Science.gov

Sample records for 5-ht3a receptor channel

  1. Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel

    PubMed Central

    Di Maio, Danilo; Chandramouli, Balasubramanian; Brancato, Giuseppe

    2015-01-01

    Pentameric ligand gated ion channels (pLGICs) are ionotropic receptors that mediate fast intercellular communications at synaptic level and include either cation selective (e.g., nAChR and 5-HT3) or anion selective (e.g., GlyR, GABAA and GluCl) membrane channels. Among others, 5-HT3 is one of the most studied members, since its first cloning back in 1991, and a large number of studies have successfully pinpointed protein residues critical for its activation and channel gating. In addition, 5-HT3 is also the target of a few pharmacological treatments due to the demonstrated benefits of its modulation in clinical trials. Nonetheless, a detailed molecular analysis of important protein features, such as the origin of its ion selectivity and the rather low conductance as compared to other channel homologues, has been unfeasible until the recent crystallization of the mouse 5-HT3A receptor. Here, we present extended molecular dynamics simulations and free energy calculations of the whole 5-HT3A protein with the aim of better understanding its ion transport properties, such as the pathways for ion permeation into the receptor body and the complex nature of the selectivity filter. Our investigation unravels previously unpredicted structural features of the 5-HT3A receptor, such as the existence of alternative intersubunit pathways for ion translocation at the interface between the extracellular and the transmembrane domains, in addition to the one along the channel main axis. Moreover, our study offers a molecular interpretation of the role played by an arginine triplet located in the intracellular domain on determining the characteristic low conductance of the 5-HT3A receptor, as evidenced in previous experiments. In view of these results, possible implications on other members of the superfamily are suggested. PMID:26465896

  2. Pathways and Barriers for Ion Translocation through the 5-HT3A Receptor Channel.

    PubMed

    Di Maio, Danilo; Chandramouli, Balasubramanian; Brancato, Giuseppe

    2015-01-01

    Pentameric ligand gated ion channels (pLGICs) are ionotropic receptors that mediate fast intercellular communications at synaptic level and include either cation selective (e.g., nAChR and 5-HT3) or anion selective (e.g., GlyR, GABAA and GluCl) membrane channels. Among others, 5-HT3 is one of the most studied members, since its first cloning back in 1991, and a large number of studies have successfully pinpointed protein residues critical for its activation and channel gating. In addition, 5-HT3 is also the target of a few pharmacological treatments due to the demonstrated benefits of its modulation in clinical trials. Nonetheless, a detailed molecular analysis of important protein features, such as the origin of its ion selectivity and the rather low conductance as compared to other channel homologues, has been unfeasible until the recent crystallization of the mouse 5-HT3A receptor. Here, we present extended molecular dynamics simulations and free energy calculations of the whole 5-HT3A protein with the aim of better understanding its ion transport properties, such as the pathways for ion permeation into the receptor body and the complex nature of the selectivity filter. Our investigation unravels previously unpredicted structural features of the 5-HT3A receptor, such as the existence of alternative intersubunit pathways for ion translocation at the interface between the extracellular and the transmembrane domains, in addition to the one along the channel main axis. Moreover, our study offers a molecular interpretation of the role played by an arginine triplet located in the intracellular domain on determining the characteristic low conductance of the 5-HT3A receptor, as evidenced in previous experiments. In view of these results, possible implications on other members of the superfamily are suggested. PMID:26465896

  3. Single-Channel Kinetic Analysis for Activation and Desensitization of Homomeric 5-HT3A Receptors

    PubMed Central

    Corradi, Jeremías; Gumilar, Fernanda; Bouzat, Cecilia

    2009-01-01

    Abstract The 5-HT3A receptor is a member of the Cys-loop family of ligand-gated ion channels. To perform kinetic analysis, we mutated the 5-HT3A subunit to obtain a high-conductance form so that single-channel currents can be detected. At all 5-HT concentrations (>0.1 μM), channel activity appears as openings in quick succession that form bursts, which coalesce into clusters. By combining single-channel and macroscopic data, we generated a kinetic model that perfectly describes activation, deactivation, and desensitization. The model shows that full activation arises from receptors with three molecules of agonist bound. It reveals an earlier conformational change of the fully liganded receptor that occurs while the channel is still closed. From this pre-open closed state, the receptor enters into an open-closed cycle involving three open states, which form the cluster whose duration parallels the time constant of desensitization. A similar model lacking the pre-open closed state can describe the data only if the opening rates are fixed to account for the slow activation rate. The application of the model to M4 mutant receptors shows that position 10′ contributes to channel opening and closing rates. Thus, our kinetic model provides a foundation for understanding structural bases of activation and drug action. PMID:19720021

  4. The 4′lysine in the putative channel lining domain affects desensitization but not the single-channel conductance of recombinant homomeric 5-HT3A receptors

    PubMed Central

    Gunthorpe, Martin J; Peters, John A; Gill, Catherine H; Lambert, Jeremy J; Lummis, Sarah C R

    2000-01-01

    The 5-HT3 receptor is a transmitter-gated ion channel of the Cys-loop superfamily. Uniquely, 5-HT3 receptor subunits (5-HT3A and 5-HT3B) possess a positively charged lysine residue within the putative channel lining M2 domain (4′ position). Using whole cell recording techniques, we examined the role of this residue in receptor function using wild-type (WT) and mutant 5-HT3A receptor subunits of murine origin transiently expressed in human embryonic kidney (HEK 293) cells. WT 5-HT3A receptors mediated rapidly activating currents in response to 5-HT (10–90 % rise time, 103 ms; EC50, 2.34 μm; Hill coefficient, nH, 2.87). The currents rectified inwardly, reversed in sign at a potential of −9 mV and desensitized in the continuous presence of agonist (half-time of desensitization, t1/2, 2.13 s). 5-HT3A receptor subunits in which the 4′lysine was mutated to arginine, glutamine, serine or glycine formed functional receptors. 5-HT EC50 values were approximately 2-fold lower than for WT 5-HT3A receptors, but Hill coefficients, kinetics of current activation, rectification, and reversal potentials were unaltered. Each of the mutants desensitized more slowly than the WT 5-HT3A receptor, with the arginine and glycine mutations exhibiting the greatest effect (5-fold reduction). The rank order of effect was arginine > glycine > serine > glutamine. The single-channel conductance of the WT 5-HT3A receptor, as assessed by fluctuation analysis of macroscopic currents, was 390 fS. A similar value was obtained for the 4′lysine mutant receptors. Thus it appears unlikely that 4′lysine is exposed to the channel lumen. Mutation of residues immediately adjacent to 4′lysine to glutamate or lysine resulted in lack of receptor expression or function. We conclude that 4′lysine does not form part of the channel lining, but may play an important role in 5-HT3 receptor desensitization. PMID:10639097

  5. Length and Amino Acid Sequence of Peptides Substituted for the 5-HT3A Receptor M3M4 Loop May Affect Channel Expression and Desensitization

    PubMed Central

    McKinnon, Nicole K.; Bali, Moez; Akabas, Myles H.

    2012-01-01

    5-HT3A receptors are pentameric neurotransmitter-gated ion channels in the Cys-loop receptor family. Each subunit contains an extracellular domain, four transmembrane segments (M1, M2, M3, M4) and a 115 residue intracellular loop between M3 and M4. In contrast, the M3M4 loop in prokaryotic homologues is <15 residues. To investigate the limits of M3M4 loop length and composition on channel function we replaced the 5-HT3A M3M4 loop with two to seven alanine residues (5-HT3A-An = 2–7). Mutants were expressed in Xenopus laevis oocytes and characterized using two electrode voltage clamp recording. All mutants were functional. The 5-HT EC50's were at most 5-fold greater than wild-type (WT). The desensitization rate differed significantly among the mutants. Desensitization rates for 5-HT3A-A2, 5-HT3A-A4, 5-HT3A-A6, and 5-HT3A-A7 were similar to WT. In contrast, 5-HT3A-A3 and 5-HT3A-A5 had desensitization rates at least an order of magnitude faster than WT. The one Ala loop construct, 5-HT3A-A1, entered a non-functional state from which it did not recover after the first 5-HT application. These results suggest that the large M3M4 loop of eukaryotic Cys-loop channels is not required for receptor assembly or function. However, loop length and amino acid composition can effect channel expression and desensitization. We infer that the cytoplasmic ends of the M3 and M4 segments may undergo conformational changes during channel gating and desensitization and/or the loop may influence the position and mobility of these segments as they undergo gating-induced conformational changes. Altering structure or conformational mobility of the cytoplasmic ends of M3 and M4 may be the basis by which phosphorylation or protein binding to the cytoplasmic loop alters channel function. PMID:22539982

  6. Conversion of the ion selectivity of the 5-HT(3a) receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily.

    PubMed

    Gunthorpe, M J; Lummis, S C

    2001-06-15

    The 5-hydroxytryptamine(3) (5-HT(3)) receptor is a member of a superfamily of ligand-gated ion channels, which includes nicotinic acetylcholine, gamma-aminobutyric acid, and glycine receptors. The receptors are either cation or anion selective, leading to their distinctive involvement in either excitatory or inhibitory neurotransmission. Using a combination of site-directed mutagenesis and electrophysiological characterization of homomeric 5-HT(3A) receptors expressed in HEK293 cells, we have identified a set of mutations that convert the ion selectivity of the 5-HT(3A) receptor from cationic to anionic; these were substitution of V13'T in M2 together with neutralization of glutamate residues (E-1'A) and the adjacent insertion of a proline residue (P-1') in the M1-M2 loop. Mutant receptors showed significant chloride permeability (P(Cl)/P(Na) = 12.3, P(Na)/P(Cl) = 0.08), whereas WT receptors are predominantly permeable to sodium (P(Na)/P(Cl) > 20, P(Cl)/P(Na) < 0.05). Since the equivalent mutations have previously been shown to convert alpha7 nicotinic acetylcholine receptors from cationic to anionic (Galzi J.-L., Devillers-Thiery, A, Hussy, N., Bertrand, S. Changeux, J. P., and Bertrand, D. (1992) Nature 359, 500-505) and, recently, the converse mutations have allowed the construction of a cation selective glycine receptor (Keramidas, A., Moorhouse, A. J., French, C. R., Schofield, P. R., and Barry, P. H. (2000) Biophys. J. 78, 247-259), it appears that the determinants of ion selectivity represent a conserved feature of the ligand-gated ion channel superfamily. PMID:11439930

  7. Conversion of the ion selectivity of the 5-HT(3a) receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily.

    PubMed

    Gunthorpe, M J; Lummis, S C

    2001-04-01

    The 5-hydroxytryptamine(3) (5-HT(3)) receptor is a member of a superfamily of ligand-gated ion channels, which includes nicotinic acetylcholine, gamma-aminobutyric acid, and glycine receptors. The receptors are either cation or anion selective, leading to their distinctive involvement in either excitatory or inhibitory neurotransmission. Using a combination of site-directed mutagenesis and electrophysiological characterization of homomeric 5-HT(3A) receptors expressed in HEK293 cells, we have identified a set of mutations that convert the ion selectivity of the 5-HT(3A) receptor from cationic to anionic; these were substitution of V13'T in M2 together with neutralization of glutamate residues (E-1'A) and the adjacent insertion of a proline residue (P-1') in the M1-M2 loop. Mutant receptors showed significant chloride permeability (P(Cl)/P(Na) = 12.3, P(Na)/P(Cl) = 0.08), whereas WT receptors are predominantly permeable to sodium (P(Na)/P(Cl) > 20, P(Cl)/P(Na) < 0.05). Since the equivalent mutations have previously been shown to convert alpha7 nicotinic acetylcholine receptors from cationic to anionic (Galzi J.-L., Devillers-Thiery, A, Hussy, N., Bertrand, S. Changeux, J. P., and Bertrand, D. (1992) Nature 359, 500-505) and, recently, the converse mutations have allowed the construction of a cation selective glycine receptor (Keramidas, A., Moorhouse, A. J., French, C. R., Schofield, P. R., and Barry, P. H. (2000) Biophys. J. 78, 247-259), it appears that the determinants of ion selectivity represent a conserved feature of the ligand-gated ion channel superfamily. PMID:11139582

  8. Impaired Social Behavior in 5-HT3A Receptor Knockout Mice

    PubMed Central

    Smit-Rigter, Laura A.; Wadman, Wytse J.; van Hooft, Johannes A.

    2010-01-01

    The 5-HT3 receptor is a ligand-gated ion channel expressed on interneurons throughout the brain. So far, analysis of the 5-HT3A knockout mouse revealed changes in nociceptive processing and a reduction in anxiety related behavior. Recently, it was shown that the 5-HT3 receptor is also expressed on Cajal-Retzius cells which play a key role in cortical development and that knockout mice lacking this receptor showed aberrant growth of the dendritic tree of cortical layer II/III pyramidal neurons. Other mouse models in which serotonergic signaling was disrupted during development showed similar morphological changes in the cortex, and in addition, also deficits in social behavior. Here, we subjected male and female 5-HT3A knockout mice and their non-transgenic littermates to several tests of social behavior. We found that 5-HT3A knockout mice display impaired social communication in the social transmission of food preference task. Interestingly, we showed that in the social interaction test only female 5-HT3A knockout mice spent less time in reciprocal social interaction starting after 5 min of testing. Moreover, we observed differences in preference for social novelty for male and female 5-HT3A knockout mice during the social approach test. However, no changes in olfaction, exploratory activity and anxiety were detected. These results indicate that the 5-HT3A knockout mouse displays impaired social behavior with specific changes in males and females, reminiscent to other mouse models in which serotonergic signaling is disturbed in the developing brain. PMID:21103015

  9. Identification of ginsenoside interaction sites in 5-HT3A receptors.

    PubMed

    Lee, Byung-Hwan; Lee, Jun-Ho; Lee, Sang-Mok; Jeong, Sang Min; Yoon, In-Soo; Lee, Joon-Hee; Choi, Sun-Hye; Pyo, Mi Kyung; Rhim, Hyewhon; Kim, Hyoung-Chun; Jang, Choon-Gon; Lee, Byoung-Cheol; Park, Chul-Seung; Nah, Seung-Yeol

    2007-03-01

    We previously demonstrated that 20(S)-ginsenoside Rg(3) (Rg(3)), one of the active components of Panax ginseng, non-competitively inhibits 5-HT(3A) receptor channel activity on extracellular side of the cell. Here, we sought to elucidate the molecular mechanisms underlying Rg(3)-induced 5-HT(3A) receptor regulation. We used the two-microelectrode voltage-clamp technique to investigate the effect of Rg(3) on 5-HT-mediated ion currents (I(5-HT)) in Xenopus oocytes expressing wild-type or 5-HT(3A) receptors harboring mutations in the gating pore region of transmembrane domain 2 (TM2). In oocytes expressing wild-type 5-HT(3A) receptors, Rg(3) dose-dependently inhibited peak I(5-HT) with an IC(50) of 27.6+/-4.3microM. Mutations V291A, F292A, and I295A in TM2 greatly attenuated or abolished the Rg(3)-induced inhibition of peak I(5-HT). Mutation V291A but not F292A and I295A induced constitutively active ion currents with decrease of current decay rate. Rg(3) accelerated the rate of current decay with dose-dependent manner in the presence of 5-HT. Rg(3) and TMB-8, an open channel blocker, dose-dependently inhibited constitutively active ion currents. The IC(50) values of constitutively active ion currents in V291A mutant receptor were 72.4+/-23.1 and 6.5+/-0.7microM for Rg(3) and TMB-8, respectively. Diltiazem did not prevent Rg(3)-induced inhibition of constitutively active ion currents in occlusion experiments. These results indicate that Rg(3) inhibits 5-HT(3A) receptor channel activity through interactions with residues V291, F292, and I295 in the channel gating region of TM2 and further demonstrate that Rg(3) regulates 5-HT(3A) receptor channel activity in the open state at different site(s) from those of TMB-8 and diltiazem. PMID:17257631

  10. Deletion of the 5-HT3A-receptor subunit blunts the induction of cocaine sensitization

    PubMed Central

    Hodge, C. W.; Bratt, A. M.; Kelley, S. P.

    2008-01-01

    Serotonin (5-HT) receptors are classified into seven groups (5-HT1–7), comprising at least 14 structurally and pharmacologically distinct receptor subtypes. Pharma-cological antagonism of ionotropic 5-HT3 receptors has been shown to modulate both behavioral and neuro-chemical aspects of the induction of sensitization to cocaine. It is not known, however, if specific molecular subunits of the 5-HT3 receptor influence the development of cocaine sensitization. To address this question, we studied the effects of acute and chronic intermittent cocaine administration in mice with a targeted deletion of the gene for the 5-HT3A-receptor subunit (5-HT3A −/−). 5-HT3A (−/−) mice showed blunted induction of cocaine-induced locomotor sensitization as compared with wild-type littermate controls. 5-HT3A (−/−) mice did not differ from wild-type littermate controls on measures of basal motor activity or response to acute cocaine treatment. Enhanced locomotor response to saline injection following cocaine sensitization was observed equally in 5-HT3A (−/−) and wild-type mice suggesting similar conditioned effects associated with chronic cocaine treatment. These data show a role for the 5-HT3A-receptor subunit in the induction of behavioral sensitization to cocaine and suggest that the 5-HT3A molecular subunit modulates neurobehavioral adaptations to cocaine, which may underlie aspects of addiction. PMID:17559417

  11. High yield and efficient expression and purification of the human 5-HT3A receptor

    PubMed Central

    Wu, Zhong-shan; Cui, Zhi-cheng; Cheng, Hao; Fan, Chen; Melcher, Karsten; Jiang, Yi; Zhang, Cheng-hai; Jiang, Hua-liang; Cong, Yao; Liu, Qian; Xu, H Eric

    2015-01-01

    Aim: To establish a method for efficient expression and purification of the human serotonin type 3A receptor (5-HT3A) that is suitable for structural studies. Methods: Codon-optimized cDNA of human 5-HT3A was inserted into a modified BacMam vector, which contained an IgG leader sequence, an 8×His tag linked with two-Maltose Binding Proteins (MBP), and a TEV protease cleavage site. The BacMam construct was used to generate baculoviruses for expression of 5-HT3A in HEK293F cells. The proteins were solubilized from the membrane with the detergent C12E 9, and purified using MBP affinity chromatography. The affinity tag was removed by TEV protease treatment and immobilized metal ion affinity chromatography. The receptors were further purified by size-exclusion chromatography (SEC). Western blot and SDS-PAGE were used to detect 5-HT3A during purification. The purified receptor was used in crystallization and analyzed with negative stain electron microscopy (EM). Results: The BacMam system yielded 0.5 milligram of the human 5-HT3A receptor per liter of cells. MBP affinity purification resulted in good yields with high purity and homogeneity. SEC profiles indicated that the purified receptors were pentameric. No protein crystals were obtained; however, a reconstructed 3D density map generated from the negative stain EM data fitted well with the mouse 5-HT3A structure. Conclusion: With the BacMam system, robust expression of the human 5-HT3A receptor is obtained, which is monodisperse, therefore enabling 3D reconstruction of an EM map. This method is suitable for high-throughput screening of different constructs, thus facilitating structural and biochemical studies of the 5-HT3A receptor. PMID:26073329

  12. Open probability of homomeric murine 5-HT3A serotonin receptors depends on subunit occupancy

    PubMed Central

    Mott, David D; Erreger, Kevin; Banke, Tue G; Traynelis, Stephen F

    2001-01-01

    The time course of macroscopic current responses of homomeric murine serotonin 5-HT3A receptors was studied in whole cells and excised membrane patches under voltage clamp in response to rapid application of serotonin. Serotonin activated whole cell currents with an EC50 value for the peak response of 2 μm and a Hill slope of 3.0 (n = 12), suggesting that the binding of at least three agonist molecules is required to open the channel. Homomeric 5-HT3A receptors in excised membrane patches had a slow activation time course (mean ±s.e.m. 10-90 % rise time 12.5 ± 1.6 ms; n = 9 patches) for 100 μm serotonin. The apparent activation rate was estimated by fitting an exponential function to the rising phase of responses to supramaximal serotonin to be 136 s−1. The 5-HT3A receptor response to 100 μm serotonin in outside-out patches (n = 19) and whole cells (n = 41) desensitized with a variable rate that accelerated throughout the experiment. The time course for desensitization was described by two exponential components (for patches τslow 1006 ± 139 ms, amplitude 31 % τfast 176 ± 25 ms, amplitude 69 %). Deactivation of the response following serotonin removal from excised membrane patches (n = 8) and whole cells (n = 29) was described by a dual exponential time course with time constants similar to those for desensitization (for patches τslow 838 ± 217 ms, 55 % amplitude; τfast 213 ± 44 ms, 45 % amplitude). In most patches (6 of 8), the deactivation time course in response to a brief 1-5 ms pulse of serotonin was similar to or slower than desensitization. This suggests that the continued presence of agonist can induce desensitization with a similar or more rapid time course than agonist unbinding. The difference between the time course for deactivation and desensitization was voltage independent over the range -100 to -40 mV in patches (n = 4) and -100 to +50 mV in whole cells (n = 4), suggesting desensitization of these receptors in the presence of

  13. Unraveling mechanisms underlying partial agonism in 5-HT3A receptors.

    PubMed

    Corradi, Jeremías; Bouzat, Cecilia

    2014-12-10

    Partial agonists have emerged as attractive therapeutic molecules. 2-Me-5HT and tryptamine have been defined as partial agonists of 5-HT3 receptors on the basis of macroscopic measurements. Because several mechanisms may limit maximal responses, we took advantage of the high-conductance form of the mouse serotonin type 3A (5-HT3A) receptor to understand their molecular actions. Individual 5-HT-bound receptors activate in long episodes of high open probability, consisting of groups of openings in quick succession. The activation pattern is similar for 2-Me-5HT only at very low concentrations since profound channel blockade takes place within the activating concentration range. In contrast, activation episodes are significantly briefer in the presence of tryptamine. Generation of a full activation scheme reveals that the fully occupied receptor overcomes transitions to closed preopen states (primed states) before opening. Reduced priming explains the partial agonism of tryptamine. In contrast, 2-Me-5HT is not a genuine partial agonist since priming is not dramatically affected and its low apparent efficacy is mainly due to channel blockade. The analysis also shows that the first priming step is the rate-limiting step and partial agonists require an increased number of priming steps for activation. Molecular docking suggests that interactions are similar for 5-HT and 2-Me-5HT but slightly different for tryptamine. Our study contributes to understanding 5-HT3A receptor activation, extends the novel concept of partial agonism within the Cys-loop family, reveals novel aspects of partial agonism, and unmasks molecular actions of classically defined partial agonists. Unraveling mechanisms underlying partial responses has implications in the design of therapeutic compounds. PMID:25505338

  14. Fluorophore assisted light inactivation (FALI) of recombinant 5-HT3A receptor constitutive internalization and function

    PubMed Central

    Morton, Russell A.; Luo, Guoxiang; Davis, Margaret I.; Hales, Tim G.; Lovinger, David M.

    2011-01-01

    Fluorescent proteins and molecules are now widely used to tag and visualize proteins resulting in an improved understanding of protein trafficking, localization, and function. In addition, fluorescent tags have also been used to inactivate protein function in a spatially and temporally-defined manner, using a technique known as fluorophore-assisted light inactivation (FALI) or chromophore-assisted light inactivation (CALI). In this study we tagged the serotonin3 A subunit with the α-bungarotoxin binding sequence (BBS) and subsequently labeled 5-HT3A/BBS receptors with fluorescently conjugated α-bungarotoxin in live cells. We show that 5-HT3A/BBS receptors are constitutively internalized in the absence of an agonist and internalization as well as receptor function are inhibited by fluorescence. The fluorescence-induced disruption of function and internalization was reduced with oxygen radical scavengers suggesting the involvement of reactive oxygen species, implicating the FALI process. Furthermore, these data suggest that intense illumination during live-cell microscopy may result in inadvertent FALI and inhibition of protein trafficking. PMID:21338684

  15. Ion permeation and conduction in a human recombinant 5-HT3 receptor subunit (h5-HT3A)

    PubMed Central

    Brown, A M; Hope, A G; Lambert, J J; Peters, J A

    1998-01-01

    A human recombinant homo-oligomeric 5-HT3 receptor (h5-HT3A) expressed in a human embryonic kidney cell line (HEK 293) was characterized using the whole-cell recording configuration of the patch clamp technique. 5-HT evoked transient inward currents (EC50 = 3.4 μm; Hill coefficient = 1.8) that were blocked by the 5-HT3 receptor antagonist ondansetron (IC50 = 103 pm) and by the non-selective agents metoclopramide (IC50 = 69 nm), cocaine (IC50 = 459 nm) and (+)-tubocurarine (IC50 = 2.8 μm). 5-HT-induced currents rectified inwardly and reversed in sign (E5-HT) at a potential of −2.2 mV. N-Methyl-d-glucamine was finitely permeant. Permeability ratios PNa/PCs and PNMDG/PCs were 0.90 and 0.083, respectively. Permeability towards divalent cations was assessed from measurements of E5-HT in media where Ca2+ and Mg2+ replaced Na+. PCa/PCs and PMg/PCs were calculated to be 1.00 and 0.61, respectively. Single channel chord conductance (γ) estimated from fluctuation analysis of macroscopic currents increased with membrane hyperpolarization from 243 fS at −40 mV to 742 fS at −100 mV. Reducing [Ca2+]o from 2 to 0.1 mm caused an increase in the whole-cell current evoked by 5-HT. A concomitant reduction in [Mg2+]o produced further potentiation. Fluctuation analysis indicates that a voltage-independent augmentation of γ contributes to this phenomenon. The data indicate that homo-oligomeric receptors composed of h5-HT3A subunits form inwardly rectifying cation-selective ion channels of low conductance that are permeable to Ca2+ and Mg2+. PMID:9508827

  16. Influence of the 5-HT3A Receptor Gene Polymorphism and Childhood Sexual Trauma on Central Serotonin Activity

    PubMed Central

    Huh, Hyu Jung; Chae, Jeong-Ho

    2015-01-01

    Background Gene-environment interactions are important for understanding alterations in human brain function. The loudness dependence of auditory evoked potential (LDAEP) is known to reflect central serotonergic activity. Single nucleotide polymorphisms (SNPs) in the 5-HT3A serotonin receptor gene are associated with psychiatric disorders. This study aimed to investigate the effect between 5-HT3A receptor gene polymorphisms and childhood sexual trauma on the LDAEP as an electrophysiological marker in healthy subjects. Methods A total of 206 healthy subjects were recruited and evaluated using the childhood trauma questionnaire (CTQ) and hospital anxiety and depression scale (HADS). Peak-to-peak N1/P2 was measured at five stimulus intensities, and the LDAEP was calculated as the linear-regression slope. In addition, the rs1062613 SNPs of 5-HT3A (CC, CT, and TT) were analyzed in healthy subjects. Results There was a significant interaction between scores on the CTQ-sexual abuse subscale and 5-HT3A genotype on the LDAEP. Subjects with the CC polymorphism had a significantly higher LDEAP than T carriers in the sexually abused group. In addition, CC genotype subjects in the sexually abused group showed a significantly higher LDAEP compared with CC genotype subjects in the non-sexually abused group. Conclusions Our findings suggest that people with the CC polymorphism of the 5-HT3A gene have a greater risk of developing mental health problems if they have experienced childhood sexual abuse, possibly due to low central serotonin activity. Conversely, the T polymorphism may be protective against any central serotonergic changes following childhood sexual trauma. PMID:26701104

  17. Kampo Medicine: Evaluation of the Pharmacological Activity of 121 Herbal Drugs on GABAA and 5-HT3A Receptors.

    PubMed

    Hoffmann, Katrin M; Herbrechter, Robin; Ziemba, Paul M; Lepke, Peter; Beltrán, Leopoldo; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2016-01-01

    Kampo medicine is a form of Japanese phytotherapy originating from traditional Chinese medicine (TCM). During the last several decades, much attention has been paid to the pharmacological effects of these medical plants and their constituents. However, in many cases, a systematic screening of Kampo remedies to determine pharmacologically relevant targets is still lacking. In this study, a broad screening of Kampo remedies was performed to look for pharmacologically relevant 5-HT3A and GABAA receptor ligands. Several of the Kampo remedies are currently used for symptoms such as nausea, emesis, gastrointestinal motility disorders, anxiety, restlessness, or insomnia. Therefore, the pharmacological effects of 121 herbal drugs from Kampo medicine were analyzed as ethanol tinctures on heterologously expressed 5-HT3A and GABAA receptors, due to the involvement of these receptors in such pathophysiological processes. The tinctures of Lindera aggregata (radix) and Leonurus japonicus (herba) were the most effective inhibitory compounds on the 5-HT3A receptor. Further investigation of known ingredients in these compounds led to the identification of leonurine from Leonurus as a new natural 5-HT3A receptor antagonist. Several potentiating herbs (e.g., Magnolia officinalis (cortex), Syzygium aromaticum (flos), and Panax ginseng (radix)) were also identified for the GABAA receptor, which are all traditionally used for their sedative or anxiolytic effects. A variety of tinctures with antagonistic effects Salvia miltiorrhiza (radix) were also detected. Therefore, this study reveals new insights into the pharmacological action of a broad spectrum of herbal drugs from Kampo, allowing for a better understanding of their physiological effects and clinical applications. PMID:27524967

  18. Kampo Medicine: Evaluation of the Pharmacological Activity of 121 Herbal Drugs on GABAA and 5-HT3A Receptors

    PubMed Central

    Hoffmann, Katrin M.; Herbrechter, Robin; Ziemba, Paul M.; Lepke, Peter; Beltrán, Leopoldo; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2016-01-01

    Kampo medicine is a form of Japanese phytotherapy originating from traditional Chinese medicine (TCM). During the last several decades, much attention has been paid to the pharmacological effects of these medical plants and their constituents. However, in many cases, a systematic screening of Kampo remedies to determine pharmacologically relevant targets is still lacking. In this study, a broad screening of Kampo remedies was performed to look for pharmacologically relevant 5-HT3A and GABAA receptor ligands. Several of the Kampo remedies are currently used for symptoms such as nausea, emesis, gastrointestinal motility disorders, anxiety, restlessness, or insomnia. Therefore, the pharmacological effects of 121 herbal drugs from Kampo medicine were analyzed as ethanol tinctures on heterologously expressed 5-HT3A and GABAA receptors, due to the involvement of these receptors in such pathophysiological processes. The tinctures of Lindera aggregata (radix) and Leonurus japonicus (herba) were the most effective inhibitory compounds on the 5-HT3A receptor. Further investigation of known ingredients in these compounds led to the identification of leonurine from Leonurus as a new natural 5-HT3A receptor antagonist. Several potentiating herbs (e.g., Magnolia officinalis (cortex), Syzygium aromaticum (flos), and Panax ginseng (radix)) were also identified for the GABAA receptor, which are all traditionally used for their sedative or anxiolytic effects. A variety of tinctures with antagonistic effects Salvia miltiorrhiza (radix) were also detected. Therefore, this study reveals new insights into the pharmacological action of a broad spectrum of herbal drugs from Kampo, allowing for a better understanding of their physiological effects and clinical applications. PMID:27524967

  19. Identification of Glycyrrhiza as the rikkunshito constituent with the highest antagonistic potential on heterologously expressed 5-HT3A receptors due to the action of flavonoids

    PubMed Central

    Herbrechter, Robin; Ziemba, Paul M.; Hoffmann, Katrin M.; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2015-01-01

    The traditional Japanese phytomedicine rikkunshito is traditionally used for the treatment of gastrointestinal motility disorders, cachexia and nausea. These effects indicate 5-HT3 receptor antagonism, due to the involvement of these receptors in such pathophysiological processes. E.g., setrons, specific 5-HT3 receptor antagonists are the strongest antiemetics, developed so far. Therefore, the antagonistic effects of the eight rikkunshito constituents at heterologously expressed 5-HT3Areceptors were analyzed using the two-electrode voltage-clamp technique. The results indicate that tinctures from Aurantii, Ginseng, Zingiberis, Atractylodis and Glycyrrhiza inhibited the 5-HT3A receptor response, whereas the tinctures of Poria cocos, Jujubae and Pinellia exhibited no effect. Surprisingly, the strongest antagonism was found for Glycyrrhiza, whereas the Zingiberis tincture, which is considered to be primarily responsible for the effect of rikkunshito, exhibited the weakest antagonism of 5-HT3A receptors. Rikkunshito contains various vanilloids, ginsenosides and flavonoids, a portion of which show an antagonistic effect on 5-HT3 receptors. A screening of the established ingredients of the active rikkunshito constituents and related substances lead to the identification of new antagonists within the class of flavonoids. The flavonoids (-)-liquiritigenin, glabridin and licochalcone A from Glycyrrhiza species were found to be the most effective inhibitors of the 5-HT-induced currents in the screening. The flavonoids (-)-liquiritigenin and hesperetin from Aurantii inhibited the receptor response in a non-competitive manner, whereas glabridin and licochalcone A exhibited a potential competitive antagonism. Furthermore, licochalcone A acts as a partial antagonist of 5-HT3A receptors. Thus, this study reveals new 5-HT3A receptor antagonists with the aid of increasing the comprehension of the complex effects of rikkunshito. PMID:26191003

  20. Regulation of the 5-HT3A receptor-mediated current by alkyl 4-hydroxybenzoates isolated from the seeds of Nelumbo nucifera.

    PubMed

    Youn, Ui Joung; Lee, Jun-Ho; Lee, Yoo Jin; Nam, Joo Won; Bae, Hyunsu; Seo, Eun-Kyoung

    2010-09-01

    Four known alkyl 4-hydroxybenzoates, i.e., methyl 4-hydroxybenzoate (1), ethyl 4-hydroxybenzoate (2), propyl 4-hydroxybenzoate (3), and butyl 4-hydroxybenzoate (4), were isolated from the seeds of Nelumbo nucifera Gaertner (Nymphaeaceae) for the first time. The structures of the isolates were identified by 1D- and 2D-NMR spectroscopy and comparison with published values. The compounds were evaluated for their effects on the 5-HT-stimulated inward current (I(5-HT)) mediated by the human 5-HT(3)A receptors expressed in Xenopus oocytes. Compounds 1 and 2 enhanced the I(5-HT), but 4 reduced it. These results indicate that 4 is an inhibitor of the 5-HT(3)A receptors expressed in Xenopus oocytes. PMID:20860031

  1. Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes

    PubMed Central

    Vitalis, Tania; Ansorge, Mark S.; Dayer, Alexandre G.

    2013-01-01

    Cortical circuits control higher-order cognitive processes and their function is highly dependent on their structure that emerges during development. The construction of cortical circuits involves the coordinated interplay between different types of cellular processes such as proliferation, migration, and differentiation of neural and glial cell subtypes. Among the multiple factors that regulate the assembly of cortical circuits, 5-HT is an important developmental signal that impacts on a broad diversity of cellular processes. 5-HT is detected at the onset of embryonic telencephalic formation and a variety of serotonergic receptors are dynamically expressed in the embryonic developing cortex in a region and cell-type specific manner. Among these receptors, the ionotropic 5-HT3A receptor and the metabotropic 5-HT6 receptor have recently been identified as novel serotonergic targets regulating different aspects of cortical construction including neuronal migration and dendritic differentiation. In this review, we focus on the developmental impact of serotonergic systems on the construction of cortical circuits and discuss their potential role in programming risk for human psychiatric disorders. PMID:23801939

  2. Pharmacological characterization of a rat 5-hydroxytryptamine type3 receptor subunit (r5-HT3A(b)) expressed in Xenopus laevis oocytes

    PubMed Central

    Mair, Ian D; Lambert, Jeremy J; Yang, Jay; Dempster, John; Peters, John A

    1998-01-01

    The present study has utilized the two electrode voltage-clamp technique to examine the pharmacological profile of a splice variant of the rat orthologue of the 5-hydroxytryptamine type 3A subunit (5-HT3A(b)) heterologously expressed in Xenopus laevis oocytes. At negative holding potentials, bath applied 5-HT (300 nM–10 μM) evoked a transient, concentration-dependent (EC50=1.1±0.1 μM), inward current. The response reversed in sign at a holding potential of −2.1±1.6 mV. The response to 5-HT was mimicked by the 5-HT3 receptor selective agonists 2-methyl-5-HT (EC50=4.1±0.2 μM), 1-phenylbiguanide (EC50=3.0±0.1 μM), 3-chlorophenylbiguanide (EC50=140± 10 nM), 3,5-dichlorophenylbiguanide (EC50=14.5±0.4 nM) and 2,5-dichlorophenylbiguanide (EC50= 10.2±0.6 nM). With the exception of 2-methyl-5-HT, all of the agonists tested elicited maximal current responses comparable to those produced by a saturating concentration (10 μM) of 5-HT. Responses evoked by 5-HT at EC50 were blocked by the 5-HT3 receptor selective antagonist ondansetron (IC50=231±22 pM) and by the less selective agents (+)-tubocurarine (IC50=31.9± 0.01 nM) and cocaine (IC50=2.1±0.2 μM). The data are discussed in the context of results previously obtained with the human and mouse orthologues of the 5-HT3A subunit. Overall, the study reinforces the conclusion that species differences detected for native 5-HT3 receptors extend to, and appear largely explained by, differences in the properties of homo-oligomeric receptors formed from 5-HT3A subunit orthologues. PMID:9756382

  3. Combinatorial Consensus Scoring for Ligand-Based Virtual Fragment Screening: A Comparative Case Study for Serotonin 5-HT(3)A, Histamine H(1), and Histamine H(4) Receptors.

    PubMed

    Schultes, Sabine; Kooistra, Albert J; Vischer, Henry F; Nijmeijer, Saskia; Haaksma, Eric E J; Leurs, Rob; de Esch, Iwan J P; de Graaf, Chris

    2015-05-26

    In the current study we have evaluated the applicability of ligand-based virtual screening (LBVS) methods for the identification of small fragment-like biologically active molecules using different similarity descriptors and different consensus scoring approaches. For this purpose, we have evaluated the performance of 14 chemical similarity descriptors in retrospective virtual screening studies to discriminate fragment-like ligands of three membrane-bound receptors from fragments that are experimentally determined to have no affinity for these proteins (true inactives). We used a complete fragment affinity data set of experimentally determined ligands and inactives for two G protein-coupled receptors (GPCRs), the histamine H1 receptor (H1R) and the histamine H4 receptor (H4R), and one ligand-gated ion channel (LGIC), the serotonin receptor (5-HT3AR), to validate our retrospective virtual screening studies. We have exhaustively tested consensus scoring strategies that combine the results of multiple actives (group fusion) or combine different similarity descriptors (similarity fusion), and for the first time systematically evaluated different combinations of group fusion and similarity fusion approaches. Our studies show that for these three case study protein targets both consensus scoring approaches can increase virtual screening enrichments compared to single chemical similarity search methods. Our cheminformatics analyses recommend to use a combination of both group fusion and similarity fusion for prospective ligand-based virtual fragment screening. PMID:25815783

  4. Serotonin 5-HT3 receptors in rat CA1 hippocampal interneurons: functional and molecular characterization

    PubMed Central

    Sudweeks, Sterling N; van Hooft, Johannes A; Yakel, Jerrel L

    2002-01-01

    The molecular makeup of the serotonin 5-HT3 receptor (5-HT3R) channel was investigated in rat hippocampal CA1 interneurons in slices using single-cell RT-PCR and patch-clamp recording techniques. We tested for the expression of the 5-HT3A (both short and long splice variants) and 5-HT3B subunits, as well as the expression of the α4 subunit of the neuronal nicotinic ACh receptors (nAChRs), the latter of which has been shown to co-assemble with the 5-HT3A subunit in heterologous expression systems. Both the 5-HT3A-short and α4-nAChR subunits were expressed in these interneurons, but we could not detect any expression of either the 5-HT3B or the 5-HT3A-long subunits. Furthermore, there was a strong tendency for the 5-HT3A-short and α4-nAChR subunits to be co-expressed in individual interneurons. To assess whether there was any functional evidence for co-assembly between the 5-HT3A-short and α4-nAChR subunits, we used the sulphydryl agent 2-aminoethyl methanethiosulphonate (MTSEA), which has previously been shown to modulate expressed 5-HT3Rs that contain the α4-nAChR subunit. In half of the interneurons examined, MTSEA significantly enhanced the amplitude of the 5-HT3R-mediated responses, which is consistent with the notion that the α4-nAChR subunit co-assembles with the 5-HT3A subunit to form a native heteromeric 5-HT3R channel in rat CA1 hippocampal interneurons in vivo. In addition, the single-channel properties of the 5-HT3R were investigated in outside-out patches. No resolvable single-channel currents were observed. Using non-stationary fluctuation analysis, we obtained an estimate of the single-channel conductance of 4 pS, which is well below that expected for channels containing both the 5-HT3A and 5-HT3B subunits. PMID:12411518

  5. Expression of 5-HT3 receptors and TTX resistant sodium channels (NaV1.8) on muscle nerve fibers in pain-free humans and patients with chronic myofascial temporomandibular disorders

    PubMed Central

    2014-01-01

    Background Previous studies have shown that 5-HT3-antagonists reduce muscle pain, but there are no studies that have investigated the expression of 5-HT3-receptors in human muscles. Also, tetrodotoxin resistant voltage gated sodium-channels (NaV) are involved in peripheral sensitization and found in trigeminal ganglion neurons innervating the rat masseter muscle. This study aimed to investigate the frequency of nerve fibers that express 5-HT3A-receptors alone and in combination with NaV1.8 sodium-channels in human muscles and to compare it between healthy pain-free men and women, the pain-free masseter and tibialis anterior muscles, and patients with myofascial temporomandibular disorders (TMD) and pain-free controls. Methods Three microbiopsies were obtained from the most bulky part of the tibialis and masseter muscles of seven and six healthy men and seven and six age-matched healthy women, respectively, while traditional open biopsies were obtained from the most painful spot of the masseter of five female patients and from a similar region of the masseter muscle of five healthy, age-matched women. The biopsies were processed by routine immunohistochemical methods. The biopsy sections were incubated with monoclonal antibodies against the specific axonal marker PGP 9.5, and polyclonal antibodies against the 5-HT3A-receptors and NaV1.8 sodium-channels. Results A similar percentage of nerve fibers in the healthy masseter (85.2%) and tibialis (88.7%) muscles expressed 5-HT3A-receptors. The expression of NaV1.8 by 5-HT3A positive nerve fibers associated with connective tissue was significantly higher than nerve fibers associated with myocytes (P < .001). In the patients, significantly more fibers per section were found with an average of 3.8 ± 3 fibers per section in the masseter muscle compared to 2.7 ± 0.2 in the healthy controls (P = .024). Further, the frequency of nerve fibers that co-expressed NaV1.8 and 5-HT3A receptors was significantly

  6. Identification of domains influencing assembly and ion channel properties in α7 nicotinic receptor and 5-HT3 receptor subunit chimaeras

    PubMed Central

    Gee, V J; Kracun, S; Cooper, S T; Gibb, A J; Millar, N S

    2007-01-01

    Background and purpose: Nicotinic acetylcholine receptors (nAChRs) and 5-hydroxytryptamine type 3 receptors (5-HT3Rs) are members of the superfamily of neurotransmitter-gated ion channels. Both contain five subunits which assemble to form either homomeric or heteromeric subunit complexes. With the aim of identifying the influence of subunit domains upon receptor assembly and function, a series of chimaeras have been constructed containing regions of the neuronal nAChR α7 subunit and the 5-HT3 receptor 3A subunit. Experimental approach: A series of subunit chimaeras containing α7 and 5-HT3A subunit domains have been constructed and expressed in cultured mammalian cells. Properties of the expressed receptors have been examined by means of radioligand binding, agonist-induced changes in intracellular calcium and patch-clamp electrophysiology. Key results: Subunit domains which influence properties such as rectification, desensitization and conductance have been identified. In addition, the influence of subunit domains upon subunit folding, receptor assembly and cell-surface expression has been identified. Co-expression studies with the nAChR-associated protein RIC-3 revealed that, in contrast to the potentiating effect of RIC-3 on α7 nAChRs, RIC-3 caused reduced levels of cell-surface expression of some α7/5-HT3A chimaeras. Conclusions and implications: Evidence has been obtained which demonstrates that subunit transmembrane domains are critical for efficient subunit folding and assembly. In addition, functional characterization of subunit chimaeras revealed that both extracellular and cytoplasmic domains exert a dramatic and significant influence upon single-channel conductance. These data support a role for regions other than hydrophobic transmembrane domains in determining ion channel properties. PMID:17721553

  7. Quercetin inhibits the 5-hydroxytryptamine type 3 receptor-mediated ion current by interacting with pre-transmembrane domain I.

    PubMed

    Lee, Byung-Hwan; Jeong, Sang-Min; Jung, Sang-Min; Lee, Jun-Ho; Kim, Jong-Hoon; Yoon, In-Soo; Lee, Joon-Hee; Choi, Sun-Hye; Lee, Sang-Mok; Chang, Choon-Gon; Kim, Hyung-Chun; Han, YeSun; Paik, Hyun-Dong; Kim, Yangmee; Nah, Seung-Yeol

    2005-08-31

    The flavonoid, quercetin, is a low molecular weight substance found in apple, tomato and other fruit. Besides its antioxidative effect, quercetin, like other flavonoids, has a wide range of neuropharmacological actions including analgesia, and motility, sleep, anticonvulsant, sedative and anxiolytic effects. In the present study, we investigated its effect on mouse 5-hydroxytryptamine type 3 (5-HT3A) receptor channel activity, which is involved in pain transmission, analgesia, vomiting, and mood disorders. The 5-HT3A receptor was expressed in Xenopus oocytes, and the current was measured with the two-electrode voltage clamp technique. In oocytes injected with 5-HT3A receptor cRNA, quercetin inhibited the 5-HT-induced inward peak current (I(5-HT)) with an IC50 of 64.7 +/- 2.2 microM. Inhibition was competitive and voltage-independent. Point mutations of pre-transmembrane domain 1 (pre-TM1) such as R222T and R222A, but not R222D, R222E and R222K, abolished inhibition, indicating that quercetin interacts with the pre-TM1 of the 5-HT3A receptor. PMID:16258243

  8. Activation and modulation of recombinantly expressed serotonin receptor type 3A by terpenes and pungent substances.

    PubMed

    Ziemba, Paul M; Schreiner, Benjamin S P; Flegel, Caroline; Herbrechter, Robin; Stark, Timo D; Hofmann, Thomas; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2015-11-27

    Serotonin receptor type 3 (5-HT3 receptor) is a ligand-gated ion channel that is expressed in the central nervous system (CNS) as well as in the peripheral nervous system (PNS). The receptor plays an important role in regulating peristalsis of the gastrointestinal tract and in functions such as emesis, cognition and anxiety. Therefore, a variety of pharmacologically active substances target the 5-HT3 receptor to treat chemotherapy-induced nausea and vomiting. The 5-HT3 receptors are activated, antagonized, or modulated by a wide range of chemically different substances, such as 2-methyl-serotonin, phenylbiguanide, setrones, or cannabinoids. Whereas the action of all of these substances is well described, less is known about the effect of terpenoids or fragrances on 5-HT3A receptors. In this study, we screened a large number of natural odorous and pungent substances for their pharmacological action on recombinantly expressed human 5-HT3A receptors. The receptors were functionally expressed in Xenopus oocytes and characterized by electrophysiological recordings using the two-electrode voltage-clamp technique. A screening of two odorous mixes containing a total of 200 substances revealed that the monoterpenes, thymol and carvacrol, act as both weak partial agonists and positive modulators on the 5-HT3A receptor. In contrast, the most effective blockers were the terpenes, citronellol and geraniol, as well as the pungent substances gingerol, capsaicin and polygodial. In our study, we identified new modulators of 5-HT3A receptors out of the classes of monoterpenes and vanilloid substances that frequently occur in various plants. PMID:26456648

  9. 5-HT3 Receptors

    PubMed Central

    Thompson, A. J.; Lummis, S. C. R.

    2009-01-01

    The 5-HT3 receptor is a member of the Cys-loop family of ligand-gated ion channels. These receptors are located in both the peripheral and central nervous systems, where functional receptors are constructed from five subunits. These subunits may be the same (homopentameric 5-HT3A receptors) or different (heteropentameric receptors, usually comprising of 5-HT3A and 5-HT3B receptor subunits), with the latter having a number of distinct properties. The 5-HT3 receptor binding site is comprised of six loops from two adjacent subunits, and critical ligand binding amino acids in these loops have been largely identified. There are a range of selective agonists and antagonists for these receptors and the pharmacophore is reasonably well understood. There are also a wide range of compounds that can modulate receptor activity. Studies have suggested many diverse potential disease targets that might be amenable to alleviation by 5-HT3 receptor selective compounds but to date only two applications have been fully realised in the clinic: the treatment of emesis and irritable-bowel syndrome. PMID:17073663

  10. The 5-HT3B subunit affects high-potency inhibition of 5-HT3 receptors by morphine

    PubMed Central

    Baptista-Hon, Daniel T; Deeb, Tarek Z; Othman, Nidaa A; Sharp, Douglas; Hales, Tim G

    2012-01-01

    BACKGROUND AND PURPOSE Morphine is an antagonist at 5-HT3A receptors. 5-HT3 and opioid receptors are expressed in many of the same neuronal pathways where they modulate gut motility, pain and reinforcement. There is increasing interest in the 5-HT3B subunit, which confers altered pharmacology to 5-HT3 receptors. We investigated the mechanisms of inhibition by morphine of 5-HT3 receptors and the influence of the 5-HT3B subunit. EXPERIMENTAL APPROACH 5-HT-evoked currents were recorded from voltage-clamped HEK293 cells expressing human 5-HT3A subunits alone or in combination with 5-HT3B subunits. The affinity of morphine for the orthosteric site of 5-HT3A or 5-HT3AB receptors was assessed using radioligand binding with the antagonist [3H]GR65630. KEY RESULTS When pre-applied, morphine potently inhibited 5-HT-evoked currents mediated by 5-HT3A receptors. The 5-HT3B subunit reduced the potency of morphine fourfold and increased the rates of inhibition and recovery. Inhibition by pre-applied morphine was insurmountable by 5-HT, was voltage-independent and occurred through a site outside the second membrane-spanning domain. When applied simultaneously with 5-HT, morphine caused a lower potency, surmountable inhibition of 5-HT3A and 5-HT3AB receptors. Morphine also fully displaced [3H]GR65630 from 5-HT3A and 5-HT3AB receptors with similar potency. CONCLUSIONS AND IMPLICATIONS These findings suggest that morphine has two sites of action, a low-affinity, competitive site and a high-affinity, non-competitive site that is not available when the channel is activated. The affinity of morphine for the latter is reduced by the 5-HT3B subunit. Our results reveal that morphine causes a high-affinity, insurmountable and subunit-dependent inhibition of human 5-HT3 receptors. PMID:21740409

  11. Cloning and expression of ligand-gated ion-channel receptor L2 in central nervous system

    SciTech Connect

    Houtani, Takeshi; Munemoto, Yumi; Kase, Masahiko; Sakuma, Satoru; Tsutsumi, Toshiyuki; Sugimoto, Tetsuo . E-mail: sugimoto@takii.kmu.ac.jp

    2005-09-23

    An orphan receptor of ligand-gated ion-channel type (L2, also termed ZAC according to the presence of zinc ion for channel activation) was identified by computer-assisted search programs on human genome database. The L2 protein shares partial homology with serotonin receptors 5HT3A and 5HT3B. We have cloned L2 cDNA derived from human caudate nucleus and characterized the exon-intron structure as follows: (1) The L2 protein has four transmembrane regions (M1-M4) and a long cytoplasmic loop between M3 and M4. (2) The sequence is conserved in species including chimpanzee, dog, cow, and opossum. (3) Nine exons form its protein-coding region and especially exon 5 corresponds to a disulfide bond region on the amino-terminal side. Our analysis using multiple tissue cDNA panels revealed that at least two splicing variants of L2 mRNA are present. The cDNA PCR amplification study revealed that L2 mRNA is expressed in tissues including brain, pancreas, liver, lung, heart, kidney, and skeletal muscle while 5HT3A mRNA could be detected in brain, heart, placenta, lung, kidney, pancreas, and skeletal muscle, and 5HT3B mRNA in brain, kidney, and skeletal muscle, suggesting different significance in tissue expression of these receptors. Regional expression of L2 mRNA and protein was examined in brain. The RT-PCR studies confirmed L2 mRNA expression in hippocampus, striatum, amygdala, and thalamus in adult brain. The L2 protein was immunolocalized by using antipeptide antibodies. Immunostained tissue sections revealed that L2-like immunoreactivity was dominantly expressed in the hippocampal CA3 pyramidal cells and in the polymorphic layer of the dentate gyrus. We analyzed the expression of L2 protein in HEK293 cells using GFP fusion protein reporter system. Western blots revealed that L2 protein confers sugar chains on the extracellular side. In transfected HEK293 cells, cellular membranes and intracellular puncta were densely labeled with GFP, suggesting selective dispatch to the

  12. Pentameric quaternary structure of the intracellular domain of serotonin type 3A receptors

    PubMed Central

    Pandhare, Akash; Grozdanov, Petar N.; Jansen, Michaela

    2016-01-01

    In spite of extensive efforts over decades an experimentally-derived structure of full-length eukaryotic pentameric ligand-gated ion channels (pLGICs) is still lacking. These pharmaceutically highly-relevant channels contain structurally well-conserved and characterized extracellular and transmembrane domains. The intracellular domain (ICD), however, has been orphaned in structural studies based on the consensus assumption of being largely disordered. In the present study, we demonstrate for the first time that the serotonin type 3A (5-HT3A) ICD assembles into stable pentamers in solution in the absence of the other two domains, thought to be the drivers for oligomerization. Additionally, the soluble 5-HT3A-ICD construct interacted with the protein RIC-3 (resistance to inhibitors of cholinesterase). The interaction provides evidence that the 5-HT3A-ICD is not only required but also sufficient for interaction with RIC-3. Our results suggest the ICD constitutes an oligomerization domain. This novel role significantly adds to its known contributions in receptor trafficking, targeting, and functional fine-tuning. The innate diversity of the ICDs with sizes ranging from 50 to 280 amino acids indicates new methodologies need to be developed to determine the structures of these domains. The use of soluble ICD proteins that we report in the present study constitutes a useful approach to address this gap. PMID:27045630

  13. Single channel kinetics of a glutamate receptor.

    PubMed Central

    Kerry, C J; Kits, K S; Ramsey, R L; Sansom, M S; Usherwood, P N

    1987-01-01

    The glutamate receptor-channel of locust muscle membrane was studied using the patch-clamp technique. Muscles were pretreated with concanavalin A to block receptor-channel desensitization, thus facilitating analysis of receptor-channel gating kinetics. Single channel kinetics were analyzed to aid in identification of the molecular basis of channel gating. Channel dwell-time distributions and dwell-time autocorrelation functions were calculated from single channel data recorded in the precence of 10-4M glutamate. Analysis of the dwell time distributions in terms of mixtures of exponential functions revealed there to be at least three open states of the receptor-channel and at least four closed states. Autocorrelation function analysis showed there to be at least three pathways linking the open states with the closed. This results in a minimal scheme for gating of the glutamate receptor-channel, which is suggestive of allosteric models of receptor-channel gating. PMID:2436676

  14. Single Channel Kinetics of a Glutamate Receptor

    PubMed Central

    Kerry, Cathryn J.; Kits, Karel S.; Ramsey, Robert L.; Sansom, Mark S. P.; Usherwood, Peter N. R.

    1986-01-01

    The glutamate receptor-channel of locust muscle membrane was studied using the patch-clamp technique. Muscles were pretreated with concanavalin A to block receptor-channel desensitization, thus facilitating analysis of receptor-channel gating kinetics. Single channel kinetics were analyzed to aid in identification of the molecular basis of channel gating. Channel dwell-time distributions and dwell-time autocorrelation functions were calculated from single channel data recorded in the presence of 10-4 M glutamate. Analysis of the dwell time distributions in terms of mixtures of exponential functions revealed there to be at least three open states of the receptor-channel and at least four closed states. Autocorrelation function analysis showed there to be at least three pathways linking the open states with the closed. This results in a minimal scheme for gating of the glutamate receptor-channel, which is suggestive of allosteric models of receptor-channel gating. PMID:19431683

  15. 5-HT3 Receptor Brain-Type B-Subunits are Differentially Expressed in Heterologous Systems

    PubMed Central

    2015-01-01

    Genes for five different 5-HT3 receptor subunits have been identified. Most of the subunits have multiple isoforms, but two isoforms of the B subunits, brain-type 1 (Br1) and brain-type 2 (Br2) are of particular interest as they appear to be abundantly expressed in human brain, where 5-HT3B subunit RNA consists of approximately 75% 5-HT3Br2, 24% 5-HT3Br1, and <1% 5-HT3B. Here we use two-electrode voltage-clamp, radioligand binding, fluorescence, whole cell, and single channel patch-clamp studies to characterize the roles of 5-HT3Br1 and 5-HT3Br2 subunits on function and pharmacology in heterologously expressed 5-HT3 receptors. The data show that the 5-HT3Br1 transcriptional variant, when coexpressed with 5-HT3A subunits, alters the EC50, nH, and single channel conductance of the 5-HT3 receptor, but has no effect on the potency of competitive antagonists; thus, 5-HT3ABr1 receptors have the same characteristics as 5-HT3AB receptors. There were some differences in the shapes of 5-HT3AB and 5-HT3ABr1 receptor responses, which were likely due to a greater proportion of homomeric 5-HT3A versus heteromeric 5-HT3ABr1 receptors in the latter, as expression of the 5-HT3Br1 compared to the 5-HT3B subunit is less efficient. Conversely, the 5-HT3Br2 subunit does not appear to form functional channels with the 5-HT3A subunit in either oocytes or HEK293 cells, and the role of this subunit is yet to be determined. PMID:25951416

  16. Impact of intracellular domain flexibility upon properties of activated human 5-HT3 receptors*

    PubMed Central

    Kozuska, J L; Paulsen, I M; Belfield, W J; Martin, I L; Cole, D J; Holt, A; Dunn, S M J

    2014-01-01

    Background and Purpose It has been proposed that arginine residues lining the intracellular portals of the homomeric 5-HT3A receptor cause electrostatic repulsion of cation flow, accounting for a single-channel conductance substantially lower than that of the 5-HT3AB heteromer. However, comparison of receptor homology models for wild-type pentamers suggests that salt bridges in the intracellular domain of the homomer may impart structural rigidity, and we hypothesized that this rigidity could account for the low conductance. Experimental Approach Mutations were introduced into the portal region of the human 5-HT3A homopentamer, such that putative salt bridges were broken by neutralizing anionic partners. Single-channel and whole cell currents were measured in transfected tsA201 cells and in Xenopus oocytes respectively. Computational simulations of protein flexibility facilitated comparison of wild-type and mutant receptors. Key Results Single-channel conductance was increased substantially, often to wild-type heteromeric receptor values, in most 5-HT3A mutants. Conversely, introduction of arginine residues to the portal region of the heteromer, conjecturally creating salt bridges, decreased conductance. Gating kinetics varied significantly between different mutant receptors. EC50 values for whole-cell responses to 5-HT remained largely unchanged, but Hill coefficients for responses to 5-HT were usually significantly smaller in mutants. Computational simulations suggested increased flexibility throughout the protein structure as a consequence of mutations in the intracellular domain. Conclusions and Implications These data support a role for intracellular salt bridges in maintaining the quaternary structure of the 5-HT3 receptor and suggest a role for the intracellular domain in allosteric modulation of cooperativity and agonist efficacy. Linked Article This article is commented on by Vardy and Kenakin, pp. 1614–1616 of volume 171 issue 7. To view this commentary

  17. Cellular Functions of Transient Receptor Potential channels

    PubMed Central

    Dadon, Daniela; Minke, Baruch

    2010-01-01

    Transient Receptor Potential channels are polymodal cellular sensors involved in a wide variety of cellular processes, mainly by increasing cellular Ca2+. In this review we focus on the roles of these channels in: i) cell death ii) proliferation and differentiation and iii) synaptic vesicle release. Cell death Ca2+ influx participates in apoptotic and necrotic cell death. The Ca2+ permeability and high sensitivity of part of these channels to oxidative/metabolic stress make them important participants in cell death. Several examples are given. Transient Receptor Potential Melastatin 2 is activated by H2O2, inducing cell death through an increase in cellular Ca2+ and activation of Poly ADP-Ribose Polymerase. Exposure of cultured cortical neurons to oxygen-glucose deprivation, in vitro, causes cell death via cation influx, mediated by Transient Receptor Potential Melastatin 7. Metabolic stress constitutively activates the Ca2+ permeable Transient Receptor Potential channels of Drosophila photoreceptor in the dark, potentially leading to retinal degeneration. Similar sensitivity to metabolic stress characterizes several mammalian Transient Receptor Potential Canonical channels. Proliferation and differentiation The rise in cytosolic Ca2+ induces cell growth, differentiation and proliferation via activation of several transcription factors. Activation a variety of store operated and Transient Receptor Potential channels cause a rise in cytosolic Ca2+, making these channels components involved in proliferation and differentiation. Synaptic vesicle release Transient Receptor Potential Melastatin 7 channels reside in synaptic vesicles and regulate neurotransmitter release by a mechanism that is not entirely clear. All the above features of Transient Receptor Potential channels make them crucial components in important, sometimes conflicting, cellular processes that still need to be explored. PMID:20399884

  18. Acid-sensitive ion channels and receptors.

    PubMed

    Holzer, Peter

    2009-01-01

    Acidosis is a noxious condition associated with inflammation, ischaemia or defective acid containment. As a consequence, acid sensing has evolved as an important property of afferent neurons with unmyelinated and thinly myelinated nerve fibres. Protons evoke multiple currents in primary afferent neurons, which are carried by several acid-sensitive ion channels. Among these, acid-sensing ion channels (ASICs) and transient receptor potential (TRP) vanilloid-1 (TRPV1) ion channels have been most thoroughly studied. ASICs survey moderate decreases in extracellular pH, whereas TRPV1 is activated only by severe acidosis resulting in pH values below 6. Two-pore-domain K(+) (K(2P)) channels are differentially regulated by small deviations of extra- or intracellular pH from physiological levels. Other acid-sensitive channels include TRPV4, TRPC4, TRPC5, TRPP2 (PKD2L1), ionotropic purinoceptors (P2X), inward rectifier K(+) channels, voltage-activated K(+) channels, L-type Ca(2+) channels, hyperpolarization-activated cyclic nucleotide gated channels, gap junction channels, and Cl(-) channels. In addition, acid-sensitive G protein coupled receptors have also been identified. Most of these molecular acid sensors are expressed by primary sensory neurons, although to different degrees and in various combinations. Emerging evidence indicates that many of the acid-sensitive ion channels and receptors play a role in acid sensing, acid-induced pain and acid-evoked feedback regulation of homeostatic reactions. The existence and apparent redundancy of multiple pH surveillance systems attests to the concept that acid-base regulation is a vital issue for cell and tissue homeostasis. Since upregulation and overactivity of acid sensors appear to contribute to various forms of chronic pain, acid-sensitive ion channels and receptors are considered as targets for novel analgesic drugs. This approach will only be successful if the pathological implications of acid sensors can be differentiated

  19. Acid-sensitive ion channels and receptors

    PubMed Central

    Holzer, Peter

    2015-01-01

    Acidosis is a noxious condition associated with inflammation, ischaemia or defective acid containment. As a consequence, acid sensing has evolved as an important property of afferent neurons with unmyelinated and thinly myelinated nerve fibres. Protons evoke multiple currents in primary afferent neurons, which are carried by several acid-sensitive ion channels. Among these, acid-sensing ion channels (ASICs) and transient receptor potential (TRP) vanilloid-1 (TRPV1) ion channels have been most thoroughly studied. ASICs survey moderate decreases in extracellular pH whereas TRPV1 is activated only by severe acidosis resulting in pH values below 6. Two-pore domain K+ (K2P) channels are differentially regulated by small deviations of extra- or intracellular pH from physiological levels. Other acid-sensitive channels comprise TRPV4, TRPC4, TRPC5, TRPP2 (PKD2L1), ionotropic purinoceptors (P2X), inward rectifier K+ channels, voltage-activated K+ channels, L-type Ca2+ channels, hyperpolarization-activated cyclic nucleotide-gated channels, gap junction channels, and Cl− channels. In addition, acid-sensitive G protein-coupled receptors have also been identified. Most of these molecular acid sensors are expressed by primary sensory neurons, although to different degrees and in various combinations. Emerging evidence indicates that many of the acid-sensitive ion channels and receptors play a role in acid sensing, acid-induced pain and acid-evoked feedback regulation of homeostatic reactions. The existence and apparent redundancy of multiple pH surveillance systems attests to the concept that acid-base regulation is a vital issue for cell and tissue homeostasis. Since upregulation and overactivity of acid sensors appear to contribute to various forms of chronic pain, acid-sensitive ion channels and receptors are considered as targets for novel analgesic drugs. This approach will only be successful if the pathological implications of acid sensors can be differentiated

  20. Kinetics of unliganded acetylcholine receptor channel gating.

    PubMed Central

    Jackson, M B

    1986-01-01

    Open- and closed-state lifetimes of unliganded acetylcholine receptor channel activity were analyzed by the method of likelihood maximazation. For both open times and closed times, the best-fitting density is most often a sum of two exponentials. These multiple open states cannot depend on the number of receptor binding sites occupied since they are observed in the absence of ligand. The rate of spontaneous opening and the faster decay constant of closing increased as the membrane was hyperpolarized. The voltage dependence of the rate of spontaneous opening is stronger than that for curare-liganded channels. Evidence that the acetylcholine receptor channel can open spontaneously in the absence of ligand has been presented previously (Sanchez et al, 1983; Brehm et al, 1984; Jackson, 1984). To add to this evidence, alpha-bungarotoxin was added to the patch electrode, causing the frequency of openings to decay with time. The rate constant determined from this decay is similar to rate constants reported for the binding of iodinated alpha-bungarotoxin to the acetylcholine receptor. The frequency of unliganded channel opening has been estimated as 2 X 10(-3) s-1 per receptor. A comparison of carbamylcholine-liganded and spontaneous gating transition rates suggests that ligand binding increases the rate of opening by a factor of 1.4 X 10(7). Carbamylcholine binding increases the mean open time by a factor of 5. Thus, a cholinergic agonist activates the acetylcholine receptor by destabilizing the closed state. The liganded and unliganded channel gating rates were used to analyze the energetics of ligand activation of the acetylcholine receptor channel, and to relate the open channel dissociation constant to the closed channel dissociation constant. PMID:2421793

  1. Transient Receptor Potential Channels in the Vasculature

    PubMed Central

    Earley, Scott; Brayden, Joseph E.

    2015-01-01

    The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca2+ levels or subcellular Ca2+ signaling events. In addition to directly mediating Ca2+ entry, TRP channels influence intracellular Ca2+ dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions. PMID:25834234

  2. Spontaneous openings of the acetylcholine receptor channel.

    PubMed Central

    Jackson, M B

    1984-01-01

    Patch clamp recordings from embryonic mouse muscle cells in culture revealed spontaneous openings of the acetylcholine receptor channel in the absence of exogenously applied cholinergic agent. The conductance of the spontaneous channel currents was, within experimental error, identical with the conductance of suberyldicholine-activated channel currents. The comparison of channel conductance was made with sodium and with cesium, each at two concentrations, with the same result. Treatment of the cells with alpha-bungarotoxin blocked the spontaneous channel currents. To determine whether the spontaneous openings were caused by an endogenous agent with cholinergic activity a reactive disulfide bond near the receptor binding site was reduced with dithiothreitol and alkylated with N-ethylmaleimide. This chemical modification reduced the effectiveness with which suberyldicholine and curare activated channel currents but did not reduce the frequency of spontaneous openings. These experiments indicate that the acetylcholine receptor briefly and infrequently fluctuates into an active state in the absence of agonist. Agonist activation of the receptor presumably accelerates this spontaneously occurring process. PMID:6328531

  3. 5-Chloroindole: a potent allosteric modulator of the 5-HT3 receptor

    PubMed Central

    Newman, Amy S; Batis, Nikolaos; Grafton, Gillian; Caputo, Francesca; Brady, Catherine A; Lambert, Jeremy J; Peters, John A; Gordon, John; Brain, Keith L; Powell, Andrew D; Barnes, Nicholas M

    2013-01-01

    Background and Purpose The 5-HT3 receptor is a ligand-gated ion channel that is modulated allosterically by various compounds including colchicine, alcohols and volatile anaesthetics. However the positive allosteric modulators (PAMs) identified to date have low affinity, which hinders investigation because of non-selective effects at pharmacologically active concentrations. The present study identifies 5-chloroindole (Cl-indole) as a potent PAM of the 5-HT3 receptor. Experimental Approach 5-HT3 receptor function was assessed by the increase in intracellular calcium and single-cell electrophysiological recordings in HEK293 cells stably expressing the h5-HT3A receptor and also the mouse native 5-HT3 receptor that increases neuronal contraction of bladder smooth muscle. Key Results Cl-indole (1–100 μM) potentiated agonist (5-HT) and particularly partial agonist [(S)-zacopride, DDP733, RR210, quipazine, dopamine, 2-methyl-5-HT, SR57227A, meta chlorophenyl biguanide] induced h5-HT3A receptor-mediated responses. This effect of Cl-indole was also apparent at the mouse native 5-HT3 receptor. Radioligand-binding studies identified that Cl-indole induced a small (∼twofold) increase in the apparent affinity of 5-HT for the h5-HT3A receptor, whereas there was no effect upon the affinity of the antagonist, tropisetron. Cl-indole was able to reactivate desensitized 5-HT3 receptors. In contrast to its effect on the 5-HT3 receptor, Cl-indole did not alter human nicotinic α7 receptor responses. Conclusions and Implications The present study identifies Cl-indole as a relatively potent and selective PAM of the 5-HT3 receptor; such compounds will aid investigation of the molecular basis for allosteric modulation of the 5-HT3 receptor and may assist the discovery of novel therapeutic drugs targeting this receptor. Linked Articles Recent reviews on allosteric modulation can be found at: Kenakin, T (2013). New concepts in pharmacological efficacy at 7TM receptors: IUPHAR Review 2

  4. Ondansetron and Granisetron Binding Orientation in the 5-HT3 Receptor Determined by Unnatural Amino Acid Mutagenesis

    PubMed Central

    Duffy, Noah H.; Lester, Henry A.; Dougherty, Dennis A.

    2012-01-01

    The serotonin type 3 receptor (5-HT3R) is a ligand-gated ion channel that mediates fast synaptic transmission in the central and peripheral nervous systems. The 5-HT3R is a therapeutic target, and the clinically available drugs ondansetron and granisetron inhibit receptor activity. Their inhibitory action is through competitive binding to the native ligand binding site, although the binding orientation of the drugs at the receptor has been a matter of debate. Here we heterologously express mouse 5-HT3A receptors in Xenopus oocytes and use unnatural amino acid mutagenesis to establish a cation-π interaction for both ondansetron and granisetron to tryptophan 183 in the ligand binding pocket. This cation-π interaction establishes a binding orientation for both ondansetron and granisetron within the binding pocket. PMID:22873819

  5. Inositol Trisphosphate Receptor Ca2+ Release Channels

    PubMed Central

    FOSKETT, J. KEVIN; WHITE, CARL; CHEUNG, KING-HO; MAK, DON-ON DANIEL

    2010-01-01

    The inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are a family of Ca2+ release channels localized predominately in the endoplasmic reticulum of all cell types. They function to release Ca2+ into the cytoplasm in response to InsP3 produced by diverse stimuli, generating complex local and global Ca2+ signals that regulate numerous cell physiological processes ranging from gene transcription to secretion to learning and memory. The InsP3R is a calcium-selective cation channel whose gating is regulated not only by InsP3, but by other ligands as well, in particular cytoplasmic Ca2+. Over the last decade, detailed quantitative studies of InsP3R channel function and its regulation by ligands and interacting proteins have provided new insights into a remarkable richness of channel regulation and of the structural aspects that underlie signal transduction and permeation. Here, we focus on these developments and review and synthesize the literature regarding the structure and single-channel properties of the InsP3R. PMID:17429043

  6. On the voltage-dependent Ca2+ block of serotonin 5-HT3 receptors: a critical role of intracellular phosphates

    PubMed Central

    Noam, Yoav; Wadman, Wytse J; van Hooft, Johannes A

    2008-01-01

    Natively expressed serotonin 5-HT3 receptors typically possess a negative-slope conductance region in their I–V curve, due to a voltage-dependent block by external Ca2+ ions. However, in almost all studies performed with heterologously expressed 5-HT3 receptors, this feature was not observed. Here we show that mere addition of ATP to the pipette solution is sufficient to reliably observe a voltage-dependent block in homomeric (h5-HT3A) and heteromeric (h5-HT3AB) receptors expressed in HEK293 cells. A similar block was observed with a plethora of molecules containing a phosphate moiety, thus excluding a role of phosphorylation. A substitution of three arginines in the intracellular vestibule of 5-HT3A with their counterpart residues from the 5-HT3B subunit (RRR-QDA) was previously shown to dramatically increase single channel conductance. We find this mutant to have a linear I–V curve that is unaffected by the presence of ATP, with a fractional Ca2+ current (Pf%) that is reduced (1.8 ± 0.2%) compared to that of the homomeric receptor (4.1 ± 0.2%), and similar to that of the heteromeric form (2.0 ± 0.3%). Moreover, whereas ATP decreased the Pf% of the homomeric receptor, this was not observed with the RRR-QDA mutant. Finally, ATP was found to be critical for voltage-dependent channel block also in hippocampal interneurons that natively express 5-HT3 receptors. Taken together, our results indicate a novel mechanism by which ATP, and similar molecules, modulate 5-HT3 receptors via interactions with the intracellular vestibule of the receptor. PMID:18566001

  7. Effect of homologous serotonin receptor loop substitutions on the heterologous expression in Pichia of a chimeric acetylcholine-binding protein with alpha-bungarotoxin-binding activity.

    PubMed

    Paulo, Joao A; Hawrot, Edward

    2009-10-01

    The molluscan acetylcholine-binding protein (AChBP) is a soluble homopentameric homolog of the extracellular domain of various ligand-gated ion channels. Previous studies have reported that AChBP, when fused to the ion pore domain of the serotonin receptor (5HT(3A)R), can form a functional ligand-gated chimeric channel only if the AChBP loop regions between beta-strands beta1 and beta2 (beta1-beta2), beta6 and beta7 (beta6-beta7), and beta8 and beta9 (beta8-beta9) are replaced with those of the 5HT(3A)R. To investigate further the potential interactions among these three important loop regions in a membrane- and detergent-free system, we designed AChBP constructs in which loops beta1-beta2, beta6-beta7, and beta8-beta9 of the AChBP were individually and combinatorially substituted in all permutations with the analogous loops of the 5HT(3A)R. These chimeras were expressed as secreted proteins using the Pichia pastoris yeast expression system. [(125)I]-alpha-Bungarotoxin-binding was detected in the culture media obtained from homologous recombinant clones expressing the wild-type AChBP, the beta1-beta2 loop-only chimera, and the chimera containing all three 5HT(3A)R loop substitutions. The remaining chimeras failed to show [(125)I]-alpha-bungarotoxin binding, and further analysis of cellular extracts allowed us to determine that these binding-negative chimeric constructs accumulated intracellularly and were not secreted into the culture medium. Our results demonstrate that coordinated interactions among loops beta1-beta2, beta6-beta7, and beta8-beta9 are essential for the formation of a functional ligand-binding site, as evidenced by [(125)I]-alpha-bungarotoxin-binding, and for efficient protein secretion. In addition, the constructs described here demonstrate the feasibility of utilizing soluble scaffolds to explore functionally important interactions within the extracellular domain of membrane-bound proteins. PMID:19427904

  8. Crystal structure of a heterotetrameric NMDA receptor ion channel

    PubMed Central

    Karakas, Erkan; Furukawa, Hiro

    2014-01-01

    N -methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors, which mediate most excitatory synaptic transmission in mammalian brains. Calcium permeation triggered by activation of NMDA receptors is the pivotal event for initiation of neuronal plasticity. Here we show the crystal structure of the intact heterotetrameric GluN1/GluN2B NMDA receptor ion channel at 4 Å. The NMDA receptors are arranged as a dimer of GluN1-GluN2B heterodimers with the two-fold symmetry axis running through the entire molecule composed of an amino terminal domain (ATD), a ligand-binding domain (LBD), and a transmembrane domain (TMD). The ATD and LBD are much more highly packed in the NMDA receptors than non-NMDA receptors, which may explain why ATD regulates ion channel activity in NMDA receptors but not in non-NMDA receptors. PMID:24876489

  9. Dendritic NMDA receptors activate axonal calcium channels

    PubMed Central

    Christie, Jason M.; Jahr, Craig E.

    2008-01-01

    Summary NMDA receptor (NMDAR) activation can alter synaptic strength by regulating transmitter release from a variety of neurons in the CNS. As NMDARs are permeable to Ca2+ and monovalent cations, they could alter release directly by increasing presynaptic Ca2+ or indirectly by axonal depolarization sufficient to activate voltage-sensitive Ca2+ channels (VSCCs). Using two-photon microscopy to measure Ca2+ excursions, we found that somatic depolarization or focal activation of dendritic NMDARs elicited small Ca2+ transients in axon varicosities of cerebellar stellate cell interneurons. These axonal transients resulted from Ca2+ entry through VSCCs that were opened by the electrotonic spread of the NMDAR-mediated depolarization elicited in the dendrites. In contrast, we were unable to detect direct activation of NMDARs on axons indicating an exclusive somatodendritic expression of functional NMDARs. In cerebellar stellate cells, dendritic NMDAR activation masquerades as a presynaptic phenomenon and may influence Ca2+-dependent forms of presynaptic plasticity and release. PMID:18957221

  10. Functional Insights from Glutamate Receptor Ion Channel Structures

    PubMed Central

    Kumar, Janesh; Mayer, Mark L.

    2014-01-01

    X-ray crystal structures for the soluble amino terminal and ligand binding domains of glutamate receptor ion channels, combined with a 3.6 Å resolution structure of the full length AMPA receptor GluA2 homotetramer, provide unique insights into the mechanisms of iGluR assembly and function. Increasingly sophisticated biochemical, computational and electrophysiological experiments are beginning to reveal the mechanism of action of partial agonists, and yield new models for the mechanism of action of allosteric modulators. Newly identified NMDA receptor ligands acting at novel sites offer hope for development of subtype selective modulators. Many issues remain unsolved, including the role of the ATD in AMPA receptor signaling, and the mechanisms by which auxiliary proteins regulate receptor activity. The structural basis for ion permeation and ion channel block also remain areas of uncertainty, and despite substantial progress, molecular dynamics simulations have yet to reveal how binding of glutamate opens the ion channel pore. PMID:22974439

  11. Pharmacological characterisation of strychnine and brucine analogues at glycine and alpha7 nicotinic acetylcholine receptors.

    PubMed

    Jensen, Anders A; Gharagozloo, Parviz; Birdsall, Nigel J M; Zlotos, Darius P

    2006-06-01

    Strychnine and brucine from the plant Strychnos nux vomica have been shown to have interesting pharmacological effects on several neurotransmitter receptors, including some members of the superfamily of ligand-gated ion channels. In this study, we have characterised the pharmacological properties of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion channel domain of the 5-HT3A serotonin receptor. Although the majority of the analogues displayed significantly increased Ki values at the glycine receptors compared to strychnine and brucine, a few retained the high antagonist potencies of the parent compounds. However, mirroring the pharmacological profiles of strychnine and brucine, none of the analogues displayed significant selectivity between the alpha1 and alpha1beta subtypes. The structure-activity relationships for the compounds at the alpha7/5-HT3 chimera were significantly different from those at the glycine receptors. Most strikingly, quaternization of strychnine and brucine with substituents possessing different steric and electronic properties completely eliminated the activity at the glycine receptors, whereas binding affinity to the alpha7/5-HT3 chimera was retained for the majority of the quaternary analogues. This study provides an insight into the structure-activity relationships for strychnine and brucine analogues at these ligand-gated ion channels. PMID:16687139

  12. Electrophysiological Signature of Homomeric and Heteromeric Glycine Receptor Channels.

    PubMed

    Raltschev, Constanze; Hetsch, Florian; Winkelmann, Aline; Meier, Jochen C; Semtner, Marcus

    2016-08-19

    Glycine receptors are chloride-permeable, ligand-gated ion channels and contribute to the inhibition of neuronal firing in the central nervous system or to facilitation of neurotransmitter release if expressed at presynaptic sites. Recent structure-function studies have provided detailed insights into the mechanisms of channel gating, desensitization, and ion permeation. However, most of the work has focused only on comparing a few isoforms, and among studies, different cellular expression systems were used. Here, we performed a series of experiments using recombinantly expressed homomeric and heteromeric glycine receptor channels, including their splice variants, in the same cellular expression system to investigate and compare their electrophysiological properties. Our data show that the current-voltage relationships of homomeric channels formed by the α2 or α3 subunits change upon receptor desensitization from a linear to an inwardly rectifying shape, in contrast to their heteromeric counterparts. The results demonstrate that inward rectification depends on a single amino acid (Ala(254)) at the inner pore mouth of the channels and is closely linked to chloride permeation. We also show that the current-voltage relationships of glycine-evoked currents in primary hippocampal neurons are inwardly rectifying upon desensitization. Thus, the alanine residue Ala(254) determines voltage-dependent rectification upon receptor desensitization and reveals a physio-molecular signature of homomeric glycine receptor channels, which provides unprecedented opportunities for the identification of these channels at the single cell level. PMID:27382060

  13. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels.

    PubMed

    Diaz-Franulic, Ignacio; Poblete, Horacio; Miño-Galaz, Germán; González, Carlos; Latorre, Ramón

    2016-07-01

    The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action. PMID:27297398

  14. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins.

    PubMed

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel's ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  15. Calcium Channels and Associated Receptors in Malignant Brain Tumor Therapy.

    PubMed

    Morrone, Fernanda B; Gehring, Marina P; Nicoletti, Natália F

    2016-09-01

    Malignant brain tumors are highly lethal and aggressive. Despite recent advances in the current therapies, which include the combination of surgery and radio/chemotherapy, the average survival rate remains poor. Altered regulation of ion channels is part of the neoplastic transformation, which suggests that ion channels are involved in cancer. Distinct classes of calcium-permeable channels are abnormally expressed in cancer and are likely involved in the alterations underlying malignant growth. Specifically, cytosolic Ca(2+) activity plays an important role in the regulation of cell proliferation, and Ca(2+) signaling is altered in proliferating tumor cells. A series of previous studies emphasized the importance of the T-type low-voltage-gated calcium channels (VGCC) in different cancer types, including gliomas, and remarkably, pharmacologic inhibition of T-type VGCC caused antiproliferative effects and triggered apoptosis of human glioma cells. Other calcium permeable channels, such as transient receptor potential (TRP) channels, contribute to changes in Ca(2+) by modulating the driving force for Ca(2+) entry, and some TRP channels are required for proliferation and migration in gliomas. Furthermore, recent evidence shows that TRP channels contribute to the progression and survival of the glioblastoma patients. Likewise, the purinergic P2X7 receptor acts as a direct conduit for Ca(2+)-influx and an indirect activator of voltage-gated Ca(2+)-channel. Evidence also shows that P2X7 receptor activation is linked to elevated expression of inflammation promoting factors, tumor cell migration, an increase in intracellular mobilization of Ca(2+), and membrane depolarization in gliomas. Therefore, this review summarizes the recent findings on calcium channels and associated receptors as potential targets to treat malignant gliomas. PMID:27418672

  16. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    PubMed Central

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  17. Blockade of glutamatergic and GABAergic receptor channels by trimethyltin chloride

    PubMed Central

    Krüger, Katharina; Diepgrond, Victoria; Ahnefeld, Maria; Wackerbeck, Christina; Madeja, Michael; Binding, Norbert; Musshoff, Ulrich

    2005-01-01

    Organotin compounds such as trimethyltin chloride (TMT) are among the most toxic of the organometallics. As their main target for toxicity is the central nervous system, the aim of the present study was to investigate the effects of TMT on receptor channels involved in various processes of synaptic transmission. The Xenopus oocyte expression system was chosen for direct assessment of TMT effects on voltage-operated potassium channels and glutamatergic and GABAergic receptors, and hippocampal slices from rat brain for analyzing TMT effects on identified synaptic sites. TMT was found to be ineffective, at 100 μmol l−1, against several potassium- and sodium-operated ion channel functions as well as the metabotropic glutamate receptor. The functions of the ionotropic glutamate and the GABAA receptor channels were inhibited by TMT in micromolar concentrations. Thus, at a maximum concentration of 100 μmol l−1, around 20–30% of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and GABAA receptor-mediated ion currents and 35% of the N-methyl-D-aspartate receptor-mediated ion currents were blocked. In the hippocampal slice model, the inhibitory effects of TMT were much stronger than expected from the results on the ion channels. Bath application of TMT significantly reduced the amplitudes of evoked excitatory postsynaptic field potentials in a concentration-dependent and nonreversible manner.  Induction of long-term potentiation, recorded from the CA1 dendritic region, was inhibited by TMT and failed completely at a concentration of 10 μmol l−1. In general, TMT affects the excitatory and inhibitory synaptic processes in a receptor specific manner and is able to disturb the activity within a neuronal network. PMID:15655511

  18. Interaction of ion channels and receptors with PDZ domain proteins.

    PubMed

    Kornau, H C; Seeburg, P H; Kennedy, M B

    1997-06-01

    The complex anatomy of neurons demands a high degree of functional organization. Therefore, membrane receptors and ion channels are often localized to selected subcellular sites and coupled to specific signal transduction machineries. PDZ domains have come into focus as protein interaction modules that mediate the binding of a class of submembraneous proteins to membrane receptors and ion channels and thus subserve these organizational aspects. The structures of two PDZ domains have been resolved, which has led to a structural understanding of the specificity of interactions of various PDZ domains with their respective partners. The functional implications of PDZ domain interactions are now being addressed in vitro and in vivo. PMID:9232802

  19. Direct interaction of the resistance to inhibitors of cholinesterase type 3 protein with the serotonin receptor type 3A intracellular domain.

    PubMed

    Nishtala, Sita Nirupama; Mnatsakanyan, Nelli; Pandhare, Akash; Leung, Chun; Jansen, Michaela

    2016-05-01

    Pentameric ligand-gated ion channels (pLGIC) are expressed in both excitable and non-excitable cells that are targeted by numerous clinically used drugs. Assembly from five identical or homologous subunits yields homo- or heteromeric pentamers, respectively. The protein known as Resistance to Inhibitors of Cholinesterase (RIC-3) was identified to interfere with assembly and functional maturation of pLGICs. We have shown previously for serotonin type 3A homopentamers (5-HT3A ) that the interaction with RIC-3 requires the intracellular domain (ICD) of this pLGIC. After expression in Xenopus laevis oocytes RIC-3 attenuated serotonin-induced currents in 5-HT3A wild-type channels, but not in functional 5-HT3A glvM3M4 channels that have the 115-amino acid ICD replaced by a heptapeptide. In complementary experiments we have shown that engineering the Gloeobacter violaceus ligand-gated ion channel (GLIC) to contain the 5-HT3A -ICD confers sensitivity to RIC-3 in oocytes to otherwise insensitive GLIC. In this study, we identify endogenous RIC-3 protein expression in X. laevis oocytes. We purified RIC-3 to homogeneity after expression in Echericia coli. By using heterologously over-expressed and purified RIC-3 and the chimera consisting of the 5-HT3A -ICD and the extracellular and transmembrane domains of GLIC in pull-down experiments, we demonstrate a direct and specific interaction between the two proteins. This result further underlines that the domain within 5-HT3 A R that mediates the interaction with RIC-3 is the ICD. Importantly, this is the first experimental evidence that the interaction between 5-HT3 A R-ICD and RIC-3 does not require other proteins. In addition, we demonstrate that the pentameric assembly of the GLIC-5-HT3A -ICD chimera interacts with RIC-3. We hypothesized that pentameric ligand-gated ion channels (pLGICs) associate directly with the chaperone protein RIC-3 (resistance to inhibitors of cholinesterase type 3), and that the interaction does not

  20. Glutamate Receptor Ion Channels: Structure, Regulation, and Function

    PubMed Central

    Wollmuth, Lonnie P.; McBain, Chris J.; Menniti, Frank S.; Vance, Katie M.; Ogden, Kevin K.; Hansen, Kasper B.; Yuan, Hongjie; Myers, Scott J.; Dingledine, Ray

    2010-01-01

    The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors. PMID:20716669

  1. T-cell receptor accessory and co-receptor molecules in channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T cell receptor (TCR) associated invariant chains CD3gamma/delta,epsilon, and zeta as well as TCR co-receptors CD8alpha and CD8beta were isolated from the channel catfish, Ictalurus punctatus, at both the gene and cDNA levels. All of catfish CD3 sequences encode for proteins that resemble their resp...

  2. Coupled gating between cardiac calcium release channels (ryanodine receptors).

    PubMed

    Marx, S O; Gaburjakova, J; Gaburjakova, M; Henrikson, C; Ondrias, K; Marks, A R

    2001-06-01

    Excitation-contraction coupling in heart muscle requires the activation of Ca(2+)-release channels/type 2 ryanodine receptors (RyR2s) by Ca(2+) influx. RyR2s are arranged on the sarcoplasmic reticular membrane in closely packed arrays such that their large cytoplasmic domains contact one another. We now show that multiple RyR2s can be isolated under conditions such that they remain physically coupled to one another. When these coupled channels are examined in planar lipid bilayers, multiple channels exhibit simultaneous gating, termed "coupled gating." Removal of the regulatory subunit, the FK506 binding protein (FKBP12.6), functionally but not physically uncouples multiple RyR2 channels. Coupled gating between RyR2 channels may be an important regulatory mechanism in excitation-contraction coupling as well as in other signaling pathways involving intracellular Ca(2+) release. PMID:11397781

  3. Transient Receptor Potential (TRP) channels in T cells.

    PubMed

    Bertin, Samuel; Raz, Eyal

    2016-05-01

    The transient receptor potential (TRP) family of ion channels is widely expressed in many cell types and plays various physiological roles. Growing evidence suggests that certain TRP channels are functionally expressed in the immune system. Indeed, an increasing number of reports have demonstrated the functional expression of several TRP channels in innate and adaptive immune cells and have highlighted their critical role in the activation and function of these cells. However, very few reviews have been entirely dedicated to this subject. Here, we will summarize the recent findings with regards to TRP channel expression in T cells and discuss their emerging role as regulators of T cell activation and functions. Moreover, these studies suggest that beyond their pharmaceutical interest in pain management, certain TRP channels may represent potential novel therapeutic targets for various immune-related diseases. PMID:26468011

  4. Halothane shortens acetylcholine receptor channel kinetics without affecting conductance.

    PubMed Central

    Lechleiter, J; Gruener, R

    1984-01-01

    The extracellular patch-clamp technique was used to examine how halothane, a general anesthetic, affects the properties of single nicotinic acetylcholine receptor channels of embryonic Xenopus skeletal muscle cells grown in culture. Under control conditions, single-channel events showed a bimodal distribution on the basis of current amplitudes. This distribution was maintained during exposure to halothane and its washout. In addition, the mean current value of the low-and high-amplitude channels was unaffected by the presence of the anesthetic at clinically relevant concentrations. In contrast, halothane shortened the burst durations of both channel types in a concentration-dependent manner. This shortening of burst durations may be an expression of the more rapid relaxation of the channel protein to the nonconducting state, possibly due to the disordering effect of the anesthetic on membrane lipids in which the receptor protein is embedded. This functional change, in the behavior of the synaptic receptor, provides further direct information on the mode of action of general anesthetics. Images PMID:6326154

  5. Transient receptor potential-like channels mediate metabotropic glutamate receptor EPSCs in rat dopamine neurones.

    PubMed

    Bengtson, C Peter; Tozzi, Alessandro; Bernardi, Giorgio; Mercuri, Nicola B

    2004-03-01

    Transient receptor potential (TRP) channels form cationic channels activated by diverse factors including mechanical stimuli, changes in osmolarity, pH and temperature, as well as the exogenous irritant, capsaicin. Metabotropic glutamate receptors have also recently been linked to TRP channel activation in neurones of the substantia nigra, hippocampus and cerebellum, suggesting a novel role for such channels in synaptic communication via endogenous neurotransmitters. We tested this for dopamine neurones in rat brain slices by characterizing the current-voltage relationship and pharmacology of EPSCs mediated by group I metabotropic glutamate receptor subtype 1 (mGluR1). Slow inward currents (273 +/- 35 pA peak amplitude, 381 +/- 25 ms latency, holding potential (V(h)) =-73 mV) representing evoked mGluR1 EPSCs were isolated in the presence of antagonists of AMPA, NMDA, GABA(A), GABA(B), muscarinic and glycine receptors. CPCCOEt (100 microM), an mGluR1 antagonist, blocked the residual EPSC in all recordings. mGluR1-activated EPSCs reversed polarity near -10 mV, consistent with the involvement of a cationic channel. Extracellular application of the non-selective TRP channel blockers SKF 96365, flufenamic acid and ruthenium red caused reversible inhibition of mGluR1-activated EPSCs. These characteristics parallel those of mGluR1 activation with an agonist and indicate the involvement of a TRP-like channel in mGluR1-mediated EPSCs. PMID:14724196

  6. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium

    PubMed Central

    Shabir, Saqib; Cross, William; Kirkwood, Lisa A.; Pearson, Joanna F.; Appleby, Peter A.; Walker, Dawn; Eardley, Ian

    2013-01-01

    In addition to its role as a physical barrier, the urothelium is considered to play an active role in mechanosensation. A key mechanism is the release of transient mediators that activate purinergic P2 receptors and transient receptor potential (TRP) channels to effect changes in intracellular Ca2+. Despite the implied importance of these receptors and channels in urothelial tissue homeostasis and dysfunctional bladder disease, little is known about their functional expression by the human urothelium. To evaluate the expression and function of P2X and P2Y receptors and TRP channels, the human ureter and bladder were used to separate urothelial and stromal tissues for RNA isolation and cell culture. RT-PCR using stringently designed primer sets was used to establish which P2 and TRP species were expressed at the transcript level, and selective agonists/antagonists were used to confirm functional expression by monitoring changes in intracellular Ca2+ and in a scratch repair assay. The results confirmed the functional expression of P2Y4 receptors and excluded nonexpressed receptors/channels (P2X1, P2X3, P2X6, P2Y6, P2Y11, TRPV5, and TRPM8), while a dearth of specific agonists confounded the functional validation of expressed P2X2, P2X4, P2Y1, P2Y2, TRPV2, TRPV3, TRPV6 and TRPM7 receptors/channels. Although a conventional response was elicited in control stromal-derived cells, the urothelial cell response to well-characterized TRPV1 and TRPV4 agonists/antagonists revealed unexpected anomalies. In addition, agonists that invoked an increase in intracellular Ca2+ promoted urothelial scratch repair, presumably through the release of ATP. The study raises important questions about the ligand selectivity of receptor/channel targets expressed by the urothelium. These pathways are important in urothelial tissue homeostasis, and this opens the possibility of selective drug targeting. PMID:23720349

  7. A Pentasymmetric Open Channel Blocker for Cys-Loop Receptor Channels

    PubMed Central

    Baur, Roland; Puthenkalam, Roshan; Ernst, Margot; Trauner, Dirk; Sigel, Erwin

    2014-01-01

    γ-Aminobutyric acid type A receptors (GABAA receptors) are chloride ion channels composed of five subunits, mediating fast synaptic and tonic inhibition in the mammalian brain. These receptors show near five-fold symmetry that is most pronounced in the second trans-membrane domain M2 lining the Cl− ion channel. To take advantage of this inherent symmetry, we screened a variety of aromatic anions with matched symmetry and found an inhibitor, pentacyanocyclopentdienyl anion (PCCP−) that exhibited all characteristics of an open channel blocker. Inhibition was strongly dependent on the membrane potential. Through mutagenesis and covalent modification, we identified the region α1V256-α1T261 in the rat recombinant GABAA receptor to be important for PCCP− action. Introduction of positive charges into M2 increased the affinity for PCCP− while PCCP− prevented the access of a positively charged molecule into M2. Interestingly, other anion selective cys-loop receptors were also inhibited by PCCP−, among them the Drosophila RDL GABAA receptor carrying an insecticide resistance mutation, suggesting that PCCP− could serve as an insecticide. PMID:25184303

  8. A pentasymmetric open channel blocker for Cys-loop receptor channels.

    PubMed

    Carta, Valentina; Pangerl, Michael; Baur, Roland; Puthenkalam, Roshan; Ernst, Margot; Trauner, Dirk; Sigel, Erwin

    2014-01-01

    γ-Aminobutyric acid type A receptors (GABAA receptors) are chloride ion channels composed of five subunits, mediating fast synaptic and tonic inhibition in the mammalian brain. These receptors show near five-fold symmetry that is most pronounced in the second trans-membrane domain M2 lining the Cl- ion channel. To take advantage of this inherent symmetry, we screened a variety of aromatic anions with matched symmetry and found an inhibitor, pentacyanocyclopentdienyl anion (PCCP-) that exhibited all characteristics of an open channel blocker. Inhibition was strongly dependent on the membrane potential. Through mutagenesis and covalent modification, we identified the region α1V256-α1T261 in the rat recombinant GABAA receptor to be important for PCCP- action. Introduction of positive charges into M2 increased the affinity for PCCP- while PCCP- prevented the access of a positively charged molecule into M2. Interestingly, other anion selective cys-loop receptors were also inhibited by PCCP-, among them the Drosophila RDL GABAA receptor carrying an insecticide resistance mutation, suggesting that PCCP- could serve as an insecticide. PMID:25184303

  9. Lipid modulation of thermal transient receptor potential channels.

    PubMed

    Hernández-García, Enrique; Rosenbaum, Tamara

    2014-01-01

    There is a subgroup of transient receptor potential (TRP) ion channels that are responsive to temperature (thermo-TRP channels). These are important to a variety of sensory and physiological phenomena such as pain and taste perception. All thermo-TRP channels known to date are subject to modulation by lipidic molecules of many kinds, from the ubiquitous cholesterol to more specialized molecules such as prostaglandins. Although the mechanisms and sites of binding of lipids on thermo-TRPs are largely unknown, the explosion on research of lipids and ion channels has revealed previously unsuspected roles for them. Diacyl glycerol is a lipid produced by phospholipase C (PLC) and it was discovered to modulate TRP channels in the eye of the fly, and many mammal TRP channels have been found to interact with lipids. While most of the lipids acting on thermo-TRP channels have been found to activate them, there are a few capable of inhibition. Phosphatidylinositol 4,5-bisphosphate is even capable of both inhibition and activation on a couple of thermo-TRPs, depending on the cellular context. More data is required to assess the mechanism through which lipids affect thermo-TRP channel activity and the physiological importance of this interaction. PMID:25366236

  10. Single-channel properties of the recombinant skeletal muscle Ca2+ release channel (ryanodine receptor).

    PubMed Central

    Chen, S R; Leong, P; Imredy, J P; Bartlett, C; Zhang, L; MacLennan, D H

    1997-01-01

    We report transient expression of a full-length cDNA encoding the Ca2+ release channel of rabbit skeletal muscle sarcoplasmic reticulum (ryanodine receptor) in HEK-293 cells. The single-channel properties of the 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate-solubilized and sucrose gradient-purified recombinant Ca2+ release channels were investigated by using single-channel recordings in planar lipid bilayers. The recombinant Ca2+ release channel exhibited a K+ conductance of 780 pS when symmetrical 250 mM KCl was used as the conducting ion and a Ca2+ conductance of 116 pS in 50 mM luminal Ca2+. Opening events of the recombinant channels were brief, with an open time constant of approximately 0.22 ms. The recombinant Ca2+ release channel was more permeable to Ca2+ than to K+, with a pCa2+/pK+ ratio of 6.8. The response of the recombinant Ca2+ release channel to various concentrations of Ca2+ was biphasic, with the channel being activated by micromolar Ca2+ and inhibited by millimolar Ca2+. The recombinant channels were activated by ATP and caffeine, inhibited by Mg2+ and ruthenium red, and modified by ryanodine. Most recombinant channels were asymmetrically blocked, conducting current unidirectionally from the luminal to the cytoplasmic side of the channel. These data demonstrate that the properties of recombinant Ca2+ release channel expressed in HEK-293 cells are very similar, if not identical, to those of the native channel. Images FIGURE 1 PMID:9336186

  11. N-glycosylation sites on the nicotinic ACh receptor subunits regulate receptor channel desensitization and conductance.

    PubMed

    Nishizaki, Tomoyuki

    2003-06-10

    The present study investigated the effects of N-glycosylation sites on Torpedo acetylcholine (ACh) receptors expressed in Xenopus oocytes by monitoring whole-cell membrane currents and single-channel currents from excised patches. Receptors with the mutant subunit at the asparagine residue on the conserved N-glycosylation site (mbetaN141D, mgammaN141D, or mdeltaN143D) or the serine/threonine residue (mbetaT143A, mgammaS143A, or mdeltaS145A) delayed the rate of current decay as compared with wild-type receptors, and the most striking effect was found with receptors with mbetaT143A or mgammaS143A. For wild-type receptors, the lectin concanavalin A, that binds to glycosylated membrane proteins with high affinity, mimicked this effect. Receptors with mbetaN141D or mdeltaN143D exhibited lower single-channel conductance, but those with mbetaT143A, mgammaS143A, or mdeltaS145A otherwise revealed higher conductance than wild-type receptors. Mean opening time of single-channel currents was little affected by the mutation. N-glycosylation sites, thus, appear to play a role in the regulation of ACh receptor desensitization and ion permeability. PMID:12829329

  12. TRP Channels in Insect Stretch Receptors as Insecticide Targets.

    PubMed

    Nesterov, Alexandre; Spalthoff, Christian; Kandasamy, Ramani; Katana, Radoslav; Rankl, Nancy B; Andrés, Marta; Jähde, Philipp; Dorsch, John A; Stam, Lynn F; Braun, Franz-Josef; Warren, Ben; Salgado, Vincent L; Göpfert, Martin C

    2015-05-01

    Defining the molecular targets of insecticides is crucial for assessing their selectivity and potential impact on environment and health. Two commercial insecticides are now shown to target a transient receptor potential (TRP) ion channel complex that is unique to insect stretch receptor cells. Pymetrozine and pyrifluquinazon disturbed Drosophila coordination and hearing by acting on chordotonal stretch receptor neurons. This action required the two TRPs Nanchung (Nan) and Inactive (Iav), which co-occur exclusively within these cells. Nan and Iav together sufficed to confer cellular insecticide responses in vivo and in vitro, and the two insecticides were identified as specific agonists of Nan-Iav complexes that, by promoting cellular calcium influx, silence the stretch receptor cells. This establishes TRPs as insecticide targets and defines specific agonists of insect TRPs. It also shows that TRPs can render insecticides cell-type selective and puts forward TRP targets to reduce side effects on non-target species. PMID:25950634

  13. Receptor for protons: First observations on Acid Sensing Ion Channels.

    PubMed

    Krishtal, Oleg

    2015-07-01

    The history of ASICs began in 1980 with unexpected observation. The concept of highly selective Na(+) current gated by specific receptors for protons was not easily accepted. It took 16 years to get these receptor/channels cloned and start a new stage in their investigation. "The receptor for protons" became ASIC comprising under this name a family of receptor/channels ubiquitous for mammalian nervous system, both peripheral and central. The role of ASICs as putative nociceptors was suggested almost immediately after their discovery. This role subsequently was proven in many forms of pain-related phenomena. Many other functions of ASICs have been also found or primed for speculations both in physiology and in disease. Despite the width of field and strength of efforts, numerous basic questions are to be answered before we understand how the local changes in pH in the nervous tissue transform into electric and messenger signaling via ASICs as transducers. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'. PMID:25582296

  14. Mechanisms of Barbiturate Inhibition of Acetylcholine Receptor Channels

    PubMed Central

    Dilger, James P.; Boguslavsky, Rebecca; Barann, Martin; Katz, Tamir; Vidal, Ana Maria

    1997-01-01

    We used patch clamp techniques to study the inhibitory effects of pentobarbital and barbital on nicotinic acetylcholine receptor channels from BC3H-1 cells. Single channel recording from outside-out patches reveals that both drugs cause acetylcholine-activated channel events to occur in bursts. The mean duration of gaps within bursts is 2 ms for 0.1 mM pentobarbital and 0.05 ms for 1 mM barbital. In addition, 1 mM barbital reduces the apparent single channel current by 15%. Both barbiturates decrease the duration of openings within a burst but have only a small effect on the burst duration. Macroscopic currents were activated by rapid perfusion of 300 μM acetylcholine to outside-out patches. The concentration dependence of peak current inhibition was fit with a Hill function; for pentobarbital, Ki = 32 μM, n = 1.09; for barbital, Ki = 1900 μM, n = 1.24. Inhibition is voltage independent. The kinetics of inhibition by pentobarbital are at least 30 times faster than inhibition by barbital (3 ms vs. <0.1 ms at the Ki). Pentobarbital binds ≥10-fold more tightly to open channels than to closed channels; we could not determine whether the binding of barbital is state dependent. Experiments performed with both barbiturates reveal that they do not compete for a single binding site on the acetylcholine receptor channel protein, but the binding of one barbiturate destabilizes the binding of the other. These results support a kinetic model in which barbiturates bind to both open and closed states of the AChR and block the flow of ions through the channel. An additional, lower-affinity binding site for pentobarbital may explain the effects seen at >100 μM pentobarbital. PMID:9089445

  15. Mechanisms of barbiturate inhibition of acetylcholine receptor channels.

    PubMed

    Dilger, J P; Boguslavsky, R; Barann, M; Katz, T; Vidal, A M

    1997-03-01

    We used patch clamp techniques to study the inhibitory effects of pentobarbital and barbital on nicotinic acetylcholine receptor channels from BC3H-1 cells. Single channel recording from outside-out patches reveals that both drugs cause acetylcholine-activated channel events to occur in bursts. The mean duration of gaps within bursts in 2 ms for 0.1 mM pentobarbital and 0.05 ms for 1 mM barbital. In addition, 1 mM barbital reduces the apparent single channel current by 15%. Both barbiturates decrease the duration of openings within a burst but have only a small effect on the burst duration. Macroscopic currents were activated by rapid perfusion of 300 microM acetylcholine to outside-out patches. The concentration dependence of peak current inhibition was fit with a Hill function; for pentobarbital, Ki = 32 microM, n = 1.09; for barbital, Ki = 1900 microM, n = 1.24. Inhibition is voltage independent. The kinetics of inhibition by pentobarbital are at least 30 times faster than inhibition by barbital (3 ms vs. < 0.1 ms at the Ki). Pentobarbital binds > or = 10-fold more tightly to open channels than to closed channels; we could not determine whether the binding of barbital is state dependent. Experiments performed with both barbiturates reveal that they do not compete for a single binding site on the acetylcholine receptor channel protein, but the binding of one barbiturate destabilizes the binding of the other. These results support a kinetic model in which barbiturates bind to both open and closed states of the AChR and block the flow of ions through the channel. An additional, lower-affinity binding site for pentobarbital may explain the effects seen at > 100 microM pentobarbital. PMID:9089445

  16. Transient Receptor Potential Channels as Targets for Phytochemicals

    PubMed Central

    2015-01-01

    To date, 28 mammalian transient receptor potential (TRP) channels have been cloned and characterized. They are grouped into six subfamilies on the basis of their amino acid sequence homology: TRP Ankyrin (TRPA), TRP Canonical (TRPC), TRP Melastatin (TRPM), TRP Mucolipin (TRPML), TRP Polycystin (TRPP), and TRP Vanilloid (TRPV). Most of the TRP channels are nonselective cation channels expressed on the cell membrane and exhibit variable permeability ratios for Ca2+ versus Na+. They mediate sensory functions (such as vision, nociception, taste transduction, temperature sensation, and pheromone signaling) and homeostatic functions (such as divalent cation flux, hormone release, and osmoregulation). Significant progress has been made in our understanding of the specific roles of these TRP channels and their activation mechanisms. In this Review, the emphasis will be on the activation of TRP channels by phytochemicals that are claimed to exert health benefits. Recent findings complement the anecdotal evidence that some of these phytochemicals have specific receptors and the activation of which is responsible for the physiological effects. Now, the targets for these phytochemicals are being unveiled; a specific hypothesis can be proposed and tested experimentally to infer a scientific validity of the claims of the health benefits. The broader and pressing issues that have to be addressed are related to the quantities of the active ingredients in a given preparation, their bioavailability, metabolism, adverse effects, excretion, and systemic versus local effects. PMID:24926802

  17. Transient receptor potential (TRP) channels: a clinical perspective

    PubMed Central

    Kaneko, Yosuke; Szallasi, Arpad

    2014-01-01

    Transient receptor potential (TRP) channels are important mediators of sensory signals with marked effects on cellular functions and signalling pathways. Indeed, mutations in genes encoding TRP channels are the cause of several inherited diseases in humans (the so-called ‘TRP channelopathies’) that affect the cardiovascular, renal, skeletal and nervous systems. TRP channels are also promising targets for drug discovery. The initial focus of research was on TRP channels that are expressed on nociceptive neurons. Indeed, a number of potent, small-molecule TRPV1, TRPV3 and TRPA1 antagonists have already entered clinical trials as novel analgesic agents. There has been a recent upsurge in the amount of work that expands TRP channel drug discovery efforts into new disease areas such as asthma, cancer, anxiety, cardiac hypertrophy, as well as obesity and metabolic disorders. A better understanding of TRP channel functions in health and disease should lead to the discovery of first-in-class drugs for these intractable diseases. With this review, we hope to capture the current state of this rapidly expanding and changing field. LINKED ARTICLES This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24102319

  18. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells.

    PubMed

    Wagner, Thomas F J; Loch, Sabine; Lambert, Sachar; Straub, Isabelle; Mannebach, Stefanie; Mathar, Ilka; Düfer, Martina; Lis, Annette; Flockerzi, Veit; Philipp, Stephan E; Oberwinkler, Johannes

    2008-12-01

    Transient receptor potential (TRP) cation channels are renowned for their ability to sense diverse chemical stimuli. Still, for many members of this large and heterogeneous protein family it is unclear how their activity is regulated and whether they are influenced by endogenous substances. On the other hand, steroidal compounds are increasingly recognized to have rapid effects on membrane surface receptors that often have not been identified at the molecular level. We show here that TRPM3, a divalent-permeable cation channel, is rapidly and reversibly activated by extracellular pregnenolone sulphate, a neuroactive steroid. We show that pregnenolone sulphate activates endogenous TRPM3 channels in insulin-producing beta cells. Application of pregnenolone sulphate led to a rapid calcium influx and enhanced insulin secretion from pancreatic islets. Our results establish that TRPM3 is an essential component of an ionotropic steroid receptor enabling unanticipated crosstalk between steroidal and insulin-signalling endocrine systems. PMID:18978782

  19. Transient receptor potential channel 1 (TRPC1) reduces calcium permeability in heteromeric channel complexes.

    PubMed

    Storch, Ursula; Forst, Anna-Lena; Philipp, Maximilian; Gudermann, Thomas; Mederos y Schnitzler, Michael

    2012-01-27

    Specific biological roles of the classical transient receptor potential channel 1 (TRPC1) are still largely elusive. To investigate the function of TRPC1 proteins in cell physiology, we studied heterologously expressed TRPC1 channels and found that recombinant TRPC1 subunits do not form functional homomeric channels. Instead, by electrophysiological analysis TRPC1 was shown to form functional heteromeric, receptor-operated channel complexes with TRPC3, -4, -5, -6, and -7 indicating that TRPC1 proteins can co-assemble with all members of the TRPC subfamily. In all TRPC1-containing heteromers, TRPC1 subunits significantly decreased calcium permeation. The exchange of select amino acids in the putative pore-forming region of TRPC1 further reduced calcium permeability, suggesting that TRPC1 subunits contribute to the channel pore. In immortalized immature gonadotropin-releasing hormone neurons endogenously expressing TRPC1, -2, -5, and -6, down-regulation of TRPC1 resulted in increased calcium permeability and elevated basal cytosolic calcium concentrations. We did not observe any involvement of TRPC1 in store-operated cation influx. Notably, TRPC1 suppressed the migration of gonadotropin-releasing hormone neurons without affecting cell proliferation. Conversely, in TRPC1 knockdown neurons, specific migratory properties like distance covered, locomotion speed, and directionality were increased. These findings suggest a novel regulatory mechanism relying on the expression of TRPC1 and the subsequent formation of heteromeric TRPC channel complexes with reduced calcium permeability, thereby fine-tuning neuronal migration. PMID:22157757

  20. Transient Receptor Potential Channel 1 (TRPC1) Reduces Calcium Permeability in Heteromeric Channel Complexes

    PubMed Central

    Storch, Ursula; Forst, Anna-Lena; Philipp, Maximilian; Gudermann, Thomas; Mederos y Schnitzler, Michael

    2012-01-01

    Specific biological roles of the classical transient receptor potential channel 1 (TRPC1) are still largely elusive. To investigate the function of TRPC1 proteins in cell physiology, we studied heterologously expressed TRPC1 channels and found that recombinant TRPC1 subunits do not form functional homomeric channels. Instead, by electrophysiological analysis TRPC1 was shown to form functional heteromeric, receptor-operated channel complexes with TRPC3, -4, -5, -6, and -7 indicating that TRPC1 proteins can co-assemble with all members of the TRPC subfamily. In all TRPC1-containing heteromers, TRPC1 subunits significantly decreased calcium permeation. The exchange of select amino acids in the putative pore-forming region of TRPC1 further reduced calcium permeability, suggesting that TRPC1 subunits contribute to the channel pore. In immortalized immature gonadotropin-releasing hormone neurons endogenously expressing TRPC1, -2, -5, and -6, down-regulation of TRPC1 resulted in increased calcium permeability and elevated basal cytosolic calcium concentrations. We did not observe any involvement of TRPC1 in store-operated cation influx. Notably, TRPC1 suppressed the migration of gonadotropin-releasing hormone neurons without affecting cell proliferation. Conversely, in TRPC1 knockdown neurons, specific migratory properties like distance covered, locomotion speed, and directionality were increased. These findings suggest a novel regulatory mechanism relying on the expression of TRPC1 and the subsequent formation of heteromeric TRPC channel complexes with reduced calcium permeability, thereby fine-tuning neuronal migration. PMID:22157757

  1. Transient receptor potential channel C5 in cancer chemoresistance

    PubMed Central

    He, Dong-xu; Ma, Xin

    2016-01-01

    The transient receptor potential (TRP) superfamily contains at least 28 homologs in mammalian. These proteins form TRP channels are permeable to monovalent and divalent cations and participate in a variety of physiological functions. Dysregulation of TRP channels is responsible for numerous diseases. This review provides a brief short overview of mammalian TRP channels with a focus on TRPC5 and its role in cancers. Dysregulation of TRPC5 interrupts Ca2+ homeostasis in cancer cells, which activates signaling pathways that are highly associated with cancer progression, especially cancer chemoresistance. Based on the important role of TRPC5, we also discuss the potential of TRPC5 as a target for therapeutic intervention. Either direct targeting of TRPC5 or indirect interruption of TRPC5-related signaling pathways may effectively overcome cancer chemoresistance. PMID:26657058

  2. Pharmacology of transient receptor potential melastatin channels in the vasculature

    PubMed Central

    Zholos, Alexander

    2010-01-01

    Mammalian transient receptor potential melastatin (TRPM) non-selective cation channels, the largest TRP subfamily, are widely expressed in excitable and non-excitable cells where they perform diverse functions ranging from detection of cold, taste, osmolarity, redox state and pH to control of Mg2+ homeostasis and cell proliferation or death. Recently, TRPM gene expression has been identified in vascular smooth muscles with dominance of the TRPM8 channel. There has been in parallel considerable progress in decoding the functional roles of several TRPMs in the vasculature. This research on native cells is aided by the knowledge of the activation mechanisms and pharmacological properties of heterologously expressed TRPM subtypes. This paper summarizes the present state of knowledge of vascular TRPM channels and outlines several anticipated directions of future research in this area. PMID:20233227

  3. TRP Channel Cannabinoid Receptors in Skin Sensation, Homeostasis, and Inflammation

    PubMed Central

    2015-01-01

    In the skin, cannabinoid lipids, whether of endogenous or exogenous origin, are capable of regulating numerous sensory, homeostatic, and inflammatory events. Although many of these effects are mediated by metabotropic cannabinoid receptors, a growing body of evidence has revealed that multiple members of the transient receptor potential (TRP) ion channel family can act as “ionotropic cannabinoid receptors”. Furthermore, many of these same TRP channels are intimately involved in cutaneous processes that include the initiation of pain, temperature, and itch perception, the maintenance of epidermal homeostasis, the regulation of hair follicles and sebaceous glands, and the modulation of dermatitis. Ionotropic cannabinoid receptors therefore represent potentially attractive targets for the therapeutic use of cannabinoids to treat sensory and dermatological diseases. Furthermore, the interactions between neurons and other cell types that are mediated by cutaneous ionotropic cannabinoid receptors are likely to be recapitulated during physiological and pathophysiological processes in the central nervous system and elsewhere, making the skin an ideal setting in which to dissect general complexities of cannabinoid signaling. PMID:24915599

  4. The transient receptor potential family of ion channels.

    PubMed

    Nilius, Bernd; Owsianik, Grzegorz

    2011-01-01

    The transient receptor potential (TRP) multigene superfamily encodes integral membrane proteins that function as ion channels. Members of this family are conserved in yeast, invertebrates and vertebrates. The TRP family is subdivided into seven subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), TRPA (ankyrin) and TRPN (NOMPC-like); the latter is found only in invertebrates and fish. TRP ion channels are widely expressed in many different tissues and cell types, where they are involved in diverse physiological processes, such as sensation of different stimuli or ion homeostasis. Most TRPs are non-selective cation channels, only few are highly Ca2+ selective, some are even permeable for highly hydrated Mg2+ ions. This channel family shows a variety of gating mechanisms, with modes of activation ranging from ligand binding, voltage and changes in temperature to covalent modifications of nucleophilic residues. Activated TRP channels cause depolarization of the cellular membrane, which in turn activates voltage-dependent ion channels, resulting in a change of intracellular Ca2+ concentration; they serve as gatekeeper for transcellular transport of several cations (such as Ca2+ and Mg2+), and are required for the function of intracellular organelles (such as endosomes and lysosomes). Because of their function as intracellular Ca2+ release channels, they have an important regulatory role in cellular organelles. Mutations in several TRP genes have been implicated in diverse pathological states, including neurodegenerative disorders, skeletal dysplasia, kidney disorders and pain, and ongoing research may help find new therapies for treatments of related diseases. PMID:21401968

  5. The transient receptor potential family of ion channels

    PubMed Central

    2011-01-01

    Summary The transient receptor potential (TRP) multigene superfamily encodes integral membrane proteins that function as ion channels. Members of this family are conserved in yeast, invertebrates and vertebrates. The TRP family is subdivided into seven subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), TRPA (ankyrin) and TRPN (NOMPC-like); the latter is found only in invertebrates and fish. TRP ion channels are widely expressed in many different tissues and cell types, where they are involved in diverse physiological processes, such as sensation of different stimuli or ion homeostasis. Most TRPs are non-selective cation channels, only few are highly Ca2+ selective, some are even permeable for highly hydrated Mg2+ ions. This channel family shows a variety of gating mechanisms, with modes of activation ranging from ligand binding, voltage and changes in temperature to covalent modifications of nucleophilic residues. Activated TRP channels cause depolarization of the cellular membrane, which in turn activates voltage-dependent ion channels, resulting in a change of intracellular Ca2+ concentration; they serve as gatekeeper for transcellular transport of several cations (such as Ca2+ and Mg2+), and are required for the function of intracellular organelles (such as endosomes and lysosomes). Because of their function as intracellular Ca2+ release channels, they have an important regulatory role in cellular organelles. Mutations in several TRP genes have been implicated in diverse pathological states, including neurodegenerative disorders, skeletal dysplasia, kidney disorders and pain, and ongoing research may help find new therapies for treatments of related diseases. PMID:21401968

  6. [Ion channels and action potentials in olfactory receptor cells].

    PubMed

    Kawai, Fusao; Miyachi, Ei-ichi

    2007-11-01

    The first step in olfactory sensation involves the binding of odorant molecules to specific receptor proteins on the ciliary surface of olfactory receptor cells (ORCs). Odorant receptors coupled to G-proteins activate adenylyl cyclase leading to the generation of cAMP, which directly gates a cyclic nucleotide-gated cationic channel in the ciliary membrane. This initial excitation causes a slow and graded depolarizing voltage change, which is encoded into a train of action potentials. Action potentials of ORCs are generated by voltage-gated Na- currents and T-type Ca2- currents in the somatic membrane. Isolated ORCs that have lost their cilia during the dissociation procedure are known to exhibit spike frequency accommodation by injecting the steady current. This raises the possibility that somatic ionic channels in ORCs may serve for odor adaptation at the level of spike encoding, although odor adaptation is mainly accomplished by the ciliary transduction machinery. This review discusses current knowledge concerning the mechanisms of spike generation in ORCs. It also reviews how neurotransmitters and hormones modulate ionic currents and action potentials in ORCs. PMID:18154041

  7. Function and regulation of endothelin type A receptor-operated transient receptor potential canonical channels.

    PubMed

    Horinouchi, Takahiro; Terada, Koji; Higa, Tsunaki; Aoyagi, Hiroyuki; Nishiya, Tadashi; Suzuki, Hiroyuki; Miwa, Soichi

    2011-01-01

    The purpose of this study is to identify transient receptor potential canonical (TRPC) channels responsible for receptor-operated Ca(2+) entry (ROCE) triggered by activation of endothelin type A receptor (ET(A)R) and to clarify the importance of calmodulin (CaM) / inositol 1,4,5-trisphosphate (IP(3)) receptor binding (CIRB) domain at the C terminus of TRPC channels in ET(A)R-activated channel regulation. In HEK293 cells coexpressing ET(A)R and one of seven TRPC isoforms, ET(A)R stimulation induced ROCE through TRPC3, TRPC5, TRPC6, and TRPC7. The TRPC3- and TRPC6-mediated ROCE was inhibited by selective inhibitors of G(q) protein, phospholipase C (PLC), and CaM. The CIRB domain deletion mutants of TRPC3 and TRPC6 failed to induce ET(A)R-mediated ROCE. Either deletion of the CIRB domain or pharmacological inhibition of CaM did not inhibit the targeting of these channels to the plasma membrane. These results suggest that 1) TRPC3, TRPC5, TRPC6, and TRPC7 can function as ET(A)R-operated Ca(2+) channels; 2) G(q) protein, PLC, and CaM are involved in TRPC3- and TRPC6-mediated ROCE; 3) ET(A)R-mediated activation of TRPC3 and TRPC6 requires the CIRB domain; and 4) abolition of ET(A)R-induced ROCE by CIRB domain deletion and CaM inhibition is due to loss of CaM binding to the channels but not loss of cell surface TRPC3 and TRPC6. PMID:22129540

  8. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.

    PubMed

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F

    2016-09-01

    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds. PMID:27513962

  9. Activation and Regulation of Purinergic P2X Receptor Channels

    PubMed Central

    Coddou, Claudio; Yan, Zonghe; Obsil, Tomas; Huidobro-Toro, J. Pablo

    2011-01-01

    Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions. PMID:21737531

  10. Epithelial P2X purinergic receptor channel expression and function

    PubMed Central

    Taylor, Amanda L.; Schwiebert, Lisa M.; Smith, Jeffrey J.; King, Chris; Jones, Julie R.; Sorscher, Eric J.; Schwiebert, Erik M.

    1999-01-01

    P2X purinergic receptor (P2XR) channels bind ATP and mediate Ca2+ influx — 2 signals that stimulate secretory Cl– transport across epithelia. We tested the hypotheses that P2XR channels are expressed by epithelia and that P2XRs transduce extracellular ATP signals into stimulation of Cl– transport across epithelia. Electrophysiological data and mRNA analysis of human and mouse pulmonary epithelia and other epithelial cells indicate that multiple P2XRs are broadly expressed in these tissues and that they are active on both apical and basolateral surfaces. Because P2X-selective agonists bind multiple P2XR subtypes, and because P2X agonists stimulate Cl– transport across nasal mucosa of cystic fibrosis (CF) patients as well as across non-CF nasal mucosa, P2XRs may provide novel targets for extracellular nucleotide therapy of CF. PMID:10510328

  11. The role of transient receptor potential channels in metabolic syndrome.

    PubMed

    Liu, Daoyan; Zhu, Zhiming; Tepel, Martin

    2008-11-01

    Metabolic syndrome is correlated with increased cardiovascular risk and characterized by several factors, including visceral obesity, hypertension, insulin resistance, and dyslipidemia. Several members of a large family of nonselective cation entry channels, e.g., transient receptor potential (TRP) canonical (TRPC), vanilloid (TRPV), and melastatin (TRPM) channels, have been associated with the development of cardiovascular diseases. Thus, disruption of TRP channel expression or function may account for the observed increased cardiovascular risk in metabolic syndrome patients. TRPV1 regulates adipogenesis and inflammation in adipose tissues, whereas TRPC3, TRPC5, TRPC6, TRPV1, and TRPM7 are involved in vasoconstriction and regulation of blood pressure. Other members of the TRP family are involved in regulation of insulin secretion, lipid composition, and atherosclerosis. Although there is no evidence that a single TRP channelopathy may be the cause of all metabolic syndrome characteristics, further studies will help to clarify the role of specific TRP channels involved in the metabolic syndrome. (Hypertens Res 2008; 31: 1989-1995). PMID:19098369

  12. Classical Transient Receptor Potential 1 (TRPC1): Channel or Channel Regulator?

    PubMed Central

    Dietrich, Alexander; Fahlbusch, Meike; Gudermann, Thomas

    2014-01-01

    In contrast to other Classical Transient Receptor Potential TRPC channels the function of TRPC1 as an ion channel is a matter of debate, because it is often difficult to obtain substantial functional signals over background in response to over-expression of TRPC1 alone. Along these lines, heterologously expressed TRPC1 is poorly translocated to the plasma membrane as a homotetramer and may not function on its own physiologically, but may rather be an important linker and regulator protein in heteromeric TRPC channel tetramers. However, due to the lack of specific TRPC1 antibodies able to detect native TRPC1 channels in primary cells, identification of functional TRPC1 containing heteromeric TRPC channel complexes in the plasma membrane is still challenging. Moreover, an extended TRPC1 cDNA, which was recently discovered, may seriously question results obtained in heterologous expression systems transfected with shortened cDNA versions. Therefore, this review will focus on the current status of research on TRPC1 function obtained in primary cells and a TRPC1-deficient mouse model. PMID:25268281

  13. Transient receptor potential cation channels in visceral sensory pathways

    PubMed Central

    Blackshaw, L Ashley

    2014-01-01

    The extensive literature on this subject is in direct contrast to the limited range of clinical uses for ligands of the transient receptor potential cation channels (TRPs) in diseases of the viscera. TRPV1 is the most spectacular example of this imbalance, as it is in other systems, but it is nonetheless the only TRP target that is currently targeted clinically in bladder sensory dysfunction. It is not clear why this discrepancy exists, but a likely answer is in the promiscuity of TRPs as sensors and transducers for environmental mechanical and chemical stimuli. This review first describes the different sensory pathways from the viscera, and on which nociceptive and non-nociceptive neurones within these pathways TRPs are expressed. They not only fulfil roles as both mechano-and chemo-sensors on visceral afferents, but also form an effector mechanism for cell activation after activation of GPCR and cytokine receptors. Their role may be markedly changed in diseased states, including chronic pain and inflammation. Pain presents the most obvious potential for further development of therapeutic interventions targeted at TRPs, but forms of inflammation are emerging as likely to benefit also. However, despite much basic research, we are still at the beginning of exploring such potential in visceral sensory pathways. LINKED ARTICLES This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24641218

  14. Melatonin receptor and KATP channel modulation in experimental vascular dementia.

    PubMed

    Singh, Prabhat; Gupta, Surbhi; Sharma, Bhupesh

    2015-04-01

    Cerebrovascular and cardiovascular diseases are stated as important risk factors of vascular dementia (VaD) and other cognitive disorders. In the central nervous system, melatonin (MT1/MT2) as well as serotonin subtype 2C (5-HT2C) receptors is pharmacologically associated with various neurological disorders. Brain mitochondrial potassium channels have been reported for their role in neuroprotection. This study has been structured to investigate the role of agomelatine, a melatonergic MT1/MT2 agonist and nicorandil, a selective ATP sensitive potassium (KATP) channel opener in renal artery ligation (two-kidney-one-clip: 2K1C) hypertension induced endothelial dysfunction, brain damage and VaD. 2K1C-renovascular hypertension has increased mean arterial blood pressure (MABP), impaired memory (elevated plus maze and Morris water maze), endothelial function, reduced serum nitrite/nitrate and increased brain damage (TTC staining of brain sections). Furthermore, 2K1C animals have shown high levels of oxidative stress in serum (increased thiobarbituric acid reactive species-TBARS with decreased levels of glutathione-GSH, superoxide dismutase-SOD and catalase-CAT), in the aorta (increased aortic superoxide anion) and in the brain (increased TBARS with decreased GSH, SOD and CAT). 2K1C has also induced a significant increase in brain inflammation (myeloperoxidase-MPO levels), acetylcholinesterase activity (AChE) and calcium levels. Impairment in mitochondrial complexes like NADH dehydrogenase (complex-I), succinate dehydrogenase (complex-II) and cytochrome oxidase (complex-IV) was also noted in 2K1C animals. Administration of agomelatine, nicorandil and donepezil significantly attenuated 2K1C-hypertension induced impairments in memory, endothelial function, nitrosative stress, mitochondrial dysfunction, inflammation and brain damage. Therefore, modulators of MT1/MT2 receptors and KATP channels may be considered as potential agents for the management of renovascular

  15. Transient Receptor Potential Channels and Corneal Stromal Inflammation.

    PubMed

    Okada, Yuka; Reinach, Peter S; Shirai, Kumi; Kitano-Izutani, Ai; Miyajima, Masayasu; Yamanaka, Osamu; Sumioka, Takayoshi; Saika, Shizuya

    2015-11-01

    Corneal transparency is dependent on the maintenance of the structural integrity and functional activity of its epithelial and endothelial limiting layers and the stroma. Different transient receptor potential (TRP) channel subtypes are expressed in cells and on corneal sensory nerve endings. They serve as sensors and transducers of environmental stimuli that can reduce tissue transparency. These nonselective cation channels are members of a superfamily sharing TRP box protein sequence homology having 6 membrane spanning domains with a pore between the fifth and sixth segments. TRP channels are composed of 4 monomeric subunits that oligomerize in homomeric or heteromeric configurations derived from different TRP subtypes belonging to the same or any of 6 different subfamilies. TRP subfamily members identified in the cornea include those belonging to the canonical, vanilloid, ankyrin, or melastatin subfamilies. In this review, we specifically focus on the functional roles of TRPV1 and TRPA1 expression in the cornea as their activation provides adaptive nociceptive and immune responses to noxious environmental stresses such as irritating ligands, temperature fluctuations, rises in ambient osmolarity, mechanical stretch, decline in pH, and tissue injury. Our previous studies have indicated that TRPV1 and TRPA1 subtypes are potential drug targets for improving corneal wound healing after alkali burns, because injury-induced fibrosis, neovascularization, and inflammation in either TRPV1 or TRPA1 gene-silenced mice were all significantly reduced. PMID:26448171

  16. Investigation of the alpha(1)-glycine receptor channel-opening kinetics in the submillisecond time domain.

    PubMed

    Grewer, C

    1999-08-01

    The activation and desensitization kinetics of the human alpha(1)-homooligomeric glycine receptor, which was transiently expressed in HEK 293 cells, were studied with a 100-microseconds time resolution to determine the rate and equilibrium constants of individual receptor reaction steps. Concentration jumps of the activating ligands glycine and beta-alanine were initiated by photolysis of caged, inactive precursors and were followed by neurotransmitter binding, receptor-channel opening, and receptor desensitization steps that were separated along the time axis. Analysis of the ligand concentration-dependence of these processes allows the determination of 1) the rate constants of glycine binding, k(+1) approximately 10(7) M(-1) s(-1), and dissociation, k(-1) = 1900 s(-1); 2) the rates of receptor-channel opening, k(op) = 2200 s(-1), and closing, k(cl) = 38 s(-1); 3) the receptor desensitization rate, alpha = 0.45 s(-1); 4) the number of occupied ligand binding sites necessary for receptor-channel activation and desensitization, n >/= 3; and 5) the maximum receptor-channel open probability, p(0) > 0.95. The kinetics of receptor-channel activation are insensitive to the transmembrane potential. A general model for glycine receptor activation explaining the experimental data consists of a sequential mechanism based on rapid ligand-binding steps preceding a rate-limiting receptor-channel opening reaction and slow receptor desensitization. PMID:10423421

  17. Modulation of cardiac ryanodine receptor channels by alkaline earth cations.

    PubMed

    Diaz-Sylvester, Paula L; Porta, Maura; Copello, Julio A

    2011-01-01

    Cardiac ryanodine receptor (RyR2) function is modulated by Ca(2+) and Mg(2+). To better characterize Ca(2+) and Mg(2+) binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M(2+): Mg(2+), Ca(2+), Sr(2+), Ba(2+)) were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M(2+) binding to high affinity activating sites at the cytosolic channel surface, specific for Ca(2+) or Sr(2+). This activation was interfered by Mg(2+) and Ba(2+) acting at low affinity M(2+)-unspecific binding sites. When testing the effects of luminal M(2+) as current carriers, all M(2+) increased maximal RyR2 open probability (compared to Cs(+)), suggesting the existence of low affinity activating M(2+)-unspecific sites at the luminal surface. Responses to M(2+) vary from channel to channel (heterogeneity). However, with luminal Ba(2+)or Mg(2+), RyR2 were less sensitive to cytosolic Ca(2+) and caffeine-mediated activation, openings were shorter and voltage-dependence was more marked (compared to RyR2 with luminal Ca(2+)or Sr(2+)). Kinetics of RyR2 with mixtures of luminal Ba(2+)/Ca(2+) and additive action of luminal plus cytosolic Ba(2+) or Mg(2+) suggest luminal M(2+) differentially act on luminal sites rather than accessing cytosolic sites through the pore. This suggests the presence of additional luminal activating Ca(2+)/Sr(2+)-specific sites, which stabilize high P(o) mode (less voltage-dependent) and increase RyR2 sensitivity to cytosolic Ca(2+) activation. In summary, RyR2 luminal and cytosolic surfaces have at least two sets of M(2+) binding sites (specific for Ca(2+) and unspecific for Ca(2+)/Mg(2+)) that dynamically modulate channel activity and gating status, depending on SR voltage. PMID:22039534

  18. Modulation of Cardiac Ryanodine Receptor Channels by Alkaline Earth Cations

    PubMed Central

    Diaz-Sylvester, Paula L.; Porta, Maura; Copello, Julio A.

    2011-01-01

    Cardiac ryanodine receptor (RyR2) function is modulated by Ca2+ and Mg2+. To better characterize Ca2+ and Mg2+ binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M2+: Mg2+, Ca2+, Sr2+, Ba2+) were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M2+ binding to high affinity activating sites at the cytosolic channel surface, specific for Ca2+ or Sr2+. This activation was interfered by Mg2+ and Ba2+ acting at low affinity M2+-unspecific binding sites. When testing the effects of luminal M2+ as current carriers, all M2+ increased maximal RyR2 open probability (compared to Cs+), suggesting the existence of low affinity activating M2+-unspecific sites at the luminal surface. Responses to M2+ vary from channel to channel (heterogeneity). However, with luminal Ba2+or Mg2+, RyR2 were less sensitive to cytosolic Ca2+ and caffeine-mediated activation, openings were shorter and voltage-dependence was more marked (compared to RyR2 with luminal Ca2+or Sr2+). Kinetics of RyR2 with mixtures of luminal Ba2+/Ca2+ and additive action of luminal plus cytosolic Ba2+ or Mg2+ suggest luminal M2+ differentially act on luminal sites rather than accessing cytosolic sites through the pore. This suggests the presence of additional luminal activating Ca2+/Sr2+-specific sites, which stabilize high Po mode (less voltage-dependent) and increase RyR2 sensitivity to cytosolic Ca2+ activation. In summary, RyR2 luminal and cytosolic surfaces have at least two sets of M2+ binding sites (specific for Ca2+ and unspecific for Ca2+/Mg2+) that dynamically modulate channel activity and gating status, depending on SR voltage. PMID:22039534

  19. Serotonin receptor diversity in the human colon: Expression of serotonin type 3 receptor subunits 5-HT3C, 5-HT3D, and 5-HT3E

    PubMed Central

    Kapeller, Johannes; Möller, Dorothee; Lasitschka, Felix; Autschbach, Frank; Hovius, Ruud; Rappold, Gudrun; Brüss, Michael; Gershon, Michael D.

    2011-01-01

    Since the first description of 5-HT3 receptors more than 50 years ago, there has been speculation about the molecular basis of their receptor heterogeneity. We have cloned the genes encoding novel 5-HT3 subunits 5-HT3C, 5-HT3D, and 5-HT3E and have shown that these subunits are able to form functional heteromeric receptors when coexpressed with the 5-HT3A subunit. However, whether these subunits are actually expressed in human tissue remained to be confirmed. In the current study, we performed immunocytochemistry to locate the 5-HT3A as well as the 5-HT3C, 5-HT3D, and 5-HT3E subunits within the human colon. Western blot analysis was used to confirm subunit expression, and RT-PCR was employed to detect transcripts encoding 5-HT3 receptor subunits in microdissected tissue samples. This investigation revealed, for the first time, that 5-HT3C, 5-HT3D, and 5-HT3E subunits are coexpressed with 5-HT3A in cell bodies of myenteric neurons. Furthermore, 5-HT3A and 5-HT3D were found to be expressed in submucosal plexus of the human large intestine. These data provide a strong basis for future studies of the roles that specific 5-HT3 receptor subtypes play in the function of the enteric and central nervous systems and the contribution that specific 5-HT3 receptors make to the pathophysiology of gastrointestinal disorders such as irritable bowel syndrome and dyspepsia. PMID:21192076

  20. Cornichons modify channel properties of recombinant and glial AMPA receptors

    PubMed Central

    Coombs, Ian D.; Soto, David; Zonouzi, Marzieh; Renzi, Massimiliano; Shelley, Chris; Farrant, Mark; Cull-Candy, Stuart G.

    2012-01-01

    Ionotropic glutamate receptors, which underlie a majority of excitatory synaptic transmission in the CNS, associate with transmembrane proteins that modify their intracellular trafficking and channel gating. For AMPA-type glutamate receptors (AMPARs), significant advances have been made in our understanding of their regulation by transmembrane AMPAR regulatory proteins (TARPs). Less is known about the functional influence of cornichons – unrelated AMPAR-interacting proteins, identified by proteomic analysis. Here we confirm that cornichon homologs 2 and 3 (CNIH-2 and CNIH-3), but not CNIH-1, slow the deactivation and desensitization of both GluA2-containing calcium-impermeable (CI-) and GluA2-lacking calcium-permeable (CP-) AMPARs expressed in tsA201 cells. CNIH-2 and -3 also enhanced the glutamate sensitivity, single-channel conductance and calcium permeability of CP-AMPARs, while decreasing their block by intracellular polyamines. We examined the potential effects of CNIHs on native AMPARs by recording from rat optic nerve oligodendrocyte precursor cells (OPCs), known to express a significant population of CP-AMPARs. These glial cells exhibited surface labelling with an anti-CNIH-2/3 antibody. Two features of their AMPAR-mediated currents – the relative efficacy of the partial agonist kainate (IKA/IGlu ratio 0.4), and a greater than five-fold potentiation of kainate responses by cyclothiazide – suggest AMPAR association with CNIHs. Additionally, overexpression of CNIH-3 in OPCs markedly slowed AMPAR desensitization. Together, our experiments support the view that CNIHs are capable of altering key properties of AMPARs and suggest that they may do so in glia. PMID:22815494

  1. Genetic Reconstitution of Functional Acetylcholine Receptor Channels in Mouse Fibroblasts

    NASA Astrophysics Data System (ADS)

    Claudio, Toni; Green, W. N.; Hartman, Deborah S.; Hayden, Deborah; Paulson, Henry L.; Sigworth, F. J.; Sine, Steven M.; Swedlund, Anne

    1987-12-01

    Foreign genes can be stably integrated into the genome of a cell by means of DNA-mediated gene transfer techniques, and large quantities of homogenous cells that continuously express these gene products can then be isolated. Such an expression system can be used to study the functional consequences of introducing specific mutations into genes and to study the expressed protein in the absence of cellular components with which it is normally in contact. All four Torpedo acetylcholine receptor (AChR) subunit complementary DNA's were introduced into the genome of a mouse fibroblast cell by DNA-mediated gene transfer. A clonal cell line that stably produced high concentrations of correctly assembled cell surface AChR's and formed proper ligand-gated ion channels was isolated. With this new expression system, recombinant DNA, biochemical, pharmacological, and electrophysiological techniques were combined to study Torpedo AChR's in a single intact system. The physiological and pharmacological profiles of Torpedo AChR's expressed in mouse fibroblast cells differ in some details from those described earlier, and may provide a more accurate reflection of the properties of this receptor in its natural environment.

  2. AMPA receptors undergo channel arrest in the anoxic turtle cortex.

    PubMed

    Pamenter, Matthew Edward; Shin, Damian Seung-Ho; Buck, Leslie Thomas

    2008-02-01

    Without oxygen, all mammals suffer neuronal injury and excitotoxic cell death mediated by overactivation of the glutamatergic N-methyl-D-aspartate receptor (NMDAR). The western painted turtle can survive anoxia for months, and downregulation of NMDAR activity is thought to be neuroprotective during anoxia. NMDAR activity is related to the activity of another glutamate receptor, the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR). AMPAR blockade is neuroprotective against anoxic insult in mammals, but the role of AMPARs in the turtle's anoxia tolerance has not been investigated. To determine whether AMPAR activity changes during hypoxia or anoxia in the turtle cortex, whole cell AMPAR currents, AMPAR-mediated excitatory postsynaptic potentials (EPSPs), and excitatory postsynaptic currents (EPSCs) were measured. The effect of AMPAR blockade on normoxic and anoxic NMDAR currents was also examined. During 60 min of normoxia, evoked peak AMPAR currents and the frequencies and amplitudes of EPSPs and EPSCs did not change. During anoxic perfusion, evoked AMPAR peak currents decreased 59.2 +/- 5.5 and 60.2 +/- 3.5% at 20 and 40 min, respectively. EPSP frequency (EPSP(f)) and amplitude decreased 28.7 +/- 6.4% and 13.2 +/- 1.7%, respectively, and EPSC(f) and amplitude decreased 50.7 +/- 5.1% and 51.3 +/- 4.7%, respectively. In contrast, hypoxic (Po(2) = 5%) AMPAR peak currents were potentiated 56.6 +/- 20.5 and 54.6 +/- 15.8% at 20 and 40 min, respectively. All changes were reversed by reoxygenation. AMPAR currents and EPSPs were abolished by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). In neurons pretreated with CNQX, anoxic NMDAR currents were reversibly depressed by 49.8 +/- 7.9%. These data suggest that AMPARs may undergo channel arrest in the anoxic turtle cortex. PMID:18056983

  3. Successive openings of the same acetylcholine receptor channel are correlated in open time.

    PubMed Central

    Jackson, M B; Wong, B S; Morris, C E; Lecar, H; Christian, C N

    1983-01-01

    Previous analysis of single-channel current records has shown that both the opening and closing transitions of chemically activated ion channels are operated by fast and slow kinetic processes. The fast component in the kinetics of channel opening has been interpreted as the reopening of a channel that has just closed. The fast component in the kinetics of channel closure has many possible explanations and is therefore more difficult to interpret. We can gain insight into the closing process by asking whether the lifetimes of successive openings of an acetylcholine receptor channel are correlated in open-state lifetime. Five kinetic models of channel closure are considered. Two of these models predict uncorrelated open-state lifetimes, one predicts correlated open-state lifetimes, and for two others a range of behavior is possible. Acetylcholine receptor channel data from cultured rat muscle are analyzed to show that open-state lifetimes are correlated, eliminating two models of channel gating. PMID:6301575

  4. Antidepressants and antipsychotic drugs colocalize with 5-HT3 receptors in raft-like domains.

    PubMed

    Eisensamer, Brigitte; Uhr, Manfred; Meyr, Sabrina; Gimpl, Gerald; Deiml, Tobias; Rammes, Gerhard; Lambert, Jeremy J; Zieglgänsberger, Walter; Holsboer, Florian; Rupprecht, Rainer

    2005-11-01

    Despite different chemical structure and pharmacodynamic signaling pathways, a variety of antidepressants and antipsychotics inhibit ion fluxes through 5-HT3 receptors in a noncompetitive manner with the exception of the known competitive antagonists mirtazapine and clozapine. To further investigate the mechanisms underlying the noncompetitive inhibition of the serotonin-evoked cation current, we quantified the concentrations of different types of antidepressants and antipsychotics in fractions of sucrose flotation gradients isolated from HEK293 (human embryonic kidney 293) cells stably transfected with the 5-HT3A receptor and of N1E-115 neuroblastoma cells in relation to the localization of the 5-HT3 receptor protein within the cell membrane. Western blots revealed a localization of the 5-HT3 receptor protein exclusively in the low buoyant density (LBD) fractions compatible with a localization within raft-like domains. Also, the antidepressants desipramine, fluoxetine, and reboxetine and the antipsychotics fluphenazine, haloperidol, and clozapine were markedly enriched in LBD fractions, whereas no accumulation occurs for mirtazapine, carbamazepine, moclobemide, and risperidone. The concentrations of psychopharmacological drugs within LBD fractions was strongly associated with their inhibitory potency against serotonin-induced cation currents. The noncompetitive antagonism of antidepressants at the 5-HT3 receptor was not conferred by an enhancement of receptor internalization as shown by immunofluorescence studies, assessment of receptor density in clathrin-coated vesicles, and electrophysiological recordings after coexpression of a dominant-negative mutant of dynamin I, which inhibits receptor internalization. In conclusion, enrichment of antidepressants and antipsychotics in raft-like domains within the cell membrane appears to be crucial for their antagonistic effects at ligand-gated ion channels such as 5-HT3 receptors. PMID:16267227

  5. Transient Receptor Potential Canonical 1 (TRPC1) Channels as Regulators of Sphingolipid and VEGF Receptor Expression

    PubMed Central

    Asghar, Muhammad Yasir; Magnusson, Melissa; Kemppainen, Kati; Sukumaran, Pramod; Löf, Christoffer; Pulli, Ilari; Kalhori, Veronica; Törnquist, Kid

    2015-01-01

    The identity of calcium channels in the thyroid is unclear. In human follicular thyroid ML-1 cancer cells, sphingolipid sphingosine 1-phosphate (S1P), through S1P receptors 1 and 3 (S1P1/S1P3), and VEGF receptor 2 (VEGFR2) stimulates migration. We show that human thyroid cells express several forms of transient receptor potential canonical (TRPC) channels, including TRPC1. In TRPC1 knockdown (TRPC1-KD) ML-1 cells, the basal and S1P-evoked invasion and migration was attenuated. Furthermore, the expression of S1P3 and VEGFR2 was significantly down-regulated. Transfecting wild-type ML-1 cells with a nonconducting TRPC1 mutant decreased S1P3 and VEGFR2 expression. In TRPC1-KD cells, receptor-operated calcium entry was decreased. To investigate whether the decreased receptor expression was due to attenuated calcium entry, cells were incubated with the calcium chelator BAPTA-AM (1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid). In these cells, and in cells where calmodulin and calmodulin-dependent kinase were blocked pharmacologically, S1P3 and VEGFR2 expression was decreased. In TRPC1-KD cells, both hypoxia-inducible factor 1α expression and the secretion and activity of MMP2 and MMP9 were attenuated, and proliferation was decreased in TRPC1-KD cells. This was due to a prolonged G1 phase of the cell cycle, a significant increase in the expression of the cyclin-dependent kinase inhibitors p21 and p27, and a decrease in the expression of cyclin D2, cyclin D3, and CDK6. Transfecting TRPC1 to TRPC1-KD cells rescued receptor expression, migration, and proliferation. Thus, the expression of S1P3 and VEGFR2 is mediated by a calcium-dependent mechanism. TRPC1 has a crucial role in this process. This regulation is important for the invasion, migration, and proliferation of thyroid cancer cells. PMID:25971967

  6. Intracellular calcium channels: inositol-1,4,5-trisphosphate receptors

    PubMed Central

    Fedorenko, Olena A.; Popugaeva, Elena; Enomoto, Masahiro; Stathopulos, Peter B.; Ikura, Mitsuhiko; Bezprozvanny, Ilya

    2014-01-01

    The inositol-1,4,5-trisphosphate receptors (InsP3Rs) are the major intracellular Ca2+-release channels in cells. Activity of InsP3Rs is essential for elementary and global Ca2+ events in the cell. There are three InsP3Rs isoforms that are present in mammalian cells. In this review review we will focus primarily on InsP3R type 1. The InsP3R1 is a predominant isoform in neurons and it is most extensively studied isoform. Combination of biophysical and structural methods revealed key mechanisms of InsP3R function and modulation. Cell biological and biochemical studies lead to identification of a large number of InsP3R-binding proteins. InsP3Rs are involved in the regulation of numerous physiological processes, including learning and memory, proliferation, differentiation, development and cell death. Malfunction of InsP3R1 play a role in a number of neurodegenerative disorders and other disease states. InsP3Rs represent a potentially valuable drug target for treatment of these disorders and for modulating activity of neurons and other cells. Future studies will provide better understanding of physiological functions of InsP3Rs in health and disease. PMID:24300389

  7. G-protein mediates voltage regulation of agonist binding to muscarinic receptors: effects on receptor-Na/sup +/ channel interaction

    SciTech Connect

    Cohen-Armon, M.; Garty, H.; Sokolovsky, M.

    1988-01-12

    The authors previous experiments in membranes prepared from rat heart and brain led them to suggest that the binding of agonist to the muscarinic receptors and to the Na/sup +/ channels is a coupled event mediated by guanine nucleotide binding protein(s) (G-protein(s)). These in vitro findings prompted us to employ synaptoneurosomes from brain stem tissue to examine (i) the binding properties of (/sup 3/H) acetylcholine at resting potential and under depolarization conditions in the absence and presence of pertussis toxin; (ii) the binding of (/sup 3/H)batrachotoxin to Na/sup +/ channel(s) in the presence of the muscarinic agonists; and (iii) muscarinically induced /sup 22/Na/sup +/ uptake in the presence and absence of tetrodotoxin, which blocks Na/sup +/ channels. The findings indicate that agonist binding to muscarinic receptors is voltage dependent, that this process is mediated by G-protein(s), and that muscarinic agonists induce opening of Na/sup +/channels. The latter process persists even after pertussis toxin treatment, indicating that it is not likely to be mediated by pertussis toxin sensitive G-protein(s). The system with its three interacting components-receptor, G-protein, and Na/sup +/ channel-is such that at resting potential the muscarinic receptor induces opening of Na/sup +/ channels; this property may provide a possible physiological mechanism for the depolarization stimulus necessary for autoexcitation or repetitive firing in heart or brain tissues.

  8. The N-terminal domain of GluR6-subtype glutamate receptor ion channels

    SciTech Connect

    Kumar, Janesh; Schuck, Peter; Jin, Rongsheng; Mayer, Mark L.

    2009-09-25

    The amino-terminal domain (ATD) of glutamate receptor ion channels, which controls their selective assembly into AMPA, kainate and NMDA receptor subtypes, is also the site of action of NMDA receptor allosteric modulators. Here we report the crystal structure of the ATD from the kainate receptor GluR6. The ATD forms dimers in solution at micromolar protein concentrations and crystallizes as a dimer. Unexpectedly, each subunit adopts an intermediate extent of domain closure compared to the apo and ligand-bound complexes of LIVBP and G protein-coupled glutamate receptors (mGluRs), and the dimer assembly has a markedly different conformation from that found in mGluRs. This conformation is stabilized by contacts between large hydrophobic patches in the R2 domain that are absent in NMDA receptors, suggesting that the ATDs of individual glutamate receptor ion channels have evolved into functionally distinct families.

  9. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors

    NASA Astrophysics Data System (ADS)

    Zhou, Ming; Morais-Cabral, João H.; Mann, Sabine; MacKinnon, Roderick

    2001-06-01

    Many voltage-dependent K+ channels open when the membrane is depolarized and then rapidly close by a process called inactivation. Neurons use inactivating K+ channels to modulate their firing frequency. In Shaker-type K+ channels, the inactivation gate, which is responsible for the closing of the channel, is formed by the channel's cytoplasmic amino terminus. Here we show that the central cavity and inner pore of the K+ channel form the receptor site for both the inactivation gate and small-molecule inhibitors. We propose that inactivation occurs by a sequential reaction in which the gate binds initially to the cytoplasmic channel surface and then enters the pore as an extended peptide. This mechanism accounts for the functional properties of K+ channel inactivation and indicates that the cavity may be the site of action for certain drugs that alter cation channel function.

  10. Patch-recorded single-channel currents of the purified and reconstituted Torpedo acetylcholine receptor.

    PubMed Central

    Tank, D W; Huganir, R L; Greengard, P; Webb, W W

    1983-01-01

    Small unilamellar vesicles containing purified and reconstituted nicotinic acetylcholine receptors from Torpedo electroplax have been fused by a simple freeze-thaw procedure to form large liposomes. Giga-seal patch-recording techniques were used to form isolated patches of liposome-membrane and to measure single-channel properties of the reconstituted receptor-ion channel complex. The observed properties are quantitatively similar to those reported for vertebrate muscle nicotinic acetylcholine receptor species recorded in situ. The results demonstrate that the pentameric complex consisting of the alpha 2 beta gamma delta subunits is fully functional. The methods used in these experiments should be useful in studying the effects of chemical alterations on the properties of acetylcholine receptor channels as well as other types of purified and reconstituted ion channels. PMID:6308673

  11. A Transient Receptor Potential Ion Channel in Chlamydomonas Shares Key Features with Sensory Transduction-Associated TRP Channels in Mammals

    PubMed Central

    Arias-Darraz, Luis; Cabezas, Deny; Colenso, Charlotte K.; Alegría-Arcos, Melissa; Bravo-Moraga, Felipe; Varas-Concha, Ignacio; Almonacid, Daniel E.; Madrid, Rodolfo; Brauchi, Sebastian

    2015-01-01

    Sensory modalities are essential for navigating through an ever-changing environment. From insects to mammals, transient receptor potential (TRP) channels are known mediators for cellular sensing. Chlamydomonas reinhardtii is a motile single-celled freshwater green alga that is guided by photosensory, mechanosensory, and chemosensory cues. In this type of alga, sensory input is first detected by membrane receptors located in the cell body and then transduced to the beating cilia by membrane depolarization. Although TRP channels seem to be absent in plants, C. reinhardtii possesses genomic sequences encoding TRP proteins. Here, we describe the cloning and characterization of a C. reinhardtii version of a TRP channel sharing key features present in mammalian TRP channels associated with sensory transduction. In silico sequence-structure analysis unveiled the modular design of TRP channels, and electrophysiological experiments conducted on Human Embryonic Kidney-293T cells expressing the Cr-TRP1 clone showed that many of the core functional features of metazoan TRP channels are present in Cr-TRP1, suggesting that basic TRP channel gating characteristics evolved early in the history of eukaryotes. PMID:25595824

  12. Structure-Driven Pharmacology of Transient Receptor Potential Channel Vanilloid 1.

    PubMed

    Díaz-Franulic, Ignacio; Caceres-Molina, Javier; Sepulveda, Romina V; Gonzalez-Nilo, Fernando; Latorre, Ramon

    2016-09-01

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal receptor that mediates the flux of cations across the membrane in response to several stimuli, including heat, voltage, and ligands. The best known agonist of TRPV1 channels is capsaicin, the pungent component of "hot" chili peppers. In addition, peptides found in the venom of poisonous animals, along with the lipids phosphatidylinositol 4,5-biphosphate, lysophosphatidic acid, and cholesterol, bind to TRPV1 with high affinity to modulate channel gating. Here, we discuss the functional evidence regarding ligand-dependent activation of TRPV1 channels in light of structural data recently obtained by cryoelectron microscopy. This review focuses on the mechanistic insights into ligand binding and allosteric gating of TRPV1 channels and the relevance of accurate polymodal receptor biophysical characterization for drug design in novel pain therapies. PMID:27335334

  13. Inhibition of mechanosensitivity in visceral primary afferents by GABAB receptors involves calcium and potassium channels.

    PubMed

    Page, A J; O'Donnell, T A; Blackshaw, L A

    2006-01-01

    GABA(B) receptors inhibit mechanosensitivity of visceral afferents. This is associated with reduced triggering of events that lead to gastro-esophageal reflux, with important therapeutic consequences. In other neuronal systems, GABA(B) receptor activation may be linked via G-proteins to reduced N-type Ca(2+) channel opening, increased inward rectifier K(+) channel opening, plus effects on a number of intracellular messengers. Here we aimed to determine the role of Ca(2+) and K(+) channels in the inhibition of vagal afferent mechanoreceptor function by the GABA(B) receptor agonist baclofen. The responses of three types of ferret gastro-esophageal vagal afferents (mucosal, tension and tension mucosal receptors) to graded mechanical stimuli were investigated in vitro. The effects of baclofen (200 microM) alone on these responses were quantified, and the effects of baclofen in the presence of the G-protein-coupled inward rectifier potassium channel blocker Rb(+) (4.7 mM) and/or the N-type calcium channel blocker omega-conotoxin GVIA (0.1 microM). Baclofen inhibition of mucosal receptor mechanosensitivity was abolished by both blockers. Its inhibitory effect on tension mucosal receptors was partly reduced by both. The inhibitory effect of baclofen on tension receptors was unaffected. The data indicate that the inhibitory action of GABA(B) receptors is mediated via different pathways in mucosal, tension and tension mucosal receptors via mechanisms involving both N-type Ca(2+) channels and inwardly rectifying K(+) channels and others. PMID:16289839

  14. Pharmacology of the capsaicin receptor, transient receptor potential vanilloid type-1 ion channel.

    PubMed

    Nagy, Istvan; Friston, Dominic; Valente, Jojo Sousa; Torres Perez, Jose Vicente; Andreou, Anna P

    2014-01-01

    The capsaicin receptor, transient receptor potential vanilloid type 1 ion channel (TRPV1), has been identified as a polymodal transducer molecule on a sub-set of primary sensory neurons which responds to various stimuli including noxious heat (> -42 degrees C), protons and vanilloids such as capsaicin, the hot ingredient of chilli peppers. Subsequently, TRPV1 has been found indispensable for the development of burning pain and reflex hyperactivity associated with inflammation of peripheral tissues and viscera, respectively. Therefore, TRPV1 is regarded as a major target for the development of novel agents for the control of pain and visceral hyperreflexia in inflammatory conditions. Initial efforts to introduce agents acting on TRPV1 into clinics have been hampered by unexpected side-effects due to wider than expected expression in various tissues, as well as by the complex pharmacology, of TRPV1. However, it is believed that better understanding of the pharmacological properties of TRPV1 and specific targeting of tissues may eventually lead to the development of clinically useful agents. In order to assist better understanding of TRPV1 pharmacology, here we are giving a comprehensive account on the activation and inactivation mechanisms and the structure-function relationship of TRPV1. PMID:24941664

  15. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    SciTech Connect

    Hattori, Motoyuki; Gouaux, Eric

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  16. Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule.

    PubMed

    Vyklicky, Vojtech; Krausova, Barbora; Cerny, Jiri; Balik, Ales; Zapotocky, Martin; Novotny, Marian; Lichnerova, Katarina; Smejkalova, Tereza; Kaniakova, Martina; Korinek, Miloslav; Petrovic, Milos; Kacer, Petr; Horak, Martin; Chodounska, Hana; Vyklicky, Ladislav

    2015-01-01

    N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor's ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system. PMID:26086919

  17. The Role of Canonical Transient Receptor Potential Channels in Seizure and Excitotoxicity

    PubMed Central

    Zheng, Fang; Phelan, Kevin D.

    2014-01-01

    Canonical transient receptor potential (TRPC) channels are a family of polymodal cation channels with some degree of Ca2+ permeability. Although initially thought to be channels mediating store-operated Ca2+ influx, TRPC channels can be activated by stimulation of Gq-coupled G-protein coupled receptors, or by an increase in intracellular free Ca2+ concentration. Thus, activation of TRPC channels could be a common downstream event of many signaling pathways that contribute to seizure and excitotoxicity, such as N-methyl-D-aspartate (NMDA) receptor-mediated Ca2+ influx, or metabotropic glutamate receptor activation. Recent studies with genetic ablation of various TRPC family members have demonstrated that TRPC channels, in particular heteromeric TRPC1/4 channels and homomeric TRPC5 channels, play a critical role in both pilocarpine-induced acute seizures and neuronal cell death. However, exact underlying mechanisms remain to be fully elucidated, and selective TRPC modulators and antibodies with better specificity are urgently needed for future research. PMID:24722470

  18. Channel catfish, Ictalurus punctatus, chemokine receptor CXCR4 cDNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemokine receptor CXCR4, a member of the G protein-coupled receptor superfamily, binds selectively CXCL12. This protein plays many important roles in immunological as well as pathophysiological functions. In this communication, we identified and characterized the channel catfish CXCR4 transcript....

  19. Mitochondrial Ryanodine Receptors and Other Mitochondrial Ca2+ Permeable Channels

    PubMed Central

    Ryu, Shin-Young; Beutner, Gisela; Dirksen, Robert T.; Kinnally, Kathleen W.; Sheu, Shey-Shing

    2010-01-01

    Ca2+ channels that underlie mitochondrial Ca2+ transport first reported decades ago have now just recently been precisely characterized electrophysiologically. Numerous data indicate that mitochondrial Ca2+ uptake via these channels regulates multiple intracellular processes by shaping cytosolic and mitochondrial Ca2+ transients, as well as altering the cellular metabolic and redox state. On the other hand, mitochondrial Ca2+ overload also initiates a cascade of events that leads to cell death. Thus, characterization of mitochondrial Ca2+ channels is central to a comprehensive understanding of cell signaling. Here, we discuss recent progresses in the biophysical and electrophysiological characterization of several distinct mitochondrial Ca2+ channels. PMID:20096690

  20. Ion channels and receptor as targets for the control of parasitic nematodes

    PubMed Central

    Wolstenholme, Adrian J.

    2011-01-01

    Many of the anthelmintic drugs in use today act on the nematode nervous system. Ion channel targets have some obvious advantages. They tend to act quickly, which means that they will clear many infections rapidly. They produce very obvious effects on the worms, typically paralyzing them, and these effects are suitable for use in rapid and high-throughput assays. Many of the ion channels and enzymes targeted can also be incorporated into such assays. The macrocyclic lactones bind to an allosteric site on glutamate-gated chloride channels, either directly activating the channel or enhancing the effect of the normal agonist, glutamate. Many old and new anthelmintics, including tribendimidine and the amino-acetonitrile derivatives, act as agonists at nicotinic acetylcholine receptors; derquantel is an antagonist at these receptors. Nematodes express many different types of nicotinic receptor and this diversity means that they are likely to remain important targets for the foreseeable future. Emodepside may have multiple effects, affecting both a potassium channel and a pre-synaptic G protein-coupled receptor; although few other current drugs act at such targets, this example indicates that they may be more important in the future. The nematode nervous system contains many other ion channels and receptors that have not so far been exploited in worm control but which should be explored in the development of effective new compounds. PMID:24533259

  1. The opioid peptide dynorphin directly blocks NMDA receptor channels in the rat.

    PubMed Central

    Chen, L; Gu, Y; Huang, L Y

    1995-01-01

    1. The actions of dynorphin on N-methyl-D-aspartate (NMDA) responses were examined in acutely dissociated trigeminal neurons in rat. Whole-cell and single-channel currents were recorded using the patch clamp technique. 2. Dynorphins reduced NMDA-activated currents (INMDA). The IC50 was 0.25 microM for dynorphin (1-32), 1.65 microM for dynorphin (1-17) and 1.8 microM for dynorphin (1-13). 3. The blocking action of dynorphin is voltage independent. 4. The inhibitory action of dynorphin cannot be blocked by high concentration of the non-selective opioid receptor antagonist naloxone, nor by the specific kappa-opioid receptor antagonist nor-Binaltorphimine (nor-BNI). 5. Single-channel analyses indicate that dynorphin reduces the fraction of time the channel is open without altering the channel conductance. 6. We propose that dynorphin acts directly on NMDA receptors. PMID:7537820

  2. Peptide fragments of the dihydropyridine receptor can modulate cardiac ryanodine receptor channel activity and sarcoplasmic reticulum Ca2+ release.

    PubMed Central

    Dulhunty, Angela F; Curtis, Suzanne M; Cengia, Louise; Sakowska, Magdalena; Casarotto, Marco G

    2004-01-01

    We show that peptide fragments of the dihydropyridine receptor II-III loop alter cardiac RyR (ryanodine receptor) channel activity in a cytoplasmic Ca2+-dependent manner. The peptides were AC (Thr-793-Ala-812 of the cardiac dihydropyridine receptor), AS (Thr-671-Leu-690 of the skeletal dihydropyridine receptor), and a modified AS peptide [AS(D-R18)], with an extended helical structure. The peptides added to the cytoplasmic side of channels in lipid bilayers at > or = 10 nM activated channels when the cytoplasmic [Ca2+] was 100 nM, but either inhibited or did not affect channel activity when the cytoplasmic [Ca2+] was 10 or 100 microM. Both activation and inhibition were independent of bilayer potential. Activation by AS, but not by AC or AS(D-R18), was reduced at peptide concentrations >1 mM in a voltage-dependent manner (at +40 mV). In control experiments, channels were not activated by the scrambled AS sequence (ASS) or skeletal II-III loop peptide (NB). Resting Ca2+ release from cardiac sarcoplasmic reticulum was not altered by peptide AC, but Ca2+-induced Ca2+ release was depressed. Resting and Ca2+-induced Ca2+ release were enhanced by both the native and modified AS peptides. NMR revealed (i) that the structure of peptide AS(D-R18) is not influenced by [Ca2+] and (ii) that peptide AC adopts a helical structure, particularly in the region containing positively charged residues. This is the first report of specific functional interactions between dihydropyridine receptor A region peptides and cardiac RyR ion channels in lipid bilayers. PMID:14678014

  3. Odorant receptors activated by amino acids in sensory neurons of the channel catfish Ictalurus punctatus.

    PubMed

    Ivanova, T T; Caprio, J

    1993-12-01

    Odorant receptors activated by amino acids were investigated with patch-clamp techniques in olfactory receptor neurons of the channel catfish, Ictalurus punctatus. The L-isomers of alanine, norvaline, arginine, and glutamate, known to act predominantly on different olfactory receptor sites, activated nondesensitizing inward currents with amplitudes of -2.5 to -280 pA in olfactory neurons voltage-clamped at membrane potentials of -72 or -82 mV. Different amino acids were shown to induce responses in the same sensory neurons; however, the amplitude and the kinetics of the observed whole cell currents differed among the stimuli and may therefore reflect activation of different amino acid receptor types or combinations of receptor types in these cells. Amino acid-induced currents appeared to have diverse voltage dependence and could also be classified according to the amplitude of the spontaneous channel fluctuations underlying the macroscopic currents. A mean single-channel conductance (gamma) of 360 fS was estimated from small noise whole-cell currents evoked by arginine within the same olfactory neuron in which a mean gamma value of 23.6 pS was estimated from 'large noise' response to norvaline. Quiescent olfactory neurons fired bursts of action potentials in response to either amino acid stimulation or application of 8-Br-cyclic GMP (100 microM), and voltage-gated channels underlying generation of action potentials were similar in these neurons. However, in whole-cell voltage-clamp, 8-Br-cyclic GMP evoked large rectangular current pulses, and single-channel conductances of 275, 220, and 110 pS were obtained from the discrete current levels. These results suggest that in addition to the cyclic nucleotide-gated transduction channels, olfactory neurons of the channel catfish possess a variety of odor receptors coupled to different types of transduction channels. PMID:8133240

  4. Transient receptor potential (TRP) channels, vascular tone and autoregulation of cerebral blood flow.

    PubMed

    Brayden, Joseph E; Earley, Scott; Nelson, Mark T; Reading, Stacey

    2008-09-01

    Members of the transient receptor potential (TRP) channel superfamily are present in vascular smooth muscle cells and play important roles in the regulation of vascular contractility. The TRPC3 and TRPC6 channels are activated by stimulation of several excitatory receptors in vascular smooth muscle cells. Activation of these channels leads to myocyte depolarization, which stimulates Ca2+ entry via voltage-dependent Ca2+ channels (VDCC), leading to vasoconstriction. The TRPV4 channels in arterial myocytes are activated by epoxyeicosatrienoic acids, and activation of the channels enhances Ca2+ spark and transient Ca2+-sensitive K+ channel activity, thereby hyperpolarizing and relaxing vascular smooth muscle cells. The TRPC6 and TRPM4 channels are activated by mechanical stimulation of cerebral artery myocytes. Subsequent depolarization and activation of VDCC Ca2+ entry is directly linked to the development of myogenic tone in vitro and to autoregulation of cerebral blood flow in vivo. These findings imply a fundamental importance of TRP channels in the regulation of vascular smooth muscle tone and suggest that TRP channels could be important targets for drug therapy under conditions in which vascular contractility is disturbed (e.g. hypertension, stroke, vasospasm). PMID:18215190

  5. Ion channel profile of TRPM8 cold receptors reveals a role of TASK-3 potassium channels in thermosensation.

    PubMed

    Morenilla-Palao, Cruz; Luis, Enoch; Fernández-Peña, Carlos; Quintero, Eva; Weaver, Janelle L; Bayliss, Douglas A; Viana, Félix

    2014-09-11

    Animals sense cold ambient temperatures through the activation of peripheral thermoreceptors that express TRPM8, a cold- and menthol-activated ion channel. These receptors can discriminate a very wide range of temperatures from innocuous to noxious. The molecular mechanism responsible for the variable sensitivity of individual cold receptors to temperature is unclear. To address this question, we performed a detailed ion channel expression analysis of cold-sensitive neurons, combining bacterial artificial chromosome (BAC) transgenesis with a molecular-profiling approach in fluorescence-activated cell sorting (FACS)-purified TRPM8 neurons. We found that TASK-3 leak potassium channels are highly enriched in a subpopulation of these sensory neurons. The thermal threshold of TRPM8 cold neurons is decreased during TASK-3 blockade and in mice lacking TASK-3, and, most importantly, these mice display hypersensitivity to cold. Our results demonstrate a role of TASK-3 channels in thermosensation, showing that a channel-based combinatorial strategy in TRPM8 cold thermoreceptors leads to molecular specialization and functional diversity. PMID:25199828

  6. Cyclic nucleotide-activated channels in carp olfactory receptor cells.

    PubMed

    Kolesnikov, S S; Kosolapov, A V

    1993-07-25

    When applied from the cytoplasmic side, cyclic 3',5'-adenosine and guanosine monophosphates reversibly increased the ion permeability of inside-out patches of carp olfactory neuron plasma membrane. The cAMP (cGMP)-induced permeability via cAMP (cGMP) concentration was fitted by Hill's equation with the exponents of 1.07 +/- 0.15 (1.12 +/- 0.05) and EC50 = 1.3 +/- 0.6 microM (0.9 +/- 0.3 microM). Substitution of NaCl in the bathing solution by chlorides of other alkali metals resulted in a slight shift of reversal potential of the cyclic nucleotide-dependent (CN) current, which indicates a weak selectivity of the channels. Permeability coefficients calculated by Goldman-Hodgkin-Katz's equation corresponded to the following relation: PNa/PK/PLi/PRb/PCs = 1:0.98:0.94:0.70:0.61. Ca2+ and Mg2+ in physiological concentrations blocked the channels activated by cyclic nucleotides (CN-channels). In the absence of divalent cations the conductance of single CN-channels was equal to 51 +/- 9 pS in 100 mM NaCl solution. Channel density did not exceed 1 micron-2. The maximal open state probability of the channel (Po) tended towards 1.0 at a high concentration of cAMP or cGMP. Dichlorobenzamil decreased Po without changing the single CN-channel' conductance. CN-channels exhibited burst activity. Mean open and closed times as well as the burst duration depended on agonist concentration. A kinetic model with four states (an inactivated, a closed and two open ones) is suggested to explain the regularities of CN-channel gating and dose-response relations. PMID:8334139

  7. The role of thermosensitive TRP (transient receptor potential) channels in insulin secretion.

    PubMed

    Uchida, Kunitoshi; Tominaga, Makoto

    2011-01-01

    Insulin secretion from pancreatic β-cells is the only efficient means to decrease blood glucose concentrations. Glucose is the principal stimulator of insulin secretion with the ATP-sensitive K+ channel-voltage-gated Ca2+ channel-mediated pathway being the primary one involved in glucose-stimulated insulin secretion. Recently, several reports demonstrated that some transient receptor potential (TRP) channels are expressed in pancreatic β-cells and contribute to pancreatic β-cell functions. Interestingly, six of them (TRPM2, TRPM4, TRPM5, TRPV1, TRPV2 and TRPV4) are thermosensitive TRP channels. Thermosensitive TRP channels in pancreatic β-cells can function as multimodal receptors and cause Ca2+ influx and membrane depolarization at physiological body temperature. TRPM channels (TRPM2, TRPM4 and TRPM5) control insulin secretion levels by sensing intracellular Ca2+ increase, NAD metabolites, or hormone receptor activation. TRPV2 is involved not only in insulin secretion but also cell proliferation, and is regulated by the autocrine effects of insulin. TRPV1 expressed in sensory neurons is involved in β-cell stress and islet inflammation by controlling neuropeptide release levels. It is thus clear that thermosensitive TRP channels play important roles in pancreatic β-cell functions, and future analyses of TRP channel function will lead to better understanding of the complicated mechanisms involved in insulin secretion and diabetes pathogenesis. PMID:21785227

  8. Role of transient receptor potential and acid-sensing ion channels in peripheral inflammatory pain.

    PubMed

    White, John P M; Cibelli, Mario; Rei Fidalgo, Antonio; Paule, Cleoper C; Noormohamed, Faruq; Urban, Laszlo; Maze, Mervyn; Nagy, Istvan

    2010-03-01

    Pain originating in inflammation is the most common pathologic pain condition encountered by the anesthesiologist whether in the context of surgery, its aftermath, or in the practice of pain medicine. Inflammatory agents, released as components of the body's response to peripheral tissue damage or disease, are now known to be collectively capable of activating transient receptor potential vanilloid type 1, transient receptor potential vanilloid type 4, transient receptor potential ankyrin type 1, and acid-sensing ion channels, whereas individual agents may activate only certain of these ion channels. These ionotropic receptors serve many physiologic functions-as, indeed, do many of the inflammagens released in the inflammatory process. Here, we introduce the reader to the role of these ionotropic receptors in mediating peripheral pain in response to inflammation. PMID:20179512

  9. Liposome reconstitution and modulation of recombinant N-methyl-d-aspartate receptor channels by membrane stretch

    PubMed Central

    Kloda, Anna; Lua, Linda; Hall, Rhonda; Adams, David J.; Martinac, Boris

    2007-01-01

    In this study, the heteromeric N-methyl-d-aspartate (NMDA) receptor channels composed of NR1a and NR2A subunits were expressed, purified, reconstituted into liposomes, and characterized by using the patch clamp technique. The protein exhibited the expected electrophysiological profile of activation by glutamate and glycine and internal Mg2+ blockade. We demonstrated that the mechanical energy transmitted to membrane-bound NMDA receptor channels can be exerted directly by tension developed in the lipid bilayer. Membrane stretch and application of arachidonic acid potentiated currents through NMDA receptor channels in the presence of intracellular Mg2+. The correlation of membrane tension induced by either mechanical or chemical stimuli with the physiological Mg2+ block of the channel suggests that the synaptic transmission can be altered if NMDA receptor complexes experience local changes in bilayer thickness caused by dynamic targeting to lipid microdomains, electrocompression, or chemical modification of the cell membranes. The ability to study gating properties of NMDA receptor channels in artificial bilayers should prove useful in further study of structure–function relationships and facilitate discoveries of new therapeutic agents for treatment of glutamate-mediated excitotoxicity or analgesic therapies. PMID:17242368

  10. The Role of Transient Receptor Potential Cation Channels in Ca2+ Signaling

    PubMed Central

    Gees, Maarten; Colsoul, Barbara; Nilius, Bernd

    2010-01-01

    The 28 mammalian members of the super-family of transient receptor potential (TRP) channels are cation channels, mostly permeable to both monovalent and divalent cations, and can be subdivided into six main subfamilies: the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and the TRPA (ankyrin) groups. TRP channels are widely expressed in a large number of different tissues and cell types, and their biological roles appear to be equally diverse. In general, considered as polymodal cell sensors, they play a much more diverse role than anticipated. Functionally, TRP channels, when activated, cause cell depolarization, which may trigger a plethora of voltage-dependent ion channels. Upon stimulation, Ca2+ permeable TRP channels generate changes in the intracellular Ca2+ concentration, [Ca2+]i, by Ca2+ entry via the plasma membrane. However, more and more evidence is arising that TRP channels are also located in intracellular organelles and serve as intracellular Ca2+ release channels. This review focuses on three major tasks of TRP channels: (1) the function of TRP channels as Ca2+ entry channels; (2) the electrogenic actions of TRPs; and (3) TRPs as Ca2+ release channels in intracellular organelles. PMID:20861159

  11. Ionotropic receptors and ion channels in ischemic neuronal death and dysfunction

    PubMed Central

    Weilinger, Nicholas L; Maslieieva, Valentyna; Bialecki, Jennifer; Sridharan, Sarup S; Tang, Peter L; Thompson, Roger J

    2013-01-01

    Loss of energy supply to neurons during stroke induces a rapid loss of membrane potential that is called the anoxic depolarization. Anoxic depolarizations result in tremendous physiological stress on the neurons because of the dysregulation of ionic fluxes and the loss of ATP to drive ion pumps that maintain electrochemical gradients. In this review, we present an overview of some of the ionotropic receptors and ion channels that are thought to contribute to the anoxic depolarization of neurons and subsequently, to cell death. The ionotropic receptors for glutamate and ATP that function as ligand-gated cation channels are critical in the death and dysfunction of neurons. Interestingly, two of these receptors (P2X7 and NMDAR) have been shown to couple to the pannexin-1 (Panx1) ion channel. We also discuss the important roles of transient receptor potential (TRP) channels and acid-sensing ion channels (ASICs) in responses to ischemia. The central challenge that emerges from our current understanding of the anoxic depolarization is the need to elucidate the mechanistic and temporal interrelations of these ion channels to fully appreciate their impact on neurons during stroke. PMID:22864302

  12. LE135, a retinoid acid receptor antagonist, produces pain through direct activation of TRP channels

    PubMed Central

    Yin, Shijin; Luo, Jialie; Qian, Aihua; Yu, Weihua; Hu, Hongzhen

    2014-01-01

    Background and PurposeRetinoids, through their activation of retinoic acid receptors (RARs) and retinoid X receptors, regulate diverse cellular processes, and pharmacological intervention in their actions has been successful in the treatment of skin disorders and cancers. Despite the many beneficial effects, administration of retinoids causes irritating side effects with unknown mechanisms. Here, we demonstrate that LE135 [4-(7,8,9,10-tetrahydro-5,7,7,10,10-pentamethyl-5H-benzo[e]naphtho[2,3-b][1,4]diazepin-13-yl)benzoic acid], a selective antagonist of RARβ, is a potent activator of the capsaicin (TRPV1) and wasabi (TRPA1) receptors, two critical pain-initiating cation channels. Experimental ApproachWe performed to investigate the excitatory effects of LE135 on TRPV1 and TRPA1 channels expressed in HEK293T cells and in dorsal root ganglia neurons with calcium imaging and patch-clamp recordings. We also used site-directed mutagenesis of the channels to determine the structural basis of LE135-induced activation of TRPV1 and TRPA1 channels and behavioural testing to examine if pharmacological inhibition and genetic deletion of the channels affected LE135-evoked pain-related behaviours. Key ResultsLE135 activated both the capsaicin receptor (TRPV1) and the allyl isothiocyanate receptor (TRPA1) heterologously expressed in HEK293T cells and endogenously expressed by sensory nociceptors. Mutations disrupting the capsaicin-binding site attenuated LE135 activation of TRPV1 channels and a single mutation (K170R) eliminated TRPA1 activity evoked by LE135. Intraplantar injection of LE135 evoked pain-related behaviours. Both TRPV1 and TRPA1 channels were involved in LE135-elicited pain-related responses, as shown by pharmacological and genetic ablation studies. Conclusions and ImplicationsThis blocker of retinoid acid signalling also exerted non-genomic effects through activating the pain-initiating TRPV1 and TRPA1 channels. PMID:24308840

  13. Vector-averaged gravity does not alter acetylcholine receptor single channel properties

    NASA Technical Reports Server (NTRS)

    Reitstetter, R.; Gruener, R.

    1994-01-01

    To examine the physiological sensitivity of membrane receptors to altered gravity, we examined the single channel properties of the acetylcholine receptor (AChR), in co-cultures of Xenopus myocytes and neurons, to vector-averaged gravity in the clinostat. This experimental paradigm produces an environment in which, from the cell's perspective, the gravitational vector is "nulled" by continuous averaging. In that respect, the clinostat simulates one aspect of space microgravity where the gravity force is greatly reduced. After clinorotation, the AChR channel mean open-time and conductance were statistically not different from control values but showed a rotation-dependent trend that suggests a process of cellular adaptation to clinorotation. These findings therefore suggest that the ACHR channel function may not be affected in the microgravity of space despite changes in the receptor's cellular organization.

  14. Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C.

    PubMed

    Venkatachalam, Kartik; Zheng, Fei; Gill, Donald L

    2003-08-01

    The mechanism of receptor-induced activation of the ubiquitously expressed family of mammalian canonical transient receptor potential (TRPC) channels has been the focus of intense study. Primarily responding to phospholipase C (PLC)-coupled receptors, the channels are reported to receive modulatory input from diacylglycerol, endoplasmic reticulum inositol 1,4,5-trisphosphate receptors and Ca2+ stores. Analysis of TRPC5 channels transfected within DT40 B cells and deletion mutants thereof revealed efficient activation in response to PLC-beta or PLC-gamma activation, which was independent of inositol 1,4,5-trisphoshate receptors or the content of stores. In both HEK293 cells and DT40 cells, TRPC5 and TRPC3 channel responses to PLC activation were highly analogous, but only TRPC3 and not TRPC5 channels responded to the addition of the permeant diacylglycerol (DAG) analogue, 1-oleoyl-2-acetyl-sn-glycerol (OAG). However, OAG application or elevated endogenous DAG, resulting from either DAG lipase or DAG kinase inhibition, completely prevented TRPC5 or TRPC4 activation. This inhibitory action of DAG on TRPC5 and TRPC4 channels was clearly mediated by protein kinase C (PKC), in distinction to the stimulatory action of DAG on TRPC3, which is established to be PKC-independent. PKC activation totally blocked TRPC3 channel activation in response to OAG, and the activation was restored by PKC-blockade. PKC inhibition resulted in decreased TRPC3 channel deactivation. Store-operated Ca2+ entry in response to PLC-coupled receptor activation was substantially reduced by OAG or DAG-lipase inhibition in a PKC-dependent manner. However, store-operated Ca2+ entry in response to the pump blocker, thapsigargin, was unaffected by PKC. The results reveal that each TRPC subtype is strongly inhibited by DAG-induced PKC activation, reflecting a likely universal feedback control on TRPCs, and that DAG-mediated PKC-independent activation of TRPC channels is highly subtype-specific. The

  15. A role of the sulfonylurea receptor 1 in endocytic trafficking of ATP-sensitive potassium channels

    PubMed Central

    Bruederle, Cathrin E.; Gay, Joel; Shyng, Show-Ling

    2011-01-01

    The ATP-sensitive potassium (KATP) channel consisting of sulfonylurea receptor 1 (SUR1) and inward rectifier potassium channel 6.2 (Kir6.2) has a well-established role in insulin secretion. Mutations in either subunit can lead to disease due to aberrant channel gating, altered channel density at the cell surface or a combination of both. Endocytic trafficking of channels at the plasma membrane is one way to influence surface channel numbers. It has been previously reported that channel endocytosis is dependent on a tyrosine-based motif in Kir6.2 while SUR1 alone is unable to internalize. In this study, we followed endocytic trafficking of surface channels in real time by live cell imaging of channel subunits tagged with an extracellular minimal α-bungarotoxin binding peptide labeled with a fluorescent dye. We demonstrate that SUR1 undergoes endocytosis independent of Kir6.2. Moreover, mutations in the putative endocytosis motif of Kir6.2, Y330C, Y330A and F333I are unable to prevent channel endocytosis. These findings challenge the notion that Kir6.2 bears the sole endocytic signal for KATP channels and support a role of SUR1 in this trafficking process. PMID:21649805

  16. Transient Receptor Potential Channel Polymorphisms Are Associated with the Somatosensory Function in Neuropathic Pain Patients

    PubMed Central

    Baron, Ralf; Maier, Christoph; Tölle, Thomas R.; Treede, Rolf-Detlef; Berthele, Achim; Faltraco, Frank; Flor, Herta; Gierthmühlen, Janne; Haenisch, Sierk; Huge, Volker; Magerl, Walter; Maihöfner, Christian; Richter, Helmut; Rolke, Roman; Scherens, Andrea; Üçeyler, Nurcan; Ufer, Mike; Wasner, Gunnar; Zhu, Jihong; Cascorbi, Ingolf

    2011-01-01

    Transient receptor potential channels are important mediators of thermal and mechanical stimuli and play an important role in neuropathic pain. The contribution of hereditary variants in the genes of transient receptor potential channels to neuropathic pain is unknown. We investigated the frequency of transient receptor potential ankyrin 1, transient receptor potential melastin 8 and transient receptor potential vanilloid 1 single nucleotide polymorphisms and their impact on somatosensory abnormalities in neuropathic pain patients. Within the German Research Network on Neuropathic Pain (Deutscher Forscbungsverbund Neuropathischer Schmerz) 371 neuropathic pain patients were phenotypically characterized using standardized quantitative sensory testing. Pyrosequencing was employed to determine a total of eleven single nucleotide polymorphisms in transient receptor potential channel genes of the neuropathic pain patients and a cohort of 253 German healthy volunteers. Associations of quantitative sensory testing parameters and single nucleotide polymorphisms between and within groups and subgroups, based on sensory phenotypes, were analyzed. Single nucleotide polymorphisms frequencies did not differ between both the cohorts. However, in neuropathic pain patients transient receptor potential ankyrin 1 710G>A (rs920829, E179K) was associated with the presence of paradoxical heat sensation (p = 0.03), and transient receptor potential vanilloid 1 1911A>G (rs8065080, I585V) with cold hypoalgesia (p = 0.0035). Two main subgroups characterized by preserved (1) and impaired (2) sensory function were identified. In subgroup 1 transient receptor potential vanilloid 1 1911A>G led to significantly less heat hyperalgesia, pinprick hyperalgesia and mechanical hypaesthesia (p = 0.006, p = 0.005 and p<0.001) and transient receptor potential vanilloid 1 1103C>G (rs222747, M315I) to cold hypaesthesia (p = 0.002), but there was absence of associations in subgroup 2. In

  17. M2 pore mutations convert the glycine receptor channel from being anion- to cation-selective.

    PubMed Central

    Keramidas, A; Moorhouse, A J; French, C R; Schofield, P R; Barry, P H

    2000-01-01

    Three mutations in the M2 transmembrane domains of the chloride-conducting alpha1 homomeric glycine receptor (P250Delta, A251E, and T265V), which normally mediate fast inhibitory neurotransmission, produced a cation-selective channel with P(Cl)/P(Na), = 0.27 (wild-type P(Cl)/P(Na) = 25), a permeability sequence P(Cs) > P(K) > P(Na) > P(Li), an impermeability to Ca(2+), and a reduced glycine sensitivity. Outside-out patch measurements indicated reversed and accentuated rectification with extremely low mean single channel conductances of 3 pS (inward current) and 11 pS (outward current). The three inverse mutations, to those analyzed in this study, have previously been shown to make the alpha7 acetylcholine receptor channel anion-selective, indicating a common location for determinants of charge selectivity of inhibitory and excitatory ligand-gated ion channels. PMID:10866951

  18. Structural Insights into Divalent Cation Modulations of ATP-Gated P2X Receptor Channels.

    PubMed

    Kasuya, Go; Fujiwara, Yuichiro; Takemoto, Mizuki; Dohmae, Naoshi; Nakada-Nakura, Yoshiko; Ishitani, Ryuichiro; Hattori, Motoyuki; Nureki, Osamu

    2016-02-01

    P2X receptors are trimeric ATP-gated cation channels involved in physiological processes ranging widely from neurotransmission to pain and taste signal transduction. The modulation of the channel gating, including that by divalent cations, contributes to these diverse physiological functions of P2X receptors. Here, we report the crystal structure of an invertebrate P2X receptor from the Gulf Coast tick Amblyomma maculatum in the presence of ATP and Zn(2+) ion, together with electrophysiological and computational analyses. The structure revealed two distinct metal binding sites, M1 and M2, in the extracellular region. The M1 site, located at the trimer interface, is responsible for Zn(2+) potentiation by facilitating the structural change of the extracellular domain for pore opening. In contrast, the M2 site, coupled with the ATP binding site, might contribute to regulation by Mg(2+). Overall, our work provides structural insights into the divalent cation modulations of P2X receptors. PMID:26804916

  19. Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors.

    PubMed

    Wilke, Bettina U; Lindner, Moritz; Greifenberg, Lea; Albus, Alexandra; Kronimus, Yannick; Bünemann, Moritz; Leitner, Michael G; Oliver, Dominik

    2014-01-01

    The two-pore domain potassium (K2P) channels TASK-1 (KCNK3) and TASK-3 (KCNK9) are important determinants of background K(+) conductance and membrane potential. TASK-1/3 activity is regulated by hormones and transmitters that act through G protein-coupled receptors (GPCR) signalling via G proteins of the Gαq/11 subclass. How the receptors inhibit channel activity has remained unclear. Here, we show that TASK-1 and -3 channels are gated by diacylglycerol (DAG). Receptor-initiated inhibition of TASK required the activity of phospholipase C, but neither depletion of the PLC substrate PI(4,5)P2 nor release of the downstream messengers IP3 and Ca(2+). Attenuation of cellular DAG transients by DAG kinase or lipase suppressed receptor-dependent inhibition, showing that the increase in cellular DAG-but not in downstream lipid metabolites-mediates channel inhibition. The findings identify DAG as the signal regulating TASK channels downstream of GPCRs and define a novel role for DAG that directly links cellular DAG dynamics to excitability. PMID:25420509

  20. Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+

    PubMed Central

    Li, Mufeng; Silberberg, Shai D.; Swartz, Kenton J.

    2013-01-01

    The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg2+. Here we investigated the active forms of ATP and found that the action of MgATP2− and ATP4− differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP2− promotes opening with very low efficacy. In contrast, both free ATP and MgATP2− robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg2+ to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP2− and weak regulation by Mg2+. These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP2− and regulation by Mg2+, and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons. PMID:23959888

  1. Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel

    PubMed Central

    Nomura, Yoshiko; Satar, Gul; Hu, Zhaonong; Nauen, Ralf; He, Sheng Yang; Zhorov, Boris S.; Dong, Ke

    2013-01-01

    Pyrethroid insecticides are widely used as one of the most effective control measures in the global fight against agricultural arthropod pests and mosquito-borne diseases, including malaria and dengue. They exert toxic effects by altering the function of voltage-gated sodium channels, which are essential for proper electrical signaling in the nervous system. A major threat to the sustained use of pyrethroids for vector control is the emergence of mosquito resistance to pyrethroids worldwide. Here, we report the successful expression of a sodium channel, AaNav1–1, from Aedes aegypti in Xenopus oocytes, and the functional examination of nine sodium channel mutations that are associated with pyrethroid resistance in various Ae. aegypti and Anopheles gambiae populations around the world. Our analysis shows that five of the nine mutations reduce AaNav1–1 sensitivity to pyrethroids. Computer modeling and further mutational analysis revealed a surprising finding: Although two of the five confirmed mutations map to a previously proposed pyrethroid-receptor site in the house fly sodium channel, the other three mutations are mapped to a second receptor site. Discovery of this second putative receptor site provides a dual-receptor paradigm that could explain much of the molecular mechanisms of pyrethroid action and resistance as well as the high selectivity of pyrethroids on insect vs. mammalian sodium channels. Results from this study could impact future prediction and monitoring of pyrethroid resistance in mosquitoes and other arthropod pests and disease vectors. PMID:23821746

  2. G-protein-coupled receptor regulation of P2X1 receptors does not involve direct channel phosphorylation

    PubMed Central

    2004-01-01

    P2X1 receptors for ATP are ligand-gated cation channels, which mediate smooth muscle contraction, contribute to blood clotting and are co-expressed with a range of GPCRs (G-protein-coupled receptors). Stimulation of Gαq-coupled mGluR1α (metabotropic glutamate receptor 1α), P2Y1 or P2Y2 receptors co-expressed with P2X1 receptors in Xenopus oocytes evoked calcium-activated chloride currents (IClCa) and potentiated subsequent P2X1-receptor-mediated currents by up to 250%. The mGluR1α-receptor-mediated effects were blocked by the phospholipase C inhibitor U-73122. Potentiation was mimicked by treatment with the phor-bol ester PMA. P2X receptors have a conserved intracellular PKC (protein kinase C) site; however, GPCR- and PMA-mediated potentiation was still observed with point mutants in which this site was disrupted. Similarly, the potentiation by GPCRs or PMA was unaffected by chelating the intracellular calcium rise with BAPTA/AM [bis(o-aminophenoxy)ethane-N,N,N′,N′-tetra-acetic acid tetrakis-(acetoxymethyl ester)] or the PKC inhibitors Ro-32-0432 and bisindolylmaleimide I, suggesting that the regulation does not involve a calcium-sensitive form of PKC. However, both GPCR and PMA potentiation were blocked by the kinase inhibitor staurosporine. Potentiation by phorbol esters was recorded in HEK-293 cells expressing P2X1 receptors, and radiolabelling of phosphorylated proteins in these cells demonstrated that P2X1 receptors are basally phosphorylated and that this level of phosphorylation is unaffected by phorbol ester treatment. This demonstrates that P2X1 regulation does not result directly from phosphorylation of the channel, but more likely by a staurosporine-sensitive phosphorylation of an accessory protein in the P2X1 receptor complex and suggests that in vivo fine-tuning of P2X1 receptors by GPCRs may contribute to cardiovascular control and haemostasis. PMID:15144237

  3. Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor.

    PubMed

    Revah, F; Bertrand, D; Galzi, J L; Devillers-Thiéry, A; Mulle, C; Hussy, N; Bertrand, S; Ballivet, M; Changeux, J P

    1991-10-31

    A variety of ligand-gated ion channels undergo a fast activation process after the rapid application of agonist and also a slower transition towards desensitized or inactivated closed channel states when exposure to agonist is prolonged. Desensitization involves at least two distinct closed states in the acetylcholine receptor, each with an affinity for agonists higher than those of the resting or active conformations. Here we investigate how structural elements could be involved in the desensitization of the acetylcholine-gated ion channel from the chick brain alpha-bungarotoxin sensitive homo-oligomeric alpha 7 receptor, using site-directed mutagenesis and expression in Xenopus oocytes. Mutations of the highly conserved leucine 247 residue from the uncharged MII segment of alpha 7 suppress inhibition by the open-channel blocker QX-222, indicating that this residue, like others from MII, faces the lumen of the channel. But, unexpectedly, the same mutations decrease the rate of desensitization of the response, increase the apparent affinity for acetylcholine and abolish current rectification. Moreover, unlike wild-type alpha 7, which has channels with a single conductance level, the leucine-to-threonine mutant has an additional conducting state active at low acetylcholine concentrations. It is possible that mutation of Leu 247 renders conductive one of the high-affinity desensitized states of the receptor. PMID:1719423

  4. Subunit composition of mammalian transient receptor potential channels in living cells.

    PubMed

    Hofmann, Thomas; Schaefer, Michael; Schultz, Günter; Gudermann, Thomas

    2002-05-28

    Hormones, neurotransmitters, and growth factors give rise to calcium entry via receptor-activated cation channels that are activated downstream of phospholipase C activity. Members of the transient receptor potential channel (TRPC) family have been characterized as molecular substrates mediating receptor-activated cation influx. TRPC channels are assumed to be composed of multiple TRPC proteins. However, the cellular principles governing the assembly of TRPC proteins into homo- or heteromeric ion channels still remain elusive. By pursuing four independent experimental approaches--i.e., subcellular cotrafficking of TRPC subunits, differential functional suppression by dominant-negative subunits, fluorescence resonance energy transfer between labeled TRPC subunits, and coimmunoprecipitation--we investigate the combinatorial rules of TRPC assembly. Our data show that (i) TRPC2 does not interact with any known TRPC protein and (ii) TRPC1 has the ability to form channel complexes together with TRPC4 and TRPC5. (iii) All other TRPCs exclusively assemble into homo- or heterotetramers within the confines of TRPC subfamilies--e.g., TRPC4/5 or TRPC3/6/7. The principles of TRPC channel formation offer the conceptual framework to assess the physiological role of distinct TRPC proteins in living cells. PMID:12032305

  5. Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes.

    PubMed

    Toyoshima, C; Unwin, N

    1988-11-17

    The nicotinic acetylcholine receptor belongs to a class of molecules that respond transiently to chemical stimuli by opening a water-filled channel through the cell membrane for cations to diffuse. This channel lies along the central axis delineated by a ring of five homologous, membrane-spanning subunits and thus has properties, such as conductance and ion selectivity, which depend on the profile created by the encircling subunits. Insight has been gained recently about the amino-acid residues implicated directly in the ion transport, and some information about the subunit configuration around the channel has come from electron microscopy studies of postsynaptic membranes crystallized in the form of flattened tubular vesicles. The resolution along the axis of the channel has, however, been limited by the restricted range of views obtainable. Here we report the structure of the channel at 17 A resolution, determined by three-dimensional image reconstruction from tubular vesicles having receptors organized in helical arrays across their surfaces. The helical symmetry is preserved by suspending the tubes in thin films of ice, and the receptors in such tubes can be seen from all angles, allowing the channel to be revealed clearly in relation to the lipid bilayer and the peripheral protein for the first time. PMID:2461515

  6. Insights into the channel gating of P2X receptors from structures, dynamics and small molecules

    PubMed Central

    Wang, Jin; Yu, Ye

    2016-01-01

    P2X receptors, as ATP-gated non-selective trimeric ion channels, are permeable to Na+, K+ and Ca2+. Comparing with other ligand-gated ion channel families, P2X receptors are distinct in their unique gating properties and pathophysiological roles, and have attracted attention as promising drug targets for a variety of diseases, such as neuropathic pain, multiple sclerosis, rheumatoid arthritis and thrombus. Several small molecule inhibitors for distinct P2X subtypes have entered into clinical trials. However, many questions regarding the gating mechanism of P2X remain unsolved. The structural determinations of P2X receptors at the resting and ATP-bound open states revealed that P2X receptor gating is a cooperative allosteric process involving multiple domains, which marks the beginning of the post-structure era of P2X research at atomic level. Here, we review the current knowledge on the structure-function relationship of P2X receptors, depict the whole picture of allosteric changes during the channel gating, and summarize the active sites that may contribute to new strategies for developing novel allosteric drugs targeting P2X receptors. PMID:26725734

  7. Different channel properties of Torpedo acetylcholine receptor monomers and dimers reconstituted in planar membranes.

    PubMed Central

    Schindler, H; Spillecke, F; Neumann, E

    1984-01-01

    It is demonstrated that the monomeric and dimeric structures of the nicotinic acetylcholine receptor of Torpedo californica electric tissue, reconstituted in planar lipid bilayers, are functionally different. The native dimer D of Mr 500,000 (heavy-form) exhibits a "single" channel conductance about twice as large as that of the monomer M of Mr 250,000 (light form). Under conditions where monomers aggregate, the conductance changes from the level of the monomer M to that of dimers M2. The dimer conductances (D and M2) seem to result from synchronous opening and closing of the two channels in the dimer, giving the impression of "single channel" activity. This channel cooperativity is apparently mediated by noncovalent interactions between the two monomers, since it requires no disulfide linkage between monomers. Both the monomers M and the dimers D and M2 show at least one substate of lower conductivity. The relative population of the two conductance levels depends on the ion type (Na+ and K+), indicating ion-specific channel states. Since the channel conductance of isolated dimers resembles those obtained from unextracted microsacs, the dimer with two synchronized channels appears to be the in vivo predominant gating unit. In the linear association of dimers, observed in the native membrane, channel synchronization may extend to more than two channels as suggested by oligomeric channel cooperativity in associations of monomers and dimers. PMID:6091143

  8. Transient receptor potential melastatin 3 is a phosphoinositide-dependent ion channel

    PubMed Central

    Badheka, Doreen; Borbiro, Istvan

    2015-01-01

    Phosphoinositides are emerging as general regulators of the functionally diverse transient receptor potential (TRP) ion channel family. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been reported to positively regulate many TRP channels, but in several cases phosphoinositide regulation is controversial. TRP melastatin 3 (TRPM3) is a heat-activated ion channel that is also stimulated by chemical agonists, such as pregnenolone sulfate. Here, we used a wide array of approaches to determine the effects of phosphoinositides on TRPM3. We found that channel activity in excised inside-out patches decreased over time (rundown), an attribute of PI(4,5)P2-dependent ion channels. Channel activity could be restored by application of either synthetic dioctanoyl (diC8) or natural arachidonyl stearyl (AASt) PI(4,5)P2. The PI(4,5)P2 precursor phosphatidylinositol 4-phosphate (PI(4)P) was less effective at restoring channel activity. TRPM3 currents were also restored by MgATP, an effect which was inhibited by two different phosphatidylinositol 4-kinase inhibitors, or by pretreatment with a phosphatidylinositol-specific phospholipase C (PI-PLC) enzyme, indicating that MgATP acted by generating phosphoinositides. In intact cells, reduction of PI(4,5)P2 levels by chemically inducible phosphoinositide phosphatases or a voltage-sensitive 5′-phosphatase inhibited channel activity. Activation of PLC via muscarinic receptors also inhibited TRPM3 channel activity. Overall, our data indicate that TRPM3 is a phosphoinositide-dependent ion channel and that decreasing PI(4,5)P2 abundance limits its activity. As all other members of the TRPM family have also been shown to require PI(4,5)P2 for activity, our data establish PI(4,5)P2 as a general positive cofactor of this ion channel subfamily. PMID:26123195

  9. Transient Receptor Potential (TRP) Channels and Cardiac Fibrosis

    PubMed Central

    Yue, Zhichao; Zhang, Yanhui; Xie, Jia; Jiang, Jianmin; Yue, Lixia

    2013-01-01

    Cardiac fibrosis is associated with most cardiac diseases. Fibrosis is an accumulation of excessive extracellular matrix proteins (ECM) synthesized by cardiac fibroblasts and myofibroblasts. Fibroblasts are the most prevalent cell type in the heart, comprising 75% of cardiac cells. Myofibroblasts are hardly present in healthy normal heart tissue, but appear abundantly in diseased hearts. Cardiac fibroblasts are activated by a variety of pathological stimuli, such as myocardial injury, oxidative stress, mechanical stretch, and elevated autocrine-paracrine mediators, thereby undergoing proliferation, differentiation to myofibroblasts, and production of various cytokines and ECM proteins. A number of signaling pathways and bioactive molecules are involved and work in concert to activate fibroblasts and myofibroblasts in the fibrogenesis cascade. Fibroblasts and myofibroblasts are not only principal ECM producers, but also play a central role in fibrogenesis and myocardial remodeling in fibrotic heart disease. Thus, understanding the biological processes of cardiac fibroblasts will provide novel insights into the underlying mechanisms of fibrosis and provide potential targets for developing anti-fibrotic drugs. Recent studies demonstrate that Ca2+ signal is essential for fibroblast proliferation, differentiation, and ECM-protein production. This review focuses on the recent advances in understanding molecular mechanisms of Ca2+ signaling in cardiac fibrogenesis, and potential role of Ca2+-permeable channels, in particular, the transient potential (TRP) channels in fibrotic heart disease. TRP channels are highly expressed in cardiac fibroblasts. TRPM7 has been shown to be essential in TGFβ1 mediated fibrogenesis, and TRPC3 has been demonstrated to play an essential role in regulating fibroblast function. Thus, the Ca2+-permeable TRP channels may serve as potential novel targets for developing anti-fibrotic drugs. PMID:23432060

  10. Natural-Product-Derived Transient Receptor Potential Melastatin 8 (TRPM8) Channel Modulators.

    PubMed

    LeGay, Christina M; Gorobets, Evgueni; Iftinca, Mircea; Ramachandran, Rithwik; Altier, Christophe; Derksen, Darren J

    2016-06-01

    A library of novel structural hybrids of menthol and cubebol was tested for each derivative's ability to interact with the transient receptor potential subfamily melastatin member 8 (TRPM8) channel. This structure-activity relationship study revealed three potent modulators of the TRPM8 ion channel: a novel agonist (4) with an EC50 value of 11 ± 1 μM, an antagonist (15) with an IC50 value of 2 ± 1 μM, and an allosteric modulator (21) that minimized channel desensitization toward menthol. Each of these novel exocyclic olefin analogues of menthol is readily accessible by synthesis and was tested using Ca(2+) assays and electrophysiology. PMID:27171974

  11. Biophysical analysis of thermosensitive TRP channels with a special focus on the cold receptor TRPM8

    PubMed Central

    Carrasquel-Ursulaez, Willy; Moldenhauer, Hans; Castillo, Juan Pablo; Latorre, Ramón; Alvarez, Osvaldo

    2015-01-01

    Mammals maintain homeostatic control of their body temperature. Therefore, these organisms are expected to have adaptations that confer the ability to detect and react to both self and ambient temperature. Temperature-activated ion channels have been discovered to be the primary molecular determinants of thermosensation. The most representative group of these determinants constitutes members of the transient receptor potential superfamily, TRP, which are activated by either low or high temperatures covering the whole range of physiologically relevant temperatures. This review makes a critical assessment of existing analytical methods of temperature-activated TRP channel mechanisms using the cold-activated TRPM8 channel as a paradigm. PMID:27227023

  12. Statistical methods for model discrimination. Applications to gating kinetics and permeation of the acetylcholine receptor channel.

    PubMed Central

    Horn, R

    1987-01-01

    Methods are described for discrimination of models of the gating kinetics and permeation of single ionic channels. Both maximum likelihood and regression procedures are discussed. In simple situations, where models are nested, standard hypothesis tests can be used. More commonly, however, non-nested models are of interest, and several procedures are described for model discrimination in these cases, including Monte Carlo methods, which allow the comparison of models at significance levels of choice. As an illustration, the methods are applied to single-channel data from acetylcholine receptor channels. PMID:2435330

  13. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor

    PubMed Central

    Liedtke, Wolfgang; Choe, Yong; Martí-Renom, Marc A.; Bell, Andrea M.; Denis, Charlotte S.; Šali, Andrej; Hudspeth, A. J.; Friedman, Jeffrey M.; Heller, Stefan

    2008-01-01

    SUMMARY The detection of osmotic stimuli is essential for all organisms, yet few osmoreceptive proteins are known, none of them in vertebrates. By employing a candidate-gene approach based on genes encoding members of the TRP superfamily of ion channels, we cloned cDNAs encoding the vanilloid receptor-related osmotically activated channel (VR-OAC) from the rat, mouse, human, and chicken. This novel cation-selective channel is gated by exposure to hypotonicity within the physiological range. In the central nevous system, the channel is expressed neurons of the circumventricular organs, neurosensory cells responsive to systemic osmotic pressure. The channel also occurs in other neurosensory cells, including inner-ear hair cells, sensory neurons, and Merkel cells. PMID:11081638

  14. [Molecular dynamics simulations of migration of ions and molecules through the acetylcholine receptor channel].

    PubMed

    Shaĭtan, K V; Li, A; Tershkina, K B; Kirpichnikov, M P

    2007-01-01

    A dynamic model of the channel of an acetylcholine receptor in a closed state has been proposed. The channel is formed by five a-helices of subunit M2 and stabilized by the cyclic hydrocarbon (CH2)105. The migration of charged and unchanged van der Waals particles with a diameter of 7.72 A equivalent to the diameter of a hydrated sodium ion has been studied. The migration occurred by the action of external force applied to the complex along the channel axis. In the closed state, the inhibition of ions is due to two components: electrostatic interaction and steric constraints. The van der Waals channel gate is formed by residues 13'-A-Val255, B-Val261, C-Val269, D-Val255, and E-Ile264, and the negatively changed residues occurring in the upper part of the channel have a great effect on ion selectivity. PMID:17633536

  15. Channel properties of the purified acetylcholine receptor from Torpedo californica reconstituted in planar lipid bilayer membranes.

    PubMed Central

    Montal, M; Labarca, P; Fredkin, D R; Suarez-Isla, B A

    1984-01-01

    The electrophysiological properties of the cation channel of the purified nicotinic acetylcholine receptor (AChR) reconstituted in planar lipid bilayers were characterized. Single-channel currents were activated by acetylcholine, carbamylcholine and suberyldicholine. The single channel conductance (28 pS in 0.3 M NaCl) was ohmic and independent of the agonist. Single channel currents increased with Na+ concentration to a maximum conductance of 95 pS and showed a half-saturation point of 395 mM. The apparent ion selectivity sequence, derived from single-channel current recordings, is: NH+4 greater than Cs+ greater than Rb+ greater than or equal to Na+ Cl-, F-, SO2-(4). The distribution of channel open times was fit by a sum of two exponentials, reflecting the existence of at least two distinct open states. The time constants depend on the choice of agonist, being consistently longer for suberyldicholine than for carbamylcholine. Similar channel properties were recorded in bilayers formed from monolayers at the tip of patch pipets . Single-channel currents occur in paroxysms of channel activity followed by quiescent periods. This pattern is more pronounced as the agonist concentration increases, and is reflected in histograms of channel-opening frequencies. Computer simulations with a three-state model, consisting of two closed (unliganded and liganded) and one open state, do not resemble the recorded pattern of channel activity, especially at high agonist concentration. Inclusion of a desensitized liganded state reproduces the qualitative features of channel recordings. The occurrence of paroxysms of channel activity thus seems to result from the transit of AChR through its active conformation, from which it can open several times before desensitizing. PMID:6324900

  16. Dynamic aspects of functional regulation of the ATP receptor channel P2X2.

    PubMed

    Kubo, Yoshihiro; Fujiwara, Yuichiro; Keceli, Batu; Nakajo, Koichi

    2009-11-15

    The P2X(2) channel is a ligand-gated channel activated by ATP. Functional features that reflect the dynamic flexibility of the channel include time-dependent pore dilatation following ATP application and direct inhibitory interaction with activated nicotinic acetylcholine receptors on the membrane. We have been studying the mechanisms by which P2X(2) channel functionality is dynamically regulated. Using a Xenopus oocyte expression system, we observed that the pore properties, including ion selectivity and rectification, depend on the open channel density on the membrane. Pore dilatation was apparent when the open channel density was high and inward rectification was modest. We also observed that P2X(2) channels show voltage dependence, despite the absence of a canonical voltage sensor. At a semi-steady state after ATP application, P2X(2) channels were activated upon membrane hyperpolarization. This voltage-dependent activation was also [ATP] dependent. With increases in [ATP], the speed of hyperpolarization-induced activation was increased and the conductance-voltage relationship was shifted towards depolarized potentials. Based on analyses of experimental data and various simulations, we propose that these phenomena can be explained by assuming a fast ATP binding step and a rate-limiting voltage-dependent gating step. Complete elucidation of these regulatory mechanisms awaits dynamic imaging of functioning P2X(2) channels. PMID:19752115

  17. Characterization of additional novel immune type receptors in channel catfish, Ictalurus punctatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mining of channel catfish (Ictalurus punctatus) expressed sequence tag databases identified seven new novel immune type receptors (IpNITRs). These differed in sequence, but not structure, from previously described IpNITR1-11. IpNITR12a, 12b, 13 and 14, encode proteins containing a single variable (V...

  18. Main ion channels and receptors associated with visceral hypersensitivity in irritable bowel syndrome

    PubMed Central

    de Carvalho Rocha, Heraldo Arcela; Dantas, Bruna Priscilla Vasconcelos; Rolim, Thaísa Leite; Costa, Bagnólia Araújo; de Medeiros, Arnaldo Correia

    2014-01-01

    Irritable bowel syndrome (IBS) is a very frequent functional gastrointestinal disorder characterized by recurrent abdominal pain or discomfort and alteration of bowel habits. The IBS physiopathology is extremely complex. Visceral hypersensitivity plays an important role in the pathogenesis of abdominal pain in both in vitro and in vivo models of this functional disorder. In order to obtain a general view of the participation of the main ion channels and receptors regarding the visceral hypersensitivity in the IBS and to describe their chemical structure, a literature review was carried out. A bibliographical research in the following electronic databases: Pubmed and Virtual Library in Health (BVS) was fulfilled by using the search terms “ion channels” “or” “receptors” “and” “visceral hypersensitivity” “or” “visceral nociception” “and” “irritable bowel syndrome”. Original and review articles were considered for data acquisition. The activation of the ATP ion-gated channels, voltage-gated sodium (Nav) and calcium (Cav) channels, as well as the activation of protease-activated receptors (PAR2), transient receptor potential vanilloide-1, serotonin, cannabinoids and cholecystokinin are involved in the genesis of visceral hypersensitivity in IBS. The involvement of ion channels and receptors concerning visceral hypersensitivity is noteworthy in IBS models. PMID:24976114

  19. Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain.

    PubMed

    Bertrand, D; Devillers-Thiéry, A; Revah, F; Galzi, J L; Hussy, N; Mulle, C; Bertrand, S; Ballivet, M; Changeux, J P

    1992-02-15

    The putative channel-forming MII domains of the nicotinic, gamma-aminobutyric acid type A, and glycine receptors contain a highly conserved leucine residue. Mutation of this hydrophobic amino acid in the neuronal nicotinic receptor alpha 7 (Leu-247), reconstituted in Xenopus oocytes, modifies the ionic response to acetylcholine and alters desensitization. Furthermore, the Leu----Thr (L247T) mutant has two conducting states (46 pS and 80 pS), in contrast with the wild-type (WT) receptor, which has only one (45 pS). We now show that this mutant possesses a rather paradoxical pharmacology: antagonists of the WT receptor such as dihydro-beta-erythroidin, hexamethonium, or (+)-tubocurarine elicit ionic currents when applied to the L247T alpha 7 mutant and these responses are blocked by alpha-bungarotoxin. Furthermore, prolonged application of acetylcholine causes desensitization in the WT but leads to a potentiation of the responses to acetylcholine or dihydro-beta-erythroidin in the mutant. These data are consistent with a scheme in which mutation of Leu-247 renders a desensitized state in the WT channel a conducting state. They also strengthen the proposal that, in the WT, some competitive antagonists may stabilize desensitized states. Finally, these observations may shed light on properties of other ion channels, in particular the glutamate receptors, which display multiple conductance levels associated with various pharmacological agents. PMID:1741378

  20. Ca(2+) influx through L-type Ca(2+) channels and transient receptor potential channels activates pathological hypertrophy signaling.

    PubMed

    Gao, Hui; Wang, Fang; Wang, Wei; Makarewich, Catherine A; Zhang, Hongyu; Kubo, Hajime; Berretta, Remus M; Barr, Larry A; Molkentin, Jeffery D; Houser, Steven R

    2012-11-01

    Common cardiovascular diseases such as hypertension and myocardial infarction require that myocytes develop greater than normal force to maintain cardiac pump function. This requires increases in [Ca(2+)]. These diseases induce cardiac hypertrophy and increases in [Ca(2+)] are known to be an essential proximal signal for activation of hypertrophic genes. However, the source of "hypertrophic" [Ca(2+)] is not known and is the topic of this study. The role of Ca(2+) influx through L-type Ca(2+) channels (LTCC), T-type Ca(2+) channels (TTCC) and transient receptor potential (TRP) channels on the activation of calcineurin (Cn)-nuclear factor of activated T cells (NFAT) signaling and myocyte hypertrophy was studied. Neonatal rat ventricular myocytes (NRVMs) and adult feline ventricular myocytes (AFVMs) were infected with an adenovirus containing NFAT-GFP, to determine factors that could induce NFAT nuclear translocation. Four millimolar Ca(2+) or pacing induced NFAT nuclear translocation. This effect was blocked by Cn inhibitors. In NRVMs Nifedipine (Nif, LTCC antagonist) blocked high Ca(2+)-induced NFAT nuclear translocation while SKF-96365 (TRP channel antagonist) and Nickel (Ni, TTCC antagonist) were less effective. The relative potency of these antagonists against Ca(2+) induced NFAT nuclear translocation (Nif>SKF-96365>Ni) was similar to their effects on Ca(2+) transients and the LTCC current. Infection of NRVM with viruses containing TRP channels also activated NFAT-GFP nuclear translocation and caused myocyte hypertrophy. TRP effects were reduced by SKF-96365, but were more effectively antagonized by Nif. These experiments suggest that Ca(2+) influx through LTCCs is the primary source of Ca(2+) to activate Cn-NFAT signaling in NRVMs and AFVMs. While TRP channels cause hypertrophy, they appear to do so through a mechanism involving Ca(2+) entry via LTCCs. PMID:22921230

  1. Single-Channel Current Through Nicotinic Receptor Produced by Closure of Binding Site C-Loop

    SciTech Connect

    Wang, Hailong; Cheng, Xiaolin; McCammon, Jonathan

    2009-01-01

    We investigated the initial coupling of agonist binding to channel gating of the nicotinic acetylcholine receptor using targeted molecular-dynamics (TMD) simulation. After TMD simulation to accelerate closure of the C-loops at the agonist binding sites, the region of the pore that passes through the cell membrane expands. To determine whether the structural changes in the pore result in ion conduction, we used a coarse-grained ion conduction simulator, Biology Boltzmann transport Monte Carlo, and applied it to two structural frames taken before and after TMD simulation. The structural model before TMD simulation represents the channel in the proposed resting state, whereas the model after TMD simulation represents the channel in the proposed active state. Under external voltage biases, the channel in the active state was permeable to cations. Our simulated ion conductance approaches that obtained experimentally and recapitulates several functional properties characteristic of the nicotinic acetylcholine receptor. Thus, closure of the C-loop triggers a structural change in the channel sufficient to account for the open channel current. This approach of applying Biology Boltzmann transport Monte Carlo simulation can be used to further investigate the binding to gating transduction mechanism and the structural bases for ion selection and translocation.

  2. Molecular mechanism of the assembly of an acid-sensing receptor ion channel complex.

    PubMed

    Yu, Yong; Ulbrich, Maximilian H; Li, Ming-Hui; Dobbins, Scott; Zhang, Wei K; Tong, Liang; Isacoff, Ehud Y; Yang, Jian

    2012-01-01

    Polycystic kidney disease (PKD) family proteins associate with transient receptor potential (TRP) channel family proteins to form functionally important complexes. PKD proteins differ from known ion channel-forming proteins and are generally thought to act as membrane receptors. Here we find that PKD1L3, a PKD protein, functions as a channel-forming subunit in an acid-sensing heteromeric complex formed by PKD1L3 and TRPP3, a TRP channel protein. Single amino-acid mutations in the putative pore region of both proteins alter the channel's ion selectivity. The PKD1L3/TRPP3 complex in the plasma membrane of live cells contains one PKD1L3 and three TRPP3. A TRPP3 C-terminal coiled-coil domain forms a trimer in solution and in crystal, and has a crucial role in the assembly and surface expression of the PKD1L3/TRPP3 complex. These results demonstrate that PKD subunits constitute a new class of channel-forming proteins, enriching our understanding of the function of PKD proteins and PKD/TRPP complexes. PMID:23212381

  3. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.

    PubMed

    Larson, Eric D; Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C; Finger, Thomas E

    2015-12-01

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. PMID:26631478

  4. Comprehensive survey and genomic characterization of toll-like receptors in channel catfish, Ictalurus punctatus: identification of novel fish TLRs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comprehensive survey of channel catfish Toll-Like Receptors (TLRs) was undertaken following a genomic PCR approach based on degenerate primers. Twenty different TLRs were identified in channel catfish. Channel catfish TLR sequences were characterized by phylogenetic analysis based on their conserv...

  5. Clemizole hydrochloride is a novel and potent inhibitor of transient receptor potential channel TRPC5.

    PubMed

    Richter, Julia M; Schaefer, Michael; Hill, Kerstin

    2014-11-01

    Canonical transient receptor potential channel 5 (TRPC5) is a nonselective, Ca(2+)-permeable cation channel that belongs to the large family of transient receptor potential channels. It is predominantly found in the central nervous system with a high expression density in the hippocampus, the amygdala, and the frontal cortex. Several studies confirm that TRPC5 channels are implicated in the regulation of neurite length and growth cone morphology. We identified clemizole as a novel inhibitor of TRPC5 channels. Clemizole efficiently blocks TRPC5 currents and Ca(2+) entry in the low micromolar range (IC50 = 1.0-1.3 µM), as determined by fluorometric intracellular free Ca(2+) concentration ([Ca(2+)]i) measurements and patch-clamp recordings. Clemizole blocks TRPC5 currents irrespectively of the mode of activation, for example, stimulation of G protein-coupled receptors, hypo-osmotic buffer conditions, or by the direct activator riluzole. Electrophysiological whole-cell recordings revealed that the block was mostly reversible. Moreover, clemizole was still effective in blocking TRPC5 single channels in excised inside-out membrane patches, hinting to a direct block of TRPC5 by clemizole. Based on fluorometric [Ca(2+)]i measurements, clemizole exhibits a sixfold selectivity for TRPC5 over TRPC4β (IC50 = 6.4 µM), the closest structural relative of TRPC5, and an almost 10-fold selectivity over TRPC3 (IC50 = 9.1 µM) and TRPC6 (IC50 = 11.3 µM). TRPM3 and M8 as well as TRPV1, V2, V3, and V4 channels were only weakly affected by markedly higher clemizole concentrations. Clemizole was not only effective in blocking heterologously expressed TRPC5 homomers but also TRPC1:TRPC5 heteromers as well as native TRPC5-like currents in the U-87 glioblastoma cell line. PMID:25140002

  6. Zinc-induced Neurotoxicity Mediated by Transient Receptor Potential Melastatin 7 Channels*

    PubMed Central

    Inoue, Koichi; Branigan, Deborah; Xiong, Zhi-Gang

    2010-01-01

    Transient receptor potential melastatin 7 (TRPM7) channels are novel Ca2+-permeable non-selective cation channels ubiquitously expressed. Activation of TRPM7 channels has been shown to be involved in cellular Mg2+ homeostasis, diseases caused by abnormal magnesium absorption, and in Ca2+-mediated neuronal injury under ischemic conditions. Here we show strong evidence suggesting that TRPM7 channels also play an important role in cellular Zn2+ homeostasis and in Zn2+-mediated neuronal injury. Using a combination of fluorescent Zn2+ imaging, small interfering RNA, pharmacological analysis, and cell injury assays, we show that activation of TRPM7 channels augmented Zn2+-induced injury of cultured mouse cortical neurons. The Zn2+-mediated neurotoxicity was inhibited by nonspecific TRPM7 blockers Gd3+ or 2-aminoethoxydiphenyl borate, and by knockdown of TRPM7 channels with small interfering RNA. In addition, Zn2+-mediated neuronal injury under oxygen-glucose deprivation conditions was also diminished by silencing TRPM7. Furthermore, we show that overexpression of TRPM7 channels in HEK293 cells increased intracellular Zn2+ accumulation and Zn2+-induced cell injury, while silencing TRPM7 by small interfering RNA attenuated the Zn2+-mediated cell toxicity. Thus, TRPM7 channels may represent a novel target for neurological disorders where Zn2+ toxicity plays an important role. PMID:20048154

  7. Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels.

    PubMed

    Inoue, Koichi; Branigan, Deborah; Xiong, Zhi-Gang

    2010-03-01

    Transient receptor potential melastatin 7 (TRPM7) channels are novel Ca(2+)-permeable non-selective cation channels ubiquitously expressed. Activation of TRPM7 channels has been shown to be involved in cellular Mg(2+) homeostasis, diseases caused by abnormal magnesium absorption, and in Ca(2+)-mediated neuronal injury under ischemic conditions. Here we show strong evidence suggesting that TRPM7 channels also play an important role in cellular Zn(2+) homeostasis and in Zn(2+)-mediated neuronal injury. Using a combination of fluorescent Zn(2+) imaging, small interfering RNA, pharmacological analysis, and cell injury assays, we show that activation of TRPM7 channels augmented Zn(2+)-induced injury of cultured mouse cortical neurons. The Zn(2+)-mediated neurotoxicity was inhibited by nonspecific TRPM7 blockers Gd(3+) or 2-aminoethoxydiphenyl borate, and by knockdown of TRPM7 channels with small interfering RNA. In addition, Zn(2+)-mediated neuronal injury under oxygen-glucose deprivation conditions was also diminished by silencing TRPM7. Furthermore, we show that overexpression of TRPM7 channels in HEK293 cells increased intracellular Zn(2+) accumulation and Zn(2+)-induced cell injury, while silencing TRPM7 by small interfering RNA attenuated the Zn(2+)-mediated cell toxicity. Thus, TRPM7 channels may represent a novel target for neurological disorders where Zn(2+) toxicity plays an important role. PMID:20048154

  8. Vanilloid and Melastatin Transient Receptor Potential Channels in Vascular Smooth Muscle

    PubMed Central

    Earley, Scott

    2010-01-01

    The mammalian transient receptor potential (TRP) superfamily consists of six subfamilies that are defined by structural homology: TRPC (conventional or canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPP (polycystin), and TRPML (mucoliptin). This review focuses on channels belonging to the vanilloid (V) and melastatin (M) TRP subfamilies. The TRPV subfamily consists of six members (TRPV1–6) and the TRPM subfamily has eight (TRPM1–8). The basic biophysical properties of these channels are briefly described. All of these channels except TRPV5, TRPV6, and TRPM1 are reportedly present in arterial smooth muscle from various segments of the vasculature. Studies demonstrating involvement of TRPV1, TRPV2, TRPV4, TRPM4, TRPM7 and TRPM8 in regulation of arterial smooth muscle function are reviewed. The functions of TRPV3, TRPM2, TRPM3, and TRPM6 channels in arterial myocytes have not been reported. PMID:20536737

  9. Expression of heteromeric glycine receptor-channels in rat spinal cultures and inhibition by neuroactive steroids.

    PubMed

    Fodor, László; Boros, András; Dezso, Péter; Maksay, Gábor

    2006-11-01

    Ionotropic glycine receptors were studied in cultured spinal cord neurons prepared from 17-day-old rat embryos, using whole-cell patch clamp electrophysiology. Glycine receptors of 3-17 days in vitro were characterized via subtype-specific channel blockade by micromolar picrotoxin and cyanotriphenylborate, as well as nanomolar strychnine. Potentiation by nanomolar tropisetron indicated coexpression of beta with alpha subunits. The neuroactive steroids pregnenolone sulfate and dehydroepiandrosterone sulfate, as well as alphaxalone and its 3beta epimer betaxalone inhibited the chloride current with IC(50) values of 19, 46, 16 and 208 microM, respectively, with no potentiation. Reverse transcription polymerase chain reaction and immunocytochemistry demonstrated mRNAs and proteins of alpha1, alpha2, alpha3 and beta subunits in rat spinal cord cultures. In conclusion, neuroactive steroids, both positive and negative modulators of gamma-aminobutyric-acid(A) receptors, inhibited heteromeric glycine receptors at micromolar concentrations. PMID:16784797

  10. Receptors, channels, and signalling in the urothelial sensory system in the bladder.

    PubMed

    Merrill, Liana; Gonzalez, Eric J; Girard, Beatrice M; Vizzard, Margaret A

    2016-04-01

    The storage and periodic elimination of urine, termed micturition, requires a complex neural control system to coordinate the activities of the urinary bladder, urethra, and urethral sphincters. At the level of the lumbosacral spinal cord, lower urinary tract reflex mechanisms are modulated by supraspinal controls with mechanosensory input from the urothelium, resulting in regulation of bladder contractile activity. The specific identity of the mechanical sensor is not yet known, but considerable interest exists in the contribution of transient receptor potential (TRP) channels to the mechanosensory functions of the urothelium. The sensory, transduction, and signalling properties of the urothelium can influence adjacent urinary bladder tissues including the suburothelial nerve plexus, interstitial cells of Cajal, and detrusor smooth muscle cells. Diverse stimuli, including those that activate TRP channels expressed by the urothelium, can influence urothelial release of chemical mediators (such as ATP). Changes to the urothelium are associated with a number of bladder pathologies that underlie urinary bladder dysfunction. Urothelial receptor and/or ion channel expression and the release of signalling molecules (such as ATP and nitric oxide) can be altered with bladder disease, neural injury, target organ inflammation, or psychogenic stress. Urothelial receptors and channels represent novel targets for potential therapies that are intended to modulate micturition function or bladder sensation. PMID:26926246

  11. Purification and characterization of an. alpha. -bungarotoxin receptor that forms a functional nicotinic channel

    SciTech Connect

    Gotti, C.; Ogando, A.E.; Moretti, M.; Clementi, F. ); Hanke, W.; Schlue, R. )

    1991-04-15

    Neither the structure nor the function of {alpha}-bungarotoxin ({alpha}Bgtx) binding molecules in the nervous system have yet been completely defined, although it is known that some of these molecules are related to cation channels and some are not. Using an improved method of affinity chromatography, the authors have isolated a toxin binding molecule from chicken optic lobe that contains at least three subunits with apparent M{sub r} values of 52,000, 57,000, and 67,000. The M{sub r} 57,000 subunit binds {alpha}Bgtx receptors of human neuroblastoma cells, fetal calf muscle, and chicken optic lobe but not by antibodies raised against Torpedo acetylcholine receptor, the serum of myasthenic patients, or monoclonal antibody 35. {sup 125}I-labeled {alpha}Bgtx binding to the isolated receptor is blocked, with the same potency, by nicotinic agonists and antagonists, such as nicotine, neuronal bungarotoxin and, d-tubocurarine. When reconstituted in a planar lipid bilayer, the purified {alpha}Bgtx receptor forms cationic channels with a conductance of 50 pS. These channels are activated in a dose-dependent manner by carbamylcholine and blocked by d-tubocurarine.

  12. Activation of human 5-hydroxytryptamine type 3 receptors via an allosteric transmembrane site.

    PubMed

    Lansdell, Stuart J; Sathyaprakash, Chaitra; Doward, Anne; Millar, Neil S

    2015-01-01

    In common with other members of the Cys-loop family of pentameric ligand-gated ion channels, 5-hydroxytryptamine type 3 receptors (5-HT3Rs) are activated by the binding of a neurotransmitter to an extracellular orthosteric site, located at the interface of two adjacent receptor subunits. In addition, a variety of compounds have been identified that modulate agonist-evoked responses of 5-HT3Rs, and other Cys-loop receptors, by binding to distinct allosteric sites. In this study, we examined the pharmacological effects of a group of monoterpene compounds on recombinant 5-HT3Rs expressed in Xenopus oocytes. Two phenolic monoterpenes (carvacrol and thymol) display allosteric agonist activity on human homomeric 5-HT3ARs (64 ± 7% and 80 ± 4% of the maximum response evoked by the endogenous orthosteric agonist 5-HT, respectively). In addition, at lower concentrations, where agonist effects are less apparent, carvacrol and thymol act as potentiators of responses evoked by submaximal concentrations of 5-HT. By contrast, carvacrol and thymol have no agonist or potentiating activity on the closely related mouse 5-HT3ARs. Using subunit chimeras containing regions of the human and mouse 5-HT3A subunits, and by use of site-directed mutagenesis, we have identified transmembrane amino acids that either abolish the agonist activity of carvacrol and thymol on human 5-HT3ARs or are able to confer this property on mouse 5-HT3ARs. By contrast, these mutations have no significant effect on orthosteric activation of 5-HT3ARs by 5-HT. We conclude that 5-HT3ARs can be activated by the binding of ligands to an allosteric transmembrane site, a conclusion that is supported by computer docking studies. PMID:25338672

  13. Ryanodine receptors/calcium release channels in heart failure and sudden cardiac death.

    PubMed

    Marks, A R

    2001-04-01

    Calcium (Ca2+) ions are second messengers in signaling pathways in all types of cells. They regulate muscle contraction, electrical signals which determine the cardiac rhythm and cell growth pathways in the heart. In the past decade cDNA cloning has provided clues as to the molecular structure of the intracellular Ca2+ release channels (ryanodine receptors, RyR, and inositol 1,4,5-trisphosphate receptors, IP3R) on the sarcoplasmic and endoplasmic reticulum (SR/ER) and an understanding of how these molecules regulate Ca2+ homeostasis in the heart is beginning to emerge. The intracellular Ca2+ release channels form a distinct class of ion channels distinguished by their structure, size, and function. Both RyRs and IP3Rs have gigantic cytoplasmic domains that serve as scaffolds for modulatory proteins that regulate the channel pore located in the carboxy terminal 10% of the channel sequence. The channels are tetramers comprised of four RyR or IP3R subunits. RyR2 is required for excitation-contraction (EC) coupling in the heart. Using co-sedimentation and co-immunoprecipitation we have defined a macromolecular complex comprised of RyR2, FKBP12.6, PKA, the protein phosphatases PP1 and PP2A, and an anchoring protein mAKAP. We have shown that protein kinase A (PKA) phosphorylation of RyR2 dissociates FKBP12.6 and regulates the channel open probability (P(o)). In failing human hearts RyR2 is PKA hyperphosphorylated resulting in defective channel function due to increased sensitivity to Ca2+-induced activation. PMID:11273716

  14. Post-translational regulation of P2X receptor channels: modulation by phospholipids

    PubMed Central

    Bernier, Louis-Philippe; Ase, Ariel R.; Séguéla, Philippe

    2013-01-01

    P2X receptor channels mediate fast excitatory signaling by ATP and play major roles in sensory transduction, neuro-immune communication and inflammatory response. P2X receptors constitute a gene family of calcium-permeable ATP-gated cation channels therefore the regulation of P2X signaling is critical for both membrane potential and intracellular calcium homeostasis. Phosphoinositides (PIPn) are anionic signaling phospholipids that act as functional regulators of many types of ion channels. Direct PIPn binding was demonstrated for several ligand- or voltage-gated ion channels, however no generic motif emerged to accurately predict lipid-protein binding sites. This review presents what is currently known about the modulation of the different P2X subtypes by phospholipids and about critical determinants underlying their sensitivity to PIPn levels in the plasma membrane. All functional mammalian P2X subtypes tested, with the notable exception of P2X5, have been shown to be positively modulated by PIPn, i.e., homomeric P2X1, P2X2, P2X3, P2X4, and P2X7, as well as heteromeric P2X1/5 and P2X2/3 receptors. Based on various results reported on the aforementioned subtypes including mutagenesis of the prototypical PIPn-sensitive P2X4 and PIPn-insensitive P2X5 receptor subtypes, an increasing amount of functional, biochemical and structural evidence converges on the modulatory role of a short polybasic domain located in the proximal C-terminus of P2X subunits. This linear motif, semi-conserved in the P2X family, seems necessary and sufficient for encoding direct modulation of ATP-gated channels by PIPn. Furthermore, the physiological impact of the regulation of ionotropic purinergic responses by phospholipids on pain pathways was recently revealed in the context of native crosstalks between phospholipase C (PLC)-linked metabotropic receptors and P2X receptor channels in dorsal root ganglion sensory neurons and microglia. PMID:24324400

  15. G-protein–gated TRP-like Cationic Channel Activated by Muscarinic Receptors

    PubMed Central

    Zholos, Alexander V.; Zholos, Andrey A.; Bolton, Thomas B.

    2004-01-01

    There is little information about the mechanisms by which G-protein–coupled receptors gate ion channels although many ionotropic receptors are well studied. We have investigated gating of the muscarinic cationic channel, which mediates the excitatory effect of acetylcholine in smooth muscles, and proposed a scheme consisting of four pairs of closed and open states. Channel kinetics appeared to be the same in cell-attached or outside-out patches whether the channel was activated by carbachol application or by intracellular dialysis with GTPγS. Since in the latter case G-proteins are permanently active, it is concluded that the cationic channel is the major determinant of its own gating, similarly to the KACh channel (Ivanova-Nikolova, T.T., and G.E. Breitwieser. 1997. J. Gen. Physiol. 109:245–253). Analysis of adjacent-state dwell times revealed connections between the states that showed features conserved among many other ligand-gated ion channels (e.g., nAChR, BKCa channel). Open probability (PO) of the cationic channel was increased by membrane depolarization consistent with the prominent U-shaped I-V relationship of the muscarinic whole-cell current at negative potentials. Membrane potential affected transitions within each closed-open state pair but had little effect on transitions between pairs; thus, the latter are likely to be caused by interactions of the channel with its ligands, e.g., Ca2+ and Gαo-GTP. Channel activity was highly heterogeneous, as was evident from the prominent cycling behavior when PO was measured over 5-s intervals. This was related to the variable frequency of openings (as in the KACh channel) and, especially, to the number of long openings between consecutive long shuttings. Analysis of the underlying Markov chain in terms of probabilities allowed us to evaluate the contribution of each open state to the integral current (from shortest to longest open state: 0.1, 3, 24, and 73%) as PO increased 525-fold in three stages. PMID

  16. Calcium entry through nicotinic receptor channels and calcium channels in cultured rat superior cervical ganglion cells.

    PubMed Central

    Trouslard, J; Marsh, S J; Brown, D A

    1993-01-01

    1. Patch-clamp techniques in conjunction with indo-1 fluorescent measurements were used to measure increases in intracellular free calcium concentration and membrane conductance induced by the activation of nicotinic and calcium channels in cultured rat sympathetic neurons. 2. Under voltage-clamp conditions, pressure application of the nicotinic agonist DMPP (1,1-dimethyl-4-phenylpiperazinium iodide, 100 microM, 100 ms) increased [Ca2+]i by 193 +/- 26 nM at a clamp potential of -60 mV. This was accompanied by an inward current of -4.53 +/- 0.89 nA, giving a mean ratio of the delta (Ca2+]i to the total inward charge transfer of 42.7 nmoles per litre of free calcium per nanocoulomb of charge (M/q ratio). 3. The DMPP-induced current and associated delta [Ca2+]i were reduced by mecamylamine (100 nM-10 microM) but were unaffected by alpha-bungarotoxin (100 nM) or cadmium (100 microM). 4. The M/q ratio was not affected by the holding potential (from -80 to -40 mV) but was a function of the external calcium concentration. 5. The M/q ratio was reduced by increasing the intracellular calcium buffering capacity and increased by heparin but not affected by ryanodine or by depletion of the caffeine-sensitive calcium store. 6. Under the same recording conditions, we quantified the increase in [Ca2+]i associated with activation of the voltage-dependent calcium current. On average at -60 mV, the M/q ratio of this highly calcium-selective permeability was 1961 mM nC-1, which is 46 times that obtained for the nicotinic channel. 7. Assuming constant-field theory, ion-substitution experiments suggest that in 2.5 mM external calcium, the permeability sequence for the nicotinic conductance was Cs+ < Li+ < Na+ < K+ < Ca2+. 8. We conclude that the nicotinic channels in rat sympathetic neurones are significantly permeant to Ca2+ and that the influx of Ca2+ through these channels is the principal cause of the rise in [Ca2+]i seen under voltage clamp. PMID:8254522

  17. Interaction between positive allosteric modulators and trapping blockers of the NMDA receptor channel

    PubMed Central

    Emnett, Christine M; Eisenman, Lawrence N; Mohan, Jayaram; Taylor, Amanda A; Doherty, James J; Paul, Steven M; Zorumski, Charles F; Mennerick, Steven

    2015-01-01

    Background and Purpose Memantine and ketamine are clinically used, open-channel blockers of NMDA receptors exhibiting remarkable pharmacodynamic similarities despite strikingly different clinical profiles. Although NMDA channel gating constitutes an important difference between memantine and ketamine, it is unclear how positive allosteric modulators (PAMs) might affect the pharmacodynamics of these NMDA blockers. Experimental Approach We used two different PAMs: SGE-201, an analogue of an endogenous oxysterol, 24S-hydroxycholesterol, along with pregnenolone sulphate (PS), to test on memantine and ketamine responses in single cells (oocytes and cultured neurons) and networks (hippocampal slices), using standard electrophysiological techniques. Key Results SGE-201 and PS had no effect on steady-state block or voltage dependence of a channel blocker. However, both PAMs increased the actions of memantine and ketamine on phasic excitatory post-synaptic currents, but neither revealed underlying pharmacodynamic differences. SGE-201 accelerated the re-equilibration of blockers during voltage jumps. SGE-201 also unmasked differences among the blockers in neuronal networks – measured either by suppression of activity in multi-electrode arrays or by neuroprotection against a mild excitotoxic insult. Either potentiating NMDA receptors while maintaining the basal activity level or increasing activity/depolarization without potentiating NMDA receptor function is sufficient to expose pharmacodynamic blocker differences in suppressing network function and in neuroprotection. Conclusions and Implications Positive modulation revealed no pharmacodynamic differences between NMDA receptor blockers at a constant voltage, but did expose differences during spontaneous network activity. Endogenous modulator tone of NMDA receptors in different brain regions may underlie differences in the effects of NMDA receptor blockers on behaviour. PMID:25377730

  18. Physiological functions of transient receptor potential channels in pulmonary arterial smooth muscle cells.

    PubMed

    Yang, Xiao-Ru; Lin, Mo-Jun; Sham, James S K

    2010-01-01

    The transient receptor potential (TRP) gene superfamily, which consists of 7 subfamilies with at least 28 mammalian homologues, is known to encode a wide variety of cation channels with diverse biophysical properties, activation mechanisms, and physiological functions. Recent studies have identified multiple TRP channel subtypes, belonging to the canonical (TRPC), melastatin-related (TRPM), and vanilloid-related (TRPV) subfamilies, in pulmonary arterial smooth muscle cells (PASMCs). They operate as specific Ca(2+) pathways responsive to stimuli, including Ca(2+) store depletion, receptor activation, reactive oxygen species, growth factors, and mechanical stress. Increasing evidence suggests that these channels play crucial roles in agonist-induced pulmonary vasoconstriction, hypoxic pulmonary vasoconstriction, smooth muscle cell proliferation, vascular remodeling, and pulmonary arterial hypertension. This chapter highlighted and discussed these putative physiological functions of TRP channels in pulmonary vasculatures. Since Ca(2+) ions regulate many cellular processes via specific Ca(2+) signals, future investigations of these novel channels will likely uncover more important regulatory mechanisms of pulmonary vascular functions in health and in disease states. PMID:20204726

  19. Transient Receptor Potential Canonical 7 (TRPC7): A Diacylglycerol-Activated Non-Selective Cation Channel

    PubMed Central

    Zhang, Xuexin

    2016-01-01

    Transient receptor potential canonical 7 (TRPC7) channel is the seventh member of the mammalian TRPC channel family. TRPC7 mRNA, protein and channel activity have been detected in many tissues and organs from mouse, rat and human. TRPC7 has high sequence homology with TRPC3 and TRPC6 and all three channels are activated by membrane receptors that couple to isoforms of phospholipase C (PLC) and mediate non-selective cation currents. TRPC7, along with TRPC3 and TRPC6 can be activated by direct exogenous application of diacylglycerol (DAG) analogs and by pharmacological maneuvers that increase endogenous DAG in cells. TRPC7 shows distinct properties of activation, such as constitutive activity, susceptibility to negative regulation by extracellular Ca2+ and by protein kinase C. TRPC7 can form heteromultimers with TRPC3 and TRPC6. Although TRPC7 remains one of the least studied TRPC channel, its role in various cell types and physiological and pathophysiological conditions is begining to emerge. PMID:24756707

  20. Evidence for Novel Pharmacological Sensitivities of Transient Receptor Potential (TRP) Channels in Schistosoma mansoni

    PubMed Central

    Bais, Swarna; Churgin, Matthew A.; Fang-Yen, Christopher; Greenberg, Robert M.

    2015-01-01

    Schistosomiasis, caused by parasitic flatworms of the genus Schistosoma, is a neglected tropical disease affecting hundreds of millions globally. Praziquantel (PZQ), the only drug currently available for treatment and control, is largely ineffective against juvenile worms, and reports of PZQ resistance lend added urgency to the need for development of new therapeutics. Ion channels, which underlie electrical excitability in cells, are validated targets for many current anthelmintics. Transient receptor potential (TRP) channels are a large family of non-selective cation channels. TRP channels play key roles in sensory transduction and other critical functions, yet the properties of these channels have remained essentially unexplored in parasitic helminths. TRP channels fall into several (7–8) subfamilies, including TRPA and TRPV. Though schistosomes contain genes predicted to encode representatives of most of the TRP channel subfamilies, they do not appear to have genes for any TRPV channels. Nonetheless, we find that the TRPV1-selective activators capsaicin and resiniferatoxin (RTX) induce dramatic hyperactivity in adult worms; capsaicin also increases motility in schistosomula. SB 366719, a highly-selective TRPV1 antagonist, blocks the capsaicin-induced hyperactivity in adults. Mammalian TRPA1 is not activated by capsaicin, yet knockdown of the single predicted TRPA1-like gene (SmTRPA) in S. mansoni effectively abolishes capsaicin-induced responses in adult worms, suggesting that SmTRPA is required for capsaicin sensitivity in these parasites. Based on these results, we hypothesize that some schistosome TRP channels have novel pharmacological sensitivities that can be targeted to disrupt normal parasite neuromuscular function. These results also have implications for understanding the phylogeny of metazoan TRP channels and may help identify novel targets for new or repurposed therapeutics. PMID:26655809

  1. Temperature and voltage coupling to channel opening in transient receptor potential melastatin 8 (TRPM8).

    PubMed

    Raddatz, Natalia; Castillo, Juan P; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon

    2014-12-19

    Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca(2+)-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol(-1). The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening. PMID:25352597

  2. Temperature and Voltage Coupling to Channel Opening in Transient Receptor Potential Melastatin 8 (TRPM8)*♦

    PubMed Central

    Raddatz, Natalia; Castillo, Juan P.; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon

    2014-01-01

    Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca2+-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol−1. The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening. PMID:25352597

  3. The role of classical transient receptor potential channels in the regulation of hypoxic pulmonary vasoconstriction.

    PubMed

    Fuchs, B; Dietrich, A; Gudermann, T; Kalwa, H; Grimminger, F; Weissmann, N

    2010-01-01

    Hypoxic pulmonary vasoconstriction (HPV) is an essential mechanism of the lung matching blood perfusion to ventilation during local alveolar hypoxia. HPV thus optimizes pulmonary gas exchange. In contrast chronic and generalized hypoxia leads to pulmonary vascular remodeling with subsequent pulmonary hypertension and right heart hypertrophy. Among other non-selective cation channels, the family of classical transient receptor potential channels (TRPC) has been shown to be expressed in pulmonary arterial smooth muscle cells. Among this family, TRPC6 is essential for the regulation of acute HPV in mice. Against this background, in this chapter we give an overview about the TRPC family and their role in HPV. PMID:20204731

  4. Transient Receptor Potential Ankyrin 1 (TRPA1) Channel and Neurogenic Inflammation in Pathogenesis of Asthma

    PubMed Central

    Yang, Hang; Li, ShuZhuang

    2016-01-01

    Asthma is characterized by airway inflammation, airway obstruction, and airway hyperresponsiveness (AHR), and it affects 300 million people worldwide. However, our current understanding of the molecular mechanisms that underlie asthma remains limited. Recent studies have suggested that transient receptor potential ankyrin 1 (TRPA1), one of the transient receptor potential cation channels, may be involved in airway inflammation in asthma. The present review discusses the relationship between TRPA1 and neurogenic inflammation in asthma, hoping to enhance our understanding of the mechanisms of airway inflammation in asthma. PMID:27539812

  5. Screening of Transient Receptor Potential Canonical Channel Activators Identifies Novel Neurotrophic Piperazine Compounds.

    PubMed

    Sawamura, Seishiro; Hatano, Masahiko; Takada, Yoshinori; Hino, Kyosuke; Kawamura, Tetsuya; Tanikawa, Jun; Nakagawa, Hiroshi; Hase, Hideharu; Nakao, Akito; Hirano, Mitsuru; Rotrattanadumrong, Rachapun; Kiyonaka, Shigeki; Mori, Masayuki X; Nishida, Motohiro; Hu, Yaopeng; Inoue, Ryuji; Nagata, Ryu; Mori, Yasuo

    2016-03-01

    Transient receptor potential canonical (TRPC) proteins form Ca(2+)-permeable cation channels activated upon stimulation of metabotropic receptors coupled to phospholipase C. Among the TRPC subfamily, TRPC3 and TRPC6 channels activated directly by diacylglycerol (DAG) play important roles in brain-derived neurotrophic factor (BDNF) signaling, promoting neuronal development and survival. In various disease models, BDNF restores neurologic deficits, but its therapeutic potential is limited by its poor pharmacokinetic profile. Elucidation of a framework for designing small molecules, which elicit BDNF-like activity via TRPC3 and TRPC6, establishes a solid basis to overcome this limitation. We discovered, through library screening, a group of piperazine-derived compounds that activate DAG-activated TRPC3/TRPC6/TRPC7 channels. The compounds [4-(5-chloro-2-methylphenyl)piperazin-1-yl](3-fluorophenyl)methanone (PPZ1) and 2-[4-(2,3-dimethylphenyl)piperazin-1-yl]-N-(2-ethoxyphenyl)acetamide (PPZ2) activated, in a dose-dependent manner, recombinant TRPC3/TRPC6/TRPC7 channels, but not other TRPCs, in human embryonic kidney cells. PPZ2 activated native TRPC6-like channels in smooth muscle cells isolated from rabbit portal vein. Also, PPZ2 evoked cation currents and Ca(2+) influx in rat cultured central neurons. Strikingly, both compounds induced BDNF-like neurite growth and neuroprotection, which were abolished by a knockdown or inhibition of TRPC3/TRPC6/TRPC7 in cultured neurons. Inhibitors of Ca(2+) signaling pathways, except calcineurin, impaired neurite outgrowth promotion induced by PPZ compounds. PPZ2 increased activation of the Ca(2+)-dependent transcription factor, cAMP response element-binding protein. These findings suggest that Ca(2+) signaling mediated by activation of DAG-activated TRPC channels underlies neurotrophic effects of PPZ compounds. Thus, piperazine-derived activators of DAG-activated TRPC channels provide important insights for future development of a

  6. Ion permeation properties of the glutamate receptor channel in cultured embryonic Drosophila myotubes.

    PubMed Central

    Chang, H; Ciani, S; Kidokoro, Y

    1994-01-01

    Ion permeation properties of the glutamate receptor channel in cultured myotubes of Drosophila embryos were studied using the inside-out configuration of the patch-clamp technique. Lowering the NaCl concentration in the bath (intracellular solution), while maintaining that of the external solution constant, caused a shift of the reversal potential in the positive direction, thus indicating a higher permeability of the channel to Na+ than to Cl- (PCl/PNa < 0.04), and suggesting that the channel is cation selective. With 145 mM Na+ on both sides of the membrane, the single-channel current-voltage relation was almost linear in the voltage range between -80 and +80 mV, the conductance showing some variability in the range between 140 and 170 pS. All monovalent alkali cations tested, as well as NH4+, permeated the channel effectively. Using the Goldman-Hodgkin-Katz equation for the reversal potential, the permeability ratios with respect to Na+ were estimated to be: 1.32 for K+, 1.18 for NH4+, 1.15 for Rb+, 1.09 for Cs+, and 0.57 for Li+. Divalent cations, i.e. Mg2+ and Ca2+, in the external solution depressed not only the inward but also the outward Na+ currents, although reversal potential measurements indicated that both ions have considerably higher permeabilities than Na+ (PMg/PNa = 2.31; PCa/PNa = 9.55). The conductance-activity relation for Na+ was described by a hyperbolic curve. The maximal conductance was about 195 pS and the half-saturating activity 45 mM. This result suggests that Na+ ions bind to sites in the channel. All data were fitted by a model based on the Eyring's reaction rate theory, in which the receptor channel is a one-ion pore with three energy barriers and two internal sites. PMID:7519261

  7. Role of Src in C3 transient receptor potential channel function and evidence for a heterogeneous makeup of receptor- and store-operated Ca2+ entry channels.

    PubMed

    Kawasaki, Brian T; Liao, Yanhong; Birnbaumer, Lutz

    2006-01-10

    Receptor-operated Ca2+ entry (ROCE) and store-operated Ca2+ entry (SOCE) are known to be inhibited by tyrosine kinase inhibitors and activation of C-type transient receptor potential channel (TRPC) isoform 3 (TRPC3), a cation channel thought to be involved in SOCE and/or ROCE, was recently shown to depend on src tyrosine kinase activity. What is not known is the step at which src acts on TRPC3 and whether the role for tyrosine kinases in ROCE or SOCE is a general phenomenon. Using in vitro and in cell protein-protein interaction assays we now report that src phosphorylates TRPC3 at Y226 and that formation of phospho-Y226 is essential for TRPC3 activation. This requirement is unique for TRPC3 because (i) mutation of the cognate tyrosines of the closely related TRPC6 and TRPC7 had no effect; (ii) TRPC6 and TRPC7 were activated in src-, yes-, and fyn-deficient cells; and (iii) src, but not yes or fyn, rescued TRPC3 activation in src-, yes-, and fyn-deficient cells. The Src homology 2 domain of src was found to interact with either the N or the C termini of all TRPCs, suggesting that other tyrosine kinases may play a role in ion fluxes mediated by TRPCs other than TRPC3. A side-by-side comparison of the effects of genistein (a general tyrosine kinase inhibitor) on endogenous ROCE and SOCE in mouse fibroblasts, HEK and COS-7 cells, and ROCE in HEK cells mediated by TRPC3, TRPC6, TRPC7, and TRPC5 showed differences that argue for ROCE and SOCE channels to be heterogeneous. PMID:16407161

  8. Modulation of defensive behavior by Transient Receptor Potential Vanilloid Type-1 (TRPV1) channels.

    PubMed

    Aguiar, D C; Moreira, F A; Terzian, A L; Fogaça, M V; Lisboa, S F; Wotjak, C T; Guimaraes, F S

    2014-10-01

    The Transient Receptor Potential Vanilloid Type-1 (TRPV1) was first characterized in primary afferent fibers as a receptor for capsaicin (the pungent ingredient of chili peppers). Later on, this cation-permeable ion channel was also described in the central nervous system, where its main putative endogenous ligand is N-arachidonoyl ethanolamide (an endocannabinoid, also known as anandamide). Recent results employing genetic, pharmacological and histochemical techniques indicate that TRPV1 tonically modulate anxiety, fear and panic responses in brain regions related to defensive responses, such as the dorsal periaqueductal gray, the hippocampus and the medial prefrontal cortex. Genetic deletion or antagonism of this ion channel induces anxiolytic-like effects in several animal models. The main mechanism responsible for TRPV1-mediated effects on anxiety seems to involve facilitation of glutamatergic neurotransmission. In addition, there is evidence for interactions with other neurotransmitter systems, such as nitric oxide and endocannabinoids. PMID:24726577

  9. Inhibition of transient receptor potential canonical channels impairs cytokinesis in human malignant gliomas

    PubMed Central

    Bomben, V. C.; Sontheimer, H. W.

    2009-01-01

    Objectives Glial-derived primary brain tumours, gliomas, are among the fastest growing malignancies and present a huge clinical challenge. Research suggests an important, yet poorly understood, role of ion channels in growth control of normal and malignant cells. In this study, we sought to functionally characterize Transient Receptor Potential Canoncial (TRPC) channels in glioma cell proliferation. TRPC channels form non-selective cation channels that have been suggested to represent a Ca2+ influx pathway impacting cellular growth. Materials and Methods Employing a combination of molecular, biochemical and biophysical techniques, we characterized TRPC channels in glioma cells. Results We showed consistent expression of four channel family members (TRPC-1, -3, -5, -6) in glioma cell lines and acute patient-derived tissues. These channels gave rise to small, non-voltage-dependent cation currents that were blocked by the TRPC inhibitors GdCl3, 2-APB, or SKF96365. Importantly, TRPC channels contributed to the resting conductance of glioma cells and their acute pharmacological inhibition caused an ~10 mV hyperpolarization of the cells’ resting potential. Additionally, chronic application of the TRPC inhibitor SKF96365 caused near complete growth arrest. A detailed analysis, by fluorescence-activated cell sorting and time-lapse microscopy, showed that growth inhibition occurred at the G2 + M phase of the cell cycle with cytokinesis defects. Cells underwent incomplete cell divisions and became multinucleate, enlarged cells. Conclusions Nuclear atypia and enlarged cells are histopathological hallmarks for glioblastoma multiforme, the highest grade glioma, suggesting that a defect in TRPC channel function may contribute to cellular abnormalities in these tumours. PMID:18211288

  10. Functional calcium release channel formed by the carboxyl-terminal portion of ryanodine receptor.

    PubMed Central

    Bhat, M B; Zhao, J; Takeshima, H; Ma, J

    1997-01-01

    The ryanodine receptor (RyR) is one of the key proteins involved in excitation-contraction (E-C) coupling in skeletal muscle, where it functions as a Ca2+ release channel in the sarcoplasmic reticulum (SR) membrane. RyR consists of a single polypeptide of approximately 560 kDa normally arranged in a homotetrameric structure, which contains a carboxyl (C)-terminal transmembrane domain and a large amino (N)-terminal cytoplasmic domain. To test whether the carboxyl-terminal portion of RyR is sufficient to form a Ca2+ release channel, we expressed the full-length (RyR-wt) and C-terminal (RyR-C, approximately 130 kDa) RyR proteins in a Chinese hamster ovary (CHO) cell line, and measured their Ca2+ release channel functions in planar lipid bilayer membranes. The single-channel properties of RyR-wt were found to be similar to those of RyR from skeletal muscle SR. The RyR-C protein forms a cation-selective channel that shares some of the channel properties with RyR-wt, including activation by cytoplasmic Ca2+ and regulation by ryanodine. Unlike RyR-wt, which exhibits a linear current-voltage relationship and inactivates at millimolar Ca2+, the channels formed by RyR-C display significant inward rectification and fail to close at high cytoplasmic Ca2+. Our results show that the C-terminal portion of RyR contains structures sufficient to form a functional Ca2+ release channel, but the N-terminal portion of RyR also affects the ion-conduction and calcium-dependent regulation of the Ca2+ release channel. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:9284301

  11. Pore properties and pharmacological features of the P2X receptor channel in airway ciliated cells

    PubMed Central

    Ma, Weiyuan; Korngreen, Alon; Weil, Simy; Cohen, Enbal Ben-Tal; Priel, Avi; Kuzin, Liubov; Silberberg, Shai D

    2006-01-01

    Airway ciliated cells express an ATP-gated P2X receptor channel of unknown subunit composition (P2Xcilia) which is modulated by Na+ and by long exposures to ATP. P2Xcilia was investigated by recording currents from freshly dissociated rabbit airway ciliated cells with the patch-clamp technique in the whole-cell configuration. During the initial continuous exposure to extracellular ATP, P2Xcilia currents gradually increase in magnitude (priming), yet the permeability to N-methyl-d-glucamine (NMDG) does not change, indicating that priming does not arise from a progressive change in pore diameter. Na+, which readily permeates P2Xcilia receptor channels, was found to inhibit the channel extracellular to the electric field. The rank order of permeability to various monovalent cations is: Li+, Na+, K+, Rb+, Cs+, NMDG+ and TEA+, with a relative permeability of 1.35, 1.0, 0.99, 0.91, 0.79, 0.19 and 0.10, respectively. The rank order for the alkali cations follows an Eisenman series XI for a high-strength field site. Ca2+ has been estimated to be 7-fold more permeant than Na+. The rise in [Ca2+]i in ciliated cells, induced by the activation of P2Xcilia, is largely inhibited by either Brilliant Blue G or KN-62, indicating that P2X7 may be a part of P2Xcilia. P2Xcilia is augmented by Zn2+ and by ivermectin, and P2X4 receptor protein is detected by immunolabelling at the basal half of the cilia, strongly suggesting that P2X4 is a component of P2Xcilia receptor channels. Taken together, these results suggest that P2Xcilia is either assembled from P2X4 and P2X7 subunits, or formed from modified P2X4 subunits. PMID:16423852

  12. Structural and functional characterization of the purified cardiac ryanodine receptor-Ca2+ release channel complex.

    PubMed

    Anderson, K; Lai, F A; Liu, Q Y; Rousseau, E; Erickson, H P; Meissner, G

    1989-01-15

    Using density gradient centrifugation and [3H]ryanodine as a specific marker, the ryanodine receptor-Ca2+ release channel complex from Chaps-solubilized canine cardiac sarcoplasmic reticulum (SR) has been purified in the form of an approximately 30 S complex, comprised of Mr approximately 400,000 polypeptides. Purification resulted in a specific activity of approximately 450 pmol bound ryanodine/mg of protein, a 60-70% recovery of ryanodine binding activity, and retention of the high affinity ryanodine binding site (KD = 3 nM). Negative stain electron microscopy revealed a 4-fold symmetric, four-leaf clover structure, which could fill a box approximately 30 x 30 nm and was thus morphologically similar to the SR-transverse-tubule, junctionally associated foot structure. The structural, sedimentation, and ryanodine binding data strongly suggest there is one high affinity ryanodine binding site/30 S complex, comprised of four Mr approximately 400,000 subunits. Upon reconstitution into planar lipid bilayers, the purified complex exhibited a Ca2+ conductance (70 pS in 50 mM Ca2+) similar to that of the native cardiac Ca2+ release channel (75 pS). The reconstituted complex was also found to conduct Na+ (550 pS in 500 mM Na+) and often to display complex Na+ subconducting states. The purified channel could be activated by micromolar Ca2+ or millimolar ATP, inhibited by millimolar Mg2+ or micromolar ruthenium red, and modified to a long-lived open subconducting state by ryanodine. The sedimentation, subunit composition, morphological, and ryanodine binding characteristics of the purified cardiac ryanodine receptor-Ca2+ release channel complex were similar to those previously described for the purified ryanodine receptor-Ca2+ release channel complex from fast-twitch skeletal muscle. PMID:2463249

  13. Molecular mechanisms of Cys-loop ion channel receptor modulation by ivermectin

    PubMed Central

    Lynagh, Timothy; Lynch, Joseph W.

    2012-01-01

    Ivermectin is an anthelmintic drug that works by inhibiting neuronal activity and muscular contractility in arthropods and nematodes. It works by activating glutamate-gated chloride channels (GluClRs) at nanomolar concentrations. These receptors, found exclusively in invertebrates, belong to the pentameric Cys-loop receptor family of ligand-gated ion channels (LGICs). Higher (micromolar) concentrations of ivermectin also activate or modulate vertebrate Cys-loop receptors, including the excitatory nicotinic and the inhibitory GABA type-A and glycine receptors (GlyRs). An X-ray crystal structure of ivermectin complexed with the C. elegans α GluClR demonstrated that ivermectin binds to the transmembrane domain in a cleft at the interface of adjacent subunits. It also identified three hydrogen bonds thought to attach ivermectin to its site. Site-directed mutagenesis and voltage-clamp electrophysiology have also been employed to probe the binding site for ivermectin in α1 GlyRs. These have raised doubts as to whether the hydrogen bonds are essential for high ivermectin potency. Due to its lipophilic nature, it is likely that ivermectin accumulates in the membrane and binds reversibly (i.e., weakly) to its site. Several lines of evidence suggest that ivermectin opens the channel pore via a structural change distinct from that induced by the neurotransmitter agonist. Conformational changes occurring at locations distant from the pore can be probed using voltage-clamp fluorometry (VCF), a technique which involves quantitating agonist-induced fluorescence changes from environmentally sensitive fluorophores covalently attached to receptor domains of interest. This technique has demonstrated that ivermectin induces a global conformational change that propagates from the transmembrane domain to the neurotransmitter binding site, thus suggesting a mechanism by which ivermectin potentiates neurotransmitter-gated currents. Together, this information provides new insights into

  14. Micromolar-Affinity Benzodiazepine Receptors Regulate Voltage-Sensitive Calcium Channels in Nerve Terminal Preparations

    NASA Astrophysics Data System (ADS)

    Taft, William C.; Delorenzo, Robert J.

    1984-05-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.

  15. Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling.

    PubMed

    Bush, Erik W; Hood, David B; Papst, Philip J; Chapo, Joseph A; Minobe, Wayne; Bristow, Michael R; Olson, Eric N; McKinsey, Timothy A

    2006-11-01

    The calcium/calmodulin-dependent phosphatase calcineurin plays a central role in the control of cardiomyocyte hypertrophy in response to pathological stimuli. Although calcineurin is present at high levels in normal heart, its activity appears to be unaffected by calcium during the course of a cardiac cycle. The mechanism(s) whereby calcineurin is selectively activated by calcium under pathological conditions has remained unclear. Here, we demonstrate that diverse signals for cardiac hypertrophy stimulate expression of canonical transient receptor potential (TRPC) channels. TRPC consists of a family of seven membrane-spanning nonselective cation channels that have been implicated in the nonvoltage-gated influx of calcium in response to G protein-coupled receptor signaling, receptor tyrosine kinase signaling, and depletion of internal calcium stores. TRPC3 expression is up-regulated in multiple rodent models of pathological cardiac hypertrophy, whereas TRPC5 expression is induced in failing human heart. We demonstrate that TRPC promotes cardiomyocyte hypertrophy through activation of calcineurin and its downstream effector, the nuclear factor of activated T cells transcription factor. These results define a novel role for TRPC channels in the control of cardiac growth, and suggest that a TRPC-derived pool of calcium contributes to selective activation of calcineurin in diseased heart. PMID:16950785

  16. Transient receptor potential ion channels in primary sensory neurons as targets for novel analgesics

    PubMed Central

    Sousa-Valente, J; Andreou, A P; Urban, L; Nagy, I

    2014-01-01

    The last decade has witnessed an explosion in novel findings relating to the molecules involved in mediating the sensation of pain in humans. Transient receptor potential (TRP) ion channels emerged as the greatest group of molecules involved in the transduction of various physical stimuli into neuronal signals in primary sensory neurons, as well as, in the development of pain. Here, we review the role of TRP ion channels in primary sensory neurons in the development of pain associated with peripheral pathologies and possible strategies to translate preclinical data into the development of effective new analgesics. Based on available evidence, we argue that nociception-related TRP channels on primary sensory neurons provide highly valuable targets for the development of novel analgesics and that, in order to reduce possible undesirable side effects, novel analgesics should prevent the translocation from the cytoplasm to the cell membrane and the sensitization of the channels rather than blocking the channel pore or binding sites for exogenous or endogenous activators. LINKED ARTICLES This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24283624

  17. Transient receptor potential (TRP) channels in the airway: role in airway disease

    PubMed Central

    Grace, M S; Baxter, M; Dubuis, E; Birrell, M A; Belvisi, M G

    2014-01-01

    Over the last few decades, there has been an explosion of scientific publications reporting the many and varied roles of transient receptor potential (TRP) ion channels in physiological and pathological systems throughout the body. The aim of this review is to summarize the existing literature on the role of TRP channels in the lungs and discuss what is known about their function under normal and diseased conditions. The review will focus mainly on the pathogenesis and symptoms of asthma and chronic obstructive pulmonary disease and the role of four members of the TRP family: TRPA1, TRPV1, TRPV4 and TRPM8. We hope that the article will help the reader understand the role of TRP channels in the normal airway and how their function may be changed in the context of respiratory disease. PMID:24286227

  18. Selecting Ions by Size in a Calcium Channel: The Ryanodine Receptor Case Study

    PubMed Central

    Gillespie, Dirk; Xu, Le; Meissner, Gerhard

    2014-01-01

    Many calcium channels can distinguish between ions of the same charge but different size. For example, when cations are in direct competition with each other, the ryanodine receptor (RyR) calcium channel preferentially conducts smaller cations such as Li+ and Na+ over larger ones such as K+ and Cs+. Here, we analyze the physical basis for this preference using a previously established model of RyR permeation and selectivity. Like other calcium channels, RyR has four aspartate residues in its GGGIGDE selectivity filter. These aspartates have their terminal carboxyl group in the pore lumen, which take up much of the available space for permeating ions. We find that small ions are preferred by RyR because they can fit into this crowded environment more easily. PMID:25418295

  19. Triazine-based vanilloid 1 receptor open channel blockers: design, synthesis, evaluation, and SAR analysis.

    PubMed

    Vidal-Mosquera, Miquel; Fernández-Carvajal, Asia; Moure, Alejandra; Valente, Pierluigi; Planells-Cases, Rosa; González-Ros, José M; Bujons, Jordi; Ferrer-Montiel, Antonio; Messeguer, Angel

    2011-11-10

    The thermosensory transient receptor potential vanilloid 1 channel (TRPV1) is a polymodal receptor activated by physical and chemical stimuli. TRPV1 activity is drastically potentiated by proinflammatory agents released upon tissue damage. Given the pivotal role of TRPV1 in human pain, there is pressing need for improved TRPV1 antagonists, the development of which will require identification of new pharmacophore scaffolds. Uncompetitive antagonists acting as open-channel blockers might serve as activity-dependent blockers that preferentially modulate the activity of overactive channels, thus displaying fewer side effects than their competitive counterparts. Herein we report the design, synthesis, biological evaluation, and SAR analysis of a family of triazine-based compounds acting as TRPV1 uncompetitive antagonists. We identified the triazine 8aA as a potent, pure antagonist that inhibits TRPV1 channel activity with nanomolar efficacy and strong voltage dependency. It represents a new class of activity-dependent TRPV1 antagonists and may serve as the basis for lead optimization in the development of new analgesics. PMID:21950613

  20. A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP.

    PubMed

    Valera, S; Hussy, N; Evans, R J; Adami, N; North, R A; Surprenant, A; Buell, G

    1994-10-01

    Extracellular ATP exerts its effects through P2 purinoceptors: these are ligand-gated ion channels (P2x) or G-protein-coupled receptors (P2Y, P2U). ATP at P2x receptors mediates synaptic transmission between neurons and from neurons to smooth muscle, being responsible, for example, for sympathetic vasoconstriction in small arteries and arterioles. We have now cloned a complementary DNA encoding the P2x receptor from rat vas deferens and expressed it in Xenopus oocytes and mammalian cells. ATP activates a cation-selective ion channel with relatively high calcium permeability. Structural predictions suggest that the protein (399 amino acids long) is mostly extracellular and contains only two transmembrane domains plus a pore-forming motif which resembles that of potassium channels. The P2x receptor thus defines a new family of ligand-gated ion channels. PMID:7523951

  1. The unliganded long isoform of estrogen receptor beta stimulates brain ryanodine receptor single channel activity alongside with cytosolic Ca2+

    PubMed Central

    Rybalchenko, Volodymyr; Grillo, Michael A.; Gastinger, Matthew J.; Rybalchenko, Nataliya; Payne, Andrew J.; Koulen, Peter

    2010-01-01

    Ca2+ release from intracellular stores mediated by endoplasmic reticulum membrane ryanodine receptors (RyR) plays a key role in activating and synchronizing downstream Ca2+-dependent mechanisms, in different cells varying from apoptosis to nuclear transcription and development of defensive responses. Recently discovered, atypical “non-genomic” effects mediated by estrogen receptors (ER) include rapid Ca2+ release upon estrogen exposure in conditions implicitly suggesting involvement of RyRs. In the present study, we report various levels of co-localization between RyR type 2 (RyR2) and ER type β (ERβ) in the neuronal cell line HT-22, indicating a possible functional interaction. Electrophysiological analyses revealed a significant increase in single channel ionic currents generated by mouse brain RyRs after application of the soluble monomer of the long form ERβ (ERβ1). The effect was due to a strong increase in open probability of RyR higher open channel sublevels at cytosolic [Ca2+] concentrations of 100 nM, suggesting a synergistic action of ERβ1 and Ca2+ in RyR activation, and a potential contribution to Ca2+-induced Ca2+ release rather than to basal intracellular Ca2+ concentration level at rest. This RyR/ERβ interaction has potential effects on cellular physiology, including roles of shorter ERβ isoforms and modulation of the RyR/ERβ complexes by exogenous estrogens. PMID:19899956

  2. Channel Gating Dependence on Pore Lining Helix Glycine Residues in Skeletal Muscle Ryanodine Receptor.

    PubMed

    Mei, Yingwu; Xu, Le; Mowrey, David D; Mendez Giraldez, Raul; Wang, Ying; Pasek, Daniel A; Dokholyan, Nikolay V; Meissner, Gerhard

    2015-07-10

    Type 1 ryanodine receptors (RyR1s) release Ca(2+) from the sarcoplasmic reticulum to initiate skeletal muscle contraction. The role of RyR1-G4934 and -G4941 in the pore-lining helix in channel gating and ion permeation was probed by replacing them with amino acid residues of increasing side chain volume. RyR1-G4934A, -G4941A, and -G4941V mutant channels exhibited a caffeine-induced Ca(2+) release response in HEK293 cells and bound the RyR-specific ligand [(3)H]ryanodine. In single channel recordings, significant differences in the number of channel events and mean open and close times were observed between WT and RyR1-G4934A and -G4941A. RyR1-G4934A had reduced K(+) conductance and ion selectivity compared with WT. Mutations further increasing the side chain volume at these positions (G4934V and G4941I) resulted in reduced caffeine-induced Ca(2+) release in HEK293 cells, low [(3)H]ryanodine binding levels, and channels that were not regulated by Ca(2+) and did not conduct Ca(2+) in single channel measurements. Computational predictions of the thermodynamic impact of mutations on protein stability indicated that although the G4934A mutation was tolerated, the G4934V mutation decreased protein stability by introducing clashes with neighboring amino acid residues. In similar fashion, the G4941A mutation did not introduce clashes, whereas the G4941I mutation resulted in intersubunit clashes among the mutated isoleucines. Co-expression of RyR1-WT with RyR1-G4934V or -G4941I partially restored the WT phenotype, which suggested lessening of amino acid clashes in heterotetrameric channel complexes. The results indicate that both glycines are important for RyR1 channel function by providing flexibility and minimizing amino acid clashes. PMID:25998124

  3. Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic.

    PubMed

    Galzi, J L; Devillers-Thiéry, A; Hussy, N; Bertrand, S; Changeux, J P; Bertrand, D

    1992-10-01

    Introduction by site-directed mutagenesis of three amino acids from the MII segment of glycine or gamma-aminobutyric acid (GABAA) receptors into the MII segment of alpha 7 nicotinic receptor was sufficient to convert a cation-selective channel into an anion-selective channel gated by acetylcholine. A critical mutation was the insertion of an uncharged residue at the amino-terminal end of MII, stressing the importance of protein geometrical constraints on ion selectivity. PMID:1383829

  4. Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons

    PubMed Central

    Kim, Sang Hoon; Lee, Youngseok; Akitake, Bradley; Woodward, Owen M.; Guggino, William B.; Montell, Craig

    2010-01-01

    Mammalian sweet, bitter, and umami taste is mediated by a single transduction pathway that includes a phospholipase C (PLC)β and one cation channel, TRPM5. However, in insects such as the fruit fly, Drosophila melanogaster, it is unclear whether different tastants, such as bitter compounds, are sensed in gustatory receptor neurons (GRNs) through one or multiple ion channels, as the cation channels required in insect GRNs are unknown. Here, we set out to explore additional sensory roles for the Drosophila TRPA1 channel, which was known to function in thermosensation. We found that TRPA1 was expressed in GRNs that respond to aversive compounds. Elimination of TRPA1 had no impact on the responses to nearly all bitter compounds tested, including caffeine, quinine, and strychnine. Rather, we found that TRPA1 was required in a subset of avoidance GRNs for the behavioral and electrophysiological responses to aristolochic acid. TRPA1 did not appear to be activated or inhibited directly by aristolochic acid. We found that elimination of the same PLC that leads to activation of TRPA1 in thermosensory neurons was also required in the TRPA1-expressing GRNs for avoiding aristolochic acid. Given that mammalian TRPA1 is required for responding to noxious chemicals, many of which cause pain and injury, our analysis underscores the evolutionarily conserved role for TRPA1 channels in chemical avoidance. PMID:20404155

  5. Brain-derived neurotrophic factor rapidly increases NMDA receptor channel activity through Fyn-mediated phosphorylation.

    PubMed

    Xu, Fei; Plummer, Mark R; Len, Guo-Wei; Nakazawa, Takanobu; Yamamoto, Tadashi; Black, Ira B; Wu, Kuo

    2006-11-22

    Brain-derived neurotrophic factor (BDNF) is a potent modulator of hippocampal synaptic plasticity. Previously, we found that one of the targets of BDNF modulation is NR2B-containing NMDA receptors. Furthermore, exposure to the trophin rapidly increases NMDA receptor activity and enhances tyrosine phosphorylation of NR2B in cortical and hippocampal postsynaptic densities (PSDs), potentially linking receptor phosphorylation to synaptic plasticity. To define the specific NR2B residue(s) regulated by BDNF, we focused on tyrosine 1472, phosphorylation of which increases after LTP. BDNF rapidly increased phosphorylation in cortical PSDs. The tyrosine kinase Fyn is critical since BDNF-dependent phosphorylation was abolished in Fyn knockout mice. Single-channel patch clamp recordings showed that Fyn is required for the increase in NMDA receptor activity elicited by BDNF. Collectively, our results suggest that BDNF enhances phosphorylation of NR2B tyrosine 1472 through activation of Fyn, leading to alteration of NMDA receptor activity and increased synaptic transmission. PMID:17045972

  6. Antibody probe study of Ca2+ channel regulation by interdomain interaction within the ryanodine receptor.

    PubMed Central

    Kobayashi, Shigeki; Yamamoto, Takeshi; Parness, Jerome; Ikemoto, Noriaki

    2004-01-01

    N-terminal and central domains of ryanodine receptor 1 (RyR1), where many reported malignant hyperthermia (MH) mutations are localized, represent putative channel regulatory domains. Recent domain peptide (DP) probe studies led us to the hypothesis that these domains interact to stabilize the closed state of channel (zipping), while weakening of domain-domain interactions (unzipping) by mutation de-stabilizes the channel, making it leaky to Ca2+ or sensitive to the agonists of RyR1. As shown previously, DP1 (N-terminal domain peptide) and DP4 (central domain peptide) produced MH-like channel activation/sensitization effects, presumably by peptide binding to sites critical to stabilizing domain-domain interactions and resultant loss of conformational constraints. Here we report that polyclonal anti-DP1 and anti-DP4 antibodies also produce MH-like channel activation and sensitization effects as evidenced by about 4-fold enhancement of high affinity [3H]ryanodine binding to RyR1 and by a significant left-shift of the concentration-dependence of activation of sarcoplasmic reticulum Ca2+ release by polylysine. Fluorescence quenching experiments demonstrate that the accessibility of a DP4-directed, conformationally sensitive fluorescence probe linked to the RyR1 N-terminal domain is increased in the presence of domain-specific antibodies, consistent with the view that these antibodies produce unzipping of interacting domains that are of hindered accessibility to the surrounding aqueous environment. Our results suggest that domain-specific antibody binding induces a conformational change resulting in channel activation, and are consistent with the hypothesis that interacting N-terminal and central domains are intimately involved in the regulation of RyR1 channel function. PMID:15027895

  7. Prolactin stimulates cell proliferation through a long form of prolactin receptor and K+ channel activation.

    PubMed Central

    Van Coppenolle, Fabien; Skryma, Roman; Ouadid-Ahidouch, Halima; Slomianny, Christian; Roudbaraki, Morad; Delcourt, Philippe; Dewailly, Etienne; Humez, Sandrine; Crépin, Alexandre; Gourdou, Isabelle; Djiane, Jean; Bonnal, Jean-Louis; Mauroy, Brigitte; Prevarskaya, Natalia

    2004-01-01

    PRL (prolactin) has been implicated in the proliferation and differentiation of numerous tissues, including the prostate gland. However, the PRL-R (PRL receptor) signal transduction pathway, leading to the stimulation of cell proliferation, remains unclear and has yet to be mapped. The present study was undertaken to develop a clear understanding of the mechanisms involved in this pathway and, in particular, to determine the role of K(+) channels. We used androgen-sensitive prostate cancer (LNCaP) cells whose proliferation is known to be stimulated by PRL. Reverse transcriptase PCR analysis showed that LNCaP cells express a long form of PRL-R, but do not produce its intermediate isoform. Patch-clamp techniques showed that the application of 5 nM PRL increased both the macroscopic K(+) current amplitude and the single K(+)-channel open probability. This single-channel activity increase was reduced by the tyrosine kinase inhibitors genistein, herbimycin A and lavandustine A, thereby indicating that tyrosine kinase phosphorylation is required in PRL-induced K(+) channel stimulation. PRL enhances p59( fyn ) phosphorylation by a factor of 2 after a 10 min application in culture. In addition, where an antip59( fyn ) antibody is present in the patch pipette, PRL no longer increases K(+) current amplitude. Furthermore, the PRL-stimulated proliferation is inhibited by the K(+) channel inhibitors alpha-dendrotoxin and tetraethylammonium. Thus, as K(+) channels are known to be involved in LNCaP cell proliferation, we suggest that K(+) channel modulation by PRL, via p59( fyn ) pathway, is the primary ionic event in PRL signal transduction, triggering cell proliferation. PMID:14565846

  8. Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells.

    PubMed

    Forostyak, Oksana; Butenko, Olena; Anderova, Miroslava; Forostyak, Serhiy; Sykova, Eva; Verkhratsky, Alexei; Dayanithi, Govindan

    2016-05-01

    Adherent, fibroblastic cells from different tissues are thought to contain subsets of tissue-specific stem/progenitor cells (often called mesenchymal stem cells). These cells display similar cell surface characteristics based on their fibroblastic nature, but also exhibit differences in molecular phenotype, growth rate, and their ability to differentiate into various cell phenotypes. The mechanisms underlying these differences remain poorly understood. We analyzed Ca(2+) signals and membrane properties in rat adipose-derived stromal cells (ADSCs) and bone marrow stromal cells (BMSCs) in basal conditions, and then following a switch into medium that contains factors known to modify their character. Modified ADSCs (mADSCs) expressed L-type Ca(2+) channels whereas both L- and P/Q- channels were operational in mBMSCs. Both mADSCs and mBMSCs possessed functional endoplasmic reticulum Ca(2+) stores, expressed ryanodine receptor-1 and -3, and exhibited spontaneous [Ca(2+)]i oscillations. The mBMSCs expressed P2X7 purinoceptors; the mADSCs expressed both P2X (but not P2X7) and P2Y (but not P2Y1) receptors. Both types of stromal cells exhibited [Ca(2+)]i responses to vasopressin (AVP) and expressed V1 type receptors. Functional oxytocin (OT) receptors were, in contrast, expressed only in modified ADSCs and BMSCs. AVP and OT-induced [Ca(2+)]i responses were dose-dependent and were blocked by their respective specific receptor antagonists. Electrophysiological data revealed that passive ion currents dominated the membrane conductance in ADSCs and BMSCs. Medium modification led to a significant shift in the reversal potential of passive currents from -40 to -50mV in cells in basal to -80mV in modified cells. Hence membrane conductance was mediated by non-selective channels in cells in basal conditions, whereas in modified medium conditions, it was associated with K(+)-selective channels. Our results indicate that modification of ADSCs and BMSCs by alteration in medium

  9. Insulin Excites Anorexigenic Proopiomelanocortin Neurons via Activation of Canonical Transient Receptor Potential Channels

    PubMed Central

    Qiu, Jian; Zhang, Chunguang; Borgquist, Amanda; Nestor, Casey C; Smith, Arik W.; Bosch, Martha A.; Ku, Stephen; Wagner, Edward J.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2014-01-01

    SUMMARY Proopiomelanocortin (POMC) neurons within the hypothalamic arcuate nucleus are vital anorexigenic neurons. Although both the leptin receptor and insulin receptor are coupled to activation of phosphatidylinositide3-kinase (PI3K) in POMC neurons, they are thought to have disparate actions on POMC excitability. Using whole-cell recording and selective pharmacological tools, we have found that similar to leptin, purified insulin depolarized POMC, and adjacent kisspeptin neurons via activation of TRPC5 channels, which are highly expressed in these neurons. In contrast, insulin hyperpolarized and inhibited NPY/AgRP neurons via activation of KATP channels. Moreover, Zn2+, which is found in insulin formulations at nanomolar concentrations, inhibited POMC neurons via activation of KATP channels. Finally as predicted, insulin given intracerebroventrically robustly inhibited food intake and activated c-fos expression in arcuate POMC neurons. Our results show that purified insulin excites POMC neurons in the arcuate nucleus, which we propose is a major mechanism by which insulin regulates energy homeostasis. PMID:24703699

  10. Polymodal Transient Receptor Potential Vanilloid (TRPV) Ion Channels in Chondrogenic Cells

    PubMed Central

    Szűcs Somogyi, Csilla; Matta, Csaba; Foldvari, Zsofia; Juhász, Tamás; Katona, Éva; Takács, Ádám Roland; Hajdú, Tibor; Dobrosi, Nóra; Gergely, Pál; Zákány, Róza

    2015-01-01

    Mature and developing chondrocytes exist in a microenvironment where mechanical load, changes of temperature, osmolarity and acidic pH may influence cellular metabolism. Polymodal Transient Receptor Potential Vanilloid (TRPV) receptors are environmental sensors mediating responses through activation of linked intracellular signalling pathways. In chondrogenic high density cultures established from limb buds of chicken and mouse embryos, we identified TRPV1, TRPV2, TRPV3, TRPV4 and TRPV6 mRNA expression with RT-PCR. In both cultures, a switch in the expression pattern of TRPVs was observed during cartilage formation. The inhibition of TRPVs with the non-selective calcium channel blocker ruthenium red diminished chondrogenesis and caused significant inhibition of proliferation. Incubating cell cultures at 41 °C elevated the expression of TRPV1, and increased cartilage matrix production. When chondrogenic cells were exposed to mechanical load at the time of their differentiation into matrix producing chondrocytes, we detected increased mRNA levels of TRPV3. Our results demonstrate that developing chondrocytes express a full palette of TRPV channels and the switch in the expression pattern suggests differentiation stage-dependent roles of TRPVs during cartilage formation. As TRPV1 and TRPV3 expression was altered by thermal and mechanical stimuli, respectively, these are candidate channels that contribute to the transduction of environmental stimuli in chondrogenic cells. PMID:26262612

  11. Modulation of nociceptive ion channels and receptors via protein-protein interactions: implications for pain relief

    PubMed Central

    Rouwette, Tom; Avenali, Luca; Sondermann, Julia; Narayanan, Pratibha; Gomez-Varela, David; Schmidt, Manuela

    2015-01-01

    In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles. PMID:26039491

  12. IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels.

    PubMed

    Harmar, Anthony J; Hills, Rebecca A; Rosser, Edward M; Jones, Martin; Buneman, O Peter; Dunbar, Donald R; Greenhill, Stuart D; Hale, Valerie A; Sharman, Joanna L; Bonner, Tom I; Catterall, William A; Davenport, Anthony P; Delagrange, Philippe; Dollery, Colin T; Foord, Steven M; Gutman, George A; Laudet, Vincent; Neubig, Richard R; Ohlstein, Eliot H; Olsen, Richard W; Peters, John; Pin, Jean-Philippe; Ruffolo, Robert R; Searls, David B; Wright, Mathew W; Spedding, Michael

    2009-01-01

    The IUPHAR database (IUPHAR-DB) integrates peer-reviewed pharmacological, chemical, genetic, functional and anatomical information on the 354 nonsensory G protein-coupled receptors (GPCRs), 71 ligand-gated ion channel subunits and 141 voltage-gated-like ion channel subunits encoded by the human, rat and mouse genomes. These genes represent the targets of approximately one-third of currently approved drugs and are a major focus of drug discovery and development programs in the pharmaceutical industry. IUPHAR-DB provides a comprehensive description of the genes and their functions, with information on protein structure and interactions, ligands, expression patterns, signaling mechanisms, functional assays and biologically important receptor variants (e.g. single nucleotide polymorphisms and splice variants). In addition, the phenotypes resulting from altered gene expression (e.g. in genetically altered animals or in human genetic disorders) are described. The content of the database is peer reviewed by members of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR); the data are provided through manual curation of the primary literature by a network of over 60 subcommittees of NC-IUPHAR. Links to other bioinformatics resources, such as NCBI, Uniprot, HGNC and the rat and mouse genome databases are provided. IUPHAR-DB is freely available at http://www.iuphar-db.org. PMID:18948278

  13. Delineation of the functional properties and the mechanism of action of TMPPAA, an allosteric agonist and positive allosteric modulator of 5-HT3 receptors.

    PubMed

    Gasiorek, Agnes; Trattnig, Sarah M; Ahring, Philip K; Kristiansen, Uffe; Frølund, Bente; Frederiksen, Kristen; Jensen, Anders A

    2016-06-15

    We have previously identified a novel class of 5-hydroxytryptamine type 3 receptor (5-HT3R) agonists sharing little structural similarity with orthosteric 5-HT3R ligands (Jørgensen et al., 2011). In the present study we have elucidated the functional characteristics and the mechanism of action of one of these compounds, trans-3-(4-methoxyphenyl)-N-(pentan-3-yl)acrylamide (TMPPAA). In electrophysiological recordings TMPPAA was found to be a highly-efficacious partial agonist equipotent with 5-HT at the 5-HT3A receptor (5-HT3AR) expressed in COS-7 cells and somewhat less potent at the receptor expressed in Xenopus oocytes. The desensitization kinetics of TMPPAA-evoked currents were very different from those mediated by 5-HT. Moreover, repeated TMPPAA applications resulted in progressive current run-down and persistent non-responsiveness of the receptor to TMPPAA, but not to 5-HT. In addition to its direct activation, TMPPAA potentiated 5-HT-mediated 5-HT3AR signalling, and the allosteric link between the two binding sites was corroborated by the analogous ability of 5-HT to potentiate TMPPAA-evoked responses. The agonism and potentiation exerted by TMPPAA at a chimeric α7-nACh/5-HT3A receptor suggested that the ligand acts through the transmembrane domain of 5-HT3AR, a notion further substantiated by its functional properties at chimeric and mutant human/murine 5-HT3ARs. A residue in the transmembrane helix 4 of 5-HT3A was identified as an important molecular determinant for the different agonist potencies exhibited by TMPPAA at human and murine 5-HT3ARs. In conclusion, TMPPAA is a novel allosteric agonist and positive allosteric modulator of 5-HT3Rs, and its aberrant signalling characteristics compared to 5-HT at the 5-HT3AR underline the potential in Cys-loop receptor modulation and activation through allosteric sites. PMID:27086281

  14. Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells.

    PubMed

    Dietrich, Alexander; Chubanov, Vladimir; Kalwa, Hermann; Rost, Benjamin R; Gudermann, Thomas

    2006-12-01

    Smooth muscle cells (SMC) are essential components of many tissues of the body. Ion channels regulate their membrane potential, the intracellular Ca(2+) concentration ([Ca(2+)](i)) and their contractility. Among the ion channels expressed in SMC cation channels of the transient receptor potential (TRP) superfamily allow the entry of Na(+), Ca(2+) and Mg(2+). Members of the TRP superfamily are essential constituents of tonically active channels (TAC), receptor-operated channels (ROC), store-operated channels (SOC) and stretch-activated channels (SAC). This review focusses on TRP channels (TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, TRPC7, TRPV2, TRPV4, TRPM4, TRPM7, TRPP2) whose physiological functions in SMC were dissected by downregulating channel activity in isolated tissues or by the analysis of gene-deficient mouse models. Their possible functional role and physiological regulation as homomeric or heteromeric channels in SMC are discussed. Moreover, TRP channels may also be responsible for pathophysiological processes involving SMC-like airway hyperresponsiveness and pulmonary hypertension. Therefore, they present important drug targets for future pharmacological interventions. PMID:16842858

  15. Distribution of transient receptor potential channels in the rat carotid chemosensory pathway.

    PubMed

    Buniel, Maria C F; Schilling, William P; Kunze, Diana L

    2003-09-22

    Glomus cells in the carotid body respond to decreases in oxygen tension of the blood and transmit this sensory information in the carotid sinus nerve to the brain via neurons in the petrosal ganglion. G-protein-coupled membrane receptors linked to phospholipase C may play an important role in this response through the activation of the cation channels formed by the transient receptor potential (TRP) proteins. In the present study, expression of TRPC proteins in the rat carotid body and petrosal ganglion was examined using immunohistochemical techniques. TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7 were present in neurons throughout the ganglion. TRPC1 was expressed in only 28% of petrosal neurons, and of this population, 45% were tyrosine hydroxylase (TH)-positive, accounting for essentially all the TH-expressing neurons in the ganglion. Because TH-positive neurons project to the carotid body, this result suggests that TRPC1 is selectively associated with the chemosensory pathway. Confocal images through the carotid body showed that TRPC1/3/4/5/6 proteins localize to the carotid sinus nerve fibers, some of which were immunoreactive to an anti-neurofilament (NF) antibody cocktail. TRPC1 and TRPC3 were present in both NF-positive and NF-negative fibers, whereas TPRC4, TRPC5, and TRPC6 expression was primarily localized to NF-negative fibers. Only TRPC1 and TRPC4 were localized in the afferent nerve terminals that encircle individual glomus cells. TRPC7 was not expressed in sensory fibers. All the TRPC proteins studied were present in type I glomus cells. Although their role as receptor-activated cation channels in the chemosensory pathway is yet to be established, the presence of TRPC channels in glomus cells and sensory nerves of the carotid body suggests a role in facilitating and/or sustaining the hypoxic response. PMID:12900933

  16. The Transient Receptor Potential Vanilloid-1 Channel in Thermoregulation: A Thermosensor It Is Not

    PubMed Central

    Almeida, Maria C.; Garami, Andras; Steiner, Alexandre A.; Norman, Mark H.; Morrison, Shaun F.; Nakamura, Kazuhiro; Burmeister, Jeffrey J.; Nucci, Tatiane B.

    2009-01-01

    The development of antagonists of the transient receptor potential vanilloid-1 (TRPV1) channel as pain therapeutics has revealed that these compounds cause hyperthermia in humans. This undesirable on-target side effect has triggered a surge of interest in the role of TRPV1 in thermoregulation and revived the hypothesis that TRPV1 channels serve as thermosensors. We review literature data on the distribution of TRPV1 channels in the body and on thermoregulatory responses to TRPV1 agonists and antagonists. We propose that two principal populations of TRPV1-expressing cells have connections with efferent thermoeffector pathways: 1) first-order sensory (polymodal), glutamatergic dorsal-root (and possibly nodose) ganglia neurons that innervate the abdominal viscera and 2) higher-order sensory, glutamatergic neurons presumably located in the median preoptic hypothalamic nucleus. We further hypothesize that all thermoregulatory responses to TRPV1 agonists and antagonists and thermoregulatory manifestations of TRPV1 desensitization stem from primary actions on these two neuronal populations. Agonists act primarily centrally on population 2; antagonists act primarily peripherally on population 1. We analyze what roles TRPV1 might play in thermoregulation and conclude that this channel does not serve as a thermosensor, at least not under physiological conditions. In the hypothalamus, TRPV1 channels are inactive at common brain temperatures. In the abdomen, TRPV1 channels are tonically activated, but not by temperature. However, tonic activation of visceral TRPV1 by nonthermal factors suppresses autonomic cold-defense effectors and, consequently, body temperature. Blockade of this activation by TRPV1 antagonists disinhibits thermoeffectors and causes hyperthermia. Strategies for creating hyperthermia-free TRPV1 antagonists are outlined. The potential physiological and pathological significance of TRPV1-mediated thermoregulatory effects is discussed. PMID:19749171

  17. In vitro and in vivo evaluation of polymethylene tetraamine derivatives as NMDA receptor channel blockers.

    PubMed

    Saiki, Ryotaro; Yoshizawa, Yuki; Minarini, Anna; Milelli, Andrea; Marchetti, Chiara; Tumiatti, Vincenzo; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei

    2013-07-01

    The biological activities of six symmetrically substituted 2-methoxy-benzyl polymethylene tetraamines (1-4) and diphenylethyl polymethylene tetraamines (5 and 6) as N-methyl-D-aspartate (NMDA) receptor channel blockers, were evaluated in vitro and in vivo. Although all compounds exhibited stronger channel block activities in comparison to memantine in Xenopus oocytes voltage clamped at -70 mV, only compound 2 (0.4 mg/kg intravenous injection) decreased the size of brain infarction in a photochemically induced thrombosis model mice at the same extent of memantine (10mg/kg intravenous injection). Other compounds (1, 3, 4, 5 and 6) did not decrease the size of brain infarction significantly due to the limited injection doses. The present study suggests that compound 2 could represent a valuable lead compound to design low toxicity polyamines for clinical use against stroke. PMID:23692871

  18. Evidence for the transport of glutathione through ryanodine receptor channel type 1.

    PubMed Central

    Bánhegyi, Gábor; Csala, Miklós; Nagy, Gábor; Sorrentino, Vincenzo; Fulceri, Rosella; Benedetti, Angelo

    2003-01-01

    In the present study, we have investigated the role of RyR1 (ryanodine receptor calcium channel type 1) in glutathione (GSH) transport through the sarcoplasmic reticulum (SR) membrane of skeletal muscles. Lanthanum chloride, a prototypic blocker of cation channels, inhibited the influx and efflux of GSH in SR vesicles. Using a rapid-filtration-based assay and lanthanum chloride as a transport blocker, an uptake of radiolabelled GSH into SR vesicles was observed. Pretreatment of SR vesicles with the RyR1 antagonists Ruthenium Red and ryanodine as well as with lanthanum chloride blocked the GSH uptake. An SR-like GSH uptake appeared in microsomes obtained from an HEK-293 (human embryonic kidney 293) cell line after transfection of RyR1. These observations strongly suggest that RyR1 mediates GSH transport through the SR membranes of skeletal muscles. PMID:14519101

  19. Differential localization of putative amino acid receptors in taste buds of the channel catfish, Ictalurus punctatus.

    PubMed

    Finger, T E; Bryant, B P; Kalinoski, D L; Teeter, J H; Böttger, B; Grosvenor, W; Cagan, R H; Brand, J G

    1996-09-01

    The taste system of catfish, having distinct taste receptor sites for L-alanine and L-arginine, is highly sensitive to amino acids. A previously described monoclonal antibody (G-10), which inhibits L-alanine binding to a partial membrane fraction (P2) derived from catfish (Ictalurus punctatus) taste epithelium, was found in Western blots to recognize a single band, at apparent MW of 113,000 D. This MW differs from the apparent MW for the presumed arginine receptor identified previously by PHA-E lectin affinity. In order to test whether PHA-E lectin actually reacts with the arginine-receptor, reconstituted membrane proteins partially purified by PHA-E affinity were used in artificial lipid bilayers. These reconstituted channels exhibited L-arginine-activated activity similar to that found in taste cell membranes. Accordingly, we utilized the PHA-E lectin and G-10 antibody as probes to differentially localize the L-alanine and L-arginine binding sites on the apical surface of catfish taste buds. Each probe labels numerous, small (0.5-1.0 micron) patches within the taste pore of each taste bud. This observation suggests that each bud is not tuned to a single taste substance, but contains putative receptor sites for both L-arginine and L-alanine. Further, analysis of double-labeled tissue reveals that the PHA-E and G-10 sites tend to be separate within each taste pore. These findings imply that in catfish, individual taste cells preferentially express receptors to either L-arginine or L-alanine. In addition, PHA-E binds to the apices of solitary chemoreceptor cells in the epithelium, indicating that this independent chemoreceptor system may utilize some receptor sites similar to those in taste buds. PMID:8876468

  20. Endovanilloids. Putative endogenous ligands of transient receptor potential vanilloid 1 channels.

    PubMed

    Van Der Stelt, Mario; Di Marzo, Vincenzo

    2004-05-01

    Endovanilloids are defined as endogenous ligands of the transient receptor potential vanilloid type 1 (TRPV1) protein, a nonselective cation channel that belongs to the large family of TRP ion channels, and is activated by the pungent ingredient of hot chilli peppers, capsaicin. TRPV1 is expressed in some nociceptor efferent neurons, where it acts as a molecular sensor of noxious heat and low pH. However, the presence of these channels in various regions of the central nervous system, where they are not likely to be targeted by these noxious stimuli, suggests the existence of endovanilloids. Three different classes of endogenous lipids have been found recently that can activate TRPV1, i.e. unsaturated N-acyldopamines, lipoxygenase products of arachidonic acid and the endocannabinoid anandamide with some of its congeners. To classify a molecule as an endovanilloid, the compound should be formed or released in an activity-dependent manner in sufficient amounts to evoke a TRPV1-mediated response by direct activation of the channel. To control TRPV1 signaling, endovanilloids should be inactivated within a short time-span. In this review, we will discuss, for each of the proposed endogenous ligands of TRPV1, their ability to act as endovanilloids in light of the criteria mentioned above. PMID:15128293

  1. A dual role of transient receptor potential melastatin 2 channel in cytotoxicity induced by silica nanoparticles

    PubMed Central

    Yu, Peilin; Li, Jin; Jiang, Jialin; Zhao, Zunquan; Hui, Zhaoyuan; Zhang, Jun; Zheng, Yifan; Ling, Daishun; Wang, Lie; Jiang, Lin-Hua; Luo, Jianhong; Zhu, Xinqiang; Yang, Wei

    2015-01-01

    Silica nanoparticles (NPs) have remarkable applications. However, accumulating evidence suggests NPs can cause cellular toxicity by inducing ROS production and increasing intracellular Ca2+ ([Ca2+]i), but the underlying molecular mechanism is largely unknown. Transient receptor potential melastatin 2 (TRPM2) channel is known to be a cellular redox potential sensor that provides an important pathway for increasing the [Ca2+]i under oxidative stress. In this study, we examined the role of TRPM2 channel in silica NPs-induced oxidative stress and cell death. By quantitation of cell viability, ROS production, [Ca2+]i, and protein identification, we showed that TRPM2 channel is required for ROS production and Ca2+ increase induced by silica NPs through regulating NADPH oxidase activity in HEK293 cells. Strikingly, HEK293 cells expressing low levels of TRPM2 were more susceptible to silica NPs than those expressing high levels of TRPM2. Macrophages from young mice showed significantly lower TRPM2 expression than those from senescent mice and had significantly lower viability after silica NPs exposure than those from senescent ones. Taken together, these findings demonstrate for the first time that TRPM2 channel acts as an oxidative stress sensor that plays a dual role in silica NPs-induced cytotoxicity by differentially regulating the NADPH oxidase activity and ROS generation. PMID:26656285

  2. Human odontoblasts express transient receptor protein and acid-sensing ion channel mechanosensor proteins.

    PubMed

    Solé-Magdalena, Antonio; Revuelta, Enrique G; Menénez-Díaz, Ivan; Calavia, Marta G; Cobo, Teresa; García-Suárez, Olivia; Pérez-Piñera, Pablo; De Carlos, Felix; Cobo, Juan; Vega, Jose A

    2011-05-01

    Diverse proteins of the denegerin/epithelial sodium channel (DEG/ENa(+) C) superfamily, in particular those belonging to the acid-sensing ion channel (ASIC) family, as well as some members of the transient receptor protein (TRP) channel, function as mechanosensors or may be required for mechanosensation in a diverse range of species and cell types. Therefore, we investigated the putative mechanosensitive function of human odontoblasts using immunohistochemistry to detect ENa(+) C subunits (α, β, and γ) and ASIC (1, 2, 3, and 4) proteins, as well as TRPV4, in these cells. Positive and specific immunoreactivity in the odontoblast soma and/or processes was detected for all proteins studied except α-ENa(+) C. The intensity of immunostaining was high for β-ENa(+) C and ASIC2, whereas it was low for ASIC1, ASIC3, γ-ENa(+) C, and TRPV4, being absent for α-ENa(+) C and ASIC4. These results suggest that human odontoblasts in situ express proteins related to mechanosensitive channels that probably participate in the mechanisms involved in teeth sensory transmission. PMID:20836083

  3. A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue.

    PubMed

    Li, Wei; Feng, Zhaoyang; Sternberg, Paul W; Xu, X Z Shawn

    2006-03-30

    The nematode Caenorhabditis elegans is commonly used as a genetic model organism for dissecting integration of the sensory and motor systems. Despite extensive genetic and behavioural analyses that have led to the identification of many genes and neural circuits involved in regulating C. elegans locomotion behaviour, it remains unclear whether and how somatosensory feedback modulates motor output during locomotion. In particular, no stretch receptors have been identified in C. elegans, raising the issue of whether stretch-receptor-mediated proprioception is used by C. elegans to regulate its locomotion behaviour. Here we have characterized TRP-4, the C. elegans homologue of the mechanosensitive TRPN channel. We show that trp-4 mutant worms bend their body abnormally, exhibiting a body posture distinct from that of wild-type worms during locomotion, suggesting that TRP-4 is involved in stretch-receptor-mediated proprioception. We show that TRP-4 acts in a single neuron, DVA, to mediate its function in proprioception, and that the activity of DVA can be stimulated by body stretch. DVA both positively and negatively modulates locomotion, providing a unique mechanism whereby a single neuron can fine-tune motor activity. Thus, DVA represents a stretch receptor neuron that regulates sensory-motor integration during C. elegans locomotion. PMID:16572173

  4. Evolution of Pentameric Ligand-Gated Ion Channels: Pro-Loop Receptors

    PubMed Central

    Jaiteh, Mariama; Taly, Antoine; Hénin, Jérôme

    2016-01-01

    Pentameric ligand-gated ion channels (pLGICs) are ubiquitous neurotransmitter receptors in Bilateria, with a small number of known prokaryotic homologues. Here we describe a new inventory and phylogenetic analysis of pLGIC genes across all kingdoms of life. Our main finding is a set of pLGIC genes in unicellular eukaryotes, some of which are metazoan-like Cys-loop receptors, and others devoid of Cys-loop cysteines, like their prokaryotic relatives. A number of such “Cys-less” receptors also appears in invertebrate metazoans. Together, those findings draw a new distribution of pLGICs in eukaryotes. A broader distribution of prokaryotic channels also emerges, including a major new archaeal taxon, Thaumarchaeota. More generally, pLGICs now appear nearly ubiquitous in major taxonomic groups except multicellular plants and fungi. However, pLGICs are sparsely present in unicellular taxa, suggesting a high rate of gene loss and a non-essential character, contrasting with their essential role as synaptic receptors of the bilaterian nervous system. Multiple alignments of these highly divergent sequences reveal a small number of conserved residues clustered at the interface between the extracellular and transmembrane domains. Only the “Cys-loop” proline is absolutely conserved, suggesting the more fitting name “Pro loop” for that motif, and “Pro-loop receptors” for the superfamily. The infered molecular phylogeny shows a Cys-loop and a Cys-less clade in eukaryotes, both containing metazoans and unicellular members. This suggests new hypotheses on the evolutionary history of the superfamily, such as a possible origin of the Cys-loop cysteines in an ancient unicellular eukaryote. Deeper phylogenetic relationships remain uncertain, particularly around the split between bacteria, archaea, and eukaryotes. PMID:26986966

  5. Canonical transient receptor potential TRPC7 can function as both a receptor- and store-operated channel in HEK-293 cells.

    PubMed

    Lièvremont, Jean-Philippe; Bird, Gary St J; Putney, James W

    2004-12-01

    Previous studies on the activation mechanism of canonical transient receptor potential (TRPC) channels have often produced conflicting conclusions. All seven have been shown to be activated by phospholipase C (PLC)-coupled receptors, but TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, and TRPC7 have also been proposed to function as store-operated channels.(1)1Although PLC activation inevitably leads to activation of store-operated channels, in this report when we refer to PLC-activated channels, we mean those channels that are specifically activated by PLC independently of store depletion. In the case of TRPC3, the expression environment and the expression level appear to determine the mode of regulation. Evidence of a close structural relative of TRPC3, TRPC7, has been presented that this channel is activated by receptor activation or by store depletion. On the basis of previous findings for TRPC3, we reasoned that subtle differences in structure or expression conditions might account for the apparent distinct gating mechanisms of TRPC7. To reexamine the mode of activation of TRPC7, we stably and transiently transfected human embryonic kidney (HEK)-293 cells with cDNA encoding for human TRPC7. We examined the ability of a PLC-activating agonist and an intracellular Ca(2+) store-depleting agent to activate these channels. Our findings demonstrate that when transiently expressed in HEK-293 cells, TRPC7 forms channels that are activated by PLC-stimulating agonists, but not by Ca(2+) store depletion. However, when stably expressed in HEK-293 cells, TRPC7 can be activated by either Ca(2+) store depletion or PLC activation. To our knowledge, this is the first demonstration of a channel protein that can be activated by both receptor- and store-operated modes in the same cell. In addition, the results reconcile the apparently conflicting findings of other laboratories regarding TRPC7 regulation. PMID:15342342

  6. Blockade by 2,2',2''-tripyridine of the nicotinic acetylcholine receptor channels in embryonic Xenopus muscle cells.

    PubMed Central

    Hsu, K. S.; Fu, W. M.; Lin-Shiau, S. Y.

    1993-01-01

    1. The effects of 2,2',2''-tripyridine on the nicotinic acetylcholine (ACh) receptor channels were studied in the cultured myocytes of 1-day-old Xenopus embryos. 2. 2,2',2''-Tripyridine depressed the amplitude of iontophoretic ACh-induced current at a low frequency of 0.7 Hz stimulation and it not only decreased the initial responses but also enhanced the run-down of ACh-induced current at higher frequency stimulation of 7 Hz and 30 Hz. 3. Single ACh channel recordings showed that 2,2',2''-tripyridine decreased the channel conductance, the opening frequency and mean open time of both types of low- and high-conductance channels. 4. These results suggest that the blocking actions of 2,2',2''-tripyridine on ACh receptor channels in the skeletal muscle may contribute to the depression of the nerve-evoked contraction of the mouse diaphragm as reported previously. PMID:7693275

  7. Co-expression of non-selective cation channels of the transient receptor potential canonical family in central aminergic neurones.

    PubMed

    Sergeeva, Olga A; Korotkova, Tatiana M; Scherer, Annette; Brown, Ritchie E; Haas, Helmut L

    2003-06-01

    The mammalian transient receptor potential canonical (TRPC) group of channels is a family of Ca2+-permeable cation channels that are activated following receptor-mediated stimulation of different isoforms of phospholipase C. In vitro TRPC proteins can form hetero- or homo-oligomeric channels. We performed single-cell RT-PCR analysis to reveal the co-expression of seven TRPC channels in identified rat aminergic neurones. All serotonergic neurones of the dorsal raphe (DR), the majority of histaminergic (tuberomamillary nucleus; TMN) and dopaminergic cells of the ventral tegmental area (VTA), as well as some GABAergic neurones from the VTA, expressed at least one variant of TRPC channels. No TRPC channel expression was found in the locus coeruleus. In raphe neurones TRPC6 and TRPC5 mRNAs occurred most frequently. In VTA and TMN co-expression of TRPC4 with TRPC5 and TRPC6 with TRPC7 was not found in individual neurones (in contrast to the whole-brain regions). Their co-expression in non-neuronal cells could not be excluded. The neonatal TRPC3 subunit was rarely seen. In DR, but not in the other nuclei studied, the expression of orexin receptors correlated with the expression of TRPC channels. We conclude that several TRPC channel populations exist in individual neurones and that their subunit co-expression pattern is region and cell-type specific. PMID:12787073

  8. Electrophysiological evidence for the broad distribution of specific odorant receptor molecules across the olfactory organ of the channel catfish.

    PubMed

    Chang, Q; Caprio, J

    1996-10-01

    To determine if there is a spatial segregation of responsiveness to odorants within the olfactory epithelium, microelectrode recordings were obtained from small populations of olfactory receptor neurons located across different lamellar sensory regions of the olfactory organ of the channel catfish, lctalurus punctatus. Stimuli included L-alanine, L-methionine, L-arginine hydrochloride, L-glutamic acid, ATP and a mixture of bile salts-odorants previously reported to stimulate independent receptor sites in aquatic species. The peak integrated olfactory receptor responses at each recording site were standardized to the response to L-alanine. The relative stimulatory effectiveness of the stimuli was preserved across the 10 olfactory lamellae recording sites. These data support previous molecular biological results of a broad distribution of receptor neurons that express specific receptor genes across the olfactory organ of the channel catfish. PMID:8902281

  9. GABA-A Receptor Inhibition of Local Calcium Signaling in Spines and Dendrites

    PubMed Central

    Marlin, Joseph J.

    2014-01-01

    Cortical interneurons activate GABA-A receptors to rapidly control electrical and biochemical signaling at pyramidal neurons. Different populations of interneurons are known to uniquely target the soma and dendrites of pyramidal neurons. However, the ability of these interneurons to inhibit Ca2+ signaling at spines and dendrites is largely unexplored. Here we use whole-cell recordings, two-photon microscopy, GABA uncaging and optogenetics to study dendritic inhibition at layer 5 (L5) pyramidal neurons in slices of mouse PFC. We first show that GABA-A receptors strongly inhibit action potential (AP)-evoked Ca2+ signals at both spines and dendrites. We find robust inhibition over tens of milliseconds that spreads along the dendritic branch. However, we observe no difference in the amount of inhibition at neighboring spines and dendrites. We then examine the influence of interneurons expressing parvalbumin (PV), somatostatin (SOM), or 5HT3a receptors. We determine that these populations of interneurons make unique contacts onto the apical and basal dendrites of L5 pyramidal neurons. We also show that SOM and 5HT3a but not PV interneurons potently inhibit AP Ca2+ signals via GABA-A receptors at both spines and dendrites. These findings reveal how multiple interneurons regulate local Ca2+ signaling in pyramidal neurons, with implications for cortical function and disease. PMID:25429132

  10. Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones.

    PubMed Central

    Traynelis, S F; Cull-Candy, S G

    1991-01-01

    1. N-Methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), and kainate receptor channels have been examined in rat cerebellar granule neurones with whole-cell and single-channel patch-clamp methods. The whole-cell peak and steady-state aspartate and NMDA currents were reversibly inhibited by extracellular protons; the IC50 (concentration producing half-maximal inhibition) for the full H+ inhibition curve for NMDA receptors corresponded to pH 7.3, near to physiological pH. (S)-AMPA and kainate whole-cell currents were inhibited by protons with IC50 values that corresponded to pH 6.3 and 5.7, respectively; these receptors were, however, insensitive to H+ concentrations that inhibited NMDA receptor responses. 2. Proton inhibition of the NMDA, AMPA and kainate receptor-mediated responses was voltage insensitive, and did not involve a shift in reversal potential. 3. The EC50 (concentration producing half-maximal effect) for aspartate calculated from the whole-cell dose-response curve was similar at pH 6.8 and 7.6 (mean 11.2 microM). Although the EC50 for glycine potentiation of the aspartate response was marginally increased from 273 nM at pH 7.6 to 373 nM at pH 6.8, H+ inhibition was not overcome by up to 1 mM-external glycine. Inhibiting concentrations of H+ appropriate for AMPA and kainate receptors did not markedly alter the EC50 values determined for (S)-AMPA (3.4 microM) and kainate (114 microM) at pH 7.2. 4. Treatment of neurones with N-ethylmaleimide, iodoacetic acid, dithiothretiol or diethyl pyrocarbonate did not influence proton inhibition of NMDA receptor responses. However, treatment with diethyl pyrocarbonate, which potentiated aspartate responses, appeared to reduce the effectiveness of Zn2+ inhibition of NMDA receptors. 5. Desensitization of whole-cell NMDA and (S)-AMPA currents was studied with ionophoretic application of agonist to the cell soma. Whole-cell aspartate currents desensitized rapidly, irrespective of the

  11. Transient receptor potential canonical channels are required for in vitro endothelial tube formation.

    PubMed

    Antigny, Fabrice; Girardin, Nathalie; Frieden, Maud

    2012-02-17

    In endothelial cells Ca(2+) entry is an essential component of the Ca(2+) signal that takes place during processes such as cell proliferation or angiogenesis. Ca(2+) influx occurs via the store-operated Ca(2+) entry pathway, involving stromal interaction molecule-1 (STIM1) and Orai1, but also through channels gated by second messengers like the transient receptor potential canonical (TRPC) channels. The human umbilical vein-derived endothelial cell line EA.hy926 expressed STIM1 and Orai1 as well as several TRPC channels. By invalidating each of these molecules, we showed that TRPC3, TRPC4, and TRPC5 are essential for the formation of tubular structures observed after EA.hy926 cells were plated on Matrigel. On the contrary, the silencing of STIM1 or Orai1 did not prevent tubulogenesis. Soon after being plated on Matrigel, the cells displayed spontaneous Ca(2+) oscillations that were strongly reduced by treatment with siRNA against TRPC3, TRPC4, or TRPC5, but not siRNA against STIM1 or Orai1. Furthermore, we showed that cell proliferation was reduced upon siRNA treatment against TRPC3, TRPC5, and Orai1 channels, whereas the knockdown of STIM1 had no effect. On primary human umbilical vein endothelial cells, TRPC1, TRPC4, and STIM1 are involved in tube formation, whereas Orai1 has no effect. These data showed that TRPC channels are essential for in vitro tubulogenesis, both on endothelial cell line and on primary endothelial cells. PMID:22203682

  12. Proteolytic fragmentation of inositol 1,4,5-trisphosphate receptors: a novel mechanism regulating channel activity?

    PubMed

    Wang, Liwei; Alzayady, Kamil J; Yule, David I

    2016-06-01

    Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are a family of ubiquitously expressed intracellular Ca(2+) release channels. Regulation of channel activity by Ca(2+) , nucleotides, phosphorylation, protein binding partners and other cellular factors is thought to play a major role in defining the specific spatiotemporal characteristics of intracellular Ca(2+) signals. These properties are, in turn, believed pivotal for the selective and specific physiological activation of Ca(2+) -dependent effectors. IP3 Rs are also substrates for the intracellular cysteine proteases, calpain and caspase. Cleavage of the IP3 R has been proposed to play a role in apoptotic cell death by uncoupling regions important for IP3 binding from the channel domain, leaving an unregulated leaky Ca(2+) pore. Contrary to this hypothesis, we demonstrate following proteolysis that N- and C-termini of IP3 R1 remain associated, presumably through non-covalent interactions. Further, we show that complementary fragments of IP3 R1 assemble into tetrameric structures and retain their ability to be regulated robustly by IP3 . While peptide continuity is clearly not necessary for IP3 -gating of the channel, we propose that cleavage of the IP3 R peptide chain may alter other important regulatory events to modulate channel activity. In this scenario, stimulation of the cleaved IP3 R may support distinct spatiotemporal Ca(2+) signals and activation of specific effectors. Notably, in many adaptive physiological events, the non-apoptotic activities of caspase and calpain are demonstrated to be important, but the substrates of the proteases are poorly defined. We speculate that proteolytic fragmentation may represent a novel form of IP3 R regulation, which plays a role in varied adaptive physiological processes. PMID:26486785

  13. Cholinergic and ghrelinergic receptors and KCNQ channels in the medial PFC regulate the expression of palatability

    PubMed Central

    Parent, Marc A.; Amarante, Linda M.; Swanson, Kyra; Laubach, Mark

    2015-01-01

    The medial prefrontal cortex (mPFC) is a key brain region for the control of consummatory behavior. Neuronal activity in this area is modulated when rats initiate consummatory licking and reversible inactivations eliminate reward contrast effects and reduce a measure of palatability, the duration of licking bouts. Together, these data suggest the hypothesis that rhythmic neuronal activity in the mPFC is crucial for the control of consummatory behavior. The muscarinic cholinergic system is known to regulate membrane excitability and control low-frequency rhythmic activity in the mPFC. Muscarinic receptors (mAChRs) act through KCNQ (Kv7) potassium channels, which have recently been linked to the orexigenic peptide ghrelin. To understand if drugs that act on KCNQ channels within the mPFC have effects on consummatory behavior, we made infusions of several muscarinic drugs (scopolamine, oxotremorine, physostigmine), the KCNQ channel blocker XE-991, and ghrelin into the mPFC and evaluated their effects on consummatory behavior. A consistent finding across all drugs was an effect on the duration of licking bouts when animals consume solutions with a relatively high concentration of sucrose. The muscarinic antagonist scopolamine reduced bout durations, both systemically and intra-cortically. By contrast, the muscarinic agonist oxotremorine, the cholinesterase inhibitor physostigmine, the KCNQ channel blocker XE-991, and ghrelin all increased the durations of licking bouts when infused into the mPFC. Our findings suggest that cholinergic and ghrelinergic signaling in the mPFC, acting through KCNQ channels, regulates the expression of palatability. PMID:26578914

  14. Expression and function of transient receptor potential channels in the female bovine reproductive tract.

    PubMed

    Ghavideldarestani, Maryam; Atkin, Stephen L; Leese, Henry J; Sturmey, Roger G

    2016-07-15

    The epithelium lining the oviduct is critical for early reproductive events, many of which are mediated via intracellular calcium ions. Despite this, little is known about the regulation of calcium homeostasis in the oviductal epithelium. Epithelial transient receptor potential channels (TRPCs) modulate calcium flux in other tissues, and their expression and functional regulation have therefore been examined using the bovine oviduct as a model for the human. The effects of FSH, LH, 17β-estradiol, and progesterone on TRPCs expression and intracellular calcium flux were determined. Transient receptor potential channels 1, 2, 3, 4, and 6 were expressed in the bovine reproductive tract, and their gene expression varied throughout the estrous cycle. In more detailed studies undertaken on TRPC1 and 6, we show that protein expression varied through the estrus cycle; specifically, 17β-estradiol, FSH, and LH individually and in combination upregulated TRPC1 and 6 expression in cultured bovine oviduct epithelial cells although progesterone antagonized these effects. Functional studies showed changes in calcium mobilization in bovine oviduct epithelial cells were dependent on TRPCs. In conclusion, TRPC1, 2, 3, 4, and 6 are present in the epithelium lining the bovine oviduct, and TRPC1 and 6 vary through the estrous cycle suggesting an important role in early reproductive function. PMID:27001231

  15. Roles of channels and receptors in the growth cone during PNS axonal regeneration.

    PubMed

    Shim, Sangwoo; Ming, Guo-li

    2010-05-01

    Neurons in the peripheral nervous system (PNS) are known to maintain a regenerative capacity and will normally regenerate their axons within a permissive growth environment. The success of regeneration in the PNS largely depends on maintenance of the supportive basal lamina membrane, efficient removal of axonal and myelin debris by macrophages and Schwann cells, expression of neurotrophic factors by Schwann cells, and up-regulation of the intrinsic growth program in PNS neurons. The PNS regenerative process is well characterized through initial Wallerian degeneration followed by axonal sprouting, formation of neuronal growth cones, active axonal growth to the target, and finally sensory and motor functional recovery. The initiation and maintenance of active growth cones during peripheral nerve regeneration recapitulate many aspects of early neural development and are achieved through the activation of complex signaling cascades, involving various receptors, channels, cytoplasmic signaling cascades, as well as transcriptional and translational programs. This review focuses on roles of cell surface ion channels and receptors in the growth cone during Wallerian degeneration and axon regeneration in the PNS. PMID:19833126

  16. Inhibitory effect of oleanolic acid from the rhizomes of Cyperus rotundus on transient receptor potential vanilloid 1 channel.

    PubMed

    Nam, Joo Hyun; Lee, Dong-Ung

    2015-01-01

    Cyperus rotundus is used as an analgesic and sedative in oriental medicine and has been reported to exhibit antinociceptive and anti-inflammatory effects. On the other hand, the transient receptor potential vanilloid 1 channel is a nonselective cation channel that senses various noxious chemical and thermal stimuli. However, it has recently been reported that the epidermally expressed transient receptor potential vanilloid 1 channel is involved in heat- and UV-induced skin aging. The aim of this study was to evaluate whether C. rotundus extract and its constituents can inhibit this channel. Ethylacetate and hexane fractions of the methanol extract were found to partially inhibit transient receptor potential vanilloid 1 channel activity, and at a concentration of 90 µM, oleanolic acid, which was one of three constituents isolated from the ethylacetate fraction, inhibited this activity by 61.4 ± 8.0 %. This is first electrophysiological study to be conducted on the effects of C. rotundus extract and its constituents on the transient receptor potential vanilloid 1 channel. The results obtained provide insight of the potential therapeutic effects of C. rotundus in the contexts of analgesia and UV-induced photoaging. PMID:25402944

  17. Identification of both GABAA receptors and voltage-activated Na+ channels as molecular targets of anticonvulsant α-asarone

    PubMed Central

    Wang, Ze-Jun; Levinson, Simon R.; Sun, Liqin; Heinbockel, Thomas

    2014-01-01

    Alpha (α)-asarone, a major effective component isolated from the Chinese medicinal herb Acorus tatarinowii, is clinically used as medication for treating epilepsy, cough, bronchitis, and asthma. In the present study, we demonstrated that α-asarone targets central nervous system GABAA receptor as well as voltage-gated Na+ channels. Using whole-cell patch-clamp recording, α-asarone inhibited spontaneous firing of output neurons, mitral cells (MCs), in mouse olfactory bulb brain slice preparation and hyperpolarized the membrane potential of MCs. The inhibitory effect of α-asarone persisted in the presence of ionotropic glutamate receptor blockers but was eliminated after adding a GABAA receptor blocker, suggesting that GABAA receptors mediated the inhibition of MCs by α-asarone. This hypothesis was supported by the finding that α-asarone evoked an outward current, but did not influence inhibitory postsynaptic currents (IPSCs). In addition to inhibiting spontaneous firing, α-asarone also inhibited the Nav1.2 channel, a dominant rat brain Na+ channel subtype. The effects of α-asarone on a defined Nav1.2 were characterized using transfected cells that stably expressed the Nav1.2 channel isoform. α-Asarone displayed strong tonic inhibition of Nav1.2 currents in a concentration- and membrane potential-dependent fashion. α-Asarone reduced channel availability in steady-state inactivation protocols by enhancing or stabilizing Na+ channel inactivation. Both Na+ channel blockade and activation of GABAA receptors provide a possible mechanism for the known anti-epileptic effects of α-asarone. It also suggests that α-asarone could benefit patients with cough possibly through inhibiting a Na+ channel subtype to inhibit peripheral and/or central sensitization of cough reflexes. PMID:24653701

  18. Association of Rgs7/Gβ5 complexes with Girk channels and GABAB receptors in hippocampal CA1 pyramidal neurons.

    PubMed

    Fajardo-Serrano, Ana; Wydeven, Nicole; Young, Daniele; Watanabe, Masahiko; Shigemoto, Ryuichi; Martemyanov, Kirill A; Wickman, Kevin; Luján, Rafael

    2013-12-01

    In the hippocampus, signaling through G protein-coupled receptors is modulated by Regulators of G protein signaling (Rgs) proteins, which act to stimulate the rate of GTP hydrolysis, and consequently, G protein inactivation. The R7-Rgs subfamily selectively deactivates the G(i/o)-class of Gα subunits that mediate the action of several GPCRs. Here, we used co-immunoprecipitation, electrophysiology and immunoelectron microscopy techniques to investigate the formation of macromolecular complexes and spatial relationship of Rgs7/Gβ5 complexes and its prototypical signaling partners, the GABAB receptor and Girk channel. Co-expression of recombinant GABAB receptors and Girk channels in combination with co-immunoprecipitation experiments established that the Rgs7/Gβ5 forms complexes with GABAB receptors or Girk channels. Using electrophysiological experiments, we found that GABAB -Girk current deactivation kinetics was markedly faster in cells coexpressing Rgs7/Gβ5. At the electron microscopic level, immunolabeling for Rgs7 and Gβ5 proteins was found primarily in the dendritic layers of the hippocampus and showed similar distribution patterns. Immunoreactivity was mostly localized along the extrasynaptic plasma membrane of dendritic shafts and spines of pyramidal cells and, to a lesser extent, to that of presynaptic terminals. Quantitative analysis of immunogold particles for Rgs7 and Gβ5 revealed an enrichment of the two proteins around excitatory synapses on dendritic spines, virtually identical to that of Girk2 and GABAB1 . These data support the existence of macromolecular complexes composed of GABAB receptor-G protein-Rgs7-Girk channels in which Rgs7 and Gβ5 proteins may preferentialy modulate GABAB receptor signaling through the deactivation of Girk channels on dendritic spines. In contrast, Rgs7 and Girk2 were associated but mainly segregated from GABAB1 in dendritic shafts, where Rgs7/Gβ5 signaling complexes might modulate Girk-dependent signaling via a

  19. Association of Rgs7/Gβ5 complexes with Girk channels and GABAB receptors in hippocampal CA1 pyramidal neurons

    PubMed Central

    Fajardo-Serrano, Ana; Wydeven, Nicole; Young, Daniele; Watanabe, Masahiko; Shigemoto, Ryuichi; Martemyanov, Kirill A.; Wickman, Kevin; Luján, Rafael

    2013-01-01

    In the hippocampus, signalling through G protein-coupled receptors is modulated by Regulators of G protein Signalling (Rgs) proteins, which act to stimulate the rate of GTP hydrolysis, and consequently, G protein inactivation. The R7-Rgs subfamily selectively deactivates the Gi/o-class of Gα subunits that mediate the action of several GPCRs. Here, we used co-immunoprecipitation, electrophysiology and immunoelectron microscopy techniques to investigate the formation of macromolecular complexes and spatial relationship of Rgs7/Gβ5 complexes and its prototypical signalling partners, the GABAB receptor and Girk channel. Co-expression of recombinant GABAB receptors and Girk channels in combination with co-immunoprecipitation experiments established that the Rgs7/Gβ5 forms complexes with GABAB receptors or Girk channels. Using electrophysiological experiments, we found that GABAB-Girk current deactivation kinetics was markedly faster in cells co-expressing Rgs7/Gβ5. At the electron microscopic level, immunolabelling for Rgs7 and Gβ5 proteins was found primarily in the dendritic layers of the hippocampus and showed similar distribution patterns. Immunoreactivity was mostly localized along the extrasynaptic plasma membrane of dendritic shafts and spines of pyramidal cells and, to a lesser extent, to that of presynaptic terminals. Quantitative analysis of immunogold particles for Rgs7 and Gβ5 revealed an enrichment of the two proteins around excitatory synapses on dendritic spines, virtually identical to that of Girk2 and GABAB1. These data support the existence of macromolecular complexes composed of GABAB receptor-G protein-Rgs7-Girk channels, in which Rgs7 and Gβ5 proteins may preferentially modulate GABAB receptor signalling through the deactivation of Girk channels on dendritic spines. In contrast, Rgs7 and Girk2 were associated but mainly segregated from GABAB1 in dendritic shafts, where Rgs7/Gβ5 signalling complexes might modulate Girk-dependent signalling

  20. Ca(2+)-permeable AMPA and NMDA receptor channels in basket cells of rat hippocampal dentate gyrus.

    PubMed Central

    Koh, D S; Geiger, J R; Jonas, P; Sakmann, B

    1995-01-01

    1. Glutamate receptor (GluR) channels were studied in basket cells in the dentate gyrus of rat hippocampal slices. Basket cells were identified by their location, dendritic morphology and high frequency of action potentials generated during sustained current injection. 2. Dual-component currents were activated by fast application of glutamate to outside-out membrane patches isolated from basket cell somata (10 microM glycine, no external Mg2+). The fast component was selectively blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), the slow component by D-2-amino-5-phosphonopentanoic acid (D-AP5). This suggests that the two components were mediated by alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR)/kainate receptor and N-methyl-D-aspartate receptor (NMDAR) channels, respectively. The mean ratio of the peak current of the NMDAR component to that of the AMPAR/kainate receptor component was 0.22 (1 ms pulses of 10 mM glutamate). 3. The AMPAR/kainate receptor component, which was studied in isolation in the presence of D-AP5, was identified as AMPAR mediated on the basis of the preferential activation by AMPA as compared with kainate, the weak desensitization of kainate-activated currents, the cross-desensitization between AMPA and kainate, and the reduction of desensitization by cyclothiazide. 4. Deactivation of basket cell AMPARs following 1 ms pulses of glutamate occurred with a time constant (tau) of 1.2 +/- 0.1 ms (mean +/- S.E.M.). During 100 ms glutamate pulses AMPARs desensitized with a tau of 3.7 +/- 0.2ms. 5. The peak current-voltage (I-V) relation of AMPAR-mediated currents in Na(+)-rich extracellular solution showed a reversal potential of -4.0 +/- 2.6 mV and was characterized by a a doubly rectifying shape. The conductance of single AMPAR channels was estimated as 22.6 +/- 1.6 pS using non-stationary fluctuation analysis. AMPARs expressed in hippocampal basket cells were highly Ca2+ permeable (PCa/PK = 1.79). 6. NMDARs in

  1. Cannabidiol enhances microglial phagocytosis via transient receptor potential (TRP) channel activation

    PubMed Central

    Hassan, Samia; Eldeeb, Khalil; Millns, Paul J; Bennett, Andrew J; Alexander, Stephen P H; Kendall, David A

    2014-01-01

    Background and Purpose Microglial cells are important mediators of the immune response in the CNS. The phytocannabinoid, cannabidiol (CBD), has been shown to have central anti-inflammatory properties, and the purpose of the present study was to investigate the effects of CBD and other phytocannabinoids on microglial phagocytosis. Experimental Approach Phagocytosis was assessed by measuring ingestion of fluorescently labelled latex beads by cultured microglial cells. Drug effects were probed using single-cell Ca2+ imaging and expression of mediator proteins by immunoblotting and immunocytochemistry. Key Results CBD (10 μM) enhanced bead phagocytosis to 175 ± 7% control. Other phytocannabinoids, synthetic and endogenous cannabinoids were without effect. The enhancement was dependent upon Ca2+ influx and was abolished in the presence of EGTA, the Ca2+ channel inhibitor SKF96365, the transient receptor potential (TRP) channel blocker ruthenium red, and the TRPV1 antagonists capsazepine and AMG9810. CBD produced a sustained increase in intracellular Ca2+ concentration in BV-2 microglia and this was abolished by ruthenium red. CBD rapidly increased the expression of TRPV2 and TRPV1 proteins and caused a translocation of TRPV2 to the cell membrane. Wortmannin blocked CBD enhancement of BV-2 cell phagocytosis, suggesting that it is mediated by PI3K signalling downstream of the Ca2+ influx. Conclusions and Implications The TRPV-dependent phagocytosis-enhancing effect of CBD suggests that pharmacological modification of TRPV channel activity could be a rational approach to treating neuroinflammatory disorders involving changes in microglial function and that CBD is a potential starting point for future development of novel therapeutics acting on the TRPV receptor family. PMID:24641282

  2. Endocannabinoids as regulators of transient receptor potential (TRP) channels: A further opportunity to develop new endocannabinoid-based therapeutic drugs.

    PubMed

    Di Marzo, V; De Petrocellis, L

    2010-01-01

    In the late 1990's, a series of experiments carried out independently in two laboratories led to establish an important connection between the function of the endocannabinoids, which, as exemplified in this special issue, is per se very complex and ubiquitous in animals, and that of the transient receptor potential (TRP) channels, a large family of plasma membrane cation channels involved in several mammalian and non-mammalian physiological and pathological conditions, overlapping only in part with those in which the cannabinoid receptors participate. These experiments were initially based on the observation that the endocannabinoid anandamide and the xenobiotic ligand of TRP channels of V1 type (TRPV1), capsaicin, are somehow chemically similar, both compounds being fatty acid amides, as are also synthetic activators of these channels and inhibitors of anandamide cellular re-uptake. As discussed in this article, the same type of "chemical thoughts" led to the discovery of N-arachidonoyl-dopamine, an endogenous ligand of TRPV1 channels that behaves also an endocannabinoid. The overlap between the ligand recognition properties of some TRP channels and proteins of the endocannabinoid system, namely the cannabinoid receptors and the proteins and enzymes catalyzing anandamide cellular re-uptake and hydrolysis, is being actively explored through the rational design and synthesis of new endocannabinoid-based drugs with multiple mechanisms of action. These aspects are discussed in this review article, together with the possible functional and pharmacological consequences of endocannabinoid-TRP channel interactions. PMID:20166923

  3. Regulation of the transient receptor potential channel TRPM3 by phosphoinositides

    PubMed Central

    Tóth, Balázs I.; Konrad, Maik; Ghosh, Debapriya; Mohr, Florian; Halaszovich, Christian R.; Leitner, Michael G.; Vriens, Joris

    2015-01-01

    The transient receptor potential (TRP) channel TRPM3 is a calcium-permeable cation channel activated by heat and by the neurosteroid pregnenolone sulfate (PregS). TRPM3 is highly expressed in sensory neurons, where it plays a key role in heat sensing and inflammatory hyperalgesia, and in pancreatic β cells, where its activation enhances glucose-induced insulin release. However, despite its functional importance, little is known about the cellular mechanisms that regulate TRPM3 activity. Here, we provide evidence for a dynamic regulation of TRPM3 by membrane phosphatidylinositol phosphates (PIPs). Phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2) and ATP applied to the intracellular side of excised membrane patches promote recovery of TRPM3 from desensitization. The stimulatory effect of cytosolic ATP on TRPM3 reflects activation of phosphatidylinositol kinases (PI-Ks), leading to resynthesis of PIPs in the plasma membrane. Various PIPs directly enhance TRPM3 activity in cell-free inside-out patches, with a potency order PI(3,4,5)P3 > PI(3,5)P2 > PI(4,5)P2 ≈ PI(3,4)P2 >> PI(4)P. Conversely, TRPM3 activity is rapidly and reversibly inhibited by activation of phosphatases that remove the 5-phosphate from PIPs. Finally, we show that recombinant TRPM3, as well as the endogenous TRPM3 in insuloma cells, is rapidly and reversibly inhibited by activation of phospholipase C–coupled muscarinic acetylcholine receptors. Our results reveal basic cellular mechanisms whereby membrane receptors can regulate TRPM3 activity. PMID:26123194

  4. Megacystis, mydriasis, and ion channel defect in mice lacking the α3 neuronal nicotinic acetylcholine receptor

    PubMed Central

    Xu, Wei; Gelber, Shari; Orr-Urtreger, Avi; Armstrong, Dawna; Lewis, Richard A.; Ou, Ching-Nan; Patrick, James; Role, Lorna; De Biasi, Mariella; Beaudet, Arthur L.

    1999-01-01

    The α3 subunit of the neuronal nicotinic acetylcholine receptor is widely expressed in autonomic ganglia and in some parts of the brain. The α3 subunit can form heteromultimeric ion channels with other α subunits and with β2 and β4 subunits, but its function in vivo is poorly understood. We prepared a null mutation for the α3 gene by deletion of exon 5 and found that homozygous (−/−) mice lacked detectable mRNA on Northern blotting. The −/− mice survive to birth but have impaired growth and increased mortality before and after weaning. The −/− mice have extreme bladder enlargement, dribbling urination, bladder infection, urinary stones, and widely dilated ocular pupils that do not contract in response to light. Detailed histological studies of −/− mice revealed no significant abnormalities in brain or peripheral tissues except urinary bladder, where inflammation was prominent. Ganglion cells and axons were present in bladder and bowel. Bladder strips from −/− mice failed to contract in response to 0.1 mM nicotine, but did contract in response to electrical field stimulation or carbamoylcholine. The number of acetylcholine-activated single-channel currents was severely reduced in the neurons of superior cervical ganglia in −/− mice with five physiologically distinguishable nicotinic acetylcholine receptor subtypes with different conductance and kinetic properties in wild-type mice, all of which were reduced in −/− mice. The findings in the α3-null mice suggest that this subunit is an essential component of the nicotinic receptors mediating normal function of the autonomic nervous system. The phenotype in −/− mice may be similar to the rare human genetic disorder of megacystis–microcolon–intestinal hypoperistalsis syndrome. PMID:10318955

  5. Canonical transient receptor potential 1 channel is involved in contractile function of glomerular mesangial cells.

    PubMed

    Du, Juan; Sours-Brothers, Sherry; Coleman, Rashadd; Ding, Min; Graham, Sarabeth; Kong, De-Hu; Ma, Rong

    2007-05-01

    Contractility of mesangial cells (MC) is tightly controlled by [Ca(2+)](i). Ca(2+) influx across the plasma membrane constitutes a major component of mesangial responses to vasoconstrictors. Canonical transient receptor potential 1 (TRPC1) is a Ca(2+)-permeable cation channel in a variety of cell types. This study was performed to investigate whether TRPC1 takes part in vasoconstrictor-induced mesangial contraction by mediating Ca(2+) entry. It was found that angiotensin II (AngII) evoked remarkable contraction of the cultured MC. Downregulation of TRPC1 using RNA interference significantly attenuated the contractile response. Infusion of AngII or endothelin-1 in rats caused a decrease in GFR. The GFR decline was significantly reduced by infusion of TRPC1 antibody that targets an extracellular domain in the pore region of TRPC1 channel. However, the treatment of TRPC1 antibody did not affect the AngII-induced vasopressing effect. Electrophysiologic experiments revealed that functional or biologic inhibition of TRPC1 significantly depressed AngII-induced channel activation. Fura-2 fluorescence-indicated that Ca(2+) entry in response to AngII stimulation was also dramatically inhibited by TRPC1 antibody and TRPC1-specific RNA interference. These results suggest that TRPC1 plays an important role in controlling contractile function of MC. Mediation of Ca(2+) entry might be the underlying mechanism for the TRPC1-associated MC contraction. PMID:17389736

  6. Transient receptor potential A1 channels: insights into cough and airway inflammatory disease.

    PubMed

    Belvisi, Maria G; Dubuis, Eric; Birrell, Mark A

    2011-10-01

    Cough is a common symptom of diseases such as asthma and COPD and also presents as a disease in its own right. Treatment options are limited; a recent meta-analysis concluded that over-the-counter remedies are ineffective, and there is increasing concern about their use in children. Transient receptor potential cation channel, subfamily A, member 1 (TRPA1) channels are nonselective cation channels that are activated by a range of natural products (eg, allyl isothiocyanate), a multitude of environmental irritants (eg, acrolein, which is present in air pollution, vehicle exhaust, and cigarette smoke), and inflammatory mediators (eg, cyclopentenone prostaglandins). TRPA1 is primarily expressed in small-diameter, nociceptive neurons where its activation probably contributes to the perception of noxious stimuli. Inhalational exposure to irritating gases, fumes, dusts, vapors, chemicals, and endogenous mediators can lead to the development of cough. The respiratory tract is innervated by primary sensory afferent nerves, which are activated by mechanical and chemical stimuli. Recent data suggest that activation of TRPA1 on these vagal sensory afferents by these irritant substances could lead to central reflexes, including dyspnea, changes in breathing pattern, and cough, which contribute to the symptoms and pathophysiology of respiratory diseases. PMID:21972382

  7. Upregulation of Transient Receptor Potential Canonical Channels Contributes to Endotoxin-Induced Pulmonary Arterial Stenosis

    PubMed Central

    Chen, Gui-Lan; Jiang, Hongni; Zou, Fangdong

    2016-01-01

    Background Septic shock is a pathologic condition caused by endotoxin-producing bacteria, and often associated with severe pulmonary hypertension. Inflammation is a major systemic response to endotoxin; however, it is unknown whether endotoxin has a direct impact on pulmonary arteries that contributes to pathogenesis of pulmonary hypertension. Material/Methods Rat pulmonary arteries and primary pulmonary arterial smooth muscle cells (PASMCs) were cultured in vitro and treated with lipopolysaccharide (LPS) and blockers of transient receptor potential canonical (TRPC) channels. Neointimal growth and arterial stenosis were observed on cryosections of cultured pulmonary arteries. Proliferation of PASMCs was examined by a WST-1 (water-soluble tetrazolium salt) assay. Expression of TRPC genes in pulmonary arteries and PASMCs were detected and quantified by real-time polymerase chain reaction and Western blotting. Results LPS significantly induced neointimal growth and stenosis of pulmonary arteries and promoted proliferation of PASMCs. TRPC channel blockers 2-aminoethoxydiphenyl borate and SKF-96365 inhibited LPS-induced remodeling of pulmonary arteries and PASMC proliferation. Expression of TRPC1/3/4/6 was detected in pulmonary arteries and PASMCs. LPS treatment dramatically increased the expression of TRPC3 and TRPC4 at both messenger RNA and protein levels. Conclusions LPS stimulates stenosis of pulmonary arteries through enhancement of TRPC-mediated Ca2+ entry into PASMCs, which is caused by upregulation of TRPC3 and TRPC4 channels. PMID:27471122

  8. A mutational analysis of the acetylcholine receptor channel transmitter binding site.

    PubMed Central

    Akk, G; Zhou, M; Auerbach, A

    1999-01-01

    Mutagenesis and single-channel kinetic analysis were used to investigate the roles of four acetylcholine receptor channel (AChR) residues that are candidates for interacting directly with the agonist. The EC50 of the ACh dose-response curve was increased following alpha-subunit mutations Y93F and Y198F and epsilon-subunit mutations D175N and E184Q. Single-channel kinetic modeling indicates that the increase was caused mainly by a reduced gating equilibrium constant (Theta) in alphaY198F and epsilonD175N, by an increase in the equilibrium dissociation constant for ACh (KD) and a reduction in Theta in alphaY93F, and only by a reduction in KD in epsilonE184Q. This mutation altered the affinity of only one of the two binding sites and was the only mutation that reduced competition by extracellular K+. Additional mutations of epsilonE184 showed that K+ competition was unaltered in epsilonE184D and was virtually eliminated in epsilonE184K, but that neither of these mutations altered the intrinsic affinity for ACh. Thus there is an apparent electrostatic interaction between the epsilonE184 side chain and K+ ( approximately 1.7kBT), but not ACh+. The results are discussed in terms of multisite and induced-fit models of ligand binding to the AChR. PMID:9876135

  9. Spontaneous opening of the acetylcholine receptor channel in developing muscle cells from normal and dystrophic mice

    SciTech Connect

    Franco-Obregon, A.; Lansman, J.B.

    1995-12-31

    Single-channel activity was recorded from cell-attached patches on skeletal muscle cells isolated from wild-type mice and from mice carrying the dy or mdx mutations. Spontaneous openings of the nicotinic acetylcholine receptor channel (nAChR) were detected in virtually all recordings from either 4v/dy or dyl + myotubes. but only infrequently from wild-type or mdx myotubes. Spontaneous openings were also present in most recordings from undifferentiated myoblasts from all of the mouse strains studied. The biophysical properties of the spontaneous activity were similar to those of the embryonic form of the nAChR in the presence of acetylcholine (ACh). Examination of the single-channel currents evoked by low concentrations of ACh showed a reduced sensitivity to the agonist in the dystrophic dy and mdx myotubes. but not in wild- type myotubes. The results suggest that alterations in nAChR function are associated with the pathogenesis of muscular dystrophy in the dy mouse.

  10. A Model of the Putative Pore Region of the Cardiac Ryanodine Receptor Channel

    PubMed Central

    Welch, William; Rheault, Shana; West, Duncan J.; Williams, Alan J.

    2004-01-01

    Using the bacterial K+ channel KcsA as a template, we constructed models of the pore region of the cardiac ryanodine receptor channel (RyR2) monomer and tetramer. Physicochemical characteristics of the RyR2 model monomer were compared with the template, including homology, predicted secondary structure, surface area, hydrophobicity, and electrostatic potential. Values were comparable with those of KcsA. Monomers of the RyR2 model were minimized and assembled into a tetramer that was, in turn, minimized. The assembled tetramer adopts a structure equivalent to that of KcsA with a central pore. Characteristics of the RyR2 model tetramer were compared with the KcsA template, including average empirical energy, strain energy, solvation free energy, solvent accessibility, and hydrophobic, polar, acid, and base moments. Again, values for the model and template were comparable. The pores of KcsA and RyR2 have a common motif with a hydrophobic channel that becomes polar at both entrances. Quantitative comparisons indicate that the assembled structure provides a plausible model for the pore of RyR2. Movement of Ca2+, K+, and tetraethylammonium (TEA+) through the model RyR2 pore were simulated with explicit solvation. These simulations suggest that the model RyR2 pore is permeable to Ca2+ and K+ with rates of translocation greater for K+. In contrast, simulations indicate that tetraethylammonium blocks movement of metal cations. PMID:15454434

  11. In vivo responses of single olfactory receptor neurons in the channel catfish, Ictalurus punctatus.

    PubMed

    Kang, J; Caprio, J

    1995-01-01

    1. We report for the first time in any teleost, a quantitative in vivo study of recordings from single olfactory receptor neurons (ORNs) in the channel catfish, Ictalurus punctatus, with odorant stimuli. 2. Responses of 69 spontaneously active single ORNs were recorded simultaneously with the electroolfactogram (EOG). Recording times ranged from 10 to 72 min per receptor cell with an average of 24 +/- 15 (SD) min/cell. The averaged spontaneous frequency ranged from < 1 to 12 action potentials/s with a mean frequency of 4.7 +/- 2.5 action potentials/s. 3. Catfish ORNs responded to the odorant stimuli (amino acids, bile salts, and ATP) with either an excitation or suppression of the background neural activity. Suppressive responses were encountered more frequently than excitatory responses, suggesting that suppressive responses also play an important role in olfactory coding. 4. Excitatory and suppressive responses to the different odorants were elicited from the same ORN, suggesting that different olfactory receptor molecules and different transduction pathways exist in the same ORN. PMID:7714562

  12. The interaction domains of transient receptor potential canonical (TRPC)1/4 and TRPC1/5 heteromultimeric channels.

    PubMed

    Myeong, Jongyun; Ko, Juyeon; Hong, Chansik; Yang, Dongki; Lee, Kyu Pil; Jeon, Ju-Hong; So, Insuk

    2016-06-01

    Transient receptor potential canonical (TRPC) family contains a non-selective cation channel, and four TRPC subunits form a functional tetrameric channel. TRPC4/5 channels form not only the homotetrameric channel but also a heterotetrameric channel with TRPC1. We investigated the interaction domain required for TRPC1/4 or TRPC1/5 heteromultimeric channels using FRET and the patch-clamp technique. TRPC1 only localized at the plasma membrane (PM) when it was coexpressed with TRPC4 or TRPC5. The TRPC1/4 or TRPC1/5 heteromultimeric showed the typical outward rectifying I/V curve. When TRPC1 and TRPC4 form a heteromeric channel, the N-terminal coiled-coil domain (CCD) and C-terminal 725-745 region of TRPC1 interact with the N-terminal CCD and C-terminal 700-728 region of TRPC4. However, when TRPC1 and TRPC5 form a heteromeric channel, the N-terminal CCD and C-terminal 673-725 region of TRPC1 interact with the N-terminal CCD and C-terminal 707-735 region of TRPC5. In conclusion, the N-terminal CCD of TRPC channels is essential for the heteromultimeric structure of TRPC channels, whereas specific C-terminal regions are required for unique heteromerization between subgroups of TRPC channels. PMID:27131740

  13. Serotonin stimulates lateral habenula via activation of the post-synaptic serotonin 2/3 receptors and transient receptor potential channels.

    PubMed

    Zuo, Wanhong; Zhang, Yong; Xie, Guiqin; Gregor, Danielle; Bekker, Alex; Ye, Jiang-Hong

    2016-02-01

    There is growing interest on the role of the lateral habenula (LHb) in depression, because it closely and bilaterally connects with the serotoninergic raphe nuclei. The LHb sends glutamate efferents to the raphe nuclei, while it receives serotoninergic afferents, and expresses a high density of serotonin (5-HT) receptors. Recent studies suggest that 5-HT receptors exist both in the presynaptic and postsynaptic sites of LHb neurons, and activation of these receptors may have different effects on the activity of LHb neurons. The current study focused on the effect of 5-HT on the postsynaptic membrane. We found that 5-HT initiated a depolarizing inward current (I((5-HTi))) and accelerated spontaneous firing in ∼80% of LHb neurons in rat brain slices. I((5-HTi)) was also induced by the 5-HT uptake blocker citalopram, indicating activity of endogenous 5-HT. I((5-HTi)) was diminished by 5-HT(2/3) receptor antagonists (ritanserin, SB-200646 or ondansetron), and activated by the selective 5-HT(2/3) agonists 1-(3-Chlorophenyl) piperazine hydrochloride or 1-(3-Chlorophenyl) biguanide hydrochloride. Furthermore, I((5-HTi)) was attenuated by 2-Aminoethyl diphenylborinate, a blocker of transient receptor potential channels, and an IP3 receptor inhibitor, indicating the involvement of transient receptor potential channels. These results demonstrate that the reciprocal connection between the LHb and the 5-HT system highlights a key role for 5-HT stimulation of LHb neurons that may be important in the pathogenesis of depression. PMID:26471419

  14. Restricted usefulness of tetraethylammonium and 4-aminopyridine for the characterization of receptor-operated K+-channels.

    PubMed Central

    Drukarch, B.; Kits, K. S.; Leysen, J. E.; Schepens, E.; Stoof, J. C.

    1989-01-01

    1. Recently, we suggested that the D2-dopamine receptor involved in the inhibition of evoked [3H]-acetylcholine release from rat striatum is coupled to K+-channels. 2. In the present study, an attempt was made to elucidate further the role of these K+-channels, using the K+-channel blocking agents tetraethylammonium and 4-aminopyridine. With a superfusion method, the effects of both drugs on the D2-dopamine receptor-mediated inhibition of the electrically evoked release of [3H]-acetylcholine from rat striatal tissue slices was investigated. 3. Both tetraethylammonium (30 mM) and 4-aminopyridine (0.1 mM) significantly stimulated the electrically evoked release of [3H]-acetylcholine and completely abolished the effect of the selective D2-receptor agonist LY 171555 (1 microM) on evoked acetylcholine release. In addition, tetraethylammonium (0.03-30 mM) and 4-aminopyridine (0.003-1 mM) strongly increased the basal (non-evoked) release of radioactivity in a concentration-dependent manner. The results suggest that the effect of the drugs on the basal release of radioactivity and on the electrically evoked release of acetylcholine cannot exclusively be explained by their action on K+-channels. 4. Furthermore, with the use of a receptor binding assay, data were obtained on the affinity of tetraethylammonium and 4-aminopyridine for D2-receptors and various other neurotransmitter recognition sites. At concentrations in which both drugs are known to block K+-channels, they were found to inhibit the specific binding of selective radioligands to their respective recognition sites. 5. It is concluded that due to their 'side-effects', both tetraethylammonium and 4-aminopyridine are of only limited value in the investigation of the alleged interaction between neurotransmitter receptors and K+-channels. PMID:2553183

  15. D2 dopamine receptor activation of potassium channels is selectively decoupled by Galpha-specific GoLoco motif peptides.

    PubMed

    Webb, Christina K; McCudden, Christopher R; Willard, Francis S; Kimple, Randall J; Siderovski, David P; Oxford, Gerry S

    2005-03-01

    The GoLoco motif is a short polypeptide sequence found in G-protein signaling regulators such as regulator of G-protein signaling proteins type 12 and 14 and activator of G-protein signaling protein type 3. A unique property of the GoLoco motifs from these three proteins is their preferential interaction with guanosine diphosphate (GDP)-bound Galpha(i1), Galpha(i3) and, sometimes, Galpha(i2) subunits over Galpha(o) subunits. This interaction prevents both spontaneous guanine nucleotide release and reassociation of Galpha(i)-GDP with Gbetagamma. We utilized this property of the GoLoco motif to examine dopamine (D2 and D3) and somatostatin receptor coupling to G-protein-regulated inwardly rectifying potassium (GIRK) channels in mouse AtT20 cells. GoLoco motif peptides had no effect on either basal channel activity or the initial responses to agonists, suggesting that the GoLoco motif cannot disrupt pre-formed G-protein heterotrimers. GoLoco motif peptides did, however, interfere with human D2((short)) receptor coupling to GIRK channels as demonstrated by the progressively diminished responses after repeated agonist application. This behavior is consistent with some form of compartmentalization of D2 receptors and GIRK channels such that Gbetagamma subunits, freed by local receptor activation and prevented from reforming a heterotrimeric complex, are not functionally constrained within the receptor-channel complex and thus are unable to exert a persistent activating effect. In contrast, GoLoco motif peptides had no effect on either D3 or somatostatin coupling to GIRK channels. Our results suggest that GoLoco motif-based peptides will be useful tools in examining the specificity of G-protein-coupled receptor-effector coupling. PMID:15748159

  16. Evidence for glucagon-like peptide-1 receptor signaling to activate ATP-sensitive potassium channels in pancreatic beta cells.

    PubMed

    Kwon, Hye-Jung; Park, Hyun-Sun; Park, Sung-Hee; Park, Jae-Hyung; Shin, Su-Kyung; Song, Seung Eun; Hwang, Meeyul; Cho, Ho-Chan; Song, Dae-Kyu

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a gut peptide that promotes insulin release from pancreatic beta cells. GLP-1 has been shown to confer glucose-insensitive beta cells with glucose sensitivity by modulation of the activity of the ATP-sensitive potassium (KATP) channel. The channel closing effect of GLP-1, interacting with corresponding G-protein-coupled receptors, has been well established; however, to our knowledge, no study has shown whether GLP-1 directly induces activation of beta-cell KATP channels. Here, we aimed to evaluate whether the activation of beta-cell KATP channels by GLP-1 exists and affects intracellular Ca(2+) levels ([Ca(2+)]i). KATP channel activity was measured in isolated rat pancreatic beta cells by whole-cell perforated patch-clamp recordings with a diazoxide-containing pipette solution. Changes in [Ca(2+)]i and the subcellular localization of KATP channels were observed using the calcium-sensitive dye fura-4/AM and anti-Kir6.2 antibodies in INS-1 beta cells, respectively. To eliminate the well-known inhibitory effects of GLP-1 on KATP channel activity, channels were fully inhibited by pretreatment with methyl pyruvate and epigallocatechin-3-gallate. In the pretreated beta cells, GLP-1 and exendin-4 promptly activated the channels, reducing [Ca(2+)]i. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 blocked the effects of GLP-1 on channel activity. Moreover, phosphatidylinositol-3,4,5-trisphosphate mimicked the effects of GLP-1. These results suggested that beta-cell GLP-1 receptor signaling involved activation of KATP channels via a PI3K-dependent pathway. This alternative mechanism of GLP-1 function may act as a negative feedback pathway, modulating the glucose-dependent GLP-1 inhibition on KATP channel activity. PMID:26655814

  17. Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues.

    PubMed Central

    Burnashev, N; Villarroel, A; Sakmann, B

    1996-01-01

    1. Recombinant alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) subunits (GluR-A or GluR-B) and kainate receptor (KAR) subunit (GluR-6) in their unedited (Q)- and edited (R)-forms were expressed in HEK 293 cells. To estimate the dimensions of the narrow portion of these channels, biionic reversal potentials for organic cations of different mean diameters were determined with Cs+ as the internal reference ion. 2. Homomeric channels assembled from Q-form subunits were cation selective. The relation between the relative permeability and the mean size of different organic cations suggests that the diameter of the narrow portion of Q-form channels is approximately 0.78 nm for AMPAR and 0.75 nm for KAR channels. 3. Homomeric channels assembled from R-form subunits were permeant for anions and cations. When probed with CsC1 gradients the relative chloride permeability (PC1/PCs) was estimated as 0.14 for GluR-B(R) and 0.74 for GluR-6(R)-subunit channels. The permeability versus mean size relation for large cations measured with the weakly permeant F- as anion, indicates that for the R-form KAR channels the apparent pore diameter is close to 0.76 nm. 4. Heteromeric AMPAR and KAR channels co-assembled from Q- and R-form subunits were cation selective. The diameter of the narrow portion of these channels is estimated to be in the range between 0.70 and 0.74 nm. 5. The results indicated that the diameters of the narrow portion of AMPAR and KAR channels of different subunit composition and of widely different ion selectivity are comparable. Therefore, the differences in the anion versus cation selectivity, in Ca2+ permeability and in channel conductance are likely to be determined by the difference in charge density of the channel. PMID:8910205

  18. Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning.

    PubMed Central

    Heurteaux, C; Lauritzen, I; Widmann, C; Lazdunski, M

    1995-01-01

    Preconditioning with sublethal ischemia protects against neuronal damage after subsequent lethal ischemic insults in hippocampal neurons. A pharmacological approach using agonists and antagonists at the adenosine A1 receptor as well as openers and blockers of ATP-sensitive K+ channels has been combined with an analysis of neuronal death and gene expression of subunits of glutamate and gamma-aminobutyric acid receptors, HSP70, c-fos, c-jun, and growth factors. It indicates that the mechanism of ischemic tolerance involves a cascade of events including liberation of adenosine, stimulation of adenosine A1 receptors, and, via these receptors, opening of sulfonylurea-sensitive ATP-sensitive K+ channels. Images Fig. 2 Fig. 3 PMID:7753861

  19. Transient Receptor Potential Canonical Type 3 Channels Control the Vascular Contractility of Mouse Mesenteric Arteries

    PubMed Central

    Yeon, Soo-In; Kim, Joo Young; Yeon, Dong-Soo; Abramowitz, Joel; Birnbaumer, Lutz; Muallem, Shmuel; Lee, Young-Ho

    2014-01-01

    Transient receptor potential canonical type 3 (TRPC3) channels are non-selective cation channels and regulate intracellular Ca2+ concentration. We examined the role of TRPC3 channels in agonist-, membrane depolarization (high K+)-, and mechanical (pressure)-induced vasoconstriction and vasorelaxation in mouse mesenteric arteries. Vasoconstriction and vasorelaxation of endothelial cells intact mesenteric arteries were measured in TRPC3 wild-type (WT) and knockout (KO) mice. Calcium concentration ([Ca2+]) was measured in isolated arteries from TRPC3 WT and KO mice as well as in the mouse endothelial cell line bEnd.3. Nitric oxide (NO) production and nitrate/nitrite concentrations were also measured in TRPC3 WT and KO mice. Phenylephrine-induced vasoconstriction was reduced in TRPC3 KO mice when compared to that of WT mice, but neither high K+- nor pressure-induced vasoconstriction was altered in TRPC3 KO mice. Acetylcholine-induced vasorelaxation was inhibited in TRPC3 KO mice and by the selective TRPC3 blocker pyrazole-3. Acetylcholine blocked the phenylephrine-induced increase in Ca2+ ratio and then relaxation in TRPC3 WT mice but had little effect on those outcomes in KO mice. Acetylcholine evoked a Ca2+ increase in endothelial cells, which was inhibited by pyrazole-3. Acetylcholine induced increased NO release in TRPC3 WT mice, but not in KO mice. Acetylcholine also increased the nitrate/nitrite concentration in TRPC3 WT mice, but not in KO mice. The present study directly demonstrated that the TRPC3 channel is involved in agonist-induced vasoconstriction and plays important role in NO-mediated vasorelaxation of intact mesenteric arteries. PMID:25310225

  20. Apigenin, a plant-derived flavone, activates transient receptor potential vanilloid 4 cation channel

    PubMed Central

    Ma, Xin; He, Dongxu; Ru, Xiaochen; Chen, Yun; Cai, Yanfei; Bruce, Iain C; Xia, Qiang; Yao, Xiaoqiang; Jin, Jian

    2012-01-01

    BACKGROUND AND PURPOSE Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+-permeable channel with multiple modes of activation. Apigenin is a plant-derived flavone, which has potential preventive effects on the development of cardiovascular disease. We set out to explore the effects of apigenin on TRPV4 channel activity and its role in vasodilatation. EXPERIMENTAL APPROACH The effects of apigenin (0.01–30 µM) on TPRV4 channels were investigated in HEK293 cells over-expressing TRPV4, rat primary cultured mesenteric artery endothelial cells (MAECs) and isolated small mesenteric arterial segments using whole-cell patch clamp, fluorescent Ca2+ imaging, intracellular recording and pressure myography. KEY RESULTS Whole-cell patch clamp and fluorescent Ca2+ imaging in HEK cells over-expressing TRPV4 showed that apigenin concentration-dependently stimulated the TRPV4-mediated cation current and Ca2+ influx. In MAECs, apigenin stimulated Ca2+ influx in a concentration-dependent manner. These increases in cation current and Ca2+ influx were markedly inhibited by TRPV4-specific blockers and siRNAs. Furthermore, pressure myography and intracellular recording in small third-order mesenteric arteries showed that apigenin dose-dependently evoked smooth muscle cell membrane hyperpolarization and subsequent vascular dilatation, which were significantly inhibited by TRPV4-specific blockers. TRPV4 blocker or charybdotoxin (200 nM) plus apamin (100 nM) diminished the apigenin-induced dilatation. CONCLUSION AND IMPLICATIONS This is the first study to demonstrate the selective stimulation of TRPV4 by apigenin. Apigenin was found to activate TRPV4 channels in a dose-dependent manner in HEK cells over-expressing TRPV4 and in native endothelial cells. In rat small mesenteric arteries, apigenin acts on TRPV4 in endothelial cells to induce EDHF-mediated vascular dilatation. PMID:22049911

  1. Transient receptor potential channel ankyrin-1 is not a cold sensor for autonomic thermoregulation in rodents.

    PubMed

    de Oliveira, Cristiane; Garami, Andras; Lehto, Sonya G; Pakai, Eszter; Tekus, Valeria; Pohoczky, Krisztina; Youngblood, Beth D; Wang, Weiya; Kort, Michael E; Kym, Philip R; Pinter, Erika; Gavva, Narender R; Romanovsky, Andrej A

    2014-03-26

    The rodent transient receptor potential ankyrin-1 (TRPA1) channel has been hypothesized to serve as a temperature sensor for thermoregulation in the cold. We tested this hypothesis by using deletion of the Trpa1 gene in mice and pharmacological blockade of the TRPA1 channel in rats. In both Trpa1(-/-) and Trpa1(+/+) mice, severe cold exposure (8°C) resulted in decreases of skin and deep body temperatures to ∼8°C and 13°C, respectively, both temperatures being below the reported 17°C threshold temperature for TRPA1 activation. Under these conditions, Trpa1(-/-) mice had the same dynamics of body temperature as Trpa1(+/+) mice and showed no weakness in the tail skin vasoconstriction response or thermogenic response to cold. In rats, the effects of pharmacological blockade were studied by using two chemically unrelated TRPA1 antagonists: the highly potent and selective compound A967079, which had been characterized earlier, and the relatively new compound 43 ((4R)-1,2,3,4-tetrahydro-4-[3-(3-methoxypropoxy)phenyl]-2-thioxo-5H-indeno[1,2-d]pyrimidin-5-one), which we further characterized in the present study and found to be highly potent (IC50 against cold of ∼8 nm) and selective. Intragastric administration of either antagonist at 30 mg/kg before severe (3°C) cold exposure did not affect the thermoregulatory responses (deep body and tail skin temperatures) of rats, even though plasma concentrations of both antagonists well exceeded their IC50 value at the end of the experiment. In the same experimental setup, blocking the melastatin-8 (TRPM8) channel with AMG2850 (30 mg/kg) attenuated cold-defense mechanisms and led to hypothermia. We conclude that TRPA1 channels do not drive autonomic thermoregulatory responses to cold in rodents. PMID:24671991

  2. A Critical Role for the Transient Receptor Potential Channel Type 6 in Human Platelet Activation

    PubMed Central

    Conlon, Christine; Khasawneh, Fadi T.

    2015-01-01

    While calcium signaling is known to play vital roles in platelet function, the mechanisms underlying its receptor-operated calcium entry component (ROCE) remain poorly understood. It has been proposed, but never proven in platelets, that the canonical transient receptor potential channel-6 (TRPC6) mediates ROCE. Nonetheless, we have previously shown that the mouse TRPC6 regulates hemostasis, thrombogenesis by regulating platelet aggregation. In the present studies, we used a pharmacological approach to characterize the role of TRPC6 in human platelet biology. Thus, interestingly, we observed that a TRPC6 inhibitor exerted significant inhibitory effects on human platelet aggregation in a thromboxane receptor (TPR)-selective manner; no additional inhibition was observed in the presence of the calcium chelator BAPTA. This inhibitor also significantly inhibited human platelet secretion (dense and alpha granules), integrin IIb-IIIa, Akt and ERK phosphorylation, again, in a TPR-selective manner; no effects were observed in response to ADP receptor stimulation. Furthermore, there was a causal relationship between these inhibitory effects, and the capacity of the TRPC6 inhibitor to abrogate elevation in intracellular calcium, that was again found to be TPR-specific. This effect was not found to be due to antagonism of TPR, as the TRPC6 inhibitor did not displace the radiolabeled antagonist [3H]SQ29,548 from its binding sites. Finally, our studies also revealed that TRPC6 regulates human clot retraction, as well as physiological hemostasis and thrombus formation, in mice. Taken together, our findings demonstrate, for the first time, that TRPC6 directly regulates TPR-dependent ROCE and platelet function. Moreover, these data highlight TRPC6 as a novel promising therapeutic strategy for managing thrombotic disorders. PMID:25928636

  3. TARP-associated AMPA receptors display an increased maximum channel conductance and multiple kinetically distinct open states

    PubMed Central

    Shelley, Chris; Farrant, Mark; Cull-Candy, Stuart G

    2012-01-01

    Fast excitatory synaptic transmission in the CNS is mediated mainly by AMPA-type glutamate receptors (AMPARs), whose biophysical properties are dramatically modulated by the presence of transmembrane AMPAR regulatory proteins (TARPs). To help construct a kinetic model that will realistically describe native AMPAR/TARP function, we have examined the single-channel properties of homomeric GluA1 AMPARs in combination with the TARPs, γ-2, γ-4 and γ-5. In a saturating concentration of agonist, each of these AMPAR/TARP combinations gave rise to single-channel currents with multiple conductance levels that appeared intrinsic to the receptor-channel complex, and showed long-lived subconductance states. The open time and burst length distributions of the receptor complexes displayed multiple dwell-time components. In the case of γ-2- and γ-4-associated receptors, these distributions included a long-lived component lasting tens of milliseconds that was absent from both GluA1 alone and γ-5-associated receptors. The open time distributions for each conductance level required two dwell-time components, indicating that at each conductance level the channel occupies a minimum of two kinetically distinct open states. We have explored how these data place novel constraints on possible kinetic models of TARP-associated AMPARs that may be used to define AMPAR-mediated synaptic transmission. PMID:22988139

  4. Phylogenetic sequence analysis, recombinant expression, and tissue distribution of a channel catfish estrogen receptor beta

    USGS Publications Warehouse

    Xia, Zhenfang; Gale, William L.; Chang, Xiaotian; Langenau, David; Patino, Reynaldo; Maule, Alec G.; Densmore, Llewellyn D.

    2000-01-01

    An estrogen receptor β (ERβ) cDNA fragment was amplified by RT-PCR of total RNAextracted from liver and ovary of immature channel catfish. This cDNA fragment was used to screen an ovarian cDNA library made from an immature female fish. A clone was obtained that contained an open reading frame encoding a 575-amino-acid protein with a deduced molecular weight of 63.9 kDa. Maximum parsimony and Neighbor Joining analyses were used to generate a phylogenetic classification of channel catfish ERβ on the basis of 25 full-length teleost and tetrapod ER sequences. The consensus tree obtained indicated the existence of two major vertebrate ER subtypes, α and β. Within each subtype, and in accordance with established phylogenetic relationships, teleost and tetrapod ER were monophyletic confirming the results of a previous analysis (Z. Xiaet al., 1999, Gen. Comp. Endocrinol. 113, 360–368). Extracts of COS-7 cells transfectedwith channel catfish ERβ cDNA bound estrogen with high affinity (Kd = 0.21 nM) and specificity. The affinity of channel catfish ERβ for estrogen was higher than previously reported for channel catfish ERα. As determined by qualitative RT-PCR, the tissue distributions of ERα and ERβ were similar but not identical. Both ER subtypes were present in ovary and testis. ERα was found in all other tissues examined from juvenile and mature fish of both sexes. ERβ was also found in most tissues except, in most cases, whole blood and head kidney. Interestingly, the pattern of expression of ER subtypes in head kidney always corresponded to the pattern in whole blood. In conclusion, we isolated a channel catfish ERβ with ligand-binding affinity and tissue expression patterns different from ERα. Also, we confirmed the validity of our previously proposed general classification scheme for vertebrate ER into α and β subtypes and within each subtype, into teleost and tetrapod clades.

  5. [Regulation of potential-dependant calcium channels by 5-HT1B serotonin receptors in various populations of hippocampal cells].

    PubMed

    Kononov, A V; Ivanov, S V; Zinchenko, V P

    2013-01-01

    Metabotropic serotonin receptors of 5HT1-type in brain neurons participate in regulation of such human emotional states as aggression, fear and dependence on alcohol. Activated presynaptic 5-HT1B receptors suppress the Ca2+ influx through the potential-dependent calcium channels in certain neurons. The Ca2+ influx into the cells has been measured by increase of calcium ions concentration in cytoplasm in reply to the depolarization caused by 35mM KC1. Using system of image analysis in hippocampal cells culture we found out that Ca2+-signals to depolarization oin various populations of neurons differed in form, speed and amplitude. 5HT1B receptor agonists in 86 +/- 3 % of neurons slightly suppressed the activity of potential-dependent calcium channels. Two minor cell populations (5-8 % of cells each) were found out, that strongly differed in Ca2+ signal desensitization. Calcium signal caused by depolarization in one cells population differed in characteristic delay and high rate of decay. 5HT1B receptor agonists strongly inhibited the amplitude of the Ca2+ response on KCl only in this population of neurons. The calcium signal in second cell population differed by absence desensitization and smaller amplitude which constantly increased during depolarization. 5HT 1 B receptor agonists increased the calcium response amplitude to depolarization in this population of neurons. Thus we show various sensitivity of potential-dependent calcium channels of separate neurons to 5HTB1 receptor agonist. PMID:23659057

  6. Transmembrane Communication: General Principles and Lessons from the Structure and Function of the M2 Proton Channel, K+ Channels, and Integrin Receptors

    PubMed Central

    Grigoryan, Gevorg; Moore, David T.; DeGrado, William F.

    2013-01-01

    Signal transduction across biological membranes is central to life. This process generally happens through communication between different domains and hierarchical coupling of information. Here, we review structural and thermodynamic principles behind transmembrane (TM) signal transduction and discuss common themes. Communication between signaling domains can be understood in terms of thermodynamic and kinetic principles, and complex signaling patterns can arise from simple wiring of thermodynamically coupled domains. We relate this to functions of several signal transduction systems: the M2 proton channel from influenza A virus, potassium channels, integrin receptors, and bacterial kinases. We also discuss key features in the structural rearrangements responsible for signal transduction in these systems. PMID:21548783

  7. Analysis of neuronal nicotinic acetylcholine receptor α4β2 activation at the single-channel level.

    PubMed

    Carignano, Camila; Barila, Esteban Pablo; Spitzmaul, Guillermo

    2016-09-01

    The neuronal nicotinic acetylcholine receptor α4β2 forms pentameric proteins with two alternate stoichiometries. The high-sensitivity receptor is related to (α4)2(β2)3 stoichiometry while the low-sensitivity receptor to (α4)3(β2)2 stoichiometry. Both subtypes share two binding sites at the α4((+))/β2((-)) interface with high affinity for agonists. (α4)3(β2)2 has an additional binding site at the α4((+))/α4((-)) interface with low affinity for agonists. We investigated activation kinetics of both receptor subtypes by patch-clamp recordings of single-channel activity in the presence of several concentrations of acetylcholine (0.5 to 300μM). We used kinetic software to fit these data with kinetic models. We found that the high-sensitivity subtype correlates with the low-conductance channel (g-70=29pS) and does not activate with high efficacy. On the contrary, the low-sensitivity subtype correlated with a high-conductance channel (g-70=44pS) and exhibited higher activation efficacy. Opening events of individual nAChRs at high agonist concentrations occurred in clusters, which allowed us to determine kinetic constants for the activation of the triliganded receptor. Our kinetic modeling identified an intermediate state, between resting and open conformation of the receptor. Binding of the third molecule increases the efficacy of receptor activation by favoring the transition between resting and intermediate state around 18 times. The low rate for this transition in the diliganded receptor explains the action of acetylcholine as partial agonist when it binds to the high-affinity sites. The presence of the third binding site emerges as a potent modulator of nicotinic receptor α4β2 activation which may display different functions depending on agonist concentration. PMID:27233449

  8. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    PubMed

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. PMID:27284048

  9. Immunohistochemical study on the distribution of canonical transient receptor potential channels in rat basal ganglia.

    PubMed

    Chung, Yoon Hee; Kim, Daejin; Moon, Nam Joo; Oh, Chang Seok; Lee, Eunju; Shin, Dong Hoon; Kim, Sung Su; Lee, Won Bok; Lee, Jun-Young; Cha, Choong Ik

    2007-07-01

    In the present study, we examined the localizations of canonical transient receptor potential channels (TRPCs) in rat basal ganglia. The dot-like staining pattern of TRPC5 was observed through the globus pallidus (GP) and caudate-putamen. TRPC7 had a strikingly high level of expression in the neuropil in the GP. In the subthalamic nucleus, strong staining for TRPC5 was observed in the cell bodies, while moderate to high immunoreactivies for TRPC1, TRPC3, TRPC4 and TRPC7 were found in the cell bodies and surrounding neuropil. In the substantia nigra, immunoreactivities for TRPC3 and TRPC7 were prominent in the cell bodies and several processes in the pars compacta and pars reticulata. TRPC6 was expressed in the neuropil, not in the cell bodies. This study may provide useful data for the future investigations on the structural and functional properties of TRPCs. PMID:17590510

  10. Changes in Membrane Receptors and Ion Channels as Potential Biomarkers for Osteoarthritis

    PubMed Central

    Lewis, Rebecca; Barrett-Jolley, Richard

    2015-01-01

    Osteoarthritis (OA), a degenerative joint condition, is currently difficult to detect early enough for any of the current treatment options to be completely successful. Early diagnosis of this disease could increase the numbers of patients who are able to slow its progression. There are now several diseases where membrane protein biomarkers are used for early diagnosis. The numbers of proteins in the membrane is vast and so it is a rich source of potential biomarkers for OA but we need more knowledge of these before they can be considered practical biomarkers. How are they best measured and are they selective to OA or even certain types of OA? The first step in this process is to identify membrane proteins that change in OA. Here, we summarize several ion channels and receptors that change in OA models and/or OA patients, and may thus be considered candidates as novel membrane biomarkers of OA. PMID:26648874

  11. Canonical transient receptor potential channels expression is elevated in a porcine model of metabolic syndrome.

    PubMed

    Hu, Guoqing; Oboukhova, Elena A; Kumar, Sanjay; Sturek, Michael; Obukhov, Alexander G

    2009-05-01

    Plasma epinephrine and heart rate are elevated in metabolic syndrome, suggesting enhanced catecholamine secretion from the adrenal medulla. Canonical transient receptor potential (TRPC) channels are implicated in mediating hormone-induced Ca(2+) influx and catecholamine secretion in adrenomedullary chromaffin cells. We studied the pattern of TRPC expression in the pig adrenal medulla and investigated whether adrenal TRPC expression is altered in prediabetic metabolic syndrome Ossabaw miniature pigs. We used a combination of molecular biological, biochemical, and fluorescence imaging techniques. We determined the sequence of pig TRPC1 and TRPC3-7 channels. We found that the pig adrenal medulla expressed predominantly TRPC1, TRPC5, and TRPC6 transcripts. The expression level of these TRPCs was significantly elevated in the adrenal medulla from pigs with metabolic syndrome. Interestingly, aldosterone, which is endogenously secreted in the adjacent adrenal cortex, increased TRPC1, TRPC5, and TRPC6 expression in adrenal chromaffin cells isolated from metabolic syndrome but not control pigs. Spironolactone, a blocker of mineralocorticoid receptors, inhibited the aldosterone effect. Dexamethasone also increased TRPC5 expression in metabolic syndrome chromaffin cells. The amplitude of hormone-induced divalent cation influx correlated with the level of TRPC expression in adrenal chromaffin cells. Orai1/Stim1 protein expression was not significantly altered in the metabolic syndrome adrenal medulla when compared with the control. We propose that in metabolic syndrome, abnormally elevated adrenal TRPC expression may underlie increased plasma epinephrine and heart rate. The excess of plasma catecholamines and increased heart rate are risk factors for cardiovascular disease. Thus, TRPCs are potential therapeutic targets in the fight against cardiovascular disease. PMID:19221052

  12. Structural determinants of the transient receptor potential 1 (TRPV1) channel activation by phospholipid analogs.

    PubMed

    Morales-Lázaro, Sara L; Serrano-Flores, Barbara; Llorente, Itzel; Hernández-García, Enrique; González-Ramírez, Ricardo; Banerjee, Souvik; Miller, Duane; Gududuru, Veeresh; Fells, James; Norman, Derek; Tigyi, Gabor; Escalante-Alcalde, Diana; Rosenbaum, Tamara

    2014-08-29

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal protein that responds to various stimuli, including capsaicin (the pungent compound found in chili peppers), extracellular acid, and basic intracellular pH, temperatures close to 42 °C, and several lipids. Lysophosphatidic acid (LPA), an endogenous lipid widely associated with neuropathic pain, is an agonist of the TRPV1 channel found in primary afferent nociceptors and is activated by other noxious stimuli. Agonists or antagonists of lipid and other chemical natures are known to possess specific structural requirements for producing functional effects on their targets. To better understand how LPA and other lipid analogs might interact and affect the function of TRPV1, we set out to determine the structural features of these lipids that result in the activation of TRPV1. By changing the acyl chain length, saturation, and headgroup of these LPA analogs, we established strict requirements for activation of TRPV1. Among the natural LPA analogs, we found that only LPA 18:1, alkylglycerophosphate 18:1, and cyclic phosphatidic acid 18:1, all with a monounsaturated C18 hydrocarbon chain activate TRPV1, whereas polyunsaturated and saturated analogs do not. Thus, TRPV1 shows a more restricted ligand specificity compared with LPA G-protein-coupled receptors. We synthesized fatty alcohol phosphates and thiophosphates and found that many of them with a single double bond in position Δ9, 10, or 11 and Δ9 cyclopropyl group can activate TRPV1 with efficacy similar to capsaicin. Finally, we developed a pharmacophore and proposed a mechanistic model for how these lipids could induce a conformational change that activates TRPV1. PMID:25035428

  13. Calcium regulation by temperature-sensitive transient receptor potential channels in human uveal melanoma cells.

    PubMed

    Mergler, Stefan; Derckx, Raissa; Reinach, Peter S; Garreis, Fabian; Böhm, Arina; Schmelzer, Lisa; Skosyrski, Sergej; Ramesh, Niraja; Abdelmessih, Suzette; Polat, Onur Kerem; Khajavi, Noushafarin; Riechardt, Aline Isabel

    2014-01-01

    Uveal melanoma (UM) is both the most common and fatal intraocular cancer among adults worldwide. As with all types of neoplasia, changes in Ca(2+) channel regulation can contribute to the onset and progression of this pathological condition. Transient receptor potential channels (TRPs) and cannabinoid receptor type 1 (CB1) are two different types of Ca(2+) permeation pathways that can be dysregulated during neoplasia. We determined in malignant human UM and healthy uvea and four different UM cell lines whether there is gene and functional expression of TRP subtypes and CB1 since they could serve as drug targets to either prevent or inhibit initiation and progression of UM. RT-PCR, Ca(2+) transients, immunohistochemistry and planar patch-clamp analysis probed for their gene expression and functional activity, respectively. In UM cells, TRPV1 and TRPM8 gene expression was identified. Capsaicin (CAP), menthol or icilin induced Ca(2+) transients as well as changes in ion current behavior characteristic of TRPV1 and TRPM8 expression. Such effects were blocked with either La(3+), capsazepine (CPZ) or BCTC. TRPA1 and CB1 are highly expressed in human uvea, but TRPA1 is not expressed in all UM cell lines. In UM cells, the CB1 agonist, WIN 55,212-2, induced Ca(2+) transients, which were suppressed by La(3+) and CPZ whereas CAP-induced Ca(2+) transients could also be suppressed by CB1 activation. Identification of functional TRPV1, TRPM8, TRPA1 and CB1 expression in these tissues may provide novel drug targets for treatment of this aggressive neoplastic disease. PMID:24084605

  14. Mapping the receptor site for α-scorpion toxins on a Na+ channel voltage sensor

    PubMed Central

    Wang, Jinti; Yarov-Yarovoy, Vladimir; Kahn, Roy; Gordon, Dalia; Gurevitz, Michael; Scheuer, Todd; Catterall, William A.

    2011-01-01

    The α-scorpions toxins bind to the resting state of Na+ channels and inhibit fast inactivation by interaction with a receptor site formed by domains I and IV. Mutants T1560A, F1610A, and E1613A in domain IV had lower affinities for Leiurus quinquestriatus hebraeus toxin II (LqhII), and mutant E1613R had ∼73-fold lower affinity. Toxin dissociation was accelerated by depolarization and increased by these mutations, whereas association rates at negative membrane potentials were not changed. These results indicate that Thr1560 in the S1-S2 loop, Phe1610 in the S3 segment, and Glu1613 in the S3-S4 loop in domain IV participate in toxin binding. T393A in the SS2-S6 loop in domain I also had lower affinity for LqhII, indicating that this extracellular loop may form a secondary component of the receptor site. Analysis with the Rosetta-Membrane algorithm resulted in a model of LqhII binding to the voltage sensor in a resting state, in which amino acid residues in an extracellular cleft formed by the S1-S2 and S3-S4 loops in domain IV interact with two faces of the wedge-shaped LqhII molecule. The conserved gating charges in the S4 segment are in an inward position and form ion pairs with negatively charged amino acid residues in the S2 and S3 segments of the voltage sensor. This model defines the structure of the resting state of a voltage sensor of Na+ channels and reveals its mode of interaction with a gating modifier toxin. PMID:21876146

  15. D2, D3, and D4 dopamine receptors couple to G protein-regulated potassium channels in Xenopus oocytes.

    PubMed

    Werner, P; Hussy, N; Buell, G; Jones, K A; North, R A

    1996-04-01

    Human D2, D3, D4 and dopamine receptors were individually coexpressed in Xenopus oocytes with a G protein-regulated inwardly rectifying potassium channel (GIRK1). At -100 mV in 96 mM potassium, dopamine (0.1-100 nM) evoked an inward current; the current showed inward rectification, reversed polarity at 0 mV, and was blocked by barium (50% inhibition by 10 microM). The concentrations of dopamine activating 50% of the maximal current (EC50) were not different (2-4 nM) for D2, D3, and D4 receptors, but the maximal current was 3-fold larger for D2 and D4 than for D3 receptors. Dopamine evoked reproducible inward currents at D2 and D4 receptors when applied repeatedly, but second responses could not be observed in oocytes expressing D3 receptors. 7-Hydroxy-N,N-di-n-propyl-2-aminotetralin mimicked the effect of dopamine (EC50 of approximately 2, approximately 3, and approximately 19 nM at D2, D3, and D4, respectively). (-) Sulpiride reversibly blocked the dopamine-induced current with IC50 values of 5, 300, and 2000 nM for D2, D3, and D4 receptors, respectively. Dopamine was ineffective in oocytes injected 2 hr previously with pertussis toxin. We concluded that all three D2-like dopamine receptors share the potential to activate inwardly rectifying potassium channels. PMID:8609893

  16. Magnetic resonance image enhancement by reducing receptors' effective size and enabling multiple channel acquisition.

    PubMed

    Yepes-Calderon, Fernando; Velasquez, Adriana; Lepore, Natasha; Beuf, Olivier

    2014-01-01

    Magnetic resonance imaging is empowered by parallel reading, which reduces acquisition time dramatically. The time saved by parallelization can be used to increase image quality or to enable specialized scanning protocols in clinical and research environments. In small animals, the sizing constraints render the use of multi-channeled approaches even more necessary, as they help to improve the typically low spatial resolution and lesser signal-to-noise ratio; however, the use of multiple channels also generates mutual induction (MI) effects that impairs imaging creation. Here, we created coils and used the shared capacitor technique to diminish first degree MI effects and pre-amplifiers to deal with higher order MI-related image deterioration. The constructed devices are tested by imaging phantoms that contain identical solutions; thus, creating the conditions for several statistical comparisons. We confirm that the shared capacitor strategy can recover the receptor capacity in compounded coils when working at the dimensions imposed by small animal imaging. Additionally, we demonstrate that the use of pre-amplifiers does not significantly reduce the quality of the images. Moreover, in light of our results, the two MI-avoiding techniques can be used together, therefore establishing the practical feasibility of flexible array coils populated with multiple loops for small animal imaging. PMID:25570478

  17. Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals

    PubMed Central

    Lin, Weihong; Margolskee, Robert; Donnert, Gerald; Hell, Stefan W.; Restrepo, Diego

    2007-01-01

    Olfactory sensory neurons (OSNs) in the main olfactory epithelium respond to environmental odorants. Recent studies reveal that these OSNs also respond to semiochemicals such as pheromones and that main olfactory input modulates animal reproduction, but the transduction mechanism for these chemosignals is not fully understood. Previously, we determined that responses to putative pheromones in the main olfactory system were reduced but not eliminated in mice defective for the canonical cAMP transduction pathway, and we suggested, on the basis of pharmacology, an involvement of phospholipase C. In the present study, we find that a downstream signaling component of the phospholipase C pathway, the transient receptor potential channel M5 (TRPM5), is coexpressed with the cyclic nucleotide-gated channel subunit A2 in a subset of mature OSNs. These neurons project axons primarily to the ventral olfactory bulb, where information from urine and other socially relevant signals is processed. We find that these chemosignals activate a subset of glomeruli targeted by TRPM5-expressing OSNs. Our data indicate that TRPM5-expressing OSNs that project axons to glomeruli in the ventral area of the main olfactory bulb are involved in processing of information from semiochemicals. PMID:17267604

  18. The open duration of fetal ACh receptor-channel changes during mouse muscle development

    PubMed Central

    Grassi, Francesca; Epifano, Olga; Mileo, Anna Maria; Barabino, Benedetta; Eusebi, Fabrizio

    1998-01-01

    We performed an RNase protection assay on cultured C2C12 mouse myotubes, demonstrating that the γ subunit of the fetal muscle acetylcholine receptor (AChR) exists as two splice variants, which differ in the presence of the amino terminal exon 5. We studied unitary ACh-evoked events in fibres acutely dissociated from the hindlimb flexor digitorum brevis muscle of BALB/C mice aged between embryonic day 16 (E16) and postnatal day 6 (P6). At all ages, the channel conductance was about 30 pS, typical of the fetal form of the AChR. The mean open time increased significantly from 6 ms at E16 to 9 ms at E19, then decreased to about 5 ms during the first postnatal week. The lengthening of the open time was considerably delayed in hypothyroid mice. Data were recorded at 24-26 °C. On the basis of previously reported experiments in heterologous expression systems, we suggest that the modulation of channel open time is related to the expression of the AChR incorporating the γs subunit. These events might be coupled to the crucial modifications in muscle innervation that take place during the same developmental period. PMID:9508804

  19. Diabetes Stimulates Osteoclastogenesis by Acidosis-Induced Activation of Transient Receptor Potential Cation Channels.

    PubMed

    Reni, Carlotta; Mangialardi, Giuseppe; Meloni, Marco; Madeddu, Paolo

    2016-01-01

    Patients with type 1 diabetes have lower bone mineral density and higher risk of fractures. The role of osteoblasts in diabetes-related osteoporosis is well acknowledged whereas the role of osteoclasts (OCLs) is still unclear. We hypothesize that OCLs participate in pathological bone remodeling. We conducted studies in animals (streptozotocin-induced type 1 diabetic mice) and cellular models to investigate canonical and non-canonical mechanisms underlying excessive OCL activation. Diabetic mice show an increased number of active OCLs. In vitro studies demonstrate the involvement of acidosis in OCL activation and the implication of transient receptor potential cation channel subfamily V member 1 (TRPV1). In vivo studies confirm the establishment of local acidosis in the diabetic bone marrow (BM) as well as the ineffectiveness of insulin in correcting the pH variation and osteoclast activation. Conversely, treatment with TRPV1 receptor antagonists re-establishes a physiological OCL availability. These data suggest that diabetes causes local acidosis in the BM that in turn increases osteoclast activation through the modulation of TRPV1. The use of clinically available TRPV1 antagonists may provide a new means to combat bone problems associated with diabetes. PMID:27468810

  20. Diabetes Stimulates Osteoclastogenesis by Acidosis-Induced Activation of Transient Receptor Potential Cation Channels

    PubMed Central

    Reni, Carlotta; Mangialardi, Giuseppe; Meloni, Marco; Madeddu, Paolo

    2016-01-01

    Patients with type 1 diabetes have lower bone mineral density and higher risk of fractures. The role of osteoblasts in diabetes-related osteoporosis is well acknowledged whereas the role of osteoclasts (OCLs) is still unclear. We hypothesize that OCLs participate in pathological bone remodeling. We conducted studies in animals (streptozotocin-induced type 1 diabetic mice) and cellular models to investigate canonical and non-canonical mechanisms underlying excessive OCL activation. Diabetic mice show an increased number of active OCLs. In vitro studies demonstrate the involvement of acidosis in OCL activation and the implication of transient receptor potential cation channel subfamily V member 1 (TRPV1). In vivo studies confirm the establishment of local acidosis in the diabetic bone marrow (BM) as well as the ineffectiveness of insulin in correcting the pH variation and osteoclast activation. Conversely, treatment with TRPV1 receptor antagonists re-establishes a physiological OCL availability. These data suggest that diabetes causes local acidosis in the BM that in turn increases osteoclast activation through the modulation of TRPV1. The use of clinically available TRPV1 antagonists may provide a new means to combat bone problems associated with diabetes. PMID:27468810

  1. Inter-residue coupling contributes to high-affinity subtype-selective binding of α-bungarotoxin to nicotinic receptors

    PubMed Central

    Sine, Steven M.; Huang, Sun; Li, Shu-Xing; daCOSTA, Corrie J. B.; Chen, Lin

    2014-01-01

    The crystal structure of a pentameric α7 ligand-binding domain chimaera with bound α-btx (α-bungarotoxin) showed that of the five conserved aromatic residues in α7, only Tyr184 in loop C of the ligand-binding site was required for high-affinity binding. To determine whether the contribution of Tyr184 depends on local residues, we generated mutations in an α7/5HT3A (5-hydroxytryptamine type 3A) receptor chimaera, individually and in pairs, and measured 125I-labelled α-btx binding. The results show that mutations of individual residues near Tyr184 do not affect α-btx affinity, but pairwise mutations decrease affinity in an energetically coupled manner. Kinetic measurements show that the affinity decreases arise through increases in the α-btx dissociation rate with little change in the association rate. Replacing loop C in α7 with loop C from the α-btx-insensitive α2 or α3 subunits abolishes high-affinity α-btx binding, but preserves acetylcholine-elicited single channel currents. However, in both the α2 and α3 construct, mutating either residue that flanks Tyr184 to its α7 counterpart restores high-affinity α-btx binding. Analogously, in α7, mutating both residues that flank Tyr184 to the α2 or α3 counterparts abolishes high-affinity α-btx binding. Thus interaction between Tyr184 and local residues contributes to high-affinity subtype-selective α-btx binding. PMID:23802200

  2. Transient Receptor Potential Ankyrin 1 Channel Involved in Atherosclerosis and Macrophage-Foam Cell Formation

    PubMed Central

    Zhao, Jin-Feng; Shyue, Song-Kun; Kou, Yu Ru; Lu, Tse-Min; Lee, Tzong-Shyuan

    2016-01-01

    Transient receptor potential ankyrin 1 channel (TRPA1) plays an important role in the pathogenesis of inflammatory diseases, yet its role and the underlying mechanism in atherosclerosis remain unclear. We aimed to investigate the role of TRPA1 in atherosclerosis and foam-cell formation in vivo in mice and in vitro in mouse macrophages. Histopathology was examined by hematoxylin and eosin staining, levels of cytokines and lipid profile were evaluated by assay kits, and protein expression was determined by western blot analysis. TRPA1 expression was increased in macrophage foam cells in atherosclerotic aortas of apolipoprotein E-deficient (apoE-/-) mice. Atherosclerotic lesions, hyperlipidemia and systemic inflammation were worsened with chronic administration of the TRPA1 channel antagonist HC030031 or genetic ablation of TRPA1 (TRPA1-/-) in apoE-/- mice. Treatment with allyl isothiocyanate (AITC, a TRPA1 agonist) retarded the progression of atherosclerosis in apoE-/- mice but not apoE-/-TRPA1-/- mice. Mouse macrophages showed oxidized low-density lipoprotein (oxLDL) activated TRPA1 channels. OxLDL-induced lipid accumulation of macrophages was exacerbated by HC030031 or loss of function of TRPA1. Inhibition of TRPA1 activity did not alter oxLDL internalization but impaired cholesterol efflux by downregulating the ATP-binding cassette transporters. Furthermore, tumor necrosis factor-α-induced inflammatory response was attenuated in AITC-activated macrophages. TRPA1 may be a pivotal regulator in the pathogenesis of atherosclerosis and cholesterol metabolism of macrophage foam cells. PMID:27313495

  3. Activation of mitochondrial transient receptor potential vanilloid 1 channel contributes to microglial migration.

    PubMed

    Miyake, Takahito; Shirakawa, Hisashi; Nakagawa, Takayuki; Kaneko, Shuji

    2015-10-01

    Microglia, the resident immune cells in the brain, survey the environment of the healthy brain. Microglial migration is essential for many physiological and pathophysiological processes. Although microglia express some members of the transient receptor potential (TRP) channel family, there is little knowledge regarding the physiological roles of TRP channels in microglia. Here, we explored the role of TRP vanilloid 1 (TRPV1), a channel opened by capsaicin, heat, protons, and endovanilloids, in microglia. We found that application of capsaicin induced concentration-dependent migration in microglia derived from wild-type mice but not in those derived from TRPV1 knockout (TRPV1-KO) mice. Capsaicin-induced microglial migration was significantly inhibited by co-application of the TRPV1 blocker SB366791 and the Ca(2+) chelator BAPTA-AM. Using RT-PCR and immunocytochemistry, we validated that TRPV1 was expressed in microglia. Electrophysiological recording, intracellular Ca(2+) imaging, and immunocytochemistry indicated that TRPV1 was localized primarily in intracellular organelles. Treatment with capsaicin induced an increase in intramitochondrial Ca(2+) concentrations and mitochondrial depolarization. Furthermore, microglia derived from TRPV1-KO mice showed delayed Ca(2+) efflux compared with microglia derived from wild-type mice. Capsaicin-induced microglial migration was inhibited by membrane-permeable antioxidants and MAPK inhibitors, suggesting that mitochondrial TRPV1 activation induced Ca(2+) -dependent production of ROS followed by MAPK activation, which correlated with an augmented migration of microglia. Moreover, a mixture of three endovanilloids augmented microglial migration via TRPV1 activation. Together, these results indicate that mitochondrial TRPV1 plays an important role in inducing microglial migration. Activation of TRPV1 triggers an increase in intramitochondrial Ca(2+) concentration and following depolarization of mitochondria, which results in mt

  4. Structural Studies of Inositol 1,4,5-Trisphosphate Receptor COUPLING LIGAND BINDING TO CHANNEL GATING

    SciTech Connect

    Chan, Jenny; Yamazaki, Haruka; Ishiyama, Noboru; Seo, Min-Duk; Mal, Tapas K.; Michikawa, Takayuki; Mikoshiba, Katsuhiko; Ikura, Mitsuhiko

    2010-11-22

    The three isoforms of the inositol 1,4,5-trisphosphate receptor (IP{sub 3}R) exhibit distinct IP{sub 3} sensitivities and cooperativities in calcium (Ca{sup 2+}) channel function. The determinants underlying this isoform-specific channel gating mechanism have been localized to the N-terminal suppressor region of IP3R. We determined the 1.9 {angstrom} crystal structure of the suppressor domain from type 3 IP{sub 3}R (IP{sub 3}R3{sub SUP}, amino acids 1-224) and revealed structural features contributing to isoform-specific functionality of IP{sub 3}R by comparing it with our previously determined structure of the type 1 suppressor domain (IP{sub 3}R1{sub SUP}). The molecular surface known to associate with the ligand binding domain (amino acids 224-604) showed marked differences between IP{sub 3}R3{sub SUP} and IP{sub 3}R1{sub SUP}. Our NMR and biochemical studies showed that three spatially clustered residues (Glu-20, Tyr-167, and Ser-217 in IP{sub 3}R1 and Glu-19, Trp-168, and Ser-218 in IP{sub 3}R3) within the N-terminal suppressor domains of IP{sub 3}R1{sub SUP} and IP{sub 3}R3{sub SUP} interact directly with their respective C-terminal fragments. Together with the accompanying paper (Yamazaki, H., Chan, J., Ikura, M., Michikawa, T., and Mikoshiba, K. (2010) J. Biol. Chem. 285, 36081-36091), we demonstrate that the single aromatic residue in this region (Tyr-167 in IP{sub 3}R1 and Trp-168 in IP{sub 3}R3) plays a critical role in the coupling between ligand binding and channel gating.

  5. Activation of the chemosensing transient receptor potential channel A1 (TRPA1) by alkylating agents.

    PubMed

    Stenger, Bernhard; Zehfuss, Franziska; Mückter, Harald; Schmidt, Annette; Balszuweit, Frank; Schäfer, Eva; Büch, Thomas; Gudermann, Thomas; Thiermann, Horst; Steinritz, Dirk

    2015-09-01

    The transient receptor potential ankyrin 1 (TRPA1) cation channel is expressed in different tissues including skin, lung and neuronal tissue. Recent reports identified TRPA1 as a sensor for noxious substances, implicating a functional role in the molecular toxicology. TRPA1 is activated by various potentially harmful electrophilic substances. The chemical warfare agent sulfur mustard (SM) is a highly reactive alkylating agent that binds to numerous biological targets. Although SM is known for almost 200 years, detailed knowledge about the pathophysiology resulting from exposure is lacking. A specific therapy is not available. In this study, we investigated whether the alkylating agent 2-chloroethyl-ethylsulfide (CEES, a model substance for SM-promoted effects) and SM are able to activate TRPA1 channels. CEES induced a marked increase in the intracellular calcium concentration ([Ca(2+)]i) in TRPA1-expressing but not in TRPA1-negative cells. The TRP-channel blocker AP18 diminished the CEES-induced calcium influx. HEK293 cells permanently expressing TRPA1 were more sensitive toward cytotoxic effects of CEES compared with wild-type cells. At low CEES concentrations, CEES-induced cytotoxicity was prevented by AP18. Proof-of-concept experiments using SM resulted in a pronounced increase in [Ca(2+)]i in HEK293-A1-E cells. Human A549 lung epithelial cells, which express TRPA1 endogenously, reacted with a transient calcium influx in response to CEES exposure. The CEES-dependent calcium response was diminished by AP18. In summary, our results demonstrate that alkylating agents are able to activate TRPA1. Inhibition of TRPA1 counteracted cellular toxicity and could thus represent a feasible approach to mitigate SM-induced cell damage. PMID:25395009

  6. Propacetamol-Induced Injection Pain Is Associated with Activation of Transient Receptor Potential Vanilloid 1 Channels.

    PubMed

    Schillers, Florian; Eberhardt, Esther; Leffler, Andreas; Eberhardt, Mirjam

    2016-10-01

    Propacetamol (PPCM) is a prodrug of paracetamol (PCM), which was generated to increase water solubility of PCM for intravenous delivery. PPCM is rapidly hydrolyzed by plasma esterases to PCM and diethylglycine and shares some structural and metabolic properties with lidocaine. Although PPCM is considered to be comparable to PCM regarding its analgesic properties, injection pain is a common side effect described for PPCM but not PCM. Injection pain is a frequent and unpleasant side effect of numerous drugs in clinical use, and previous reports have indicated that the ligand gated ion channels transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) can mediate this effect on sensory neurons. This study aimed to investigate molecular mechanisms by which PPCM, in contrast to PCM, causes injection pain. Therefore, human TRPV1 and TRPA1 receptors were expressed in human embryonic kidney 293 cells and investigated by means of whole-cell patch clamp and ratiometric calcium imaging. PPCM (but not PCM) activated TRPV1, sensitized heat-induced currents, and caused an increase in intracellular calcium. In TRPA1-expressing cells however, both PPCM and PCM evoked calcium responses but failed to induce inward currents. Intracutaneous injection of PPCM, but not of PCM, in human volunteers induced an intense and short-lasting pain and an increase in superficial blood flow, indicating activation of nociceptive C fibers and subsequent neuropeptide release. In conclusion, activation of human TRPV1 by PPCM seems to be a relevant mechanism for induction of pain upon intracutaneous injection and thus also for pain reported as an adverse side effect upon intravenous administration. PMID:27457427

  7. Ca2+ and Mn2+ Influx Through Receptor-Mediated Activation of Nonspecific Cation Channels in Mast Cells

    NASA Astrophysics Data System (ADS)

    Fasolato, Cristina; Hoth, Markus; Matthews, Gary; Penner, Reinhold

    1993-04-01

    Whole-cell patch-clamp recordings of membrane currents and Fura-2 measurements of free intracellular calcium concentration ([Ca2+]_i) were used to study calcium influx through receptor-activated cation channels in rat peritoneal mast cells. Cation channels were activated by the secretagogue compound 48/80, whereas a possible concomitant Ca2+ entry through pathways activated by depletion of calcium stores was blocked by dialyzing cells with heparin. Heparin effectively suppressed the transient Ca2+ release induced by 48/80 and abrogated inositol 1,4,5-trisphosphate-induced calcium influx without affecting activation of 50-pS cation channels. There was a clear correlation between changes in [Ca2+]_i and the activity of 50-pS channels. The changes in [Ca2+]_i increased with elevation of extracellular Ca2+. At the same time, inward currents through 50-pS channels were diminished as more Ca2+ permeated. This effect was due to a decrease in slope conductance and a reduction in the open probability of the cation channels. In physiological solutions, 3.6% of the total current was carried by Ca2+. The cation channels were not only permeable to Ca2+ but also to Mn2+, as evidenced by the quench of Fura-2 fluorescence. Mn2+ current through 50-pS channels could not be resolved at the single-channel level. Our results suggest that 50-pS cation channels partially contribute to sustained increases of [Ca2+]_i in mast cells following receptor activation.

  8. CaV3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy.

    PubMed

    Wang, Guangfu; Bochorishvili, Genrieta; Chen, Yucai; Salvati, Kathryn A; Zhang, Peng; Dubel, Steve J; Perez-Reyes, Edward; Snutch, Terrance P; Stornetta, Ruth L; Deisseroth, Karl; Erisir, Alev; Todorovic, Slobodan M; Luo, Jian-Hong; Kapur, Jaideep; Beenhakker, Mark P; Zhu, J Julius

    2015-07-15

    CaV3.2 T-type calcium channels, encoded by CACNA1H, are expressed throughout the brain, yet their general function remains unclear. We discovered that CaV3.2 channels control NMDA-sensitive glutamatergic receptor (NMDA-R)-mediated transmission and subsequent NMDA-R-dependent plasticity of AMPA-R-mediated transmission at rat central synapses. Interestingly, functional CaV3.2 channels primarily incorporate into synapses, replace existing CaV3.2 channels, and can induce local calcium influx to control NMDA transmission strength in an activity-dependent manner. Moreover, human childhood absence epilepsy (CAE)-linked hCaV3.2(C456S) mutant channels have a higher channel open probability, induce more calcium influx, and enhance glutamatergic transmission. Remarkably, cortical expression of hCaV3.2(C456S) channels in rats induces 2- to 4-Hz spike and wave discharges and absence-like epilepsy characteristic of CAE patients, which can be suppressed by AMPA-R and NMDA-R antagonists but not T-type calcium channel antagonists. These results reveal an unexpected role of CaV3.2 channels in regulating NMDA-R-mediated transmission and a novel epileptogenic mechanism for human CAE. PMID:26220996

  9. CaV3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy

    PubMed Central

    Wang, Guangfu; Bochorishvili, Genrieta; Chen, Yucai; Salvati, Kathryn A.; Zhang, Peng; Dubel, Steve J.; Perez-Reyes, Edward; Snutch, Terrance P.; Stornetta, Ruth L.; Deisseroth, Karl; Erisir, Alev; Todorovic, Slobodan M.; Luo, Jian-Hong; Kapur, Jaideep; Beenhakker, Mark P.; Zhu, J. Julius

    2015-01-01

    CaV3.2 T-type calcium channels, encoded by CACNA1H, are expressed throughout the brain, yet their general function remains unclear. We discovered that CaV3.2 channels control NMDA-sensitive glutamatergic receptor (NMDA-R)-mediated transmission and subsequent NMDA-R-dependent plasticity of AMPA-R-mediated transmission at rat central synapses. Interestingly, functional CaV3.2 channels primarily incorporate into synapses, replace existing CaV3.2 channels, and can induce local calcium influx to control NMDA transmission strength in an activity-dependent manner. Moreover, human childhood absence epilepsy (CAE)-linked hCaV3.2(C456S) mutant channels have a higher channel open probability, induce more calcium influx, and enhance glutamatergic transmission. Remarkably, cortical expression of hCaV3.2(C456S) channels in rats induces 2- to 4-Hz spike and wave discharges and absence-like epilepsy characteristic of CAE patients, which can be suppressed by AMPA-R and NMDA-R antagonists but not T-type calcium channel antagonists. These results reveal an unexpected role of CaV3.2 channels in regulating NMDA-R-mediated transmission and a novel epileptogenic mechanism for human CAE. PMID:26220996

  10. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens

    USGS Publications Warehouse

    Iwanowicz, Luke R.; Stafford, James L.; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W.; Blazer, Vicki

    2014-01-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines.

  11. Activation of kappa-opioid receptor as a method for prevention of ischemic and reperfusion arrhythmias: role of protein kinase C and K(ATP) channels.

    PubMed

    Lishmanov, A Yu; Maslov, L N; Lasukova, T V; Crawford, D; Wong, T M

    2007-02-01

    Intravenous pretreatment with kappa-opioid receptor antagonist (-)-U-50,488 (1 mg/kg) improved heart resistance to the arrhythmogenic effect of coronary occlusion and reperfusion. Selective kappa1-opioid receptor antagonist norbinaltorphimine and nonselective blocker of peripheral opioid receptors methylnaloxone abolished this antiarrhythmic effect. Preliminary blockade of protein kinase C with chelerythrine or inhibition of ATP-dependent K+ channels (K(ATP) channels) with glybenclamide abolished the antiarrhythmic effect of kappa-opioid receptor activation. Selective inhibitor of sarcolemmal K(ATP) channels did not modulate the kappa-opioid receptor-mediated increase in cardiac electrical stability. Our results suggest that protein kinase C and mitochondrial K(ATP) channels play an important role in the antiarrhythmic effect associated with activation of peripheral kappa-opioid receptors. PMID:17970197

  12. The Roles of Rasd1 small G proteins and leptin in the activation of TRPC4 transient receptor potential channels

    PubMed Central

    Wie, Jinhong; Kim, Byung Joo; Myeong, Jongyun; Ha, Kotdaji; Jeong, Seung Joo; Yang, Dongki; Kim, Euiyong; Jeon, Ju-Hong; So, Insuk

    2015-01-01

    TRPC4 is important regulators of electrical excitability in gastrointestinal myocytes, pancreatic β-cells and neurons. Much is known regarding the assembly and function of these channels including TRPC1 as a homotetramer or a heteromultimer and the roles that their interacting proteins play in controlling these events. Further, they are one of the best-studied targets of G protein-coupled receptors and growth factors in general and Gαi/o and Gαq protein coupled receptor or epidermal growth factor and leptin in particular. However, our understanding of the roles of small G proteins and leptin on TRPC4 channels is still rudimentary. We discuss potential roles for Rasd1 small G protein and leptin in channel activation in addition to their known role in cellular signaling. PMID:26083271

  13. Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception.

    PubMed

    Mancuso, Giuseppe; Borgonovo, Gigliola; Scaglioni, Leonardo; Bassoli, Angela

    2015-01-01

    Ruta graveolens (rue) is a spontaneous plant in the Mediterranean area with a strong aroma and a very intense bitter taste, used in gastronomy and in folk medicine. From the leaves, stems and fruits of rue, we isolated rutin, rutamarin, three furanocoumarins, two quinolinic alkaloids, a dicoumarin and two long chain ketones. Bitter taste and chemesthetic properties have been evaluated by in vitro assays with twenty receptors of the TAS2R family and four TRP ion channels involved in gustation and nociception. Among the alkaloids, skimmianine was active as a specific agonist of T2R14, whereas kokusaginin did not activate any of the tested receptors. The furanocoumarins activates TAS2R10, 14, and 49 with different degrees of selectivity, as well as the TRPA1 somatosensory ion channel. Rutamarin is an agonist of TRPM5 and TRPV1 and a strong antagonist of TRPM8 ion channels. PMID:26501253

  14. Metabotropic P2Y receptors inhibit P2X3 receptor-channels via G protein-dependent facilitation of their desensitization

    PubMed Central

    Gerevich, Z; Zadori, Z; Müller, C; Wirkner, K; Schröder, W; Rubini, P; Illes, P

    2007-01-01

    Background and purpose: The aim of the present study was to investigate whether the endogenous metabotropic P2Y receptors modulate ionotropic P2X3 receptor-channels. Experimental approach: Whole-cell patch-clamp experiments were carried out on HEK293 cells permanently transfected with human P2X3 receptors (HEK293-hP2X3 cells) and rat dorsal root ganglion (DRG) neurons. Key results: In both cell types, the P2Y1,12,13 receptor agonist, ADP-β-S, inhibited P2X3 currents evoked by the selective agonist, α,β-methylene ATP (α,β-meATP). This inhibition could be markedly counteracted by replacing in the pipette solution the usual GTP with GDP-β-S, a procedure known to block all G protein heterotrimers. P2X3 currents evoked by ATP, activating both P2Y and P2X receptors, caused a smaller peak amplitude and desensitized faster than those currents evoked by the selective P2X3 receptor agonist α,β-meATP. In the presence of intracellular GDP-β-S, ATP- and α,β-meATP-induced currents were identical. Recovery from P2X3 receptor desensitization induced by repetitive ATP application was slower than the recovery from α,β-meATP-induced desensitization. When G proteins were blocked by intracellular GDP-β-S, the recovery from the ATP- and α,β-meATP-induced desensitization were of comparable speed. Conclusions and Implications: Our results suggest that the activation of P2Y receptors G protein-dependently facilitates the desensitization of P2X3 receptors and suppresses the recovery from the desensitized state. Hence, the concomitant stimulation of P2X3 and P2Y receptors of DRG neurons by ATP may result both in an algesic effect and a partly counterbalancing analgesic activity. PMID:17351651

  15. Presynaptic GABAB receptors reduce transmission at parabrachial synapses in the lateral central amygdala by inhibiting N-type calcium channels

    PubMed Central

    Delaney, A.J.; Crane, J.W.

    2016-01-01

    The nocioceptive information carried by neurons of the pontine parabrachial nucleus to neurons of the lateral division of the central amydala (CeA-L) is thought to contribute to the affective components of pain and is required for the formation of conditioned-fear memories. Importantly, excitatory transmission between parabrachial axon terminals and CeA-L neurons can be inhibited by a number of presynaptic receptors linked to Gi/o-type G-proteins, including α2-adrenoceptors and GABAB receptors. While the intracellular signalling pathway responsible for α2-adrenoceptor inhibition of synaptic transmission at this synapse is known, the mechanism by which GABAB receptors inhibits transmission has not been determined. The present study demonstrates that activation of presynaptic GABAB receptors reduces excitatory transmission between parabrachial axon terminals and CeA-L neurons by inhibiting N-type calcium channels. While the involvement of Gβγ subunits in mediating the inhibitory effects of GABAB receptors on N-type calcium channels is unclear, this inhibition does not involve Gβγ-independent activation of pp60C-src tyrosine kinase. The results of this study further enhance our understanding of the modulation of the excitatory input from parabrachial axon terminals to CeA-L neurons and indicate that presynaptic GABAB receptors at this synapse could be valuable therapeutic targets for the treatment of fear- and pain-related disorders. PMID:26755335

  16. Presynaptic GABAB receptors reduce transmission at parabrachial synapses in the lateral central amygdala by inhibiting N-type calcium channels.

    PubMed

    Delaney, A J; Crane, J W

    2016-01-01

    The nocioceptive information carried by neurons of the pontine parabrachial nucleus to neurons of the lateral division of the central amydala (CeA-L) is thought to contribute to the affective components of pain and is required for the formation of conditioned-fear memories. Importantly, excitatory transmission between parabrachial axon terminals and CeA-L neurons can be inhibited by a number of presynaptic receptors linked to Gi/o-type G-proteins, including α2-adrenoceptors and GABAB receptors. While the intracellular signalling pathway responsible for α2-adrenoceptor inhibition of synaptic transmission at this synapse is known, the mechanism by which GABAB receptors inhibits transmission has not been determined. The present study demonstrates that activation of presynaptic GABAB receptors reduces excitatory transmission between parabrachial axon terminals and CeA-L neurons by inhibiting N-type calcium channels. While the involvement of Gβγ subunits in mediating the inhibitory effects of GABAB receptors on N-type calcium channels is unclear, this inhibition does not involve Gβγ-independent activation of pp60C-src tyrosine kinase. The results of this study further enhance our understanding of the modulation of the excitatory input from parabrachial axon terminals to CeA-L neurons and indicate that presynaptic GABAB receptors at this synapse could be valuable therapeutic targets for the treatment of fear- and pain-related disorders. PMID:26755335

  17. Use of Label-free Optical Biosensors to Detect Modulation of Potassium Channels by G-protein Coupled Receptors

    PubMed Central

    Fleming, Matthew R.; Shamah, Steven M.; Kaczmarek, Leonard K.

    2014-01-01

    Ion channels control the electrical properties of neurons and other excitable cell types by selectively allowing ions to flow through the plasma membrane1. To regulate neuronal excitability, the biophysical properties of ion channels are modified by signaling proteins and molecules, which often bind to the channels themselves to form a heteromeric channel complex2,3. Traditional assays examining the interaction between channels and regulatory proteins require exogenous labels that can potentially alter the protein's behavior and decrease the physiological relevance of the target, while providing little information on the time course of interactions in living cells. Optical biosensors, such as the X-BODY Biosciences BIND Scanner system, use a novel label-free technology, resonance wavelength grating (RWG) optical biosensors, to detect changes in resonant reflected light near the biosensor. This assay allows the detection of the relative change in mass within the bottom portion of living cells adherent to the biosensor surface resulting from ligand induced changes in cell adhesion and spreading, toxicity, proliferation, and changes in protein-protein interactions near the plasma membrane. RWG optical biosensors have been used to detect changes in mass near the plasma membrane of cells following activation of G protein-coupled receptors (GPCRs), receptor tyrosine kinases, and other cell surface receptors. Ligand-induced changes in ion channel-protein interactions can also be studied using this assay. In this paper, we will describe the experimental procedure used to detect the modulation of Slack-B sodium-activated potassium (KNa) channels by GPCRs. PMID:24562095

  18. Heterologously-expressed and Liposome-reconstituted Human Transient Receptor Potential Melastatin 4 Channel (TRPM4) is a Functional Tetramer

    PubMed Central

    Constantine, Maryrose; Liew, Chu Kong; Lo, Victor; Macmillan, Alex; Cranfield, Charles G.; Sunde, Margaret; Whan, Renee; Graham, Robert M.; Martinac, Boris

    2016-01-01

    Mutation, irregular expression and sustained activation of the Transient Receptor Potential Channel, type Melastatin 4 (TRPM4), have been linked to various cardiovascular diseases. However, much remains unknown about the structure of this important ion channel. Here, we have purified a heterologously expressed TRPM4-eGFP fusion protein and investigated the oligomeric state of TRPM4-eGFP in detergent micelles using crosslinking, native gel electrophoresis, multi-angle laser light scattering and electron microscopy. Our data indicate that TRPM4 is tetrameric, like other TRP channels studied to date. Furthermore, the functionality of liposome reconstituted TRPM4-eGFP was examined using electrophysiology. Single-channel recordings from TRPM4-eGFP proteoliposomes showed inhibition of the channel using Flufenamic acid, a well-established inhibitor of TRPM4, suggesting that the channels are functional upon reconstitution. Our characterisation of the oligomeric structure of TRPM4 and the ability to reconstitute functional channels in liposomes should facilitate future studies into the structure, function and pharmacology of this therapeutically relevant channel. PMID:26785754

  19. Heterologously-expressed and Liposome-reconstituted Human Transient Receptor Potential Melastatin 4 Channel (TRPM4) is a Functional Tetramer.

    PubMed

    Constantine, Maryrose; Liew, Chu Kong; Lo, Victor; Macmillan, Alex; Cranfield, Charles G; Sunde, Margaret; Whan, Renee; Graham, Robert M; Martinac, Boris

    2016-01-01

    Mutation, irregular expression and sustained activation of the Transient Receptor Potential Channel, type Melastatin 4 (TRPM4), have been linked to various cardiovascular diseases. However, much remains unknown about the structure of this important ion channel. Here, we have purified a heterologously expressed TRPM4-eGFP fusion protein and investigated the oligomeric state of TRPM4-eGFP in detergent micelles using crosslinking, native gel electrophoresis, multi-angle laser light scattering and electron microscopy. Our data indicate that TRPM4 is tetrameric, like other TRP channels studied to date. Furthermore, the functionality of liposome reconstituted TRPM4-eGFP was examined using electrophysiology. Single-channel recordings from TRPM4-eGFP proteoliposomes showed inhibition of the channel using Flufenamic acid, a well-established inhibitor of TRPM4, suggesting that the channels are functional upon reconstitution. Our characterisation of the oligomeric structure of TRPM4 and the ability to reconstitute functional channels in liposomes should facilitate future studies into the structure, function and pharmacology of this therapeutically relevant channel. PMID:26785754

  20. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves

    PubMed Central

    Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C.; Finger, Thomas E.

    2015-01-01

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT3A promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT3A mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μm 5-HT and this response is blocked by 1 μm ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μm m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. SIGNIFICANCE STATEMENT Historically, serotonin (5-hydroxytryptamine; 5-HT) has been described as a candidate neurotransmitter in the gustatory system and recent studies show that type III taste receptor cells release 5-HT in response to various taste stimuli. In the present study, we demonstrate that a subset of gustatory sensory neurons express functional

  1. Single-channel properties of α3β4, α3β4α5 and α3β4β2 nicotinic acetylcholine receptors in mice lacking specific nicotinic acetylcholine receptor subunits

    PubMed Central

    Ciuraszkiewicz, Anna; Schreibmayer, Wolfgang; Platzer, Dieter; Orr-Urtreger, Avi; Scholze, Petra; Huck, Sigismund

    2013-01-01

    Previous attempts to measure the functional properties of recombinant nicotinic acetylcholine receptors (nAChRs) composed of known receptor subunits have yielded conflicting results. The use of knockout mice that lack α5, β2, α5β2 or α5β2α7 nAChR subunits enabled us to measure the single-channel properties of distinct α3β4, α3β4α5 and α3β4β2 receptors in superior cervical ganglion (SCG) neurons. Using this approach, we found that α3β4 receptors had a principal conductance level of 32.6 ± 0.8 pS (mean ± SEM) and both higher and lower secondary conductance levels. α3β4α5 receptors had the same conductance as α3β4 receptors, but differed from α3β4 receptors by having an increased channel open time and increased burst duration. By contrast, α3β4β2 receptors differed from α3β4 and α3β4α5 receptors by having a significantly smaller conductance level (13.6 ± 0.5 pS). After dissecting the single-channel properties of these receptors using our knockout models, we then identified these properties – and hence the receptors themselves – in wild-type SCG neurons. This study is the first to identify the single-channel properties of distinct neuronal nicotinic receptors in their native environment. PMID:23613527

  2. Dopamine D1 receptor modulation of calcium channel currents in horizontal cells of mouse retina.

    PubMed

    Liu, Xue; Grove, James C R; Hirano, Arlene A; Brecha, Nicholas C; Barnes, Steven

    2016-08-01

    Horizontal cells form the first laterally interacting network of inhibitory interneurons in the retina. Dopamine released onto horizontal cells under photic and circadian control modulates horizontal cell function. Using isolated, identified horizontal cells from a connexin-57-iCre × ROSA26-tdTomato transgenic mouse line, we investigated dopaminergic modulation of calcium channel currents (ICa) with whole cell patch-clamp techniques. Dopamine (10 μM) blocked 27% of steady-state ICa, an action blunted to 9% in the presence of the L-type Ca channel blocker verapamil (50 μM). The dopamine type 1 receptor (D1R) agonist SKF38393 (20 μM) inhibited ICa by 24%. The D1R antagonist SCH23390 (20 μM) reduced dopamine and SKF38393 inhibition. Dopamine slowed ICa activation, blocking ICa by 38% early in a voltage step. Enhanced early inhibition of ICa was eliminated by applying voltage prepulses to +120 mV for 100 ms, increasing ICa by 31% and 11% for early and steady-state currents, respectively. Voltage-dependent facilitation of ICa and block of dopamine inhibition after preincubation with a Gβγ-blocking peptide suggested involvement of Gβγ proteins in the D1R-mediated modulation. When the G protein activator guanosine 5'-O-(3-thiotriphosphate) (GTPγS) was added intracellularly, ICa was smaller and showed the same slowed kinetics seen during D1R activation. With GTPγS in the pipette, additional block of ICa by dopamine was only 6%. Strong depolarizing voltage prepulses restored the GTPγS-reduced early ICa amplitude by 36% and steady-state ICa amplitude by 3%. These results suggest that dopaminergic inhibition of ICa via D1Rs is primarily mediated through the action of Gβγ proteins in horizontal cells. PMID:27193322

  3. Increased rhythmicity in hypertensive arterial smooth muscle is linked to transient receptor potential canonical channels.

    PubMed

    Chen, Xiaoping; Yang, Dachun; Ma, Shuangtao; He, Hongbo; Luo, Zhidan; Feng, Xiaoli; Cao, Tingbing; Ma, Liqun; Yan, Zhencheng; Liu, Daoyan; Tepel, Martin; Zhu, Zhiming

    2010-10-01

    Vasomotion describes oscillations of arterial vascular tone due to synchronized changes of intracellular calcium concentrations. Since increased calcium influx into vascular smooth muscle cells from spontaneously hypertensive rats (SHR) has been associated with variances of transient receptor potential canonical (TRPC) channels, in the present study we tested the hypothesis that increased vasomotion in hypertension is directly linked to increased TRPC expression. Using a small vessel myograph we observed significantly increased norepinephrine-induced vasomotion in mesenteric arterioles from SHR compared to normotensive Wistar-Kyoto (WKY) rats. Using immunoblottings we obtained significantly increased expression of TRPC1, TRPC3 and TRPC5 in mesenteric arterioles from SHR compared to WKY, whereas TRPC4 and TRPC6 showed no differences. Norepinephrine-induced vasomotion from SHR was significantly reduced in the presence of verapamil, SKF96365, 2-aminoethoxydiphenylborane (2-APB) or gadolinium. Pre-incubation of mesenteric arterioles with anti-TRPC1 and anti-TRPC3 antibodies significantly reduced norepinephrine-induced vasomotion and calcium influx. Control experiments with pre-incubation of TRPC antibodies plus their respective antigenic peptide or in the presence of anti-β-actin antibodies or random immunoglobulins not related to TRPC channels showed no inhibitory effects of norepinephrine-induced vasomotion and calcium influx. Administration of candesartan or telmisartan, but not amlodipine to SHR for 16 weeks significantly reduced either the expression of TRPC1, TRPC3 and TRPC5 as well as norepinephrine-induced vasomotion in mesenteric arterioles. In conclusion we gave experimental evidence that the increased TRPC1, TRPC3 and TRPC5 expression in mesenteric arterioles from SHR causes increased vasomotion in hypertension. PMID:19725917

  4. Critical role of canonical transient receptor potential channel 7 in initiation of seizures.

    PubMed

    Phelan, Kevin D; Shwe, U Thaung; Abramowitz, Joel; Birnbaumer, Lutz; Zheng, Fang

    2014-08-01

    Status epilepticus (SE) is a life-threatening disease that has been recognized since antiquity but still causes over 50,000 deaths annually in the United States. The prevailing view on the pathophysiology of SE is that it is sustained by a loss of normal inhibitory mechanisms of neuronal activity. However, the early process leading to the initiation of SE is not well understood. Here, we show that, as seen in electroencephalograms, SE induced by the muscarinic agonist pilocarpine in mice is preceded by a specific increase in the gamma wave, and genetic ablation of canonical transient receptor potential channel (TRPC) 7 significantly reduces this pilocarpine-induced increase of gamma wave activity, preventing the occurrence of SE. At the cellular level, TRPC7 plays a critical role in the generation of spontaneous epileptiform burst firing in cornu ammonis (CA) 3 pyramidal neurons in brain slices. At the synaptic level, TRPC7 plays a significant role in the long-term potentiation at the CA3 recurrent collateral synapses and Schaffer collateral-CA1 synapses, but not at the mossy fiber-CA3 synapses. Taken together, our data suggest that epileptiform burst firing generated in the CA3 region by activity-dependent enhancement of recurrent collateral synapses may be an early event in the initiation process of SE and that TRPC7 plays a critical role in this cellular event. Our findings reveal that TRPC7 is intimately involved in the initiation of seizures both in vitro and in vivo. To our knowledge, this contribution to initiation of seizures is the first identified functional role for the TRPC7 ion channel. PMID:25049394

  5. Critical role of canonical transient receptor potential channel 7 in initiation of seizures

    PubMed Central

    Phelan, Kevin D.; Shwe, U Thaung; Abramowitz, Joel; Birnbaumer, Lutz; Zheng, Fang

    2014-01-01

    Status epilepticus (SE) is a life-threatening disease that has been recognized since antiquity but still causes over 50,000 deaths annually in the United States. The prevailing view on the pathophysiology of SE is that it is sustained by a loss of normal inhibitory mechanisms of neuronal activity. However, the early process leading to the initiation of SE is not well understood. Here, we show that, as seen in electroencephalograms, SE induced by the muscarinic agonist pilocarpine in mice is preceded by a specific increase in the gamma wave, and genetic ablation of canonical transient receptor potential channel (TRPC) 7 significantly reduces this pilocarpine-induced increase of gamma wave activity, preventing the occurrence of SE. At the cellular level, TRPC7 plays a critical role in the generation of spontaneous epileptiform burst firing in cornu ammonis (CA) 3 pyramidal neurons in brain slices. At the synaptic level, TRPC7 plays a significant role in the long-term potentiation at the CA3 recurrent collateral synapses and Schaffer collateral-CA1 synapses, but not at the mossy fiber-CA3 synapses. Taken together, our data suggest that epileptiform burst firing generated in the CA3 region by activity-dependent enhancement of recurrent collateral synapses may be an early event in the initiation process of SE and that TRPC7 plays a critical role in this cellular event. Our findings reveal that TRPC7 is intimately involved in the initiation of seizures both in vitro and in vivo. To our knowledge, this contribution to initiation of seizures is the first identified functional role for the TRPC7 ion channel. PMID:25049394

  6. The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis.

    PubMed

    Tunwell, R E; Wickenden, C; Bertrand, B M; Shevchenko, V I; Walsh, M B; Allen, P D; Lai, F A

    1996-09-01

    Rapid Ca2+ efflux from intracellular stores during cardiac muscle excitation-contraction coupling is mediated by the ryanodine-sensitive calcium-release channel, a large homotetrameric complex present in the sarcoplasmic reticulum. We report here the identification, primary structure and topological analysis of the ryanodine receptor-calcium release channel from human cardiac muscle (hRyR-2). Consistent with sedimentation and immunoblotting studies on the hRyR-2 protein, sequence analysis of ten overlapping cDNA clones reveals an open reading frame of 14901 nucleotides encoding a protein of 4967 amino acid residues with a predicted molecular mass of 564 569 Da for hRyR-2. In-frame insertions corresponding to eight and ten amino acid residues were found in two of the ten cDNAs isolated, suggesting that novel, alternatively spliced transcripts of the hRyR-2 gene might exist. Six hydrophobic stretches, which are present within the hRyR-2 C-terminal 500 amino acids and are conserved in all RyR sequences, may be involved in forming the transmembrane domain that constitutes the Ca(2+)-conducting pathway, in agreement with competitive ELISA studies with a RyR-2-specific antibody. Sequence alignment of hRyR-2 with other RyR isoforms indicates a high level of overall identity within the RyR family, with the exception of two important regions that exhibit substantial variability. Phylogenetic analysis suggests that the RyR-2 isoform diverged from a single ancestral gene before the RyR-1 and RyR-3 isoforms to form a distinct branch of the RyR family tree. PMID:8809036

  7. Cloning, in Vitro expression, and novel phylogenetic classification of a channel catfish estrogen receptor

    USGS Publications Warehouse

    Xia, Z.; Patino, R.; Gale, W.L.; Maule, A.G.; Densmore, L.D.

    1999-01-01

    We obtained two channel catfish estrogen receptor (ccER) cDNA from liver of female fish using RT–PCR. The two fragments were identical in sequence except that the smaller one had an out-of-frame deletion in the E domain, suggesting the existence of ccER splice variants. The larger fragment was used to screen a cDNA library from liver of a prepubescent female. A cDNA was obtained that encoded a 581-amino-acid ER with a deduced molecular weight of 63.8 kDa. Extracts of COS-7 cells transfected with ccER cDNA bound estrogen with high affinity (Kd = 4.7 nM) and specificity. Maximum parsimony and Neighbor Joining analyses were used to generate a phylogenetic classification of ccER on the basis of 18 full-length ER sequences. The tree suggested the existence of two major ER branches. One branch contained two clearly divergent clades which included all piscine ER (except Japanese eel ER) and all tetrapod ERα, respectively. The second major branch contained the eel ER and the mammalian ERβ. The high degree of divergence between the eel ER and mammalian ERβ suggested that they also represent distinct piscine and tetrapod ER. These data suggest that ERα and ERβ are present throughout vertebrates and that these two major ER types evolved by duplication of an ancestral ER gene. Sequence alignments with other members of the nuclear hormone receptor superfamily indicated the presence of 8 amino acids in the E domain that align exclusively among ER. Four of these amino acids have not received prior research attention and their function is unknown. The novel finding of putative ER splice variants in a nonmammalian vertebrate and the novel phylogenetic classification of ER offer new perspectives in understanding the diversification and function of ER.

  8. Heat Avoidance Is Regulated by Transient Receptor Potential (TRP) Channels and a Neuropeptide Signaling Pathway in Caenorhabditis elegans

    PubMed Central

    Glauser, Dominique A.; Chen, Will C.; Agin, Rebecca; MacInnis, Bronwyn L.; Hellman, Andrew B.; Garrity, Paul A.; Tan, Man-Wah; Goodman, Miriam B.

    2011-01-01

    The ability to avoid noxious extremes of hot and cold is critical for survival and depends on thermal nociception. The TRPV subset of transient receptor potential (TRP) channels is heat activated and proposed to be responsible for heat detection in vertebrates and fruit flies. To gain insight into the genetic and neural basis of thermal nociception, we developed assays that quantify noxious heat avoidance in the nematode Caenorhabditis elegans and used them to investigate the genetic basis of this behavior. First, we screened mutants for 18 TRP channel genes (including all TRPV orthologs) and found only minor defects in heat avoidance in single and selected double and triple mutants, indicating that other genes are involved. Next, we compared two wild isolates of C. elegans that diverge in their threshold for heat avoidance and linked this phenotypic variation to a polymorphism in the neuropeptide receptor gene npr-1. Further analysis revealed that loss of either the NPR-1 receptor or its ligand, FLP-21, increases the threshold for heat avoidance. Cell-specific rescue of npr-1 implicates the interneuron RMG in the circuit regulating heat avoidance. This neuropeptide signaling pathway operates independently of the TRPV genes, osm-9 and ocr-2, since mutants lacking npr-1 and both TRPV channels had more severe defects in heat avoidance than mutants lacking only npr-1 or both osm-9 and ocr-2. Our results show that TRPV channels and the FLP-21/NPR-1 neuropeptide signaling pathway determine the threshold for heat avoidance in C. elegans. PMID:21368276

  9. The K+ channel TASK1 modulates β-adrenergic response in brown adipose tissue through the mineralocorticoid receptor pathway.

    PubMed

    Pisani, Didier F; Beranger, Guillaume E; Corinus, Alain; Giroud, Maude; Ghandour, Rayane A; Altirriba, Jordi; Chambard, Jean-Claude; Mazure, Nathalie M; Bendahhou, Saïd; Duranton, Christophe; Michiels, Jean-François; Frontini, Andrea; Rohner-Jeanrenaud, Françoise; Cinti, Saverio; Christian, Mark; Barhanin, Jacques; Amri, Ez-Zoubir

    2016-02-01

    Brown adipose tissue (BAT) is essential for adaptive thermogenesis and dissipation of caloric excess through the activity of uncoupling protein (UCP)-1. BAT in humans is of great interest for the treatment of obesity and related diseases. In this study, the expression of Twik-related acid-sensitive K(+) channel (TASK)-1 [a pH-sensitive potassium channel encoded by the potassium channel, 2-pore domain, subfamily K, member 3 (Kcnk3) gene] correlated highly with Ucp1 expression in obese and cold-exposed mice. In addition, Task1-null mice, compared with their controls, became overweight, mainly because of an increase in white adipose tissue mass and BAT whitening. Task1(-/-)-mouse-derived brown adipocytes, compared with wild-type mouse-derived brown adipocytes, displayed an impaired β3-adrenergic receptor response that was characterized by a decrease in oxygen consumption, Ucp1 expression, and lipolysis. This phenotype was thought to be caused by an exacerbation of mineralocorticoid receptor (MR) signaling, given that it was mimicked by corticoids and reversed by an MR inhibitor. We concluded that the K(+) channel TASK1 controls the thermogenic activity in brown adipocytes through modulation of β-adrenergic receptor signaling. PMID:26527067

  10. Separate fractions of mRNA from Torpedo electric organ induce chloride channels and acetylcholine receptors in Xenopus oocytes.

    PubMed Central

    Sumikawa, K; Parker, I; Amano, T; Miledi, R

    1984-01-01

    Poly(A)+ mRNA extracted from the electric organ of Torpedo was fractionated by sucrose density gradient centrifugation. After injection into Xenopus oocytes one mRNA fraction induced the appearance of chloride channels in the oocyte membrane. Many of these channels were normally open, and the ensuing chloride current kept the resting potential of injected oocytes close to the chloride equilibrium potential. When the membrane was hyperpolarized, the chloride current was reduced. A separate fraction of mRNA induced the incorporation of acetylcholine receptors into the oocyte membrane. When translated in a cell-free system this fraction directed the synthesis of the alpha, beta, gamma, and delta subunits of the acetylcholine receptor. In contrast, the mRNA fraction that induced the chloride channels caused the synthesis of the delta subunit, a very small amount of alpha, and no detectable beta or gamma subunits. This suggests that the size of the mRNA coding for the chloride channel is similar to the preponderant species of mRNA coding for the delta subunit of the acetylcholine receptor. Images Fig. 1. PMID:6094179

  11. Novel transcripts of the estrogen receptor α gene in channel catfish

    USGS Publications Warehouse

    Patino, Reynaldo; Xia, Zhenfang; Gale, William L.; Wu, Chunfa; Maule, Alec G.; Chang, Xiaotian

    2000-01-01

    Complementary DNA libraries from liver and ovary of an immature female channel catfish were screened with a homologous ERα cDNA probe. The hepatic library yielded two new channel catfish ER cDNAs that encode N-terminal ERα variants of different sizes. Relative to the catfish ERα (medium size; 581 residues) previously reported, these new cDNAs encode Long-ERα (36 residues longer) and Short-ERα (389 residues shorter). The 5′-end of Long-ERα cDNA is identical to that of Medium-ERα but has an additional 503-bp segment with an upstream, in-frame translation-start codon. Recombinant Long-ERα binds estrogen with high affinity (Kd = 3.4 nM), similar to that previously reported for Medium-ERα but lower than reported for catfish ERβ. Short-ERα cDNA encodes a protein that lacks most of the receptor protein and does not bind estrogen. Northern hybridization confirmed the existence of multiple hepatic ERα RNAs that include the size range of the ERα cDNAs obtained from the libraries as well as additional sizes. Using primers for RT-PCR that target locations internal to the protein-coding sequence, we also established the presence of several ERα cDNA variants with in-frame insertions in the ligand-binding and DNA-binding domains and in-frame or out-of-frame deletions in the ligand-binding domain. These internal variants showed patterns of expression that differed between the ovary and liver. Further, the ovarian library yielded a full-length, ERα antisense cDNA containing a poly(A) signal and tail. A limited survey of histological preparations from juvenile catfish by in situ hybridization using directionally synthesized cRNA probes also suggested the expression of ERα antisense RNA in a tissue-specific manner. In conclusion, channel catfish seemingly have three broad classes of ERα mRNA variants: those encoding N-terminal truncated variants, those encoding internal variants (including C-terminal truncated variants), and antisense mRNA. The sense variants may

  12. ThermoTRP Channels in Nociceptors: Taking a Lead from Capsaicin Receptor TRPV1

    PubMed Central

    Mandadi, Sravan; Roufogalis, Basil D.

    2008-01-01

    Nociceptors with peripheral and central projections express temperature sensitive transient receptor potential (TRP) ion channels, also called thermoTRP’s. Chemosensitivity of thermoTRP’s to certain natural compounds eliciting pain or exhibiting thermal properties has proven to be a good tool in characterizing these receptors. Capsaicin, a pungent chemical in hot peppers, has assisted in the cloning of the first thermoTRP, TRPV1. This discovery initiated the search for other receptors encoding the response to a wide range of temperatures encountered by the body. Of these, TRPV1 and TRPV2 encode unique modalities of thermal pain when exposed to noxious heat. The ability of TRPA1 to encode noxious cold is presently being debated. The role of TRPV1 in peripheral inflammatory pain and central sensitization during chronic pain is well known. In addition to endogenous agonists, a wide variety of chemical agonists and antagonists have been discovered to activate and inhibit TRPV1. Efforts are underway to determine conditions under which agonist-mediated desensitization of TRPV1 or inhibition by antagonists can produce analgesia. Also, identification of specific second messenger molecules that regulate phosphorylation of TRPV1 has been the focus of intense research, to exploit a broader approach to pain treatment. The search for a role of TRPV2 in pain remains dormant due to the lack of suitable experimental models. However, progress into TRPA1’s role in pain has received much attention recently. Another thermoTRP, TRPM8, encoding for the cool sensation and also expressed in nociceptors, has recently been shown to reduce pain via a central mechanism, thus opening a novel strategy for achieving analgesia. The role of other thermoTRP’s (TRPV3 and TRPV4) encoding for detection of warm temperatures and expressed in nociceptors cannot be excluded. This review will discuss current knowledge on the role of nociceptor thermoTRPs in pain and therapy and describes the

  13. Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense

    PubMed Central

    Zimmermann, Sabine; Nürnberger, Thorsten; Frachisse, Jean-Marie; Wirtz, Wolfgang; Guern, Jean; Hedrich, Rainer; Scheel, Dierk

    1997-01-01

    Pathogen recognition at the plant cell surface typically results in the initiation of a multicomponent defense response. Transient influx of Ca2+ across the plasma membrane is postulated to be part of the signaling chain leading to pathogen resistance. Patch-clamp analysis of parsley protoplasts revealed a novel Ca2+-permeable, La3+-sensitive plasma membrane ion channel of large conductance (309 pS in 240 mM CaCl2). At an extracellular Ca2+ concentration of 1 mM, which is representative of the plant cell apoplast, unitary channel conductance was determined to be 80 pS. This ion channel (LEAC, for large conductance elicitor-activated ion channel) is reversibly activated upon treatment of parsley protoplasts with an oligopeptide elicitor derived from a cell wall protein of Phytophthora sojae. Structural features of the elicitor found previously to be essential for receptor binding, induction of defense-related gene expression, and phytoalexin formation are identical to those required for activation of LEAC. Thus, receptor-mediated stimulation of this channel appears to be causally involved in the signaling cascade triggering pathogen defense in parsley. PMID:11038609

  14. Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition

    SciTech Connect

    Iyer, Soumya C; Kannan, Anbarasu; Gopal, Ashidha; Devaraj, Niranjali; Halagowder, Devaraj

    2015-08-01

    Hepatic stellate cells (HSCs), a specialized stromal cytotype have a great impact on the biological behaviors of liver diseases. Despite this fact, the underlying mechanism that regulates HSC still remains poorly understood. The aim of the present study was to understand the role of TRPC6 signaling in regulating the molecular mechanism of HSCs in response to hypoxia. In the present study we showed that under hypoxia condition, the upregulated Hypoxia Inducible Factor 1α (HIF1α) increases NICD activation, which in turn induces the expression of transient receptor potential channel 6 (TRPC6) in HSC line lx-2. TRPC6 causes a sustained elevation of intracellular calcium which is coupled with the activation of the calcineurin-nuclear factor of activated T-cell (NFAT) pathway which activates the synthesis of extracellular matrix proteins. TRPC6 also activates SMAD2/3 dependent TGF-β signaling in facilitating upregulated expression of αSMA and collagen. As activated HSCs may be a suitable target for HCC therapy and targeting these cells rather than the HCC cells may result in a greater response. Collectively, our studies indicate for the first time the detailed mechanism of activation of HSC through TRPC6 signaling and thus being a promising therapeutic target. - Highlights: • HIF1α increases NICD, induces TRPC6 in lx2 cells. • TRPC6 a novel regulator in the activation of HSC. • HSCs as target for HCC therapy.

  15. Involvement of Transient Receptor Potential Cation Channel Vanilloid 1 (TRPV1) in Myoblast Fusion.

    PubMed

    Kurosaka, Mitsutoshi; Ogura, Yuji; Funabashi, Toshiya; Akema, Tatsuo

    2016-10-01

    The mechanisms that underlie the complex process of muscle regeneration after injury remain unknown. Transient receptor potential cation channel vanilloid 1 (TRPV1) is expressed in several cell types, including skeletal muscle, and is activated by high temperature and by certain molecules secreted during tissue inflammation. Severe inflammation and local temperature perturbations are induced during muscle regeneration, which suggests that TRPV1 might be activated and involved in the process. The aim of this study, was to clarify the role of TRPV1 in the myogenic potential of satellite cells responsible for muscle regeneration. We found that mRNA and protein levels of TRPV1 increased during regeneration after cardiotoxin (CTX)-induced muscle injury in mice. Using isolated mouse satellite cells (i.e., myoblasts), we observed that activation of TRPV1 by its agonist capsaicin (CAP) augmented myogenin protein levels. Whereas CAP did not alter myoblast proliferation, it facilitated myoblast fusion (evaluated using myonucleii number per myotube and fusion index). In contrast, suppression of TRPV1 by siRNA impaired myoblast fusion. Using mice, we also demonstrated that intramuscular injection of CAP facilitated muscle repair after CTX-induced muscle injury. Moreover, we showed that these roles of TRPV1 might be mediated by interleukin-4 and calcium signaling during myoblast fusion. Collectively, these results suggest that TRPV1 underlies normal myogenesis through promotion of myoblast fusion. J. Cell. Physiol. 231: 2275-2285, 2016. © 2016 Wiley Periodicals, Inc. PMID:26892397

  16. Energy for Wild-Type Acetylcholine Receptor Channel Gating from Different Choline Derivatives

    PubMed Central

    Bruhova, Iva; Gregg, Timothy; Auerbach, Anthony

    2013-01-01

    Agonists, including the neurotransmitter acetylcholine (ACh), bind at two sites in the neuromuscular ACh receptor channel (AChR) to promote a reversible, global change in protein conformation that regulates the flow of ions across the muscle cell membrane. In the synaptic cleft, ACh is hydrolyzed to acetate and choline. Replacement of the transmitter’s ester acetyl group with a hydroxyl (ACh→choline) results in a +1.8 kcal/mol reduction in the energy for gating generated by each agonist molecule from a low- to high-affinity change of the transmitter binding site (ΔGB). To understand the distinct actions of structurally related agonist molecules, we measured ΔGB for 10 related choline derivatives. Replacing the hydroxyl group of choline with different substituents, such as hydrogen, chloride, methyl, or amine, increased the energy for gating (i.e., it made ΔGB more negative relative to choline). Extending the ethyl hydroxide tail of choline to propyl and butyl hydroxide also increased this energy. Our findings reveal the amount of energy that is available for the AChR conformational change provided by different, structurally related agonists. We speculate that a hydrogen bond between the choline hydroxyl and the backbone carbonyl of αW149 positions this agonist’s quaternary ammonium group so as to reduce the cation-π interaction between this moiety and the aromatic groups at the binding site. PMID:23442907

  17. Methylglyoxal Activates Nociceptors through Transient Receptor Potential Channel A1 (TRPA1)

    PubMed Central

    Eberhardt, Mirjam J.; Filipovic, Milos R.; Leffler, Andreas; de la Roche, Jeanne; Kistner, Katrin; Fischer, Michael J.; Fleming, Thomas; Zimmermann, Katharina; Ivanovic-Burmazovic, Ivana; Nawroth, Peter P.; Bierhaus, Angelika; Reeh, Peter W.; Sauer, Susanne K.

    2012-01-01

    Neuropathic pain can develop as an agonizing sequela of diabetes mellitus and chronic uremia. A chemical link between both conditions of altered metabolism is the highly reactive compound methylglyoxal (MG), which accumulates in all cells, in particular neurons, and leaks into plasma as an index of the severity of the disorder. The electrophilic structure of this cytotoxic ketoaldehyde suggests TRPA1, a receptor channel deeply involved in inflammatory and neuropathic pain, as a molecular target. We demonstrate that extracellularly applied MG accesses specific intracellular binding sites of TRPA1, activating inward currents and calcium influx in transfected cells and sensory neurons, slowing conduction velocity in unmyelinated peripheral nerve fibers, and stimulating release of proinflammatory neuropeptides from and action potential firing in cutaneous nociceptors. Using a model peptide of the N terminus of human TRPA1, we demonstrate the formation of disulfide bonds based on MG-induced modification of cysteines as a novel mechanism. In conclusion, MG is proposed to be a candidate metabolite that causes neuropathic pain in metabolic disorders and thus is a promising target for medicinal chemistry. PMID:22740698

  18. Transient receptor potential melastatin 4 channel contributes to migration of androgen-insensitive prostate cancer cells

    PubMed Central

    Kilch, Tatiana; Jochum, Marcus Martin; Urban, Sabine Katharina; Jung, Volker; Stöckle, Michael; Rother, Karen; Greiner, Markus; Peinelt, Christine

    2015-01-01

    Impaired Ca2+ signaling in prostate cancer contributes to several cancer hallmarks, such as enhanced proliferation and migration and a decreased ability to induce apoptosis. Na+ influx via transient receptor potential melastatin 4 channel (TRPM4) can reduce store-operated Ca2+ entry (SOCE) by decreasing the driving force for Ca2+. In patients with prostate cancer, gene expression of TRPM4 is elevated. Recently, TRPM4 was identified as a cancer driver gene in androgen-insensitive prostate cancer. We investigated TRPM4 protein expression in cancer tissue samples from 20 patients with prostate cancer. We found elevated TRPM4 protein levels in prostatic intraepithelial neoplasia (PIN) and prostate cancer tissue compared to healthy tissue. In primary human prostate epithelial cells (hPEC) from healthy tissue and in the androgen-insensitive prostate cancer cell lines DU145 and PC3, TRPM4 mediated large Na+ currents. We demonstrated significantly increased SOCE after siRNA targeting of TRPM4 in hPEC and DU145 cells. In addition, knockdown of TRPM4 reduced migration but not proliferation of DU145 and PC3 cells. Taken together, our data identify TRPM4 as a regulator of SOCE in hPEC and DU145 cells, demonstrate a role for TRPM4 in cancer cell migration and suggest that TRPM4 is a promising potential therapeutic target. PMID:26496025

  19. Potentiation of acid-sensing ion channel activity by peripheral group I metabotropic glutamate receptor signaling.

    PubMed

    Gan, Xiong; Wu, Jing; Ren, Cuixia; Qiu, Chun-Yu; Li, Yan-Kun; Hu, Wang-Ping

    2016-05-01

    Glutamate activates peripheral group I metabotropic glutamate receptors (mGluRs) and contributes to inflammatory pain. However, it is still not clear the mechanisms are involved in group I mGluR-mediated peripheral sensitization. Herein, we report that group I mGluRs signaling sensitizes acid-sensing ion channels (ASICs) in dorsal root ganglion (DRG) neurons and contributes to acidosis-evoked pain. DHPG, a selective group I mGluR agonist, can potentiate the functional activity of ASICs, which mediated the proton-induced events. DHPG concentration-dependently increased proton-gated currents in DRG neurons. It shifted the proton concentration-response curve upwards, with a 47.3±7.0% increase of the maximal current response to proton. Group I mGluRs, especially mGluR5, mediated the potentiation of DHPG via an intracellular cascade. DHPG potentiation of proton-gated currents disappeared after inhibition of intracellular Gq/11 proteins, PLCβ, PKC or PICK1 signaling. Moreover, DHPG enhanced proton-evoked membrane excitability of rat DRG neurons and increased the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, peripherally administration of DHPG dose-dependently exacerbated nociceptive responses to intraplantar injection of acetic acid in rats. Potentiation of ASIC activity by group I mGluR signaling in rat DRG neurons revealed a novel peripheral mechanism underlying group I mGluRs involvement in hyperalgesia. PMID:26946972

  20. Conformational Dynamics of Kir3.1/Kir3.2 Channel Activation Via δ-Opioid Receptors

    PubMed Central

    Richard-Lalonde, Melissa; Nagi, Karim; Audet, Nicolas; Sleno, Rory; Amraei, Mohammad; Hogue, Mireille; Balboni, Gianfranco; Schiller, Peter W.; Bouvier, Michel; Hébert, Terence E.; Pineyro, Graciela

    2013-01-01

    This study assessed how conformational information encoded by ligand binding to δ-opioid receptors (DORs) is transmitted to Kir3.1/Kir3.2 channels. Human embryonic kidney 293 cells were transfected with bioluminescence resonance energy transfer (BRET) donor/acceptor pairs that allowed us to evaluate independently reciprocal interactions among signaling partners. These and coimmunoprecipitation studies indicated that DORs, Gβγ, and Kir3 subunits constitutively interacted with one another. GαoA associated with DORs and Gβγ, but despite being part of the complex, no evidence of its direct association with the channel was obtained. DOR activation by different ligands left DOR-Kir3 interactions unmodified but modulated BRET between DOR-GαoA, DOR-Gβγ, GαoA-Gβγ, and Gβγ-Kir3 interfaces. Ligand-induced BRET changes assessing Gβγ-Kir3.1 subunit interaction 1) followed similar kinetics to those monitoring the GαoA-Gβγ interface, 2) displayed the same order of efficacy as those observed at the DOR-Gβγ interface, 3) were sensitive to pertussis toxin, and 4) were predictive of whether a ligand could evoke channel currents. Conformational changes at the Gβγ/Kir3 interface were lost when Kir3.1 subunits were replaced by a mutant lacking essential sites for Gβγ-mediated activation. Thus, conformational information encoded by agonist binding to the receptor is relayed to the channel via structural rearrangements that involve repositioning of Gβγ with respect to DORs, GαoA, and channel subunits. Further, the fact that BRET changes at the Gβγ-Kir3 interface are predictive of a ligand’s ability to induce channel currents points to these conformational biosensors as screening tools for identifying GPCR ligands that induce Kir3 channel activation. PMID:23175530

  1. Estradiol activates epithelial sodium channels in rat alveolar cells through the G protein-coupled estrogen receptor.

    PubMed

    Greenlee, Megan M; Mitzelfelt, Jeremiah D; Yu, Ling; Yue, Qiang; Duke, Billie Jeanne; Harrell, Constance S; Neigh, Gretchen N; Eaton, Douglas C

    2013-12-01

    Female sex predisposes individuals to poorer outcomes during respiratory disorders like cystic fibrosis and influenza-associated pneumonia. A common link between these disorders is dysregulation of alveolar fluid clearance via disruption of epithelial sodium channel (ENaC) activity. Recent evidence suggests that female sex hormones directly regulate expression and activity of alveolar ENaC. In our study, we identified the mechanism by which estradiol (E2) or progesterone (P4) independently regulates alveolar ENaC. Using cell-attached patch clamp, we measured ENaC single-channel activity in a rat alveolar cell line (L2) in response to overnight exposure to either E2 or P4. In contrast to P4, E2 increased ENaC channel activity (NPo) through an increase in channel open probability (Po) and an increased number of patches with observable channel activity. Apical plasma membrane abundance of the ENaC α-subunit (αENaC) more than doubled in response to E2 as determined by cell surface biotinylation. αENaC membrane abundance was approximately threefold greater in lungs from female rats in proestrus, when serum E2 is greatest, compared with diestrus, when it is lowest. Our results also revealed a significant role for the G protein-coupled estrogen receptor (Gper) to mediate E2's effects on ENaC. Overall, our results demonstrate that E2 signaling through Gper selectively activates alveolar ENaC through an effect on channel gating and channel density, the latter via greater trafficking of channels to the plasma membrane. The results presented herein implicate E2-mediated regulation of alveolar sodium channels in the sex differences observed in the pathogenesis of several pulmonary diseases. PMID:24097558

  2. IUPHAR-DB: An Open-Access, Expert-Curated Resource for Receptor and Ion Channel Research

    PubMed Central

    2011-01-01

    This contribution highlights efforts by the International Union of Basic and Clinical Pharmacology (IUPHAR) Nomenclature Committee (NC-IUPHAR) to classify human receptors and ion channels, to document their properties, and to recommend ligands that are useful for characterization. This effort has inspired the creation of an online database (IUPHAR-DB), which is intended to provide free information to all scientists, summarized from primary literature by experts. PMID:22778867

  3. Electro-olfactogram and multiunit olfactory receptor responses to complex mixtures of amino acids in the channel catfish, Ictalurus punctatus.

    PubMed

    Kang, J S; Caprio, J

    1991-10-01

    In vivo electrophysiological recordings from populations of olfactory receptor neurons in the channel catfish, Ictalurus punctatus, clearly showed that both electro-olfactogram and integrated neural responses of olfactory receptor cells to complex mixtures consisting of up to 10 different amino acids were predictable with knowledge of (a) the responses to the individual components in the mixture and (b) the relative independence of the respective receptor sites for the component stimuli. All amino acid stimuli used to form the various mixtures were initially adjusted in concentration to provide approximately equal response magnitudes. Olfactory receptor responses to both multimixtures and binary mixtures were recorded. Multimixtures were formed by mixing equal aliquots of 3-10 different amino acids. Binary mixtures were formed by mixing equal aliquots of two equally stimulatory solutions. Solution 1 contained either one to nine different neutral amino acids with long side-chains (LCNs) or one to five different neutral amino acids with short side-chains (SCNs). Solution 2, comprising the binary mixture, consisted of only a single stimulus, either a LCN, SCN, basic, or acidic amino acid. The increasing magnitude of the olfactory receptor responses to mixtures consisting of an increasing number of neutral amino acids indicated that multiple receptor site types with highly overlapping specificities exist to these compounds. For both binary mixtures and multimixtures composed of neutral and basic or neutral and acidic amino acids, the receptor responses were significantly enhanced compared with those mixtures consisting of an equal number of only neutral amino acids. These results demonstrate that receptor sites for the basic and acidic amino acids, respectively, are highly independent of those for the neutral amino acids, and suggest that a mechanism for synergism is the simultaneous activation of relatively independent receptor sites by the components in the mixture

  4. Dual Regulation of R-Type CaV2.3 Channels by M1 Muscarinic Receptors

    PubMed Central

    Jeong, Jin-Young; Kweon, Hae-Jin; Suh, Byung-Chang

    2016-01-01

    Voltage-gated Ca2+ (CaV) channels are dynamically modulated by G protein-coupled receptors (GPCR). The M1 muscarinic receptor stimulation is known to enhance CaV2.3 channel gating through the activation of protein kinase C (PKC). Here, we found that M1 receptors also inhibit CaV2.3 currents when the channels are fully activated by PKC. In whole-cell configuration, the application of phorbol 12-myristate 13-acetate (PMA), a PKC activator, potentiated CaV2.3 currents by ∼two-fold. After the PMA-induced potentiation, stimulation of M1 receptors decreased the CaV2.3 currents by 52 ± 8%. We examined whether the depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is responsible for the muscarinic suppression of CaV2.3 currents by using two methods: the Danio rerio voltage-sensing phosphatase (Dr-VSP) system and the rapamycin-induced translocatable pseudojanin (PJ) system. First, dephosphorylation of PI(4,5)P2 to phosphatidylinositol 4-phosphate (PI(4)P) by Dr-VSP significantly suppressed CaV2.3 currents, by 53 ± 3%. Next, dephosphorylation of both PI(4)P and PI(4,5)P2 to PI by PJ translocation further decreased the current by up to 66 ± 3%. The results suggest that CaV2.3 currents are modulated by the M1 receptor in a dual mode—that is, potentiation through the activation of PKC and suppression by the depletion of membrane PI(4,5)P2. Our results also suggest that there is rapid turnover between PI(4)P and PI(4,5)P2 in the plasma membrane. PMID:26923189

  5. Pannexin1 channels dominate ATP release in the cochlea ensuring endocochlear potential and auditory receptor potential generation and hearing

    PubMed Central

    Chen, Jin; Zhu, Yan; Liang, Chun; Chen, Jing; Zhao, Hong-Bo

    2015-01-01

    Pannexin1 (Panx1) is a gap junction gene in vertebrates whose proteins mainly function as non-junctional channels on the cell surface. Panx1 channels can release ATP under physiological conditions and play critical roles in many physiological and pathological processes. Here, we report that Panx1 deficiency can reduce ATP release and endocochlear potential (EP) generation in the cochlea inducing hearing loss. Panx1 extensively expresses in the cochlea, including the cochlear lateral wall. We found that deletion of Panx1 in the cochlear lateral wall almost abolished ATP release under physiological conditions. Positive EP is a driving force for current through hair cells to produce auditory receptor potential. EP generation requires ATP. In the Panx1 deficient mice, EP and auditory receptor potential as measured by cochlear microphonics (CM) were significantly reduced. However, no apparent hair cell loss was detected. Moreover, defect of connexin hemichannels by deletion of connexin26 (Cx26) and Cx30, which are predominant connexin isoforms in the cochlea, did not reduce ATP release under physiological conditions. These data demonstrate that Panx1 channels dominate ATP release in the cochlea ensuring EP and auditory receptor potential generation and hearing. Panx1 deficiency can reduce ATP release and EP generation causing hearing loss. PMID:26035172

  6. The Transient Receptor Potential Channel TRPM8 Is Inhibited via the α2A Adrenoreceptor Signaling Pathway*

    PubMed Central

    Bavencoffe, Alexis; Gkika, Dimitra; Kondratskyi, Artem; Beck, Benjamin; Borowiec, Anne-Sophie; Bidaux, Gabriel; Busserolles, Jérôme; Eschalier, Alain; Shuba, Yaroslav; Skryma, Roman; Prevarskaya, Natalia

    2010-01-01

    The transient receptor potential channel melastatin member 8 (TRPM8) is expressed in sensory neurons, where it constitutes the main receptor of environmental innocuous cold (10–25 °C). Among several types of G protein-coupled receptors expressed in sensory neurons, Gi-coupled α2A-adrenoreceptor (α2A-AR), is known to be involved in thermoregulation; however, the underlying molecular mechanisms remain poorly understood. Here we demonstrated that stimulation of α2A-AR inhibited TRPM8 in sensory neurons from rat dorsal root ganglia (DRG). In addition, using specific pharmacological and molecular tools combined with patch-clamp current recordings, we found that in heterologously expressed HEK-293 (human embryonic kidney) cells, TRPM8 channel is inhibited by the Gi protein/adenylate cyclase (AC)/cAMP/protein kinase A (PKA) signaling cascade. We further identified the TRPM8 S9 and T17 as two key PKA phosphorylation sites regulating TRPM8 channel activity. We therefore propose that inhibition of TRPM8 through the α2A-AR signaling cascade could constitute a new mechanism of modulation of thermosensation in both physiological and pathological conditions. PMID:20110357

  7. The Pyrexia transient receptor potential channel mediates circadian clock synchronization to low temperature cycles in Drosophila melanogaster

    PubMed Central

    Wolfgang, Werner; Simoni, Alekos; Gentile, Carla; Stanewsky, Ralf

    2013-01-01

    Circadian clocks are endogenous approximately 24 h oscillators that temporally regulate many physiological and behavioural processes. In order to be beneficial for the organism, these clocks must be synchronized with the environmental cycles on a daily basis. Both light : dark and the concomitant daily temperature cycles (TCs) function as Zeitgeber (‘time giver’) and efficiently entrain circadian clocks. The temperature receptors mediating this synchronization have not been identified. Transient receptor potential (TRP) channels function as thermo-receptors in animals, and here we show that the Pyrexia (Pyx) TRP channel mediates temperature synchronization in Drosophila melanogaster. Pyx is expressed in peripheral sensory organs (chordotonal organs), which previously have been implicated in temperature synchronization. Flies deficient for Pyx function fail to synchronize their behaviour to TCs in the lower range (16–20°C), and this deficit can be partially rescued by introducing a wild-type copy of the pyx gene. Synchronization to higher TCs is not affected, demonstrating a specific role for Pyx at lower temperatures. In addition, pyx mutants speed up their clock after being exposed to TCs. Our results identify the first TRP channel involved in temperature synchronization of circadian clocks. PMID:23926145

  8. Agmatine suppresses peripheral sympathetic tone by inhibiting N-type Ca(2+) channel activity via imidazoline I2 receptor activation.

    PubMed

    Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo

    2016-08-26

    Agmatine, a putative endogenous ligand of imidazoline receptors, suppresses cardiovascular function by inhibiting peripheral sympathetic tone. However, the molecular identity of imidazoline receptor subtypes and its cellular mechanism underlying the agmatine-induced sympathetic suppression remains unknown. Meanwhile, N-type Ca(2+) channels are important for the regulation of NA release in the peripheral sympathetic nervous system. Therefore, it is possible that agmatine suppresses NA release in peripheral sympathetic nerve terminals by inhibiting Ca(2+) influx through N-type Ca(2+) channels. We tested this hypothesis by investigating agmatine effect on electrical field stimulation (EFS)-evoked contraction and NA release in endothelium-denuded rat superior mesenteric arterial strips. We also investigated the effect of agmatine on the N-type Ca(2+) current in superior cervical ganglion (SCG) neurons in rats. Our study demonstrates that agmatine suppresses peripheral sympathetic outflow via the imidazoline I2 receptor in rat mesenteric arteries. In addition, the agmatine-induced suppression of peripheral vascular sympathetic tone is mediated by modulating voltage-dependent N-type Ca(2+) channels in sympathetic nerve terminals. These results suggest a potential cellular mechanism for the agmatine-induced suppression of peripheral sympathetic tone. Furthermore, they provide basic and theoretical information regarding the development of new agents to treat hypertension. PMID:27320860

  9. Inhibition of cation channel function at the nicotinic acethylcholine receptor from Torpedo: Agonist self-inhibition and anesthetic drugs

    SciTech Connect

    Forman, S.A.

    1989-01-01

    Modulation of the nicotinic acethylcholine receptor from Torpedo by cholinergic agonists, local anesthetics, and n-alkanols was studied using {sup 86}Rb{sup +} flux studies in sealed native Torpedo electroplaque membrane vesicles. Reliable concentration-response and kinetic data were obtained using manual ten sec filtration assays in vesicles partially blocked with alpha-bungarotoxin to remove spare receptors and quenched-flow assays to assess initial {sup 86}Rb{sup +} flux rates or the rate of drug-induced receptor inactivation. Concentration response relationships for the agonists acetylcholine, carbamylcholine, suberyldicholine, phenyltrimethylammonium, and (-)-nicotine are all bell-shape due to stimulation of cation channel opening at low concentrations and inhibition of channels at higher concentrations. The rate of agonist-induced fast desensitization (k{sub d}) increases with (acetylcholine) in parallel with channel activation, suggesting that desensitization proceeds from the open state and/or states in rapid equilibrium with it. At self-inhibitory acetylcholine concentrations, a new rapid inactivation (rate = k{sub f}) is observed before fast desensitization. The rate and extent of rapid inactivation is compatible with bimolecular association between acethylcholine and inhibitory site with K{sub B} = 40 mM.

  10. Dynamics of receptor-operated Ca2+ currents through TRPC channels controlled via the PI(4,5)P2-PLC signaling pathway

    PubMed Central

    Mori, Masayuki X.; Itsuki, Kyohei; Hase, Hideharu; Sawamura, Seishiro; Kurokawa, Tatsuki; Mori, Yasuo; Inoue, Ryuji

    2015-01-01

    Transient receptor potential canonical (TRPC) channels are Ca2+-permeable, nonselective cation channels that carry receptor-operated Ca2+ currents (ROCs) triggered by receptor-induced, phospholipase C (PLC)-catalyzed hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Within the vasculature, TRPC channel ROCs contribute to smooth muscle cell depolarization, vasoconstriction, and vascular remodeling. However, TRPC channel ROCs exhibit a variable response to receptor-stimulation, and the regulatory mechanisms governing TRPC channel activity remain obscure. The variability of ROCs may be explained by their complex regulation by PI(4,5)P2 and its metabolites, which differentially affect TRPC channel activity. To resolve the complex regulation of ROCs, the use of voltage-sensing phosphoinositide phosphatases and model simulation have helped to reveal the time-dependent contribution of PI(4,5)P2 and the possible role of PI(4,5)P2 in the regulation of ROCs. These approaches may provide unprecedented insight into the dynamics of PI(4,5)P2 regulation of TRPC channels and the fundamental mechanisms underlying transmembrane ion flow. Within that context, we summarize the regulation of TRPC channels and their coupling to receptor-mediated signaling, as well as the application of voltage-sensing phosphoinositide phosphatases to this research. We also discuss the controversial bidirectional effects of PI(4,5)P2 using a model simulation that could explain the complicated effects of PI(4,5)P2 on different ROCs. PMID:25717302

  11. Isoform-selective physical coupling of TRPC3 channels to IP3 receptors in smooth muscle cells regulates arterial contractility

    PubMed Central

    Adebiyi, Adebowale; Zhao, Guiling; Narayanan, Damodaran; Thomas, Candice M.; Bannister, John P.; Jaggar, Jonathan H.

    2010-01-01

    Rationale Inositol 1,4,5-trisphosphate (IP3)-induced vasoconstriction can occur independently of intracellular Ca2+ release and via IP3 receptor (IP3R) and canonical transient receptor potential (TRPC) channel activation, but functional signaling mechanisms mediating this effect are unclear. Objectives Study mechanisms by which IP3Rs stimulate TRPC channels in myocytes of resistance-size cerebral arteries. Methods and Results Immunofluorescence resonance energy transfer (immuno-FRET) microscopy using isoform-selective antibodies indicated that endogenous type 1 IP3Rs (IP3R1) are in close spatial proximity to TRPC3, but distant from TRPC6 or TRPM4 channels in arterial myocytes. Endothelin-1 (ET-1), a phospholipase C-coupled receptor agonist, elevated immuno-FRET between IP3R1 and TRPC3, but not between IP3R1 and TRPC6 or TRPM4. TRPC3, but not TRPC6, co-immunoprecipitated with IP3R1. TRPC3 and TRPC6 antibodies selectively inhibited recombinant channels, but only the TRPC3 antibody blocked IP3-induced non-selective cation current (ICat) in myocytes. TRPC3 knockdown attenuated immuno-FRET between IP3R1 and TRPC3, IP3-induced ICat activation, and ET-1 and IP3-induced vasoconstriction, whereas TRPC6 channel knockdown had no effect. ET-1 did not alter total or plasma membrane-localized TRPC3, as determined using surface biotinylation. RT-PCR demonstrated that C-terminal calmodulin and IP3R binding (CIRB) domains are present in myocyte TRPC3 and TRPC6 channels. A peptide corresponding to the IP3R N-terminal region that can interact with TRPC channels activated ICat. A TRPC3 CIRB domain peptide attenuated IP3- and ET-1-induced ICat activation and vasoconstriction. Conclusions IP3 stimulates direct coupling between IP3R1 and membrane-resident TRPC3 channels in arterial myocytes, leading to ICat activation and vasoconstriction. Close spatial proximity between IP3R1 and TRPC3 establishes this isoform-selective functional interaction. PMID:20378853

  12. Modulation of Ca2+ channels by opioid receptor antagonists in mesenteric arterial smooth muscle cells of rats in hemorrhagic shock.

    PubMed

    Kai, Li; Wang, Zhong-Feng; Hu, De-Yao; Shi, Yu-Liang; Liu, Liang-Ming

    2002-10-01

    The effects of hemorrhagic shock on Ba currents ( ) via Ca channels and the regulation of the channels in the vascular hyporesponse stage of hemorrhagic shock by opioid receptor antagonists were examined by using the whole-cell recording of patch-clamp technique in mesenteric arterial smooth muscle cells of rats. The results showed that hemorrhagic shock induced an inhibition of Ca channels in the cells; 10 micro M of naloxone and 100 n of naltrindole, nor-binaltorphimine, and beta-funaltrexamine increased the in the cells of rats in shock. After inhibition of protein kinase C by using 1-(5-isoquindinesulfonyl)-2-methylpiperazine via electrodes, the enhancement of by the antagonists was not observed. These results suggested that the inhibition of Ca channel induced by hemorrhagic shock was mediated by delta-, kappa-, and mu -opioid receptors in the cells and may be partly responsible for vascular hyporesponse. The enhancement of was mediated by activation of protein kinase C and may be responsible for the antagonist-caused improvement in the response of resistance arteries to vasoactive stimulants at the decompensatory stage of hemorrhagic shock. PMID:12352325

  13. Aromatic Residues {epsilon}Trp-55 and {delta}Trp-57 and the Activation of Acetylcholine Receptor Channels.

    PubMed

    Bafna, Pallavi A; Jha, Archana; Auerbach, Anthony

    2009-03-27

    The two transmitter binding sites of the neuromuscular acetylcholine (ACh) receptor channel contain several aromatic residues, including a tryptophan located on the complementary, negative face of each binding pocket. These two residues, Trp-55 in the epsilon subunit and Trp-57 in the delta subunit, were mutated (AEFHILRVY), and for most constructs the rate constants for acetylcholine binding and channel gating were estimated by using single channel kinetic analyses. The rate constants for unliganded channel opening and closing were also estimated for some mutants. From these measurements we calculated all of the equilibrium constants of the "allosteric" cycle as follows: diliganded gating, unliganded gating, dissociation from the C(losed) conformation, and dissociation from the O(pen) conformation. The results indicate the following. (i) These aromatic side chains play a relatively minor role in ACh receptor channel activation. (ii) The main consequence of mutations is to reduce the affinity of the O conformation of the binding site for ACh, with the effect being greater at the epsilon subunit. (iii) In epsilon (but not delta) the aromatic nature of the side chain is important in determining affinity, to a slightly greater degree in the O conformation. Phi value analyses (of both tryptophan residues) show Phi approximately 1 for both the ACh binding and diliganded gating reactions. (iv) This suggests that the structural boundaries of the dynamic elements of the gating conformational change may not be subunit-delimited, and (v) the mutated tryptophan residues experience energy changes that occur relatively early in both the ligand-binding and channel-gating reactions. PMID:19171937

  14. Ryanodine receptors, a family of intracellular calcium ion channels, are expressed throughout early vertebrate development

    PubMed Central

    2011-01-01

    Background Calcium signals ([Ca2+]i) direct many aspects of embryo development but their regulation is not well characterised. Ryanodine receptors (RyRs) are a family of intracellular Ca2+ release channels that control the flux of Ca2+ from internal stores into the cytosol. RyRs are primarily known for their role in excitation-contraction coupling in adult striated muscle and ryr gene mutations are implicated in several human diseases. Current evidence suggests that RyRs do not have a major role to play prior to organogenesis but regulate tissue differentiation. Findings The sequences of the five zebrafish ryr genes were confirmed, their evolutionary relationship established and the primary sequences compared to other vertebrates, including humans. RyRs are differentially expressed in slow (ryr1a), fast (ryr3) and both types (ryr1b) of developing skeletal muscle. There are two ryr2 genes (ryr2a and ryr2b) which are expressed exclusively in developing CNS and cardiac tissue, respectively. In addition, ryr3 and ryr2a mRNA is detectable in the initial stages of development, prior to embryonic axis formation. Conclusions Our work reveals that zebrafish ryr genes are differentially expressed throughout the developing embryo from cleavage onwards. The data suggests that RyR-regulated Ca2+ signals are associated with several aspects of embryonic development, from organogenesis through to the differentiation of the musculoskeletal, cardiovascular and nervous system. These studies will facilitate further work to explore the developmental function of RyRs in each of these tissue types. PMID:22168922

  15. Chronic diabetes increases advanced glycation end products on cardiac ryanodine receptors/calcium-release channels.

    PubMed

    Bidasee, Keshore R; Nallani, Karuna; Yu, Yongqi; Cocklin, Ross R; Zhang, Yinong; Wang, Mu; Dincer, U Deniz; Besch, Henry R

    2003-07-01

    Decrease in cardiac contractility is a hallmark of chronic diabetes. Previously we showed that this defect results, at least in part, from a dysfunction of the type 2 ryanodine receptor calcium-release channel (RyR2). The mechanism(s) underlying RyR2 dysfunction is not fully understood. The present study was designed to determine whether non-cross-linking advanced glycation end products (AGEs) on RyR2 increase with chronic diabetes and if formation of these post-translational complexes could be attenuated with insulin treatment. Overnight digestion of RyR2 from 8-week control animals (8C) with trypsin afforded 298 peptides with monoisotopic mass (M+H(+)) >or=500. Digestion of RyR2 from 8-week streptozotocin-induced diabetic animals (8D) afforded 21% fewer peptides, whereas RyR2 from 6-week diabetic/2-week insulin-treated animals generated 304 peptides. Using an in-house PERLscript algorithm, search of matrix-assisted laser desorption ionization-time of flight mass data files identified several M+H(+) peaks corresponding to theoretical RyR2 peptides with single N(epsilon)-(carboxymethyl)-lysine, imidazolone A, imidazone B, pyrraline, or 1-alkyl-2-formyl-3,4-glycosyl pyrrole modification that were present in 8D but not 8C. Insulin treatment minimized production of some of these nonenzymatic glycation products. These data show for the first time that AGEs are formed on intracellular RyR2 during diabetes. Because AGE complexes are known to compromise protein activity, these data suggest a potential mechanism for diabetes-induced RyR2 dysfunction. PMID:12829653

  16. Inhibition of Transient Receptor Potential Channel 5 Reverses 5-Fluorouracil Resistance in Human Colorectal Cancer Cells*

    PubMed Central

    Wang, Teng; Chen, Zhen; Zhu, Yifei; Pan, Qiongxi; Liu, Yanjun; Qi, Xiaowei; Jin, Linfang; Jin, Jian; Ma, Xin; Hua, Dong

    2015-01-01

    5-Fluorouracil (5-Fu) is commonly used in the chemotherapy of colorectal cancer (CRC), but resistance to 5-Fu occurs in most cases, allowing cancer progression. Suppressing ABCB1 (ATP-binding cassette, subfamily B, member 1), which is a pump overproduced in cancer cells to export cytotoxic drugs, is an attractive strategy to overcome drug resistance. In the present study, transient receptor potential channel TrpC5 was found to be overproduced at the mRNA and protein levels together with ABCB1 in 5-Fu-resistant human CRC HCT-8 (HCT-8/5-Fu) and LoVo (LoVo/5-Fu) cells. More nuclear-stabilized β-catenin accumulation was found in HCT-8/5-Fu and LoVo/5-Fu cells than in HCT-8 and LoVo cells. Suppressing TrpC5 expression with TrpC5-specific siRNA inhibited the canonical Wnt/β-catenin signal pathway, reduced the induction of ABCB1, weakened the ABCB1 efflux pump, and caused a remarkable reversal of 5-Fu resistance in HCT-8/5-Fu and LoVo/5-Fu cells. On the contrary, enforcing TrpC5 expression resulted in an activated Wnt/β-catenin signal pathway and up-regulation of ABCB1. Taken together, we demonstrated an essential role of TrpC5 in ABCB1 induction and drug resistance in human CRC cells via promoting nuclear β-catenin accumulation. PMID:25404731

  17. Channel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03693 Channel

    This channel is located south of Iani Chaos.

    Image information: VIS instrument. Latitude -10.9N, Longitude 345.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Subconductance states in single-channel activity of skeletal muscle ryanodine receptors after removal of FKBP12.

    PubMed Central

    Ahern, G P; Junankar, P R; Dulhunty, A F

    1997-01-01

    FKBP12 was removed from ryanodine receptors (RyRs) by incubation of rabbit skeletal muscle terminal cisternae membranes with rapamycin. The extent of FKBP12 removal was estimated by immunostaining Western blots of terminal cisternae proteins. Single FKBP12-depleted RyR channels, incorporated into planar lipid bilayers, were modulated by Ca2+, ATP, ryanodine, and ruthenium red in the cis chamber and opened frequently to the normal maximum conductance of approximately 230 pS and to substate levels of approximately 0.25, approximately 0.5, and approximately 0.75 of the maximum conductance. Substate activity was rarely seen in native RyRs. Ryanodine did not after the number of conductance levels in FKBP12-depleted channels, but, at a membrane potential of +40 mV, reduced both the maximum and the substate conductances by approximately 50%. FKBP12-stripped channels were activated by a 10-fold-lower [Ca2+] and inhibited by a 10-fold-higher [Ca2+], than RyRs from control-incubated and native terminal cisternae vesicles. The open probability (Po) of these FKBP12-deficient channels was greater than that of control channels at 0.1 microM and 1 mM cis Ca2+ but no different at 10 microM cis Ca2+, where channels showed maximal Ca2+ activation. The approximately 0.25 substate was less sensitive than the maximum conductance to inhibition by Ca2+ and was the dominant level in channels inhibited by 1 mM cis Ca2+. The results show that FKBP12 coordinates the gating of channel activity in control and ryanodine-modified RyRs. Images FIGURE 1 PMID:8994600

  19. Crystal structures of the glutamate receptor ion channel GluK3 and GluK5 amino terminal domains

    PubMed Central

    Kumar, Janesh; Mayer, Mark L.

    2010-01-01

    Ionotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory synaptic neurotransmission in the central nervous system. The selective assembly of iGluRs into the AMPA, kainate and NMDA receptor subtypes is regulated by their extracellular amino terminal domains (ATD). Kainate receptors are further classified into low-affinity (GluK1-3) and high-affinity (GluK4-5) receptor families based on their affinity for the neurotoxin kainic acid. These two families share 42% sequence identity for the intact receptor but only 28% sequence identity at the level of ATD. We have determined for the first time high-resolution crystal structures for the GluK3 and GluK5 ATDs, both of which crystallize as dimers, but with a strikingly different dimer assembly at the R1 interface. By contrast, for both GluK3 and GluK5 the R2 domain dimer assembly is similar to that reported previously for other non-NMDA iGluRs. This observation is consistent with the reports that GluK4-5 cannot form functional homomeric ion channels and require obligate coassembly with GluK1-3. Our analysis also reveals that the relative orientation of domains R1 and R2 in individual non-NMDA receptor ATDs varies by up to 10°, in contrast to the 50° difference reported for the NMDA receptor GluN2B subunit. This restricted domain movement in non-NMDA receptor ATDs seems to result from both extensive intramolecular contacts between domains R1 and R2, and from their assembly as dimers which interact at both the R1 and R2 domains. Our results provide the first insights into the structure and function for GluK4-5, the least understood family of iGluRs. PMID:20951142

  20. Extracellular ATP inhibits chloride channels in mature mammalian skeletal muscle by activating P2Y1 receptors.

    PubMed

    Voss, Andrew A

    2009-12-01

    ATP is released from skeletal muscle during exercise, a discovery dating back to 1969. Surprisingly, few studies have examined the effects of extracellular ATP on mature mammalian skeletal muscle. This electrophysiological study examined the effects of extracellular ATP on fully innervated rat levator auris longus using two intracellular microelectrodes. The effects of ATP were determined by measuring the relative changes of miniature endplate potentials (mEPPs) and voltage responses to step current pulses in individual muscle fibres. Exposure to ATP (20 microm) prolonged the mEPP falling phase by 31 +/- 7.5% (values +/- s.d., n = 3 fibres). Concurrently, the input resistance increased by 31 +/- 2.0% and the time course of the voltage responses increased by 59 +/- 3.0%. Analogous effects were observed using 2 and 5 microm ATP, and on regions distal from the neuromuscular junction, indicating that physiologically relevant levels of ATP enhanced electrical signalling over the entire muscle fibre. The effects of extracellular ATP were blocked by 200 microm anthracene-9-carboxylic acid, a chloride channel inhibitor, and reduced concentrations of extracellular chloride, indicating that ATP inhibited chloride channels. A high affinity agonist for P2Y receptors, 2-methylthioadenosine-5-O-diphosphate (2MeSADP), induced similar effects to ATP with an EC(50) of 160 +/- 30 nm. The effects of 250 nm2MeSADP were blocked by 500 nmMRS2179, a specific P2Y(1) receptor inhibitor, suggesting that ATP acts on P2Y(1) receptors to inhibit chloride channels. The inhibition of chloride channels by extracellular ATP has implications for muscle excitability and fatigue, and the pathophysiology of myotonias. PMID:19805741

  1. P2Y1 Receptor Activation of the TRPV4 Ion Channel Enhances Purinergic Signaling in Satellite Glial Cells.

    PubMed

    Rajasekhar, Pradeep; Poole, Daniel P; Liedtke, Wolfgang; Bunnett, Nigel W; Veldhuis, Nicholas A

    2015-11-27

    Transient receptor potential (TRP) ion channels of peripheral sensory pathways are important mediators of pain, itch, and neurogenic inflammation. They are expressed by primary sensory neurons and by glial cells in the central nervous system, but their expression and function in satellite glial cells (SGCs) of sensory ganglia have not been explored. SGCs tightly ensheath neurons of sensory ganglia and can regulate neuronal excitability in pain and inflammatory states. Using a modified dissociation protocol, we isolated neurons with attached SGCs from dorsal root ganglia of mice. SGCs, which were identified by expression of immunoreactive Kir4.1 and glutamine synthetase, were closely associated with neurons, identified using the pan-neuronal marker NeuN. A subpopulation of SGCs expressed immunoreactive TRP vanilloid 4 (TRPV4) and responded to the TRPV4-selective agonist GSK1016790A by an influx of Ca(2+) ions. SGCs did not express functional TRPV1, TRPV3, or TRP ankyrin 1 channels. Responses to GSK1016790A were abolished by the TRPV4 antagonist HC067047 and were absent in SGCs from Trpv4(-/-) mice. The P2Y1-selective agonist 2-methylthio-ADP increased [Ca(2+)]i in SGCs, and responses were prevented by the P2Y1-selective antagonist MRS2500. P2Y1 receptor-mediated responses were enhanced in TRPV4-expressing SGCs and HEK293 cells, suggesting that P2Y1 couples to and activates TRPV4. PKC inhibitors prevented P2Y1 receptor activation of TRPV4. Our results provide the first evidence for expression of TRPV4 in SGCs and demonstrate that TRPV4 is a purinergic receptor-operated channel in SGCs of sensory ganglia. PMID:26475857

  2. Structural and Single-Channel Results Indicate that the Rates of Ligand Binding Domain Closing and Opening Directly Impact AMPA Receptor Gating

    SciTech Connect

    Zhang,W.; Cho, Y.; Lolis, E.; Howe, J.

    2008-01-01

    At most excitatory central synapses, glutamate is released from presynaptic terminals and binds to postsynaptic AMPA receptors, initiating a series of conformational changes that result in ion channel opening. Efficient transmission at these synapses requires that glutamate binding to AMPA receptors results in rapid and near-synchronous opening of postsynaptic receptor channels. In addition, if the information encoded in the frequency of action potential discharge is to be transmitted faithfully, glutamate must dissociate from the receptor quickly, enabling the synapse to discriminate presynaptic action potentials that are spaced closely in time. The current view is that the efficacy of agonists is directly related to the extent to which ligand binding results in closure of the binding domain. For glutamate to dissociate from the receptor, however, the binding domain must open. Previously, we showed that mutations in glutamate receptor subunit 2 that should destabilize the closed conformation not only sped deactivation but also altered the relative efficacy of glutamate and quisqualate. Here we present x-ray crystallographic and single-channel data that support the conclusions that binding domain closing necessarily precedes channel opening and that the kinetics of conformational changes at the level of the binding domain importantly influence ion channel gating. Our findings suggest that the stability of the closed-cleft conformation has been tuned during evolution so that glutamate dissociates from the receptor as rapidly as possible but remains an efficacious agonist.

  3. Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine.

    PubMed

    Virsolvy, Anne; Farah, Charlotte; Pertuit, Nolwenn; Kong, Lingyan; Lacampagne, Alain; Reboul, Cyril; Aimond, Franck; Richard, Sylvain

    2015-01-01

    Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na(+) current (INa), and is known to reduce the Na(+)-dependent Ca(2+) overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways. As voltage-gated Na(+) channels (Nav) present in arteries play a role in contraction, we hypothesized that ranolazine could target these channels. We studied the effects of ranolazine in vitro on cultured aortic smooth muscle cells (SMC) and ex vivo on rat aortas in conditions known to specifically activate or promote INa. We observed that in the presence of the Nav channel agonist veratridine, ranolazine inhibited INa and intracellular Ca(2+) calcium increase in SMC, and arterial vasoconstriction. In arterial SMC, ranolazine inhibited the activity of tetrodotoxin-sensitive voltage-gated Nav channels and thus antagonized contraction promoted by low KCl depolarization. Furthermore, the vasorelaxant effects of ranolazine, also observed in human arteries and independent of the endothelium, involved antagonization of the α1-adrenergic receptor. Combined α1-adrenergic antagonization and inhibition of SMCs Nav channels could be involved in the vascular effects of ranolazine. PMID:26655634

  4. Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine

    PubMed Central

    Virsolvy, Anne; Farah, Charlotte; Pertuit, Nolwenn; Kong, Lingyan; Lacampagne, Alain; Reboul, Cyril; Aimond, Franck; Richard, Sylvain

    2015-01-01

    Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na+ current (INa), and is known to reduce the Na+-dependent Ca2+ overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways. As voltage-gated Na+ channels (Nav) present in arteries play a role in contraction, we hypothesized that ranolazine could target these channels. We studied the effects of ranolazine in vitro on cultured aortic smooth muscle cells (SMC) and ex vivo on rat aortas in conditions known to specifically activate or promote INa. We observed that in the presence of the Nav channel agonist veratridine, ranolazine inhibited INa and intracellular Ca2+ calcium increase in SMC, and arterial vasoconstriction. In arterial SMC, ranolazine inhibited the activity of tetrodotoxin-sensitive voltage-gated Nav channels and thus antagonized contraction promoted by low KCl depolarization. Furthermore, the vasorelaxant effects of ranolazine, also observed in human arteries and independent of the endothelium, involved antagonization of the α1-adrenergic receptor. Combined α1-adrenergic antagonization and inhibition of SMCs Nav channels could be involved in the vascular effects of ranolazine. PMID:26655634

  5. Functional interactions between the SK2 channel and the nicotinic acetylcholine receptor in enteric neurons of the guinea pig ileum.

    PubMed

    Nakajima, Hidemitsu; Goto, Hiroto; Azuma, Yasu-Taka; Fujita, Akikazu; Takeuchi, Tadayoshi

    2007-12-01

    The neurotransmitter acetylcholine (ACh) plays a critical role in gastrointestinal function. The role of the small conductance Ca2+-activated K+ (SK) channel in ACh release was examined using myenteric plexus preparations of guinea pig ileum. Apamin, an inhibitor of the SK channel, significantly enhanced nicotine-induced ACh release, but neither electrical field stimulation- nor 5-hydroxytryptamine-induced ACh release, suggesting that SK channels might be selectively involved in the regulation of nicotine-induced ACh release. Therefore, we investigated the distribution of SK2 and SK3 subunits and the interaction between SK2 channels and nicotinic ACh receptors (nAChRs) in the guinea pig ileum. The immunoreactivity of SK2 subunits was located in enteric neuronal cells. Furthermore, SK2-immunoreactive cells stained with an antibody for choline acetyltransferase, a marker for cholinergic neurons, and with an antibody for the alpha3/5 subunits of nAChR. In contrast, immunoreactivity of SK3 subunits was not found in enteric neurons. A co-immunoprecipitation assay with Triton X-100-soluble membrane fractions prepared from the ileum revealed an association of the SK2 subunit with the alpha3/5 subunits of nAChR. These results suggest that SK2 channels negatively regulate the excitation of enteric neurons via functional interactions with nAChRs. PMID:17953675

  6. Design and Characterization of Superpotent Bivalent Ligands Targeting Oxytocin Receptor Dimers via a Channel-Like Structure.

    PubMed

    Busnelli, Marta; Kleinau, Gunnar; Muttenthaler, Markus; Stoev, Stoytcho; Manning, Maurice; Bibic, Lucka; Howell, Lesley A; McCormick, Peter J; Di Lascio, Simona; Braida, Daniela; Sala, Mariaelvina; Rovati, G Enrico; Bellini, Tommaso; Chini, Bice

    2016-08-11

    Dimeric/oligomeric states of G-protein coupled receptors have been difficult to target. We report here bivalent ligands consisting of two identical oxytocin-mimetics that induce a three order magnitude boost in G-protein signaling of oxytocin receptors (OTRs) in vitro and a 100- and 40-fold gain in potency in vivo in the social behavior of mice and zebrafish. Through receptor mutagenesis and interference experiments with synthetic peptides mimicking transmembrane helices (TMH), we show that such superpotent behavior follows from the binding of the bivalent ligands to dimeric receptors based on a TMH1-TMH2 interface. Moreover, in this arrangement, only the analogues with a well-defined spacer length (∼25 Å) precisely fit inside a channel-like passage between the two protomers of the dimer. The newly discovered oxytocin bivalent ligands represent a powerful tool for targeting dimeric OTR in neurodevelopmental and psychiatric disorders and, in general, provide a framework to untangle specific arrangements of G-protein coupled receptor dimers. PMID:27420737

  7. Modulation of Voltage-Gated Sodium Channels by Activation of Tumor Necrosis Factor Receptor-1 and Receptor-2 in Small DRG Neurons of Rats

    PubMed Central

    Leo, M.; Argalski, S.; Schäfers, M.; Hagenacker, T.

    2015-01-01

    Tumor necrosis factor- (TNF-) α is a proinflammatory cytokine involved in the development and maintenance of inflammatory and neuropathic pain. Its effects are mediated by two receptors, TNF receptor-1 (TNFR-1) and TNF receptor-2 (TNFR-2). These receptors play a crucial role in the sensitization of voltage-gated sodium channels (VGSCs), a key mechanism in the pathogenesis of chronic pain. Using the whole-cell patch-clamp technique, we examined the influence of TNFR-1 and TNFR-2 on VGSCs and TTX-resistant NaV1.8 channels in isolated rat dorsal root ganglion neurons by using selective TNFR agonists. The TNFR-1 agonist R32W (10 pg/mL) caused an increase in the VGSC current (INa(V)) by 27.2 ± 5.1%, while the TNFR-2 agonist D145 (10 pg/mL) increased the current by 44.9 ± 2.6%. This effect was dose dependent. Treating isolated NaV1.8 with R32W (100 pg/mL) resulted in an increase in INaV(1.8) by 18.9 ± 1.6%, while treatment with D145 (100 pg/mL) increased the current by 14.5 ± 3.7%. Based on the current-voltage relationship, 10 pg of R32W or D145 led to an increase in INa(V) in a bell-shaped, voltage-dependent manner with a maximum effect at −30 mV. The effects of TNFR activation on VGSCs promote excitation in primary afferent neurons and this might explain the sensitization mechanisms associated with neuropathic and inflammatory pain. PMID:26504355

  8. Sequence analysis, characterization and mRNA distribution of channel catfish (Ictalurus punctatus Rafinesque, 1818) chemokine (C-X-C Motif) receptor 4 (CXCR4) cDNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemokine receptor CXCR4, a member of the G protein-coupled receptor superfamily, binds selectively CXCL12. This protein plays many important roles in immunological as well as pathophysiological functions. In this study, we identified and characterized the channel catfish CXCR4 transcript. The fu...

  9. ATP-Sensitive K+ Channels Regulate the Concentrative Adenosine Transporter CNT2 following Activation by A1 Adenosine Receptors

    PubMed Central

    Duflot, Sylvie; Riera, Bárbara; Fernández-Veledo, Sonia; Casadó, Vicent; Norman, Robert I.; Casado, F. Javier; Lluís, Carme; Franco, Rafael; Pastor-Anglada, Marçal

    2004-01-01

    This study describes a novel mechanism of regulation of the high-affinity Na+-dependent adenosine transporter (CNT2) via the activation of A1 adenosine receptors (A1R). This regulation is mediated by the activation of ATP-sensitive K+ (KATP) channels. The high-affinity Na+-dependent adenosine transporter CNT2 and A1R are coexpressed in the basolateral domain of the rat hepatocyte plasma membrane and are colocalized in the rat hepatoma cell line FAO. The transient increase in CNT2-mediated transport activity triggered by (−)-N6-(2-phenylisopropyl)adenosine is fully inhibited by KATP channel blockers and mimicked by a KATP channel opener. A1R agonist activation of CNT2 occurs in both hepatocytes and FAO cells, which express Kir6.1, Kir6.2, SUR1, SUR2A, and SUR2B mRNA channel subunits. With the available antibodies against Kir6.X, SUR2A, and SUR2B, it is shown that all of these proteins colocalize with CNT2 and A1R in defined plasma membrane domains of FAO cells. The extent of the purinergic modulation of CNT2 is affected by the glucose concentration, a finding which indicates that glycemia and glucose metabolism may affect this cross-regulation among A1R, CNT2, and KATP channels. These results also suggest that the activation of KATP channels under metabolic stress can be mediated by the activation of A1R. Cell protection under these circumstances may be achieved by potentiation of the uptake of adenosine and its further metabolization to ATP. Mediation of purinergic responses and a connection between the intracellular energy status and the need for an exogenous adenosine supply are novel roles for KATP channels. PMID:15024061

  10. Molecular Mechanisms Contributing to TARP Regulation of Channel Conductance and Polyamine Block of Calcium-Permeable AMPA Receptors

    PubMed Central

    Coombs, Ian D.; Gratacòs-Batlle, Esther

    2014-01-01

    Many properties of fast synaptic transmission in the brain are influenced by transmembrane AMPAR regulatory proteins (TARPs) that modulate the pharmacology and gating of AMPA-type glutamate receptors (AMPARs). Although much is known about TARP influence on AMPAR pharmacology and kinetics through their modulation of the extracellular ligand-binding domain (LBD), less is known about their regulation of the ion channel region. TARP-induced modifications in AMPAR channel behavior include increased single-channel conductance and weakened block of calcium-permeable AMPARs (CP-AMPARs) by endogenous intracellular polyamines. To investigate how TARPs modify ion flux and channel block, we examined the action of γ-2 (stargazin) on GluA1 and GluA4 CP-AMPARs. First, we compared the permeation of organic cations of different sizes. We found that γ-2 increased the permeability of several cations but not the estimated AMPAR pore size, suggesting that TARP-induced relief of polyamine block does not reflect altered pore diameter. Second, to determine whether residues in the TARP intracellular C-tail regulate polyamine block and channel conductance, we examined various γ-2 C-tail mutants. We identified the membrane proximal region of the C terminus as crucial for full TARP-attenuation of polyamine block, whereas complete deletion of the C-tail markedly enhanced the TARP-induced increase in channel conductance; thus, the TARP C-tail influences ion permeation. Third, we identified a site in the pore-lining region of the AMPAR, close to its Q/R site, that is crucial in determining the TARP-induced changes in single-channel conductance. This conserved residue represents a site of TARP action, independent of the AMPAR LBD. PMID:25164663

  11. Na+-channel-associated scorpion toxin receptor sites as probes for neuronal evolution in vivo and in vitro.

    PubMed

    Berwald-Netter, Y; Martin-Moutot, N; Koulakoff, A; Couraud, F

    1981-02-01

    Purified neurotoxin II of the scorpion Androctonus australis Hector (ScTx) has previously been shown to bind specifically to the Na+-ionophore-associated, voltage-sensitive receptor sites of excitable cells. We have conducted binding studies, using high-specific-activity 125I-labeled ScTx, to detect and quantify the Na+-channel receptors on cells of the developing fetal mouse brain. In vivo, the onset of detectable specific binding is at 12 fetal days. The rate of receptor appearance is initially slow but increases sharply as of the 16th day of mouse ontogenesis. The mean number of receptors at 12 and 19 days is 120 and 20,000 per cell, respectively (i.e., 0.5 and 80 per square micrometer). When corrected for the fraction of cell population corresponding to putative neuroblasts and neurons, identified by immunofluorescence as tetanus toxin binding cells, these values are, respectively, 1040 and 33,900 ScTx receptors per tetanus toxin binding cell or 4.2 and 136 per square micrometer. At all stages, the toxin binds to a single class of noninteracting sites; Kd = 0.1-0.5 nM. Similar findings in terms of ScTx-receptor properties and quantitative evolution were obtained in vitro. Specific 125I-labeled ScTx binding the presence of tetanus toxin binding cells. In cultures of central nervous system glia without neurons, only nonspecific low-level ScTx binding was detected. These results suggest that the high-affinity scorpion toxin receptors may be used as quantitative markers of neuronal differentiation. PMID:6262759

  12. Calcium-sensing receptor activation contributed to apoptosis stimulates TRPC6 channel in rat neonatal ventricular myocytes

    SciTech Connect

    Sun, Yi-hua; Li, Yong-quan; Feng, Shan-li; Li, Bao-xin; Pan, Zhen-wei; Xu, Chang-qing; Li, Ting-ting; Yang, Bao-feng

    2010-04-16

    Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca{sup 2+} stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca{sup 2+} imaging, we found that the depletion of ER/SR Ca{sup 2+} stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca{sup 2+} ([Ca{sup 2+}]{sub i}), followed by sustained increase depending on extracellular Ca{sup 2+}. But, TRP channels inhibitor (SKF96365), not L-type channels or the Na{sup +}/Ca{sup 2+} exchanger inhibitors, inhibited [Ca{sup 2+}]{sub i} relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl{sub 3}) or by an increased extracellular Ca{sup 2+}([Ca{sup 2+}]{sub o}) increased the concentration of intracelluar Ca{sup 2+}, whereas, the sustained elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of SKF96365. Similarly, the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of extracellular Ca{sup 2+}. Western blot analysis showed that GdCl{sub 3} increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl{sub 3}. Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca{sup 2+}-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.

  13. Molecular Insights into the Local Anesthetic Receptor within Voltage-Gated Sodium Channels Using Hydroxylated Analogs of Mexiletine

    PubMed Central

    Desaphy, Jean-François; Dipalma, Antonella; Costanza, Teresa; Carbonara, Roberta; Dinardo, Maria Maddalena; Catalano, Alessia; Carocci, Alessia; Lentini, Giovanni; Franchini, Carlo; Camerino, Diana Conte

    2011-01-01

    We previously showed that the β-adrenoceptor modulators, clenbuterol and propranolol, directly blocked voltage-gated sodium channels, whereas salbutamol and nadolol did not (Desaphy et al., 2003), suggesting the presence of two hydroxyl groups on the aromatic moiety of the drugs as a molecular requisite for impeding sodium channel block. To verify such an hypothesis, we synthesized five new mexiletine analogs by adding one or two hydroxyl groups to the aryloxy moiety of the sodium channel blocker and tested these compounds on hNav1.4 channels expressed in HEK293 cells. Concentration–response relationships were constructed using 25-ms-long depolarizing pulses at −30 mV applied from an holding potential of −120 mV at 0.1 Hz (tonic block) and 10 Hz (use-dependent block) stimulation frequencies. The half-maximum inhibitory concentrations (IC50) were linearly correlated to drug lipophilicity: the less lipophilic the drug, minor was the block. The same compounds were also tested on F1586C and Y1593C hNav1.4 channel mutants, to gain further information on the molecular interactions of mexiletine with its receptor within the sodium channel pore. In particular, replacement of Phe1586 and Tyr1593 by non-aromatic cysteine residues may help in the understanding of the role of π–π or π–cation interactions in mexiletine binding. Alteration of tonic block suggests that the aryloxy moiety of mexiletine may interact either directly or indirectly with Phe1586 in the closed sodium channel to produce low-affinity binding block, and that this interaction depends on the electrostatic potential of the drug aromatic tail. Alteration of use-dependent block suggests that addition of hydroxyl groups to the aryloxy moiety may modify high-affinity binding of the drug amine terminal to Phe1586 through cooperativity between the two pharmacophores, this effect being mainly related to drug lipophilicity. Mutation of Tyr1593 further impaired such cooperativity. In conclusion

  14. Coxsackievirus and Adenovirus Receptor (CAR) Mediates Trafficking of Acid-Sensing Ion Channel 3 (ASIC3) via PSD-95

    PubMed Central

    Excoffon, Katherine J.D.A.; Kolawole, Abimbola O.; Kusama, Nobuyoshi; Gansemer, Nicholas D.; Sharma, Priyanka; Hruska-Hageman, Alesia M.; Petroff, Elena; Benson, Christopher J.

    2012-01-01

    We have previously shown that the Coxsackievirus and adenovirus receptor (CAR) can interact with post-synaptic density 95 (PSD-95) and localize PSD-95 to cell-cell junctions. We have also shown that activity of the acid-sensing ion channel (ASIC3), a H+-gated cation channel that plays a role in mechanosensation and pain signaling, is negatively modulated by PSD-95 through a PDZ-based interaction. We asked whether CAR and ASIC3 simultaneously interact with PSD-95, and if so, whether co-expression of these proteins alters their cellular distribution and localization. Results indicate that CAR and ASIC3 co-immunoprecipitate only when co-expressed with PSD-95. CAR also brings both PSD-95 and ASIC3 to the junctions of heterologous cells. Moreover, CAR rescues PSD-95-mediated inhibition of ASIC3 currents. These data suggest that, in addition to activity as a viral receptor and adhesion molecule, CAR can play a role in trafficking proteins, including ion channels, in a PDZ-based scaffolding complex. PMID:22809504

  15. Tethering naturally occurring peptide toxins for cell-autonomous modulation of ion channels and receptors in vivo.

    PubMed

    Ibañez-Tallon, Inés; Wen, Hua; Miwa, Julie M; Xing, Jie; Tekinay, Ayse B; Ono, Fumihito; Brehm, Paul; Heintz, Nathaniel

    2004-08-01

    The physiologies of cells depend on electrochemical signals carried by ion channels and receptors. Venomous animals produce an enormous variety of peptide toxins with high affinity for specific ion channels and receptors. The mammalian prototoxin lynx1 shares with alpha-bungarotoxin the ability to bind and modulate nicotinic receptors (nAChRs); however, lynx1 is tethered to the membrane via a GPI anchor. We show here that several classes of neurotoxins, including bungarotoxins and cobratoxins, retain their selective antagonistic properties when tethered to the membrane. Targeted elimination of nAChR function in zebrafish can be achieved with tethered alpha-bungarotoxin, silencing synaptic transmission without perturbing synapse formation. These studies harness the pharmacological properties of peptide toxins for use in genetic experiments. When combined with specific methods of cell and temporal expression, the extension of this approach to hundreds of naturally occurring peptide toxins opens a new landscape for cell-autonomous regulation of cellular physiology in vivo. PMID:15294139

  16. A yellow fluorescent protein-based assay for high-throughput screening of glycine and GABAA receptor chloride channels.

    PubMed

    Kruger, Wade; Gilbert, Daniel; Hawthorne, Rebecca; Hryciw, Deanne H; Frings, Stephan; Poronnik, Philip; Lynch, Joseph W

    2005-06-01

    There is a significant clinical need to identify novel ligands with high selectivity and potency for GABA(A), GABA(C) and glycine receptor Cl- channels. Two recently developed, yellow fluorescent protein variants (YFP-I152L and YFP-V163S) are highly sensitive to quench by small anions and are thus suited to reporting anionic influx into cells. The aim of this study was to establish the optimal conditions for using these constructs for high-throughput screening of GABA(A), GABA(C) and glycine receptors transiently expressed in HEK293 cells. We found that a 70% fluorescence reduction was achieved by quenching YFP-I152L with a 10 s influx of I- ions, driven by an external I- concentration of at least 50 mM. The fluorescence quench was rapid, with a mean time constant of 3 s. These responses were similar for all anion receptor types studied. We also show the assay is sufficiently sensitive to measure agonist and antagonist concentration-responses using either imaging- or photomultiplier-based detection systems. The robustness, sensitivity and low cost of this assay render it suited for high-throughput screening of transiently expressed anionic ligand-gated channels. PMID:15862914

  17. Transient Receptor Potential Melastatin 7 Cation Channel Kinase: New Player in Angiotensin II-Induced Hypertension.

    PubMed

    Antunes, Tayze T; Callera, Glaucia E; He, Ying; Yogi, Alvaro; Ryazanov, Alexey G; Ryazanova, Lillia V; Zhai, Alexander; Stewart, Duncan J; Shrier, Alvin; Touyz, Rhian M

    2016-04-01

    Transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein comprising a magnesium (Mg(2+))/cation channel and a kinase domain. We previously demonstrated that vasoactive agents regulate vascular TRPM7. Whether TRPM7 plays a role in the pathophysiology of hypertension and associated cardiovascular dysfunction is unknown. We studied TRPM7 kinase-deficient mice (TRPM7Δkinase; heterozygous for TRPM7 kinase) and wild-type (WT) mice infused with angiotensin II (Ang II; 400 ng/kg per minute, 4 weeks). TRPM7 kinase expression was lower in heart and aorta from TRPM7Δkinase versus WT mice, effects that were further reduced by Ang II infusion. Plasma Mg(2+) was lower in TRPM7Δkinase versus WT mice in basal and stimulated conditions. Ang II increased blood pressure in both strains with exaggerated responses in TRPM7Δkinase versus WT groups (P<0.05). Acetylcholine-induced vasorelaxation was reduced in Ang II-infused TRPM7Δkinase mice, an effect associated with Akt and endothelial nitric oxide synthase downregulation. Vascular cell adhesion molecule-1 expression was increased in Ang II-infused TRPM7 kinase-deficient mice. TRPM7 kinase targets, calpain, and annexin-1, were activated by Ang II in WT but not in TRPM7Δkinase mice. Echocardiographic and histopathologic analysis demonstrated cardiac hypertrophy and left ventricular dysfunction in Ang II-treated groups. In TRPM7 kinase-deficient mice, Ang II-induced cardiac functional and structural effects were amplified compared with WT counterparts. Our data demonstrate that in TRPM7Δkinase mice, Ang II-induced hypertension is exaggerated, cardiac remodeling and left ventricular dysfunction are amplified, and endothelial function is impaired. These processes are associated with hypomagnesemia, blunted TRPM7 kinase expression/signaling, endothelial nitric oxide synthase downregulation, and proinflammatory vascular responses. Our findings identify TRPM7 kinase as a novel player in Ang II-induced hypertension

  18. The Membrane-Associated Transient Receptor Potential Vanilloid Channel Is the Central Heat Shock Receptor Controlling the Cellular Heat Shock Response in Epithelial Cells

    PubMed Central

    Bromberg, Zohar; Goloubinoff, Pierre; Saidi, Younousse; Weiss, Yoram George

    2013-01-01

    The heat shock response (HSR) is a highly conserved molecular response to various types of stresses, including heat shock, during which heat-shock proteins (Hsps) are produced to prevent and repair damages in labile proteins and membranes. In cells, protein unfolding in the cytoplasm is thought to directly enable the activation of the heat shock factor 1 (HSF-1), however, recent work supports the activation of the HSR via an increase in the fluidity of specific membrane domains, leading to activation of heat-shock genes. Our findings support the existence of a plasma membrane-dependent mechanism of HSF-1 activation in animal cells, which is initiated by a membrane-associated transient receptor potential vanilloid receptor (TRPV). We found in various non-cancerous and cancerous mammalian epithelial cells that the TRPV1 agonists, capsaicin and resiniferatoxin (RTX), upregulated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70 and Hsp90 respectively, while the TRPV1 antagonists, capsazepine and AMG-9810, attenuated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70, Hsp90, respectively. Capsaicin was also shown to activate HSF-1. These findings suggest that heat-sensing and signaling in mammalian cells is dependent on TRPV channels in the plasma membrane. Thus, TRPV channels may be important drug targets to inhibit or restore the cellular stress response in diseases with defective cellular proteins, such as cancer, inflammation and aging. PMID:23468922

  19. Contribution of the respiratory network to rhythm and motor output revealed by modulation of GIRK channels, somatostatin and neurokinin-1 receptors.

    PubMed

    Montandon, Gaspard; Liu, Hattie; Horner, Richard L

    2016-01-01

    Breathing is generated by a respiratory network in the brainstem. At its core, a population of neurons expressing neurokinin-1 receptors (NK1R) and the peptide somatostatin (SST) form the preBötzinger Complex (preBötC), a site essential for the generation of breathing. PreBötC interneurons generate rhythm and follower neurons shape motor outputs by activating upper airway respiratory muscles. Since NK1R-expressing preBötC neurons are preferentially inhibited by μ-opioid receptors via activation of GIRK channels, NK1R stimulation may also involve GIRK channels. Hence, we identify the contribution of GIRK channels to rhythm, motor output and respiratory modulation by NK1Rs and SST. In adult rats, GIRK channels were identified in NK1R-expressing preBötC cells. Their activation decreased breathing rate and genioglossus muscle activity, an important upper airway muscle. NK1R activation increased rhythmic breathing and genioglossus muscle activity in wild-type mice, but not in mice lacking GIRK2 subunits (GIRK2(-/-)). Conversely, SST decreased rhythmic breathing via SST2 receptors, reduced genioglossus muscle activity likely through SST4 receptors, but did not involve GIRK channels. In summary, NK1R stimulation of rhythm and motor output involved GIRK channels, whereas SST inhibited rhythm and motor output via two SST receptor subtypes, therefore revealing separate circuits mediating rhythm and motor output. PMID:27599866

  20. Heteromeric Canonical Transient Receptor Potential 1 and 4 Channels Play a Critical Role in Epileptiform Burst Firing and Seizure-Induced Neurodegeneration

    PubMed Central

    Phelan, Kevin D.; Mock, Matthew M.; Kretz, Oliver; Shwe, U. Thaung; Kozhemyakin, Maxim; Greenfield, L. John; Dietrich, Alexander; Birnbaumer, Lutz; Freichel, Marc; Flockerzi, Veit

    2012-01-01

    Canonical transient receptor potential channels (TRPCs) are receptor-operated cation channels that are activated in response to phospholipase C signaling. Although TRPC1 is ubiquitously expressed in the brain, TRPC4 expression is the most restrictive, with the highest expression level limited to the lateral septum. The subunit composition of neuronal TRPC channels remains uncertain because of conflicting data from recombinant expression systems. Here we report that the large depolarizing plateau potential that underlies the epileptiform burst firing induced by metabotropic glutamate receptor agonists in lateral septal neurons was completely abolished in TRPC1/4 double-knockout mice, and was abolished in 74% of lateral septal neurons in TRPC1 knockout mice. Furthermore, neuronal cell death in the lateral septum and the cornu ammonis 1 region of hippocampus after pilocarpine-induced severe seizures was significantly ameliorated in TRPC1/4 double-knockout mice. Our data suggest that both TRPC1 and TRPC4 are essential for an intrinsic membrane conductance mediating the plateau potential in lateral septal neurons, possibly as heteromeric channels. Moreover, excitotoxic neuronal cell death, an underlying process for many neurological diseases, is not mediated merely by ionotropic glutamate receptors but also by heteromeric TRPC channels activated by metabotropic glutamate receptors. TRPC channels could be an unsuspected but critical molecular target for clinical intervention for excitotoxicity. PMID:22144671

  1. Heteromeric canonical transient receptor potential 1 and 4 channels play a critical role in epileptiform burst firing and seizure-induced neurodegeneration.

    PubMed

    Phelan, Kevin D; Mock, Matthew M; Kretz, Oliver; Shwe, U Thaung; Kozhemyakin, Maxim; Greenfield, L John; Dietrich, Alexander; Birnbaumer, Lutz; Freichel, Marc; Flockerzi, Veit; Zheng, Fang

    2012-03-01

    Canonical transient receptor potential channels (TRPCs) are receptor-operated cation channels that are activated in response to phospholipase C signaling. Although TRPC1 is ubiquitously expressed in the brain, TRPC4 expression is the most restrictive, with the highest expression level limited to the lateral septum. The subunit composition of neuronal TRPC channels remains uncertain because of conflicting data from recombinant expression systems. Here we report that the large depolarizing plateau potential that underlies the epileptiform burst firing induced by metabotropic glutamate receptor agonists in lateral septal neurons was completely abolished in TRPC1/4 double-knockout mice, and was abolished in 74% of lateral septal neurons in TRPC1 knockout mice. Furthermore, neuronal cell death in the lateral septum and the cornu ammonis 1 region of hippocampus after pilocarpine-induced severe seizures was significantly ameliorated in TRPC1/4 double-knockout mice. Our data suggest that both TRPC1 and TRPC4 are essential for an intrinsic membrane conductance mediating the plateau potential in lateral septal neurons, possibly as heteromeric channels. Moreover, excitotoxic neuronal cell death, an underlying process for many neurological diseases, is not mediated merely by ionotropic glutamate receptors but also by heteromeric TRPC channels activated by metabotropic glutamate receptors. TRPC channels could be an unsuspected but critical molecular target for clinical intervention for excitotoxicity. PMID:22144671

  2. Contribution of the respiratory network to rhythm and motor output revealed by modulation of GIRK channels, somatostatin and neurokinin-1 receptors

    PubMed Central

    Montandon, Gaspard; Liu, Hattie; Horner, Richard L.

    2016-01-01

    Breathing is generated by a respiratory network in the brainstem. At its core, a population of neurons expressing neurokinin-1 receptors (NK1R) and the peptide somatostatin (SST) form the preBötzinger Complex (preBötC), a site essential for the generation of breathing. PreBötC interneurons generate rhythm and follower neurons shape motor outputs by activating upper airway respiratory muscles. Since NK1R-expressing preBötC neurons are preferentially inhibited by μ-opioid receptors via activation of GIRK channels, NK1R stimulation may also involve GIRK channels. Hence, we identify the contribution of GIRK channels to rhythm, motor output and respiratory modulation by NK1Rs and SST. In adult rats, GIRK channels were identified in NK1R-expressing preBötC cells. Their activation decreased breathing rate and genioglossus muscle activity, an important upper airway muscle. NK1R activation increased rhythmic breathing and genioglossus muscle activity in wild-type mice, but not in mice lacking GIRK2 subunits (GIRK2−/−). Conversely, SST decreased rhythmic breathing via SST2 receptors, reduced genioglossus muscle activity likely through SST4 receptors, but did not involve GIRK channels. In summary, NK1R stimulation of rhythm and motor output involved GIRK channels, whereas SST inhibited rhythm and motor output via two SST receptor subtypes, therefore revealing separate circuits mediating rhythm and motor output. PMID:27599866

  3. Molecular determinants mediating gating of Transient Receptor Potential Canonical (TRPC) channels by stromal interaction molecule 1 (STIM1).

    PubMed

    Lee, Kyu Pil; Choi, Seok; Hong, Jeong Hee; Ahuja, Malini; Graham, Sarabeth; Ma, Rong; So, Insuk; Shin, Dong Min; Muallem, Shmuel; Yuan, Joseph P

    2014-03-01

    Transient receptor potential canonical (TRPC) channels mediate a critical part of the receptor-evoked Ca(2+) influx. TRPCs are gated open by the endoplasmic reticulum Ca(2+) sensor STIM1. Here we asked which stromal interaction molecule 1 (STIM1) and TRPC domains mediate the interaction between them and how this interaction is used to open the channels. We report that the STIM1 Orai1-activating region domain of STIM1 interacts with the TRPC channel coiled coil domains (CCDs) and that this interaction is essential for opening the channels by STIM1. Thus, disruption of the N-terminal (NT) CCDs by triple mutations eliminated TRPC surface localization and reduced binding of STIM1 to TRPC1 and TRPC5 while increasing binding to TRPC3 and TRPC6. Single mutations in TRPC1 NT or C-terminal (CT) CCDs reduced interaction and activation of TRPC1 by STIM1. Remarkably, single mutations in the TRPC3 NT CCD enhanced interaction and regulation by STIM1. Disruption in the TRPC3 CT CCD eliminated regulation by STIM1 and the enhanced interaction caused by NT CCD mutations. The NT CCD mutations converted TRPC3 from a TRPC1-dependent to a TRPC1-independent, STIM1-regulated channel. TRPC1 reduced the FRET between BFP-TRPC3 and TRPC3-YFP and between CFP-TRPC3-YFP upon stimulation. Accordingly, knockdown of TRPC1 made TRPC3 STIM1-independent. STIM1 dependence of TRPC3 was reconstituted by the TRPC1 CT CCD alone. Knockout of Trpc1 and Trpc3 similarly inhibited Ca(2+) influx, and inhibition of Trpc3 had no further effect on Ca(2+) influx in Trpc1(-/-) cells. Cell stimulation enhanced the formation of Trpc1-Stim1-Trpc3 complexes. These findings support a model in which the TRPC3 NT and CT CCDs interact to shield the CT CCD from interaction with STIM1. The TRPC1 CT CCD dissociates this interaction to allow the STIM1 Orai1-activating region within STIM1 access to the TRPC3 CT CCD and regulation of TRPC3 by STIM1. These studies provide evidence that the TRPC channel CCDs participate in channel

  4. Molecular Determinants Mediating Gating of Transient Receptor Potential Canonical (TRPC) Channels by Stromal Interaction Molecule 1 (STIM1)*

    PubMed Central

    Lee, Kyu Pil; Choi, Seok; Hong, Jeong Hee; Ahuja, Malini; Graham, Sarabeth; Ma, Rong; So, Insuk; Shin, Dong Min; Muallem, Shmuel; Yuan, Joseph P.

    2014-01-01

    Transient receptor potential canonical (TRPC) channels mediate a critical part of the receptor-evoked Ca2+ influx. TRPCs are gated open by the endoplasmic reticulum Ca2+ sensor STIM1. Here we asked which stromal interaction molecule 1 (STIM1) and TRPC domains mediate the interaction between them and how this interaction is used to open the channels. We report that the STIM1 Orai1-activating region domain of STIM1 interacts with the TRPC channel coiled coil domains (CCDs) and that this interaction is essential for opening the channels by STIM1. Thus, disruption of the N-terminal (NT) CCDs by triple mutations eliminated TRPC surface localization and reduced binding of STIM1 to TRPC1 and TRPC5 while increasing binding to TRPC3 and TRPC6. Single mutations in TRPC1 NT or C-terminal (CT) CCDs reduced interaction and activation of TRPC1 by STIM1. Remarkably, single mutations in the TRPC3 NT CCD enhanced interaction and regulation by STIM1. Disruption in the TRPC3 CT CCD eliminated regulation by STIM1 and the enhanced interaction caused by NT CCD mutations. The NT CCD mutations converted TRPC3 from a TRPC1-dependent to a TRPC1-independent, STIM1-regulated channel. TRPC1 reduced the FRET between BFP-TRPC3 and TRPC3-YFP and between CFP-TRPC3-YFP upon stimulation. Accordingly, knockdown of TRPC1 made TRPC3 STIM1-independent. STIM1 dependence of TRPC3 was reconstituted by the TRPC1 CT CCD alone. Knockout of Trpc1 and Trpc3 similarly inhibited Ca2+ influx, and inhibition of Trpc3 had no further effect on Ca2+ influx in Trpc1−/− cells. Cell stimulation enhanced the formation of Trpc1-Stim1-Trpc3 complexes. These findings support a model in which the TRPC3 NT and CT CCDs interact to shield the CT CCD from interaction with STIM1. The TRPC1 CT CCD dissociates this interaction to allow the STIM1 Orai1-activating region within STIM1 access to the TRPC3 CT CCD and regulation of TRPC3 by STIM1. These studies provide evidence that the TRPC channel CCDs participate in channel gating

  5. Heteromeric Heat-sensitive Transient Receptor Potential Channels Exhibit Distinct Temperature and Chemical Response*

    PubMed Central

    Cheng, Wei; Yang, Fan; Liu, Shuang; Colton, Craig K.; Wang, Chunbo; Cui, Yuanyuan; Cao, Xu; Zhu, Michael X.; Sun, Changsen; Wang, KeWei; Zheng, Jie

    2012-01-01

    TRPV1 and TRPV3 are two heat-sensitive ion channels activated at distinct temperature ranges perceived by human as hot and warm, respectively. Compounds eliciting human sensations of heat or warmth can also potently activate these channels. In rodents, TRPV3 is expressed predominantly in skin keratinocytes, whereas in humans TRPV1 and TRPV3 are co-expressed in sensory neurons of dorsal root ganglia and trigeminal ganglion and are known to form heteromeric channels with distinct single channel conductances as well as sensitivities to TRPV1 activator capsaicin and inhibitor capsazepine. However, how heteromeric TRPV1/TRPV3 channels respond to heat and other stimuli remains unknown. In this study, we examined the behavior of heteromeric TRPV1/TRPV3 channels activated by heat, capsaicin, and voltage. Our results demonstrate that the heteromeric channels exhibit distinct temperature sensitivity, activation threshold, and heat-induced sensitization. Changes in gating properties apparently originate from interactions between TRPV1 and TRPV3 subunits. Our results suggest that heteromeric TRPV1/TRPV3 channels are unique heat sensors that may contribute to the fine-tuning of sensitivity to sensory inputs. PMID:22184123

  6. The channel opening rate of adult- and fetal-type mouse muscle nicotinic receptors activated by acetylcholine

    PubMed Central

    Maconochie, David J; Steinbach, Joe Henry

    1998-01-01

    In this paper, we examine acetylcholine (ACh)-induced currents in quail fibroblast cell lines expressing either the fetal (Q-F18) or the adult (Q-A33) complement of nicotinic acetylcholine receptor subunits derived from mouse skeletal muscle. Pulses of ACh were applied to outside-out patches of cell membrane by means of a fast perfusion system, at concentrations from 100 nM to 10 mM. We obtained current records with intracellular potentials of -60 and +40 mV. The goal of this study was to estimate the channel opening rate.By fitting sums of exponentials to averaged responses, we estimated the rate of development of the current on the application of acetylcholine. The rate constant of the predominant exponential component (the on-rate) ranges over 3 orders of magnitude, from around 100 s−1 (fetal) at low concentrations of ACh to over 100 000 s−1 (fetal and adult) at the highest concentrations.We establish that our measurement of the on-rate is not limited by technical constraints, and can therefore be related to the rate constants of a kinetic scheme. Our observations are consistent with a model having a rate-limiting channel opening step with a forwards rate constant (β) of 80 000 s−1 on average for adult receptors and 60 000 s−1 for fetal receptors, and a minimum opening to closing ratio (β/α) of around 33 (adult) or 50 (fetal). The channel opening rate, β, varies from around 30 000 s−1 to well over 100 000 s−1 for different patches. The large variation cannot all be ascribed to errors of measurement, but indicates patch to patch variation. PMID:9481672

  7. Differential Modulation of N-Type Calcium Channels by μ-Opioid Receptors in Oxytocinergic Versus Vasopressinergic Neurohypophysial Terminals

    PubMed Central

    ORTIZ-MIRANDA, SONIA I.; DAYANITHI, GOVINDAN; VELÁZQUEZ-MARRERO, CRISTINA; CUSTER, EDWARD E.; TREISTMAN, STEVEN N.; LEMOS, JOSÉ R.

    2011-01-01

    Opioids modulate the electrical activity of magnocellular neurons (MCN) and inhibit neuropeptide release at their terminals in the neurohypophysis. We have previously shown that μ-opioid receptor (MOR) activation induces a stronger inhibition of oxytocin (OT) than vasopressin (AVP) release from isolated MCN terminals. This higher sensitivity of OT release is due, at least in part, to the selective targeting of R-type calcium channels. We now describe the underlying basis for AVP's weaker inhibition by MOR activation and provide a more complete explanation of the complicated effects on neuropeptide release. We found that N-type calcium channels in AVP terminals are differentially modulated by MOR; enhanced at lower concentrations but increasingly inhibited at higher concentrations of agonists. On the other hand, N-type calcium channels in OT terminals were always inhibited. The response pattern in co-labeled terminals was analogous to that observed in AVP-containing terminals. Changes in intracellular calcium concentration and neuropeptide release corroborated these results as they showed a similar pattern of enhancement and inhibition in AVP terminals contrasting with solely inhibitory responses in OT terminals to MOR agonists. We established that fast translocation of Ca2+ channels to the plasma membrane was not mediating current increments and thus, changes in channel kinetic properties are most likely involved. Finally, we reveal a distinct Ca-channel β-subunit expression between each type of nerve endings that could explain some of the differences in responses to MOR activation. These results help advance our understanding of the complex modulatory mechanisms utilized by MORs in regulating presynaptic neuropeptide release. PMID:20509142

  8. FKBP12 activates the cardiac ryanodine receptor Ca2+-release channel and is antagonised by FKBP12.6.

    PubMed

    Galfré, Elena; Pitt, Samantha J; Venturi, Elisa; Sitsapesan, Mano; Zaccai, Nathan R; Tsaneva-Atanasova, Krasimira; O'Neill, Stephen; Sitsapesan, Rebecca

    2012-01-01

    Changes in FKBP12.6 binding to cardiac ryanodine receptors (RyR2) are implicated in mediating disturbances in Ca(2+)-homeostasis in heart failure but there is controversy over the functional effects of FKBP12.6 on RyR2 channel gating. We have therefore investigated the effects of FKBP12.6 and another structurally similar molecule, FKBP12, which is far more abundant in heart, on the gating of single sheep RyR2 channels incorporated into planar phospholipid bilayers and on spontaneous waves of Ca(2+)-induced Ca(2+)-release in rat isolated permeabilised cardiac cells. We demonstrate that FKBP12 is a high affinity activator of RyR2, sensitising the channel to cytosolic Ca(2+), whereas FKBP12.6 has very low efficacy, but can antagonise the effects of FKBP12. Mathematical modelling of the data shows the importance of the relative concentrations of FKBP12 and FKBP12.6 in determining RyR2 activity. Consistent with the single-channel results, physiological concentrations of FKBP12 (3 µM) increased Ca(2+)-wave frequency and decreased the SR Ca(2+)-content in cardiac cells. FKBP12.6, itself, had no effect on wave frequency but antagonised the effects of FKBP12.We provide a biophysical analysis of the mechanisms by which FK-binding proteins can regulate RyR2 single-channel gating. Our data indicate that FKBP12, in addition to FKBP12.6, may be important in regulating RyR2 function in the heart. In heart failure, it is possible that an alteration in the dual regulation of RyR2 by FKBP12 and FKBP12.6 may occur. This could contribute towards a higher RyR2 open probability, 'leaky' RyR2 channels and Ca(2+)-dependent arrhythmias. PMID:22363773

  9. Novel role for the transient potential receptor melastatin 4 channel in guinea pig detrusor smooth muscle physiology

    PubMed Central

    Smith, Amy C.; Hristov, Kiril L.; Cheng, Qiuping; Xin, Wenkuan; Parajuli, Shankar P.; Earley, Scott; Malysz, John

    2013-01-01

    Members of the transient receptor potential (TRP) channel superfamily, including the Ca2+-activated monovalent cation-selective TRP melastatin 4 (TRPM4) channel, have been recently identified in the urinary bladder. However, their expression and function at the level of detrusor smooth muscle (DSM) remain largely unexplored. In this study, for the first time we investigated the role of TRPM4 channels in guinea pig DSM excitation-contraction coupling using a multidisciplinary approach encompassing protein detection, electrophysiology, live-cell Ca2+ imaging, DSM contractility, and 9-phenanthrol, a recently characterized selective inhibitor of the TRPM4 channel. Western blot and immunocytochemistry experiments demonstrated the expression of the TRPM4 channel in whole DSM tissue and freshly isolated DSM cells with specific localization on the plasma membrane. Perforated whole cell patch-clamp recordings and real-time Ca2+ imaging experiments with fura 2-AM, both using freshly isolated DSM cells, revealed that 9-phenanthrol (30 μM) significantly reduced the cation current and decreased intracellular Ca2+ levels. 9-Phenanthrol (0.1–30 μM) significantly inhibited spontaneous, 0.1 μM carbachol-induced, 20 mM KCl-induced, and nerve-evoked contractions in guinea pig DSM-isolated strips with IC50 values of 1–7 μM and 70–80% maximum inhibition. 9-Phenanthrol also reduced nerve-evoked contraction amplitude induced by continuous repetitive electrical field stimulation of 10-Hz frequency and shifted the frequency-response curve (0.5–50 Hz) relative to the control. Collectively, our data demonstrate the novel finding that TRPM4 channels are expressed in guinea pig DSM and reveal their critical role in the regulation of guinea pig DSM excitation-contraction coupling. PMID:23302778

  10. Mechanism of direct Cav2.2 channel block by the κ-opioid receptor agonist U50488H.

    PubMed

    Berecki, Géza; Motin, Leonid; Adams, David J

    2016-10-01

    U50488H is a benzeneacetamide κ-opioid receptor (κ-OR) agonist analgesic, widely used for investigating the pharmacology of G protein-coupled κ-ORs. However, U50488H is also known to directly block various voltage-gated ion channels in a G protein-independent manner. We investigated the direct actions of U50488H on various high voltage-activated (HVA) and low voltage-activated (LVA) neuronal Ca(2+) channels heterologously expressed in human embryonic kidney (HEK293) cells. U50488H inhibited HVA rat Cav1.3 (rCav1.3), human Cav2.1 (hCav2.1), hCav2.2, hCav2.3, and LVA hCav3.1 and hCav3.2 channels in a concentration-dependent manner, with similar potencies characterised with half-maximal inhibitory concentration (IC50) values of ∼30 μM. U50488H concentrations causing direct Cav inhibition are typically >100 times higher than those producing κ-OR activation. Investigation of the mechanism of U50488H block of the Cav2.2 channel revealed that U50488H interacted with all major kinetic states of the channel - resting, open, and inactivated. U50488H did not affect the voltage dependence of activation but shifted the steady-state inactivation curve by ∼11 mV to more hyperpolarized potentials. U50488H also increased the rate of Ba(2+) current inactivation during a step depolarization and significantly delayed recovery from slow inactivation, compared with control. Cav2.2 current inhibition was frequency dependent during repetitive step depolarization at 1 Hz and 3 Hz, consistent with use-dependent block. In summary, our results suggest that preferential interaction of U50488H with inactivated Cav2.2 channels significantly contributes to reduced Cav2.2 channel availability and slow recovery form inactivation. We conclude that U50488H non-selectively blocks heterologously expressed neuronal HVA and LVA Cav channels in the absence of κ-ORs. This cross-reactivity also suggests potentially common U50488H binding motifs across Cav channel targets. PMID:27245500

  11. Transient receptor potential (TRP) channels as a therapeutic target for intervention of respiratory effects and lethality from phosgene.

    PubMed

    Andres, Devon; Keyser, Brian; Benton, Betty; Melber, Ashley; Olivera, Dorian; Holmes, Wesley; Paradiso, Danielle; Anderson, Dana; Ray, Radharaman

    2016-02-26

    Phosgene (CG), a toxic inhalation and industrial hazard, causes bronchoconstriction, vasoconstriction and associated pathological effects that could be life threatening. Ion channels of the transient receptor potential (TRP) family have been identified to act as specific chemosensory molecules in the respiratory tract in the detection, control of adaptive responses and initiation of detrimental signaling cascades upon exposure to various toxic inhalation hazards (TIH); their activation due to TIH exposure may result in broncho- and vasoconstriction. We studied changes in the regulation of intracellular free Ca(2+) concentration ([Ca(2+)]i) in cultures of human bronchial smooth muscle cells (BSMC) and human pulmonary microvascular endothelial cells (HPMEC) exposed to CG (16ppm, 8min), using an air/liquid interface exposure system. CG increased [Ca(2+)]i (p<0.05) in both cell types, The CG-induced [Ca(2+)]i was blocked (p<0.05) by two types of TRP channel blockers, SKF-96365, a general TRP channel blocker, and RR, a general TRPV (vanilloid type) blocker, in both BSMC and HPMEC. These effects correlate with the in vivo efficacies of these compounds to protect against lung injury and 24h lethality from whole body CG inhalation exposure in mice (8-10ppm×20min). Thus the TRP channel mechanism appears to be a potential target for intervention in CG toxicity. PMID:26562769

  12. In vivo responses of single olfactory receptor neurons of channel catfish to binary mixtures of amino acids.

    PubMed

    Kang, J; Caprio, J

    1997-01-01

    For the first time in any vertebrate, in vivo responses of single olfactory receptor neurons to odorant mixtures were studied quantitatively. Extracellular electrophysiological response of 54 single olfactory receptor neurons from 23 channel catfish, Ictalurus punctatus, to binary mixtures of amino acids and to their components were recorded simultaneously with the electroolfactogram (EOG). For 57% (73 of 128) of the tests, no significant change (N) from spontaneous activity occurred. Responses to the remaining 55 tests of binary mixtures were excitatory (E; 13%) or suppressive (S; 30%). No response type was associated with any specific mixture across the neurons sampled. Eighty-six percent of the responses of catfish olfactory receptor neurons to binary mixtures were classified similar to at least one of the component responses, a percentage comparable (i.e., 89%) with that observed for single olfactory bulb neurons in the same species to equivalent binary mixtures. The responses of single olfactory receptor neurons to component-similar binary mixtures (i.e., component responses were both E, both S, and both N, respectively) were generally (80% of 59 tests) classified similar to the responses to the components. For E+N and S+N binary mixtures, the N component often (66% of 58 tests) reduced or concealed (i.e., "masked") the excitatory and suppressive responses, respectively. For the majority (6 of 11 tests) of E + S binary mixtures, null activity resulted. Responses to the remaining five tests were either excitatory (n = 3) or suppressive (n = 2). PMID:9120550

  13. Knockout of the BK β4-subunit promotes a functional coupling of BK channels and ryanodine receptors that mediate a fAHP-induced increase in excitability.

    PubMed

    Wang, Bin; Bugay, Vladislav; Ling, Ling; Chuang, Hui-Hsui; Jaffe, David B; Brenner, Robert

    2016-08-01

    BK channels are large-conductance calcium- and voltage-activated potassium channels with diverse properties. Knockout of the accessory BK β4-subunit in hippocampus dentate gyrus granule neurons causes BK channels to change properties from slow-gated type II channels to fast-gated type I channels that sharpen the action potential, increase the fast afterhyperpolarization (fAHP) amplitude, and increase spike frequency. Here we studied the calcium channels that contribute to fast-gated BK channel activation and increased excitability of β4 knockout neurons. By using pharmacological blockers during current-clamp recording, we find that BK channel activation during the fAHP is dependent on ryanodine receptor activation. In contrast, L-type calcium channel blocker (nifedipine) affects the BK channel-dependent repolarization phase of the action potential but has no effect on the fAHP. Reducing BK channel activation during the repolarization phase with nifedipine, or during the fAHP with ryanodine, indicated that it is the BK-mediated increase of the fAHP that confers proexcitatory effects. The proexcitatory role of the fAHP was corroborated using dynamic current clamp. Increase or decrease of the fAHP amplitude during spiking revealed an inverse relationship between fAHP amplitude and interspike interval. Finally, we show that the seizure-prone ryanodine receptor gain-of-function (R2474S) knockin mice have an unaltered repolarization phase but larger fAHP and increased AP frequency compared with their control littermates. In summary, these results indicate that an important role of the β4-subunit is to reduce ryanodine receptor-BK channel functional coupling during the fAHP component of the action potential, thereby decreasing excitability of dentate gyrus neurons. PMID:27146987

  14. Molecular Bases of Multimodal Regulation of a Fungal Transient Receptor Potential (TRP) Channel*

    PubMed Central

    Ihara, Makoto; Hamamoto, Shin; Miyanoiri, Yohei; Takeda, Mitsuhiro; Kainosho, Masatsune; Yabe, Isamu; Uozumi, Nobuyuki; Yamashita, Atsuko

    2013-01-01

    Multimodal activation by various stimuli is a fundamental characteristic of TRP channels. We identified a fungal TRP channel, TRPGz, exhibiting activation by hyperosmolarity, temperature increase, cytosolic Ca2+ elevation, membrane potential, and H2O2 application, and thus it is expected to represent a prototypic multimodal TRP channel. TRPGz possesses a cytosolic C-terminal domain (CTD), primarily composed of intrinsically disordered regions with some regulatory modules, a putative coiled-coil region and a basic residue cluster. The CTD oligomerization mediated by the coiled-coil region is required for the hyperosmotic and temperature increase activations but not for the tetrameric channel formation or other activation modalities. In contrast, the basic cluster is responsible for general channel inhibition, by binding to phosphatidylinositol phosphates. The crystal structure of the presumed coiled-coil region revealed a tetrameric assembly in an offset spiral rather than a canonical coiled-coil. This structure underlies the observed moderate oligomerization affinity enabling the dynamic assembly and disassembly of the CTD during channel functions, which are compatible with the multimodal regulation mediated by each functional module. PMID:23553631

  15. T Cell Receptor Mediated Calcium Entry Requires Alternatively Spliced Cav1.1 Channels

    PubMed Central

    Matza, Didi; Badou, Abdallah; Klemic, Kathryn G.; Stein, Judith; Govindarajulu, Usha; Nadler, Monica J.; Kinet, Jean-Pierre; Peled, Amnon; Shapira, Oz M.; Kaczmarek, Leonard K.; Flavell, Richard A.

    2016-01-01

    The process of calcium entry in T cells is a multichannel and multi-step process. We have studied the requirement for L-type calcium channels (Cav1.1) α1S subunits during calcium entry after TCR stimulation. High expression levels of Cav1.1 channels were detected in activated T cells. Sequencing and cloning of Cav1.1 channel cDNA from T cells revealed that a single splice variant is expressed. This variant lacks exon 29, which encodes the linker region adjacent to the voltage sensor, but contains five new N-terminal exons that substitute for exons 1 and 2, which are found in the Cav1.1 muscle counterpart. Overexpression studies using cloned T cell Cav1.1 in 293HEK cells (that lack TCR) suggest that the gating of these channels was altered. Knockdown of Cav1.1 channels in T cells abrogated calcium entry after TCR stimulation, suggesting that Cav1.1 channels are controlled by TCR signaling. PMID:26815481

  16. T Cell Receptor Mediated Calcium Entry Requires Alternatively Spliced Cav1.1 Channels.

    PubMed

    Matza, Didi; Badou, Abdallah; Klemic, Kathryn G; Stein, Judith; Govindarajulu, Usha; Nadler, Monica J; Kinet, Jean-Pierre; Peled, Amnon; Shapira, Oz M; Kaczmarek, Leonard K; Flavell, Richard A

    2016-01-01

    The process of calcium entry in T cells is a multichannel and multi-step process. We have studied the requirement for L-type calcium channels (Cav1.1) α1S subunits during calcium entry after TCR stimulation. High expression levels of Cav1.1 channels were detected in activated T cells. Sequencing and cloning of Cav1.1 channel cDNA from T cells revealed that a single splice variant is expressed. This variant lacks exon 29, which encodes the linker region adjacent to the voltage sensor, but contains five new N-terminal exons that substitute for exons 1 and 2, which are found in the Cav1.1 muscle counterpart. Overexpression studies using cloned T cell Cav1.1 in 293HEK cells (that lack TCR) suggest that the gating of these channels was altered. Knockdown of Cav1.1 channels in T cells abrogated calcium entry after TCR stimulation, suggesting that Cav1.1 channels are controlled by TCR signaling. PMID:26815481

  17. Differential effects of K+ channel blockers on antinociception induced by alpha 2-adrenoceptor, GABAB and kappa-opioid receptor agonists.

    PubMed Central

    Ocaña, M.; Baeyens, J. M.

    1993-01-01

    1. The effects of several K+ channel blockers (sulphonylureas, 4-aminopyridine and tetraethylammonium) on the antinociception induced by clonidine, baclofen and U50,488H were evaluated by use of a tail flick test in mice. 2. Clonidine (0.125-2 mg kg-1, s.c.) induced a dose-dependent antinociceptive effect. The ATP-dependent K+ (KATP) channel blocker gliquidone (4-8 micrograms/mouse, i.c.v.) produced a dose-dependent displacement to the right of the clonidine dose-response line, but neither 4-aminopyridine (4-AP) (25-250 ng/mouse, i.c.v.) nor tetraethylammonium (TEA) (10-20 micrograms/mouse, i.c.v.) significantly modified clonidine-induced antinociception. 3. The order of potency of sulphonylureas in antagonizing clonidine-induced antinociception was gliquidone > glipizide > glibenclamide > tolbutamide, which is the same order of potency as these drugs block KATP channels in neurones of the CNS. 4. Baclofen (2-16 mg kg-1, s.c.) also induced a dose-dependent antinociceptive effect. Both 4-AP (2.5-25 ng/mouse, i.c.v.) and TEA (10-20 micrograms/mouse, i.c.v.) dose-dependently antagonized baclofen antinociception, producing a displacement to the right of the baclofen dose-response line. However, gliquidone (8-16 micrograms/mouse, i.c.v.) did not significantly modify the baclofen effect. 5. None of the K+ channel blockers tested (gliquidone, 8-16 micrograms/mouse; 4-AP, 25-250 ng/mouse and TEA, 10-20 micrograms/mouse, i.c.v.), significantly modified the antinociception induced by U50,488H (8 mg kg-1, s.c.). 6. These results suggest that the opening of K+ channels is involved in the antinociceptive effect of alpha 2 and GABAB, but not kappa-opioid, receptor agonists.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7905339

  18. Opioid receptor stimulation suppresses the adrenal medulla hypoxic response in sheep by actions on Ca2+ and K+ channels

    PubMed Central

    Keating, Damien J; Rychkov, Grigori Y; Adams, Michael B; Holgert, Hans; McMillen, I Caroline; Roberts, Michael L

    2004-01-01

    Before the preganglionic regulation of the adrenal medulla is established, hypoxia acts directly on the chromaffin cells to evoke the secretion of catecholamines. This direct action of hypoxia is suppressed by the gradual development of the preganglionic innervation and we have proposed that opioid peptides released from the adrenal splanchnic nerves may be responsible for this suppression. The effects of the specific opioid agonists DPDPE (δ-agonist), U-62066 (κ-agonist) and DALDA (μ-agonist) on the hypoxia-evoked response were investigated in both a whole-gland preparation and in isolated adrenal chromaffin cells using amperometry, whole-cell patch clamping and measurement of cytosolic [Ca2+]. The combined application of μ- and κ-type agonists abolished the hypoxia-evoked catecholamine secretion from whole perfused adrenal gland. In isolated chromaffin cells, μ- and κ-opioid agonists reduced the rise in [Ca2+]i that results from exposure to hypoxia. Both agonists decreased the voltage-dependent Ca2+ current in these cells. The μ-agonist increased the conductance through SK-type K+ channels and this action offset the decrease in K+ conductance produced by exposure to hypoxia. The κ-type agonist decreased the conductance through an action on BK-type K+ channels, a class of channels that are not involved in initiating the direct response to hypoxia. These data suggest that opioids, through their action on SK channels and voltage-dependent Ca2+ channels, may be responsible for the nerve-induced suppression of the hypoxic response of adrenal chromaffin cells and that these effects of endogenous opioids are mediated via μ- and κ-type receptors. PMID:14724210

  19. Inhibitory effects of Tyrphostin AG-related compounds on oxidative stress-sensitive transient receptor potential channel activation.

    PubMed

    Toda, Takahiro; Yamamoto, Shinichiro; Yonezawa, Ryo; Mori, Yasuo; Shimizu, Shunichi

    2016-09-01

    Some transient receptor potential (TRP) proteins including TRPA1, TPRM2 and TRPV1 are oxidative stress-sensitive Ca(2+)-permeable channels. Ca(2+) signaling via these TRP channels activated by oxidative stress has been implicated in the aggravation of various inflammatory diseases and pain sensation. We recently reported that Tyrphostin AG490 exerted inhibitory effects on H2O2-induced TRPM2 activation by scavenging the hydroxyl radical. In order to identify stronger inhibitors of oxidative stress-sensitive TRP channels than AG490, we examined the inhibitory effects of Tyrphostin AG-related compounds on H2O2-induced TRP channel activation in human embryonic kidney 293 cells expressing TRP channels. AG555 and AG556 blocked the activation of TRPM2 by H2O2 more strongly than AG490. Regarding TRPV1 and TRPA1, none of the three compounds tested affected H2O2-induced TRPV1 activation; however, AG555 and AG556 reduced H2O2-induced TRPA1 activation more than AG490. Thus, we herein identified AG555 and AG556 as new compounds that exert stronger inhibitory effects on H2O2-induced TRPM2 and TRPA1 activation than AG490. Edaravone, a hydroxyl radical scavenger used in the treatment of cerebral hemorrhage and cerebral infarction, did not affect H2O2-induced TRPM2 or TRPA1 activation. AG555 and AG556 may be useful seed compounds as therapeutic agents for several TRP-related diseases associated with oxidative stress. PMID:27238971

  20. 5-Hydroxytryptamine1A receptor-activation hyperpolarizes pyramidal cells and suppresses hippocampal gamma oscillations via Kir3 channel activation

    PubMed Central

    Johnston, April; McBain, Chris J; Fisahn, André

    2014-01-01

    Rhythmic cortical neuronal oscillations in the gamma frequency band (30–80 Hz, gamma oscillations) have been associated with cognitive processes such as sensory perception and integration, attention, learning, and memory. Gamma oscillations are disrupted in disorders for which cognitive deficits are hallmark symptoms such as schizophrenia and Alzheimer's disease. In vitro, various neurotransmitters have been found to modulate gamma oscillations. Serotonin (5-HT) has long been known to be important for both behavioural and cognitive functions such as learning and memory. Multiple 5-HT receptor subtypes are expressed in the CA3 region of the hippocampus and high doses of 5-HT reduce the power of induced gamma oscillations. Hypothesizing that 5-HT may have cell- and receptor subtype-specific modulatory effects, we investigated the receptor subtypes, cell types and cellular mechanisms engaged by 5-HT in the modulation of gamma oscillations in mice and rats. We found that 5-HT decreases the power of kainate-induced hippocampal gamma oscillations in both species via the 5-HT1A receptor subtype. Whole-cell patch clamp recordings demonstrated that this decrease was caused by a hyperpolarization of CA3 pyramidal cells and a reduction of their firing frequency, but not by alteration of inhibitory neurotransmission. Finally, our results show that the effect on pyramidal cells is mediated via the G protein-coupled receptor inwardly rectifying potassium channel Kir3. Our findings suggest this novel cellular mechanism as a potential target for therapies that are aimed at alleviating cognitive decline by helping the brain to maintain or re-establish normal gamma oscillation levels in neuropsychiatric and neurodegenerative disorders. PMID:25107925

  1. D2 dopamine receptors modulate neuronal resonance in subthalamic nucleus and cortical high-voltage spindles through HCN channels.

    PubMed

    Yang, Chen; Yan, Zhiqiang; Zhao, Bo; Wang, Julei; Gao, Guodong; Zhu, Junling; Wang, Wenting

    2016-06-01

    The high-voltage spindles (HVSs), one of the characteristic oscillations that include theta frequencies in the basal ganglia (BG)-cortical system, are involved in immobile behavior and show increasing power in Parkinson's disease (PD). Our previous results suggested that the D2 dopamine receptor might be involved in HVSs modulations in a rat model of PD. Membrane resonance is one of the cellular mechanisms of network oscillation; therefore, we investigated how dopamine modulates the theta frequency membrane resonance of neurons in the subthalamic nucleus (STN), a central pacemaker of BG, and whether such changes in STN neurons subsequently alter HVSs in the BG-cortical system. In particular, we tested whether dopamine modulates HVSs through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels-dependent membrane resonance in STN neurons. We found that an antagonist of D2 receptors, but not of D1 receptors, inhibited membrane resonance and HCN currents of STN neurons through a G-protein activity in acute brain slices. Our further in vivo experiments using local injection of a D2 receptor antagonist or an HCN blocker in STNs of free-moving rats showed an increase in HVSs power and correlation in the BG-cortical system. Local injection of lamotrigine, an HCN agonist, counteracted the effect induced by the D2 antagonist. Taken together, our results revealed a potential cellular mechanism underlying HVSs activity modulation in the BG-cortical system, i.e. tuning HCN activities in STN neurons through dopamine D2 receptors. Our findings might lead to a new direction in PD treatment by providing promising new drug targets for HVSs activity modulation. PMID:26808313

  2. Potentiation of the transient receptor potential vanilloid 1 channel contributes to pruritogenesis in a rat model of liver disease.

    PubMed

    Belghiti, Majedeline; Estévez-Herrera, Judith; Giménez-Garzó, Carla; González-Usano, Alba; Montoliu, Carmina; Ferrer-Montiel, Antonio; Felipo, Vicente; Planells-Cases, Rosa

    2013-04-01

    Persistent pruritus is a common disabling dermatologic symptom associated with different etiologic factors. These include primary skin conditions, as well as neuropathic, psychogenic, or systemic disorders like chronic liver disease. Defective clearance of potential pruritogenic substances that activate itch-specific neurons innervating the skin is thought to contribute to cholestatic pruritus. However, because the underlying disease-specific pruritogens and itch-specific neuronal pathways and mechanism(s) are unknown, symptomatic therapeutic intervention often leads to no or only limited success. In the current study, we aimed to first validate rats with bile duct ligation (BDL) as a model for hepatic pruritus and then to evaluate the contribution of inflammation, peripheral neuronal sensitization, and specific signaling pathways and subpopulations of itch-responsive neurons to scratching behavior and thermal hypersensitivity. Chronic BDL rats displayed enhanced scratching behavior and thermal hyperalgesia indicative of peripheral neuroinflammation. BDL-induced itch and hypersensitivity involved a minor contribution of histaminergic/serotonergic receptors, but significant activation of protein-activated receptor 2 (PAR2) receptors, prostaglandin PGE2 formation, and potentiation of transient receptor potential vanilloid 1 (TRPV1) channel activity. The sensitization of dorsal root ganglion nociceptors in BDL rats was associated with increased surface expression of PAR2 and TRPV1 proteins and an increase in the number of PAR2- and TRPV1-expressing peptidergic neurons together with a shift of TRPV1 receptor expression to medium sized dorsal root ganglion neurons. These results suggest that pruritus and hyperalgesia in chronic cholestatic BDL rats are associated with neuroinflammation and involve PAR2-induced TRPV1 sensitization. Thus, pharmacological modulation of PAR2 and/or TRPV1 may be a valuable therapeutic approach for patients with chronic liver pruritus

  3. Potentiation of the Transient Receptor Potential Vanilloid 1 Channel Contributes to Pruritogenesis in a Rat Model of Liver Disease*

    PubMed Central

    Belghiti, Majedeline; Estévez-Herrera, Judith; Giménez-Garzó, Carla; González-Usano, Alba; Montoliu, Carmina; Ferrer-Montiel, Antonio; Felipo, Vicente; Planells-Cases, Rosa

    2013-01-01

    Persistent pruritus is a common disabling dermatologic symptom associated with different etiologic factors. These include primary skin conditions, as well as neuropathic, psychogenic, or systemic disorders like chronic liver disease. Defective clearance of potential pruritogenic substances that activate itch-specific neurons innervating the skin is thought to contribute to cholestatic pruritus. However, because the underlying disease-specific pruritogens and itch-specific neuronal pathways and mechanism(s) are unknown, symptomatic therapeutic intervention often leads to no or only limited success. In the current study, we aimed to first validate rats with bile duct ligation (BDL) as a model for hepatic pruritus and then to evaluate the contribution of inflammation, peripheral neuronal sensitization, and specific signaling pathways and subpopulations of itch-responsive neurons to scratching behavior and thermal hypersensitivity. Chronic BDL rats displayed enhanced scratching behavior and thermal hyperalgesia indicative of peripheral neuroinflammation. BDL-induced itch and hypersensitivity involved a minor contribution of histaminergic/serotonergic receptors, but significant activation of protein-activated receptor 2 (PAR2) receptors, prostaglandin PGE2 formation, and potentiation of transient receptor potential vanilloid 1 (TRPV1) channel activity. The sensitization of dorsal root ganglion nociceptors in BDL rats was associated with increased surface expression of PAR2 and TRPV1 proteins and an increase in the number of PAR2- and TRPV1-expressing peptidergic neurons together with a shift of TRPV1 receptor expression to medium sized dorsal root ganglion neurons. These results suggest that pruritus and hyperalgesia in chronic cholestatic BDL rats are associated with neuroinflammation and involve PAR2-induced TRPV1 sensitization. Thus, pharmacological modulation of PAR2 and/or TRPV1 may be a valuable therapeutic approach for patients with chronic liver pruritus

  4. Enhancement of acid-sensing ion channel activity by metabotropic P2Y UTP receptors in primary sensory neurons.

    PubMed

    Ren, Cuixia; Gan, Xiong; Wu, Jing; Qiu, Chun-Yu; Hu, Wang-Ping

    2016-03-01

    Peripheral purinergic signaling plays an important role in nociception. Increasing evidence suggests that metabotropic P2Y receptors are also involved, but little is known about the underlying mechanism. Herein, we report that selective P2Y receptor agonist uridine 5'-triphosphate (UTP) can exert an enhancing effect on the functional activity of acid-sensing ion channels (ASICs), key sensors for extracellular protons, in rat dorsal root ganglia (DRG) neurons. First, UTP dose-dependently increased the amplitude of ASIC currents. UTP also shifted the concentration-response curve for proton upwards, with a 56.6 ± 6.4% increase of the maximal current response to proton. Second, UTP potentiation of proton-gated currents can be mimicked by adenosine 5'-triphosphate (ATP), but not by P2Y1 receptor agonist ADP. Potentiation of UTP was blocked by P2Y receptor antagonist suramin and by inhibition of intracellular G protein, phospholipase C (PLC), protein kinase C (PKC), or protein interacting with C-kinase 1 (PICK1) signaling. Third, UTP altered acidosis-evoked membrane excitability of DRG neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, UTP dose-dependently exacerbated nociceptive responses to injection of acetic acid in rats. These results suggest that UTP enhanced ASIC-mediated currents and nociceptive responses, which reveal a novel peripheral mechanism underlying UTP-sensitive P2Y2 receptor involvement in hyperalgesia by sensitizing ASICs in primary sensory neurons. PMID:26538146

  5. Sildenafil prevents the up-regulation of transient receptor potential canonical channels in the development of cardiomyocyte hypertrophy

    SciTech Connect

    Kiso, Hironori; Ohba, Takayoshi; Iino, Kenji; Sato, Kazuhiro; Terata, Yutaka; Murakami, Manabu; Ono, Kyoichi; Watanabe, Hiroyuki; Ito, Hiroshi

    2013-07-05

    Highlights: •Transient receptor potential canonical (TRPC1, 3 and 6) are up-regulated by ET-1. •Sildenafil inhibited hypertrophic responses (BNP, Ca entry, NFAT activation). •Sildenafil suppressed TRPC1, 3 and 6 expression. -- Abstract: Background: Transient receptor potential canonical (TRPCs) channels are up-regulated in the development of cardiac hypertrophy. Sildenafil inhibits TRPC6 activation and expression, leading to the prevention of cardiac hypertrophy. However, the effects of sildenafil on the expression of other TRPCs remain unknown. We hypothesized that in addition to its effects of TRPC6, sildenafil blocks the up-regulation of other TRPC channels to suppress cardiomyocyte hypertrophy. Methods and results: In cultured neonatal rat cardiomyocytes, a 48 h treatment with 10 nM endothelin (ET)-1 induced hypertrophic responses characterized by nuclear factor of activated T cells activation and enhancement of brain natriuretic peptide expression and cell surface area. Co-treatment with sildenafil (1 μM, 48 h) inhibited these ET-1-induced hypertrophic responses. Although ET-1 enhanced the gene expression of TRPCs, sildenafil inhibited the enhanced gene expression of TRPC1, C3 and C6. Moreover, co-treatment with sildenafil abolished the augmentation of SOCE in the hypertrophied cardiomyocytes. Conclusions: These results suggest that sildenafil inhibits cardiomyocyte hypertrophy by suppressing the up-regulation of TRPC expression.

  6. Exploring the positive allosteric modulation of human α7 nicotinic receptors from a single-channel perspective.

    PubMed

    Andersen, Natalia D; Nielsen, Beatriz E; Corradi, Jeremías; Tolosa, María F; Feuerbach, Dominik; Arias, Hugo R; Bouzat, Cecilia

    2016-08-01

    Enhancement of α7 nicotinic receptor (nAChR) function by positive allosteric modulators (PAMs) is a promising therapeutic strategy to improve cognitive deficits. PAMs have been classified only on the basis of their macroscopic effects as type I, which only enhance agonist-induced currents, and type II, which also decrease desensitization and reactivate desensitized nAChRs. To decipher the molecular basis underlying these distinct activities, we explored the effects on single-α7 channel currents of representative members of each type and of less characterized compounds. Our results reveal that all PAMs enhance open-channel lifetime and produce episodes of successive openings, thus indicating that both types affect α7 kinetics. Different PAM types show different sensitivity to temperature, suggesting different mechanisms of potentiation. By using a mutant α7 receptor that is insensitive to the prototype type II PAM (PNU-120596), we show that some though not all type I PAMs share the structural determinants of potentiation. Overall, our study provides novel information on α7 potentiation, which is key to the ongoing development of therapeutic compounds. PMID:26926428

  7. Involvement of plasma membrane Ca2+ channels, IP3 receptors, and ryanodine receptors in the generation of spontaneous rhythmic contractions of the cricket lateral oviduct.

    PubMed

    Tamashiro, Hirotake; Yoshino, Masami

    2014-12-01

    In the present study, the isolated cricket (Gryllus bimaculatus) lateral oviduct exhibited spontaneous rhythmic contractions (SRCs) with a frequency of 0.29±0.009 Hz (n=43) and an amplitude of 14.6±1.25 mg (n=29). SRCs completely disappeared following removal of extracellular Ca2+ using a solution containing 5mM EGTA. Application of the non-specific Ca2+ channel blockers Co2+, Ni2+, and Cd2+ also decreased both the frequency and amplitude of SRCs in dose-dependent manners, suggesting that Ca2+ entry through plasma membrane Ca2+ channels is essential for the generation of SRCs. Application of ryanodine (30 μM), which depletes intracellular Ca2+ by locking ryanodine receptor (RyR)-Ca2+ channels in an open state, gradually reduced the frequency and amplitude of SRCs. A RyR antagonist, tetracaine, reduced both the frequency and amplitude of SRCs, whereas a RyR activator, caffeine, increased the frequency of SRCs with a subsequent increase in basal tonus, indicating that RyRs are essential for generating SRCs. To further investigate the involvement of phospholipase C (PLC) and inositol 1,4,5-trisphosphate receptors (IP3Rs) in SRCs, we examined the effect of a PLC inhibitor, U73122, and an IP3R antagonist, 2-aminoethoxydiphenyl borate (2-APB), on SRCs. Separately, U73122 (10 μM) and 2-APB (30-50 μM) both significantly reduced the amplitude of SRCs with little effect on their frequency, further indicating that the PLC/IP3R signaling pathway is fundamental to the modulation of the amplitude of SRCs. A hypotonic-induced increase in the frequency and amplitude of SRCs and a hypertonic-induced decrease in the frequency and amplitude of SRCs indicated that mechanical stretch of the lateral oviduct is involved in the generation of SRCs. The sarcoplasmic reticulum Ca2+-pump ATPase inhibitors thapsigargin and cyclopiazonic acid impaired or suppressed the relaxation phase of SRCs. Taken together, the present results indicate that Ca2+ influx through plasma membrane Ca2

  8. delta-Opioid receptors are more efficiently coupled to adenylyl cyclase than to L-type Ca(2+) channels in transfected rat pituitary cells.

    PubMed

    Prather, P L; Song, L; Piros, E T; Law, P Y; Hales, T G

    2000-11-01

    Opioid receptors often couple to multiple effectors within the same cell. To examine potential mechanisms that contribute to the specificity by which delta-receptors couple to distinct intracellular effectors, we stably transfected rat pituitary GH(3) cells with cDNAs encoding for delta-opioid receptors. In cells transfected with a relatively low delta-receptor density of 0.55 pmol/mg of protein (GH(3)DOR), activation of delta-receptors produced inhibition of adenylyl cyclase activity but was unable to alter L-type Ca(2+) current. In contrast, activation of delta-receptors in a clone that contained a higher density of delta-receptors (2.45 pmol/mg of protein) and was also coexpressed with mu-opioid receptors (GH(3)MORDOR), resulted in not only the expected inhibition of adenylyl cyclase activity but also produced inhibition of L-type Ca(2+) current. The purpose of the present study was to determine whether these observations resulted from differences in delta-opioid receptor density between clones or interaction between delta- and mu-opioid receptors to allow the activation of different G proteins and signaling to Ca(2+) channels. Using the delta-opioid receptor alkylating agent SUPERFIT, reduction of available delta-opioid receptors in GH(3)MORDOR cells to a density similar to that of delta-opioid receptors in the GH(3)DOR clone resulted in abolishment of coupling to Ca(2+) channels, but not to adenylyl cyclase. Furthermore, although significantly greater amounts of all G proteins were activated by delta-opioid receptors in GH(3)MORDOR cells, delta-opioid receptor activation in GH(3)DOR cells resulted in coupling to the identical pattern of G proteins seen in GH(3)MORDOR cells. These findings suggest that different threshold densities of delta-opioid receptors are required to activate critical amounts of G proteins needed to produce coupling to specific effectors and that delta-opioid receptors couple more efficiently to adenylyl cyclase than to L-type Ca(2

  9. Ectodomain movements of an ATP-gated ion channel (P2X2 receptor) probed by disulfide locking.

    PubMed

    Stelmashenko, Olga; Compan, Vincent; Browne, Liam E; North, R Alan

    2014-04-01

    The ectodomain of the P2X receptor is formed mainly from two- or three-stranded β-sheets provided symmetrically by each of the three subunits. These enclose a central cavity that is closed off furthest from the plasma membrane (the turret) and that joins with the transmembrane helices to form the ion permeation pathway. Comparison of closed and open crystal structures indicates that ATP binds in a pocket positioned between strands provided by different subunits and that this flexes the β-sheets of the lower body and enlarges the central cavity: this pulls apart the outer ends of the transmembrane helices and thereby opens an aperture, or gate, where they intersect within the membrane bilayer. In the present work, we examined this opening model by introducing pairs of cysteines into the rat P2X2 receptor that might form disulfide bonds within or between subunits. Receptors were expressed in human embryonic kidney cells, and disulfide formation was assessed by observing the effect of dithiothreitol on currents evoked by ATP. Substitutions in the turret (P90C, P89C/S97C), body wall (S65C/S190C, S65C/D315C) and the transmembrane domains (V48C/I328C, V51C/I328C, S54C/I328C) strongly inhibited ATP-evoked currents prior to reduction with dithiothreitol. Western blotting showed that these channels also formed predominately as dimers and/or trimers rather than monomers. The results strongly support the channel opening mechanism proposed on the basis of available crystal structures. PMID:24515105

  10. The stress protein heat shock cognate 70 (Hsc70) inhibits the Transient Receptor Potential Vanilloid type 1 (TRPV1) channel

    PubMed Central

    Iftinca, Mircea; Flynn, Robyn; Basso, Lilian; Melo, Helvira; Aboushousha, Reem; Taylor, Lauren

    2016-01-01

    Background Specialized cellular defense mechanisms prevent damage from chemical, biological, and physical hazards. The heat shock proteins have been recognized as key chaperones that maintain cell survival against a variety of exogenous and endogenous stress signals including noxious temperature. However, the role of heat shock proteins in nociception remains poorly understood. We carried out an expression analysis of the constitutively expressed 70 kDa heat-shock cognate protein, a member of the stress-induced HSP70 family in lumbar dorsal root ganglia from a mouse model of Complete Freund’s Adjuvant-induced chronic inflammatory pain. We used immunolabeling of dorsal root ganglion neurons, behavioral analysis and patch clamp electrophysiology in both dorsal root ganglion neurons and HEK cells transfected with Hsc70 and Transient Receptor Potential Channels to examine their functional interaction in heat shock stress condition. Results We report an increase in protein levels of Hsc70 in mouse dorsal root ganglia, 3 days post Complete Freund’s Adjuvant injection in the hind paw. Immunostaining of Hsc70 was observed in most of the dorsal root ganglion neurons, including the small size nociceptors immunoreactive to the TRPV1 channel. Standard whole-cell patch-clamp technique was used to record Transient Receptor Potential Vanilloid type 1 current after exposure to heat shock. We found that capsaicin-evoked currents are inhibited by heat shock in dorsal root ganglion neurons and transfected HEK cells expressing Hsc70 and TRPV1. Blocking Hsc70 with matrine or spergualin compounds prevented heat shock-induced inhibition of the channel. We also found that, in contrast to TRPV1, both the cold sensor channels TRPA1 and TRPM8 were unresponsive to heat shock stress. Finally, we show that inhibition of TRPV1 depends on the ATPase activity of Hsc70 and involves the rho-associated protein kinase. Conclusions Our work identified Hsc70 and its ATPase activity as a central

  11. Potential role of transient receptor potential channel M5 in sensing putative pheromones in mouse olfactory sensory neurons.

    PubMed

    Oshimoto, Arisa; Wakabayashi, Yoshihiro; Garske, Anna; Lopez, Roberto; Rolen, Shane; Flowers, Michael; Arevalo, Nicole; Restrepo, Diego

    2013-01-01

    Based on pharmacological studies of chemosensory transduction in transient receptor potential channel M5 (TRPM5) knockout mice it was hypothesized that this channel is involved in transduction for a subset of putative pheromones in mouse olfactory sensory neurons (OSNs). Yet, in the same study an electroolfactogram (EOG) in the mouse olfactory epithelium showed no significant difference in the responses to pheromones (and odors) between wild type and TRPM5 knockout mice. Here we show that the number of OSNs expressing TRPM5 is increased by unilateral naris occlusion. Importantly, EOG experiments show that mice lacking TRPM5 show a decreased response in the occluded epithelia to putative pheromones as opposed to wild type mice that show no change upon unilateral naris occlusion. This evidence indicates that under decreased olfactory sensory input TRPM5 plays a role in mediating putative pheromone transduction. Furthermore, we demonstrate that cyclic nucleotide gated channel A2 knockout (CNGA2-KO) mice that show substantially decreased or absent responses to odors and pheromones also have elevated levels of TRPM5 compared to wild type mice. Taken together, our evidence suggests that TRPM5 plays a role in mediating transduction for putative pheromones under conditions of reduced chemosensory input. PMID:23613997

  12. TREK1 channel blockade induces an antidepressant-like response synergizing with 5-HT1A receptor signaling.

    PubMed

    Ye, Dongqing; Li, Yang; Zhang, Xiangrong; Guo, Fei; Geng, Leiyu; Zhang, Qi; Zhang, Zhijun

    2015-12-01

    Current antidepressants often remain the inadequate efficacy for many depressive patients, which warrant the necessary endeavor to develop the new molecules and targets for treating depression. Recently, the two-pore domain potassium channel TREK1 has been implicated in mood regulation and TREK-1 antagonists could be the promising antidepressant. This study has screened a TREK1 blocker (SID1900) with a satisfactory blood-brain barrier permeation and bioavailability. Electrophysiological research has shown that SID1900 and the previously reported TREK1 blocker (spadin) efficiently blocked TREK-1 current in HEK293 cells and specifically blocked two-pore domain potassium channels in primary-cultured rat hippocampal neurons. SID1900 and spadin induced a significant antidepressant-like response in the rat model of chronic unpredictable mild stress (CUMS). Both two TREK1 blockers substantially increased the firing rate of 5-HT-ergic neurons in the dorsal raphe nuclei (DRN) and PFC of CUMS rats. SID1900 and spadin significantly up-regulated the expression of PKA-pCREB-BDNF signaling in DRN, hippocampus and PFC of CUMS rats, which were enhanced and reversed by a 5-HTR1A agonist (8-OH-DPAT) and antagonist (WAY100635) respectively. The present findings suggested that TREK1 channel blockers posses the substantial antidepressant-like effect and have the potential synergistic effect with 5-HT1A receptor activation through the common CREB-BDNF signal transduction. PMID:26441141

  13. The proposed channel-enzyme transient receptor potential melastatin 2 does not possess ADP ribose hydrolase activity

    PubMed Central

    Iordanov, Iordan; Mihályi, Csaba; Tóth, Balázs; Csanády, László

    2016-01-01

    Transient Receptor Potential Melastatin 2 (TRPM2) is a Ca2+-permeable cation channel essential for immunocyte activation, insulin secretion, and postischemic cell death. TRPM2 is activated by ADP ribose (ADPR) binding to its C-terminal cytosolic NUDT9-homology (NUDT9H) domain, homologous to the soluble mitochondrial ADPR pyrophosphatase (ADPRase) NUDT9. Reported ADPR hydrolysis classified TRPM2 as a channel-enzyme, but insolubility of isolated NUDT9H hampered further investigations. Here we developed a soluble NUDT9H model using chimeric proteins built from complementary polypeptide fragments of NUDT9H and NUDT9. When expressed in E.coli, chimeras containing up to ~90% NUDT9H sequence remained soluble and were affinity-purified. In ADPRase assays the conserved Nudix-box sequence of NUDT9 proved essential for activity (kcat~4-9s-1), that of NUDT9H did not support catalysis. Replacing NUDT9H in full-length TRPM2 with soluble chimeras retained ADPR-dependent channel gating (K1/2~1-5 μM), confirming functionality of chimeric domains. Thus, TRPM2 is not a 'chanzyme'. Chimeras provide convenient soluble NUDT9H models for structural/biochemical studies. DOI: http://dx.doi.org/10.7554/eLife.17600.001 PMID:27383051

  14. Potential Role of Transient Receptor Potential Channel M5 in Sensing Putative Pheromones in Mouse Olfactory Sensory Neurons

    PubMed Central

    Oshimoto, Arisa; Wakabayashi, Yoshihiro; Garske, Anna; Lopez, Roberto; Rolen, Shane; Flowers, Michael; Arevalo, Nicole; Restrepo, Diego

    2013-01-01

    Based on pharmacological studies of chemosensory transduction in transient receptor potential channel M5 (TRPM5) knockout mice it was hypothesized that this channel is involved in transduction for a subset of putative pheromones in mouse olfactory sensory neurons (OSNs). Yet, in the same study an electroolfactogram (EOG) in the mouse olfactory epithelium showed no significant difference in the responses to pheromones (and odors) between wild type and TRPM5 knockout mice. Here we show that the number of OSNs expressing TRPM5 is increased by unilateral naris occlusion. Importantly, EOG experiments show that mice lacking TRPM5 show a decreased response in the occluded epithelia to putative pheromones as opposed to wild type mice that show no change upon unilateral naris occlusion. This evidence indicates that under decreased olfactory sensory input TRPM5 plays a role in mediating putative pheromone transduction. Furthermore, we demonstrate that cyclic nucleotide gated channel A2 knockout (CNGA2-KO) mice that show substantially decreased or absent responses to odors and pheromones also have elevated levels of TRPM5 compared to wild type mice. Taken together, our evidence suggests that TRPM5 plays a role in mediating transduction for putative pheromones under conditions of reduced chemosensory input. PMID:23613997

  15. Transient Receptor Potential Melastatin Type 7 Channel Is Critical for the Survival of Bone Marrow Derived Mesenchymal Stem Cells

    PubMed Central

    Feng, Ji-Ming; Figueiredo, Marxa L.; Zhang, Hanjie; Nelson, Piper L.; Marigo, Vanessa; Beck, Andreas

    2010-01-01

    The transient receptor potential melastatin type 7 channel (TRPM7) is a member of the TRP family of ion channels that is essential for cell proliferation and viability. Mesenchymal stem cells (MSCs) from bone marrow are a potential source for tissue repair due to their ability to differentiate into specialized cells. However, the role of TRPM7 in stem cells is unknown. In this study, we characterized TRPM7 in mouse MSCs using molecular biology, immunocytochemistry, and patch clamp. We also investigated TRPM7 function using a lentiviral vector and specific shRNA to knockdown gene expression. By RT-PCR and immunocytochemistry, we identified TRPM7, but not TRPM6, a close family member with similar function. Electrophysiological recordings during depletion of intracellular Mg2+ or Mg2+-ATP resulted in the development of currents typical for the channel. Furthermore, 2-aminoethoxydiphenyl borate (1 pM–100 μM) inhibited TRPM7 in a concentration-dependent manner. The molecular suppression of TRPM7 significantly decreased MSC proliferation and viability as determined by MTT assay. In addition, TRPM7 gene expression was up-regulated during osteogenesis. These findings demonstrate that TRPM7 is required for MSC survival and perhaps involved in the differentiation process. PMID:19929312

  16. The proposed channel-enzyme transient receptor potential melastatin 2 does not possess ADP ribose hydrolase activity.

    PubMed

    Iordanov, Iordan; Mihályi, Csaba; Tóth, Balázs; Csanády, László

    2016-01-01

    Transient Receptor Potential Melastatin 2 (TRPM2) is a Ca(2+)-permeable cation channel essential for immunocyte activation, insulin secretion, and postischemic cell death. TRPM2 is activated by ADP ribose (ADPR) binding to its C-terminal cytosolic NUDT9-homology (NUDT9H) domain, homologous to the soluble mitochondrial ADPR pyrophosphatase (ADPRase) NUDT9. Reported ADPR hydrolysis classified TRPM2 as a channel-enzyme, but insolubility of isolated NUDT9H hampered further investigations. Here we developed a soluble NUDT9H model using chimeric proteins built from complementary polypeptide fragments of NUDT9H and NUDT9. When expressed in E.coli, chimeras containing up to ~90% NUDT9H sequence remained soluble and were affinity-purified. In ADPRase assays the conserved Nudix-box sequence of NUDT9 proved essential for activity (kcat~4-9s(-1)), that of NUDT9H did not support catalysis. Replacing NUDT9H in full-length TRPM2 with soluble chimeras retained ADPR-dependent channel gating (K1/2~1-5 μM), confirming functionality of chimeric domains. Thus, TRPM2 is not a 'chanzyme'. Chimeras provide convenient soluble NUDT9H models for structural/biochemical studies. PMID:27383051

  17. Spexin Enhances Bowel Movement through Activating L-type Voltage-dependent Calcium Channel via Galanin Receptor 2 in Mice

    PubMed Central

    Lin, Cheng-yuan; Zhang, Man; Huang, Tao; Yang, Li-ling; Fu, Hai-bo; Zhao, Ling; Zhong, Linda LD; Mu, Huai-xue; Shi, Xiao-ke; Leung, Christina FP; Fan, Bao-min; Jiang, Miao; Lu, Ai-ping; Zhu, Li-xin; Bian, Zhao-xiang

    2015-01-01

    A novel neuropeptide spexin was found to be broadly expressed in various endocrine and nervous tissues while little is known about its functions. This study investigated the role of spexin in bowel movement and the underlying mechanisms. In functional constipation (FC) patients, serum spexin levels were significantly decreased. Consistently, in starved mice, the mRNA of spexin was significantly decreased in intestine and colon. Spexin injection increased the velocity of carbon powder propulsion in small intestine and decreased the glass beads expulsion time in distal colon in mice. Further, spexin dose-dependently stimulated the intestinal/colonic smooth muscle contraction. Galanin receptor 2 (GALR2) antagonist M871, but not Galanin receptor 3 (GALR3) antagonist SNAP37899, effectively suppressed the stimulatory effects of spexin on intestinal/colonic smooth muscle contraction, which could be eliminated by extracellular [Ca2+] removal and L-type voltage-dependentCa2+ channel (VDCC) inhibitor nifedipine. Besides, spexin dramatically increased the [Ca2+]i in isolated colonic smooth muscle cells. These data indicate that spexin can act on GALR2 receptor to regulate bowel motility by activating L-type VDCC. Our findings provide evidence for important physiological roles of spexin in GI functions. Selective action on spexin pathway might have therapeutic effects on GI diseases with motility disorders. PMID:26160593

  18. TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells

    PubMed Central

    Kaske, Silke; Krasteva, Gabriele; König, Peter; Kummer, Wolfgang; Hofmann, Thomas; Gudermann, Thomas; Chubanov, Vladimir

    2007-01-01

    Background A growing number of TRP channels have been identified as key players in the sensation of smell, temperature, mechanical forces and taste. TRPM5 is known to be abundantly expressed in taste receptor cells where it participates in sweet, amino acid and bitter perception. A role of TRPM5 in other sensory systems, however, has not been studied so far. Results Here, we systematically investigated the expression of TRPM5 in rat and mouse tissues. Apart from taste buds, where we found TRPM5 to be predominantly localized on the basolateral surface of taste receptor cells, TRPM5 immunoreactivity was seen in other chemosensory organs – the main olfactory epithelium and the vomeronasal organ. Most strikingly, we found solitary TRPM5-enriched epithelial cells in all parts of the respiratory and gastrointestinal tract. Based on their tissue distribution, the low cell density, morphological features and co-immunostaining with different epithelial markers, we identified these cells as brush cells (also known as tuft, fibrillovesicular, multivesicular or caveolated cells). In terms of morphological characteristics, brush cells resemble taste receptor cells, while their origin and biological role are still under intensive debate. Conclusion We consider TRPM5 to be an intrinsic signaling component of mammalian chemosensory organs, and provide evidence for brush cells being an important cellular correlate in the periphery. PMID:17610722

  19. Acid-sensing ion channel 1a is a postsynaptic proton receptor that affects the density of dendritic spines

    PubMed Central

    Zha, Xiang-ming; Wemmie, John A.; Green, Steven H.; Welsh, Michael J.

    2006-01-01

    Extracellular proton concentrations in the brain may be an important signal for neuron function. Proton concentrations change both acutely when synaptic vesicles release their acidic contents into the synaptic cleft and chronically during ischemia and seizures. However, the brain receptors that detect protons and their physiologic importance remain uncertain. Using organotypic hippocampal slices and biolistic transfection, we found the acid-sensing ion channel 1a (ASIC1a), localized in dendritic spines where it functioned as a proton receptor. ASIC1a also affected the density of spines, the postsynaptic site of most excitatory synapses. Decreasing ASIC1a reduced the number of spines, whereas overexpressing ASIC1a had the opposite effect. Ca2+-mediated Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling was probably responsible, because acid evoked an ASIC1a-dependent elevation of spine intracellular Ca2+ concentration, and reducing or increasing ASIC1a levels caused parallel changes in CaMKII phosphorylation in vivo. Moreover, inhibiting CaMKII prevented ASIC1a from increasing spine density. These data indicate that ASIC1a functions as a postsynaptic proton receptor that influences intracellular Ca2+ concentration and CaMKII phosphorylation and thereby the density of dendritic spines. The results provide insight into how protons influence brain function and how they may contribute to pathophysiology. PMID:17060608

  20. Selectivity optimization of substituted 1,2,3-triazoles as α7 nicotinic acetylcholine receptor agonists.

    PubMed

    Arunrungvichian, Kuntarat; Fokin, Valery V; Vajragupta, Opa; Taylor, Palmer

    2015-08-19

    Three series of substituted anti-1,2,3-triazoles (IND, PPRD, and QND), synthesized by cycloaddition from azide and alkyne building blocks, were designed to enhance selectivity and potency profiles of a lead α7 nicotinic acetylcholine receptor (α7-nAChR) agonist, TTIn-1. Designed compounds were synthesized and screened for affinity by a radioligand binding assay. Their functional characterization as agonists and antagonists was performed by fluorescence resonance energy transfer assay using cell lines expressing transfected cDNAs, α7-nAChRs, α4β2-nAChRs, and 5HT3A receptors, and a fluorescence cell reporter. In the IND series, a tropane ring of TTIn-1, substituted at N1, was replaced by mono- and bicyclic amines to vary length and conformational flexibility of a carbon linker between nitrogen atom and N1 of the triazole. Compounds with a two-carbon atom linker optimized binding with Kd's at the submicromolar level. Further modification at the hydrophobic indole of TTIn-1 was made in PPRD and QND series by fixing the amine center with the highest affinity building blocks in the IND series. Compounds from IND and PPRD series are selective as agonists for the α7-nAChRs over α4β2-nAChRs and 5HT3A receptors. Lead compounds in the three series have EC50's between 28 and 260 nM. Based on the EC50, affinity, and selectivity determined from the binding and cellular responses, two of the leads have been advanced to behavioral studies described in the companion article (DOI: 10.1021/acschemneuro.5b00059). PMID:25932897

  1. Gγ7 proteins contribute to coupling of nociceptin/orphanin FQ peptide (NOP) opioid receptors and voltage-gated Ca(2+) channels in rat stellate ganglion neurons.

    PubMed

    Mahmoud, Saifeldin; Farrag, Mohamed; Ruiz-Velasco, Victor

    2016-08-01

    The nociceptin/orphanin FQ peptide (NOP) opioid receptors regulate neurotransmitter release via inhibition of voltage-gated Ca(2+) channels (CaV2.2) in sympathetic and sensory neurons. Stimulation of NOP receptors by its endogenous agonist, nociception (Noc), leads to membrane-delimited, voltage-dependent (VD) block of CaV2.2 channel currents mediated by Gβγ protein subunits. Previously we reported that the pertussis toxin-sensitive Gαi1 and Gβ2/β4 isoforms mediate the functional coupling of NOP opioid receptors with CaV channels in rat stellate ganglion (SG) sympathetic neurons. In the present report we extended our studies by identifying the Gγ subunit that forms the heterotrimer within this signaling pathway. Small interference RNA (or siRNA) was employed to silence the expression of the natively expressed Gγ subunits. Initial PCR assays indicated that SG neurons expressed seven Gγ subunits. Silencing Gγ3 subunits did not alter signaling between NOP receptors and Ca(2+) channels. However, after Gγ7 isoforms were silenced, the Noc-mediated inhibition of CaV channels was significantly decreased when compared to SG neurons transfected with scrambled siRNA. We observed that Gγ10 and Gγ11 mRNA levels increased 2.5- and 2.7-fold, respectively, after Gγ7 subunits were silenced. However, this compensatory increase in mRNA expression did not appear to fully rescue the NOP receptor coupling efficiency. Additionally, both Gγ2 and Gγ5 levels increased 50 and 75%, respectively, while Gγ3 and Gγ4 expression levels remained relatively unchanged. Taken together, our findings suggest that the Gαi1/Gβ2(β4)/Gγ7 heterotrimeric G protein complex determines the NOP receptor-mediated modulation of CaV channels in SG neurons. PMID:27238748

  2. Tetrahydroisoquinoline-Derived Urea and 2,5-Diketopiperazine Derivatives as Selective Antagonists of the Transient Receptor Potential Melastatin 8 (TRPM8) Channel Receptor and Antiprostate Cancer Agents.

    PubMed

    De Petrocellis, Luciano; Arroyo, Francisco J; Orlando, Pierangelo; Schiano Moriello, Aniello; Vitale, Rosa Maria; Amodeo, Pietro; Sánchez, Aránzazu; Roncero, Cesáreo; Bianchini, Giulia; Martín, M Antonia; López-Alvarado, Pilar; Menéndez, J Carlos

    2016-06-23

    Tetrahydroisoquinoline derivatives containing embedded urea functions were identified as selective TRPM8 channel receptor antagonists. Structure-activity relationships were investigated, with the following conclusions: (a) The urea function and the tetrahydroisoquinoline system are necessary for activity. (b) Bis(1-aryl-6,7dimethoxy-1,2,3,4-tetrahydroisoquinolyl)ureas are more active than compounds containing one tetrahydroisoquinoline ring and than an open phenetylamine ureide. (c) Trans compounds are more active than their cis isomers. (d) Aryl substituents are better than alkyls at the isoquinoline C-1 position. (e) Electron-withdrawing substituents lead to higher activities. The most potent compound is the 4-F derivative, with IC50 in the 10(-8) M range and selectivities around 1000:1 for most other TRP receptors. Selected compounds were found to be active in reducing the growth of LNCaP prostate cancer cells. TRPM8 inhibition reduces proliferation in the tumor cells tested but not in nontumor prostate cells, suggesting that the activity against prostate cancer is linked to TRPM8 inhibition. PMID:27232526

  3. Analysis of mutant platelet-derived growth factor receptors expressed in PC12 cells identifies signals governing sodium channel induction during neuronal differentiation.

    PubMed Central

    Fanger, G R; Vaillancourt, R R; Heasley, L E; Montmayeur, J P; Johnson, G L; Maue, R A

    1997-01-01

    The mechanisms governing neuronal differentiation, including the signals underlying the induction of voltage-dependent sodium (Na+) channel expression by neurotrophic factors, which occurs independent of Ras activity, are not well understood. Therefore, Na+ channel induction was analyzed in sublines of PC12 cells stably expressing platelet-derived growth factor (PDGF) beta receptors with mutations that eliminate activation of specific signalling molecules. Mutations eliminating activation of phosphatidylinositol 3-kinase (PI3K), phospholipase C gamma (PLC gamma), the GTPase-activating protein (GAP), and Syp phosphatase failed to diminish the induction of type II Na+ channel alpha-subunit mRNA and functional Na+ channel expression by PDGF, as determined by RNase protection assays and whole-cell patch clamp recording. However, mutation of juxtamembrane tyrosines that bind members of the Src family of kinases upon receptor activation inhibited the induction of functional Na+ channels while leaving the induction of type II alpha-subunit mRNA intact. Mutation of juxtamembrane tyrosines in combination with mutations eliminating activation of PI3K, PLC gamma, GAP, and Syp abolished the induction of type II alpha-subunit mRNA, suggesting that at least partially redundant signaling mechanisms mediate this induction. The differential effects of the receptor mutations on Na+ channel expression did not reflect global changes in receptor signaling capabilities, as in all of the mutant receptors analyzed, the induction of c-fos and transin mRNAs still occurred. The results reveal an important role for the Src family in the induction of Na+ channel expression and highlight the multiplicity and combinatorial nature of the signaling mechanisms governing neuronal differentiation. PMID:8972189

  4. Channel catfish CD8a and CD8ß co-receptors characterization expression and polymorphism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study we report the identification and characterization of channel catfish, Ictalurus punctatus CD8a and CD8ß genes. Both genes encode predicted proteins containing a leader, a immunoglobulin superfamily V domain, a stalk/hinge region, a transmembrane region and a positively charged cytoplas...

  5. Transient receptor potential cation channels in normal and dystrophic mdx muscle.

    PubMed

    Krüger, Jana; Kunert-Keil, Christiane; Bisping, Frederike; Brinkmeier, Heinrich

    2008-06-01

    To investigate the defective calcium regulation of dystrophin-deficient muscle fibres we studied gene expression and localization of non-voltage gated cation channels in normal and mdx mouse skeletal muscle. We found TRPC3, TRPC6, TRPV4, TRPM4 and TRPM7 to be the most abundant isoforms. Immunofluorescent staining of muscle cross-sections with antibodies against TRP proteins showed sarcolemmal localization of TRPC6 and TRPM7, both, for mdx and control. TRPV4 was found only in a fraction of fibres at the sarcolemma and around myonuclei, while TRPC3 staining revealed intracellular patches, preferentially in mdx muscle. Transcripts of low abundance coding for TRPC5, TRPA1 and TRPM1 channels were increased in mdx skeletal muscle at certain stages. The increased Ca(2+)-influx into dystrophin-deficient mdx fibres cannot be explained by increased gene expression of major TRP channels. However, a constant TRP channel expression in combination with the well described weaker Ca(2+)-handling system of mdx fibres may indicate an imbalance between Ca(2+)-influx and cellular Ca(2+)-control. PMID:18504127

  6. Stimulation of calcium-sensing receptors induces endothelium-dependent vasorelaxations via nitric oxide production and activation of IKCa channels.

    PubMed

    Greenberg, Harry Z E; Shi, Jian; Jahan, Kazi S; Martinucci, Matthew C; Gilbert, Steven J; Vanessa Ho, W-S; Albert, Anthony P

    2016-05-01

    Stimulation of vascular calcium-sensing receptors (CaSRs) is reported to induce both constrictions and relaxations. However, cellular mechanisms involved in these responses remain unclear. The present study investigates the effect of stimulating CaSRs on vascular contractility and focuses on the role of the endothelium, nitric oxide (NO) and K(+) channels in these responses. In wire myography studies, increasing [Ca(2+)]o from 1mM to 6mM induced concentration-dependent relaxations of methoxamine pre-contracted rabbit mesenteric arteries. [Ca(2+)]o-induced relaxations were dependent on a functional endothelium, and were inhibited by the negative allosteric CaSR modulator Calhex-231. [Ca(2+)]o-induced relaxations were reduced by inhibitors of endothelial NO synthase, guanylate cyclase, and protein kinase G. CaSR activation also induced NO production in freshly isolated endothelial cells (ECs) in experiments using the fluorescent NO indicator DAF-FM. Pre-treatment with inhibitors of large (BKCa) and intermediate (IKCa) Ca(2+)-activated K(+) channels (iberiotoxin and charybdotoxin), and Kv7 channels (linopirdine) also reduced [Ca(2+)]o-induced vasorelaxations. Increasing [Ca(2+)]o also activated IKCa currents in perforated-patch recordings of isolated mesenteric artery ECs. These findings indicate that stimulation of CaSRs induces endothelium-dependent vasorelaxations which are mediated by two separate pathways involving production of NO and activation of IKCa channels. NO stimulates PKG leading to BKCa activation in vascular smooth muscle cells, whereas IKCa activity contributes to endothelium-derived hyperpolarisations. PMID:26772767

  7. Stimulation of calcium-sensing receptors induces endothelium-dependent vasorelaxations via nitric oxide production and activation of IKCa channels

    PubMed Central

    Greenberg, Harry Z.E.; Shi, Jian; Jahan, Kazi S.; Martinucci, Matthew C.; Gilbert, Steven J.; Vanessa Ho, W.-S.; Albert, Anthony P.

    2016-01-01

    Stimulation of vascular calcium-sensing receptors (CaSRs) is reported to induce both constrictions and relaxations. However, cellular mechanisms involved in these responses remain unclear. The present study investigates the effect of stimulating CaSRs on vascular contractility and focuses on the role of the endothelium, nitric oxide (NO) and K+ channels in these responses. In wire myography studies, increasing [Ca2 +]o from 1 mM to 6 mM induced concentration-dependent relaxations of methoxamine pre-contracted rabbit mesenteric arteries. [Ca2 +]o-induced relaxations were dependent on a functional endothelium, and were inhibited by the negative allosteric CaSR modulator Calhex-231. [Ca2 +]o-induced relaxations were reduced by inhibitors of endothelial NO synthase, guanylate cyclase, and protein kinase G. CaSR activation also induced NO production in freshly isolated endothelial cells (ECs) in experiments using the fluorescent NO indicator DAF-FM. Pre-treatment with inhibitors of large (BKCa) and intermediate (IKCa) Ca2 +-activated K+ channels (iberiotoxin and charybdotoxin), and Kv7 channels (linopirdine) also reduced [Ca2 +]o-induced vasorelaxations. Increasing [Ca2 +]o also activated IKCa currents in perforated-patch recordings of isolated mesenteric artery ECs. These findings indicate that stimulation of CaSRs induces endothelium-dependent vasorelaxations which are mediated by two separate pathways involving production of NO and activation of IKCa channels. NO stimulates PKG leading to BKCa activation in vascular smooth muscle cells, whereas IKCa activity contributes to endothelium-derived hyperpolarisations. PMID:26772767

  8. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes

    PubMed Central

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K.; Mayer, Mark L.

    2015-01-01

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. We hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species. PMID:26460032

  9. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes.

    PubMed

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K; Mayer, Mark L

    2015-11-01

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. We hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species. PMID:26460032

  10. Blockade of presynaptic 4-aminopyridine-sensitive potassium channels increases initial neurotransmitter release probability, reinstates synaptic transmission altered by GABAB receptor activation in rat midbrain periaqueductal gray.

    PubMed

    Li, Guangying; Liu, Zhi-Liang; Zhang, Wei-Ning; Yang, Kun

    2016-01-01

    The activation of γ-aminobutyric acid receptor subtype B (GABAB) receptors in the midbrain ventrolateral periaqueductal gray (vlPAG) induces both postsynaptic and presynaptic inhibition. Whereas the postsynaptic inhibition is mediated by G protein-coupled inwardly rectifying K channels, the presynaptic inhibition of neurotransmitter release is primarily mediated by voltage-gated calcium channels. Using whole-cell recordings from acute rat PAG slices, we report here that the bath application of 4-aminopyridine, a voltage-gated K channel blocker, increases the initial GABA and glutamate release probability (P) and reinstates P depressed by presynaptic GABAB receptor activation at inhibitory and excitatory synapses, respectively. However, Ba, which blocks G protein-coupled inwardly rectifying K channels, does not produce similar effects. Our data suggest that the blockade of presynaptic 4-aminopyridine-sensitive K channels in vlPAG facilitates neurotransmitter release and reinstates synaptic transmission that has been altered by presynaptic GABAB receptor activation. Because vlPAG is involved in the descending pain control system, the present results may have potential therapeutic applications. PMID:26575285

  11. 2-(1-Hexyn-1-yl)adenosine-induced intraocular hypertension is mediated via K+ channel opening through adenosine A2A receptor in rabbits.

    PubMed

    Konno, Takashi; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-08-22

    The present study was performed to clarify the mechanism of change in intraocular pressure by 2-(1-hexyn-1-yl)adenosine (2-H-Ado), a selective adenosine A2 receptor agonist, in rabbits. 2-H-Ado (0.1%, 50 microl)-induced ocular hypertension (E(max): 7.7 mm Hg) was inhibited by an adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine, ATP-sensitive K+ channel blocker glibenclamide or 5-hydroxydecanoic acid, but not by an adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A2B receptor antagonist alloxazine or a cyclooxygenase inhibitor indomethacin. The outflow facility induced by 2-H-Ado seems to be independent of increase in intraocular pressure or ATP-sensitive K+ channel. In contrast, the recovery rate in intraocular pressure decreased by hypertonic saline was accelerated by 2-H-Ado, and this response was dependent on ATP-sensitive K+ channel. These results suggest that 2-H-Ado-induced ocular hypertension is mediated via K+ channel opening through adenosine A2A receptor, and this is probably due to aqueous formation, but independent of change in outflow facility or prostaglandin production. PMID:16023100

  12. A novel GABAergic action mediated by functional coupling between GABAB-like receptor and two different high-conductance K+ channels in cricket Kenyon cells.

    PubMed

    Nakamura, Atsunao; Yoshino, Masami

    2013-04-01

    The γ-aminobutyric acid type B (GABA(B)) receptor has been shown to attenuate high-voltage-activated Ca(2+) currents and enhance voltage-dependent or inwardly rectifying K(+) currents in a variety of neurons. In this study, we report a novel coupling of GABA(B)-like receptor with two different high-conductance K(+) channels, Na(+)-activated K(+) (K(Na)) channel and Ca(2+)-activated K(+) (K(Ca)) channel, in Kenyon cells isolated from the mushroom body of the cricket brain. Single-channel activities of K(Na) and K(Ca) channels in response to bath applications of GABA and the GABA(B)-specific agonist SKF97541 were recorded with the cell-attached patch configuration. The open probability (P(o)) of both K(Na) and K(Ca) channels was found to be increased by bath application of GABA, and this increase in Po was antagonized by coapplication of the GABAB antagonist CGP54626, suggesting that GABA(B)-like receptors mediate these actions. Similarly, GABA(B)-specific agonist SKF97541 increased the Po of both K(Na) and K(Ca) channels. Perforated-patch recordings using β-escin further revealed that SKF97541 increased the amplitude of the outward currents elicited by step depolarizations. Under current-clamp conditions, SKF97541 decreased the firing frequency of spontaneous action potential (AP) and changed the AP waveform. The amplitude and duration of AP were decreased, whereas the afterhyperpolarization of AP was increased. Resting membrane potential, however, was not significantly altered by SKF97541. Taken together, these results suggest that GABA(B)-like receptor is functionally coupled with both K(Na) and K(Ca) channels and this coupling mechanism may serve to prevent AP formation and limit excitatory synaptic input. PMID:23303861

  13. T-type Ca2+ channels mediate propagation of odor-induced Ca2+ transients in rat olfactory receptor neurons.

    PubMed

    Gautam, S H; Otsuguro, K-I; Ito, S; Saito, T; Habara, Y

    2007-01-19

    Propagation of odor-induced Ca(2+) transients from the cilia/knob to the soma in mammalian olfactory receptor neurons (ORNs) is thought to be mediated exclusively by high-voltage-activated Ca(2+) channels. However, using confocal Ca(2+) imaging and immunocytochemistry we identified functional T-type Ca(2+) channels in rat ORNs. Here we show that T-type Ca(2+) channels in ORNs also mediate propagation of odor-induced Ca(2+) transients from the knob to the soma. In the presence of the selective inhibitor of T-type Ca(2+) channels mibefradil (10-15 microM) or Ni(2+) (100 microM), odor- and forskolin/3-isobutyl-1-methyl-xanthine (IBMX)-induced Ca(2+) transients in the soma and dendrite were either strongly inhibited or abolished. The percentage of inhibition of the Ca(2+) transients in the knob, however, was 40-50% less than that in the soma. Ca(2+) transients induced by 30 mM K(+) were partially inhibited by mibefradil, but without a significant difference in the extent of inhibition between the knob and soma. Furthermore, an increase of as little as 2.5 mM in the extracellular K(+) concentration (7.5 mM K(+)) was found to induce Ca(2+) transients in ORNs, and such responses were completely inhibited by mibefradil or Ni(2+). Total replacement of extracellular Na(+) with N-methyl-d-glutamate inhibited none of the odor-, forskolin/IBMX- or 7.5 mM K(+)-induced Ca(2+) transients. Positive immunoreactivity to the Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3 subunits of the T-type Ca(2+) channel was observed throughout the soma, dendrite and knob. These data suggest that involvement of T-type Ca(2+) channels in the propagation of odor-induced Ca(2+) transients in ORNs may contribute to signal transduction and odor sensitivity. PMID:17110049

  14. P2Y2 receptor activation decreases blood pressure via intermediate conductance potassium channels and connexin 37

    PubMed Central

    Dominguez Rieg, J. A.; Burt, J. M.; Ruth, P.; Rieg, T.

    2015-01-01

    Aims Nucleotides are important paracrine regulators of vascular tone. We previously demonstrated that activation of P2Y2 receptors causes an acute, NO-independent decrease in blood pressure, indicating this signalling pathway requires an endothelial-derived hyperpolarization (EDH) response. To define the mechanisms by which activation of P2Y2 receptors initiates EDH and vasodilation, we studied intermediate-conductance (KCa3.1, expressed in endothelial cells) and big-conductance potassium channels (KCa1.1, expressed in smooth muscle cells) as well as components of the myoendothelial gap junction, connexins 37 and 40 (Cx37, Cx40), all hypothesized to be part of the EDH response. Methods We compared the effects of a P2Y2/4 receptor agonist in wild-type (WT) mice and in mice lacking KCa3.1, KCa1.1, Cx37 or Cx40 under anaesthesia, while monitoring intra-arterial blood pressure and heart rate. Results Acute activation of P2Y2/4 receptors (0.01–3 mg kg−1 body weight i.v.) caused a biphasic blood pressure response characterized by a dose-dependent and rapid decrease in blood pressure in WT (maximal response % of baseline at 3 mg kg−1: −38 ± 1%) followed by a consecutive increase in blood pressure (+44 ± 11%). The maximal responses in KCa3.1−/− and Cx37−/− were impaired (−13 ± 5, +17 ± 7 and −27 ± 1, +13 ± 3% respectively), whereas the maximal blood pressure decrease in response to acetylcholine at 3 µg kg−1 was not significantly different (WT: −53 ± 3%; KCa3.1−/−: −52 ± 3; Cx37−/−: −53 ± 3%). KCa1.1−/− and Cx40−/− showed an identical biphasic response to P2Y2/4 receptor activation compared to WT. Conclusions The data suggest that the P2Y2/4 receptor activation elicits blood pressure responses via distinct mechanisms involving KCa3.1 and Cx37. PMID:25545736

  15. Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8.

    PubMed

    De Petrocellis, Luciano; Vellani, Vittorio; Schiano-Moriello, Aniello; Marini, Pietro; Magherini, Pier Cosimo; Orlando, Pierangelo; Di Marzo, Vincenzo

    2008-06-01

    The plant cannabinoids (phytocannabinoids), cannabidiol (CBD), and Delta(9)-tetrahydrocannabinol (THC) were previously shown to activate transient receptor potential channels of both vanilloid type 1 (TRPV1) and ankyrin type 1 (TRPA1), respectively. Furthermore, the endocannabinoid anandamide is known to activate TRPV1 and was recently found to antagonize the menthol- and icilin-sensitive transient receptor potential channels of melastatin type 8 (TRPM8). In this study, we investigated the effects of six phytocannabinoids [i.e., CBD, THC, CBD acid, THC acid, cannabichromene (CBC), and cannabigerol (CBG)] on TRPA1- and TRPM8-mediated increase in intracellular Ca2+ in either HEK-293 cells overexpressing the two channels or rat dorsal root ganglia (DRG) sensory neurons. All of the compounds tested induced TRPA1-mediated Ca2+ elevation in HEK-293 cells with efficacy comparable with that of mustard oil isothiocyanates (MO), the most potent being CBC (EC(50) = 60 nM) and the least potent being CBG and CBD acid (EC(50) = 3.4-12.0 microM). CBC also activated MO-sensitive DRG neurons, although with lower potency (EC(50) = 34.3 microM). Furthermore, although none of the compounds tested activated TRPM8-mediated Ca2+ elevation in HEK-293 cells, they all, with the exception of CBC, antagonized this response when it was induced by either menthol or icilin. CBD, CBG, THC, and THC acid were equipotent (IC(50) = 70-160 nM), whereas CBD acid was the least potent compound (IC(50) = 0.9-1.6 microM). CBG inhibited Ca2+ elevation also in icilin-sensitive DRG neurons with potency (IC(50) = 4.5 microM) similar to that of anandamide (IC(50) = 10 microM). Our findings suggest that phytocannabinoids and cannabis extracts exert some of their pharmacological actions also by interacting with TRPA1 and TRPM8 channels, with potential implications for the treatment of pain and cancer. PMID:18354058

  16. N-methyl-D-aspartate receptor channel blocker-like discriminative stimulus effects of nitrous oxide gas.

    PubMed

    Richardson, Kellianne J; Shelton, Keith L

    2015-01-01

    Nitrous oxide (N2O) gas is a widely used anesthetic adjunct in dentistry and medicine that is also commonly abused. Studies have shown that N2O alters the function of the N-methyl-d-aspartate (NMDA), GABAA, opioid, and serotonin receptors among others. However, the receptors systems underlying the abuse-related central nervous system effects of N2O are unclear. The present study explores the receptor systems responsible for producing the discriminative stimulus effects of N2O. B6SJLF1/J male mice trained to discriminate 10 minutes of exposure to 60% N2O + 40% oxygen versus 100% oxygen served as subjects. Both the high-affinity NMDA receptor channel blocker (+)-MK-801 maleate [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate] and the low-affinity blocker memantine partially mimicked the stimulus effects of N2O. Neither the competitive NMDA antagonist, CGS-19755 (cis-4-[phosphomethyl]-piperidine-2-carboxylic acid), nor the NMDA glycine-site antagonist, L701-324 [7-chloro-4-hydroxy-3-(3-phenoxy)phenyl-2(1H)-quinolinone], produced N2O-like stimulus effects. A range of GABAA agonists and positive modulators, including midazolam, pentobarbital, muscimol, and gaboxadol (4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol), all failed to produce N2O-like stimulus effects. The μ-, κ-, and δ-opioid agonists, as well as 5-hydroxytryptamine (serotonin) 1B/2C (5-HT1B/2C) and 5-HT1A agonists, also failed to produce N2O-like stimulus effects. Ethanol partially substituted for N2O. Both (+)-MK-801 and ethanol but not midazolam pretreatment also significantly enhanced the discriminative stimulus effects of N2O. Our results support the hypothesis that the discriminative stimulus effects of N2O are at least partially mediated by NMDA antagonist effects similar to those produced by channel blockers. However, as none of the drugs tested fully mimicked the stimulus effects of N2O, other mechanisms may also be involved. PMID:25368340

  17. PYR/PYL/RCAR Abscisic Acid Receptors Regulate K+ and Cl− Channels through Reactive Oxygen Species-Mediated Activation of Ca2+ Channels at the Plasma Membrane of Intact Arabidopsis Guard Cells1[W][OPEN

    PubMed Central

    Wang, Yizhou; Chen, Zhong-Hua; Zhang, Ben; Hills, Adrian; Blatt, Michael R.

    2013-01-01

    The discovery of the START family of abscisic acid (ABA) receptors places these proteins at the front of a protein kinase/phosphatase signal cascade that promotes stomatal closure. The connection of these receptors to Ca2+ signals evoked by ABA has proven more difficult to resolve, although it has been implicated by studies of the pyrbactin-insensitive pyr1/pyl1/pyl2/pyl4 quadruple mutant. One difficulty is that flux through plasma membrane Ca2+ channels and Ca2+ release from endomembrane stores coordinately elevate cytosolic free Ca2+ concentration ([Ca2+]i) in guard cells, and both processes are facilitated by ABA. Here, we describe a method for recording Ca2+ channels at the plasma membrane of intact guard cells of Arabidopsis (Arabidopsis thaliana). We have used this method to resolve the loss of ABA-evoked Ca2+ channel activity at the plasma membrane in the pyr1/pyl1/pyl2/pyl4 mutant and show the consequent suppression of [Ca2+]i increases in vivo. The basal activity of Ca2+ channels was not affected in the mutant; raising the concentration of Ca2+ outside was sufficient to promote Ca2+ entry, to inactivate current carried by inward-rectifying K+ channels and to activate current carried by the anion channels, both of which are sensitive to [Ca2+]i elevations. However, the ABA-dependent increase in reactive oxygen species (ROS) was impaired. Adding the ROS hydrogen peroxide was sufficient to activate the Ca2+ channels and trigger stomatal closure in the mutant. These results offer direct evidence of PYR/PYL/RCAR receptor coupling to the activation by ABA of plasma membrane Ca2+ channels through ROS, thus affecting [Ca2+]i and its regulation of stomatal closure. PMID:23899646

  18. σ-1 Receptor Inhibition of ASIC1a Channels is Dependent on a Pertussis Toxin-Sensitive G-Protein and an AKAP150/Calcineurin Complex.

    PubMed

    Mari, Yelenis; Katnik, Christopher; Cuevas, Javier

    2015-10-01

    ASIC1a channels play a major role in various pathophysiological conditions including depression, anxiety, epilepsy, and neurodegeneration following ischemic stroke. Sigma-1 (σ-1) receptor stimulation depresses the activity of ASIC1a channels in cortical neurons, but the mechanism(s) by which σ-1 receptors exert their influence on ASIC1a remains unknown. Experiments were undertaken to elucidate the signaling cascade linking σ-1 receptors to ASIC1a channels. Immunohistochemical studies showed that σ-1 receptors, ASIC1a and A-kinase anchoring peptide 150 colocalize in the plasma membrane of the cell body and processes of cortical neurons. Fluorometric Ca(2+) imaging experiments showed that disruption of the macromolecular complexes containing AKAP150 diminished the effects of the σ-1 on ASIC1a, as did application of the calcineurin inhibitors, cyclosporin A and FK-506. Moreover, whole-cell patch clamp experiments showed that σ-1 receptors were less effective at decreasing ASIC1a-mediated currents in the presence of the VIVIT peptide, which binds to calcineurin and prevents cellular effects dependent on AKAP150/calcineurin interaction. The coupling of σ-1 to ASIC1a was also disrupted by preincubation of the neurons in the G-protein inhibitor, pertussis toxin (PTX). Taken together, our data reveal that σ-1 receptor block of ASIC1a function is dependent on activation of a PTX-sensitive G-protein and stimulation of AKAP150 bound calcineurin. PMID:24925261

  19. Inhibition of in vivo [(3)H]MK-801 binding by NMDA receptor open channel blockers and GluN2B antagonists in rats and mice.

    PubMed

    Fernandes, Alda; Wojcik, Trevor; Baireddy, Praveena; Pieschl, Rick; Newton, Amy; Tian, Yuan; Hong, Yang; Bristow, Linda; Li, Yu-Wen

    2015-11-01

    N-methyl-D-aspartate (NMDA) receptor antagonists, including open channel blockers and GluN2B receptor subtype selective antagonists, have been developed for the treatment of depression. The current study investigated effects of systemically administered NMDA channel blockers and GluN2B receptor antagonists on NMDA receptor activity in rodents using in vivo [(3)H]MK-801 binding. The receptor occupancy of GluN2B antagonists was measured using ex vivo [(3)H]Ro 25-6981 binding. Ketamine, a NMDA receptor channel blocker, produced a dose/exposure- and time-dependent inhibition of in vivo [(3)H]MK-801 binding that was maximal at ~100%. The complete inhibition of in vivo [(3)H]MK-801 binding was also observed with NMDA receptor channel blockers, AZD6765 (Lanicemine) and MK-801 (Dizocilpine). CP-101,606 (Traxoprodil), a GluN2B antagonist, produced a dose/exposure- and time-dependent inhibition of in vivo [(3)H]MK-801 binding that was maximal at ~60%. Partial inhibition was also observed with other GluN2B antagonists including MK-0657 (CERC-301), EVT-101, Ro 25-6981 and radiprodil. For all GluN2B antagonists tested, partial [(3)H]MK-801 binding inhibition was achieved at doses saturating GluN2B receptor occupancy. Combined treatment with ketamine (10mg/kg, i.p.) and Ro 25-6981(10mg/kg, i.p.) produced a level of inhibition of in vivo [(3)H]MK-801 binding that was similar to treatment with either agent alone. In conclusion, this in vivo [(3)H]MK-801 binding study shows that NMDA receptor activity in the rodent forebrain can be inhibited completely by channel blockers, but only partially (~60%) by GluN2B receptor antagonists. At doses effective in preclinical models of depression, ketamine may preferentially inhibit the same population of NMDA receptors as Ro 25-6981, namely those containing the GluN2B subunit. PMID:26325093

  20. Calcium-permeable ion channels involved in glutamate receptor-independent ischemic brain injury

    PubMed Central

    Li, Ming-hua; Inoue, Koichi; Si, Hong-fang; Xiong, Zhi-gang

    2011-01-01

    Brain ischemia is a leading cause of death and long-term disabilities worldwide. Unfortunately, current treatment is limited to thrombolysis, which has limited success and a potential side effect of intracerebral hemorrhage. Searching for new cell injury mechanisms and therapeutic interventions has become a major challenge in the field. It has been recognized for many years that intracellular Ca2+ overload in neurons is essential for neuronal injury associated with brain ischemia. However, the exact pathway(s) underlying the toxic Ca2+ loading remained elusive. This review discusses the role of two Ca2+-permeable cation channels, TRPM7 and acid-sensing channels, in glutamate-independent Ca2+ toxicity associated with brain ischemia. PMID:21552295

  1. CARDIAC SULFONYLUREA RECEPTOR SHORT FORM-BASED CHANNELS CONFER A GLIBENCLAMIDE-INSENSITIVE KATP ACTIVITY

    PubMed Central

    Pu, Jie-Lin,; Ye, Bin; Kroboth, Stacie L.; McNally, Elizabeth M.; Makielski, Jonathan C.; Shi, Nian-Qing

    2008-01-01

    The cardiac sarcolemmal ATP-sensitive potassium channel (KATP) consists of a Kir6.2 pore and a SUR2 regulatory subunit, which is an ATP-binding cassette (ABC) transporter. KATP channels have been proposed to play protective roles during ischemic preconditioning. A SUR2 mutant mouse was previously generated by disrupting the first nucleotide-binding domain (NBD1), where a glibenclamide action site was located. In the mutant ventricular myocytes, a non-conventional glibenclamide-insensitive (10 μM), ATP-sensitive current (IKATPn) was detected in 33% of single-channel recordings with an average amplitude of 12.3±5.4 pA per patch, an IC50 to ATP inhibition at 10 μM, and a mean burst duration at 20.6±1.8 ms. Newly designed SUR2-isoform or variant-specific antibodies identified novel SUR2 short forms in the sizes of 28 and 68 kDa in addition to a 150-kDa long form in the sarcolemmal membrane of wild-type (WT) heart. We hypothesized that channels constituted by these short forms that lack NBD1, confer IKATPn. The absence of the long form in the mutant corresponded to loss of the conventional glibenclamide-sensitive KATP currents (IKATP) in isolated cardiomyocytes and vascular smooth muscle cells but the SUR2 short forms remained intact. Nested exonic RT-PCR in the mutant indicated that the short forms lacked NBD1 but contained NBD2. The SUR2 short forms co-immunoprecipitated with Kir6.1 or Kir6.2 suggesting that the short forms may function as hemi-transporters reported in other eukaryotic ABC transporter subgroups. Our results indicate that different KATP compositions may co-exist in cardiac sarcolemmal membrane. PMID:18001767

  2. Transient Receptor Potential Channels Encode Volatile Chemicals Sensed by Rat Trigeminal Ganglion Neurons

    PubMed Central

    Schöbel, Nicole; Beltrán, Leopoldo; Wetzel, Christian Horst; Hatt, Hanns

    2013-01-01

    Primary sensory afferents of the dorsal root and trigeminal ganglia constantly transmit sensory information depicting the individual’s physical and chemical environment to higher brain regions. Beyond the typical trigeminal stimuli (e.g. irritants), environmental stimuli comprise a plethora of volatile chemicals with olfactory components (odorants). In spite of a complete loss of their sense of smell, anosmic patients may retain the ability to roughly discriminate between different volatile compounds. While the detailed mechanisms remain elusive, sensory structures belonging to the trigeminal system seem to be responsible for this phenomenon. In order to gain a better understanding of the mechanisms underlying the activation of the trigeminal system by volatile chemicals, we investigated odorant-induced membrane potential changes in cultured rat trigeminal neurons induced by the odorants vanillin, heliotropyl acetone, helional, and geraniol. We observed the dose-dependent depolarization of trigeminal neurons upon application of these substances occurring in a stimulus-specific manner and could show that distinct neuronal populations respond to different odorants. Using specific antagonists, we found evidence that TRPA1, TRPM8, and/or TRPV1 contribute to the activation. In order to further test this hypothesis, we used recombinantly expressed rat and human variants of these channels to investigate whether they are indeed activated by the odorants tested. We additionally found that the odorants dose-dependently inhibit two-pore potassium channels TASK1 and TASK3 heterologously expressed In Xenopus laevis oocytes. We suggest that the capability of various odorants to activate different TRP channels and to inhibit potassium channels causes neuronal depolarization and activation of distinct subpopulations of trigeminal sensory neurons, forming the basis for a specific representation of volatile chemicals in the trigeminal ganglia. PMID:24205061

  3. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a novel activator of transient receptor potential vanilloid 1 (TRPV1) channel.

    PubMed

    Wen, Hairuo; Östman, Johan; Bubb, Kristen J; Panayiotou, Catherine; Priestley, John V; Baker, Mark D; Ahluwalia, Amrita

    2012-04-20

    TRPV1 is a member of the transient receptor potential ion channel family and is gated by capsaicin, the pungent component of chili pepper. It is expressed predominantly in small diameter peripheral nerve fibers and is activated by noxious temperatures >42 °C. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P-450 4A/4F-derived metabolite of the membrane phospholipid arachidonic acid. It is a powerful vasoconstrictor and has structural similarities with other TRPV1 agonists, e.g. the hydroperoxyeicosatetraenoic acid 12-HPETE, and we hypothesized that it may be an endogenous ligand for TRPV1 in sensory neurons innervating the vasculature. Here, we demonstrate that 20-HETE both activates and sensitizes mouse and human TRPV1, in a kinase-dependent manner, involving the residue Ser(502) in heterologously expressed hTRPV1, at physiologically relevant concentrations. PMID:22389490

  4. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels.

    PubMed

    Maejima, Takashi; Masseck, Olivia A; Mark, Melanie D; Herlitze, Stefan

    2013-01-01

    Serotonergic neurons project to virtually all regions of the central nervous system and are consequently involved in many critical physiological functions such as mood, sexual behavior, feeding, sleep/wake cycle, memory, cognition, blood pressure regulation, breathing, and reproductive success. Therefore, serotonin release and serotonergic neuronal activity have to be precisely controlled and modulated by interacting brain circuits to adapt to specific emotional and environmental states. We will review the current knowledge about G protein-coupled receptors and ion channels involved in the regulation of serotonergic system, how their regulation is modulating the intrinsic activity of serotonergic neurons and its transmitter release and will discuss the latest methods for controlling the modulation of serotonin release and intracellular signaling in serotonergic neurons in vitro and in vivo. PMID:23734105

  5. Relationships of agonist properties to the single channel kinetics of nicotinic acetylcholine receptors.

    PubMed Central

    Papke, R L; Millhauser, G; Lieberman, Z; Oswald, R E

    1988-01-01

    The effects of the systematic variations of the acetylcholine molecule on the microscopic kinetics of channel activation were studied using the patch clamp technique. The modifications consisted of adding either halogens or a methyl group to the acetyl carbon of acetylcholine, which results in a change in both the steric and ionic character of that portion of the molecule. The ionic character of the bond affected both the opening and closing rates of the channel. An increase in the ionicity decreased the opening rate and increased the closing rate of the channel, suggesting that the open state was destabilized. Increasing the size of the substituent decreased both the association and dissociation rates for agonist binding but had little effect on the equilibrium constant. This indicates that the energy barrier for binding and unbinding was increased without a major change in the energy of the bound and unbound states. These results suggest that it is possible to assign changes in the structural characteristics of the ligand to changes in individual steps in a reaction scheme, which can lead to specific predictions for the properties of related compounds. PMID:2449251

  6. The region adjacent to the C-end of the inner gate in transient receptor potential melastatin 8 (TRPM8) channels plays a central role in allosteric channel activation.

    PubMed</