of vehicle/ondansetron (0.5 and 1 mg/kg, p.o.)/fluoxetine (the positive control, 10 mg/kg p.o.) for 28 days. Thereafter, behavioral studies were conducted to test depression-like behavior using forced swim test (FST) and anxiety-like deficits using hole-board and light-dark tests, followed by biochemical estimation of serotonin content in discrete brain regions. The results demonstrated that, STZ-induced diabetic mice exhibited increased duration of immobility and decreased swimming behavior in FST, reduced exploratory behavior during hole-board test and increased aversion to brightly illuminated light area in light-dark test as compared to non-diabetic mice, while ondansetron (similar to fluoxetine) treatment significantly reversed the same. Biochemical assay revealed that ondansetron administration attenuated diabetes-induced neurochemical impairment of serotonin function, indicated by elevated serotonin levels in discrete brain regions of diabetic mice. Collectively, the data indicate that ondansetron may reverse depression and anxiety-like behavioral deficits associated with diabetes in mice and modulation of serotonergic activity may be a key mechanism of the compound.

  4. Spinal 5-HT1A, not the 5-HT1B or 5-HT3 receptors, mediates descending serotonergic inhibition for late-phase mechanical allodynia of carrageenan-induced peripheral inflammation.

    PubMed

    Kim, Joung Min; Jeong, Seong Wook; Yang, Jihoon; Lee, Seong Heon; Kim, Woon Mo; Jeong, Seongtae; Bae, Hong Beom; Yoon, Myung Ha; Choi, Jeong Il

    2015-07-23

    Previous electrophysiological studies demonstrated a limited role of 5-hydroxytryptamine 3 receptor (5-HT3R), but facilitatory role of 5-HT1AR and 5-HT1BR in spinal nociceptive processing of carrageenan-induced inflammatory pain. The release of spinal 5-HT was shown to peak in early-phase and return to baseline in late-phase of carrageenan inflammation. We examined the role of the descending serotonergic projections involving 5-HT1AR, 5-HT1BR, and 5-HT3R in mechanical allodynia of early- (first 4h) and late-phase (24h after) carrageenan-induced inflammation. Intrathecal administration of 5-HT produced a significant anti-allodynic effect in late-phase, but not in early-phase. Similarly, intrathecal 5-HT1AR agonist (8-OH-DPAT) attenuated the intensity of late-phase allodynia in a dose dependent fashion which was antagonized by 5-HT1AR antagonist (WAY-100635), but produced no effect on the early-phase allodynia. However, other agonists or antagonists of 5-HT1BR (CP-93129, SB-224289) and 5-HT3R (m-CPBG, ondansetron) did not produce any anti- or pro-allodynic effect in both early- and late- phase allodynia. These results suggest that spinal 5-HT1A, but not 5-HT1B or 5-HT3 receptors mediate descending serotonergic inhibition on nociceptive processing of late-phase mechanical allodynia in carrageenan-induced inflammation.

  5. L-type calcium channels contribute to 5-HT3-receptor-evoked CaMKIIα and ERK activation and induction of emesis in the least shrew (Cryptotis parva).

    PubMed

    Hutchinson, Tarun E; Zhong, Weixia; Chebolu, Seetha; Wilson, Sean M; Darmani, Nissar A

    2015-05-15

    Activation of serotonergic 5-HT3 receptors by its selective agonist 2-methyl serotonin (2-Me-5-HT) induces vomiting, which is sensitive to selective antagonists of both 5-HT3 receptors (palonosetron) and L-type calcium channels (LTCC) (amlodipine or nifedipine). Previously we demonstrated that 5-HT3 receptor activation also causes increases in a palonosetron-sensitive manner in: i) intracellular Ca(2+) concentration, ii) attachment of calmodulin (CaM) to 5-HT3 receptor, and iii) phosphorylation of Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) and extracellular-signal-regulated kinase 1/2 (ERK1/2). Here, we investigate the role of the short-acting LTCC blocker nifedipine on 2-Me-5-HT-evoked intracellular Ca(2+) increase and on downstream intracellular emetic signaling, which have been shown to be coupled with 2-Me-5-HT׳s emetic effects in the least shrew. Using the cell-permeant Ca(2+) indicator fluo-4 AM, here we present evidence for the contribution of Ca(2+) influx through LTCCs (sensitive to nifedipine) in 2-Me-5-HT (1µM) -evoked rise in cytosolic Ca(2+) levels in least shrew brainstem slices. Nifedipine pretreatment (10mg/kg, s.c.) also suppressed 2-Me-5-HT-evoked interaction of 5-HT3 receptors with CaM as well as phosphorylation of CaMKIIα and ERK1/2 in the least shrew brainstem, and 5-HT3 receptors -CaM colocalization in jejunum of the small intestine. In vitro exposure of isolated enterochromaffin cells of the small intestine to 2-Me-5-HT (1µM) caused CaMKIIα phosphorylation, which was also abrogated by nifedipine pretreatment (0.1µM). In addition, pretreatment with the CaMKII inhibitor KN62 (10mg/kg, i.p.) suppressed emesis and also the activation of CaMKIIα, and ERK in brainstem caused by 2-Me-5-HT (5mg/kg, i.p.). This study provides further mechanistic explanation for our published findings that nifedipine can dose-dependently protect shrews from 2-Me-5-HT-induced vomiting.

  6. Design, synthesis, and pharmacological evaluation of novel 2-(4-substituted piperazin-1-yl)1, 8 naphthyridine 3-carboxylic acids as 5-HT3 receptor antagonists for the management of depression.

    PubMed

    Dhar, Arghya K; Mahesh, Radhakrishnan; Jindal, Ankur; Devadoss, Thangaraj; Bhatt, Shvetank

    2014-12-01

    1, 8-naphthyridine-3-carboxylic acid analogs were synthesized and found to possess potential 5-HT3 receptor antagonism as well as antidepressant-like activity. Initially, 5-HT3 receptor antagonism of all the compounds was determined in the form of pA2 value against agonist 2-methyl 5-HT in longitudinal muscle-myenteric plexus preparation from guinea-pig ileum. Among all the compounds tested, compound 7a demonstrated most promising pA2 value of 7.6. Subsequently, all the compounds were evaluated for antidepressant activity using forced swim test and tail suspension test in mice. Compounds 7a, 7d, 7f, 7h, and 7i exhibited significant (p < 0.05) antidepressant-like activity as compound to vehicle-treated group. Importantly, none of the tested compound affected locomotor activity of mice at tested dose levels.

  7. Anti-depressant-like activity of a novel serotonin type-3 (5-HT3) receptor antagonist in rodent models of depression.

    PubMed

    Gupta, Deepali; Devadoss, Thangaraj; Bhatt, Shvetank; Gautam, Baldev; Jindal, Ankur; Pandey, Dilip; Mahesh, Radhakrishnan

    2011-08-01

    N-Cyclohexyl-3-methoxyquinoxalin-2-carboxamide (QCM-13), a novel 5-HT3 antagonist identified from a series of compounds with higher pA2 (7.6) and good log P (2.91) value was screened in rodent models of depression such as forced swim test (FST), tail suspension test (TST), interaction studies with standard anti-depressants and confirmatory studies such as reversal of parthenolide induced depression and reserpine induced hypothermia. In FST (2 and 4 mg/kg) and TST (2 and 4 mg/kg), QCM-13 significantly reduced the duration of immobility in mice without affecting the base line locomotion. QCM-13 (2 and 4 mg/kg) was also found to have significant interaction with standard anti-depressants (fluoxetine and bupropion in FST and TST respectively). Further, reversal of parthenolide induced depression in mice and reserpine induced hypothermia in rat models indicate the serotonergic influence of QCM-13 for anti-depressant potential.

  8. Effect of acute and chronic treatment with QCF-3 (4-benzylpiperazin-1-yl) (quinoxalin-2-yl) methanone, a novel 5-HT(3) receptor antagonist, in animal models of depression.

    PubMed

    Devadoss, Thangaraj; Pandey, Dilip K; Mahesh, Radhakrishnan; Yadav, Shushil K

    2010-01-01

    The serotonin type 3 (5-HT(3)) receptor is unique among the seven recognized serotonin receptor "families". The existence serotonin type 3 receptor (5-HT(3)) in neuro-anatomical regions stimulated the research interest for novel therapeutic targets such as anxiety, depression, nociception and cognitive function. In the current study, (4-benzylpiperazin-1-yl) (quinoxalin-2-yl) methanone (QCF-3), a novel 5-HT(3) receptor antagonist, with an optimal log P (the logarithm of the ratio of the concentrations of the un-ionized solute in the solvents is called log P) and significant pA2 value (is a negative logarithm of the molar concentration of antagonist required to reduce the effect of multiple dose agonist to that of single dose) was screened for its anti-depressant potential using rodent behavioral models of depression. Psycho-pharmacological investigations involved acute and chronic treatment (14 days) with QCF-3 and assessment of behavior during the forced swim test (FST) and tail suspension test (TST) in mice and olfactory bulbectomised rats. A dose response study in mice revealed an initial anti-depressant-like effect of QCF-3 (0.5-4 mg/kg, ip) in the FST and TST. Interaction studies showed that QCF-3 (1 and 2 mg/kg) significantly enhanced the antidepressant action of fluoxetine and bupropion in the FST and TST, respectively. QCF-3 (1 and 2 mg/kg) potentiated the 5-hydroxytryptophan (5-HTP) induced head twitches response in mice and reversed reserpine-induced hypothermia in rats. Further, OBX rats exhibited behavioral anomalies in the open field and hyper-emotionality tests that were attenuated by chronic QCF-3 treatment. In conclusion, this behavioral study describes an antidepressant-like effect of QCF-3 in rodent behavioral models of depression.

  9. Importance of M2-M3 loop in governing properties of genistein at the α7 nicotinic acetylcholine receptor inferred from α7/5-HT3A chimera.

    PubMed

    Grønlien, Jens Halvard; Ween, Hilde; Thorin-Hagene, Kirsten; Cassar, Steven; Li, Jinhe; Briggs, Clark A; Gopalakrishnan, Murali; Malysz, John

    2010-11-25

    Genistein and 5-hydroxyindole (5-HI) potentiate the α7 nicotinic acetylcholine receptor current by primarily increasing peak amplitude, a property of type I α7 positive allosteric modulation. In this study, the effects of these two compounds were investigated at two different α7/5-HT(3) chimeras (chimera 1, comprising of extracellular α7 N-terminus fused to the remainder of 5-HT(3A), and chimera 2 containing an additional α7 encoded M2-M3 loop), and wild-type α7 and 5-HT(3A) receptors. Agonist-evoked responses, examined by expression of the chimeras in Xenopus laevis oocytes or HEK-293 cells, revealed that currents decayed slower and compounds {rank order: N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride (PNU-282987)~2-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-5-phenyl-1,3,4-oxadiazole (NS6784)>acetylcholine>choline} were more potent in chimera 2 than chimera 1 or α7 receptors. In chimera 2, genistein and 5-HI potentiated agonist-evoked responses (EC(50): 4-5 μM for genistein and 300-500 μM for 5-HI) and at higher concentrations evoked current directly consistent with ago-allosteric modulation. At chimera 1 and 5-HT(3A) receptors, neither compound directly evoked any current and 5-HI, only at chimera 1, was able to potentiate agonist-evoked responses. Genistein and 5-HI did not inhibit the binding of the α7 agonist [(3)H](1S,4S)-2,2-dimethyl-5-(6-phenylpyridazin-3-yl)-5-aza-2-azoniabicyclo[2.2.1] heptane ([(3)H]A-585539) to rat brain or chimera 2. In summary, this study supports the role of the M2-M3 loop being critical for the positive allosteric effect of genistein, but not 5-HI, and in agonist-evoked response fine-tuning. The identification of distinct α7 receptor modulatory sites offers unique opportunities for developing CNS therapeutics and understanding its pharmacology.

  10. The N-methyl-D-aspartate receptor channel blockers memantine, MRZ 2/579 and other amino-alkyl-cyclohexanes antagonise 5-HT(3) receptor currents in cultured HEK-293 and N1E-115 cell systems in a non-competitive manner.

    PubMed

    Rammes, G; Rupprecht, R; Ferrari, U; Zieglgänsberger, W; Parsons, C G

    2001-06-22

    The type 3 serotonin (5-HT(3)) receptor is a ligand-gated ion channel. In concentration-clamp experiments, we investigated the effects of the uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists memantine, amantadine and MRZ 2/579 on 5-HT receptors stabley expressed in HEK-293 cells and on native 5-HT(3) receptors in the N1E-115 cell line. All agents antagonized serotonin (10 microM)-induced inward currents with similar potency to that reported for NMDA receptors. This effect was characterized by inducing a pronounced receptor desensitization, and was probably non-competitive and voltage-independent. In contrast, (S)-ketamine was much weaker as an antagonist of 5-HT(3) receptors than NMDA receptors. Similar effects on 5-HT(3) receptors have been reported previously for a variety of anti-depressants and it is possible that the clinical anti-depressant effects reported for both memantine and amantadine are mediated, at least in part, by antagonistic effects at 5-HT(3) receptors.

  11. 2-(4-substituted piperazin-1-yl)-1,8-naphthyridine-3-carboxylic acids: novel 5-HT3 receptor antagonists with anxiolytic-like activity in rodent behavioral models.

    PubMed

    Mahesh, Radhakrishnan; Dhar, Arghya Kusum; Jindal, Ankur; Bhatt, Shvetank

    2013-10-01

    The aim of this study was to investigate the anxiolytic potential of a series of novel carboxylic acid based 1,8 naphthyridines as 5-HT3 receptor antagonists. The pA2 values of all the compounds were determined against agonist 2-methyl-5-hydroxytryptamine in longitudinal muscle myenteric plexus preparations from guinea pig ileum. Compounds with higher pA2 values, particularly those greater than ondansetron, a standard 5-HT3 receptor antagonist, and optimal log P values were screened in mice by using behavioral tests such as a light-dark (L/D) aversion test, elevated plus maze (EPM) test, and an open field test (OFT). In the L/D test, compounds 7a, 7b, 7d, 7e, and 7i (2 mg/kg body mass, intraperitoneal) significantly (P < 0.05) increased the latency time to leave the light compartment, total time spent in the light compartment, and the number of transitions between the light and dark compartments. Compounds 7a, 7d, 7f, 7h, and 7i (2 mg/kg, i.p.) significantly (P < 0.05) increased the time spent in the open arms and the number of entries into the open arms in the EPM test. In addition, compounds 7a, 7d, 7e, 7f, and 7h (2 mg/kg, i.p.) significantly (P < 0.05) increased the ambulation scores and the frequency of rearing in the OFT.

  12. Evidence for the involvement of the serotonergic 5-HT2A/C and 5-HT3 receptors in the antidepressant-like effect caused by oral administration of bis selenide in mice.

    PubMed

    Jesse, Cristiano R; Wilhelm, Ethel A; Bortolatto, Cristiani F; Nogueira, Cristina W

    2010-03-17

    The present study investigated a possible antidepressant-like activity of bis selenide using two predictive tests for antidepressant effect on rodents: the forced swimming test (FST) and the tail suspension test (TST). Bis selenide (0.5-5 mg/kg, p.o.) decreased the immobility time in the mouse FST and TST. The anti-immobility effect of bis selenide (1 mg/kg, p.o.) in the TST was prevented by the pretreatment of mice with p-chlorophenylalanine methyl ester (PCPA; 100 mg/kg, i.p., an inhibitor of serotonin synthesis), ketanserin (1 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), and ondasentron (1 mg/kg, i.p., a 5-HT(3) receptor antagonist). Pretreatment of mice with prazosin (1 mg/kg, i.p., an alpha(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an alpha(2)-adrenoceptor antagonist), propranolol (2 mg/kg, i.p., a beta-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, s.c., a dopamine D(1) receptor antagonist), sulpiride (50 mg/kg, i.p., a dopamine D(2) receptor antagonist), or WAY 100635 (0.1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist) did not block the antidepressant-like effect of bis selenide (1 mg/kg, p.o.) in the TST. Administration of bis selenide (0.1 mg/kg, p.o.) and fluoxetine (1 mg/kg), at subeffective doses, produced an antidepressant-like effect in the TST. Bis selenide did not alter Na(+) K(+) ATPase, MAO-A and MAO-B activities in whole brains of mice. Bis selenide produced an antidepressant-like effect in the mouse TST and FST, which may be related to the serotonergic system (5-HT(2A/2C) and 5-HT(3) receptors).

  13. Dual role of serotonin in the acquisition and extinction of reward-driven learning: involvement of 5-HT1A, 5-HT2A and 5-HT3 receptors.

    PubMed

    Frick, Luciana Romina; Bernardez-Vidal, Micaela; Hocht, Christian; Zanutto, Bonifacio Silvano; Rapanelli, Maximiliano

    2015-01-15

    Serotonin (5-HT) has been proposed as a possible encoder of reward. Nevertheless, the role of this neurotransmitter in reward-based tasks is not well understood. Given that the major serotonergic circuit in the rat brain comprises the dorsal raphe nuclei and the medial prefrontal cortex (mPFC), and because the latter structure is involved in the control of complex behaviors and expresses 1A (5-HT1A), 2A (5-HT2A), and 3 (5-HT3) receptors, the aim was to study the role of 5-HT and of these receptors in the acquisition and extinction of a reward-dependent operant conditioning task. Long Evans rats were trained in an operant conditioning task while receiving fluoxetine (serotonin reuptake inhibitor, 10mg/kg), tianeptine (serotonin reuptake enhancer, 10mg/kg), buspirone (5-HT1A partial agonist, 10mg/kg), risperidone (5-HT2A antagonist, 1mg/kg), ondansetron (5-HT3 antagonist, 2mg/kg) or vehicle. Then, animals that acquired the operant conditioning without any treatment were trained to extinct the task in the presence of the pharmacological agents. Fluoxetine impaired acquisition but improved extinction. Tianeptine administration induced the opposite effects. Buspirone induced a mild deficit in acquisition and had no effects during the extinction phase. Risperidone administration resulted in learning deficits during the acquisition phase, although it promoted improved extinction. Ondansetron treatment showed a deleterious effect in the acquisition phase and an overall improvement in the extinction phase. These data showed a differential role of 5-HT in the acquisition and extinction of an operant conditioning task, suggesting that it may have a dual function in reward encoding.

  14. Analysis of free ACh and 5-HT in milk from four different species and their bioactivity on 5-HT(3) and nACh receptors.

    PubMed

    Gallegos-Perez, Jose-Luis; Limon, Agenor; Reyes-Ruiz, Jorge M; Alshanqeeti, Ali S; Aljohi, Mohammad A; Miledi, Ricardo

    2014-07-25

    Milk is one of the most beneficial aliments and is highly recommended in normal conditions; however, in certain disorders, like irritable bowel syndrome, cow milk and dairy products worsen the gastric symptoms and their use is not recommended. Among the most recognized milk-induced gatrointestinal symptoms are abdominal pain, nausea and vomiting, which are processes controlled by cholinergic and serotonergic transmission. Whether the presence of bioavailable ACh and 5-HT in milk may contribute to normal peristalsis, or to the developing of these symptoms, is not known. In this work we attempt to determine whether the content of free ACh and 5-HT is of physiological significance in milk from four different species: cow (bovine), goat, camel and human. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to identify and quantify free ACh and 5-HT in milk, and activation of the serotonergic and cholinergic ionotropic receptors was investigated using electrophysiological experiments. Our principal hypothesis was that milk from these four species had sufficient free ACh and 5-HT to activate their correspondent receptors expressed in a heterologous system. Our results showed a more complex picture, in which free ACh and 5-HT and their ability to activate cholinergic and serotonergic receptors are not correlated. This work is a first step to elucidate whether 5-HT and ACh, at the concentrations present in the milk, can be associated to a direct function in the GI.

  15. Sleep Deprivation-Induced Blood-Brain Barrier Breakdown and Brain Dysfunction are Exacerbated by Size-Related Exposure to Ag and Cu Nanoparticles. Neuroprotective Effects of a 5-HT3 Receptor Antagonist Ondansetron.

    PubMed

    Sharma, Aruna; Muresanu, Dafin F; Lafuente, José V; Patnaik, Ranjana; Tian, Z Ryan; Buzoianu, Anca D; Sharma, Hari S

    2015-10-01

    Military personnel are often subjected to sleep deprivation (SD) during combat operations. Since SD is a severe stress and alters neurochemical metabolism in the brain, a possibility exists that acute or long-term SD will influence blood-brain barrier (BBB) function and brain pathology. This hypothesis was examined in young adult rats (age 12 to 14 weeks) using an inverted flowerpot model. Rats were placed over an inverted flowerpot platform (6.5 cm diameter) in a water pool where the water levels are just 3 cm below the surface. In this model, animals can go to sleep for brief periods but cannot achieve deep sleep as they would fall into water and thus experience sleep interruption. These animals showed leakage of Evans blue in the cerebellum, hippocampus, caudate nucleus, parietal, temporal, occipital, cingulate cerebral cortices, and brain stem. The ventricular walls of the lateral and fourth ventricles were also stained blue, indicating disruption of the BBB and the blood-cerebrospinal fluid barrier (BCSFB). Breakdown of the BBB or the BCSFB fluid barrier was progressive in nature from 12 to 48 h but no apparent differences in BBB leakage were seen between 48 and 72 h of SD. Interestingly, rats treated with metal nanoparticles, e.g., Cu or Ag, showed profound exacerbation of BBB disruption by 1.5- to 4-fold, depending on the duration of SD. Measurement of plasma and brain serotonin showed a close correlation between BBB disruption and the amine level. Repeated treatment with the serotonin 5-HT3 receptor antagonist ondansetron (1 mg/kg, s.c.) 4 and 8 h after SD markedly reduced BBB disruption and brain pathology after 12 to 24 h SD but not following 48 or 72 h after SD. However, TiO2-nanowired ondansetron (1 mg/kg, s.c) in an identical manner induced neuroprotection in rats following 48 or 72 h SD. However, plasma and serotonin levels were not affected by ondansetron treatment. Taken together, our observations are the first to show that (i) SD could induce BBB

  16. Neuropharmacological evaluation of a novel 5-HT3 receptor antagonist (6g) on chronic unpredictable mild stress-induced changes in behavioural and brain oxidative stress parameters in mice

    PubMed Central

    Bhatt, Shvetank; Radhakrishnan, Mahesh; Jindal, Ankur; Devadoss, Thangaraj; Dhar, Arghya Kusum

    2014-01-01

    Aim: The aim of the study was to evaluate a novel 5 HT3 receptor antagonist (6g) on chronic stress induced changes in behavioural and brain oxidative stress parameter in mice. A complicated relationship exists among stressful stimuli, body's reaction to stress and the onset of clinical depression. Chronic unpredictable stressors can produce a situation similar to human depression, and such animal models can be used for the preclinical evaluation of antidepressants. Materials and Methods: In the present study, a novel and potential 5-HT3 receptor antagonist (4-benzylpiperazin-1-yl)(3-methoxyquinoxalin-2-yl) methanone (6g) with good Log P (3.08) value and pA2(7.5) values, synthesized in our laboratory was investigated to study the effects on chronic unpredictable mild stress (CUMS)-induced behavioural and biochemical alterations in mice. Mice were subjected to different stress paradigms daily for a period of 28 days to induce depressive-like behaviour. Results: The results showed that CUMS caused depression-like behaviour in mice, as indicated by the significant (P < 0.05) decrease in sucrose consumption and locomotor activity and increase in immobility the forced swim test. In addition, it was found that lipid peroxidation and nitrite levels were significantly (P < 0.05) increased, whereas glutathione levels, superoxide dismutase and catalase activities decreased in brain tissue of CUMS-treated mice. ‘6g’ (1 and 2 mg/kg, p.o., 21 days) and fluoxetine treatment (20 mg/kg, p.o., 21 days) significantly (P < 0.05) reversed the CUMS-induced behavioural (increased immobility period, reduced sucrose preference and decreased locomotor activity) and biochemical (increased lipid peroxidation; decreased glutathione levels, superoxide dismutase and catalase activities). However fluoxetine treatment (20 mg/kg, p.o., 21 days) significantly decreased the nitrite level in the brain while ‘6g’ (1 and 2 mg/kg, p.o., 21 days) did not show significant (P < 0.05) effect on the

  17. Inhibitory effects of ramosetron, a potent and selective 5-HT3-receptor antagonist, on conditioned fear stress-induced abnormal defecation and normal defecation in rats: comparative studies with antidiarrheal and spasmolytic agents.

    PubMed

    Hirata, Takuya; Funatsu, Toshiyuki; Keto, Yoshihiro; Akuzawa, Shinobu; Sasamata, Masao; Miyata, Keiji

    2008-02-01

    We examined the effect of ramosetron, a potent serotonin (5-HT)(3)-receptor antagonist for irritable bowel syndrome with diarrhea, on conditioned fear stress (CFS)-induced defecation and normal (non-stressed) defecation in rats and compared ramosetron with the antidiarrheal agent loperamide and the spasmolytic agents trimebutine and tiquizium. Ramosetron, loperamide, trimebutine, and tiquizium significantly inhibited CFS-induced defecation in a dose-dependent manner with ED(50) (95% confidence limit) values of 0.019 (0.01 - 0.028), 9.4 (4.0 - 22), 850 (520 - 2,400), and 300 (190 - 450) mg/kg, respectively. A significant effect of ramosetron on CFS-induced defecation appeared at 10 min after dosing and was sustained for 8 h. In contrast, loperamide, trimebutine, and tiquizium significantly inhibited CFS-induced defecation between 1 - 8, 1 - 4, and 1 - 8 h after administration, respectively. High doses of ramosetron did not affect normal defecation, whereas loperamide, trimebutine, and tiquizium significantly inhibited this process. In conclusion, ramosetron has potent, rapid-onset, and long-lasting inhibitory effects on CFS-induced defecation in rats, but does not influence normal defecation. The present findings indicate that ramosetron will be a useful therapeutic agent for irritable bowel syndrome with diarrhea, showing greater efficacy and safety than other antidiarrheal and spasmolytic agents.

  18. Stimulation of 5-HT1A, 5-HT1B, 5-HT2A/2C, 5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition: short- and long-term memory.

    PubMed

    Meneses, Alfredo

    2007-11-22

    In order to determine whether short- (STM) and long-term memory (LTM) function in serial or parallel manner, serotonin (5-hydroxtryptamine, 5-HT) receptor agonists were tested in autoshaping task. Results show that control-vehicle animals were modestly but significantly mastering the autoshaping task as illustrated by memory scores between STM and LTM. Thus, post-training administration of 8-OHDPAT (agonist for 5-HT(1A/7) receptors) only at 0.250 and 0.500 mg/kg impaired both STM and LTM. CGS12066 (agonist for 5-HT(1B)) produced biphasic affects, at 5.0 mg/kg impaired STM but at 1.0 and 10.0 mg/kg, respectively, improved or impaired LTM. DOI (agonist for 5-HT(2A/2C) receptors) dose-dependently impaired STM and, at 10.0 mg/kg only impaired LTM. Both, STM and LTM were impaired by either mCPP (mainly agonist for 5-HT(2C) receptors) or mesulergine (mainly antagonist for 5-HT(2C) receptors) lower dose. The 5-HT(3) agonist mCPBG at 1.0 impaired STM and its higher dose impaired both STM and LTM. RS67333 (partial agonist for 5-HT(4) receptors), at 5.0 and 10.0 mg/kg facilitated both STM and LTM. The higher dose of fluoxetine (a 5-HT uptake inhibitor) improved both STM and LTM. Using as head-pokes during CS as an indirect measure of food-intake showed that of 30 memory changes, 21 of these were unrelated to the former. While some STM or LTM impairments can be attributed to decrements in food-intake, but not memory changes (either increase or decreases) produced by 8-OHDPAT, CGS12066, RS67333 or fluoxetine. Except for animals treated with DOI, mCPBG or fluoxetine, other groups treated with 5-HT agonists 6 h following autoshaping training showed similar LTM and unmodified CS-head-pokes scores.

  19. Systemic injection of p-chloroamphetamine eliminates the effect of the 5-HT3 compounds on learning.

    PubMed

    Hong, E; Meneses, A

    1996-04-01

    There is evidence that 5-HT3 antagonists enhance learning and memory; however, their mechanisms of action are unknown. The aim of the present work was to investigate further the role of 5-HT3 receptors involved in learning, using the specific 5-HT3 agonist 1-(m-chlorophenyl)-biguanide (mCPBG) and the 5-HT3 antagonists ondansetron and tropisetron. p-Chloroamphetamine (PCA) pretreatment was used to determine whether pre- or postsynaptic 5-HT3 receptors are involved in learning. The posttraining intraperitoneal (IP) injection of each drug was analyzed on a lever-press response on autoshaping, which is an associative learning task. The results showed that mCPBG impaired retention of the conditioned response (CR), whereas tropisetron and ondansetron improved it. In other animals, PCA alone did not affect CR but was able to block the effects of the 5-HT3 ligands. The present data suggest that the actions of 5-HT3 compounds could be due to their interaction with presynaptic 5-HT3 receptors.

  20. Shuyu Capsules Relieve Premenstrual Syndrome Depression by Reducing 5-HT3AR and 5-HT3BR Expression in the Rat Brain

    PubMed Central

    Li, Fang; Feng, Jizhen; Gao, Dongmei; Wang, Jieqiong; Song, Chunhong; Wei, Sheng

    2016-01-01

    The effects of the Shuyu capsule on 5-HT3AR and 5-HT3BR expression in a rat model of premenstrual syndrome (PMS) depression and on 5-HT3AR and 5-HT3BR expression and hippocampal neuron 5-HT3 channel current were investigated, to elucidate its mechanism of action against PMS depression. PMS depression model rats were divided into depression and Shuyu- and fluoxetine-treated groups, which were compared to control rats for frontal lobe and hippocampal 5-HT3AR and 5-HT3BR expression and behavior. The depressed model rats displayed symptoms of depression, which were reduced in treated and normal control rats. Frontal lobe and hippocampal 5-HT3AR and 5-HT3BR levels were significantly higher in the model versus the control group and were significantly lower in the Shuyu group. As compared to control rats, the 5-HT3R channel current in the model group was significantly higher; the 5-HT3R channel current in hippocampal neurons treated with serum from Shuyu group rats was significantly lower than that in those treated with model group serum. Thus, PMS depression may be related to 5-HT3AR and 5-HT3BR expression and increased 5-HT3 channel current. Shuyu capsules rectified abnormal 5-HT3AR and 5-HT3BR expression and 5-HT3 channel current changes in a rat model; this finding may provide insight into treating PMS depression. PMID:27725889

  1. Structural, conformational, biochemical, and pharmacological study of some amides derived from 3,7-dimethyl-3,7-diazabicyclo [3.3.1] nonan-9-amine as potential 5-HT 3 receptor antagonists

    NASA Astrophysics Data System (ADS)

    Fernández, M. J.; Huertas, R. M.; Gálvez, E.; Orjales, A.; Berisa, A.; Labeaga, L.; Garcia, A. G.; Uceda, G.; Server-Carrió, J.; Martinez-Ripoll, M.

    1995-12-01

    A series of amides derived from 3,7-dimethyl-3,7-diazabicyclo [3.3.1] nonan-9-amine have been synthesized and examined by 1H and 13C NMR spectroscopy and the crystal structure of 9-(2,4,6-trichlorobenzamido)-3,7-dimethyl-3,7-diazabicyclo[3.3.1] nonane hydrochloride ( 4a·HCl) has been determined by X-ray diffraction. These compounds adopt an almost perfect chair-chair conformation with the NCH 3 groups in equatorial position. This conformation is nearly the same as that observed for compound 4a in the solid state. From binding studies of compounds 4a-c, compound 4b demonstrated the ability to efficiently displace [ 3H]GR65630 bound to bovine brain area postrema membranes to an extent comparable to MDL 72222. In the von Bezold-Jarish reflex, compound 4b showed significant results at a dose of 25 mg Kg -1. It is shown for the first time that a series of compounds with a bispidine skeleton linked through an amide moiety to several aromatic rings, shows 5-HT 3 antagonistic profiles.

  2. Spinal 5-HT3AR contributes to BmK I-induced inflammatory pain in rats.

    PubMed

    Fu, Jin; Jiao, Yun-Lu; Li, Zheng-Wei; Ji, Yong-Hua

    2015-06-25

    Subcutaneous injection of BmK I could be adopted to well establish a novel pain model. Moreover, 5-hydroxytryptamine (serotonin, 5-HT) receptor is involved in regulating animal pain-related behaviors. However, the underlying mechanism of 5-HT3R on BmK I-induced pain remains unclear. Animal behavioral testing, RT-PCR and Western blotting were used to yield the following results: first, intraplantar (i.pl.) injection of BmK I (10 μg) induced elevated mRNA and protein levels of 5-HT3AR in bilateral L4-L5 spinal cord; Second, intrathecal (i.t.) injection of ondansetron (a specific antagonist of 5-HT3AR) reduced spontaneous pain responses, attenuated unilateral thermal and bilateral mechanical hypersensitivity elicited by BmK I; Microglia could be activated by BmK I (i.pl.) in both sides of L4-L5 spinal cord, and this effect was reversed by intrathecal pre-treatment with 5-HT3AR antagonist. Meanwhile, the 5-HT3AR in L4-L5 spinal cord was almost co-localized with NeuN (a marker of nerve cell), but not co-expressed with Iba-1 (a marker of microglia). Finally, the expression level of CX3CL1 and CX3CR1 was reduced by intrathecal pre-treatment with ondansetron. Our results indicate that both 5-HT3AR signaling pathway and microglia are activated in the process of induction and maintenance of BmK I-induced pain nociception. Meanwhile, our results suggest that the neuronal 5-HT3AR may communicate with microglia indirectly via CX3CL1 which is involved in regulating the BmK I-induced hyperalgesia and sensitization.

  3. Protective effects of a novel 5-HT3 receptor antagonist, N-n-butyl-3-methoxy quinoxaline-2-carboxamide (6o) against chronic unpredictable mild stress-induced behavioral changes and biochemical alterations.

    PubMed

    Bhatt, Shvetank; Mahesh, Radhakrishnan; Jindal, Ankur; Devadoss, Thangaraj

    2014-07-01

    Stimulation of high oxidative stress in the brain is considered as an important factor for neurotoxicity towards the pathophysiology of chronic stress-induced depression disorder. In the present research, a potential 5-HT₃ receptor antagonist N-n-butyl-3-methoxy quinoxaline-2-carboxamide (6o) having good Log P (2.60) and pA₂ (7.7) values was examined for its effect on the behavioral and biochemical changes induced by the chronic unpredictable mild stress (CUMS) model. In the current investigation mice were introduced to different stress procedures daily for a period of 28 days to induce a depressive-like behavior. The results show that CUMS caused a depression-like behavior in mice, as indicated by the significant decrease in sucrose consumption and locomotor activity and increase in immobility in the forced swim test (FST). Moreover, it was found that oxidative stress markers such as lipid peroxide and nitrite levels were significantly increased, whereas, antioxidant enzymes such as glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels were decreased in the brain tissue of CUMS-subjected mice. "Compound 6o" (1 and 2 mg/kg, p.o.) and fluoxetine treatment (20 mg/kg, p.o.) for a period of 21 days altered the CUMS-induced behavioral (increased immobility period, reduced sucrose preference and decreased locomotor activity) and biochemical (increased lipid peroxide, increased brain nitrite; decreased GSH, SOD and CAT levels) alterations. Moreover normal mice treated with "compound 6o" (2 mg/kg, p.o.) showed a significant decrease in the duration of immobility in FST as compared to normal vehicle treated mice. In conclusion, "compound 6o" produced antidepressant-like effects in behavioral despair paradigm in chronically stressed mice by restoring antioxidant enzyme activity.

  4. Ondansetron, a selective 5-HT3 antagonist, antagonizes methamphetamine-induced anorexia in mice.

    PubMed

    Ginawi, O T; Al-Majed, A A; Al-Suwailem, A K

    2005-03-01

    Effects of some selective serotonergic (5-HT) antagonists on methamphetamine-induced anorexia were investigated in male mice. The least possible dose of methamphetamine alone that caused significant anorectic activity was 11 micromolkg(-1), i.p. (2 mgkg(-1)). Various doses of some selective serotonergic receptor antagonists were administered half an hour before the above mentioned dose of methamphetamine. Methiothepin potentiated, whereas NAN-190, methysergide, mianserin and ondansetron antagonized methamphetamine-induced anorectic activity. The least possible doses of these antagonists which modified methamphetamine-induced anorexia were as follows: methiothepin (1.1 micromolkg(-1), i.p.), NAN-190 (4.2 micromolkg(-1), i.p.), methysergide (2.1 micromolkg(-1), i.p.), mianserin (3.3 micromolkg(-1), i.p.) and ondansetron (0.003 micromolkg(-1), i.p.). The serotonergic antagonists at the above mentioned doses did not modify the food intake of animals not treated with methamphetamine, except for methiothepin, which produced a significant reduction, and mianserin, which produced a significant increase in food intake. The results of the present study indicated that the anorectic activity induced by methamphetamine is related to the interactions of methamphetamine with 5-HT receptor. Since a very small dose (0.003 micromolkg(-1)) of ondansetron (the 5-HT(3) antagonist), as compared with the other antagonists used in this study, antagonized the anorexia induced by methamphetamine, the 5-HT(3) receptor is likely to be the site for this interaction.

  5. Role of catecholamines and serotonin receptor subtypes in nefopam-induced antinociception.

    PubMed

    Girard, Philippe; Coppé, Marie-Claude; Verniers, Danielle; Pansart, Yannick; Gillardin, Jean-Marie

    2006-09-01

    The non-opiate analgesic nefopam has been shown to inhibit monoamines uptake, but little is known about receptor subtypes effectively involved in its analgesic effect. In vitro binding assays yielded the following measures of affinity (IC(50)): serotonergic 5-HT(2C) (1.4 microM), 5-HT(2A) (5.1 microM), 5-HT(3) (22.3 microM), 5-HT(1B) (41.7 microM), 5-HT(1A) (64.9 microM), adrenergic alpha(1) (15.0 microM) and dopaminergic D(1) (100 microM). Subcutaneous nefopam administration dose-dependently inhibited pain in acetic acid-induced writhing (1-30 mg kg(-1)) and formalin (1-10 mg kg(-1)) tests in the mouse. Pretreatments with adrenergic alpha(1) (prazosin) and alpha(2) (yohimbine), and serotonergic 5-HT(1B) (GR127935) receptor antagonists significantly increased the nefopam ED(50) in the writhing test. The serotonergic 5-HT(2C) (RS102221) and the dopaminergic D(2) (sulpiride) receptor antagonists inhibited nefopam antinociception in the formalin test. However, in both tests, nefopam analgesic activity was not modified by the following receptor antagonists: dopaminergic D(1) (SCH23390), serotonergic 5-HT(1A) (NAN-190, WAY100635), 5-HT(2A) (R96544, ketanserin), 5-HT(3) (tropisetron), and 5-HT(4) (SDZ205557). In conclusion, nefopam analgesic activity could be modulated by the adrenergic alpha(1) and alpha(2) receptors, the dopaminergic D(2) receptors, and the serotonergic 5-HT(1B) and 5-HT(2C) receptor subtypes.

  6. Design and validation of a homogeneous time-resolved fluorescence cell-based assay targeting the ligand-gated ion channel 5-HT3A.

    PubMed

    Blanc, Emilie; Wagner, Patrick; Plaisier, Fabrice; Schmitt, Martine; Durroux, Thierry; Bourguignon, Jean-Jacques; Partiseti, Michel; Dupuis, Elodie; Bihel, Frederic

    2015-09-01

    Ligand-gated ion channels (LGICs) are considered as attractive protein targets in the search for new therapeutic agents. Nowadays, this strategy involves the capability to screen large chemical libraries. We present a new Tag-lite ligand binding assay targeting LGICs on living cells. This technology combines the use of suicide enzyme tags fused to channels of interest with homogeneous time-resolved fluorescence (HTRF) as the detection readout. Using the 5-HT3 receptor as system model, we showed that the pharmacology of the HALO-5HT3 receptor was identical to that of the native receptor. After validation of the assay by using 5-HT3 agonists and antagonists of reference, a pilot screen enabled us to identify azelastine, a well-known histamine H1 antagonist, as a potent 5-HT3 antagonist. This interesting result was confirmed with electrophysiological experiments. The method described here is easy to implement and could be applicable for other LGICs, opening new ways for the screening of chemical libraries.

  7. The role of serotonin receptor subtypes in treating depression: a review of animal studies

    PubMed Central

    Carr, Gregory V.

    2012-01-01

    Rationale Serotonin reuptake inhibitors (SSRIs) are effective in treating depression. Given the existence of different families and subtypes of 5-HT receptors, multiple 5-HT receptors may be involved in the antidepressant-like behavioral effects of SSRIs. Objective Behavioral pharmacology studies investigating the role of 5-HT receptor subtypes in producing or blocking the effects of SSRIs were reviewed. Results Few animal behavior tests were available to support the original development of SSRIs. Since their development, a number of behavioral tests and models of depression have been developed that are sensitive to the effects of SSRIs, as well as to other types of antidepressant treatments. The rationale for the development and use of these tests is reviewed. Behavioral effects similar to those of SSRIs (antidepressant-like) have been produced by agonists at 5-HT1A, 5-HT1B, 5-HT2C, 5-HT4, and 5-HT6 receptors. Also, antagonists at 5-HT2A, 5-HT2C, 5-HT3, 5- HT6, and 5-HT7 receptors have been reported to produce antidepressant-like responses. Although it seems paradoxical that both agonists and antagonists at particular 5-HT receptors can produce antidepressant-like effects, they probably involve diverse neurochemical mechanisms. The behavioral effects of SSRIs and other antidepressants may also be augmented when 5-HT receptor agonists or antagonists are given in combination. Conclusions The involvement of 5-HT receptors in the antidepressant-like effects of SSRIs is complex and involves the orchestration of stimulation and blockade at different 5-HT receptor subtypes. Individual 5-HT receptors provide opportunities for the development of a newer generation of antidepressants that may be more beneficial and effective than SSRIs. PMID:21107537

  8. Differences in regional cerebral blood flow response to a 5HT3 antagonist in early- and late-onset cocaine-dependent subjects.

    PubMed

    Adinoff, Bryon; Devous, Michael D; Williams, Mark J; Harris, Thomas S; Best, Susan E; Dong, Hongyun; Zielinski, Tanya

    2014-03-01

    5-hydroxytryptamine 3 (5HT3) receptors are important modulators of mesostriatal dopaminergic transmission and have been implicated in the pathophysiology of cocaine reward, withdrawal and self-administration. In addition, the 5HT3 antagonist ondansetron is effective in treating early-onset, but not late-onset, alcohol-dependent subjects. To explore the role of 5HT3 receptor systems in cocaine addiction using functioning imaging, we administered ondansetron to 23 abstinent, treatment-seeking cocaine-addicted and 22 sex-, age- and race-matched healthy control participants. Differences between early- (first use before 20 years, n = 10) and late-onset (first use after 20 years, n = 10) cocaine-addicted subjects were also assessed. On two separate days, subjects were administered ondansetron (0.15 mg/kg intravenously over 15 minutes) or saline. Regional cerebral blood flow (rCBF) was measured following each infusion with single photon emission computed tomography. No significant rCBF differences between the cocaine-addicted and control participants were observed following ondansetron relative to saline. Early-onset subjects, however, showed increased (P < 0.001) right posterior parahippocampal rCBF following ondansetron. In contrast, late-onset subjects showed decreased rCBF following ondansetron in an overlapping region of the right parahippocampal/hippocampal gyrus. Early-onset subjects also displayed increased rCBF in the left anterior insula and subthalamic nucleus following ondansetron; late-onset subjects showed decreased rCBF in the right anterior insula. These findings suggest that the age of drug use onset is associated with serotonergic biosignatures in cocaine-addicted subjects. Further clarification of these alterations may guide targeted treatment with serotonergic medications similar to those successfully used in alcohol-dependent patients.

  9. Identification of angiotensin II receptor subtypes

    SciTech Connect

    Chiu, A.T.; Herblin, W.F.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L.; )

    1989-11-30

    We have demonstrated the existence of two distinct subtypes of the angiotensin II receptor in the rat adrenal gland using radioligand binding and tissue section autoradiography. The identification of the subtypes was made possible by the discovery of two structurally dissimilar, nonpeptide compounds, DuP 753 and EXP655, that show reciprocal selectivity for the two subtypes. In the rat adrenal cortex, DuP 753 inhibited 80% of the total AII binding with an IC50 value on the sensitive sites of 2 x 10(-8) M, while EXP655 displaced only 20%. In the rat adrenal medulla, EXP655 gave 90% inhibition of AII binding with an IC50 value of 3.0 x 10(-8) M, while DuP 753 was essentially inactive. The combination of the two compounds completely inhibited AII binding in both tissues.

  10. Pharmacologic specificity of alpha-2 adrenergic receptor subtypes

    SciTech Connect

    Petrash, A.; Bylund, D.

    1986-03-01

    The authors have defined alpha-2 adrenergic receptor subtypes in human and rat tissues using prazosin as a subtype selective drug. Prazosin has a lower affinity (250 nM) at alpha-2A receptor and a higher affinity (5 nM) at alpha-2B receptors. In order to determine if other adrenergic drugs are selective for one or the other subtypes, the authors performed (/sup 3/H)yohimbine inhibition experiments with various adrenergic drugs in tissues containing alpha-2A, alpha-2B or both subtypes. Oxymetazoline, WB4101 and yohimbine were found to be 80-, 20- and 10-fold more potent at alpha-2A receptors than at alpha-2B receptors. Phentolamine, adazoxan, (+)- and (-)-mianserin, clonidine, (+)-butaclamol, (-)- and (+)-norepinephrine, epinephrine, dopamine and thioridazine were found to have equal affinities for the two subtypes. These results further validate the subdivision of alpha-2 adrenergic receptors into alpha-2A and alpha-2B subtypes.

  11. Competitive interaction of agonists and antagonists with 5-HT3 recognition sites in membranes of neuroblastoma cells labelled with (/sup 3/H)ICS 205-930

    SciTech Connect

    Hoyer, D.; Neijt, H.C.; Karpf, A.

    1989-01-01

    (3H)ICS 205-930 labelled 5-HT3 recognition sites in membranes prepared from murine neuroblastoma N1E-115 cells. Binding was rapid, reversible, saturable and stereoselective to an apparently homogeneous population of sites. Kinetic studies revealed that agonists and antagonists produced a monophasic dissociation reaction of (3H)ICS 205-930 from its recognition sites. The dissociation rate constant of the radioligand was similar whether the dissociation was induced by an agonist or an antagonist. Competition studies carried out with agonists and antagonists also suggested the presence of a homogeneous population of (3H)ICS 205-930 recognition sites. Competition curves were best fit for a 1 site model. (3H)ICS 205-930 binding sites displayed the pharmacological profile of a 5-HT3 receptor. The interactions of agonists and antagonists with (3H)ICS 205-930 recognition sites were apparently competitive in nature, as demonstrated in kinetic and equilibrium experiments. In saturation experiments carried out with (3H)ICS 205-930 in the presence and the absence of unlabelled agonists and antagonists, apparent Bmax values were not reduced whereas apparent Kd values were increased in the presence of competing ligands. There was a good agreement between apparent pKB values calculated for the competing ligands in saturation experiments and pKd values calculated from competition experiments. The present data demonstrate that (3H)ICS 205-930 labels a homogeneous population of sites at which agonists and antagonists interact competitively.

  12. mRNA expression profile of serotonin receptor subtypes and distribution of serotonergic terminations in marmoset brain

    PubMed Central

    Shukla, Rammohan; Watakabe, Akiya; Yamamori, Tetsuo

    2014-01-01

    To better understand serotonin function in the primate brain, we examined the mRNA expression patterns of all the 13 members of the serotonin receptor (5HTR) family, by in situ hybridization (ISH) and the distribution of serotonergic terminations by serotonin transporter (SERT) protein immunohistochemical analysis. Ten of the 13 5HTRs showed significant mRNA expressions in the marmoset brain. Our study shows several new features of the organization of serotonergic systems in the marmoset brain. (1) The thalamus expressed only a limited number of receptor subtypes compared with the cortex, hippocampus, and other subcortical regions. (2) In the cortex, there are layer-selective and area-selective mRNA expressions of 5HTRs. (3) Highly localized mRNA expressions of 5HT1F and 5HT3A were observed. (4) There was a conspicuous overlap of the mRNA expressions of receptor subtypes known to have somatodendritic localization of receptor proteins with dense serotonergic terminations in the visual cortex, the central lateral (CL) nucleus of the thalamus, the presubiculum, and the medial mammillary nucleus of the hypothalamus. This suggests a high correlation between serotonin availability and receptor expression at these locations. (5) The 5HTRs show differences in mRNA expression pattern between the marmoset and mouse cortices whereas the patterns of both the species were much similar in the hippocampus. We discuss the possible roles of 5HTRs in the marmoset brain revealed by the analysis of their overall mRNA expression patterns. PMID:24904298

  13. Block of the delayed rectifier current (IK) by the 5-HT3 antagonists ondansetron and granisetron in feline ventricular myocytes.

    PubMed

    de Lorenzi, F G; Bridal, T R; Spinelli, W

    1994-10-01

    1. We investigated the effects of two 5-HT3 antagonists, ondansetron and granisetron, on the action potential duration (APD) and the delayed rectifier current (IK) of feline isolated ventricular myocytes. Whole-cell current and action potential recordings were performed at 37 degrees C with the patch clamp technique. 2. Ondansetron and granisetron blocked IK with a KD of 1.7 +/- 1.0 and 4.3 +/- 1.7 microM, respectively. At a higher concentration (30 microM), both drugs blocked the inward rectifier (IKl). 3. The block of IK was dependent on channel activation. Both drugs slowed the decay of IK tail currents and produced a crossover with the pre-drug current trace. These results are consistent with block and unblock from the open state of the channel. 4. Granisetron showed an intrinsic voltage-dependence as the block increased with depolarization. The equivalent voltage-dependency of block (delta) was 0.10 +/- 0.04, suggesting that granisetron blocks from the intracellular side at a binding site located 10% across the transmembrane electrical field. 5. Ondansetron (1 microM) and granisetron (3 microM) prolonged APD by about 30% at 0.5 Hz. The prolongation of APD by ondansetron was abolished at faster frequencies (3 Hz) showing reverse rate dependence. 6. In conclusion, the 5-HT3 antagonists, ondansetron and granisetron, are open state blockers of the ventricular delayed rectifier and show a clear class III action.

  14. Anxiolytic-like effects observed in rats exposed to the elevated zero-maze following treatment with 5-HT2/5-HT3/5-HT4 ligands

    PubMed Central

    Bell, Rob; Duke, Aaron A.; Gilmore, Paula E.; Page, Deaglan; Bègue, Laurent

    2014-01-01

    The present study examined the effects of administering selective 5-HT antagonists and agonists to rats tested in the elevated zero-maze (EZM) model of anxiety. The EZM paradigm has advantages over the elevated plus-maze (EPM) paradigm with respect to measuring anxiety, yet has been utilized less frequently. Three experiments were conducted each with a diazepam control (0.25, 0.5 and 0.75 mg/kg). In the first experiment, we administered the 5-HT2C antagonist RS 102221 (0.5, 1.0, and 2.0 mg/kg) and 5-HT2C agonist MK-212 (0.25, 0.5 and 0.75 mg/kg); in the second experiment, we administered the 5-HT3 antagonist Y-25130 (0.1, 1.0 and 3.0 mg/kg) and 5-HT3 agonist SR 57227A (0.1, 1.0 and 3.0 mg/kg), and in the third experiment, we administered the 5-HT4 antagonist RS 39604 (0.01, 0.1, 1.0 mg/kg) and 5-HT4 agonist RS 67333 (0.01, 0.1 and 0.5 mg/kg). The administration of 5-HT2/3/4 subtype antagonists all generated behavioral profiles indicative of anxiolytic-like effects in the EZM, which was apparent from examination of both traditional and ethological measures. While little effect was observed from 5-HT2 and 5-HT3 agonists, the 5-HT4 agonist RS 67333 was found to produce a paradoxical anxiolytic-like effect similar to that produced by the 5-HT4 antagonist RS 39604. We conclude by discussing the implications of these findings. PMID:24457553

  15. P2 receptor subtypes in the cardiovascular system.

    PubMed Central

    Kunapuli, S P; Daniel, J L

    1998-01-01

    Extracellular nucleotides have been implicated in a number of physiological functions. Nucleotides act on cell-surface receptors known as P2 receptors, of which several subtypes have been cloned. Both ATP and ADP are stored in platelets and are released upon platelet activation. Furthermore, nucleotides are also released from damaged or broken cells. Thus during vascular injury nucleotides play an important role in haemostasis through activation of platelets, modulation of vascular tone, recruitment of neutrophils and monocytes to the site of injury, and facilitation of adhesion of leucocytes to the endothelium. Nucleotides also moderate these functions by generating nitric oxide and prostaglandin I2 through activation of endothelial cells, and by activating different receptor subtypes on vascular smooth muscle cells. In the heart, P2 receptors regulate contractility through modulation of L-type Ca2+ channels, although the molecular mechanisms involved are still under investigation. Classical pharmacological studies have identified several P2 receptor subtypes in the cardiovascular system. Molecular pharmacological studies have clarified the nature of some of these receptors, but have complicated the picture with others. In platelets, the classical P2T receptor has now been resolved into three P2 receptor subtypes: the P2Y1, P2X1 and P2TAC receptors (the last of these, which is coupled to the inhibition of adenylate cyclase, is yet to be cloned). In peripheral blood leucocytes, endothelial cells, vascular smooth muscle cells and cardiomyocytes, the effects of classical P2X, P2Y and P2U receptors have been found to be mediated by more than one P2 receptor subtype. However, the exact functions of these multiple receptor subtypes remain to be understood, as P2-receptor-selective agonists and antagonists are still under development. PMID:9841859

  16. Characterization of the 5-HT receptor subtypes involved in the motor behaviours produced by intrathecal administration of 5-HT agonists in rats.

    PubMed Central

    Fone, K. C.; Robinson, A. J.; Marsden, C. A.

    1991-01-01

    1. The motor behavioural effects of intrathecal injections of 5-hydroxytryptamine (5-HT) and a variety of 5-HT receptor agonists were examined in adult Wistar rats to establish; (a) which 5-HT receptor subtype/s elicit each behaviour and (b) whether these receptors are located within the spinal cord. 2. Intrathecal injection of 5-methoxy-N,N'-dimethyltryptamine (5-MeODMT), (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI) or 2,5-dimethoxy-alpha,4-dimethylbenzene ethamine hydrochloride (DOM) produced dose-related back muscle contractions (BMC) and wet dog shakes (WDS) which were both markedly attenuated by intraperitoneal pretreatment with either ritanserin (1 mg kg-1), ketanserin (0.16 mg kg-1) or mianserin (0.6 mg kg-1) indicating the involvement of 5-HT2 receptors in both these motor behaviours. Both fluoxetine (1-20 mg kg-1, i.p.) and high doses of 5-HT (50 micrograms) following fluoxetine (5 mg kg-1, i.p.) also elicited BMC, further confirming the involvement of 5-HT in this behaviour. 3. Intrathecal 5-carboxamidotryptamine (5-CT) evoked a marked wet-dog shake response without producing any BMC. Intrathecal pretreatment with 8-hydroxy-2-(di-n-propylamino)tetraline (8-OH-DPAT) enhanced, while in contrast 2-methyl-5-HT pretreatment attenuated, 5-HT agonist-induced BMC without affecting WDS. These data suggest that the spinal 5-HT2 receptors mediating BMC are positively modulated by 5-HT1A but negatively influenced by 5-HT3 receptor activation and may be of a different subtype to the supra-spinal 5-HT2 receptors which elicit WDS.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 Figure 5 PMID:1832068

  17. Heterogeneity of muscarinic receptor subtypes in cerebral blood vessels

    SciTech Connect

    Garcia-Villalon, A.L.; Krause, D.N.; Ehlert, F.J.; Duckles, S.P. )

    1991-07-01

    The identity and distribution of muscarinic cholinergic receptor subtypes and associated signal transduction mechanisms was characterized for the cerebral circulation using correlated functional and biochemical investigations. Subtypes were distinguished by the relative affinities of a panel of muscarinic antagonists, pirenzepine, AF-DX 116 (11-2-((2-(diethylaminomethyl)- 1-piperidinyl)acetyl)-5,11-dihydro-6H- pyrido(2,3-b)(1,4)benzodiazepine-6-one), hexahydrosiladifenidol, methoctramine, 4-diphenylacetoxy-N-methylpiperidine methobromide, dicyclomine, para-fluoro-hexahydrosiladifenidol and atropine. Muscarinic receptors characterized by inhibition of (3H)quinuclidinylbenzilate binding in membranes of bovine pial arteries were of the M2 subtype. In contrast pharmacological analysis of (3H)-quinuclidinylbenzilate binding in bovine intracerebral microvessels suggests the presence of an M4 subtype. Receptors mediating endothelium-dependent vasodilation in rabbit pial arteries were of the M3 subtype, whereas muscarinic receptors stimulating endothelium-independent phosphoinositide hydrolysis in bovine pial arteries were of the M1 subtype. These findings suggest that characteristics of muscarinic receptors in cerebral blood vessels vary depending on the type of vessel, cellular location and function mediated.

  18. Myometrial angiotensin II receptor subtypes change during ovine pregnancy.

    PubMed Central

    Cox, B E; Ipson, M A; Shaul, P W; Kamm, K E; Rosenfeld, C R

    1993-01-01

    Although regulation of angiotensin II receptor (AT) binding in vascular and uterine smooth muscle is similar in nonpregnant animals, studies suggest it may differ during pregnancy. We, therefore, examined binding characteristics of myometrial AT receptors in nulliparous (n = 7), pregnant (n = 24, 110-139 d of gestation), and postpartum (n = 21, 5 to > or = 130 d) sheep and compared this to vascular receptor binding. We also determined if changes in myometrial binding reflect alterations in receptor subtype. By using plasma membrane preparations from myometrium and medial layer of abdominal aorta, we determined receptor density and affinity employing radioligand binding; myometrial AT receptor subtypes were assessed by inhibiting [125I]-ANG II binding with subtype-specific antagonists. Compared to nulliparous ewes, myometrial AT receptor density fell approximately 90% during pregnancy (1,486 +/- 167 vs. 130 +/- 16 fmol/mg protein) and returned to nulliparous values > or = 4 wk postpartum; vascular binding was unchanged. Nulliparous myometrium expressed predominantly AT2 receptors (AT1/AT2 congruent to 15%/85%), whereas AT1 receptors predominated during pregnancy (AT1/AT2 congruent to 80%/20%). By 5 d postpartum AT1/AT2 congruent to 40%/60%, and > 4 wk postpartum AT2 receptors again predominated (AT1/AT2 congruent to 15%/85%). In studies of ANG II-induced force generation, myometrium from pregnant ewes (n = 10) demonstrated dose-dependent increases in force (P < 0.001), which were inhibited with an AT1 receptor antagonist. Postpartum myometrial responses were less at doses > or = 10(-9) M (P < 0.05) and unaffected by AT2 receptor antagonists. Vascular and myometrial AT receptor binding are differentially regulated during ovine pregnancy, the latter primarily reflecting decreases in AT2 receptor expression. This is the first description of reversible changes in AT receptor subtype in adult mammals. PMID:8227339

  19. A pharmacological analysis of serotonergic receptors: effects of their activation of blockade in learning.

    PubMed

    Meneses, A; Hong, E

    1997-02-01

    1. The authors have tested several 5-HT selective agonists and antagonists (5-HT1A/1B, 5-HT2A/2B/2C, 5-HT3 or 5-HT4), an uptake inhibitor and 5-HT depletors in the autoshaping learning task. 2. The present work deals with the receptors whose stimulation increases or decreases learning. 3. Impaired consolidation of learning was observed after the presynaptic activation of 5-HT1B, 5-HT3 or 5-HT4 or the blockade of postsynaptic 5-HT2C/2B receptors. 4. In contrast, an improvement occurred after the presynaptic activation of 5-HT1A, 5-HT2C, and the blockade of presynaptic 5-HT2A, 5-HT2C and 5-HT3 receptors. 5. The blockade of postsynaptic 5-HT1A, 5-HT1B, 5-HT3 or 5-HT4 receptors and 5-HT inhibition of synthesis and its depletion did no alter learning by themselves. 6. The present data suggest that multiple pre- and postsynaptic serotonergic receptors are involved in the consolidation of learning. 7. Stimulation of most 5-HT receptors increases learning, however, some of 5-HT subtypes seem to limit the data storage. 8. Furthermore, the role of 5-HT receptors in learning seem to require an interaction with glutamatergic, GABAergic and cholinergic neurotransmission systems.

  20. Identifying the receptor subtype selectivity of retinoid X and retinoic acid receptors via quantum mechanics.

    PubMed

    Tsuji, Motonori; Shudo, Koichi; Kagechika, Hiroyuki

    2017-03-01

    Understanding and identifying the receptor subtype selectivity of a ligand is an important issue in the field of drug discovery. Using a combination of classical molecular mechanics and quantum mechanical calculations, this report assesses the receptor subtype selectivity for the human retinoid X receptor (hRXR) and retinoic acid receptor (hRAR) ligand-binding domains (LBDs) complexed with retinoid ligands. The calculated energies show good correlation with the experimentally reported binding affinities. The technique proposed here is a promising method as it reveals the origin of the receptor subtype selectivity of selective ligands.

  1. Peripheral and spinal 5-HT receptors participate in cholestatic itch and antinociception induced by bile duct ligation in rats

    PubMed Central

    Tian, Bin; Wang, Xue-Long; Huang, Ya; Chen, Li-Hua; Cheng, Ruo-Xiao; Zhou, Feng-Ming; Guo, Ran; Li, Jun-Cheng; Liu, Tong

    2016-01-01

    Although 5-HT has been implicated in cholestatic itch and antinociception, two common phenomena in patients with cholestatic disease, the roles of 5-HT receptor subtypes are unclear. Herein, we investigated the roles of 5-HT receptors in itch and antinociception associated with cholestasis, which was induced by common bile duct ligation (BDL) in rats. 5-HT-induced enhanced scratching and antinociception to mechanical and heat stimuli were demonstrated in BDL rats. 5-HT level in the skin and spinal cord was significantly increased in BDL rats. Quantitative RT-PCR analysis showed 5-HT1B, 5-HT1D, 5-HT2A, 5-HT3A, 5-HT5B, 5-HT6, and 5-HT7 were up-regulated in peripheral nervous system and 5-HT1A, 5-HT1F, 5-HT2B, and 5-HT3A were down-regulated in the spinal cord of BDL rats. Intradermal 5-HT2, 5-HT3, and 5-HT7 receptor agonists induced scratching in BDL rats, whereas 5-HT3 agonist did not induce scratching in sham rats. 5-HT1A, 5-HT2, 5-HT3, and 5-HT7 agonists or antagonists suppressed itch in BDL rats. 5-HT1A agonist attenuated, but 5-HT1A antagonist enhanced antinociception in BDL rats. 5-HT2 and 5-HT3 agonists or antagonists attenuated antinociception in BDL rats. Our data suggested peripheral and central 5-HT system dynamically participated in itch and antinociception under cholestasis condition and targeting 5-HT receptors may be an effective treatment for cholestatic itch. PMID:27824106

  2. 5HT3 Antagonists versus Dexamethasone in the Prevention of PONV in Patients Undergoing Laparoscopic Cholecystectomy: A Meta-Analysis of RCTs.

    PubMed

    Zhou, Chengmao; Zhu, Yu; Liu, Zhen; Ruan, Lin

    2016-01-01

    Background. 5HT3 antagonist, an antiemetic alternative to dexamethasone, is an effective drug for the prevention of postoperative nausea and vomiting (PONV). Methods. PubMed and The Cochrane Library (from inception to June 2016) were searched for relevant RCTs (randomized controlled trials). Results. Seven trials, totaling 682 patients, were included in this meta-analysis. This meta-analysis demonstrated that 5HT3 antagonist was as effective as dexamethasone in preventing PONV (RR, 1.12; 95% CI, [0.86, 1.45]; P = 0.40) within 24 hours of laparoscopic cholecystectomy, and no significant heterogeneity was observed among the studies (I(2) = 0%; P = 0.98). During the early postoperative period (0-6 h), 5HT3 antagonists were superior to dexamethasone in reducing POV (RR, 0.31; 95% CI, [0.11, 0.93]; P = 0.04), while, in other postoperative stages (6-12 h, 12-24 h, and 0-24 h), it was not more effective in the prevention of POV than dexamethasone. And no significant difference was found in the prevention of PON between 5HT3 antagonists and dexamethasone at different postoperative periods (0-6 h, 6-12 h, 12-24 h, and 0-24 h). Conclusions. As a result, it is advisable to encourage 5HT3 antagonists as an alternative to dexamethasone for the prevention of PONV in patients undergoing laparoscopic cholecystectomy.

  3. 5HT3 Antagonists versus Dexamethasone in the Prevention of PONV in Patients Undergoing Laparoscopic Cholecystectomy: A Meta-Analysis of RCTs

    PubMed Central

    Zhou, Chengmao; Zhu, Yu; Liu, Zhen

    2016-01-01

    Background. 5HT3 antagonist, an antiemetic alternative to dexamethasone, is an effective drug for the prevention of postoperative nausea and vomiting (PONV). Methods. PubMed and The Cochrane Library (from inception to June 2016) were searched for relevant RCTs (randomized controlled trials). Results. Seven trials, totaling 682 patients, were included in this meta-analysis. This meta-analysis demonstrated that 5HT3 antagonist was as effective as dexamethasone in preventing PONV (RR, 1.12; 95% CI, [0.86, 1.45]; P = 0.40) within 24 hours of laparoscopic cholecystectomy, and no significant heterogeneity was observed among the studies (I2 = 0%; P = 0.98). During the early postoperative period (0–6 h), 5HT3 antagonists were superior to dexamethasone in reducing POV (RR, 0.31; 95% CI, [0.11, 0.93]; P = 0.04), while, in other postoperative stages (6–12 h, 12–24 h, and 0–24 h), it was not more effective in the prevention of POV than dexamethasone. And no significant difference was found in the prevention of PON between 5HT3 antagonists and dexamethasone at different postoperative periods (0–6 h, 6–12 h, 12–24 h, and 0–24 h). Conclusions. As a result, it is advisable to encourage 5HT3 antagonists as an alternative to dexamethasone for the prevention of PONV in patients undergoing laparoscopic cholecystectomy. PMID:27891523

  4. Role of the 5HT3 Receptor in Alcohol Drinking and Aggression Using a Transgenic Mouse Model

    DTIC Science & Technology

    2006-09-01

    found for each N1 [F(1,35) = 56.0, P < 0.0005], N3, [F(1,35) = 33.85, P < 0.0005] and N5 6 generations [F(1,35) = 6.33, P < 0.017]. Interactions of...presence was also found for N1 [F(1,51) = 10.9, P < 0.003] and N5 [F(1,51) = 11.32, P < 0.001]. A background x transgene presence interaction was...0.0005] were found, as was an interaction between background and transgene presence [F(2,51) = 13.93, P < 0.0005]. For the measure of percent time spent

  5. Subtype Differences in Pre-Coupling of Muscarinic Acetylcholine Receptors

    PubMed Central

    Jakubík, Jan; Janíčková, Helena; Randáková, Alena; El-Fakahany, Esam E.; Doležal, Vladimír

    2011-01-01

    Based on the kinetics of interaction between a receptor and G-protein, a myriad of possibilities may result. Two extreme cases are represented by: 1/Collision coupling, where an agonist binds to the free receptor and then the agonist-receptor complex “collides” with the free G-protein. 2/Pre-coupling, where stable receptor/G-protein complexes exist in the absence of agonist. Pre-coupling plays an important role in the kinetics of signal transduction. Odd-numbered muscarinic acetylcholine receptors preferentially couple to Gq/11, while even-numbered receptors prefer coupling to Gi/o. We analyzed the coupling status of the various subtypes of muscarinic receptors with preferential and non-preferential G-proteins. The magnitude of receptor-G-protein coupling was determined by the proportion of receptors existing in the agonist high-affinity binding conformation. Antibodies directed against the C-terminus of the α-subunits of the individual G-proteins were used to interfere with receptor-G-protein coupling. Effects of mutations and expression level on receptor-G-protein coupling were also investigated. Tested agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. Antibodies directed against the C-terminus of the α-subunits of the preferential G-protein decreased the proportion of high-affinity sites, and mutations at the receptor-G-protein interface abolished agonist high-affinity binding. In contrast, mutations that prevent receptor activation had no effect. Expression level of preferential G-proteins had no effect on pre-coupling to non-preferential G-proteins. Our data show that all subtypes of muscarinic receptors pre-couple with their preferential classes of G-proteins, but only M1 and M3 receptors also pre-couple with non-preferential Gi/o G-proteins. Pre-coupling is not dependent on agonist efficacy nor on receptor activation. The ultimate mode of coupling is therefore dictated by a combination of the receptor subtype

  6. Multiple Estrogen Receptor Subtypes Influence Ingestive Behavior in Female Rodents

    PubMed Central

    Santollo, Jessica; Daniels, Derek

    2015-01-01

    Postmenopausal women are at an increased risk of obesity and cardiovascular-related diseases. This is attributable, at least in part, to loss of the ovarian hormone estradiol, which inhibits food and fluid intake in humans and laboratory animal models. Although the hypophagic and anti-dipsogenic effects of estradiol have been well documented for decades, the precise mechanisms underlying these effects are not fully understood. An obvious step toward addressing this open question is identifying which estrogen receptor subtypes are involved and what intracellular processes are involved. This question, however, is complicated not only by the variety of estrogen receptor subtypes that exist, but also because many subtypes have multiple locations of action (i.e. in the nucleus or in the plasma membrane). This review will highlight our current understanding of the roles specific estrogen receptor subtypes play in mediating estradiol’s anorexigenic and anti-dipsogenic effects along with highlighting the many open questions that remain. This review will also describe recent work being performed by our laboratory aimed at answering these open questions. PMID:26037634

  7. Multiple estrogen receptor subtypes influence ingestive behavior in female rodents.

    PubMed

    Santollo, Jessica; Daniels, Derek

    2015-12-01

    Postmenopausal women are at an increased risk of obesity and cardiovascular-related diseases. This is attributable, at least in part, to loss of the ovarian hormone estradiol, which inhibits food and fluid intake in humans and laboratory animal models. Although the hypophagic and anti-dipsogenic effects of estradiol have been well documented for decades, the precise mechanisms underlying these effects are not fully understood. An obvious step toward addressing this open question is identifying which estrogen receptor subtypes are involved and what intracellular processes are involved. This question, however, is complicated not only by the variety of estrogen receptor subtypes that exist, but also because many subtypes have multiple locations of action (i.e. in the nucleus or in the plasma membrane). This review will highlight our current understanding of the roles that specific estrogen receptor subtypes play in mediating estradiol's anorexigenic and anti-dipsogenic effects along with highlighting the many open questions that remain. This review will also describe recent work being performed by our laboratory aimed at answering these open questions.

  8. Isolation of rat genomic clones encoding subtypes of the alpha 2-adrenergic receptor. Identification of a unique receptor subtype.

    PubMed

    Lanier, S M; Downing, S; Duzic, E; Homcy, C J

    1991-06-05

    alpha 2-Adrenergic receptors (alpha 2-AR) exist as subtypes that are expressed in a tissue-specific manner and differ in 1) their ligand recognition properties, 2) their extent of receptor protein glycosylation, and possible 3) their mechanism of signal transduction. Genomic or cDNA clones encoding three receptor subtypes have been characterized; however, both functional and radioligand binding studies in rodents suggest the existence of a fourth receptor subtype. To isolate the rat genes encoding receptor subtypes we screened a rat genomic library with an oligonucleotide probe encompassing the third membrane span of the human C-4 alpha 2-AR. Two intronless rat genes were isolated that encode distinct receptor subtypes (RG10, RG20). RG10 and RG20 encode proteins of 458 and 450 amino acids, respectively, that are 56% homologous and possess the structural features expected of this class of membrane-bound receptors. RG10 identifies a mRNA species of approximately 2500 nucleotides that is found primarily in brain, whereas RG20 identifies a larger mRNA species (approximately 4000 nucleotides) that is found in several tissues including brain, kidney, and salivary gland. RG10 is 88% homologous to the human C-4 alpha 2-AR and exhibits similar binding properties ( [3H]rauwolscine KD = 0.7 +/- 0.3 nM) as determined following transient expression of the receptor in COS-1 cells. RG20 exhibits ligand binding properties distinct from the three receptor subtypes identified by molecular cloning. Saturation binding studies indicate an affinity constant of 15 +/- 1.2 nM for the alpha 2-AR antagonist [3H]rauwolscine, a value 6-20 times higher than that observed for the three cloned receptor subtypes. In competition binding studies the potency order of competing ligands for RG20 is phentolamine greater than idazoxan greater than yohimbine greater than rauwolscine greater than prazosin. Of the three previously cloned alpha 2-AR, RG20 is most closely related to the human C-10 alpha 2-AR

  9. Structural basis of kainate subtype glutamate receptor desensitization

    PubMed Central

    Meyerson, Joel R.; Chittori, Sagar; Merk, Alan; Rao, Prashant; Han, Tae Hee; Serpe, Mihaela; Mayer, Mark L.; Subramaniam, Sriram

    2016-01-01

    Glutamate receptors are ligand gated tetrameric ion channels that mediate synaptic transmission in the central nervous system. They are instrumental in vertebrate cognition and their dysfunction underlies diverse diseases1,2. In both the resting and desensitized states of AMPA and kainate subtype glutamate receptors the ion channels are closed while the ligand binding domain, which is physically coupled to the channel, adopts dramatically different conformations3–6. Without an atomic model for the desensitized state, it is not possible to address a central question in receptor gating: how the resting and desensitized receptor states both display closed ion channels, even though they have major differences in quaternary structure of the ligand binding domain. By determining the cryo-EM structure of the kainate receptor GluK2 subtype in its desensitized state at 3.8 Å resolution, we show that desensitization is characterized by establishment of a ring-like structure in the ligand binding domain layer of the receptor. Formation of this “desensitization ring” is mediated by staggered helix contacts between adjacent subunits, which leads to a pseudo four-fold symmetric arrangement of the ligand binding domains, illustrating subtle changes in symmetry that are at the heart of the gating mechanism. Disruption of the desensitization ring is likely the key switch that enables restoration of the receptor to its resting state, thereby completing the gating cycle. PMID:27580033

  10. Characterization of muscarinic receptor subtypes in human tissues

    SciTech Connect

    Giraldo, E.; Martos, F.; Gomez, A.; Garcia, A.; Vigano, M.A.; Ladinsky, H.; Sanchez de La Cuesta, F.

    1988-01-01

    The affinities of selective, pirenzepine and AF-DX 116, and classical, N-methylscopolamine and atropine, muscarinic cholinergic receptor antagonists were investigated in displacement binding experiments with (/sup 3/H)Pirenzepine and (/sup 3/H)N-methylscopolamine in membranes from human autoptic tissues (forebrain, cerebellum, atria, ventricle and submaxillary salivary glands). Affinity estimates of N-methylscopolamine and atropine indicated a non-selective profile. Pirenzepine showed differentiation between the M/sub 1/ neuronal receptor of the forebrain and the receptors in other tissues while AF-DX 116 clearly discriminated between muscarinic receptors of heart and glands. The results in human tissues confirm the previously described selectivity profiles of pirenzepine and AF-DX 116 in rat tissues. These findings thus reveal the presence also in man of three distinct muscarinic receptor subtypes: the neuronal M/sub 1/, the cardiac M/sub 2/ and the glandular M/sub 3/.

  11. Pharmacophore development for antagonists at α1 adrenergic receptor subtypes

    NASA Astrophysics Data System (ADS)

    Bremner, J. B.; Coban, B.; Griffith, R.

    1996-12-01

    Many receptors, including α1 adrenergic receptors, have a range of subtypes. This offers possibilities for the development of highly selective antagonists with potentially fewer detrimental effects. Antagonists developed for α1A receptors, for example, would have potential in the treatment of benign prostatic hyperplasia. As part of the molecular design process, structural features necessary for the selective affinity for α1A and α1B adrenergic receptors have been investigated. The molecular modelling software (particularly the Apex module) of Molecular Simulations, Inc. was used to develop pharmacophore models for these two subtypes. Low-energy conformations of a set of known antagonists were used as input, together with a classification of the receptor affinity data. The biophores proposed by the program were evaluated and pharmacophores were proposed. The pharmacophore models were validated by testing the fit of known antagonists, not included in the training set. The critical structural feature for selectivity between the α1A and α1B adrenergic receptor sites is the distance between the basic nitrogen atom and the centre of an aromatic ring system. This will be exploited in the design and synthesis of structurally new selective antagonists for these sites.

  12. Muscarinic receptor subtype selectivity of novel heterocyclic QNB analogues

    SciTech Connect

    Baumgold, J.; Cohen, V.I.; Paek, R.; Reba, R.C. )

    1991-01-01

    In an effort at synthesizing centrally-active subtype-selective antimuscarinic agents, the authors derivatized QNB (quinuclidinyl benzilate), a potent muscarinic antagonist, by replacing one of the phenyl groups with less lipophilic heterocyclic moieties. The displacement of ({sup 3}H)-N-methyl scopolamine binding by these novel compounds to membranes from cells expressing ml - m4 receptor subtypes was determined. Most of the novel 4-bromo-QNB analogues were potent and slightly selective for ml receptors. The 2-thienyl derivative was the most potent, exhibiting a 2-fold greater potency than BrQNB at ml receptors, and a 4-fold greater potency than BrQNB at ml receptors, and a 4-fold greater potency at m2 receptors. This compound was also considerably less lipophilic than BrQNB as determined from its retention time on C18 reverse phase HPLC. This compound may therefore be useful both for pharmacological studies and as a candidate for a radioiodinated SPECT imaging agent for ml muscarinic receptors in human brain.

  13. Muscarinic receptor subtypes in human and rat colon smooth muscle.

    PubMed

    Gómez, A; Martos, F; Bellido, I; Marquez, E; Garcia, A J; Pavia, J; Sanchez de la Cuesta, F

    1992-06-09

    Muscarinic receptor subtypes in human and rat colon smooth muscle homogenates were characterized with [3H]N-methylscopolamine ([3H]NMS) by ligand binding studies. [3H]NMS saturation experiments show the existence of a homogeneous population of non-interacting binding sites with similar affinity (KD values of 1.38 +/- 0.20 nM in human colon smooth muscle and 1.48 +/- 0.47 nM in rat colon smooth muscle) and with Hill slopes close to unity in both samples of tissue. However, a significant (P less than 0.01) increase in muscarinic receptor density (Bmax) is found in human colon (29.9 +/- 2.9 fmol/mg protein) compared with rat colon (17.2 +/- 1.5 fmol/mg protein). Inhibition of [3H]NMS binding by non-labelled compounds shows the following order in human colon: atropine greater than AF-DX 116 greater than pirenzepine. Whereas in rat colon the rank order obtained is atropine greater than pirenzepine greater than AF-DX 116. Atropine and pirenzepine bind to a homogeneous population of binding sites, although pirenzepine shows higher affinity to bind to the sites present in rat colon (Ki = 1.08 +/- 0.08 microM) than those in human colon (Ki = 1.74 +/- 0.02 microM) (P less than 0.05). Similarly, IC50 values obtained in AF-DX 116 competition experiments were significantly different (P less than 0.01) in human colon (IC50 = 1.69 +/- 0.37 microM) than in rat colon (IC50 = 3.78 +/- 0.75 microM). Unlike atropine and pirenzepine, the inhibition of [3H]NMS binding by AF-DX 116 did not yield a simple mass-action binding curve (nH less than 1, P less than 0.01) suggesting the presence of more than one subtype of muscarinic receptor in both species. Computer analysis of these curves with a two binding site model suggests the presence of two populations of receptor. The apparent Ki1 value for the high affinity binding site is 0.49 +/- 0.07 microM for human colon smooth muscle and 0.33 +/- 0.05 microM for rat colon smooth muscle. The apparent Ki2 for the low affinity binding site is 8

  14. Intracerebroventricular injection of trazodone produces 5-HT receptor subtype mediated anti-nociception at the supraspinal and spinal levels.

    PubMed

    Zhang, Rihui; Nagata, Tomonari; Hayashi, Takayuki; Miyata, Mariko; Kawakami, Yoriko

    2004-10-01

    Serotonin (5-HT) mediated anti-nociceptive effects induced by an anti-depressant, trazodone, are related to 5-HT(1A) receptor activities at the supraspinal level. 5-HT(3) receptor activation via the descending anti-nociceptive pathways may contribute to the trazodone mediated anti-nociception at the spinal level. Intracerebroventricular (i.c.v.) injection of trazodone dose-dependently impaired nociceptive responses in the formalin test in mice. Six and 15 microg of trazodone inhibited the early (P<0.05 or 0.01) and the late phases of the formalin test (P<0.05 or 0.01), while 3 microg had no effect. We examined the effects of a selective 5-HT(1A) receptor antagonist, WAY-100635, a single injection of which induced hyperalgesia (P<0.05), and blocked the anti-nociceptive effects of trazodone (P<0.01) when the two were simultaneously injected i.c.v. Intrathecal (i.t.) injection of a selective 5-HT(3) receptor antagonist, 3-tropanylindole-3-carboxylate hydrochloride, blocked the anti-nociceptive effects of i.c.v. trazodone (P<0.01), while WAY-100635 (i.t.) did not impair trazodone mediated anti-nociception. Trazodone mediated anti-nocicepton is related to serotonergic activity at both the supraspinal and the spinal level.

  15. Involvement of serotonin receptor subtypes in the antidepressant-like effect of beta receptor agonist Amibegron (SR 58611A): an experimental study.

    PubMed

    Tanyeri, Pelin; Buyukokuroglu, Mehmet Emin; Mutlu, Oguz; Ulak, Güner; Yıldız Akar, Füruzan; Komsuoglu Celikyurt, Ipek; Erden, Bekir Faruk

    2013-04-01

    New therapeutic strategies against depression, with less side effects and thus greater efficacy in larger proportion of depressed patients, are needed. Amibegron (SR58611A) is the first selective β3 adrenergic agent that has been shown to possess a profile of antidepressant activity in rodents. To investigate the involvement of serotonin receptors in the effects of amibegron, we used the serotonin 5HT1A receptor antagonist WAY-100635 (WAY) or serotonin 5HT2A-2C receptor antagonist ketanserin or serotonin 5HT3 receptor antagonist ondansetron in mice forced swimming test (FST). The locomotor activity was evaluated by measuring the total distance moved in the apparatus and the speed of the animals in the open field test. Imipramine (30mg/kg) significantly reduced immobility time compared to vehicle-treated group while amibegron (5 and 10mg/kg) dose dependently reduced immobility time in the FST. WAY(0.1mg/kg), ondansetron (1mg/kg), ketanserin(5mg/kg) had no effect on immobility time in naive mice while all of the drugs partially and significantly reversed amibegron (10mg/kg) induced decreasement in the immobility time in FST. None of the drugs alter locomotor activity in the open field test. The antidepressant-like effect of amibegron in the FST seems to be mediated by an interaction with serotonin 5-HT1A, serotonin 5-HT2A-2C and serotonin 5-HT3 receptors.

  16. Phytoestrogens from Psoralea corylifolia reveal estrogen receptor-subtype selectivity.

    PubMed

    Xin, D; Wang, H; Yang, J; Su, Y-F; Fan, G-W; Wang, Y-F; Zhu, Y; Gao, X-M

    2010-02-01

    The seed of Psoralea corylifolia L. (PCL), a well-known traditional Chinese medicine, has been applied as a tonic or an aphrodisiac agent and commonly used as a remedy for bone fracture, osteomalacia and osteoporosis in China. In our study, the estrogen receptor subtype-selective activities of the extracts and compounds derived from PCL were analyzed using the HeLa cell assay. The different fractions including petroleum ether, CH(2)Cl(2) and EtOAc fractions of the EtOH extract of PCL showed significant activity in activating either ERalpha or ERbeta whereas the n-BuOH fraction showed no estrogenic activity. Further chromatographic purification of the active fractions yielded seven compounds including the two coumarins isopsoralen and psoralen, the four flavonoids isobavachalcone, bavachin, corylifol A and neobavaisoflavone, and the meroterpene phenol, bakuchiol. In reporter gene assay, the two coumarins (10(-8)-10(-5)M) acted as ERalpha-selective agonists while the other compounds (10(-9)-10(-6)M) activated both ERalpha and ERbeta. The estrogenic activities of all compounds could be completely suppressed by the pure estrogen antagonist, ICI 182,780, suggesting that the compounds exert their activities through ER. Only psoralen and isopsoralen as ERalpha agonists promoted MCF-7 cell proliferation significantly. Although all the compounds have estrogenic activity, they may exert different biological effects. In conclusion, both ER subtype-selective and nonselective activities in compounds derived from PCL suggested that PCL could be a new source for selective estrogen-receptor modulators.

  17. Muscarinic M3 receptor subtype gene expression in the human heart.

    PubMed

    Hellgren, I; Mustafa, A; Riazi, M; Suliman, I; Sylvén, C; Adem, A

    2000-01-20

    The heart is an important target organ for cholinergic function. In this study, muscarinic receptor subtype(s) in the human heart were determined using reverse transcription-polymerase chain reaction. Our results demonstrated muscarinic receptor M2 and M3 subtype RNA in left/right atria/ventricles of donor hearts. Receptor autoradiography analysis using selective muscarinic ligands indicated an absence of M1 receptor subtype in the human heart. The level of muscarinic receptor binding in atria was two to three times greater than in ventricles. Our results suggest that muscarinic receptors in the human heart are of the M2 and M3 subtypes. This is the first report of M3 receptors in the human myocardium.

  18. Genotypic Prediction of Co-receptor Tropism of HIV-1 Subtypes A and C.

    PubMed

    Riemenschneider, Mona; Cashin, Kieran Y; Budeus, Bettina; Sierra, Saleta; Shirvani-Dastgerdi, Elham; Bayanolhagh, Saeed; Kaiser, Rolf; Gorry, Paul R; Heider, Dominik

    2016-04-29

    Antiretroviral treatment of Human Immunodeficiency Virus type-1 (HIV-1) infections with CCR5-antagonists requires the co-receptor usage prediction of viral strains. Currently available tools are mostly designed based on subtype B strains and thus are in general not applicable to non-B subtypes. However, HIV-1 infections caused by subtype B only account for approximately 11% of infections worldwide. We evaluated the performance of several sequence-based algorithms for co-receptor usage prediction employed on subtype A V3 sequences including circulating recombinant forms (CRFs) and subtype C strains. We further analysed sequence profiles of gp120 regions of subtype A, B and C to explore functional relationships to entry phenotypes. Our analyses clearly demonstrate that state-of-the-art algorithms are not useful for predicting co-receptor tropism of subtype A and its CRFs. Sequence profile analysis of gp120 revealed molecular variability in subtype A viruses. Especially, the V2 loop region could be associated with co-receptor tropism, which might indicate a unique pattern that determines co-receptor tropism in subtype A strains compared to subtype B and C strains. Thus, our study demonstrates that there is a need for the development of novel algorithms facilitating tropism prediction of HIV-1 subtype A to improve effective antiretroviral treatment in patients.

  19. Genotypic Prediction of Co-receptor Tropism of HIV-1 Subtypes A and C

    PubMed Central

    Riemenschneider, Mona; Cashin, Kieran Y.; Budeus, Bettina; Sierra, Saleta; Shirvani-Dastgerdi, Elham; Bayanolhagh, Saeed; Kaiser, Rolf; Gorry, Paul R.; Heider, Dominik

    2016-01-01

    Antiretroviral treatment of Human Immunodeficiency Virus type-1 (HIV-1) infections with CCR5-antagonists requires the co-receptor usage prediction of viral strains. Currently available tools are mostly designed based on subtype B strains and thus are in general not applicable to non-B subtypes. However, HIV-1 infections caused by subtype B only account for approximately 11% of infections worldwide. We evaluated the performance of several sequence-based algorithms for co-receptor usage prediction employed on subtype A V3 sequences including circulating recombinant forms (CRFs) and subtype C strains. We further analysed sequence profiles of gp120 regions of subtype A, B and C to explore functional relationships to entry phenotypes. Our analyses clearly demonstrate that state-of-the-art algorithms are not useful for predicting co-receptor tropism of subtype A and its CRFs. Sequence profile analysis of gp120 revealed molecular variability in subtype A viruses. Especially, the V2 loop region could be associated with co-receptor tropism, which might indicate a unique pattern that determines co-receptor tropism in subtype A strains compared to subtype B and C strains. Thus, our study demonstrates that there is a need for the development of novel algorithms facilitating tropism prediction of HIV-1 subtype A to improve effective antiretroviral treatment in patients. PMID:27126912

  20. Identification of two H3-histamine receptor subtypes

    SciTech Connect

    West, R.E. Jr.; Zweig, A.; Shih, N.Y.; Siegel, M.I.; Egan, R.W.; Clark, M.A. )

    1990-11-01

    The H3-histamine receptor provides feedback inhibition of histamine synthesis and release as well as inhibition of other neurotransmitter release. We have characterized this receptor by radioligand binding studies with the H3 agonist N alpha-(3H)methylhistamine ((3H)NAMHA). The results of (3H)NAMHA saturation binding and NAMHA inhibition of (3H)NAMHA binding were consistent with an apparently single class of receptors (KD = 0.37 nM, Bmax = 73 fmol/mg of protein) and competition assays with other agonists and the antagonists impromidine and dimaprit disclosed only a single class of sites. In contrast, inhibition of (3H)NAMHA binding by the specific high affinity H3 antagonist thioperamide revealed two classes of sites (KiA = 5 nM, BmaxA = 30 fmol/mg of protein; KiB = 68 nM, BmaxB = 48 fmol/mg of protein). Burimamide, another antagonist that, like thioperamide, contains a thiourea group, likewise discriminated between two classes of sites. In addition to differences between some antagonist potencies for the two receptors, there is a differential guanine nucleotide sensitivity of the two. The affinity of the H3A receptor for (3H) NAMHA was reduced less than 2-fold, whereas (3H)NAMHA binding to the H3B receptor was undetectable in the presence of guanosine 5'-O-(3-thiotriphosphate). The distinction between H3A and H3B receptor subtypes, the former a high affinity and the latter a low affinity thioperamide site, draws support from published in vitro data.

  1. Localization of nigrostriatal dopamine receptor subtypes and adenylate cyclase

    SciTech Connect

    Filloux, F.; Dawson, T.M.; Wamsley, J.K.

    1988-04-01

    Quantitative autoradiography using (/sup 3/H)-SCH 23390, (/sup 3/H)-sulpiride and (/sup 3/H)-forskolin was used to assess the effects of single and combined neurotoxin lesions of the nigrostriatal pathway in the rat brain on dopamine (DA) receptor subtypes and adenylate cyclase (AC), respectively. Ibotenic acid (IA) lesions of the caudate-putamen (CPu) resulted in near total loss of both (/sup 3/H)-SCH 23390 and of (/sup 3/H)-forskolin binding in the ipsilateral CPu and substantia nigra reticulata (SNR). (/sup 3/H)-sulpiride binding in the CPu was only partially removed by this same lesion, and nigral (/sup 3/H)-sulpiride binding was virtually unchanged. 6-Hydroxydopamine (6-OHDA) and IA lesions of the substantia nigra compacta (SNC) did not affect (/sup 3/H)-SCH 23390 or (/sup 3/H)-forskolin binding, but largely removed (/sup 3/H)-sulpiride binding in the SNC. A 6-OHDA lesion of the nigrostriatal pathway followed by an ipsilateral IA injection of the CPu failed to further reduce (/sup 3/H)-sulpiride binding in the CPu. These results demonstrate that postsynaptic DA receptors in the CPu are of both the D1 and D2 variety; however, a portion of D2 receptors in the CPu may be presynaptic on afferent nerve terminals to this structure. D1 receptors in the SNR are presynaptic on striatonigral terminals, whereas the D2 receptors of the SNC are autoreceptors on nigral DA neurons. The existence of presynaptic D2 receptors on nigrostriatal DA-ergic terminals could not be confirmed by this study. Co-localization of D1 receptors and AC occurs in both the CPu and SNR.

  2. Molecular and cellular analysis of human histamine receptor subtypes

    PubMed Central

    Seifert, Roland; Strasser, Andrea; Schneider, Erich H.; Neumann, Detlef; Dove, Stefan; Buschauer, Armin

    2013-01-01

    The human histamine receptors hH1R and hH2R constitute important drug targets, and hH3R and hH4R have substantial potential in this area. Considering the species-specificity of pharmacology of HxR orthologs, it is important to analyze hHxRs. Here,we summarize current knowledge of hHxRs endogenously expressed in human cells and hHxRs recombinantly expressed in mammalian and insect cells. We present the advantages and disadvantages of the various systems. We also discuss problems associated with the use of hHxR antibodies, an issue of general relevance for G-protein-coupled receptors (GPCRs). There is much greater overlap in activity of ‘selective’ ligands for other hHxRs than the cognate receptor subtype than generally appreciated. Studies with native and recombinant systems support the concept of ligand-specific receptor conformations, encompassing agonists and antagonists. It is emerging that for characterization of hHxR ligands, one cannot rely on a single test system and a single parameter. Rather, multiple systems and parameters have to be studied. Although such studies are time-consuming and expensive, ultimately, they will increase drug safety and efficacy. PMID:23254267

  3. Adrenergic receptor subtypes in the cerebral circulation of newborn piglets

    SciTech Connect

    Wagerle, L.C.; Delivoria-Papadopoulos, M.

    1987-06-01

    The purpose of this study was to identify the ..cap alpha..-adrenergic receptor subtype mediating cerebral vasoconstriction during sympathetic nerve stimulation in the newborn piglet. The effect of ..cap alpha../sub 1/- and ..cap alpha../sub 2/-antagonists prazosin and yohimbine on the cerebrovascular response to unilateral electrical stimulation (15 Hz, 15 V) of the superior cervical sympathetic trunk was studied in 25 newborn piglets. Regional cerebral blood flow was measured with tracer microspheres. Sympathetic stimulation decreased blood flow to the ipsilateral cerebrum hippocampus, choroid plexus, and masseter muscle. ..cap alpha../sub 1/-Adrenergic receptor blockade with prazosin inhibited the sympathetic vasoconstriction in the cerebrum, hippocampus, and masseter muscle and abolished it in the choroid plexus. ..cap alpha../sub s/-Adrenergic receptor blockade with yohimbine had no effect. Following the higher dose of yohimbine, however, blood flow to all brain regions was increased by approximately two-fold, possibly due to enhanced cerebral metabolism. These data demonstrate that vascular ..cap alpha../sub 1/-adrenergic receptors mediate vasoconstriction to neuroadrenergic stimulation in cerebral resistance vessels in the newborn piglet.

  4. Serotonin receptor modulators in the treatment of irritable bowel syndrome

    PubMed Central

    Fayyaz, Mohammad; Lackner, Jeffrey M

    2008-01-01

    The aim of this article is to review the pathophysiology and clinical role of serotonin receptor modulators used in the treatment of irritable bowel syndrome. Serotonin is an important monoamine neurotransmitter that plays a key role in the initiation of peristaltic and secretory refl exes, and in modulation of visceral sensations. Several serotonin receptor subtypes have been characterized, of which 5HT3, 5HT4, and 5HT1b are the most important for GI function. 5HT4 agonists (eg, tegaserod) potentiate peristalsis initiated by 5HT1 receptor stimulation. 5HT4 agonists are therefore useful in constipation predominant form of IBS and in chronic constipation. 5HT3 antagonists (Alosetron and Cilansetron) prevent the activation of 5HT3 receptors on extrinsic afferent neurons and can decrease the visceral pain associated with IBS. These agents also retard small intestinal and colonic transit, and are therefore useful in diarrhea-predominant IBS. Tegaserod has been demonstrated in several randomized, placebo controlled trials to relieve global IBS symptoms as well as individual symptoms of abdominal discomfort, number of bowel movements and stool consistency. Several randomized, controlled trials have shown that alosetron relieves pain, improves bowel function, and provides global symptom improvement in women with diarrhea-predominant irritable bowel syndrome. However, ischemic colitis and severe complications of constipation have been major concerns leading to voluntary withdrawal of Alosetron from the market followed by remarketing with a comprehensive risk management program. PMID:18728719

  5. Growing vascular endothelial cells express somatostatin subtype 2 receptors

    PubMed Central

    Watson, J C; Balster, D A; Gebhardt, B M; O'Dorisio, T M; O'Dorisio, M S; Espenan, G D; Drouant, G J; Woltering, E A

    2001-01-01

    We hypothesized that non-proliferating (quiescent) human vascular endothelial cells would not express somatostatin receptor subtype 2 (sst 2) and that this receptor would be expressed when the endothelial cells begin to grow. To test this hypothesis, placental veins were harvested from 6 human placentas and 2 mm vein disks were cultured in 0.3% fibrin gels. Morphometric analysis confirmed that 50–75% of cultured vein disks developed radial capillary growth within 15 days. Sst 2 gene expression was determined by reverse transcription-polymerase chain reaction (RT-PCR) analysis of the RNA from veins before culture and from tissue-matched vein disks that exhibited an angiogenic response. The sst 2 gene was expressed in the proliferating angiogenic sprouts of human vascular endothelium. The presence of sst 2 receptors on proliferating angiogenic vessels was confirmed by immunohistochemical staining and in vivo scintigraphy. These results suggest that sst 2 may be a unique target for antiangiogenic therapy with sst 2 preferring somatostatin analogues conjugated to radioisotopes or cytotoxic agents. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11461088

  6. Hypocretin (orexin) receptor subtypes differentially enhance acetylcholine release and activate g protein subtypes in rat pontine reticular formation.

    PubMed

    Bernard, René; Lydic, Ralph; Baghdoyan, Helen A

    2006-04-01

    The hypothalamic peptides hypocretin-1 (orexin A) and -2 (orexin B) promote wakefulness by mechanisms that are not well understood. Defects in hypocretinergic neurotransmission underlie the human sleep disorder narcolepsy. Hypocretins alter cell excitability via two receptor subtypes, hypocretin receptor subtype 1 (hcrt-r1) and hypocretin receptor subtype 2 (hcrt-r2). This study aimed to identify G protein subtypes activated by hypocretin in rat pontine reticular nucleus oral part (PnO) and the hypocretin receptor subtype modulating acetylcholine (ACh) release in the PnO. G protein activation was quantified using in vitro [(35)S]guanylyl-5'-O-(gamma-thio)triphosphate autoradiography. ACh release was measured using in vivo microdialysis and high-performance liquid chromatography. Hypocretin-1-stimulated G protein activation was significantly decreased by pertussis toxin, demonstrating that some hypocretin receptors in rat PnO activate inhibitory G proteins. Hypocretin-1-stimulated ACh release was not blocked by pertussis toxin, supporting the conclusion that the hypocretin receptors modulating ACh release in rat PnO activate stimulatory G proteins. Hypocretin-1 and -2 each caused a concentration-dependent increase in ACh release with similar potencies, indicating that hcrt-r2 modulates ACh release in PnO. Hypocretin-1 caused a significantly greater increase in ACh release than hypocretin-2, suggesting a role for hcrt-r1 in the modulation of PnO ACh release. Taken together, these data provide the first evidence that hypocretin receptors in rat PnO signal via inhibitory and stimulatory G proteins and that ACh release in rat PnO is modulated by hcrt-r2 and hcrt-r1. One mechanism by which hypocretin promotes arousal may be to increase ACh release in the pontine reticular formation.

  7. Characterization of muscarinic cholinergic receptor subtypes in human peripheral lung

    SciTech Connect

    Bloom, J.W.; Halonen, M.; Yamamura, H.I.

    1988-02-01

    The authors have characterized the muscarinic cholinergic receptor subtypes in human peripheral lung membranes using the selective muscarinic antagonist (/sup 3/H)pirenzepine ((/sup 3/H)PZ) and the classical muscarinic antagonist (/sup 3/H)(-)-quinuclidinyl benzilate. High-affinity binding with pharmacologic specificity was demonstrated for both radioligands. The high affinity Kd for (/sup 3/H)PZ binding determined from saturation isotherms was 5.6 nM, and the Kd for (/sup 3/H)(-)-quinuclidinyl benzilate binding was 14.3 pM. Approximately 62% of the total muscarinic binding sites in human peripheral lung bind (/sup 3/H)PZ with high affinity. There was no significant effect of the guanine nucleotide, guanyl-5'-yl imidodiphosphate, on the inhibition of (/sup 3/H)(-)-quinyclidinyl benzilate binding by the muscarinic agonist carbachol in peripheral lung membranes. If the muscarinic receptor with high affinity for PZ has an important role in bronchoconstriction, its characterization could result in the development of more selective bronchodilators.

  8. Adenosine receptors and diabetes: Focus on the A(2B) adenosine receptor subtype.

    PubMed

    Merighi, Stefania; Borea, Pier Andrea; Gessi, Stefania

    2015-09-01

    Over the last two decades, diabetes mellitus has become one of the most challenging health problems worldwide. Diabetes mellitus, classified as type I and II, is a pathology concerning blood glucose level in the body. The nucleoside adenosine has long been known to affect insulin secretion, glucose homeostasis and lipid metabolism, through activation of four G protein coupled adenosine receptors (ARs), named A1, A2A, A2B and A3. Currently, the novel promising subtype to develop new drugs for diabetes treatment is the A2BAR subtype. The use of selective agonists and antagonists for A2BAR subtype in various diabetic animal models allowed us to identify several effects of A2BAR signaling in cell metabolism. In particular, the focus of this review is to summarize the studies on purinergic signaling associated with diabetes through A2BARs modulation.

  9. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists

    PubMed Central

    Hiranita, Takato; Kopajtic, Theresa A.; Rice, Kenner C.; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H.; McCurdy, Christopher R.

    2016-01-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. PMID:27189970

  10. Influence of Polymorphisms in the HTR3A and HTR3B Genes on Experimental Pain and the Effect of the 5-HT3 Antagonist Granisetron

    PubMed Central

    Hedenberg-Magnusson, Britt; List, Thomas; Svensson, Peter; Schalling, Martin

    2016-01-01

    The aim of this study was to investigate experimentally if 5-HT3 single nucleotide polymorphisms (SNP) contribute to pain perception and efficacy of the 5-HT3-antagonist granisetron and sex differences. Sixty healthy participants were genotyped regarding HTR3A (rs1062613) and HTR3B (rs1176744). First, pain was induced by bilateral hypertonic saline injections (HS, 5.5%, 0.2 mL) into the masseter muscles. Thirty min later the masseter muscle on one side was pretreated with 0.5 mL granisetron (1 mg/mL) and on the other side with 0.5 mL placebo (isotonic saline) followed by another HS injection (0.2 mL). Pain intensity, pain duration, pain area and pressure pain thresholds (PPTs) were assessed after each injection. HS evoked moderate pain, with higher intensity in the women (P = 0.023), but had no effect on PPTs. None of the SNPs influenced any pain variable in general, but compared to men, the pain area was larger in women carrying the C/C (HTR3A) (P = 0.015) and pain intensity higher in women with the A/C alleles (HTR3B) (P = 0.019). Pre-treatment with granisetron reduced pain intensity, duration and area to a lesser degree in women (P < 0.05), but the SNPs did not in general influence the efficacy of granisetron. Women carrying the C/T & T/T (HTR3A) genotype had less reduction of pain intensity (P = 0.041) and area (P = 0.005), and women with the C/C genotype (HTR3B) had less reduction of pain intensity (P = 0.030), duration (P = 0.030) and area compared to men (P = 0.017). In conclusion, SNPs did not influence experimental muscle pain or the effect of granisetron on pain variables in general, but there were some sex differences in pain variables that seem to be influenced by genotypes. However, due to the small sample size further research is needed before any firm conclusions can be drawn. PMID:28002447

  11. Serotonin receptor 3A controls interneuron migration into the neocortex

    PubMed Central

    Murthy, Sahana; Niquille, Mathieu; Hurni, Nicolas; Limoni, Greta; Frazer, Sarah; Chameau, Pascal; van Hooft, Johannes A.; Vitalis, Tania; Dayer, Alexandre

    2014-01-01

    Neuronal excitability has been shown to control the migration and cortical integration of reelin-expressing cortical interneurons (INs) arising from the caudal ganglionic eminence (CGE), supporting the possibility that neurotransmitters could regulate this process. Here we show that the ionotropic serotonin receptor 3A (5-HT3AR) is specifically expressed in CGE-derived migrating interneurons and upregulated while they invade the developing cortex. Functional investigations using calcium imaging, electrophysiological recordings and migration assays indicate that CGE-derived INs increase their response to 5-HT3AR activation during the late phase of cortical plate invasion. Using genetic loss-of-function approaches and in vivo grafts, we further demonstrate that the 5-HT3AR is cell autonomously required for the migration and proper positioning of reelin-expressing CGE-derived INs in the neocortex. Our findings reveal a requirement for a serotonin receptor in controlling the migration and laminar positioning of a specific subtype of cortical IN. PMID:25409778

  12. Classification of Dopamine Receptor Genes in Vertebrates: Nine Subtypes in Osteichthyes.

    PubMed

    Yamamoto, Kei; Fontaine, Romain; Pasqualini, Catherine; Vernier, Philippe

    2015-01-01

    Dopamine neurotransmission regulates various brain functions, and its regulatory roles are mediated by two families of G protein-coupled receptors: the D1 and D2 receptor families. In mammals, the D1 family comprises two receptor subtypes (D1 and D5), while the D2 family comprises three receptor subtypes (D2, D3 and D4). Phylogenetic analyses of dopamine receptor genes strongly suggest that the common ancestor of Osteichthyes (bony jawed vertebrates) possessed four subtypes in the D1 family and five subtypes in the D2 family. Mammals have secondarily lost almost half of the ancestral dopamine receptor genes, whereas nonmammalian species kept many of them. Although the mammalian situation is an exception among Osteichthyes, the current classification and characterization of dopamine receptors are based on mammalian features, which have led to confusion in the identification of dopamine receptor subtypes in nonmammalian species. Here we begin by reviewing the history of the discovery of dopamine receptors in vertebrates. The recent genome sequencing of coelacanth, gar and elephant shark led to the proposal of a refined scenario of evolution of dopamine receptor genes. We also discuss a current problem of nomenclature of dopamine receptors. Following the official nomenclature of mammalian dopamine receptors from D1 to D5, we propose to name newly identified receptor subtypes from D6 to D9 in order to facilitate the use of an identical name for orthologous genes among different species. To promote a nomenclature change which allows distinguishing the two dopamine receptor families, a nomenclature consortium is needed. This comparative perspective is crucial to correctly interpret data obtained in animal studies on dopamine-related brain disorders, and more fundamentally, to understand the characteristics of dopamine neurotransmission in vertebrates.

  13. TARP subtypes differentially and dose-dependently control synaptic AMPA receptor gating.

    PubMed

    Milstein, Aaron D; Zhou, Wei; Karimzadegan, Siavash; Bredt, David S; Nicoll, Roger A

    2007-09-20

    A family of transmembrane AMPA receptor regulatory proteins (TARPs) profoundly affects the trafficking and gating of AMPA receptors (AMPARs). Although TARP subtypes are differentially expressed throughout the CNS, it is unclear whether this imparts functional diversity to AMPARs in distinct neuronal populations. Here, we examine the effects of each TARP subtype on the kinetics of AMPAR gating in heterologous cells and in neurons. We report a striking heterogeneity in the effects of TARP subtypes on AMPAR deactivation and desensitization, which we demonstrate controls the time course of synaptic transmission. In addition, we find that some TARP subtypes dramatically slow AMPAR activation kinetics. Synaptic AMPAR kinetics also depend on TARP expression level, suggesting a variable TARP/AMPAR stoichiometry. Analysis of quantal synaptic transmission in a TARP gamma-4 knockout (KO) mouse corroborates our expression data and demonstrates that TARP subtype-specific gating of AMPARs contributes to the kinetics of native AMPARs at central synapses.

  14. Thiocolchicoside inhibits the activity of various subtypes of recombinant GABA(A) receptors expressed in Xenopus laevis oocytes.

    PubMed

    Mascia, Maria Paola; Bachis, Elisabetta; Obili, Nicola; Maciocco, Elisabetta; Cocco, Giovanni Antonio; Sechi, Gian Pietro; Biggio, Giovanni

    2007-03-08

    Thiocolchicoside is a myorelaxant drug with anti-inflammatory and analgesic properties as well as pronounced convulsant activity. To characterize the mechanisms of action of this drug at the molecular level, we examined its effects on the function of various recombinant neurotransmitter receptors expressed in Xenopus oocytes. Electrophysiological recordings from recombinant human gamma-aminobutyric acid type A (GABA(A)) receptors consisting of alpha1beta1gamma2L, alpha1beta2gamma2L, or alpha2beta2gamma2L subunit combinations revealed that thiocolchicoside inhibited GABA-evoked Cl(-) currents with similar potencies (median inhibitory concentrations of 0.13 to 0.2 microM) and in a competitive manner. Consistent with previous observations, thiocolchicoside also inhibited the binding of GABA to rat cerebral cortical membranes. Thiocolchicoside inhibited the function of recombinant human strychnine-sensitive glycine receptors composed of the alpha1 subunit with a potency (median inhibitory concentration of 47 microM) lower than that apparent with recombinant GABA(A) receptors. It also inhibited the function of human nicotinic acetylcholine receptors composed of the alpha4 and beta2 subunits, but this effect was only partial and apparent at high concentrations. In contrast, thiocolchicoside had no effect on the function of 5-HT(3A) serotonin receptors. Our results thus provide molecular evidence that the epileptogenic activity of thiocolchicoside might be due to inhibition of the function of inhibitory receptors in the central nervous system, especially that of GABA(A) receptors.

  15. Differential alterations in muscarinic receptor subtypes in Alzheimer's disease: implications for cholinergic-based therapies.

    PubMed

    Flynn, D D; Ferrari-DiLeo, G; Levey, A I; Mash, D C

    1995-01-01

    Molecular subtypes of muscarinic receptors (m1-m5) are novel targets for cholinergic replacement therapies in Alzheimer's disease (AD). However, knowledge concerning the relative distribution, abundance and functional status of these receptors in human brain and AD is incomplete. Recent data from our laboratory have demonstrated a defect in the ability of the M1 receptor subtype to form a high affinity agonist-receptor-G protein complex in AD frontal cortex. This defect is manifested by decreased M1 receptor-stimulated GTPgammaS binding and GTPase activity and by a loss in receptor-stimulated phospholipase C activity. Normal levels of G proteins suggest that the aberrant receptor-G protein interaction may result from an altered form of the m1 receptor in AD. The combined use of radioligand binding and receptor-domain specific antibodies has permitted the re-examination of the status of muscarinic receptor subtypes in the human brain. In AD, normal levels of m1 receptor [3H]-pirenzepine binding contrasted with diminished m1 immunoreactivity, further suggesting that there is an altered form of the m1 receptor in the disease. Reduced m2 immunoreactivity was consistent with decreased numbers of m2 binding sites. Increased levels of m4 receptors were observed in both binding and immunoreactivity measurements. These findings suggest one possible explanation for the relative ineffectiveness of cholinergic replacement therapies used to date and suggest potential new directions for development of effective therapeutic strategies for AD.

  16. Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung

    SciTech Connect

    Mak, J.C.; Barnes, P.J. )

    1990-06-01

    Muscarinic receptor subtypes have been localized in human and guinea pig lung sections by an autoradiographic technique, using (3H)(-)quinuclidinyl benzilate (( 3H)QNB) and selective muscarinic antagonists. (3H)QNB was incubated with tissue sections for 90 min at 25 degrees C, and nonspecific binding was determined by incubating adjacent serial sections in the presence of 1 microM atropine. Binding to lung sections had the characterization expected for muscarinic receptors. Autoradiography revealed that muscarinic receptors were widely distributed in human lung, with dense labeling over submucosal glands and airway ganglia, and moderate labeling over nerves in intrapulmonary bronchi and of airway smooth muscle of large and small airways. In addition, alveolar walls were uniformly labeled. In guinea pig lung, labeling of airway smooth muscle was similar, but in contrast to human airways, epithelium was labeled but alveolar walls were not. The muscarinic receptors of human airway smooth muscle from large to small airways were entirely of the M3-subtype, whereas in guinea pig airway smooth muscle, the majority were the M3-subtype with a very small population of the M2-subtype present. In human bronchial submucosal glands, M1- and M3-subtypes appeared to coexist in the proportions of 36 and 64%, respectively. In human alveolar walls the muscarinic receptors were entirely of the M1-subtype, which is absent from the guinea pig lung. No M2-receptors were demonstrated in human lung. The localization of M1-receptors was confirmed by direct labeling with (3H)pirenzepine. With the exception of the alveolar walls in human lung, the localization of muscarinic receptor subtypes on structures in the lung is consistent with known functional studies.

  17. Ethanol Stabilizes the Open State of Single 5-Hydroxytryptamine3A(QDA) Receptors

    PubMed Central

    Feinberg-Zadek, Paula L.

    2010-01-01

    Ethanol enhancement of 5-hydroxytryptamine (5-HT)3A receptor-mediated responses may have important consequences in the intoxicating and addictive properties of ethanol. Although the exact mechanism is unknown, ethanol-mediated enhancement of 5-HT3 receptor current has been proposed to occur due to stabilization of the open-channel state. It has not been possible to directly measure the open state of the channel due to the extremely low single-channel conductance of 5-HT3A channels. Recently, three arginine residues within the large intracellular loop of the 5-HT3A subunit were substituted by their equivalent residues (glutamine, aspartate, and alanine) of the 5-HT3B subunit to produce a 5-HT3A(QDA) subunit that forms functional homomeric channels exhibiting a measurable single-channel conductance. Using whole-cell rapid-agonist application techniques and the cell-attached single-channel recording configuration, we examined human 5-HT3A(QDA) receptors expressed in human embryonic kidney 293 cells. The agonist sensitivity, macroscopic kinetics, and modulation by ethanol were similar between mutant and wild-type channels, suggesting the substitutions had not altered these channel structure-function properties. The open time histogram for single-channel events mediated by 5-HT3A(QDA) receptors in the presence of maximal 5-HT was best fit by three exponentials, but in the presence of ethanol a fourth open state was evident. In summary, the QDA substitution greatly enhanced single-channel conductance with little effect on 5-HT3A channel's kinetic properties and ethanol enhances agonist action on 5-HT3A receptors by inducing a new, long-lived open-channel state. Furthermore, the 5-HT3A(QDA) receptor appears to be suitable for pharmacological studies of 5-HT3A receptor modulation at a single-channel level. PMID:20200118

  18. GABA A/Bz receptor subtypes as targets for selective drugs.

    PubMed

    Da Settimo, F; Taliani, S; Trincavelli, M L; Montali, M; Martini, C

    2007-01-01

    The gamma-aminobutyric acid type A (GABA(A)) receptors are the major inhibitory neuronal receptors in the mammalian brain. Their activation by GABA opens the intrinsic ion channel, enabling chloride flux into the cell with subsequent hyperpolarization. Several GABA(A) receptor subunit isoforms have been cloned, the major isoform containing alpha, beta, and gamma subunits, and a regional heterogeneity associated with distinct physiological effects has been suggested. As a variety of allosteric ligands can modulate GABA-gated conductance changes through binding to distinct sites, the development of subtype-selective ligands may lead to the selective treatment of GABA system-associated pathology. In particular, the best characterized binding site is the benzodiazepine site (BzR), localized at the alpha/gamma subunit interface, in which the alpha subunit is the main determinant of BzR ligand action selectivity. The alpha1-containing BzR have been proposed to be responsible for the sedative action; the alpha2 and/or the alpha3 subtypes have been suggested to mediate the anxiolytic activity and the myorelaxation effects, and the alpha5 subtype has been associated with cognition processes. The discovery of alpha-selective subtype ligands may help in the specific treatment of anxiety, sleep disorders, convulsions and memory deficits with fewer side effects. Selectivity may be achieved by two approaches: selective affinity or selective efficacy. Selective affinity needs a compound to bind with a higher affinity to one receptor subtype compared with another, whereas subtype-selective efficacy relies on a compound binding to all subtypes, but having different efficacies at various subtypes. The status of BzR ligands, subdivided on the basis of their main chemical structural features, is reviewed in relation to structure-activity relationships which determine their affinity or efficacy selectivity for a certain BzR subtype.

  19. Angiotensin receptor subtype mediated physiologies and behaviors: New discoveries and clinical targets

    PubMed Central

    Wright, John W.; Yamamoto, Brent J.; Harding, Joseph W.

    2008-01-01

    The renin–angiotensin system (RAS) mediates several classic physiologies including body water and electrolyte homeostasis, blood pressure, cyclicity of reproductive hormones and sexual behaviors, and the regulation of pituitary gland hormones. These functions appear to be mediated by the angiotensin II (AngII)/AT1 receptor subtype system. More recently, the angiotensin IV (AngIV)/AT4 receptor subtype system has been implicated in cognitive processing, cerebroprotection, local blood flow, stress, anxiety and depression. There is accumulating evidence to suggest an inhibitory influence by AngII acting at the AT1 subtype, and a facilitory role by AngIV acting at the AT4 subtype, on neuronal firing rate, long-term potentiation, associative and spatial learning, and memory. This review initially describes the biochemical pathways that permit synthesis and degradation of active angiotensin peptides and three receptor subtypes (AT1, AT2 and AT4) thus far characterized. There is vigorous debate concerning the identity of the most recently discovered receptor subtype, AT4. Descriptions of classic and novel physiologies and behaviors controlled by the RAS are presented. This review concludes with a consideration of the emerging therapeutic applications suggested by these newly discovered functions of the RAS. PMID:18160199

  20. Positive somatostatin receptor scintigraphy correlates with the presence of somatostatin receptor subtype 2.

    PubMed Central

    John, M; Meyerhof, W; Richter, D; Waser, B; Schaer, J C; Scherübl, H; Boese-Landgraf, J; Neuhaus, P; Ziske, C; Mölling, K; Riecken, E O; Reubi, J C; Wiedenmann, B

    1996-01-01

    Somatostatin receptor scintigraphy (SRS) is positive in approximately 75% of all patients with neuroendocrine gastroenteropancreatic tumours. This study aimed to identify specific somatostatin receptor (sstr) subtypes, which are responsible for the in vivo binding of the widely used somatostatin analogue, octreotide in human neuroendocrine gastroenteropancreatic tumours. Twelve patients underwent SRS with radiolabelled octreotide. After surgical resection, tumour tissues were analysed in vitro for somatostatin and octreotide binding sites by autoradiography. In addition, for the first time, sstr subtype mRNA expression was examined by semiquantitative reverse transcription polymerase chain reaction (RT-PCR). Tumour tissues from all SRS positive patients were positive by autoradiography. Semiquantitative RT-PCR revealed most prominently sstr2 expression in scintigraphically positive tumours. Two SRS negative tumours contained in vitro octreotide binding sites as well as high levels of sstr1 and sstr2 mRNAs. Positive SRS is mainly due to sstr2. sstr1, 3, 4, and probably 5 are less important for in vivo octreotide binding. False negative scintigraphic results seem to be influenced by factors independent of the expression of specific sstr. Images Figure 4 PMID:8566856

  1. Muscarinic receptor-stimulated phosphatidylinositol turnover in the rat corpus striatum: role of muscarinic receptor subtypes and regulation

    SciTech Connect

    Monsma, F.J.

    1987-01-01

    The coupling between the M1 and M2 muscarinic receptor subtypes and phosphatidylinositol (Pl) hydrolysis has been examined in the corpus striatum and cerebral cortex of the rat brain. Receptor binding by the various muscarinic ligands was assessed using a preparation of intact brain cell aggregates, under similar conditions as the assay of Pl hydrolysis. In striatal cell aggregates, (/sup 3/H)-quinuclidinyl benzilate ((/sup 3/H)-QNB) bound to a single class of muscarinic sites with high affinity, inhibition of (/sup 3/H)-QNB binding by muscarinic receptor ligands which exhibit selectivity for subtypes of the muscarinic receptor revealed the presence of both the M1 and M2 subtypes in approximately equal numbers.

  2. Prognosis of metastatic breast cancer subtypes: the hormone receptor/HER2-positive subtype is associated with the most favorable outcome.

    PubMed

    Lobbezoo, Dorien J A; van Kampen, Roel J W; Voogd, Adri C; Dercksen, M Wouter; van den Berkmortel, Franchette; Smilde, Tineke J; van de Wouw, Agnes J; Peters, Frank P J; van Riel, Johanna M G H; Peters, Natascha A J B; de Boer, Maaike; Borm, George F; Tjan-Heijnen, Vivianne C G

    2013-10-01

    Contrary to the situation in early breast cancer, little is known about the prognostic relevance of the hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) in metastatic breast cancer. The objectives of this study were to present survival estimates and to determine the prognostic impact of breast cancer subtypes based on HR and HER2 status in a recent cohort of metastatic breast cancer patients, which is representative of current clinical practice. Patients diagnosed with metastatic breast cancer between 2007 and 2009 were included. Information regarding patient and tumor characteristics and treatment was collected. Patients were categorized in four subtypes based on the HR and HER2 status of the primary tumor: HR positive (+)/HER2 negative (-), HR+/HER2+, HR-/HER2+ and triple negative (TN). Survival was estimated using the Kaplan-Meier method. Cox proportional hazards model was used to determine the prognostic impact of breast cancer subtype, adjusted for possible confounders. Median follow-up was 21.8 months for the 815 metastatic breast cancer patients included; 66 % of patients had the HR+/HER2- subtype, 8 % the HR-/HER2+ subtype, 15 % the TN subtype and 11 % the HR+/HER2+ subtype. The longest survival was observed for the HR+/HER2+ subtype (median 34.4 months), compared to 24.8 months for the HR+/HER2- subtype, 19.8 months for the HR-/HER2+ subtype and 8.8 months for the TN subtype (P < 0.0001). In the multivariate analysis, subtype was an independent prognostic factor, as were initial site of metastases and metastatic-free interval. The HR+/HER2+ subtype was associated with the longest survival after diagnosis of distant metastases.

  3. Cloning of two adenosine receptor subtypes from mouse bone marrow-derived mast cells.

    PubMed

    Marquardt, D L; Walker, L L; Heinemann, S

    1994-05-01

    Adenosine potentiates the stimulated release of mast cell mediators. Pharmacologic studies suggest the presence of two adenosine receptors, one positively coupled to adenylate cyclase and the other coupled to phospholipase C activation. To identify mast cell adenosine receptor subtypes, cDNAs for the A1 and A2a adenosine receptors were obtained by screening a mouse brain cDNA library with the use of PCR-derived probes. Mouse bone marrow-derived mast cell cDNA libraries were constructed and screened with the use of A1 and A2a cDNA probes, which revealed the presence of A2a, but not A1, receptor clones. A putative A2b receptor was identified by using low stringency mast cell library screening. Northern blotting of mast cell poly(A)+ RNA with the use of receptor subtype probes labeled single mRNA bands of 2.4 kb and 1.8 kb for the A2a and A2b receptors, respectively. In situ cells. An A2a receptor-specific agonist failed to enhance mast cell mediator release, which suggests that the secretory process is modulated through the A2b and/or another receptor subtype. By using RNase protection assays, we found that mast cells that had been cultured in the presence of N-ethylcarboxamidoadenosine for 24 h exhibited a decrease in both A2a and A2b receptor RNA levels. Cells that had been cultured for 1 to 2 days in the presence of dexamethasone demonstrated increased amounts of A2a receptor mRNA, but no identifiable change in A2b receptor mRNA. Mast cells possess at least two adenosine receptor subtypes that may be differentially regulated.

  4. Systemic paracetamol-induced analgesic and antihyperalgesic effects through activation of descending serotonergic pathways involving spinal 5-HT₇ receptors.

    PubMed

    Dogrul, Ahmet; Seyrek, Melik; Akgul, Emin Ozgur; Cayci, Tuncer; Kahraman, Serdar; Bolay, Hayrunnisa

    2012-02-29

    Although some studies have shown the essential role of descending serotonergic pathways and spinal 5-HT(1A), 5-HT(2A), or 5-HT(3) receptors in the antinociceptive effects of paracetamol, other studies have presented conflicting results, and the particular subtype of spinal 5-HT receptors involved in paracetamol-induced analgesia remains to be clarified. Recent studies have demonstrated the importance of spinal 5-HT(7) receptors in descending serotonergic pain inhibitory pathways. In this study, we investigated the role of descending serotonergic pathways and spinal 5-HT(7) receptors compared with 5-HT(3) and 5-HT(2A) receptors in the antinociceptive and antihyperalgesic effects of paracetamol. Tail-flick, hot plate and plantar incision tests were used to determine nociception in male BALB/c mice. Lesion of serotonergic bulbospinal pathways was performed by intrathecal (i.th.) injection of 5,7-dihydroxytryptamine (5,7-DHT), and spinal 5-HT levels were measured by HPLC. To evaluate the particular subtypes of the spinal 5-HT receptors, the selective 5-HT(7), 5-HT(3) and 5-HT(2A) receptor antagonists SB 269970, ondansetron and ketanserin, respectively, were given i.th. after oral administration of paracetamol. Oral paracetamol (200, 400 and 600 mg/kg) elicits dose-dependent antinociceptive and antihyperalgesic effects. I.th. pretreatment with 5,7-DHT (50 μg) sharply reduced 5-HT levels in the spinal cord. Depletion of spinal 5-HT totally abolished the antinociceptive and antihyperalgesic effects of paracetamol. I.th. injection of SB 2669970 (10 μg) blocked the antinociceptive and antihyperalgesic effects of paracetamol, but ondansetron and ketanserin (10 μg) did not. Our findings suggest that systemic administration of paracetamol may activate descending serotonergic pathways and spinal 5-HT(7) receptors to produce a central antinociceptive and antihyperalgesic effects.

  5. Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex

    SciTech Connect

    Goldman-Rakic, P.S.; Lidow, M.S.; Gallager, D.W. )

    1990-07-01

    Quantitative in vitro autoradiography was used to determine and compare the areal and laminar distribution of the major dopaminergic, adrenergic, and serotonergic neurotransmitter receptors in 4 cytoarchitectonic regions of the prefrontal cortex in adult rhesus monkeys. The selective ligands, 3H-SCH-23390, 3H-raclopride, 3H-prazosin, and 3H-clonidine were used to label the D1 and D2 dopamine receptor subtypes and the alpha 1- and alpha 2-adrenergic receptors, respectively, while 125I-iodopindolol was used to detect beta-adrenergic receptors. The radioligands, 3H-5-hydroxytryptamine and 3H-ketanserin labeled, respectively, the 5-HT1 and 5-HT2 receptors. Densitometry was performed on all cortical layers and sublayers for each of the 7 ligands to allow quantitative as well as qualitative comparison among them in each cytoarchitectonic area. Although each monoamine receptor was distributed in a distinctive laminar-specific pattern that was remarkably similar from area to area, there was considerable overlap among the dopaminergic, adrenergic, and serotoninergic receptors, while subtypes of the same receptor class tended to have complementary laminar profiles and different concentrations. Thus, the D1 dopamine, the alpha 1- and alpha 2-adrenergic, and the 5-HT1 receptors were present in highest relative concentration in superficial layers I, II, and IIIa (the S group). In contrast, the beta 1- and beta 2-adrenergic subtypes and the 5-HT2 receptor had their highest concentrations in the intermediate layers, IIIb and IV (the I group), while the D2 receptor was distinguished by relatively high concentrations in the deep layer V compared to all other layers (the D class). Thus, clear laminar differences were observed in the D1 vs D2 dopaminergic, the alpha- vs beta-adrenergic, and the 5-HT1 vs 5-HT2 serotoninergic receptor subtypes in all 4 areas examined.

  6. Differential subcellular distribution of rat brain dopamine receptors and subtype-specific redistribution induced by cocaine

    PubMed Central

    Voulalas, Pamela J.; Schetz, John; Undieh, Ashiwel S.

    2011-01-01

    We investigated the subcellular distribution of dopamine D1, D2 and D5 receptor subtypes in rat frontal cortex, and examined whether psychostimulant-induced elevation of synaptic dopamine could alter the receptor distribution. Differential detergent solubilization and density gradient centrifugation were used to separate various subcellular fractions, followed by semi-quantitative determination of the relative abundance of specific receptor proteins in each fraction. D1 receptors were predominantly localized to detergent-resistant membranes, and a portion of these receptors also floated on sucrose gradients. These properties are characteristic of proteins found in lipid rafts and caveolae. D2 receptors exhibited variable distribution between cytoplasmic, detergent-soluble and detergent-resistant membrane fractions, yet were not present in buoyant membranes. Most D5 receptor immunoreactivity was distributed into the cytoplasmic fraction, failing to sediment at forces up to 300,000g, while the remainder was localized to detergent-soluble membranes in cortex. D5 receptors were undetectable in detergent-resistant fractions or raft-like subdomains. Following daily cocaine administration for seven days, a significant portion of D1 receptors translocated from detergent-resistant membranes to detergent-soluble membranes and the cytoplasmic fraction. The distributions of D5 and D2 receptor subtypes were not significantly altered by cocaine treatment. These data imply that D5 receptors are predominantly cytoplasmic, D2 receptors are diffusely distributed within the cell, whereas D1 receptors are mostly localized to lipid rafts within the rat frontal cortex. Dopamine receptor subtype localization is susceptible to modulation by pharmacological manipulations that elevate synaptic dopamine, however the functional implications of such drug-induced receptor warrant further investigation. PMID:21236347

  7. Anti-depressant like activity of N-n-butyl-3-methoxyquinoxaline-2-carboxamide (6o) a 5-HT3 receptor antagonist.

    PubMed

    Bhatt, Shvetank; Mahesh, Radhakrishnan; Devadoss, Thangaraj; Jindal, Ankur

    2013-06-01

    The compound 6o (at 0.5, 1 and 2 mg/kg, ip) with optimum log P and pA2 value, was subjected to forced swim test (FST) and tail suspension test (TST). The compound 6o significantly reduced the duration of immobility in mice without affecting the base line locomotion in actophotometer. Moreover, 6o (2 mg/kg, ip), potentiated the 5-hydroxytryptophan (5-HTP)-induced head twitch responses in mice and at 1 and 2 mg/kg, ip antagonized the reserpine-induced hypothermia (RIH) in rats. In interaction studies with various standard drugs/ligands using FST, 6o (1 and 2 mg/kg, ip) potentiated the anti-depressant effect fluoxetine (5 mg/kg, ip) and reversed the depressant effect of parthenolide (1 mg/kg, ip) by reducing the duration of immobility. Furthermore, 6o (1 and 2 mg/kg, ip) potentiated the effect of bupropion (10 mg/kg, ip) in TST. The behavioural anomalies of the olfactory bulbectomised (OBX) rats were augmented by chronic 6o (1 and 2 mg/kg) treatment as observed from the modified open field test (parameters: ambulation, rearing, fecal pellet). The results suggest that compound 6o exhibited anti-depressant like effect in rodent models of depression.

  8. Pirenzepine binding to membrane-bound, solubilized and purified muscarinic receptor subtypes

    SciTech Connect

    Baumgold, J.

    1986-05-01

    Muscarinic receptors were purified to near-homogeneity from bovine cortex, an area rich in the putative M1 subtype, and from bovine pons/medulla, an area rich in the putative M2 subtype. In both cases, the receptors were solubilized in digitonin and purified over an affinity column. Both the cortical and pons/medulla preparations yielded receptor proteins of 70,000 daltons. Pirenzepine binding was deduced from its competition with /sup 3/H-N-methyl scopolamine. The binding of pirenzepine to membrane-bound receptors from cortex was best described by a two site model, with approximately half the sites having a Ki of 6.4 x 10/sup -9/ M and the remaining sites having a Ki of 3.5 x 10/sup -7/ M. Membrane-bound receptors from pons/medulla bound pirenzepine according to a one-site model with a Ki of 1.1 x 10/sup -7/ M. After solubilization the two-site binding of cortical receptors became a one-site binding, Ki = 1.1 x 10/sup -7/M. This value was still five-fold lower than that of soluble receptors from pons/medulla. After purification however the affinity of pirenzepine for the pons/medulla receptor increased so that the two putative subtypes bound pirenzepine with approximately the same affinity. These findings suggest that the different pirenzepine binding characteristics used to define muscarinic receptor subtypes are not inherent in the receptor protein itself but may be due to coupling factors associated with the receptor.

  9. Binding and functional properties of hexocyclium and sila-hexocyclium derivatives to muscarinic receptor subtypes.

    PubMed Central

    Waelbroeck, M.; Camus, J.; Tastenoy, M.; Feifel, R.; Mutschler, E.; Tacke, R.; Strohmann, C.; Rafeiner, K.; Rodrigues de Miranda, J. F.; Lambrecht, G.

    1994-01-01

    1. We have compared the binding properties of several hexocyclium and sila-hexocyclium derivatives to muscarinic M1 receptors (in rat brain, human neuroblastoma (NB-OK 1) cells and calf superior cervical ganglia), rat heart M2 receptors, rat pancreas M3 receptors and M4 receptors in rat striatum, with their functional antimuscarinic properties in rabbit vas deferens (M1/M4-like), guinea-pig atria (M2), and guinea-pig ileum (M3) muscarinic receptors. 2. Sila-substitution (C/Si exchange) of hexocyclium (-->sila-hexocyclium) and demethyl-hexocyclium (-->demethyl-sila-hexocyclium) did not significantly affect their affinities for muscarinic receptors. By contrast, sila-substitution of o-methoxy-hexocyclium increased its affinity 2 to 3 fold for all the muscarinic receptor subtypes studied. 3. The p-fluoro- and p-chloro-derivatives of sila-hexocyclium had lower affinities than the parent compound at the four receptor subtypes, in binding and pharmacological studies. 4. In binding studies, o-methoxy-sila-hexocyclium (M1 = M4 > or = M3 > or = M2) had a much lower affinity than sila-hexocyclium for the four receptor subtypes, and discriminated the receptor subtypes more poorly than sila-hexocyclium (M1 = M3 > M4 > M2). This is in marked contrast with the very clear selectivity of o-methoxy-sila-hexocyclium for the prejunctional M1/M4-like heteroreceptors in rabbit vas deferens. 5. The tertiary amines demethyl-hexocyclium, demethyl-sila-hexocyclium and demethyl-o-methoxy-sila-hexocyclium had 10 to 30 fold lower affinities than the corresponding quaternary ammonium derivatives. PMID:8075869

  10. Expression of purinergic P2X receptor subtypes 1, 2, 3 and 7 in equine laminitis.

    PubMed

    Zamboulis, Danae E; Senior, Mark; Clegg, Peter D; Milner, Peter I

    2013-11-01

    Tissue sensitisation and chronic pain have been described in chronic-active laminitis in the horse, making treatment of such cases difficult. Purinergic P2X receptors are linked to chronic pain and inflammation. The aim of this study was to examine the expression of purinergic P2X receptor subtypes 1, 2, 3 and 7 in the hoof, palmar digital vessels and nerve, dorsal root ganglia and spinal cord in horses with chronic-active laminitis (n=5) compared to non-laminitic horses (n=5). Immunohistochemical analysis was performed on tissue sections using antibodies against P2X receptor subtypes 1-3 and 7. In horses with laminitis, there was a reduction in the thickness of the tunica media layer of the palmar digital vein as a proportion of the whole vessel diameter (0.48±0.05) compared to the non-laminitic group (0.57±0.04; P=0.02). P2X receptor subtype 3 was expressed in the smooth muscle layer (tunica media) of the palmar digital artery of horses with laminitis, but was absent in horses without laminitis. There was strong expression of P2X receptor subtype 7 in the proliferating, partially keratinised, epidermal cells of the secondary epidermal lamellae in the hooves of horses with laminitis, but no immunopositivity in horses without laminitis.

  11. Cockroach GABAB receptor subtypes: molecular characterization, pharmacological properties and tissue distribution.

    PubMed

    Blankenburg, S; Balfanz, S; Hayashi, Y; Shigenobu, S; Miura, T; Baumann, O; Baumann, A; Blenau, W

    2015-01-01

    γ-aminobutyric acid (GABA) is the predominant inhibitory neurotransmitter in the central nervous system (CNS). Its effects are mediated by either ionotropic GABAA receptors or metabotropic GABAB receptors. GABAB receptors regulate, via Gi/o G-proteins, ion channels, and adenylyl cyclases. In humans, GABAB receptor subtypes are involved in the etiology of neurologic and psychiatric disorders. In arthropods, however, these members of the G-protein-coupled receptor family are only inadequately characterized. Interestingly, physiological data have revealed important functions of GABAB receptors in the American cockroach, Periplaneta americana. We have cloned cDNAs coding for putative GABAB receptor subtypes 1 and 2 of P. americana (PeaGB1 and PeaGB2). When both receptor proteins are co-expressed in mammalian cells, activation of the receptor heteromer with GABA leads to a dose-dependent decrease in cAMP production. The pharmacological profile differs from that of mammalian and Drosophila GABAB receptors. Western blot analyses with polyclonal antibodies have revealed the expression of PeaGB1 and PeaGB2 in the CNS of the American cockroach. In addition to the widespread distribution in the brain, PeaGB1 is expressed in salivary glands and male accessory glands. Notably, PeaGB1-like immunoreactivity has been detected in the GABAergic salivary neuron 2, suggesting that GABAB receptors act as autoreceptors in this neuron.

  12. Effects of absolute configuration of IQNP on muscarinic receptor subtype selectivity in vitro and in vivo

    SciTech Connect

    McPherson, D.W.; Lambert, C.R.; Knapp, F.F.

    1994-05-01

    IQNP, a high affinity muscarinic ligand with high cerebral uptake and long retention, contains two chiral centers in addition to vinyl iodide sterochemistry. The various diastereomers, in which the 3-quinuclidinyl moiety has the R configuration, have been prepared and evaluated in vitro and in vivo. These data show that muscarinic receptor subtype selectivity is dramatically affected by the configuration of the acetate center and vinyl iodide. In vitro studies show that E-(R,R)-IQNP is 100 times more selective for ml than m2 subtype as compared to E-(R,S), which was confirmed by in vivo results. In contrast, in vivo, Z-(R,R) has high uptake in m2 rich tissues (heart and cerebellum). In vitro studies are being performed on the Z isomers. Blocking studies with subtype-specific ligands confirm these data which illustrate the importance of molecular configuration on receptor subtype selectivity. These combined studies demonstrate that these isomers of IQNP are good candidates for future studies of receptor subtypes.

  13. Skimmianine and related furoquinolines function as antagonists of 5-hydroxytryptamine receptors in animals.

    PubMed

    Cheng, J T; Chang, T K; Chen, I S

    1994-10-01

    1. Skimmianine, kokusaginine and confusameline, three furoquinolines extracted from the leaves of Evodia merrillii (Rutaceae), were investigated to characterize their selective effects on subtypes of 5-hydroxytryptamine (5-HT) receptors. 2. In the isolated membranes of rat cerebrocortex, using [3H]-5-HT and [3H]-ketanserin as radioligands, skimmianine and the two other furoquinolines displaced radioligand bindings in a concentration-dependent manner. Lower concentrations were required to affect [3H]-ketanserin binding than [3H]-5-HT binding in the order skimmianine > kokusaginine > confusameline. 3. Furoquinolines inhibited 5-HT-induced contraction mediated by 5-HT2 receptors in the presence of methiothepin in rat isolated aorta. Also, the combination of furoquinolines with ketanserin showed an additive antagonism. 4. These furoquinolines were inactive on the 5-carboxamidotryptamine-induced relaxation of guinea-pig ileum, a 5-HT1-mediated event. However, 5-HT-induced contraction via 5-HT2 receptors was reduced by these furoquinolines in a way similar to that in blood vessels. 5. The failure of these compounds to affect the 5-HT-induced Bezold-Jarisch-like reflex in anaesthetized rats, the major 5-HT3-mediated action, ruled out an action on 5-HT3 receptors. 6. The results obtained suggest that three furoquinoline alkaloids may act on 5-HT receptors in animals, more selectively to the 5-HT2 subtype, in the order of skimmianine > kokusaginine > confusameline.

  14. Identification of Receptor Ligands and Receptor Subtypes Using Antagonists in a Capillary Electrophoresis Single-Cell Biosensor Separation System

    NASA Astrophysics Data System (ADS)

    Fishman, Harvey A.; Orwar, Owe; Scheller, Richard H.; Zare, Richard N.

    1995-08-01

    A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3 acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B_2 receptor subtype (B_2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B_2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

  15. Cloning of a novel G protein-coupled receptor, SLT, a subtype of the melanin-concentrating hormone receptor.

    PubMed

    Mori, M; Harada, M; Terao, Y; Sugo, T; Watanabe, T; Shimomura, Y; Abe, M; Shintani, Y; Onda, H; Nishimura, O; Fujino, M

    2001-05-25

    A DNA fragment encoding an amino acid sequence possessing common features to the G protein-coupled receptor (GPCR) superfamily was found in the human genomic sequence, and from this information, the full-length cDNA of a novel GPCR, designated SLT, was cloned from the human hippocampus cDNA library. SLT showed the highest homology to the melanin-concentrating hormone (MCH) receptor, SLC-1 (31.5% identity), and to a lesser extent, to the somatostatin (SST) receptor subtypes. MCH exhibited agonistic behavior when applied to the SLT-expressing CHO cells at subnanomolar doses whereas more than 200 known peptides, including SST and cortistatin, did not. These results indicated that MCH is the cognate ligand of the SLT receptor and that this newly cloned GPCR is the second subtype of the MCH receptor. Quantitative polymerase chain reaction analysis of the SLT gene expression in human tissues showed that the SLT receptor is expressed mainly in brain areas including the cerebral cortex, amygdala, hippocampus, and corpus callosum, as well as in a limited number of peripheral tissues. The distribution of the SLT nearly overlapped that of SLC-1, suggesting that some of the neural functions of MCH may be mediated by both of these receptor subtypes.

  16. Serotonergic receptor mechanisms underlying antidepressant-like action in the progesterone withdrawal model of hormonally induced depression in rats.

    PubMed

    Li, Yan; Raaby, Kasper F; Sánchez, Connie; Gulinello, Maria

    2013-11-01

    Hormonally induced mood disorders such as premenstrual dysphoric disorder (PMDD) are characterized by a range of physical and affective symptoms including anxiety, irritability, anhedonia, social withdrawal and depression. Studies demonstrated rodent models of progesterone withdrawal (PWD) have a high level of constructive and descriptive validity to model hormonally-induced mood disorders in women. Here we evaluate the effects of several classes of antidepressants in PWD female Long-Evans rats using the forced swim test (FST) as a measure of antidepressant activity. The study included fluoxetine, duloxetine, amitriptyline and an investigational multimodal antidepressant, vortioxetine (5-HT(3), 5-HT(7) and 5-HT(1D) receptor antagonist; 5-HT(1B) receptor partial agonist; 5-HT(1A) receptor agonist; inhibitor of the serotonin transporter (SERT)). After 14 days of administration, amitriptyline and vortioxetine significantly reduced immobility in the FST whereas fluoxetine and duloxetine were ineffective. After 3 injections over 48 h, neither fluoxetine nor duloxetine reduced immobility, whereas amitriptyline and vortioxetine significantly reduced FST immobility during PWD. When administered acutely during PWD, the 5-HT(1A) receptor agonist, flesinoxan, significantly reduced immobility, whereas the 5-HT(1A) receptor antagonist, WAY-100635, increased immobility. The 5-HT(3) receptor antagonist, ondansetron, significantly reduced immobility, whereas the 5-HT(3) receptor agonist, SR-57227, increased immobility. The 5-HT(7) receptor antagonist, SB-269970, was inactive, although the 5-HT(7) receptor agonist, AS-19, significantly increased PWD-induced immobility. None of the compounds investigated (ondansetron, flesinoxan and SB-269970) improved the effect of fluoxetine during PWD. These data indicate that modulation of specific 5-HT receptor subtypes is critical for manipulating FST immobility in this model of hormone-induced depression.

  17. LTD expression is independent of glutamate receptor subtype.

    PubMed

    Granger, Adam J; Nicoll, Roger A

    2014-01-01

    Long-term depression (LTD) is a form of synaptic plasticity that plays a major role in the activity-dependent reshaping of synaptic transmission. LTD is expressed as a decrease in synaptic AMPA receptor number, though the exact mechanism remains controversial. Several lines of evidence have suggested necessary roles for both the GluA1 and GluA2 subunits, and specifically certain interactions with their cytoplasmic tails. However, it is unclear if either GluA1 or GluA2 are absolutely required for LTD. We tested this hypothesis using constitutive knock-outs and single-cell molecular replacement of AMPA receptor subunits in mouse hippocampus. We found that neither GluA1 or GluA2 are required for normal expression of LTD, and indeed a normal decrease in synaptic transmission was observed in cells in which all endogenous AMPA receptors have been replaced by kainate receptors. Thus, LTD does not require removal of specific AMPA receptor subunits, but likely involves a more general modification of the synapse and its ability to anchor a broad range of receptor proteins.

  18. A Molecular and Chemical Perspective in Defining Melatonin Receptor Subtype Selectivity

    PubMed Central

    Chan, King Hang; Wong, Yung Hou

    2013-01-01

    Melatonin is primarily synthesized and secreted by the pineal gland during darkness in a normal diurnal cycle. In addition to its intrinsic antioxidant property, the neurohormone has renowned regulatory roles in the control of circadian rhythm and exerts its physiological actions primarily by interacting with the G protein-coupled MT1 and MT2 transmembrane receptors. The two melatonin receptor subtypes display identical ligand binding characteristics and mediate a myriad of signaling pathways, including adenylyl cyclase inhibition, phospholipase C stimulation and the regulation of other effector molecules. Both MT1 and MT2 receptors are widely expressed in the central nervous system as well as many peripheral tissues, but each receptor subtype can be linked to specific functional responses at the target tissue. Given the broad therapeutic implications of melatonin receptors in chronobiology, immunomodulation, endocrine regulation, reproductive functions and cancer development, drug discovery and development programs have been directed at identifying chemical molecules that bind to the two melatonin receptor subtypes. However, all of the melatoninergics in the market act on both subtypes of melatonin receptors without significant selectivity. To facilitate the design and development of novel therapeutic agents, it is necessary to understand the intrinsic differences between MT1 and MT2 that determine ligand binding, functional efficacy, and signaling specificity. This review summarizes our current knowledge in differentiating MT1 and MT2 receptors and their signaling capacities. The use of homology modeling in the mapping of the ligand-binding pocket will be described. Identification of conserved and distinct residues will be tremendously useful in the design of highly selective ligands. PMID:24018885

  19. Cloning and expression of a cDNA for mouse prostaglandin E receptor EP2 subtype.

    PubMed

    Honda, A; Sugimoto, Y; Namba, T; Watabe, A; Irie, A; Negishi, M; Narumiya, S; Ichikawa, A

    1993-04-15

    A functional cDNA clone encoding mouse EP2 subtype of prostaglandin (PG) E receptor was isolated from a mouse cDNA library by cross-hybridization with the mouse EP3 subtype PGE receptor cDNA. The mouse EP2 receptor consists of 513 amino acid residues with putative seven-transmembrane domains. In contrast to EP3 receptor, this receptor possesses long third intracellular loop and carboxyl-terminal tail. [3H] PGE2 specifically bound to the membrane of mammalian COS cells transfected with the cDNA. The binding to the membrane was displaced with unlabeled PG in the order of PGE2 = PGE1 > iloprost > or = PGF2 alpha > or = PGD2. The binding was also inhibited by misoprostol, an EP2 and EP3 agonist, but not by sulprostone, an EP1 and EP3 agonist, and SC-19220, an EP1 antagonist. PGE2 markedly increased cAMP level in COS cells transfected with the cDNA. These results suggest that this receptor is EP2 subtype. Northern blot analysis demonstrated that the EP2 mRNA is widely expressed in various tissues, the abundant expression being observed in ileum, thymus, and mastocytoma P-815 cells.

  20. GABA(A) receptor subtype-selectivity of novel bicuculline derivatives.

    PubMed

    Ramerstorfer, Joachim; Foppa, Verena; Thiery, Hanna; Hermange, Philippe; Janody, Simon; Berger, Michael L; Dodd, Robert H; Sieghart, Werner

    2015-01-01

    GABA(A) receptors are the major inhibitory neurotransmitter receptors in the central nervous system and are targets of clinically important drugs modulating GABA induced ion flux by interacting with distinct allosteric binding sites. ROD 185 is a previously investigated structural analogue of the GABA site antagonist bicuculline, and a positive allosteric modulator acting via the benzodiazepine binding site. Here, we investigated 13 newly synthesized structural analogues of ROD 185 for their interaction with rat GABA(A) receptors. Using [(3)H]flunitrazepam binding assays, we identified four compounds exhibiting a higher affinity for the benzodiazepine binding site than ROD 185. Two electrode voltage clamp electrophysiology at recombinant GABA(A) receptors indicated that most of these compounds positively modulated GABA-induced currents at these receptors. Additionally, these experiments revealed that this compound class not only interacts with the benzodiazepine binding site at αβγ receptors but also with a novel, so far unidentified binding site present in αβ receptors. Compounds with a high affinity for the benzodiazepine binding site stimulated GABA-induced currents stronger at αβγ than at αβ receptors and preferred α3β3γ2 receptors. Compounds showing equal or smaller effects at αβγ compared to αβ receptors differentially interacted with various αβ or αβγ receptor subtypes. Surprisingly, five of these compounds interacting with αβ receptors showed a strong stimulation at α6β3γ2 receptors. The absence of any direct effects at GABA(A) receptors, as well as their potential selectivity for receptor subtypes not being addressed by benzodiazepines, make this compound class to a starting point for the development of drugs with a possible clinical importance.

  1. Muscarinic and dopaminergic receptor subtypes on striatal cholinergic interneurons

    SciTech Connect

    Dawson, V.L.; Dawson, T.M.; Wamsley, J.K. )

    1990-12-01

    Unilateral stereotaxic injection of small amounts of the cholinotoxin, AF64A, caused minimal nonselective tissue damage and resulted in a significant loss of the presynaptic cholinergic markers (3H)hemicholinium-3 (45% reduction) and choline acetyltransferase (27% reduction). No significant change from control was observed in tyrosine hydroxylase or tryptophan hydroxylase activity; presynaptic neuronal markers for dopamine- and serotonin-containing neurons, respectively. The AF64A lesion resulted in a significant reduction of dopamine D2 receptors as evidenced by a decrease in (3H)sulpiride binding (42% reduction) and decrease of muscarinic non-M1 receptors as shown by a reduction in (3H)QNB binding in the presence of 100 nM pirenzepine (36% reduction). Saturation studies revealed that the change in (3H)sulpiride and (3H)QNB binding was due to a change in Bmax not Kd. Intrastriatal injection of AF64A failed to alter dopamine D1 or muscarinic M1 receptors labeled with (3H)SCH23390 and (3H)pirenzepine, respectively. In addition, no change in (3H)forskolin-labeled adenylate cyclase was observed. These results demonstrate that a subpopulation of muscarinic receptors (non-M1) are presynaptic on cholinergic interneurons (hence, autoreceptors), and a subpopulation of dopamine D2 receptors are postsynaptic on cholinergic interneurons. Furthermore, dopamine D1, muscarinic M1 and (3H)forskolin-labeled adenylate cyclase are not localized to striatal cholinergic interneurons.

  2. Racial Variations in Prostate Cancer Molecular Subtypes and Androgen Receptor Signaling Reflect Anatomic Tumor Location

    PubMed Central

    Faisal, Farzana A.; Sundi, Debasish; Tosoian, Jeffrey J.; Choeurng, Voleak; Alshalalfa, Mohammed; Ross, Ashley E.; Klein, Eric; Den, Robert; Dicker, Adam; Erho, Nicholas; Davicioni, Elai; Lotan, Tamara L.; Schaeffer, Edward M.

    2016-01-01

    Prostate cancer (PCa) subtypes based on ETS gene expression have been described. Recent studies suggest there are racial differences in tumor location, with PCa located anteriorly more often among African-American (AA) compared to Caucasian-American (CA) men. In this retrospective analysis of a multi-institutional cohort treated by radical prostatectomy (179 CA, 121 AA), we evaluated associations among molecular subtype, race, anatomic tumor location, and androgen receptor (AR) signaling. Subtype (m-ERG+, m-ETS+, m-SPINK1+, or triple-negative) was determined using distribution-based outlier analysis. AR signaling was investigated using gene expression profiling of canonical AR targets. m-ERG+ was more common in CA than AA men (47% vs 22%, p < 0.001). AA men were more likely to be m-SPINK1+ (13% vs 7%; p = 0.069) and triple-negative (50% vs 37%; p = 0.043). Racial differences in molecular subtypes did not persist when tumors were analyzed by location, suggesting a biologically important relationship between tumor location and subtype. Accordingly, anterior tumor location was associated with higher Decipher scores and lower global AR signaling. Patient summary This study demonstrates associations among patient race, prostate cancer molecular subtypes, and tumor location. Location-specific differences in androgen regulation may further underlie these relationships. PMID:26443432

  3. Binding characteristics of the muscarinic receptor subtype in rabbit pancreas

    SciTech Connect

    van Zwam, A.J.; Willems, P.H.; Rodrigues de Miranda, J.F.; de Pont, J.J.; van Ginneken, C.A. )

    1990-01-01

    The muscarinic receptor in the rabbit pancreas was characterized with the use of the labeled ligand ({sup 3}H)-(-)-quinuclidinyl-benzylate (({sup 3}H)-(-)-QNB). Specific binding of ({sup 3}H)-(-)-QNB to pancreatic acini was found to be reversible and of high affinity, with an equilibrium dissociation constant (KD) of 68 pmol/l and a receptor density (RT) of 170 fmol/mg protein. Agonist binding behaviour was investigated by displacement of ({sup 3}H)-(-)-QNB binding by eight agonists like arecoline, arecadine-propargylester (APE) and carbachol, yielding only low affinity binding sites. The inhibition of ({sup 3}H)-(-)-QNB binding by the selective antagonists pirenzepine, hexahydrosiladifenidol (HHSiD) and (11-(2-(diethyl-amino)-methyl-1-piperidinyl)acetyl)-5,11-dihydro-6H-pyr ido (2,3-b) (1,4) benzodiazepin-6-one (AF-DX 116) confirmed the M3 nature of the rabbit pancreatic receptor.

  4. Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function.

    PubMed

    Eglen, R M

    2006-07-01

    1 Muscarinic M1-M5 receptors mediate the metabotropic actions of acetylcholine in the nervous system. A growing body of data indicate they also mediate autocrine functions of the molecule. The availability of novel and selective muscarinic agonists and antagonists, as well as in vivo gene disruption techniques, has clarified the roles of muscarinic receptors in mediating both functions of acetylcholine. 2 Selective M1 agonists or mixed M1 agonists/M2 antagonists may provide an approach to the treatment of cognitive disorders, while M3 antagonism, or mixed M2/M3 antagonists, are approved for the treatment of contractility disorders including overactive bladder and chronic obstructive pulmonary disease. Preclinical data suggest that selective agonism of the M4 receptor will provide novel anti-nociceptive agents, while therapeutics-based upon agonism or antagonism of the muscarinic M5 receptor have yet to be reported. 3 The autocrine functions of muscarinic receptors broadly fall into two areas - control of cell growth or proliferation and mediation of the release of chemical mediators from epithelial cells, ultimately causing muscle relaxation. The former particularly are involved in embryological development, oncogenesis, keratinocyte function and immune responsiveness. The latter regulate contractility of smooth muscle in the vasculature, airways and urinary bladder. 4 Most attention has focused on muscarinic M1 or M3 receptors which mediate lymphocyte immunoresponsiveness, cell migration and release of smooth muscle relaxant factors. Muscarinic M4 receptors are implicated in the regulation of keratinocyte adhesion and M2 receptors in stem cell proliferation and development. Little data are available concerning the M5 receptor, partly due to the difficulties in defining the subtype pharmacologically. 5 The autocrine functions of acetylcholine, like those in the nervous system, involve activation of several muscarinic receptor subtypes. Consequently, the role of

  5. Evaluation of 1,2,5-thiadiazoles as modulators of M₁/M₅ muscarinic receptor subtypes.

    PubMed

    Maheshwari, Aditya; Rao, P S S; Messer, William S

    2014-03-15

    Studies have demonstrated the presence of allosteric binding sites on each of the muscarinic acetylcholine receptor (mAChR) subtypes. Since most drugs targeting muscarinic receptors bind to the highly conserved orthosteric binding site, they fail to achieve appreciable subtype selectivity. Targeting non-conserved allosteric sites may provide a new way of enhancing selectivity for individual subtypes of muscarinic receptor. Tetra(ethyleneglycol)(3-methoxy-1,2,5-thiadiazol-4-yl)[3-(1-methyl-1,2,5,6-tetrahydropyrid-3-yl)-1,2,5-thiadiazol-4-yl] ether, CDD-0304 (10), was found to be a M₁/₂/₄ selective muscarinic agonist and might prove useful in treating the symptoms associated with schizophrenia (J. Med. Chem.2003, 46, 4273). It was hypothesized that the observed subtype selectivity demonstrated by 10 may be due to its ability to function as a bitopic ligand (J. Med. Chem.2006, 49, 7518). To further investigate this possibility, a novel series of compounds was synthesized using a 1,2,5-thiadiazole moiety along with varying lengths of a polyethylene glycol linker and terminal groups, for evaluation as potential allosteric modulators of muscarinic receptors. Preliminary biological studies were performed using carbachol to stimulate M₁ and M₅ receptors. No significant agonist activity was observed at either M₁ or M₅ receptors for any of the compounds. Compound 18, 2-(4-methoxy-1,2,5-thiadiazol-3-yloxy)-N,N-dimethylethanamine fumarate (CDD-0361F) was found to block the effects of carbachol at M5 muscarinic receptors.

  6. Alpha(1)-adrenergic receptor subtypes: non-identical triplets with different dancing partners?

    PubMed

    Hague, Chris; Chen, Zhongjian; Uberti, Michelle; Minneman, Kenneth P

    2003-12-12

    Alpha(1)-adrenergic receptors are one of the three subfamilies of G protein coupled receptors activated by epinephrine and norepinephrine to control important functions in many target organs. Three human subtypes (alpha(1A), alpha(1B), alpha(1D)) are derived from separate genes and are highly homologous in their transmembrane domains but not in their amino or carboxyl termini. Recent advances in our understanding of these "non-identical triplets" include development of knockout mice lacking single or multiple subtypes, new insights into subcellular localization and trafficking, identification of allosteric modulators, and increasing evidence for an important role in brain function. Although all three subtypes activate the same G(q/11) signaling pathway, they also appear to interact with different protein binding partners. Recent evidence suggests they may also form dimers, and may initiate independent signals through pathways yet to be clearly elucidated. Thus, this subfamily represents a common phenomenon of a group of similar but non-identical receptor subtypes activated by the same neurotransmitter, whose individual functional roles remain to be clearly established.

  7. The structure of the third intracellular loop of the muscarinic acetylcholine receptor M2 subtype.

    PubMed

    Ichiyama, Susumu; Oka, Yoshiaki; Haga, Kazuko; Kojima, Shuichi; Tateishi, Yukihiro; Shirakawa, Masahiro; Haga, Tatsuya

    2006-01-09

    We have examined whether the long third intracellular loop (i3) of the muscarinic acetylcholine receptor M2 subtype has a rigid structure. Circular dichroism (CD) and nuclear magnetic resonance spectra of M2i3 expressed in and purified from Escherichia coli indicated that M2i3 consists mostly of random coil. In addition, the differential CD spectrum between the M2 and M2deltai3 receptors, the latter of which lacks most of i3 except N- and C-terminal ends, gave no indication of secondary structure. These results suggest that the central part of i3 of the M2 receptor has a flexible structure.

  8. Mammal-like striatal functions in Anolis. I. Distribution of serotonin receptor subtypes, and absence of striosome and matrix organization.

    PubMed

    Clark, E C; Baxter, L R

    2000-11-01

    Serotonin (5-HT) 5-HT(2A) and 5-HT(2C) receptors are thought to play important roles in the mammalian striatum. As basal ganglia functions in general are thought highly conserved among amniotes, we decided to use in situ autoradiographic methods to determine the occurrence and distribution of pharmacologically mammal-like 5-HT(2A) and 5-HT(2C) receptors in the lizard, Anolis carolinensis, with particular attention to the striatum. We also determined the distributions of 5-HT(1A), 5-HT(1B/D), 5 HT(3), and 5-HT(uptake) receptors for comparison. All 5-HT receptors examined showed pharmacological binding specificity, and forebrain binding density distributions that resembled those reported for mammals. Anolis 5 HT(2A/C) and 5-HT(1A) site distributions were similar in both in vivo and ex vivo binding experiments. 5-HT(2A & C) receptors occur in both high and low affinity states, the former having preferential affinity for (125)I-(+/-)-2,5-dimethoxy-4-iodo-amphetamine hydrochloride ((125)I-DOI). In mammals (125)I-DOI binding shows a patchy density distribution in the striatum, being more dense in striosomes than in surrounding matrix. There was no evidence of any such patchy density of (125)I-DOI binding in the anole striatum, however. As a further indication that anoles do not possess a striosome and matrix striatal organization, neither (3)H-naloxone binding nor histochemical staining for acetylcholinesterase activity (AChE) were patchy. AChE did show a band-like striatal distribution, however, similar to that seen in birds.

  9. Interactions of antagonists with subtypes of inositol 1,4,5-trisphosphate (IP3) receptor

    PubMed Central

    Saleem, Huma; Tovey, Stephen C; Molinski, Tedeusz F; Taylor, Colin W

    2014-01-01

    BACKGROUND AND PURPOSE Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels. Interactions of the commonly used antagonists of IP3Rs with IP3R subtypes are poorly understood. EXPERIMENTAL APPROACH IP3-evoked Ca2+ release from permeabilized DT40 cells stably expressing single subtypes of mammalian IP3R was measured using a luminal Ca2+ indicator. The effects of commonly used antagonists on IP3-evoked Ca2+ release and 3H-IP3 binding were characterized. KEY RESULTS Functional analyses showed that heparin was a competitive antagonist of all IP3R subtypes with different affinities for each (IP3R3 > IP3R1 ≥ IP3R2). This sequence did not match the affinities for heparin binding to the isolated N-terminal from each IP3R subtype. 2-aminoethoxydiphenyl borate (2-APB) and high concentrations of caffeine selectively inhibited IP3R1 without affecting IP3 binding. Neither Xestospongin C nor Xestospongin D effectively inhibited IP3-evoked Ca2+ release via any IP3R subtype. CONCLUSIONS AND IMPLICATIONS Heparin competes with IP3, but its access to the IP3-binding core is substantially hindered by additional IP3R residues. These interactions may contribute to its modest selectivity for IP3R3. Practicable concentrations of caffeine and 2-APB inhibit only IP3R1. Xestospongins do not appear to be effective antagonists of IP3Rs. PMID:24628114

  10. Selective anxiolytics: are the actions related to partial "agonist" activity or a preferential affinity for benzodiazepine receptor subtypes?

    PubMed

    Gee, K W; Yamamura, H I

    1983-01-01

    Both pharmacological and biochemical evidence support the existence of BZ receptor subtypes. Determination of the molecular basis of BZ receptor heterogeneity requires additional research. The physiological significance of BZ receptor subtypes is not currently understood. One hypothesis presented to explain the unique pharmacological effects of CL 218872 suggests that CL 218872 has preferential affinity for a BZ receptor subtype (i.e., type I sites) that mediates the anxiolytic effects of the clinically active BZs. An alternative hypothesis has been proposed to account for these observations and is based upon the possibility that CL 218872 may act as a partial agonist at the BZ receptor. The partial agonist theory is supported by behavioral evidence and the relatively small differences in affinity of the BZ receptor subtypes discriminated by CL 218872 at physiological temperatures. In addition, in vivo binding studies suggest that occupancy of type II BZ receptor subtypes (i.e., those with low affinity for CL 218872) is necessary for CL 218872 to produce minimal anticonflict activity (4). Unlike certain other neurotransmitter systems, it is difficult to correlate the heterogeneous binding properties of BZ receptor ligands with their agonist/antagonist potential at BZ receptor. For example, CL 218872 discriminates BZ receptor subtypes and acts as an agonist at the BZ receptor. Beta-carbolines such as PCC also discriminate receptor subtypes, yet they act as antagonists at the BZ receptor. Compounding the complexity, neither the nature nor the existence of an endogenous ligand is known. So, the designation of agonist or antagonist effects is made on a purely functional basis.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. FLASH interacts with p160 coactivator subtypes and differentially suppresses transcriptional activity of steroid hormone receptors.

    PubMed

    Kino, Tomoshige; Ichijo, Takamasa; Chrousos, George P

    2004-12-01

    We previously reported that tumor necrosis factor alpha receptor- and Fas-associated FLASH interacts with one of the p160 nuclear receptor coactivators, glucocorticoid receptor-interacting protein (GRIP) 1, at its nuclear receptor-binding (NRB) domain, and that inhibits the transcriptional activity of the glucocorticoid receptor (GR) by interfering with association of GR and GRIP1. Here, we further examined the specificity of FLASH suppressive effect and the physical/functional interactions between this protein and two other p160 family subtypes. The suppressive effect of FLASH on GR transactivation was observed in several cell lines and on the chromatin-integrated mouse mammary tumor virus (MMTV) promoter. FLASH strongly interacted with the NRB domain of the thyroid hormone receptor activator molecule (TRAM) 1, a member of the steroid hormone receptor coactivator (SRC) 3/nuclear receptor coactivator (N-CoA) 3 subtypes, as well as with SRC2/N-CoA2 p160 coactivator GRIP1, while its interaction with SRC1a, one of the SRC1/N-CoA1 proteins, was faint in yeast two-hybrid assays. Accordingly, FLASH strongly suppressed TRAM1- and GRIP1-induced enhancement of GR-stimulated transactivation of the MMTV promoter in HCT116 cells, while it did not affect SRC1a-induced potentiation of transcription. Furthermore, FLASH suppressed androgen- and progesterone receptor-induced transcriptional activity, but did not influence estrogen receptor-induced transactivation, possibly due to their preferential use of p160 coactivators in HCT116 and HeLa cells. Thus, FLASH differentially suppresses steroid hormone receptor-induced transcriptional activity by interfering with their association with SRC2/N-CoA2 and SRC3/N-CoA3 but not with SRC1/N-CoA1.

  12. Muscarinic receptor subtypes in cilia-driven transport and airway epithelial development

    PubMed Central

    Klein, Maike K.; Haberberger, Rainer V.; Hartmann, Petra; Faulhammer, Petra; Lips, Katrin S.; Krain, Benjamin; Wess, Jürgen; Kummer, Wolfgang; König, Peter

    2014-01-01

    Ciliary beating of airway epithelial cells drives the removal of mucus and particles from the airways. Mucociliary transport and possibly airway epithelial development are governed by muscarinic acetylcholine receptors but the precise roles of the subtypes involved are unknown. This issue was addressed by determining cilia-driven particle transport, ciliary beat frequency, and the composition and ultrastructural morphology of the tracheal epithelium in M1–M5 muscarinic receptor gene-deficient mice. Knockout of M3 muscarinic receptors prevented an increase in particle transport speed and ciliary beat frequency in response to muscarine. Furthermore, the ATP response after application of muscarine was blunted. Pretreatment with atropine before application of muscarine restored the response to ATP. Additional knockout of the M2 receptor in these mice partially restored the muscarine effect most likely through the M1 receptor and normalized the ATP response. M1, M4, and M5 receptor deficient mice exhibited normal responses to muscarine. None of the investigated mutant mouse strains had any impairment of epithelial cellular structure or composition. In conclusion, M3 receptors stimulate whereas M2 receptors inhibit cilia-driven particle transport. The M1 receptor increases cilia-driven particle transport if the M3 and M2 receptor are missing. None of the receptors is necessary for epithelial development. PMID:19213795

  13. Activation of serotonin 3 receptors changes in vivo auditory responses in the mouse inferior colliculus

    PubMed Central

    Bohorquez, Alexander; Hurley, Laura M.

    2009-01-01

    Metabotropic serotonin receptors such as 5-HT1A and 5-HT1B receptors shape the level, selectivity, and timing of auditory responses in the inferior colliculus (IC). Less is known about the effects of ionotropic 5-HT3 receptors, which are cation channels that depolarize neurons. In the current study, the influence of the 5-HT3 receptor on auditory responses in vivo was explored by locally iontophoresing a 5-HT3 receptor agonist and antagonists onto single neurons recorded extracellularly in mice. Three main findings emerge from these experiments. First, activation of the 5-HT3 receptor can either facilitate or suppress auditory responses, but response suppressions are not consistent with 5-HT3 effects on presynaptic GABAergic neurons. Both response facilitations and suppressions are less pronounced in neurons with high precision in response latency, suggesting functional differences in the role of receptor activation for different classes of neuron. Finally, the effects of 5-HT3 activation vary across repetition rate within a subset of single neurons, suggesting that the influence of receptor activation sometimes varies with the level of activity. These findings contribute to the view of the 5-HT3 receptor as an important component of the serotonergic infrastructure in the IC, with effects that are complex and neuron- selective. PMID:19236912

  14. Pharmacologic study of muscarinic receptor subtypes and arteriolar dilations: a comparison of conducted and local responses.

    PubMed

    Rivers, R J

    1999-03-01

    Arteriolar relaxation caused by the application of muscarinic agonists is mediated by multiple factors. One factor causes dilation only at the point of drug microapplication (local response), and a second factor causes responses remote (500 microm away) from the site of application (conducted response). This study was performed to determine if different muscarinic subtypes mediate the two responses. Arterioles of anesthetized hamster cheek pouch were studied with videomicroscopy. Muscarinic antagonists methscopolamine, scopolamine, pirenzepine, 4-DAMP (4-diphenylacetoxy-N-methylpiperidine methiodide), and AFDX-116 [(11-2[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5, 11-dihydro-6H-pyrido [2,3-b][1,4]benzodiazepin-6-one)] were cumulatively applied, and the K(B) for each antagonist was determined for the local and conducted responses caused by methacholine microapplication (10(-4) M, 5 s). The pK(B) (local, conducted) were not significantly different for the two responses when using scopolamine (10.5, 10.4). When the antagonist AFDX-116 (5.6, 6.3), selective for muscarinic receptor (m2) subtype was applied, the K(B) was greater for the conducted response. The pK(B) was greater, however, for the local response when the m1 subtype-selective pirenzepine (7.7, 6.9) or m3 subtype-selective 4-DAMP (10.1, 9.8) was applied. Thus the antagonist pK(B) ratio for on the local and conducted responses depends on the subtype selectivity of the antagonist. These data strongly suggest that different receptors are involved in the two responses.

  15. Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart.

    PubMed

    Malloy, Cole A; Ritter, Kyle; Robinson, Jonathan; English, Connor; Cooper, Robin L

    2016-01-01

    The Drosophila melanogaster heart is a popular model in which to study cardiac physiology and development. Progress has been made in understanding the role of endogenous compounds in regulating cardiac function in this model. It is well characterized that common neurotransmitters act on many peripheral and non-neuronal tissues as they flow through the hemolymph of insects. Many of these neuromodulators, including acetylcholine (ACh), have been shown to act directly on the D. melanogaster larval heart. ACh is a primary neurotransmitter in the central nervous system (CNS) of vertebrates and at the neuromuscular junctions on skeletal and cardiac tissue. In insects, ACh is the primary excitatory neurotransmitter of sensory neurons and is also prominent in the CNS. A full understanding regarding the regulation of the Drosophila cardiac physiology by the cholinergic system remains poorly understood. Here we use semi-intact D. melanogaster larvae to study the pharmacological profile of cholinergic receptor subtypes, nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs), in modulating heart rate (HR). Cholinergic receptor agonists, nicotine and muscarine both increase HR, while nAChR agonist clothianidin exhibits no significant effect when exposed to an open preparation at concentrations as low as 100 nM. In addition, both nAChR and mAChR antagonists increase HR as well but also display capabilities of blocking agonist actions. These results provide evidence that both of these receptor subtypes display functional significance in regulating the larval heart's pacemaker activity.

  16. Coexpression of striatal dopamine receptor subtypes and excitatory amino acid subunits.

    PubMed

    Ariano, M A; Larson, E R; Noblett, K L; Sibley, D R; Levine, M S

    1997-08-01

    The striatal cellular coexpression patterns for the D(1A) and D2 dopamine (DA) receptor subtypes and the ionotropic excitatory amino acid (EAA) subunits of the N-methyl-D-aspartate (NMDA-R1) and the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) (GluR1 and GluR2/3) receptor subunits were examined morphologically. Their coincidence was assessed by visualization of mRNA transcripts, localization of encoded receptor proteins, and binding analysis using concurrently paired methods of fluorescence detection. The findings indicated that 1) mRNA transcripts for both receptor systems were detected in the medium-sized neuron population, and the distribution of receptor message closely reflected protein and binding patterns, with the exception of the GluR1 subunit; 2) both DA receptor mRNA transcripts were coexpressed with each ionotropic EAA receptor subunit examined and with each other, and NMDA and AMPA receptor subunits also showed coincident expression; 3) D(1A) DA receptor protein was detected in neurons which coexpressed EAA subunit proteins; and 4) GluR2/3 and NMDA-R1 subunit proteins were coexpressed in medium-sized neurons which also demonstrated D2 DA receptor binding sites. These findings suggest morphological receptor "promiscuity" since the coexpression patterns between DA and EAA receptors were found in all permutations. The results provide a spatial framework for physiological findings describing functional interactions between the two DA receptor types and between specific DA and EAA receptors in the striatum.

  17. Electrophysiology-Based Assays to Detect Subtype-Selective Modulation of Human Nicotinic Acetylcholine Receptors

    PubMed Central

    Kirsch, Glenn E.; Fedorov, Nikolai B.; Kuryshev, Yuri A.; Liu, Zhiqi; Orr, Michael S.

    2016-01-01

    Abstract The Family Smoking Prevention and Tobacco Control Act of 2009 (Public Law 111-31) gave the US Food and Drug Administration (FDA) the responsibility for regulating tobacco products. Nicotine is the primary addictive component of tobacco and its effects can be modulated by additional ingredients in manufactured products. Nicotine acts by mimicking the neurotransmitter acetylcholine on neuronal nicotinic acetylcholine receptors (nAChRs), which function as ion channels in cholinergic modulation of neurotransmission. Subtypes within the family of neuronal nAChRs are defined by their α- and β-subunit composition. The subtype-selective profiles of tobacco constituents are largely unknown, but could be essential for understanding the physiological effects of tobacco products. In this report, we report the development and validation of electrophysiology-based high-throughput screens (e-HTS) for human nicotinic subtypes, α3β4, α3β4α5, α4β2, and α7 stably expressed in Chinese Hamster Ovary cells. Assessment of agonist sensitivity and acute desensitization gave results comparable to those obtained by conventional manual patch clamp electrophysiology assays. The potency of reference antagonists for inhibition of the receptor channels and selectivity of positive allosteric modulators also were very similar between e-HTS and conventional manual patch voltage clamp data. Further validation was obtained in pilot screening of a library of FDA-approved drugs that identified α7 subtype-selective positive allosteric modulation by novel compounds. These assays provide new tools for profiling of nicotinic receptor selectivity. PMID:27505073

  18. Antidepressant-like activity of aroxyalkyl derivatives of 2-methoxyphenylpiperazine and evidence for the involvement of serotonin receptor subtypes in their mechanism of action.

    PubMed

    Kubacka, Monika; Mogilski, Szczepan; Bednarski, Marek; Nowiński, Leszek; Dudek, Magdalena; Żmudzka, Elżbieta; Siwek, Agata; Waszkielewicz, Anna M; Marona, Henryk; Satała, Grzegorz; Bojarski, Andrzej; Filipek, Barbara; Pytka, Karolina

    2016-02-01

    Since serotonin (5-HT) is strongly involved in the etiology and pathophysiology of depression, the development of new antidepressants is still based on the serotonergic system. The complexity of serotonergic system provides an opportunity for the development of compounds with multiple and complementary mechanism of action. This study describes serotonin receptor profile, functional characterization, and pharmacological in vivo evaluation of new aroxyalkyl derivatives of 2-methoxyphenylpiperazine. The obtained results allowed for the identification of compound 3, (1-[3-(2,6-dimethylphenoxy)propyl]-4-(2-methoxyphenyl)piperazine hydrochloride), a partial 5-HT1A receptor agonist, and 5-HT2A receptor antagonist, with high affinity toward 5-HT7 receptors, showing antidepressant- and anxiolytic-like properties. Moreover, 5-HT1A receptor activation is crucial for the antidepressant-like activity of compound 3. The rest of the compounds (except compounds 1 and 9) showed antidepressant but not anxiolytic-like properties, which did not result from 5-HT1A receptors activation. Furthermore, the compounds are 5-HT1A and weak 5-HT3 receptors antagonists, and some of them 5-HT2A antagonists. Moreover, none of the studied compounds impaired motor coordination at antidepressant-like doses. Since the studied compounds exhibited activity in behavioral assays and interacted with various receptors, the results of our experiments are very promising and require further studies.

  19. Desensitization of human muscarinic acetylcholine receptor m2 subtypes is caused by their sequestration/internalization.

    PubMed

    Tsuga, H; Kameyama, K; Haga, T

    1998-10-01

    Desensitization of human muscarinic acetylcholine receptor m2 subtypes (hm2 receptors) stably expressed in chinese hamster ovary cells was measured as decreases in the carbamylcholine-stimulated [35S]GTPgammaS binding activity in membrane preparations after pre-treatment of cells with carbamylcholine. The extent of carbamylcholine-stimulated [35S]GTPgammaS binding activity was found to decrease to 64% following pretreatment of cells with 10 microM carbamylcholine for 30 min, and under the same conditions 51-59% of hm2 receptors were sequestered/internalized as assessed by decreases in the [3H]N-methylscopolamine binding activity on the cell surface. A similar reduction in the carbamylcholine-stimulated [35S]GTPgammaS binding activity was observed by pretreatment of cells with 5 nM propylbenzylylcholine mustard, which irreversibly bound to and inactivated 58% of the hm2 receptors. When the cells were pretreated with 10 microM carbamylcholine in the presence of 0.32 M sucrose, which is known to inhibit clathrin-mediated endocytosis, no sequestration/internalization of hm2 receptors was observed, and the extent of carbamylcholine-stimulated [35S]GTPgammaS binding activity did not change. These results indicate that desensitization of hm2 receptors may be caused by reduction of receptor number on the cell surface through sequestration/internalization rather than by loss of the function of receptors.

  20. Pressure-selective modulation of NMDA receptor subtypes may reflect 3D structural differences.

    PubMed

    Mor, Amir; Kuttner, Yosef Y; Levy, Shiri; Mor, Merav; Hollmann, Michael; Grossman, Yoram

    2012-01-01

    Professional deep-water divers exposed to high pressure (HP) above 1.1 MPa suffer from High Pressure Neurological Syndrome (HPNS), which is associated with CNS hyperexcitability. We have previously reported that HP augments N-methyl-D-aspartate receptor (NMDAR) synaptic responses, increases neuronal excitability, and potentially causes irreversible neuronal damage. We now report that HP (10.1 MPa) differentially affects eight specific NMDAR subtypes. GluN1(1a or 1b) was co-expressed with one of the four GluN2(A-D) subunits in Xenopus laevis oocytes. HP increased ionic currents (measured by two electrode voltage clamps) of one subtype, reduced the current in four others, and did not affect the current in the remaining three. 3D theoretical modeling was aimed at revealing specific receptor domains involved with HP selectivity. In light of the information on the CNS spatial distribution of the different NMDAR subtypes, we conclude that the NMDAR's diverse responses to HP may lead to selective HP effects on different brain regions. These discoveries call for further and more specific investigation of deleterious HP effects and suggest the need for a re-evaluation of deep-diving safety guidelines.

  1. α6β2*-subtype nicotinic acetylcholine receptors are more sensitive than α4β2*-subtype receptors to regulation by chronic nicotine administration

    PubMed Central

    Marks, MJ; Grady, SR; Salminen, O; Paley, MA; Wageman, CR; McIntosh, JM; Whiteaker, P

    2014-01-01

    Nicotinic acetylcholine receptors (nAChR) of the α6β2* subtype (where * indicates the possible presence of additional subunits) are prominently expressed on dopaminergic neurons. Because of this, their role in tobacco use and nicotine dependence has received much attention. Previous studies have demonstrated that α6β2*-nAChR are downregulated following chronic nicotine exposure (unlike other subtypes that have been investigated – most prominently α4β2* nAChR). This study examines, for the first time, effects across a comprehensive chronic nicotine dose range. Chronic nicotine dose-responses and quantitative ligand-binding autoradiography were used to define nicotine sensitivity of changes in α4β2*-nAChR and α6β2*-nAChR expression. α6β2*-nAChR downregulation by chronic nicotine exposure in dopaminergic and optic-tract nuclei was ≈three-fold more sensitive than upregulation of α4β2*-nAChR. In contrast, nAChR-mediated [3H]-dopamine release from dopamine-terminal region synaptosomal preparations changed only in response to chronic treatment with high nicotine doses, while dopaminergic parameters (transporter expression and activity, dopamine receptor expression) were largely unchanged. Functional measures in olfactory tubercle preparations were made for the first time; both nAChR expression levels and nAChR-mediated functional measures changed differently between striatum and olfactory tubercles. These results show that functional changes measured using synaptosomal [3H]-DA release are primarily due to changes in nAChR, rather than in dopaminergic, function. PMID:24661093

  2. Inhibition of RNA synthesis by bradykinin involves both the B1 and B2 receptor subtypes.

    PubMed

    Yau, L; Pinsk, M; Zahradka, P

    1996-04-01

    The efficacy of angiotensin converting enzyme inhibitors in the treatment of heart disease is due in part to the accumulation of bradykinin (BK). Since BK can exert its effect by influencing cell proliferation, we chose to study the effect of BK on the growth of A10 vascular smooth muscle cells. Ligand binding studies to determine which BK receptor subtypes are present on A10 cells showed that both B1 and B2 receptors were present in approximately equal numbers. Examination of RNA synthesis demonstrated that BK inhibits uridine incorporation in a dose-dependent manner. This decrease in RNA synthesis was blocked by both B1 and B2 receptor antagonists, as well as by addition of indomethacin, a cyclooxygenase inhibitor. The latter result suggested that prostaglandins mediate the biological actions of BK. Consequently, we examined the direct effect of two prostaglandins, PGE2 and PGI2 (prostacyclin), on A10 cells. PGE2 caused a decrease in RNA synthesis, thus mimicking the effect of BK, while PGI2 did not. Therefore, the inhibition of RNA synthesis in A10 vascular smooth muscle cells by BK requires both B1 and B2 receptor subtypes and this action of BK is apparently mediated by de novo synthesis of prostaglandins.

  3. The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes.

    PubMed

    Hevers, W; Lüddens, H

    1998-08-01

    The amino acid gamma-aminobutyric-acid (GABA) prevails in the CNS as an inhibitory neurotransmitter that mediates most of its effects through fast GABA-gated Cl(-)-channels (GABAAR). Molecular biology uncovered the complex subunit architecture of this receptor channel, in which a pentameric assembly derived from five of at least 17 mammalian subunits, grouped in the six classes alpha, beta, gamma, delta, sigma and epsilon, permits a vast number of putative receptor isoforms. The subunit composition of a particular receptor determines the specific effects of allosterical modulators of the GABAARs like benzodiazepines (BZs), barbiturates, steroids, some convulsants, polyvalent cations, and ethanol. To understand the physiology and diversity of GABAARs, the native isoforms have to be identified by their localization in the brain and by their pharmacology. In heterologous expression systems, channels require the presence of alpha, beta, and gamma subunits in order to mimic the full repertoire of native receptor responses to drugs, with the BZ pharmacology being determined by the particular alpha and gamma subunit variants. Little is known about the functional properties of the beta, delta, and epsilon subunit classes and only a few receptor subtype-specific substances like loreclezole and furosemide are known that enable the identification of defined receptor subtypes. We will summarize the pharmacology of putative receptor isoforms and emphasize the characteristics of functional channels. Knowledge of the complex pharmacology of GABAARs might eventually enable site-directed drug design to further our understanding of GABA-related disorders and of the complex interaction of excitatory and inhibitory mechanisms in neuronal processing.

  4. Common genetic variation in adiponectin, leptin, and leptin receptor and association with breast cancer subtypes.

    PubMed

    Nyante, Sarah J; Gammon, Marilie D; Kaufman, Jay S; Bensen, Jeannette T; Lin, Dan Yu; Barnholtz-Sloan, Jill S; Hu, Yijuan; He, Qianchuan; Luo, Jingchun; Millikan, Robert C

    2011-09-01

    Adipocytokines are produced by visceral fat, and levels may be associated with breast cancer risk. We investigated whether single nucleotide polymorphisms (SNPs) in adipocytokine genes adiponectin (ADIPOQ), leptin (LEP), and the leptin receptor (LEPR) were associated with basal-like or luminal A breast cancer subtypes. 104 candidate and tag SNPs were genotyped in 1776 of 2022 controls and 1972 (200 basal-like, 679 luminal A) of 2311 cases from the Carolina Breast Cancer Study (CBCS), a population-based case-control study of whites and African Americans. Breast cancer molecular subtypes were determined by immunohistochemistry. Genotype odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional logistic regression. Haplotype ORs and 95% CIs were estimated using Hapstat. Interactions with waist-hip ratio were evaluated using a multiplicative interaction term. Ancestry was estimated from 144 ancestry informative markers (AIMs), and included in models to control for population stratification. Candidate SNPs LEPR K109R (rs1137100) and LEPR Q223R (rs1137101) were positively associated with luminal A breast cancer, whereas ADIPOQ +45 T/G (rs2241766), ADIPOQ +276 G/T (rs1501299), and LEPR K656N (rs8129183) were not associated with either subtype. Few patterns were observed among tag SNPs, with the exception of 3 LEPR SNPs (rs17412175, rs9436746, and rs9436748) that were in moderate LD and inversely associated with basal-like breast cancer. However, no SNP associations were statistically significant after adjustment for multiple comparisons. Haplotypes in LEP and LEPR were associated with both basal-like and luminal A subtypes. There was no evidence of interaction with waist-hip ratio. Data suggest associations between LEPR candidate SNPs and luminal A breast cancer in the CBCS and LEPR intron 2 tag SNPs and basal-like breast cancer. Replication in additional studies where breast cancer subtypes have been defined is necessary to confirm these

  5. Common genetic variation in adiponectin, leptin, and leptin receptor and association with breast cancer subtypes

    PubMed Central

    Nyante, Sarah J.; Gammon, Marilie D.; Kaufman, Jay S.; Bensen, Jeannette T.; Lin, Dan Yu; Barnholtz-Sloan, Jill S.; Hu, Yijuan; He, Qianchuan; Luo, Jingchun; Millikan, Robert C.

    2012-01-01

    Adipocytokines are produced by visceral fat, and levels may be associated with breast cancer risk. We investigated whether single nucleotide polymorphisms (SNPs) in adipocytokine genes adiponectin (ADIPOQ), leptin (LEP), and the leptin receptor (LEPR) were associated with basal-like or luminal A breast cancer subtypes. 104 candidate and tag SNPs were genotyped in 1776 of 2022 controls and 1972 (200 basal-like, 679 luminal A) of 2311 cases from the Carolina Breast Cancer Study (CBCS), a population-based case–control study of whites and African Americans. Breast cancer molecular subtypes were determined by immunohistochemistry. Genotype odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional logistic regression. Haplotype ORs and 95% CIs were estimated using Hapstat. Interactions with waist-hip ratio were evaluated using a multiplicative interaction term. Ancestry was estimated from 144 ancestry informative markers (AIMs), and included in models to control for population stratification. Candidate SNPs LEPR K109R (rs1137100) and LEPR Q223R (rs1137101) were positively associated with luminal A breast cancer, whereas ADIPOQ +45 T/G (rs2241766), ADIPOQ +276 G/T (rs1501299), and LEPR K656N (rs8129183) were not associated with either subtype. Few patterns were observed among tag SNPs, with the exception of 3 LEPR SNPs (rs17412175, rs9436746, and rs9436748) that were in moderate LD and inversely associated with basal-like breast cancer. However, no SNP associations were statistically significant after adjustment for multiple comparisons. Haplotypes in LEP and LEPR were associated with both basal-like and luminal A subtypes. There was no evidence of interaction with waist-hip ratio. Data suggest associations between LEPR candidate SNPs and luminal A breast cancer in the CBCS and LEPR intron 2 tag SNPs and basal-like breast cancer. Replication in additional studies where breast cancer subtypes have been defined is necessary to confirm these

  6. The SOL-2/Neto auxiliary protein modulates the function of AMPA-subtype ionotropic glutamate receptors.

    PubMed

    Wang, Rui; Mellem, Jerry E; Jensen, Michael; Brockie, Penelope J; Walker, Craig S; Hoerndli, Frédéric J; Hauth, Linda; Madsen, David M; Maricq, Andres V

    2012-09-06

    The neurotransmitter glutamate mediates excitatory synaptic transmission by gating ionotropic glutamate receptors (iGluRs). AMPA receptors (AMPARs), a subtype of iGluR, are strongly implicated in synaptic plasticity, learning, and memory. We previously discovered two classes of AMPAR auxiliary proteins in C. elegans that modify receptor kinetics and thus change synaptic transmission. Here, we have identified another auxiliary protein, SOL-2, a CUB-domain protein that associates with both the related auxiliary subunit SOL-1 and with the GLR-1 AMPAR. In sol-2 mutants, behaviors dependent on glutamatergic transmission are disrupted, GLR-1-mediated currents are diminished, and GLR-1 desensitization and pharmacology are modified. Remarkably, a secreted variant of SOL-1 delivered in trans can rescue sol-1 mutants, and this rescue depends on in cis expression of SOL-2. Finally, we demonstrate that SOL-1 and SOL-2 have an ongoing role in the adult nervous system to control AMPAR-mediated currents.

  7. PET imaging of metabotropic glutamate receptor subtype 5 (mGluR5)

    PubMed Central

    Li, Dan; Shan, Hong; Conti, Peter; Li, Zibo

    2012-01-01

    Metabotropic glutamate receptors (mGluRs) belong to a family of G-protein coupled receptors involved in the modulation of fast excitatory transmission. In particular, the subtype-5 receptor (mGluR5) was found to be an attractive target for the treatment and diagnosis of variety of psychiatric and neurological disease including anxiety, depression, epilepsy, drug addiction, and Parkinson's disease. Positron emission tomography (PET) is a highly sensitive imaging technique that holds great potential for the diagnosis of a brain disorder. In the study published in the American Journal of Nuclear Medicine and Molecular Imaging, a 18F labelled PET probe was developed targeting mGluR5. This paper represents the efforts and challenges on the design and development of novel PET tracers for mGluR5 imaging. PMID:23133800

  8. Growth regulation of primary human keratinocytes by prostaglandin E receptor EP2 and EP3 subtypes.

    PubMed

    Konger, R L; Malaviya, R; Pentland, A P

    1998-02-04

    We examined the contribution of specific EP receptors in regulating cell growth. By RT-PCR and northern hybridization, adult human keratinocytes express mRNA for three PGE2 receptor subtypes associated with cAMP signaling (EP2, EP3, and small amounts of EP4). In actively growing, non-confluent primary keratinocyte cultures, the EP2 and EP4 selective agonists, 11-deoxy PGE1 and 1-OH PGE1, caused complete reversal of indomethacin-induced growth inhibition. The EP3/EP2 agonist (misoprostol), and the EP1/EP2 agonist (17-phenyl trinor PGE2), showed less activity. Similar results were obtained with agonist-induced cAMP formation. The ability of exogenous dibutyryl cAMP to completely reverse indomethacin-induced growth inhibition support the conclusion that growth stimulation occurs via an EP2 and/or EP4 receptor-adenylyl cyclase coupled response. In contrast, activation of EP3 receptors by sulprostone, which is virtually devoid of agonist activity at EP2 or EP4 receptors, inhibited bromodeoxyuridine uptake in indomethacin-treated cells up to 30%. Although human EP3 receptor variants have been shown in other cell types to markedly inhibit cAMP formation via a pertussis toxin sensitive mechanisms, EP3 receptor activation and presumably growth inhibition was independent of adenylyl cyclase, suggesting activation of other signaling pathways.

  9. Alterations of muscarinic receptor subtypes in pathways relating to memory: Effects of lesions and transplants

    SciTech Connect

    Dawson, V.L.

    1989-01-01

    Muscarinic cholinergic receptors have been classified pharmacologically into two distinct populations designated muscarinic type-one (M-1) and mscarinic type-two (M-2). The semiquantitative technique of receptor autoradiography was used to examine the anatomical and cellular distribution, and densities of M-1 and M-2 receptors in the rate brain. Muscarinic receptors were labeled with the classical antagonist ({sup 3}H)quinuclidinyl benzilate (QNB). Differentiation of the muscarinic subtypes was accomplished by competition studies of ({sup 3}H)QNB against the relatively selective M-1 antagonist pirenzepine (PZ), and the relatively selective M-2 antagonist, AFDX-116. In addition, M-1 and M-2 receptors were directly labeled with ({sup 3}H)PZ and ({sup 3}H)AFDX-116, respectively. Cholinergic pathways from the large cholinergic neurons in the nucleus basalis magnocellularis (NBM) to the cortex and from the medial septum (MS) to the hippocampus were examined by lesioning with the selective cholinergic neurotoxin, AF64A. Bilateral cerebral cortical infarction was performed in order to analyze potential changes in muscarinic receptor populations in subcortical structures that are sensitive to cortical infarction. Finally, the response of muscarinic receptors to fetal septodiagonal band transplants in the deafferentated hippocampus was examined.

  10. Pharmacological characterization of muscarinic receptor subtypes mediating vasoconstriction of human umbilical vein

    PubMed Central

    Pujol Lereis, Virginia Andrea; Hita, Francisco Javier; Gobbi, Mauro Darío; Verdi, Marcela Gomez; Rodriguez, María Cecilia; Rothlin, Rodolfo Pedro

    2006-01-01

    The present study attempted to pharmacologically characterize the muscarinic receptor subtypes mediating contraction of human umbilical vein (HUV). HUV rings were mounted in organ baths and concentration–response curves were constructed for acetylcholine (ACh) (pEC50: 6.16±0.04; maximum response 80.00±1.98% of the responses induced by serotonin 10 μM). The absence of endothelium did not modify the contractile responses of ACh in this tissue. The role of cholinesterases was evaluated: neither neostigmine (acetylcholinesterase inhibitor) nor iso-OMPA (butyrylcholinesterase inhibitor) modified ACh responses. When both enzymes were simultaneously inhibited, a significantly but little potentiation was observed (control: pEC50 6.33±0.03; double inhibition: pEC50 6.57±0.05). Atropine, nonselective muscarinic receptors antagonist, inhibited ACh-induced contraction (pKB 9.67). The muscarinic receptors antagonists pirenzepine (M1), methoctramine (M2) and pFHHSiD (M3) also antagonized responses to ACh. The affinity values estimated for these antagonists against responses evoked by ACh were 7.58, 6.78 and 7.94, respectively. On the other hand, PD 102807 (M4 selective muscarinic receptors antagonist) was ineffective against ACh-induced contraction. In presence of a blocking concentration of pirenzepine, pFHHSiFD produced an additional antagonism activity on ACh-induced responses. The M1 muscarinic receptors agonist McN-A-343 produced similar maximum but less potent responses than ACh in HUV. The calculated pA2 for pirenzepine against McN-A-343 induced responses was 8.54. In conclusion, the data obtained in this study demonstrate the role of M1 muscarinic receptor subtypes and suggest the involvement of M3 muscarinic receptor subtypes in ACh-induced vasoconstriction in HUV rings. In addition, the vasomotor activity evoked by ACh does not seem to be modulated by endothelial factors, and their enzymatic degradation appears to have little functional relevance in this

  11. Guanylpirenzepine distinguishes between neuronal ml and m4 muscarinic receptor subtypes

    SciTech Connect

    Monferini, E.; Cereda, E.; Ladinsky, H.; Donetti, A.; Giraldo, E. )

    1990-01-01

    Guanylpirenzepine, a polar, non-quaternary analog of pirenzepine, exhibited a novel binding behavior in rat brain regions: in competition binding experiments against (3H)pirenzepine labeling the M1 receptor in membranes from cerebral cortex, hippocampus and striatum, the compound, differently from pirenzepine, displayed heterogeneous binding curves. Computer assisted analysis of these curves, evidenced the existence of two populations of binding sites: a large proportion (84-89%) of high affinity receptors (KH = 64-92 nM) and a remainder with very low affinity (KL = 19-28 microM). Like pirenzepine, guanylpirenzepine showed low affinity for the glandular M3 and the cardiac M2 receptors when (3H)N-methylscopolamine was used to label the receptors in membranes from these two tissues; affinity values for guanylpirenzepine were 1336 and 5790 nM respectively, vs 323 and 683 nM for pirenzepine. We conclude that guanylpirenzepine is able to discriminate between m1 and m4 receptor subtypes and may represent a new tool for deeper studies on muscarinic receptors classification.

  12. Cloning, functional expression, and characterization of the human prostaglandin E2 receptor EP2 subtype.

    PubMed

    Bastien, L; Sawyer, N; Grygorczyk, R; Metters, K M; Adam, M

    1994-04-22

    A cDNA clone encoding the human prostaglandin (PG) E2 receptor EP2 subtype has been isolated from a human lung cDNA library. The 1.9-kilobase pair cDNA, hEP2, encodes for a 488-amino acid protein with a predicted molecular mass of 53,115 and has the seven putative transmembrane domains characteristic of G protein-coupled receptors. The specific binding of [3H]PGE2 to COS cell membranes transfected with the hEP2 cDNA was of high affinity with an equilibrium dissociation constant (Kd) of 1 nM and the rank order of potency for prostaglandins in competition for [3H]PGE2 specific binding was PGE1 = PGE2 > iloprost > PGF2 alpha > PGD2. In competition studies using more selective prostanoid-receptor agonist and antagonists, the [3H]PGE2 specific binding was competed by MB28767, an EP3 agonist, but not by the EP1-preferring antagonists AH6809 and SC19220, or by the EP2 agonist butaprost. Electrophysiological studies of Xenopus oocytes co-injected with hEP2 and cystic fibrosis transmembrane conductance regulator (cAMP-activated Cl- channel) cDNAs detected PGE2-specific inward Cl- currents, demonstrating that the hEP2 cDNA encoded a functional receptor which produced an increase in cAMP levels. Thus, we have cloned the human EP2 receptor subtype which is functionally coupled to increase in cAMP. Northern blot analysis showed that hEP2 is expressed as a 3.8-kilobase mRNA in a number of human tissues with the highest expression levels present in the small intestine.

  13. A Molecular Determinant of Subtype-Specific Desensitization in Ionotropic Glutamate Receptors

    PubMed Central

    Alsaloum, Matthew; Kazi, Rashek; Gan, Quan; Amin, Johansen

    2016-01-01

    AMPA and NMDA receptors are glutamate-gated ion channels that mediate fast excitatory synaptic transmission throughout the nervous system. In the continual presence of glutamate, AMPA and NMDA receptors containing the GluN2A or GluN2B subunit enter into a nonconducting, desensitized state that can impact synaptic responses and glutamate-mediated excitotoxicity. The process of desensitization is dramatically different between subtypes, but the basis for these differences is unknown. We generated an extensive sequence alignment of ionotropic glutamate receptors (iGluRs) from diverse animal phyla and identified a highly conserved motif, which we termed the “hydrophobic box,” located at the extracellular interface of transmembrane helices. A single position in the hydrophobic box differed between mammalian AMPA and NMDA receptors. Surprisingly, we find that an NMDAR-to-AMPAR exchange mutation at this position in the rat GluN2A or GluN2B subunit had a dramatic and highly specific effect on NMDAR desensitization, making it AMPAR-like. In contrast, a reverse exchange mutation in AMPARs had minimal effects on desensitization. These experiments highlight differences in desensitization between iGluR subtypes and the highly specific contribution of the GluN2 subunit to this process. SIGNIFICANCE STATEMENT Rapid communication between cells in the nervous system depends on ion channels that are directly activated by neurotransmitter molecules. Here, we studied ionotropic glutamate receptors (iGluRs), which are ion channels activated by the neurotransmitter glutamate. By comparing the sequences of a vast number of iGluR proteins from diverse animal species, assisted by available structural information, we identified a highly conserved motif. We showed that a single amino acid difference in this motif between mammalian iGluR subtypes has dramatic effects on receptor function. These results have implications in both the evolution of synaptic function, as well as the role of i

  14. Quipazine reduces food intake in the rat by activation of 5-HT2-receptors.

    PubMed Central

    Hewson, G.; Leighton, G. E.; Hill, R. G.; Hughes, J.

    1988-01-01

    1. To determine which subtype(s) of 5-hydroxytryptamine (5-HT) receptor are involved in the anorectic action of quipazine, the ability of selective antagonists at 5-HT2- and 5-HT3-receptors, and an antagonist at 5-HT1-like receptors, to block this response were investigated in non-deprived rats, trained to eat a palatable diet. 2. Quipazine (0.5-8 mg kg-1, i.p.) produced a dose-related reduction in the intake of palatable diet. 3. The anorectic effect of 4 mg kg-1 quipazine was antagonized by the nonselective 5-HT-receptor antagonist methysergide (5 mg kg-1, i.p.) and by the selective 5-HT2-receptor antagonists ketanserin (1 mg kg-1 and 2.5 mg kg-1, i.p.) and ritanserin (0.5 mg kg-1 and 1 mg kg-1, i.p.). The selective 5-HT3-receptor antagonist GR38032F (1 mg kg-1, i.p.) and (-)-pindolol (4 mg kg-1, i.p.), which blocks some of the effects mediated at 5-HT1-like receptors, did not block the reduction in food intake produced by this dose of quipazine. 4. None of the 5-HT-receptor antagonists had any effect on food intake when they were administered alone, suggesting that endogenous 5-HT is not involved in the tonic control of food intake under the conditions of these experiments. 5. It is concluded that the anorectic action of quipazine is mediated, at least in part, by activation of 5-HT2-receptors. PMID:2906561

  15. GABAA receptor subtypes in the mouse brain: Regional mapping and diazepam receptor occupancy by in vivo [(18)F]flumazenil PET.

    PubMed

    Müller Herde, Adrienne; Benke, Dietmar; Ralvenius, William T; Mu, Linjing; Schibli, Roger; Zeilhofer, Hanns Ulrich; Krämer, Stefanie D

    2017-04-15

    Classical benzodiazepines, which are widely used as sedatives, anxiolytics and anticonvulsants, exert their therapeutic effects through interactions with heteropentameric GABAA receptors composed of two α, two β and one γ2 subunit. Their high affinity binding site is located at the interface between the γ2 and the adjacent α subunit. The α-subunit gene family consists of six members and receptors can be homomeric or mixed with respect to the α-subunits. Previous work has suggested that benzodiazepine binding site ligands with selectivity for individual GABAA receptor subtypes, as defined by the benzodiazepine-binding α subunit, may have fewer side effects and may even be effective in diseases, such as schizophrenia, autism or chronic pain, that do not respond well to classical benzodiazepines. The distributions of the individual α subunits across the CNS have been extensively characterized. However, as GABAA receptors may contain two different α subunits, the distribution of the subunits does not necessarily reflect the distribution of receptor subtypes with respect to benzodiazepine pharmacology. In the present study, we have used in vivo [(18)F]flumazenil PET and in vitro [(3)H]flumazenil autoradiography in combination with GABAA receptor point-mutated mice to characterize the distribution of the two most prevalent GABAA receptor subtypes (α1 and α2) throughout the mouse brain. The results were in agreement with published in vitro data. High levels of α2-containing receptors were found in brain regions of the neuronal network of anxiety. The α1/α2 subunit combinations were predictable from the individual subunit levels. In additional experiments, we explored in vivo [(18)F]flumazenil PET to determine the degree of receptor occupancy at GABAA receptor subtypes following oral administration of diazepam. The dose to occupy 50% of sensitive receptors, independent of the receptor subtype(s), was 1-2mg/kg, in agreement with published data from ex vivo

  16. Somatostatin receptor subtypes 2 and 4 affect seizure susceptibility and hippocampal excitatory neurotransmission in mice.

    PubMed

    Moneta, D; Richichi, C; Aliprandi, M; Dournaud, P; Dutar, P; Billard, J M; Carlo, A S; Viollet, C; Hannon, J P; Fehlmann, D; Nunn, C; Hoyer, D; Epelbaum, J; Vezzani, A

    2002-09-01

    We have investigated the role of somatostatin receptor subtypes sst2 and sst4 in limbic seizures and glutamate-mediated neurotransmission in mouse hippocampus. As compared to wild-type littermates, homozygous mice lacking sst2 receptors showed a 52% reduction in EEG ictal activity induced by intrahippocampal injection of 30 ng kainic acid (P < 0.05). The number of behavioural tonic-clonic seizures was reduced by 50% (P < 0.01) and the time to onset of seizures was doubled on average (P < 0.05). Seizure-associated neurodegeneration was found in the injected hippocampus (CA1, CA3 and hilar interneurons) and sporadically in the ipsilateral latero-dorsal thalamus. This occurred to a similar extent in wild-type and sst2 knock-out mice. Intrahippocampal injection of three selective sst2 receptor agonists in wild-type mice (Octreotide, BIM 23120 and L-779976, 1.5-6.0 nmol) did not affect kainate seizures while the same compounds significantly reduced seizures in rats. L-803087 (5 nmol), a selective sst4 receptor agonist, doubled seizure activity in wild-type mice on average. Interestingly, this effect was blocked by 3 nmol octreotide. It was determined, in both radioligand binding and cAMP accumulation, that octreotide had no direct agonist or antagonist action at mouse sst4 receptors expressed in CCl39 cells, up to micromolar concentrations. In hippocampal slices from wild-type mice, octreotide (2 micro m) did not modify AMPA-mediated synaptic responses while facilitation occurred with L-803087 (2 micro m). Similarly to what was observed in seizures, the effect of L-803087 was reduced by octreotide. In hippocampal slices from sst2 knock-out mice, both octreotide and L-803087 were ineffective on synaptic responses. Our findings show that, unlike in rats, sst2 receptors in mice do not mediate anticonvulsant effects. Moreover, stimulation of sst4 receptors in the hippocampus of wild-type mice induced excitatory effects which appeared to depend on the presence of sst2

  17. Selective blockade of the endothelin subtype A receptor decreases early atherosclerosis in hamsters fed cholesterol.

    PubMed Central

    Kowala, M. C.; Rose, P. M.; Stein, P. D.; Goller, N.; Recce, R.; Beyer, S.; Valentine, M.; Barton, D.; Durham, S. K.

    1995-01-01

    Recent studies suggest that endothelin and its receptors may be involved in atherogenesis. To test this hypothesis, cholesterol-fed hamsters were treated with a selective endothelin subtype A (ETA) receptor antagonist BMS-182874. Characterization of hamster atherosclerotic plaques indicated that they contained a fibrous cap of smooth muscle cells, large macrophage-foam cells, and epitopes of oxidized low density lipoprotein. Messenger RNA for both ETA and ETB receptors was detected in aortic endothelial cells, in medial smooth muscle cells, and in macrophage-foam cells and smooth muscle cells of the fibro-fatty plaques. BMS-182874 inhibited the endothelin-1-induced pressor response whereas the depressor effect was unaltered, suggesting that vascular ETA receptors were selectively blocked in vivo. In hyperlipidemic hamsters, BMS-182874 decreased the area of the fatty streak by reducing the number and size of macrophage-foam cells. The results indicated that ETA receptors and thus endothelin promoted the early inflammatory phase of atherosclerosis. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:7717449

  18. Positron-labeled dopamine agonists for probing the high affinity states of dopamine subtype 2 receptors.

    PubMed

    Hwang, Dah-Ren; Narendran, Raj; Laruelle, Marc

    2005-01-01

    It is well documented that guanidine nucleotide-coupled dopamine subtype 2 receptors (D2) are configured in high and low affinity states for the dopamine agonist in vitro. However, it is still unclear whether these functional states exist in vivo. We hypothesized that positron-labeled D2 agonist and Positron Emission Tomography can be used to probe these functional states noninvasively. Recently, we demonstrated in nonhuman primates that N-[11C]propyl-norapomorphine (NPA), a full D2 agonist, is a suitable tracer for imaging the high affinity states of D2 receptors in vivo. We also developed kinetic modeling method to derive receptor parameters, such as binding potential (BP) and specific uptake ratios (V3''). When coupled with a dopamine releasing drug, amphetamine, NPA was found to be more sensitive than antagonist tracers, such as [11C]raclopride (RAC), to endogenous dopamine concentration changes (by about 42%). This finding suggests that NPA is a superior tracer for reporting endogenous DA concentration. In addition, the difference of the BP or V3'' of NPA and RAC under control and amphetamine challenge conditions could be used to estimate the functional states of D2 receptors in vivo. On the basis of our findings and the assumptions that NPA binds only to the high affinity states and RAC binds equally to both affinity states, we proposed that about 70% of the D2 receptors are configured in the high affinity states in vivo.

  19. Sphingosine-1-Phosphate Receptor Subtypes Differentially Regulate Smooth Muscle Cell Phenotype

    PubMed Central

    Wamhoff, Brian R.; Lynch, Kevin R.; Macdonald, Timothy L.; Owens, Gary K.

    2008-01-01

    Objective The role of sphingosine-1-phosphate (S1P) receptors in acute vascular injury and smooth muscle cell (SMC) phenotypic modulation is not completely resolved. Methods and Results S1P receptor antagonists were used to test the hypothesis that specific S1P receptor subtypes differentially regulate SMC phenotypic modulation. In response to acute balloon injury of the rat carotid artery, S1P1/S1P3 receptor mRNA levels were transiently increased at 48 hours whereas S1P2 receptor expression was decreased. S1P2 expression was reinduced and increased at 7 to 10 days postinjury. Daily intraperitoneal injection of the S1P1/S1P3 antagonist VPC44116 decreased neointimal hyperplasia by ≈50%. In vitro, pharmacological inhibition of S1P1/S1P3 receptors with VPC25239 attenuated S1P-induced proliferation of rat aortic SMCs. Conversely, inhibition of S1P2 with JTE013 potentiated S1P-induced proliferation. Inhibition of S1P1/S1P3 resulted in S1P-induced activation of the SMC differentiation marker genes SMα-actin and SMMHC, whereas inhibition of S1P2 attenuated this response. S1P2-dependent activation of SMα-actin and SMMHC was shown to be mediated by L-type voltage-gated Ca2+ channels and subsequent RhoA/Rho kinase– dependent SRF enrichment of CArG box promoter regions. Conclusion Results provide evidence that S1P1/S1P3 receptors promote, whereas S1P2 receptors antagonize, SMC proliferation and phenotypic modulation in vitro in response to S1P, or in vivo after vascular injury. PMID:18535287

  20. Quantitative autoradiographic analysis of muscarinic receptor subtypes and their role in representational memory

    SciTech Connect

    Messer, W.S.

    1986-01-01

    Autoradiographic techniques were used to examine the distribution of muscarinic receptors in rat brain slices. Agonist and selective antagonist binding were examined by measuring the ability for unlabeled ligands to inhibit (/sup 3/H)-1-QNB labeling of muscarinic receptors. The distribution of high affinity pirenzepine binding sites (M/sub 1/ subtype) was distinct from the distribution of high affinity carbamylcholine sites, which corresponded to the M/sub 2/ subtype. In a separate assay, the binding profile for pirenzepine was shown to differ from the profile for scopolamine, a classical muscarinic antagonist. Muscarinic antagonists, when injected into the Hippocampus, impaired performance of a representational memory task. Pirenzepine, the M/sub 1/ selective antagonist, produced representational memory deficits. Scopolamine, a less selective muscarinic antagonist, caused increases in running times in some animals which prevented a definitive interpretation of the nature of the impairment. Pirenzepine displayed a higher affinity for the hippocampus and was more effective in producing a selective impairment of representational memory than scopolamine. The data indicated that cholinergic activity in the hippocampus was necessary for representation memory function.

  1. Reduced Serotonin Receptor Subtypes in a Limbic and a Neocortical Region in Autism

    PubMed Central

    Oblak, Adrian; Gibbs, Terrell T.; Blatt, Gene J.

    2013-01-01

    Autism is a behaviorally defined, neurological disorder with symptom onset before the age of three. Abnormalities in social-emotional behaviors are a core deficit in autism and are characterized by impaired reciprocal social interaction, lack of facial expressions, and the inability to recognize familiar faces. The posterior cingulate cortex (PCC) and fusiform gyrus (FG) are two regions within an extensive limbic-cortical network that contribute to social-emotional behaviors. Evidence indicates that changes in brains of individuals with autism begin prenatally. Serotonin (5HT) is one of the earliest expressed neurotransmitters, and plays an important role in synaptogenesis, neurite outgrowth, and neuronal migration. Abnormalities in 5HT systems have been implicated in several psychiatric disorders including autism, as evidenced by immunology, imaging, genetics, pharmacotherapy, and neuropathology. Although information is known regarding peripheral 5HT in autism, there is emerging evidence that 5HT systems in the CNS, including various 5HT receptor subtypes and transporters, are affected in autism. The present study demonstrated significant reductions in 5HT1A receptor binding density in superficial and deep layers of the PCC and FG, and in the density of 5HT2A receptors in superficial layers of the PCC and FG. Significant reduction in the density of serotonin transporters (5-HTT) was also found in the deep layers of the FG, but normal levels were demonstrated in both layers of the PCC and superficial layers of the FG. These studies provide potential substrates for decreased 5-HT modulation/innervation in the autism brain, and implicate two 5-HT receptor subtypes as potential neuromarkers for novel or existing pharmacotherapies. PMID:23894004

  2. The nicotinic receptor in the rat pineal gland is an alpha3beta4 subtype.

    PubMed

    Hernandez, Susan C; Vicini, Stefano; Xiao, Yingxian; Dávila-García, Martha I; Yasuda, Robert P; Wolfe, Barry B; Kellar, Kenneth J

    2004-10-01

    The rat pineal gland contains a high density of neuronal nicotinic acetylcholine receptors (nAChRs). We characterized the pharmacology of the binding sites and function of these receptors, measured the nAChR subunit mRNA, and used subunit-specific antibodies to establish the receptor subtype as defined by subunit composition. In ligand binding studies, [3H]epibatidine ([3H]EB) binds with an affinity of approximately 100 pM to nAChRs in the pineal gland, and the density of these sites is approximately 5 times that in rat cerebral cortex. The affinities of nicotinic drugs for binding sites in the pineal gland are similar to those at alpha3beta4 nAChRs heterologously expressed in human embryonic kidney 293 cells. In functional studies, the potencies and efficacies of nicotinic drugs to activate or block whole-cell currents in dissociated pinealocytes match closely their potencies and efficacies to activate or block 86Rb+ efflux in the cells expressing heterologous alpha3beta4 nAChRs. Measurements of mRNA indicated the presence of transcripts for alpha3, beta2, and beta4 nAChR subunits but not those for alpha2, alpha4, alpha5, alpha6, alpha7, or beta3 subunits. Immunoprecipitation with subunit-specific antibodies showed that virtually all [3H]EB-labeled nAChRs contained alpha3 and beta4 subunits associated in one complex. The beta2 subunit was not associated with this complex. Taken together, these results indicate that virtually all of the nAChRs in the rat pineal gland are the alpha3beta4 nAChR subtype and that the pineal gland can therefore serve as an excellent and convenient model in which to study the pharmacology and function of these receptors in a native tissue.

  3. High agonist-independent activity is a distinguishing feature of the dopamine D1B receptor subtype.

    PubMed

    Tiberi, M; Caron, M G

    1994-11-11

    Dopamine D1A and D1B receptor subtypes belong to the superfamily of G protein-coupled receptors. Both receptors are coupled to the activation of adenylyl cyclase and exhibit distinct brain distribution. To identify functional differences, binding and stimulation of adenylyl cyclase were assessed in 293 cells expressing transiently either dopamine D1A or D1B receptors. Membranes expressing D1B receptors displayed higher affinities for agonists than those expressing D1A receptors, whereas antagonist affinities were lower at the D1B than at the D1A receptor. Basal activity of adenylyl cyclase in whole 293 cells expressing various levels of D1B receptors was significantly higher than the basal activity measured in cells expressing D1A receptors. Maximal activation of adenylyl cyclase resulting from stimulation of the D1B receptor was less than that obtained following agonist activation of the D1A receptor. In cells expressing D1B receptors, agonists displayed an increased potency for stimulating adenylyl cyclase in comparison with the potencies determined for the D1A receptor. On the other hand, certain antagonists displayed "negative efficacy" at both receptor subtypes but had a more profound inhibition on the agonist-independent signaling activity of the D1B receptor. The properties described here are reminiscent of those of constitutively active G protein-coupled receptors obtained by site-directed mutations. Thus, the D1B receptor may represent a naturally occurring receptor subtype with properties akin to those of constitutively active G protein-coupled receptors. The different anatomical distribution and biochemical properties of these D1 receptors strengthen the functional distinctions between the two subtypes and could account for the basis of heterogeneity within a given class of neurotransmitter or hormone receptors. In addition, if these properties are recapitulated in cells expressing the D1B receptors, they may underlie important role in the regulation of

  4. Identification of the central imidazoline receptor subtype involved in modulation of halothane-epinephrine arrhythmias in rats.

    PubMed

    Kagawa, Kiyokazu; Hayashi, Yukio; Itoh, Isao; Iwasaki, Mitsuo; Takada, Koji; Kamibayashi, Takahiko; Yamatodani, Atsushi; Mashimo, Takashi

    2005-12-01

    We previously reported that imidazoline receptors in the central nervous system are involved in modulation of halothane-epinephrine arrhythmias. These receptors have been subclassified as I1 and I2 subtypes, but it is not known which receptor subtype is involved in halothane-epinephrine-induced arrhythmias. We designed the present study to clarify the involvement of central imidazoline receptor subtype in the modulation of halothane-epinephrine-induced arrhythmias. Rats were anesthetized with halothane and monitored continuously for systemic arterial blood pressure and premature ventricular contractions. The arrhythmogenic dose of epinephrine was defined as the smallest dose that produces three or more premature ventricular contractions within a 15-s period. Intracisternal moxonidine dose-dependently inhibited the epinephrine-induced arrhythmias during halothane anesthesia. Intracisternal efaroxan, a selective I1 antagonist with little affinity for I2 subtype, but not rauwolscine, an alpha2 antagonist without affinity for imidazoline receptors, blocked the antiarrhythmic effect of moxonidine. Intracisternal BU 224 and 2-BFI, selective I2 ligands, also inhibited the epinephrine-induced arrhythmias dose-dependently; however, these effects were abolished by efaroxan. We conclude that central I1, but not I2, receptors play an important role in inhibition of halothane-epinephrine arrhythmia.

  5. Distribution of muscarinic receptor subtypes in rat brain as determined in binding studies with AF-DX 116 and pirenzepine

    SciTech Connect

    Giraldo, E.; Hammer, R.; Ladinsky, H.

    1987-03-02

    In vitro competition binding experiments with the selective muscarinic antagonists AF-DX 116 and pirenzepine (PZ) vs /sup 3/H-N-methylscopolamine as radioligand revealed a characteristic distribution of muscarinic receptor subtypes in different regions of rat brain. Based on nonlinear least squares analysis, the binding data were compatible with the presence of three different subtypes: the M/sub 1/ receptor (high affinity for PZ), the cardiac M/sub 2/ receptor (high affinity for AF-DX 116) and the glandular M/sub 2/ receptor (low affinity for PZ and AF-DX 116). The highest proportion of M/sub 1/ receptors was found in the hippocampus, while the cerebellum and the hypothalamus were the regions with the largest fraction of the cardiac M/sub 2/ and glandular M/sub 2/ receptors, respectively. In certain brain areas, depending on the relative proportions of the subtypes, flat binding curves were seen for AF-DX 116 and PZ. Based on these data, an approximate distribution pattern of the subtypes in the various brain regions is presented. 19 references, 1 figure, 2 tables.

  6. Cinical Significance of Androgen Receptor, CK-5/6, KI-67 and Molecular Subtypes in Breast Cancer

    PubMed Central

    Kayahan, Münire; İdiz, Ufuk Oğuz; Gucin, Zuhal; Erözgen, Fazilet; Memmi, Naim; Müslümanoğlu, Mahmut

    2014-01-01

    Objective To detect the relationship between molecular subtypes of breast cancer with expressions of androgen receptor, cytokeratin 5/6 (CK5/6)and Ki-67. Materials and Methods Expressions of androgen receptor, CK-5/6 and Ki-67 were determined by immunohistochemistry in paraffin-embedded sections obtained from 86 invasive breast cancer cases of stages I/IIa/IIb in 4 molecular subtypes. Patients treated for recurrent disease and locally advanced disease were excluded. Results Forty one luminal A cases, ie. positive estrogen receptor(ER) and/or progesteron receptor (PR) with negative epidermal growth factor receptor (HER2), 14 luminal B, ie. positive ER and/or PR and positive HER2, 14 HER2-enriched (HER2+), ie. negative ER and PR with positive HER2, and 17 triple negative (negative ER and PR and HER2) invasive breast cancers were included. Mean follow-up was 17.46±11.70 mo. Androgen receptor-negativity and CK5/6-positivity were significantly more common in HER2+ and triple negative groups. Ki-67 and histological grade were higher in HER2+ group, significantly. Two deaths were triple negative (P=0.04). Androgen receptor-negativity, CK5/6 and Ki-67 status did not affect survival or systemic metastases, significantly. All groups had local recurrences. Local recurrence was significantly associated with androgen receptor-negativity in luminal A and high Ki-67 value in HER2+ groups. Systemic metastases were significantly more common in triple negative and HER2+ groups. Conclusion Molecular subtypes of breast cancer are prognostic and predictive. Androgen receptor is expressed more commonly in luminal subtypes with better prognosis and androgen receptor negativity is associated with development of local recurrence in luminal A cancers.

  7. Regulation and ontogeny of subtypes of muscarinic receptors and muscarinic receptor-mediated

    SciTech Connect

    Lee, W.

    1989-01-01

    The densities of total and M1 muscarinic receptors were measured using the muscarinic receptor antagonists {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine, respectively. Thus, the difference between the density of {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine binding sites represents the density of M2 sites. In addition, there is no observable change in either acetylcholine-stimulated phosphoinositide breakdown (suggested to be an M1 receptor-mediated response) or in carbachol-mediated inhibition of cyclic AMP accumulation (suggested to be an M2 receptor-mediated response) in slices of cortex+dorsal hippocampus following chronic atropine administration. In other experiments, it has been shown that the M1 and M2 receptors in rat cortex have different ontogenetic profiles. The M2 receptor is present at adult levels at birth, while the M1 receptor develops slowly from low levels at postnatal week 1 to adult levels at postnatal week 3. The expression of acetylcholine-stimulated phosphoinositide breakdown parallels the development of M1 receptors, while the development of carbachol-mediated inhibition of cyclic AMP accumulation occurs abruptly between weeks 2 and 3 postnatally.

  8. CoMFA and docking study of novel estrogen receptor subtype selective ligands

    NASA Astrophysics Data System (ADS)

    Wolohan, Peter; Reichert, David E.

    2003-05-01

    We present the results from a Comparative Molecular Field Analysis (CoMFA) and docking study of a diverse set of 36 estrogen receptor ligands whose relative binding affinities (RBA) with respect to 17β-Estradiol were available in both isoforms of the nuclear estrogen receptors (ERα, ERβ). Initial CoMFA models exhibited a correlation between the experimental relative binding affinities and the molecular steric and electrostatic fields; ERα: r2=0.79, q2=0.44 ERβ: r2=0.93, q2=0.63. Addition of the solvation energy of the isolated ligand improved the predictive nature of the ERβ model initially; r2=0.96, q2=0.70 but upon rescrambling of the data-set and reselecting the training set at random, inclusion of the ligand solvation energy was found to have little effect on the predictive nature of the CoMFA models. The ligands were then docked inside the ligand binding domain (LBD) of both ERα and ERβ utilizing the docking program Gold, after-which the program CScore was used to rank the resulting poses. Inclusion of both the Gold and CScore scoring parameters failed to improve the predictive ability of the original CoMFA models. The subtype selectivity expressed as RBA(ERα/ERβ) of the test sets was predicted using the most predictive CoMFA models, as illustrated by the cross-validated r2. In each case the most selective ligands were ranked correctly illustrating the utility of this method as a prescreening tool in the development of novel estrogen receptor subtype selective ligands.

  9. Endothelin receptor subtypes and their functional relevance in human small coronary arteries

    PubMed Central

    Pierre, Lisa N; Davenport, Anthony P

    1998-01-01

    The potent constrictor peptide endothelin (ET) has been implicated in various cardiovascular disorders including myocardial infarction and atherosclerosis. We have investigated the nature of ET receptor subtypes present on human small coronary arteries.Small coronary arteries were mounted in a wire-myograph for in vitro pharmacology. To investigate the ET receptor subtypes present in different segments of the coronary vascular tree, arteries were grouped according to internal diameter. Responses in arteries with small internal diameters (mean 316.7±7.9 μm; Group B) were compared to those in larger arteries (mean 586.2±23.1 μm; Group A).ET-1 consistently and potently contracted arteries from Group A and B, with EC50 values of 1.7 (0.9–3.2) nM (n=15) and 2.3 (1.4–4.2) nM (n=14), respectively. No correlation was observed between ET-1 potency and internal diameter. The response to ET-1 was potently antagonized by the selective ETA receptor antagonist PD156707 in both Group A and Group B, yielding pA2 values of 8.60±0.12 (n=4–6) and 8.38±0.17 (n=4–6), respectively. Slopes from Schild regression were not significantly different from unity.In contrast to ET-1, individual responses to ET-3 were variable. While all arteries from Group A responded to ET-3 (EC50∼69 (23–210) nM) (n=12), no response was obtained in 5 of the 14 tested in Group B. Of those responding, many failed to reach a maximum at concentrations up to 1 μM. ET-1 was more potent than ET-3 in all arteries tested. A biphasic ET-3 response was observed in 8 arteries suggesting that a small ETB population was also present in some patients. The selective ETB receptor agonist sarafotoxin S6c had little or no effect up to 10 nM (n=4–6).Responses to ET-1 and ET-3 were unaffected by removal of the endothelium in arteries from both groups suggesting a lack of functional, relaxant ETB receptors on endothelial cells (n=5).Using autoradiography, specific high density binding of the non

  10. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.

    1998-01-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  11. Identification of vagal sensory receptors in the rat lung: are there subtypes of slowly adapting receptors?

    PubMed Central

    Bergren, D R; Peterson, D F

    1993-01-01

    1. We studied the characteristics of pulmonary sensory receptors whose afferent fibres are in the left vagus nerve of opened-chest rats. The activity of these receptors was recorded during mechanical ventilation approximating eupnoea, as well as during deflation, stepwise inflations and constant-pressure inflations of the lungs. Data were also collected from closed-chest rats and analysed separately. 2. Ninety-four per cent of receptors were located in the ipsilateral lung or airways with the remainder in the contralateral lung. 3. Not only were slowly adapting receptors (SARs) the most abundant pulmonary receptors but 21% of them were either exclusively or predominantly active during the deflationary phase of the ventilatory cycle. Deflationary units were found in opened- and closed-chest rats. The average conduction velocity for all fibres innervating SARs averaged 29.7 m s-1. 4. We found rapidly adapting receptors (RARs) to be extremely rare in the rat. Their activity was sparse and irregular. The conduction velocities of fibres innervating RARs averaged 12.3 m s-1. 5. Far more abundant than RARs in the remaining population of pulmonary fibres were C fibres. They were observed to have an average conduction velocity of 2.1 m s-1, base-level activity which was irregular and a high pressure threshold of activation and were stimulated by intravenous capsaicin injection. 6. Notable differences exist between pulmonary receptors in rats and those reported in other species. The variations include the abundant existence of intrapulmonary SARs with exclusively deflationary modulation and the rarity of RARs. We also encountered C fibres which have not previously been described systematically in the rat. PMID:8229824

  12. Molecular cloning and characterization of the canine prostaglandin E receptor EP2 subtype.

    PubMed

    Hibbs, T A; Lu, B; Smock, S L; Vestergaard, P; Pan, L C; Owen, T A

    1999-05-01

    Prostaglandin E2 (PGE2) binds to four G-protein coupled cell surface receptors (EP1-EP4) and has been implicated as a local mediator of bone anabolism via a cyclic AMP mediated pathway following activation of the EP2 and/or EP4 receptor subtype. A canine kidney cDNA library was screened using a human EP2 probe, and a clone with an open reading frame of 1083 bp, potentially encoding a protein of 361 amino acids, was characterized. This open reading frame has 89% identity to the human EP2 cDNA at the nucleotide level and 87% identity at the predicted protein level. Scatchard analysis of a CHO cell line stably transfected with canine EP2 yielded a dissociation constant of 22 nM for PGE2. Competition binding studies, using 3H-PGE2 as ligand, demonstrated specific displacement by PGE2, Prostaglandin E1, Prostaglandin A3, and butaprost (an EP2 selective ligand), but not by ligands with selectivity for the related DP, FP, IP, or TP receptors. Specific ligand binding also resulted in increased levels of cAMP in EP2 transfected cells with no evidence of short-term, ligand-induced desensitization. Northern blot analysis revealed two transcripts of 3300 and 2400 bp in canine lung, and reverse-transcription polymerase chain reaction showed expression in all tissues examined. Southern blot analysis suggests the presence of a single-copy gene for EP2 in the dog.

  13. The mouse prostaglandin E receptor EP2 subtype: cloning, expression, and northern blot analysis.

    PubMed

    Katsuyama, M; Nishigaki, N; Sugimoto, Y; Morimoto, K; Negishi, M; Narumiya, S; Ichikawa, A

    1995-09-25

    A functional cDNA clone for the mouse prostaglandin (PG) E receptor EP2 subtype was isolated from a mouse cDNA library. The mouse EP2 receptor consists of 362 amino acid residues with seven putative transmembrane domains. [3H]PGE2 bound specifically to the membrane of Chinese hamster ovary cells stably expressing the cloned receptor. This binding was displaced by unlabeled prostanoids in the order of PGE2 = PGE1 > iloprost, a stable PGI2 agonist > PGF2 alpha > PGD2. Binding was also inhibited by butaprost (an EP2 agonist) and to a lesser extent by M&B 28767 (an EP3 agonist), but not by sulprostone (an EP1 and EP3 agonist) or SC-19220 (an EP1 antagonist). PGE2 and butaprost increased the cAMP level in the Chinese hamster ovary cells in a concentration-dependent manner. Northern blot analysis revealed that EP2 mRNA is expressed most abundantly in the uterus, followed by the spleen, lung, thymus, ileum, liver, and stomach.

  14. Rabies virus selectively alters 5-HT1 receptor subtypes in rat brain.

    PubMed

    Ceccaldi, P E; Fillion, M P; Ermine, A; Tsiang, H; Fillion, G

    1993-04-15

    Rabies virus infection in man induces a series of clinical symptoms, some suggesting involvement of the central serotonergic system. The results of the present study show that, 5 days after rabies virus infection in rat, the total reversible high-affinity binding of [3H]5-HT in the hippocampus is not affected, suggesting that 5-HT1A binding is not altered. 5-HT1B sites identified by [125I]cyanopindolol binding are not affected in the cortex 3 and 5 days after the infection. Accordingly, the cellular inhibitory effect of trifluoromethylphenylpiperazine (TFMPP) on the [3H]acetylcholine-evoked release, presumably related to 5-HT1B receptor activity, is not modified 3 days after infection. In contrast, [3H]5-HT binding determined in the presence of drugs masking 5-HT1A, 5-HT1B and 5-HT1C receptors, is markedly (50%) reduced 3 days after the viral infection. These results suggest that 5-HT1D-like receptor subtypes may be affected specifically and at an early stage after rabies viral infection.

  15. Molecular cloning and expression of rat prostaglandin E receptor EP2 subtype.

    PubMed

    Sando, T; Usui, T; Tanaka, I; Mori, K; Sasaki, Y; Fukuda, Y; Namba, T; Sugimoto, Y; Ichikawa, A; Narumiya, S

    1994-05-16

    A cDNA clone encoding the rat prostaglandin (PG) E receptor EP2 subtype was cloned from a rat lung cDNA library. It encodes 488 amino acid residues with putative seven-transmembrane domains. Specific binding of [3H]PGE2 was found in COS-7 cells transfected with the cDNA and was displaced with unlabeled prostaglandins in the order of PGE2 = PGE1 > iloprost > or = PGF2 alpha > or = PGD2. The binding was also inhibited by misoprostol, an EP2 and EP3 agonist, but not by sulprostone, an EP1 and EP3 agonist. Northern blot analysis demonstrated that the EP2 mRNA is widely expressed in various tissues, the significant expression being observed in the thymus, lung, spleen, heart stomach, and pancreas.

  16. Wound repair and proliferation of bronchial epithelial cells enhanced by bombesin receptor subtype 3 activation.

    PubMed

    Tan, Yu-Rong; Qi, Ming-Ming; Qin, Xiao-Qun; Xiang, Yang; Li, Xiang; Wang, Yue; Qu, Fei; Liu, Hui-Jun; Zhang, Jian-Song

    2006-07-01

    The present study was designed to investigate the role of bombesin receptor subtype 3 (BRS-3) in airway wound repair. The results showed that: (1) There was few expression of BRS-3 mRNA in the control group. In contrast, the expression of BRS-3 mRNA was gradually increased in the early 2 days, and peaked on the fourth day, and then decreased in the ozone-stressed AHR animal. BRS-3 mRNA was distributed in the ciliated columnar epithelium, monolayer columnar epithelium cells, scattered mesenchymal cells and Type II alveolar cells; (2) The wound repair and proliferation of bronchial epithelial cells (BECs) were accelerated in a concentration-dependent manner by BRS-3 activation with P3513, which could be inhibited by PKA inhibitor H89. The study demostrated that activation of BRS-3 may play an important role in wound repair of AHR.

  17. FAS Death Receptor: A Breast Cancer Subtype-Specific Radiation Response Biomarker and Potential Therapeutic Target

    PubMed Central

    Horton, Janet K.; Siamakpour-Reihani, Sharareh; Lee, Chen-Ting; Zhou, Ying; Chen, Wei; Geradts, Joseph; Fels, Diane R.; Hoang, Peter; Ashcraft, Kathleen A.; Groth, Jeff; Kung, Hsiu-Ni; Dewhirst, Mark W.; Chi, Jen-Tsan A.

    2015-01-01

    Although a standardized approach to radiotherapy has been used to treat breast cancer, regardless of subtype (e.g., luminal, basal), recent clinical data suggest that radiation response may vary significantly among subtypes. We hypothesized that this clinical variability may be due, in part, to differences in cellular radiation response. In this study, we utilized RNA samples for microarray analysis from two sources: 1. Paired pre- and postirradiation breast tumor tissue from 32 early-stage breast cancer patients treated in our unique preoperative radiation Phase I trial; and 2. Sixteen biologically diverse breast tumor cell lines exposed to 0 and 5 Gy irradiation. The transcriptome response to radiation exposure was derived by comparing gene expression in samples before and after irradiation. Genes with the highest coefficient of variation were selected for further evaluation and validated at the RNA and protein level. Gene editing and agonistic antibody treatment were performed to assess the impact of gene modulation on radiation response. Gene expression in our cohort of luminal breast cancer patients was distinctly different before and after irradiation. Further, two distinct patterns of gene expression were observed in our biologically diverse group of breast cancer cell lines pre- versus postirradiation. Cell lines that showed significant change after irradiation were largely luminal subtype, while gene expression in the basal and HER2+ cell lines was minimally impacted. The 100 genes with the most significant response to radiation in patients were identified and analyzed for differential patterns of expression in the radiation-responsive versus nonresponsive cell lines. Fourteen genes were identified as significant, including FAS, a member of the tumor necrosis factor receptor family known to play a critical role in programed cell death. Modulation of FAS in breast cancer cell lines altered radiation response phenotype and enhanced radiation sensitivity in

  18. Optical studies of nicotinic acetylcholine receptor subtypes in the guinea-pig enteric nervous system.

    PubMed

    Obaid, A L; Nelson, M E; Lindstrom, J; Salzberg, B M

    2005-08-01

    Nicotinic transmission in the enteric nervous system (ENS) is extensive, but the role of individual nicotinic acetylcholine receptor (nAChR) subtypes in the functional connectivity of its plexuses has been elusive. Using monoclonal antibodies (mAbs) against neuronal alpha3-, alpha4-, alpha3/alpha5-, beta2-, beta4- and alpha7-subunits, combined with radioimmunoassays and immunocytochemistry, we demonstrate that guinea-pig enteric ganglia contain all of these nAChR-subunits with the exception of alpha4, and so, differ from mammalian brain. This information alone, however, is insufficient to establish the functional role of the identified nAChR-subtypes within the enteric networks and, ultimately, their specific contributions to gastrointestinal physiology. We have used voltage-sensitive dyes and a high-speed CCD camera, in conjunction with specific antagonists to various nAChRs, to elucidate some of the distinct contributions of the individual subtypes to the behaviour of enteric networks. In the guinea-pig, the submucous plexus has the extraordinary advantage that it is virtually two-dimensional, permitting optical recording, with single cell resolution, of the electrical activity of all of its neurones. In this plexus, the block of alpha3beta2-, alpha3beta4- and/or alpha7-nAChRs always results in a decrease in the magnitude of the synaptic response. However, the magnitude of the fast excitatory post-synaptic potentials (epsps) evoked by electrical stimulation of a neighbouring ganglion varies from cell to cell, reflecting the differential expression of subunits already observed using mAbs, as well as the strengths of the activated synaptic inputs. At the same time, we observe that submucous neurones have a substantial mecamylamine (Mec)-insensitive (non-nicotinic) component to their fast epsps, which may point to the presence of purinergic or serotonergic fast epsps in this system. In the myenteric plexus, on the other hand, the antagonist-induced changes in the

  19. CaMKII phosphorylation of the GABAA receptor: receptor subtype- and synapse-specific modulation

    PubMed Central

    Houston, Catriona M; He, Qionger; Smart, Trevor G

    2009-01-01

    As a major inhibitory neurotransmitter, GABA plays a vital role in the brain by controlling the extent of neuronal excitation. This widespread role is reflected by the ubiquitous distribution of GABAA receptors throughout the central nervous system. To regulate the level of neuronal inhibition requires some endogenous control over the release of GABA and/or its postsynaptic response. In this context, Ca2+ ions are often used as primary or secondary messengers frequently resulting in the activation of protein kinases and phosphatases. One such kinase, Ca2+/calmodulin-dependent protein kinase II (CaMKII), can target the GABAA receptor to cause its phosphorylation. Evidence is now emerging, which is reviewed here, that GABAA receptors are indeed substrates for CaMKII and that this covalent modification alters the expression of cell surface receptors and their function. This type of regulation can also feature at inhibitory synapses leading to long-term inhibitory synaptic plasticity. Most recently, CaMKII has now been proposed to differentially phosphorylate particular isoforms of GABAA receptors in a synapse-specific context. PMID:19332484

  20. Differentiation of muscarinic cholinergic receptor subtypes in human cortex and pons - Implications for anti-motion sickness therapy

    NASA Technical Reports Server (NTRS)

    Mccarthy, Bruce G.; Peroutka, Stephen J.

    1988-01-01

    Radioligand binding studies were used to analyze muscarinic cholinergic receptor subtypes in human cortex and pons. Muscarinic cholinergic receptors were labeled by H-3-quinuclidinyl benzilate (H-3-QNB). Scopolamine was equipotent in both brain regions and did not discriminate subtypes of H-3-QNB binding. By contrast, the M1 selective antagonist pirenzepine was approximately 33-fold more potent in human cortex than pons. Carbachol, a putative M2 selective agonist, was more than 100-fold more potent in human pons than cortex. These results demonstrate that the human pons contains a relatively large proportion of carbachol-sensitive muscarinic cholinergic receptors. Drugs targeted to this subpopulation of muscarinic cholinergic receptors may prove to be effective anti-motion sickness agents with less side effects than scopolamine.

  1. Pharmacology of GABAC receptors: responses to agonists and antagonists distinguish A- and B-subtypes of homomeric rho receptors expressed in Xenopus oocytes.

    PubMed

    Pan, Yi; Khalili, Parham; Ripps, Harris; Qian, Haohua

    2005-03-07

    GABA(C) receptors, expressed predominantly in vertebrate retina, are thought to be formed mainly by GABA rho subunits. Five GABA rho subunits have been cloned from white perch retina, four of which form functional homooligomeric receptors when expressed in Xenopus oocytes. These rho subtypes, classified as rho1A, rho1B, rho2A and rho2B receptors based on amino acid sequence alignment, exhibit distinct temporal and pharmacological properties. To examine further the pharmacological properties associated with the various rho receptor subtypes, we investigated the effects of a selective GABA(C) receptor antagonist, TPMPA, on the GABA-mediated activity of receptors formed in Xenopus oocytes by the four GABA rho subunits. In addition, we recorded the activation profiles of beta-alanine, taurine, and glycine, three amino acids that modulate neuronal activity in various parts of the CNS and are purported to be rho receptor agonists. TPMPA effectively inhibited GABA-elicited responses on A-type receptors, whereas B-type receptors exhibited a relatively low sensitivity to the drug. A-type and B-type receptors also displayed distinctly different reactions to agonists. Both taurine and glycine-activated the B-type receptors, whereas these agents had no detectable effect on A-type receptors. Similarly, beta-alanine evoked large responses from B-type receptors, but was far less effective on A-type receptors. These results indicate that, in addition to the characteristic response properties identified previously, there is a pattern of pharmacological reactions that further distinguishes the A- and B-subtypes of GABA rho receptor.

  2. Pharmacological evidence for a novel cysteinyl-leukotriene receptor subtype in human pulmonary artery smooth muscle

    PubMed Central

    Walch, Laurence; Norel, Xavier; Bäck, Magnus; Gascard, Jean-Pierre; Dahlén, Sven-Erik; Brink, Charles

    2002-01-01

    To characterize the cysteinyl-leukotriene receptors (CysLT receptors) in isolated human pulmonary arteries, ring preparations were contracted with leukotriene C4 (LTC4) and leukotriene D4 (LTD4) in either the absence or presence of the selective CysLT1 receptor antagonists, ICI 198615, MK 571 or the dual CysLT1/CysLT2 receptor antagonist, BAY u9773. Since the contractions induced by the cysteinyl-leukotrienes (cysLTs) in intact preparations failed to attain a plateau response over the concentration range studied, the endothelium was removed and the tissue treated continuously with indomethacin (Rubbed+INDO). In these latter preparations, the pEC50 for LTC4 and LTD4 were not significantly different (7.61±0.07, n=20 and 7.96±0.09, n=22, respectively). However, the LTC4 and LTD4 contractions were markedly potentiated when compared with data from intact tissues. Leukotriene E4 (LTE4) did not contract human isolated pulmonary arterial preparations. In addition, treatment of preparations with LTE4 (1 μM; 30 min) did not modify either the LTC4 or LTD4 contractions. Treatment of preparations with the S-conjugated glutathione (S-hexyl-GSH; 100 μM, 30 min), an inhibitor of the metabolism of LTC4 to LTD4, did not modify LTC4 contractions. The pEC50 values for LTC4 were significantly reduced by treatment of the preparations with either ICI 198615, MK 571 or BAY u9773 and the pKB values were: 7.20, 7.02 and 6.26, respectively. In contrast, these antagonists did not modify the LTD4 pEC50 values. These findings suggest the presence of two CysLT receptors on human pulmonary arterial vascular smooth muscle. A CysLT1 receptor with a low affinity for CysLT1 antagonists and a novel CysLT receptor subtype, both responsible for vasoconstriction. Activation of this latter receptor by LTC4 and LTD4 induced a contractile response which was resistant to the selective CysLT1 antagonists (ICI 198615 and MK 571) as well as the non-selective (CysLT1/CysLT2) antagonist, BAY u9773. PMID

  3. Silencing of the constitutive activity of the dopamine D1B receptor. Reciprocal mutations between D1 receptor subtypes delineate residues underlying activation properties.

    PubMed

    Charpentier, S; Jarvie, K R; Severynse, D M; Caron, M G; Tiberi, M

    1996-11-08

    Recently, we have shown that the dopamine D1B/D5 receptor displays binding and coupling properties that are reminiscent of those of the constitutively activated G protein-coupled receptors when compared with the related D1A/D1 receptor subtype (Tiberi, M., and Caron, M. G. (1994) J. Biol. Chem. 269, 27925-27931). The carboxyl-terminal region of the third cytoplasmic loop of several G protein-coupled receptors has been demonstrated to be important for the regulation of the equilibrium between inactive and active receptor conformations. In this cytoplasmic region, the primary structure of dopamine D1A and D1B receptors differs by only two residues: Phe264/Arg266 are present in D1A receptor compared with Ile288/Lys290 in the D1B receptor. To investigate whether these structural differences could account for the distinct binding and coupling properties of these dopamine receptor subtypes, we swapped the variant residues located in the carboxyl-terminal region by site-directed mutagenesis. The exchange of the D1A receptor residue Phe264 by the D1B receptor counterpart isoleucine led to a D1A receptor mutant exhibiting D1B-like constitutive properties. In contrast, substitution of D1B receptor Ile288 by the D1A receptor counterpart phenylalanine resulted in a loss of constitutive activation of the D1B receptor with binding and coupling properties similar to the D1A receptor. The Arg/Lys substitution had no effect on the function of either receptor. These results demonstrate that the carboxyl-terminal region, and in particular residue Ile288, is a major determinant of the constitutive activity of the dopamine D1B receptor. Moreover, these results establish that not only can agonist-independent activity of a receptor be induced, but when given the appropriate mutation, it can be reversed or silenced.

  4. Interaction of psychoactive tryptamines with biogenic amine transporters and serotonin receptor subtypes

    PubMed Central

    Blough, Bruce E.; Landavazo, Antonio; Decker, Ann M.; Partilla, John S.; Baumann, Michael H.; Rothman, Richard B.

    2014-01-01

    Rationale Synthetic hallucinogenic tryptamines, especially those originally described by Alexander Shulgin, continue to be abused in the United States. The range of subjective experiences produced by different tryptamines suggests that multiple neurochemical mechanisms are involved in their actions, in addition to the established role of agonist activity at serotonin-2A (5-HT2A) receptors. Objectives This study evaluated the interaction of a series of synthetic tryptamines with biogenic amine neurotransmitter transporters and with serotonin (5-HT) receptor subtypes implicated in psychedelic effects. Methods Neurotransmitter transporter activity was determined in rat brain synaptosomes. Receptor activity was determined using calcium mobilization and DiscoveRx PathHunter® assays in HEK293, Gα16-CHO, and CHOk1 cells transfected with human receptors. Results Twenty-one tryptamines were analyzed in transporter uptake and release assays, and 5-HT2A, serotonin 1A (5-HT1A), and 5-HT2A β-arrestin functional assays. Eight of the compounds were found to have 5-HT-releasing activity. Thirteen compounds were found to be 5-HT uptake inhibitors or were inactive. All tryptamines were 5-HT2A agonists with a range of potencies and efficacies, but only a few compounds were 5-HT1A agonists. Most tryptamines recruited β-arrestin through 5-HT2A activation. Conclusions All psychoactive tryptamines are 5-HT2A agonists, but 5-HT transporter (SERT) activity may contribute significantly to the pharmacology of certain compounds. The in vitro transporter data confirm structure-activity trends for releasers and uptake inhibitors whereby releasers tend to be structurally smaller compounds. Interestingly, two tertiary amines were found to be selective substrates at SERT, which dispels the notion that 5-HT-releasing activity is limited only to primary or secondary amines. PMID:24800892

  5. Glucocorticoid-induced fetal programming alters the functional complement of angiotensin receptor subtypes within the kidney.

    PubMed

    Gwathmey, TanYa M; Shaltout, Hossam A; Rose, James C; Diz, Debra I; Chappell, Mark C

    2011-03-01

    We examined the impact of fetal programming on the functional responses of renal angiotensin receptors. Fetal sheep were exposed in utero to betamethasone (BMX; 0.17 mg/kg) or control (CON) at 80 to 81 days gestation with full-term delivery. Renal nuclear and plasma membrane fractions were isolated from sheep age 1.0 to 1.5 years for receptor binding and fluorescence detection of reactive oxygen species (ROS) or nitric oxide (NO). Mean arterial blood pressure and blood pressure variability were significantly higher in the BMX-exposed adult offspring versus CON sheep. The proportion of nuclear AT(1) receptors sensitive to losartan was 2-fold higher (67 ± 6% vs 27 ± 9%; P<0.01) in BMX compared with CON. In contrast, the proportion of AT(2) sites was only one third that of controls (BMX, 25 ± 11% vs CON, 78 ± 4%; P<0.01), with a similar reduction in sites sensitive to the Ang-(1-7) antagonist D-Ala7-Ang-(1-7) with BMX exposure. Functional studies revealed that Ang II stimulated ROS to a greater extent in BMX than in CON sheep (16 ± 3% vs 6 ± 4%; P<0.05); however, NO production to Ang II was attenuated in BMX (26 ± 7% vs 82 ± 14%; P<0.05). BMX exposure was also associated with a reduction in the Ang-(1-7) NO response (75 ± 8% vs 131 ± 26%; P<0.05). We conclude that altered expression of angiotensin receptor subtypes may be one mechanism whereby functional changes in NO- and ROS-dependent signaling pathways may favor the sustained increase in blood pressure evident in fetal programming.

  6. Identification of prostaglandin E2 receptor subtype 2 as a receptor activated by OxPAPC.

    PubMed

    Li, Rongsong; Mouillesseaux, Kevin P; Montoya, Dennis; Cruz, Daniel; Gharavi, Navid; Dun, Martin; Koroniak, Lukasz; Berliner, Judith A

    2006-03-17

    Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC), which has been shown to accumulate in atherosclerotic lesions and other sites of chronic inflammation, activates endothelial cells (EC) to bind monocytes by activation of endothelial beta1 integrin and subsequent deposition of fibronectin on the apical surface. Our previous studies suggest this function of OxPAPC is mediated via a Gs protein-coupled receptor (GPCR). PEIPC (1-palmitoyl-2-epoxyisoprostane E2-sn-glycero-3-phosphorylcholine) is the most active lipid in OxPAPC that activates this pathway. We screened a number of candidate GPCRs for their interaction with OxPAPC and PEIPC, using a reporter gene assay; we identified prostaglandin E2 receptor EP2 and prostaglandin D2 receptor DP as responsive to OxPAPC. We focused on EP2, which is expressed in ECs, monocytes, and macrophages. OxPAPC component PEIPC, but not POVPC, activated EP2 with an EC50 of 108.6 nmol/L. OxPAPC and PEIPC were also able to compete with PGE2 for binding to EP2 in a ligand-binding assay. The EP2 specific agonist butaprost was shown to mimic the effect of OxPAPC on the activation of beta1 integrin and the stimulation of monocyte binding to endothelial cells. Butaprost also mimicked the effect of OxPAPC on the regulation of tumor necrosis factor-alpha and interleukin-10 in monocyte-derived cells. EP2 antagonist AH6809 blocked the activation of EP2 by OxPAPC in HEK293 cells and blocked the interleukin-10 response to PEIPC in monocytic THP-1 cells. These results suggest that EP2 functions as a receptor for OxPAPC and PEIPC, either as the phospholipid ester or the released fatty acid, in both endothelial cells and macrophages.

  7. Comparison of the Binding and Functional Properties of Two Structurally Different D2 Dopamine Receptor Subtype Selective Compounds

    PubMed Central

    2012-01-01

    We previously reported on the synthesis of substituted phenyl-4-hydroxy-1-piperidyl indole analogues with nanomolar affinity at D2 dopamine receptors, ranging from 10- to 100-fold selective for D2 compared to the D3 dopamine receptor subtype. More recently, we evaluated a panel of aripiprazole analogues, identifying several analogues that also exhibit D2 vs D3 dopamine receptor binding selectivity. These studies further characterize the intrinsic efficacy of the compound with the greatest binding selectivity from each chemical class, 1-((5-methoxy-1H-indol-3-yl)methyl)-4-(4-(methylthio)phenyl)piperidin-4-ol (SV 293) and 7-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butoxy)-3,4-dihydroquinolin-2(1H)-one (SV-III-130s), using an adenylyl cyclase inhibition assay, a G-protein-coupled inward-rectifying potassium (GIRK) channel activation assay, and a cell based phospho-MAPK (pERK1/2) assay. SV 293 was found to be a neutral antagonist at D2 dopamine receptors using all three assays. SV-III-130s is a partial agonist using an adenylyl cyclase inhibition assay but an antagonist in the GIRK and phospho ERK1/2 assays. To define the molecular basis for the binding selectivity, the affinity of these two compounds was evaluated using (a) wild type human D2 and D3 receptors and (b) a panel of chimeric D2/D3 dopamine receptors. Computer-assisted modeling techniques were used to dock these compounds to the human D2 and D3 dopamine receptor subtypes. It is hoped that these studies on D2 receptor selective ligands will be useful in the future design of (a) receptor selective ligands used to define the function of D2-like receptor subtypes, (b) novel pharmacotherapeutic agents, and/or (c) in vitro and in vivo imaging agents. PMID:23259040

  8. Systemic and renal effects of an ETA receptor subtype-specific antagonist in healthy subjects

    PubMed Central

    Schmetterer, Leopold; Dallinger, Susanne; Bobr, Barbara; Selenko, Nicole; Eichler, Hans-Georg; Wolzt, Michael

    1998-01-01

    Endothelins (ETs) might play a pathophysiological role in a variety of vascular diseases. The aim of the present study was to characterize the effects of BQ-123, a specific ETA receptor antagonist on systemic and renal haemodynamics in healthy subjects. This was done at baseline and during infusion of exogenous ET-1.The study was performed in a balanced, randomized, placebo-controlled, double blind 4 way cross-over design in 10 healthy male subjects. Subjects received co-infusions of ET-1 (2.5 ng kg−1 min−1 for 120 min) or placebo and BQ-123 (15 μg min−1 for 60 min and subsequently 60 μg min−1 for 60 min) or placebo. Renal plasma flow (RPF) and glomerular filtration rate (GFR) were assessed by the para-aminohippurate (PAH) and the inulin plasma clearance method, respectively.BQ-123 alone had no renal or systemic haemodynamic effect. ET-1 significantly reduced RPF (−24%, P<0.001) and GFR (−12%, P=0.034). These effects were abolished by co-infusion of either dose of BQ-123 (RPF: P=0.0012; GFR: P=0.020).BQ-123 reversed the renal haemodynamic effects induced by exogenous ET-1 in vivo. This indicates that vasoconstriction in the kidney provoked by ET-1 is predominantly mediated by the ETA receptor subtype. PMID:9692778

  9. Characterization of U-97775 as a GABAA receptor ligand of dual functionality in cloned rat GABAA receptor subtypes.

    PubMed Central

    Im, H. K.; Im, W. B.; Pregenzer, J. F.; Carter, D. B.; Jacobsen, E. J.; Hamilton, B. J.

    1995-01-01

    1. U-97775 (tert-butyl 7-chloro-4,5-dihydro-5-[(1-(3,4,5-trimethyl)piperazino)carbonyl]- imidazo[1,5-a])quinoxaline-3-carboxylate) is a novel GABAA receptor ligand of dual functionality and was characterized for its interactions with cloned rat GABAA receptors expressed in human embryonic kidney cells. 2. The drug produced a bell-shaped dose-response profile in the alpha 1 beta 2 gamma 2 receptor subtype as monitored with GABA-induced Cl- currents in the whole cell patch-clamp technique. At low concentrations (< 0.5 microM), U-97775 enhanced the currents with a maximal increase of 120% as normalized to 5 microM GABA response (control). An agonist interaction of U-97775 with the benzodiazepine site is suggested, because Ro 15-1788 (an antagonist at the benzodiazepine site) abolished the current increase and [3H]-flunitrazepam binding was inhibited by U-97775 with a Ki of 1.2 nM. 3. The enhancement of GABA currents progressively disappeared as the U-97775 concentration was raised above 1 microM, and the current amplitude was reduced to 40% below the control at 10 microM U-97775. The current inhibition by U-97775 (10 microM) was not affected by Ro 15-1788. It appears that U-97775 interacts with a second site on GABA receptors, distinct from the benzodiazepine site, to reverse its agonistic activity on the benzodiazepine site and also to inhibit GABA currents. 4. U-97775 at low concentrations reduced and at high concentrations enhanced [35S]-TBPS binding. Ro 15-1788 selectively blocked the effect of U-97775 at low concentrations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7647975

  10. Muscarinic receptor subtypes involved in regulation of colonic motility in mice: functional studies using muscarinic receptor-deficient mice.

    PubMed

    Kondo, Takaji; Nakajima, Miwa; Teraoka, Hiroki; Unno, Toshihiro; Komori, Sei-ichi; Yamada, Masahisa; Kitazawa, Takio

    2011-11-16

    Although muscarinic M(2) and M(3) receptors are known to be important for regulation of gastric and small intestinal motility, muscarinic receptor subtypes regulating colonic function remain to be investigated. The aim of this study was to characterize muscarinic receptors involved in regulation of colonic contractility. M(2) and/or M(3) receptor knockout (KO) and wild-type mice were used in in vivo (defecation, colonic propulsion) and in vitro (contraction) experiments. Amount of feces was significantly decreased in M(3)R-KO and M(2)/M(3)R-KO mice but not in M(2)R-KO mice. Ranking of colonic propulsion was wild-type=M(2)R-KO>M(3)R-KO>M(2)/M(3)R-KO. In vitro, the amplitude of migrating motor complexes in M(2)R-KO, M(3)R-KO and M(2)/M(3)R-KO mice was significantly lower than that in wild-type mice. Carbachol caused concentration-dependent contraction of the proximal colon and distal colon from wild-type mice. In M(2)R-KO mice, the concentration-contraction curves shifted to the right and downward. In contrast, carbachol caused non-sustained contraction and relaxation in M(3)R-KO mice depending on its concentration. Carbachol did not cause contraction but instead caused relaxation of colonic strips from M(2)/M(3)R-KO mice. 4-[[[(3-chlorophenyl)amino]carbonyl]oxy]-N,N,N-trimethyl-2-butyn-1-aminium chloride (McN-A-343) caused a non-sustained contraction of colonic strips from wild-type mice, and this contraction was changed to a sustained contraction by tetrodotoxin, pirenzepine and L-nitroarginine methylester (L-NAME). In the colon of M(2)/M(3)R-KO mice, McN-A-343 caused only relaxation, which was decreased by tetrodotoxin, pirenzepine and L-NAME. In conclusion, M(1), M(2) and M(3) receptors regulate colonic motility of the mouse. M(2) and M(3) receptors mediate cholinergic contraction, but M(1) receptors on inhibitory nitrergic nerves counteract muscarinic contraction.

  11. Contribution of valine 7' of TMD2 to gating of neuronal alpha3 receptor subtypes.

    PubMed

    Nieves-Cintrón, Madeline; Caballero-Rivera, Daniel; Navedo, Manuel F; Lasalde-Dominicci, José A

    2006-12-01

    The second transmembrane domain (TMD2) of the Cys-loop family of ligand-gated ion channels forms the channel pore. The functional role of the amino acid residues contributing to the channel pore in neuronal nicotinic alpha3 receptors is not well understood. We characterized the contribution of TMD2 position V7' to channel gating in neuronal nicotinic alpha3 receptors. Site-directed mutagenesis was used to substitute position alpha3 (V7') with four different amino acids (A, F, S, or Y) and coexpressed each mutant subunit with wild-type (WT) beta2 or beta4 subunits in Xenopus oocytes. Whole-cell voltage clamp experiments show that substitution for an alanine, serine, or phenylalanine decreased by 2.3-6.2-fold the ACh-EC(50) for alpha3beta2 and alpha3beta4 receptor subtypes. Interestingly, mutation V7'Y did not produce a significant change in ACh-EC(50) when coexpressed with the beta2 subunit but showed a significant approximately two-fold increase with beta4. Similar responses were obtained with nicotine as the agonist. The antagonist sensitivity of the mutant channels was assessed by using dihydro-beta-erythroidine (DHbetaE) and methyllycaconitine (MLA). The apparent potency of DHbetaE as an antagonist increased by approximately 3.7- and 11-fold for the alpha3beta2 V7'S and V7'F mutants, respectively, whereas no evident changes in antagonist potency were observed for the V7'A and V7'Y mutants. The V7'S and V7'F mutations increase MLA antagonist potency for the alpha3beta4 receptor by approximately 6.2- and approximately 9.3-fold, respectively. The V7'A mutation selectively increases the MLA antagonist potency for the alpha3beta4 receptor by approximately 18.7-fold. These results indicate that position V7' contributes to channel gating kinetics and pharmacology of the neuronal nicotinic alpha3 receptors.

  12. Nicotinic acetylcholine receptors in dorsal root ganglion neurons include the α6β4* subtype.

    PubMed

    Hone, Arik J; Meyer, Erin L; McIntyre, Melissa; McIntosh, J Michael

    2012-02-01

    The α6-containing nicotinic acetylcholine receptors (nAChRs) have recently been implicated in diseases of the central nervous system (CNS), including Parkinson's disease and substance abuse. In contrast, little is known about the role of α6* nAChRs in the peripheral nervous system (where the asterisk denotes the possible presence of additional subunits). Dorsal root ganglia (DRG) neurons are known to express nAChRs with a pharmacology consistent with an α7, α3β4*, and α4β2* composition. Here we present evidence that DRG neurons also express α6* nAChRs. We used RT-PCR to show the presence of α6 subunit transcripts and patch-clamp electrophysiology together with subtype-selective α-conotoxins to pharmacologically characterize the nAChRs in rat DRG neurons. α-Conotoxin BuIA (500 nM) blocked acetylcholine-gated currents (I(ACh)) by 90.3 ± 3.0%; the recovery from blockade was very slow, indicating a predominance of α(x)β4* nAChRs. Perfusion with either 300 nM BuIA[T5A;P6O] or 200 nM MII[E11A], α-conotoxins that target the α6β4* subtype, blocked I(ACh) by 49.3 ± 5 and 46.7 ± 8%, respectively. In these neurons, I(ACh) was relatively insensitive to 200 nM ArIB[V11L;V16D] (9.4±2.0% blockade) or 500 nM PnIA (23.0±4% blockade), α-conotoxins that target α7 and α3β2*/α6β2* nAChRs, respectively. We conclude that α6β4* nAChRs are among the subtypes expressed by DRG, and to our knowledge, this is the first demonstration of α6β4* in neurons outside the CNS.

  13. Quantitative and functional expression of somatostatin receptor subtypes in human prolactinomas.

    PubMed

    Jaquet, P; Ouafik, L; Saveanu, A; Gunz, G; Fina, F; Dufour, H; Culler, M D; Moreau, J P; Enjalbert, A

    1999-09-01

    Recently, it was demonstrated that somatostatin analogs preferential for the SSTR5 subtype suppress PRL release from prolactinoma cell cultures by 30-40%. These data supported the idea of somatostatin receptor subtype-specific control of PRL secretion in such tumors. The present study examines the quantitative profile of SSTRs messenger ribonucleic acid (mRNA) in 10 PRL-secreting tumors and correlates the expression with the ability of native somatostatins (SS14 and SS28), SSTR2 preferential analogs (octreotide and BIM-23197), and the SSTR5 preferential analog BIM-23268 to suppress PRL secretion. RT-PCR quantitative analysis showed a large predominance of SSTR5 mRNA [5648 +/- 1918 pg/pg glyceraldehyde-3-phosphate dehydrogenase (GAPDH)] vs. SSTR2 mRNA (148 +/- 83 pg/pg GAPDH). The SSTR1 transcript was also highly expressed in prolactinomas (1296 +/- 669 pg/pg GAPDH). SSTR5 mRNA expression correlated with PRL inhibition induced by both SRIF14 and SRIF28. Among the different analogs tested, only BIM-23268 produced inhibition of PRL release similar to that achieved with the native peptides. Its EC50 for PRL suppression was 0.28 +/- 0.10 nmol/L. No additive effects on PRL suppression were achieved by cotreatment of the tumor cells with SSTR2 and SSTR5 preferential analogs. In the same tumor cell cultures, quinagolide, a potent dopamine agonist, produced a dose-dependent inhibition of PRL with an EC50 at least 10 times lower than that of BIM-23268. Coincubation of quinagolide and BIM-23268, particularly in tumor cells resistant to dopamine agonist treatment, did not produce additive effects on PRL suppression. In conclusion, prolactinomas have a specific pattern of SSTR subtype mRNA expression (SSTR5 and SSTR1). SSTR5 expression is correlated to PRL regulation. These inhibitory effects are superimposable, at a higher concentration, to those of the dopamine agonists, but are not additive, particularly in the adenomas resistant to dopaminergic suppression of PRL release.

  14. Angiotensin II receptor subtypes are coupled with distinct signal-transduction mechanisms in neurons and astrocytes from rat brain

    SciTech Connect

    Sumners, C.; Wei Tang; Zelezna, B.; Raizada, M.K. )

    1991-09-01

    Both neurons and astrocytes contain specific receptors for angiotensin II (AII). The authors used selective ligands for the AT{sub 1} and AT{sub 2} types of AII receptors to investigate the expression of functional receptor subtypes in astrocyte cultures and neuron cultures from 1-day-old (neonatal) rat brain. In astrocyte cultures, competition of {sup 125}I-labeled AII ({sup 125}I-AII) specific binding with AT{sub 1} (DuP753) or AT{sub 2} {l brace}PD123177, CGP42112A, (Phe(p-NH{sub 2}){sup 6})AII{r brace} selective receptor ligands revealed a potency series of AII > DuP753 > > > CGP42112A > (Phe(p-NH{sub 2}){sup 6})AII > PD123177. These results suggest a predominance of the AT{sub 1} receptor subtype in neonatal astrocytes. {sup 125}I-AII specific binding to neonate neuronal cultures was reduced 73-84% by 1 {mu} MPD123177, and the residual {sup 125}I-AII specific binding was eliminated by DuP753. The results suggest that astrocyte cultures from neonatal rat brains contain predominantly AT{sub 1} receptors that are coupled to a stimulation of inositophospholipid hydrolysis. In contrast, neuron cultures from neonatal rat brain contain mostly AT{sub 2} receptors that are coupled to a reduction in basal cGMP levels, but a smaller population of AT{sub 1} receptors is also present in these neurons.

  15. M1 and m2 muscarinic receptor subtypes regulate antidepressant-like effects of the rapidly acting antidepressant scopolamine.

    PubMed

    Witkin, J M; Overshiner, C; Li, X; Catlow, J T; Wishart, G N; Schober, D A; Heinz, B A; Nikolayev, A; Tolstikov, V V; Anderson, W H; Higgs, R E; Kuo, M-S; Felder, C C

    2014-11-01

    Scopolamine produces rapid and significant symptom improvement in patients with depression, and most notably in patients who do not respond to current antidepressant treatments. Scopolamine is a nonselective muscarinic acetylcholine receptor antagonist, and it is not known which one or more of the five receptor subtypes in the muscarinic family are mediating these therapeutic effects. We used the mouse forced-swim test, an antidepressant detecting assay, in wild-type and transgenic mice in which each muscarinic receptor subtype had been genetically deleted to define the relevant receptor subtypes. Only the M1 and M2 knockout (KO) mice had a blunted response to scopolamine in the forced-swim assay. In contrast, the effects of the tricyclic antidepressant imipramine were not significantly altered by gene deletion of any of the five muscarinic receptors. The muscarinic antagonists biperiden, pirenzepine, and VU0255035 (N-[3-oxo-3-[4-(4-pyridinyl)-1-piper azinyl]propyl]-2,1,3-benzothiadiazole-4-sulfonamide) with selectivity for M1 over M2 receptors also demonstrated activity in the forced-swim test, which was attenuated in M1 but not M2 receptor KO mice. An antagonist with selectivity of M2 over M1 receptors (SCH226206 [(2-amino-3-methyl-phenyl)-[4-[4-[[4-(3 chlorophenyl)sulfonylphenyl]methyl]-1-piperidyl]-1-piperidyl]methanone]) was also active in the forced-swim assay, and the effects were deleted in M2 (-/-) mice. Brain exposure and locomotor activity in the KO mice demonstrated that these behavioral effects of scopolamine are pharmacodynamic in nature. These data establish muscarinic M1 and M2 receptors as sufficient to generate behavioral effects consistent with an antidepressant phenotype and therefore as potential targets in the antidepressant effects of scopolamine.

  16. Identification of muscarinic receptor subtypes involved in catecholamine secretion in adrenal medullary chromaffin cells by genetic deletion

    PubMed Central

    Harada, Keita; Matsuoka, Hidetada; Miyata, Hironori; Matsui, Minoru; Inoue, Masumi

    2015-01-01

    Background and Purpose Activation of muscarinic receptors results in catecholamine secretion in adrenal chromaffin cells in many mammals, and muscarinic receptors partly mediate synaptic transmission from the splanchnic nerve, at least in guinea pigs. To elucidate the physiological functions of muscarinic receptors in chromaffin cells, it is necessary to identify the muscarinic receptor subtypes involved in excitation. Experimental Approach To identify muscarinic receptors, pharmacological tools and strains of mice where one or several muscarinic receptor subtypes were genetically deleted were used. Cellular responses to muscarinic stimulation in isolated chromaffin cells were studied with the patch clamp technique and amperometry. Key Results Muscarinic M1, M4 and M5 receptors were immunologically detected in mouse chromaffin cells, and these receptors disappeared after the appropriate gene deletion. Mouse cells secreted catecholamines in response to muscarinic agonists, angiotensin II and a decrease in external pH. Genetic deletion of M1, but not M3, M4 or M5, receptors in mice abolished secretion in response to muscarine, but not to other stimuli. The muscarine-induced secretion was suppressed by MT7, a snake peptide toxin specific for M1 receptors. Similarly, muscarine failed to induce an inward current in the presence of MT7 in mouse and rat chromaffin cells. The binding affinity of VU0255035 for the inhibition of muscarine-induced currents agreed with that for the M1 receptor. Conclusions and Implications Based upon the effects of genetic deletion of muscarinic receptors and MT7, it is concluded that the M1 receptor alone is responsible for muscarine-induced catecholamine secretion. PMID:25393049

  17. Receptor Subtype-Dependent Galanin Actions on GABAergic Neurotransmission and Ethanol Responses in the Central Amygdala

    PubMed Central

    Bajo, Michal; Madamba, Samuel G.; Lu, Xiaoying; Sharkey, Lisa M.; Bartfai, Tamas; Siggins, George Robert

    2011-01-01

    The neuropeptide galanin and its three receptor subtypes (GalR1–3) are expressed in the central amygdala (CeA), a brain region involved in stress- and anxiety-related behaviors, as well as alcohol dependence. Galanin also has been suggested to play a role in alcohol intake and alcohol dependence. We examined the effects of galanin in CeA slices from wild type (WT) and knockout (KO) mice deficient of GalR2 and both GalR1 and GalR2 receptors. Galanin had dual effects on GABAergic transmission, decreasing the amplitudes of pharmacologically-isolated GABAergic inhibitory postsynaptic potentials (IPSPs) in over half of CeA neurons but augmenting IPSPs in the others. The increase in IPSP size was absent after superfusion of the GalR3 antagonist SNAP 37889, whereas the IPSP depression was absent in CeA neurons of GalR1 × GalR2 double KO and GalR2 KO mice. Paired-pulse facilitation studies showed weak or infrequent effects of galanin on GABA release. Thus, galanin may act postsynaptically through GalR3 to augment GABAergic transmission in some CeA neurons, whereas GalR2 receptors likely are involved in the depression of IPSPs. Co-superfusion of ethanol, which augments IPSPs presynaptically, together with galanin caused summated effects of ethanol and galanin in those CeA neurons showing galanin-augmented IPSPs, suggesting the two agents act via different mechanisms in this population. However, in neurons showing IPSP-diminishing galanin effects, galanin blunted the ethanol effects, suggesting a preemptive effect of galanin. These findings may increase understanding of the complex cellular mechanisms that underlie the anxiety-related behavioral effects of galanin and ethanol in CeA. PMID:21955024

  18. Prostaglandin E2 Receptor Subtype 2 Regulation of Scavenger Receptor CD36 Modulates Microglial Aβ42 Phagocytosis

    PubMed Central

    Li, Xianwu; Melief, Erica; Postupna, Nadia; Montine, Kathleen S.; Keene, C. Dirk; Montine, Thomas J.

    2016-01-01

    Recent studies underline the potential relevance of microglial innate immune activation in Alzheimer disease. Primary mouse microglia that lack prostaglandin E2 receptor subtype 2 (EP2) show decreased innate immune-mediated neurotoxicity and increased amyloid β (Aβ) peptide phagocytosis, features that were replicated in vivo. Here, we tested the hypothesis that scavenger receptor CD36 is an effector of EP2-regulated Aβ phagocytosis. CD36 expression was 143-fold greater in mouse primary microglia than in primary astrocytes. Three different means of suppressing EP2 signaling increased and an agonist of EP2 decreased CD36 expression in primary wild-type microglia. Activation of Toll-like receptor (TLR) 3, TLR4, and TLR7, but not TLR2 or TLR9, reduced primary microglial CD36 transcription and cell surface CD36 protein and reduced Aβ42 phagocytosis as well. At each step, the effects of innate immune activation on CD36 were reversed by at least 50% by an EP2 antagonist, and this partial rescue of microglia Aβ42 phagocytosis was largely mediated by CD36 activity. Finally, we showed in hippocampus of wild-type mice that innate immune activation suppressed CD36 expression by an EP2-dependent mechanism. Taken together with results of others that found brain clearance of Aβ peptides and behavioral improvements mediated by CD36 in mice, regulation of CD36-mediated Aβ phagocytosis by suppression of EP2 signaling may provide a new approach to suppressing some aspects of Alzheimer disease pathogenesis. PMID:25452117

  19. An evolutionary comparison of leucine-rich repeat containing G protein-coupled receptors reveals a novel LGR subtype.

    PubMed

    Van Hiel, Matthias B; Vandersmissen, Hans Peter; Van Loy, Tom; Vanden Broeck, Jozef

    2012-03-01

    Leucine-rich repeat containing G protein-coupled receptors or LGRs are receptors with important functions in development and reproduction. Belonging to this evolutionarily conserved group of receptors are the well-studied glycoprotein hormone receptors and relaxin receptors in mammals, as well as the bursicon receptor, which triggers cuticle hardening and tanning in freshly enclosed insects. In this study, the numerous LGR sequences in different animal phyla are analyzed and compared. Based on these data a phylogenetic tree was generated. This information sheds new light on structural and evolutionary aspects regarding this receptor group. Apart from vertebrates and insects, LGRs are also present in early chordates (Urochordata, Cephalochordata and Hyperoartia) and other arthropods (Arachnida and Branchiopoda) as well as in Mollusca, Echinodermata, Hemichordata, Nematoda, and even in ancient animal life forms, such as Cnidaria and Placozoa. Three distinct types of LGR exist, distinguishable by their number of leucine-rich repeats (LRRs), their type-specific hinge region and the presence or absence of an LDLa motif. Type C LGRs containing only one LDLa (C1 subtype) appear to be present in nearly all animal phyla. We here describe a second subtype, C2, containing multiple LDLa motifs, which was discovered in echinoderms, mollusks and in one insect species (Pediculus humanis corporis). In addition, eight putative LGRs can be predicted from the genome data of the placozoan species Trichoplax adhaerens. They may represent an ancient form of the LGRs, however, more genomic data will be required to confirm this hypothesis.

  20. Analgesia and unwanted benzodiazepine effects in point-mutated mice expressing only one benzodiazepine-sensitive GABAA receptor subtype.

    PubMed

    Ralvenius, William T; Benke, Dietmar; Acuña, Mario A; Rudolph, Uwe; Zeilhofer, Hanns Ulrich

    2015-04-13

    Agonists at the benzodiazepine-binding site of GABAA receptors (BDZs) enhance synaptic inhibition through four subtypes (α1, α2, α3 and α5) of GABAA receptors (GABAAR). When applied to the spinal cord, they alleviate pathological pain; however, insufficient efficacy after systemic administration and undesired effects preclude their use in routine pain therapy. Previous work suggested that subtype-selective drugs might allow separating desired antihyperalgesia from unwanted effects, but the lack of selective agents has hitherto prevented systematic analyses. Here we use four lines of triple GABAAR point-mutated mice, which express only one benzodiazepine-sensitive GABAAR subtype at a time, to show that targeting only α2GABAARs achieves strong antihyperalgesia and reduced side effects (that is, no sedation, motor impairment and tolerance development). Additional pharmacokinetic and pharmacodynamic analyses in these mice explain why clinically relevant antihyperalgesia cannot be achieved with nonselective BDZs. These findings should foster the development of innovative subtype-selective BDZs for novel indications such as chronic pain.

  1. Metabotropic glutamate subtype 5 receptors modulate fear-conditioning induced enhancement of prepulse inhibition in rats.

    PubMed

    Zou, Dan; Huang, Juan; Wu, Xihong; Li, Liang

    2007-02-01

    Non-startling acoustic events presented shortly before an intense startling sound can inhibit the acoustic startle reflex. This phenomenon is called prepulse inhibition (PPI), and is widely used as a model of sensorimotor gating. The present study investigated whether PPI can be modulated by fear conditioning, whose acquisition can be blocked by the specific antagonist of metabotropic glutamate receptors subtype 5 (mGluR5), 2-methyl-6-(phenylethynyl)-pyridine (MPEP). The results show that a gap embedded in otherwise continuous noise sounds, which were delivered by two spatially separated loudspeakers, could inhibit the startle reflex induced by an intense sound that was presented 50 ms after the gap. The inhibitory effect depended on the duration of the gap, and was enhanced by fear conditioning that was introduced by temporally pairing the gap with footshock. Intraperitoneal injection of MPEP (0.5 or 5mg/kg) 30 min before fear conditioning blocked the enhancing effect of fear conditioning on PPI, but did not affect either the baseline startle magnitude or PPI if no fear conditioning was introduced. These results indicate that PPI is enhanced when the prepulse signifies an aversive event after fear conditioning. Also, mGlu5Rs play a role in preserving the fear-conditioning-induced enhancement of PPI.

  2. Regulation of body temperature and brown adipose tissue thermogenesis by bombesin receptor subtype-3.

    PubMed

    Lateef, Dalya M; Abreu-Vieira, Gustavo; Xiao, Cuiying; Reitman, Marc L

    2014-03-01

    Bombesin receptor subtype-3 (BRS-3) regulates energy homeostasis, with Brs3 knockout (Brs3(-/y)) mice being hypometabolic, hypothermic, and hyperphagic and developing obesity. We now report that the reduced body temperature is more readily detected if body temperature is analyzed as a function of physical activity level and light/dark phase. Physical activity level correlated best with body temperature 4 min later. The Brs3(-/y) metabolic phenotype is not due to intrinsically impaired brown adipose tissue function or in the communication of sympathetic signals from the brain to brown adipose tissue, since Brs3(-/y) mice have intact thermogenic responses to stress, acute cold exposure, and β3-adrenergic activation, and Brs3(-/y) mice prefer a cooler environment. Treatment with the BRS-3 agonist MK-5046 increased brown adipose tissue temperature and body temperature in wild-type but not Brs3(-/y) mice. Intrahypothalamic infusion of MK-5046 increased body temperature. These data indicate that the BRS-3 regulation of body temperature is via a central mechanism, upstream of sympathetic efferents. The reduced body temperature in Brs3(-/y) mice is due to altered regulation of energy homeostasis affecting higher center regulation of body temperature, rather than an intrinsic defect in brown adipose tissue.

  3. Predictive In Silico Studies of Human 5-hydroxytryptamine Receptor Subtype 2B (5-HT2B) and Valvular Heart Disease

    PubMed Central

    Reid, Terry-Elinor; Kumar, Krishna

    2014-01-01

    Serotonin (5-HT) receptors are neuromodulator neurotransmitter receptors which when activated generate a signal transduction pathway within cells resulting in cell-cell communication. 5-hydroxytryptamine (serotonin) receptor 2B (5-HT2B) is a subtype of the seven members of 5-hydroxytrytamine (5-HT) family of receptors which is the largest member of the super family of 7-transmembrane G-protein coupled receptors (GPCRs). Not only do 5-HT receptors play physiological roles in the cardiovascular system, gastrointestinal and endocrine function and the central nervous, but they also play a role in behavioral functions. In particular 5-HT2B receptor is wide spread with regards to its distribution throughout bodily tissues and is expressed at high levels in the lungs, peripheral tissues, liver, kidney and prostate just to name a few. Hence 5-HT2B participates in multiple biological functions including CNS regulation, regulation of gastrointestinal motality, cardiovascular regulation and 5-HT transport system regulation. While 5-HT2B is a viable drug target and has therapeutic indications for treating obesity, psychotherapy, Parkinson’s disease etc. there is a growing concern regarding adverse drug reactions, specifically valvulopathy associated with 5-HT2B agonists. Due to the sequence homology experienced by 5-HT2 subtypes there is also a concern regarding the off target effects of 5-HT2A and 5-HT2C agonists. The concept of subtype selectivity is of paramount importance and can be tackled with the aid of in silico studies, specifically cheminformatics, to develop models to predict valvulopathy associated toxicity of drug candidates prior to clinical trials. This review has highlighted three in silico approaches thus far that have been successful in either predicting 5-HT2B toxicity of molecules or identifying important interactions between 5-HT2B and drug molecules that bring about valvulopathy related toxicities. PMID:23675941

  4. The muscarinic acetylcholine receptor agonist BuTAC mediates antipsychotic-like effects via the M4 subtype.

    PubMed

    Watt, Marla L; Rorick-Kehn, Linda; Shaw, David B; Knitowski, Karen M; Quets, Anne T; Chesterfield, Amy K; McKinzie, David L; Felder, Christian C

    2013-12-01

    The generation of muscarinic acetylcholine receptor (mAChR) subtype-selective compounds has been challenging, requiring use of nonpharmacological approaches, such as genetically engineered animals, to deepen our understanding of the potential that members of the muscarinic receptor subtype family hold as therapeutic drug targets. The muscarinic receptor agonist 'BuTAC' was previously shown to exhibit efficacy in animal models of psychosis, although the particular receptor subtype(s) responsible for such activity was unclear. Here, we evaluate the in vitro functional agonist and antagonist activity of BuTAC using an assay that provides a direct measure of G protein activation. In addition, we employ the conditioned avoidance response paradigm, an in vivo model predictive of antipsychotic activity, and mouse genetic deletion models to investigate which presynaptic mAChR subtype mediates the antipsychotic-like effects of BuTAC. Our results show that, in vitro, BuTAC acts as a full agonist at the M2AChR and a partial agonist at the M1 and M4 receptors, with full antagonist activity at M3- and M5AChRs. In the mouse conditioned avoidance response (CAR) assay, BuTAC exhibits an atypical antipsychotic-like profile by selectively decreasing avoidance responses at doses that do not induce escape failures. CAR results using M2(-/-), M4(-/-), and M2/M4 (M2/M4(-/-)) mice found that the effects of BuTAC were near completely lost in M2/M4(-/-) double-knockout mice and potency of BuTAC was right-shifted in M4(-/-) as compared with wild-type and M2(-/-) mice. The M2/M4(-/-) mice showed no altered sensitivity to the antipsychotic effects of either haloperidol or clozapine, suggesting that these compounds mediate their actions in CAR via a non-mAChR-mediated mechanism. These data support a role for the M4AChR subtype in mediating the antipsychotic-like activity of BuTAC and implicate M4AChR agonism as a potential novel therapeutic mechanism for ameliorating symptoms associated with

  5. Role of specific muscarinic receptor subtypes in cholinergic parasympathomimetic responses, in vivo phosphoinositide hydrolysis, and pilocarpine-induced seizure activity.

    PubMed

    Bymaster, Frank P; Carter, Petra A; Yamada, Masahisa; Gomeza, Jesus; Wess, Jürgen; Hamilton, Susan E; Nathanson, Neil M; McKinzie, David L; Felder, Christian C

    2003-04-01

    Muscarinic agonist-induced parasympathomimetic effects, in vivo phosphoinositide hydrolysis and seizures were evaluated in wild-type and muscarinic M1-M5 receptor knockout mice. The muscarinic agonist oxotremorine induced marked hypothermia in all the knockout mice, but the hypothermia was reduced in M2 and to a lesser extent in M3 knockout mice. Oxotremorine-induced tremor was abolished only in the M2 knockout mice. Muscarinic agonist-induced salivation was reduced to the greatest extent in M3 knockout mice, to a lesser degree in M1 and M4 knockout mice, and was not altered in M2 and M5 knockout mice. Pupil diameter under basal conditions was increased only in the M3 knockout mice. Pilocarpine-induced increases in in vivo phosphoinositide hydrolysis were completely absent in hippocampus and cortex of M1 knockout mice, but in vivo phosphoinositide hydrolysis was unaltered in the M2-M5 knockout mice. A high dose of pilocarpine (300 mg/kg) caused seizures and lethality in wild-type and M2-M5 knockout mice, but produced neither effect in the M1 knockout mice. These data demonstrate a major role for M2 and M3 muscarinic receptor subtypes in mediating parasympathomimetic effects. Muscarinic M1 receptors activate phosphoinositide hydrolysis in cortex and hippocampus of mice, consistent with the role of M1 receptors in cognition. Muscarinic M1 receptors appear to be the only muscarinic receptor subtype mediating seizures.

  6. Serotonin receptor subtypes required for ventilatory long-term facilitation and its enhancement after chronic intermittent hypoxia in awake rats.

    PubMed

    McGuire, Michelle; Zhang, Yi; White, David P; Ling, Liming

    2004-02-01

    Respiratory long-term facilitation (LTF), a serotonin-dependent, persistent augmentation of respiratory activity after episodic hypoxia, is enhanced by pretreatment of chronic intermittent hypoxia (CIH; 5 min 11-12% O2-5 min air, 12 h/night for 7 nights). The present study examined the effects of methysergide (serotonin 5-HT1,2,5,6,7 receptor antagonist), ketanserin (5-HT2 antagonist), or clozapine (5-HT2,6,7 antagonist) on both ventilatory LTF and the CIH effect on ventilatory LTF in conscious male adult rats to determine which specific receptor subtype(s) is involved. In untreated rats (i.e., animals not exposed to CIH), LTF, induced by five episodes of 5-min poikilocapnic hypoxia (10% O2) separated by 5-min normoxic intervals, was measured twice by plethysmography. Thus the measurement was conducted 1-2 days before (as control) and approximately 1 h after systemic injection of methysergide (1 mg/kg ip), ketanserin (1 mg/kg), or clozapine (1.5 mg/kg). Resting ventilation, metabolic rate, and hypoxic ventilatory response (HVR) were unchanged, but LTF ( approximately 18% above baseline) was eliminated by each drug. In CIH-treated rats, LTF was also measured twice, before and approximately 8 h after CIH. Vehicle, methysergide, ketanserin, or clozapine was injected approximately 1 h before the second measurement. Neither resting ventilation nor metabolic rate was changed after CIH and/or any drug. HVR was unchanged after methysergide and ketanserin but reduced in four of seven clozapine rats. The CIH-enhanced LTF ( approximately 28%) was abolished by methysergide and clozapine but only attenuated by ketanserin (to approximately 10%). Collectively, these data suggest that ventilatory LTF requires 5-HT2 receptors and that the CIH effect on LTF requires non-5-HT2 serotonin receptors, probably 5-HT6 and/or 5-HT7 subtype(s).

  7. Butyrate modulates the expression of. beta. -adrenergic receptor subtype in 3T3-L1 cells

    SciTech Connect

    Poksay, K.S.; Nakada, M.T.; Crooke, S.T.; Stadel, J.M.

    1986-03-05

    In mouse 3T3-L1 fibroblasts, the glucocorticoid dexamethasone (dex) affects a switch in ..beta..-adrenergic receptor (..beta..AR) subtype expression from ..beta../sub 1/AR to ..beta../sub 2/AR and increases total ..beta..AR number. They now demonstrate a similar effect by sodium butyrate (B) and find that the combined effect of these two gene-activating agents is greater than additive suggesting different mechanisms of action on the ..beta..AR. ..beta..AR are assayed in membranes prepared from 3T3-L1 cells using the radiolabeled ..beta..AR-specific antagonist (/sup 125/I)-cyanopindolol. ..beta..AR subtype is determined by competition binding of the ..beta../sub 2/AR-selective antagonist ICI 118.551 for the radioligand. B (2-10mM) causes a dose-dependent increase in total ..beta..AR number (up to 2-fold over control) and the proportion of ..beta../sub 2/AR. B (5mM) causes a time-dependent increase in total ..beta..AR number (2-fold) and the proportion of ..beta../sub 2/AR up to 24 hr. Dex maximally increases total ..beta..AR number (2-fold) when treated for 48 hr at concentrations greater than or equal to 100nM. B (2 or 5mM) together with dex (250nM) have a greater than additive effect on total ..beta..AR number at 24 hr (1.7-fold) and at 48 hr (1.4-2.4-fold, using 5 or 10mM B and dex greater than or equal to 10nM). The proportion of ..beta../sub 2/AR is also greater when both compounds are added together. In comparison with proprionate and valerate, B increases total ..beta..AR number and the proportion of ..beta../sub 2/AR to a greater extent and at lower concentrations. To determine a functional correlate to these findings, cells were pre-treated for 48 hr with B and/or dex, intracellular ATP labeled with /sup 3/H-adenine, followed by treatment with forskolin (10..mu..M) and ..beta..AR agonists. B caused a dramatic increase in /sup 3/H-cAMP produced compared to control and dex treatments and a greater than additive effect was again achieved when B and dex were

  8. Dynamic Regulation of Quaternary Organization of the M1 Muscarinic Receptor by Subtype-selective Antagonist Drugs.

    PubMed

    Pediani, John D; Ward, Richard J; Godin, Antoine G; Marsango, Sara; Milligan, Graeme

    2016-06-17

    Although rhodopsin-like G protein-coupled receptors can exist as both monomers and non-covalently associated dimers/oligomers, the steady-state proportion of each form and whether this is regulated by receptor ligands are unknown. Herein we address these topics for the M1 muscarinic acetylcholine receptor, a key molecular target for novel cognition enhancers, by using spatial intensity distribution analysis. This method can measure fluorescent particle concentration and assess oligomerization states of proteins within defined regions of living cells. Imaging and analysis of the basolateral surface of cells expressing some 50 molecules·μm(-2) human muscarinic M1 receptor identified a ∼75:25 mixture of receptor monomers and dimers/oligomers. Both sustained and shorter term treatment with the selective M1 antagonist pirenzepine resulted in a large shift in the distribution of receptor species to favor the dimeric/oligomeric state. Although sustained treatment with pirenzepine also resulted in marked up-regulation of the receptor, simple mass action effects were not the basis for ligand-induced stabilization of receptor dimers/oligomers. The related antagonist telenzepine also produced stabilization and enrichment of the M1 receptor dimer population, but the receptor subtype non-selective antagonists atropine and N-methylscopolamine did not. In contrast, neither pirenzepine nor telenzepine altered the quaternary organization of the related M3 muscarinic receptor. These data provide unique insights into the selective capacity of receptor ligands to promote and/or stabilize receptor dimers/oligomers and demonstrate that the dynamics of ligand regulation of the quaternary organization of G protein-coupled receptors is markedly more complex than previously appreciated. This may have major implications for receptor function and behavior.

  9. Dynamic Regulation of Quaternary Organization of the M1 Muscarinic Receptor by Subtype-selective Antagonist Drugs*

    PubMed Central

    Pediani, John D.; Ward, Richard J.; Godin, Antoine G.; Marsango, Sara

    2016-01-01

    Although rhodopsin-like G protein-coupled receptors can exist as both monomers and non-covalently associated dimers/oligomers, the steady-state proportion of each form and whether this is regulated by receptor ligands are unknown. Herein we address these topics for the M1 muscarinic acetylcholine receptor, a key molecular target for novel cognition enhancers, by using spatial intensity distribution analysis. This method can measure fluorescent particle concentration and assess oligomerization states of proteins within defined regions of living cells. Imaging and analysis of the basolateral surface of cells expressing some 50 molecules·μm−2 human muscarinic M1 receptor identified a ∼75:25 mixture of receptor monomers and dimers/oligomers. Both sustained and shorter term treatment with the selective M1 antagonist pirenzepine resulted in a large shift in the distribution of receptor species to favor the dimeric/oligomeric state. Although sustained treatment with pirenzepine also resulted in marked up-regulation of the receptor, simple mass action effects were not the basis for ligand-induced stabilization of receptor dimers/oligomers. The related antagonist telenzepine also produced stabilization and enrichment of the M1 receptor dimer population, but the receptor subtype non-selective antagonists atropine and N-methylscopolamine did not. In contrast, neither pirenzepine nor telenzepine altered the quaternary organization of the related M3 muscarinic receptor. These data provide unique insights into the selective capacity of receptor ligands to promote and/or stabilize receptor dimers/oligomers and demonstrate that the dynamics of ligand regulation of the quaternary organization of G protein-coupled receptors is markedly more complex than previously appreciated. This may have major implications for receptor function and behavior. PMID:27080256

  10. Receptor mimicry by antibody F045–092 facilitates universal binding to the H3 subtype of influenza virus

    SciTech Connect

    Lee, Peter S.; Ohshima, Nobuko; Stanfield, Robyn L.; Yu, Wenli; Iba, Yoshitaka; Okuno, Yoshinobu; Kurosawa, Yoshikazu; Wilson, Ian A.

    2014-04-10

    Influenza viruses present a significant health challenge each year, as in the H3N2 epidemic of 2012–2013. Here we describe an antibody, F045–092, that possesses broadly neutralizing activity against the entire H3 subtype and accommodates the natural variation and additional glycosylation in all strains tested from 1963 to 2011. Crystal structures of F045–092 in complex with HAs from 1975 and 2011 H3N2 viruses reveal the structural basis for its neutralization breadth through insertion of its 23-residue HCDR3 into the receptor-binding site that involves striking receptor mimicry. F045–092 extends its recognition to divergent subtypes, including H1, H2 and H13, using the enhanced avidity of its IgG to overcome lower-affinity Fab binding, as observed with other antibodies that target the receptor-binding site. This unprecedented level of antibody cross-reactivity against the H3 subtype can potentially inform on development of a pan-H3 vaccine or small-molecule therapeutics.

  11. Functional properties of a cloned 5-hydroxytryptamine ionotropic receptor subunit: comparison with native mouse receptors.

    PubMed Central

    Hussy, N; Lukas, W; Jones, K A

    1994-01-01

    1. A comparative study of the whole-cell and single-channel properties of cloned and native mouse 5-hydroxytryptamine ionotropic receptors (5-HT3) was undertaken using mammalian cell lines expressing the cloned 5-HT3 receptor subunit A (5-HT3R-A), superior cervical ganglia (SCG) neurones and N1E-115 cells. 2. No pharmacological difference was found in the sensitivity to the agonists 5-HT and 2-methyl-5-HT, or to the antagonists d-tubocurare and 3-tropanyl-3,5-dichlorobenzoate (MDL-72222). 3. Current-voltage (I-V) relationships of whole-cell currents showed inward rectification in the three preparations. Rectification was stronger both in cells expressing the 5-HT3R-A subunit and in N1E-115 cells when compared with SCG neurones. 4. No clear openings could be resolved in 5-HT-activated currents in patches excised from cells expressing the 5-HT3R-A subunit or N1E-115 cells. Current fluctuation analysis of whole-cell and excised-patch records revealed a slope conductance of 0.4-0.6 pS in both preparations. Current-voltage relationships of these channels showed strong rectification that fully accounted for the whole-cell voltage dependence. 5. In contrast, single channels of about 10 pS were activated by 5-HT in patches excised from SCG neurones. The weak voltage dependence of their conductance did not account completely for the rectification of whole-cell currents. A lower unitary conductance (3.4 pS) was inferred from whole-cell noise analysis. 6. We conclude that the receptor expressed from the cloned cDNA is indistinguishable from the 5-HT3 receptor of N1E-115 cells, suggesting an identical structure for these two receptors. The higher conductance and different voltage dependence of the 5-HT3 receptor in SCG neurones might indicate the participation of an additional subunit in the structure of native ganglionic 5-HT3 receptors. Homo-oligomeric 5-HT3R-A channels may also be present as suggested by the lower conductance estimated by whole-cell noise analysis. PMID

  12. Activation and modulation of recombinantly expressed serotonin receptor type 3A by terpenes and pungent substances.

    PubMed

    Ziemba, Paul M; Schreiner, Benjamin S P; Flegel, Caroline; Herbrechter, Robin; Stark, Timo D; Hofmann, Thomas; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2015-11-27

    Serotonin receptor type 3 (5-HT3 receptor) is a ligand-gated ion channel that is expressed in the central nervous system (CNS) as well as in the peripheral nervous system (PNS). The receptor plays an important role in regulating peristalsis of the gastrointestinal tract and in functions such as emesis, cognition and anxiety. Therefore, a variety of pharmacologically active substances target the 5-HT3 receptor to treat chemotherapy-induced nausea and vomiting. The 5-HT3 receptors are activated, antagonized, or modulated by a wide range of chemically different substances, such as 2-methyl-serotonin, phenylbiguanide, setrones, or cannabinoids. Whereas the action of all of these substances is well described, less is known about the effect of terpenoids or fragrances on 5-HT3A receptors. In this study, we screened a large number of natural odorous and pungent substances for their pharmacological action on recombinantly expressed human 5-HT3A receptors. The receptors were functionally expressed in Xenopus oocytes and characterized by electrophysiological recordings using the two-electrode voltage-clamp technique. A screening of two odorous mixes containing a total of 200 substances revealed that the monoterpenes, thymol and carvacrol, act as both weak partial agonists and positive modulators on the 5-HT3A receptor. In contrast, the most effective blockers were the terpenes, citronellol and geraniol, as well as the pungent substances gingerol, capsaicin and polygodial. In our study, we identified new modulators of 5-HT3A receptors out of the classes of monoterpenes and vanilloid substances that frequently occur in various plants.

  13. Muscarinic acetylcholine receptor subtypes which selectively couple to phospholipase C: Pharmacological and biochemical properties

    SciTech Connect

    Buck, M.A.; Fraser, C.M. )

    1990-12-14

    The pharmacological and biochemical properties of rat m1 and m3 muscarinic acetylcholine receptors (mAChR) stably transfected into Chinese hamster ovary-K1 (CHO) cells were characterized with ligand binding, affinity labeling and biochemical assays. Both mAChR subtypes display saturable, high affinity binding of (3H)-quinuclidinyl benzilate (QNB) and a rank order of antagonist potency of QNB greater than atropine greater than pirenzepine greater than AF-DX 116. Carbachol displacement of (3H)-QNB binding to the m3 mAChR revealed an approximate 17-fold higher affinity than observed with the m1 mAChR. (3H)-propylbenzilylcholine mustard (PrBCM) labeling of mAChR revealed that m1 and m3 mAChR migrated on SDS-polyacrylamide gels with apparent molecular masses of 80,000 and 94,000 daltons, respectively, consistent with the known differences in their molecular sizes. Both m1 and m3 mAChR elicited dose-dependent increases in the hydrolysis of phosphoinositides; however, the maximal increase in total inositol phosphates elicited with the m1 mAChR was approximately 2-fold greater than that observed in cells expressing similar densities of m3 mAChR. Agonist activation of the m1 mAChR also elicited increases in basal and forskolin-stimulated cAMP, whereas the m3 mAChR had no effect on intracellular cAMP levels. These data suggest that although m1 and m3 mAChR display a considerable degree of structural homology, they exhibit distinct pharmacological and biochemical properties.

  14. Negative Allosteric Modulators of Metabotropic Glutamate Receptors Subtype 5 in Addiction: a Therapeutic Window

    PubMed Central

    2016-01-01

    Background: Abundant evidence at the anatomical, electrophysiological, and molecular levels implicates metabotropic glutamate receptor subtype 5 (mGluR5) in addiction. Consistently, the effects of a wide range of doses of different mGluR5 negative allosteric modulators (NAMs) have been tested in various animal models of addiction. Here, these studies were subjected to a systematic review to find out if mGluR5 NAMs have a therapeutic potential that can be translated to the clinic. Methods: Literature on consumption/self-administration and reinstatement of drug seeking as outcomes of interest published up to April 2015 was retrieved via PubMed. The review focused on the effects of systemic (i.p., i.v., s.c.) administration of the mGluR5 NAMs 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine (MTEP) and 2-Methyl-6-(phenylethynyl)pyridine (MPEP) on paradigms with cocaine, ethanol, nicotine, and food in rats. Results: MTEP and MPEP were found to reduce self-administration of cocaine, ethanol, and nicotine at doses ≥1mg/kg and 2.5mg/kg, respectively. Dose-response relationship resembled a sigmoidal curve, with low doses not reaching statistical significance and high doses reliably inhibiting self-administration of drugs of abuse. Importantly, self-administration of cocaine, ethanol, and nicotine, but not food, was reduced by MTEP and MPEP in the dose range of 1 to 2mg/kg and 2.5 to 3.2mg/kg, respectively. This dose range corresponds to approximately 50% to 80% mGluR5 occupancy. Interestingly, the limited data found in mice and monkeys showed a similar therapeutic window. Conclusion: Altogether, this review suggests a therapeutic window for mGluR5 NAMs that can be translated to the treatment of substance-related and addictive disorders. PMID:26802568

  15. Blocking metabotropic glutamate receptor subtype 5 relieves maladaptive chronic stress consequences.

    PubMed

    Peterlik, Daniel; Stangl, Christina; Bauer, Amelie; Bludau, Anna; Keller, Jana; Grabski, Dominik; Killian, Tobias; Schmidt, Dominic; Zajicek, Franziska; Jaeschke, Georg; Lindemann, Lothar; Reber, Stefan O; Flor, Peter J; Uschold-Schmidt, Nicole

    2017-01-01

    Etiology and pharmacotherapy of stress-related psychiatric conditions and somatoform disorders are areas of high unmet medical need. Stressors holding chronic plus psychosocial components thereby bear the highest health risk. Although the metabotropic glutamate receptor subtype 5 (mGlu5) is well studied in the context of acute stress-induced behaviors and physiology, virtually nothing is known about its potential involvement in chronic psychosocial stress. Using the mGlu5 negative allosteric modulator CTEP (2-chloro-4-[2-[2,5-dimethyl-1-[4-(trifluoromethoxy)phenyl]imidazol-4yl]ethynyl]pyridine), a close analogue of the clinically active drug basimglurant - but optimized for rodent studies, as well as mGlu5-deficient mice in combination with a mouse model of male subordination (termed CSC, chronic subordinate colony housing), we demonstrate that mGlu5 mediates multiple physiological, immunological, and behavioral consequences of chronic psychosocial stressor exposure. For instance, CTEP dose-dependently relieved hypothalamo-pituitary-adrenal axis dysfunctions, colonic inflammation as well as the CSC-induced increase in innate anxiety; genetic ablation of mGlu5 in mice largely reproduced the stress-protective effects of CTEP and additionally ameliorated CSC-induced physiological anxiety. Interestingly, CSC also induced an upregulation of mGlu5 in the hippocampus, a stress-regulating brain area. Taken together, our findings provide evidence that mGlu5 is an important mediator for a wide range of chronic psychosocial stress-induced alterations and a potentially valuable drug target for the treatment of chronic stress-related pathologies in man.

  16. Receptor subtype-dependent positive and negative modulation of GABA(A) receptor function by niflumic acid, a nonsteroidal anti-inflammatory drug.

    PubMed

    Sinkkonen, Saku T; Mansikkamäki, Salla; Möykkynen, Tommi; Lüddens, Hartmut; Uusi-Oukari, Mikko; Korpi, Esa R

    2003-09-01

    In addition to blocking cyclooxygenases, members of the fenamate group of nonsteroidal anti-inflammatory drugs have been proposed to affect brain GABAA receptors. Using quantitative autoradiography with GABAA receptor-associated ionophore ligand [35S]t-butylbicyclophosphorothionate (TBPS) on rat brain sections, one of the fenamates, niflumate, at micromolar concentration was found to potentiate GABA actions in most brain areas, whereas being in the cerebellar granule cell layer an efficient antagonist similar to furosemide. With recombinant GABAA receptors expressed in Xenopus laevis oocytes, we found that niflumate potentiated 3 microM GABA responses up to 160% and shifted the GABA concentration-response curve to the left in alpha1beta2gamma2 receptors, the predominant GABAA receptor subtype in the brain. This effect needed the gamma2 subunit, because on alpha1beta2 receptors, niflumate exhibited solely an antagonistic effect at high concentrations. The potentiation was not abolished by the specific benzodiazepine site antagonist flumazenil. Niflumate acted as a potent antagonist of alpha6beta2 receptors (with or without gamma2 subunit) and of alphaXbeta2gamma2 receptors containing a chimeric alpha1 to alpha6 subunit, which suggests that niflumate antagonism is dependent on the same transmembrane domain 1- and 2-including fragment of the alpha6 subunit as furosemide antagonism. This antagonism was noncompetitive because the maximal GABA response, but not the potency, was reduced by niflumate. These data show receptor subtype-dependent positive and negative modulatory actions of niflumate on GABAA receptors at clinically relevant concentrations, and they suggest the existence of a novel positive modulatory site on alpha1beta2gamma2 receptors that is dependent on the gamma2 subunit but not associated with the benzodiazepine binding site.

  17. Prostaglandin E2 inhibits platelet-derived growth factor-stimulated cell proliferation through a prostaglandin E receptor EP2 subtype in rat hepatic stellate cells.

    PubMed

    Koide, Shigeki; Kobayashi, Yoshimasa; Oki, Yutaka; Nakamura, Hirotoshi

    2004-09-01

    Prostaglandin (PG) E2 inhibits hepatic stellate cell (HSC) mitogenesis. PGE-specific receptors are divided into four subtypes that are coupled either to Ca2+ mobilization (EP1 and EP3) or to the stimulation of adenyl cyclase (EP2 and EP4). The aims of the current study were to identify PGE receptor subtypes in cultured rat HSC and to examine which PGE receptor subtype(s) mediates the inhibitory effect of PGE2 on platelet-derived growth factor (PDGF)-stimulated proliferation. Reverse transcription-polymerase chain reaction analysis was performed to detect PGE receptor subtype mRNA expression. Cell proliferation was determined by measuring [3H]thymidine incorporation, and intracellular cyclic AMP was measured by radioimmunoassay. Cultured rat HSC expressed mRNAs for all four subtypes of PGE receptor. PGE2- and EP2-selective agonist produced dose-dependent inhibitory effects on PDGF-stimulated proliferation. Neither EP1-, EP3-, nor EP4-selective agonists showed any inhibitory effect. An adenylate cyclase inhibitor strongly blunted the inhibition of DNA synthesis elicited by PGE2 and the EP2 agonist. The EP2 agonist generated higher and more prolonged increases in intracellular cyclic AMP than the EP4 agonist. Activation of the PGE EP2 receptor has an antiproliferative effect in HSC that may be mediated by cyclic AMP-related signal transduction pathways.

  18. Activation of classical estrogen receptor subtypes reduces tight junction disruption of brain endothelial cells under ischemia/reperfusion injury.

    PubMed

    Shin, Jin A; Yoon, Joo Chun; Kim, Minsuk; Park, Eun-Mi

    2016-03-01

    Ischemic stroke, which induces oxidative stress in the brain, disrupts tight junctions (TJs) between brain endothelial cells, resulting in blood-brain barrier (BBB) breakdown and brain edema. Estrogen reduces oxidative stress and protects brain endothelial cells from ischemic insult. The aim of this study was to determine the protective effects of estrogen on TJ disruption and to examine the roles of classical estrogen receptor (ER) subtypes, ERα- and ERβ, in estrogen effects in brain endothelial cells (bEnd.3) exposed to oxygen-glucose deprivation/reperfusion (OGD/R) injury. Estrogen pretreatment prevented OGD/R-induced decreases in cell viability and TJ protein levels. ERα- and ERβ-specific agonists also reduced TJ disruption. Knockdown of ERα or ERβ expression partially inhibited the effects of estrogen, but completely reversed the effects of corresponding ER subtype-specific agonists on the outcomes of OGD/R. During the early reperfusion period, activation of extracellular signal-regulated kinase1/2 and hypoxia-inducible factor 1α/vascular endothelial growth factor was associated with decreased expression of occludin and claudin-5, respectively, and these changes in TJ protein levels were differentially regulated by ER subtype-specific agonists. Our results suggest that ERα and ERβ activation reduce TJ disruption via inhibition of signaling molecules after ischemic injury and that targeting each ER subtype can be a useful strategy for protecting the BBB from ischemic stroke in postmenopausal women.

  19. Structure-based prediction of subtype-selectivity of Histamine H3 receptor selective antagonists in clinical trials

    PubMed Central

    Kim, Soo-Kyung; Fristrup, Peter; Abrol, Ravinder; Goddard, William A.

    2011-01-01

    Histamine receptors (HRs) are excellent drug targets for the treatment of diseases such as schizophrenia, psychosis, depression, migraine, allergies, asthma ulcers, and hypertension. Among them, the human H3 Histamine receptor (hH3HR) antagonists have been proposed for specific therapeutic applications, including treatment of Alzheimer's disease, attention deficit hyperactivity disorder (ADHD), epilepsy, and obesity.1 However, many of these drug candidates cause undesired side effects through the cross-reactivity with other histamine receptor subtypes. In order to develop improved selectivity and activity for such treatments it would be useful to have the three dimensional structures for all four HRs. We report here the predicted structures of four HR subtypes (H1, H2, H3, and H4) using the GEnSeMBLE (GPCR Ensemble of Structures in Membrane BiLayer Environment) Monte Carlo protocol.2 sampling ~ 35 million combinations of helix packings to predict the 10 most stable packings for each of the four subtypes. Then we used these best 10 protein structures with the DarwinDock Monte Carlo protocol to sample ~ 50,000*20 poses to predict the optimum ligand-protein structures for various agonists and antagonists. We find that E2065.46 contributes most in binding H3 selective agonists (5, 6, 7) in agreement with experimental mutation studies. We also find that conserved E5.46/ S5.43 in both of hH3HR and hH4HR are involved in H3/ H4 subtype selectivity. In addition, we find that M3786.55 in hH3HR provides additional hydrophobic interactions different from hH4HR (the corresponding amino acid of T3236.55 in hH4HR) to provide additional subtype bias. From these studies we developed a pharmacophore model based on our predictions for known hH3HR selective antagonists in clinical study [ABT-239 1, GSK-189,254 2, PF-3654746 3, and BF2.649 (Tiprolisant) 4] that suggests critical selectivity directing elements are: the basic proton interacting with D1143.32, the spacer, the aromatic

  20. Effects of lead exposure on hippocampal metabotropic glutamate receptor subtype 3 and 7 in developmental rats

    PubMed Central

    Xu, Jian; Yan, Huai C; Yang, Bo; Tong, Lu S; Zou, Yu X; Tian, Ying

    2009-01-01

    Background A complete explanation of the mechanisms by which Pb2+ exerts toxic effects on developmental central nervous system remains unknown. Glutamate is critical to the developing brain through various subtypes of ionotropic or metabotropic glutamate receptors (mGluRs). Ionotropic N-methyl-D-aspartate receptors have been considered as a principal target in lead-induced neurotoxicity. The relationship between mGluR3/mGluR7 and synaptic plasticity had been verified by many recent studies. The present study aimed to examine the role of mGluR3/mGluR7 in lead-induced neurotoxicity. Methods Twenty-four adult and female rats were randomly selected and placed on control or 0.2% lead acetate during gestation and lactation. Blood lead and hippocampal lead levels of pups were analyzed at weaning to evaluate the actual lead content at the end of the exposure. Impairments of short -term memory and long-term memory of pups were assessed by tests using Morris water maze and by detection of hippocampal ultrastructural alterations on electron microscopy. The impact of lead exposure on mGluR3 and mGluR7 mRNA expression in hippocampal tissue of pups were investigated by quantitative real-time polymerase chain reaction and its potential role in lead neurotoxicity were discussed. Results Lead levels of blood and hippocampi in the lead-exposed rats were significantly higher than those in the controls (P < 0.001). In tests using Morris Water Maze, the overall decrease in goal latency and swimming distance was taken to indicate that controls had shorter latencies and distance than lead-exposed rats (P = 0.001 and P < 0.001 by repeated-measures analysis of variance). On transmission electron microscopy neuronal ultrastructural alterations were observed and the results of real-time polymerase chain reaction showed that exposure to 0.2% lead acetate did not substantially change gene expression of mGluR3 and mGluR7 mRNA compared with controls. Conclusion Exposure to lead before and after

  1. Sequestration of human muscarinic acetylcholine receptor hm1-hm5 subtypes: effect of G protein-coupled receptor kinases GRK2, GRK4, GRK5 and GRK6.

    PubMed

    Tsuga, H; Okuno, E; Kameyama, K; Haga, T

    1998-03-01

    Sequestration of porcine muscarinic acetylcholine receptor m2 subtypes (m2 receptors) expressed in COS-7 cells is facilitated by coexpression of G protein-coupled receptor kinases 2 (GRK2). We examined the effect of coexpression of GRK2, GRK4 delta, GRK5 and GRK6 on sequestration of human m1-m5 receptors expressed in COS-7 cells, which was assessed as loss of [3H]N-methylscopolamine binding activity from the cell surface. Sequestration of m4 receptors as well as m2 receptors was facilitated by coexpression of GRK2 and attenuated by coexpression of the dominant negative form of GRK2 (DN-GRK2). Sequestration of m3 and m5 receptors also was facilitated by coexpression of GRK2 but not affected by coexpression of DN-GRK2. On the other hand, proportions of sequestered m1 receptors were not significantly different with coexpression of GRK2 and DN-GRK2. GRK4 delta, GRK5 and GRK6 did not facilitate sequestration of m1-m5 receptors in COS-7 cells, except that the sequestration of m2 receptors tended to be facilitated by coexpression of GRK4 delta, GRK5 and GRK6. However, coexpression of GRK4 delta, GRK5, but not GRK6, in BHK-21 cells facilitated sequestration of m2, but not m3, receptors. These results indicate that the effect of GRK2 to facilitate receptor sequestration is not restricted to m2 receptors but is generalized to other muscarinic receptors except m1 receptors and that other kinases, including GRK4 delta, GRK5 and endogenous kinase(s) in COS-7 cells, also contribute to sequestration of m2 and m4 receptors.

  2. Angiotensin II binding sites in the rat fetus: characterization of receptor subtypes and interaction with guanyl nucleotides.

    PubMed

    Feuillan, P P; Millan, M A; Aguilera, G

    1993-03-19

    Angiotensin II (AII) receptor subtypes were studied in the 18-day gestation fetal rat, using two non-peptide AII antagonists: (2-n-butyl-4-chloro-5-hydroxymethyl-1-(2'-(1H-tetrazol-5-yl) biphenyl-4-yl)methyl)imidazol (DuP 753; type 1 (AT1) specific), and 1-(4-amino-3-methylphenyl)methyl-5-diphenacetyl -4,5,6,7-tetrahydro-1-H-imidazo[4,5-c]pyridine-6-carboxylic acid (PD 123177; type 2 (AT2) specific). Autoradiography using 125I(-)[Sar1,Ile8]AII showed that 10 microM PD 123177 decreased binding to near-nonspecific levels in skin, skeletal muscle and adrenal medulla, whereas 10 microM DuP 753 blocked binding in the liver and lung. Studies in skin and liver membranes confirmed the autoradiographic data: AT1 receptors were predominant in the liver (95%), and AT2 in the skin (97%). There was no cross-reactivity between receptor subtype and the heterologous antagonist up to a concentration of 10 microM. In both skin and liver, 2 mM dithiothreitol enhanced the binding of AT2 receptors by increasing receptor affinity, but inhibited binding of AT1 by decreasing the receptor number. In the absence of antagonists, guanyl nucleotides, added at equilibrium, caused marked dissociation of 125I-AII binding in liver membranes, but had minimal effect in skin. However, dissociation occurred in the skin when AT2 sites were blocked with 10 microM PD 123177, and in liver, dissociation was not observed when AT1 sites were blocked with DuP 753. Hence, in contrast to classical AII target tissues, which contain predominantly AT1, most of the sites in fetal skin and skeletal muscle are AT2. The demonstration that the effects of guanyl nucleotides are selective for receptor subtype suggests that the AT1 receptor, but not the AT2, is coupled to cell function via guanyl nucleotide binding proteins. The functional importance of the AT2 receptors and their role in fetal physiology is under current investigation.

  3. Versatility or promiscuity: the estrogen receptors, control of ligand selectivity and an update on subtype selective ligands.

    PubMed

    Ng, Hui Wen; Perkins, Roger; Tong, Weida; Hong, Huixiao

    2014-08-26

    The estrogen receptors (ERs) are a group of versatile receptors. They regulate an enormity of processes starting in early life and continuing through sexual reproduction, development, and end of life. This review provides a background and structural perspective for the ERs as part of the nuclear receptor superfamily and discusses the ER versatility and promiscuity. The wide repertoire of ER actions is mediated mostly through ligand-activated transcription factors and many DNA response elements in most tissues and organs. Their versatility, however, comes with the drawback of promiscuous interactions with structurally diverse exogenous chemicals with potential for a wide range of adverse health outcomes. Even when interacting with endogenous hormones, ER actions can have adverse effects in disease progression. Finally, how nature controls ER specificity and how the subtle differences in receptor subtypes are exploited in pharmaceutical design to achieve binding specificity and subtype selectivity for desired biological response are discussed. The intent of this review is to complement the large body of literature with emphasis on most recent developments in selective ER ligands.

  4. Analysis of central opioid receptor subtype antagonism of hypotonic and hypertonic saline intake in water-deprived rats.

    PubMed

    Bodnar, R J; Glass, M J; Koch, J E

    1995-01-01

    Intake of either hypotonic or hypertonic saline solutions is modulated in part by the endogenous opioid system. Morphine and selective mu and delta opioid agonists increase saline intake, while general opioid antagonists reduce saline intake in rats. The present study evaluated whether intracerebroventricular administration of general (naltrexone) and selective mu (beta-funaltrexamine, 5-20 micrograms), mu, (naloxonazine, 50 micrograms), kappa (nor-binaltorphamine, 5-20 micrograms), delta (naltrindole, 20 micrograms), or delta 1 (DALCE, 40 micrograms) opioid receptor subtype antagonists altered water intake and either hypotonic (0.6%) or hypertonic (1.7%) saline intake in water-deprived (24 h) rats over a 3-h time course in a two-bottle choice test. Whereas peripheral naltrexone (0.5-2.5 mg/kg) significantly reduced water intake and hypertonic saline intake, central naltrexone (1-50 micrograms) significantly reduced water intake and hypotonic saline intake. Water intake was significantly reduced following mu and kappa receptor antagonism, but not following mu 1, delta, or delta 1 receptor antagonism. In contrast, neither hypotonic nor hypertonic saline intake was significantly altered by any selective antagonist. These data are discussed in terms of opioid receptor subtype control over saline intake relative to the animal's hydrational state and the roles of palatability and/or salt appetite.

  5. Cartography of 5-HT1A and 5-HT2A Receptor Subtypes in Prefrontal Cortex and Its Projections.

    PubMed

    Mengod, Guadalupe; Palacios, José M; Cortés, Roser

    2015-07-15

    Since the development of chemical neuroanatomical tools in the 1960s, a tremendous wealth of information has been generated on the anatomical components of the serotonergic system, at the microscopic level in the brain including the prefrontal cortex (PFC). The PFC receives a widespread distribution of serotonin (5-hydroxytryptamine, 5-HT) terminals from the median and dorsal raphe nuclei. 5-HT receptors were first visualized using radioligand autoradiography in the late 1980s and early 1990s and showed, in contrast to 5-HT innervation, a differential distribution of binding sites associated with different 5-HT receptor subtypes. Due to the cloning of the different 5-HT receptor subtype genes in the late 1980s and early 1990s, it was possible, using in situ hybridization histochemistry, to localize cells expressing mRNA for these receptors. Double in situ hybridization histochemistry and immunohistochemistry allowed for the chemical characterization of the phenotype of cells expressing 5-HT receptors. Tract tracing technology allowed a detailed cartography of the neuronal connections of PFC and other brain areas. Based on these data, maps have been constructed that reflect our current understanding of the different circuits where 5-HT receptors can modulate the electrophysiological, pharmacological, and behavioral functions of the PFC. We will review current knowledge regarding the cellular localization of 5-HT1A and 5-HT2A receptors in mammalian PFC and their possible functions in the neuronal circuits of the PFC. We will discuss data generated in our laboratory as well as in others, focusing on localization in the pyramidal and GABAergic neuronal cell populations in different mammalian species using molecular neuroanatomy and on the connections with other brain regions.

  6. Age-dependent effects on social interaction of NMDA GluN2A receptor subtype-selective antagonism.

    PubMed

    Green, Torrian L; Burket, Jessica A; Deutsch, Stephen I

    2016-07-01

    NMDA receptor-mediated neurotransmission is implicated in the regulation of normal sociability in mice. The heterotetrameric NMDA receptor is composed of two obligatory GluN1 and either two "modulatory" GluN2A or GluN2B receptor subunits. GluN2A and GluN2B-containing receptors differ in terms of their developmental expression, distribution between synaptic and extrasynaptic locations, and channel kinetic properties, among other differences. Because age-dependent differences in disruptive effects of GluN2A and GluN2B subtype-selective antagonists on sociability and locomotor activity have been reported in rats, the current investigation explored age-dependent effects of PEAQX, a GluN2A subtype-selective antagonist, on sociability, stereotypic behaviors emerging during social interaction, and spatial working memory in 4- and 8-week old male Swiss Webster mice. The data implicate an age-dependent contribution of GluN2A-containing NMDA receptors to the regulation of normal social interaction in mice. Specifically, at a dose of PEAQX devoid of any effect on locomotor activity and mouse rotarod performance, the social interaction of 8-week old mice was disrupted without any effect on the social salience of a stimulus mouse. Moreover, PEAQX attenuated stereotypic behavior emerging during social interaction in 4- and 8-week old mice. However, PEAQX had no effect on spontaneous alternations, a measure of spatial working memory, suggesting that neural circuits mediating sociability and spatial working memory may be discrete and dissociable from each other. Also, the data suggest that the regulation of stereotypic behaviors and sociability may occur independently of each other. Because expression of GluN2A-containing NMDA receptors occurs at a later developmental stage, they may be more involved in mediating the pathogenesis of ASDs in patients with histories of "regression" after a period of normal development than GluN2B receptors.

  7. Sphingosine 1-phosphate protects primary human keratinocytes from apoptosis via nitric oxide formation through the receptor subtype S1P₃.

    PubMed

    Schmitz, Elisabeth I; Potteck, Henrik; Schüppel, Melanie; Manggau, Marianti; Wahydin, Elly; Kleuser, Burkhard

    2012-12-01

    Although the lipid mediator sphingosine 1-phosphate (S1P) has been identified to induce cell growth arrest of human keratinocytes, the sphingolipid effectively protects these epidermal cells from apoptosis. The molecular mechanism of the anti-apoptotic action induced by S1P is less characterized. Apart from S1P, endogenously produced nitric oxide (NO•) has been recognized as a potent modulator of apoptosis in keratinocytes. Therefore, it was of great interest to elucidate whether S1P protects human keratinocytes via a NO•-dependent signalling pathway. Indeed, S1P induced an activation of endothelial nitric oxide synthase (eNOS) in human keratinocytes leading to an enhanced formation of NO•. Most interestingly, the cell protective effect of S1P was almost completely abolished in the presence of the eNOS inhibitor L-NAME as well as in eNOS-deficient keratinocytes indicating that the sphingolipid metabolite S1P protects human keratinocytes from apoptosis via eNOS activation and subsequent production of protective amounts of NO•. It is well established that most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. Therefore, the involvement of S1P-receptor subtypes in S1P-mediated eNOS activation has been examined. Indeed, this study clearly shows that the S1P(3) is the exclusive receptor subtype in human keratinocytes which mediates eNOS activation and NO• formation in response to S1P. In congruence, when the S1P(3) receptor subtype is abrogated, S1P almost completely lost its ability to protect human keratinocytes from apoptosis.

  8. Allergic sensitization modifies the pulmonary expression of 5-hydroxytryptamine receptors in guinea pigs.

    PubMed

    Córdoba-Rodríguez, Guadalupe; Vargas, Mario H; Ruiz, Víctor; Carbajal, Verónica; Campos-Bedolla, Patricia; Mercadillo-Herrera, Paulina; Arreola-Ramírez, José Luis; Segura-Medina, Patricia

    2016-03-01

    There is mounting evidence that 5-hydroxytryptamine (5-HT) plays a role in asthma. However, scarce information exists about the pulmonary expression of 5-HT receptors and its modification after allergic sensitization. In the present work, we explored the expression of 5-HT1A, 5-HT2A, 5-HT3, 5-HT4, 5-ht5a, 5-HT6, and 5-HT7 receptors in lungs from control and sensitized guinea pigs through qPCR and Western blot. In control animals, mRNA from all receptors was detectable in lung homogenates, especially from 5-HT2A and 5-HT4 receptors. Sensitized animals had decreased mRNA expression of 5-HT2A and 5-HT4 receptors and increased that of 5-HT7 receptor. In contrast, they had increased protein expression of 5-HT2A receptor in bronchial epithelium and of 5-HT4 receptor in lung parenchyma. The degree of airway response to the allergic challenge was inversely correlated with mRNA expression of the 5-HT1A receptor. In summary, our results showed that major 5-HT receptor subtypes are constitutively expressed in the guinea pig lung, and that allergic sensitization modifies the expression of 5-HT2A, 5-HT4, and 5-HT7 receptors.

  9. Dissociation of β1- and β2-adrenergic receptor subtypes in the retrieval of cocaine-associated memory.

    PubMed

    Fitzgerald, Michael K; Otis, James M; Mueller, Devin

    2016-01-01

    Drug seeking is maintained by encounters with drug-associated cues, and disrupting retrieval of these drug-cue associations would reduce the risk of relapse. Retrieval of cocaine-associated memories is dependent on β-adrenergic receptor (β-AR) activation, and blockade of these receptors induces a persistent retrieval deficit. Whether retrieval of cocaine-associated memory is mediated by a specific β-AR subtype, however, remains unclear. Using a cocaine conditioned place preference (CPP) procedure, we examined whether retrieval of a cocaine CPP memory is mediated collectively by β1- and β2-ARs, or by one of these β-AR subtypes alone. We show that co-blockade of β1- and β2-ARs abolished CPP expression on that and subsequent drug-free CPP tests, resulting in a long-lasting retrieval deficit that prevented subsequent cocaine-induced reinstatement. To dissociate the necessity of either β1- or β2-ARs alone, we administered subtype-specific antagonists prior to retrieval. Administration of a β1-AR antagonist before the initial CPP trial dose-dependently reduced expression of a CPP on that and subsequent drug-free trials as compared to vehicle administration. In contrast, administration of a β2-AR antagonist had no effect on initial CPP expression, although the highest dose reduced subsequent CPP expression. Importantly, either β1- or β2-AR blockade prior to an initial retrieval trial prevented subsequent cocaine-induced reinstatement. Our findings indicate that the β1-AR subtype mediates retrieval of a cocaine CPP, and that acutely blocking either β1- or β2-ARs can prevent subsequent cocaine-induced reinstatement. Thus, β-AR antagonists, particularly β1-ARs antagonists, could serve as adjuncts for addiction therapies to prevent retrieval of drug-associated memories and provide protection against relapse.

  10. Fragment library screening reveals remarkable similarities between the G protein-coupled receptor histamine H₄ and the ion channel serotonin 5-HT₃A.

    PubMed

    Verheij, Mark H P; de Graaf, Chris; de Kloe, Gerdien E; Nijmeijer, Saskia; Vischer, Henry F; Smits, Rogier A; Zuiderveld, Obbe P; Hulscher, Saskia; Silvestri, Linda; Thompson, Andrew J; van Muijlwijk-Koezen, Jacqueline E; Lummis, Sarah C R; Leurs, Rob; de Esch, Iwan J P

    2011-09-15

    A fragment library was screened against the G protein-coupled histamine H(4) receptor (H(4)R) and the ligand-gated ion channel serotonin 5-HT(3A) (5-HT(3A)R). Interestingly, significant overlap was found between H(4)R and 5-HT(3A)R hit sets. The data indicates that dual active H(4)R and 5 HT(3A)R fragments have a higher complexity than the selective compounds which has important implications for chemical genomics approaches. The results of our fragment-based library screening study illustrate similarities in ligand recognition between H(4)R and 5-HT(3A)R and have important consequences for selectivity profiling in ongoing drug discovery efforts on H(4)R and 5-HT(3A)R. The affinity profiles of our fragment screening studies furthermore match the chemical properties of the H(4)R and 5-HT(3A)R binding sites and can be used to define molecular interaction fingerprints to guide the in silico prediction of protein-ligand interactions and structure.

  11. Subtype-selective nicotinic acetylcholine receptor agonists enhance the responsiveness to citalopram and reboxetine in the mouse forced swim test.

    PubMed

    Andreasen, Jesper T; Nielsen, Elsebet Ø; Christensen, Jeppe K; Olsen, Gunnar M; Peters, Dan; Mirza, Naheed R; Redrobe, John P

    2011-10-01

    Nicotine increases serotonergic and noradrenergic neuronal activity and facilitates serotonin and noradrenaline release. Accordingly, nicotine enhances antidepressant-like actions of reuptake inhibitors selective for serotonin or noradrenaline in the mouse forced swim test and the mouse tail suspension test. Both high-affinity α4β2 and low-affinity α7 nicotinic acetylcholine receptor subtypes are implicated in nicotine-mediated release of serotonin and noradrenaline. The present study therefore investigated whether selective agonism of α4β2 or α7 nicotinic acetylcholine receptors would affect the mouse forced swim test activity of two antidepressants with distinct mechanisms of action, namely the selective serotonin reuptake inhibitor citalopram and the noradrenaline reuptake inhibitor reboxetine. Subthreshold and threshold doses of citalopram (3 and 10 mg/kg) or reboxetine (10 and 20 mg/kg) were tested alone and in combination with the novel α4β2-selective partial nicotinic acetylcholine receptor agonist, NS3956 (0.3 and 1.0 mg/kg) or the α7-selective nicotinic acetylcholine receptor agonist, PNU-282987 (10 and 30 mg/kg). Alone, NS3956 and PNU-282987 were devoid of activity in the mouse forced swim test, but both 1.0 mg/kg NS3956 and 30 mg/kg PNU-282987 enhanced the effect of citalopram and also reboxetine. The data suggest that the activity of citalopram and reboxetine in the mouse forced swim test can be enhanced by agonists at either α4β2 or α7 nicotinic acetylcholine receptors, suggesting that both nicotinic acetylcholine receptor subtypes may be involved in the nicotine-enhanced action of antidepressants.

  12. Effects of the xenoestrogen bisphenol A in diencephalic regions of the teleost fish Coris julis occur preferentially via distinct somatostatin receptor subtypes.

    PubMed

    Alo', Raffaella; Facciolo, Rosa Maria; Madeo, Maria; Giusi, Giuseppina; Carelli, Antonio; Canonaco, Marcello

    2005-04-15

    The xenoestrogen bisphenol A, a contaminant used in the manufacturing of polymers for many consumer products, has been shown to mimic estrogenic actions. This xenoestrogen regulates secretion and expression of pituitary lactotrophs plus morphological and structural features of estrogen target tissues in rodents. Recently, ecological hazards produced by bisphenol A have drawn interests towards the effects of this environmental chemical on neurobiological functions of aquatic vertebrates of which little is known. In this study, the effects of bisphenol A on the distribution of the biologically more active somatostatin receptor subtypes in diencephalic regions of the teleost fish Coris julis were assessed using nonpeptide agonists (L-779, 976 and L-817, 818) that are highly selective for subtype(2) and subtype(5), respectively. Bisphenol A proved to be responsible for highly significant increased binding levels of subtype(2) in hypothalamic areas, while markedly decreased levels of subtype(5) were found in these diencephalic areas, as well as in the medial preglomerular nucleus. The extensive distribution of somatostatin receptor subtype(2) and subtype(5) in the teleost diencephalic areas suggests that, like in mammals, this receptor system may not only be involved in enhanced hypophysiotropic neurohormonal functions but might also promote neuroplasticity events.

  13. Multiple 5-HT receptors in the guinea-pig superior cervical ganglion.

    PubMed Central

    Watkins, C. J.; Newberry, N. R.

    1996-01-01

    1. We have studied the pharmacology of the depolarization by 5-hydroxytryptamine (5-HT) of the guinea-pig isolated superior cervical ganglion (SCG) using the grease-gap technique. We studied the effects of selective and non-selective antagonists on the responses to 5-HT and other 5-HT receptor agonists. 2. We have extended the pharmacology of the 5-HT3 receptor in this preparation by studying the effects of granisetron, BRL 46470 and mianserin on the concentration-response curve (CRC) to 2-methyl-5-HT. As with other 5-HT3 receptor antagonists, these compounds exhibited a lower affinity for guinea-pig 5-HT3 receptors than for rat 5-HT3 receptors. 3. We have confirmed that low concentrations of 5-HT (< or = 1 microM) mediate ketanserin-sensitive responses and higher concentrations of 5-HT also recruit 5-HT3 receptors. The responses to low concentrations of 5-HT were antagonized by low concentrations of ketanserin, spiperone, mianserin, DOI and LSD indicating probably mediation by 5-HT2A receptors. At high concentrations, the hallucinogen, DOI, but not LSD, evoked a ketanserin-sensitive depolarization. 4. Although mianserin could bind to the 5-HT2A receptors in this preparation, we could not demonstrate a down-regulation of depolarizations evoked by these receptors after a 10 day oral treatment with mianserin (10 mg kg-1, daily). 5. 5-Carboxamidotryptamine (5-CT) evoked a prolonged depolarization. Although high concentrations of 5-CT (> or = microM) appeared to activate 5-HT2A receptors, lower concentrations of 5-CT evoked a response with a distinct pharmacology. After studying the action of 20 selective and non-selective 5-HT receptor ligands we believe that this response may be mediated by a novel receptor; but its pharmacology is closest to that of receptors in the 5-HT2 receptor family. Like 5-CT, 5-HT (3-300 microM) could evoke an LSD-sensitive response in the presence of the 5-HT2 receptor antagonist, ketanserin and the 5-HT3 receptor antagonist, tropisetron

  14. Hyperspectral multiplex single-particle tracking of different receptor subtypes labeled with quantum dots in live neurons

    NASA Astrophysics Data System (ADS)

    Labrecque, Simon; Sylvestre, Jean-Philippe; Marcet, Stephane; Mangiarini, Francesca; Bourgoin, Brice; Verhaegen, Marc; Blais-Ouellette, Sébastien; De Koninck, Paul

    2016-04-01

    The efficacy of existing therapies and the discovery of innovative treatments for central nervous system (CNS) diseases have been limited by the lack of appropriate methods to investigate complex molecular processes at the synaptic level. To improve our capability to investigate complex mechanisms of synaptic signaling and remodeling, we designed a fluorescence hyperspectral imaging platform to simultaneously track different subtypes of individual neurotransmitter receptors trafficking in and out of synapses. This imaging platform allows simultaneous image acquisition of at least five fluorescent markers in living neurons with a high-spatial resolution. We used quantum dots emitting at different wavelengths and functionalized to specifically bind to single receptors on the membrane of living neurons. The hyperspectral imaging platform enabled the simultaneous optical tracking of five different synaptic proteins, including subtypes of glutamate receptors (mGluR and AMPAR) and postsynaptic signaling proteins. It also permitted the quantification of their mobility after treatments with various pharmacological agents. This technique provides an efficient method to monitor several synaptic proteins at the same time, which could accelerate the screening of effective compounds for treatment of CNS disorders.

  15. Pharmacological characterization of (4R)-alkyl glutamate analogues at the ionotropic glutamate receptors--focus on subtypes iGlu(5-7).

    PubMed

    Bunch, Lennart; Gefflaut, Thierry; Alaux, Sebastien; Sagot, Emanuelle; Nielsen, Birgitte; Pickering, Darryl S

    2009-05-01

    The kainic acid (kainate, KA) receptors belong to the class of ionotropic glutamate (iGlu) receptors in the central nervous system. Five subtypes have been identified, which have been termed KA(1,2) and iGlu(5-7). In the search for subtype selective ligands, alpha-amino-5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA), (4R)-methyl Glu (1a), and E-4-neopentylidene Glu (2f) have all previously been reported as selective agonists for the iGlu(5) receptor subtype. In this paper, we present the pharmacological evaluation of a five-compound series of (4R)-alkyl Glu analogs (1b-e,g) which may be envisaged as conformationally released designs of ATPA and 4-alkylidenes 2a-h. Most notable is the pharmacological profile for (4R)-isopentyl Glu (1g) which shows a 10-fold increase in binding affinity for the iGlu(5) receptor subtype (K(i)=20.5 nM) in comparison with its E-4-alkylidene structural isomer 2g. Furthermore, 1g displays high selectivity over other KA receptor subtypes (KA(1,2) and iGlu(6,7)), AMPA-, and NMDA receptors (2050 and >5000 fold, respectively).

  16. Receptor Binding Profiles of Avian Influenza Virus Hemagglutinin Subtypes on Human Cells as a Predictor of Pandemic Potential ▿ ‖

    PubMed Central

    Shelton, Holly; Ayora-Talavera, Guadalupe; Ren, Junyuan; Loureiro, Silvia; Pickles, Raymond J.; Barclay, Wendy S.; Jones, Ian M.

    2011-01-01

    The host adaptation of influenza virus is partly dependent on the sialic acid (SA) isoform bound by the viral hemagglutinin (HA). Avian influenza viruses preferentially bind the α-2,3 SA and human influenza viruses the α-2,6 isoform. Each isoform is predominantly associated with different surface epithelial cell types of the human upper airway. Using recombinant HAs and human tracheal airway epithelial cells in vitro and ex vivo, we show that many avian HA subtypes do not adhere to this canonical view of SA specificity. The propensity of avian viruses to adapt to human receptors may thus be more widespread than previously supposed. PMID:21106732

  17. Up-regulation of prostaglandin E receptor EP2 and EP4 subtypes in rat synovial tissues with adjuvant arthritis

    PubMed Central

    Kurihara, Y; Endo, H; Akahoshi, T; Kondo, H

    2001-01-01

    To evaluate the role of the prostaglandin E receptor (EP) subtypes in the development of inflammatory synovitis, we examined EP subtype mRNA distribution in the synovial tissue of rats with adjuvant arthritis and the effect of selective EP agonists on cytokine production by cultured rat synovial cells. We used reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ hybridization to measure the level of EP subtype (EP1, EP2, EP3, and EP4) mRNA expression in synovial tissues and cultured synovial cells from the arthritic joints of rats. RT-PCR and ELISA were used to analyse the effects of two selective EP agonists on IL-6 production by cultured rat synovial cells. EP2 and EP4 mRNA expression in inflamed synovial tissues was up-regulated. EP2 and EP4 mRNA were co-expressed in synovial macrophages and fibroblasts in inflamed tissues. EP4 and EP2 agonists both inhibited IL-1-induced IL-6 production. Our results suggest that prostaglandin E2 regulates the functions of synovial macrophages and fibroblasts through EP2 and EP4, which are induced by inflammatory stimuli in rats with adjuvant arthritis. PMID:11207665

  18. Up-regulation of prostaglandin E receptor EP2 and EP4 subtypes in rat synovial tissues with adjuvant arthritis.

    PubMed

    Kurihara, Y; Endo, H; Akahoshi, T; Kondo, H

    2001-02-01

    To evaluate the role of the prostaglandin E receptor (EP) subtypes in the development of inflammatory synovitis, we examined EP subtype mRNA distribution in the synovial tissue of rats with adjuvant arthritis and the effect of selective EP agonists on cytokine production by cultured rat synovial cells. We used reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ hybridization to measure the level of EP subtype (EP1, EP2, EP3, and EP4) mRNA expression in synovial tissues and cultured synovial cells from the arthritic joints of rats. RT-PCR and ELISA were used to analyse the effects of two selective EP agonists on IL-6 production by cultured rat synovial cells. EP2 and EP4 mRNA expression in inflamed synovial tissues was up-regulated. EP2 and EP4 mRNA were co-expressed in synovial macrophages and fibroblasts in inflamed tissues. EP4 and EP2 agonists both inhibited IL-1-induced IL-6 production. Our results suggest that prostaglandin E2 regulates the functions of synovial macrophages and fibroblasts through EP2 and EP4, which are induced by inflammatory stimuli in rats with adjuvant arthritis.

  19. Muscarinic Receptor Subtypes Differentially Control Synaptic Input and Excitability of Cerebellum-Projecting Medial Vestibular Nucleus Neurons

    PubMed Central

    Zhu, Yun; Chen, Shao-Rui; Pan, Hui-Lin

    2016-01-01

    Neurons in the vestibular nuclei have a vital function in balance maintenance, gaze stabilization, and posture. Although muscarinic acetylcholine receptors (mAChRs) are expressed and involved in regulating vestibular function, it is unclear how individual mAChR subtypes regulate vestibular neuronal activity. In this study, we determined which specific subtypes of mAChRs control synaptic input and excitability of medial vestibular nucleus (MVN) neurons that project to the cerebellum. Cerebellum-projecting MVN neurons were labeled by a fluorescent retrograde tracer and then identified in rat brainstem slices. Quantitative PCR analysis suggested that M2 and M3 were the possible major mAChR subtypes expressed in the MVN. The mAChR agonist oxotremorine-M significantly reduced the amplitude of glutamatergic excitatory postsynaptic currents evoked by stimulation of vestibular primary afferents, and this effect was abolished by the M2-preferring antagonist AF-DX 116. However, oxotremorine-M had no effect on GABA-mediated spontaneous inhibitory postsynaptic currents of labeled MVN neurons. Furthermore, oxotremorine-M significantly increased the firing activity of labeled MVN neurons, and this effect was blocked by the M3-preferring antagonist J104129 in most neurons tested. In addition, AF-DX 116 reduced the onset latency and prolonged the excitatory effect of oxotremorine-M on the firing activity of labeled MVN neurons. Our findings suggest that M3 is the predominant postsynaptic mAChR involved in muscarinic excitation of cerebellum-projecting MVN neurons. Presynaptic M2 mAChR regulates excitatory glutamatergic input from vestibular primary afferents, which in turn influences the excitability of cerebellum-projecting MVN neurons. This new information has important therapeutic implications for treating vestibular disorders with mAChR subtype-selective agents. PMID:26823384

  20. Substituted 2-Aminopyrimidines Selective for α7-Nicotinic Acetylcholine Receptor Activation and Association with Acetylcholine Binding Proteins.

    PubMed

    Kaczanowska, Katarzyna; Camacho Hernandez, Gisela Andrea; Bendiks, Larissa; Kohs, Larissa; Cornejo-Bravo, Jose Manuel; Harel, Michal; Finn, M G; Taylor, Palmer

    2017-03-15

    Through studies with ligand binding to the acetylcholine binding protein (AChBP), we previously identified a series of 4,6-substituted 2-aminopyrimidines that associate with this soluble surrogate of the nicotinic acetylcholine receptor (nAChR) in a cooperative fashion, not seen for classical nicotinic agonists and antagonists. To examine receptor interactions of this structural family on ligand-gated ion channels, we employed HEK cells transfected with cDNAs encoding three requisite receptor subtypes: α7-nAChR, α4β2-nAChR, and a serotonin receptor (5-HT3AR), along with a fluorescent reporter. Initial screening of a series of over 50 newly characterized 2-aminopyrimidines with affinity for AChBP showed only two to be agonists on the α7-nAChR below 10 μM concentration. Their unique structural features were incorporated into design of a second subset of 2-aminopyrimidines yielding several congeners that elicited α7 activation with EC50 values of 70 nM and Kd values for AChBP in a similar range. Several compounds within this series exhibit specificity for the α7-nAChR, showing no activation or antagonism of α4β2-nAChR or 5-HT3AR at concentrations up to 10 μM, while others were weaker antagonists (or partial agonists) on these receptors. Analysis following cocrystallization of four ligand complexes with AChBP show binding at the subunit interface, but with an orientation or binding pose that differs from classical nicotinic agonists and antagonists and from the previously analyzed set of 2-aminopyrimidines that displayed distinct cooperative interactions with AChBP. Orientations of aromatic side chains of these complexes are distinctive, suggesting new modes of binding at the agonist-antagonist site and perhaps an allosteric action for heteromeric nAChRs.

  1. Muscarinic receptor subtypes differentially control synaptic input and excitability of cerebellum-projecting medial vestibular nucleus neurons.

    PubMed

    Zhu, Yun; Chen, Shao-Rui; Pan, Hui-Lin

    2016-04-01

    Neurons in the vestibular nuclei have a vital function in balance maintenance, gaze stabilization, and posture. Although muscarinic acetylcholine receptors (mAChRs) are expressed and involved in regulating vestibular function, it remains unclear how individual mAChR subtypes regulate vestibular neuronal activity. In this study, we determined which specific subtypes of mAChRs control synaptic input and excitability of medial vestibular nucleus (MVN) neurons that project to the cerebellum. Cerebellum-projecting MVN neurons were labeled by a fluorescent retrograde tracer and then identified in rat brainstem slices. Quantitative PCR analysis suggested that M2 and M3 were the possible major mAChR subtypes expressed in the MVN. The mAChR agonist oxotremorine-M significantly reduced the amplitude of glutamatergic excitatory post-synaptic currents evoked by stimulation of vestibular primary afferents, and this effect was abolished by the M2-preferring antagonist AF-DX 116. However, oxotremorine-M had no effect on GABA-mediated spontaneous inhibitory post-synaptic currents of labeled MVN neurons. Furthermore, oxotremorine-M significantly increased the firing activity of labeled MVN neurons, and this effect was blocked by the M3-preferring antagonist J104129 in most neurons tested. In addition, AF-DX 116 reduced the onset latency and prolonged the excitatory effect of oxotremorine-M on the firing activity of labeled MVN neurons. Our findings suggest that M3 is the predominant post-synaptic mAChR involved in muscarinic excitation of cerebellum-projecting MVN neurons. Pre-synaptic M2 mAChR regulates excitatory glutamatergic input from vestibular primary afferents, which in turn influences the excitability of cerebellum-projecting MVN neurons. This new information has important therapeutic implications for treating vestibular disorders with mAChR subtype-selective agents. Medial vestibular nucleus (MVN) neurons projecting to the cerebellum are involved in balance control. We

  2. Contractile 5-HT1 receptors in human isolated pial arterioles: correlation with 5-HT1D binding sites.

    PubMed Central

    Hamel, E.; Bouchard, D.

    1991-01-01

    1. The 5-hydroxytryptamine (5-HT) receptor responsible for inducing vasoconstriction in human isolated pial arterioles has been pharmacologically characterized. 2. Of several 5-HT agonists tested, 5-carboxamidotryptamine (5-CT) was the most potent and the rank order of agonist potency can be summarized as: 5-CT greater than 5-HT greater than RU 24969 = alpha-methyl-5-HT = methysergide much greater than MDL 72832 = 2-methyl-5-HT much greater than 2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydro-naphthalene (8-OH-DPAT). With few exceptions, the maximal contractile responses of these agonists were comparable to that induced by 5-HT. 3. A correlation analysis performed between the agonists vascular potency (pD2 values) and their affinities (pKD values) published at various subtypes of 5-HT binding sites showed a positive significant correlation with rat cortical 5-HT1B (r = 0.86; P less than 0.01) and human caudate 5-HT1D (r = 0.98; P less than 0.005) subtypes. 4. Selective antagonists at 5-HT2 (ketanserin, mianserin, MDL 11939) and 5-HT3 (MDL 72222) sites were totally devoid of inhibitory activity on the 5-HT-induced contraction, an observation which agreed with the agonist data and further excluded activation of these receptors. In contrast, the 5-HT1-like/5-HT2 antagonist methiothepin and the non-selective 5-HT1D compound metergoline inhibited with high affinity the contraction induced by 5-HT with respective pA2 values of 8.55 +/- 0.16 and 6.88 +/- 0.05. This contractile response was, however, insensitive to 5-HT1B (propranolol) and 5-HT1C (mesulergine, mianserin) antagonists.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2043924

  3. Use of an α3β4 nicotinic acetylcholine receptor subunit concatamer to characterize ganglionic receptor subtypes with specific subunit composition reveals species-specific pharmacologic properties.

    PubMed

    Stokes, Clare; Papke, Roger L

    2012-09-01

    Drug development for nicotinic acetylcholine receptors (nAChR) is challenged by subtype diversity arising from variations in subunit composition. On-target activity for neuronal heteromeric receptors is typically associated with CNS receptors that contain α4 and other subunits, while off-target activity could be associated with ganglionic-type receptors containing α3β4 binding sites and other subunits, including β4, β2, α5, or α3 as a structural subunit in the pentamer. Additional interest in α3 β4 α5-containing receptors arises from genome-wide association studies linking these genes, and a single nucleotide polymorphism (SNP) in α5 in particular, to lung cancer and heavy smoking. While α3 and β4 readily form receptors in expression system such as the Xenopus oocyte, since α5 is not required for function, simple co-expression approaches may under-represent α5-containing receptors. We used a concatamer of human α3 and β4 subunits to form ligand-binding domains, and show that we can force the insertions of alternative structural subunits into the functional pentamers. These α3β4 variants differ in sensitivity to ACh, nicotine, varenicline, and cytisine. Our data indicated lower efficacy for varenicline and cytisine than expected for β4-containing receptors, based on previous studies of rodent receptors. We confirm that these therapeutically important α4 receptor partial agonists may present different autonomic-based side-effect profiles in humans than will be seen in rodent models, with varenicline being more potent for human than rat receptors and cytisine less potent. Our initial characterizations failed to find functional effects of the α5 SNP. However, our data validate this approach for further investigations.

  4. Food intake, tumor growth, and weight loss in EP2 receptor subtype knockout mice bearing PGE2-producing tumors

    PubMed Central

    Iresjö, Britt-Marie; Wang, Wenhua; Nilsberth, Camilla; Andersson, Marianne; Lönnroth, Christina; Smedh, Ulrika

    2015-01-01

    Previous studies in our laboratory have demonstrated that prostaglandin (PG) E2 is involved in anorexia/cachexia development in MCG 101 tumor-bearing mice. In the present study, we investigate the role of PGE receptor subtype EP2 in the development of anorexia after MCG 101 implantation in wild-type (EP2+/+) or EP2-receptor knockout (EP2−/−) mice. Our results showed that host absence of EP2 receptors attenuated tumor growth and development of anorexia in tumor-bearing EP2 knockout mice compared to tumor-bearing wild-type animals. Microarray profiling of the hypothalamus revealed a relative twofold change in expression of around 35 genes including mRNA transcripts coding for Phospholipase A2 and Prostaglandin D2 synthase (Ptgds) in EP2 receptor knockout mice compared to wild-type mice. Prostaglandin D2 synthase levels were increased significantly in EP2 receptor knockouts, suggesting that improved food intake may depend on altered balance of prostaglandin production in hypothalamus since PGE2 and PGD2 display opposing effects in feeding control. PMID:26197930

  5. Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes

    PubMed Central

    Zhan, Xuanzhi; Gimenez, Luis E.; Gurevich, Vsevolod V.; Spiller, Benjamin W.

    2011-01-01

    Arrestins are multi-functional proteins that regulate signaling and trafficking of the majority of G protein-coupled receptors (GPCRs), as well as sub-cellular localization and activity of many other signaling proteins. Here we report the first crystal structure of arrestin-3, solved at 3.0Å. Arrestin-3 is an elongated two-domain molecule with the overall fold and key inter-domain interactions that hold free protein in the basal conformation similar to the other subtypes. Arrestin-3 is the least selective member of the family, binding wide variety of GPCRs with high affinity and demonstrating lower preference for active phosphorylated forms of the receptors. In contrast to the other three arrestins, part of the receptor-binding surface in the arrestin-3 C-domain does not form a contiguous β-sheet, consistent with increased flexibility. By swapping the corresponding elements between arrestin-2 and -3 we show that the presence of this loose structure correlates with reduced arrestin selectivity for activated receptor, consistent with a conformational change in this β-sheet upon receptor binding. PMID:21215759

  6. Involvement of serotonin receptor subtypes in the antidepressant-like effect of TRIM in the rat forced swimming test.

    PubMed

    Ulak, Güner; Mutlu, Oguz; Tanyeri, Pelin; Komsuoglu, F Ipek; Akar, Füruzan Yildiz; Erden, B Faruk

    2010-05-01

    Depression is a common illness with severe morbidity and mortality. Nitric oxide synthase (NOS) inhibitors are shown to elicit antidepressant-like effect in various animals models. It is widely known that serotonin plays an important role in the antidepressant-like effect of drugs. The aim of this study is to investigate the involvement of 5-HT(1) and 5-HT(2) receptor subtypes in the antidepressant-like effect of TRIM, a nNOS inhibitor, in the rat forced swimming test (FST). TRIM displays an antidepressant-like activity in FST which is blocked by pretreatment with the NOS substrate l-arginine. Depletion of endogenous serotonin using para-chlorophenylalanine (pCPA; 3x150mg/kg, i.p.) partially attenuated TRIM (50mg/kg)-induced reductions in immobility time in FST. Pretreatment with methiothepin (0.1mg/kg, i.p, a non-selective 5-HT receptor antagonist), cyproheptadine (3mg/kg i.p, a 5-HT(2) receptor antagonist) or ketanserin (5mg/kg i.p, a 5HT(2A/2C) receptor antagonist) prevented the effect of TRIM (50mg/kg) in the FST. WAY 100635 (0.1mg/kg i.p, a selective 5-HT(1A) receptor antagonist) and GR 127935 (3mg/kg i.p, a selective 5-HT(1B/1D) receptor antagonist) slightly reversed the immobility-reducing effect of TRIM in the FST, but this failed to reach a statistically significant level. The results of this study demonstrate that antidepressant-like effect of TRIM in the FST seems to be mediated, at least in part, by an interaction with 5-HT(2) receptors while non-significant effects were obtained with 5-HT(1) receptors.

  7. [Subtypes of muscarinic receptors--aspects of their physiologic significance for controlling heart rate in the human].

    PubMed

    Pitschner, H F; Schulte, B; Neuzner, J; Wellstein, A; Palm, D; Schlepper, M

    1994-01-01

    The cDNAs for five different muscarinic cholinoceptors have been cloned. The biochemical and physiological relevance of the m1, m2 and m3 receptors is understood in many aspects. The pharmacological defined M1, M2 and M3 related to antagonists binding studies closely correspond with those cloned. We compared effects of atropine and of the subtype selective M-cholinoceptor antagonists pirenzepine and AF-DX 116 in humans. Dose- or time-response curves have been established for heart rate. Plasma samples were drawn in parallel with the effect measurements and analysed for drug concentrations. Subtype-selective radioceptor assays of the samples served to estimate the respective receptor occupancy in vivo. After low dosis of pirenzepine (M1-selective blockade) a negative chronotropic effect on heart rate could be observed. After high doses of pirenzepine or atropine (M-unselective blockade) the wellknown tachycardia appeared in parallel with occupancy of both the M2 and M3 subtypes. AF-DX 116 induced a tachycardia without a decrease of salivary flow in agreement with its selectivity profile (M2 > M1 > M3). Gastric emptying was only slightly inhibited by AF-DX 116 but nearly completely by a very high dose of pirenzepine blocking M1-, M2- and M3-cholinoceptors. The negative chronotropic effect on heart rate of a low dose of pirenzepine (M1 selective) was multi-folded by pretreatment with isoprenaline but disappeared during bicycle exercise. The implications of the functional M cholinoceptor heterogeneity in humans revealed by antagonists are discussed according to its possible importance for the control of autonomous nerve system.

  8. Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: Effect of the N-5 bond type on the affinity and selectivity at the four adenosine receptor subtypes

    PubMed Central

    Bolcato, Chiara; Cusan, Claudia; Pastorin, Giorgia; Cacciari, Barbara; Klotz, Karl Norbert; Morizzo, Erika

    2007-01-01

    In the last few years, many efforts have been made to search for potent and selective human A3 adenosine antagonists. In particular, one of the most promising human A3 adenosine receptor antagonists is represented by the pyrazolo-triazolo-pyrimidine family. This class of compounds has been strongly investigated from the point of view of structure-activity relationships. In particular, it has been observed that fundamental requisites for having both potency and selectivity at the human A3 adenosine receptors are the presence of a small substituent at the N8 position and an unsubstitued phenyl carbamoyl moiety at the N5 position. In this study, we report the role of the N5-bond type on the affinity and selectivity at the four adenosine receptor subtypes. The observed structure-activity relationships of this class of antagonists are also exhaustively rationalized using the recently published ligand-based homology modeling approach. PMID:18368532

  9. Cloning, structural characterization, and chromosomal localization of the gene encoding the human prostaglandin E(2) receptor EP2 subtype.

    PubMed

    Smock, S L; Pan, L C; Castleberry, T A; Lu, B; Mather, R J; Owen, T A

    1999-09-17

    Northern blot analysis of human placental RNA using a probe to the 5' end of the human prostaglandin E(2) (PGE(2)) EP2 receptor subtype coding region revealed the existence of a high abundance, low molecular weight transcript. To investigate the origin of this transcript, and its possible relationship to the human EP2 mRNA, we have cloned and characterized the gene encoding the human PGE(2) EP2 receptor subtype, identified transcriptional initiation and termination sites in two tissues (spleen and thymus), and determined its chromosomal localization. The human EP2 gene consists of two exons separated by a large intron, utilizes a common initiation site in both spleen and thymus at 1113 bp upstream of the translation initiation site, and has 3' transcript termini at 1140 bp and 1149 bp downstream of the translation stop site in spleen and thymus respectively. Southern and fluorescence in situ hybridization analysis demonstrated the human EP2 gene to be a single copy gene located in band 22 of the long arm of chromosome 14 (14q22). Though our initial interest in this gene was to investigate potential differential splicing of the human EP2 gene in placenta, this work demonstrates that the atypical transcript observed in placenta probably arises from a distinct, yet related, gene. Knowledge of the sequence, structure, and transcription events associated with the human EP2 gene will enable a broader understanding of its regulation and potential role in normal physiology and disease.

  10. Genetic analysis of HIV-1 Circulating Recombinant Form 02_AG, B and C subtype-specific envelope sequences from Northern India and their predicted co-receptor usage

    PubMed Central

    2009-01-01

    HIV-1 epidemic in India is largely driven by subtype C but other subtypes or recombinants have also been reported from several states of India. This is mainly due to the co-circulation of other genetic subtypes that potentially can recombine to generate recombinant/mosaic genomes. In this study, we report detail genetic characterization of HIV-1 envelope sequences from North India (Delhi and neighboring regions). Six of 13 were related to subtype C, one B and the rest six showed relatedness with CRF02_AG strain. The subtype C possessed the highly conserved GPGQ motif but subtype B possessed the GPGR motif in the V3 loop as observed earlier. While most of the sequences suggested CCR5 co-receptor usage, one subtype C sample clearly indicated CXCR4 usage. A successful mother to child transmission was established in two pairs. Thus, co-circulation of multiple subtypes (B and C) and the recombinant CRF02_AG strains in North India suggests a rapidly evolving scenario of HIV-1 epidemic in this region with impact on vaccine formulation. Since this is the first report of CRF02_AG envelope from India, it will be important to monitor the spread of this strain and its impact on HIV-1 transmission in India. PMID:19954551

  11. Characterization of the neuropeptide Y system in the frog Silurana tropicalis (Pipidae): three peptides and six receptor subtypes.

    PubMed

    Sundström, G; Xu, B; Larsson, T A; Heldin, J; Bergqvist, C A; Fredriksson, R; Conlon, J M; Lundell, I; Denver, R J; Larhammar, D

    2012-07-01

    Neuropeptide Y and its related peptides PYY and PP (pancreatic polypeptide) are involved in feeding behavior, regulation of the pituitary and the gastrointestinal tract, and numerous other functions. The peptides act on a family of G-protein coupled receptors with 4-7 members in jawed vertebrates. We describe here the NPY system of the Western clawed frog Silurana (Xenopus) tropicalis. Three peptides, NPY, PYY and PP, were identified together with six receptors, namely subtypes Y1, Y2, Y4, Y5, Y7 and Y8. Thus, this frog has all but one of the ancestral seven gnathostome NPY-family receptors, in contrast to mammals which have lost 2-3 of the receptors. Expression levels of mRNA for the peptide and receptor genes were analyzed in a panel of 19 frog tissues using reverse transcriptase quantitative PCR. The peptide mRNAs had broad distribution with highest expression in skin, blood and small intestine. NPY mRNA was present in the three brain regions investigated, but PYY and PP mRNAs were not detectable in any of these. All receptor mRNAs had similar expression profiles with high expression in skin, blood, muscle and heart. Three of the receptors, Y5, Y7 and Y8, could be functionally expressed in HEK-293 cells and characterized with binding studies using the three frog peptides. PYY had the highest affinity for all three receptors (K(i) 0.042-0.34 nM). Also NPY and PP bound to the Y8 receptor with high affinity (0.14 and 0.50 nM). The low affinity of NPY for the Y5 receptor (100-fold lower than PYY) differs from mammals and chicken. This may suggest a less important role of NPY on Y5 in appetite stimulation in the frog compared with amniotes. In conclusion, our characterization of the NPY system in S. tropicalis with its six receptors demonstrates not only greater complexity than in mammals but also some interesting differences in ligand-receptor preferences.

  12. New ligands with affinity for the alpha4beta2 subtype of nicotinic acetylcholine receptors. Synthesis, receptor binding, and 3D-QSAR modeling.

    PubMed

    Audouze, Karine; Nielsen, Elsebet Østergaard; Olsen, Gunnar M; Ahring, Philip; Jørgensen, Tino Dyhring; Peters, Dan; Liljefors, Tommy; Balle, Thomas

    2006-06-01

    A new series of piperazines, diazepanes, diazocanes, diazabicyclononanes, and diazabicyclodecanes with affinity for the alpha4beta2 subtype of nicotinic acetylcholine receptors were synthesized on the basis of results from a previous computational study. A predictive 3D-QSAR model was developed using the GRID/GOLPE approach (R2 = 0.94, Q2 = 0.83, SDEP = 0.34). The SAR was interpreted in terms of contour maps of the PLS coefficients and in terms of a homology model of the alpha4beta2 subtype of the nicotinic acetylcholine receptors. The results reveal that hydrogen bonding from both hydrogens on the protonated amine and from the pyridine nitrogen to a water molecule as well as van der Waals interactions between the substituent bearing the protonated amine and the receptor is of importance for ligand affinity. The combination of 3D-QSAR and homology modeling proved successful for the interpretation of structure-affinity relationships as well as the validation of the individual modeling approaches.

  13. Low nanomolar GABA effects at extrasynaptic α4β1/β3δ GABA(A) receptor subtypes indicate a different binding mode for GABA at these receptors.

    PubMed

    Karim, Nasiara; Wellendorph, Petrine; Absalom, Nathan; Bang, Line Haunstrup; Jensen, Marianne Lerbech; Hansen, Maja Michelle; Lee, Ho Joon; Johnston, Graham A R; Hanrahan, Jane R; Chebib, Mary

    2012-08-15

    Ionotropic GABA(A) receptors are a highly heterogenous population of receptors assembled from a combination of multiple subunits. The aims of this study were to characterize the potency of GABA at human recombinant δ-containing extrasynaptic GABA(A) receptors expressed in Xenopus oocytes using the two-electrode voltage clamp technique, and to investigate, using site-directed mutagenesis, the molecular determinants for GABA potency at α4β3δ GABA(A) receptors. α4/δ-Containing GABA(A) receptors displayed high sensitivity to GABA, with mid-nanomolar concentrations activating α4β1δ (EC₅₀=24 nM) and α4β3δ (EC₅₀=12 nM) receptors. In the majority of oocytes expressing α4β3δ subtypes, GABA produced a biphasic concentration-response curve, and activated the receptor with low and high concentrations (EC₅₀(1)=16 nM; EC₅₀(2)=1.2 μM). At α4β2δ, GABA had low micromolar activity (EC₅₀=1 μM). An analysis of 10 N-terminal singly mutated α4β3δ receptors shows that GABA interacts with amino acids different to those reported for α1β2γ2 GABA(A) receptors. Residues Y205 and R207 of the β3-subunit significantly affected GABA potency, while the residue F71 of the α4- and the residue Y97 of the β3-subunit did not significantly affect GABA potency. Mutating the residue R218 of the δ-subunit, equivalent to the GABA binding residue R207 of the β2-subunit, reduced the potency of GABA by 670-fold, suggesting a novel GABA binding site at the δ-subunit interface. Taken together, GABA may have different binding modes for extrasynaptic δ-containing GABA(A) receptors compared to their synaptic counterparts.

  14. Co-Expression of Two Subtypes of Melatonin Receptor on Rat M1-Type Intrinsically Photosensitive Retinal Ganglion Cells

    PubMed Central

    Sheng, Wen-Long; Chen, Wei-Yi; Yang, Xiong-Li; Zhong, Yong-Mei; Weng, Shi-Jun

    2015-01-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in circadian and other non-image forming visual responses. An open question is whether the activity of these neurons may also be under the regulation mediated by the neurohormone melatonin. In the present work, by double-staining immunohistochemical technique, we studied the expression of MT1 and MT2, two known subtypes of mammalian melatonin receptors, in rat ipRGCs. A single subset of retinal ganglion cells labeled by the specific antibody against melanopsin exhibited the morphology typical of M1-type ipRGCs. Immunoreactivity for both MT1 and MT2 receptors was clearly seen in the cytoplasm of all labeled ipRGCs, indicating that these two receptors were co-expressed in each of these neurons. Furthermore, labeling for both the receptors were found in neonatal M1 cells as early as the day of birth. It is therefore highly plausible that retinal melatonin may directly modulate the activity of ipRGCs, thus regulating non-image forming visual functions. PMID:25714375

  15. The atypical 5-HT2 receptor mediating tachycardia in pithed rats: pharmacological correlation with the 5-HT2A receptor subtype

    PubMed Central

    Centurión, David; Ortiz, Mario I; Saxena, Pramod R; Villalón, Carlos M

    2002-01-01

    In pithed rats, 5-HT mediates tachycardia both directly (by 5-HT2 receptors) and indirectly (by a tyramine-like effect). The receptor mediating tachycardia directly has been classified as an ‘atypical' 5-HT2 receptor since it was ‘weakly' blocked by ketanserin. Moreover, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT2 agonist, failed to mimic 5-HT-induced tachycardia. Since 5-HT2 receptors consist of 5-HT2A, 5-HT2B and 5-HT2C subtypes, this study investigated if these subtypes mediate the above response. In pithed rats, intraperitoneally (i.p.) pre-treated with reserpine (5 mg kg−1), intravenous (i.v.) administration of 5-HT, 5-methoxytryptamine (5-MeO-T), 1-(3-chlorophenyl) piperazine (mCPP) and 5-carboxamidotryptamine (5-CT) (10, 30, 100 and 300 μg kg−1 each), produced dose-dependent tachycardic responses. Interestingly, DOI (10 – 1000 μg kg−1, i.v.) induced only slight, dose-unrelated, tachycardic responses, whilst the 5-HT2C agonist, Ro 60-0175 (10 – 1000 μg kg−1, i.v.), produced a slight tachycardia only at 300 and 1000 μg kg−1. In contrast, sumatriptan and 1-(m-trifluoromethylphenyl)- piperazine (TFMPP) were inactive. The rank order of potency was: 5-HT⩾5-MeO-T> mCPP⩾5-CT⩾DOI>Ro 60-0175. The tachycardic responses to 5-HT, which remained unaffected after i.v. saline (0.3 and 1 ml kg−1) or propranolol (3 mg kg−1), were selectively blocked by the 5-HT2A antagonists ketanserin (30 and 100 μg kg−1) or spiperone (10 and 30 μg kg−1) as well as by the non-selective 5-HT2 antagonists, ritanserin (10 and 30 μg kg−1) or mesulergine (100 μg kg−1). Remarkably, these responses were unaffected by the antagonists rauwolscine (5-HT2B), SB204741 (5-HT2B/2C) or Ro 04-6790 (5-ht6) (300 and 1000 μg kg−1 each). These results suggest that the ‘atypical' 5-HT2 receptors mediating tachycardia in reserpinized pithed rats are pharmacologically similar to the 5-HT2A

  16. Primary cultures of corticostriatal cells from newborn rats: a model to study muscarinic receptor subtypes regulation and function.

    PubMed

    Eva, C; Bovolin, P; Balzac, F; Botta, C; Gamalero, S R; Vaccarino, F M

    1990-01-01

    In the present work we characterized both the presynaptic and postsynaptic components of cholinergic transmission in a primary culture of corticostriatal neurons prepared from newborn rat brain. This culture preparation contains a small population of choline acetyltransferase (ChAT) immunoreactive neurons, corresponding to approximately 3% of the total cell number, and synthesizes increasing amounts of acetylcholine (ACh) from the third day in vitro (DIV), which reaches a plateau around the 10 day of culture. Muscarinic cholinergic receptors (mAChR), measured by the binding of the muscarinic antagonist [3H]quinuclidinyl benzilate ([3H]QNB), are detectable from the fifth DIV and increase linearly during the time of culture. At the twelfth DIV, the density of mAChRs (approximately 600 fmol/mg protein) is comparable to the density of mAChR in adult rat cortex. These receptors are coupled to second messenger systems, since muscarinic agonists inhibit adenylate cyclase activity and stimulate phosphoinositide breakdown with efficacies and potencies similar to those found in adult rat cortex. Moreover, by using the reverse transcriptase-polymerase chain reaction (RT-PCR) technique, we were able to demonstrate the presence of the m1, m3, and m4 mAChR subtype mRNAs in this neuronal culture at 12 DIV. Our data suggest that corticostriatal neuronal cultures develop in vitro ACh-synthesizing neurons and functionally active cholinergic receptors. This therefore makes them ideally suited to study the development and properties of brain mAChR subtypes.

  17. Heterogeneity of the M1 muscarinic receptor subtype between peripheral lung and cerebral cortex demonstrated by the selective antagonist AF-DX 116

    SciTech Connect

    Bloom, J.W.; Halonen, M.; Seaver, N.A.; Yamamura, H.I.

    1987-07-27

    Recent studies have demonstrated that the majority of muscarinic receptors in rabbit peripheral lung homogenates bind pirenzepine with high affinity (putative M1 subtype). In experiments of AF-DX 116 inhibiting (TH)(-)quinuclidinyl benzilate or (TH)pirenzepine, the authors found similar inhibitory constants for AF-DX 116 binding in rat heart and rabbit peripheral lung that were 4-fold smaller (i.e. of higher affinity) than the inhibitory constant for rat cerebral cortex. This results demonstrates heterogeneity of the M1 muscarinic receptor subtype between peripheral lung and cerebral cortex. 20 references, 1 figure, 2 tables.

  18. Sphingosine-1-Phosphate Receptor Subtype 3: A Novel Therapeutic Target of K-Ras Mutant Driven Non-Small Cell Lung Carcinoma

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0346 TITLE: Sphingosine-1-Phosphate Receptor Subtype 3: A Novel Therapeutic Target of K-Ras Mutant Driven Non-Small... Mutant Driven Non-Small Cell Lung Carcinoma 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0346 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Lee...14. ABSTRACT: This award aims to characterize the functional role of sphingosine-1-phosphate receptor subtype 3 (S1PR3) in oncogenic K-Ras mutant

  19. The antinociceptive effects of intravenous tianeptine in colorectal distension-induced visceral pain in rats: the role of 5-HT₃ receptors.

    PubMed

    Bilge, S Sırrı; Bozkurt, Ayhan; Ilkaya, Fatih; Ciftcioğlu, Engin; Kesim, Yüksel; Uzbay, Tayfun I

    2012-04-15

    Tianeptine is an unusual tricyclic antidepressant drug. In this study, we aimed to investigate the antinociceptive effect of tianeptine on visceral pain in rats and to determine whether possible antinociceptive effect of tianeptine is mediated by serotonergic (5-HT(2,3)) and noradrenergic (α(1,2)) receptor subtypes. Male Sprague Dawley rats (250-300 g) were supplied with a venous catheter, for drug administrations, and enameled nichrome electrodes, for electromyography, at external oblique musculature. Colorectal distension (CRD) was employed as the noxious visceral stimulus and the visceromotor response (VMR) to CRD was quantified electromyographically before and 5, 15, 30, 60, 90 and 120 min after tianeptine administration. Antagonists were administered 10 min before tianeptine for their ability to change tianeptine antinociception. Intravenous administration of tianeptine (2.5-20 mg/kg) produced a dose-dependent reduction in VMR. Administration of 5-HT(3) receptor antagonist ondansetron (0.5, 1 and 2 mg/kg), but not 5-HT(2) receptor antagonist ketanserine (0.5, 1 and 2 mg/kg), reduced the antinociceptive effect of tianeptine (10mg/kg). In addition, administration of α(1)-adrenoceptor antagonist prazosin (1 mg/kg) or α(2)-adrenoceptor antagonist yohimbine (1 mg/kg) did not cause any significant effect on the tianeptine-induced antinociception. Our data indicate that intravenous tianeptine exerts a pronounced antinociception against CRD-induced visceral pain in rats, and suggests that the antinociceptive effect of tianeptine appears to be mediated in part by 5-HT(3) receptors, but does not involve 5-HT(2) receptors or α-adrenoceptors.

  20. Structural Studies of GABAA Receptor Binding Sites: Which Experimental Structure Tells us What?

    PubMed Central

    Puthenkalam, Roshan; Hieckel, Marcel; Simeone, Xenia; Suwattanasophon, Chonticha; Feldbauer, Roman V.; Ecker, Gerhard F.; Ernst, Margot

    2016-01-01

    Atomic resolution structures of cys-loop receptors, including one of a γ-aminobutyric acid type A receptor (GABAA receptor) subtype, allow amazing insights into the structural features and conformational changes that these pentameric ligand-gated ion channels (pLGICs) display. Here we present a comprehensive analysis of more than 30 cys-loop receptor structures of homologous proteins that revealed several allosteric binding sites not previously described in GABAA receptors. These novel binding sites were examined in GABAA receptor homology models and assessed as putative candidate sites for allosteric ligands. Four so far undescribed putative ligand binding sites were proposed for follow up studies based on their presence in the GABAA receptor homology models. A comprehensive analysis of conserved structural features in GABAA and glycine receptors (GlyRs), the glutamate gated ion channel, the bacterial homologs Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus GLIC, and the serotonin type 3 (5-HT3) receptor was performed. The conserved features were integrated into a master alignment that led to improved homology models. The large fragment of the intracellular domain that is present in the structure of the 5-HT3 receptor was utilized to generate GABAA receptor models with a corresponding intracellular domain fragment. Results of mutational and photoaffinity ligand studies in GABAA receptors were analyzed in the light of the model structures. This led to an assignment of candidate ligands to two proposed novel pockets, candidate binding sites for furosemide and neurosteroids in the trans-membrane domain were identified. The homology models can serve as hypotheses generators, and some previously controversial structural interpretations of biochemical data can be resolved in the light of the presented multi-template approach to comparative modeling. Crystal and cryo-EM microscopic structures of the closest homologs that were solved in different conformational

  1. Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes.

    PubMed

    Gimenez, Luis E; Babilon, Stefanie; Wanka, Lizzy; Beck-Sickinger, Annette G; Gurevich, Vsevolod V

    2014-07-01

    Based on the identification of residues that determine receptor selectivity in arrestins and the phylogenetic analysis of the arrestin (arr) family, we introduced fifteen mutations of receptor-discriminator residues in arr-3, which were identified previously using mutagenesis, in vitro binding, and BRET-based recruitment assay in intact cells. The effects of these mutations were tested using neuropeptide Y receptors Y1R and Y2R. NPY-elicited arr-3 recruitment to Y1R was not affected by these mutations, or even alanine substitution of all ten residues (arr-3-NCA), which prevented arr-3 binding to other receptors tested so far. However, NCA and two other mutations prevented agonist-independent arr-3 pre-docking to Y1R. In contrast, eight out of 15 mutations significantly reduced agonist-dependent arr-3 recruitment to Y2R. NCA eliminated arr-3 binding to active Y2R, whereas Tyr239Thr reduced it ~7-fold. Thus, manipulation of key residues on the receptor-binding surface generates arr-3 with high preference for Y1R over Y2R. Several mutations differentially affect arr-3 pre-docking and agonist-induced recruitment. Thus, arr-3 recruitment to the receptor involves several mechanistically distinct steps. Targeted mutagenesis can fine-tune arrestins directing them to specific receptors and particular activation states of the same receptor.

  2. Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes

    PubMed Central

    Gimenez, Luis E.; Babilon, Stefanie; Wanka, Lizzy; Beck-Sickinger, Annette G.; Gurevich, Vsevolod V.

    2014-01-01

    Based on the identification of residues that determine receptor selectivity in arrestins and the phylogenetic analysis of the arrestin (arr) family, we introduced fifteen mutations of receptor-discriminator residues in arr-3, which were identified previously using mutagenesis, in vitro binding, and BRET-based recruitment assay in intact cells. The effects of these mutations were tested using neuropeptide Y receptors Y1R and Y2R. NPY-elicited arr-3 recruitment to Y1R was not affected by these mutations, or even alanine substitution of all ten residues (arr-3-NCA), which prevented arr-3 binding to other receptors tested so far. However, NCA and two other mutations prevented agonist-independent arr-3 pre-docking to Y1R. In contrast, eight out of 15 mutations significantly reduced agonist-dependent arr-3 recruitment to Y2R. NCA eliminated arr-3 binding to active Y2R, whereas Tyr239Thr reduced it ~7-fold. Thus, manipulation of key residues on the receptor-binding surface generates arr-3 with high preference for Y1R over Y2R. Several mutations differentially affect arr-3 pre-docking and agonist-induced recruitment. Thus, arr-3 recruitment to the receptor involves several mechanistically distinct steps. Targeted mutagenesis can fine-tune arrestins directing them to specific receptors and particular activation states of the same receptor. PMID:24686081

  3. Ligand Independent and Subtype-Selective Actions of Thyroid Hormone Receptors in Human Adipose Derived Stem Cells

    PubMed Central

    Cvoro, Aleksandra; Bajic, Aleksandar; Zhang, Aijun; Simon, Marisa; Golic, Igor; Sieglaff, Douglas H.; Maletic-Savatic, Mirjana; Korac, Aleksandra; Webb, Paul

    2016-01-01

    Thyroid hormone (TH) receptors (TRs α and β) are homologous ligand-dependent transcription factors (TFs). While the TRs display distinct actions in development, metabolic regulation and other processes, comparisons of TRα and TRβ dependent gene regulation mostly reveal similar mechanisms of action and few TR subtype specific genes. Here, we show that TRα predominates in multipotent human adipose derived stem cells (hADSC) whereas TRβ is expressed at lower levels and is upregulated during hADSC differentiation. The TRs display several unusual properties in parental hADSC. First, TRs display predominantly cytoplasmic intracellular distribution and major TRα variants TRα1 and TRα2 colocalize with mitochondria. Second, knockdown experiments reveal that endogenous TRs influence hADSC cell morphology and expression of hundreds of genes in the absence of hormone, but do not respond to exogenous TH. Third, TRα and TRβ affect hADSC in completely distinct ways; TRα regulates cell cycle associated processes while TRβ may repress aspects of differentiation. TRα splice variant specific knockdown reveals that TRα1 and TRα2 both contribute to TRα-dependent gene expression in a gene specific manner. We propose that TRs work in a non-canonical and hormone independent manner in hADSC and that prominent subtype-specific activities emerge in the context of these unusual actions. PMID:27732649

  4. Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons.

    PubMed

    Tóth, K; McBain, C J

    1998-11-01

    Using the polyamine toxin philanthotoxin, which selectively blocks calcium-permeable AMPA receptors, we show that synaptic transmission onto single hippocampal interneurons occurs by afferent-specific activation of philanthotoxin-sensitive and -insensitive AMPA receptors. Calcium-permeable AMPA receptors are found exclusively at synapses from mossy fibers. In contrast, synaptic responses evoked by stimulation of CA3 pyramidal neurons are mediated by calcium-impermeable AMPA receptors. Both pathways converge onto single interneurons and can be discriminated with Group II mGluR agonists. Thus, single interneurons target AMPA receptors of different subunit composition to specific postsynaptic sites, providing a mechanism to increase the synapse-specific computational properties of hippocampal interneurons.

  5. Ligand-binding properties of an unusual nicotinic acetylcholine receptor subtype on isolated outer hair cells from guinea pig cochlea.

    PubMed

    Lawoko, G; Järlebark, L; Heilbronn, E

    1995-07-28

    Acetylcholine receptors on isolated guinea pig cochlear outer hair cells (OHC) were characterized by radioligand binding. Equilibrium binding of [125I]alpha-bungarotoxin revealed a KD of 62 +/- 2 nM, Bmax = 7.2 +/- 1.8 x 10(7) binding sites/OHC, and a slowly reversible dissociation rate constant, kappa-1 = 2.2 +/- 0.01 x 10(-4) min-1. L-[3H]Nicotine bound reversibly (estimated KD approximately 230 nM and Bmax approximately 5 x 10(7)) with kinetic rate constants of association kappa-1 = 6.2 +/- 0.06 x 10(4) min-1 nM-1 and dissociation kappa-1 = 0.23 +/- 0.003 min-1. [3H]Strychnine bound to OHC with a KD of 35 +/- 6 nM and Bmax = 2.6 +/- 0.5 x 10(7), and binding increased 3-4 fold after membrane depolarization with 56.2 mM [K+], suggesting additional binding sites. Binding, seen only at > nM concentrations, of [3H]3-quinuclidinyl benzilate (KD = 11.5 +/- 5 nM; Bmax = 2.5 +/- 0.6 x 10(6)) was competitively inhibited by the muscarinic antagonists atropine and 4-DAMP (IC50 of 6.1 +/- 0.5 and 6.5 +/- 0.4 nM). The OHC receptor is thus an atypical nicotinic acetylcholine receptor subtype with unusual pharmacological properties.

  6. Determinants involved in subtype-specific functions of rat trace amine-associated receptors 1 and 4

    PubMed Central

    Stäubert, C; Bohnekamp, J; Schöneberg, T

    2013-01-01

    Aims The trace amine-associated receptor (Taar) family displays high species- and subtype-specific pharmacology. Several trace amines such as β-phenylethylamine (β-PEA), p-tyramine and tryptamine are agonists at TA1 but poorly activate rat and mouse Taar4. Principal Results Using rat TA1 and Taar4 chimera, we identified determinants in transmembrane helices 3 and 6, which, when replaced by the corresponding portion of rat TA1, can rescue cell surface expression of rat Taar4. When expressed at the cell surface, rat Taar4 pharmacology was very similar to that of TA1 and coupled to the Gαs-protein/AC pathway. Our data suggest that binding pockets of Taar for surrogate agonists overlap between paralogs. Conclusions This implicates that the repertoire of Taar ensures functional redundancy, tissue- and cell-specific expression and/or different downstream signalling rather than different agonist specificity. PMID:23072560

  7. Biological characteristics and epidermal growth factor receptor tyrosine kinase inhibitors efficacy of EGFR mutation and its subtypes in lung adenocarcinoma.

    PubMed

    Lu, Rong-Li; Hu, Cheng-Ping; Yang, Hua-Ping; Li, Yuan-Yuan; Gu, Qi-Hua; Wu, Lielin

    2014-04-01

    Mutation of epidermal growth factor receptor (EGFR) gene has been reported to be present in lung adenocarcinoma (LAC). In this study, we extensively investigated the impact of patients' biological characteristics on EGFR mutation and the impact of EGFR mutation subtypes on targeted therapy of advanced LAC. We examined EGFR exons18to21status in169 LAC patients by direct sequencing to study the impact of patients' biological characteristics on the EGFR mutational spectrum. And then, 59 patients with advanced LAC harboring EGFR exon 19 deletions(del 19) or exon 21 point mutation(L858R) mutations received first-line treatment of gefitinib or erlotinib, the efficacy of treatment, and the progression-free survival (PFS) of these patients were recorded. The frequency of the EGFR mutation and its subtypes and the variables associated with the EGFR mutation after removing the confound factors were investigated by the logistic analysis using all samples (n = 169). The EGFR mutation was significantly associated with well-differentiated tumor and excessive household cooking fumes(P < 0.05). The deletions in exon 19 were more frequently associated with well-differentiated tumor (P < 0.05). The overall frequency of the EGFR mutation was 49 %. Then the impact of EGFR mutation subtypes on targeted therapy were investigated by the retrospective analysis on 59 advanced LAC patients with del 19 or L858R mutations and treated first-line with erlotinib or gefitinib. The deletions in exon 19 got longer PFS (P < 0.05). But there were no differences in PFS between erlotinib therapy and gefitinib therapy. EGFR mutations were more frequently in high tumor differentiation and excessive household cooking fumes LAC. The del 19 mutation rate is relatively high with a high differentiation degree in advanced lung adenocarcinoma. The deletions in exon 19 may benefit more from first-line targeted therapy of advanced LAC compared with exon 21 point mutation L858R. There was no

  8. Identification of three muscarinic receptor subtypes in rat lung using binding studies with selective antagonists

    SciTech Connect

    Fryer, A.D.; El-Fakahany, E.E. )

    1990-01-01

    Heterogeneity of the muscarinic receptor population in the rat central and peripheral lung was found in competition binding experiments against ({sup 3}H)quinuclidinyl benzilate (({sup 3}H)QNB) using the selective antagonists pirenzepine, AF-DX 116 and hexahydrosiladifenidol (HHSiD). Pirenzepine displaced ({sup 3}H)QNB with low affinity from preparations of central airways indicating the absence of M{sub 1} receptors in the trachea and bronchi. Muscarinic receptors in the central airways are comprised of both M{sub 2} and M{sub 3} receptors since AF-DX 116, an M{sub 2}-selective antagonist, bound with high affinity to 70% of the available sites while HHSiD, an M{sub 3}-selective antagonist bound with high affinity to the remaining binding sites. In the peripheral lung, pirenzepine bound with high affinity to 14% of the receptor population, AF-DX 116 bound with high affinity 79% of the binding sites while HHSiD bound with high affinity to 18% of the binding sites. The presence of M{sub 1} receptors in the peripheral airways but not in the central airways was confirmed using ({sup 3}H)telenzepine, an M{sub 1} receptor ligand. ({sup 3}H)Telenzepine showed specific saturable binding to 8% of ({sup 3}H)QNB labeled binding sites in homogenates of rat peripheral lung, while there was no detectable specific binding in homogenates of rat trachea or heart.

  9. Design and Investigation of a [(18)F]-Labeled Benzamide Derivative as a High Affinity Dual Sigma Receptor Subtype Radioligand for Prostate Tumor Imaging.

    PubMed

    Yang, Dongzhi; Comeau, Anthony; Bowen, Wayne D; Mach, Robert H; Ross, Brian D; Hong, Hao; Van Dort, Marcian E

    2017-03-06

    High overexpression of sigma (