Science.gov

Sample records for 5-ht7 receptor antagonism

  1. The role of 5-HT7 receptor antagonism in the amelioration of MK-801-induced learning and memory deficits by the novel atypical antipsychotic drug lurasidone.

    PubMed

    Horisawa, Tomoko; Nishikawa, Hiroyuki; Toma, Satoko; Ikeda, Atsushi; Horiguchi, Masakuni; Ono, Michiko; Ishiyama, Takeo; Taiji, Mutsuo

    2013-05-01

    Lurasidone is a novel atypical antipsychotic with high affinity for dopamine D2, serotonin 5-HT7 and 5-HT2A receptors. We previously reported that lurasidone and the selective 5-HT7 receptor antagonist, SB-656104-A improved learning and memory deficits induced by MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist, in the rat passive avoidance test. In this study, we first examined the role of the 5-HT7 receptor antagonistic activity of lurasidone in its pro-cognitive effect to ameliorate MK-801-induced deficits in the rat passive avoidance test. The 5-HT7 receptor agonist, AS19, (2S)-(+)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino) tetralin, (3 mg/kg, s.c.) completely blocked the attenuating effects of lurasidone (3 mg/kg, p.o.), highlighting the importance of 5-HT7 receptor antagonism in the pro-cognitive effect of lurasidone. AS19 (3 mg/kg, s.c.) also blocked the ameliorating effect of SB-656104-A (10 mg/kg, i.p.) in the same experimental paradigm. To further extend our observation, we next tested whether 5-HT7 receptor antagonism still led to the amelioration of MK-801-induced deficits when combined with D2 and 5-HT2A receptor antagonists, and found that SB-656104-A (10 mg/kg, i.p.) significantly ameliorated MK-801-induced deficits even in the presence of the D2 receptor antagonist raclopride (0.1 mg/kg, s.c.) and 5-HT2A receptor antagonist ketanserin (1 mg/kg, s.c.). Taken together, these results suggest that the 5-HT7 receptor antagonistic activity of lurasidone plays an important role in its effectiveness against MK-801-induced deficits, and may contribute to its pharmacological actions in patients with schizophrenia.

  2. Amisulpride promotes cognitive flexibility in rats: the role of 5-HT7 receptors.

    PubMed

    Nikiforuk, Agnieszka; Popik, Piotr

    2013-07-01

    The antagonism of 5-HT7 receptors may contribute to the antidepressant and procognitive actions of the atypical antipsychotic drug, amisulpride. It has been previously demonstrated that the selective 5-HT7 receptor antagonist reversed restraint stress-induced cognitive impairments in a rat model of frontal-dependent attentional set-shifting task (ASST). Therefore, the first aim of the present study was to assess the effectiveness of amisulpride against stress-evoked cognitive inflexibility. The second goal was to elucidate whether the pro-cognitive effect of amisulpride could be due to the compound's action at 5-HT7 receptors. Rats repeatedly exposed (1 h daily for 7 days) to restraint stress demonstrated impaired performance on the extra-dimensional (ED) set-shifting stage of the ASST. Amisulpride (3 mg/kg) given to stressed rats 30 min before testing reversed this restraint-induced cognitive inflexibility and improved ED performance of the unstressed control group. The 5-HT7 receptor agonist, AS19 (10 mg/kg), abolished the pro-cognitive efficacy of amisulpride (3 mg/kg). The present study suggests that the antagonism of 5-HT7 receptors may contribute to the mechanisms underlining the pro-cognitive action of amisulpride. These results may have therapeutic implications in frontal-like deficits associated with stress-related disorders.

  3. Improvement of ketamine-induced social withdrawal in rats: the role of 5-HT7 receptors.

    PubMed

    Hołuj, Małgorzata; Popik, Piotr; Nikiforuk, Agnieszka

    2015-12-01

    Social withdrawal, one of the core negative symptoms of schizophrenia, can be modelled in the social interaction (SI) test in rats using N-methyl-D-aspartate receptor glutamate receptor antagonists. We have recently shown that amisulpride, an antipsychotic with a high affinity for serotonin 5-HT7 receptors, reversed ketamine-induced SI deficits in rats. The aim of the present study was to further elucidate the potential involvement of 5-HT7 receptors in the prosocial action of amisulpride. Acute administration of amisulpride (3 mg/kg) and SB-269970 (1 mg/kg), a 5-HT7 receptor antagonist, reversed ketamine-induced social withdrawal, whereas sulpiride (20 or 30 mg/kg) and haloperidol (0.2 mg/kg) were ineffective. The 5-HT7 receptor agonist AS19 (10 mg/kg) abolished the prosocial efficacy of amisulpride (3 mg/kg). The coadministration of an inactive dose of SB-269970 (0.2 mg/kg) showed the prosocial effects of inactive doses of amisulpride (1 mg/kg) and sulpiride (20 mg/kg). The anxiolytic chlordiazepoxide (2.5 mg/kg) and the antidepressant fluoxetine (2.5 mg/kg) were ineffective in reversing ketamine-induced SI deficits. The present study suggests that the antagonism of 5-HT7 receptors may contribute towards the mechanisms underlying the prosocial action of amisulpride. These results may have therapeutic implications for the treatment of negative symptoms in schizophrenia and other disorders characterized by social withdrawal.

  4. LP-211 is a brain penetrant selective agonist for the serotonin 5-HT(7) receptor.

    PubMed

    Hedlund, Peter B; Leopoldo, Marcello; Caccia, Silvio; Sarkisyan, Gor; Fracasso, Claudia; Martelli, Giuliana; Lacivita, Enza; Berardi, Francesco; Perrone, Roberto

    2010-08-30

    We have determined the pharmacological profile of the new serotonin 5-HT(7) receptor agonist N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (LP-211). Radioligand binding assays were performed on a panel of 5-HT receptor subtypes. The compound was also evaluated in vivo by examining its effect on body temperature regulation in mice lacking the 5-HT(7) receptor (5-HT(7)(-/-)) and their 5-HT(7)(+/+) sibling controls. Disposition studies were performed in mice of both genotypes. It was found that LP-211 was brain penetrant and underwent metabolic degradation to 1-(2-diphenyl)piperazine (RA-7). In vitro binding assays revealed that RA-7 possessed higher 5-HT(7) receptor affinity than LP-211 and a better selectivity profile over a panel of 5-HT receptor subtypes. In vivo it was demonstrated that LP-211, and to a lesser degree RA-7, induced hypothermia in 5-HT(7)(+/+) but not in 5-HT(7)(-/-) mice. Our results suggest that LP-211 can be used as a 5-HT(7) receptor agonist in vivo. PMID:20600619

  5. Spinal 5-HT7 receptors induce phrenic motor facilitation via EPAC-mTORC1 signaling.

    PubMed

    Fields, D P; Springborn, S R; Mitchell, G S

    2015-09-01

    Spinal serotonin type 7 (5-HT7) receptors elicit complex effects on motor activity. Whereas 5-HT7 receptor activation gives rise to long-lasting phrenic motor facilitation (pMF), it also constrains 5-HT2 receptor-induced pMF via "cross-talk inhibition." We hypothesized that divergent cAMP-dependent signaling pathways give rise to these distinct 5-HT7 receptor actions. Specifically, we hypothesized that protein kinase A (PKA) mediates cross-talk inhibition of 5-HT2 receptor-induced pMF whereas 5-HT7 receptor-induced pMF results from exchange protein activated by cAMP (EPAC) signaling. Anesthetized, paralyzed, and ventilated rats receiving intrathecal (C4) 5-HT7 receptor agonist (AS-19) injections expressed pMF for >90 min, an effect abolished by pretreatment with a selective EPAC inhibitor (ESI-05) but not a selective PKA inhibitor (KT-5720). Furthermore, intrathecal injections of a selective EPAC activator (8-pCPT-2'-Me-cAMP) were sufficient to elicit pMF. Finally, spinal mammalian target of rapamycin complex-1 (mTORC1) inhibition via intrathecal rapamycin abolished 5-HT7 receptor- and EPAC-induced pMF, demonstrating that spinal 5-HT7 receptors elicit pMF by an EPAC-mTORC1 signaling pathway. Thus 5-HT7 receptors elicit and constrain spinal phrenic motor plasticity via distinct signaling mechanisms that diverge at cAMP (EPAC vs. PKA). Selective manipulation of these molecules may enable refined regulation of serotonin-dependent spinal motor plasticity for therapeutic advantage. PMID:26269554

  6. Spinal 5-HT7 receptors induce phrenic motor facilitation via EPAC-mTORC1 signaling

    PubMed Central

    Fields, D. P.; Springborn, S. R.

    2015-01-01

    Spinal serotonin type 7 (5-HT7) receptors elicit complex effects on motor activity. Whereas 5-HT7 receptor activation gives rise to long-lasting phrenic motor facilitation (pMF), it also constrains 5-HT2 receptor-induced pMF via “cross-talk inhibition.” We hypothesized that divergent cAMP-dependent signaling pathways give rise to these distinct 5-HT7 receptor actions. Specifically, we hypothesized that protein kinase A (PKA) mediates cross-talk inhibition of 5-HT2 receptor-induced pMF whereas 5-HT7 receptor-induced pMF results from exchange protein activated by cAMP (EPAC) signaling. Anesthetized, paralyzed, and ventilated rats receiving intrathecal (C4) 5-HT7 receptor agonist (AS-19) injections expressed pMF for >90 min, an effect abolished by pretreatment with a selective EPAC inhibitor (ESI-05) but not a selective PKA inhibitor (KT-5720). Furthermore, intrathecal injections of a selective EPAC activator (8-pCPT-2′-Me-cAMP) were sufficient to elicit pMF. Finally, spinal mammalian target of rapamycin complex-1 (mTORC1) inhibition via intrathecal rapamycin abolished 5-HT7 receptor- and EPAC-induced pMF, demonstrating that spinal 5-HT7 receptors elicit pMF by an EPAC-mTORC1 signaling pathway. Thus 5-HT7 receptors elicit and constrain spinal phrenic motor plasticity via distinct signaling mechanisms that diverge at cAMP (EPAC vs. PKA). Selective manipulation of these molecules may enable refined regulation of serotonin-dependent spinal motor plasticity for therapeutic advantage. PMID:26269554

  7. (Phenylpiperazinyl-butyl)oxindoles as selective 5-HT7 receptor antagonists.

    PubMed

    Volk, Balázs; Barkóczy, József; Hegedus, Endre; Udvari, Szabolcs; Gacsályi, István; Mezei, Tibor; Pallagi, Katalin; Kompagne, Hajnalka; Lévay, György; Egyed, András; Hársing, László G; Spedding, Michael; Simig, Gyula

    2008-04-24

    A series of potent 5-hydroxytryptamine 7 (5-HT 7) ligands has been synthesized that contain a 1,3-dihydro-2 H-indol-2-one (oxindole) skeleton. The binding of these compounds to the 5-HT 7 and 5-HT 1A receptors was measured. Despite the structural similarity of these two serotonin receptor subtypes, several derivatives exhibited a high selectivity to the 5-HT 7 receptor. According to the structure-activity relationship observations, compounds unsubstituted at the oxindole nitrogen atom and containing a tetramethylene spacer between the oxindole skeleton and the basic nitrogen atom are the most potent ligands. Concerning the basic group, besides the moieties of the 4-phenylpiperazine type, halophenyl-1,2,3,6-tetrahydropyridines also proved to be 5-HT 7 receptor-ligands. Because of halogen substitution on the aromatic rings, good metabolic stability could be achieved. A representative of the family, 3-{4-[4-(4-chlorophenyl)-piperazin-1-yl]-butyl}-3-ethyl-6-fluoro-1,3-dihydro-2 H-indol-2-one ( 9e') exhibited selective 5-HT 7 antagonist activity ( K i = 0.79 nM). The in vivo pharmacological potencies of these 5-HT 7 receptor-ligands were estimated by the conflict drinking (Vogel) and the light-dark anxiolytic tests.

  8. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  9. 5-HT7 receptors are involved in neurogenic dural vasodilatation in an experimental model of migraine.

    PubMed

    Wang, Xiaojuan; Fang, Yannan; Liang, Jianbo; Yan, Miansheng; Hu, Rong; Pan, Xiaoping

    2014-01-01

    Neurogenic dural vasodilation has been demonstrated to play an important role in migraine. 5-HT(7) receptors have been found on trigeminal nerve endings and middle meningeal arteries and demonstrated involved in the dilatation of meningeal arteries. The aim of the present study was to demonstrate whether 5-HT(7) receptors are involved in neurogenic dural vasodilation in migraine. The neurogenic dural vasodilation model of migraine was used in this study. Unilateral electrical stimulation of dura mater was performed in anesthetized male Sprague-Dawley rats. Animals were pretreated with selective 5-HT(7) receptor agonist AS19, 5-HT(7) receptor antagonist SB269970, 5-HT1B/1D receptor agonist sumatriptan, or vehicles. Blood flow of the middle meningeal artery (MMA) was measured by a laser Doppler flowmetry. AS19 significantly increased the basal and stimulated blood flows of the middle meningeal artery following electrical stimulation of dura mater, and its effect was dose dependent at the early stage. SB269970 and sumatriptan significantly reduced the basal and stimulated blood flows of middle meningeal artery. The present study demonstrates for the first time that 5-HT(7) receptors are involved in neurogenic dural vasodilation evoked by electrical stimulation of dura mater and maybe of relevance in the pathophysiology and treatment of migraine.

  10. Functional expression of the serotonin 5-HT7 receptor in human glioblastoma cell lines

    PubMed Central

    Mahé, Cécile; Bernhard, Michel; Bobirnac, Ionel; Keser, Corinna; Loetscher, Erika; Feuerbach, Dominik; Dev, Kumlesh K; Schoeffter, Philippe

    2004-01-01

    Serotonin 5-HT7 receptors are present in astrocytes. Understanding their role in this type of cell would greatly benefit from the identification of astroglial cell lines expressing this receptor type. The aim of the present study was to assess the expression of native 5-HT7 receptors and 5-HT7 receptor mRNA in a number of human glioblastoma cell lines, by means of cAMP measurements, Western blot analysis and reverse transcriptase–polymerase chain reaction (RT–PCR) analysis. 5-Hydroxytryptamine (5-HT), 5-carboxamidotryptamine (5-CT), 5-methoxytryptamine (5-MeOT) and 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced concentration-dependent stimulations of cAMP accumulation in the human glioblastoma cell lines, U-373 MG, U-138 MG, U-87 MG, DBTRG-05MG, T98G, H4, CCF-STTG1 and Hs 683. The rank order of potency was 5-CT>5-HT=5-MeOT≫8-OH-DPAT. The effect of 5-CT was inhibited in a concentration-dependent manner by the selective 5-HT7 receptor antagonist SB-269970 in all human glioblastoma cells. Schild analyses yielded slope factors close to unity (0.89–1.13) and pA2 values of 8.69–9.05. Western blot analysis revealed the presence of immunoreactive bands corresponding to the human 5-HT7 receptor in extracts of all human glioblastoma cell lines. The presence of the three splice variants of the 5-HT7 receptor (5-HT7(a/b/d)) was visualized by RT–PCR analysis with specific primers in all human glioblastoma cell lines. In conclusion, human glioblastoma cell lines express functional 5-HT7 receptors and the three splice variants of the corresponding mRNA. These cell lines could serve as model systems of native 5-HT7 receptors in glial cells to investigate their putative role in processes like release of neurotrophic factors or inflammatory cytokines. PMID:15339860

  11. Functional expression of the serotonin 5-HT7 receptor in human glioblastoma cell lines.

    PubMed

    Mahé, Cécile; Bernhard, Michel; Bobirnac, Ionel; Keser, Corinna; Loetscher, Erika; Feuerbach, Dominik; Dev, Kumlesh K; Schoeffter, Philippe

    2004-10-01

    Serotonin 5-HT(7) receptors are present in astrocytes. Understanding their role in this type of cell would greatly benefit from the identification of astroglial cell lines expressing this receptor type. The aim of the present study was to assess the expression of native 5-HT(7) receptors and 5-HT(7) receptor mRNA in a number of human glioblastoma cell lines, by means of cAMP measurements, Western blot analysis and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. 5-Hydroxytryptamine (5-HT), 5-carboxamidotryptamine (5-CT), 5-methoxytryptamine (5-MeOT) and 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced concentration-dependent stimulations of cAMP accumulation in the human glioblastoma cell lines, U-373 MG, U-138 MG, U-87 MG, DBTRG-05MG, T98G, H4, CCF-STTG1 and Hs 683. The rank order of potency was 5-CT>5-HT=5-MeOT>8-OH-DPAT. The effect of 5-CT was inhibited in a concentration-dependent manner by the selective 5-HT(7) receptor antagonist SB-269970 in all human glioblastoma cells. Schild analyses yielded slope factors close to unity (0.89-1.13) and pA(2) values of 8.69-9.05. Western blot analysis revealed the presence of immunoreactive bands corresponding to the human 5-HT(7) receptor in extracts of all human glioblastoma cell lines. The presence of the three splice variants of the 5-HT(7) receptor (5-HT(7(a/b/d))) was visualized by RT-PCR analysis with specific primers in all human glioblastoma cell lines. In conclusion, human glioblastoma cell lines express functional 5-HT(7) receptors and the three splice variants of the corresponding mRNA. These cell lines could serve as model systems of native 5-HT(7) receptors in glial cells to investigate their putative role in processes like release of neurotrophic factors or inflammatory cytokines. PMID:15339860

  12. Signalling properties and pharmacology of a 5-HT7 -type serotonin receptor from Tribolium castaneum.

    PubMed

    Vleugels, R; Lenaerts, C; Vanden Broeck, J; Verlinden, H

    2014-04-01

    In the last decade, genome sequence data and gene structure information on invertebrate receptors has been greatly expanded by large sequencing projects and cloning studies. This information is of great value for the identification of receptors; however, functional and pharmacological data are necessary for an accurate receptor classification and for practical applications. In insects, an important group of neurotransmitter and neurohormone receptors, for which ample sequence information is available but pharmacological information is missing, are the biogenic amine G protein-coupled receptors (GPCRs). In the present study, we investigated the sequence information, pharmacology and signalling properties of a 5-HT7 -type serotonin receptor from the red flour beetle, Tribolium castaneum (Trica5-HT7 ). The receptor encoding cDNA shows considerable sequence similarity with cognate 5-HT7 receptors and phylogenetic analysis also clusters the receptor within this 5-HT receptor group. Real-time reverse transcription PCR demonstrated high expression levels in the brain, indicating the possible importance of this receptor in neural processes. Trica5-HT7 was dose-dependently activated by 5-HT, which induced elevated intracellular cyclic AMP levels but had no effect on calcium signalling. The synthetic agonists, α-methyl 5-HT, 5-methoxytryptamine, 5-carboxamidotryptamine and 8-hydroxy-2-(dipropylamino)tetralin hydrobromide, showed a response, although with a much lower potency and efficacy than 5-HT. Ketanserin and methiothepin were the most potent antagonists. Both showed characteristics of competitive inhibition on Trica5-HT7 . The signalling pathway and pharmacological profile offer important information that will facilitate functional and comparative studies of 5-HT receptors in insects and other invertebrates. The pharmacology of invertebrate 5-HT receptors differs considerably from that of vertebrates. The present study may therefore contribute to establishing a more

  13. 5-HT7 receptor signaling: improved therapeutic strategy in gut disorders

    PubMed Central

    Kim, Janice J.; Khan, Waliul I.

    2014-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) is most commonly known for its role as a neurotransmitter in the central nervous system (CNS). However, the majority of the body’s 5-HT is produced in the gut by enterochromaffin (EC) cells. Alterations in 5-HT signaling have been associated with various gut disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and enteric infections. Recently, our studies have identified a key role for 5-HT in the pathogenesis of experimental colitis. 5-HT7 receptors are expressed in the gut and very recently, we have shown evidence of 5-HT7 receptor expression on intestinal immune cells and demonstrated a key role for 5-HT7 receptors in generation of experimental colitis. This review summarizes the key findings of these studies and provides a comprehensive overview of our current knowledge of the 5-HT7 receptor in terms of its pathophysiological relevance and therapeutic potential in intestinal inflammatory conditions, such as IBD. PMID:25565996

  14. The atypical antipsychotics clozapine and olanzapine promote down-regulation and display functional selectivity at human 5-HT7 receptors

    PubMed Central

    Andressen, K W; Manfra, O; Brevik, C H; Ulsund, A H; Vanhoenacker, P; Levy, F O; Krobert, K A

    2015-01-01

    Background and Purpose Classically, ligands of GPCRs have been classified primarily upon their affinity and efficacy to activate a signal transduction pathway. Recent reports indicate that the efficacy of a particular ligand can vary depending on the receptor-mediated response measured (e.g. activating G proteins, other downstream responses, internalization). Previously, we reported that inverse agonists induce both homo- and heterologous desensitization, similar to agonist stimulation, at the Gs-coupled 5-HT7 receptor. The primary objective of this study was to determine whether different inverse agonists at the 5-HT7 receptor also induce internalization and/or degradation of 5-HT7 receptors. Experimental Approach HEK293 cells expressing 5-HT7(a, b or d) receptors were pre-incubated with 5-HT, clozapine, olanzapine, mesulergine or SB269970 and their effects upon receptor density, AC activity, internalization, recruitment of β-arrestins and lysosomal trafficking were measured. Key Results The agonist 5-HT and three out of four inverse agonists tested increased internalization independently of β-arrestin recruitment. Among these, only the atypical antipsychotics clozapine and olanzapine promoted lysosomal sorting and reduced 5-HT7 receptor density (∼60% reduction within 24 h). Inhibition of lysosomal degradation with chloroquine blocked the clozapine- and olanzapine-induced down-regulation of 5-HT7 receptors. Incubation with SB269970 decreased both 5-HT7(b) constitutive internalization and receptor density but increased 5-HT7(d) receptor density, indicating differential ligand regulation among the 5-HT7 splice variants. Conclusions and Implications Taken together, we found that various ligands differentially activate regulatory processes governing receptor internalization and degradation in addition to signal transduction. Thus, these data extend our understanding of functional selectivity at the 5-HT7 receptor. PMID:25884989

  15. Effects of the Selective 5-HT7 Receptor Antagonist SB-269970 and Amisulpride on Ketamine-Induced Schizophrenia-like Deficits in Rats

    PubMed Central

    Nikiforuk, Agnieszka; Kos, Tomasz; Fijał, Katarzyna; Hołuj, Małgorzata; Rafa, Dominik; Popik, Piotr

    2013-01-01

    A wide body of evidence suggests that 5-HT7 receptors are implicated in a variety of central nervous system functions, including control of learning and memory processes. According to recent preclinical data, the selective blockade of these receptors may be a potential target for cognitive improvement in schizophrenia. The first aim of the present study was to evaluate the effects of the selective 5-HT7 receptor antagonist, SB-269970, and the antipsychotic drug with a high affinity for 5-HT7 receptors, amisulpride, on ketamine-induced deficits in attentional set-shifting and novel object recognition tasks in rats. Because the role of 5-HT7 receptor blockade in ameliorating positive and negative symptoms of schizophrenia remains equivocal, the second aim of these experiments was to examine the effectiveness of SB-269970 and amisulpride in reversing ketamine-induced deficits in prepulse inhibition of the startle reflex and in social interaction test in rats. The study revealed that acute administration of SB-269970 (1 mg/kg) or amisulpride (3 mg/kg) ameliorated ketamine-induced cognitive inflexibility and novel object recognition deficit in rats. Both compounds were also effective in attenuating ketamine-evoked disruption of social interactions. In contrast, neither SB-269970 nor amisulpride affected ketamine-disrupted prepulse inhibition or 50 kHz USVs accompanying social behaviour. In conclusion, antagonism of 5-HT7 receptors may represent a useful pharmacological approach in the treatment of cognitive deficits and some negative symptoms of schizophrenia. PMID:23776692

  16. Effects of the selective 5-HT7 receptor antagonist SB-269970 and amisulpride on ketamine-induced schizophrenia-like deficits in rats.

    PubMed

    Nikiforuk, Agnieszka; Kos, Tomasz; Fijał, Katarzyna; Hołuj, Małgorzata; Rafa, Dominik; Popik, Piotr

    2013-01-01

    A wide body of evidence suggests that 5-HT7 receptors are implicated in a variety of central nervous system functions, including control of learning and memory processes. According to recent preclinical data, the selective blockade of these receptors may be a potential target for cognitive improvement in schizophrenia. The first aim of the present study was to evaluate the effects of the selective 5-HT7 receptor antagonist, SB-269970, and the antipsychotic drug with a high affinity for 5-HT7 receptors, amisulpride, on ketamine-induced deficits in attentional set-shifting and novel object recognition tasks in rats. Because the role of 5-HT7 receptor blockade in ameliorating positive and negative symptoms of schizophrenia remains equivocal, the second aim of these experiments was to examine the effectiveness of SB-269970 and amisulpride in reversing ketamine-induced deficits in prepulse inhibition of the startle reflex and in social interaction test in rats. The study revealed that acute administration of SB-269970 (1 mg/kg) or amisulpride (3 mg/kg) ameliorated ketamine-induced cognitive inflexibility and novel object recognition deficit in rats. Both compounds were also effective in attenuating ketamine-evoked disruption of social interactions. In contrast, neither SB-269970 nor amisulpride affected ketamine-disrupted prepulse inhibition or 50 kHz USVs accompanying social behaviour. In conclusion, antagonism of 5-HT7 receptors may represent a useful pharmacological approach in the treatment of cognitive deficits and some negative symptoms of schizophrenia.

  17. Spinal 5-HT7 receptor activation induces long-lasting phrenic motor facilitation

    PubMed Central

    Hoffman, M S; Mitchell, G S

    2011-01-01

    Abstract Acute intermittent hypoxia elicits a form of serotonin-dependent respiratory plasticity known as phrenic long term facilitation (pLTF). Episodic spinal serotonin-2 (5-HT2) receptor activation on or near phrenic motor neurons is necessary for pLTF. A hallmark of pLTF is the requirement for serotonin-dependent synthesis of brain-derived neurotrophic factor (BDNF), and activation of its high affinity receptor, TrkB. Activation of spinal Gs protein-coupled adenosine 2A receptors (GsPCRs) elicits a unique form of long-lasting phrenic motor facilitation (PMF), but via unique mechanisms (BDNF independent TrkB trans-activation). We hypothesized that other GsPCRs elicit PMF, specifically serotonin-7 (5-HT7) receptors, which are expressed in phrenic motor neurons. Cervical spinal (C4) injections of a selective 5-HT7 receptor agonist, AS-19 (10 μm, 5 μl; 3 × 5 min), in anaesthetized, vagotomized and ventilated male Sprague–Dawley rats elicited long-lasting PMF (>120 min), an effect prevented by pretreatment with a 5-HT7 receptor antagonist (SB 269970; 5 mm, 7 μl). GsPCR activation ‘trans-activates’ TrkB by increasing synthesis of an immature TrkB isoform. Spinal injection of a TrkB inhibitor (k252a) and siRNAs that prevent TrkB (but not BDNF) mRNA translation both blocked 5-HT7 agonist-induced PMF, confirming a requirement for TrkB synthesis and activity. k252a affected late PMF (≥90 min) only. Spinal inhibition of the PI3K/AKT pathway blocked 5-HT7 agonist-induced PMF, whereas MEK/ERK inhibition delayed, but did not block, PMF. An understanding of signalling mechanisms giving rise to PMF may guide development of novel therapeutic strategies to treat ventilatory control disorders associated with respiratory insufficiency, such as spinal injury and motor neuron disease. PMID:21242254

  18. Design of novel quinazolinone derivatives as inhibitors for 5HT7 receptor.

    PubMed

    Chitta, Aparna; Jatavath, Mohan Babu; Fatima, Sabiha; Manga, Vijjulatha

    2012-02-01

    To study the pharmacophore properties of quinazolinone derivatives as 5HT(7) inhibitors, 3D QSAR methodologies, namely Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) were applied, partial least square (PLS) analysis was performed and QSAR models were generated. The derived model showed good statistical reliability in terms of predicting the 5HT(7) inhibitory activity of the quinazolione derivative, based on molecular property fields like steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond acceptor fields. This is evident from statistical parameters like q(2) (cross validated correlation coefficient) of 0.642, 0.602 and r(2) (conventional correlation coefficient) of 0.937, 0.908 for CoMFA and CoMSIA respectively. The predictive ability of the models to determine 5HT(7) antagonistic activity is validated using a test set of 26 molecules that were not included in the training set and the predictive r(2) obtained for the test set was 0.512 & 0.541. Further, the results of the derived model are illustrated by means of contour maps, which give an insight into the interaction of the drug with the receptor. The molecular fields so obtained served as the basis for the design of twenty new ligands. In addition, ADME (Adsorption, Distribution, Metabolism and Elimination) have been calculated in order to predict the relevant pharmaceutical properties, and the results are in conformity with required drug like properties.

  19. The 5-HT7 receptor as a potential target for treating drug and alcohol abuse.

    PubMed

    Hauser, Sheketha R; Hedlund, Peter B; Roberts, Amanda J; Sari, Youssef; Bell, Richard L; Engleman, Eric A

    2014-01-01

    Alcohol and drug abuse take a large toll on society and affected individuals. However, very few effective treatments are currently available to treat alcohol and drug addiction. Basic and clinical research has begun to provide some insights into the underlying neurobiological systems involved in the addiction process. Several neurotransmitter pathways have been implicated and distinct reward neurocircuitry have been proposed-including the mesocorticolimbic dopamine (MCL-DA) system and the extended amygdala. The serotonin (5-HT) neurotransmitter system is of particular interest and multiple 5-HT receptors are thought to play significant roles in alcohol and drug self-administration and the development of drug dependence. Among the 5-HT receptors, the 5-HT7 receptor is currently undergoing characterization as a potential target for the treatment of several psychiatric disorders. Although this receptor has received only limited research regarding addictive behaviors, aspects of its neuroanatomical, biochemical, physiological, pharmacological, and behavioral profiles suggest that it could play a key role in the addiction process. For instance, genomic studies in humans have suggested a link between variants in the gene encoding the 5-HT7 receptor and alcoholism. Recent behavioral testing using high-affinity antagonists in mice and preliminary tests with alcohol-preferring rats suggest that this receptor could mediate alcohol consumption and/or reinforcement and play a role in seeking/craving behavior. Interest in the development of new and more selective pharmacological agents for this receptor will aid in examining the 5-HT7 receptor as a novel target for treating addiction. PMID:25628528

  20. The 5-HT7 receptor as a potential target for treating drug and alcohol abuse

    PubMed Central

    Hauser, Sheketha R.; Hedlund, Peter B.; Roberts, Amanda J.; Sari, Youssef; Bell, Richard L.; Engleman, Eric A.

    2015-01-01

    Alcohol and drug abuse take a large toll on society and affected individuals. However, very few effective treatments are currently available to treat alcohol and drug addiction. Basic and clinical research has begun to provide some insights into the underlying neurobiological systems involved in the addiction process. Several neurotransmitter pathways have been implicated and distinct reward neurocircuitry have been proposed—including the mesocorticolimbic dopamine (MCL-DA) system and the extended amygdala. The serotonin (5-HT) neurotransmitter system is of particular interest and multiple 5-HT receptors are thought to play significant roles in alcohol and drug self-administration and the development of drug dependence. Among the 5-HT receptors, the 5-HT7 receptor is currently undergoing characterization as a potential target for the treatment of several psychiatric disorders. Although this receptor has received only limited research regarding addictive behaviors, aspects of its neuroanatomical, biochemical, physiological, pharmacological, and behavioral profiles suggest that it could play a key role in the addiction process. For instance, genomic studies in humans have suggested a link between variants in the gene encoding the 5-HT7 receptor and alcoholism. Recent behavioral testing using high-affinity antagonists in mice and preliminary tests with alcohol-preferring rats suggest that this receptor could mediate alcohol consumption and/or reinforcement and play a role in seeking/craving behavior. Interest in the development of new and more selective pharmacological agents for this receptor will aid in examining the 5-HT7 receptor as a novel target for treating addiction. PMID:25628528

  1. Serotonin 5-HT7 receptors coupled to induction of interleukin-6 in human microglial MC-3 cells.

    PubMed

    Mahé, Cécile; Loetscher, Erika; Dev, Kumlesh K; Bobirnac, Ionel; Otten, Uwe; Schoeffter, Philippe

    2005-07-01

    Brain serotonin 5-HT(7) receptors are known to be expressed in neurons and astrocytes. We now report the presence of these receptors in a third type of cell, microglial cells. 5-Hydroxytryptamine (5-HT), 5-carboxamidotryptamine (5-CT), 5-methoxytryptamine (5-MeOT) and 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced concentration-dependent stimulations of cAMP accumulation in the human microglial MC-3 cell line. The maximal effect of 5-HT was 3.4+/-0.3-fold stimulation (mean+/-S.E.M., n=5) above basal levels. The rank order of agonist potency (pEC50 values) was 5-CT (7.09)>5-HT (6.13)>or=5-MeOT (5.78)>8-OH-DPAT (ca. 5). The effect of 5-CT was inhibited in a concentration-dependent manner by the selective 5-HT7 receptor antagonist SB-269970 (pA2 value 9.03). Western blot analysis revealed the presence of immunoreactive bands corresponding to the human 5-HT7 receptor in extracts of MC-3 cells. The presence of two splice variants of the 5-HT7 receptor (5-HT7(a/b)) was visualized by reverse transcriptase-polymerase chain reaction (RT-PCR) analysis with specific primers. In real-time PCR studies, the mRNA for interleukin-6 (IL-6) was found to be increased by 2.5-fold in MC-3 cells after 1 h incubation with 5-CT (1 microM) and this effect was fully blocked by the 5-HT7 receptor antagonist SB-269970 (1 microM). These data show that functional 5-HT7 receptors are present in human microglial MC-3 cells, suggesting that they are involved in neuroinflammatory processes. PMID:15992579

  2. Role of the 5-HT7 receptor in the central nervous system: from current status to future perspectives.

    PubMed

    Matthys, Anne; Haegeman, Guy; Van Craenenbroeck, Kathleen; Vanhoenacker, Peter

    2011-06-01

    Pharmacological and genetic tools targeting the 5-hydroxytryptamine (5-HT)7 receptor in preclinical animal models have implicated this receptor in diverse (patho)physiological processes of the central nervous system (CNS). Some data obtained with 5-HT7 receptor knockout mice, selective antagonists, and, to a lesser extent, agonists, however, are quite contradictory. In this review, we not only discuss in detail the role of the 5-HT7 receptor in the CNS but also propose some hypothetical models, which could explain the observed inconsistencies. These models are based on two novel concepts within the field of G protein-coupled receptors (GPCR), namely biphasic signaling and G protein-independent signaling, which both have been shown to be mediated by GPCR dimerization. This led us to suggest that the 5-HT7 receptor could reside in different dimeric contexts and initiate different signaling pathways, depending on the neuronal circuitry and/or brain region. In conclusion, we highlight GPCR dimerization and G protein-independent signaling as two promising future directions in 5-HT7 receptor research, which ultimately might lead to the development of more efficient dimer- and/or pathway-specific therapeutics. PMID:21424680

  3. Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics

    PubMed Central

    Speranza, Luisa; Giuliano, Teresa; Volpicelli, Floriana; De Stefano, M. Egle; Lombardi, Loredana; Chambery, Angela; Lacivita, Enza; Leopoldo, Marcello; Bellenchi, Gian C.; di Porzio, Umberto; Crispino, Marianna; Perrone-Capano, Carla

    2015-01-01

    Recent studies have indicated that the serotonin receptor subtype 7 (5-HT7R) plays a crucial role in shaping neuronal morphology during embryonic and early postnatal life. Here we show that pharmacological stimulation of 5-HT7R using a highly selective agonist, LP-211, enhances neurite outgrowth in neuronal primary cultures from the cortex, hippocampus and striatal complex of embryonic mouse brain, through multiple signal transduction pathways. All these signaling systems, involving mTOR, the Rho GTPase Cdc42, Cdk5, and ERK, are known to converge on the reorganization of cytoskeletal proteins that subserve neurite outgrowth. Indeed, our data indicate that neurite elongation stimulated by 5-HT7R is modulated by drugs affecting actin polymerization. In addition, we show, by 2D Western blot analyses, that treatment of neuronal cultures with LP-211 alters the expression profile of cofilin, an actin binding protein involved in microfilaments dynamics. Furthermore, by using microfluidic chambers that physically separate axons from the soma and dendrites, we demonstrate that agonist-dependent activation of 5-HT7R stimulates axonal elongation. Our results identify for the first time several signal transduction pathways, activated by stimulation of 5-HT7R, that converge to promote cytoskeleton reorganization and consequent modulation of axonal elongation. Therefore, the activation of 5-HT7R might represent one of the key elements regulating CNS connectivity and plasticity during development. PMID:25814944

  4. Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics.

    PubMed

    Speranza, Luisa; Giuliano, Teresa; Volpicelli, Floriana; De Stefano, M Egle; Lombardi, Loredana; Chambery, Angela; Lacivita, Enza; Leopoldo, Marcello; Bellenchi, Gian C; di Porzio, Umberto; Crispino, Marianna; Perrone-Capano, Carla

    2015-01-01

    Recent studies have indicated that the serotonin receptor subtype 7 (5-HT7R) plays a crucial role in shaping neuronal morphology during embryonic and early postnatal life. Here we show that pharmacological stimulation of 5-HT7R using a highly selective agonist, LP-211, enhances neurite outgrowth in neuronal primary cultures from the cortex, hippocampus and striatal complex of embryonic mouse brain, through multiple signal transduction pathways. All these signaling systems, involving mTOR, the Rho GTPase Cdc42, Cdk5, and ERK, are known to converge on the reorganization of cytoskeletal proteins that subserve neurite outgrowth. Indeed, our data indicate that neurite elongation stimulated by 5-HT7R is modulated by drugs affecting actin polymerization. In addition, we show, by 2D Western blot analyses, that treatment of neuronal cultures with LP-211 alters the expression profile of cofilin, an actin binding protein involved in microfilaments dynamics. Furthermore, by using microfluidic chambers that physically separate axons from the soma and dendrites, we demonstrate that agonist-dependent activation of 5-HT7R stimulates axonal elongation. Our results identify for the first time several signal transduction pathways, activated by stimulation of 5-HT7R, that converge to promote cytoskeleton reorganization and consequent modulation of axonal elongation. Therefore, the activation of 5-HT7R might represent one of the key elements regulating CNS connectivity and plasticity during development.

  5. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory

    PubMed Central

    Stiedl, Oliver; Pappa, Elpiniki; Konradsson-Geuken, Åsa; Ögren, Sven Ove

    2015-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR) subtypes, the 5-HT1AR and 5-HT7R are associated with the development of anxiety, depression and cognitive function linked to mechanisms of emotional learning and memory. In rodents fear conditioning and passive avoidance (PA) are associative learning paradigms to study emotional memory. This review assesses the role of 5-HT1AR and 5-HT7R as well as their interplay at the molecular, neurochemical and behavioral level. Activation of postsynaptic 5-HT1ARs impairs emotional memory through attenuation of neuronal activity, whereas presynaptic 5-HT1AR activation reduces 5-HT release and exerts pro-cognitive effects on PA retention. Antagonism of the 5-HT1AR facilitates memory retention possibly via 5-HT7R activation and evidence is provided that 5HT7R can facilitate emotional memory upon reduced 5-HT1AR transmission. These findings highlight the differential role of these 5-HTRs in cognitive/emotional domains of behavior. Moreover, the results indicate that tonic and phasic 5-HT release can exert different and potentially opposing effects on emotional memory, depending on the states of 5-HT1ARs and 5-HT7Rs and their interaction. Consequently, individual differences due to genetic and/or epigenetic mechanisms play an essential role for the responsiveness to drug treatment, e.g., by SSRIs which increase intrasynaptic 5-HT levels thereby activating multiple pre- and postsynaptic 5-HTR subtypes. PMID:26300776

  6. The serotonin 5-HT7 receptor agonist LP-44 microinjected into the dorsal raphe nucleus suppresses REM sleep in the rat.

    PubMed

    Monti, Jaime M; Leopoldo, Marcello; Jantos, Héctor

    2008-08-22

    The effects of LP-44, a selective 5-HT7 receptor agonist, and of SB-269970, a selective 5-HT7 receptor antagonist, on spontaneous sleep were studied in adult rats implanted for chronic sleep recordings. The 5-HT7 receptor ligands were microinjected directly into the dorsal raphe nucleus (DRN) during the light period of the 12-h light/12-h dark cycle. Infusion of LP-44 (1.25-5.0 mM) into the DRN induced a significant reduction of rapid-eye-movement sleep (REMS) and of the number of REM periods. Similar effects were observed after the direct administration into the DRN of SB-269970 (0.5-1.0 mM). Pretreatment with a dose of SB-269970 (0.5 mM) that significantly affects sleep variables antagonized the LP-44 (2.5 mM)-induced suppression of REMS and of the number of REM periods. It is proposed that the suppression of REMS after microinjection of LP-44 into the DRN is related, at least in part, to the activation of GABAergic neurons in the DRN that contribute to long projections that reach, among others, the laterodorsal and pedunculopontine tegmental nuclei involved in the promotion of REMS.

  7. Stimulation of 5-HT7 receptor during adolescence determines its persistent upregulation in adult rat forebrain areas.

    PubMed

    Nativio, Paola; Zoratto, Francesca; Romano, Emilia; Lacivita, Enza; Leopoldo, Marcello; Pascale, Esterina; Passarelli, Francesca; Laviola, Giovanni; Adriani, Walter

    2015-11-01

    Brain serotonin 7 (5-HT7) receptors play an important functional role in learning and memory, in regulation of mood and motivation, and for circadian rhythms. Recently, we have studied the modulatory effects of a developmental exposure (under subchronic regimen) in rats with LP-211, a brain-penetrant and selective 5-HT7 receptor agonist. We aimed at further deciphering long-term sequelae into adulthood. LP-211 (0.250 mg/kg i.p., once/day) was administered for 5 days during the adolescent phase (postnatal days 43-45 to 47-49). When adult (postnatal days >70), forebrain areas were obtained for ex vivo immunohistochemistry, whose results prompted us to reconsider the brain connectivity maps presented in our previous study (Canese et al., Psycho-Pharmacol 2015;232:75-89.) Significant elevation in levels of 5-HT7 receptors were evidenced due to adolescent LP-211 exposure, in dorsal striatum (which also shows an increase of dopaminergic D2 auto-receptors) and-unexpectedly-in piriform cortex, with no changes in ventral striatum. We observed that functional connectivity from a seed on the right hippocampus was more extended than reported, also including the piriform cortex. As a whole, the cortical loop rearranged by adolescent LP-211 exposure consisted in a hippocampus receiving connections from piriform cortex and dorsal striatum, the latter both directly and through functional control over the 'extended amygdala'. Such results represent a starting point to explore neurophysiology of 5-HT7 receptors. Further investigation is warranted to develop therapies for sleep disorders, for impaired emotional and motivational regulation, for attentive and executive deficit. The 5-HT7 agonist LP-211 (0.250 mg/kg i.p., once/day) was administered for 5 days during adolescence (postnatal days 43-45 to 47-49) in rats. When adult (postnatal days >70), a significant elevation in levels of 5-HT7 receptors were evidenced in dorsal striatum and-unexpectedly-in piriform cortex. PMID:26364910

  8. Serotonin directly stimulates luteinizing hormone-releasing hormone release from GT1 cells via 5-HT7 receptors.

    PubMed

    Héry, M; François-Bellan, A M; Héry, F; Deprez, P; Becquet, D

    1997-10-01

    Luteinizing hormone-releasing hormone (LHRH release, which serves as the primary drive to the hypothalamic-pituitary gonadal axis, is controlled by many neuromediators. Serotonin has been implicated in this regulation. However, it is unclear whether the central effect of serotonin on LHRH secretion is exerted directly on LHRH neurosecretory neurons or indirectly via multisynaptic pathways. The present studies were undertaken in order to examine whether LHRH secretion from immortalized LHRH cell lines is directly regulated by serotonin and, if so, to identify the receptor subtype involved. 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A/7 receptor agonist, stimulated LHRH release from GT1-1 cells. This effect was blocked by ritanserin, a 5-HT2/7 receptor antagonist, but not by SDZ-216-525, a 5-HT1A antagonist. Basal LHRH release was not affected by the 5-HT2 agonist DOI. Reverse transcription and polymerase chain reaction technique (RT-PCR) was used in order to identify 5-HT1A and 5-HT7 receptor mRNA in immortalized LHRH cell lines. GT1-1 cells express mRNA for the 5-HT7, but not the 5-HT1A receptor subtypes. These results demonstrate a direct stimulatory effect of serotonin on LHRH release via 5-HT7 receptor.

  9. Downregulation of 5-HT7 Serotonin Receptors by the Atypical Antipsychotics Clozapine and Olanzapine. Role of Motifs in the C-Terminal Domain and Interaction with GASP-1.

    PubMed

    Manfra, Ornella; Van Craenenbroeck, Kathleen; Skieterska, Kamila; Frimurer, Thomas; Schwartz, Thue W; Levy, Finn Olav; Andressen, Kjetil Wessel

    2015-07-15

    The human 5-HT7 serotonin receptor, a G-protein-coupled receptor (GPCR), activates adenylyl cyclase constitutively and upon agonist activation. Biased ligands differentially activate 5-HT7 serotonin receptor desensitization, internalization and degradation in addition to G protein activation. We have previously found that the atypical antipsychotics clozapine and olanzapine inhibited G protein activation and, surprisingly, induced both internalization and lysosomal degradation of 5-HT7 receptors. Here, we aimed to determine the mechanism of clozapine- and olanzapine-mediated degradation of 5-HT7 receptors. In the C-terminus of the 5-HT7 receptor, we identified two YXXΦ motifs, LR residues, and a palmitoylated cysteine anchor as potential sites involved in receptor trafficking to lysosomes followed by receptor degradation. Mutating either of these sites inhibited clozapine- and olanzapine-mediated degradation of 5-HT7 receptors and also interfered with G protein activation. In addition, we tested whether receptor degradation was mediated by the GPCR-associated sorting protein-1 (GASP-1). We show that GASP-1 binds the 5-HT7 receptor and regulates the clozapine-mediated degradation. Mutations of the identified motifs and residues, located in or close to Helix-VIII of the 5-HT7 receptor, modified antipsychotic-stimulated binding of proteins (such as GASP-1), possibly by altering the flexibility of Helix-VIII, and also interfered with G protein activation. Taken together, our data demonstrate that binding of clozapine or olanzapine to the 5-HT7 receptor leads to antagonist-mediated lysosomal degradation by exposing key residues in the C-terminal tail that interact with GASP-1. PMID:25706089

  10. 5-HT7 receptors as modulators of neuronal excitability, synaptic transmission and plasticity: physiological role and possible implications in autism spectrum disorders

    PubMed Central

    Ciranna, Lucia; Catania, Maria Vincenza

    2014-01-01

    Serotonin type 7 receptors (5-HT7) are expressed in several brain areas, regulate brain development, synaptic transmission and plasticity, and therefore are involved in various brain functions such as learning and memory. A number of studies suggest that 5-HT7 receptors could be potential pharmacotherapeutic target for cognitive disorders. Several abnormalities of serotonergic system have been described in patients with autism spectrum disorder (ASD), including abnormal activity of 5-HT transporter, altered blood and brain 5-HT levels, reduced 5-HT synthesis and altered expression of 5-HT receptors in the brain. A specific role for 5-HT7 receptors in ASD has not yet been demonstrated but some evidence implicates their possible involvement. We have recently shown that 5-HT7 receptor activation rescues hippocampal synaptic plasticity in a mouse model of Fragile X Syndrome, a monogenic cause of autism. Several other studies have shown that 5-HT7 receptors modulate behavioral flexibility, exploratory behavior, mood disorders and epilepsy, which include core and co-morbid symptoms of ASD. These findings further suggest an involvement of 5-HT7 receptors in ASD. Here, we review the physiological roles of 5-HT7 receptors and their implications in Fragile X Syndrome and other ASD. PMID:25221471

  11. Effect of 5-HT7 receptor agonist, LP-211, on micturition following spinal cord injury in male rats

    PubMed Central

    Norouzi-Javidan, Abbas; Javanbakht, Javad; Barati, Fardin; Fakhraei, Nahid; Mohammadi, Fatemeh; Dehpour, Ahmad Reza

    2016-01-01

    Background and Purpose: Central and peripheral 5-hydroxytryptamine (5-HT) receptors play a critical role in regulation of micturition reflex. The aim of this study was to evaluate effect of a 5-HT7 receptor agonist, LP-211 (N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide) on micturition reflex in acute spinal cord-injured (SCI) rats during infusion of vehicle into the bladder. Methods: SCI was induced by compressing T10 segment using an aneurysm clip, extradurally in male rats. Following two weeks, LP-211 doses (0.003-0.3 mg/kg) were administered cumulatively (intraperitoneally, i.p.) with 20 min interval. The 5-HT7 antagonist, SB-269970 ((R)-3-[2-[2-(4-Methylpiperidin-1-yl) ethyl] pyrrolidine-1-sulfonyl] phenol hydrochloride), was administered after achievement of LP-211 dose-response. A cystometric study was performed 2 weeks after spinal crushing in all the animals. Cystometric variables consisting of micturition volume (voided volume), residual volume (volume remaining in the bladder after voiding), and bladder capacity (micturition volume plus residual volume). Voiding efficiency was calculated as the percent of micturition volume to bladder capacity. Findings: Intact and sham-operated rats showed few significant changes in micturition reflex. SCI rats responded to LP-211 (0.003-0.3, mg/kg, i.v.) with dose-dependent increases in bladder capacity, and residual volume. In this treatment group, LP-211 induced significant dose-dependent increases in micturition volume, resulting in significant increases in voiding efficiency (P<0.001) compared to intact and sham-operated rats, SB-269970 (0.1 mg/kg, i.v.) completely reversed the LP-211-induced changes on micturition volume and voiding efficiency was decreased significantly. Conclusion: The 5-HT7 receptors activation by LP-211 facilitated the micturition reflex. Furthermore, 5-HT7 receptors do seem to play an important role in physiological regulation of micturition, and as a result, may represent a

  12. Selective 5-HT7 receptor agonists LP 44 and LP 211 elicit an analgesic effect on formalin-induced orofacial pain in mice

    PubMed Central

    DEMİRKAYA, Kadriye; AKGÜN, Özlem Martı; ŞENEL, Buğra; ÖNCEL TORUN, Zeynep; SEYREK, Melik; LACİVİTA, Enza; LEOPOLDO, Marcello; DOĞRUL, Ahmet

    2016-01-01

    ABSTRACT The most recently identified serotonin (5-HT) receptor is the 5-HT7 receptor. The antinociceptive effects of a 5-HT7 receptor agonist have been shown in neuropathic and inflammatory animal models of pain. A recent study demonstrated the functional expression of 5-HT7 receptors in the substantia gelatinosa (SG) of the trigeminal subnucleus caudalis, which receives and processes orofacial nociceptive inputs. Objective To investigate the antinociceptive effects of pharmacological activation of 5-HT7 receptors on orofacial pain in mice. Material and Methods Nociception was evaluated by using an orofacial formalin test in male Balb-C mice. Selective 5-HT7 receptor agonists, LP 44 and LP 211 (1, 5, and 10 mg/kg), were given intraperitoneally 30 min prior to a formalin injection. A bolus of 10 µl of 4% subcutaneous formalin was injected into the upper lip of mice and facial grooming behaviors were monitored. The behavioral responses consisted of two distinct periods, the early phase corresponding to acute pain (Phase I: 0–12 min) and the late phase (Phase II: 12–30 min). Results LP 44 and LP 211 (1, 5, and 10 mg/kg) produced an analgesic effect with reductions in face rubbing time in both Phase I and Phase II of the formalin test. Conclusion Our results suggest that 5-HT7 receptor agonists may be promising analgesic drugs in the treatment of orofacial pain. PMID:27383702

  13. Distribution of 5-HT3, 5-HT4, and 5-HT7 Receptors Along the Human Colon

    PubMed Central

    Yaakob, Nor S; Chinkwo, Kenneth A; Chetty, Navinisha; Coupar, Ian M; Irving, Helen R

    2015-01-01

    Background/Aims Several disorders of the gastrointestinal tract are associated with abnormal serotonin (5-HT) signaling or metabolism where the 5-HT3 and 5-HT4 receptors are clinically relevant. The aim was to examine the distribution of 5-HT3, 5-HT4, and 5-HT7 receptors in the normal human colon and how this is associated with receptor interacting chaperone 3, G protein coupled receptor kinases, and protein LIN-7 homologs to extend previous observations limited to the sigmoid colon or the upper intestine. Methods Samples from ascending, transverse, descending, and sigmoid human colon were dissected into 3 separate layers (mucosa, longitudinal, and circular muscles) and ileum samples were dissected into mucosa and muscle layers (n = 20). Complementary DNA was synthesized by reverse transcription from extracted RNA and expression was determined by quantitative or end point polymerase chain reaction. Results The 5-HT3 receptor subunits were found in all tissues throughout the colon and ileum. The A subunit was detected in all samples and the C subunit was expressed at similar levels while the B subunit was expressed at lower levels and less frequently. The 5-HT3 receptor E subunit was mainly found in the mucosa layers. All splice variants of the 5-HT4 and 5-HT7 receptors were expressed throughout the colon although the 5-HT4 receptor d, g, and i variants were expressed less often. Conclusions The major differences in 5-HT receptor distribution within the human colon are in relation to the mucosa and muscular tissue layers where the 5-HT3 receptor E subunit is predominantly found in the mucosal layer which may be of therapeutic relevance. PMID:26130632

  14. [CROSS-TALK BETWEEN 5-HT1A AND 5-HT7 RECEPTORS: ROLE IN THE AUTOREGULATION OF THE BRAIN SEROTONIN SYSTEM AND IN MECHANISM OF ANTIDEPRESSANTS ACTION].

    PubMed

    Popova, N K; Ponimaskin, E G; Naumenko, V S

    2015-11-01

    Recent studies considerably extended our knowledge of the mechanisms and physiological role of the interaction between different receptors in the brain. Current review summarizes data on the formation of receptor complexes and the role of such complexes in the autoregulation of the brain serotonin system, behavioral abnormalities and mechanism of antidepressants action. Particular attention is paid to 5-HT1A and 5-HT7 receptor heterodimers. The results described in the present review indicate that: i) dimerization and formation of mobile receptor complexes is a common feature for the members of G-protein coupled receptor superfamily; ii) 5-HT7 receptor appears to be a modulator for 5-HT1A receptor - the key autoregulator of the brain serotonin system; iii) 5-HT1A/5-HT7 receptor complexes formation is one of the mechanisms for inactivation and desensitization of the 5-HTIA receptors in the brain; iv) differences in the 5-HT7 receptor and 5-HTIA/5-HT7 heterodimers density define different sensitivity of pre- and postsynaptic 5-HTlA receptors to chronic treatment with selective serotonin reuptake inhibitors.

  15. Antiallodynic effect of tianeptine via modulation of the 5-HT7 receptor of GABAergic interneurons in the spinal cord of neuropathic rats.

    PubMed

    Lin, Hai; Heo, Bong Ha; Kim, Woong Mo; Kim, Yong Chul; Yoon, Myung Ha

    2015-06-26

    Although tianeptine, an atypical antidepressant has been reported to have antinociceptive effects, the mode of action is different from that of tricyclic antidepressants despite structural similarities. We examined the antiallodynic effect of intrathecal tianeptine in neuropathic pain rats and determined the involvement of 5-hydroxytryptamine type 7 (5-HT7) receptor of the GABAergic interneurons in the spinal cord. Neuropathic pain was induced by spinal nerve ligation (SNL). After observation of the effect from intrathecal tianeptine, a 5-HT7 receptor antagonist (SB-269970) was administered intrathecally 10 min before delivery of tianeptine, to determine the contribution of spinal 5-HT7 receptor on the activity of tianeptine. GAD expression and GABA concentrations were assessed. Intrathecal tianeptine dose-dependently attenuated mechanical allodynia in SNL rats. Pre-treatment with intrathecal SB-269970 reversed the antiallodynic effect of tianeptine. Both GAD65 expression and the GABA concentration in the spinal cord were decreased in neuropathic rats but were increased by tianeptine. Additionally, 5-HT7 receptor and GAD65 were co-localized in the spinal cord. Intrathecal tianeptine reduces neuropathic pain. 5-HT7 receptor of the GABAergic interneurons together with GAD65 plays a role in the activity of tianeptine at the spinal cord level.

  16. Antiallodynic effect of tianeptine via modulation of the 5-HT7 receptor of GABAergic interneurons in the spinal cord of neuropathic rats.

    PubMed

    Lin, Hai; Heo, Bong Ha; Kim, Woong Mo; Kim, Yong Chul; Yoon, Myung Ha

    2015-06-26

    Although tianeptine, an atypical antidepressant has been reported to have antinociceptive effects, the mode of action is different from that of tricyclic antidepressants despite structural similarities. We examined the antiallodynic effect of intrathecal tianeptine in neuropathic pain rats and determined the involvement of 5-hydroxytryptamine type 7 (5-HT7) receptor of the GABAergic interneurons in the spinal cord. Neuropathic pain was induced by spinal nerve ligation (SNL). After observation of the effect from intrathecal tianeptine, a 5-HT7 receptor antagonist (SB-269970) was administered intrathecally 10 min before delivery of tianeptine, to determine the contribution of spinal 5-HT7 receptor on the activity of tianeptine. GAD expression and GABA concentrations were assessed. Intrathecal tianeptine dose-dependently attenuated mechanical allodynia in SNL rats. Pre-treatment with intrathecal SB-269970 reversed the antiallodynic effect of tianeptine. Both GAD65 expression and the GABA concentration in the spinal cord were decreased in neuropathic rats but were increased by tianeptine. Additionally, 5-HT7 receptor and GAD65 were co-localized in the spinal cord. Intrathecal tianeptine reduces neuropathic pain. 5-HT7 receptor of the GABAergic interneurons together with GAD65 plays a role in the activity of tianeptine at the spinal cord level. PMID:25982324

  17. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity.

    PubMed

    Shelton, Jonathan; Yun, Sujin; Losee Olson, Susan; Turek, Fred; Bonaventure, Pascal; Dvorak, Curt; Lovenberg, Timothy; Dugovic, Christine

    2014-01-01

    Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg) in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT) points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6) induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg). Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15) or advance (CT22) wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals.

  18. Microinjection of the 5-HT7 receptor antagonist SB-269970 into the rat brainstem and basal forebrain: site-dependent effects on REM sleep.

    PubMed

    Monti, Jaime M; Leopoldo, Marcello; Jantos, Héctor; Lagos, Patricia

    2012-08-01

    The effects of SB-269970, a selective 5-HT7 receptor antagonist, on spontaneous sleep were studied in adult rats implanted for chronic sleep recordings. The 5-HT7 receptor ligand was microinjected into the horizontal limb of the diagonal band of Broca (HDB) and the laterodorsal tegmental nucleus (LDT) during the light period of the 12-h light/12-h dark cycle. For comparative purposes the compound was administered systemically and, in addition, injected directly into the dorsal raphe nucleus (DRN). Microinjection of SB-269970 into the HDB and the DRN induced a significant reduction of rapid-eye-movement sleep (REMS). Similar effects were observed after systemic administration of the 5-HT7 receptor antagonist. On the other hand, local infusion of the compound into the LDT provoked the opposite effect. It is proposed that the deactivation of GABAergic cells located in the HDB, DRN and LDT is responsible for the changes induced by SB-269970 on REM sleep values. It is suggested that the antidepressant effect of the 5-HT7 receptor antagonist could partly depend on the involvement of neuronal systems located in the DRN and the HDB.

  19. Identification of essential residues for binding and activation in the human 5-HT7(a) serotonin receptor by molecular modeling and site-directed mutagenesis

    PubMed Central

    Impellizzeri, Agata Antonina Rita; Pappalardo, Matteo; Basile, Livia; Manfra, Ornella; Andressen, Kjetil Wessel; Krobert, Kurt Allen; Messina, Angela; Levy, Finn Olav; Guccione, Salvatore

    2015-01-01

    The human 5-HT7 receptor is expressed in both the central nervous system and peripheral tissues and is a potential drug target in behavioral and psychiatric disorders. We examined molecular determinants of ligand binding and G protein activation by the human 5-HT7(a) receptor. The role of several key residues in the 7th transmembrane domain (TMD) and helix 8 were elucidated combining in silico and experimental mutagenesis. Several single and two double point mutations of the 5-HT7(a) wild type receptor were made (W7.33V, E7.35T, E7.35R, E7.35D, E7.35A, R7.36V, Y7.43A, Y7.43F, Y7.43T, R8.52D, D8.53K; E7.35T-R7.36V, R8.52D-D8.53K), and their effects upon ligand binding were assessed by radioligand binding using a potent agonist (5-CT) and a potent antagonist (SB269970). In addition, the ability of the mutated 5-HT7(a) receptors to activate G protein after 5-HT-stimulation was determined through activation of adenylyl cyclase. In silico investigation on mutated receptors substantiated the predicted importance of TM7 and showed critical roles of residues E7.35, W7.33, R7.36 and Y7.43 in agonist and antagonist binding and conformational changes of receptor structure affecting adenylyl cyclase activation. Experimental data showed that mutants E7.35T and E7.35R were incapable of ligand binding and adenylyl cyclase activation, consistent with a requirement for a negatively charged residue at this position. The mutant R8.52D was unable to activate adenylyl cyclase, despite unaffected ligand binding, consistent with the R8.52 residue playing an important role in the receptor-G protein interface. The mutants Y7.43A and Y7.43T displayed reduced agonist binding and AC agonist potency, not seen in Y7.43F, consistent with a requirement for an aromatic residue at this position. Knowledge of the molecular interactions important in h5-HT7 receptor ligand binding and G protein activation will aid the design of selective h5-HT7 receptor ligands for potential pharmacological use. PMID

  20. The type 7 serotonin receptor, 5-HT 7 , is essential in the mammary gland for regulation of mammary epithelial structure and function.

    PubMed

    Pai, Vaibhav P; Hernandez, Laura L; Stull, Malinda A; Horseman, Nelson D

    2015-01-01

    Autocrine-paracrine activity of serotonin (5-hydroxytryptamine, 5-HT) is a crucial homeostatic parameter in mammary gland development during lactation and involution. Published studies suggested that the 5-HT7 receptor type was important for mediating several effects of 5-HT in the mammary epithelium. Here, using 5-HT7 receptor-null (HT7KO) mice we attempt to understand the role of this receptor in mediating 5-HT actions within the mammary gland. We demonstrate for the first time that HT7KO dams are inefficient at sustaining their pups. Histologically, the HT7KO mammary epithelium shows a significant deviation from the normal secretory epithelium in morphological architecture, reduced secretory vesicles, and numerous multinucleated epithelial cells with atypically displaced nuclei, during lactation. Mammary epithelial cells in HT7KO dams also display an inability to transition from lactation to involution as normally seen by transition from a columnar to a squamous cell configuration, along with alveolar cell apoptosis and cell shedding. Our results show that 5-HT7 is required for multiple actions of 5-HT in the mammary glands including core functions that contribute to changes in cell shape and cell turnover, as well as specialized secretory functions. Understanding these actions may provide new interventions to improve lactation performance and treat diseases such as mastitis and breast cancer.

  1. Systemic administration and local microinjection into the central nervous system of the 5-HT(7) receptor agonist LP-211 modify the sleep-wake cycle in the rat.

    PubMed

    Monti, Jaime M; Leopoldo, Marcello; Jantos, Héctor

    2014-02-01

    The effects of LP-211, a selective serotonin 5-HT7 receptor agonist were studied in adult rats implanted for chronic sleep recordings. Intraperitoneal administration of LP-211 (2.5-10mg/kg) during the light phase of the light-dark cycle significantly increased wakefulness (W) and reduced rapid-eye-movement sleep (REMS) and the number of REM periods during the 6-h recording period. Direct infusion of LP-211 into the dorsal raphe nucleus (DRN) (2-6 mM), locus coeruleus nucleus (LC) (4 mM), basal forebrain (horizontal limb of the diagonal band of Broca) (HDB) (2 mM) or laterodorsal tegmental nucleus (LDT) (4 mM) induced also a decrease of REMS. Additionally, microinjection of the 5-HT7 receptor ligand into the HDB (2 mM) augmented W. Presently, there is no satisfactory explanation for the effect of 5-HT7 receptor activation on W and REMS occurrence. Additional studies are required to characterize the neurotransmitter systems responsible for the actions of LP-211 on the behavioral states.

  2. The Type 7 Serotonin Receptor, 5-HT7, Is Essential in the Mammary Gland for Regulation of Mammary Epithelial Structure and Function

    PubMed Central

    Pai, Vaibhav P.; Hernandez, Laura L.; Stull, Malinda A.; Horseman, Nelson D.

    2015-01-01

    Autocrine-paracrine activity of serotonin (5-hydroxytryptamine, 5-HT) is a crucial homeostatic parameter in mammary gland development during lactation and involution. Published studies suggested that the 5-HT7 receptor type was important for mediating several effects of 5-HT in the mammary epithelium. Here, using 5-HT7 receptor-null (HT7KO) mice we attempt to understand the role of this receptor in mediating 5-HT actions within the mammary gland. We demonstrate for the first time that HT7KO dams are inefficient at sustaining their pups. Histologically, the HT7KO mammary epithelium shows a significant deviation from the normal secretory epithelium in morphological architecture, reduced secretory vesicles, and numerous multinucleated epithelial cells with atypically displaced nuclei, during lactation. Mammary epithelial cells in HT7KO dams also display an inability to transition from lactation to involution as normally seen by transition from a columnar to a squamous cell configuration, along with alveolar cell apoptosis and cell shedding. Our results show that 5-HT7 is required for multiple actions of 5-HT in the mammary glands including core functions that contribute to changes in cell shape and cell turnover, as well as specialized secretory functions. Understanding these actions may provide new interventions to improve lactation performance and treat diseases such as mastitis and breast cancer. PMID:25664318

  3. An Orally Active Phenylaminotetralin-Chemotype Serotonin 5-HT7 and 5-HT1A Receptor Partial Agonist that Corrects Motor Stereotypy in Mouse Models.

    PubMed

    Canal, Clinton E; Felsing, Daniel E; Liu, Yue; Zhu, Wanying; Wood, JodiAnne T; Perry, Charles K; Vemula, Rajender; Booth, Raymond G

    2015-07-15

    Stereotypy (e.g., repetitive hand waving) is a key phenotype of autism spectrum disorder, Fragile X and Rett syndromes, and other neuropsychiatric disorders, and its severity correlates with cognitive and attention deficits. There are no effective treatments, however, for stereotypy. Perturbation of serotonin (5-HT) neurotransmission contributes to stereotypy, suggesting that distinct 5-HT receptors may be pharmacotherapeutic targets to treat stereotypy and related neuropsychiatric symptoms. For example, preclinical studies indicate that 5-HT7 receptor activation corrects deficits in mouse models of Fragile X and Rett syndromes, and clinical trials for autism are underway with buspirone, a 5-HT1A partial agonist with relevant affinity at 5-HT7 receptors. Herein, we report the synthesis, in vitro molecular pharmacology, behavioral pharmacology, and pharmacokinetic parameters in mice after subcutaneous and oral administration of (+)-5-(2'-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine ((+)-5-FPT), a new, dual partial agonist targeting both 5-HT7 (Ki = 5.8 nM, EC50 = 34 nM) and 5-HT1A (Ki = 22 nM, EC50 = 40 nM) receptors. Three unique, heterogeneous mouse models were used to assess the efficacy of (+)-5-FPT to reduce stereotypy: idiopathic jumping in C58/J mice, repetitive body rotations in C57BL/6J mice treated with the NMDA antagonist, MK-801, and repetitive head twitching in C57BL/6J mice treated with the 5-HT2 agonist, DOI. Systemic (+)-5-FPT potently and efficaciously reduced or eliminated stereotypy in each of the mouse models without altering locomotor behavior on its own, and additional tests showed that (+)-5-FPT, at the highest behaviorally active dose tested, enhanced social interaction and did not cause behaviors indicative of serotonin syndrome. These data suggest that (+)-5-FPT is a promising medication for treating stereotypy in psychiatric disorders.

  4. 5-HT1A/1B, 5-HT6, and 5-HT7 serotonergic receptors recruitment in tonic-clonic seizure-induced antinociception: role of dorsal raphe nucleus.

    PubMed

    Freitas, Renato Leonardo; Ferreira, Célio Marcos dos Reis; Urbina, Maria Angélica Castiblanco; Mariño, Andrés Uribe; Carvalho, Andressa Daiane; Butera, Giuseppe; de Oliveira, Ana Maria; Coimbra, Norberto Cysne

    2009-05-01

    Pharmacological studies have been focused on the involvement of different neural pathways in the organization of antinociception that follows tonic-clonic seizures, including 5-hydroxytryptamine (5-HT)-, norepinephrine-, acetylcholine- and endogenous opioid peptide-mediated mechanisms, giving rise to more in-depth comprehension of this interesting post-ictal antinociceptive phenomenon. The present work investigated the involvement of 5-HT(1A/1B), 5-HT(6), and 5-HT(7) serotonergic receptors through peripheral pretreatment with methiothepin at doses of 0.5, 1.0, 2.0 and 3.0 mg/kg in the organization of the post-ictal antinociception elicited by pharmacologically (with pentylenetetrazole at 64 mg/kg)-induced tonic-clonic seizures. Methiothepin at 1.0 mg/kg blocked the post-ictal antinociception recorded after the end of seizures, whereas doses of 2.0 and 3.0 mg/kg potentiated the post-ictal antinociception. The nociceptive thresholds were kept higher than those of the control group. However, when the same 5-hydroxytryptamine receptors antagonist was microinjected (at 1.0, 3.0 and 5.0 microg/0.2 microL) in the dorsal raphe nucleus, a mesencephalic structure rich in serotonergic neurons and 5-HT receptors, the post-ictal hypo-analgesia was consistently antagonized. The present findings suggest a dual effect of methiothepin, characterized by a disinhibitory effect on the post-ictal antinociception when peripherally administered (possibly due to an antagonism of pre-synaptic 5-HT(1A) serotonergic autoreceptors in the pain endogenous inhibitory system) and an inhibitory effect (possibly due to a DRN post-synaptic 5-HT(1B), 5-HT(6), and 5-HT(7) serotonergic receptors blockade) when centrally administered. The present data also suggest that serotonin-mediated mechanisms of the dorsal raphe nucleus exert a key-role in the modulation of the post-ictal antinociception.

  5. Serotonin and the 5-HT7 receptor: the link between hepatocytes, IGF-1 and small intestinal neuroendocrine tumors.

    PubMed

    Svejda, Bernhard; Kidd, Mark; Timberlake, Andrew; Harry, Kathy; Kazberouk, Alexander; Schimmack, Simon; Lawrence, Ben; Pfragner, Roswitha; Modlin, Irvin M

    2013-07-01

    Platelet-derived serotonin (5-HT) is involved in liver regeneration. The liver is also the metastatic site for malignant enterochromaffin (EC) cell "carcinoid" (neuroendocrine) neoplasms, the principal cellular source of 5-HT. We hypothesized that 5-HT produced by metastatic EC cells played a role in the hepatic tumor-microenvironment principally via 5-HT₇ receptor-mediated activation of hepatocyte IGF-1 synthesis and secretion. Using isolated rat hepatocytes, we evaluated 5-HT₇ receptor expression (using PCR, sequencing and western blot). ELISA, cell transfection and western blots delineated 5-HT-mediated signaling pathways (pCREB, AKT and ERK). IGF-1 synthesis/secretion was evaluated using QPCR and ELISA. IGF-1 was tested on small intestinal neuroendocrine neoplasm proliferation, while IGF-1 production and 5-HT₇ expression were examined in an in vivo SCID metastasis model. Our results demonstrated evidence for a functional 5-HT₇ receptor. 5-HT activated cAMP/PKA activity, pCREB (130-205%, P < 0.05) and pERK/pAKT (1.2-1.75, P < 0.05). Signaling was reversed by the 5-HT₇ receptor antagonist SB269970. IGF-1 significantly stimulated proliferation of two small intestinal neuroendocrine neoplasm cell lines (EC₅₀: 7-70 pg/mL) and could be reversed by the small molecule inhibitor BMS-754807. IGF-1 and 5-HT were elevated (40-300×) in peri-tumoral hepatic tissue in nude mice, while 5-HT₇ was increased fourfold compared to sham-operated animals. We conclude that hepatocytes express a cAMP-coupled 5-HT₇ receptor, which, at elevated 5-HT concentrations that occur in liver metastases, signals via CREB/AKT and is linked to IGF-1 synthesis and secretion. Because IGF-1 regulates NEN proliferation, identification of a role for 5-HT₇ in the hepatic metastatic tumor microenvironment suggests the potential for novel therapeutic strategies for amine-producing mid-gut tumors. PMID:23578138

  6. Serotonin regulates β-casein expression via 5-HT7 receptors in human mammary epithelial MCF-12A cells.

    PubMed

    Chiba, Takeshi; Kimura, Soichiro; Takahashi, Katsuo; Morimoto, Yasunori; Maeda, Tomoji; Sanbe, Atsushi; Ueda, Hideo; Kudo, Kenzo

    2015-01-01

    We previously reported that serotonin (5-hydroxytryptamine; 5-HT) suppresses β-casein expression, a differentiation marker in mammary epithelial cells, via inhibition of the signal transducer and activator of transcription 5 (STAT5) phosphorylation in the human mammary epithelial cell line, MCF-12A. In this study, we investigated the expression pattern of the different 5-HT receptor subtypes in MCF-12A cells, and identified the receptors involved in 5-HT-mediated suppression of β-casein protein expression. β-Casein mRNA expression was inhibited by 30 µM 5-HT in a time-dependent manner. Treatment with 30 µM 5-HT for 72 h decreased β-casein protein levels and STAT5 phosphorylation (pSTAT5). The cells expressed four 5-HT receptors subtypes (5-HTR1D, 2B, 3A, and 7) at the mRNA and protein level, and their expression was elevated by prolactin (PRL) treatment. Additionally, the mRNA levels of 5-HTR1D and 5-HTR7 were significantly higher than the other 5-HT receptors in the cells. Tryptophan hydroxylase 1 mRNA was detectable in the cells in the absence of PRL, and PRL treatment significantly increased its expression. β-Casein and pSTAT5/STAT5 levels in the cells co-treated with 5-HT and a selective 5-HTR1D inhibitor, BRL15572, were equal to those observed in cells treated with 5-HT alone. However, in the cells co-treated with 5-HT and a selective 5-HTR7 inhibitor, SB269970, β-casein and pSTAT5/STAT5 levels increased in a SB269970 concentration-dependent manner. In conclusion, we showed that 5-HT regulates β-casein expression via 5-HTR7 in MCF-12A human mammary epithelial cells.

  7. Amisulpride is a potent 5-HT7 antagonist: relevance for antidepressant actions in vivo

    PubMed Central

    Abbas, Atheir I.; Hedlund, Peter B.; Huang, Xi-Ping; Tran, Thuy B.; Meltzer, Herbert Y.; Roth, Bryan L.

    2010-01-01

    Rationale Amisulpride is approved for clinical use in treating schizophrenia in a number of European countries and also for treating dysthymia, a mild form of depression, in Italy. Amisulpride has also been demonstrated to be an antidepressant for patients with major depression in many clinical trials. In part because of the selective D2/D3 receptor antagonist properties of amisulpride, it has long been widely assumed that dopaminergic modulation is the proximal event responsible for mediating its antidepressant and antipsychotic properties. Objectives The purpose of these studies was to determine if amisulpride’s antidepressant actions are mediated by off-target interactions with other receptors. Materials and Methods We performed experiments that: (1) examined the pharmacological profile of amisulpride at a large number of CNS molecular targets and (2) after finding high potency antagonist affinity for human 5-HT7a serotonin receptors, characterized the actions of amisulpride as an antidepressant in wild-type and 5-HT7 receptor knock-out mice. Results We discovered that amisulpride was a potent competitive antagonist at 5-HT7a receptors and that interactions with no other molecular target investigated here could explain its antidepressant actions in vivo. Significantly, and in contrast to their wildtype littermates, 5-HT7 receptor knockout mice did not respond to amisulpride in a widely used rodent model of depression, the tail suspension test. Conclusions These results indicate that 5-HT7a receptor antagonism, and not D2/D3 receptor antagonism, likely underlies the antidepressant actions of amisulpride. PMID:19337725

  8. Assignment of the 5HT7 receptor gene (HTR7) to chromosome 10q and exclusion of genetic linkage with Tourette syndrome

    SciTech Connect

    Gelernter, J.; Rao, P.A.; Pauls, D.L.

    1995-03-20

    A novel serotonin receptor designated 5HT7 (genetic locus HTR7) was cloned in 1993. This receptor has interesting properties related to ligand affinity and CNS distribution that render HTR7 a very interesting candidate gene for neuropsychiatric disorders. We mapped this gene, first by physical methods and then by genetic linkage. First, we made a tentative assignment to chromosome 10, based on hybridization of an HTR7 probe to a Southern blot of DNA from somatic cell hybrids. We then identified a genetic polymorphism at the HTR7 locus. We identified one extended pedigree where the polymorphism segregated. Using the LEPED computer program for pairwise linkage analysis, we confirmed the assignment of the gene to chromosome 10, specifically 10q21-q24, based on a lod score of 5.37 at 0% recombination between HTR7 and D10S20 (a chromosome 10 reference marker). Finally, we excluded genetic linkage between this locus and Tourette syndrome under a reasonable set of assumptions. 15 refs., 1 fig., 1 tab.

  9. An Algorithm to Identify Target-Selective Ligands – A Case Study of 5-HT7/5-HT1A Receptor Selectivity

    PubMed Central

    Kurczab, Rafał; Canale, Vittorio; Zajdel, Paweł; Bojarski, Andrzej J.

    2016-01-01

    A computational procedure to search for selective ligands for structurally related protein targets was developed and verified for serotonergic 5-HT7/5-HT1A receptor ligands. Starting from a set of compounds with annotated activity at both targets (grouped into four classes according to their activity: selective toward each target, not-selective and not-selective but active) and with an additional set of decoys (prepared using DUD methodology), the SVM (Support Vector Machines) models were constructed using a selective subset as positive examples and four remaining classes as negative training examples. Based on these four component models, the consensus classifier was then constructed using a data fusion approach. The combination of two approaches of data representation (molecular fingerprints vs. structural interaction fingerprints), different training set sizes and selection of the best SVM component models for consensus model generation, were evaluated to determine the optimal settings for the developed algorithm. The results showed that consensus models with molecular fingerprints, a larger training set and the selection of component models based on MCC maximization provided the best predictive performance. PMID:27271158

  10. Structural modifications of the serotonin 5-HT7 receptor agonist N-(4-cyanophenylmethyl)-4-(2-biphenyl)-1-piperazinehexanamide (LP-211) to improve in vitro microsomal stability: A case study.

    PubMed

    Lacivita, Enza; Podlewska, Sabina; Speranza, Luisa; Niso, Mauro; Satała, Grzegorz; Perrone, Roberto; Perrone-Capano, Carla; Bojarski, Andrzej J; Leopoldo, Marcello

    2016-09-14

    The 5-HT7 serotonin receptor is revealing a promising target for innovative therapeutic strategies of neurodevelopmental and neuropsychiatric disorders. Here, we report the synthesis of thirty long-chain arylpiperazine analogs of the selective and brain penetrant 5-HT7 receptor agonist LP-211 (1) designed to enhance stability towards microsomal oxidative metabolism. Commonly used medicinal chemistry strategies were used (i.e., reduction of overall lipophilicity, introduction of electron-withdrawing groups, blocking of potential vulnerable sites of metabolism), and in vitro microsomal stability was tested. The data showed that the adopted design strategy does not directly translate into improvements in stability. Instead, the metabolic stability of the compounds was related to the presence of specific substituents in well-defined regions of the molecule. The collected data allowed for the construction of a machine learning model that, in a given chemical space, is able to describe and quantitatively predict the metabolic stability of the compounds. The majority of the synthesized compounds maintained high affinity for 5-HT7 receptors and showed selectivity towards 5-HT6 and dopamine D2 receptors and different selectivity for 5-HT1A and α1 adrenergic receptors. Compound 50 showed 3-fold higher in vitro stability towards oxidative metabolism than 1 and was able to stimulate neurite outgrowth in neuronal primary cultures through the 5-HT7 receptor in a shorter time and at a lower concentration than the agonist 1. A preliminary disposition study in mice revealed that compound 50 was metabolically stable and was able to pass the blood-brain barrier, thus representing a new tool for studying the pharmacotherapeutic potential of 5-HT7 receptor in vivo. PMID:27318552

  11. Serotonin via 5-HT7 receptors activates p38 mitogen-activated protein kinase and protein kinase C epsilon resulting in interleukin-6 synthesis in human U373 MG astrocytoma cells.

    PubMed

    Lieb, Klaus; Biersack, Lisa; Waschbisch, Anne; Orlikowski, Sonja; Akundi, Ravi Shankar; Candelario-Jalil, Eduardo; Hüll, Michael; Fiebich, Bernd L

    2005-05-01

    Serotonin [5-hydroxytryptamine (5-HT)] is a widely distributed neurotransmitter which is involved in neuroimmunomodulatory processes. Previously, it has been demonstrated that 5-HT may induce interleukin (IL)-6 expression in primary rat hippocampal astrocytes. The present study was undertaken to investigate the molecular pathways underlying this induction of IL-6 synthesis. As a model system, we used the human astrocytoma cell line U373 MG, which synthesizes IL-6 upon stimulation with various inducers. 5-HT dose- and time-dependently induced IL-6 protein synthesis. We identified several 5-HT receptors to be expressed on U373 MG cells, including the 5-HT1D, 5-HT2A, 5-HT3 and 5-HT7 receptors. In this report, we show that the 5-HT-induced IL-6 release is mediated by the 5-HT7 receptor based on several agonist/antagonists that were used. 5-HT-induced IL-6 synthesis is inhibited by the partially selective 5-HT7 receptor antagonist, pimozide, and the selective antagonist SB269970. Furthermore, IL-6 synthesis was induced by the 5-HT7 receptor agonist carboxamidotryptamin. In addition, we found p38 MAPKs and protein kinase C (PKC) epsilon to be involved in 5-HT-induced IL-6 synthesis as specific inhibitors of these enzymes (SB202190 and RO-31-8425, respectively) blocked 5-HT-induced IL-6 synthesis. Furthermore, 5-HT mediated the phosphorylation of both p38 MAPK as well as the PKC epsilon isoform. The p42/44 MAPKs, however, were not involved in 5-HT-induced IL-6 synthesis. This study shows, for the first time, a central role of 5-HT7 receptor linked to p38 MAPK and PKC epsilon for the induction of cytokine synthesis in astrocytic cells. PMID:15836614

  12. A Pharmacological Analysis of an Associative Learning Task: 5-HT1 to 5-HT7 Receptor Subtypes Function on a Pavlovian/Instrumental Autoshaped Memory

    PubMed Central

    Meneses, Alfredo

    2003-01-01

    Recent studies using both invertebrates and mammals have revealed that endogenous serotonin (5-hydroxytryptamine [5-HT]) modulates plasticity processes, including learning and memory. However, little is currently known about the mechanisms, loci, or time window of the actions of 5-HT. The aim of this review is to discuss some recent results on the effects of systemic administration of selective agonists and antagonists of 5-HT on associative learning in a Pavlovian/instrumental autoshaping (P/I-A) task in rats. The results indicate that pharmacological manipulation of 5-HT1-7 receptors or 5-HT reuptake sites might modulate memory consolidation, which is consistent with the emerging notion that 5-HT plays a key role in memory formation. PMID:14557609

  13. Multi-Step Protocol for Automatic Evaluation of Docking Results Based on Machine Learning Methods--A Case Study of Serotonin Receptors 5-HT(6) and 5-HT(7).

    PubMed

    Smusz, Sabina; Mordalski, Stefan; Witek, Jagna; Rataj, Krzysztof; Kafel, Rafał; Bojarski, Andrzej J

    2015-04-27

    Molecular docking, despite its undeniable usefulness in computer-aided drug design protocols and the increasing sophistication of tools used in the prediction of ligand-protein interaction energies, is still connected with a problem of effective results analysis. In this study, a novel protocol for the automatic evaluation of numerous docking results is presented, being a combination of Structural Interaction Fingerprints and Spectrophores descriptors, machine-learning techniques, and multi-step results analysis. Such an approach takes into consideration the performance of a particular learning algorithm (five machine learning methods were applied), the performance of the docking algorithm itself, the variety of conformations returned from the docking experiment, and the receptor structure (homology models were constructed on five different templates). Evaluation using compounds active toward 5-HT6 and 5-HT7 receptors, as well as additional analysis carried out for beta-2 adrenergic receptor ligands, proved that the methodology is a viable tool for supporting virtual screening protocols, enabling proper discrimination between active and inactive compounds.

  14. 3D QSAR based design of novel oxindole derivative as 5HT7 inhibitors.

    PubMed

    Chitta, Aparna; Sivan, Sree Kanth; Manga, Vijjulatha

    2014-06-01

    To understand the structural requirements of 5-hydroxytryptamine (5HT7) receptor inhibitors and to design new ligands against 5HT7 receptor with enhanced inhibitory potency, a three-dimensional quantitative structure-activity relationship study with comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) for a data set of 56 molecules consisting of oxindole, tetrahydronaphthalene, aryl ketone substituted arylpiperazinealkylamide derivatives was performed. Derived model showed good statistical reliability in terms of predicting 5HT7 inhibitory activity of the molecules, based on molecular property fields like steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond acceptor fields. This is evident from statistical parameters like conventional r2 and a cross validated (q2) values of 0.985, 0.743 for CoMFA and 0.970, 0.608 for CoMSIA, respectively. Predictive ability of the models to determine 5HT7 antagonistic activity is validated using a test set of 16 molecules that were not included in the training set. Predictive r2 obtained for the test set was 0.560 and 0.619 for CoMFA and CoMSIA, respectively. Steric, electrostatic fields majorly contributed toward activity which forms the basis for design of new molecules. Absorption, distribution, metabolism and elimination (ADME) calculation using QikProp 2.5 (Schrodinger 2010, Portland, OR) reveals that the molecules confer to Lipinski's rule of five in majority of the cases.

  15. Identification and mechanism of ABA receptor antagonism

    SciTech Connect

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.

  16. Endothelin ETA receptor antagonism in cardiovascular disease.

    PubMed

    Nasser, Suzanne A; El-Mas, Mahmoud M

    2014-08-15

    Since the discovery of the endothelin system in 1988, it has been implicated in numerous physiological and pathological phenomena. In the cardiovascular system, endothelin-1 (ET-1) acts through intracellular pathways of two endothelin receptors (ETA and ETB) located mainly on smooth muscle and endothelial cells to regulate vascular tone and provoke mitogenic and proinflammatory reactions. The endothelin ETA receptor is believed to play a pivotal role in the pathogenesis of several cardiovascular disease including systemic hypertension, pulmonary arterial hypertension (PAH), dilated cardiomyopathy, and diabetic microvascular dysfunction. Growing evidence from recent experimental and clinical studies indicates that the blockade of endothelin receptors, particularly the ETA subtype, grasps promise in the treatment of major cardiovascular pathologies. The simultaneous blockade of endothelin ETB receptors might not be advantageous, leading possibly to vasoconstriction and salt and water retentions. This review summarizes the role of ET-1 in cardiovascular modulation and the therapeutic potential of endothelin receptor antagonism.

  17. Glucagon receptor antagonism induces increased cholesterol absorption.

    PubMed

    Guan, Hong-Ping; Yang, Xiaodong; Lu, Ku; Wang, Sheng-Ping; Castro-Perez, Jose M; Previs, Stephen; Wright, Michael; Shah, Vinit; Herath, Kithsiri; Xie, Dan; Szeto, Daphne; Forrest, Gail; Xiao, Jing Chen; Palyha, Oksana; Sun, Li-Ping; Andryuk, Paula J; Engel, Samuel S; Xiong, Yusheng; Lin, Songnian; Kelley, David E; Erion, Mark D; Davis, Harry R; Wang, Liangsu

    2015-11-01

    Glucagon and insulin have opposing action in governing glucose homeostasis. In type 2 diabetes mellitus (T2DM), plasma glucagon is characteristically elevated, contributing to increased gluconeogenesis and hyperglycemia. Therefore, glucagon receptor (GCGR) antagonism has been proposed as a pharmacologic approach to treat T2DM. In support of this concept, a potent small-molecule GCGR antagonist (GRA), MK-0893, demonstrated dose-dependent efficacy to reduce hyperglycemia, with an HbA1c reduction of 1.5% at the 80 mg dose for 12 weeks in T2DM. However, GRA treatment was associated with dose-dependent elevation of plasma LDL-cholesterol (LDL-c). The current studies investigated the cause for increased LDL-c. We report findings that link MK-0893 with increased glucagon-like peptide 2 and cholesterol absorption. There was not, however, a GRA-related modulation of cholesterol synthesis. These findings were replicated using structurally diverse GRAs. To examine potential pharmacologic mitigation, coadministration of ezetimibe (a potent inhibitor of cholesterol absorption) in mice abrogated the GRA-associated increase of LDL-c. Although the molecular mechanism is unknown, our results provide a novel finding by which glucagon and, hence, GCGR antagonism govern cholesterol metabolism.

  18. Emotional and risk seeking behavior after prepuberal subchronic or adult acute stimulation of 5-HT7-Rs in Naples High Excitability rats.

    PubMed

    Ruocco, Lucia A; Romano, Emilia; Treno, Concetta; Lacivita, Enza; Arra, Claudio; Gironi-Carnevale, Ugo A; Travaglini, Domenica; Leopoldo, Marcello; Laviola, Giovanni; Sadile, Adolfo G; Adriani, Walter

    2014-04-01

    We report here the results of studies aimed to investigate the involvement of serotonin receptor 7 subtype (5-HT7-R) in the modulation of emotional response in Naples High-Excitability (NHE) rat, a validated model for hyperactivity and impaired attention. A range of dosages (0.0, 0.125, 0.250, or 0.500 mg/kg) of LP-211, a selective agonist of 5-HT7-Rs, has been evaluated in animals at different age (adolescence and adulthood). Male NHE and random bred (NRB) control rats were tested in an Elevated Zero-Maze (EZM) after LP-211 treatment in two different regimens: at the issue of adolescent, subchronic exposure (14 intraperitoneal [i.p.] injections, once/day, pnd 31-44, tested on pnd 45--Exp. 1) or as adult, acute effect (15 min after i.p. injection--Exp. 2). Adolescent, subchronic LP-211 at 0.500 mg/kg dosage increased the frequency of head-dips only in NHE rats. Drug effect on time spent and entries in open EZM quadrants were revealed with adult, acute administration of 0.125 mg/kg LP-211 (both strains), indicating a tendency toward anxiolytic effects. In conclusion, data demonstrate that subchronic stimulation of 5-HT7-Rs during prepuberal period increases novelty-seeking/risk-taking propensity in NHE adults. These sequels are revealing increased disinhibition and/or motivation to explore in the NHE rats, which are characterized by a hyperactive dopaminergic system. These data may open new perspectives in studying mechanism of risk-seeking behavior.

  19. Agonism and Antagonism at the Insulin Receptor

    PubMed Central

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia; Pedersen, Thomas Åskov; Vestergaard, Kirsten; Schäffer, Lauge; Blagoev, Blagoy; Oleksiewicz, Martin B.; Kiselyov, Vladislav V.; De Meyts, Pierre

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed. PMID:23300584

  20. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism.

    PubMed

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L; Sanchez, Connie

    2015-10-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80-90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine's acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine's acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences.

  1. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism

    PubMed Central

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L; Sanchez, Connie

    2015-01-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80–90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine’s acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine’s acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences. PMID:26174134

  2. ANDROGEN RECEPTOR ANTAGONISM BY THE ORGANOPHOSPHATE INSECTICIDE FENITROTHION

    EPA Science Inventory

    Androgen receptor antagonism by the organophosphate insecticide fenitrothion. Tamura, H., Maness, S.C., Reischmann, K. Dorman, D.C., Gray, L.E., and Gaido, K.W. (2000). Toxicol. Sci.

    Organophosphate insecticides represent one of the most widely used classes of pesticide...

  3. CGRP receptor antagonism and migraine therapy.

    PubMed

    Edvinsson, Lars; Warfvinge, Karin

    2013-08-01

    Migraine is the most prevalent of the neurological disorders and can affect the patient throughout the lifetime. Calcitonin gene-related peptide (CGRP) is a neuropeptide that is expressed in the central and peripheral nervous systems. It is now 2 decades since it was proposed to be involved in migraine pathophysiology. The cranial sensory system contains C-fibers storing CGRP and trigeminal nerve activation and acute migraine attacks result in release of CGRP. The CGRP receptor consists of a complex of calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1) and receptor component protein (RCP). At the central synapses in the trigeminal nucleus caudalis, CGRP acts postjunctionally on second-order neurons to transmit pain signals centrally via brainstem and midbrain to thalamus and higher cortical pain regions. CLR and RAMPs are widely expressed throughout the brain, in the trigeminal ganglion and in intracranial arteries. CGRP does not induce neurogenic inflammation or sensitization at peripheral meningeal sites but relays nociceptive information from trigeminal primary afferent neurons to the second-order neurons in the spinal trigeminal nucleus neurons. CGRP receptor antagonists have been developed as novel antimigraine drugs and found to be effective in the treatment of acute migraine attacks. Other ways to stop CGRP activity has been introduced recently through antibodies against CGRP and the CGRP receptor. While the CGRP receptors are expressed both in the CNS and at various places related to the trigeminal system the exact site of action for their therapy effect is still unresolved but the new approaches may resolve this. PMID:23745702

  4. Antagonism of lateral saphenous vein serotonin receptors from steers grazing endophyte-free, wild-type, or novel endophyte-infected tall fescue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pharmacologic profiling of 5-hydroxytryptamine (5HT) receptors of bovine lateral saphenous vein has shown that cattle grazing endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have altered responses to ergovaline (ERV), 5HT, 5HT2A and 5HT7 agonists. To determine if 5HT...

  5. Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition.

    PubMed

    Hubers, Scott A; Brown, Nancy J

    2016-03-15

    Heart failure affects ≈5.7 million people in the United States alone. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, β-blockers, and aldosterone antagonists have improved mortality in patients with heart failure and reduced ejection fraction, but mortality remains high. In July 2015, the US Food and Drug Administration approved the first of a new class of drugs for the treatment of heart failure: Valsartan/sacubitril (formerly known as LCZ696 and currently marketed by Novartis as Entresto) combines the angiotensin receptor blocker valsartan and the neprilysin inhibitor prodrug sacubitril in a 1:1 ratio in a sodium supramolecular complex. Sacubitril is converted by esterases to LBQ657, which inhibits neprilysin, the enzyme responsible for the degradation of the natriuretic peptides and many other vasoactive peptides. Thus, this combined angiotensin receptor antagonist and neprilysin inhibitor addresses 2 of the pathophysiological mechanisms of heart failure: activation of the renin-angiotensin-aldosterone system and decreased sensitivity to natriuretic peptides. In the Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial, valsartan/sacubitril significantly reduced mortality and hospitalization for heart failure, as well as blood pressure, compared with enalapril in patients with heart failure, reduced ejection fraction, and an elevated circulating level of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide. Ongoing clinical trials are evaluating the role of valsartan/sacubitril in the treatment of heart failure with preserved ejection fraction and hypertension. We review here the mechanisms of action of valsartan/sacubitril, the pharmacological properties of the drug, and its efficacy and safety in the treatment of heart failure and hypertension. PMID:26976916

  6. Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition.

    PubMed

    Hubers, Scott A; Brown, Nancy J

    2016-03-15

    Heart failure affects ≈5.7 million people in the United States alone. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, β-blockers, and aldosterone antagonists have improved mortality in patients with heart failure and reduced ejection fraction, but mortality remains high. In July 2015, the US Food and Drug Administration approved the first of a new class of drugs for the treatment of heart failure: Valsartan/sacubitril (formerly known as LCZ696 and currently marketed by Novartis as Entresto) combines the angiotensin receptor blocker valsartan and the neprilysin inhibitor prodrug sacubitril in a 1:1 ratio in a sodium supramolecular complex. Sacubitril is converted by esterases to LBQ657, which inhibits neprilysin, the enzyme responsible for the degradation of the natriuretic peptides and many other vasoactive peptides. Thus, this combined angiotensin receptor antagonist and neprilysin inhibitor addresses 2 of the pathophysiological mechanisms of heart failure: activation of the renin-angiotensin-aldosterone system and decreased sensitivity to natriuretic peptides. In the Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial, valsartan/sacubitril significantly reduced mortality and hospitalization for heart failure, as well as blood pressure, compared with enalapril in patients with heart failure, reduced ejection fraction, and an elevated circulating level of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide. Ongoing clinical trials are evaluating the role of valsartan/sacubitril in the treatment of heart failure with preserved ejection fraction and hypertension. We review here the mechanisms of action of valsartan/sacubitril, the pharmacological properties of the drug, and its efficacy and safety in the treatment of heart failure and hypertension.

  7. Antidepressant- and Anxiolytic-Like Effects of New Dual 5-HT1A and 5-HT7 Antagonists in Animal Models

    PubMed Central

    Pytka, Karolina; Partyka, Anna; Jastrzębska-Więsek, Magdalena; Siwek, Agata; Głuch-Lutwin, Monika; Mordyl, Barbara; Kazek, Grzegorz; Rapacz, Anna; Olczyk, Adrian; Gałuszka, Adam; Błachuta, Marian; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara; Wesołowska, Anna

    2015-01-01

    The aim of this study was to further characterize pharmacological properties of two phenylpiperazine derivatives: 1-{2-[2-(2,6-dimethlphenoxy)ethoxy]ethyl}-4-(2-methoxyphenyl)piperazynine hydrochloride (HBK-14) and 2-[2-(2-chloro-6-methylphenoxy)ethoxy]ethyl-4-(2- methoxyphenyl)piperazynine dihydrochloride (HBK-15) in radioligand binding and functional in vitro assays as well as in vivo models. Antidepressant-like properties were investigated in the forced swim test (FST) in mice and rats. Anxiolytic-like activity was evaluated in the four-plate test in mice and elevated plus maze test (EPM) in rats. Imipramine and escitalopram were used as reference drugs in the FST, and diazepam was used as a standard anxiolytic drug in animal models of anxiety. Our results indicate that HBK-14 and HBK-15 possess high or moderate affinity for serotonergic 5-HT2, adrenergic α1, and dopaminergic D2 receptors as well as being full 5-HT1A and 5-HT7 receptor antagonists. We also present their potent antidepressant-like activity (HBK-14—FST mice: 2.5 and 5 mg/kg; FST rats: 5 mg/kg) and (HBK-15—FST mice: 1.25, 2.5 and 5 mg/kg; FST rats: 1.25 and 2.5 mg/kg). We show that HBK-14 (four-plate test: 2.5 and 5 mg/kg; EPM: 2.5 mg/kg) and HBK-15 (four-plate test: 2.5 and 5 mg/kg; EPM: 5 mg/kg) possess anxiolytic-like properties. Among the two, HBK-15 has stronger antidepressant-like properties, and HBK-14 displays greater anxiolytic-like activity. Lastly, we demonstrate the involvement of serotonergic system, particularly 5-HT1A receptor, in the antidepressant- and anxiolytic-like actions of investigated compounds. PMID:26554929

  8. Therapeutic potential of endothelin receptor antagonism in kidney disease.

    PubMed

    Czopek, Alicja; Moorhouse, Rebecca; Webb, David J; Dhaun, Neeraj

    2016-03-01

    Our growing understanding of the role of the endothelin (ET) system in renal physiology and pathophysiology is from emerging studies of renal disease in animal models and humans. ET receptor antagonists reduce blood pressure and proteinuria in chronic kidney disease and cause regression of renal injury in animals. However, the therapeutic potential of ET receptor antagonism has not been fully explored and clinical studies have been largely limited to patients with diabetic nephropathy. There remains a need for more work in nondiabetic chronic kidney disease, end-stage renal disease (patients requiring maintenance dialysis and those with a functioning kidney transplant), ischemia reperfusion injury, and sickle cell disease. The current review summarizes the most recent advances in both preclinical and clinical studies of ET receptor antagonists in the field of kidney disease.

  9. Chemodetection in fluctuating environments: receptor coupling, buffering, and antagonism.

    PubMed

    Lalanne, Jean-Benoît; François, Paul

    2015-02-10

    Variability in the chemical composition of the extracellular environment can significantly degrade the ability of cells to detect rare cognate ligands. Using concepts from statistical detection theory, we formalize the generic problem of detection of small concentrations of ligands in a fluctuating background of biochemically similar ligands binding to the same receptors. We discover that in contrast with expectations arising from considerations of signal amplification, inhibitory interactions between receptors can improve detection performance in the presence of substantial environmental variability, providing an adaptive interpretation to the phenomenon of ligand antagonism. Our results suggest that the structure of signaling pathways responsible for chemodetection in fluctuating and heterogeneous environments might be optimized with respect to the statistics and dynamics of environmental composition. The developed formalism stresses the importance of characterizing nonspecific interactions to understand function in signaling pathways. PMID:25624502

  10. Chemodetection in fluctuating environments: Receptor coupling, buffering, and antagonism

    PubMed Central

    Lalanne, Jean-Benoît; François, Paul

    2015-01-01

    Variability in the chemical composition of the extracellular environment can significantly degrade the ability of cells to detect rare cognate ligands. Using concepts from statistical detection theory, we formalize the generic problem of detection of small concentrations of ligands in a fluctuating background of biochemically similar ligands binding to the same receptors. We discover that in contrast with expectations arising from considerations of signal amplification, inhibitory interactions between receptors can improve detection performance in the presence of substantial environmental variability, providing an adaptive interpretation to the phenomenon of ligand antagonism. Our results suggest that the structure of signaling pathways responsible for chemodetection in fluctuating and heterogeneous environments might be optimized with respect to the statistics and dynamics of environmental composition. The developed formalism stresses the importance of characterizing nonspecific interactions to understand function in signaling pathways. PMID:25624502

  11. Aryl hydrocarbon receptor antagonism and its role in rheumatoid arthritis

    PubMed Central

    Nguyen, Nam Trung; Nakahama, Taisuke; Nguyen, Chi Hung; Tran, Trang Thu; Le, Van Son; Chu, Hoang Ha; Kishimoto, Tadamitsu

    2015-01-01

    Although rheumatoid arthritis (RA) is the most common autoimmune disease, affecting approximately 1% of the population worldwide, its pathogenic mechanisms are poorly understood. Tobacco smoke, an environmental risk factor for RA, contains several ligands of aryl hydrocarbon receptor (Ahr), also known as dioxin receptor. Ahr plays critical roles in the immune system. We previously demonstrated that Ahr in helper T-cells contributes to development of collagen-induced arthritis, a mouse model of RA. Other studies have shown that cigarette smoke condensate and pure Ahr ligands exacerbate RA by altering bone metabolism and inducing proinflammatory responses in fibroblast-like synoviocytes. Consistent with these findings, several Ahr antagonists such as α-naphthoflavone, resveratrol, and GNF351 reverse the effect of Ahr ligands in RA pathogenesis. In this review, we summarize the current knowledge of Ahr function in the immune system and the potential clinical benefits of Ahr antagonism in treating RA. PMID:27186143

  12. Receptor antagonism/agonism can be uncoupled from pharmacoperone activity.

    PubMed

    Janovick, Jo Ann; Spicer, Timothy P; Smith, Emery; Bannister, Thomas D; Kenakin, Terry; Scampavia, Louis; Conn, P Michael

    2016-10-15

    Pharmacoperones rescue misrouted mutants of the vasopressin receptor type 2 (V2R) and enable them to traffic to the correct biological locus where they function. Previously, a library of nearly 645,000 structures was interrogated with a high throughput screen; pharmacoperones were identified for V2R mutants with a view toward correcting the underlying mutational defects in nephrogenic diabetes insipidus. In the present study, an orthologous assay was used to evaluate hits from the earlier study. We found no consistent relation between antagonism or agonism and pharmacoperone activity. Active pharmacoperones were identified which had minimal antagonistic activity. This increases the therapeutic reach of these drugs, since virtually all pharmacoperone drugs reported to date were selected from peptidomimetic antagonists. Such mixed-activity drugs have a complex pharmacology limiting their therapeutic utility and requiring their removal prior to stimulation of the receptor with agonist. PMID:27389877

  13. Structural Basis for Simvastatin Competitive Antagonism of Complement Receptor 3.

    PubMed

    Jensen, Maria Risager; Bajic, Goran; Zhang, Xianwei; Laustsen, Anne Kjær; Koldsø, Heidi; Skeby, Katrine Kirkeby; Schiøtt, Birgit; Andersen, Gregers R; Vorup-Jensen, Thomas

    2016-08-12

    The complement system is an important part of the innate immune response to infection but may also cause severe complications during inflammation. Small molecule antagonists to complement receptor 3 (CR3) have been widely sought, but a structural basis for their mode of action is not available. We report here on the structure of the human CR3 ligand-binding I domain in complex with simvastatin. Simvastatin targets the metal ion-dependent adhesion site of the open, ligand-binding conformation of the CR3 I domain by direct contact with the chelated Mg(2+) ion. Simvastatin antagonizes I domain binding to the complement fragments iC3b and C3d but not to intercellular adhesion molecule-1. By virtue of the I domain's wide distribution in binding kinetics to ligands, it was possible to identify ligand binding kinetics as discriminator for simvastatin antagonism. In static cellular experiments, 15-25 μm simvastatin reduced adhesion by K562 cells expressing recombinant CR3 and by primary human monocytes, with an endogenous expression of this receptor. Application of force to adhering monocytes potentiated the effects of simvastatin where only a 50-100 nm concentration of the drug reduced the adhesion by 20-40% compared with untreated cells. The ability of simvastatin to target CR3 in its ligand binding-activated conformation is a novel mechanism to explain the known anti-inflammatory effects of this compound, in particular because this CR3 conformation is found in pro-inflammatory environments. Our report points to new designs of CR3 antagonists and opens new perspectives and identifies druggable receptors from characterization of the ligand binding kinetics in the presence of antagonists.

  14. Structural Basis for Simvastatin Competitive Antagonism of Complement Receptor 3.

    PubMed

    Jensen, Maria Risager; Bajic, Goran; Zhang, Xianwei; Laustsen, Anne Kjær; Koldsø, Heidi; Skeby, Katrine Kirkeby; Schiøtt, Birgit; Andersen, Gregers R; Vorup-Jensen, Thomas

    2016-08-12

    The complement system is an important part of the innate immune response to infection but may also cause severe complications during inflammation. Small molecule antagonists to complement receptor 3 (CR3) have been widely sought, but a structural basis for their mode of action is not available. We report here on the structure of the human CR3 ligand-binding I domain in complex with simvastatin. Simvastatin targets the metal ion-dependent adhesion site of the open, ligand-binding conformation of the CR3 I domain by direct contact with the chelated Mg(2+) ion. Simvastatin antagonizes I domain binding to the complement fragments iC3b and C3d but not to intercellular adhesion molecule-1. By virtue of the I domain's wide distribution in binding kinetics to ligands, it was possible to identify ligand binding kinetics as discriminator for simvastatin antagonism. In static cellular experiments, 15-25 μm simvastatin reduced adhesion by K562 cells expressing recombinant CR3 and by primary human monocytes, with an endogenous expression of this receptor. Application of force to adhering monocytes potentiated the effects of simvastatin where only a 50-100 nm concentration of the drug reduced the adhesion by 20-40% compared with untreated cells. The ability of simvastatin to target CR3 in its ligand binding-activated conformation is a novel mechanism to explain the known anti-inflammatory effects of this compound, in particular because this CR3 conformation is found in pro-inflammatory environments. Our report points to new designs of CR3 antagonists and opens new perspectives and identifies druggable receptors from characterization of the ligand binding kinetics in the presence of antagonists. PMID:27339893

  15. Binding kinetics differentiates functional antagonism of orexin-2 receptor ligands

    PubMed Central

    Mould, R; Brown, J; Marshall, FH; Langmead, CJ

    2014-01-01

    Orexin receptor antagonism represents a novel approach for the treatment of insomnia that directly targets sleep/wake regulation. Several such compounds have entered into clinical development, including the dual orexin receptor antagonists, suvorexant and almorexant. In this study, we have used equilibrium and kinetic binding studies with the orexin-2 (OX2) selective antagonist radioligand, [3H]-EMPA, to profile several orexin receptor antagonists. Furthermore, selected compounds were studied in cell-based assays of inositol phosphate accumulation and ERK-1/2 phosphorylation in CHO cells stably expressing the OX2 receptor that employ different agonist incubation times (30 and 5 min, respectively). EMPA, suvorexant, almorexant and TCS-OX-29 all bind to the OX2 receptor with moderate to high affinity (pKI values ≥ 7.5), whereas the primarily OX1 selective antagonists SB-334867 and SB-408124 displayed low affinity (pKI values ca. 6). Competition kinetic analysis showed that the compounds displayed a range of dissociation rates from very fast (TCS-OX2-29, koff = 0.22 min−1) to very slow (almorexant, koff = 0.005 min−1). Notably, there was a clear correlation between association rate and affinity. In the cell-based assays, fast-offset antagonists EMPA and TCS-OX2-29 displayed surmountable antagonism of orexin-A agonist activity. However, both suvorexant and particularly almorexant cause concentration-dependent depression in the maximal orexin-A response, a profile that is more evident with a shorter agonist incubation time. Analysis according to a hemi-equilibrium model suggests that antagonist dissociation is slower in a cellular system than in membrane binding; under these conditions, almorexant effectively acts as a pseudo-irreversible antagonist. Linked ArticlesThis article is part of a themed section on Orexin Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-2 PMID:23692283

  16. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer

    PubMed Central

    Kroon, Jan; Puhr, Martin; Buijs, Jeroen T; van der Horst, Geertje; Hemmer, Daniëlle M; Marijt, Koen A; Hwang, Ming S; Masood, Motasim; Grimm, Stefan; Storm, Gert; Metselaar, Josbert M; Meijer, Onno C; Culig, Zoran; van der Pluijm, Gabri

    2016-01-01

    Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCa). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance. In this study, we aim to elucidate the role of the GR in docetaxel-resistant PCa in order to improve the current PCa therapies. GR expression was analyzed in a tissue microarray of primary PCa specimens from chemonaive and docetaxel-treated patients, and in cultured PCa cell lines with an acquired docetaxel resistance (PC3-DR, DU145-DR, and 22Rv1-DR). We found a robust overexpression of the GR in primary PCa from docetaxel-treated patients and enhanced GR levels in cultured docetaxel-resistant human PCa cells, indicating a key role of the GR in docetaxel resistance. The capability of the GR antagonists (RU-486 and cyproterone acetate) to revert docetaxel resistance was investigated and revealed significant resensitization of docetaxel-resistant PCa cells for docetaxel treatment in a dose- and time-dependent manner, in which a complete restoration of docetaxel sensitivity was achieved in both androgen receptor (AR)-negative and AR-positive cell lines. Mechanistically, we demonstrated down-regulation of Bcl-xL and Bcl-2 upon GR antagonism, thereby defining potential treatment targets. In conclusion, we describe the involvement of the GR in the acquisition of docetaxel resistance in human PCa. Therapeutic targeting of the GR effectively resensitizes docetaxel-resistant PCa cells. These findings warrant further investigation of the clinical utility of the GR antagonists in the management of patients with advanced and docetaxel-resistant PCa. PMID:26483423

  17. Serotonin 2B Receptor Antagonism Prevents Heritable Pulmonary Arterial Hypertension

    PubMed Central

    Schroer, Alison K.; Chen, Peter; Ryzhova, Larisa M.; Gladson, Santhi; Shay, Sheila; Hutcheson, Joshua D.; Merryman, W. David

    2016-01-01

    Serotonergic anorexigens are the primary pharmacologic risk factor associated with pulmonary arterial hypertension (PAH), and the resulting PAH is clinically indistinguishable from the heritable form of disease, associated with BMPR2 mutations. Both BMPR2 mutation and agonists to the serotonin receptor HTR2B have been shown to cause activation of SRC tyrosine kinase; conversely, antagonists to HTR2B inhibit SRC trafficking and downstream function. To test the hypothesis that a HTR2B antagonist can prevent BMRP2 mutation induced PAH by restricting aberrant SRC trafficking and downstream activity, we exposed BMPR2 mutant mice, which spontaneously develop PAH, to a HTR2B antagonist, SB204741, to block the SRC activation caused by BMPR2 mutation. SB204741 prevented the development of PAH in BMPR2 mutant mice, reduced recruitment of inflammatory cells to their lungs, and reduced muscularization of their blood vessels. By atomic force microscopy, we determined that BMPR2 mutant mice normally had a doubling of vessel stiffness, which was substantially normalized by HTR2B inhibition. SB204741 reduced SRC phosphorylation and downstream activity in BMPR2 mutant mice. Gene expression arrays indicate that the primary changes were in cytoskeletal and muscle contractility genes. These results were confirmed by gel contraction assays showing that HTR2B inhibition nearly normalizes the 400% increase in gel contraction normally seen in BMPR2 mutant smooth muscle cells. Heritable PAH results from increased SRC activation, cellular contraction, and vascular resistance, but antagonism of HTR2B prevents SRC phosphorylation, downstream activity, and PAH in BMPR2 mutant mice. PMID:26863209

  18. Prepuberal Stimulation of 5-HT7-R by LP-211 in a Rat Model of Hyper-Activity and Attention-Deficit: Permanent Effects on Attention, Brain Amino Acids and Synaptic Markers in the Fronto-Striatal Interface

    PubMed Central

    Treno, Concetta; Gironi Carnevale, Ugo A.; Arra, Claudio; Nieddu, Maria; Pagano, Cristina; Illiano, Placido; Barbato, Fabiana; Carboni, Ezio; Laviola, Giovanni; Lacivita, Enza; Leopoldo, Marcello; Adriani, Walter; Sadile, Adolfo G.

    2014-01-01

    The cross-talk at the prefronto-striatal interface involves excitatory amino acids, different receptors, transducers and modulators. We investigated long-term effects of a prepuberal, subchronic 5-HT7-R agonist (LP-211) on adult behaviour, amino acids and synaptic markers in a model for Attention-Deficit/Hyperactivity Disorder (ADHD). Naples High Excitability rats (NHE) and their Random Bred controls (NRB) were daily treated with LP-211 in the 5th and 6th postnatal week. One month after treatment, these rats were tested for indices of activity, non selective (NSA), selective spatial attention (SSA) and emotionality. The quantity of L-Glutamate (L-Glu), L-Aspartate (L-Asp) and L-Leucine (L-Leu), dopamine transporter (DAT), NMDAR1 subunit and CAMKIIα, were assessed in prefrontal cortex (PFC), dorsal (DS) and ventral striatum (VS), for their role in synaptic transmission, neural plasticity and information processing. Prepuberal LP-211 (at lower dose) reduced horizontal activity and (at higher dose) increased SSA, only for NHE but not in NRB rats. Prepuberal LP-211 increased, in NHE rats, L-Glu in the PFC and L-Asp in the VS (at 0.250 mg/kg dose), whereas (at 0.125 mg/kg dose) it decreased L-Glu and L-Asp in the DS. The L-Glu was decreased, at 0.125 mg/kg, only in the VS of NRB rats. The DAT levels were decreased with the 0.125 mg/kg dose (in the PFC), and increased with the 0.250 mg/kg dose (in the VS), significantly for NHE rats. The basal NMDAR1 level was higher in the PFC of NHE than NRB rats; LP-211 treatment (at 0.125 mg/kg dose) decreased NMDAR1 in the VS of NRB rats. This study represents a starting point about the impact of developmental 5-HT7-R activation on neuro-physiology of attentive processes, executive functions and their neural substrates. PMID:24709857

  19. ENDOTHELIN-A RECEPTOR ANTAGONISM IN EMBRYO CULTURE: WINDOW OF SENSITIVITY AND TIMING OF DEFECT

    EPA Science Inventory

    BRANNEN, K.C., J.M. ROGERS, and E.S. HUNTER, Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina, and Reproductive Toxicology Division, NHEERL, U.S. EPA, Research Triangle Park, North Carolina. Endothelin-A receptor antagonism in embryo culture: w...

  20. Selective endothelin A receptor antagonism with sitaxentan reduces neointimal lesion size in a mouse model of intraluminal injury

    PubMed Central

    Duthie, Karolina M; Hadoke, Patrick W F; Kirkby, Nicholas S; Miller, Eileen; Ivy, Jessica R; McShane, John F; Lim, Win Gel; Webb, David J

    2015-01-01

    Background and Purpose Endothelin (ET) receptor antagonism reduces neointimal lesion formation in animal models. This investigation addressed the hypothesis that the selective ETA receptor antagonist sitaxentan would be more effective than mixed ETA/B receptor antagonism at inhibiting neointimal proliferation in a mouse model of intraluminal injury. Experimental Approach Antagonism of ETA receptors by sitaxentan (1–100 nM) was assessed in femoral arteries isolated from adult, male C57Bl6 mice using isometric wire myography. Neointimal lesion development was induced by intraluminal injury in mice receiving sitaxentan (ETA antagonist; 15 mg·kg−1·day−1), A192621 (ETB antagonist; 30 mg·kg−1·day−1), the combination of both antagonists or vehicle. Treatment began 1 week before, and continued for 28 days after, surgery. Femoral arteries were then harvested for analysis of lesion size and composition. Key Results Sitaxentan produced a selective, concentration-dependent parallel rightward shift of ET-1-mediated contraction in isolated femoral arteries. Sitaxentan reduced neointimal lesion size, whereas ETB and combined ETA/B receptor antagonism did not. Macrophage and α-smooth muscle actin content were unaltered by ET receptor antagonism but sitaxentan reduced the amount of collagen in lesions. Conclusions and Implications These results suggest that ETA receptor antagonism would be more effective than combined ETA/ETB receptor antagonism at reducing neointimal lesion formation. PMID:25598351

  1. Exploring new scaffolds for angiotensin II receptor antagonism.

    PubMed

    Kritsi, Eftichia; Matsoukas, Minos-Timotheos; Potamitis, Constantinos; Karageorgos, Vlasios; Detsi, Anastasia; Magafa, Vasilliki; Liapakis, George; Mavromoustakos, Thomas; Zoumpoulakis, Panagiotis

    2016-09-15

    Nowadays, AT1 receptor (AT1R) antagonists (ARBs) constitute the one of the most prevalent classes of antihypertensive drugs that modulate the renin-angiotensin system (RAS). Their main uses include also treatment of diabetic nephropathy (kidney damage due to diabetes) and congestive heart failure. Towards this direction, our study has been focused on the discovery of novel agents bearing different scaffolds which may evolve as a new class of AT1 receptor antagonists. To fulfill this aim, a combination of computational approaches and biological assays were implemented. Particularly, a pharmacophore model was established and served as a 3D search query to screen the ChEMBL15 database. The reliability and accuracy of virtual screening results were improved by using molecular docking studies. In total, 4 compounds with completely diverse chemical scaffolds from potential ARBs, were picked and tested for their binding affinity to AT1 receptor. Results revealed high nanomolar to micromolar affinity (IC50) for all the compounds. Especially, compound 4 exhibited a binding affinity of 199nM. Molecular dynamics simulations were utilized in an effort to provide a molecular basis of their binding to AT1R in accordance to their biological activities. PMID:27480029

  2. Orexin 2 Receptor Antagonism is Sufficient to Promote NREM and REM Sleep from Mouse to Man.

    PubMed

    Gotter, Anthony L; Forman, Mark S; Harrell, Charles M; Stevens, Joanne; Svetnik, Vladimir; Yee, Ka Lai; Li, Xiaodong; Roecker, Anthony J; Fox, Steven V; Tannenbaum, Pamela L; Garson, Susan L; Lepeleire, Inge De; Calder, Nicole; Rosen, Laura; Struyk, Arie; Coleman, Paul J; Herring, W Joseph; Renger, John J; Winrow, Christopher J

    2016-01-01

    Orexin neuropeptides regulate sleep/wake through orexin receptors (OX1R, OX2R); OX2R is the predominant mediator of arousal promotion. The potential for single OX2R antagonism to effectively promote sleep has yet to be demonstrated in humans. MK-1064 is an OX2R-single antagonist. Preclinically, MK-1064 promotes sleep and increases both rapid eye movement (REM) and non-REM (NREM) sleep in rats at OX2R occupancies higher than the range observed for dual orexin receptor antagonists. Similar to dual antagonists, MK-1064 increases NREM and REM sleep in dogs without inducing cataplexy. Two Phase I studies in healthy human subjects evaluated safety, tolerability, pharmacokinetics and sleep-promoting effects of MK-1064, and demonstrated dose-dependent increases in subjective somnolence (via Karolinska Sleepiness Scale and Visual Analogue Scale measures) and sleep (via polysomnography), including increased REM and NREM sleep. Thus, selective OX2R antagonism is sufficient to promote REM and NREM sleep across species, similarly to that seen with dual orexin receptor antagonism. PMID:27256922

  3. Orexin 2 Receptor Antagonism is Sufficient to Promote NREM and REM Sleep from Mouse to Man.

    PubMed

    Gotter, Anthony L; Forman, Mark S; Harrell, Charles M; Stevens, Joanne; Svetnik, Vladimir; Yee, Ka Lai; Li, Xiaodong; Roecker, Anthony J; Fox, Steven V; Tannenbaum, Pamela L; Garson, Susan L; Lepeleire, Inge De; Calder, Nicole; Rosen, Laura; Struyk, Arie; Coleman, Paul J; Herring, W Joseph; Renger, John J; Winrow, Christopher J

    2016-01-01

    Orexin neuropeptides regulate sleep/wake through orexin receptors (OX1R, OX2R); OX2R is the predominant mediator of arousal promotion. The potential for single OX2R antagonism to effectively promote sleep has yet to be demonstrated in humans. MK-1064 is an OX2R-single antagonist. Preclinically, MK-1064 promotes sleep and increases both rapid eye movement (REM) and non-REM (NREM) sleep in rats at OX2R occupancies higher than the range observed for dual orexin receptor antagonists. Similar to dual antagonists, MK-1064 increases NREM and REM sleep in dogs without inducing cataplexy. Two Phase I studies in healthy human subjects evaluated safety, tolerability, pharmacokinetics and sleep-promoting effects of MK-1064, and demonstrated dose-dependent increases in subjective somnolence (via Karolinska Sleepiness Scale and Visual Analogue Scale measures) and sleep (via polysomnography), including increased REM and NREM sleep. Thus, selective OX2R antagonism is sufficient to promote REM and NREM sleep across species, similarly to that seen with dual orexin receptor antagonism.

  4. Orexin 2 Receptor Antagonism is Sufficient to Promote NREM and REM Sleep from Mouse to Man

    PubMed Central

    Gotter, Anthony L.; Forman, Mark S.; Harrell, Charles M.; Stevens, Joanne; Svetnik, Vladimir; Yee, Ka Lai; Li, Xiaodong; Roecker, Anthony J.; Fox, Steven V.; Tannenbaum, Pamela L.; Garson, Susan L.; Lepeleire, Inge De; Calder, Nicole; Rosen, Laura; Struyk, Arie; Coleman, Paul J.; Herring, W. Joseph; Renger, John J.; Winrow, Christopher J.

    2016-01-01

    Orexin neuropeptides regulate sleep/wake through orexin receptors (OX1R, OX2R); OX2R is the predominant mediator of arousal promotion. The potential for single OX2R antagonism to effectively promote sleep has yet to be demonstrated in humans. MK-1064 is an OX2R-single antagonist. Preclinically, MK-1064 promotes sleep and increases both rapid eye movement (REM) and non-REM (NREM) sleep in rats at OX2R occupancies higher than the range observed for dual orexin receptor antagonists. Similar to dual antagonists, MK-1064 increases NREM and REM sleep in dogs without inducing cataplexy. Two Phase I studies in healthy human subjects evaluated safety, tolerability, pharmacokinetics and sleep-promoting effects of MK-1064, and demonstrated dose-dependent increases in subjective somnolence (via Karolinska Sleepiness Scale and Visual Analogue Scale measures) and sleep (via polysomnography), including increased REM and NREM sleep. Thus, selective OX2R antagonism is sufficient to promote REM and NREM sleep across species, similarly to that seen with dual orexin receptor antagonism. PMID:27256922

  5. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor

    PubMed Central

    Dagdas, Yasin F; Belhaj, Khaoula; Maqbool, Abbas; Chaparro-Garcia, Angela; Pandey, Pooja; Petre, Benjamin; Tabassum, Nadra; Cruz-Mireles, Neftaly; Hughes, Richard K; Sklenar, Jan; Win, Joe; Menke, Frank; Findlay, Kim; Banfield, Mark J; Kamoun, Sophien; Bozkurt, Tolga O

    2016-01-01

    Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses. DOI: http://dx.doi.org/10.7554/eLife.10856.001 PMID:26765567

  6. Effects of endothelin ETA receptor antagonism on granulocyte and lymphocyte accumulation in LPS-induced inflammation.

    PubMed

    Sampaio, André L F; Rae, Giles A; Henriques, Maria das Graças M O

    2004-07-01

    Endothelin peptides play active roles in different aspects of inflammation. This study investigates the contribution of endogenous endothelins to lipopolysaccharide (LPS) pulmonary inflammation by assessing the influence of ET(A) receptor antagonism on leukocyte accumulation, granulocyte adhesion molecule expression, and chemokine/cytokine modulation. Local pretreatment with BQ-123 or A-127722 (150 pmol), two selective and chemically unrelated endothelin ET(A) receptor antagonists, inhibits neutrophil and eosinophil accumulation in LPS-induced pleurisy at 24 h but not neutrophil migration at 4 h. The effect of endothelin antagonism on neutrophil accumulation at 24 h was concomitant with inhibition of eosinophil and CD4 and CD8 T lymphocyte influx. It is surprising that the ET(A) receptor blockade did not inhibit the accumulation of gammadelta T lymphocytes, cells that are important for granulocyte recruitment in this model. Blockade of ET(A) receptors did not influence the expression of adhesion molecules (CD11b, CD49d) on granulocytes but abrogated the increase in tumor necrosis factor alpha levels 4 h after LPS stimulation and also markedly inhibited increases in levels of interleukin-6 and keratinocyte-derived chemokine/CXC chemokine ligand 1 but not eotaxin/chemokine ligand 11. Thus, acting via ET(A) receptors, endogenous endothelins play an important role in early cytokine/chemokine production and on granulocyte and lymphocyte mobilization in LPS-induced pleurisy.

  7. in Silico investigation of the structural requirements for the AMPA receptor antagonism by quinoxaline derivatives

    PubMed Central

    Azam, Faizul; Abugrain, Ismaiel Mohamed; Sanalla, Mohamed Hussin; Elnaas, Radwan Fatahalla; Rajab, Ibrahim Abdassalam Ibn

    2013-01-01

    Glutamate receptors have been implicated in various neurological disorders and their antagonism offers a suitable approach for the treatment of such disorders. The field of drug design and discovery aims to find best medicines to prevent, treat and cure diseases quickly and efficiently. In this regard, computational tools have helped medicinal chemists modify and optimize molecules to potent drug candidates with better pharmacokinetic profiles, and guiding biologists and pharmacologists to explore new disease genes as well as novel drug targets. In the present study, to understand the structural requirements for AMPA receptor antagonism, molecular docking study was performed on 41 structurally diverse antagonists based on quinoxaline nucleus. Lamarckian genetic algorithm methodology was employed for docking simulations using AutoDock 4.2 program. The results obtained signify that the molecular docking approach is reliable and produces a good correlation coefficient (r2 = 0.6) between experimental and docking predicted AMPA receptor antagonistic activity. The aromatic moiety of quinoxaline core has been proved to be vital for hydrophobic contacts exhibiting - interactions in docked conformations. However, polar moieties such as carboxylic group and 1,2,4-triazole moieties were noted to be sites for hydrophilic interactions in terms of hydrogen bonding with the receptor. These analyses can be exploited to design and develop novel AMPA receptor antagonists for the treatment of different neurological disorders. PMID:24250113

  8. The Effect of Mineralocorticoid and Glucocorticoid Receptor Antagonism on Autobiographical Memory Recall and Amygdala Response to Implicit Emotional Stimuli

    PubMed Central

    Preskorn, Sheldon H.; Victor, Teresa; Misaki, Masaya; Bodurka, Jerzy; Drevets, Wayne C.

    2016-01-01

    Background: Acutely elevated cortisol levels in healthy humans impair autobiographical memory recall and alter hemodynamic responses of the amygdala to emotionally valenced stimuli. It is hypothesized that the effects of the cortisol on cognition are influenced by the ratio of mineralocorticoid receptor to glucocorticoid receptor occupation. The current study examined the effects of acutely blocking mineralocorticoid receptors and glucocorticoid receptors separately on 2 processes known to be affected by altering levels of cortisol: the specificity of autobiographical memory recall, and the amygdala hemodynamic response to sad and happy faces. Methods: We employed a within-subjects design in which 10 healthy male participants received placebo, the mineralocorticoid receptor antagonist spironolactone (600mg) alone, and the glucocorticoid receptor antagonist mifepristone (600mg) alone in a randomized, counter-balanced order separated by 1-week drug-free periods. Results: On autobiographical memory testing, mineralocorticoid receptor antagonism impaired, while glucocorticoid receptor antagonism improved, recall relative to placebo, as evinced by changes in the percent of specific memories recalled. During fMRI, the amygdala hemodynamic response to masked sad faces was greater under both mineralocorticoid receptor and glucocorticoid receptor antagonism relative to placebo, while the response to masked happy faces was attenuated only during mineralocorticoid receptor antagonism relative to placebo. Conclusions: These data suggest both mineralocorticoid receptor and glucocorticoid receptor antagonism (and potentially any deviation from the normal physiological mineralocorticoid receptor/glucocorticoid receptor ratio achieved under the circadian pattern) enhances amygdala-based processing of sad stimuli and may shift the emotional processing bias away from the normative processing bias and towards the negative valence. In contrast, autobiographical memory was enhanced by

  9. Antagonism effects of cypermethrin on interleukin-6-induced androgen receptor activation.

    PubMed

    Wang, Qi; Xu, Li-Fang; Zhou, Ji-Long; Zhou, Xiao-Long; Wang, Hui; Ju, Qiang; Pan, Chen; Zhang, Jin-Peng; Zhang, Mei-Rong; Yu, Hong-Min; Xu, Li-Chun

    2015-07-01

    To identify whether androgen receptor (AR) antagonism by cypermethrin involves interleukin-6 (IL-6)-induced ligand-independent AR signaling, we have developed the AR reporter gene assay. The reporter gene plasmid pMMTV-chloramphenicol transferase (CAT) was transfected into LNCaP cells. IL-6 increased expression of MMTV-CAT significantly (P<0.05). Cypermethrin decreased CAT reporter expression induced by IL-6 (50 ng/ml), and the significant inhibition was detected at 10(-5)M (P<0.05). IL-6 induces ligand-independent activation of AR. Cypermethrin exhibits inhibitory effects on IL-6-induced ligand-independent AR signaling. We provide a novel insight into cypermethrin-mediated antagonism of the IL-6-mediated ligand-independent activation of the AR.

  10. Functional studies but not receptor binding can distinguish surmountable from insurmountable AT1 antagonism.

    PubMed

    Panek, R L; Lu, G H; Overhiser, R W; Major, T C; Hodges, J C; Taylor, D G

    1995-05-01

    Our study demonstrated that inhibition of angiotensin II- (Ang II) mediated contractions of rabbit aorta by structurally diverse nonpeptide AT1 antagonists could distinguish surmountable from insurmountable AT1 antagonism. CI-996, L158809, EXP 3174 and SKF 108834 produced concentration-related rightward shifts in Ang II response curves and reduced the maximal contraction to Ang II, characteristic of insurmountable antagonism. In contrast, DuP 753 and SKF 108566, produced parallel rightward shifts in Ang II contractile curves without affecting the maximal response which is consistent with the definition of surmountable or competitive antagonism. In addition, CI-996 demonstrated potent inhibition of Ang II-stimulated inositol phosphate accumulation in rat aortic smooth muscle cells, behaving as an insurmountable antagonist. However, DuP 753 was a surmountable antagonist of Ang II-stimulated inositol phosphate accumulation. Repeated washing of rabbit aorta preincubated with either CI-996 or EXP 3174 did not restore the blunted Ang II contractions. In contrast, both DuP 753 and the structurally dissimilar SKF 108566 at a concentration of 100 nM showed complete recovery of Ang II responses within 2 hr of repeated washing. Surprisingly, repeated rinsing of rabbit aorta for up to 5 hr after incubation with 1 microM DuP 753 failed to restore responses to Ang II. In addition, Scatchard analysis of [125I] Ang II saturation binding experiments revealed a competitive and rapidly reversible nature of AT1 receptor antagonism for all the AT1 antagonists examined. Taken together, the results of this study provide evidence for a competitive and rapidly reversible binding interaction of structurally diverse non-peptide antagonists at the AT1 receptor.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Reverse Translation of Clinical Electrophysiological Biomarkers in Behaving Rodents under Acute and Chronic NMDA Receptor Antagonism

    PubMed Central

    Sullivan, Elyse M; Timi, Patricia; Hong, L Elliot; O'Donnell, Patricio

    2015-01-01

    Electroencephalogram (EEG) stands out as a highly translational tool for psychiatric research, yet rodent and human EEG are not typically obtained in the same way. In this study we developed a tool to record skull EEG in awake-behaving rats in a similar manner to how human EEG are obtained and then used this technique to test whether acute NMDA receptor antagonism alters rodent EEG signals in a similar manner as in humans. Acute MK-801 treatment elevated gamma power and reduced beta band power, which closely mirrored EEG data from healthy volunteers receiving acute ketamine. To explore the mechanisms behind these oscillatory changes, we examined the effects of GABA-A receptor blockade, finding that picrotoxin (PTX) recapitulated the decrease in sound-evoked beta oscillations observed with acute MK-801, but did not produce changes in gamma band power. Chronic treatment with either PTX or MK-801 did not affect frequency-specific oscillatory activity when tested 24 h after the last drug injection, but decreased total broadband oscillatory power. Overall, this study validated a novel platform for recording rodent EEG and demonstrated similar oscillatory changes after acute NMDA receptor antagonism in both humans and rodents, suggesting that skull EEG may be a powerful tool for further translational studies. PMID:25176166

  12. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism

    PubMed Central

    Dugovic, Christine; Shelton, Jonathan E.; Yun, Sujin; Bonaventure, Pascal; Shireman, Brock T.; Lovenberg, Timothy W.

    2014-01-01

    In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R) and orexin-2 (OX2R) receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM) sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM) and REM sleep following oral dosing (10 and 30 mg/kg) at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion). When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg) increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg) did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic. PMID:24592208

  13. Histamine H4 receptor antagonism reduces hapten-induced scratching behaviour but not inflammation.

    PubMed

    Rossbach, Kristine; Wendorff, Stephanie; Sander, Kerstin; Stark, Holger; Gutzmer, Ralf; Werfel, Thomas; Kietzmann, Manfred; Bäumer, Wolfgang

    2009-01-01

    Effects of the histamine H(4) receptor antagonist JNJ 7777120 (1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methylpiperazine) were tested in two models of allergic contact dermatitis. Dermatitis was induced by 2,4-dinitrochlorobenzene and toluene-2,4-diisocyanate, which differ in their Th1-Th2 profile in that way that 2,4-dinitrochlorobenzene is a classical contact allergen with a pronounced Th1-mediated inflammation, while the respiratory chemical allergen toluene-2,4-diisocyanate induces a Th2-dominated inflammation. JNJ 7777120 (15 mg/kg) administered 2 h and 30 min before and 1 h after challenge did not reduce the hapten-induced ear swelling determined 24 h after challenge. This was confirmed by histological evaluation of the ear skin. A repeated administration of the haptens to the rostral part of the back of sensitized animals resulted in a frequent scratching behaviour. An administration of JNJ 7777120 (15 mg/kg) 30 min before challenge reduced this hapten-induced scratching significantly. The H(1) receptor antagonist cetirizine also reduced the scratching bouts in sensitized mice. A combination of H(1) and H(4) receptor antagonists resulted in the strongest inhibition of scratching behaviour associated with allergic dermatitis. These results indicate that H(4) receptor antagonism fails to reduce the allergic inflammatory response but strongly inhibits allergen-induced itch. Thus, a combination of H(4) and H(1) receptor antagonism might be a new strategy to treat pruritus related to allergic diseases like atopic dermatitis.

  14. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells.

    PubMed

    Lempereur, Maëlle; Majewska, Claire; Brunquers, Amandine; Wongpramud, Sumalee; Valet, Bénédicte; Janssens, Philippe; Dillemans, Monique; Van Nedervelde, Laurence; Gallo, Dominique

    2016-01-01

    Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L.) which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα) antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box). In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells). Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif. PMID:27190515

  15. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells

    PubMed Central

    Lempereur, Maëlle; Majewska, Claire; Brunquers, Amandine; Wongpramud, Sumalee; Valet, Bénédicte; Janssens, Philippe; Dillemans, Monique; Van Nedervelde, Laurence; Gallo, Dominique

    2016-01-01

    Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L.) which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα) antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box). In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells). Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif. PMID:27190515

  16. Neuromedin B receptor antagonism inhibits migration, invasion, and epithelial-mesenchymal transition of breast cancer cells.

    PubMed

    Park, Hyun-Joo; Kim, Mi-Kyoung; Choi, Kyu-Sil; Jeong, Joo-Won; Bae, Soo-Kyung; Kim, Hyung Joon; Bae, Moon-Kyoung

    2016-09-01

    Neuromedin B (NMB) acts as an autocrine growth factor and a pro-angiogenic factor. Its receptor, NMB receptor (NMB-R), is overexpressed in solid tumors. In the present study, we showed that an NMB-R antagonist, PD168368, suppresses migration and invasion of the human breast cancer cell line MDA-MB-231. In addition, PD168368 reduced epithelial-mesenchymal transition (EMT) of breast cancer cells by E-cadherin upregulation and vimentin downregulation. Moreover, we found that PD168368 potently inhibits in vivo metastasis of breast cancer. Taken together, these findings suggest that NMB-R antagonism may be an alternative approach to prevent breast cancer metastasis, and targeting NMB-R may provide a novel therapeutic strategy for breast cancer treatment. PMID:27571778

  17. Dopamine D2/3 receptor antagonism reduces activity-based anorexia

    PubMed Central

    Klenotich, S J; Ho, E V; McMurray, M S; Server, C H; Dulawa, S C

    2015-01-01

    Anorexia nervosa (AN) is an eating disorder characterized by severe hypophagia and weight loss, and an intense fear of weight gain. Activity-based anorexia (ABA) refers to the weight loss, hypophagia and paradoxical hyperactivity that develops in rodents exposed to running wheels and restricted food access, and provides a model for aspects of AN. The atypical antipsychotic olanzapine was recently shown to reduce both AN symptoms and ABA. We examined which component of the complex pharmacological profile of olanzapine reduces ABA. Mice received 5-HT2A/2C, 5-HT3, dopamine D1-like, D2, D3 or D2/3 antagonist treatment, and were assessed for food intake, body weight, wheel running and survival in ABA. D2/3 receptor antagonists eticlopride and amisulpride reduced weight loss and hypophagia, and increased survival during ABA. Furthermore, amisulpride produced larger reductions in weight loss and hypophagia than olanzapine. Treatment with either D3 receptor antagonist SB277011A or D2 receptor antagonist L-741,626 also increased survival. All the other treatments either had no effect or worsened ABA. Overall, selective antagonism of D2 and/or D3 receptors robustly reduces ABA. Studies investigating the mechanisms by which D2 and/or D3 receptors regulate ABA, and the efficacy for D2/3 and/or D3 antagonists to treat AN, are warranted. PMID:26241351

  18. Dopamine D2/3 receptor antagonism reduces activity-based anorexia.

    PubMed

    Klenotich, S J; Ho, E V; McMurray, M S; Server, C H; Dulawa, S C

    2015-08-04

    Anorexia nervosa (AN) is an eating disorder characterized by severe hypophagia and weight loss, and an intense fear of weight gain. Activity-based anorexia (ABA) refers to the weight loss, hypophagia and paradoxical hyperactivity that develops in rodents exposed to running wheels and restricted food access, and provides a model for aspects of AN. The atypical antipsychotic olanzapine was recently shown to reduce both AN symptoms and ABA. We examined which component of the complex pharmacological profile of olanzapine reduces ABA. Mice received 5-HT(2A/2C), 5-HT3, dopamine D1-like, D2, D3 or D2/3 antagonist treatment, and were assessed for food intake, body weight, wheel running and survival in ABA. D2/3 receptor antagonists eticlopride and amisulpride reduced weight loss and hypophagia, and increased survival during ABA. Furthermore, amisulpride produced larger reductions in weight loss and hypophagia than olanzapine. Treatment with either D3 receptor antagonist SB277011A or D2 receptor antagonist L-741,626 also increased survival. All the other treatments either had no effect or worsened ABA. Overall, selective antagonism of D2 and/or D3 receptors robustly reduces ABA. Studies investigating the mechanisms by which D2 and/or D3 receptors regulate ABA, and the efficacy for D2/3 and/or D3 antagonists to treat AN, are warranted.

  19. Antagonism of the thromboxane-prostanoid receptor is cardioprotective against right ventricular pressure overload.

    PubMed

    West, James D; Voss, Bryan M; Pavliv, Leo; de Caestecker, Mark; Hemnes, Anna R; Carrier, Erica J

    2016-06-01

    Right ventricular (RV) failure is the primary cause of death in pulmonary arterial hypertension (PAH) and is a significant cause of morbidity and mortality in other forms of pulmonary hypertension. There are no approved therapies directed at preserving RV function. F-series and E-series isoprostanes are increased in heart failure and PAH, correlate to the severity of disease, and can signal through the thromboxane-prostanoid (TP) receptor, with effects from vasoconstriction to fibrosis. The goal of these studies was to determine whether blockade of the TP receptor with the antagonist CPI211 was beneficial therapeutically in PAH-induced RV dysfunction. Mice with RV dysfunction due to pressure overload by pulmonary artery banding (PAB) were given vehicle or CPI211. Two weeks after PAB, CPI211-treated mice were protected from fibrosis with pressure overload. Gene expression arrays and immunoblotting, quantitative histology and morphometry, and flow cytometric analysis were used to determine the mechanism of CPI211 protection. TP receptor inhibition caused a near normalization of fibrotic area, prevented cellular hypertrophy while allowing increased RV mass, increased expression of antifibrotic thrombospondin-4, and blocked induction of the profibrotic transforming growth factor β (TGF-β) pathway. A thromboxane synthase inhibitor or low-dose aspirin failed to replicate these results, which suggests that a ligand other than thromboxane mediates fibrosis through the TP receptor after pressure overload. This study suggests that TP receptor antagonism may improve RV adaptation in situations of pressure overload by decreasing fibrosis and TGF-β signaling.

  20. Pair Bond Formation is Impaired by VPAC Receptor Antagonism in the Socially Monogamous Zebra Finch

    PubMed Central

    Kingsbury, Marcy A.; Goodson, James L.

    2014-01-01

    A variety of recent data demonstrate that vasoactive intestinal polypeptide (VIP) and VPAC receptors (which bind VIP, and to a lesser extent, pituitary adenylatecyclase activating peptide) are important for numerous social behaviors in songbirds, including grouping and aggression, although VIP relates to these behaviors in a site-specific manner. In order to determine the global effects of central VPAC receptor activation on social behavior, we here infused a VPAC receptor antagonist or vehicle twice daily into the lateral ventricle of colony-housed male and female zebra finches and quantified a wide range of behaviors. Aggressive behaviors were not altered by ventricular infusions, consistent with known opposing, site-specific relationships of VIP innervation to aggression. Courtship and self-maintenance behaviors were likewise not altered. However, VPAC antagonism produced significant deficits in pair bonding. Antagonist subjects took longer to form a pair bond and were paired for significantly fewer observation sessions relative to control subjects (median 1.5 of 6 observation sessions for antagonist subjects versus 4 for control subjects). Antagonist subjects were also significantly less likely to be paired in the final observation session. Based on the known distribution of VPAC receptors in finches and other vertebrates, we propose that VPAC receptors may mediate pair bonding via a variety of brain areas that are known to be important for the establishment of partner preferences in voles, including the lateral septum, ventral tegmental area, nucleus accumbens and ventral pallidum. PMID:25014003

  1. Kinin B1 receptor antagonism is equally efficient as angiotensin receptor 1 antagonism in reducing renal fibrosis in experimental obstructive nephropathy, but is not additive

    PubMed Central

    Huart, Antoine; Klein, Julie; Gonzalez, Julien; Buffin-Meyer, Bénédicte; Neau, Eric; Delage, Christine; Calise, Denis; Ribes, David; Schanstra, Joost P.; Bascands, Jean-Loup

    2015-01-01

    Background: Renal tubulointerstitial fibrosis is the pathological hallmark of chronic kidney disease (CKD). Currently, inhibitors of the renin–angiotensin system (RAS) remain the sole therapy in human displaying antifibrotic properties. Further antifibrotic molecules are needed. We have recently reported that the delayed blockade of the bradykinin B1 receptor (B1R) reduced the development of fibrosis in two animal models of renal fibrosis. The usefulness of new drugs also resides in outperforming the gold standards and eventually being additive or complementary to existing therapies. Methods: In this study we compared the efficacy of a B1R antagonist (B1Ra) with that of an angiotensin type 1 receptor antagonist (AT1a) in the unilateral ureteral obstruction (UUO) model of renal fibrosis and determined whether bi-therapy presented higher efficacy than any of the drugs alone. Results: B1R antagonism was as efficient as the gold-standard AT1a treatment. However, bitherapy did not improve the antifibrotic effects at the protein level. We sought for the reason of the absence of this additive effect by studying the expression of a panel of genes involved in the fibrotic process. Interestingly, at the molecular level the different drugs targeted different players of fibrosis that, however, in this severe model did not result in improved reduction of fibrosis at the protein level. Conclusions: As the B1R is induced specifically in the diseased organ and thus potentially displays low side effects it might be an interesting alternative in cases of poor tolerability to RAS inhibitors. PMID:25698969

  2. Heteromerization of the μ- and δ-opioid receptors produces ligand-biased antagonism and alters μ-receptor trafficking.

    PubMed

    Milan-Lobo, Laura; Whistler, Jennifer L

    2011-06-01

    Heteromerization of opioid receptors has been shown to alter opioid receptor pharmacology. However, how receptor heteromerization affects the processes of endocytosis and postendocytic sorting has not been closely examined. This question is of particular relevance for heteromers of the μ-opioid receptor (MOR) and δ-opioid receptor (DOR), because the MOR is recycled primarily after endocytosis and the DOR is degraded in the lysosome. Here, we examined the endocytic and postendocytic fate of MORs, DORs, and DOR/MOR heteromers in human embryonic kidney 293 cells stably expressing each receptor alone or coexpressing both receptors. We found that the clinically relevant MOR agonist methadone promotes endocytosis of MOR but also the DOR/MOR heteromer. Furthermore, we show that DOR/MOR heteromers that are endocytosed in response to methadone are targeted for degradation, whereas MORs in the same cell are significantly more stable. It is noteworthy that we found that the DOR-selective antagonist naltriben mesylate could block both methadone- and [D-Ala2,NMe-Phe4,Gly-ol5]-enkephalin-induced endocytosis of the DOR/MOR heteromers but did not block signaling from this heteromer. Together, our results suggest that the MOR adopts novel trafficking properties in the context of the DOR/MOR heteromer. In addition, they suggest that the heteromer shows "biased antagonism," whereby DOR antagonist can inhibit trafficking but not signaling of the DOR/MOR heteromer.

  3. Frondoside A inhibits breast cancer metastasis and antagonizes prostaglandin E receptors EP4 and EP2

    PubMed Central

    Ma, Xinrong; Kundu, Namita; Collin, Peter D; Goloubeva, Olga; Fulton, Amy

    2013-01-01

    Frondoside A, derived from the sea cucumber Cucumaria frondosa has demonstrable anticancer activity in several models, however, the ability of Frondoside A to affect tumor metastasis has not been reported. Using a syngeneic murine model of metastatic breast cancer, we now show that Frondoside A has potent antimetastatic activity. Frondoside A given i.p. to mice bearing mammary gland implanted mammary tumors, inhibits spontaneous tumor metastasis to the lungs. The elevated Cyclooxygenase -2 activity in many malignancies promotes tumor growth and metastasis by producing high levels of PGE2 which acts on the prostaglandin E receptors, chiefly EP4 and EP2. We examined the ability of Frondoside A to modulate the functions of these EP receptors. We now show that Frondoside A antagonizes the prostaglandin E receptors EP2 and EP4. 3H-PGE2 binding to recombinant EP2 or EP4-expressing cells was inhibited by Frondoside A at low μM concentrations. Likewise, EP4 or EP2-linked activation of intracellular cAMP as well as EP4-mediated ERK1/2 activation were also inhibited by Frondoside A. Consistent with the antimetastatic activity observed in vivo, migration of tumor cells in vitro in response to EP4 or EP2 agonists was also inhibited by Frondoside A. These studies identify a new function for an agent with known antitumor activity, and show that the antimetastatic activity may be due in part to a novel mechanism of action. These studies add to the growing body of evidence that Frondoside A may be a promising new agent with potential to treat cancer and may also represent a potential new modality to antagonize EP4. PMID:21761157

  4. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer.

    PubMed

    Singhal, Hari; Greene, Marianne E; Tarulli, Gerard; Zarnke, Allison L; Bourgo, Ryan J; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G; Raj, Ganesh V; Hickey, Theresa E; Tilley, Wayne D; Greene, Geoffrey L

    2016-06-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER(+) (estrogen receptor-positive)/PR(+) human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER(+)/PR(+) breast cancers should be explored. PMID:27386569

  5. Transmembrane AMPA receptor regulatory protein regulation of competitive antagonism: a problem of interpretation.

    PubMed

    Maclean, David M; Bowie, Derek

    2011-11-15

    Synaptic AMPA receptors are greatly influenced by a family of transmembrane AMPA receptor regulatory proteins (TARPs) which control trafficking, channel gating and pharmacology. The prototypical TARP, stargazin (or γ2), shifts the blocking ability of several AMPAR-selective compounds including the commonly used quinoxalinedione antagonists, CNQX and NBQX. Stargazin's effect on CNQX is particularly intriguing as it not only apparently lowers the potency of block, as with NBQX, but also renders it a partial agonist. Given this, agonist behaviour by CNQX has been speculated to account for its weaker blocking effect on AMPAR-TARP complexes. Here we show that this is not the case. The apparent effect of stargazin on CNQX antagonism can be almost entirely explained by an increase in the apparent affinity for l-glutamate (l-Glu), a full agonist and neurotransmitter at AMPAR synapses. Partial agonism at best plays a minor role but not through channel gating per se but rather because CNQX elicits AMPAR desensitization. Our study reveals that CNQX is best thought of as a non-competitive antagonist at glutamatergic synapses due to the predominance of non-equilibrium conditions. Consequently, CNQX primarily reports the proportion of AMPARs available for activation but may also impose additional block by receptor desensitization.

  6. Antagonism of the thromboxane-prostanoid receptor is cardioprotective against right ventricular pressure overload.

    PubMed

    West, James D; Voss, Bryan M; Pavliv, Leo; de Caestecker, Mark; Hemnes, Anna R; Carrier, Erica J

    2016-06-01

    Right ventricular (RV) failure is the primary cause of death in pulmonary arterial hypertension (PAH) and is a significant cause of morbidity and mortality in other forms of pulmonary hypertension. There are no approved therapies directed at preserving RV function. F-series and E-series isoprostanes are increased in heart failure and PAH, correlate to the severity of disease, and can signal through the thromboxane-prostanoid (TP) receptor, with effects from vasoconstriction to fibrosis. The goal of these studies was to determine whether blockade of the TP receptor with the antagonist CPI211 was beneficial therapeutically in PAH-induced RV dysfunction. Mice with RV dysfunction due to pressure overload by pulmonary artery banding (PAB) were given vehicle or CPI211. Two weeks after PAB, CPI211-treated mice were protected from fibrosis with pressure overload. Gene expression arrays and immunoblotting, quantitative histology and morphometry, and flow cytometric analysis were used to determine the mechanism of CPI211 protection. TP receptor inhibition caused a near normalization of fibrotic area, prevented cellular hypertrophy while allowing increased RV mass, increased expression of antifibrotic thrombospondin-4, and blocked induction of the profibrotic transforming growth factor β (TGF-β) pathway. A thromboxane synthase inhibitor or low-dose aspirin failed to replicate these results, which suggests that a ligand other than thromboxane mediates fibrosis through the TP receptor after pressure overload. This study suggests that TP receptor antagonism may improve RV adaptation in situations of pressure overload by decreasing fibrosis and TGF-β signaling. PMID:27252848

  7. Antagonism of the thromboxane-prostanoid receptor is cardioprotective against right ventricular pressure overload

    PubMed Central

    Voss, Bryan M.; Pavliv, Leo; de Caestecker, Mark; Hemnes, Anna R.; Carrier, Erica J.

    2016-01-01

    Abstract Right ventricular (RV) failure is the primary cause of death in pulmonary arterial hypertension (PAH) and is a significant cause of morbidity and mortality in other forms of pulmonary hypertension. There are no approved therapies directed at preserving RV function. F-series and E-series isoprostanes are increased in heart failure and PAH, correlate to the severity of disease, and can signal through the thromboxane-prostanoid (TP) receptor, with effects from vasoconstriction to fibrosis. The goal of these studies was to determine whether blockade of the TP receptor with the antagonist CPI211 was beneficial therapeutically in PAH-induced RV dysfunction. Mice with RV dysfunction due to pressure overload by pulmonary artery banding (PAB) were given vehicle or CPI211. Two weeks after PAB, CPI211-treated mice were protected from fibrosis with pressure overload. Gene expression arrays and immunoblotting, quantitative histology and morphometry, and flow cytometric analysis were used to determine the mechanism of CPI211 protection. TP receptor inhibition caused a near normalization of fibrotic area, prevented cellular hypertrophy while allowing increased RV mass, increased expression of antifibrotic thrombospondin-4, and blocked induction of the profibrotic transforming growth factor β (TGF-β) pathway. A thromboxane synthase inhibitor or low-dose aspirin failed to replicate these results, which suggests that a ligand other than thromboxane mediates fibrosis through the TP receptor after pressure overload. This study suggests that TP receptor antagonism may improve RV adaptation in situations of pressure overload by decreasing fibrosis and TGF-β signaling. PMID:27252848

  8. Histamine receptors on adult rat cardiomyocytes: antagonism of alpha/sub 1/-receptor stimulation of cAMP degradation

    SciTech Connect

    Buxton, I.L.O.; Bowen, S.M.

    1986-03-01

    Incubation of intact cardiomyocytes with the histamine antagonist (/sup 3/H)mepyramine results in rapid reversible binding to a single class of high affinity sites (K/sub D/ = 1.2nM; 50,000 sites/myocyte). In membranes from purified myocytes histamine competition of (/sup 3/H)mepyramine binding (K/sub D/ = 300nM) is not altered by GTP (10..mu..M). Competition of (/sup 3/H)mepyramine binding by H-receptor subtype-selective antagonists suggests the presence of a single class of H/sub 1/-receptors. Incubation of intact myocytes with histamine (luM, H/sub 1/ receptor activation) plus norepinephrine (NE 1uM, alpha/sub 1/ + beta/sub 1/ receptor activation) for 3 min leads to significantly more cAMP accumulation (36.5 pmol/10/sup 6/ myocytes) than NE alone (30 pmol/10/sup 6/ myocytes). Histamine alone does not alter basal cAMP = 10.4 pmol/10/sup 6/ myocytes, or beta/sub 1/ stimulation (isoproternol, 1uM) = 39.6 pmol/10/sup 6/ myocytes. Cyclic AMP accumulation with NE plus prazosin 10nM, (alpha/sub 1/ + beta/sub 1/ + alpha/sub 1/ blockade) is indistinguishable from NE + histamine, (alpha/sub 1/ + beta/sub 1/ + H/sub 1/) stimulation. Histamine competition for (/sup 3/H)prazosin binding suggests that histamine does not block alpha/sub 1/ receptors on the myocyte. These data suggest that H/sub 1/ receptor activation leads to antagonism of the alpha/sub 1/ receptor mediated activation of cAMP phosphodiesterase the authors have recently described.

  9. Antagonism of lateral saphenous vein serotonin receptors from steers grazing endophyte-free, wild-type, or novel endophyte-infected tall fescue.

    PubMed

    Klotz, J L; Aiken, G E; Johnson, J M; Brown, K R; Bush, L P; Strickland, J R

    2013-09-01

    Pharmacologic profiling of serotonin (5HT) receptors of bovine lateral saphenous vein has shown that cattle grazing endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have altered responses to ergovaline, 5HT, 5HT2A, and 5HT7 agonists. To determine if 5HT receptor activity of tall fescue alkaloids is affected by grazing endophyte-free (EF), wild-type [Kentucky-31 (KY31)], novel endophyte AR542-infected (MAXQ), or novel endophyte AR584-infected (AR584) tall fescue, contractile responses of lateral saphenous veins biopsied from cattle grazing these different fescue-endophyte combinations were evaluated in presence or absence of antagonists for 5HT2A (ketanserin) or 5HT7 (SB-269970) receptors. Biopsies were conducted over 2 yr on 35 mixed-breed steers (361.5 ± 6.3 kg) grazing EF (n = 12), KY31 (n = 12), MAXQ (n = 6), or AR584 (n = 5) pasture treatments (3 ha) between 84 and 98 d (Yr 1) or 108 to 124 d (Yr 2). Segments (2 to 3 cm) of vein were surgically biopsied, sliced into 2- to 3-mm cross-sections, and suspended in a myograph chamber containing 5 mL of oxygenated Krebs-Henseleit buffer (95% O2/5% CO2; pH = 7.4; 37°C). Veins were exposed to increasing concentrations of 5HT, ergovaline, and ergovaline + 1 × 10(-5) M ketanserin or + 1 × 10(-6) M SB-269970 in Yr 1. In Yr 2, ergotamine and ergocornine were evaluated in presence or absence of 1 × 10(-5) M ketanserin. Contractile response data were normalized to a reference addition of 1 × 10(-4) M norepinephrine. In Yr 1, contractile response to 5HT and ergovaline were least (P < 0.05) in KY31 pastures and the presence of ketanserin greatly reduced (P < 0.05) the response to ergovaline in all pastures. However, presence of SB-269970 did not (P = 0.91) alter contractile response to ergovaline. In Yr 2, there was no difference in contractile response to ergotamine (P = 0.13) or ergocornine (P = 0.99) across pasture treatments, but ketanserin reduced (P < 0.05) the contractile response to

  10. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer

    PubMed Central

    Singhal, Hari; Greene, Marianne E.; Tarulli, Gerard; Zarnke, Allison L.; Bourgo, Ryan J.; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G.; Raj, Ganesh V.; Hickey, Theresa E.; Tilley, Wayne D.; Greene, Geoffrey L.

    2016-01-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER+ (estrogen receptor–positive)/PR+ human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER+/PR+ breast cancers should be explored. PMID:27386569

  11. A type III effector antagonizes death receptor signalling during bacterial gut infection.

    PubMed

    Pearson, Jaclyn S; Giogha, Cristina; Ong, Sze Ying; Kennedy, Catherine L; Kelly, Michelle; Robinson, Keith S; Lung, Tania Wong Fok; Mansell, Ashley; Riedmaier, Patrice; Oates, Clare V L; Zaid, Ali; Mühlen, Sabrina; Crepin, Valerie F; Marches, Olivier; Ang, Ching-Seng; Williamson, Nicholas A; O'Reilly, Lorraine A; Bankovacki, Aleksandra; Nachbur, Ueli; Infusini, Giuseppe; Webb, Andrew I; Silke, John; Strasser, Andreas; Frankel, Gad; Hartland, Elizabeth L

    2013-09-12

    Successful infection by enteric bacterial pathogens depends on the ability of the bacteria to colonize the gut, replicate in host tissues and disseminate to other hosts. Pathogens such as Salmonella, Shigella and enteropathogenic and enterohaemorrhagic (EPEC and EHEC, respectively) Escherichia coli use a type III secretion system (T3SS) to deliver virulence effector proteins into host cells during infection that promote colonization and interfere with antimicrobial host responses. Here we report that the T3SS effector NleB1 from EPEC binds to host cell death-domain-containing proteins and thereby inhibits death receptor signalling. Protein interaction studies identified FADD, TRADD and RIPK1 as binding partners of NleB1. NleB1 expressed ectopically or injected by the bacterial T3SS prevented Fas ligand or TNF-induced formation of the canonical death-inducing signalling complex (DISC) and proteolytic activation of caspase-8, an essential step in death-receptor-induced apoptosis. This inhibition depended on the N-acetylglucosamine transferase activity of NleB1, which specifically modified Arg 117 in the death domain of FADD. The importance of the death receptor apoptotic pathway to host defence was demonstrated using mice deficient in the FAS signalling pathway, which showed delayed clearance of the EPEC-like mouse pathogen Citrobacter rodentium and reversion to virulence of an nleB mutant. The activity of NleB suggests that EPEC and other attaching and effacing pathogens antagonize death-receptor-induced apoptosis of infected cells, thereby blocking a major antimicrobial host response.

  12. Antagonism of the prostaglandin E receptor EP4 inhibits metastasis and enhances NK function.

    PubMed

    Kundu, Namita; Ma, Xinrong; Holt, Dawn; Goloubeva, Olga; Ostrand-Rosenberg, Suzanne; Fulton, Amy M

    2009-09-01

    Cyclooxygenase-2 (COX-2) is associated with aggressive breast cancers. The COX-2 product prostaglandin E(2) (PGE(2)) acts through four G-protein-coupled receptors designated EP1-4. Malignant and immortalized normal mammary epithelial cell lines express all four EP. The EP4 antagonist AH23848 reduced the ability of tumor cells to colonize the lungs or to spontaneously metastasize from the mammary gland. EP4 gene silencing by shRNA also reduced the ability of mammary tumor cells to metastasize. Metastasis inhibition was lost in mice lacking either functional Natural Killer (NK) cells or interferon-gamma. EP4 antagonism inhibited MHC class I expression resulting in enhanced ability of NK cells to lyse mammary tumor target cells. These studies support the hypothesis that EP4 receptor antagonists reduce metastatic potential by facilitating NK-mediated tumor cell killing and that therapeutic targeting of EP4 may be an alternative approach to the use of COX inhibitors to limit metastatic disease.

  13. Hypocretin receptor 2 antagonism dose-dependently reduces escalated heroin self-administration in rats.

    PubMed

    Schmeichel, Brooke E; Barbier, Estelle; Misra, Kaushik K; Contet, Candice; Schlosburg, Joel E; Grigoriadis, Dimitri; Williams, John P; Karlsson, Camilla; Pitcairn, Caleb; Heilig, Markus; Koob, George F; Vendruscolo, Leandro F

    2015-03-13

    The hypocretin/orexin (HCRT) system has been associated with both positive and negative drug reinforcement, implicating HCRT receptor 1 (HCRT-R1) signaling in drug-related behaviors for all major drug classes, including opioids. However, to date there are limited studies investigating the role of HCRT receptor 2 (HCRT-R2) signaling in compulsive-like drug seeking. Escalation of drug intake with extended access has been suggested to model the transition from controlled drug use to compulsive-like drug seeking/taking. The current study examined the effects of a HCRT-R2 antagonist, NBI-80713, on heroin self-administration in rats allowed short- (1 h; ShA) or long- (12 h; LgA) access to intravenous heroin self-administration. Results indicate that systemically administered NBI-80713 dose-dependently decreased heroin self-administration in LgA, but not in ShA, animals. Quantitative PCR analyses showed an increase in Hcrtr2 mRNA levels in the central amygdala, a stress-related brain region, of LgA rats. These observations suggest a functional role for HCRT-R2 signaling in compulsive-like heroin self-administration associated with extended access and indicate HCRT-R2 antagonism as a potential pharmacological target for the treatment of heroin dependence.

  14. Novel opioid cyclic tetrapeptides: Trp isomers of CJ-15,208 exhibit distinct opioid receptor agonism and short-acting κ opioid receptor antagonism

    PubMed Central

    Ross, Nicolette C; Reilley, Kate J; Murray, Thomas F; Aldrich, Jane V; McLaughlin, Jay P

    2012-01-01

    BACKGROUND AND PURPOSE The κ opioid receptor antagonists demonstrate potential for maintaining abstinence from psychostimulant abuse, but existing non-peptide κ-receptor selective antagonists show exceptionally long activity. We hypothesized that the L- and D-Trp isomers of CJ-15,208, a natural cyclic tetrapeptide reported to be a κ-receptor antagonist in vitro, would demonstrate short-acting, dose-dependent antagonism in vivo, preventing reinstatement of cocaine-seeking behaviour. EXPERIMENTAL APPROACH Affinity, selectivity and efficacy of the L-Trp and D-Trp isomers for opioid receptors were assessed in vitro in radioligand and GTPγS binding assays. Opioid receptor agonist and antagonist activities were characterized in vivo following i.c.v. administration with the 55°C warm water tail-withdrawal assay. The D-Trp isomer, which demonstrated primarily κ-receptor selective antagonist activity, was further evaluated for its prevention of stress- and drug-induced reinstatement of extinguished cocaine conditioned place preference (CPP). KEY RESULTS The two isomers showed similar affinity and selectivity for κ receptors (Ki 30–35 nM) as well as κ receptor antagonism in vitro. As expected, the D-Trp cyclic tetrapeptide exhibited minimal agonist activity and induced dose-dependent κ-receptor selective antagonism lasting less than 18 h in vivo. Pretreatment with this peptide prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine CPP. In contrast, the L-Trp cyclic tetrapeptide unexpectedly demonstrated mixed opioid agonist/antagonist activity. CONCLUSIONS AND IMPLICATIONS The L-Trp and the D-Trp isomers of CJ-15,208 demonstrate stereospecific opioid activity in vivo. The relatively brief κ opioid receptor antagonism, coupled with the prevention of stress-induced reinstatement of extinguished cocaine-seeking behaviour, suggests the D-Trp isomer could be used therapeutically to maintain abstinence from psychostimulant abuse. PMID

  15. Continuous adenosine A2A receptor antagonism after focal cerebral ischemia in spontaneously hypertensive rats.

    PubMed

    Fronz, Ulrike; Deten, Alexander; Baumann, Frank; Kranz, Alexander; Weidlich, Sarah; Härtig, Wolfgang; Nieber, Karen; Boltze, Johannes; Wagner, Daniel-Christoph

    2014-02-01

    Antagonism of the adenosine A2A receptor (A2AR) has been shown to elicit substantial neuroprotective properties when given immediately after cerebral ischemia. We asked whether the continuous application of a selective A2AR antagonist within a clinically relevant time window will be a feasible and effective approach to treat focal cerebral ischemia. To answer this question, we subjected 20 male spontaneously hypertensive rats to permanent middle cerebral artery occlusion and randomized them equally to a verum and a control group. Two hours after stroke onset, the animals received a subcutaneous implantation of an osmotic minipump filled with 5 mg kg(-1) day(-1) 8-(3-chlorostyryl) caffeine (CSC) or vehicle solution. The serum level of CSC was measured twice a day for three consecutive days. The infarct volume was determined at days 1 and 3 using magnetic resonance imaging. We found the serum level of CSC showing a bell-shaped curve with its maximum at 36 h. The infarct volume was not affected by continuous CSC treatment. These results suggest that delayed and continuous CSC application was not sufficient to treat acute ischemic stroke, potentially due to unfavorable hepatic elimination and metabolization of the pharmaceutical. PMID:24170241

  16. Aldosterone receptor antagonism normalizes vascular function in liquorice-induced hypertension.

    PubMed

    Quaschning, T; Ruschitzka, F; Shaw, S; Lüscher, T F

    2001-02-01

    aldosterone receptor antagonism normalizes blood pressure, prevents upregulation of vascular ET-1, restores NO-mediated endothelial dysfunction, and thus, may advance as a novel and specific therapeutic approach in 11beta-HSD2-deficient hypertension.

  17. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice

    PubMed Central

    Roundtree, Harrison M.; Simeone, Timothy A.; Johnson, Chaz; Matthews, Stephanie A.; Samson, Kaeli K.; Simeone, Kristina A.

    2016-01-01

    other epilepsy models. Citation: Roundtree HM, Simeone TA, Johnson C, Matthews SA, Samson KK, Simeone KA. Orexin receptor antagonism improves sleep and reduces seizures in Kcna1-null mice. SLEEP 2016;39(2):357–368. PMID:26446112

  18. Trace amines inhibit insect odorant receptor function through antagonism of the co-receptor subunit

    PubMed Central

    Chen, Sisi; Luetje, Charles W.

    2014-01-01

    Many insect behaviors are driven by olfaction, making insect olfactory receptors (ORs) appealing targets for insect control.  Insect ORs are odorant-gated ion channels, with each receptor thought to be composed of a representative from a large, variable family of odorant binding subunits and a highly conserved co-receptor subunit (Orco), assembled in an unknown stoichiometry.  Synthetic Orco directed agonists and antagonists have recently been identified.  Several Orco antagonists have been shown to act via an allosteric mechanism to inhibit OR activation by odorants.  The high degree of conservation of Orco across insect species results in Orco antagonists having broad activity at ORs from a variety of insect species and suggests that the binding site for Orco ligands may serve as a modulatory site for compounds endogenous to insects or may be a target of exogenous compounds, such as those produced by plants.  To test this idea, we screened a series of biogenic and trace amines, identifying several as Orco antagonists.  Of particular interest were tryptamine, a plant-produced amine, and tyramine, an amine endogenous to the insect nervous system.  Tryptamine was found to be a potent antagonist of Orco, able to block Orco activation by an Orco agonist and to allosterically inhibit activation of ORs by odorants.  Tyramine had effects similar to those of tryptamine, but was less potent.  Importantly, both tryptamine and tyramine displayed broad activity, inhibiting odorant activation of ORs of species from three different insect orders (Diptera, Lepidoptera and Coleoptera), as well as odorant activation of six diverse ORs from a single species (the human malaria vector mosquito, Anopheles gambiae).  Our results suggest that endogenous and exogenous natural compounds serve as Orco ligands modulating insect olfaction and that Orco can be an important target for the development of novel insect repellants. PMID:25075297

  19. Agonism, Antagonism, and Inverse Agonism Bias at the Ghrelin Receptor Signaling.

    PubMed

    M'Kadmi, Céline; Leyris, Jean-Philippe; Onfroy, Lauriane; Galés, Céline; Saulière, Aude; Gagne, Didier; Damian, Marjorie; Mary, Sophie; Maingot, Mathieu; Denoyelle, Séverine; Verdié, Pascal; Fehrentz, Jean-Alain; Martinez, Jean; Banères, Jean-Louis; Marie, Jacky

    2015-11-01

    The G protein-coupled receptor GHS-R1a mediates ghrelin-induced growth hormone secretion, food intake, and reward-seeking behaviors. GHS-R1a signals through Gq, Gi/o, G13, and arrestin. Biasing GHS-R1a signaling with specific ligands may lead to the development of more selective drugs to treat obesity or addiction with minimal side effects. To delineate ligand selectivity at GHS-R1a signaling, we analyzed in detail the efficacy of a panel of synthetic ligands activating the different pathways associated with GHS-R1a in HEK293T cells. Besides β-arrestin2 recruitment and ERK1/2 phosphorylation, we monitored activation of a large panel of G protein subtypes using a bioluminescence resonance energy transfer-based assay with G protein-activation biosensors. We first found that unlike full agonists, Gq partial agonists were unable to trigger β-arrestin2 recruitment and ERK1/2 phosphorylation. Using G protein-activation biosensors, we then demonstrated that ghrelin promoted activation of Gq, Gi1, Gi2, Gi3, Goa, Gob, and G13 but not Gs and G12. Besides, we identified some GHS-R1a ligands that preferentially activated Gq and antagonized ghrelin-mediated Gi/Go activation. Finally, we unambiguously demonstrated that in addition to Gq, GHS-R1a also promoted constitutive activation of G13. Importantly, we identified some ligands that were selective inverse agonists toward Gq but not of G13. This demonstrates that bias at GHS-R1a signaling can occur not only with regard to agonism but also to inverse agonism. Our data, combined with other in vivo studies, may facilitate the design of drugs selectively targeting individual signaling pathways to treat only the therapeutically relevant function.

  20. Farnesoid X Receptor Antagonizes JNK Signaling Pathway in Liver Carcinogenesis by Activating SOD3

    PubMed Central

    Li, Cunbao; Guo, Cong; Li, Yanyan; Qi, Hui; Shen, Hailing; Kong, Jing; Long, Xuecheng; Yuan, Frank; Wang, Xichun

    2015-01-01

    The farnesoid X receptor (FXR) is a key metabolic and homeostatic regulator in the liver. In the present work, we identify a novel role of FXR in antagonizing c-Jun N-terminal kinase (JNK) signaling pathway in liver carcinogenesis by activating superoxide dismutase 3 (SOD3) transcription. Compared with wild-type mouse liver, FXR−/− mouse liver showed elevated JNK phosphorylation. JNK1 deletion suppressed the increase of diethylnitrosamine-induced tumor number in FXR−/− mice. These results suggest that JNK1 plays a key role in chemical-induced liver carcinogenesis in FXR−/− mice. We found that ligand-activated FXR was able to alleviate H2O2 or tetradecanoylphorbol acetate-induced JNK phosphorylation in human hepatoblastoma (HepG2) cells or mouse primary hepatocytes. FXR ligand decreased H2O2-induced reactive oxygen species (ROS) levels in wild-type but not FXR−/− mouse hepatocytes. FXR knockdown abolished the inhibition of 3-[2-[2-chloro-4-[[3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]-Benzoic acid (GW4064) on JNK phosphorylation and ROS production induced by H2O2 in HepG2 cells. The gene expression of SOD3, an antioxidant defense enzyme, was increased by FXR activation in vitro and in vivo. An FXR-responsive element, inverted repeat separated by 1 nucleotide in SOD3 promoter, was identified by a combination of transcriptional reporter assays, EMSAs, and chromatin immunoprecipitation assays, which indicated that SOD3 could be a direct FXR target gene. SOD3 knockdown abolished the inhibition of GW4064 on JNK phosphorylation induced by H2O2 in HepG2 cells. In summary, FXR may regulate SOD3 expression to suppress ROS production, resulting in decreasing JNK activity. These results suggest that FXR, as a novel JNK suppressor, may be an attractive therapeutic target for liver cancer treatment. PMID:25496033

  1. Farnesoid X receptor antagonizes JNK signaling pathway in liver carcinogenesis by activating SOD3.

    PubMed

    Wang, Yan-Dong; Chen, Wei-Dong; Li, Cunbao; Guo, Cong; Li, Yanyan; Qi, Hui; Shen, Hailing; Kong, Jing; Long, Xuecheng; Yuan, Frank; Wang, Xichun; Huang, Wendong

    2015-02-01

    The farnesoid X receptor (FXR) is a key metabolic and homeostatic regulator in the liver. In the present work, we identify a novel role of FXR in antagonizing c-Jun N-terminal kinase (JNK) signaling pathway in liver carcinogenesis by activating superoxide dismutase 3 (SOD3) transcription. Compared with wild-type mouse liver, FXR(-/-) mouse liver showed elevated JNK phosphorylation. JNK1 deletion suppressed the increase of diethylnitrosamine-induced tumor number in FXR(-/-) mice. These results suggest that JNK1 plays a key role in chemical-induced liver carcinogenesis in FXR(-/-) mice. We found that ligand-activated FXR was able to alleviate H₂O₂or tetradecanoylphorbol acetate-induced JNK phosphorylation in human hepatoblastoma (HepG2) cells or mouse primary hepatocytes. FXR ligand decreased H₂O₂-induced reactive oxygen species (ROS) levels in wild-type but not FXR(-/-) mouse hepatocytes. FXR knockdown abolished the inhibition of 3-[2-[2-chloro-4-[[3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]-Benzoic acid (GW4064) on JNK phosphorylation and ROS production induced by H₂O₂in HepG2 cells. The gene expression of SOD3, an antioxidant defense enzyme, was increased by FXR activation in vitro and in vivo. An FXR-responsive element, inverted repeat separated by 1 nucleotide in SOD3 promoter, was identified by a combination of transcriptional reporter assays, EMSAs, and chromatin immunoprecipitation assays, which indicated that SOD3 could be a direct FXR target gene. SOD3 knockdown abolished the inhibition of GW4064 on JNK phosphorylation induced by H₂O₂in HepG2 cells. In summary, FXR may regulate SOD3 expression to suppress ROS production, resulting in decreasing JNK activity. These results suggest that FXR, as a novel JNK suppressor, may be an attractive therapeutic target for liver cancer treatment.

  2. New functional activity of aripiprazole revealed: Robust antagonism of D2 dopamine receptor-stimulated Gβγ signaling.

    PubMed

    Brust, Tarsis F; Hayes, Michael P; Roman, David L; Watts, Val J

    2015-01-01

    The dopamine D2 receptor (DRD2) is a G protein-coupled receptor (GPCR) that is generally considered to be a primary target in the treatment of schizophrenia. First generation antipsychotic drugs (e.g. haloperidol) are antagonists of the DRD2, while second generation antipsychotic drugs (e.g. olanzapine) antagonize DRD2 and 5HT2A receptors. Notably, both these classes of drugs may cause side effects associated with D2 receptor antagonism (e.g. hyperprolactemia and extrapyramidal symptoms). The novel, "third generation" antipsychotic drug, aripiprazole is also used to treat schizophrenia, with the remarkable advantage that its tendency to cause extrapyramidal symptoms is minimal. Aripiprazole is considered a partial agonist of the DRD2, but it also has partial agonist/antagonist activity for other GPCRs. Further, aripiprazole has been reported to have a unique activity profile in functional assays with the DRD2. In the present study the molecular pharmacology of aripiprazole was further examined in HEK cell models stably expressing the DRD2 and specific isoforms of adenylyl cyclase to assess functional responses of Gα and Gβγ subunits. Additional studies examined the activity of aripiprazole in DRD2-mediated heterologous sensitization of adenylyl cyclase and cell-based dynamic mass redistribution (DMR). Aripiprazole displayed a unique functional profile for modulation of G proteins, being a partial agonist for Gαi/o and a robust antagonist for Gβγ signaling. Additionally, aripiprazole was a weak partial agonist for both heterologous sensitization and dynamic mass redistribution.

  3. Evaluation of structural effects on 5-HT2A receptor antagonism by aporphines: identification of a new aporphine with 5-HT2A antagonist activity

    PubMed Central

    Ponnala, Shashikanth; Gonzales, Junior; Kapadia, Nirav; Navarro, Hernan A.; Harding, Wayne W.

    2014-01-01

    A set of aporphine analogs related to nantenine was evaluated for antagonist activity at 5-HT2A and α1A adrenergic receptors. With regards to 5-HT2A receptor antagonism, a C2 allyl group is detrimental to activity. The chiral center of nantenine is not important for 5-HT2A antagonist activity, however the N6 nitrogen atom is a critical feature for 5-HT2A antagonism. Compound 12b was the most potent 5-HT2A aporphine antagonist identified in this study and has similar potency to previously identified aporphine antagonists 2 and 3. The ring A and N6 modifications examined were detrimental to α1A antagonism. A slight eutomeric preference for the R enantiomer of nantenine was observed in relation to α1A antagonism. PMID:24630561

  4. Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat.

    PubMed

    Dugovic, Christine; Shelton, Jonathan E; Aluisio, Leah E; Fraser, Ian C; Jiang, Xiaohui; Sutton, Steven W; Bonaventure, Pascal; Yun, Sujin; Li, Xiaorong; Lord, Brian; Dvorak, Curt A; Carruthers, Nicholas I; Lovenberg, Timothy W

    2009-07-01

    Orexins are peptides produced by lateral hypothalamic neurons that exert a prominent role in the maintenance of wakefulness by activating orexin-1 (OX1R) and orexin-2 (OX2R) receptor located in wake-active structures. Pharmacological blockade of both receptors by the dual OX1/2R antagonist (2R)-2-[(1S)-6,7-dimethoxy-1-{2-[4-(trifluoromethyl)phenyl]ethyl}-3,4-dihydroisoquinolin-2(1H)-yl]-N-methyl-2-phenylethanamide (almorexant) has been shown to promote sleep in animals and humans during their active period. However, the selective distribution of OX1R and OX2R in distinct neuronal circuits may result in a differential impact of these receptors in sleep-wake modulation. The respective role of OX1R and OX2R on sleep in correlation with monoamine release was evaluated in rats treated with selective antagonists alone or in combination. When administered in either phase of the light/dark cycle, the OX2R antagonist 1-(2,4-dibromophenyl)-3-[(4S,5S)-2,2-dimethyl-4-phenyl-1,3-dioxan-5-yl]urea (JNJ-10397049) decreased the latency for persistent sleep and increased nonrapid eye movement and rapid eye movement sleep time. Almorexant produced less hypnotic activity, whereas the OX1R antagonist 1-(6,8-difluoro-2-methylquinolin-4-yl)-3-[4-(dimethylamino)phenyl]urea (SB-408124) had no effect. Microdialysis studies showed that either OX2R or OX1/2R antagonism decreased extracellular histamine concentration in the lateral hypothalamus, whereas both OX1R and OX1/2R antagonists increased dopamine release in the prefrontal cortex. Finally, coadministration of the OX1R with the OX2R antagonist greatly attenuated the sleep-promoting effects of the OX2R antagonist. These results indicate that blockade of OX2R is sufficient to initiate and prolong sleep, consistent with the hypothesis of a deactivation of the histaminergic system. In addition, it is suggested that simultaneous inhibition of OX1R attenuates the sleep-promoting effects mediated by selective OX2R blockade, possibly correlated

  5. Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine

    PubMed Central

    Virsolvy, Anne; Farah, Charlotte; Pertuit, Nolwenn; Kong, Lingyan; Lacampagne, Alain; Reboul, Cyril; Aimond, Franck; Richard, Sylvain

    2015-01-01

    Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na+ current (INa), and is known to reduce the Na+-dependent Ca2+ overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways. As voltage-gated Na+ channels (Nav) present in arteries play a role in contraction, we hypothesized that ranolazine could target these channels. We studied the effects of ranolazine in vitro on cultured aortic smooth muscle cells (SMC) and ex vivo on rat aortas in conditions known to specifically activate or promote INa. We observed that in the presence of the Nav channel agonist veratridine, ranolazine inhibited INa and intracellular Ca2+ calcium increase in SMC, and arterial vasoconstriction. In arterial SMC, ranolazine inhibited the activity of tetrodotoxin-sensitive voltage-gated Nav channels and thus antagonized contraction promoted by low KCl depolarization. Furthermore, the vasorelaxant effects of ranolazine, also observed in human arteries and independent of the endothelium, involved antagonization of the α1-adrenergic receptor. Combined α1-adrenergic antagonization and inhibition of SMCs Nav channels could be involved in the vascular effects of ranolazine. PMID:26655634

  6. Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine.

    PubMed

    Virsolvy, Anne; Farah, Charlotte; Pertuit, Nolwenn; Kong, Lingyan; Lacampagne, Alain; Reboul, Cyril; Aimond, Franck; Richard, Sylvain

    2015-01-01

    Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na(+) current (INa), and is known to reduce the Na(+)-dependent Ca(2+) overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways. As voltage-gated Na(+) channels (Nav) present in arteries play a role in contraction, we hypothesized that ranolazine could target these channels. We studied the effects of ranolazine in vitro on cultured aortic smooth muscle cells (SMC) and ex vivo on rat aortas in conditions known to specifically activate or promote INa. We observed that in the presence of the Nav channel agonist veratridine, ranolazine inhibited INa and intracellular Ca(2+) calcium increase in SMC, and arterial vasoconstriction. In arterial SMC, ranolazine inhibited the activity of tetrodotoxin-sensitive voltage-gated Nav channels and thus antagonized contraction promoted by low KCl depolarization. Furthermore, the vasorelaxant effects of ranolazine, also observed in human arteries and independent of the endothelium, involved antagonization of the α1-adrenergic receptor. Combined α1-adrenergic antagonization and inhibition of SMCs Nav channels could be involved in the vascular effects of ranolazine. PMID:26655634

  7. Antagonism of ligand-gated ion channel receptors: two domains of the glycine receptor alpha subunit form the strychnine-binding site.

    PubMed Central

    Vandenberg, R J; French, C R; Barry, P H; Shine, J; Schofield, P R

    1992-01-01

    The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. Glycine activation of the receptor is antagonized by the convulsant alkaloid strychnine. Using in vitro mutagenesis and functional analysis of the cDNA encoding the alpha 1 subunit of the human GlyR, we have identified several amino acid residues that form the strychnine-binding site. These residues were identified by transient expression of mutated cDNAs in mammalian (293) cells and examination of resultant [3H]strychnine binding, glycine displacement of [3H]strychnine, and electrophysiological responses to the application of glycine and strychnine. This mutational analysis revealed that residues from two separate domains within the alpha 1 subunit form the binding site for the antagonist strychnine. The first domain includes the amino acid residues Gly-160 and Tyr-161, and the second domain includes the residues Lys-200 and Tyr-202. These results, combined with analyses of other ligand-gated ion channel receptors, suggest a conserved tertiary structure and a common mechanism for antagonism in this receptor superfamily. PMID:1311851

  8. Doxazosin inhibits proliferation and migration of human vascular smooth-muscle cells independent of alpha1-adrenergic receptor antagonism.

    PubMed

    Hu, Z W; Shi, X Y; Hoffman, B B

    1998-06-01

    Proliferation and migration of vascular smooth-muscle cells (VSMCs), stimulated by a variety of growth factors, play a critical role in the pathogenesis of vascular diseases. We found unexpectedly that doxazosin, an alpha1-adrenergic-receptor antagonist, inhibits serum-stimulated proliferation of cultured human VSMCs. Subsequent experiments systematically investigated inhibitory effects of doxazosin on mitogenesis stimulated in VSMCs by platelet-derived growth factor (PDGF), epidermal growth factor, and G protein-coupled receptor agonists thrombin and angiotensin II. Doxazosin attenuated the stimulation of DNA synthesis for each of these ligands with median inhibitory concentrations (IC50s) from 0.3 to 1 microM. PDGF-AB (1 nM) increased cell number; doxazosin inhibited this response by 70-80%. Prazosin, a related alpha1-receptor antagonist, had similar but less potent effects on inhibiting mitogenesis in these cells. Doxazosin and prazosin inhibited PDGF-AB-stimulated and insulin-like growth factor (IGF-I)-stimulated migration of VSMCs by approximately 40-50%. These effects of doxazosin were likely unrelated to alpha1-receptor blockade because pretreatment of cells with phenoxybenzamine, an irreversible alpha1 antagonist, did not change the capacity of doxazosin to inhibit of PDGF-stimulated mitogenesis. Also, doxazosin inhibited PDGF-stimulated DNA synthesis in NIH 3T3 cells, which do not express alpha1 receptors. These results suggest that doxazosin is a potent inhibitor of VSMC proliferation and migration through a mechanism unrelated to alpha1-receptor antagonism.

  9. Sedation and histamine H1-receptor antagonism: studies in man with the enantiomers of chlorpheniramine and dimethindene.

    PubMed Central

    Nicholson, A. N.; Pascoe, P. A.; Turner, C.; Ganellin, C. R.; Greengrass, P. M.; Casy, A. F.; Mercer, A. D.

    1991-01-01

    1. The effects of 10 mg (+)- and (-)-chlorpheniramine and 5 mg (+)- and (-)-dimethindene on daytime sleep latencies, digit symbol substitution and subjective assessments of mood and well-being were studied in 6 healthy young adult humans. Each subject also took 5 mg triprolidine hydrochloride as an active control and two placebos. 2. Daytime sleep latencies were reduced with triprolidine, (+)-chlorpheniramine and (-)-dimethindene, and subjects also reported that they felt more sleepy after (+)-chlorpheniramine and (-)-dimethindene. Performance on digit symbol substitution was impaired with (+)-chlorpheniramine. 3. Changes in measures with (-)-chlorpheniramine and (+)-dimethindene were not different from changes with placebo. 4. In the present study, changes in measures of drowsiness and performance were limited to the enantiomers with high affinity for the histamine H1-receptor. These findings strongly suggest that sedation can arise from H1-receptor antagonism alone, and provide further support for the belief that the histaminergic system is concerned with the regulation of alertness in man. PMID:1686208

  10. Unsurmountable antagonism of brain 5-hydroxytryptamine2 receptors by (+)-lysergic acid diethylamide and bromo-lysergic acid diethylamide.

    PubMed

    Burris, K D; Sanders-Bush, E

    1992-11-01

    Lysergic acid diethylamide (LSD) and its structural analogue 2-bromo-lysergic acid diethylamide (BOL) act as unsurmountable antagonists of serotonin-elicited contractions in smooth muscle preparations. Two different models, allosteric and kinetic, have been invoked to explain these findings. The present studies investigate the mechanism of antagonism of brain 5-hydroxytryptamine (5HT)2 receptors, utilizing cells transfected with 5HT2 receptor cDNA cloned from rat brain. A proximal cellular response, phosphoinositide hydrolysis, was examined in order to minimize possible postreceptor effects. Even though LSD behaved as a partial agonist and BOL as a pure antagonist, both drugs blocked the effect of serotonin in an unsurmountable manner, i.e., increasing concentrations of serotonin could not overcome the blocking effect of LSD or BOL. Radioligand binding studies showed that preincubation of membranes with either LSD or BOL reduced the density of [3H]ketanserin binding sites, suggesting that the drugs bind tightly to the 5HT2 receptor and are not displaced during the binding assay. Two additional experiments supported this hypothesis. First, the off-rate of [3H] LSD was slow (20 min), relative to that of [3H]ketanserin (approximately 4 min). Second, when the length of incubation with [3H]ketanserin was increased to 60 min, the LSD-induced decrease in Bmax was essentially eliminated. The possibility that LSD and BOL decrease [3H]ketanserin binding by interacting with an allosteric site was rejected, because neither drug altered the rate of dissociation of [3H]ketanserin. The most parsimonious interpretation of these results is that unsurmountable antagonism reflects prolonged occupancy of the receptor by slowly reversible antagonists.

  11. 5-Hydroxytryptamine type 7 receptor neuroprotection against NMDA-induced excitotoxicity is PDGFβ receptor dependent.

    PubMed

    Vasefi, Maryam S; Kruk, Jeff S; Heikkila, John J; Beazely, Michael A

    2013-04-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the hippocampus. Long-term (2-24 h) activation of 5-HT7 receptors regulates growth factor receptor expression, including the expression of platelet-derived growth factor (PDGF) β receptors. Direct activation of PDGFβ receptors in primary hippocampal and cortical neurons inhibits NMDA receptor activity and attenuates NMDA receptor-induced neurotoxicity. Our objective was to investigate whether the 5-HT7 receptor-induced increase in PDGFβ receptor expression would be similarly neuroprotective. We demonstrate that 5-HT7 receptor agonist treatment in primary hippocampal neurons also increases the expression of phospholipase C (PLC) γ, a downstream effector of PDGFβ receptors associated with the inhibition of NMDA receptor activity. To determine if the up-regulation of PDGFβ receptors is neuroprotective, primary hippocampal neurons were incubated with the 5-HT7 receptor agonist, LP 12, for 24 h. Indeed, LP 12 treatment prevented NMDA-induced neurotoxicity and this effect was dependent on PDGFβ receptor kinase activity. Treatment of primary neurons with LP 12 also differentially altered NMDA receptor subunit expression, reducing the expression of NR1 and NR2B, but not NR2A. These findings demonstrate the potential for providing growth factor receptor-dependent neuroprotective effects using small-molecule ligands of G protein-coupled receptors.

  12. Identification of a retinal aldosterone system and the protective effects of mineralocorticoid receptor antagonism on retinal vascular pathology.

    PubMed

    Wilkinson-Berka, Jennifer L; Tan, Genevieve; Jaworski, Kassie; Miller, Antonia G

    2009-01-01

    Blockade of the renin-angiotensin-aldosterone system (RAAS) is being evaluated as a treatment for diabetic retinopathy; however, whether the mineralocorticoid receptor (MR) and aldosterone influence retinal vascular pathology is unknown. We examined the effect of MR antagonism on pathological angiogenesis in rats with oxygen-induced retinopathy (OIR). To determine the mechanisms by which the MR and aldosterone may influence retinal angiogenesis; inflammation and glucose-6-phosphate dehydrogenase (G6PD) were evaluated in OIR and cultured bovine retinal endothelial cells (BRECs) and bovine retinal pericytes (BRPs). In OIR, MR antagonism (spironolactone) was antiangiogenic. Aldosterone may mediate the pathogenic actions of MR in the retina, with 11beta-hydroxysteroid dehydrogenase type 2 mRNA being detected and with aldosterone stimulating proliferation and tubulogenesis in BRECs and exacerbating angiogenesis in OIR, which was attenuated with spironolactone. The MR and aldosterone modulated retinal inflammation, with leukostasis and monocyte chemoattractant protein-1 mRNA and protein in OIR being reduced by spironolactone and increased by aldosterone. A reduction in G6PD may be an early response to aldosterone. In BRECs, BRPs, and early OIR, aldosterone reduced G6PD mRNA, and in late OIR, aldosterone increased mRNA for the NAD(P)H oxidase subunit Nox4. A functional retinal MR-aldosterone system was evident with MR expression, translocation of nuclear MR, and aldosterone synthase expression, which was modulated by RAAS blockade. We make the first report that MR and aldosterone influence retinal vasculopathy, which may involve inflammatory and G6PD mechanisms. MR antagonism may be relevant when developing treatments for retinopathies that target the RAAS.

  13. Design, Synthesis, and Biological Evaluation of Novel Nonsteroidal Farnesoid X Receptor (FXR) Antagonists: Molecular Basis of FXR Antagonism.

    PubMed

    Huang, Huang; Si, Pei; Wang, Lei; Xu, Yong; Xu, Xin; Zhu, Jin; Jiang, Hualiang; Li, Weihua; Chen, Lili; Li, Jian

    2015-07-01

    Farnesoid X receptor (FXR) plays an important role in the regulation of cholesterol, lipid, and glucose metabolism. Recently, several studies on the molecular basis of FXR antagonism have been reported. However, none of these studies employs an FXR antagonist with nonsteroidal scaffold. On the basis of our previously reported FXR antagonist with a trisubstituted isoxazole scaffold, a novel nonsteroidal FXR ligand was designed and used as a lead for structural modification. In total, 39 new trisubstituted isoxazole derivatives were designed and synthesized, which led to pharmacological profiles ranging from agonist to antagonist toward FXR. Notably, compound 5s (4'-[(3-{[3-(2-chlorophenyl)-5-(2-thienyl)isoxazol-4-yl]methoxy}-1H-pyrazol-1-yl)methyl]biphenyl-2-carboxylic acid), containing a thienyl-substituted isoxazole ring, displayed the best antagonistic activity against FXR with good cellular potency (IC50 =12.2 ± 0.2 μM). Eventually, this compound was used as a probe in a molecular dynamics simulation assay. Our results allowed us to propose an essential molecular basis for FXR antagonism, which is consistent with a previously reported antagonistic mechanism; furthermore, E467 on H12 was found to be a hot-spot residue and may be important for the future design of nonsteroidal antagonists of FXR.

  14. Antagonism of Lateral Amygdala Alpha1-Adrenergic Receptors Facilitates Fear Conditioning and Long-Term Potentiation

    ERIC Educational Resources Information Center

    Lazzaro, Stephanie C.; Hou, Mian; Cunha, Catarina; LeDoux, Joseph E.; Cain, Christopher K.

    2010-01-01

    Norepinephrine receptors have been studied in emotion, memory, and attention. However, the role of alpha1-adrenergic receptors in fear conditioning, a major model of emotional learning, is poorly understood. We examined the effect of terazosin, an alpha1-adrenergic receptor antagonist, on cued fear conditioning. Systemic or intra-lateral amygdala…

  15. Update on the Mechanism of Action of Aripiprazole: Translational Insights into Antipsychotic Strategies Beyond Dopamine Receptor Antagonism.

    PubMed

    de Bartolomeis, Andrea; Tomasetti, Carmine; Iasevoli, Felice

    2015-09-01

    Dopamine partial agonism and functional selectivity have been innovative strategies in the pharmacological treatment of schizophrenia and mood disorders and have shifted the concept of dopamine modulation beyond the established approach of dopamine D2 receptor (D2R) antagonism. Despite the fact that aripiprazole was introduced in therapy more than 12 years ago, many questions are still unresolved regarding the complexity of the effects of this agent on signal transduction and intracellular pathways, in part linked to its pleiotropic receptor profile. The complexity of the mechanism of action has progressively shifted the conceptualization of this agent from partial agonism to functional selectivity. From the induction of early genes to modulation of scaffolding proteins and activation of transcription factors, aripiprazole has been shown to affect multiple cellular pathways and several cortical and subcortical neurotransmitter circuitries. Growing evidence shows that, beyond the consequences of D2R occupancy, aripiprazole has a unique neurobiology among available antipsychotics. The effect of chronic administration of aripiprazole on D2R affinity state and number has been especially highlighted, with relevant translational implications for long-term treatment of psychosis. The hypothesized effects of aripiprazole on cell-protective mechanisms and neurite growth, as well as the differential effects on intracellular pathways [i.e. extracellular signal-regulated kinase (ERK)] compared with full D2R antagonists, suggest further exploration of these targets by novel and future biased ligand compounds. This review aims to recapitulate the main neurobiological effects of aripiprazole and discuss the potential implications for upcoming improvements in schizophrenia therapy based on dopamine modulation beyond D2R antagonism.

  16. GABAA receptor antagonism at the hypoglossal motor nucleus increases genioglossus muscle activity in NREM but not REM sleep.

    PubMed

    Morrison, Janna L; Sood, Sandeep; Liu, Hattie; Park, Eileen; Nolan, Philip; Horner, Richard L

    2003-04-15

    The pharyngeal muscles, such as the genioglossus (GG) muscle of the tongue, are important for effective lung ventilation since they maintain an open airspace. Rapid-eye-movement (REM) sleep, however, recruits powerful neural mechanisms that can abolish GG activity, even during strong reflex respiratory stimulation by elevated CO2. In vitro studies have demonstrated the presence of GABAA receptors on hypoglossal motoneurons, and these and other data have led to the speculation that GABAA mechanisms may contribute to the suppression of hypoglossal motor outflow to the GG muscle in REM sleep. We have developed an animal model that allows us to chronically manipulate neurotransmission at the hypoglossal motor nucleus using microdialysis across natural sleep-wake states in rats. The present study tests the hypothesis that microdialysis perfusion of the GABAA receptor antagonist bicuculline into the hypoglossal motor nucleus will prevent the suppression of GG muscle activity in REM sleep during both room-air and CO2-stimulated breathing. Ten rats were implanted with electroencephalogram and neck muscle electrodes to record sleep-wake states, and GG and diaphragm electrodes for respiratory muscle recording. Microdialysis probes were implanted into the hypoglossal motor nucleus for perfusion of artificial cerebrospinal fluid (ACSF) or 100 microM bicuculline during room-air and CO2-stimulated breathing (7 % inspired CO2). GABAA receptor antagonism at the hypoglossal motor nucleus increased respiratory-related GG activity during both room-air (P = 0.01) and CO2-stimulated breathing (P = 0.007), indicating a background inhibitory GABA tone. However, the effects of bicuculline on GG activity depended on the prevailing sleep-wake state (P < 0.005), with bicuculline increasing GG activity in non-REM (NREM) sleep and wakefulness both in room air and hypercapnia (P < 0.01), but GG activity was effectively abolished in those REM periods without phasic twitches in the GG muscle

  17. Alix/AIP1 antagonizes epidermal growth factor receptor downregulation by the Cbl-SETA/CIN85 complex.

    PubMed

    Schmidt, Mirko H H; Hoeller, Daniela; Yu, Jiuhong; Furnari, Frank B; Cavenee, Webster K; Dikic, Ivan; Bögler, Oliver

    2004-10-01

    The assembly of the Cbl-SETA/CIN85-endophilin complex at the C terminus of the epidermal growth factor receptor (EGFR) following ligand activation mediates its internalization and ubiquitination. We found that the SETA/CIN85-interacting protein Alix/AIP1, which also binds endophilins, modulates this complex. Alix was found to associate indirectly with EGFR, regardless of its activation state, and with DeltaEGFR, which signals at low intensity and does not bind Cbls or SETA/CIN85. In agreement with this, Alix interaction did not occur via SETA/CIN85. However, SETA/CIN85 and Alix were capable of mutually promoting their interaction with the EGFR. Increasing the level of Alix weakened the interaction between SETA/CIN85 and Cbl and reduced the tyrosine phosphorylation of c-Cbl and the level of ubiquitination of EGFR, SETA/CIN85, and Cbls. This antagonism of the Cbl-SETA/CIN85 complex by Alix was reflected in its diminution of EGFR internalization. In agreement with this, small interfering RNA-mediated knockdown of Alix promoted EGFR internalization and downregulation. It has been suggested that SETA/CIN85 promotes receptor internalization by recruiting endophilins. However, Alix was also capable of increasing the level of endophilin associated with EGFR, implying that this is not sufficient to promote receptor internalization. We propose that Alix inhibits EGFR internalization by attenuating the interaction between Cbl and SETA/CIN85 and by inhibiting Cbl-mediated ubiquitination of the EGFR.

  18. A selective sigma-2 receptor ligand antagonizes cocaine-induced hyperlocomotion in mice.

    PubMed

    Lever, John R; Miller, Dennis K; Green, Caroline L; Fergason-Cantrell, Emily A; Watkinson, Lisa D; Carmack, Terry L; Fan, Kuo-Hsien; Lever, Susan Z

    2014-02-01

    Cocaine functions, in part, through agonist actions at sigma-1 (σ1 ) receptors, while roles played by sigma-2 (σ2 ) receptors are less established. Attempts to discriminate σ2 receptor-mediated effects of cocaine in locomotor hyperactivity assays have been hampered by the lack of potent and selective antagonists. Certain tetrahydroisoquinolinyl benzamides display high σ2 receptor affinity, and excellent selectivity for binding to σ2 over σ1 receptors. The behavioral properties of this structural class of σ ligands have not yet been investigated. The present study evaluated 5-bromo-N-[4-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-butyl)]-2,3-dimethoxy-benzamide, 1, a ligand shown by others to bind preferentially to σ2 over σ1 receptors, as well as dopamine D2 and D3 sites. First, we determined binding to monoamine transporters and opioid receptors, and noted 57-fold selectivity for σ2 receptors over the serotonin transporter, and >800-fold selectivity for σ2 receptors over the other sites tested. We then examined 1 in locomotor activity studies using male CD-1® mice, and saw no alteration of basal activity at doses up to 31.6 µmol/kg. Cocaine produced a fivefold increase in locomotor activity, which was attenuated by 66% upon pretreatment of mice with 1 at 31.6 µmol/kg. In vivo radioligand binding studies also were performed, and showed no occupancy of σ1 receptors or the dopamine transporter by 1, or its possible metabolites, at the 31.6 µmol/kg dose. Thus, ligand 1 profiles behaviorally as a σ2 receptor-selective antagonist that is able to counteract cocaine's motor stimulatory effects.

  19. NK1 receptor antagonism lowers occupancy requirement for antidepressant-like effects of SSRIs in the gerbil forced swim test.

    PubMed

    Lelas, Snjezana; Li, Yu-Wen; Wallace-Boone, Tanya L; Taber, Matthew T; Newton, Amy E; Pieschl, Rick L; Davis, Carl D; Molski, Thaddeus F; Newberry, Kimberly S; Parker, Michael F; Gillman, Kevin W; Bronson, Joanne J; Macor, John E; Lodge, Nicholas J

    2013-10-01

    The known interactions between the serotonergic and neurokinin systems suggest that serotonin reuptake inhibitor (SSRIs) efficacy may be improved by neurokinin-1 receptor (NK1R) antagonism. In the current studies combination of a subeffective dose of an SSRI (0.3 mg/kg fluoxetine or 0.03 mg/kg citalopram) with a subeffective dose of an NK1R antagonist (0.3 mg/kg aprepitant or 1 mg/kg CP-122,721) produced efficacy in the gerbil forced swim test (FST). Serotonin transporter (SERT) occupancy produced by 1 mg/kg fluoxetine (lowest efficacious dose) was 52 ± 5% and was reduced to 29 ± 4% at 0.3 mg/kg, a dose that was efficacious in combination with 0.3 mg/kg aprepitant or 1 mg/kg CP-122,721; the corresponding NK1R occupancies were 79 ± 4% and 61 ± 4% for aprepitant and CP-122,721, respectively. For citalopram, SERT occupancy at the lowest efficacious dose (0.1 mg/kg) was 50 ± 4% and was reduced to 20 ± 5% at 0.03 mg/kg, a dose that was efficacious when combined with aprepitant (0.3 mg/kg). Aprepitant (10 mg/kg) augmented the serotonin elevation produced by fluoxetine (1 or 10 mg/kg) in the gerbil prefrontal cortex; i.e. NK1R antagonism can modulate serotonin responses. A novel orally-available dual-acting NK1R antagonist/SERT inhibitor BMS-795176 is described; gerbil Ki = 1.4 and 1 nM at NK1R and SERT, respectively. BMS-795176 was efficacious in the gerbil FST; efficacy was observed with 35 ± 3% SERT occupancy and 73 ± 3% NK1R occupancy. The interaction between NK1R antagonism and SERT inhibition to lower the SERT occupancy required for antidepressant-like efficacy suggests that BMS-795176 has the potential to improve efficacy with a reduction in SSRI-associated side effects. PMID:23770339

  20. NK1 receptor antagonism lowers occupancy requirement for antidepressant-like effects of SSRIs in the gerbil forced swim test.

    PubMed

    Lelas, Snjezana; Li, Yu-Wen; Wallace-Boone, Tanya L; Taber, Matthew T; Newton, Amy E; Pieschl, Rick L; Davis, Carl D; Molski, Thaddeus F; Newberry, Kimberly S; Parker, Michael F; Gillman, Kevin W; Bronson, Joanne J; Macor, John E; Lodge, Nicholas J

    2013-10-01

    The known interactions between the serotonergic and neurokinin systems suggest that serotonin reuptake inhibitor (SSRIs) efficacy may be improved by neurokinin-1 receptor (NK1R) antagonism. In the current studies combination of a subeffective dose of an SSRI (0.3 mg/kg fluoxetine or 0.03 mg/kg citalopram) with a subeffective dose of an NK1R antagonist (0.3 mg/kg aprepitant or 1 mg/kg CP-122,721) produced efficacy in the gerbil forced swim test (FST). Serotonin transporter (SERT) occupancy produced by 1 mg/kg fluoxetine (lowest efficacious dose) was 52 ± 5% and was reduced to 29 ± 4% at 0.3 mg/kg, a dose that was efficacious in combination with 0.3 mg/kg aprepitant or 1 mg/kg CP-122,721; the corresponding NK1R occupancies were 79 ± 4% and 61 ± 4% for aprepitant and CP-122,721, respectively. For citalopram, SERT occupancy at the lowest efficacious dose (0.1 mg/kg) was 50 ± 4% and was reduced to 20 ± 5% at 0.03 mg/kg, a dose that was efficacious when combined with aprepitant (0.3 mg/kg). Aprepitant (10 mg/kg) augmented the serotonin elevation produced by fluoxetine (1 or 10 mg/kg) in the gerbil prefrontal cortex; i.e. NK1R antagonism can modulate serotonin responses. A novel orally-available dual-acting NK1R antagonist/SERT inhibitor BMS-795176 is described; gerbil Ki = 1.4 and 1 nM at NK1R and SERT, respectively. BMS-795176 was efficacious in the gerbil FST; efficacy was observed with 35 ± 3% SERT occupancy and 73 ± 3% NK1R occupancy. The interaction between NK1R antagonism and SERT inhibition to lower the SERT occupancy required for antidepressant-like efficacy suggests that BMS-795176 has the potential to improve efficacy with a reduction in SSRI-associated side effects.

  1. Type 2 Interleukin-4 Receptor Signaling in Neutrophils Antagonizes Their Expansion and Migration during Infection and Inflammation.

    PubMed

    Woytschak, Janine; Keller, Nadia; Krieg, Carsten; Impellizzieri, Daniela; Thompson, Robert W; Wynn, Thomas A; Zinkernagel, Annelies S; Boyman, Onur

    2016-07-19

    Neutrophils are the first immune cells recruited to sites of inflammation and infection. However, patients with allergic disorders such as atopic dermatitis show a paucity of skin neutrophils and are prone to bacterial skin infections, suggesting that allergic inflammation curtails neutrophil responses. Here we have shown that the type 2 cell signature cytokine interleukin-4 (IL-4) hampers neutrophil expansion and migration by antagonizing granulocyte colony-stimulating factor (G-CSF) and chemokine receptor-mediated signals. Cutaneous bacterial infection in mice was exacerbated by IL-4 signaling and improved with IL-4 inhibition, each outcome inversely correlating with neutrophil migration to skin. Likewise, systemic bacterial infection was worsened by heightened IL-4 activity, with IL-4 restricting G-CSF-induced neutrophil expansion and migration to tissues by affecting CXCR2-CXCR4 chemokine signaling in neutrophils. These effects were dependent on IL-4 acting through type 2 IL-4 receptors on neutrophils. Thus, targeting IL-4 might be beneficial in neutropenic conditions with increased susceptibility to bacterial infections. PMID:27438770

  2. Platelet-activating factor receptor antagonism targets neuroinflammation in experimental epilepsy

    PubMed Central

    Musto, Alberto E.; Samii, Mark

    2010-01-01

    Purpose Temporal lobe epilepsy is associated with the inflammatory process related to the basic mechanisms that lead to seizure susceptibility and brain damage. Platelet-activating factor (PAF), a potent, short-lived phospholipid mediator of inflammation participates in physiological signaling in the brain. However, after seizures PAF accumulates in the brain and activates intracellular signaling related with inflammation-mediated excitotoxicity and hippocampal hyperexcitability. The objective of this study is to evaluate the effect of PAF antagonism on hippocampal hyperexcitability, seizure susceptibility and neuroprotection using the kindling paradigm and pilocarpine-induced seizure damage models. Methods The PAF antagonist, LAU-0901 (60 mg/kg, i.p.), or vehicle was administrated each day of kindling or daily during the four weeks after status epilepticus (SE). We analyzed seizure severity, electrical activity, cellular damage and inflammation in the hippocampi of both treated groups. Results LAU-0901 limits the progression of kindling and attenuates seizure susceptibility one week after the kindling procedure. Also, under the seizure-damage conditions studied here, we observed that LAU-0901 induces hippocampal neuroprotection and limits somatostatin interneuronal cell loss and inflammation. Discussion Our results indicate that modulation of PAF over-activity attenuates seizure susceptibility, hippocampal hyperexcitability and neuroinflammation. PMID:21204830

  3. Endomorphin analogues with mixed μ-opioid (MOP) receptor agonism/δ-opioid (DOP) receptor antagonism and lacking β-arrestin2 recruitment activity.

    PubMed

    Cai, Jun; Song, Bowen; Cai, Yunxin; Ma, Yu; Lam, Ai-Leen; Magiera, Julia; Sekar, Sunder; Wyse, Bruce D; Ambo, Akihiro; Sasaki, Yusuke; Lazarus, Lawrence H; Smith, Maree T; Li, Tingyou

    2014-04-01

    Analogues of endomorphin (Dmt-Pro-Xaa-Xaa-NH2) modified at position 4 or at positions 4 and 3, and tripeptides (Dmt-Pro-Xaa-NH2) modified at position 3, with various phenylalanine analogues (Xaa=Trp, 1-Nal, 2-Nal, Tmp, Dmp, Dmt) were synthesized and their effects on in vitro opioid activity were investigated. Most of the peptides exhibited high μ-opioid (MOP) receptor binding affinity (KiMOP=0.13-0.81nM), modest MOP-selectivity (Kiδ-opioid (DOP)/KiMOP=3.5-316), and potent functional MOP agonism (GPI, IC50=0.274-249nM) without DOP and κ-opioid (KOP) receptor agonism. Among them, compounds 7 (Dmt-Pro-Tmp-Tmp-NH2) and 9 (Dmt-Pro-1-Nal-NH2) were opioids with potent mixed MOP receptor agonism/DOP receptor antagonism and devoid of β-arrestin2 recruitment activity. They may offer a unique template for the discovery of potent analgesics that produce less respiratory depression, less gastrointestinal dysfunction and that have a lower propensity to induce tolerance and dependence compared with morphine.

  4. Differential Modulation of Reinforcement Learning by D2 Dopamine and NMDA Glutamate Receptor Antagonism

    PubMed Central

    Klein, Tilmann A.; Ullsperger, Markus

    2014-01-01

    The firing pattern of midbrain dopamine (DA) neurons is well known to reflect reward prediction errors (PEs), the difference between obtained and expected rewards. The PE is thought to be a crucial signal for instrumental learning, and interference with DA transmission impairs learning. Phasic increases of DA neuron firing during positive PEs are driven by activation of NMDA receptors, whereas phasic suppression of firing during negative PEs is likely mediated by inputs from the lateral habenula. We aimed to determine the contribution of DA D2-class and NMDA receptors to appetitively and aversively motivated reinforcement learning. Healthy human volunteers were scanned with functional magnetic resonance imaging while they performed an instrumental learning task under the influence of either the DA D2 receptor antagonist amisulpride (400 mg), the NMDA receptor antagonist memantine (20 mg), or placebo. Participants quickly learned to select (“approach”) rewarding and to reject (“avoid”) punishing options. Amisulpride impaired both approach and avoidance learning, while memantine mildly attenuated approach learning but had no effect on avoidance learning. These behavioral effects of the antagonists were paralleled by their modulation of striatal PEs. Amisulpride reduced both appetitive and aversive PEs, while memantine diminished appetitive, but not aversive PEs. These data suggest that striatal D2-class receptors contribute to both approach and avoidance learning by detecting both the phasic DA increases and decreases during appetitive and aversive PEs. NMDA receptors on the contrary appear to be required only for approach learning because phasic DA increases during positive PEs are NMDA dependent, whereas phasic decreases during negative PEs are not. PMID:25253860

  5. Evaluation of age-dependent response to NMDA receptor antagonism in zebrafish.

    PubMed

    Menezes, Fabiano Peres; Kist, Luiza Wilges; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2015-04-01

    Imbalances in glutamatergic signaling have been proposed as the cause of several neurological disturbances. The use of MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, to mimic features of these neurological disorders is effective both in mammals and in fish. However, the variability of the subunits comprising the NMDA receptor during development alters the pharmacokinetic properties of the receptor and leads to different responses to this drug. Here, we evaluated the locomotor response of zebrafish to MK-801 (1, 5, and 20 μM) through the development (30 days postfertilization [dpf] to 2 years postfertilization [ypf]). The NMDA receptor subunit gene expression was also analyzed through the development (7 dpf to 2 ypf). Zebrafish displayed an age-related response to MK-801 with a higher response at 60 and 120 dpf. The magnitude of hyperlocomotion promoted by MK-801 seems to be less powerful for zebrafish in relation to rodents. The verification of expression levels in zebrafish NMDA receptor subunits shows that NR1.1 had a slight reduction throughout the development, while the NR2 subunits, especially NR2A.2 and NR2C.1, vary their expression levels according to the stage of development. The time-specific locomotor response to MK-801 through the development could be a consequence of differential NMDA receptor subunit expression. This result of developmental response to MK-801 is a crucial component in the consolidation of zebrafish as a suitable model to study glutamatergic neurotransmission in early phases.

  6. Antagonism of rat orexin receptors by almorexant attenuates central chemoreception in wakefulness in the active period of the diurnal cycle.

    PubMed

    Li, Aihua; Nattie, Eugene

    2010-08-01

    Central chemoreception, the highly sensitive ventilatory response to small changes in CO(2)/pH, involves many sites. Hypothalamic orexin neurons are CO(2) sensitive in vitro, prepro-orexin knockout mice have a reduced CO(2) response prominently in wakefulness, and focal antagonism of the orexin receptor 1 (OX(1)R) in two central chemoreceptor sites, the retrotrapezoid nucleus (RTN) or the medullary raphé, results in a reduction of the CO(2) response predominately in wakefulness (-30% and -16%, respectively). Here we hypothesize that acute and selective inhibition of both orexin receptors (OX(1)R and OX(2)R) at all central locations by an orally administered dual orexin receptor antagonist, almorexant, will substantially attenuate the CO(2) response in a vigilance-state- and diurnal-cycle-dependent manner. We found that almorexant attenuated the CO(2) response by 26% only in wakefulness during the dark period of the diurnal cycle to a level observed during NREM sleep in the light period in controls suggesting that the sleep-wake difference in the CO(2) response can be in large part attributed to orexin. Almorexant also decreased wakefulness and increased NREM and REM sleep during the dark period, as previously reported, and unexpectedly decreased the number of sighs and post-sigh apnoeas during wakefulness in both the light and the dark period and during both wakefulness and NREM sleep in the dark period. The results support our hypothesis that the orexin system participates importantly in central chemoreception in a vigilance-state- and diurnal-cycle-dependent manner and indicate a role for orexin in the important process of sighing.

  7. NMDA receptor subunits and associated signaling molecules mediating antidepressant-related effects of NMDA-GluN2B antagonism

    PubMed Central

    Kiselycznyk, Carly; Jury, Nicholas; Halladay, Lindsay; Nakazawa, Kazu; Mishina, Masayoshi; Sprengel, Rolf; Grant, Seth G.N.; Svenningsson, Per; Holmes, Andrew

    2015-01-01

    Drugs targeting the glutamate N-methyl-D-aspartate receptor (NMDAR) may be efficacious for treating mood disorders, as exemplified by the rapid antidepressant effects produced by single administration of the NMDAR antagonist ketamine. Though the precise mechanisms underlying the antidepressant-related effects of NMDAR antagonism remain unclear, recent studies implicate specific NMDAR subunits, including GluN2A and GluN2B, as well as the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) subunit glutamate receptor interacting molecule, PSD-95. Here, integrating mutant and pharmacological in mice, we investigated the contribution of these subunits and molecules to antidepressant-related behaviors and the antidepressant-related effects of the GluN2B blocker, Ro 25-6981. We found that global deletion of GluA1 or PSD-95 reduced forced swim test (FST) immobility, mimicking the antidepressant-related effect produced by systemically administered Ro 25-6981 in C57BL/6J mice. Moreover, the FST antidepressant-like effects of systemic Ro 25-6981 were intact in mutants with global GluA1 deletion or GluN1 deletion in forebrain interneurons, but were absent in mutants constitutively lacking GluN2A or PSD-95. Next, we found that microinfusing Ro 25-6981 into the medial prefrontal cortex (mPFC), but not basolateral amygdala, of C57BL/6J mice was sufficient to produce an antidepressant-like effect. Together, these findings extend and refine current understanding of the mechanisms mediating antidepressant-like effects produced by NMDAR-GluN2B antagonists, and may inform the development of a novel class of medications for treating depression that target the GluN2B subtype of NMDAR. PMID:25800971

  8. Dorsal versus ventral hippocampal contributions to trace and contextual conditioning: differential effects of regionally selective NMDA receptor antagonism on acquisition and expression.

    PubMed

    Czerniawski, Jennifer; Ree, Fredrick; Chia, Chester; Otto, Tim

    2012-07-01

    The dorsal and ventral subregions of the hippocampus likely play dissociable roles in some forms of learning. For example, we have previously demonstrated that temporary inactivation of ventral, but not dorsal, hippocampus dramatically impaired the acquisition of trace fear conditioning, while temporary inactivation of dorsal, but not ventral, hippocampus impaired spatially guided reinforced alternation (Czerniawski et al. (2009) Hippocampus 19:20-32). Importantly, emerging data suggest that lesions, temporary inactivation, and NMDA receptor antagonism within these subregions can produce quite different patterns of behavioral effects when administered into the same region. Specifically, while neither lesions nor temporary inactivation of dorsal hippocampus impair the acquisition of trace fear conditioning, learning in this paradigm is severely impaired by pre-training administration of the NMDA receptor antagonist dl-2-phosphonovaleric acid (APV) in dorsal hippocampus; the effect of NMDA receptor antagonism within ventral hippocampus on the acquisition and expression of trace conditioning, or on learning in general, has not yet been systematically explored. The present study extends our previous work examining the differential effect of lesions or inactivation of the dorsal and ventral hippocampal subregions by systematically examining the effect of regionally selective pre-training or pre-testing administration of APV on the acquisition and expression of trace and contextual fear conditioning. The results of these studies demonstrate that while pre-training NMDA receptor antagonism within either the dorsal or ventral subregion of the hippocampus impaired the acquisition of both trace and contextual conditioning, pre-testing NMDA receptor antagonism within ventral, but not dorsal, hippocampus impaired the expression of previously-acquired trace and contextual fear conditioning. These data suggest that selectively manipulating the integrity of individual subregions

  9. Antagonism of histamine H4 receptors exacerbates clinical and pathological signs of experimental autoimmune encephalomyelitis

    PubMed Central

    Ballerini, C; Aldinucci, A; Luccarini, I; Galante, A; Manuelli, C; Blandina, P; Katebe, M; Chazot, P L; Masini, E; Passani, M B

    2013-01-01

    Background and Purpose The histamine H4 receptor has a primary role in inflammatory functions, making it an attractive target for the treatment of asthma and refractory inflammation. These observations suggested a facilitating action on autoimmune diseases. Here we have assessed the role of H4 receptors in experimental autoimmune encephalomyelitis (EAE) a model of multiple sclerosis (MS). Experimental Approach We induced EAE with myelin oligodendrocyte glycoprotein (MOG35–55) in C57BL/6 female mice as a model of MS. The histamine H4 receptor antagonist 5-chloro-2-[(4-methylpiperazin-1-yl)carbonyl]-1H-indole (JNJ7777120) was injected i.p. daily starting at day 10 post-immunization (D10 p.i.). Disease severity was monitored by clinical and histopathological evaluation of inflammatory cells infiltrating into the spinal cord, anti-MOG35–55 antibody production, assay of T-cell proliferation by [3H]-thymidine incorporation, mononucleate cell phenotype by flow cytometry, cytokine production by elisa assay and transcription factor quantification of mRNA expression. Key Results Treatment with JNJ7777120 exacerbated EAE, increased inflammation and demyelination in the spinal cord of EAE mice and increased IFN-γ expression in lymph nodes, whereas it suppressed IL-4 and IL-10, and augmented expression of the transcription factors Tbet, FOXP3 and IL-17 mRNA in lymphocytes. JNJ7777120 did not affect proliferation of anti-MOG35–55 T-cells, anti-MOG35–55 antibody production or mononucleate cell phenotype. Conclusions and Implications H4 receptor blockade was detrimental in EAE. Given the interest in the development of H4 receptor antagonists as anti-inflammatory compounds, it is important to understand the role of H4 receptors in immune diseases to anticipate clinical benefits and also predict possible detrimental effects. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http

  10. HIV-1 Env gp120 Structural Determinants for Peptide Triazole Dual Receptor Site Antagonism

    PubMed Central

    Tuzer, Ferit; Madani, Navid; Kamanna, Kantharaju; Zentner, Isaac; LaLonde, Judith; Holmes, Andrew; Upton, Elizabeth; Rajagopal, Srivats; McFadden, Karyn; Contarino, Mark; Sodroski, Joseph; Chaiken, Irwin

    2013-01-01

    Despite advances in HIV therapy, viral resistance and side-effects with current drug regimens require targeting new components of the virus. Dual antagonist peptide triazoles (PT) are a novel class of HIV-1 inhibitors that specifically target the gp120 component of the viral spike and inhibit its interaction with both of its cell surface protein ligands, namely the initial receptor CD4 and the co-receptor (CCR5/CXCR4), thus preventing viral entry. Following an initial survey of 19 gp120 alanine mutants by ELISA, we screened 11 mutants for their importance in binding to, and inhibition by the PT KR21 using surface plasmon resonance. Key mutants were purified and tested for their effects on the peptide’s affinity and its ability to inhibit binding of CD4 and the co-receptor surrogate mAb 17b. Effects of the mutations on KR21 viral neutralization were measured by single-round cell infection assays. Two mutations, D474A and T257A, caused large-scale loss of KR21 binding, as well as losses in both CD4/17b and viral inhibition by KR21. A set of other Ala mutants revealed more moderate losses in direct binding affinity and inhibition sensitivity to KR21. The cluster of sensitive residues defines a PT functional epitope. This site is in a conserved region of gp120 that overlaps the CD4 binding site and is distant from the co-receptor/17b binding site, suggesting an allosteric mode of inhibition for the latter. The arrangement and sequence conservation of the residues in the functional epitope explain the breadth of antiviral activity, and improve the potential for rational inhibitor development. PMID:23011758

  11. Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism.

    PubMed

    Neill, Joanna C; Barnes, Samuel; Cook, Samantha; Grayson, Ben; Idris, Nagi F; McLean, Samantha L; Snigdha, Shikha; Rajagopal, Lakshmi; Harte, Michael K

    2010-12-01

    Cognitive deficits in schizophrenia remain an unmet clinical need. Improved understanding of the neuro- and psychopathology of these deficits depends on the availability of carefully validated animal models which will assist the development of novel therapies. There is much evidence that at least some of the pathology and symptomatology (particularly cognitive and negative symptoms) of schizophrenia results from a dysfunction of the glutamatergic system which may be modelled in animals through the use of NMDA receptor antagonists. The current review examines the validity of this model in rodents. We review the ability of acute and sub-chronic treatment with three non-competitive NMDA antagonists; phencyclidine (PCP), ketamine and MK801 (dizocilpine) to produce cognitive deficits of relevance to schizophrenia in rodents and their subsequent reversal by first- and second-generation antipsychotic drugs. Effects of NMDA receptor antagonists on the performance of rodents in behavioural tests assessing the various domains of cognition and negative symptoms are examined: novel object recognition for visual memory, reversal learning and attentional set shifting for problem solving and reasoning, 5-Choice Serial Reaction Time for attention and speed of processing; in addition to effects on social behaviour and neuropathology. The evidence strongly supports the use of NMDA receptor antagonists to model cognitive deficit and negative symptoms of schizophrenia as well as certain pathological disturbances seen in the illness. This will facilitate the evaluation of much-needed novel pharmacological agents for improved therapy of cognitive deficits and negative symptoms in schizophrenia.

  12. Pharmacologically targeted NMDA receptor antagonism by NitroMemantine for cerebrovascular disease

    PubMed Central

    Takahashi, Hiroto; Xia, Peng; Cui, Jiankun; Talantova, Maria; Bodhinathan, Karthik; Li, Wenjun; Holland, Emily A.; Tong, Gary; Piña-Crespo, Juan; Zhang, Dongxian; Nakanishi, Nobuki; Larrick, James W.; McKercher, Scott R.; Nakamura, Tomohiro; Wang, Yuqiang; Lipton, Stuart A.

    2015-01-01

    Stroke and vascular dementia are leading causes of morbidity and mortality. Neuroprotective therapies have been proposed but none have proven clinically tolerated and effective. While overstimulation of N-methyl-d-aspartate-type glutamate receptors (NMDARs) is thought to contribute to cerebrovascular insults, the importance of NMDARs in physiological function has made this target, at least in the view of many in ‘Big Pharma,’ ‘undruggable’ for this indication. Here, we describe novel NitroMemantine drugs, comprising an adamantane moiety that binds in the NMDAR-associated ion channel that is used to target a nitro group to redox-mediated regulatory sites on the receptor. The NitroMemantines are both well tolerated and effective against cerebral infarction in rodent models via a dual allosteric mechanism of open-channel block and NO/redox modulation of the receptor. Targeted S-nitrosylation of NMDARs by NitroMemantine is potentiated by hypoxia and thereby directed at ischemic neurons. Allosteric approaches to tune NMDAR activity may hold therapeutic potential for cerebrovascular disorders. PMID:26477507

  13. P2X7 receptor antagonism improves renal blood flow and oxygenation in angiotensin-II infused rats

    PubMed Central

    Menzies, Robert I.; Howarth, Amelia R.; Unwin, Robert J.; Tam, Frederick W.K.; Mullins, John J.; Bailey, Matthew A.

    2015-01-01

    Chronic activation of the renin angiotensin system promotes hypertension, renal microvascular dysfunction, tissue hypoxia and inflammation. We found previously that the injurious response to excess angiotensin II (ANGII) is greater in F344 rats, whereas Lewis rats are renoprotected, despite similar hypertension. We further identified p2rx7, encoding the P2X7 receptor (P2X7R), as a candidate gene for differential susceptibility and here we have tested the hypothesis that activation of P2X7R promotes vascular dysfunction under high ANGII tone. 14-day infusion of ANGII at 30ng/min into F344 rats increased blood pressure by ~15mmHg without inducing fibrosis or albuminuria. In vivo pressure natriuresis was suppressed, medullary perfusion reduced by ~50% and the cortico-medullary oxygenation gradient disrupted. Selective P2X7R antagonism restored pressure natriuresis, promoting a significant leftward shift in the intercept and increasing the slope. Sodium excretion was increased 6 fold and blood pressure normalized. The specific P2X7R antagonist AZ11657312 increased renal medullary perfusion, but only in ANGII-treated rats. Tissue oxygenation was improved by P2X7R blockade, particularly in poorly oxygenated regions of the kidney. Activation of P2X7R induces microvascular dysfunction and regional hypoxia when ANGII is elevated. These pro-inflammatory effects may contribute to progression of renal injury induced by chronic ANGII. PMID:26108066

  14. Antagonism of N-methyl-D-aspartate receptors reduces the vulnerability of the immune system to stress after chronic morphine.

    PubMed

    Alonzo, Norma C; Bayer, Barbara M

    2003-11-01

    It has been shown that morphine-tolerant animals have an altered immunological sensitivity to stress. Although the glutamatergic system has been implicated in the neuroadaptive process underlying this tolerant state, its potential role in development of the altered immunological sensitivity consequent to chronic morphine treatment is not known. To determine this, a morphine-tolerant state was induced by 10-day administration of an escalating dose of morphine from 10 to 40 mg/kg (s.c., b.i.d.), and lymphocyte proliferative response to a T-cell mitogen was measured. Morphine challenge (10 mg/kg s.c.) after days of treatment was gradually less immunosuppressive, and this tolerance progression was delayed by concurrent administration of the N-methyl-D-aspartate (NMDA) receptor antagonist (-)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) (0.1 mg/kg s.c.) with chronic morphine. The effect was independent of glucocorticoid level changes and was not a result of an acute interaction of the drugs or the prolonged presence of the antagonist alone. Subsequent to chronic treatment, animals were subjected to opioid withdrawal and water stress. Both stressors induced 50% immunosuppression in morphine-tolerant animals compared with saline-treated controls. Increased immunological sensitivity to these stressors was attenuated when MK-801 was administered with chronic morphine as demonstrated by an accelerated recovery rate and lack of immunosuppression from opioid withdrawal and water stress, respectively. Together, these findings provide the first evidence that the neuroadapted state of the immune response after chronic morphine can be modified by NMDA receptor antagonism, as illustrated by a temporal deceleration of the development of immunological tolerance during chronic treatment that is associated with an attenuation of the immunological vulnerability of morphine-tolerant animals to stress. PMID:12966157

  15. Glucocorticoids antagonize cAMP-induced Star transcription in Leydig cells through the orphan nuclear receptor NR4A1.

    PubMed

    Martin, Luc J; Tremblay, Jacques J

    2008-09-01

    It is well established that stress, either physical or psychosocial, causes a decrease in testosterone production by Leydig cells. Glucocorticoids (Gc) are the main mediators of stress response and they convey their repressive effect on Leydig cells through the glucocorticoid receptor (GR). So far, various mechanisms have been proposed to explain the mechanism of action of Gc on Leydig cell steroidogenesis including repression of genes involved in testosterone biosynthesis. Several steroidogenic genes, including steroidogenic acute regulatory (STAR) protein, have been shown to be repressed by Gc in a GR-dependent manner but the underlying mechanisms remain to be fully elucidated. Here, we found that dexamethasone (Dex), a potent synthetic Gc, partly antagonizes the cAMP-dependent stimulation of the mouse Star promoter in MA-10 Leydig cells as revealed by transient transfection assays. This repression requires an element located at -95 bp previously implicated in the activation of the Star promoter by the nuclear receptors, NR4A1 and NR5A1. Dex was found to inhibit NR4A1-dependent transactivation of the Star promoter in Leydig cells by decreasing NR4A1, but not NR5A1, recruitment to the proximal Star promoter as determined by chromatin immunoprecipitation assay. Western blots revealed that Dex did not affect NR4A1 or NR5A1 expression in response to cAMP. These data suggest that NR4A1 would be associated with the GR in a transcriptionally inactive complex as previously demonstrated in pituitary corticotrope cells. Thus, our data provide new molecular insights into the stress-mediated suppression of testosterone production in testicular Leydig cells.

  16. Corticotropin releasing factor-1 receptor antagonism alters the biochemical, but not behavioral effects of repeated interleukin-1β administration.

    PubMed

    Wilhelm, Clare J; Murphy-Crews, Aaron; Menasco, Daniel J; Huckans, Marilyn S; Loftis, Jennifer M

    2012-01-01

    Activation of the immune system via administration of cytokines is used for the treatment of chronic viral infections such as hepatitis C and for cancers resistant to radiotherapy. Cytokine-based treatments induce a range of "sickness" behaviors (e.g. depression, anxiety, pain, anorexia, and fatigue). Activation of the hypothalamic pituitary-adrenal axis via the induction of corticotropin releasing factor (CRF) may underlie these unwanted side effects. This study used repeated systemic injections of the pro-inflammatory cytokine interleukin-1β (IL-1β) to model the sickness behaviors and biochemical effects of immune system activation. We assessed the ability of CRF type I receptor (CRF(1)) antagonism to reduce biochemical and behavioral signs of sickness induced by IL-1β treatment. Forty Wistar rats were assigned to one of four groups: 1) saline+vehicle; 2) saline+DMP904 (CRF(1) antagonist); 3) IL-1β+vehicle; 4) IL-1β+DMP904. Rats received intraperitoneal injections of either DMP904 or vehicle and of IL-1β or saline for six days. Sickness behavior was evaluated using body weight assessments and forced swim testing (FST). Blood and brain samples were collected to measure cytokine, p38 mitogen-activated protein kinase (MAPK), and phospho-p38 MAPK levels using multiplex techniques. There were significant reductions in body weights and FST immobility times associated with IL-1β administration. Rats administered IL-1β had significantly higher serum levels of IL-10, but not interferon-γ. Within the hippocampus, IL-1β reduced levels of p38 MAPK, but had no impact on levels of phospho-p38 MAPK except in the presence of DMP904. When administered alone, DMP904 had no significant effect on p38 MAPK or phospho-p38 MAPK in the hippocampus, but when given with IL-1β led to increased phosphorylation of p38 MAPK. IL-1β and DMP904 reduced levels of p38 MAPK within the hypothalamus, while co-administration of IL-1β and DMP904 abolished the effects of either drug alone

  17. Growth hormone receptor antagonism suppresses tumour regrowth after radiotherapy in an endometrial cancer xenograft model.

    PubMed

    Evans, Angharad; Jamieson, Stephen M F; Liu, Dong-Xu; Wilson, William R; Perry, Jo K

    2016-08-28

    Human GH expression is associated with poor survival outcomes for endometrial cancer patients, enhanced oncogenicity of endometrial cancer cells and reduced sensitivity to ionising radiation in vitro, suggesting that GH is a potential target for anticancer therapy. However, whether GH receptor inhibition sensitises to radiotherapy in vivo has not been tested. In the current study, we evaluated whether the GH receptor antagonist, pegvisomant (Pfizer), sensitises to radiotherapy in vivo in an endometrial tumour xenograft model. Subcutaneous administration of pegvisomant (20 or 100 mg/kg/day, s.c.) reduced serum IGF1 levels by 23% and 68%, respectively, compared to vehicle treated controls. RL95-2 xenografts grown in immunodeficient NIH-III mice were treated with vehicle or pegvisomant (100 mg/kg/day), with or without fractionated gamma radiation (10 × 2.5 Gy over 5 days). When combined with radiation, pegvisomant significantly increased the median time tumours took to reach 3× the pre-radiation treatment volume (49 days versus 72 days; p = 0.001). Immunohistochemistry studies demonstrated that 100 mg/kg pegvisomant every second day was sufficient to abrogate MAP Kinase signalling throughout the tumour. In addition, treatment with pegvisomant increased hypoxic regions in irradiated tumours, as determined by immunohistochemical detection of pimonidazole adducts, and decreased the area of CD31 labelling in unirradiated tumours, suggesting an anti-vascular effect. Pegvisomant did not affect intratumoral staining for HIF1α, VEGF-A, CD11b, or phospho-EGFR. Our results suggest that blockade of the human GH receptor may improve the response of GH and/or IGF1-responsive endometrial tumours to radiation.

  18. Antagonism of Human Formyl Peptide Receptor 1 (FPR1) by Chromones and Related Isoflavones

    PubMed Central

    Schepetkin, Igor A.; Kirpotina, Liliya N.; Khlebnikov, Andrei I.; Cheng, Ni; Ye, Richard D.; Quinn, Mark T.

    2014-01-01

    Formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) expressed on a variety of cell types. Because FPRs play an important role in the regulation of inflammatory reactions implicated in disease pathogenesis, FPR antagonists may represent novel therapeutics for modulating innate immunity. Previously, 4H-chromones were reported to be potent and competitive FPR1 antagonists. In the present studies, 96 additional chromone analogs, including related synthetic and natural isoflavones were evaluated for FPR1 antagonist activity. We identified a number of novel competitive FPR1 antagonists that inhibited fMLF-induced intracellular Ca2+ mobilization in FPR1-HL60 cells and effectively competed with WKYMVm-FITC for binding to FPR1 in FPR1-HL60 and FPR1-RBL cells. Compound 10 (6-hexyl-2-methyl-3-(1-methyl-1H-benzimidazol-2-yl)-4-oxo-4H-chromen-7-yl acetate) was found to be the most potent FPR1-specific antagonist, with binding affinity Ki~100 nM. These chromones inhibited Ca2+ flux and chemotaxis in human neutrophils with nanomolar-micromolar IC50 values. In addition, the most potent novel FPR1 antagonists inhibited fMLF-induced phosphorylation of extracellular signal-regulated kinases (ERK1/2) in FPR1-RBL cells. These antagonists were specific for FPR1 and did not inhibit WKYMVM/WKYMVm-induced intracellular Ca2+ mobilization in FPR2-HL60 cells, FPR3-HL60 cells, RBL cells transfected with murine Fpr1, or interleukin 8-induced Ca2+ flux in human neutrophils and RBL cells transfected with CXC chemokine receptor 1 (CXCR1). Moreover, pharmacophore modeling showed that the active chromones had a significantly higher degree of similarity with the pharmacophore template as compared to inactive analogs. Thus, the chromone/isoflavone scaffold represents a relevant backbone for development of novel FPR1 antagonists. PMID:25450672

  19. Endothelin-a receptor antagonism after renal angioplasty enhances renal recovery in renovascular disease.

    PubMed

    Chade, Alejandro R; Tullos, Nathan; Stewart, Nicholas J; Surles, Bret

    2015-05-01

    Percutaneous transluminal renal angioplasty/stenting (PTRAS) is frequently used to treat renal artery stenosis and renovascular disease (RVD); however, renal function is restored in less than one half of the cases. This study was designed to test a novel intervention that could refine PTRAS and enhance renal recovery in RVD. Renal function was quantified in pigs after 6 weeks of chronic RVD (induced by unilateral renal artery stenosis), established renal damage, and hypertension. Pigs with RVD then underwent PTRAS and were randomized into three groups: placebo (RVD+PTRAS), chronic endothelin-A receptor (ET-A) blockade (RVD+PTRAS+ET-A), and chronic dual ET-A/B blockade (RVD+PTRAS+ET-A/B) for 4 weeks. Renal function was again evaluated after treatments, and then, ex vivo studies were performed on the stented kidney. PTRAS resolved renal stenosis, attenuated hypertension, and improved renal function but did not resolve renal microvascular rarefaction, remodeling, or renal fibrosis. ET-A blocker therapy after PTRAS significantly improved hypertension, microvascular rarefaction, and renal injury and led to greater recovery of renal function. Conversely, combined ET-A/B blockade therapy blunted the therapeutic effects of PTRAS alone or PTRAS followed by ET-A blockade. These data suggest that ET-A receptor blockade therapy could serve as a coadjuvant intervention to enhance the outcomes of PTRAS in RVD. These results also suggest that ET-B receptors are important for renal function in RVD and may contribute to recovery after PTRAS. Using clinically available compounds and techniques, our results could contribute to both refinement and design of new therapeutic strategies in chronic RVD.

  20. Subgingival Plaque in Periodontal Health Antagonizes at Toll-Like Receptor 4 and Inhibits E-Selectin Expression on Endothelial Cells

    PubMed Central

    Gümüş, Pinar; Nizam, Nejat; Buduneli, Nurcan

    2015-01-01

    The ability of the subgingival microbial community to induce an inappropriate inflammatory response ultimately results in the destruction of bone and gingival tissue. In this study, subgingival plaque samples from both healthy and diseased sites in the same individual were obtained from adults with chronic periodontitis and screened for their ability to either activate Toll-like receptor 2 (TLR2) or TLR4 and to antagonize TLR4-specific activation by agonist, Fusobacterium nucleatum LPS. Subgingival plaque from diseased sites strongly activated TLR4, whereas matched plaque samples obtained from healthy sites were significantly more variable, with some samples displaying strong TLR4 antagonism, while others were strong TLR4 agonists when combined with F. nucleatum LPS. Similar results were observed when TLR4 dependent E-selectin expression by endothelial cells was determined. These results are the first to demonstrate TLR4 antagonism from human plaque samples and demonstrate that healthy but not diseased sites display a wide variation in TLR4 agonist and antagonist behavior. The results have identified a novel characteristic of clinically healthy sites and warrant further study on the contribution of TLR4 antagonism in the progression of a healthy periodontal site to a diseased one. PMID:26483407

  1. i-bodies, Human Single Domain Antibodies That Antagonize Chemokine Receptor CXCR4.

    PubMed

    Griffiths, Katherine; Dolezal, Olan; Cao, Benjamin; Nilsson, Susan K; See, Heng B; Pfleger, Kevin D G; Roche, Michael; Gorry, Paul R; Pow, Andrew; Viduka, Katerina; Lim, Kevin; Lu, Bernadine G C; Chang, Denison H C; Murray-Rust, Thomas; Kvansakul, Marc; Perugini, Matthew A; Dogovski, Con; Doerflinger, Marcel; Zhang, Yuan; Parisi, Kathy; Casey, Joanne L; Nuttall, Stewart D; Foley, Michael

    2016-06-10

    CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an "i-body," the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor. PMID:27036939

  2. GABAA receptor antagonism ameliorates behavioral and synaptic impairments associated with MeCP2 overexpression.

    PubMed

    Na, Elisa S; Morris, Michael J; Nelson, Erika D; Monteggia, Lisa M

    2014-07-01

    Methyl-CpG-binding protein 2 (MeCP2) is a ubiquitously expressed transcriptional regulator with functional importance in the central nervous system. Loss-of-function mutations in MECP2 results in the neurodevelopmental disorder, Rett syndrome, whereas increased expression levels are associated with the neurological disorder, MECP2 duplication syndrome. Previous characterization of a mouse line overexpressing Mecp2 demonstrated that this model recapitulated key behavioral features of MECP2 duplication syndrome with specific deficits in synaptic plasticity and neurotransmission. Alterations in excitation/inhibition balance have been suggested to underlie neurodevelopmental disorders with recent data suggesting that picrotoxin (PTX), a GABAA receptor antagonist, rescues certain behavioral and synaptic phenotypes in a mouse model of Down syndrome. We therefore examined whether a similar treatment regimen would impact the behavioral and synaptic phenotypes in a mouse model of MECP2 duplication syndrome. We report that chronic treatment with low doses of PTX ameliorates specific behavioral phenotypes, including motor coordination, episodic memory impairments, and synaptic plasticity deficits. These findings suggest that GABAA receptor antagonists may offer a possible therapeutic target for the treatment of MECP2 duplication syndrome.

  3. 5-HT Receptor Antagonism Attenuates the Ischemia-Reperfusion Injury After Rabbit Lung Preservation.

    PubMed

    Arreola-Ramírez, J L; Alquicira-Mireles, J; Morales-Hernández, P E; Vargas, M H; Villalba-Caloca, J; Segura-Medina, P

    2015-01-01

    The success of lung transplantation is threatened by the appearance of ischemia-reperfusion injury, which is characterized by increased vascular permeability. 5-Hydroxytryptamine (5-HT; serotonin) is known to produce microvascular leakage in the systemic circulation, but its possible role in ischemia-reperfusion injury after lung preservation has not been reported. In this work we measured the release of 5-HT during a 24-hour rabbit lung preservation, and the effect of methiothepin (antagonist of the majority of 5-HT receptors) and SB204741 (antagonist of 5-HT2B/2C receptors) on the modified capillary filtration coefficient (mKf,c) was evaluated at the end of this period. Our results showed that the highest release rate of 5-HT occurred during the first 15 minutes after the lung harvesting and progressively decreased in the following time intervals. The baseline mKf,c greatly increased after 24 hours of lung preservation, and this increment was partially reduced by methiothepin and even more by SB204741. We concluded that 5-HT may play an important role in the ischemia-reperfusion process after lung preservation.

  4. FGF receptor antagonism does not affect adipose tissue development in nutritionally induced obesity.

    PubMed

    Scroyen, Ilse; Vranckx, Christine; Lijnen, Henri Roger

    2014-01-01

    The fibroblast growth factor (FGF)-FGF receptor (FGFR) system plays a role in angiogenesis and maintenance of vascular integrity, but its potential role in adipose tissue related angiogenesis and development is still unknown. Administration of SSR, a low molecular weight inhibitor of multiple FGFRs, did not significantly affect body weight nor weight of subcutaneous or gonadal (GON) fat, as compared with pair-fed control mice. Adipocyte hypertrophy and reduced adipocyte density were only observed in GON adipose tissues of treated mice. Adipose tissue angiogenesis was not affected by SSR treatment, as normalized blood vessel density was comparable in adipose tissues of both groups. Blocking the FGF-FGFR system in vivo does not markedly affect adipose tissue development in mice with nutritionally induced obesity.

  5. Pharmacologic antagonism of thromboxane A2 receptors by trimetoquinol analogs in vitro and in vivo

    SciTech Connect

    Shin, Y.; Romstedt, K.J.; Doyle, K.; Harrold, M.W.; Gerhardt, M.A.; Miller, D.D.; Patil, P.N.; Feller, D.R. )

    1991-01-01

    Although (-)-(S)-trimetoquinol (1-(3,4,5-trimethoxy-benzyl)- 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline; TMQ) is recognized as a potent bronchodilator, (+)-(R)-TMQ is a selective antagonist of human platelet aggregation and serotonin secretion induced by thromboxane A2 (TXA2) agonists. To confirm the pharmacological actions of TMQ analogs, the interaction of the drugs with TXA2 receptors was examined in human platelets and in a mouse sudden death model. The inhibitory potencies of TMQ analogs (pIC50 values) for displacement of (3H)SQ 29,548 binding to platelets showed excellent correlation with the respective pIC50 (-log IC50) values for U46619-induced aggregation (r = 0.99, P less than 0.01) and serotonin secretion (r = 0.99, P less than 0.01) in human platelet-rich plasma and for whole blood aggregation (r = 0.99, P less than 0.01). In each system, the rank order of inhibitory potencies was rac-iodoTMQ greater than or equal to (+)-(R)-TMQ greater than rac-TMQ much greater than (-)-(S)-TMQ. Antithrombotic effects of TMQ analogs were evaluated in a mouse sudden death model. In vivo antithrombotic potencies of these compounds were consistent with the in vitro potencies as TXA2 receptor antagonists in platelet systems. Administration of rac-iodoTMQ, (+)-(R)-TMQ and rac-TMQ 15 min before the injection of U46619 (800 micrograms/kg, iv) protected mice against U46619-induced sudden death. On the other hand, (-)-(S)-TMQ did not protect animals against death. Protection of U46619-induced cardiopulmonary thrombosis by TMQ analogs was seen at doses of 3-100 mg/kg.

  6. Direct influence of C-terminally substituted amino acids in the Dmt-Tic pharmacophore on delta-opioid receptor selectivity and antagonism.

    PubMed

    Balboni, Gianfranco; Salvadori, Severo; Guerrini, Remo; Negri, Lucia; Giannini, Elisa; Bryant, Sharon D; Jinsmaa, Yunden; Lazarus, Lawrence H

    2004-07-29

    A series of 17 analogues were developed on the basis of the general formula H-Dmt-Tic-NH-CH(R)-R' (denotes chirality; R = charged, neutral, or aromatic functional group; R' = -OH or -NH(2)). These compounds were designed to test the following hypothesis: the physicochemical properties of third-residue substitutions C-terminal to Tic in the Dmt-Tic pharmacophore modify delta-opioid receptor selectivity and delta-opioid receptor antagonism through enhanced interactions with the mu-opioid receptor. The data substantiate the following conclusions: (i) all compounds had high receptor affinity [K(i)(delta) = 0.034-1.1 nM], while that for the mu-opioid receptor fluctuated by orders of magnitude [K(i)(mu) = 15.1-3966 nM]; (ii) delta-opioid receptor selectivity [K(i)(mu)/K(i)(delta)] declined 1000-fold from 22,600 to 21; (iii) a C-terminal carboxyl group enhanced selectivity but only as a consequence of the specific residue; (iv) amidated, positive charged residues [Lys-NH(2) (6), Arg-NH(2) (7)], and a negatively charged aromatic residue [Trp-OH (11)] enhanced mu-opioid affinity [K(i)(mu) = 17.0, 15.1, and 15.7 nM, respectively], while Gly-NH(2) (8), Ser-NH(2) (10), and His-OH (12) were nearly one-tenth as active; and (v) D-isomers exhibited mixed effects on mu-opioid receptor affinity (2' < 3' < 4' < 1' < 5') and decreased delta-selectivity in D-Asp-NH(2) (1') and D-Lys(Ac)-OH (5'). The analogues exhibited delta-opioid receptor antagonism (pA(2) = 6.9-10.07) and weak mu-opioid receptor agonism (IC(50) > 1 microM) except H-Dmt-Tic-Glu-NH(2) (3), which was a partial delta-opioid receptor agonist (IC(50) = 2.5 nM). Thus, these C-terminally extended analogues indicated that an amino acid residue containing a single charge, amino or guanidino functionality, or aromatic group substantially altered the delta-opioid receptor activity profile (selectivity and antagonism) of the Dmt-Tic pharmacophore, which suggests that the C-terminal constituent plays a major role in determining

  7. Inhibition of angiogenesis by selective estrogen receptor modulators through blockade of cholesterol trafficking rather than estrogen receptor antagonism.

    PubMed

    Shim, Joong Sup; Li, Ruo-Jing; Lv, Junfang; Head, Sarah A; Yang, Eun Ju; Liu, Jun O

    2015-06-28

    Selective estrogen receptor modulators (SERM) including tamoxifen are known to inhibit angiogenesis. However, the underlying mechanism, which is independent of their action on the estrogen receptor (ER), has remained largely unknown. In the present study, we found that tamoxifen and other SERM inhibited cholesterol trafficking in endothelial cells, causing a hyper-accumulation of cholesterol in late endosomes/lysosomes. Inhibition of cholesterol trafficking by tamoxifen was accompanied by abnormal subcellular distribution of vascular endothelial growth factor receptor-2 (VEGFR2) and inhibition of the terminal glycosylation of the receptor. Tamoxifen also caused perinuclear positioning of lysosomes, which in turn trapped the mammalian target of rapamycin (mTOR) in the perinuclear region of endothelial cells. Abnormal distribution of VEGFR2 and mTOR and inhibition of VEGFR2 and mTOR activities by tamoxifen were significantly reversed by addition of cholesterol-cyclodextrin complex to the culture media of endothelial cells. Moreover, high concentrations of tamoxifen inhibited endothelial and breast cancer cell proliferation in a cholesterol-dependent, but ER-independent, manner. Together, these results unraveled a previously unrecognized mechanism of angiogenesis inhibition by tamoxifen and other SERM, implicating cholesterol trafficking as an attractive therapeutic target for cancer treatment.

  8. Effect of opioid receptor antagonism on proopiomelanocortin peptide levels and gene expression in the hypothalamus.

    PubMed

    Markowitz, C E; Berkowitz, K M; Jaffe, S B; Wardlaw, S L

    1992-06-01

    In order to determine how brain beta-endorphin (beta-EP) and its precursor proopiomelanocortin (POMC) adapt to chronic opioid blockade we have examined the effects of treatment with the opioid receptor antagonist naltrexone (NTX) on POMC gene expression and peptide levels in the hypothalamus. Male rats were treated with NTX by daily injection or constant minipump infusion. RNA was isolated from the medial basal hypothalamus (MBH) after an aliquot was removed for peptide RIA and the amount of POMC mRNA was measured by solution hybridization SI nuclease protection assay. beta-EP and several other POMC-derived peptides including alpha-melanocyte-stimulating hormone (alpha-MSH) and corticotropin-like intermediate lobe peptide (CLIP) or gamma(3)-MSH were measured in the MBH and anterior hypothalamus (AH) by RIA. In an initial experiment POMC peptide levels were measured after 7 days of NTX (4.8 mg/day) infusion. There was a marked fall in the concentrations of beta-EP, alpha-MSH, and CLIP; levels in the MBH declined by more than 60% (P < 0.001). In the next experiment NTX (1 mg) was injected daily and POMC peptides and mRNA were measured after 2 and 5 days of treatment. (beta-EP) and alpha-MSH levels fell progressively in the MBH and AH and were significantly less than those of the controls by 5 days of treatment (P < 0.02). POMC mRNA levels, however, did not change after 2 or 5 days. When NTX was infused for 3 weeks there was a decrease in the concentrations of beta-EP, alpha-MSH, and gamma(3)-MSH in the MBH (P < 0.001). The concentration of POMC mRNA in the MBH, however, was significantly higher in the NTX-treated animals, 0.99 +/- 0.06 pg/mug RNA vs 0.81 +/- 0.05 pg/mug RNA (P < 0.05). Since NTX can affect LH and testosterone release, the study was repeated in castrated rats. POMC peptide levels again fell after 3 weeks of NTX. POMC mRNA levels were higher in the castrated rats than in the intact rats, 1.14 +/- 0.06 pg/mug RNA vs 0.85 +/- 0.09 pg/mug RNA (P < 0

  9. Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs.

    PubMed

    Pradelli, Emmanuelle; Karimdjee-Soilihi, Babou; Michiels, Jean-François; Ricci, Jean-Ehrland; Millet, Marie-Ange; Vandenbos, Fanny; Sullivan, Timothy J; Collins, Tassie L; Johnson, Michael G; Medina, Julio C; Kleinerman, Eugenie S; Schmid-Alliana, Annie; Schmid-Antomarchi, Heidy

    2009-12-01

    Metastasis continues to be the leading cause of mortality for patients with cancer. Several years ago, it became clear that chemokines and their receptors could control the tumor progress. CXCR3 has now been identified in many cancers including osteosarcoma and CXCR3 ligands were expressed by lungs that are the primary sites to which this tumor metastasize. This study tested the hypothesis that disruption of the CXCR3/CXCR3 ligands complexes could lead to a decrease in lungs metastasis. The experimental design involved the use of the CXCR3 antagonist, AMG487 and 2 murine models of osteosarcoma lung metastases. After tail vein injection of osteosarcoma cells, mice that were systematically treated with AMG487 according to preventive or curative protocols had a significant reduction in metastatic disease. Treatment of osteosarcoma cells in vitro with AMG487 led to decreased migration, decreased matrix metalloproteinase activity, decreased proliferation/survival and increased caspase-independent death. Taken together, our results support the hypothesis that CXCR3 and their ligands intervene in the initial dissemination of the osteosarcoma cells to the lungs and stimulate the growth and expansion of the metastatic foci in later stages. Moreover, these studies indicate that targeting CXCR3 may specifically inhibit tumor metastasis without adversely affecting antitumoral host response. PMID:19544560

  10. Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs

    PubMed Central

    Pradelli, Emmanuelle; Karimdjee-Soilihi, Babou; Michiels, Jean-François; Ricci, Jean-Ehrland; Millet, Marie-Ange; Vandenbos, Fanny; Sullivan, Timothy J.; Collins, Tassie L.; Johnson, Michael G.; Medina, Julio C.; Kleinerman, Eugenie S.; Schmid-Alliana, Annie; Schmid-Antomarchi, Heidy

    2009-01-01

    Metastasis continues to be the leading cause of mortality for patients with cancer. Several years ago, it became clear that chemokines and their receptors could control the tumor progress. CXCR3 has now been identified in many cancers including osteosarcoma and CXCR3 ligands were expressed by lungs that are the primary sites to which this tumor metastasize. This study tested the hypothesis that disruption of the CXCR3/CXCR3 ligands complexes could lead to a decrease in lungs metastasis. The experimental design involved the use of the CXCR3 antagonist, AMG487 and 2 murine models of osteosarcoma lung metastases. After tail vein injection of osteosarcoma cells, mice that were systematically treated with AMG487 according to preventive or curative protocols had a significant reduction in metastatic disease. Treatment of osteosarcoma cells in vitro with AMG487 led to decreased migration, decreased matrix metalloproteinase activity, decreased proliferation/survival and increased caspase-independent death. Taken together, our results support the hypothesis that CXCR3 and their ligands intervene in the initial dissemination of the osteosarcoma cells to the lungs and stimulate the growth and expansion of the metastatic foci in later stages. Moreover, these studies indicate that targeting CXCR3 may specifically inhibit tumor metastasis without adversely affecting antitumoral host response. PMID:19544560

  11. The Halicylindramides, Farnesoid X Receptor Antagonizing Depsipeptides from a Petrosia sp. Marine Sponge Collected in Korea.

    PubMed

    Hahn, Dongyup; Kim, Hiyoung; Yang, Inho; Chin, Jungwook; Hwang, Hoosang; Won, Dong Hwan; Lee, Byoungchan; Nam, Sang-Jip; Ekins, Merrick; Choi, Hyukjae; Kang, Heonjoong

    2016-03-25

    Three new structurally related depsipeptides, halicylindramides F-H (1-3), and two known halicylindramides were isolated from a Petrosia sp. marine sponge collected off the shore of Youngdeok-Gun, East Sea, Republic of Korea. Their planar structures were elucidated by extensive spectroscopic data analyses including 1D and 2D NMR data as well as MS data. The absolute configurations of halicylindramides F-H (1-3) were determined by Marfey's method in combination with Edman degradation. The absolute configurations at C-4 of the dioxyindolyl alanine (Dioia) residues of halicylindramides G (2) and H (3) were determined as 4S and 4R, respectively, based on ECD spectroscopy. The C-2 configurations of Dioia in 2 and 3 were speculated to both be 2R based on the shared biogenesis of the halicylindramides. Halicylindramides F (1), A (4), and C (5) showed human farnesoid X receptor (hFXR) antagonistic activities, but did not bind directly to hFXR. PMID:26821210

  12. Antagonism of NMDA receptors as a potential treatment for Down syndrome: a pilot randomized controlled trial

    PubMed Central

    Boada, R; Hutaff-Lee, C; Schrader, A; Weitzenkamp, D; Benke, T A; Goldson, E J; Costa, A C S

    2012-01-01

    Down syndrome (DS) is the most common genetic cause of intellectual disability. The N-methyl-D-aspartate (NMDA) receptor uncompetitive antagonist, memantine hydrochloride (memantine), has been shown to improve learning/memory and rescue one form of hippocampus synaptic plasticity dysfunction in the best-studied mouse model of DS available, the Ts65Dn mouse. Given the status of memantine as a treatment for Alzheimer's disease (AD) approved by the Food and Drug Administration, the preclinical evidence of potential efficacy in Ts65Dn mice, and the favorable safety profile of memantine, we designed a study to investigate whether the findings in the mouse model could be translated to individuals with DS. In this pilot, proof-of-principle study we hypothesized that memantine therapy would improve test scores of young adults with DS on measures of episodic and spatial memory, which are generally considered to be hippocampus dependent. Accordingly, in this randomized, double-blind, placebo-controlled trial, we compared the effect of 16-week treatment with either memantine or placebo on cognitive and adaptive functions of 40 young adults with DS using a carefully selected set of neuropsychological outcome measures. Safety and tolerability were also monitored. Although no significant differences were observed between the memantine and placebo groups on the two primary outcome measures, we found a significant improvement in the memantine group in one of the secondary measures associated with the primary hypothesis. Only infrequent and mild adverse events were noted. PMID:22806212

  13. Antagonism of NMDA receptors as a potential treatment for Down syndrome: a pilot randomized controlled trial.

    PubMed

    Boada, R; Hutaff-Lee, C; Schrader, A; Weitzenkamp, D; Benke, T A; Goldson, E J; Costa, A C S

    2012-01-01

    Down syndrome (DS) is the most common genetic cause of intellectual disability. The N-methyl-D-aspartate (NMDA) receptor uncompetitive antagonist, memantine hydrochloride (memantine), has been shown to improve learning/memory and rescue one form of hippocampus synaptic plasticity dysfunction in the best-studied mouse model of DS available, the Ts65Dn mouse. Given the status of memantine as a treatment for Alzheimer's disease (AD) approved by the Food and Drug Administration, the preclinical evidence of potential efficacy in Ts65Dn mice, and the favorable safety profile of memantine, we designed a study to investigate whether the findings in the mouse model could be translated to individuals with DS. In this pilot, proof-of-principle study we hypothesized that memantine therapy would improve test scores of young adults with DS on measures of episodic and spatial memory, which are generally considered to be hippocampus dependent. Accordingly, in this randomized, double-blind, placebo-controlled trial, we compared the effect of 16-week treatment with either memantine or placebo on cognitive and adaptive functions of 40 young adults with DS using a carefully selected set of neuropsychological outcome measures. Safety and tolerability were also monitored. Although no significant differences were observed between the memantine and placebo groups on the two primary outcome measures, we found a significant improvement in the memantine group in one of the secondary measures associated with the primary hypothesis. Only infrequent and mild adverse events were noted. PMID:22806212

  14. Kappa-opioid receptor antagonism improves recovery from myocardial stunning in chronically instrumented dogs.

    PubMed

    Grosse Hartlage, Maike A; Theisen, Marc M; Monteiro de Oliveira, Nelson P; Van Aken, Hugo; Fobker, Manfred; Weber, Thomas P

    2006-10-01

    We tested the hypothesis that the selective kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI) improves recovery from myocardial stunning. Ten dogs were chronically instrumented for measurement of heart rate, left atrial, aortic and left ventricular pressure (LVP), and the maximum rate of LVP increase (LV dP/dt(max)) and decrease (LV dP/dt(max)), coronary blood flow velocity and myocardial wall-thickening fraction. Regional myocardial blood flow was determined with fluorescent microspheres. Catecholamine plasma levels were measured by high-performance liquid chromatography, and beta-endorphin and dynorphin plasma levels by radioimmunoassay. An occluder around the left anterior descending artery (LAD) allowed induction of a reversible LAD-ischemia. Animals underwent two experiments in a randomized crossover fashion on separate days: (a) 10 min LAD-occlusion (control experiment), (b) second ischemic episode 24 h after nor-BNI (2.5 mg/kg IV) (intervention). Dogs receiving nor-BNI showed an increase in wall-thickening fraction, LV dP/dt(max) and LV dP/dt(min) before ischemia and during the whole reperfusion (P < 0.05 versus control experiment). After nor-BNI pretreatment, dynorphin levels increased after induction of ischemia to a peak level of 15.1 +/- 3.6 pg/mL (P < 0.05 versus control experiment). The increase in plasma beta-endorphin during ischemia and early reperfusion was attenuated after nor-BNI. Compared with the control experiment, nor-BNI left global hemodynamics, regional myocardial blood flow, and catecholamine levels unchanged. In conclusion, nor-BNI improves recovery from myocardial stunning after regional myocardial ischemia in chronically instrumented dogs.

  15. Effects of bradykinin B2 receptor antagonism on the hypotensive effects of ACE inhibition.

    PubMed Central

    Bouaziz, H; Joulin, Y; Safar, M; Benetos, A

    1994-01-01

    1. The aim of this study was to determine the participation of endogenous bradykinin (BK) in the antihypertensive effects of the angiotensin converting enzyme inhibitor (ACEI), perindoprilat, in the spontaneously hypertensive rat (SHR) on different salt diets. 2. Conscious SHRs receiving either a low or a high NaCl diet were used in order to evaluate the respective roles of angiotensin II suppression and bradykinin stimulation in the acute hypotensive effects of perindoprilat. Two different B2 receptor antagonists (B 4146 and Hoe 140) were used after bolus administration of 7 mg kg-1 of the ACEI, perindoprilat. In separate animals, Hoe 140 was administered before the injection of perindoprilat. In other experiments, the effects of Hoe 140 on the hypotensive effects of the calcium antagonist, nicardipine, were tested. 3. The different NaCl diets had no effect on baseline blood pressure. Hoe 140 injection before ACE inhibition did not modify blood pressure. Perindoprilat caused more marked hypotension in the low salt-fed rats than in the high salt animals (P < 0.01). Administration of Hoe 140 or B4146 after perindoprilat significantly reduced the antihypertensive effects of perindoprilat in the different groups, but this effect was more pronounced in high salt-fed rats. However, in SHRs receiving Hoe 140 before perindoprilat, the antihypertensive effect of perindoprilat was completely abolished in both high or low salt diet rats. In separate experiments we confirmed that Hoe 140 did not affect the hypotensive efficacy of the calcium antagonist, nicardipine. 4. Our study shows that inhibition of endogenous bradykinin degradation participates in the acute antihypertensive effects of perindoprilat in SHRs. The role of bradykinin is more pronounced following exposure to a high salt diet i.e., when the renin-angiotensin system is suppressed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7858859

  16. The therapeutic promise of ATP antagonism at P2X3 receptors in respiratory and urological disorders

    PubMed Central

    Ford, Anthony P.; Undem, Bradley J.

    2013-01-01

    A sensory role for ATP was proposed long before general acceptance of its extracellular role. ATP activates and sensitizes signal transmission at multiple sites along the sensory axis, across multiple synapses. P2X and P2Y receptors mediate ATP modulation of sensory pathways and participate in dysregulation, where ATP action directly on primary afferent neurons (PANs), linking receptive field to CNS, has received much attention. Many PANs, especially C-fibers, are activated by ATP, via P2X3-containing trimers. P2X3 knock-out mice and knock-down in rats led to reduced nocifensive activity and visceral reflexes, suggesting that antagonism may offer benefit in sensory disorders. Recently, drug-like P2X3 antagonists, active in a many inflammatory and visceral pain models, have emerged. Significantly, these compounds have no overt CNS action and are inactive versus acute nociception. Selectively targeting ATP sensitization of PANs may lead to therapies that block inappropriate chronic signals at their source, decreasing drivers of peripheral and central wind-up, yet leaving defensive nociceptive and brain functions unperturbed. This article reviews this evidence, focusing on how ATP sensitization of PANs in visceral “hollow” organs primes them to chronic discomfort, irritation and pain (symptoms) as well as exacerbated autonomic reflexes (signs), and how the use of isolated organ-nerve preparations has revealed this mechanism. Urinary and airways systems share many features: dependence on continuous afferent traffic to brainstem centers to coordinate efferent autonomic outflow; loss of descending inhibitory influence in functional and sensory disorders; dependence on ATP in mediating sensory responses to diverse mechanical and chemical stimuli; a mechanistically overlapping array of existing medicines for pathological conditions. These similarities may also play out in terms of future treatment of signs and symptoms, in the potential for benefit of P2X3 antagonists

  17. Peroxisome Proliferator Activated Receptor-γ Activation Inhibits Tumor Metastasis by Antagonizing Smad3 Mediated Epithelial Mesenchymal Transition

    PubMed Central

    Reka, Ajaya Kumar; Kurapati, Himabindu; Narala, Venkata R; Bommer, Guido; Chen, Jun; Standiford, Theodore J.; Keshamouni, Venkateshwar G.

    2011-01-01

    Epithelial-mesenchymal transition (EMT) was shown to confer tumor cells with abilities essential for metastasis, including migratory phenotype, invasiveness, and resistance to apoptosis, evading immune surveillance and tumor stem cell traits. Therefore, inhibition of EMT can be an important therapeutic strategy to inhibit tumor metastasis. Here we demonstrate that activation of peroxisome proliferator activated receptor (PPAR) -γ inhibits TGF-β-induced EMT in lung cancer cells and prevents metastasis by antagonizing Smad3 function. Activation of PPAR-γ by synthetic ligands (Troglitazone and Rosiglitazone) or by a constitutively-active form of PPAR-γ prevents TGF-β-induced loss of E-cadherin expression and inhibited the induction of mesenchymal markers (vimentin, N-cadherin, fibronectin) and MMPs. Consistently, activation of PPAR-γ also inhibited EMT-induced migration and invasion of lung cancer cells. Furthermore, effects of PPAR-γ ligands were attenuated by siRNA mediated knockdown of PPAR-γ, indicating that the ligand induced responses are PPAR-γ dependent. Selective knockdown of Smad2 and Smad3 by siRNA demonstrated that TGF-β-induced EMT is Smad3 dependent in lung cancer cells. Activation of PPAR-γ inhibits TGF-β-induced Smad transcriptional activity but had no effect on the phosphorylation or nuclear translocation of Smads. Consistently PPAR-γ activation prevented TGF-ß-induced transcriptional repression of E-cadherin promoter and inhibited transcriptional activation of N-cadherin promoter. Finally, treatment of mice with troglitazone or knockdown of Smad3 in tumor cells both significantly inhibited TGF-β-induced experimental metastasis in Scid-Beige mice. Together, with the low toxicity profile of PPAR-γ ligands, our data demonstrates that these ligands may serve as potential therapeutic agents to inhibit metastasis. PMID:21159608

  18. The therapeutic promise of ATP antagonism at P2X3 receptors in respiratory and urological disorders.

    PubMed

    Ford, Anthony P; Undem, Bradley J

    2013-01-01

    A sensory role for ATP was proposed long before general acceptance of its extracellular role. ATP activates and sensitizes signal transmission at multiple sites along the sensory axis, across multiple synapses. P2X and P2Y receptors mediate ATP modulation of sensory pathways and participate in dysregulation, where ATP action directly on primary afferent neurons (PANs), linking receptive field to CNS, has received much attention. Many PANs, especially C-fibers, are activated by ATP, via P2X3-containing trimers. P2X3 knock-out mice and knock-down in rats led to reduced nocifensive activity and visceral reflexes, suggesting that antagonism may offer benefit in sensory disorders. Recently, drug-like P2X3 antagonists, active in a many inflammatory and visceral pain models, have emerged. Significantly, these compounds have no overt CNS action and are inactive versus acute nociception. Selectively targeting ATP sensitization of PANs may lead to therapies that block inappropriate chronic signals at their source, decreasing drivers of peripheral and central wind-up, yet leaving defensive nociceptive and brain functions unperturbed. This article reviews this evidence, focusing on how ATP sensitization of PANs in visceral "hollow" organs primes them to chronic discomfort, irritation and pain (symptoms) as well as exacerbated autonomic reflexes (signs), and how the use of isolated organ-nerve preparations has revealed this mechanism. Urinary and airways systems share many features: dependence on continuous afferent traffic to brainstem centers to coordinate efferent autonomic outflow; loss of descending inhibitory influence in functional and sensory disorders; dependence on ATP in mediating sensory responses to diverse mechanical and chemical stimuli; a mechanistically overlapping array of existing medicines for pathological conditions. These similarities may also play out in terms of future treatment of signs and symptoms, in the potential for benefit of P2X3 antagonists

  19. Combined mesenchymal stem cell transplantation and interleukin-1 receptor antagonism after partial hepatectomy

    PubMed Central

    Sang, Jian-Feng; Shi, Xiao-Lei; Han, Bing; Huang, Xu; Huang, Tao; Ren, Hao-Zhen; Ding, Yi-Tao

    2016-01-01

    AIM: To study the therapeutic effects of mesenchymal stem cells (MSCs) and an interleukin-1 receptor antagonist (IL-1Ra) in acute liver failure. METHODS: Chinese experimental miniature swine (15 ± 3 kg, 5-8 mo) were obtained from the Laboratory Animal Centre of the Affiliated Drum Tower Hospital of Nanjing University Medical School. Acute liver failure was induced via 85% hepatectomy, and animals were treated by MSC transplantation combined with IL-1Ra injection. Blood samples were collected for hepatic function analysis, and the living conditions and survival time were recorded. Liver injury was histologically analyzed. Hepatic cell regeneration and apoptosis were studied by Ki67 immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. The levels of protein kinase B and nuclear factor-κB expression were analyzed by Western blotting. RESULTS: MSCs were infected with a lentivirus for expression of green fluorescent protein (GFP) for subsequent identification; 97.3% of the MSCs were positive for GFP as assessed by flow cytometry. Additional flow cytometric analysis of cell surface marker expression demonstrated that > 90% of GFP-expressing MSCs were also positive for CD29, CD44, and CD90, indicating that most of these cells expressed typical markers of MSCs, and the population of MSCs was almost pure. Transplantation of MSCs in combination with 2 mg/kg IL-1Ra therapy significantly improved survival time compared to the acute liver failure model group (35.3 ± 6.7 d vs 17.3 ± 5.5 d, P < 0.05). Combined therapy also promoted improvement in serum inflammatory cytokines and biochemical conditions. The observed hepatic histopathologic score was significantly lower in the group with combined therapy than in the model group (3.50 ± 0.87 vs 8.17 ± 1.26, P < 0.01). In addition, liver cell apoptosis in the combined therapy group was significantly inhibited (18.1 ± 2.1% vs 70.8 ± 3.7%, P < 0.01), and hepatic cell regeneration

  20. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism

    PubMed Central

    Hasbi, Ahmed; Perreault, Melissa L.; Shen, Maurice Y. F.; Zhang, Lucia; To, Ryan; Fan, Theresa; Nguyen, Tuan; Ji, Xiaodong; O'Dowd, Brian F.; George, Susan R.

    2014-01-01

    Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues 404Glu and 405Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment.—Hasbi, A., Perreault, M. L., Shen, M. Y. F., Zhang, L., To, R., Fan, T., Nguyen, T., Ji, X., O'Dowd, B. F., George, S. R. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. PMID:25063849

  1. Toll like receptor 9 antagonism modulates spinal cord neuronal function and survival: Direct versus astrocyte-mediated mechanisms.

    PubMed

    Acioglu, Cigdem; Mirabelli, Ersilia; Baykal, Ahmet Tarik; Ni, Li; Ratnayake, Ayomi; Heary, Robert F; Elkabes, Stella

    2016-08-01

    Toll like receptors (TLRs) are expressed by cells of the immune system and mediate the host innate immune responses to pathogens. However, increasing evidence indicates that they are important contributors to central nervous system (CNS) function in health and in pathological conditions involving sterile inflammation. In agreement with this idea, we have previously shown that intrathecal administration of a TLR9 antagonist, cytidine-phosphate-guanosine oligodeoxynucleotide 2088 (CpG ODN 2088), ameliorates the outcomes of spinal cord injury (SCI). Although these earlier studies showed a marked effect of CpG ODN 2088 on inflammatory cells, the expression of TLR9 in spinal cord (SC) neurons and astrocytes suggested that the antagonist exerts additional effects through direct actions on these cells. The current study was undertaken to assess the direct effects of CpG ODN 2088 on SC neurons, astrocytes and astrocyte-neuron interactions, in vitro. We report, for the first time, that inhibition of TLR9 in cultured SC neurons alters their function and confers protection against kainic acid (KA)-induced excitotoxic death. Moreover, the TLR9 antagonist attenuated the KA-elicited endoplasmic reticulum (ER) stress response in neurons, in vitro. CpG ODN 2088 also reduced the transcript levels and release of chemokine (C-X-C) motif ligand 1 (CXCL1) and monocyte chemotactic protein 1 (MCP-1) by astrocytes and it diminished interleukin-6 (IL-6) release without affecting transcript levels in vitro. Conditioned medium (CM) of CpG ODN 2088-treated astroglial cultures decreased the viability of SC neurons compared to CM of vehicle-treated astrocytes. However, this toxicity was not observed when astrocytes were co-cultured with neurons. Although CpG ODN 2088 limited the survival-promoting effects of astroglia, it did not reduce neuronal viability compared to controls grown in the absence of astrocytes. We conclude that the TLR9 antagonist acts directly on both SC neurons and astrocytes

  2. Dual ACE-inhibition and angiotensin II AT1 receptor antagonism with curcumin attenuate maladaptive cardiac repair and improve ventricular systolic function after myocardial infarctionin rat heart.

    PubMed

    Pang, Xue-Fen; Zhang, Li-Hui; Bai, Feng; Wang, Ning-Ping; Ijaz Shah, Ahmed; Garner, Ron; Zhao, Zhi-Qing

    2015-01-01

    Curcumin has been shown to improve cardiac function by reducing degradation of extracellular matrix and inhibiting synthesis of collagen after ischemia. This study tested the hypothesis that attenuation of maladaptive cardiac repair with curcumin is associated with a dual ACE-inhibition and angiotensin II AT1 receptor antagonism after myocardial infarction. Sprague-Dawley rats were subjected to 45min ischemia followed by 7 and 42 days of reperfusion, respectively. Curcumin was fed orally at a dose of 150mg/kg/day only during reperfusion. Relative to the control animals, dietary treatment with curcumin significantly reduced levels of ACE and AT1 receptor protein as determined by Western blot assay, coincident with less locally-expressed ACE and AT1 receptor in myocardium and coronary vessels as identified by immunohistochemistry. Along with this inhibition, curcumin significantly increased protein level of AT2 receptor and its expression compared with the control. As evidenced by less collagen deposition in fibrotic myocardium, curcumin also reduced the extent of collagen-rich scar and increased mass of viable myocardium detected by Masson׳s trichrome staining. Echocardiography showed that the wall thickness of the infarcted anterior septum in the curcumin group was significantly greater than that in the control group. Cardiac contractile function was improved in the curcumin treated animals as measured by fraction shortening and ejection fraction. In cultured cardiac muscle cells, curcumin inhibited oxidant-induced AT1 receptor expression and promoted cell survival. These results suggest that curcumin attenuates maladaptive cardiac repair and enhances cardiac function, primarily mediated by a dual ACE-inhibition and AT1 receptor antagonism after myocardial infarction.

  3. Antagonism of the neuropeptide S receptor with RTI-118 decreases cocaine self-administration and cocaine-seeking behavior in rats

    PubMed Central

    Schmoutz, Christopher D; Zhang, Yanan; Runyon, Scott P; Goeders, Nicholas E

    2012-01-01

    Neuropeptide S (NPS) is a neuromodulatory peptide, acting via a G-protein-coupled receptor to regulate sleep, anxiety and behavioral arousal. Recent research has found that intracerebroventricular NPS can increase cocaine and alcohol self-administration in rodents, suggesting a key role in reward-related neurocircuitry. It is hypothesized that antagonism of the NPS system might represent a novel strategy for the pharmacological treatment of cocaine abuse. To this end, a small-molecule NPSR antagonist (RTI-118) was developed and tested in animal models of cocaine seeking and cocaine taking. Male Wistar rats (n=54) trained to self-administer cocaine and food under a concurrent alternating FR4 schedule exhibited specific dose-dependent decreases in cocaine intake when administered RTI-118. RTI-118 also decreased the reinstatement of extinguished cocaine-seeking behavior induced by conditioned cues, yohimbine and a priming dose of cocaine. These data support the hypothesis that antagonism of the neuropeptide S receptor may ultimately show efficacy in reducing cocaine use and relapse. PMID:22982682

  4. Chronic Antagonism of the Mineralocorticoid Receptor Ameliorates Hypertension and End Organ Damage in a Rodent Model of Salt-Sensitive Hypertension

    PubMed Central

    Zhou, Xiaoyan; Crook, Martin F; Sharif-Rodriguez, Wanda; Zhu, Yonghua; Ruben, Zadok; Pan, Yi; Urosevic-Price, Olga; Wang, Li; Flattery, Amy M; Forrest, Gail; Szeto, Daphne; Zhao, Huawei; Roy, Sophie; Forrest, Michael J

    2011-01-01

    We investigated the effects of chronic mineralocorticoid receptor blockade with eplerenone on the development and progression of hypertension and end organ damage in Dahl salt-sensitive rats. Eplerenone significantly attenuated the progressive rise in systolic blood pressure (SBP) (204 ± 3 vs. 179±3 mmHg, p < 0.05), reduced proteinuria (605.5 ± 29.6 vs. 479.7 ± 26.1 mg/24h, p < 0.05), improved injury scores of glomeruli, tubules, renal interstitium, and vasculature in Dahl salt-sensitive rats fed a high-salt diet. These results demonstrate that mineralocorticoid receptor antagonism provides target organ protection and attenuates the development of elevated blood pressure (BP) in a model of salt-sensitive hypertension. PMID:21950654

  5. Effects of single or combined histamine H1-receptor and leukotriene CysLT1-receptor antagonism on nasal adenosine monophosphate challenge in persistent allergic rhinitis

    PubMed Central

    Lee, Daniel K C; Jackson, Catherine M; Soutar, Patricia C; Fardon, Thomas C; Lipworth, Brian J

    2004-01-01

    Background The effects of single or combined histamine H1-receptor and leukotriene CysLT1-receptor antagonism on nasal adenosine monophosphate (AMP) challenge in allergic rhinitis are unknown. Objective We elected to study the effects of usual clinically recommended doses of fexofenadine (FEX), montelukast (ML) and FEX + ML combination, compared with placebo (PL), on nasal AMP challenge in patients with persistent allergic rhinitis. Methods Twelve patients with persistent allergic rhinitis (all skin prick positive to house dust mite) were randomized in a double-blind cross-over fashion to receive for 1 week either FEX 180 mg, ML 10 mg, FEX 180 mg +ML 10 mg combination, or PL, with nasal AMP challenge performed 12 h after dosing. There was a 1-week washout period between each randomized treatment. The primary outcome measure was the maximum percentage peak nasal inspiratory flow (PNIF) fall from baseline over a 60-min period after nasal challenge with a single 400 mg ml−1 dose of AMP. The area under the 60-min time–response curve (AUC) and nasal symptoms were measured as secondary outcomes. Results There was significant attenuation (P < 0.05) of the mean maximum percentage PNIF fall from baseline after nasal AMP challenge vs. PL, 48; with FEX, 37; 95% confidence interval for difference 2, 20; ML, 35 (4, 22); and FEX + ML, 32 (7, 24). The AUC (%.min) was also significantly attenuated (P < 0.05) vs. PL, 1893; with FEX, 1306 (30, 1143); ML, 1246 (214, 1078); and FEX + ML, 1153 (251, 1227). There were no significant differences for FEX vs. ML vs. FEX + ML comparing either the maximum or AUC response. The total nasal symptom score (out of 12) was also significantly improved (P < 0.05) vs. PL, 3.3; with FEX, 2.1 (0.3, 2.0); ML, 2.0 (0.5, 1.9); and FEX + ML, 2.5 (0.1, 1.4). Conclusion FEX and ML as monotherapy significantly attenuated the response to nasal AMP challenge and improved nasal symptoms compared with PL, while combination therapy conferred no additional

  6. Expression of Serotonin Receptors in the Colonic Tissue of Chronic Diarrhea Rats

    PubMed Central

    Zhu, Tong; Qiu, Juanjuan; Wan, Jiajia; Wang, Fengyun; Tang, Xudong; Guo, Huishu

    2016-01-01

    Background/Aims: This study aimed to investigate the difference among the expression of serotonin receptors (5-HT3, 5-HT4, and 5-HT7 receptors) in colonic tissue of chronic diarrhea rats. Materials and Methods: A rat model of chronic diarrhea was established by lactose diet. The expression of 5-HT3, 5-HT4, and 5-HT7 receptors in the colonic tissue was detected using immunohistochemistry, real-time PCR and Western blotting techniques. Results: There is no significant difference on the protein expression of 5-HT3 receptor between the normal group and the chronic diarrhea model group. The mRNA expression of 5-HT3 receptor in the chronic diarrhea model group was significantly lower than that in the normal group (n = 10; P < 0.01). The protein and mRNA expression of 5-HT4 receptor in the chronic diarrhea model group were significantly higher than those in the normal group (n = 10; P < 0.05, P < 0.01). On the contrary, the protein and mRNA expressions of 5-HT7 receptor in the chronic diarrhea model group were significantly decreased compared with the normal group (n = 10; P < 0.01, P < 0.01). Conclusions: The results suggested the receptors of 5-HT4 and 5-HT7 may be involved in inducing diarrhea by lactose diet. PMID:27184643

  7. In vitro effects of glutamate and N-methyl-D-aspartate receptor (NMDAR) antagonism on human tendon derived cells.

    PubMed

    Dean, Benjamin John Floyd; Snelling, Sarah J B; Dakin, Stephanie Georgina; Javaid, Muhammad Kassim; Carr, Andrew Jonathan

    2015-10-01

    It is known that extracellular glutamate concentrations are increased in tendinopathy but the effects of glutamate upon human tendon derived cells are unknown. The primary purpose was to investigate the effect of glutamate exposure on human tendon-derived cells in terms of viability, protein, and gene expression. The second purpose was to assess whether NMDAR antagonism would affect the response of tendon-derived cells to glutamate exposure. Human tendon-derived cells were obtained from supraspinatus tendon tissue obtained during rotator cuff repair (tendon tear derived cells) and from healthy hamstring tendon tissue (control cells). The in vitro impact of glutamate exposure and NMDAR antagonism (MK-801) was measured using the Alamar blue cell viability assay, immunocytochemistry, and quantitative real-time PCR. Glutamate reduced cell viability at 24 h in tendon tear derived cells but not in control cells at concentrations of 7.5 mM and above. Cell viability was significantly reduced after 72 h of 1.875 mM glutamate in both cell groups; this deleterious effect was attenuated by NMDAR antagonism with 10 µM MK-801. Both 24 and 72 h of 1.875 mM glutamate exposure reduced Type 1 alpha 1 collagen (COL1A1) and Type 3 alpha 1 collagen (COL3A1) gene expression, but increased Aggrecan gene expression. We propose that these effects of glutamate on tendon derived cells including reduced cell viability and altered matrix gene expression contribute to the pathogenesis of tendinopathy. PMID:26041147

  8. Prostamide F2α receptor antagonism combined with inhibition of FAAH may block the pro-inflammatory mediators formed following selective FAAH inhibition

    PubMed Central

    Ligresti, Alessia; Martos, Jose; Wang, Jenny; Guida, Francesca; Allarà, Marco; Palmieri, Vittoria; Luongo, Livio; Woodward, David; Di Marzo, Vincenzo

    2014-01-01

    Background and PurposeProstamides are lipid mediators formed by COX-2-catalysed oxidation of the endocannabinoid anandamide and eliciting effects often opposed to those caused by anandamide. Prostamides may be formed when hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) is physiologically, pathologically or pharmacologically decreased. Thus, therapeutic benefits of FAAH inhibitors might be attenuated by concomitant production of prostamide F2α. This loss of benefit might be minimized by compounds designed to selectively antagonize prostamide receptors and also inhibiting FAAH. Experimental ApproachInhibition of FAAH by a series of selective antagonists of prostamide receptors, including AGN 204396, AGN 211335 and AGN 211336, was assessed using rat, mouse and human FAAH in vitro, together with affinity for human recombinant CB1 and CB2 receptors. Effects in vivo were measured in a model of formalin-induced inflammatory pain in mice. Key ResultsThe prostamide F2α receptor antagonists were active against mouse and rat FAAH in the low μM range and behaved as non-competitive and plasma membrane-permeant inhibitors. AGN 211335, the most potent inhibitor of rat FAAH (IC50 = 1.2 μM), raised exogenous anandamide levels in intact cells and also bound to cannabinoid CB1 receptors. Both AGN 211335 and AGN 211336 (0.25–1 mg·kg−1, i.p.) inhibited the formalin-induced nociceptive response in mice. Conclusions and ImplicationsSynthetic compounds with indirect agonist activity at cannabinoid receptors and antagonist activity at prostamide receptors can be developed. Such compounds could be used as alternatives to selective FAAH inhibitors to prevent the possibility of prostamide F2α-induced inflammation and pain. Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6 PMID:24102214

  9. CRF receptor 1 antagonism and brain distribution of active components contribute to the ameliorative effect of rikkunshito on stress-induced anorexia

    PubMed Central

    Mogami, Sachiko; Sadakane, Chiharu; Nahata, Miwa; Mizuhara, Yasuharu; Yamada, Chihiro; Hattori, Tomohisa; Takeda, Hiroshi

    2016-01-01

    Rikkunshito (RKT), a Kampo medicine, has been reported to show an ameliorative effect on sustained hypophagia after novelty stress exposure in aged mice through serotonin 2C receptor (5-HT2CR) antagonism. We aimed to determine (1) whether the activation of anorexigenic neurons, corticotropin-releasing factor (CRF), and pro-opiomelanocortin (POMC) neurons, is involved in the initiation of hypophagia induced by novelty stress in aged mice; (2) whether the ameliorative effect of RKT is associated with CRF and POMC neurons and downstream signal transduction; and (3) the plasma and brain distribution of the active components of RKT. The administration of RKT or 5-HT2CR, CRF receptor 1 (CRFR1), and melanocortin-4 receptor antagonists significantly restored the decreased food intake observed in aged male C57BL/6 mice in the early stage after novelty stress exposure. Seven components of RKT exhibited antagonistic activity against CRFR1. Hesperetin and isoliquiritigenin, which showed antagonistic effects against both CRFR1 and 5-HT2CR, were distributed in the plasma and brain of male Sprague-Dawley rats after a single oral administration of RKT. In conclusion, the ameliorative effect of RKT in this model is assumed to be at least partly due to brain-distributed active components possessing 5-HT2CR and CRFR1 antagonistic activities. PMID:27273195

  10. The effects of fast-off-D2 receptor antagonism on L-DOPA-induced dyskinesia and psychosis in parkinsonian macaques.

    PubMed

    Koprich, James B; Huot, Philippe; Fox, Susan H; Jarvie, Keith; Lang, Anthony E; Seeman, Philip; Brotchie, Jonathan M

    2013-06-01

    3,4-Dihydroxyphenylalanine (L-DOPA) treatment of Parkinson's disease (PD) is compromised by motor side effects, such as dyskinesia and non-motor problems, including psychosis. Because of the marked reduction in brain dopamine in PD and the resultant dopamine D2 receptor supersensitivity, it is impossible to use standard potent dopamine D2 receptor antagonists such as haloperidol to alleviate side effects without compromising the anti-parkinsonian benefits of L-DOPA. Haloperidol antagonizes D2 receptors with high affinity and slowly dissociates from D2 receptors (50% dissociation at 38min). We hypothesized that a rapidly dissociating D2 antagonist might allow some functional dopaminergic transmission and thus have a profile, with respect to reduction of dyskinesia and anti-parkinsonian effects, that was more useful therapeutically. The present study tested the principle of using a fast-off-D2 drug, CLR151 (50% dissociation at 23s) to modify L-DOPA actions in cynomolgus macaques with MPTP-parkinsonism. CLR151 (100mg/kg p.o.) reduced L-DOPA-induced dyskinesia and activity in the parkinsonian macaque by 86% and 52% respectively during peak action. CLR151 (100mg/kg) also reduced psychosis-like behaviour (i.e. reduced apparent visual hallucinations by 78%). Nevertheless, this dose of CLR151 significantly reduced the duration of anti-parkinsonian action of L-DOPA, ON-time (by 90%), and increased parkinsonian disability (by 57%). These data suggest that fast-off-D2 dopamine receptor antagonists, with D2-off-rate values close to those for CLR151, are unlikely to be useful in the treatment of dyskinesia and psychosis in PD. However, fast-off-D2 drugs could provide benefit if new congeners would have an even faster dissociation rate. Such drugs are now becoming available. PMID:23306217

  11. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters.

    PubMed

    Moriya, T; Yoshinobu, Y; Ikeda, M; Yokota, S; Akiyama, M; Shibata, S

    1998-11-01

    Serotonergic projections from the midbrain raphe nuclei to the suprachiasmatic nuclei (SCN) are known to regulate the photic entrainment of circadian clocks. However, it is not known which 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the circadian regulation. In order to verify the role of 5-HT1A receptors, we examined the effects of 5-¿3-[((2S)-1,4-benzodioxan-2-ylmethyl)amino]-propoxy¿-1,3-b enzodioxole HCl (MKC-242), a selective 5-HT1A receptor agonist, on photic entrainment of wheel-running circadian rhythms of hamsters. MKC-242 (3 mg kg(-1), i.p.) significantly accelerated the re-entrainment of wheel-running rhythms to a new 8 h delayed or advanced light-dark cycle. MKC-242 (3 mg kg(-1), i.p.) also potentiated the phase advance of the wheel-running rhythm produced by low (5 lux) or high (60 lux) intensity light pulses. In contrast, 8-hydroxydipropylaminotetralin (8-OH-DPAT)(5 mg kg(-1), i.p.), a well known 5-HT1A/5-HT7 receptor agonist, only suppressed low intensity (5 lux) light-induced phase advances. The potentiating actions of MKC-242 on light pulse-induced phase advances were observed even when injected 20 or 60 min after the light exposure. The potentiating action of MKC-242 was antagonized by WAY100635, a selective 5-HT1A receptor blocker, but not by ritanserin, a 5-HT2/5-HT7 receptor blocker, indicating that MKC-242 is activating 5-HT1A receptors. Light pulse-induced c-fos expression in the SCN and the intergeniculate leaflet (IGL) were unaffected by MKC-242 (3 mg kg(-1), i.p.). HPLC analysis demonstrated that MKC-242 (3 mg kg(-1), i.p.) decreased the 5-HIAA content in the SCN. The present results suggest that presynaptic 5-HT1A receptor activation may be involved in the potentiation of photic entrainment by MKC-242 in hamsters. PMID:9863658

  12. Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters

    PubMed Central

    Moriya, T; Yoshinobu, Y; Ikeda, M; Yokota, S; Akiyama, M; Shibata, S

    1998-01-01

    Serotonergic projections from the midbrain raphe nuclei to the suprachiasmatic nuclei (SCN) are known to regulate the photic entrainment of circadian clocks. However, it is not known which 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the circadian regulation. In order to verify the role of 5-HT1A receptors, we examined the effects of 5-{3-[((2S)-1,4-benzodioxan-2-ylmethyl)amino]propoxy}-1,3-benzodioxole HCl (MKC-242), a selective 5-HT1A receptor agonist, on photic entrainment of wheel-running circadian rhythms of hamsters.MKC-242 (3 mg kg−1, i.p.) significantly accelerated the re-entrainment of wheel-running rhythms to a new 8 h delayed or advanced light-dark cycle.MKC-242 (3 mg kg−1, i.p.) also potentiated the phase advance of the wheel-running rhythm produced by low (5 lux) or high (60 lux) intensity light pulses. In contrast, 8-hydroxy-dipropylaminotetralin (8-OH-DPAT)(5 mg kg−1, i.p.), a well known 5-HT1A/5-HT7 receptor agonist, only suppressed low intensity (5 lux) light-induced phase advances.The potentiating actions of MKC-242 on light pulse-induced phase advances were observed even when injected 20 or 60 min after the light exposure.The potentiating action of MKC-242 was antagonized by WAY100635, a selective 5-HT1A receptor blocker, but not by ritanserin, a 5-HT2/5-HT7 receptor blocker, indicating that MKC-242 is activating 5-HT1A receptors.Light pulse-induced c-fos expression in the SCN and the intergeniculate leaflet (IGL) were unaffected by MKC-242 (3 mg kg−1, i.p.).HPLC analysis demonstrated that MKC-242 (3 mg kg−1, i.p.) decreased the 5-HIAA content in the SCN.The present results suggest that presynaptic 5-HT1A receptor activation may be involved in the potentiation of photic entrainment by MKC-242 in hamsters. PMID:9863658

  13. Evaluation of saccharin intake and expression of fructose-conditioned flavor preferences following opioid receptor antagonism in the medial prefrontal cortex, amygdala or lateral hypothalamus in rats.

    PubMed

    Malkusz, Danielle C; Bernal, Sonia Y; Banakos, Theodore; Malkusz, Gina; Mohamed, Andrew; Vongwattanakit, Tracy; Bodnar, Richard J

    2014-04-01

    In prior studies, systemic opioid receptor antagonism with naltrexone (NTX) failed to block flavor preference conditioning by the sweet taste or post-oral actions of sugar despite reducing overall flavored saccharin intake. Further, NTX microinjections into the nucleus accumbens (NAc) shell or core failed to alter the expression of preferences conditioned by the sweet taste or post-oral actions of sugars. In contrast, fructose-conditioned flavor preferences (CFP) were reduced or eliminated by systemic or intracerebral administration of dopamine (DA) D1 or D2 antagonists in the NAc, medial prefrontal cortex (mPFC), amygdala (AMY) or lateral hypothalamus (LH). The present study examined whether NTX microinjections into the mPFC, AMY or LH would alter expression of fructose-CFP and total flavored saccharin intake. Food-restricted rats with bilateral cannulae aimed at the mPFC, AMY or LH were trained to drink a fructose (8%)+saccharin (0.2%) solution mixed with one flavor (CS+, e.g., cherry) and a 0.2% saccharin solution mixed with another flavor (CS-, e.g., grape) during 10 one-bottle sessions. Two-bottle tests with the cherry and grape flavors in 0.2% saccharin solutions occurred 10min following total bilateral NTX doses of 0, 1, 25 and 50μg administered into the mPFC, AMY or LH. Rats preferred the CS+ over CS- flavor following vehicle and all NTX doses administered into either the mPFC or LH. CS+ intake was significantly greater than CS- intake following vehicle and the low NTX dose in the AMY; however, at the 25 and 50μg AMY NTX doses, CS+ intakes did not significantly exceed CS- intakes. Total flavored saccharin intake was significantly reduced by all three LH NTX doses (20-35%), by the 25 (14%) and 50 (22%)μg AMY NTX doses, but not by mPFC NTX. Thus, opioid antagonism in the AMY, but not the mPFC or LH attenuated, but did not block the expression of fructose-CFP, and LH and AMY, but not mPFC, NTX significantly reduced total saccharin intake. Therefore, whereas

  14. Noradrenergic β-Receptor Antagonism within the Central Nucleus of the Amygdala or Bed Nucleus of the Stria Terminalis Attenuates the Negative/Anxiogenic Effects of Cocaine

    PubMed Central

    Wenzel, Jennifer M.; Cotten, Samuel W.; Dominguez, Hiram M.; Lane, Jennifer E.; Shelton, Kerisa; Su, Zu-In

    2014-01-01

    Cocaine has been shown to produce both initial rewarding and delayed anxiogenic effects. Although the neurobiology of cocaine's rewarding effects has been well studied, the mechanisms underlying its anxiogenic effects remain unclear. We used two behavioral assays to study these opposing actions of cocaine: a runway self-administration test and a modified place conditioning test. In the runway, the positive and negative effects of cocaine are reflected in the frequency of approach-avoidance conflict that animals develop about entering a goal box associated with cocaine delivery. In the place conditioning test, animals develop preferences for environments paired with the immediate/rewarding effects of cocaine, but avoid environments paired with the drug's delayed/anxiogenic actions. In the present study, these two behavioral assays were used to examine the role of norepinephrine (NE) transmission within the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST), each of which has been implicated in drug-withdrawal-induced anxiety and stress-induced response reinstatement. Rats experienced 15 single daily cocaine-reinforced (1.0 mg/kg, i.v.) runway trials 10 min after intracranial injection of the β1 and β2 NE receptor antagonists betaxolol and ICI 118551 or vehicle into the CeA or BNST. NE antagonism of either region dose dependently reduced approach-avoidance conflict behavior compared with that observed in vehicle-treated controls. In addition, NE antagonism selectively interfered with the expression of conditioned place aversions while leaving intact cocaine-induced place preferences. These data suggest a role for NE signaling within the BNST and the CeA in the anxiogenic actions of cocaine. PMID:24599448

  15. GR3027 antagonizes GABAA receptor-potentiating neurosteroids and restores spatial learning and motor coordination in rats with chronic hyperammonemia and hepatic encephalopathy.

    PubMed

    Johansson, Maja; Agusti, Ana; Llansola, Marta; Montoliu, Carmina; Strömberg, Jessica; Malinina, Evgenya; Ragagnin, Gianna; Doverskog, Magnus; Bäckström, Torbjörn; Felipo, Vicente

    2015-09-01

    Hepatic encephalopathy (HE) is one of the primary complications of liver cirrhosis. Current treatments for HE, mainly directed to reduction of ammonia levels, are not effective enough because they cannot completely eliminate hyperammonemia and inflammation, which induce the neurological alterations. Studies in animal models show that overactivation of GABAA receptors is involved in cognitive and motor impairment in HE and that reducing this activation restores these functions. We have developed a new compound, GR3027, that selectively antagonizes the enhanced activation of GABAA receptors by neurosteroids such as allopregnanolone and 3α,21-dihydroxy-5α-pregnan-20-one (THDOC). This work aimed to assess whether GR3027 improves motor incoordination, spatial learning, and circadian rhythms of activity in rats with HE. GR3027 was administered subcutaneously to two main models of HE: rats with chronic hyperammonemia due to ammonia feeding and rats with portacaval shunts (PCS). Motor coordination was assessed in beam walking and spatial learning and memory in the Morris water maze and the radial maze. Circadian rhythms of ambulatory and vertical activity were also assessed. In both hyperammonemic and PCS rats, GR3027 restores motor coordination, spatial memory in the Morris water maze, and spatial learning in the radial maze. GR3027 also partially restores circadian rhythms of ambulatory and vertical activity in PCS rats. GR3027 is a novel approach to treatment of HE that would normalize neurological functions altered because of enhanced GABAergic tone, affording more complete normalization of cognitive and motor function than current treatments for HE.

  16. GR3027 antagonizes GABAA receptor-potentiating neurosteroids and restores spatial learning and motor coordination in rats with chronic hyperammonemia and hepatic encephalopathy

    PubMed Central

    Johansson, Maja; Agusti, Ana; Llansola, Marta; Montoliu, Carmina; Strömberg, Jessica; Malinina, Evgenya; Ragagnin, Gianna; Doverskog, Magnus; Bäckström, Torbjörn

    2015-01-01

    Hepatic encephalopathy (HE) is one of the primary complications of liver cirrhosis. Current treatments for HE, mainly directed to reduction of ammonia levels, are not effective enough because they cannot completely eliminate hyperammonemia and inflammation, which induce the neurological alterations. Studies in animal models show that overactivation of GABAA receptors is involved in cognitive and motor impairment in HE and that reducing this activation restores these functions. We have developed a new compound, GR3027, that selectively antagonizes the enhanced activation of GABAA receptors by neurosteroids such as allopregnanolone and 3α,21-dihydroxy-5α-pregnan-20-one (THDOC). This work aimed to assess whether GR3027 improves motor incoordination, spatial learning, and circadian rhythms of activity in rats with HE. GR3027 was administered subcutaneously to two main models of HE: rats with chronic hyperammonemia due to ammonia feeding and rats with portacaval shunts (PCS). Motor coordination was assessed in beam walking and spatial learning and memory in the Morris water maze and the radial maze. Circadian rhythms of ambulatory and vertical activity were also assessed. In both hyperammonemic and PCS rats, GR3027 restores motor coordination, spatial memory in the Morris water maze, and spatial learning in the radial maze. GR3027 also partially restores circadian rhythms of ambulatory and vertical activity in PCS rats. GR3027 is a novel approach to treatment of HE that would normalize neurological functions altered because of enhanced GABAergic tone, affording more complete normalization of cognitive and motor function than current treatments for HE. PMID:26138462

  17. GR3027 antagonizes GABAA receptor-potentiating neurosteroids and restores spatial learning and motor coordination in rats with chronic hyperammonemia and hepatic encephalopathy.

    PubMed

    Johansson, Maja; Agusti, Ana; Llansola, Marta; Montoliu, Carmina; Strömberg, Jessica; Malinina, Evgenya; Ragagnin, Gianna; Doverskog, Magnus; Bäckström, Torbjörn; Felipo, Vicente

    2015-09-01

    Hepatic encephalopathy (HE) is one of the primary complications of liver cirrhosis. Current treatments for HE, mainly directed to reduction of ammonia levels, are not effective enough because they cannot completely eliminate hyperammonemia and inflammation, which induce the neurological alterations. Studies in animal models show that overactivation of GABAA receptors is involved in cognitive and motor impairment in HE and that reducing this activation restores these functions. We have developed a new compound, GR3027, that selectively antagonizes the enhanced activation of GABAA receptors by neurosteroids such as allopregnanolone and 3α,21-dihydroxy-5α-pregnan-20-one (THDOC). This work aimed to assess whether GR3027 improves motor incoordination, spatial learning, and circadian rhythms of activity in rats with HE. GR3027 was administered subcutaneously to two main models of HE: rats with chronic hyperammonemia due to ammonia feeding and rats with portacaval shunts (PCS). Motor coordination was assessed in beam walking and spatial learning and memory in the Morris water maze and the radial maze. Circadian rhythms of ambulatory and vertical activity were also assessed. In both hyperammonemic and PCS rats, GR3027 restores motor coordination, spatial memory in the Morris water maze, and spatial learning in the radial maze. GR3027 also partially restores circadian rhythms of ambulatory and vertical activity in PCS rats. GR3027 is a novel approach to treatment of HE that would normalize neurological functions altered because of enhanced GABAergic tone, affording more complete normalization of cognitive and motor function than current treatments for HE. PMID:26138462

  18. Antagonism of κ opioid receptor in the nucleus accumbens prevents the depressive-like behaviors following prolonged morphine abstinence.

    PubMed

    Zan, Gui-Ying; Wang, Qian; Wang, Yu-Jun; Liu, Yao; Hang, Ai; Shu, Xiao-Hong; Liu, Jing-Gen

    2015-09-15

    The association between morphine withdrawal and depressive-like symptoms is well documented, however, the role of dynorphin/κ opioid receptor system and the underlying neural substrates have not been fully understood. In the present study, we found that four weeks morphine abstinence after a chronic escalating morphine regimen significantly induced depressive-like behaviors in mice. Prodynorphin mRNA and protein levels were increased in the nucleus accumbens (NAc) after four weeks of morphine withdrawal. Local injection of κ opioid receptor antagonist nor-Binaltorphimine (norBNI) in the NAc significantly blocked the expression of depressive-like behaviors without influencing general locomotor activity. Thus, the present study extends previous findings by showing that prolonged morphine withdrawal-induced depressive-like behaviors are regulated by dynorphin/κ opioid receptor system, and shed light on the κ opioid receptor antagonists as potential therapeutic agents for the treatment of depressive-like behaviors induced by opiate withdrawal.

  19. NMDA receptor antagonism in the basolateral but not central amygdala blocks the extinction of Pavlovian fear conditioning in rats.

    PubMed

    Zimmerman, Joshua M; Maren, Stephen

    2010-05-01

    Glutamate receptors in the basolateral complex of the amygdala (BLA) are essential for the acquisition, expression and extinction of Pavlovian fear conditioning in rats. Recent work has revealed that glutamate receptors in the central nucleus of the amygdala (CEA) are also involved in the acquisition of conditional fear, but it is not known whether they play a role in fear extinction. Here we examine this issue by infusing glutamate receptor antagonists into the BLA or CEA prior to the extinction of fear to an auditory conditioned stimulus (CS) in rats. Infusion of the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX), into either the CEA or BLA impaired the expression of conditioned freezing to the auditory CS, but did not impair the formation of a long-term extinction memory to that CS. In contrast, infusion of the N-methyl-D-aspartate (NMDA) receptor antagonist, D,L-2-amino-5-phosphonopentanoic acid (APV), into the amygdala, spared the expression of fear to the CS during extinction training, but impaired the acquisition of a long-term extinction memory. Importantly, only APV infusions into the BLA impaired extinction memory. These results reveal that AMPA and NMDA receptors within the amygdala make dissociable contributions to the expression and extinction of conditioned fear, respectively. Moreover, they indicate that NMDA receptor-dependent processes involved in extinction learning are localized to the BLA. Together with previous work, these results reveal that NMDA receptors in the CEA have a selective role acquisition of fear memory.

  20. Baseline anandamide levels and body weight impact the weight loss effect of CB1 receptor antagonism in male rats.

    PubMed

    Karlsson, Cecilia; Hjorth, Stephan; Karpefors, Martin; Hansson, Göran I; Carlsson, Björn

    2015-04-01

    The individual weight loss response to obesity treatment is diverse. Here we test the hypothesis that the weight loss response to the CB1 receptor antagonist rimonabant is influenced by endogenous levels of receptor agonists. We show that baseline anandamide levels and body weight independently contribute to predict the treatment response to rimonabant in rodents, demonstrating that addition of biomarkers related to mode of action is relevant for a personalized health care approach to obesity treatment.

  1. Identification of specific ligands for orphan olfactory receptors. G protein-dependent agonism and antagonism of odorants.

    PubMed

    Shirokova, Elena; Schmiedeberg, Kristin; Bedner, Peter; Niessen, Heiner; Willecke, Klaus; Raguse, Jan-Dirk; Meyerhof, Wolfgang; Krautwurst, Dietmar

    2005-03-25

    Olfactory receptors are the largest group of orphan G protein-coupled receptors with an infinitely small number of agonists identified out of thousands of odorants. The de-orphaning of olfactory receptor (OR) is complicated by its combinatorial odorant coding and thus requires large scale odorant and receptor screening and establishing receptor-specific odorant profiles. Here, we report on the stable reconstitution of OR-specific signaling in HeLa/Olf cells via G protein alphaolf and adenylyl cyclase type-III to the Ca2+ influx-mediating olfactory cyclic nucleotide-gated CNGA2 channel. We demonstrate the central role of Galphaolf in odorant-specific signaling out of OR. The employment of the non-typical G protein alpha15 dramatically altered the odorant specificities of 3 of 7 receptors that had been characterized previously by different groups. We further show for two OR that an odorant may be an agonist or antagonist, depending on the G protein used. HeLa/Olf cells proved suitable for high-throughput screening in fluorescence-imaging plate reader experiments, resulting in the de-orphaning of two new OR for the odorant (-)citronellal from an expression library of 93 receptors. To demonstrate the G protein dependence of its odorant response pattern, we screened the most sensitive (-)citronellal receptor Olfr43 versus 94 odorants simultaneously in the presence of Galpha15 or Galphaolf. We finally established an EC50-ranking odorant profile for Olfr43 in HeLa/Olf cells. In summary, we conclude that, in heterologous systems, odorants may function as agonists or antagonists, depending on the G protein used. HeLa/Olf cells provide an olfactory model system for functional expression and de-orphaning of OR.

  2. Age-dependent effects on social interaction of NMDA GluN2A receptor subtype-selective antagonism.

    PubMed

    Green, Torrian L; Burket, Jessica A; Deutsch, Stephen I

    2016-07-01

    NMDA receptor-mediated neurotransmission is implicated in the regulation of normal sociability in mice. The heterotetrameric NMDA receptor is composed of two obligatory GluN1 and either two "modulatory" GluN2A or GluN2B receptor subunits. GluN2A and GluN2B-containing receptors differ in terms of their developmental expression, distribution between synaptic and extrasynaptic locations, and channel kinetic properties, among other differences. Because age-dependent differences in disruptive effects of GluN2A and GluN2B subtype-selective antagonists on sociability and locomotor activity have been reported in rats, the current investigation explored age-dependent effects of PEAQX, a GluN2A subtype-selective antagonist, on sociability, stereotypic behaviors emerging during social interaction, and spatial working memory in 4- and 8-week old male Swiss Webster mice. The data implicate an age-dependent contribution of GluN2A-containing NMDA receptors to the regulation of normal social interaction in mice. Specifically, at a dose of PEAQX devoid of any effect on locomotor activity and mouse rotarod performance, the social interaction of 8-week old mice was disrupted without any effect on the social salience of a stimulus mouse. Moreover, PEAQX attenuated stereotypic behavior emerging during social interaction in 4- and 8-week old mice. However, PEAQX had no effect on spontaneous alternations, a measure of spatial working memory, suggesting that neural circuits mediating sociability and spatial working memory may be discrete and dissociable from each other. Also, the data suggest that the regulation of stereotypic behaviors and sociability may occur independently of each other. Because expression of GluN2A-containing NMDA receptors occurs at a later developmental stage, they may be more involved in mediating the pathogenesis of ASDs in patients with histories of "regression" after a period of normal development than GluN2B receptors.

  3. Antiallodynic effect through spinal endothelin-B receptor antagonism in rat models of complex regional pain syndrome.

    PubMed

    Kim, Yeo Ok; Kim, In Ji; Yoon, Myung Ha

    2015-01-01

    Complex regional pain syndrome (CRPS) is a very complicated chronic pain disorder that has been classified into two types (I and II). Endothelin (ET) receptors are involved in pain conditions at the spinal level. We investigated the role of spinal ET receptors in CRPS. Chronic post-ischemia pain (CPIP) was induced in male Sprague-Dawley rats as a model for CRPS-I by placing a tourniquet (O-ring) at the ankle joint for 3h, and removing it to allow reperfusion. Ligation of L5 and L6 spinal nerves to induce neuropathic pain was performed as a model for CRPS-II. After O-ring application and spinal nerve ligation, the paw withdrawal threshold was significantly decreased at injured sites. Intrathecal administration of the selective ET-B receptor antagonist BQ 788 dose-dependently increased the withdrawal threshold in both CRPS-I and CRPS-II. In contrast, ET-A receptor antagonist BQ 123 did not affect the withdrawal threshold in either CRPS type. The ET-1 levels of plasma and spinal cord increased in both CRPS types. Intrathecal BQ 788 decreased the spinal ET-1 level. These results suggest that ET-1 is involved in the development of mechanical allodynia in CRPS. Furthermore, the ET-B receptor appears to be involved in spinal cord-related CRPS. PMID:25451723

  4. Upregulation of 5-HT2C receptors in hippocampus of pilocarpine-induced epileptic rats: antagonism by Bacopa monnieri.

    PubMed

    Krishnakumar, Amee; Nandhu, M S; Paulose, C S

    2009-10-01

    Emotional disturbances, depressive mood, anxiety, aggressive behavior, and memory impairment are the common psychiatric features associated with temporal lobe epilepsy (TLE). The present study was carried out to investigate the role of Bacopa monnieri extract in hippocampus of pilocarpine-induced temporal lobe epileptic rats through the 5-HT(2C) receptor in relation to depression. Our results showed upregulation of 5-HT(2C) receptors with a decreased affinity in hippocampus of pilocarpine-induced epileptic rats. Also, there was an increase in 5-HT(2C) gene expression and inositol triphosphate content in epileptic hippocampus. Carbamazepine and B. monnieri treatments reversed the alterations in 5-HT(2C) receptor binding, gene expression, and inositol triphosphate content in treated epileptic rats as compared to untreated epileptic rats. The forced swim test confirmed the depressive behavior pattern during epilepsy that was nearly completely reversed by B. monnieri treatment.

  5. Antagonizing amyloid-β/calcium-sensing receptor signaling in human astrocytes and neurons: a key to halt Alzheimer's disease progression?

    PubMed Central

    Dal Prà, Ilaria; Chiarini, Anna; Armato, Ubaldo

    2015-01-01

    Astrocytes’ roles in late-onset Alzheimer's disease (LOAD) promotion are important, since they survive soluble or fibrillar amyloid-β peptides (Aβs) neurotoxic effects, undergo alterations of intracellular and intercellular Ca2+ signaling and gliotransmitters release via the Aβ/α7-nAChR (α7-nicotinic acetylcholine receptor) signaling, and overproduce/oversecrete newly synthesized Aβ42 oligomers, NO, and VEGF-A via the Aβ/CaSR (calcium-sensing receptor) signaling. Recently, it was suggested that the NMDAR (N-methyl-D-aspartate receptor) inhibitor nitromemantine would block the synapse-destroying effects of Aβ/α7-nAChR signaling. Yet, this and the progressive extracellular accrual and spreading of Aβ42 oligomers would be stopped well upstream by NPS 2143, an allosteric CaSR antagonist (calcilytic). PMID:25883618

  6. Metabolite Profiling and a Transcriptional Activation Assay Provide Direct Evidence of Androgen Receptor Antagonism by Bisphenol A in Fish.

    EPA Science Inventory

    Widespread environmental contamination by bisphenol A (BPA) has created the need to fully define its potential toxic mechanisms of action (MOA) to properly assess human health and ecological risks from exposure. Although long recognized as an estrogen receptor (ER) agonist, some ...

  7. NMDA receptor antagonism in the basolateral amygdala blocks enhancement of inhibitory avoidance learning in previously trained rats.

    PubMed

    Roesler, R; Vianna, M R; de-Paris, F; Rodrigues, C; Sant'Anna, M K; Quevedo, J; Ferreira, M B

    2000-07-01

    Extensive evidence suggests that N-methyl-D-aspartate (NMDA) glutamate receptor channels in the amygdala are involved in fear-motivated learning, and infusion of NMDA receptor antagonists into the amygdala blocks memory of fear-motivated tasks. Recent studies have shown that previous training can prevent the amnestic effects of NMDA receptor antagonists on spatial learning. In the present study, we evaluated whether infusion of the NMDA antagonist D,L-2-amino-5-phosphonopentanoic acid (AP5) into the basolateral nucleus of the amygdala (BLA) impairs reinforcement of inhibitory avoidance learning in rats given previous training. Adult male Wistar rats (220-310 g) were bilaterally implanted under thionembutal anesthesia (30 mg/kg, i.p.) with 9.0-mm guide cannulae aimed 1.0 mm above the BLA. Infusion of AP5 (5.0 microg) 10 min prior to training in a step-down inhibitory avoidance task (0.4 mA footshock) blocked retention measured 24 h after training. When infused 10 min prior to a second training session in animals given previous training (0.2 mA footshock), AP5 blocked the enhancement of retention induced by the second training. Control experiments showed that the effects were not due to alterations in motor activity or footshock sensitivity. The results suggest that NMDA receptors in the basolateral amygdala are involved in both formation of memory for inhibitory avoidance and enhancement of retention in rats given previous training.

  8. Orexin/Hypocretin-1 Receptor Antagonism Selectively Reduces Cue-Induced Feeding in Sated Rats and Recruits Medial Prefrontal Cortex and Thalamus.

    PubMed

    Cole, Sindy; Mayer, Heather S; Petrovich, Gorica D

    2015-01-01

    The orexin/hypocretin system is important for reward-seeking behaviors, however less is known about its function in non-homeostatic feeding. Environmental influences, particularly cues for food can stimulate feeding in the absence of hunger and lead to maladaptive overeating behavior. The key components of the neural network that mediates this cue-induced overeating in sated rats include lateral hypothalamus, amygdala, and medial prefrontal cortex (mPFC), yet the neuropharmacological mechanisms within this network remain unknown. The current study investigated a causal role for orexin in cue-driven feeding, and examined the neural substrates through which orexin mediates this effect. Systemic administration of the orexin-1 receptor (OX1R) antagonist SB-334867 had no effect on baseline eating, but significantly reduced cue-driven consumption in sated rats. Complementary neural analysis revealed that decreased cue-induced feeding under SB-334867 increased Fos expression in mPFC and paraventricular thalamus. These results demonstrate that OX1R signaling critically regulates cue-induced feeding, and suggest orexin is acting through prefrontal cortical and thalamic sites to drive eating in the absence of hunger. These findings inform our understanding of how food-associated cues override signals from the body to promote overeating, and indicate OX1R antagonism as a potential pharmacologic target for treatment of disordered eating in humans.

  9. Reduction of hepatic and adipose tissue glucocorticoid receptor expression with antisense oligonucleotides improves hyperglycemia and hyperlipidemia in diabetic rodents without causing systemic glucocorticoid antagonism.

    PubMed

    Watts, Lynnetta M; Manchem, Vara Prasad; Leedom, Thomas A; Rivard, Amber L; McKay, Robert A; Bao, Dingjiu; Neroladakis, Teri; Monia, Brett P; Bodenmiller, Diane M; Cao, Julia Xiao-Chun; Zhang, Hong Yan; Cox, Amy L; Jacobs, Steven J; Michael, M Dodson; Sloop, Kyle W; Bhanot, Sanjay

    2005-06-01

    Glucocorticoids (GCs) increase hepatic gluconeogenesis and play an important role in the regulation of hepatic glucose output. Whereas systemic GC inhibition can alleviate hyperglycemia in rodents and humans, it results in adrenal insufficiency and stimulation of the hypothalamic-pituitary-adrenal axis. In the present study, we used optimized antisense oligonucleotides (ASOs) to cause selective reduction of the glucocorticoid receptor (GCCR) in liver and white adipose tissue (WAT) and evaluated the resultant changes in glucose and lipid metabolism in several rodent models of diabetes. Treatment of ob/ob mice with GCCR ASOs for 4 weeks resulted in approximately 75 and approximately 40% reduction in GCCR mRNA expression in liver and WAT, respectively. This was accompanied by approximately 65% decrease in fed and approximately 30% decrease in fasted glucose levels, a 60% decrease in plasma insulin concentration, and approximately 20 and 35% decrease in plasma resistin and tumor necrosis factor-alpha levels, respectively. Furthermore, GCCR ASO reduced hepatic glucose production and inhibited hepatic gluconeogenesis in liver slices from basal and dexamethasone-treated animals. In db/db mice, a similar reduction in GCCR expression caused approximately 40% decrease in fed and fasted glucose levels and approximately 50% reduction in plasma triglycerides. In ZDF and high-fat diet-fed streptozotocin-treated (HFD-STZ) rats, GCCR ASO treatment caused approximately 60% reduction in GCCR expression in the liver and WAT, which was accompanied by a 40-70% decrease in fasted glucose levels and a robust reduction in plasma triglyceride, cholesterol, and free fatty acids. No change in circulating corticosterone levels was seen in any model after GCCR ASO treatment. To further demonstrate that GCCR ASO does not cause systemic GC antagonism, normal Sprague-Dawley rats were challenged with dexamethasone after treating with GCCR ASO. Dexamethasone increased the expression of GC

  10. Reduction of hepatic and adipose tissue glucocorticoid receptor expression with antisense oligonucleotides improves hyperglycemia and hyperlipidemia in diabetic rodents without causing systemic glucocorticoid antagonism.

    PubMed

    Watts, Lynnetta M; Manchem, Vara Prasad; Leedom, Thomas A; Rivard, Amber L; McKay, Robert A; Bao, Dingjiu; Neroladakis, Teri; Monia, Brett P; Bodenmiller, Diane M; Cao, Julia Xiao-Chun; Zhang, Hong Yan; Cox, Amy L; Jacobs, Steven J; Michael, M Dodson; Sloop, Kyle W; Bhanot, Sanjay

    2005-06-01

    Glucocorticoids (GCs) increase hepatic gluconeogenesis and play an important role in the regulation of hepatic glucose output. Whereas systemic GC inhibition can alleviate hyperglycemia in rodents and humans, it results in adrenal insufficiency and stimulation of the hypothalamic-pituitary-adrenal axis. In the present study, we used optimized antisense oligonucleotides (ASOs) to cause selective reduction of the glucocorticoid receptor (GCCR) in liver and white adipose tissue (WAT) and evaluated the resultant changes in glucose and lipid metabolism in several rodent models of diabetes. Treatment of ob/ob mice with GCCR ASOs for 4 weeks resulted in approximately 75 and approximately 40% reduction in GCCR mRNA expression in liver and WAT, respectively. This was accompanied by approximately 65% decrease in fed and approximately 30% decrease in fasted glucose levels, a 60% decrease in plasma insulin concentration, and approximately 20 and 35% decrease in plasma resistin and tumor necrosis factor-alpha levels, respectively. Furthermore, GCCR ASO reduced hepatic glucose production and inhibited hepatic gluconeogenesis in liver slices from basal and dexamethasone-treated animals. In db/db mice, a similar reduction in GCCR expression caused approximately 40% decrease in fed and fasted glucose levels and approximately 50% reduction in plasma triglycerides. In ZDF and high-fat diet-fed streptozotocin-treated (HFD-STZ) rats, GCCR ASO treatment caused approximately 60% reduction in GCCR expression in the liver and WAT, which was accompanied by a 40-70% decrease in fasted glucose levels and a robust reduction in plasma triglyceride, cholesterol, and free fatty acids. No change in circulating corticosterone levels was seen in any model after GCCR ASO treatment. To further demonstrate that GCCR ASO does not cause systemic GC antagonism, normal Sprague-Dawley rats were challenged with dexamethasone after treating with GCCR ASO. Dexamethasone increased the expression of GC

  11. Ghrelin receptor (GHS-R1A) antagonism alters preference for ethanol and sucrose in a concentration-dependent manner in prairie voles.

    PubMed

    Stevenson, J R; Francomacaro, L M; Bohidar, A E; Young, K A; Pesarchick, B F; Buirkle, J M; McMahon, E K; O'Bryan, C M

    2016-03-01

    Ghrelin receptor (GHS-R1A) activity has been implicated in reward for preferred foods and drugs; however, a recent study in our laboratory indicated that GHS-R1A antagonism reduces early (after only four exposures) preference for 20% ethanol, but not 10% sucrose in prairie voles, a genetically diverse high alcohol-consuming species. The purpose of the present study was to determine if these effects of GHS-R1A antagonism depend on the concentration of the rewarding solution being consumed. We first characterized preference for varying concentrations of ethanol and sucrose. Two bottle tests of each ethanol concentration versus water indicated that 10% and 20% ethanol are less preferred than 3% ethanol, and a follow-up direct comparison of 10% vs. 20% showed that 10% was preferred over 20%. Direct two-bottle comparisons of 2% vs. 5%, 2% vs. 10%, and 5% vs. 10% sucrose showed that 10% sucrose was most preferred, and 2% sucrose was least preferred. The effects of JMV 2959, a GHS-R1A antagonist, on preference for each concentration of ethanol and sucrose were then tested. In a between groups design prairie voles were given four two-hour drinking sessions in which animals had access to ethanol (3, 10, or 20%) versus water, or sucrose (2, 5, or 10%) versus water every other day. Saline habituation injections were given 30 min before the third drinking session. JMV 2959 (i.p.; 9 mg/kg), a GHS-R1A antagonist, or saline was administered 30 min before the fourth drinking session. JMV 2959 reduced preference for 20% ethanol and 2% sucrose, but had no significant effect on preference for the other ethanol and sucrose concentrations. These data identify constraints on the role of GHS-R1A in early preference for ethanol and sucrose, and the concentration-dependent effects suggest strong preference for a reward may limit the importance of GHS-R1A activity.

  12. The macrocyclic tetrapeptide [D-Trp]CJ-15,208 produces short-acting κ opioid receptor antagonism in the CNS after oral administration

    PubMed Central

    Eans, Shainnel O; Ganno, Michelle L; Reilley, Kate J; Patkar, Kshitij A; Senadheera, Sanjeewa N; Aldrich, Jane V; McLaughlin, Jay P

    2013-01-01

    Background and Purpose Cyclic peptides are resistant to proteolytic cleavage, therefore potentially exhibiting activity after systemic administration. We hypothesized that the macrocyclic κ opioid receptor (KOR)-selective antagonist [D-Trp]CJ-15,208 would demonstrate antagonist activity after systemic, that is, s.c. and oral (per os, p. o.), administration. Experimental Approach C57BL/6J mice were pretreated with [D-Trp]CJ-15,208 s.c. or p.o. before administration of the KOR-selective agonist U50,488 and the determination of antinociception in the warm-water tail-withdrawal assay. The locomotor activity of mice treated with [D-Trp]CJ-15,208 was determined by rotorod testing. Additional mice demonstrating cocaine conditioned place preference and subsequent extinction were pretreated daily with vehicle or [D-Trp]CJ-15,208 and then exposed to repeated forced swim stress or a single additional session of cocaine place conditioning before redetermining place preference. Key Results Pretreatment with [D-Trp]CJ-15,208 administered s.c. or p.o. dose-dependently antagonized the antinociception induced by i.p. administration of U50,488 in mice tested in the warm-water tail-withdrawal assay for less than 12 and 6 h respectively. [D-Trp]CJ-15,208 also produced limited (<25%), short-duration antinociception mediated through KOR agonism. Orally administered [D-Trp]CJ-15,208 dose-dependently antagonized centrally administered U50,488-induced antinociception, and prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine-seeking behaviour, consistent with its KOR antagonist activity, without affecting locomotor activity. Conclusions and Implications The macrocyclic tetrapeptide [D-Trp]CJ-15,208 is a short-duration KOR antagonist with weak KOR agonist activity that is active after oral administration and demonstrates blood–brain barrier permeability. These data validate the use of systemically active peptides such as [D-Trp]CJ-15,208 as potentially useful

  13. Ghrelin receptor (GHS-R1A) antagonism alters preference for ethanol and sucrose in a concentration-dependent manner in prairie voles.

    PubMed

    Stevenson, J R; Francomacaro, L M; Bohidar, A E; Young, K A; Pesarchick, B F; Buirkle, J M; McMahon, E K; O'Bryan, C M

    2016-03-01

    Ghrelin receptor (GHS-R1A) activity has been implicated in reward for preferred foods and drugs; however, a recent study in our laboratory indicated that GHS-R1A antagonism reduces early (after only four exposures) preference for 20% ethanol, but not 10% sucrose in prairie voles, a genetically diverse high alcohol-consuming species. The purpose of the present study was to determine if these effects of GHS-R1A antagonism depend on the concentration of the rewarding solution being consumed. We first characterized preference for varying concentrations of ethanol and sucrose. Two bottle tests of each ethanol concentration versus water indicated that 10% and 20% ethanol are less preferred than 3% ethanol, and a follow-up direct comparison of 10% vs. 20% showed that 10% was preferred over 20%. Direct two-bottle comparisons of 2% vs. 5%, 2% vs. 10%, and 5% vs. 10% sucrose showed that 10% sucrose was most preferred, and 2% sucrose was least preferred. The effects of JMV 2959, a GHS-R1A antagonist, on preference for each concentration of ethanol and sucrose were then tested. In a between groups design prairie voles were given four two-hour drinking sessions in which animals had access to ethanol (3, 10, or 20%) versus water, or sucrose (2, 5, or 10%) versus water every other day. Saline habituation injections were given 30 min before the third drinking session. JMV 2959 (i.p.; 9 mg/kg), a GHS-R1A antagonist, or saline was administered 30 min before the fourth drinking session. JMV 2959 reduced preference for 20% ethanol and 2% sucrose, but had no significant effect on preference for the other ethanol and sucrose concentrations. These data identify constraints on the role of GHS-R1A in early preference for ethanol and sucrose, and the concentration-dependent effects suggest strong preference for a reward may limit the importance of GHS-R1A activity. PMID:26723269

  14. Rectal antinociceptive properties of alverine citrate are linked to antagonism at the 5-HT1A receptor subtype.

    PubMed

    Coelho, A M; Jacob, L; Fioramonti, J; Bueno, L

    2001-10-01

    Serotonin (5-HT) is considered as a major mediator causing hyperalgesia and is involved in inflammatory reactions and irritable bowel syndrome. Alverine citrate may possess visceral antinociceptive properties in a rat model of rectal distension-induced abdominal contractions. This study was designed to evaluate the pharmacological properties of alverine citrate in a rat model of rectal hyperalgesia induced by 5-HTP (5-HT precursor) and by a selective 5-HT1A agonist (8-OH-DPAT) and to compare this activity with a reference 5-HT1A antagonist (WAY 100635). At 4 h after their administration, 5-HTP and 8-OH-DPAT increased the number of abdominal contractions in response to rectal distension at the lowest volume of distension (0.4 mL). When injected intraperitoneally before 8-OH-DPAT and 5-HTP, WAY 100635 (1 mg kg(-1)) blocked their nociceptive effect, but also reduced the response to the highest volume of distension (1.6 mL). Similarly, when injected intraperitoneally, alverine citrate (20 mg kg(-1)) suppressed the effect of 5-HTP, but not that of 8-OH-DPAT. However, when injected intracerebroventricularly (75 microg/rat) alverine citrate reduced 8-OH-DPAT-induced enhancement of rectal distension-induced abdominal contractions. In-vitro binding studies revealed that alverine citrate had a high affinity for 5-HT1A receptors and a weak affinity for 5-HT3 and 5-HT4 subtypes. These results suggest that 5-HTP-induced rectal hypersensitivity involves 5-TH1A receptors and that alverine citrate acts as a selective antagonist at the 5-HT1A receptor subtype to block both 5-HTP and 8-OH-DPAT-induced rectal hypersensitivity. PMID:11697552

  15. Antagonism of orexin receptors in the posterior hypothalamus reduces hypoglossal and cardiorespiratory excitation from the perifornical hypothalamus.

    PubMed

    Stettner, Georg M; Kubin, Leszek

    2013-01-01

    The perifornical (PF) region of the posterior hypothalamus promotes wakefulness and facilitates motor activity. In anesthetized rats, local disinhibition of PF neurons by GABA(A) receptor antagonists activates orexin (OX) neurons and elicits a systemic response, including increases of hypoglossal nerve activity (XIIa), respiratory rate, heart rate, and blood pressure. The increase of XIIa is mediated to hypoglossal (XII) motoneurons by pathways that do not require noradrenergic or serotonergic projections. We hypothesized that the pathway might include OX-dependent activation locally within the PF region or direct projections of OX neurons to the XII nucleus. Adult, male Sprague-Dawley rats were urethane anesthetized, vagotomized, paralyzed, and ventilated. Gabazine (GABA(A) receptor antagonist, 0.18 mM, 20 nl) was injected into the PF region, and ~2 h later, a second gabazine injection was performed preceded by injection of a dual OX1/2 receptor antagonist (almorexant; 90 mM) either into the XII nucleus (40-60 nl at 2-3 rostrocaudal levels; n = 6 rats), or into the PF region (40-60 nl; n = 6 rats). XIIa, respiratory rate, heart rate, and arterial blood pressure were analyzed for 70 min after each gabazine injection. The excitatory effects of PF gabazine on XIIa, respiratory, and heart rates were significantly reduced by up to 44-82% when gabazine injections were preceded by PF almorexant injections, but not when almorexant was injected into the XII nucleus. These data suggest that a significant portion of XII motoneuronal and cardiorespiratory activation evoked by disinhibition of PF neurons is mediated by local OX-dependent mechanisms within the posterior hypothalamus.

  16. Hemagglutinin of Influenza A Virus Antagonizes Type I Interferon (IFN) Responses by Inducing Degradation of Type I IFN Receptor 1

    PubMed Central

    Xia, Chuan; Vijayan, Madhuvanthi; Pritzl, Curtis J.; Fuchs, Serge Y.; McDermott, Adrian B.

    2015-01-01

    ABSTRACT Influenza A virus (IAV) employs diverse strategies to circumvent type I interferon (IFN) responses, particularly by inhibiting the synthesis of type I IFNs. However, it is poorly understood if and how IAV regulates the type I IFN receptor (IFNAR)-mediated signaling mode. In this study, we demonstrate that IAV induces the degradation of IFNAR subunit 1 (IFNAR1) to attenuate the type I IFN-induced antiviral signaling pathway. Following infection, the level of IFNAR1 protein, but not mRNA, decreased. Indeed, IFNAR1 was phosphorylated and ubiquitinated by IAV infection, which resulted in IFNAR1 elimination. The transiently overexpressed IFNAR1 displayed antiviral activity by inhibiting virus replication. Importantly, the hemagglutinin (HA) protein of IAV was proved to trigger the ubiquitination of IFNAR1, diminishing the levels of IFNAR1. Further, influenza A viral HA1 subunit, but not HA2 subunit, downregulated IFNAR1. However, viral HA-mediated degradation of IFNAR1 was not caused by the endoplasmic reticulum (ER) stress response. IAV HA robustly reduced cellular sensitivity to type I IFNs, suppressing the activation of STAT1/STAT2 and induction of IFN-stimulated antiviral proteins. Taken together, our findings suggest that IAV HA causes IFNAR1 degradation, which in turn helps the virus escape the powerful innate immune system. Thus, the research elucidated an influenza viral mechanism for eluding the IFNAR signaling pathway, which could provide new insights into the interplay between influenza virus and host innate immunity. IMPORTANCE Influenza A virus (IAV) infection causes significant morbidity and mortality worldwide and remains a major health concern. When triggered by influenza viral infection, host cells produce type I interferon (IFN) to block viral replication. Although IAV was shown to have diverse strategies to evade this powerful, IFN-mediated antiviral response, it is not well-defined if IAV manipulates the IFN receptor-mediated signaling

  17. Beneficial effects of kinin B1 receptor antagonism on plasma fatty acid alterations and obesity in Zucker diabetic fatty rats.

    PubMed

    Talbot, Sébastien; Dias, Jenny Pena; El Midaoui, Adil; Couture, Réjean

    2016-07-01

    Kinins are the endogenous ligands of the constitutive B2 receptor (B2R) and the inducible B1 receptor (B1R). Whereas B2R prevents insulin resistance, B1R is involved in insulin resistance and metabolic syndrome. However, the contribution of B1R in type 2 diabetes associated with obesity remains uncertain. The aim of the present study was to examine the impact of 1-week treatment with a selective B1R antagonist (SSR240612, 10 mg/kg per day, by gavage) on hyperglycemia, hyperinsulinemia, leptinemia, body mass gain, and abnormal plasma fatty acids in obese Zucker diabetic fatty (ZDF) rats. Treatment with SSR240612 abolished the body mass gain and reduced polyphagia, polydipsia, and plasma fatty acid alterations in ZDF rats without affecting hyperglycemia, hyperinsulinemia, and hyperleptinemia. The present study suggests that the upregulated B1R plays a role in body mass gain and circulating fatty acid alterations in ZDF rats. However, mechanisms other than B1R induction would be implicated in glucose metabolism disorder in ZDF rats, based on the finding that SSR240612 did not reverse hyperglycemia and hyperinsulinemia. PMID:27172260

  18. Clozapine, but not olanzapine, disrupts conditioned avoidance response in rats by antagonizing 5-HT2A/2C receptors.

    PubMed

    Li, Ming; Sun, Tao; Mead, Alexa

    2012-04-01

    The present study was designed to assess the role of 5-HT(2A/2C) receptors in the acute and repeated effect of clozapine and olanzapine in a rat conditioned avoidance response model, a validated model of antipsychotic activity. Male Sprague-Dawley rats that were previously treated with either phencyclidine (0.5-2.0 mg/kg, sc), amphetamine (1.25-5.0 mg/kg, sc), or saline and tested in a prepulse inhibition of acoustic startle study were used. They were first trained to acquire avoidance response to a white noise (CS1) and a pure tone (CS2) that differed in their ability to predict the occurrence of footshock. Those who acquired avoidance response were administered with clozapine (10.0 mg/kg, sc) or olanzapine (1.0 mg/kg, sc) together with either saline or 1-2,5-dimethoxy-4-iodo-amphetamine (DOI, a selective 5-HT(2A/2C) agonist, 1.0 or 2.5 mg/kg, sc), and their conditioned avoidance responses were tested for four consecutive days. After two drug-free retraining days, the long-term repeated effect was assessed in a challenge test during which all rats were injected with a low dose of clozapine (5 mg/kg, sc) or olanzapine (0.5 mg/kg). Results show that pretreatment of DOI dose-dependently reversed the acute disruptive effect of clozapine on both CS1 and CS2 avoidance responses, whereas it had little effect in reversing the acute effect of olanzapine. On the challenge test, pretreatment of DOI did not alter the clozapine-induced tolerance or the olanzapine-induced sensitization effect. These results confirmed our previous findings and suggest that clozapine, but not olanzapine, acts on through 5-HT(2A/2C) receptors to achieve its acute avoidance disruptive effect and likely its therapeutic effects. The long-term clozapine tolerance and olanzapine sensitization effects appear to be mediated by non-5-HT(2A/2C) receptors.

  19. Dysfunctional epileptic neuronal circuits and dysmorphic dendritic spines are mitigated by platelet-activating factor receptor antagonism

    PubMed Central

    Musto, Alberto E.; Rosencrans, Robert F.; Walker, Chelsey P.; Bhattacharjee, Surjyadipta; Raulji, Chittalsinh M.; Belayev, Ludmila; Fang, Zhide; Gordon, William C.; Bazan, Nicolas G.

    2016-01-01

    Temporal lobe epilepsy or limbic epilepsy lacks effective therapies due to a void in understanding the cellular and molecular mechanisms that set in motion aberrant neuronal network formations during the course of limbic epileptogenesis (LE). Here we show in in vivo rodent models of LE that the phospholipid mediator platelet-activating factor (PAF) increases in LE and that PAF receptor (PAF-r) ablation mitigates its progression. Synthetic PAF-r antagonists, when administered intraperitoneally in LE, re-establish hippocampal dendritic spine density and prevent formation of dysmorphic dendritic spines. Concomitantly, hippocampal interictal spikes, aberrant oscillations, and neuronal hyper-excitability, evaluated 15–16 weeks after LE using multi-array silicon probe electrodes implanted in the dorsal hippocampus, are reduced in PAF-r antagonist-treated mice. We suggest that over-activation of PAF-r signaling induces aberrant neuronal plasticity in LE and leads to chronic dysfunctional neuronal circuitry that mediates epilepsy. PMID:27444269

  20. Effects of CB1 receptor agonism and antagonism on behavioral fear and physiological stress responses in adult intact, ovariectomized, and estradiol-replaced female rats.

    PubMed

    Simone, J J; Malivoire, B L; McCormick, C M

    2015-10-15

    There is growing interest in the development of cannabis-based therapies for the treatment of fear and anxiety disorders. There are a few studies, but none in females, of the effects of the highly selective cannabinoid receptor type 1 (CB1) agonist, arachidonyl 2'-chlorethylamide (ACEA), on behavioral fear. In experiment 1 involving gonadally-intact females, ACEA (either 0.1 or 0.01 mg/kg) was without effect in the elevated plus maze (EPM), and the lower dose decreased anxiety in the open field test (OFT). AM251 increased anxiety in the EPM and decreased locomotor activity in the OFT. Twenty-four hours after fear conditioning, neither ACEA nor AM251 affected generalized fear or conditioned fear recall. AM251 and 0.1 mg/kg ACEA impaired, and 0.01 mg/kg ACEA enhanced, within-session fear extinction. AM251 increased plasma corticosterone concentrations after the fear extinction session, whereas ACEA was without effect. Based on evidence that estradiol may moderate the effects of CB1 receptor signaling in females, experiment 2 involved ovariectomized (OVX) rats provided with 10-μg 17β-Estradiol and compared with OVX rats without hormone replacement (oil vehicle). Irrespective of hormone treatment, AM251 increased anxiety in the EPM, whereas ACEA (0.01 mg/kg) was without effect. Neither hormone nor drug altered anxiety in the OFT, but estradiol increased and AM251 decreased distance traveled. After fear conditioning, AM251 decreased generalized fear. Neither hormone nor drug had any effect on recall or extinction of conditioned fear, however, ACEA and AM251 increased fear-induced plasma corticosterone concentrations. Further, when results with intact rats were compared with those from OVX rats, gonadal status did not moderate the effects of either AM251 or ACEA, although OVX displayed greater anxiety and fear than did intact rats. Thus, the effects of CB1 receptor antagonism and agonism in adult female rats do not depend on ovarian estradiol. PMID:26311003

  1. Antagonism of glutamate receptors in the intermediate and caudal NTS of awake rats produced no changes in the hypertensive response to chemoreflex activation.

    PubMed

    Machado, Benedito H; Bonagamba, Leni G H

    2005-01-15

    The role of excitatory amino acid (EAA) receptors in the neurotransmission of the sympathoexcitatory component of the chemoreflex (pressor response) in the intermediate and caudal aspects of the commissural nucleus tractus solitarii (NTS) of awake rats was evaluated. Microinjection of kynurenic acid, a non-selective antagonist of EAA receptors, into the intermediate and caudal commissural NTS produced a large increase in the baseline mean arterial pressure (MAP), which may reduce the magnitude of the pressor response to chemoreflex activation. To avoid this problem sodium nitroprusside (SNP) was infused (i.v.) after microinjections of kynurenic acid (2 nmol/50 nl) into the NTS, in order to normalize the MAP and then the chemoreflex was activated and the magnitude of the pressor response evaluated. Microinjection of kynurenic acid into the intermediate (bilaterally) and caudal (midline) commissural NTS (n=6) produced a significant increase in baseline MAP (103+/-5 vs. 137+/-6 mm Hg) normalized by SNP infusion (107+/-4 mm Hg) and under this experimental condition the pressor response to chemoreflex activation was not statistically different in relation to the control (37+/-7 vs. 44+/-6 mm Hg). Bilateral microinjections of kynurenic acid into the caudal NTS (n=8) also produced a significant increase in baseline MAP (109+/-4 vs. 145+/-6 mm Hg) normalized by SNP infusion (109+/-6 mm Hg). After normalization of MAP, the pressor response to chemoreflex activation at 3 (34+/-6 mm Hg) and 10 min (37+/-6 mm Hg) was also not different in relation to the control (46+/-5 mm Hg). These data indicate that the antagonism of EAA receptors simultaneously in the intermediate (bilateral) and caudal (midline) commissural NTS or only in the caudal commissural NTS (bilateral) of awake rats had no effect on the hypertensive response to chemoreflex activation. We suggest that neurotransmitter other than l-glutamate may take part in the neurotransmission of the sympathoexcitatory component

  2. BOC-CCK-4, CCK(B)receptor agonist, antagonizes anxiolytic-like action of morphine in elevated plus-maze.

    PubMed

    Kõks, S; Soosaar, A; Võikar, V; Bourin, M; Vasar, E

    1999-02-01

    This study investigated a role of cholecystokinin (CCK) in the anxiolytic-like action of morphine, an agonist of mu-opioid receptors, in the rat plus-maze model of anxiety. The acute administration of morphine (1 mg/kg) induced a significant increase of exploratory activity in the plus-maze, but did not affect the locomotor activity in the motility test. The higher dose of morphine (2.5 mg/kg) tended to decrease the locomotor activity and, therefore, did not cause the anxiolytic-like action in the plus-maze. The other drugs (naloxone, BOC-CCK-4, L-365,260) and their combinations with morphine (0.5-1 mg/kg) did not affect the locomotor activity of rats. The opioid antagonist naloxone itself (0.5 mg/kg) did not change the exploratory activity in the plus-maze, but potently antagonized the anxiolytic-like action of morphine (1 mg/kg). An agonist of CCK(B)receptors BOC-CCK-4 (1-50 microgram/kg) induced a dose-dependent anxiogenic-like action in the plus-maze. Nevertheless, only one dose of BOC-CCK-4 (10 microgram/kg) completely reversed the action of morphine. Also, one dose of CCK(B)receptor antagonist L-365,260 (10 microgram/kg) was effective to modify the behaviour of rats in the elevated plus-maze. Namely, this dose of L-365,260 increased the ratio between open and total arm entries, a behavioural measure believed to reflect the anxiolytic-like action in the elevated plus-maze. The combination of L-365,260 (100 microgram/kg) with the sub-effective dose of morphine (0.5 mg/kg) caused the anxiolytic-like action in the plus-maze not seen if the drugs were given alone. In conclusion, morphine induces a potent anxiolytic-like action in the elevated plus-maze and CCK is acting as an endogenous antagonist of this effect of morphine.

  3. Effects of CB1 receptor agonism and antagonism on behavioral fear and physiological stress responses in adult intact, ovariectomized, and estradiol-replaced female rats.

    PubMed

    Simone, J J; Malivoire, B L; McCormick, C M

    2015-10-15

    There is growing interest in the development of cannabis-based therapies for the treatment of fear and anxiety disorders. There are a few studies, but none in females, of the effects of the highly selective cannabinoid receptor type 1 (CB1) agonist, arachidonyl 2'-chlorethylamide (ACEA), on behavioral fear. In experiment 1 involving gonadally-intact females, ACEA (either 0.1 or 0.01 mg/kg) was without effect in the elevated plus maze (EPM), and the lower dose decreased anxiety in the open field test (OFT). AM251 increased anxiety in the EPM and decreased locomotor activity in the OFT. Twenty-four hours after fear conditioning, neither ACEA nor AM251 affected generalized fear or conditioned fear recall. AM251 and 0.1 mg/kg ACEA impaired, and 0.01 mg/kg ACEA enhanced, within-session fear extinction. AM251 increased plasma corticosterone concentrations after the fear extinction session, whereas ACEA was without effect. Based on evidence that estradiol may moderate the effects of CB1 receptor signaling in females, experiment 2 involved ovariectomized (OVX) rats provided with 10-μg 17β-Estradiol and compared with OVX rats without hormone replacement (oil vehicle). Irrespective of hormone treatment, AM251 increased anxiety in the EPM, whereas ACEA (0.01 mg/kg) was without effect. Neither hormone nor drug altered anxiety in the OFT, but estradiol increased and AM251 decreased distance traveled. After fear conditioning, AM251 decreased generalized fear. Neither hormone nor drug had any effect on recall or extinction of conditioned fear, however, ACEA and AM251 increased fear-induced plasma corticosterone concentrations. Further, when results with intact rats were compared with those from OVX rats, gonadal status did not moderate the effects of either AM251 or ACEA, although OVX displayed greater anxiety and fear than did intact rats. Thus, the effects of CB1 receptor antagonism and agonism in adult female rats do not depend on ovarian estradiol.

  4. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABA{sub A} receptors

    SciTech Connect

    Shakarjian, Michael P.; Velíšková, Jana; Stanton, Patric K.; Velíšek, Libor

    2012-11-15

    Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic–clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The NMDA antagonist, ketamine (35 mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic–clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic–clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABA{sub A} receptor allosteric enhancer diazepam (5 mg/kg) greatly reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists is more likely to be effective in treating TMDT poisoning. -- Highlights: ► TMDT produces convulsions and lethality at low doses in mice. ► Diazepam pre- or post-treatments inhibit TMDT-induced convulsions and death

  5. Serotonin7 receptors in the lateral habenular nucleus regulate depressive-like behaviors in the hemiparkinsonian rats.

    PubMed

    Han, Ling Na; Zhang, Li; Sun, Yi Na; Du, Cheng Xue; Zhang, Yu Ming; Wang, Tao; Zhang, Jin; Liu, Jian

    2016-08-01

    Preclinical studies indicate that serotonin7 (5-HT7) receptors may regulate depressive-like behaviors. Depression is a common symptom in Parkinson's disease (PD); however, its pathophysiology is unclear. Here we examined whether 5-HT7 receptors in the lateral habenular nucleus (LHb) involve in the regulation of PD-related depression. Unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta in rats induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. Intra-LHb injection of 5-HT7 receptor agonist AS19 (1, 2 and 4μg/rat) induced or increased the expression of depressive-like behaviors in sham-operated and the lesioned rats. Further, intra-LHb injection of 5-HT7 receptor antagonist SB269970 (1.5, 3 and 6μg/rat) produced antidepressant effects in the two groups of rats. However, the doses producing these effects in the lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-LHb injection of AS19 (4μg/rat) decreased dopamine and 5-HT levels in the medial prefrontal cortex, habenula and hippocampus in sham-operated and the lesioned rats; whereas SB269970 (6μg/rat) increased dopamine and 5-HT levels in these structures. In addition, noradrenaline levels in these structures were not changed after intra-LHb injection of AS19 or SB269970 in the two groups of rats. These findings suggest that activation or blockade of 5-HT7 receptors in the LHb may change the activity of LHb glutamate neurons, and then decreases or increases dopamine and 5-HT levels in the limbic and limbic-related brain regions, which are involved in the regulation of depressive-like behaviors.

  6. Anti-analgesic effect of the mu/delta opioid receptor heteromer revealed by ligand-biased antagonism.

    PubMed

    Milan-Lobo, Laura; Enquist, Johan; van Rijn, Richard M; Whistler, Jennifer L

    2013-01-01

    Delta (DOR) and mu opioid receptors (MOR) can complex as heteromers, conferring functional properties in agonist binding, signaling and trafficking that can differ markedly from their homomeric counterparts. Because of these differences, DOR/MOR heteromers may be a novel therapeutic target in the treatment of pain. However, there are currently no ligands selective for DOR/MOR heteromers, and, consequently, their role in nociception remains unknown. In this study, we used a pharmacological opioid cocktail that selectively activates and stabilizes the DOR/MOR heteromer at the cell surface by blocking its endocytosis to assess its role in antinociception. We found that mice treated chronically with this drug cocktail showed a significant right shift in the ED50 for opioid-mediated analgesia, while mice treated with a drug that promotes degradation of the heteromer did not. Furthermore, promoting degradation of the DOR/MOR heteromer after the right shift in the ED50 had occurred, or blocking signal transduction from the stabilized DOR/MOR heteromer, shifted the ED50 for analgesia back to the left. Taken together, these data suggest an anti-analgesic role for the DOR/MOR heteromer in pain. In conclusion, antagonists selective for DOR/MOR heteromer could provide an avenue for alleviating reduced analgesic response during chronic pain treatment.

  7. Orexin-1 receptor antagonism does not reduce the rewarding potency of cocaine in Swiss-Webster mice.

    PubMed

    Riday, Thorfinn T; Fish, Eric W; Robinson, J Elliott; Jarrett, Thomas M; McGuigan, Megan M; Malanga, C J

    2012-01-11

    The orexin family of hypothalamic neuropeptides has been implicated in reinforcement mechanisms relevant to both food and drug reward. Previous behavioral studies with antagonists at the orexin A-selective receptor, OX(1), have demonstrated its involvement in behavioral sensitization, conditioned place-preference, and self-administration of drugs of abuse. Adult male Swiss-Webster mice were implanted with stimulating electrodes to the lateral hypothalamus and trained to perform intracranial self-stimulation (ICSS). The effects of the OX(1)-selective antagonist SB 334867 on brain stimulation-reward (BSR) and cocaine potentiation of BSR were measured. SB 334867 (10-30mg/kg, i.p.) alone had no effect on ICSS performance or BSR threshold. Cocaine (1.0-30mg/kgi.p.) dose-dependently potentiated BSR, measured as lowering of BSR threshold. This effect was not blocked by 30mg/kg SB 334867 at any cocaine dose tested. In agreement with previous reports, SB 334867 resulted in a reduction of body weight 24h after acute administration. Based on these data, it is concluded that orexins acting at OX(1) do not contribute to BSR; and are not involved in the reward-potentiating actions of cocaine on BSR. The data are discussed in the context of prior findings of SB 334867 effects on drug-seeking and drug-consuming behaviors.

  8. Corticotropin-Releasing Factor Receptor-1 Antagonism Reduces Oxidative Damage in an Alzheimer’s Disease Transgenic Mouse Model.

    PubMed

    Zhang, Cheng; Kuo, Ching-Chang; Moghadam, Setareh H; Monte, Louise; Rice, Kenner C; Rissman, Robert A

    2015-01-01

    Reports from Alzheimer’s disease (AD) biomarker work have shown a strong link between oxidative stress and AD neuropathology. The nonenzymatic antioxidant, glutathione (GSH), plays a crucial role in defense against reactive oxygen species and maintenance of GSH redox homeostasis. In particular, our previous studies on GSH redox imbalance have implicated oxidative stress induced by excessive reactive oxygen species as a major mediator of AD-like events, with the presence of S- glutathionylated proteins (Pr-SSG) appearing prior to overt AD neuropathology. Furthermore, evidence suggests that oxidative stress may be associated with dysfunction of the hypothalamic-pituitary-adrenal axis, leading to activation of inflammatory pathways and increased production of corticotropin-releasing factor (CRF). Therefore, to investigate whether oxidative insults can be attenuated by reduction of central CRF signaling, we administered the type-1 CRF receptor (CRFR1) selective antagonist, R121919, to AD-transgenic mice beginning in the preclinical/prepathologic period (30-day-old) for 150 days, a time point where behavioral impairments and pathologic progression should be measureable. Our results indicate that R121919 treatment can significantly reduce Pr-SSG levels and increase glutathione peroxide activity, suggesting that interference of CRFR1 signaling may be useful as a preventative therapy for combating oxidative stress in AD. PMID:25649650

  9. Antagonism of Secreted PCSK9 Increases Low Density Lipoprotein Receptor Expression in HepG2 Cells

    SciTech Connect

    McNutt, Markey C.; Kwon, Hyock Joo; Chen, Chiyuan; Chen, Justin R.; Horton, Jay D.; Lagace, Thomas A.

    2009-07-10

    PCSK9 is a secreted protein that degrades low density lipoprotein receptors (LDLRs) in liver by binding to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. It is not known whether PCSK9 causes degradation of LDLRs within the secretory pathway or following secretion and reuptake via endocytosis. Here we show that a mutation in the LDLR EGF-A domain associated with familial hypercholesterolemia, H306Y, results in increased sensitivity to exogenous PCSK9-mediated cellular degradation because of enhanced PCSK9 binding affinity. The crystal structure of the PCSK9-EGF-A(H306Y) complex shows that Tyr-306 forms a hydrogen bond with Asp-374 in PCSK9 at neutral pH, which strengthens the interaction with PCSK9. To block secreted PCSK9 activity, LDLR (H306Y) subfragments were added to the medium of HepG2 cells stably overexpressing wild-type PCSK9 or gain-of-function PCSK9 mutants associated with hypercholesterolemia (D374Y or S127R). These subfragments blocked secreted PCSK9 binding to cell surface LDLRs and resulted in the recovery of LDLR levels to those of control cells. We conclude that PCSK9 acts primarily as a secreted factor to cause LDLR degradation. These studies support the concept that pharmacological inhibition of the PCSK9-LDLR interaction extracellularly will increase hepatic LDLR expression and lower plasma low density lipoprotein levels.

  10. Biperiden enhances L-DOPA methyl ester and dopamine D(l) receptor agonist SKF-82958 but antagonizes D(2)/D(3) receptor agonist rotigotine antihemiparkinsonian actions.

    PubMed

    Domino, Edward F; Ni, Lisong

    2008-12-01

    The effects of biperiden (0, 100, and 320 microg/kg), a selective muscarinic M(1)/M(4) receptor cholinergic antagonist, were studied alone and in combination with those of L-DOPA methyl ester (16.7 mg/kg), a selective dopamine D(1) receptor agonist SKF-82958 (74.8 microg/kg), or a selective D(2)/D(3) receptor agonist rotigotine (32 microg/kg) on circling behavior in MPTP induced hemiparkinsonian monkeys. The doses selected were given i.m. in approximately equieffective doses to produce contraversive circling. Biperiden alone with 5% dextrose vehicle produced a slight increase in contraversive circling in a dose related manner. When combined with L-DOPA methyl ester, it enhanced contraversive circling and decreased ipsiversive circling. When biperiden was combined with SKF-82958, contraversive circling also was enhanced and ipsiversive circling decreased. Exactly the opposite was observed with the combination of biperiden and rotigotine. The results indicate a dramatic difference in effects of a prototypic muscarinic M(1)/M(4) receptor cholinergic antagonist in combination with prototypic full dopamine D(1) or D(2)/D(3) receptor agonists. Biperiden interactions with L-DOPA methyl ester were more predominantly D(l) than D(2)/D(3) receptor-like in this animal model of hemiparkinsonism.

  11. Sexually dimorphic effects of NMDA receptor antagonism on brain-pituitary-gonad axis development in the platyfish

    NASA Technical Reports Server (NTRS)

    Flynn, Katherine M.; Miller, Shelly A.; Sower, Stacia A.; Schreibman, Martin P.

    2002-01-01

    The N-methyl-D-aspartate glutamate receptor (NMDAR) is found in hypothalamic nuclei involved in the regulation of reproduction in several species of mammals and fishes. NMDAR is believed to affect reproductive development and function by regulating gonadotropin releasing hormone (GnRH)-producing cells. These pathways are likely to be sexually dimorphic, as are several other neurotransmitter systems involved in reproductive function. In this report, male and female platyfish received intraperitoneal injections of 0, 5, 10, 20, 40 or 60 microg/g body wt. of the non-competitive NMDAR antagonist MK-801. Injections began at 6 weeks of age and continued thrice weekly until control animals reached puberty, as evidenced by anal fin maturation. The percent of pubescent animals was significantly affected by sex and treatment, with fewer MK-801-injected females in puberty than control females at each dose (P<0.001), and fewer pubescent females than males at 10, 20 and 40 microg/g (P<0.05). There were no MK-801-related effects in males. Histological analyses revealed typical immature gonads and pituitary glands in treated females, and typical mature morphology in control females and all males. Immunocytochemical distribution of the R1 subunit of the NMDAR within the brain-pituitary-gonad (BPG) axis was limited to GnRH-containing brain cells in all animals; however, NMDAR1 distribution was in an immature pattern in treated females and a mature pattern in all others. Neural concentrations of GnRH were unaffected by MK-801 treatment in both sexes. These data suggest that in the platyfish, NMDAR influence on reproductive development is sexually dimorphic and occurs at, or above, the level of GnRH-containing cells of the BPG axis.

  12. Genetic variation in CYP4A11 and blood pressure response to mineralocorticoid receptor antagonism or ENaC inhibition: an exploratory pilot study in African Americans.

    PubMed

    Laffer, Cheryl L; Elijovich, Fernando; Eckert, George J; Tu, Wanzhu; Pratt, J Howard; Brown, Nancy J

    2014-07-01

    An rs3890011 variant of CYP4A11, which is in linkage disequilibrium with the loss-of-function variant rs1126742, is associated with hypertension in humans. In mice, Cyp4a deficiency results in salt-sensitive hypertension through activation of ENaC. We tested the hypothesis that the rs3890011 variant is associated with blood pressure response to drugs acting via the ENaC pathway. African Americans with volume-dependent, resistant hypertension were randomized to treatment with placebo, spironolactone, amiloride, or combination. Blood pressure responses were analyzed by CYP4A11 genotypes. Rs3890011 (GG:GC:CC = 20:35:28) and rs1126742 (TT:TC:CC = 45:31:7) were in linkage disequilibrium (D' = 1, r = 0.561). Expected small number of rs1126742 CC homozygotes precluded analysis of the effect of this genotype on treatment responses. Spironolactone reduced blood pressure in rs3890011 GG and GC individuals, but not in CC homozygotes (P = .002), whereas amiloride reduced blood pressure similarly in all rs3890011 genotypes. The antihypertensive effects of spironolactone and amiloride were comparable in GG and GC participants, but only amiloride reduced pressure in CC homozygotes (-6.3 ± 7.3/-3.2 ± 4.0 vs. +6.8 ± 7.9/+4.8 ± 8.6 mm Hg, P < .01/<.05). The aldosterone response to spironolactone was also blunted in the CC genotype. In individuals homozygous for the CYP4A11 rs3890011 C allele, blood pressure is resistant to mineralocorticoid receptor antagonism, but sensitive to ENaC inhibition, consistent with ENaC activation. Studies in a larger population are needed to replicate these findings. PMID:25064769

  13. Cannabidiol Attenuates Sensorimotor Gating Disruption and Molecular Changes Induced by Chronic Antagonism of NMDA receptors in Mice

    PubMed Central

    Issy, Ana Carolina; Ferreira, Frederico R.; Viveros, Maria-Paz; Del Bel, Elaine A.; Guimarães, Francisco S.

    2015-01-01

    Background: Preclinical and clinical data suggest that cannabidiol (CBD), a major non-psychotomimetic compound from Cannabis sativa, induces antipsychotic-like effects. However, the antipsychotic properties of repeated CBD treatment have been poorly investigated. Behavioral changes induced by repeated treatment with glutamate N-methyl-D-aspartate receptor (NMDAR) antagonists have been proposed as an animal model of schizophrenia-like signs. In the present study, we evaluated if repeated treatment with CBD would attenuate the behavioral and molecular modifications induced by chronic administration of one of these antagonists, MK-801. Methods: Male C57BL/6J mice received daily i.p. injections of MK-801 (0.1, 0.5, or 1mg/kg) for 14, 21, or 28 days. Twenty-four hours after the last injection, animals were submitted to the prepulse inhibition (PPI) test. After that, we investigated if repeated treatment with CBD (15, 30, and 60mg/kg) would attenuate the PPI impairment induced by chronic treatment with MK-801 (1mg/kg; 28 days). CBD treatment began on the 6th day after the start of MK-801 administration and continued until the end of the treatment. Immediately after the PPI, the mice brains were removed and processed to evaluate the molecular changes. We measured changes in FosB/ΔFosB and parvalbumin (PV) expression, a marker of neuronal activity and a calcium-binding protein expressed in a subclass of GABAergic interneurons, respectively. Changes in mRNA expression of the NMDAR GluN1 subunit gene (GRN1) were also evaluated. CBD effects were compared to those induced by the atypical antipsychotic clozapine. Results: MK-801 administration at the dose of 1mg/kg for 28 days impaired PPI responses. Chronic treatment with CBD (30 and 60mg/kg) attenuated PPI impairment. MK-801 treatment increased FosB/ΔFosB expression and decreased PV expression in the medial prefrontal cortex. A decreased mRNA level of GRN1 in the hippocampus was also observed. All the molecular changes were

  14. Combined serotonin (5-HT)1A agonism, 5-HT(2A) and dopamine D₂ receptor antagonism reproduces atypical antipsychotic drug effects on phencyclidine-impaired novel object recognition in rats.

    PubMed

    Oyamada, Yoshihiro; Horiguchi, Masakuni; Rajagopal, Lakshmi; Miyauchi, Masanori; Meltzer, Herbert Y

    2015-05-15

    Subchronic administration of an N-methyl-D-aspartate receptor (NMDAR) antagonist, e.g. phencyclidine (PCP), produces prolonged impairment of novel object recognition (NOR), suggesting they constitute a hypoglutamate-based model of cognitive impairment in schizophrenia (CIS). Acute administration of atypical, e.g. lurasidone, but not typical antipsychotic drugs (APDs), e.g. haloperidol, are able to restore NOR following PCP (acute reversal model). Furthermore, atypical APDs, when co-administered with PCP, have been shown to prevent development of NOR deficits (prevention model). Most atypical, but not typical APDs, are more potent 5-HT(2A) receptor inverse agonists than dopamine (DA) D2 antagonists, and have been shown to enhance cortical and hippocampal efflux and to be direct or indirect 5-HT(1A) agonists in vivo. To further clarify the importance of these actions to the restoration of NOR by atypical APDs, sub-effective or non-effective doses of combinations of the 5-HT(1A) partial agonist (tandospirone), the 5-HT(2A) inverse agonist (pimavanserin), or the D2 antagonist (haloperidol), as well as the combination of all three agents, were studied in the acute reversal and prevention PCP models of CIS. Only the combination of all three agents restored NOR and prevented the development of PCP-induced deficit. Thus, this triple combination of 5-HT(1A) agonism, 5-HT(2A) antagonism/inverse agonism, and D2 antagonism is able to mimic the ability of atypical APDs to prevent or ameliorate the PCP-induced NOR deficit, possibly by stimulating signaling cascades from D1 and 5-HT(1A) receptor stimulation, modulated by D2 and 5-HT(2A) receptor antagonism. PMID:25448429

  15. Extract of Kuding Tea Prevents High-Fat Diet-Induced Metabolic Disorders in C57BL/6 Mice via Liver X Receptor (LXR) β Antagonism

    PubMed Central

    Hu, Na; Sun, Qinhu; Ding, Xiaobo; Li, Guowen; Zheng, Bin; Gu, Ming; Huang, Feisi; Sun, Yin-Qiang; Zhou, Zhiqin; Lu, Xiong; Huang, Cheng; Ji, Guang

    2012-01-01

    Objective To investigate the effects of ilex kudingcha C. J. Tseng (kuding tea), a traditional beverage in China, on the metabolic disorders in C57BL/6 mice induced by high-fat diets. Design For the preventive experiment, the female C57BL/6 mice were fed with a standard diet (Chow), high-fat diet (HF), and high-fat diet mixed with 0.05% ethanol extract of kuding tea (EK) for 5 weeks. For the therapeutic experiment, the C57BL/6 mice were fed high-fat diet for 3 months, and then mice were split and EK was given with oral gavages for 2 weeks at 50 mg/day/kg. Body weight and daily food intake amounts were measured. At the end of treatment, the adipocyte images were assayed with a scanning electron microscope, and the fasting blood glucose, glucose tolerance test, serum lipid profile and lipids in the livers were analyzed. A reporter gene assay system was used to test the whether EK could act on nuclear receptor transcription factors, and the gene expression analysis was performed with a quantitative PCR assay. Results In the preventive treatment, EK blocked the body weight gain, reduced the size of the adipocytes, lowered serum triglyceride, cholesterol, LDL-cholesterol, fasting blood glucose levels and glucose tolerance in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, EK reduced the size of the white adipocytes, serum TG and fasting blood glucose levels in obese mice. With the reporter assay, EK inhibited LXRβ transactivity and mRNA expression of LXRβ target genes. Conclusion We observed that EK has both preventive and therapeutic roles in metabolic disorders in mice induced with high-fat diets. The effects appear to be mediated through the antagonism of LXRβ transactivity. Our data indicate that kuding tea is a useful dietary therapy and a potential source for the development of novel anti-obesity and lipid lowering drugs. PMID:23226556

  16. CRH receptor antagonism reverses the effect of social subordination upon central GABAA receptor binding in estradiol-treated ovariectomized female rhesus monkeys.

    PubMed

    Michopoulos, V; Embree, M; Reding, K; Sanchez, M M; Toufexis, D; Votaw, J R; Voll, R J; Goodman, M M; Rivier, J; Wilson, M E; Berga, S L

    2013-10-10

    Persistent exposure to environmental stressors causes dysregulation of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis and alters GABAA receptor (GABAAR) levels throughout the brain. Social subordination in socially housed female rhesus results in distinctive stress-related physiological and behavioral phenotypes that are dependent on the ovarian hormone estradiol (E2). In the present study, we utilized ovariectomized adult female rhesus monkeys undergoing hormone replacement with E2 to test the hypothesis that the chronic psychosocial stress of subordination alters GABAAR binding potential (GABAAR BPND) in limbic regions implicated in emotional processing including the prefrontal cortex, temporal lobe (amygdala and hippocampus), and hypothalamus. Furthermore, we tested the hypothesis that peripheral administration of a corticotropin-releasing hormone (CRH) receptor antagonist (astressin B) would reverse the alterations in GABAAR binding within these regions in subordinate females. After subjects received astressin B or saline for three consecutive days, GABAAR BPND was determined by positron emission tomography (PET) using (18)F-flumazenil as a radioligand. T1-weighted structural magnetic resonance imaging scans were also acquired for PET scan co-registration, in order to perform a region of interest analysis using the pons as a reference region. Compared to socially dominant females, subordinate females exhibited increased GABAAR BPND in the prefrontal cortex but not in the temporal lobe or the hypothalamus. Administration of astressin B eliminated the status difference in GABAAR BPND in the prefrontal cortex, suggesting that the chronic stressor of social subordination modulates GABAergic tone via effects on CRH and the LHPA axis, at least in prefrontal regions.

  17. mGlu2/3 agonist-induced hyperthermia: an in vivo assay for detection of mGlu2/3 receptor antagonism and its relation to antidepressant-like efficacy in mice.

    PubMed

    Gleason, S D; Li, X; Smith, I A; Ephlin, J D; Wang, X-S; Heinz, B A; Carter, J H; Baez, M; Yu, J; Bender, D M; Witkin, J M

    2013-08-01

    An assay to detect the on-target effects of mGlu2/3 receptor antagonists in vivo would be valuable in guiding dosing regimens for the exploration of biological effects of potential therapeutic import. Multiple approaches involving blockade of mGlu2/3 receptor agoinist-driven behavioral effects in mice and rats were investigated. Most of these methods failed to provide a useful method of detection of antagonists in vivo (e.g., locomotor activity). In contrast, the mGlu2/3 receptor agonist LY379268 produced dose-dependent increases in body temperature of mice. The hyperthermic effects of LY379268 was abolished in mGlu2 and in mGlu2/3 receptor null mice but not in mGlu3 null mice. Hyperthermia was not produced by an mGlu8 receptor agonist. Agonist-induced hyperthermia was prevented in a dose-dependent manner by structurally-distinct mGlu2/3 receptor antagonists. The blockade was stereo-specific. Moreover, this biological readout was responsive to both orthosteric and to negative allosteric modulators of mGlu2/3 receptors. Antagonism of agonist-induced hyperthermia predicted antidepressant-like efficacy in the mouse forced swim test. As with the hyperthermic response, the antidepressant-like effects of mGlu2/3 receptor antagonists were shown to be due to mGlu2 and not to mGlu3 or mGlu8 receptors through the use of receptor knock-out mice. The ability to rapidly assess on-target activity of mGlu2/3 receptor antagonists enables determination of parameters for setting efficacy doses in vivo. In turn, efficacy-related data in the preclinical laboratory can help to set expectations of therapeutic potential and dosing in humans. PMID:23574174

  18. Translating the N-methyl-D-aspartate receptor antagonist model of schizophrenia to treatments for cognitive impairment in schizophrenia.

    PubMed

    Meltzer, Herbert Y; Rajagopal, Lakshmi; Huang, Mei; Oyamada, Yoshihiro; Kwon, Sunoh; Horiguchi, Masakuni

    2013-11-01

    The N-methyl-D-aspartate receptor (NMDAR) antagonists, phencyclidine (PCP), dizocilpine (MK-801), or ketamine, given subchronically (sc) to rodents and primates, produce prolonged deficits in cognitive function, including novel object recognition (NOR), an analog of human declarative memory, one of the cognitive domains impaired in schizophrenia. Atypical antipsychotic drugs (AAPDs) have been reported to improve declarative memory in some patients with schizophrenia, as well as to ameliorate and prevent the NOR deficit in rodents following scNMDAR antagonist treatment. While the efficacy of AAPDs to improve cognitive impairment in schizophrenia (CIS) is limited, at best, and controversial, single doses of all currently available AAPDs so far tested transiently restore NOR in rodents following scNMDAR antagonist treatment. Typical antipsychotic drugs (APDs), e.g. haloperidol and perphenazine, are ineffective in this rodent model, and may be less effective as treatments of some domains of CIS. Serotonergic mechanisms, including, but not limited to serotonin (5-HT)2A and 5-HT7 antagonism, 5-HT(1A), and GABA(A) agonism, contribute to the efficacy of the AAPDs in the scNMDAR antagonist rodent models, which are relevant to the loss of GABA interneuron/hyperglutamate hypothesis of the etiology of CIS. The ability of sub-effective doses of the atypical APDs to ameliorate NOR in the scNMDAR-treated rodents can be restored by the addition of a sub-effective dose of the 5-HT(1A) partial agonist, tandospirone, or the 5-HT7 antagonist, SB269970. The mGluR2/3 agonist, LY379268, which itself is unable to restore NOR in the scNMDAR-treated rodents, can also restore NOR when given with lurasidone, an AAPD. Enhancing cortical and hippocampal dopamine and acetylcholine efflux, or both, may contribute to the restoration of NOR by the atypical APDs. Importantly, co-administration of lurasidone, tandospirone, or SB269970, with PCP, to rodents, at doses 5-10 fold greater than those

  19. Multiple microvascular and astroglial 5-hydroxytryptamine receptor subtypes in human brain: molecular and pharmacologic characterization.

    PubMed

    Cohen, Z; Bouchelet, I; Olivier, A; Villemure, J G; Ball, R; Stanimirovic, D B; Hamel, E

    1999-08-01

    Physiologic and anatomic evidence suggest that 5-hydroxytryptamine (5-HT) neurons regulate local cerebral blood flow and blood-brain barrier permeability. To evaluate the possibility that some of these effects occur directly on the blood vessels, molecular and/or pharmacologic approaches were used to assess the presence of 5-HT receptors in human brain microvascular fractions, endothelial and smooth muscle cell cultures, as well as in astroglial cells which intimately associate with intraparenchymal blood vessels. Isolated microvessels and capillaries consistently expressed messages for the h5-HT1B, h5-HT1D, 5-HT1F, 5-HT2A but not 5-HT7 receptors. When their distribution within the vessel wall was studied in more detail, it was found that capillary endothelial cells exhibited mRNA for the h5-HT1D and for the 5-HT7 receptors whereas microvascular smooth muscle cells, in addition to h5-HT1D and 5-HT7, also showed polymerase chain reaction products for h5-HT1B receptors. Expression of 5-HT1F and 5-HT2A receptor mRNAs was never detected in any of the microvascular cell cultures. In contrast, messages for all 5-HT receptors tested were detected in human brain astrocytes with a predominance of the 5-HT2A and 5-HT7 subtypes. In all cultures, sumatriptan inhibited (35-58%, P < .05) the forskolin-stimulated production of cyclic AMP, an effect blocked by the 5-HT1B/1D receptor antagonists GR127935 and GR55562. In contrast, 5-carboxamidotryptamine induced strong increases (> or = 400%, P < .005) in basal cyclic AMP levels that were abolished by mesulergine, a nonselective 5-HT7 receptor antagonist. Only astroglial cells showed a ketanserin-sensitive increase (177%, P < .05) in IP3 formation when exposed to 5-HT. These results show that specific populations of functional 5-HT receptors are differentially distributed within the various cellular compartments of the human cortical microvascular bed, and that human brain astroglial cells are endowed with multiple 5-HT receptors

  20. Activation and blockade of serotonin7 receptors in the prelimbic cortex regulate depressive-like behaviors in a 6-hydroxydopamine-induced Parkinson's disease rat model.

    PubMed

    Zhang, Q J; Du, C X; Tan, H H; Zhang, L; Li, L B; Zhang, J; Niu, X L; Liu, J

    2015-12-17

    The role of serotonin7 (5-HT7) receptors in the regulation of depression is poorly understood, particularly in Parkinson's disease-associated depression. Here we examined whether 5-HT7 receptors in the prelimbic (PrL) sub-region of the ventral medial prefrontal cortex (mPFC) involve in the regulation of depressive-like behaviors in sham-operated rats and rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. The lesion induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. Intra-PrL injection of 5-HT7 receptor agonist AS19 (0.5, 1 and 2 μg/rat) increased sucrose consumption, and decreased immobility time in sham-operated and the lesioned rats, indicating the induction of antidepressant-like effects. Further, intra-PrL injection of 5-HT7 receptor antagonist SB269970 (1.5, 3 and 6 μg/rat) decreased sucrose consumption, and increased immobility time, indicating the induction of depressive-like responses. However, the doses producing these effects in the lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-PrL injection of AS19 (2 μg/rat) increased dopamine, 5-hydroxytryptamine (5-HT) and noradrenaline (NA) levels in the mPFC, habenula and ventral hippocampus (vHip) in sham-operated and the lesioned rats; whereas SB269970 (6 μg/rat) decreased 5-HT levels in the habenula and vHip, and the levels of NA in the mPFC, habenula and vHip in the two groups of rats. The results suggest that 5-HT7 receptors in the PrL play an important role in the regulation of these behaviors, which attribute to changes in monoamine levels in the limbic and limbic-related brain regions after activation and blockade of 5-HT7 receptors.

  1. Involvement of 5-hydroxytryptamine7 receptors in inhibition of porcine myometrial contractility by 5-hydroxytryptamine

    PubMed Central

    Kitazawa, Takio; Kubo, Osamu; Satoh, Masami; Taneike, Tetsuro

    1998-01-01

    5-Hydroxytryptamine (5-HT; 1 nM–100 μM) concentration-dependently inhibited the amplitude and frequency of spontaneous contractions in longitudinal and circular muscles of the porcine myometrium. The circular muscle (EC50; 68–84 nM) was more sensitive than the longitudinal muscle (EC50; 1.3–1.44 μM) to 5-HT. To characterize the 5-HT receptor subtype responsible for inhibition of myometrial contractility, the effects of 5-HT receptor agonists on spontaneous contractions and of 5-HT receptor antagonists on inhibition by 5-HT were examined in circular muscle preparations.Pretreatment with tetrodotoxin (1 μM), propranolol (1 μM), atropine (1 μM), guanethidine (10 μM) or L-NAME (100 μM) failed to change the inhibition by 5-HT, indicating that the inhibition was due to a direct action of 5-HT on the smooth muscle cells.5-CT, 5-MeOT and 8-OH-DPAT mimicked the inhibitory response of 5-HT, and the rank order of the potency was 5-CT>5-HT>5-MeOT>8-OH-DPAT. On the other hand, oxymethazoline, α-methyl-5-HT, 2-methyl-5-HT, cisapride, BIMU-1, BIMU-8, ergotamine and dihydroergotamine had almost no effect on spontaneous contractions, even at 10–100 μM.Inhibition by 5-HT was not decreased by either pindolol (1 μM), ketanserin (1 μM), tropisetron (10 μM), MDL72222 (1 μM) or GR113808 (10 μM), but was antagonized by the following compounds in a competitive manner (with pA2 values in parentheses): methiothepin (8.05), methysergide (7.92), metergoline (7.4), mianserin (7.08), clozapine (7.06) and spiperone (6.86).Ro 20-1724 (20 μM) and rolipram (10 μM) significantly enhanced the inhibitory response of 5-HT, but neither zaprinast (10 μM) nor dipyridamole (10 μM) altered the response of 5-HT.5-HT (1 nM–1 μM) caused a concentration-dependent accumulation of intracellular cyclic AMP in the circular muscle.From the present results, the 5-HT receptor, which is functionally correlated with the 5-HT7 receptor, mediates the

  2. Uncoupling of 5-HT1A receptors in the brain by estrogens: regional variations in antagonism by ICI 182,780.

    PubMed

    Mize, A L; Young, L J; Alper, R H

    2003-04-01

    Previously we have shown that 17beta-estradiol (in vivo and in vitro) rapidly decreases the function of serotonin(1A) (5-HT(1A)) receptors, allowing us to hypothesize that 17beta-estradiol accomplished this via activation of a membrane estrogen receptor. Hippocampus and frontal cortex obtained from ovariectomized rats were incubated with 17beta-estradiol or bovine serum albumin (BSA)-estradiol in the presence or absence of the estrogen receptor (ER) antagonist ICI 182,780. Membranes were prepared to measure R(+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding (a measure of 5-HT(1A) receptor coupling and function). In both hippocampus and frontal cortex, 17beta-estradiol and BSA-estradiol (50 nM) decreased R(+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding. ICI 182,780 blocked the effect of both the estrogens in hippocampus, but only the effect of 17beta-estradiol in frontal cortex. Due to the inability of ICI 182,780 to block the effects of BSA-estradiol in frontal cortex, similar experiments were performed using the selective estrogen receptor modulator tamoxifen as the agonist. Tamoxifen (100 nM and 1 microM) decreased R(+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding. ICI 182,780 (1 microM) blocked the ability of tamoxifen to decrease 5-HT(1A) receptor coupling in the hippocampus, but not in the frontal cortex. Taken together, these data support the existence of a pharmacologically distinct ER in hippocampus vs. frontal cortex that might be responsible for rapid uncoupling of 5-HT(1A) receptors. PMID:12668044

  3. Concurrent antagonism of NMDA and AMPA receptors in the ventral tegmental area reduces the expression of conditioned approach learning in rats.

    PubMed

    Hachimine, Priscila; Seepersad, Neal; Babic, Sandra; Ranaldi, Robert

    2016-02-01

    Conditioned stimuli (CSs) come to function as CSs by acquiring the capacity to activate the same mesocorticolimbic dopamine (DA) neurons activated by primary rewards, producing conditioned activation of these neurons and their associated motivational states. This model stipulates that CSs activate mesocorticolimbic DA systems through the activation of glutamate receptors on DA neurons in the ventral tegmental area (VTA). We tested the hypothesis that glutamate receptor stimulation in the VTA is necessary for the expression of conditioned approach. Rats were tested in a conditioned approach protocol that consisted of 7 consecutive conditioning sessions (light presentations and food were paired), one session with no light or food and one test session with only light stimulus (CS-only) presentations. The number of head entries during the CS and pre-CS (baseline) periods was used to calculate difference scores. Bilateral VTA microinjections of glutamate receptor antagonists were made prior to the CS-only session. Kynurenic acid (ionotropic glutamate receptor antagonist; 1.125-4.5 μg/0.5 μl) significantly reduced difference scores compared to vehicle (0 μg), whereas MCPG (metabotropic glutamate receptor antagonist; 1.875-7.5 μg), AP-5 (NMDA antagonist; 0.03125-2.0 μg), and NBQX (AMPA antagonist; 0.5-4.0 μg) had no effects. When AP-5 and NBQX were administered simultaneously at doses of 0.25/4.0 and 2.0/4.0 μg, respectively, the combination significantly reduced the difference scores compared to 0/0 μg, indicating a reduction in the expression of conditioned approach. These findings indicate that expression of conditioned approach learning requires NMDA or AMPA receptor stimulation in the VTA. PMID:26542814

  4. PAC1 receptor antagonism in the bed nucleus of the stria terminalis (BNST) attenuates the endocrine and behavioral consequences of chronic stress

    PubMed Central

    Roman, Carolyn W.; Lezak, Kim R.; Hartsock, Matthew J.; Falls, William A.; Braas, Karen M.; Howard, Alan B.; Hammack, Sayamwong E.; May, Victor

    2015-01-01

    Summary Chronic or repeated stressor exposure can induce a number of maladaptive behavioral and physiological consequences and among limbic structures, the bed nucleus of the stria terminalis (BNST) has been implicated in the integration and interpretation of stress responses. Previous work has demonstrated that chronic variate stress (CVS) exposure in rodents increases BNST pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1) and PAC1 receptor (Adcyap1r1) transcript expression, and that acute BNST PACAP injections can stimulate anxiety-like behavior. Here we show that chronic stress increases PACAP expression selectively in the oval nucleus of the dorsolateral BNST in patterns distinct from those for corticotropin releasing hormone (CRH). Among receptor subtypes, BNST PACAP signaling through PAC1 receptors not only heightened anxiety responses as measured by different behavioral parameters but also induced anorexic-like behavior to mimic the consequences of stress. Conversely, chronic inhibition of BNST PACAP signaling by continuous infusion with the PAC1 receptor antagonist PACAP(6-38) during the week of CVS attenuated these stress-induced behavioral responses and changes in weight gain. BNST PACAP signaling stimulated the hypothalamic-pituitary-adrenal (HPA) axis and heightened corticosterone release; further, BNST PACAP(6-38) administration blocked corticosterone release in a sensitized stress model. In aggregate with recent associations of PACAP/PAC1 receptor dysregulation with altered stress responses including post-traumatic stress disorder, these data suggest that BNST PACAP/PAC1 receptor signaling mechanisms may coordinate the behavioral and endocrine consequences of stress. PMID:25001965

  5. Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes phosphoinositide hydrolysis, Ca2+ release, and activation of protein kinase C

    PubMed Central

    Pandey, Kailash N.

    2014-01-01

    Thus far, three related natriuretic peptides (NPs) and three distinct sub-types of cognate NP receptors have been identified and characterized based on the specific ligand binding affinities, guanylyl cyclase activity, and generation of intracellular cGMP. Atrial and brain natriuretic peptides (ANP and BNP) specifically bind and activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), and C-type natriuretic peptide (CNP) shows specificity to activate guanylyl cyclase/natriuretic peptide receptor-B (GC-B/NPRB). All three NPs bind to natriuretic peptide receptor-C (NPRC), which is also known as clearance or silent receptor. The NPRA is considered the principal biologically active receptor of NP family; however, the molecular signaling mechanisms of NP receptors are not well understood. The activation of NPRA and NPRB produces the intracellular second messenger cGMP, which serves as the major signaling molecule of all three NPs. The activation of NPRB in response to CNP also produces the intracellular cGMP; however, at lower magnitude than that of NPRA, which is activated by ANP and BNP. In addition to enhanced accumulation of intracellular cGMP in response to all three NPs, the levels of cAMP, Ca2+ and inositol triphosphate (IP3) have also been reported to be altered in different cells and tissue types. Interestingly, ANP has been found to lower the concentrations of cAMP, Ca2+, and IP3; however, NPRC has been proposed to increase the levels of these metabolic signaling molecules. The mechanistic studies of decreased and/or increased levels of cAMP, Ca2+, and IP3 in response to NPs and their receptors have not yet been clearly established. This review focuses on the signaling mechanisms of ANP/NPRA and their biological effects involving an increased level of intracellular accumulation of cGMP and a decreased level of cAMP, Ca2+, and IP3 in different cells and tissue systems. PMID:25202235

  6. Pharmacological Stimulation of the Brain Serotonin Receptor 7 as a Novel Therapeutic Approach for Rett Syndrome

    PubMed Central

    De Filippis, Bianca; Nativio, Paola; Fabbri, Alessia; Ricceri, Laura; Adriani, Walter; Lacivita, Enza; Leopoldo, Marcello; Passarelli, Francesca; Fuso, Andrea; Laviola, Giovanni

    2014-01-01

    Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG-binding protein 2 gene (MECP2) cause >95% of classic cases, and currently there is no cure for this devastating disorder. The serotonin receptor 7 (5-HT7R) is linked to neuro-physiological regulation of circadian rhythm, mood, cognition, and synaptic plasticity. We presently report that 5-HT7R density is consistently reduced in cortical and hippocampal brain areas of symptomatic MeCP2–308 male mice, a RTT model. Systemic repeated treatment with LP-211 (0.25 mg/kg once/day for 7 days), a brain-penetrant selective 5-HT7R agonist, was able to rescue RTT-related defective performance: anxiety-related profiles in a Light/Dark test, motor abilities in a Dowel test, the exploratory behavior in the Marble Burying test, as well as memory in the Novelty Preference task. In the brain of RTT mice, LP-211 also reversed the abnormal activation of PAK and cofilin (key regulators of actin cytoskeleton dynamics) and of the ribosomal protein (rp) S6, whose reduced activation in MECP2 mutant neurons by mTOR is responsible for the altered protein translational control. Present findings indicate that pharmacological targeting of 5-HT7R improves specific behavioral and molecular manifestations of RTT, thus representing a first step toward the validation of an innovative systemic treatment. Beyond RTT, the latter might be extended to other disorders associated with intellectual disability. PMID:24809912

  7. Pharmacological stimulation of the brain serotonin receptor 7 as a novel therapeutic approach for Rett syndrome.

    PubMed

    De Filippis, Bianca; Nativio, Paola; Fabbri, Alessia; Ricceri, Laura; Adriani, Walter; Lacivita, Enza; Leopoldo, Marcello; Passarelli, Francesca; Fuso, Andrea; Laviola, Giovanni

    2014-10-01

    Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG-binding protein 2 gene (MECP2) cause >95% of classic cases, and currently there is no cure for this devastating disorder. The serotonin receptor 7 (5-HT7R) is linked to neuro-physiological regulation of circadian rhythm, mood, cognition, and synaptic plasticity. We presently report that 5-HT7R density is consistently reduced in cortical and hippocampal brain areas of symptomatic MeCP2-308 male mice, a RTT model. Systemic repeated treatment with LP-211 (0.25 mg/kg once/day for 7 days), a brain-penetrant selective 5-HT7R agonist, was able to rescue RTT-related defective performance: anxiety-related profiles in a Light/Dark test, motor abilities in a Dowel test, the exploratory behavior in the Marble Burying test, as well as memory in the Novelty Preference task. In the brain of RTT mice, LP-211 also reversed the abnormal activation of PAK and cofilin (key regulators of actin cytoskeleton dynamics) and of the ribosomal protein (rp) S6, whose reduced activation in MECP2 mutant neurons by mTOR is responsible for the altered protein translational control. Present findings indicate that pharmacological targeting of 5-HT7R improves specific behavioral and molecular manifestations of RTT, thus representing a first step toward the validation of an innovative systemic treatment. Beyond RTT, the latter might be extended to other disorders associated with intellectual disability. PMID:24809912

  8. Orexin-1 receptor antagonism fails to reduce anxiety-like behaviour in either plus-maze-naïve or plus-maze-experienced mice.

    PubMed

    Rodgers, R J; Wright, F L; Snow, N F; Taylor, L J

    2013-04-15

    Although several lines of evidence have recently implicated orexins and their receptors in fear and anxiety, there is also a growing number of apparently inconsistent and/or negative findings. In the present study, we have used ethological methods to comprehensively profile the behavioural effects of the orexin-1 receptor antagonist SB-334867 (3-30 mg/kg) in mice exposed to the elevated plus-maze. Two experiments were performed, the first involving test-naïve animals and the second using prior undrugged experience of the maze to induce a qualitatively different emotional response to that seen on first exposure. In Experiment 1, a reference benzodiazepine (chlordiazepoxide, CDP, 15 mg/kg) produced a robust anxioselective profile comprising substantial increases in open arm exploration and reduced risk assessment without any signiifcant change in general activity levels. In contrast, SB-334867 failed to produce any behavioural effects over the dose range tested. In Experiment 2, 5 min undrugged experience of the maze 24h prior to testing increased open arm avoidance and abolished the anxiolytic efficacy of CDP. Despite this altered baseline, SB-334867 again failed to alter plus-maze behaviour. These findings agree with several recent reports that orexin receptor antagonists, such as SB-334867 and almorexant, do not alter basal anxiety levels in rats but markedly contrast with the anxiolytic-like effects of the same agents when anxiety levels have been exacerbated by fear conditioning, drug challenge or hypercapnia. This unique pattern of activity suggests that orexin receptor antagonists may have therapeutic value in those clinical anxiety disorders characterised by intense emotional arousal.

  9. Antagonism of corticotrophin-releasing factor type 1 receptors attenuates caloric intake of free feeding subordinate female rhesus monkeys in a rich dietary environment.

    PubMed

    Moore, C J; Johnson, Z P; Higgins, M; Toufexis, D; Wilson, M E

    2015-01-01

    Social subordination in macaque females is a known chronic stressor and previous studies have shown that socially subordinate female rhesus monkeys consume fewer kilocalories than dominant animals when a typical laboratory chow diet is available. However, in a rich dietary environment that provides access to chow in combination with a more palatable diet (i.e. high in fat and refined sugar), subordinate animals consume significantly more daily kilocalories than dominant conspecifics. Substantial literature is available supporting the role of stress hormone signals in shaping dietary preferences and promoting the consumption of palatable, energy-dense foods. The present study was conducted using stable groups of adult female rhesus monkeys to test the hypothesis that pharmacological treatment with a brain penetrable corticotrophin-releasing factor type 1 receptor (CRF1) antagonist would attenuate the stress-induced consumption of a palatable diet among subordinate animals in a rich dietary environment but would be without effect in dominant females. The results show that administration of the CRF1 receptor antagonist significantly reduced daily caloric intake of both available diets among subordinate females compared to dominant females. Importantly, multiple regression analyses showed that the attenuation in caloric intake in response to Antalarmin (Sigma-Aldrich, St Louis, MO, USA) was significantly predicted by the frequency of submissive and aggressive behaviour emitted by females, independent of social status. Taken together, the findings support the involvement of activation of CRF1 receptors in the stress-induced consumption of excess calories in a rich dietary environment and also support the growing literature concerning the importance of CRF for sustaining emotional feeding.

  10. Antagonism of Corticotrophin-Releasing Factor Type 1 Receptors Attenuates Caloric Intake of Free Feeding Subordinate Female Rhesus Monkeys in a Rich Dietary Environment

    PubMed Central

    Moore, C J; Johnson, Z P; Higgins, M; Toufexis, D; Wilson, M E

    2015-01-01

    Social subordination in macaque females is a known chronic stressor and previous studies have shown that socially subordinate female rhesus monkeys consume fewer kilocalories than dominant animals when a typical laboratory chow diet is available. However, in a rich dietary environment that provides access to chow in combination with a more palatable diet (i.e. high in fat and refined sugar), subordinate animals consume significantly more daily kilocalories than dominant conspecifics. Substantial literature is available supporting the role of stress hormone signals in shaping dietary preferences and promoting the consumption of palatable, energy-dense foods. The present study was conducted using stable groups of adult female rhesus monkeys to test the hypothesis that pharmacological treatment with a brain penetrable corticotrophin-releasing factor type 1 receptor (CRF1) antagonist would attenuate the stress-induced consumption of a palatable diet among subordinate animals in a rich dietary environment but would be without effect in dominant females. The results show that administration of the CRF1 receptor antagonist significantly reduced daily caloric intake of both available diets among subordinate females compared to dominant females. Importantly, multiple regression analyses showed that the attenuation in caloric intake in response to Antalarmin (Sigma-Aldrich, St Louis, MO, USA) was significantly predicted by the frequency of submissive and aggressive behaviour emitted by females, independent of social status. Taken together, the findings support the involvement of activation of CRF1 receptors in the stress-induced consumption of excess calories in a rich dietary environment and also support the growing literature concerning the importance of CRF for sustaining emotional feeding. PMID:25674637

  11. Distinction between the effects of barbiturates, benzodiazepines and phenytoin on responses to gamma-aminobutyric acid receptor activation and antagonism by bicuculline and picrotoxin.

    PubMed Central

    Simmonds, M. A.

    1981-01-01

    1 Interactions of depressant and anticonvulsant drugs with the neuronal gamma-aminobutyric acid (GABA) receptor + effector system have been examined on afferent fibres to the rat cuneate nucleus in vitro. Three types of interaction have been measured: (a) potentiation of depolarizing responses to the GABA analogue, muscimol: (b) reduction in the potency of bicuculline as an antagonist of muscimol at the GABA receptor: (c) reduction in the potency of picrotoxin as an antagonist of muscimol acting on the effector mechanism. 2 Phenobarbitone reduced the potency of picrotoxin in doses which did not affect the potency of bicuculline and which caused only a small potentiation of muscimol. Pentobarbitone did not show such selectivity, a reduction in potency of picrotoxin always being accompanied by a reduction in potency of bicuculline and a substantial potentiation of muscimol. 3 Flurazepam and lorazepam both reduced the potency of picrotoxin without affecting that of bicuculline and with very little potentiation of muscimol. Phenytoin had no effect on the potency of picrotoxin whilst potentiating muscimol to the same extent as phenobarbitone. 4 The spectrum of drug activity in reducing the potency of picrotoxin correlates well with the reported anticonvulsant effects of these drugs against kindled amygdaloid seizures. Potentiation of muscimol and reduction of bicuculline potency appear more closely related to hypnotic properties. PMID:6265019

  12. Argon blocks the expression of locomotor sensitization to amphetamine through antagonism at the vesicular monoamine transporter-2 and mu-opioid receptor in the nucleus accumbens

    PubMed Central

    David, H N; Dhilly, M; Degoulet, M; Poisnel, G; Meckler, C; Vallée, N; Blatteau, J-É; Risso, J-J; Lemaire, M; Debruyne, D; Abraini, J H

    2015-01-01

    We investigated the effects of the noble gas argon on the expression of locomotor sensitization to amphetamine and amphetamine-induced changes in dopamine release and mu-opioid neurotransmission in the nucleus accumbens. We found (1) argon blocked the increase in carrier-mediated dopamine release induced by amphetamine in brain slices, but, in contrast, potentiated the decrease in KCl-evoked dopamine release induced by amphetamine, thereby suggesting that argon inhibited the vesicular monoamine transporter-2; (2) argon blocked the expression of locomotor and mu-opioid neurotransmission sensitization induced by repeated amphetamine administration in a short-term model of sensitization in rats; (3) argon decreased the maximal number of binding sites and increased the dissociation constant of mu-receptors in membrane preparations, thereby indicating that argon is a mu-receptor antagonist; (4) argon blocked the expression of locomotor sensitization and context-dependent locomotor activity induced by repeated administration of amphetamine in a long-term model of sensitization. Taken together, these data indicate that argon could be of potential interest for treating drug addiction and dependence. PMID:26151922

  13. Argon blocks the expression of locomotor sensitization to amphetamine through antagonism at the vesicular monoamine transporter-2 and mu-opioid receptor in the nucleus accumbens.

    PubMed

    David, H N; Dhilly, M; Degoulet, M; Poisnel, G; Meckler, C; Vallée, N; Blatteau, J-É; Risso, J-J; Lemaire, M; Debruyne, D; Abraini, J H

    2015-01-01

    We investigated the effects of the noble gas argon on the expression of locomotor sensitization to amphetamine and amphetamine-induced changes in dopamine release and mu-opioid neurotransmission in the nucleus accumbens. We found (1) argon blocked the increase in carrier-mediated dopamine release induced by amphetamine in brain slices, but, in contrast, potentiated the decrease in KCl-evoked dopamine release induced by amphetamine, thereby suggesting that argon inhibited the vesicular monoamine transporter-2; (2) argon blocked the expression of locomotor and mu-opioid neurotransmission sensitization induced by repeated amphetamine administration in a short-term model of sensitization in rats; (3) argon decreased the maximal number of binding sites and increased the dissociation constant of mu-receptors in membrane preparations, thereby indicating that argon is a mu-receptor antagonist; (4) argon blocked the expression of locomotor sensitization and context-dependent locomotor activity induced by repeated administration of amphetamine in a long-term model of sensitization. Taken together, these data indicate that argon could be of potential interest for treating drug addiction and dependence. PMID:26151922

  14. Argon blocks the expression of locomotor sensitization to amphetamine through antagonism at the vesicular monoamine transporter-2 and mu-opioid receptor in the nucleus accumbens.

    PubMed

    David, H N; Dhilly, M; Degoulet, M; Poisnel, G; Meckler, C; Vallée, N; Blatteau, J-É; Risso, J-J; Lemaire, M; Debruyne, D; Abraini, J H

    2015-07-07

    We investigated the effects of the noble gas argon on the expression of locomotor sensitization to amphetamine and amphetamine-induced changes in dopamine release and mu-opioid neurotransmission in the nucleus accumbens. We found (1) argon blocked the increase in carrier-mediated dopamine release induced by amphetamine in brain slices, but, in contrast, potentiated the decrease in KCl-evoked dopamine release induced by amphetamine, thereby suggesting that argon inhibited the vesicular monoamine transporter-2; (2) argon blocked the expression of locomotor and mu-opioid neurotransmission sensitization induced by repeated amphetamine administration in a short-term model of sensitization in rats; (3) argon decreased the maximal number of binding sites and increased the dissociation constant of mu-receptors in membrane preparations, thereby indicating that argon is a mu-receptor antagonist; (4) argon blocked the expression of locomotor sensitization and context-dependent locomotor activity induced by repeated administration of amphetamine in a long-term model of sensitization. Taken together, these data indicate that argon could be of potential interest for treating drug addiction and dependence.

  15. Serotonergic receptor mechanisms underlying antidepressant-like action in the progesterone withdrawal model of hormonally induced depression in rats.

    PubMed

    Li, Yan; Raaby, Kasper F; Sánchez, Connie; Gulinello, Maria

    2013-11-01

    Hormonally induced mood disorders such as premenstrual dysphoric disorder (PMDD) are characterized by a range of physical and affective symptoms including anxiety, irritability, anhedonia, social withdrawal and depression. Studies demonstrated rodent models of progesterone withdrawal (PWD) have a high level of constructive and descriptive validity to model hormonally-induced mood disorders in women. Here we evaluate the effects of several classes of antidepressants in PWD female Long-Evans rats using the forced swim test (FST) as a measure of antidepressant activity. The study included fluoxetine, duloxetine, amitriptyline and an investigational multimodal antidepressant, vortioxetine (5-HT(3), 5-HT(7) and 5-HT(1D) receptor antagonist; 5-HT(1B) receptor partial agonist; 5-HT(1A) receptor agonist; inhibitor of the serotonin transporter (SERT)). After 14 days of administration, amitriptyline and vortioxetine significantly reduced immobility in the FST whereas fluoxetine and duloxetine were ineffective. After 3 injections over 48 h, neither fluoxetine nor duloxetine reduced immobility, whereas amitriptyline and vortioxetine significantly reduced FST immobility during PWD. When administered acutely during PWD, the 5-HT(1A) receptor agonist, flesinoxan, significantly reduced immobility, whereas the 5-HT(1A) receptor antagonist, WAY-100635, increased immobility. The 5-HT(3) receptor antagonist, ondansetron, significantly reduced immobility, whereas the 5-HT(3) receptor agonist, SR-57227, increased immobility. The 5-HT(7) receptor antagonist, SB-269970, was inactive, although the 5-HT(7) receptor agonist, AS-19, significantly increased PWD-induced immobility. None of the compounds investigated (ondansetron, flesinoxan and SB-269970) improved the effect of fluoxetine during PWD. These data indicate that modulation of specific 5-HT receptor subtypes is critical for manipulating FST immobility in this model of hormone-induced depression.

  16. Retinoic acid receptor-α signalling antagonizes both intracellular and extracellular amyloid-β production and prevents neuronal cell death caused by amyloid-β.

    PubMed

    Jarvis, C I; Goncalves, M B; Clarke, E; Dogruel, M; Kalindjian, S B; Thomas, S A; Maden, M; Corcoran, J P T

    2010-10-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) deposition in the brain, neuronal cell loss and cognitive decline. We show here that retinoic acid receptor (RAR)α signalling in vitro can prevent both intracellular and extracellular Aβ accumulation. RARα signalling increases the expression of a disintegrin and metalloprotease 10, an α-secretase that processes the amyloid precursor protein into the non-amyloidic pathway, thus reducing Aβ production. We also show that RARα agonists are neuroprotective, as they prevent Aβ-induced neuronal cell death in cortical cultures. If RARα agonists are given to the Tg2576 mouse, the normal Aβ production in their brains is suppressed. In contrast, neither RARβ nor γ-agonists affect Aβ production or Aβ-mediated neuronal cell death. Therefore, RARα agonists have therapeutic potential for the treatment of AD.

  17. AOP description: ER antagonism leading to reproductive dysfunction (in fish)

    EPA Science Inventory

    This adverse outcome pathway details the linkage between antagonism of estrogen receptor in females and the adverse effect of reduced cumulative fecundity in repeat-spawning fish species. Cumulative fecundity is the most apical endpoint considered in the OECD 229 Fish Short Term ...

  18. Antiosteoclastogenesis activity of a CO2 laser antagonizing receptor activator for nuclear factor kappaB ligand-induced osteoclast differentiation of murine macrophages

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Liang; Kao, Chia-Tze; Fang, Hsin-Yuan; Huang, Tsui-Hsien; Chen, Yi-Wen; Shie, Ming-You

    2015-03-01

    Macrophage cells are the important effector cells in the immune reaction which are indispensable for osteoclastogenesis; their heterogeneity and plasticity renders macrophages a primer target for immune system modulation. In recent years, there have been very few studies about the effects of macrophage cells on laser treatment-regulated osteoclastogenesis. In this study, RAW 264.7 macrophage cells were treated with RANKL to regulate osteoclastogenesis. We used a CO2 laser as a model biostimulation to investigate the role of osteoclastogenic. We also evaluated cell viability, cell death and cathepsin K expression. The CO2 laser inhibited a receptor activator of the NF-ĸB ligand (RANKL)-induced formation of osteoclasts during the osteoclast differentiation process. It was also found that irradiation for two times reduced RANKL-enhanced TRAP activity in a dose-dependent manner. Furthermore, CO2 laser-treatment diminished the expression and secretion of cathepsin K elevated by RANKL and was concurrent with the inhibition of TRAF6 induction and NF-ĸB activation. The current report demonstrates that CO2 laser abrogated RANKL-induced osteoclastogenesis by retarding osteoclast differentiation. The CO2 laser can modulate every cell through dose-dependent in vitro RANKL-mediated osteoclastogenesis, such as the proliferation and fusion of preosteoclasts and the maturation of osteoclasts. Therefore, the current results serve as an improved explanation of the cellular roles of macrophage cell populations in osteoclastogenesis as well as in alveolar bone remodeling by CO2 laser-treatment.

  19. The brominated flame retardants TBP-AE and TBP-DBPE antagonize the chicken androgen receptor and act as potential endocrine disrupters in chicken LMH cells.

    PubMed

    Asnake, Solomon; Pradhan, Ajay; Kharlyngdoh, Joubert Banjop; Modig, Carina; Olsson, Per-Erik

    2015-12-01

    Increased exposure of birds to endocrine disrupting compounds has resulted in developmental and reproductive dysfunctions. We have recently identified the flame retardants, allyl-2,4,6-tribromophenyl ether (TBP-AE), 2-3-dibromopropyl-2,4,6-tribromophenyl ether (TBP-DBPE) and the TBP-DBPE metabolite 2-bromoallyl-2,4,6-tribromophenyl ether (TBP-BAE) as antagonists to both the human androgen receptor (AR) and the zebrafish AR. In the present study, we aimed at determining whether these compounds also interact with the chicken AR. In silico modeling studies showed that TBP-AE, TBP-BAE and TBP-DBPE were able to dock into to the chicken AR ligand-binding pocket. In vitro transfection assays revealed that all three brominated compounds acted as chicken AR antagonists, inhibiting testosterone induced AR activation. In addition, qRT-PCR studies confirmed that they act as AR antagonists and demonstrated that they also alter gene expression patterns of apoptotic, anti-apoptotic, drug metabolizing and amino acid transporter genes. These studies, using chicken LMH cells, suggest that TBP-AE, TBP-BAE and TBP-DBPE are potential endocrine disrupters in chicken.

  20. The brominated flame retardants TBP-AE and TBP-DBPE antagonize the chicken androgen receptor and act as potential endocrine disrupters in chicken LMH cells.

    PubMed

    Asnake, Solomon; Pradhan, Ajay; Kharlyngdoh, Joubert Banjop; Modig, Carina; Olsson, Per-Erik

    2015-12-01

    Increased exposure of birds to endocrine disrupting compounds has resulted in developmental and reproductive dysfunctions. We have recently identified the flame retardants, allyl-2,4,6-tribromophenyl ether (TBP-AE), 2-3-dibromopropyl-2,4,6-tribromophenyl ether (TBP-DBPE) and the TBP-DBPE metabolite 2-bromoallyl-2,4,6-tribromophenyl ether (TBP-BAE) as antagonists to both the human androgen receptor (AR) and the zebrafish AR. In the present study, we aimed at determining whether these compounds also interact with the chicken AR. In silico modeling studies showed that TBP-AE, TBP-BAE and TBP-DBPE were able to dock into to the chicken AR ligand-binding pocket. In vitro transfection assays revealed that all three brominated compounds acted as chicken AR antagonists, inhibiting testosterone induced AR activation. In addition, qRT-PCR studies confirmed that they act as AR antagonists and demonstrated that they also alter gene expression patterns of apoptotic, anti-apoptotic, drug metabolizing and amino acid transporter genes. These studies, using chicken LMH cells, suggest that TBP-AE, TBP-BAE and TBP-DBPE are potential endocrine disrupters in chicken. PMID:26318274

  1. Ghrelin-Induced Orexigenic Effect in Rats Depends on the Metabolic Status and Is Counteracted by Peripheral CB1 Receptor Antagonism

    PubMed Central

    Alen, Francisco; Crespo, Inmaculada; Ramírez-López, María Teresa; Jagerovic, Nadine; Goya, Pilar; de Fonseca, Fernando Rodríguez; de Heras, Raquel Gómez; Orio, Laura

    2013-01-01

    Ghrelin is an endogenous regulator of energy homeostasis synthesized by the stomach to stimulate appetite and positive energy balance. Similarly, the endocannabinoid system is part of our internal machinery controlling food intake and energy expenditure. Both peripheral and central mechanisms regulate CB1-mediated control of food intake and a functional relationship between hypothalamic ghrelin and cannabinoid CB1 receptor has been proposed. First of all, we investigated brain ghrelin actions on food intake in rats with different metabolic status (negative or equilibrate energy balance). Secondly, we tested a sub-anxiogenic ultra-low dose of the CB1 antagonist SR141716A (Rimonabant) and the peripheral-acting CB1 antagonist LH-21 on ghrelin orexigenic actions. We found that: 1) central administration of ghrelin promotes food intake in free feeding animals but not in 24 h food-deprived or chronically food-restricted animals; 2) an ultra-low dose of SR141716A (a subthreshold dose 75 folds lower than the EC50 for induction of anxiety) completely counteracts the orexigenic actions of central ghrelin in free feeding animals; 3) the peripheral-restricted CB1 antagonist LH-21 blocks ghrelin-induced hyperphagia in free feeding animals. Our study highlights the importance of the animaĺs metabolic status for the effectiveness of ghrelin in promoting feeding, and suggests that the peripheral endocannabinoid system may interact with ghrelińs signal in the control of food intake under equilibrate energy balance conditions. PMID:23565287

  2. Differential rescue of spatial memory deficits in aged rats by L-type voltage-dependent calcium channel and ryanodine receptor antagonism.

    PubMed

    Hopp, S C; D'Angelo, H M; Royer, S E; Kaercher, R M; Adzovic, L; Wenk, G L

    2014-11-01

    Age-associated memory impairments may result as a consequence of neuroinflammatory induction of intracellular calcium (Ca(+2)) dysregulation. Altered L-type voltage-dependent calcium channel (L-VDCC) and ryanodine receptor (RyR) activity may underlie age-associated learning and memory impairments. Various neuroinflammatory markers are associated with increased activity of both L-VDCCs and RyRs, and increased neuroinflammation is associated with normal aging. In vitro, pharmacological blockade of L-VDCCs and RyRs has been shown to be anti-inflammatory. Here, we examined whether pharmacological blockade of L-VDCCs or RyRs with the drugs nimodipine and dantrolene, respectively, could improve spatial memory and reduce age-associated increases in microglia activation. Dantrolene and nimodipine differentially attenuated age-associated spatial memory deficits but were not anti-inflammatory in vivo. Furthermore, RyR gene expression was inversely correlated with spatial memory, highlighting the central role of Ca(+2) dysregulation in age-associated memory deficits.

  3. Examining the role of endogenous orexins in hypothalamus-pituitary-adrenal axis endocrine function using transient dual orexin receptor antagonism in the rat.

    PubMed

    Steiner, Michel A; Sciarretta, Carla; Brisbare-Roch, Catherine; Strasser, Daniel S; Studer, Rolf; Jenck, Francois

    2013-04-01

    The orexin neuropeptide system regulates wakefulness and contributes to physiological and behavioral stress responses. Moreover, a role for orexins in modulating hypothalamus-pituitary-adrenal (HPA) axis activity has been proposed. Brain penetrating dual orexin receptor (OXR) antagonists such as almorexant decrease vigilance and have emerged as a novel therapeutic class for the treatment of insomnia. Almorexant was used here as a pharmacological tool to examine the role of endogenous orexin signaling in HPA axis endocrine function under natural conditions. After confirming the expression of prepro-orexin and OXR-1 and OXR-2 mRNA in hypothalamus, pituitary and adrenal glands, the effects of systemic almorexant were investigated on peripheral HPA axis hormone release in the rat under baseline, stress and pharmacological challenge conditions. Almorexant did not alter basal or stress-induced corticosterone release despite affecting wake and sleep stages (detected by radiotelemetric electroencephalography/electromyography) during the stress exposure. Moreover, almorexant did not affect the release of adrenocorticotropin (ACTH) and corticosterone at different time points along the diurnal rhythm, nor corticotrophin-releasing hormone (CRH)- and ACTH-stimulated neuroendocrine responses, measured in vivo under stress-free conditions. These results illustrate that dual OXR antagonists, despite modulating stress-induced wakefulness, do not interfere with endocrine HPA axis function in the rat. They converge to suggest that endogenous orexin signaling plays a minor role in stress hormone release under basal conditions and under challenge.

  4. Systemic modulation of serotonergic synapses via reuptake blockade or 5HT1A receptor antagonism does not alter perithreshold taste sensitivity in rats.

    PubMed

    Mathes, Clare M; Spector, Alan C

    2014-09-01

    Systemic blockade of serotonin (5HT) reuptake with paroxetine has been shown to increase sensitivity to sucrose and quinine in humans. Here, using a 2-response operant taste detection task, we measured the effect of paroxetine and the 5HT1A receptor antagonist WAY100635 on the ability of rats to discriminate sucrose, NaCl, and citric acid from water. After establishing individual psychometric functions, 5 concentrations of each taste stimulus were chosen to represent the dynamic portion of the concentration-response curve, and the performance of the rats to these stimuli was assessed after vehicle, paroxetine (7mg/kg intraperitoneally), and WAY100635 (0.3mg/kg subcutaneously; 1mg/kg intravenously) administration. Although, at times, overall performance across concentrations dropped, at most, 5% from vehicle to drug conditions, no differences relative to vehicle were seen on the parameters of the psychometric function (asymptote, slope, or EC50) after drug administration. In contrast to findings in humans, our results suggest that modulation of 5HT activity has little impact on sucrose detectability at perithreshold concentrations in rats, at least at the doses used in this task. In the rat model, the purported paracrine/neurocrine action of serotonin in the taste bud may work in a manner that does not impact overt taste detection behavior.

  5. Aryl Hydrocarbon Receptor Antagonism Attenuates Growth Factor Expression, Proliferation, and Migration in Fibroblast-Like Synoviocytes from Patients with Rheumatoid Arthritis

    PubMed Central

    Lahoti, Tejas S.; Hughes, Jarod M.; Kusnadi, Ann; John, Kaarthik; Zhu, Bokai; Murray, Iain A.; Gowda, Krishne; Peters, Jeffrey M.; Amin, Shantu G.

    2014-01-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disease with high morbidity and mortality. Within the inflammatory milieu, resident fibroblast-like synoviocytes (FLS) in the synovial tissue undergo hyperplasia, which leads to joint destruction. Epidemiologic studies and our previous research suggest that activation of the aryl hydrocarbon receptor (AHR) pathway plays an instrumental role in the inflammatory and destructive RA phenotype. In addition, our recent studies implicate the AHR in the regulation of the expression of several growth factors in established tumor cell lines. Thus, under inflammatory conditions, we hypothesized that the AHR is involved in the constitutive and inducible expression of several growth factors, FLS proliferation and migration, along with protease-dependent invasion in FLS from patients with RA (RA-FLS). Treatment with the AHR antagonist GNF351 inhibits cytokine-induced expression of vascular endothelial growth factor-A (VEGF-A), epiregulin, amphiregulin, and basic fibroblast growth factor mRNA through an AHR-dependent mechanism in both RA-FLS and FLS. Secretion of VEGF-A and epiregulin from RA-FLS was also inhibited upon GNF351 treatment. RA-FLS cell migration, along with cytokine-induced RA-FLS cell proliferation, was significantly attenuated by GNF351 exposure. Treatment of RA-FLS with GNF351 mitigated cytokine-mediated expression of matrix metalloproteinase-2 and -9 mRNA and diminished the RA-FLS invasive phenotype. These findings indicate that inhibition of AHR activity may be a viable therapeutic target in amelioration of disease progression in RA by attenuating growth factor release; FLS proliferation, migration, and invasion; and inflammatory activity. PMID:24309559

  6. Local N-Methyl-D-Aspartate Receptor Antagonism in the Prefrontal Cortex Attenuates Spatial Cognitive Deficits Induced by Gonadectomy in Adult Male Rats

    PubMed Central

    Locklear, Mallory N.; Bhamidipaty, Surya; Kritzer, Mary F.

    2015-01-01

    Gonadectomy in adult male rats significantly impairs spatial working memory, behavioral flexibility and other functions associated with the prefrontal cortex (PFC). However, the mechanisms through which this occurs are largely unknown. In this study, intracortical drug challenge with the selective N-methyl-D-aspartate glutamate receptor (NMDAR) antagonist D(-)-2-amino-5-phosphonopentanoic acid (APV) was combined with Barnes maze testing, gonadectomy and hormone replacement (17β estradiol, testosterone propionate) to explore the contributions of NMDAR-mediated activity within the PFC to hormone effects on spatial cognition in adult male rats. Previous studies have shown that Barnes maze testing reveals significant estrogen-dependent, gonadectomy-induced deficits in spatial working memory and androgen-sensitive, gonadectomy-induced deficits in spatial search strategy. Here we found that bilateral infusion of APV into the medial prefrontal cortex prior to testing significantly improved both sets of behaviors in gonadectomized rats and significantly worsened performance measures in gonadally intact controls. In hormone-replaced cohorts, we further found that behaviors that are normally similar to controls were significantly disrupted by APV, and those that are normally similar to gonadectomized rats were rescued by intracortical APV infusion. There were, however, no residual effects of APV on retention testing conducted 24 hours later. Together these findings suggest that hormone regulation of NMDAR-mediated activity specifically within the PFC may be fundamental to the effects of gonadal steroids on spatial cognition in males. Our findings further identify NMDAR antagonists as potentially novel, non-steroidal means of attenuating the cognitive deficits that can accompany gonadal hormone decline in human males in aging, clinical cases of hypogonadalism and in certain neurologic and psychiatric illnesses. Accordingly, it may be important to obtain in males the kind of

  7. Specific endothelin ET(A) receptor antagonism does not modulate insulin-induced hemodynamic effects in the human kidney, eye, or forearm.

    PubMed

    Rab, Anna; Dallinger, Susanne; Polak, Kaija; Pleiner, Johannes; Polska, Elzbieta; Wolzt, Michael; Schmetterer, Leopold

    2004-05-01

    There is evidence that hyperinsulinemia may stimulate endothelin-1 (ET-1) generation or release, which may affect diabetic vascular complications. BQ-123, a specific ET(A) receptor antagonist, was used to investigate if insulin-induced vascular effects are influenced by an acute ET-1 release. Two randomized, placebo-controlled, double-blind, cross-over studies were performed. In protocol 1, 12 healthy subjects received, on separate study days, infusions of BQ-123 (60 microg/min for 30 min) during placebo clamp conditions, BQ-123 during euglycemic hyperinsulinemia (3 mU/kg/min for 390 min), or placebo during euglycemic hyperinsulinemia. Fundus pulsation amplitude (FPA) was measured to assess pulsatile choroidal blood flow, and mean flow velocity (MFV) of the ophtalmic artery was measured by color Doppler imaging. In protocol 2, eight healthy subjects received, on separate study days, intra-arterial infusions of BQ-123 (32 microg/min for 120 min) during placebo or insulin clamp. Forearm blood flow was measured with bilateral plethysmography, expressing the ratio of responses in the intervention arm and in the control arm. Insulin alone increased FPA (+10%, p < 0.001) and forearm blood flow (+19%). BQ-123 increased FPA, MFV, and forearm blood flow ratio in the absence and presence of exogenous insulin, but this effect was not different between normo- and hyperinsulinemic conditions. ET-1 plasma concentrations were not affected by insulin. In conclusion, these data do not support the concept that hyperinsulinemia increases ET-1 generation in healthy subjects. Our results, however, cannot necessarily be extrapolated to diabetic and obese subjects.

  8. [Microbial antagonism in the therapy of infectious diseases].

    PubMed

    Ledermann, Walter

    2013-08-01

    The history of antibiotics begins with the first observations of Pasteur and Joubert about microbial antagonism at the end of the XIX century. Three types of antagonism were studied: bacterial killing by other bacteria, virus against bacteria and blockade of cellular receptors by bacterial filtrates. In the first type, the piocianase from Pseudomonas aeruginosa and the activity of Bacillus subtilis over Mycobacterium tuberculosis were the better examples; in the second, the French D'Herelle was a pioneer using bacteriophages against Shigella dysenteriae;and another French, Besredka, headed the third line with his "antivirus thérapie" on Staphylococcus aureus. PMID:24248116

  9. Analysis of thyroid hormone receptor {beta}A mRNA expression in Xenopus laevis tadpoles as a means to detect agonism and antagonism of thyroid hormone action

    SciTech Connect

    Opitz, Robert . E-mail: r.opitz@igb-berlin.de; Lutz, Ilka; Nguyen, Ngoc-Ha; Scanlan, Thomas S.; Kloas, Werner

    2006-04-01

    Amphibian metamorphosis represents a unique biological model to study thyroid hormone (TH) action in vivo. In this study, we examined the utility of thyroid hormone receptors {alpha} (TR{alpha}) and {beta}A (TR{beta}A) mRNA expression patterns in Xenopus laevis tadpoles as molecular markers indicating modulation of TH action. During spontaneous metamorphosis, only moderate changes were evident for TR{alpha} gene expression whereas a marked up-regulation of TR{beta}A mRNA occurred in hind limbs (prometamorphosis), head (late prometamorphosis), and tail tissue (metamorphic climax). Treatment of premetamorphic tadpoles with 1 nM 3,5,3'-triiodothyronine (T3) caused a rapid induction of TR{beta}A mRNA in head and tail tissue within 6 to 12 h which was maintained for at least 72 h after initiation of T3 treatment. Developmental stage had a strong influence on the responsiveness of tadpole tissues to induce TR{beta}A mRNA during 24 h treatment with thyroxine (0, 1, 5, 10 nM T4) or T3 (0, 1, 5, 10 nM). Premetamorphic tadpoles were highly sensitive in their response to T4 and T3 treatments, whereas sensitivity to TH was decreased in early prometamorphic tadpoles and strongly diminished in late prometamorphic tadpoles. To examine the utility of TR{beta}A gene expression analysis for detection of agonistic and antagonistic effects on T3 action, mRNA expression was assessed in premetamorphic tadpoles after 48 h of treatment with the synthetic agonist GC-1 (0, 10, 50, 250 nM), the synthetic antagonist NH-3 (0, 40, 200, 1000 nM), and binary combinations of NH-3 (0, 40, 200, 1000 nM) and T3 (1 nM). All tested concentrations of GC-1 as well as the highest concentration of NH-3 caused an up-regulation of TR{beta}A expression. Co-treatment with NH-3 and T3 revealed strong antagonistic effects by NH-3 on T3-induced TR{beta}A mRNA up-regulation. Results of this study suggest that TR{beta}A mRNA expression analysis could serve as a sensitive molecular testing approach to study effects

  10. Endothelin A Receptor Antagonism Enhances Inhibitory Effects of Anti-Ganglioside GD2 Monoclonal Antibody on Invasiveness and Viability of Human Osteosarcoma Cells

    PubMed Central

    Liu, Bo; Wu, Yi; Zhou, Yu; Peng, Dan

    2014-01-01

    Endothelin-1 (ET-1)/endothelin A receptor (ETAR) signaling is important for osteosarcoma (OS) progression. Monoclonal antibodies (mAbs) targeting ganglioside GD2 reportedly inhibit tumor cell viability independent of the immune system. A recent study suggests that ganglioside GD2 may play an important role in OS progression. In the present study, we for the first time explored the effects of anti-GD2 mAb alone or in combination with ETAR antagonist on OS cell invasiveness and viability. Human OS cell lines Saos-2, MG-63 and SJSA-1 were treated with control IgG (PK136 mAb, 50 µg/mL), anti-GD2 14G2a mAb (50 µg/mL), selective ETAR antagonist BQ123 (5 µM), or 14G2a (50 µg/mL)+BQ123 (5 µM). Cells with knockdown of ETAR (ETAR-shRNA) with or without 14G2a mAb treatment were also tested. Cells treated with selective phosphatidylinositide 3-kinase (PI3K) inhibitor BKM120 (50 µM) were used as a positive control. Our results showed that BQ123, ETAR-shRNA and 14G2a mAb individually decreased cell invasion and viability, matrix metalloproteinase-2 (MMP-2) expression and activity, PI3k activity, and phosphorylation at serine 473 (ser473) of Akt in OS cells. 14G2a mAb in combination with BQ123 or ETAR-shRNA showed significantly stronger inhibitory effects compared with each individual treatment. In all three cell lines tested, 14G2a mAb in combination with BQ123 showed the strongest inhibitory effects. In conclusion, we provide the first in vitro evidence that anti-ganglioside GD2 14G2a mAb effectively inhibits cell invasiveness, MMP-2 expression and activity, and cell viability in human OS cells. ETAR antagonist BQ123 significantly enhances the inhibitory effects of 14G2a mAb, likely mainly through inhibiting the PI3K/Akt pathway. This study adds novel insights into OS treatment, which will serve as a solid basis for future in vivo studies on the effects of combined treatment of OS with anti-ganglioside GD2 mAbs and ETAR antagonists. PMID:24727660

  11. Endothelin A receptor antagonism enhances inhibitory effects of anti-ganglioside GD2 monoclonal antibody on invasiveness and viability of human osteosarcoma cells.

    PubMed

    Liu, Bo; Wu, Yi; Zhou, Yu; Peng, Dan

    2014-01-01

    Endothelin-1 (ET-1)/endothelin A receptor (ETAR) signaling is important for osteosarcoma (OS) progression. Monoclonal antibodies (mAbs) targeting ganglioside GD2 reportedly inhibit tumor cell viability independent of the immune system. A recent study suggests that ganglioside GD2 may play an important role in OS progression. In the present study, we for the first time explored the effects of anti-GD2 mAb alone or in combination with ETAR antagonist on OS cell invasiveness and viability. Human OS cell lines Saos-2, MG-63 and SJSA-1 were treated with control IgG (PK136 mAb, 50 µg/mL), anti-GD2 14G2a mAb (50 µg/mL), selective ETAR antagonist BQ123 (5 µM), or 14G2a (50 µg/mL)+BQ123 (5 µM). Cells with knockdown of ETAR (ETAR-shRNA) with or without 14G2a mAb treatment were also tested. Cells treated with selective phosphatidylinositide 3-kinase (PI3K) inhibitor BKM120 (50 µM) were used as a positive control. Our results showed that BQ123, ETAR-shRNA and 14G2a mAb individually decreased cell invasion and viability, matrix metalloproteinase-2 (MMP-2) expression and activity, PI3k activity, and phosphorylation at serine 473 (ser473) of Akt in OS cells. 14G2a mAb in combination with BQ123 or ETAR-shRNA showed significantly stronger inhibitory effects compared with each individual treatment. In all three cell lines tested, 14G2a mAb in combination with BQ123 showed the strongest inhibitory effects. In conclusion, we provide the first in vitro evidence that anti-ganglioside GD2 14G2a mAb effectively inhibits cell invasiveness, MMP-2 expression and activity, and cell viability in human OS cells. ETAR antagonist BQ123 significantly enhances the inhibitory effects of 14G2a mAb, likely mainly through inhibiting the PI3K/Akt pathway. This study adds novel insights into OS treatment, which will serve as a solid basis for future in vivo studies on the effects of combined treatment of OS with anti-ganglioside GD2 mAbs and ETAR antagonists. PMID:24727660

  12. Evolutionary inevitability of sexual antagonism.

    PubMed

    Connallon, Tim; Clark, Andrew G

    2014-02-01

    Sexual antagonism, whereby mutations are favourable in one sex and disfavourable in the other, is common in natural populations, yet the root causes of sexual antagonism are rarely considered in evolutionary theories of adaptation. Here, we explore the evolutionary consequences of sex-differential selection and genotype-by-sex interactions for adaptation in species with separate sexes. We show that sexual antagonism emerges naturally from sex differences in the direction of selection on phenotypes expressed by both sexes or from sex-by-genotype interactions affecting the expression of such phenotypes. Moreover, modest sex differences in selection or genotype-by-sex effects profoundly influence the long-term evolutionary trajectories of populations with separate sexes, as these conditions trigger the evolution of strong sexual antagonism as a by-product of adaptively driven evolutionary change. The theory demonstrates that sexual antagonism is an inescapable by-product of adaptation in species with separate sexes, whether or not selection favours evolutionary divergence between males and females.

  13. SSRI augmentation of antipsychotic alters expression of GABA(A) receptor and related genes in PMC of schizophrenia patients.

    PubMed

    Silver, Henry; Susser, Ehud; Danovich, Lena; Bilker, Warren; Youdim, Moussa; Goldin, Vladimir; Weinreb, Orly

    2011-06-01

    Clinical studies have shown that negative symptoms of schizophrenia unresponsive to antipsychotic given alone can improve after augmentation with SSRI antidepressant. Laboratory investigations into the mechanism of this synergism showed that co-administration of SSRI and antipsychotic produces changes in GABA(A) receptor and related systems, which differ from the effects of each drug alone. To examine the clinical relevance of these findings, the current study examined the effects of SSRI augmentation treatment on GABA(A) receptor and related systems in schizophrenia patients. Schizophrenia patients with high levels of negative symptoms unresponsive to antipsychotic treatment received add-on fluvoxamine (100 mg/d). Blood was taken before and 1, 3 and 6 wk after adding fluvoxamine and peripheral mononuclear cells (PMC) isolated. RNA encoding for GABA(A)β3, 5-HT2A, and 5-HT7 receptors, PKCβ2, and brain-derived neurotrophic factor (BDNF) was assayed with real-time RT-PCR. Plasma BDNF protein was assayed using ELISA. Clinical symptoms were assessed with validated rating scales. We found significant increase in mRNA encoding for GABA(A)β3 and 5-HT2A, 5-HT7 receptors and BDNF and a reduction in PKCβ2 mRNA. Plasma BDNF protein concentrations were increased. There were significant correlations among the genes. Clinical symptoms improved significantly. mRNA expression of PKCβ2, 5-HT2A and 5-HT7 showed significant associations with clinical symptoms. Combined SSRI+antipsychotic treatment is associated with changes in GABA(A) receptor and in related signalling systems in patients. These changes may be part of the mechanism of clinically effective drug action and may prove to be biomarkers of pharmacological response.

  14. Hippocampal monoamine receptor complex levels linked to spatial memory decline in the aging C57BL/6J.

    PubMed

    Saroja, Sivaprakasam R; Kim, Eun-Jung; Shanmugasundaram, Bharanidharan; Höger, Harald; Lubec, Gert

    2014-05-01

    Although a large series of reports on monoamine receptor (MAR) biochemistry and pharmacology in aging are available, work on MAR complexes rather than subunits is limited. It was the aim of the study to determine MAR complexes in hippocampi of three different age groups (3-12 and 18 months) in the mouse and to link MAR changes to spatial memory retrieval in the Morris water maze (MWM). MAR complexes were separated by blue native electrophoresis. Immunohistochemistry was performed in order to show the pattern of dopamine receptors and its colocalizations. D1R, D2R and 5-HT7R containing receptor complex levels were decreasing with age while 5-HT1AR-containing complex levels were increasing with age. D1R, 5-HT7R and 5-HT1AR were significantly correlating with the time spent in the target quadrant, representing retrieval in the MWM. D1R and D2R immunoreactivity was decreasing in an area-dependent pattern and D1R and D2R were colocalized. Individual monoamine receptors are linked to spatial memory retrieval and are modulated by age. The findings are relevant for interpretation of previous and design of future work on brain receptors, spatial memory and aging.

  15. Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome.

    PubMed

    De Filippis, Bianca; Chiodi, Valentina; Adriani, Walter; Lacivita, Enza; Mallozzi, Cinzia; Leopoldo, Marcello; Domenici, Maria Rosaria; Fuso, Andrea; Laviola, Giovanni

    2015-01-01

    Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that specific behavioral and brain molecular alterations can be rescued in MeCP2-308 male mice, a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R). This member of the serotonin receptor family-crucially involved in the regulation of brain structural plasticity and cognitive processes-can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective 5-HT7R agonist. The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues RTT-related phenotypic alterations, motor coordination (Dowel test), spatial reference memory (Barnes maze test) and synaptic plasticity (hippocampal long-term-potentiation) in MeCP2-308 heterozygous female mice, the genetic and hormonal milieu that resembles that of RTT patients. LP-211 also restores the activation of the ribosomal protein (rp) S6, the downstream target of mTOR and S6 kinase, in the hippocampus of RTT female mice. Notably, the beneficial effects on neurobehavioral and molecular parameters of a seven-day long treatment with LP-211 were evident up to 2 months after the last injection, thus suggesting long-lasting effects on RTT-related impairments. Taken together with our previous study, these results provide compelling preclinical evidence of the potential therapeutic value for RTT of a pharmacological approach targeting the brain 5-HT7R.

  16. Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome

    PubMed Central

    De Filippis, Bianca; Chiodi, Valentina; Adriani, Walter; Lacivita, Enza; Mallozzi, Cinzia; Leopoldo, Marcello; Domenici, Maria Rosaria; Fuso, Andrea; Laviola, Giovanni

    2015-01-01

    Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that specific behavioral and brain molecular alterations can be rescued in MeCP2-308 male mice, a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R). This member of the serotonin receptor family—crucially involved in the regulation of brain structural plasticity and cognitive processes—can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective 5-HT7R agonist. The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues RTT-related phenotypic alterations, motor coordination (Dowel test), spatial reference memory (Barnes maze test) and synaptic plasticity (hippocampal long-term-potentiation) in MeCP2-308 heterozygous female mice, the genetic and hormonal milieu that resembles that of RTT patients. LP-211 also restores the activation of the ribosomal protein (rp) S6, the downstream target of mTOR and S6 kinase, in the hippocampus of RTT female mice. Notably, the beneficial effects on neurobehavioral and molecular parameters of a seven-day long treatment with LP-211 were evident up to 2 months after the last injection, thus suggesting long-lasting effects on RTT-related impairments. Taken together with our previous study, these results provide compelling preclinical evidence of the potential therapeutic value for RTT of a pharmacological approach targeting the brain 5-HT7R. PMID:25926782

  17. Norovirus mechanisms of immune antagonism.

    PubMed

    Roth, Alexa N; Karst, Stephanie M

    2016-02-01

    Noroviruses are a leading cause of gastroenteritis outbreaks globally. Several lines of evidence indicate that noroviruses can antagonize or evade host immune responses, including the absence of long-lasting immunity elicited during a primary norovirus exposure and the ability of noroviruses to establish prolonged infections that are associated with protracted viral shedding. Specific norovirus proteins possessing immune antagonist activity have been described in recent years although mechanistic insight in most cases is limited. In this review, we discuss these emerging strategies used by noroviruses to subvert the immune response, including the actions of two nonstructural proteins (p48 and p22) to impair cellular protein trafficking and secretory pathways; the ability of the VF1 protein to inhibit cytokine induction; and the ability of the minor structural protein VP2 to regulate antigen presentation. We also discuss the current state of the understanding of host and viral factors regulating the establishment of persistent norovirus infections along the gastrointestinal tract. A more detailed understanding of immune antagonism by pathogenic viruses will inform prevention and treatment of disease.

  18. A Strategy for Antagonizing Quorum Sensing

    SciTech Connect

    G Chen; L Swem; D Swem; D Stauff; C OLoughlin; P Jeffrey; B Bassler; F Hughson

    2011-12-31

    Quorum-sensing bacteria communicate via small molecules called autoinducers to coordinate collective behaviors. Because quorum sensing controls virulence factor expression in many clinically relevant pathogens, membrane-permeable quorum sensing antagonists that prevent population-wide expression of virulence genes offer a potential route to novel antibacterial therapeutics. Here, we report a strategy for inhibiting quorum-sensing receptors of the widespread LuxR family. Structure-function studies with natural and synthetic ligands demonstrate that the dimeric LuxR-type transcription factor CviR from Chromobacterium violaceum is potently antagonized by molecules that bind in place of the native acylated homoserine lactone autoinducer, provided that they stabilize a closed conformation. In such conformations, each of the two DNA-binding domains interacts with the ligand-binding domain of the opposing monomer. Consequently, the DNA-binding helices are held apart by {approx}60 {angstrom}, twice the {approx}30 {angstrom} separation required for operator binding. This approach may represent a general strategy for the inhibition of multidomain proteins.

  19. Antidepressant- and anxiolytic-like activity of 7-phenylpiperazinylalkyl-1,3-dimethyl-purine-2,6-dione derivatives with diversified 5-HT₁A receptor functional profile.

    PubMed

    Partyka, Anna; Chłoń-Rzepa, Grażyna; Wasik, Anna; Jastrzębska-Więsek, Magdalena; Bucki, Adam; Kołaczkowski, Marcin; Satała, Grzegorz; Bojarski, Andrzej J; Wesołowska, Anna

    2015-01-01

    Continuing our earlier study in a group of purine-2,6-dione derivatives of long chain arylpiperazines (LCAPs), a series of 8-unsubstituted 7-phenylpiperazin-4-yl-alkyl (4-14) and 7-tetrahydroisoquinolinyl-alkyl (15-17) analogues were synthesized and their serotonin 5-HT1A, 5-HT2A, 5-HT6, 5-HT7 and dopamine D2 receptor affinities were determined. The study allowed us to identify some potent 5-HT1A receptor ligands with additional moderate affinity for 5-HT2A, 5-HT7 and dopamine D2 receptors. Compounds 9, 12, 13 and 14, with the highest 5HT1A receptor affinity, were selected for further functional in vivo studies and behavioural evaluation of antidepressant- and antianxiety-like activity. Compounds 9, 12 and 13 showed features of agonists of pre- and/or post-synaptic 5-HT1A receptors, whereas 14 was classified as an antagonist of postsynaptic sites. Moreover, derivatives 9 and 14 acted as antagonists of 5-HT2A receptors. In behavioural studies, compounds 9 and 13 showed antidepressant-like activity in the mouse forced swim test, and their effects were similar or stronger than those of imipramine. Compounds 9, 12 and 14 displayed potential anxiolytic-like properties in the mouse four-plate test, similar or even greater than those of the reference anxiolytic drug, diazepam.

  20. Interferon Induction by RNA Viruses and Antagonism by Viral Pathogens

    PubMed Central

    Nan, Yuchen; Nan, Guoxin; Zhang, Yan-Jin

    2014-01-01

    Interferons are a group of small proteins that play key roles in host antiviral innate immunity. Their induction mainly relies on host pattern recognition receptors (PRR). Host PRR for RNA viruses include Toll-like receptors (TLR) and retinoic acid-inducible gene I (RIG-I) like receptors (RLR). Activation of both TLR and RLR pathways can eventually lead to the secretion of type I IFNs, which can modulate both innate and adaptive immune responses against viral pathogens. Because of the important roles of interferons, viruses have evolved multiple strategies to evade host TLR and RLR mediated signaling. This review focuses on the mechanisms of interferon induction and antagonism of the antiviral strategy by RNA viruses. PMID:25514371

  1. Serotonin Signaling in Schistosoma mansoni: A Serotonin–Activated G Protein-Coupled Receptor Controls Parasite Movement

    PubMed Central

    Rashid, Mohammed; Ribeiro, Paula

    2014-01-01

    Serotonin is an important neuroactive substance in all the parasitic helminths. In Schistosoma mansoni, serotonin is strongly myoexcitatory; it potentiates contraction of the body wall muscles and stimulates motor activity. This is considered to be a critical mechanism of motor control in the parasite, but the mode of action of serotonin is poorly understood. Here we provide the first molecular evidence of a functional serotonin receptor (Sm5HTR) in S. mansoni. The schistosome receptor belongs to the G protein-coupled receptor (GPCR) superfamily and is distantly related to serotonergic type 7 (5HT7) receptors from other species. Functional expression studies in transfected HEK 293 cells showed that Sm5HTR is a specific serotonin receptor and it signals through an increase in intracellular cAMP, consistent with a 5HT7 signaling mechanism. Immunolocalization studies with a specific anti-Sm5HTR antibody revealed that the receptor is abundantly distributed in the worm's nervous system, including the cerebral ganglia and main nerve cords of the central nervous system and the peripheral innervation of the body wall muscles and tegument. RNA interference (RNAi) was performed both in schistosomulae and adult worms to test whether the receptor is required for parasite motility. The RNAi-suppressed adults and larvae were markedly hypoactive compared to the corresponding controls and they were also resistant to exogenous serotonin treatment. These results show that Sm5HTR is at least one of the receptors responsible for the motor effects of serotonin in S. mansoni. The fact that Sm5HTR is expressed in nerve tissue further suggests that serotonin stimulates movement via this receptor by modulating neuronal output to the musculature. Together, the evidence identifies Sm5HTR as an important neuronal protein and a key component of the motor control apparatus in S. mansoni. PMID:24453972

  2. Neuraxial Opioid-Induced Itch and Its Pharmacological Antagonism

    PubMed Central

    2015-01-01

    Given its profound analgesic nature, neuraxial opioids are frequently used for pain management. Unfortunately, the high incident rate of itch/pruritus after spinal administration of opioid analgesics reported in postoperative and obstetric patients greatly diminishes patient satisfaction and thus the value of the analgesics. Many endeavors to solve the mystery behind neuraxial opioid-induced itch had not been successful, as the pharmacological antagonism other than the blockade of mu opioid receptors remains elusive. Nevertheless, as the characteristics of all opioid receptor subtypes have become more understood, more studies have shed light on the potential effective treatments. This review discusses the mechanisms underlying neuraxial opioid-induced itch and compares pharmacological evidence in nonhuman primates with clinical findings across diverse drugs. Both nonhuman primate and human studies corroborate that mixed mu/kappa opioid partial agonists seem to be the most effective drugs in ameliorating neuraxial opioid-induced itch while retaining neuraxial opioid-induced analgesia. PMID:25861787

  3. Serotonin 1A, 1B, and 7 receptors of the rat medial nucleus accumbens differentially regulate feeding, water intake, and locomotor activity.

    PubMed

    Clissold, Kara A; Choi, Eugene; Pratt, Wayne E

    2013-11-01

    Serotonin (5-HT) signaling has been widely implicated in the regulation of feeding behaviors in both humans and animal models. Recently, we reported that co-stimulation of 5-HT1&7 receptors of the anterior medial nucleus accumbens with the drug 5-CT caused a dose-dependent decrease in food intake, water intake, and locomotion in rats (Pratt et al., 2009). The current experiments sought to determine which of three serotonin receptor subtypes (5-HT1A, 5-HT1B, or 5-HT7) might be responsible for these consummatory and locomotor effects. Food-deprived rats were given 2-h access to rat chow after stimulation of nucleus accumbens 5-HT1A, 5-HT1B, or 5-HT7 receptors, or blockade of the 5-HT1A or 5-HT1B receptors. Stimulation of 5-HT1A receptors with 8-OH-DPAT (at 0.0, 2.0, 4.0, and 8.0 μg/0.5 μl/side) caused a dose-dependent decrease in food and water intake, and reduced rearing behavior but not ambulation. In contrast, rats that received the 5-HT1B agonist CP 93129 (at 0.0, 1.0, 2.0 and 4.0 μg/0.5 μl/side) showed a significant dose-dependent decrease in water intake only; stimulation of 5-HT7 receptors (AS 19; at 0.0, 1.0, and 5.0 μg/0.5 μl/side) decreased ambulatory activity but did not affect food or water consumption. Blockade of 5-HT1A or 5-HT1B receptors had no lasting effects on measures of food consumption. These data suggest that the food intake, water intake, and locomotor effects seen after medial nucleus accumbens injections of 5-CT are due to actions on separate serotonin receptor subtypes, and contribute to growing evidence for selective roles of individual serotonin receptors within the nucleus accumbens on motivated behavior.

  4. Gangliosides, or sialic acid, antagonize ethanol intoxication

    SciTech Connect

    Klemm, W.R.; Boyles, R.; Matthew, J.; Cherian, L.

    1988-01-01

    Because ethanol elicits a dose-dependent hydrolysis of brain sialogangliosides, the authors tested the possibility that injected gangliosides might antagonize intoxicating doses of ethanol. Clear anti-intoxication effects were seen at 24 hr post-injection of mixed mouse-brain gangliosides at 125-130 mg/kg, but not at lower or higher doses. Sleep time was reduced on the order of 50%, and roto-rod agility was significantly enhanced. Sialic acid (SA) similarly antagonized ethanol; however, the precursor of SA, N-acetyl-D-mannosamine, as well as ceramide and asialoganglioside did not.

  5. Limited PCB antagonism of TCDD-induced malformations in mice

    SciTech Connect

    Morrissey, R.E.; Harris, M.W.; Diliberto, J.J.; Birnbaum, L.S.

    1992-01-01

    Mice used to model induction of cleft palate and kidney malformations in offspring following maternal treatment with TCDD, were dosed on gestation day with hexachlorobiphenyl (HCB) and/or with tetrachlorodibenzo-p-dioxin (TCDD) to investigate the potential protective effects of HCB against TCDD-induced teratogenicity. At the doses used in the study, there was no effect of either compound on number of live or dead offspring. Fetal body weight was slightly decreased in all groups dosed with = or > 250 mg HCB/kg. HCB did not induce cleft palate at a dose of 1000 mg/kg, but did induce increases in hydronephrosis and hydroureter at 500 and 1000 mg/kg. Combinations of HCB and TCDD decreased the incidence of cleft palate induced by TCDD alone, but only at doses of 15 microgram TCDD/kg combined with 125-500 mg HCB/kg. The window for antagonism of hydronephrosis (incidence and severity) appeared narrower (15 microgram TCDD/kg + 500 mg HCB/kg). HCB induced increases (3 fold) in EROD activity at doses of 500 and 1000 mg/kg, suggesting that the limited antagonism of TCDD teratogenicity by HCB would be consistent with control by Ah receptor. (Copyright (c) 1992 Elsevier Science Publishers B.V.)

  6. Antagonism of GABA-B but not GABA-A receptors in the VTA prevents stress- and intra-VTA CRF-induced reinstatement of extinguished cocaine seeking in rats.

    PubMed

    Blacktop, Jordan M; Vranjkovic, Oliver; Mayer, Matthieu; Van Hoof, Matthew; Baker, David A; Mantsch, John R

    2016-03-01

    Stress-induced reinstatement of cocaine seeking requires corticotropin releasing factor (CRF) actions in the ventral tegmental area (VTA). However the mechanisms through which CRF regulates VTA function to promote cocaine use are not fully understood. Here we examined the role of GABAergic neurotransmission in the VTA mediated by GABA-A or GABA-B receptors in the reinstatement of extinguished cocaine seeking by a stressor, uncontrollable intermittent footshock, or bilateral intra-VTA administration of CRF. Rats underwent repeated daily cocaine self-administration (1.0 mg/kg/ing; 14 × 6 h/day) and extinction and were tested for reinstatement in response to footshock (0.5 mA, 0.5" duration, average every 40 s; range 10-70 s) or intra-VTA CRF delivery (500 ng/side) following intra-VTA pretreatment with the GABA-A antagonist, bicuculline, the GABA-B antagonist, 2-hydroxysaclofen or vehicle. Intra-VTA bicuculline (1, 10 or 20 ng/side) failed to block footshock- or CRF-induced cocaine seeking at either dose tested. By contrast, 2-hydroxysaclofen (0.2 or 2 μg/side) prevented reinstatement by both footshock and intra-VTA CRF at a concentration that failed to attenuate food-reinforced lever pressing (45 mg sucrose-sweetened pellets; FR4 schedule) in a separate group of rats. These data suggest that GABA-B receptor-dependent CRF actions in the VTA mediate stress-induced cocaine seeking and that GABA-B receptor antagonists may have utility for the management of stress-induced relapse in cocaine addicts.

  7. The 5-HT4 receptor: molecular cloning and pharmacological characterization of two splice variants.

    PubMed Central

    Gerald, C; Adham, N; Kao, H T; Olsen, M A; Laz, T M; Schechter, L E; Bard, J A; Vaysse, P J; Hartig, P R; Branchek, T A

    1995-01-01

    Molecular cloning efforts have provided primary amino acid sequence and signal transduction data for a large collection of serotonin receptor subtypes. These include five 5-HT1-like receptors, three 5-HT2 receptors, one 5-HT3 receptor, two 5-HT5 receptors, one 5-HT6 receptor and one 5-HT7 receptor. Molecular biological information on the 5-HT4 receptor is notably absent from this list. We now report the cloning of the pharmacologically defined 5-HT4 receptor. Using degenerate oligonucleotide primers, we identified a rat brain PCR fragment which encoded a '5-HT receptor-like' amino acid sequence. The corresponding full length cDNA was isolated from a rat brain cDNA library. Transiently expressed in COS-7 cells, this receptor stimulates adenylyl cyclase activity and is sensitive to the benzamide derivative cisapride. The response is also blocked by ICS-205930. Interestingly, we isolated two splice variants of the receptor, 5-HT4L and 5-HT4S, differing in the length and sequence of their C-termini. In rat brain, the 5-HT4S transcripts are restricted to the striatum, but the 5-HT4L transcripts are expressed throughout the brain, except in the cerebellum where it was barely detectable. In peripheral tissues, differential expression was also observed in the atrium of the heart where only the 5-HT4S isoform was detectable. Images PMID:7796807

  8. Pleiotrophin antagonizes Brd2 during neuronal differentiation.

    PubMed

    Garcia-Gutierrez, Pablo; Juarez-Vicente, Francisco; Wolgemuth, Debra J; Garcia-Dominguez, Mario

    2014-06-01

    Bromodomain-containing protein 2 (Brd2) is a BET family chromatin adaptor required for expression of cell-cycle-associated genes and therefore involved in cell cycle progression. Brd2 is expressed in proliferating neuronal progenitors, displays cell-cycle-stimulating activity and, when overexpressed, impairs neuronal differentiation. Paradoxically, Brd2 is also detected in differentiating neurons. To shed light on the role of Brd2 in the transition from cell proliferation to differentiation, we had previously looked for proteins that interacted with Brd2 upon induction of neuronal differentiation. Surprisingly, we identified the growth factor pleiotrophin (Ptn). Here, we show that Ptn antagonized the cell-cycle-stimulating activity associated with Brd2, thus enhancing induced neuronal differentiation. Moreover, Ptn knockdown reduced neuronal differentiation. We analyzed Ptn-mediated antagonism of Brd2 in a cell differentiation model and in two embryonic processes associated with the neural tube: spinal cord neurogenesis and neural crest migration. Finally, we investigated the mechanisms of Ptn-mediated antagonism and determined that Ptn destabilizes the association of Brd2 with chromatin. Thus, Ptn-mediated Brd2 antagonism emerges as a modulation system accounting for the balance between cell proliferation and differentiation in the vertebrate nervous system.

  9. A hippocampal nicotinic acetylcholine alpha 7-containing receptor complex is linked to memory retrieval in the multiple-T-maze in C57BL/6j mice.

    PubMed

    Subramaniyan, Saraswathi; Heo, Seok; Patil, Sudarshan; Li, Lin; Hoger, Harald; Pollak, Arnold; Lubec, Gert

    2014-08-15

    The link between the cholinergic and serotonergic system in cognitive function is well-documented. There is, however, limited information on spatial memory and this formed the rationale to carry out a study with the aim to show a specific link between nicotinic and serotonergic receptor complexes rather than the corresponding subunits, to spatial memory retrieval in a land maze. A total of 46 mice were used and divided into two groups, trained and untrained (yoked) in the multiple-T-Maze (MTM) and following training during the first four days, probe trials for memory retrieval were performed on days 8, 16 and 30. Six hours following scarification, hippocampi were taken for the analysis of native receptor complex levels using blue-native gels followed by immunoblotting with specific antibodies. 5-HT1A-, 5-HT7-, nAChα4- and nACh-α7-containing receptor complexes were observed and were paralleling memory retrievals and receptor complex levels were shown to be significantly different between trained and yoked animals. Only levels of a nicotinic acetylcholine α7 receptor-containing complex at an apparent molecular weight of approximately 480kDa were shown to be linked to memory retrieval on day 8 but not to retrievals on days 16 and 30 when memory extinction has taken place. Correlation between nAChα4-, 5-HT1A- and 5-HT7-containing receptors and latencies on day 16 may point to a probable link in extinction mechanisms. A series of the abovementioned receptor complexes were correlating among each other probably indicating a serotonergic/cholinergic network paralleling spatial memory formation.

  10. 5-HT2B antagonism arrests non-canonical TGF-β1-induced valvular myofibroblast differentiation

    PubMed Central

    Hutcheson, Joshua D.; Ryzhova, Larisa M.; Setola, Vincent; Merryman, W. David

    2012-01-01

    Transforming growth factor-β1 (TGF-β1) induces myofibroblast activation of quiescent aortic valve interstitial cells (AVICs), a differentiation process implicated in calcific aortic valve disease (CAVD). The ubiquity of TGF-β1 signaling makes it difficult to target in a tissue specific manner; however, the serotonin 2B receptor (5-HT2B) is highly localized to cardiopulmonary tissues and agonism of this receptor displays pro-fibrotic effects in a TGF-β1-dependent manner. Therefore, we hypothesized that antagonism of 5-HT2B opposes TGF-β1-induced pathologic differentiation of AVICs and may offer a druggable target to prevent CAVD. To test this hypothesis, we assessed the interaction of 5-HT2B antagonism with canonical and non-canonical TGF-β1 pathways to inhibit TGF-β1-induced activation of isolated porcine AVICs in vitro. Here we show that AVIC activation and subsequent calcific nodule formation is completely mitigated by 5-HT2B antagonism. Interestingly, 5-HT2B antagonism does not inhibit canonical TGF-β1 signaling as identified by Smad3 phosphorylation and activation of a partial plasminogen activator inhibitor-1 promoter (PAI-1, a transcriptional target of Smad3), but prevents non-canonical p38 MAPK phosphorylation. It was initially suspected that 5-HT2B antagonism prevents Src tyrosine kinase phosphorylation; however, we found that this is not the case and time-lapse microscopy indicates that 5-HT2B antagonism prevents non-canonical TGF-β1 signaling by physically arresting Src tyrosine kinase. This study demonstrates the necessity of non-canonical TGF-β1 signaling in leading to pathologic AVIC differentiation. Moreover, we believe that the results of this study suggest 5-HT2B antagonism as a novel therapeutic approach for CAVD that merits further investigation. PMID:22940605

  11. 5-Hydroxytryptamine Receptor Subtypes and their Modulators with Therapeutic Potentials

    PubMed Central

    Pithadia, Anand B.; Jain, Sunita M.

    2009-01-01

    5-hydroxytryptamine (5-HT) has become one of the most investigated and complex biogenic amines. The main receptors and their subtypes, e.g., 5-HTI (5-HT1A, 5-HT1B, 5-HTID, 5-HTIE and 5-HT1F), 5-HT2 (5-HT2A, 5-HT2B and 5-HT2C), 5-HT3, 5-HT4, 5-HT5 (5-HT5A, 5-HT5B), 5-HT6 and 5-HT7 have been identified. Specific drugs which are capable of either selectively stimulating or inhibiting these receptor subtypes are being designed. This has generated therapeutic potentials of 5-HT receptor modulators in a variety of disease conditions. Conditions where 5-HT receptor modulators have established their use with distinct efficacy and advantages include migraine, anxiety, psychosis, obesity and cancer therapy-induced vomiting by cytotoxic drugs and radiation. Discovery of 5-HT, its biosynthesis, metabolism, physiological role and the potential of 5-HT receptor modulators in various nervous, cardiovascular and gastrointestinal tract disorders, bone growth and micturition have been discussed in this article. Keywords 5-hydroxytryptamine (5-HT) receptors; Modulators; Biogenic amines PMID:22505971

  12. Antagonism of phencyclidine-induced stimulus control in the rat by other psychoactive drugs.

    PubMed

    Winter, J C

    2008-01-01

    It has been observed that agents with agonist activity at 5-HT2A receptors prevent neurotoxicity induced by the non-competitive NMDA antagonist, dizocilpine (MK-801). Subsequent behavioral studies reported complete antagonism by LSD and DOM of the stimulus effects of the related NMDA antagonist, phencyclidine [PCP]. The present study sought to extend those observations to include other psychoactive drugs. Male F-344 rats were trained in a 2-lever, fixed-ratio 10, food-reinforced task with PCP (3.0 mg/kg; IP; 30 min pretreatment) as a discriminative stimulus. Tests of generalization were then conducted using the training dose of PCP in combination with a range of doses of DOM, LSD, d-amphetamine, MDMA, psilocybin, buspirone, and GHB. All of the drugs tested in combination with PCP produced a statistically significant diminution of PCP-appropriate responding but for none was antagonism complete. These data, obtained using a stimulus control model of the hallucinogenic effects of PCP, fail to support the hypothesis that LSD and DOM completely antagonize stimulus control by PCP. Instead, the data suggest complex interactions between PCP-induced stimulus control and a variety of psychoactive drugs including GHB, an agent with no known affinity for serotonergic receptors.

  13. Reconceptualizing synergism and antagonism among multiple stressors

    PubMed Central

    Piggott, Jeremy J; Townsend, Colin R; Matthaei, Christoph D

    2015-01-01

    The potential for complex synergistic or antagonistic interactions between multiple stressors presents one of the largest uncertainties when predicting ecological change but, despite common use of the terms in the scientific literature, a consensus on their operational definition is still lacking. The identification of synergism or antagonism is generally straightforward when stressors operate in the same direction, but if individual stressor effects oppose each other, the definition of synergism is paradoxical because what is synergistic to one stressor's effect direction is antagonistic to the others. In their highly cited meta-analysis, Crain et al. (Ecology Letters, 11, 2008: 1304) assumed in situations with opposing individual effects that synergy only occurs when the cumulative effect is more negative than the additive sum of the opposing individual effects. We argue against this and propose a new systematic classification based on an additive effects model that combines the magnitude and response direction of the cumulative effect and the interaction effect. A new class of “mitigating synergism” is identified, where cumulative effects are reversed and enhanced. We applied our directional classification to the dataset compiled by Crain et al. (Ecology Letters, 11, 2008: 1304) to determine the prevalence of synergistic, antagonistic, and additive interactions. Compared to their original analysis, we report differences in the representation of interaction classes by interaction type and we document examples of mitigating synergism, highlighting the importance of incorporating individual stressor effect directions in the determination of synergisms and antagonisms. This is particularly pertinent given a general bias in ecology toward investigating and reporting adverse multiple stressor effects (double negative). We emphasize the need for reconsideration by the ecological community of the interpretation of synergism and antagonism in situations where

  14. [Antagonism of lactobacilli, oral streptococci and staphylococci].

    PubMed

    Chervinets, Iu V; Beliaeva, E A; Ganina, E B; Troshin, A V; Chervinets, A V

    2015-01-01

    From the oral cavity of healthy young people aged 18-22 years there were isolated 26 strains of lactobacilli, 28 streptococci, including the pathogenic and opportunistic strains, and 32 strains of staphylococci, 10 of which were methicillin-resistant S.aureus. Oral lactobacilli possessed by a high probiotic potential, showing high antagonism to methicillin-resistant staphylococci, pathogenic and opportunistic streptococci and enterococci. Oral lactobacilli showed medium and high adhesive activity that determines their high adaptive capacity. Staphylococci and streptococci in 90.3% of cases have not an antagonistic effect on lactobacilli. Isolated lactobacilli can be used as probiotic strains for oral administration.

  15. Three-dimensional mapping of differential amino acids of human, murine, canine and equine TLR4/MD-2 receptor complexes conferring endotoxic activation by lipid A, antagonism by Eritoran and species-dependent activities of Lipid IVA in the mammalian LPS sensor system

    PubMed Central

    Scior, Thomas; Lozano-Aponte, Jorge; Figueroa-Vazquez, Vianihuini; Yunes-Rojas, Julian A.; Zähringer, Ulrich; Alexander, Christian

    2013-01-01

    A literature review concerning the unexpected species differences of the vertebrate innate immune response to lipid IVA was published in CSBJ prior to the present computational study to address the unpaired activity-sequence correlation of prototypic E. coli -type lipid A and its precursor lipid IVA regarding human, murine, equine and canine species. To this end, their sequences and structures of hitherto known Toll-like receptor 4 (TLR4) and myeloid differentiation factor 2 (MD-2) complexes were aligned and their differential side chain patterns studied. If required due to the lack of the corresponding X-ray crystallographic data, three-dimensional models of TLR4/MD-2/ligand complexes were generated using mono and dimeric crystal structures as templates and in silico docking of the prototypic ligands lipid A, lipid IVA and Eritoran. All differential amino acids were mapped to pinpoint species dependency on an atomic scale, i.e. the possible concert of mechanistically relevant side chains. In its most abstract and general form the three-dimensional (3D-) models devise a triangular interface or “wedge” where molecular interactions between TLR4, MD-2 and ligand itself take place. This study identifies two areas in the wedge related to either agonism or antagonism reflecting why ligands like lipid IVA can possess a species dependent dual activity. Lipid IVA represents an imperfect (underacylated and backbone-flipped), low affinity ligand of mammalian TLR4/MD-2 complexes. Its specific but weak antagonistic activity in the human system is in particular due to the loss of phosphate attraction in the wedge-shaped region conferred by nonhomologous residue changes when compared to crystal and modeled structures of the corresponding murine and equine TLR4/MD-2 complexes. The counter-TLR4/MD-2 unit was also taken into account since agonist-mediated dimerization in a defined m-shaped complex composed of two TLR4/MD-2/agonist subunits triggers intracellular signaling during

  16. Three-dimensional mapping of differential amino acids of human, murine, canine and equine TLR4/MD-2 receptor complexes conferring endotoxic activation by lipid A, antagonism by Eritoran and species-dependent activities of Lipid IVA in the mammalian LPS sensor system.

    PubMed

    Scior, Thomas; Lozano-Aponte, Jorge; Figueroa-Vazquez, Vianihuini; Yunes-Rojas, Julian A; Zähringer, Ulrich; Alexander, Christian

    2013-01-01

    A literature review concerning the unexpected species differences of the vertebrate innate immune response to lipid IVA was published in CSBJ prior to the present computational study to address the unpaired activity-sequence correlation of prototypic E. coli -type lipid A and its precursor lipid IVA regarding human, murine, equine and canine species. To this end, their sequences and structures of hitherto known Toll-like receptor 4 (TLR4) and myeloid differentiation factor 2 (MD-2) complexes were aligned and their differential side chain patterns studied. If required due to the lack of the corresponding X-ray crystallographic data, three-dimensional models of TLR4/MD-2/ligand complexes were generated using mono and dimeric crystal structures as templates and in silico docking of the prototypic ligands lipid A, lipid IVA and Eritoran. All differential amino acids were mapped to pinpoint species dependency on an atomic scale, i.e. the possible concert of mechanistically relevant side chains. In its most abstract and general form the three-dimensional (3D-) models devise a triangular interface or "wedge" where molecular interactions between TLR4, MD-2 and ligand itself take place. This study identifies two areas in the wedge related to either agonism or antagonism reflecting why ligands like lipid IVA can possess a species dependent dual activity. Lipid IVA represents an imperfect (underacylated and backbone-flipped), low affinity ligand of mammalian TLR4/MD-2 complexes. Its specific but weak antagonistic activity in the human system is in particular due to the loss of phosphate attraction in the wedge-shaped region conferred by nonhomologous residue changes when compared to crystal and modeled structures of the corresponding murine and equine TLR4/MD-2 complexes. The counter-TLR4/MD-2 unit was also taken into account since agonist-mediated dimerization in a defined m-shaped complex composed of two TLR4/MD-2/agonist subunits triggers intracellular signaling during the

  17. Stress antagonizes morphine-induced analgesia in rats

    NASA Technical Reports Server (NTRS)

    Vernikos, J.; Shannon, L.; Heybach, J. P.

    1981-01-01

    Exposure to restraint stress resulted in antagonism of the analgesic effect of administered morphine in adult male rats. This antagonism of morphine-induced analgesia by restraint stress was not affected by adrenalectomy one day prior to testing, suggesting that stress-induced secretion of corticosteroids is not critical to this antagonism. In addition, parenteral administration of exogenous adrenocorticotropin (ACTH) mimicked the effect of stress in antagonizing morphine's analgesic efficacy. The hypothesis that ACTH is an endogenous opiate antagonist involved in modulating pain sensitivity is supported.

  18. Evaluation of the antagonism of nicotine by mecamylamine and pempidine in the brain

    SciTech Connect

    Martin, T.J.

    1989-01-01

    Antagonists have been crucial in the characterization of nicotine's pharmacology. Initial evidence for the existence of central nicotinic receptors was based on the fact that nicotine produced a number of behavioral effects that were antagonized by ganglionic blockers that crossed the blood-brain barrier, such as mecamylamine and pempidine. These compounds are thought to be noncompetitive antagonists due to the fact that they do not compete for agonist binding to brain homogenate in vitro. However, pharmacological evidence in support of noncompetitive antagonism is lacking. Dose-response curves for nicotine were determined in the presence of various doses of pempidine for depression of spontaneous activity and antinociception in mice. Pempidine was found to shift the dose response curves for these effects of nicotine in a manner consistent with noncompetitive antagonism. A number of mecamylamine analogs were investigated for antagonism of these central effects of nicotine as well. These studies revealed that the N-, 2-, and 3-methyls were crucial for optimal efficacy and potency and suggests that these compounds possess a specific mechanism of action, possibly involving a receptor. Furthermore, the structure-activity relationships for the mecamylamine analogs were found to be different than that previously reported for the agonists, suggesting that they do not act at the same site. The binding of ({sup 3} H)-L-nicotine and ({sup 3}H)-pempidine was studied in vitro to mouse brain homogentate and in situ to rat brain slices. The in situ binding of ({sup 3}H)-L-nicotine to rat brain slices was quantitated autoradiographically to discrete brain areas in the presence and absence of 1, 10 and 100 {mu}M nicotine and pempidine. Pempidine did not effectively displace ({sup 3}H)-L-nicotine binding.

  19. Phosphoinositide system-linked serotonin receptor subtypes and their pharmacological properties and clinical correlates.

    PubMed Central

    Pandey, S C; Davis, J M; Pandey, G N

    1995-01-01

    Serotonergic neurotransmission represents a complex mechanism involving pre- and post-synaptic events and distinct 5-HT receptor subtypes. Serotonin (5-HT) receptors have been classified into several categories, and they are termed as 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6 and 5-HT7 type receptors. 5-HT1 receptors have been further subdivided into 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F. 5-HT2 receptors have been divided into 5-HT2A, 5-HT2B and 5-HT2C receptors. All 5-HT2 receptor subtypes are linked to the multifunctional phosphoinositide (PI) signalling system. 5-HT3 receptors are considered ion-gated receptors and are also linked to the PI signalling system by an unknown mechanism. The 5-HT2A receptor subtype is the most widely studied of the 5-HT receptors in psychiatric disorders (for example, suicide, depression and schizophrenia) as well as in relation to the mechanism of action of antidepressant drugs. The roles of 5-HT2C and 5-HT3 receptors in psychiatric disorders are less clear. These 5-HT receptors also play an important role in alcoholism. It has been shown that 5-HT2A, 5-HT2C and 5-HT3 antagonists cause attenuation of alcohol intake in animals and humans. However, the exact mechanisms are unknown. The recent cloning of the cDNAs for 5-HT2A, 5-HT2C and 5-HT3 receptors provides the opportunity to explore the molecular mechanisms responsible for the alterations in these receptors during illness as well as pharmacotherapy. This review article will focus on the current research into the pharmacological properties, molecular biology, and clinical correlates of 5-HT2A, 5-HT2C and 5-HT3 receptors. PMID:7786883

  20. Antagonism by theophylline of respiratory inhibition induced by adenosine.

    PubMed

    Eldridge, F L; Millhorn, D E; Kiley, J P

    1985-11-01

    The effects on respiration of an analogue of adenosine, L-2-N6-(phenylisopropyl)adenosine (PIA), and of the methylxanthine, theophylline, were determined in 19 vagotomized glomectomized cats whose end-tidal PCO2 was kept constant by means of a servo-controlled ventilator. Integrated phrenic nerve activity was used to represent respiratory output. Our results show that PIA, whether given systemically or into the third cerebral ventricle, depressed respiration. Systemically administered theophylline stimulated respiration. Theophylline given intravenously, or into the third ventricle not only reversed the depressive effects of previously administered PIA but caused further increases of respiration above the control level. Prior systemic administration of theophylline blocked both respiratory and hypotensive effects of subsequently administered PIA. Effects of either agent on medullary extracellular fluid pH did not explain the results. We conclude that the adenosine analogue PIA, acts to inhibit neurons in the brain that are involved in the control of respiration and that its effects are blocked by theophylline. We suggest that adenosine acts as a tonic modulator of respiration and that theophylline stimulates breathing by competitive antagonism of adenosine at neuronal receptor sites. PMID:4066573

  1. JWH-018 in rhesus monkeys: differential antagonism of discriminative stimulus, rate-decreasing, and hypothermic effects

    PubMed Central

    Rodriguez, Jesse S.; McMahon, Lance R.

    2014-01-01

    SUMMARY Several effects of the abused synthetic cannabinoid JWH-018 were compared to those of Δ9-tetrahydrocannabinol (Δ9-THC) in rhesus monkeys. JWH-018 (0.1 mg/kg i.v.) was established as a discriminative stimulus and rimonabant was used to examine mechanisms responsible for discrimination as well as operant response rate-decreasing and hypothermic effects. JWH-018 dose-dependently increased drug-lever responding (ED50 = 0.01 mg/kg) and decreased response rate (ED50 = 0.064 mg/kg). Among various cannabinoids, the relative potency for producing discriminative stimulus and rate-decreasing effects was the same: CP-55940 = JWH-018 > Δ9-THC = WIN-55212-2 = JWH-073. The benzodiazepine agonist midazolam and the NMDA antagonist ketamine did not exert JWH-018 like discriminative stimulus effects up to doses that disrupted responding. JWH-018 and 9-THC decreased rectal temperature by 2.2 and 2.8 °C, respectively; the doses decreasing temperature by 2 °C were 0.21 and 1.14 mg/kg, respectively. Antagonism did not differ between JWH-018 and 9-THC, but did differ among effects. The apparent affinities of rimonabant calculated in the presence of JWH-018 and Δ9-THC were not different from each other for antagonism of discriminative stimulus effects (6.58 and 6.59, respectively) or hypothermic effects (7.08 and 7.19, respectively). Apparent affinity estimates are consistent with the same receptors mediating the discriminative stimulus and hypothermic effects of both JWH-018 and Δ9-THC. However, there was more limited and less orderly antagonism of rate-decreasing effects, suggesting that an additional receptor mechanism is involved in mediating the effects of cannabinoid on response rate. Overall, these results strongly suggest that JWH-018 and Δ9-THC act at the same receptors to produce several of their shared psychopharmacological effects. PMID:24972243

  2. JWH-018 in rhesus monkeys: differential antagonism of discriminative stimulus, rate-decreasing, and hypothermic effects.

    PubMed

    Rodriguez, Jesse S; McMahon, Lance R

    2014-10-01

    Several effects of the abused synthetic cannabinoid JWH-018 were compared to those of Δ9-tetrahydrocannabinol (Δ9-THC) in rhesus monkeys. JWH-018 (0.1 mg/kg i.v.) was established as a discriminative stimulus and rimonabant was used to examine mechanisms responsible for discrimination as well as operant response rate-decreasing and hypothermic effects. JWH-018 dose-dependently increased drug-lever responding (ED50=0.01 mg/kg) and decreased response rate (ED50=0.064 mg/kg). Among various cannabinoids, the relative potency for producing discriminative stimulus and rate-decreasing effects was the same: CP-55940=JWH-018>Δ9-THC=WIN-55212-2=JWH-073. The benzodiazepine agonist midazolam and the NMDA antagonist ketamine did not exert JWH-018 like discriminative stimulus effects up to doses that disrupted responding. JWH-018 and Δ9-THC decreased rectal temperature by 2.2 and 2.8°C, respectively; the doses decreasing temperature by 2°C were 0.21 and 1.14 mg/kg, respectively. Antagonism did not differ between JWH-018 and Δ9-THC, but did differ among effects. The apparent affinities of rimonabant calculated in the presence of JWH-018 and Δ9-THC were not different from each other for antagonism of discriminative stimulus effects (6.58 and 6.59, respectively) or hypothermic effects (7.08 and 7.19, respectively). Apparent affinity estimates are consistent with the same receptors mediating the discriminative stimulus and hypothermic effects of both JWH-018 and Δ9-THC. However, there was more limited and less orderly antagonism of rate-decreasing effects, suggesting that an additional receptor mechanism is involved in mediating the effects of cannabinoids on response rate. Overall, these results strongly suggest that JWH-018 and Δ9-THC act at the same receptors to produce several of their shared psychopharmacological effects.

  3. RECEPTOR AFFINITY AND PHOSPHODIESTERASES 4B AND 10A ACTIVITY OF OCTAHYDRO- AND 6,7-DIMETHOXY-3,4-DIHYDRO- ISOQUINOLIN-2(1H)-YL-ALKYL DERIVATIVES OF IMIDAZO- AND PYRIMIDINO[2,1-f]PURINES.

    PubMed

    Zagórska, Agnieszka; Gryzło, Beata; Satała, Grzegorz; Bojarski, Andrzej J; Głuch-Lutwin, Monika; Mordyl, Barbara; Kazek, Grzegorz; Pawłowski, Maciej

    2016-01-01

    A series of octahydro- and 6,7-dimethoxy-3,4-dihydro- isoquinolin-2(1H)-yl-alkyl derivatives of imidazo- and pyrimidino[2,1-f]purines were synthesized and biologically evaluated in in vitro competition binding experiments for serotonin 5-HT(1A), 5-HT(6), 5-HT(7), and dopamine D2 receptors and inhibitory potencies for phosphodiesterases - PDE4B1 and PDE10A. The structure-activity relationships allowed to determine the structural features responsible for receptor and enzyme activity. Compound 5 (8-(4-(6,7-dimethoxy-3,4-dihydroiso- quinolin-2(1H)butyl)1,3-dimethyl-H-imidazo[2,1-f]purine-2,4(3H,8H)-dione) could be regarded as promising structure for further modification and detailed mechanistic study for obtained hybrid ligands.

  4. Single cell laser dissection with molecular beacon polymerase chain reaction identifies 2A as the predominant serotonin receptor subtype in hypoglossal motoneurons.

    PubMed

    Zhan, G; Shaheen, F; Mackiewicz, M; Fenik, P; Veasey, S C

    2002-01-01

    We hypothesize that sleep state-dependent withdrawal of serotonin (5-hydroxytryptamine, 5-HT) at upper airway (UAW) dilator motoneurons contributes significantly to sleep-related suppression of dilator muscle activity in obstructive sleep apnea. Identification of 5-HT receptor subtypes involved in postsynaptic facilitation of UAW motoneuron activity may provide pharmacotherapies for this prevalent disorder. We have adapted two assays to provide semi-quantitative measurements of mRNA copy numbers for 5-HT receptor subtypes in single UAW motoneurons. Specifically, soma of 111 hypoglossal (XII) motoneurons in 10 adult male rats were captured using a laser dissection microscope, and then used individually in single round molecular beacon polymerase chain reaction (PCR) for real-time quantitation of 5-HT(2A), 5-HT(2C), 5-HT(3), 5-HT(4), 5-HT(5A), 5-HT(5B), 5-HT(6) or 5-HT(7) receptor. Receptor mRNA copy numbers from single XII motoneurons were compared to control samples from within the XII nucleus and lateral medulla. All 20 motoneuronal soma assayed for the 5-HT(2A) receptor had measurable copy numbers (7028+/-2656 copies/cell). In contrast, copy numbers for the 5-HT(2A) receptor in XII non-motoneuronal (n=17) and lateral medulla (n=15) samples were 81+/-51 copies and 83+/-35 copies, respectively, P<0.05. Seven of 13 XII motoneurons assayed had measurable 5-HT(2C) receptor copy numbers of mRNA (287+/-112 copies/cell). XII soma had minimal 5-HT(3), 5-HT(4), 5-HT(5A), 5-HT(5B), 5-HT(6) or 5-HT(7) receptor mRNA. 5-HT(2A) receptor mRNA presence within XII motoneurons was confirmed with digoxigenin-labeled in situ hybridization. In summary, combined use of laser dissection and molecular beacon PCR revealed 5-HT(2A) receptor as the predominant 5-HT receptor mRNA in XII motoneurons, and identified small quantities of 5-HT(2C) receptor. This information will allow a more complete understanding of serotonergic control of respiratory activity.

  5. CCR5 Antagonism by Maraviroc Reduces the Potential for Gastric Cancer Cell Dissemination.

    PubMed

    Mencarelli, Andrea; Graziosi, Luigina; Renga, Barbara; Cipriani, Sabrina; D'Amore, Claudio; Francisci, Daniela; Bruno, Angela; Baldelli, Franco; Donini, Annibale; Fiorucci, Stefano

    2013-12-01

    The chemokine (C-C motif) receptor 5 (CCR5) that belongs to the family of G protein-coupled receptors is exploited by macrophage tropic (R5) human immunodeficiency virus type 1 (HIV-1) to enter cells. Maraviroc, a small molecule CCR antagonist, is used as a part of combination antiretroviral therapy to treat persons infected by R5 HIV-1. CCR5 is expressed in various cancers, and its level of expression is a negative predictor of patients' survival in gastric cancers. Here, we report MKN45, MKN74, and KATOIII cells, three human gastric cancer cell lines with different stages of differentiation, which express CCR5 as detected by flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR), and its ligand RANTES. In vitro experiments demonstrate that CCR5 antagonism reduces gastric cancer cell migration induced by macrophage inflammatory protein 1α (MIP-1α), MIP-1β, and RANTES and adhesion to the ex-planted murine peritoneum. Administration of maraviroc from days 3 to 10 after MKN45 cell inoculation to severe combined immunodeficient (SCID) mice effectively reduced the extent of peritoneal disease and increased survival. Maraviroc treatment also reduced the tumor burden in a xenograft model. Gene expression and RT-PCR analyses revealed that CCR5 antagonism in vivo modulates the expression of genes known for their role in cancer growth including interleukin-10 receptor B; hepatocyte growth factor receptor (MET); the homolog of the atypical cadherin gene, FAT1; Nm23-H1; and lymphotoxin β receptor. In summary, we have shown that CCR5 is mechanistically involved in dissemination of gastric cancer cells, suggesting that small molecule inhibitors of CCR5 might be exploited for their anticancer potential. PMID:24466382

  6. CCR5 Antagonism by Maraviroc Reduces the Potential for Gastric Cancer Cell Dissemination

    PubMed Central

    Mencarelli, Andrea; Graziosi, Luigina; Renga, Barbara; Cipriani, Sabrina; D'Amore, Claudio; Francisci, Daniela; Bruno, Angela; Baldelli, Franco; Donini, Annibale; Fiorucci, Stefano

    2013-01-01

    The chemokine (C-C motif) receptor 5 (CCR5) that belongs to the family of G protein-coupled receptors is exploited by macrophage tropic (R5) human immunodeficiency virus type 1 (HIV-1) to enter cells. Maraviroc, a small molecule CCR antagonist, is used as a part of combination antiretroviral therapy to treat persons infected by R5 HIV-1. CCR5 is expressed in various cancers, and its level of expression is a negative predictor of patients' survival in gastric cancers. Here, we report MKN45, MKN74, and KATOIII cells, three human gastric cancer cell lines with different stages of differentiation, which express CCR5 as detected by flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR), and its ligand RANTES. In vitro experiments demonstrate that CCR5 antagonism reduces gastric cancer cell migration induced by macrophage inflammatory protein 1α (MIP-1α), MIP-1β, and RANTES and adhesion to the ex-planted murine peritoneum. Administration of maraviroc from days 3 to 10 after MKN45 cell inoculation to severe combined immunodeficient (SCID) mice effectively reduced the extent of peritoneal disease and increased survival. Maraviroc treatment also reduced the tumor burden in a xenograft model. Gene expression and RT-PCR analyses revealed that CCR5 antagonism in vivo modulates the expression of genes known for their role in cancer growth including interleukin-10 receptor B; hepatocyte growth factor receptor (MET); the homolog of the atypical cadherin gene, FAT1; Nm23-H1; and lymphotoxin β receptor. In summary, we have shown that CCR5 is mechanistically involved in dissemination of gastric cancer cells, suggesting that small molecule inhibitors of CCR5 might be exploited for their anticancer potential. PMID:24466382

  7. Revisiting IL-6 antagonism in multiple myeloma.

    PubMed

    Matthes, Thomas; Manfroi, Benoit; Huard, Bertrand

    2016-09-01

    IL-6, a cytokine with broad functions in inflammation and immunity, has been extensively studied for its role on normal antibody-producing plasma cells. In addition, IL-6 is recognized as a proliferative factor for multiple myeloma (MM), a malignant plasma cell tumor developing in the bone marrow. Blocking IL-6 signaling was thus developed into a therapeutic approach for MM already early after its discovery, in 1991. Unfortunately, the first clinical trials did not demonstrate a clear benefit, but despite this apparent failure hopes on IL-6 antagonism are still high and trials ongoing. The cellular source of IL-6 has long been a matter of debate. IL-6 was first recognized as an autocrine factor produced by the malignant plasma cells themselves, but later reports clearly showed that IL-6 was a paracrine factor, produced by the microenvironment, mostly by cells from the myeloid lineage. Recently, we have confirmed that IL-6 originates from myeloid lineage cells, mainly from myeloid precursors. We have also demonstrated that IL-6 amplifies the pool of myeloid cells producing a second key factor for MM, a proliferation inducing ligand (APRIL). These findings form a new rationale for IL-6 inhibition in MM and for new ways to use IL-6 blocking in the clinics. PMID:27497026

  8. Role of chemotherapeutic antagonism in opportunistic infections.

    PubMed

    Castelli, M; Baggio, G; Ruberto, A I; Malagoli, M; Casolari, C; Rossi, T; Galatulas, I

    1997-01-01

    The most widely-known anti-tumor drugs often induce marked immunosuppression which can give rise to one or more sepses. Anti-infection measures immediately applied can sometimes prove largely ineffective or even useless, the patient dying not as a result of the spread of the tumour but as a direct consequence of opportunistic infection. We postulate that antagonism between anti-tumour and antimicrobial drugs may also play an important part in this. By way of illustration of this hypothesis, we have studied the action of a number of known inhibitors of peptidoglycan synthesis and of DNA-gyrases on certain strains of Gram-positive and Gram-negative microorganisms cultured in medium containing various concentrations of some of the best-known anti-tumour antimetabolites. The experimental data show that antimicrobial and anti-tumour drugs can sometimes induce synergic or indifferent chemotherapeutic interactions with many bacteria, while in others the effect is antagonistic. In practice, the action of the drugs could lead to bacterial selectivity, which, in conjunction with immunosuppression and the presence of resistant strains, could favour the evolution of opportunistic infection.

  9. Insulin antagonizes the phagocytosis stimulating action of histamine in Tetrahymena.

    PubMed

    Csaba, G; Darvas, Z

    1992-02-01

    Histamine increased specifically the phagocytic activity of the unicellular Tetrahymena, whereas insulin had no influence on it. Insulin antagonized the phagocytosis stimulating action of histamine after simultaneous exposure and after preexposure two days earlier as well, although in the latter case to a lesser degree. Double exposure to a combination of histamine+insulin didn't influence the phagocytic activity at all, demonstrating the histamine antagonizing effect of insulin in this model.

  10. Activin C Antagonizes Activin A in Vitro and Overexpression Leads to Pathologies in Vivo

    PubMed Central

    Gold, Elspeth; Jetly, Niti; O'Bryan, Moira K.; Meachem, Sarah; Srinivasan, Deepa; Behuria, Supreeti; Sanchez-Partida, L. Gabriel; Woodruff, Teresa; Hedwards, Shelley; Wang, Hong; McDougall, Helen; Casey, Victoria; Niranjan, Birunthi; Patella, Shane; Risbridger, Gail

    2009-01-01

    Activin A is a potent growth and differentiation factor whose synthesis and bioactivity are tightly regulated. Both follistatin binding and inhibin subunit heterodimerization block access to the activin receptor and/or receptor activation. We postulated that the activin-βC subunit provides another mechanism regulating activin bioactivity. To test our hypothesis, we examined the biological effects of activin C and produced mice that overexpress activin-βC. Activin C reduced activin A bioactivity in vitro; in LNCaP cells, activin C abrogated both activin A-induced Smad signaling and growth inhibition, and in LβT2 cells, activin C antagonized activin A-mediated activity of an follicle-stimulating hormone-β promoter. Transgenic mice that overexpress activin-βC exhibited disease in testis, liver, and prostate. Male infertility was caused by both reduced sperm production and impaired sperm motility. The livers of the transgenic mice were enlarged because of an imbalance between hepatocyte proliferation and apoptosis. Transgenic prostates showed evidence of hypertrophy and epithelial cell hyperplasia. Additionally, there was decreased evidence of nuclear Smad-2 localization in the testis, liver, and prostate, indicating that overexpression of activin-βC antagonized Smad signaling in vivo. Underlying the significance of these findings, human testis, liver, and prostate cancers expressed increased activin-βC immunoreactivity. This study provides evidence that activin-βC is an antagonist of activin A and supplies an impetus to examine its role in development and disease. PMID:19095948

  11. Antagonism of kappa opioid mediated effects in the rat by cyclo(Leu-Gly)

    SciTech Connect

    Bhargava, H.N.; Ramarao, P. )

    1989-01-01

    The effect of cyclo(Leu-Gly) on U-50,488H- induced pharmacological actions was determined in male Sprague-Dawley rats. Intraperitoneal (i.p.) administration of U-50,488H to rats produced analgesia (tail-flick) and increased urinary output. Cyclo (Leu-Gly) antagonized the analgesic response to U-50,488H. A dose of 10 mg/kg (i.p.) of U-50,488H increased the spontaneous urinary output which was anatagonized by cyclo (Leu-Gly). To determine whether cyclo (Leu-Gly) was acting as a kappa-opioid receptor antagonist, the effect of cyclo (Leu-Gly) on the binding of ({sup 3}H) ethylketocyclazoncine (EKC) to membranes of rat cerebral cortex and spinal cord was determined. The IC{sub 50} values of cyclo(Leu-Gly) in displacing ({sup 3}H)EKC from its binding sites in cortex and spinal cord were 1.44 and 0.40 mM, respectively. Chronic administration of U-50,488H for 4 days induced tolerance to its analgesic effect. The latter was not affected by cyclo(Leu-Gly) given once a day for 4 days. It is concluded that cyclo(Leu-Gly) antagonizes acute actions of U-50,488H and that such effects of cyclo(Leu-Gly) are not mediated via a direct action on kappa-opioid receptors.

  12. Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35

    SciTech Connect

    Leung, Daisy W.; Prins, Kathleen C.; Borek, Dominika M.; Farahbakhsh, Mina; Tufariello, JoAnn M.; Ramanan, Parameshwaran; Nix, Jay C.; Helgeson, Luke A.; Otwinowski, Zbyszek; Honzatko, Richard B.; Basler, Christopher F.; Amarasinghe, Gaya K.

    2010-03-12

    Ebola viral protein 35 (VP35), encoded by the highly pathogenic Ebola virus, facilitates host immune evasion by antagonizing antiviral signaling pathways, including those initiated by RIG-I-like receptors. Here we report the crystal structure of the Ebola VP35 interferon inhibitory domain (IID) bound to short double-stranded RNA (dsRNA), which together with in vivo results reveals how VP35-dsRNA interactions contribute to immune evasion. Conserved basic residues in VP35 IID recognize the dsRNA backbone, whereas the dsRNA blunt ends are 'end-capped' by a pocket of hydrophobic residues that mimic RIG-I-like receptor recognition of blunt-end dsRNA. Residues critical for RNA binding are also important for interferon inhibition in vivo but not for viral polymerase cofactor function of VP35. These results suggest that simultaneous recognition of dsRNA backbone and blunt ends provides a mechanism by which Ebola VP35 antagonizes host dsRNA sensors and immune responses.

  13. Serotonin receptors expressed in Drosophila mushroom bodies differentially modulate larval locomotion.

    PubMed

    Silva, Bryon; Goles, Nicolás I; Varas, Rodrigo; Campusano, Jorge M

    2014-01-01

    Drosophila melanogaster has been successfully used as a simple model to study the cellular and molecular mechanisms underlying behaviors, including the generation of motor programs. Thus, it has been shown that, as in vertebrates, CNS biogenic amines (BA) including serotonin (5HT) participate in motor control in Drosophila. Several evidence show that BA systems innervate an important association area in the insect brain previously associated to the planning and/or execution of motor programs, the Mushroom Bodies (MB). The main objective of this work is to evaluate the contribution of 5HT and its receptors expressed in MB to motor behavior in fly larva. Locomotion was evaluated using an automated tracking system, in Drosophila larvae (3(rd)-instar) exposed to drugs that affect the serotonergic neuronal transmission: alpha-methyl-L-dopa, MDMA and fluoxetine. In addition, animals expressing mutations in the 5HT biosynthetic enzymes or in any of the previously identified receptors for this amine (5HT1AR, 5HT1BR, 5HT2R and 5HT7R) were evaluated in their locomotion. Finally, RNAi directed to the Drosophila 5HT receptor transcripts were expressed in MB and the effect of this manipulation on motor behavior was assessed. Data obtained in the mutants and in animals exposed to the serotonergic drugs, suggest that 5HT systems are important regulators of motor programs in fly larvae. Studies carried out in animals pan-neuronally expressing the RNAi for each of the serotonergic receptors, support this idea and further suggest that CNS 5HT pathways play a role in motor control. Moreover, animals expressing an RNAi for 5HT1BR, 5HT2R and 5HT7R in MB show increased motor behavior, while no effect is observed when the RNAi for 5HT1AR is expressed in this region. Thus, our data suggest that CNS 5HT systems are involved in motor control, and that 5HT receptors expressed in MB differentially modulate motor programs in fly larvae.

  14. Serotonin Receptors Expressed in Drosophila Mushroom Bodies Differentially Modulate Larval Locomotion

    PubMed Central

    Silva, Bryon; Goles, Nicolás I.; Varas, Rodrigo; Campusano, Jorge M.

    2014-01-01

    Drosophila melanogaster has been successfully used as a simple model to study the cellular and molecular mechanisms underlying behaviors, including the generation of motor programs. Thus, it has been shown that, as in vertebrates, CNS biogenic amines (BA) including serotonin (5HT) participate in motor control in Drosophila. Several evidence show that BA systems innervate an important association area in the insect brain previously associated to the planning and/or execution of motor programs, the Mushroom Bodies (MB). The main objective of this work is to evaluate the contribution of 5HT and its receptors expressed in MB to motor behavior in fly larva. Locomotion was evaluated using an automated tracking system, in Drosophila larvae (3rd-instar) exposed to drugs that affect the serotonergic neuronal transmission: alpha-methyl-L-dopa, MDMA and fluoxetine. In addition, animals expressing mutations in the 5HT biosynthetic enzymes or in any of the previously identified receptors for this amine (5HT1AR, 5HT1BR, 5HT2R and 5HT7R) were evaluated in their locomotion. Finally, RNAi directed to the Drosophila 5HT receptor transcripts were expressed in MB and the effect of this manipulation on motor behavior was assessed. Data obtained in the mutants and in animals exposed to the serotonergic drugs, suggest that 5HT systems are important regulators of motor programs in fly larvae. Studies carried out in animals pan-neuronally expressing the RNAi for each of the serotonergic receptors, support this idea and further suggest that CNS 5HT pathways play a role in motor control. Moreover, animals expressing an RNAi for 5HT1BR, 5HT2R and 5HT7R in MB show increased motor behavior, while no effect is observed when the RNAi for 5HT1AR is expressed in this region. Thus, our data suggest that CNS 5HT systems are involved in motor control, and that 5HT receptors expressed in MB differentially modulate motor programs in fly larvae. PMID:24586928

  15. Drebrin depletion alters neurotransmitter receptor levels in protein complexes, dendritic spine morphogenesis and memory-related synaptic plasticity in the mouse hippocampus.

    PubMed

    Jung, Gangsoo; Kim, Eun-Jung; Cicvaric, Ana; Sase, Sunetra; Gröger, Marion; Höger, Harald; Sialana, Fernando Jayson; Berger, Johannes; Monje, Francisco J; Lubec, Gert

    2015-07-01

    Drebrin an actin-bundling key regulator of dendritic spine genesis and morphology, has been recently proposed as a regulator of hippocampal glutamatergic activity which is critical for memory formation and maintenance. Here, we examined the effects of genetic deletion of drebrin on dendritic spine and on the level of complexes containing major brain receptors. To this end, homozygous and heterozygous drebrin knockout mice generated in our laboratory and related wild-type control animals were studied. Level of protein complexes containing dopamine receptor D1/dopamine receptor D2, 5-hydroxytryptamine receptor 1A (5-HT1(A)R), and 5-hydroxytryptamine receptor 7 (5-HT7R) were significantly reduced in hippocampus of drebrin knockout mice whereas no significant changes were detected for GluR1, 2, and 3 and NR1 as examined by native gel-based immunoblotting. Drebrin depletion also altered dendritic spine formation, morphology, and reduced levels of dopamine receptor D1 in dendritic spines as evaluated using immunohistochemistry/confocal microscopy. Electrophysiological studies further showed significant reduction in memory-related hippocampal synaptic plasticity upon drebrin depletion. These findings provide unprecedented experimental support for a role of drebrin in the regulation of memory-related synaptic plasticity and neurotransmitter receptor signaling, offer relevant information regarding the interpretation of previous studies and help in the design of future studies on dendritic spines.

  16. The role of serotonin receptor subtypes in treating depression: a review of animal studies

    PubMed Central

    Carr, Gregory V.

    2012-01-01

    Rationale Serotonin reuptake inhibitors (SSRIs) are effective in treating depression. Given the existence of different families and subtypes of 5-HT receptors, multiple 5-HT receptors may be involved in the antidepressant-like behavioral effects of SSRIs. Objective Behavioral pharmacology studies investigating the role of 5-HT receptor subtypes in producing or blocking the effects of SSRIs were reviewed. Results Few animal behavior tests were available to support the original development of SSRIs. Since their development, a number of behavioral tests and models of depression have been developed that are sensitive to the effects of SSRIs, as well as to other types of antidepressant treatments. The rationale for the development and use of these tests is reviewed. Behavioral effects similar to those of SSRIs (antidepressant-like) have been produced by agonists at 5-HT1A, 5-HT1B, 5-HT2C, 5-HT4, and 5-HT6 receptors. Also, antagonists at 5-HT2A, 5-HT2C, 5-HT3, 5- HT6, and 5-HT7 receptors have been reported to produce antidepressant-like responses. Although it seems paradoxical that both agonists and antagonists at particular 5-HT receptors can produce antidepressant-like effects, they probably involve diverse neurochemical mechanisms. The behavioral effects of SSRIs and other antidepressants may also be augmented when 5-HT receptor agonists or antagonists are given in combination. Conclusions The involvement of 5-HT receptors in the antidepressant-like effects of SSRIs is complex and involves the orchestration of stimulation and blockade at different 5-HT receptor subtypes. Individual 5-HT receptors provide opportunities for the development of a newer generation of antidepressants that may be more beneficial and effective than SSRIs. PMID:21107537

  17. Cotinine antagonizes the behavioral effects of nicotine exposure in the planarian Girardia tigrina.

    PubMed

    Bach, Daniel J; Tenaglia, Matthew; Baker, Debra L; Deats, Sean; Montgomery, Erica; Pagán, Oné R

    2016-10-01

    Nicotine is one of the most addictive drugs abused by humans. Our laboratory and others have demonstrated that nicotine decreases motility and induces seizure-like behavior in planarians (pSLM, which are vigorous writhing and bending of the body) in a concentration-dependent manner. Nicotine also induces withdrawal-like behaviors in these worms. Cotinine is the major nicotine metabolite in humans, although it is not the final product of nicotine metabolism. Cotinine is mostly inactive in vertebrate nervous systems and is currently being explored as a molecule which possess most of nicotine's beneficial effects and few of its undesirable ones. It is not known whether cotinine is a product of nicotine metabolism in planarians. We found that cotinine by itself does not seem to elicit any behavioral effects in planarians up to a concentration of 1mM. We also show that cotinine antagonizes the aforementioned nicotine-induced motility decrease and also decreases the expression of nicotine-induced pSLMs in a concentration-dependent manner. Also cotinine prevents the manifestation of some of the withdrawal-like behaviors induced by nicotine in our experimental organism. Thus, we obtained evidence supporting that cotinine antagonizes nicotine in this planarian species. Possible explanations include competitive binding of both compounds at overlapping binding sites, at different nicotinic receptor subtypes, or maybe allosteric interactions. PMID:27616704

  18. CXCR₄antagonism as a therapeutic approach to prevent acute kidney injury.

    PubMed

    Zuk, A; Gershenovich, M; Ivanova, Y; MacFarland, R T; Fricker, S P; Ledbetter, S

    2014-10-01

    We examined whether antagonism of the CXCR₄receptor ameliorates the loss of renal function following ischemia-reperfusion. CXCR₄is ubiquitously expressed on leukocytes, known mediators of renal injury, and on bone marrow hematopoietic stem cells (HSCs). Plerixafor (AMD3100, Mozobil) is a small-molecule CXCR₄antagonist that mobilizes HSCs into the peripheral blood and also modulates the immune response in in vivo rodent models of asthma and rheumatoid arthritis. Treatment with plerixafor before and after ischemic clamping ameliorated kidney injury in a rat model of bilateral renal ischemia-reperfusion. Serum creatinine and blood urea nitrogen were significantly reduced 24 h after reperfusion, as were tissue injury and cell death. Plerixafor prevented the renal increase in the proinflammatory chemokines CXCL1 and CXCL5 and the cytokine IL-6. Flow cytometry of kidney homogenates confirmed the presence of significantly fewer leukocytes with plerixafor treatment; additionally, myeloperoxidase activity was reduced. AMD3465, a monocyclam analog of plerixafor, was similarly renoprotective. Four weeks postreperfusion, long-term effects included diminished fibrosis, inflammation, and ongoing renal injury. The mechanism by which CXCR₄inhibition ameliorates AKI is due to modulation of leukocyte infiltration and expression of proinflammatory chemokines/cytokines, rather than a HSC-mediated effect. The data suggest that CXCR₄antagonism with plerixafor may be a potential option to prevent AKI. PMID:25080523

  19. FXR antagonism of NSAIDs contributes to drug-induced liver injury identified by systems pharmacology approach

    PubMed Central

    Lu, Weiqiang; Cheng, Feixiong; Jiang, Jing; Zhang, Chen; Deng, Xiaokang; Xu, Zhongyu; Zou, Shien; Shen, Xu; Tang, Yun; Huang, Jin

    2015-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are worldwide used drugs for analgesic, antipyretic, and anti-inflammatory therapeutics. However, NSAIDs often cause several serious liver injuries, such as drug-induced liver injury (DILI), and the molecular mechanisms of DILI have not been clearly elucidated. In this study, we developed a systems pharmacology approach to explore the mechanism-of-action of NSAIDs. We found that the Farnesoid X Receptor (FXR) antagonism of NSAIDs is a potential molecular mechanism of DILI through systematic network analysis and in vitro assays. Specially, the quantitative real-time PCR assay reveals that indomethacin and ibuprofen regulate FXR downstream target gene expression in HepG2 cells. Furthermore, the western blot shows that FXR antagonism by indomethacin induces the phosphorylation of STAT3 (signal transducer and activator of transcription 3), promotes the activation of caspase9, and finally causes DILI. In summary, our systems pharmacology approach provided novel insights into molecular mechanisms of DILI for NSAIDs, which may propel the ways toward the design of novel anti-inflammatory pharmacotherapeutics. PMID:25631039

  20. Cotinine antagonizes the behavioral effects of nicotine exposure in the planarian Girardia tigrina.

    PubMed

    Bach, Daniel J; Tenaglia, Matthew; Baker, Debra L; Deats, Sean; Montgomery, Erica; Pagán, Oné R

    2016-10-01

    Nicotine is one of the most addictive drugs abused by humans. Our laboratory and others have demonstrated that nicotine decreases motility and induces seizure-like behavior in planarians (pSLM, which are vigorous writhing and bending of the body) in a concentration-dependent manner. Nicotine also induces withdrawal-like behaviors in these worms. Cotinine is the major nicotine metabolite in humans, although it is not the final product of nicotine metabolism. Cotinine is mostly inactive in vertebrate nervous systems and is currently being explored as a molecule which possess most of nicotine's beneficial effects and few of its undesirable ones. It is not known whether cotinine is a product of nicotine metabolism in planarians. We found that cotinine by itself does not seem to elicit any behavioral effects in planarians up to a concentration of 1mM. We also show that cotinine antagonizes the aforementioned nicotine-induced motility decrease and also decreases the expression of nicotine-induced pSLMs in a concentration-dependent manner. Also cotinine prevents the manifestation of some of the withdrawal-like behaviors induced by nicotine in our experimental organism. Thus, we obtained evidence supporting that cotinine antagonizes nicotine in this planarian species. Possible explanations include competitive binding of both compounds at overlapping binding sites, at different nicotinic receptor subtypes, or maybe allosteric interactions.

  1. Cysteinyl Leukotriene Antagonism Inhibits Bronchoconstriction in Respose to Hypertonic Saline Inhalation in Asthma

    PubMed Central

    Kazani, Shamsah; Sadeh, Jonathan; Bunga, Sreedhar; Wechsler, Michael E; Israel, Elliot

    2010-01-01

    Background In asthma, cysteinyl leukotrienes (CysLTs) play varying roles in the bronchomotor response to multiple provocative stimuli. The contribution of CysLTs on the airway's response to hypertonic saline (HS) inhalation in asthma is unknown. Whether polymorphisms in the leukotriene biosynthetic pathway affect the contribution of CysLTs to this response is also unknown. Methods In a prospective, randomized, double blind, placebo-controlled cross-over study, mild and moderate asymptomatic asthmatics underwent inhaled 3% HS challenge by doubling the duration of nebulization (0.5, 1, 2, 4, and 8 min) two hours after one dose of montelukast (a CysLT receptor 1 [CysLTR1] antagonist) or placebo, and after three week courses. We examined the effect of the leukotriene C4 synthase (LTC4S) polymorphism (A-444C) on the efficacy of montelukast against HS inhalation in an exploratory manner. Results In 37 subjects, two hours after administration of montelukast, the mean provocative dose of HS required to cause a 20% drop in FEV1 (HS-PD20) increased by 59% (9.17 after placebo vs. 14.55 ml after montelukast, p = 0.0154). Three weeks of cysLTR1 antagonism increased the HS-PD20 by 84% (10.97 vs. 20.21 ml, p = 0.0002). Three weeks of CysLTR1 antagonism appeared to produce greater effects on blocking bronchial hyper responsiveness (two hour vs. three week HS-PD20 values 14.55 vs. 20.21 ml respectively, p = 0.0898). We did not observe an effect of the LTC4S polymorphism on the response to CysLTR1 antagonism in this cohort. Conclusions A significant proportion of HS-induced bronchoconstriction is mediated by release of leukotrienes as evidenced by substantial acute inhibition with a CysLTR1 antagonist. There was a trend toward greater inhibition of bronchial responsiveness with three weeks of therapy as opposed to acute CysLTR1 antagonism. PMID:21169002

  2. Oligogalacturonide-auxin antagonism does not require posttranscriptional gene silencing or stabilization of auxin response repressors in Arabidopsis.

    PubMed

    Savatin, Daniel V; Ferrari, Simone; Sicilia, Francesca; De Lorenzo, Giulia

    2011-11-01

    α-1-4-Linked oligogalacturonides (OGs) derived from plant cell walls are a class of damage-associated molecular patterns and well-known elicitors of the plant immune response. Early transcript changes induced by OGs largely overlap those induced by flg22, a peptide derived from bacterial flagellin, a well-characterized microbe-associated molecular pattern, although responses diverge over time. OGs also regulate growth and development of plant cells and organs, due to an auxin-antagonistic activity. The molecular basis of this antagonism is still unknown. Here we show that, in Arabidopsis (Arabidopsis thaliana), OGs inhibit adventitious root formation induced by auxin in leaf explants as well as the expression of several auxin-responsive genes. Genetic, biochemical, and pharmacological experiments indicate that inhibition of auxin responses by OGs does not require ethylene, jasmonic acid, and salicylic acid signaling and is independent of RESPIRATORY BURST OXIDASE HOMOLOGUE D-mediated reactive oxygen species production. Free indole-3-acetic acid levels are not noticeably altered by OGs. Notably, OG- as well as flg22-auxin antagonism does not involve any of the following mechanisms: (1) stabilization of auxin-response repressors; (2) decreased levels of auxin receptor transcripts through the action of microRNAs. Our results suggest that OGs and flg22 antagonize auxin responses independently of Aux/Indole-3-Acetic Acid repressor stabilization and of posttranscriptional gene silencing.

  3. Novel pharmacological approaches for the antagonism of neuromuscular blockade.

    PubMed

    Pic, Lisa C

    2005-02-01

    Gamma cyclodextrin and purified plasma cholinesterase are 2 novel pharmacological agents being investigated as to their suitability for antagonism of neuromuscular blockade. Both of these agents are devoid of cholinergic stimulation and the accompanying side effects because their action is independent of acetylcholinesterase inhibition. Gamma cyclodextrin antagonizes the steroidal neuromuscular blocker rocuronium via the chemical encapsulation of the molecule forming a "host-guest" complex through van der Waals and hydrophobic interactions in the plasma. Encapsulation decreases plasma drug concentrations, shifting the neuromuscular blocking drug molecules from the neuromuscular junction back to the plasma compartment resulting in a rapid recovery of the neuromuscular function. Org 25969, a modified gamma cyclodextrin, will antagonize profound neuromuscular block induced by rocuronium in approximately 2 minutes. A commercial preparation of purified human plasma cholinesterase has been shown to be effective in reversing succinylcholine or mivacurium-induced block. Administration of exogenous plasma cholinesterase also has been shown to be effective in antagonizing mivacurium-induced neuromuscular block, cocaine toxicity, and organophosphate poisoning.

  4. Brassinosteroid/Abscisic Acid Antagonism in Balancing Growth and Stress.

    PubMed

    Clouse, Steven D

    2016-07-25

    In this issue of Developmental Cell, Gui et al. (2016) show that an abscisic acid-inducible remorin protein in rice directly interacts with critical brassinosteroid signaling components to attenuate the brassinosteroid response, thus illuminating one aspect of the brassinosteroid/abscisic acid antagonism. PMID:27459060

  5. Antagonism of peptidoleukotrienes and inhibition of systemic anaphylaxis by RG 12525 in guinea pigs

    SciTech Connect

    Van Inwegen, R.G.; Nuss, G.W.; Carnathan, G.W.

    1989-01-01

    RG 12525 was determined to be a specific, competitive and orally effective antagonist of the peptidoleukotrienes, LTC/sub 4/, LTD/sub 4/ and LTE/sub 4/, in several assays utilizing guinea pigs. In vitro, RG 12525 competitively inhibited /sup 3/H-LTD/sub 4/ binding to lung membranes and competitively antagonized the spasmogenic activity of LTC/sub 4/, LTD/sub 4/ and LTE/sub 4/ on lung strips with > 8000 fold selectivity. In vivo, RG 12525 orally inhibited LTD/sub 4/ induced wheal formation LTD/sub 4/ induced bronchoconstriction and anaphylactic death and antigen induced bronchoconstriction. RG 12525 represents a significant improvement in receptor affinity and oral efficacy and thus, is a valuable pharmacological tool to evaluate peptidoleukotrienes in allergic diseases.

  6. Probing the structural and topological requirements for CCR2 antagonism: holographic QSAR for indolopiperidine derivatives.

    PubMed

    Srikanth, K; Nair, Pramod C; Sobhia, M Elizabeth

    2008-02-15

    CCR2 is the major family of chemokine receptors which involve in the pathophysiology of the acute or chronic inflammatory conditions such as rheumatoid arthritis, atherosclerosis, asthma, obesity, and type-2 diabetes. Herein, we report the results of HQSAR model, developed for CCR2 antagonistic activity of indolopiperidine derivatives. The best HQSAR model with r(2)=0.916, q(2)=0.562 with atom count=4-7 was used to predict the activity of the test set molecules. The predicted values are in good agreement with experimental results and show the potential of the model for untested compounds. Analysis of molecular fragments throws light on essential structural and topological features of indolopiperidine derivatives for antagonist activity. The analysis shows that the presence of tertiary hydrogen bond acceptor groups is important for CCR2 antagonism. Fragments containing benzene ring substituted with one or more chlorine atoms show the positive effect of electron withdrawing group for favorable activity. PMID:18226895

  7. The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep.

    PubMed

    Monti, Jaime M

    2010-10-01

    Based on electrophysiological, neurochemical, genetic and neuropharmacological approaches it is currently accepted that serotonin (5-HT) functions to promote waking (W) and to inhibit rapid-eye movement sleep (REMS). The serotonin-containing neurons of the dorsal raphe nucleus (DRN) provide part of the serotonergic innervation of the telencephalon, diencephalon, mesencephalon and rhombencephalon of laboratory animals and man. The DRN has been subdivided into several clusters on the basis of differences in cellular morphology, expression of other neurotransmitters and afferent and efferent connections. These differences among subpopulations of 5-HT neurons may have important implications for neural mechanisms underlying 5-HT modulation of sleep and waking. The DRN contains 5-HT and non-5-HT neurons. The latter express a variety of substances including dopamine, γ-aminobutyric acid (GABA) and glutamate. In addition, nitric oxide and a number of neuropeptides have been characterized in the DRN. Available evidence tends to indicate that non-5-HT cells contribute to the regulation of the activity of 5-HT neurons during the sleep-wake cycle through local circuits and/or their mediation of the effects of afferent inputs. Mutant mice that do not express 5-HT(1A) or 5-HT(1B) receptor exhibit greater amounts of REMS than their wild-type couterparts. 5-HT(2A) and 5-HT(2C) receptor knockout mice show a significant increase of W and a reduction of slow wave sleep that is related, at least in part, to the increased release of norepinephrine and dopamine. A normal circadian sleep pattern is observed in 5-HT(7) receptor knockout mice; however, the mutants spend less time in REMS. Local microinjection of 5-HT(1B), 5-HT(2A/2C), 5-HT(3) and 5-HT(7) receptor agonists into the DRN selectively suppresses REMS in the rat. In contrast, microinjection of 5-HT(1A) receptor agonists promotes REMS. Similarly, local administration of the melanin-concentrating hormone or the GABA(A) receptor

  8. RAB-7 antagonizes LET-23 EGFR signaling during vulva development in Caenorhabditis elegans.

    PubMed

    Skorobogata, Olga; Rocheleau, Christian E

    2012-01-01

    The Rab7 GTPase regulates late endosome trafficking of the Epidermal Growth Factor Receptor (EGFR) to the lysosome for degradation. However, less is known about how Rab7 activity, functioning late in the endocytic pathway, affects EGFR signaling. Here we used Caenorhabditis elegans vulva cell fate induction, a paradigm for genetic analysis of EGFR/Receptor Tyrosine Kinase (RTK) signaling, to assess the genetic requirements for rab-7. Using a rab-7 deletion mutant, we demonstrate that rab-7 antagonizes LET-23 EGFR signaling to a similar extent, but in a distinct manner, as previously described negative regulators such as sli-1 c-Cbl. Epistasis analysis places rab-7 upstream of or in parallel to lin-3 EGF and let-23 EGFR. However, expression of gfp::rab-7 in the Vulva Presursor Cells (VPCs) is sufficient to rescue the rab-7(-) VPC induction phenotypes indicating that RAB-7 functions in the signal receiving cell. We show that components of the Endosomal Sorting Complex Required for Transport (ESCRT)-0, and -I, complexes, hgrs-1 Hrs, and vps-28, also antagonize signaling, suggesting that LET-23 EGFR likely transits through Multivesicular Bodies (MVBs) en route to the lysosome. Consistent with RAB-7 regulating LET-23 EGFR trafficking, rab-7 mutants have increased number of LET-23::GFP-positive endosomes. Our data imply that Rab7, by mediating EGFR trafficking and degradation, plays an important role in downregulation of EGFR signaling. Failure to downregulate EGFR signaling contributes to oncogenesis, and thus Rab7 could possess tumor suppressor activity in humans.

  9. Complex effects of mGluR5 antagonism on sociability and stereotypic behaviors in mice: possible implications for the pharmacotherapy of autism spectrum disorders.

    PubMed

    Burket, Jessica A; Herndon, Amy L; Winebarger, Erin E; Jacome, Luis F; Deutsch, Stephen I

    2011-10-10

    Balb/c mice display deficits of sociability; for example, they show reduced locomotor activity in the presence of an enclosed or freely-moving social stimulus mouse. Transgenic mice with defective or diminished expression of NMDA receptors manifest impaired sociability, while a partial and full agonist of the obligatory glycine co-agonist binding site on the NMDA receptor improved sociability in the Balb/c mouse strain. Because 2-methyl-6-(phenylethynyl)-pyridine (MPEP), an antagonist of the mGluR5 metabotropic glutamate receptor (mGluR), reduced self-grooming behavior in BTBR T+tfJ (BTBR) mice, another inbred genetic mouse model of autism spectrum disorders (ASDs), and mGluR5 antagonism is emerging as an experimental treatment for the 'fragile X syndrome," which has a high prevalence of co-morbid ASDs, we examined the effects of MPEP on sociability and stereotypic behaviors in Balb/c and Swiss Webster mice in a standard paradigm. MPEP had complex effects on sociability, impairing some measures of sociability in both strains, while it reduced the intensity of some spontaneous measures of stereotypic behaviors emerging during free social interaction in Swiss Webster mice. Conceivably, mGluR5 antagonism exacerbates diminished endogenous tone of NMDA receptor-mediated neurotransmission in neural circuits relevant to at least some measures of sociability in Balb/c mice; the mGluR5 receptor contributes to regulation of the phosphorylation status of the NMDA receptor. In any event, although stereotypies are an important therapeutic target in ASDs, medication strategies to attenuate their severity via antagonism of mGluR5 receptors must be pursued cautiously because of their potential to worsen at least some measures of sociability.

  10. Agonist interactions with 5-HT3 receptor recognition sites in the rat entorhinal cortex labelled by structurally diverse radioligands.

    PubMed Central

    Barnes, J. M.; Barnes, N. M.; Costall, B.; Jagger, S. M.; Naylor, R. J.; Robertson, D. W.; Roe, S. Y.

    1992-01-01

    1. The pharmacological properties of 5-HT3 receptor recognition sites labelled with [3H]-(S)-zacopride, [3H]-LY278,584, [3H]-granisetron and [3H]-GR67330 in membranes prepared from the rat entorhinal cortex were investigated to assess the presence of cooperativity within the 5-HT3 receptor complex. 2. In rat entorhinal cortex homogenates, [3H]-(S)-zacopride, [3H]-LY278,584, [3H]-granisetron and [3H]-GR67330 labelled homogeneous densities of recognition sites (defined by granisetron, 10 microM) with high affinity (Bmax = 75 +/- 5, 53 +/- 5, 92 +/- 6 and 79 +/- 6 fmol mg-1 protein, respectively; pKd = 9.41 +/- 0.04, 8.69 +/- 0.14, 8.81 +/- 0.06 and 10.14 +/- 0.04 for [3H]-(S)-zacopride, [3H]-LY278,584, [3H]-granisetron and [3H]-GR67330, respectively, n = 3-8). 3. Quipazine and granisetron competed for the binding of each of the radioligands in the rat entorhinal cortex preparation at low nanomolar concentrations (pIC50; quipazine 9.38-8.51, granisetron 8.62-8.03), whilst the agonists, 5-hydroxytryptamine (5-HT), phenylbiguanide (PBG) and 2-methyl-5-HT competed at sub-micromolar concentrations (pIC50; 5-HT 7.16-6.42, PBG 7.52-6.40, 2-methyl-5-HT 7.38-6.09). 4. Competition curves generated with increasing concentrations of quipazine, PBG, 5-HT and 2-methyl-5-HT displayed Hill coefficients greater than unity when the 5-HT3 receptor recognition sites in the entorhinal cortex preparation were labelled with [3H]-LY278,584, [3H]-granisetron and [3H]-GR67330. These competing compounds displayed Hill coefficients of around unity when the sites were labelled with [3H]-(S)-zacopride. Competition for the binding of [3H]-(S)-zacopride, [3H]-LY278,584, [3H]-granisetron and [3H]-GR67330 by granisetron generated Hill coefficients around unity.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1559139

  11. Modulatory effects of two novel agonists for serotonin receptor 7 on emotion, motivation and circadian rhythm profiles in mice.

    PubMed

    Adriani, Walter; Travaglini, Domenica; Lacivita, Enza; Saso, Luciano; Leopoldo, Marcello; Laviola, Giovanni

    2012-02-01

    Serotonin receptor 7, i.e. 5-HT(7) protein coded by Htr7 gene, was discovered in supra-chiasmatic nucleus (SCN) of the hypothalamus but is widespread in the forebrain. Studies have shown that this receptor is involved in learning/memory, regulation of mood and circadian rhythms. The modulatory effects of two novel agonists, LP-211 and LP-378, were assessed in male adult CD-1 mice with a battery of behavioral tests. Exp. 1 (Black/White Boxes, BWB: Adriani et al., 2009) and Exp. 2 (Dark/Light, D/L; Novelty-seeking, N-S) show: a) that LP-211 administration (acutely, at a 0.25 mg/kg dose i.p.) increases locomotion and BWB exploration; b) that the time spent away from an aversive, lit chamber (i.e., stress-induced anxiety) and in a new environment (i.e., novelty-induced curiosity) are both reduced. Sub-chronic LP-211 (at a 2.5 mg/kg dose i.p.) reveals a sensitization of locomotor-stimulant properties over 4-5 days. In Exp. 3 (BWB), a three- to four-fold dosage (acutely, at 0.83 mg/kg i.p.) is needed with LP-378 to increase locomotion and BWB exploration. In Exp. 4, mice under constant-light conditions reveal the expected spontaneous lengthening (1.5 h per day) of circadian rhythms. A significant phase advance is induced by LP-211 (at a 0.25 mg/kg dose i.p., administered around activity offset), with onset of activity taking place 6 h earlier than in controls. In summary, LP-211 is able to act consistently onto exploratory motivation, anxiety-related profiles, and spontaneous circadian rhythm. In the next future, agonist modulation of 5-HT(7) receptors might turn out to be beneficial for sleep and/or anxiety disorders. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.

  12. Optimization of an indazole series of selective estrogen receptor degraders: Tumor regression in a tamoxifen-resistant breast cancer xenograft.

    PubMed

    Govek, Steven P; Nagasawa, Johnny Y; Douglas, Karensa L; Lai, Andiliy G; Kahraman, Mehmet; Bonnefous, Celine; Aparicio, Anna M; Darimont, Beatrice D; Grillot, Katherine L; Joseph, James D; Kaufman, Joshua A; Lee, Kyoung-Jin; Lu, Nhin; Moon, Michael J; Prudente, Rene Y; Sensintaffar, John; Rix, Peter J; Hager, Jeffrey H; Smith, Nicholas D

    2015-11-15

    Selective estrogen receptor degraders (SERDs) have shown promise for the treatment of ER+ breast cancer. Disclosed herein is the continued optimization of our indazole series of SERDs. Exploration of ER degradation and antagonism in vitro followed by in vivo antagonism and oral exposure culminated in the discovery of indazoles 47 and 56, which induce tumor regression in a tamoxifen-resistant breast cancer xenograft.

  13. The evolution of reduced antagonism--A role for host-parasite coevolution.

    PubMed

    Gibson, A K; Stoy, K S; Gelarden, I A; Penley, M J; Lively, C M; Morran, L T

    2015-11-01

    Why do some host-parasite interactions become less antagonistic over evolutionary time? Vertical transmission can select for reduced antagonism. Vertical transmission also promotes coevolution between hosts and parasites. Therefore, we hypothesized that coevolution itself may underlie transitions to reduced antagonism. To test the coevolution hypothesis, we selected for reduced antagonism between the host Caenorhabditis elegans and its parasite Serratia marcescens. This parasite is horizontally transmitted, which allowed us to study coevolution independently of vertical transmission. After 20 generations, we observed a response to selection when coevolution was possible: reduced antagonism evolved in the copassaged treatment. Reduced antagonism, however, did not evolve when hosts or parasites were independently selected without coevolution. In addition, we found strong local adaptation for reduced antagonism between replicate host/parasite lines in the copassaged treatment. Taken together, these results strongly suggest that coevolution was critical to the rapid evolution of reduced antagonism.

  14. Cerebral, spinal and peripheral inhibition of gastrointestinal transit by PI017: differential antagonism by naloxonazine

    SciTech Connect

    Williams, C.L.; Heyman, J.S.; Porreca, F.; Burks, T.F.

    1986-03-05

    The authors were interested in characterizing the relative importance of central (cerebral, spinal) and peripheral opioid receptors in inhibition of gastrointestinal transit. The mu-receptor selective agonist, (NMePhe/sup 3/,D-Pro/sup 4/)morphiceptin (PL017), was evaluated for its effectiveness in slowing gastrointestinal transit after subcutaneous, intracerebroventricular (i.c.v.) or intrathecal (i.th.) administration when given alone or after pretreatment with naloxonazine, an irreversible mu/sub 1/ selective opioid receptor antagonist. Male, ICR mice (20-25 g) were pretreated with saline, naloxone or naloxonazine (35 mg/kg, s.c.) 25 hr prior to testing. Gastrointestinal transit was evaluated in previously fasted (18 hr) mice by oral administration of a liquid radiolabelled marker (Na/sub 2//sup 51/CrO/sub 4/). I.th. PL017 (100-1000 ng) was effective in slowing transit, but was essentially insensitive to naloxone or naloxonazine pretreatment. PL017 produced a dose-related inhibition of transit when given by either the i.c.v. (100-1000 ng) or s.c.(1-10 mg/kg) route; this effect was not sensitive to naloxone pretreatment but was antagonized by naloxonazine. These results indicate that the opioid receptors mediating gastrointestinal transit in the brain and periphery may be mu/sub 1/. In contrast, the insensitivity to naloxonazine suggests that the gastrointestinal effects of PL017 in the spinal cord may be the result of activation of mu/sub 2/ or possibly delta opioid receptors.

  15. CXCR4 Antagonism Attenuates the Development of Diabetic Cardiac Fibrosis.

    PubMed

    Chu, Po-Yin; Walder, Ken; Horlock, Duncan; Williams, David; Nelson, Erin; Byrne, Melissa; Jandeleit-Dahm, Karin; Zimmet, Paul; Kaye, David M

    2015-01-01

    Heart failure (HF) is an increasingly recognized complication of diabetes. Cardiac fibrosis is an important causative mechanism of HF associated with diabetes. Recent data indicate that inflammation may be particularly important in the pathogenesis of cardiovascular fibrosis. We sought to determine the mechanism by which cardiac fibrosis develops and to specifically investigate the role of the CXCR4 axis in this process. Animals with type I diabetes (streptozotocin treated mice) or type II diabetes (Israeli Sand-rats) and controls were randomized to treatment with a CXCR4 antagonist, candesartan or vehicle control. Additional groups of mice also underwent bone marrow transplantation (GFP+ donor marrow) to investigate the potential role of bone marrow derived cell mobilization in the pathogenesis of cardiac fibrosis. Both type I and II models of diabetes were accompanied by the development of significant cardiac fibrosis. CXCR4 antagonism markedly reduced cardiac fibrosis in both models of diabetes, similar in magnitude to that seen with candesartan. In contrast to candesartan, the anti-fibrotic actions of CXCR4 antagonism occurred in a blood pressure independent manner. Whilst the induction of diabetes did not increase the overall myocardial burden of GFP+ cells, it was accompanied by an increase in GFP+ cells expressing the fibroblast marker alpha-smooth muscle actin and this was attenuated by CXCR4 antagonism. CXCR4 antagonism was also accompanied by increased levels of circulating regulatory T cells. Taken together the current data indicate that pharmacological inhibition of CXCR4 significantly reduces diabetes induced cardiac fibrosis, providing a potentially important therapeutic approach. PMID:26214690

  16. 5-hydroxytryptamine (5-HT) reduces total peripheral resistance during chronic infusion: direct arterial mesenteric relaxation is not involved

    PubMed Central

    2012-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) delivered over 1 week results in a sustained fall in blood pressure in the sham and deoxycorticosterone acetate (DOCA)-salt rat. We hypothesized 5-HT lowers blood pressure through direct receptor-mediated vascular relaxation. In vivo, 5-HT reduced mean arterial pressure (MAP), increased heart rate, stroke volume, cardiac index, and reduced total peripheral resistance during a 1 week infusion of 5-HT (25 µg/kg/min) in the normotensive Sprague Dawley rat. The mesenteric vasculature was chosen as an ideal candidate for the site of 5-HT receptor mediated vascular relaxation given the high percentage of cardiac output the site receives. Real-time RT-PCR demonstrated that mRNA transcripts for the 5-HT2B, 5-HT1B, and 5-HT7 receptors are present in sham and DOCA-salt superior mesenteric arteries. Immunohistochemistry and Western blot validated the presence of the 5-HT2B, 5- HT1B and 5-HT7 receptor protein in sham and DOCA-salt superior mesenteric artery. Isometric contractile force was measured in endothelium-intact superior mesenteric artery and mesenteric resistance arteries in which the contractile 5- HT2A receptor was antagonized. Maximum concentrations of BW-723C86 (5- HT2B agonist), CP 93129 (5-HT1B agonist) or LP-44 (5-HT7 agonist) did not relax the superior mesenteric artery from DOCA-salt rats vs. vehicle. Additionally, 5-HT (10–9 M to 10–5 M) did not cause relaxation in either contracted mesenteric resistance arteries or superior mesenteric arteries from normotensive Sprague- Dawley rats. Thus, although 5-HT receptors known to mediate vascular relaxation are present in the superior mesenteric artery, they are not functional, and are therefore not likely involved in a 5-HT-induced fall in total peripheral resistance and MAP. PMID:22559843

  17. SB-224289 Antagonizes the Antifungal Mechanism of the Marine Depsipeptide Papuamide A

    PubMed Central

    Cassilly, Chelsi D.; Maddox, Marcus M.; Cherian, Philip T.; Bowling, John J.; Hamann, Mark T.; Lee, Richard E.; Reynolds, Todd B.

    2016-01-01

    In order to expand the repertoire of antifungal compounds a novel, high-throughput phenotypic drug screen targeting fungal phosphatidylserine (PS) synthase (Cho1p) was developed based on antagonism of the toxin papuamide A (Pap-A). Pap-A is a cyclic depsipeptide that binds to PS in the membrane of wild-type Candida albicans, and permeabilizes its plasma membrane, ultimately causing cell death. Organisms with a homozygous deletion of the CHO1 gene (cho1ΔΔ) do not produce PS and are able to survive in the presence of Pap-A. Using this phenotype (i.e. resistance to Pap-A) as an indicator of Cho1p inhibition, we screened over 5,600 small molecules for Pap-A resistance and identified SB-224289 as a positive hit. SB-224289, previously reported as a selective human 5-HT1B receptor antagonist, also confers resistance to the similar toxin theopapuamide (TPap-A), but not to other cytotoxic depsipeptides tested. Structurally similar molecules and truncated variants of SB-224289 do not confer resistance to Pap-A, suggesting that the toxin-blocking ability of SB-224289 is very specific. Further biochemical characterization revealed that SB-224289 does not inhibit Cho1p, indicating that Pap-A resistance is conferred by another undetermined mechanism. Although the mode of resistance is unclear, interaction between SB-224289 and Pap-A or TPap-A suggests this screening assay could be adapted for discovering other compounds which could antagonize the effects of other environmentally- or medically-relevant depsipeptide toxins. PMID:27183222

  18. Effect of ring-constrained phenylpropyloxyethylamines on sigma receptors.

    PubMed

    Stavitskaya, Lidiya; Seminerio, Michael J; Healy, Jason R; Noorbakhsh, Bahar; Matsumoto, Rae R; Coop, Andrew

    2013-09-01

    A series of ring-constrained phenylpropyloxyethylamines, partial opioid structure analogs and derivatives of a previously studied sigma (σ) receptor ligand, was synthesized and evaluated at σ and opioid receptors for receptor selectivity. The results of this study identified several compounds with nanomolar affinity at both σ receptor subtypes. Compounds 6 and 9 had the highest selectivity for both σ receptor subtypes, compared to μ opioid receptors. In addition, compounds 6 and 9 significantly reduced the convulsive effects of cocaine in mice, which would be consistent with antagonism of σ receptors. PMID:23896610

  19. Soluble CD109 binds TGF-β and antagonizes TGF-β signalling and responses.

    PubMed

    Li, Carter; Hancock, Mark A; Sehgal, Priyanka; Zhou, Shufeng; Reinhardt, Dieter P; Philip, Anie

    2016-03-01

    Transforming growth factor-β (TGF-β) is a multifunctional cytokine implicated in many diseases, including tissue fibrosis and cancer. TGF-β mediates diverse biological responses by signalling through type I and II TGF-β receptors (TβRI and TβRII). We have previously identified CD109, a glycosylphosphatidylinositol (GPI)-anchored protein, as a novel TGF-β co-receptor that negatively regulates TGF-β signalling and responses and demonstrated that membrane-anchored CD109 promotes TGF-β receptor degradation via a SMAD7/Smurf2-mediated mechanism. To determine whether CD109 released from the cell surface (soluble CD109 or sCD109) also acts as a TGF-β antagonist, we determined the efficacy of recombinant sCD109 to interact with TGF-β and inhibit TGF-β signalling and responses. Our results demonstrate that sCD109 binds TGF-β with high affinity as determined by surface plasmon resonance (SPR) and cell-based radioligand binding and affinity labelling competition assays. SPR detected slow dissociation kinetics between sCD109 and TGF-β at low concentrations, indicating a stable and effective interaction. In addition, sCD109 antagonizes TGF-β-induced Smad2/3 phosphorylation, transcription and cell migration. Together, our results suggest that sCD109 can bind TGF-β, inhibit TGF-β binding to its receptors and decrease TGF-β signalling and TGF-β-induced cellular responses.

  20. Receptor binding profiles and quantitative structure-affinity relationships of some 5-substituted-N,N-diallyltryptamines.

    PubMed

    Cozzi, Nicholas V; Daley, Paul F

    2016-02-01

    N,N-Diallyltryptamine (DALT) and 5-methoxy-N,N-diallyltryptamine (5-MeO-DALT) are two tryptamines synthesized and tested by Alexander Shulgin. In self-experiments, 5-MeO-DALT was reported to be psychoactive in the 12-20mg range, while the unsubstituted compound DALT had few discernible effects in the 42-80 mg range. Recently, 5-MeO-DALT has been used in nonmedical settings for its psychoactive effects, but these effects have been poorly characterized and little is known of its pharmacological properties. We extended the work of Shulgin by synthesizing additional 5-substituted-DALTs. We then compared them to DALT and 5-MeO-DALT for their binding affinities at 45 cloned receptors and transporter proteins. Based on in vitro binding affinity, we identified 27 potential receptor targets for the 5-substituted-DALT compounds. Five of the DALT compounds had affinity in the 10-80 nM range for serotonin 5-HT1A and 5-HT2B receptors, while the affinity of DALT itself at 5-HT1A receptors was slightly lower at 100 nM. Among the 5-HT2 subtypes, the weakest affinity was at 5-HT2A receptors, spanning 250-730 nM. Five of the DALT compounds had affinity in the 50-400 nM range for serotonin 5-HT1D, 5-HT6, and 5-HT7 receptors; again, it was the unsubstituted DALT that had the weakest affinity at all three subtypes. The test drugs had even weaker affinity for 5-HT1B, 5-HT1E, and 5-HT5A subtypes and little or no affinity for the 5-HT3 subtype. These compounds also had generally nanomolar affinities for adrenergic α2A, α2B, and α2C receptors, sigma receptors σ1 and σ2, histamine H1 receptors, and norepinephrine and serotonin uptake transporters. They also bound to other targets in the nanomolar-to-low micromolar range. Based on these binding results, it is likely that multiple serotonin receptors, as well as several nonserotonergic sites are important for the psychoactive effects of DALT drugs. To learn whether any quantitative structure-affinity relationships existed, we evaluated

  1. Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice

    PubMed Central

    Berres, Marie-Luise; Koenen, Rory R.; Rueland, Anna; Zaldivar, Mirko Moreno; Heinrichs, Daniel; Sahin, Hacer; Schmitz, Petra; Streetz, Konrad L.; Berg, Thomas; Gassler, Nikolaus; Weiskirchen, Ralf; Proudfoot, Amanda; Weber, Christian; Trautwein, Christian; Wasmuth, Hermann E.

    2010-01-01

    Activation of hepatic stellate cells in response to chronic inflammation represents a crucial step in the development of liver fibrosis. However, the molecules involved in the interaction between immune cells and stellate cells remain obscure. Herein, we identify the chemokine CCL5 (also known as RANTES), which is induced in murine and human liver after injury, as a central mediator of this interaction. First, we showed in patients with liver fibrosis that CCL5 haplotypes and intrahepatic CCL5 mRNA expression were associated with severe liver fibrosis. Consistent with this, we detected Ccl5 mRNA and CCL5 protein in 2 mouse models of liver fibrosis, induced by either injection of carbon tetrachloride (CCl4) or feeding on a methionine and choline–deficient (MCD) diet. In these models, Ccl5–/– mice exhibited decreased hepatic fibrosis, with reduced stellate cell activation and immune cell infiltration. Transplantation of Ccl5-deficient bone marrow into WT recipients attenuated liver fibrosis, identifying infiltrating hematopoietic cells as the main source of Ccl5. We then showed that treatment with the CCL5 receptor antagonist Met-CCL5 inhibited cultured stellate cell migration, proliferation, and chemokine and collagen secretion. Importantly, in vivo administration of Met-CCL5 greatly ameliorated liver fibrosis in mice and was able to accelerate fibrosis regression. Our results define a successful therapeutic approach to reduce experimental liver fibrosis by antagonizing Ccl5 receptors. PMID:20978355

  2. MicroRNA-214 Antagonism Protects against Renal Fibrosis

    PubMed Central

    Ramdas, Vasudev; Lu, Ruifang; Conway, Bryan R.; Grant, Jennifer S.; Dickinson, Brent; Aurora, Arin B.; McClure, John D.; Kipgen, David; Delles, Christian; van Rooij, Eva

    2014-01-01

    Renal tubulointerstitial fibrosis is the common end point of progressive renal disease. MicroRNA (miR)-214 and miR-21 are upregulated in models of renal injury, but the function of miR-214 in this setting and the effect of its manipulation remain unknown. We assessed the effect of inhibiting miR-214 in an animal model of renal fibrosis. In mice, genetic deletion of miR-214 significantly attenuated interstitial fibrosis induced by unilateral ureteral obstruction (UUO). Treatment of wild-type mice with an anti-miR directed against miR-214 (anti-miR-214) before UUO resulted in similar antifibrotic effects, and in vivo biodistribution studies demonstrated that anti–miR-214 accumulated at the highest levels in the kidney. Notably, in vivo inhibition of canonical TGF-β signaling did not alter the regulation of endogenous miR-214 or miR-21. Whereas miR-21 antagonism blocked Smad 2/3 activation, miR-214 antagonism did not, suggesting that miR-214 induces antifibrotic effects independent of Smad 2/3. Furthermore, TGF-β blockade combined with miR-214 deletion afforded additional renal protection. These phenotypic effects of miR-214 depletion were mediated through broad regulation of the transcriptional response to injury, as evidenced by microarray analysis. In human kidney tissue, miR-214 was detected in cells of the glomerulus and tubules as well as in infiltrating immune cells in diseased tissue. These studies demonstrate that miR-214 functions to promote fibrosis in renal injury independent of TGF-β signaling in vivo and that antagonism of miR-214 may represent a novel antifibrotic treatment in the kidney. PMID:24158985

  3. Antagonism of some aquatic hyphomycetes against plant pathogenic fungi.

    PubMed

    Sati, S C; Arya, P

    2010-01-01

    The antagonistic activity of five aquatic hyphomycetes, viz., Heliscus lugdunensis, Tetrachaetum elegans, Tetracladium breve, T. marchalianum, and T. nainitalense, against seven plant pathogenic fungi was studied using a dual culture technique. Inhibitory activity of tested aquatic hyphomycetes was determined by measuring the radial growth of plant pathogenic fungi on dual culture plates. Tetrachaetum elegans showed antagonistic activity against Colletotrichum falcatum, Fusarium oxysporum, Pyricularia oryzae, Sclerotium sclerotiorum, and Tilletia indica. Heliscus lugdunensis showed antagonism against only two plant pathogenic fungi, Rhizoctonia solani and Colletotrichum falcatum. Tetracladium breve, T. marchalianum, and T. nainitalense showed no response towards tested plant pathogenic fungi. PMID:20454756

  4. Adrenergic and serotonin receptors affect retinal superoxide generation in diabetic mice: relationship to capillary degeneration and permeability

    PubMed Central

    Du, Yunpeng; Cramer, Megan; Lee, Chieh Allen; Tang, Jie; Muthusamy, Arivalagan; Antonetti, David A.; Jin, Hui; Palczewski, Krzysztof; Kern, Timothy S.

    2015-01-01

    Reactive oxygen species play an important role in the pathogenesis of diabetic retinopathy. We studied the role of adrenergic and serotonin receptors in the generation of superoxide by retina and 661W retinal cells in high glucose and of the α1-adrenergic receptor (AR) on vascular lesions of the retinopathy in experimentally diabetic C57Bl/6J mice (and controls) after 2 and 8 months. Compared with 5 mM glucose, incubating cells or retinal explants in 30 mM glucose induced superoxide generation. This response was reduced or ablated by pharmacologic inhibition of the α1-AR (a Gq-coupled receptor) or Gs-coupled serotonin (5-HT2, 5-HT4, 5-HT6, and 5-HT7) receptors or by activation of the Gi-coupled α2-AR. In elevated glucose, the α1-AR produced superoxide via phospholipase C, inositol triphosphate-induced Ca2+ release, and NADPH oxidase, and pharmacologic inhibition of these reactions prevented the superoxide increase. Generation of retinal superoxide, expression of proinflammatory proteins, and degeneration of retinal capillaries in diabetes all were significantly inhibited with daily doxazosin or apocynin (inhibitors of α1-AR and NADPH oxidase, respectively), but increased vascular permeability was not significantly affected. Adrenergic receptors, and perhaps other GPCRs, represent novel targets for inhibiting the development of important features of diabetic retinopathy.—Du, Y., Cramer, M., Lee, C. A., Tang, J., Muthusamy, A., Antonetti, D. A., Jin, H., Palczewski, K., Kern, T. S. Adrenergic and serotonin receptors affect retinal superoxide generation in diabetic mice: relationship to capillary degeneration and permeability. PMID:25667222

  5. Mdm2 is a novel activator of ApoCIII promoter which is antagonized by p53 and SHP inhibition

    SciTech Connect

    Yang, Zhihong; Zhang, Yuxia; Wang, Li

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Mdm2 enhances HNF4{alpha} activation of the ApoCIII promoter via interaction with HNF4{alpha}. Black-Right-Pointing-Pointer p53 antagonizes the effect of Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer SHP strengthens p53 inhibition but abolishes Mdm2 activation of the ApoCIII promoter. Black-Right-Pointing-Pointer Mdm2 alters the enrichment of HNF4{alpha}, p53 and SHP to the ApoCIII promoter. -- Abstract: We examined the effect of Mdm2 on regulation of the ApoCIII promoter and its cross-talk with p53 and nuclear receptor SHP. Overexpression of Mdm2 markedly enhanced ApoCIII promoter activity by HNF4{alpha}. A direct association of Mdm2 protein with the HNF4{alpha} protein was observed by co-immunoprecipitation. Ectopic expression of p53 decreased HNF4{alpha} activation of the ApoCIII promoter and antagonized the effect of Mdm2. Co-expression of SHP further strengthened p53 inhibition and abolished Mdm2 activation of the ApoCIII promoter. Mdm2 inhibited p53-mediated enrichment of HNF4{alpha} to the ApoCIII promoter while simultaneously reducing p53 binding and increasing recruitment of SHP to the ApoCIII promoter. The results from this study implicate a potentially important function of Mdm2 in regulation of lipoprotein metabolism.

  6. BF0801, a novel adenine derivative, inhibits platelet activation via phosphodiesterase inhibition and P2Y12 antagonism.

    PubMed

    Zhang, Si; Hu, Liang; Du, Hongguang; Guo, Yan; Zhang, Yan; Niu, Haixia; Jin, Jianguo; Zhang, Jian; Liu, Junling; Zhang, Xiaohui; Kunapuli, Satya P; Ding, Zhongren

    2010-10-01

    Though antiplatelet drugs are proven beneficial to patients with coronary heart disease and stroke, more effective and safer antiplatelet drugs are still needed. In this study we report the antiplatelet effects and mechanism of BF0801, a novel adenine derivative. BF0801 dramatically inhibited platelet aggregation and ATP release induced by ADP, 2MeSADP, AYPGKF, SFLLRN or convulxin without affecting shape change in vitro . It also potentiated the inhibitory effects of adenosine-based P2Y12 antagonist AR-C69931MX or phosphodiesterase (PDE) inhibitor IBMX on platelet aggregation. The cAMP levels in both resting and forskolin-stimulated platelets were increased by BF0801 suggesting its PDE inhibitor activity, which is further confirmed by the concentration-dependent suppression of BF0801 on the native and recombinant PDE. Similar to AR-C69931MX, BF0801 drastically inhibited 2MeSADP- induced adenylyl cyclase inhibition in platelets indicating its P2Y12 antagonism activity, which is substantiated by the inhibition of BF0801 on the interaction between ADP and P2Y12 receptor expressed in CHO-K1 cells measured by atomic force microscopy. Moreover, we confirmed the antiplatelet effects of BF0801 using platelets from rats intravenously given BF0801. In summary, for the first time we developed a novel adenine derivative bearing dual activities of PDE inhibition and P2Y12 antagonism, which may have therapeutic advantage as a potential antithrombotic drug. PMID:20806121

  7. Interleukin-1 antagonism moderates the inflammatory state associated with Type 1 diabetes during clinical trials conducted at disease onset.

    PubMed

    Cabrera, Susanne M; Wang, Xujing; Chen, Yi-Guang; Jia, Shuang; Kaldunski, Mary L; Greenbaum, Carla J; Mandrup-Poulsen, Thomas; Hessner, Martin J

    2016-04-01

    It was hypothesized that IL-1 antagonism would preserve β-cell function in new onset Type 1 diabetes (T1D). However, the Anti-Interleukin-1 in Diabetes Action (AIDA) and TrialNet Canakinumab (TN-14) trials failed to show efficacy of IL-1 receptor antagonist (IL-1Ra) or canakinumab, as measured by stimulated C-peptide response. Additional measures are needed to define immune state changes associated with therapeutic responses. Here, we studied these trial participants with plasma-induced transcriptional analysis. In blinded analyses, 70.2% of AIDA and 68.9% of TN-14 participants were correctly called to their treatment arm. While the transcriptional signatures from the two trials were distinct, both therapies achieved varying immunomodulation consistent with IL-1 inhibition. On average, IL-1 antagonism resulted in modest normalization relative to healthy controls. At endpoint, signatures were quantified using a gene ontology-based inflammatory index, and an inverse relationship was observed between measured inflammation and stimulated C-peptide response in IL-1Ra- and canakinumab-treated patients. Cytokine neutralization studies showed that IL-1α and IL-1β additively contribute to the T1D inflammatory state. Finally, analyses of baseline signatures were indicative of later therapeutic response. Despite the absence of clinical efficacy by IL-1 antagonist therapy, transcriptional analysis detected immunomodulation and may yield new insight when applied to other clinical trials. PMID:26692253

  8. Interleukin-1 antagonism moderates the inflammatory state associated with Type 1 diabetes during clinical trials conducted at disease onset.

    PubMed

    Cabrera, Susanne M; Wang, Xujing; Chen, Yi-Guang; Jia, Shuang; Kaldunski, Mary L; Greenbaum, Carla J; Mandrup-Poulsen, Thomas; Hessner, Martin J

    2016-04-01

    It was hypothesized that IL-1 antagonism would preserve β-cell function in new onset Type 1 diabetes (T1D). However, the Anti-Interleukin-1 in Diabetes Action (AIDA) and TrialNet Canakinumab (TN-14) trials failed to show efficacy of IL-1 receptor antagonist (IL-1Ra) or canakinumab, as measured by stimulated C-peptide response. Additional measures are needed to define immune state changes associated with therapeutic responses. Here, we studied these trial participants with plasma-induced transcriptional analysis. In blinded analyses, 70.2% of AIDA and 68.9% of TN-14 participants were correctly called to their treatment arm. While the transcriptional signatures from the two trials were distinct, both therapies achieved varying immunomodulation consistent with IL-1 inhibition. On average, IL-1 antagonism resulted in modest normalization relative to healthy controls. At endpoint, signatures were quantified using a gene ontology-based inflammatory index, and an inverse relationship was observed between measured inflammation and stimulated C-peptide response in IL-1Ra- and canakinumab-treated patients. Cytokine neutralization studies showed that IL-1α and IL-1β additively contribute to the T1D inflammatory state. Finally, analyses of baseline signatures were indicative of later therapeutic response. Despite the absence of clinical efficacy by IL-1 antagonist therapy, transcriptional analysis detected immunomodulation and may yield new insight when applied to other clinical trials.

  9. NPY antagonism reduces adiposity and attenuates age-related imbalance of adipose tissue metabolism.

    PubMed

    Park, Seongjoon; Fujishita, Chika; Komatsu, Toshimitsu; Kim, Sang Eun; Chiba, Takuya; Mori, Ryoichi; Shimokawa, Isao

    2014-12-01

    An orexigenic hormone, neuropeptide Y (NPY), plays a role not only in the hypothalamic regulation of appetite, but also in the peripheral regulation of lipid metabolism. However, the intracellular mechanisms triggered by NPY to regulate lipid metabolism are poorly understood. Here we report that NPY deficiency reduces white adipose tissue (WAT) mass and ameliorates the age-related imbalance of adipose tissue metabolism in mice. Gene expression involved in adipogenesis/lipogenesis was found to decrease, whereas proteins involved in lipolysis increased in gonadal WAT (gWAT) of NPY-knockout mice. These changes were associated with an activated SIRT1- and PPARγ-mediated pathway. Moreover, the age-related decrease of de novo lipogenesis in gWAT and thermogenesis in inguinal WAT was inhibited by NPY deficiency. Further analysis using 3T3-L1 cells showed that NPY inhibited lipolysis through the Y1 receptor and enhanced lipogenesis following a reduction in cAMP response element-binding protein (CREB) and SIRT1 protein expression. Therefore, NPY appears to act as a key regulator of adipose tissue metabolism via the CREB-SIRT1 signaling pathway. Taken together, NPY deficiency reduces adiposity and ameliorates the age-related imbalance of adipose tissue metabolism, suggesting that antagonism of NPY may be a promising target for drug development to prevent age-related metabolic diseases.

  10. Antagonism of substance P and perception of breathlessness in patients with chronic obstructive pulmonary disease.

    PubMed

    Mahler, Donald A; Gifford, Alex H; Gilani, Aamir; Waterman, Laurie A; Hilton, Jennifer; Chang, Andrew S; Kupchak, Brian R; Kraemer, William J

    2014-06-01

    The objective of this study was to investigate whether substance P, an excitatory neuropeptide, modulates the perception of breathlessness by administering aprepitant, a selective antagonist that blocks neurokinin (NK)-1 receptor signaling. Individual targeted resistive load breathing (RLB) was used to provoke breathlessness. In Study 1, sixteen patients (age, 70±6 years) with chronic obstructive pulmonary disease (COPD) reported similar ratings of breathlessness during RLB between oral aprepitant (125mg) and placebo. After aprepitant, but not with placebo, there were significant increases in blood levels of substance P (+54±39%) and beta-endorphin (+27±17%). A similar design was used in Study 2 except that naloxone (10mg) was administered intravenously prior to RLB to block any effect of endogenous opioids. Nine patients with COPD reported comparable breathlessness ratings during RLB between aprepitant and placebo. Our results do not support a role for the substance P-NK-1 pathway in the perception of breathlessness in patients with COPD. With selective antagonism of NK-1 signaling, there was co-transmission of substance P and beta-endorphin neuropeptides. PMID:24582719

  11. Evidence of pomegranate methanolic extract in antagonizing the endogenous SERM, 27-hydroxycholesterol.

    PubMed

    Vini, Ravindran; Juberiya, Azeez M; Sreeja, Sreeharshan

    2016-02-01

    The direct relationship between obesity and breast cancer has been elucidated recently with the identification of a cholesterol derivative 27-hydroxycholesterol (27HC), an endogenous SERM that can act through estrogen receptor (ER)-mediated mechanisms. Our recent research shed light on the possible SERM-like property of methanol extract of pericarp of pomegranate (PME) by using human breast (MCF-7, MDA-MB-231), endometrial (HEC-1A), cervical (SiHa, HeLa), ovarian (SKOV3) cancer cell lines, normal breast fibroblasts (MCF-10A) and also by in vivo models (ovariectomized Swiss albino mice). Our findings demonstrated that PME binds to ER and downregulates the Estrogen response elements (ERE)-mediated transcription in breast cancer cells without being agonistic in the uterine endometrium and has cardioprotective effects comparable to that of 17-β-estradiol. This preliminary work indicates the ability of PME to antagonize the activity of 27HC. We hypothesize that PME can compete with 27HC for ERα and reduce 27HC-induced proliferation of MCF-7 cells. Relevant estrogen-regulated genes such as pS2, PR and ERα were checked to evaluate the ability of PME to abrogate 27HC-induced genes. This study is significant, being the first report describing that bioactive components of the methanolic extract of pericarp of PME, a proven SERM could plausibly compete for 27HC. PMID:26756990

  12. The role of spinal serotonin receptor and alpha adrenoceptor on the antiallodynic effects induced by intrathecal milnacipran in chronic constriction injury rats.

    PubMed

    Nakamura, Takehiro; Ikeda, Tetsuya; Takeda, Ryuichiro; Igawa, Kaori; Naono-Nakayama, Rumi; Sakoda, Sumio; Nishimori, Toshikazu; Ishida, Yasushi

    2014-09-01

    Milnacipran, a reuptake inhibitor of noradrenaline (NA) and serotonin (5-HT), elicits an antiallodynic effect in rats with neuropathic pain; however, the role of NA and 5-HT receptors in the induction of the antiallodynic effect of milnacipran remains unclear. Thus, we examined the effects of prazosin as an α1 adrenoceptor antagonist, yohimbine as an α2 adrenoceptor antagonist, metergoline as a 5-HT1, 5-HT2 and 5-HT7 receptor antagonist, cyanopindolol as a 5-HT1A/1B receptor antagonist, ketanserin as a 5-HT2 receptor antagonist, and ondansetoron as a 5-HT3 receptor antagonist on the antiallodynic effect of milnacipran in neuropathic rats with chronic constriction injury (CCI). The CCI rats expressed mechanical and thermal allodynia, which was attenuated by intrathecal injection of milnacipran. Yohimbine, but not prazosin, reversed the milnacipran-induced antiallodynic effect. The antiallodynic effect of milnacipran was also reversed by metergoline, ketanserin and ondansetron, while cyanopindolol reversed the antiallodynic effect on mechanical, but not thermal stimulation. Furthermore, c-Fos expression in lamina I/II of the spinal dorsal horn was enhanced by thermal stimulation and the enhanced expression of c-Fos was suppressed by milnacipran. This effect of milnacipran was reversed by yohimbine, metergoline, katanserin and ondansetron, but not prazosin. These results indicate that the effect of milnacipran on mechanical and thermal allodynia and c-Fos expression is elicited through the α2 adrenoceptor, but not α1 adrenoceptor, and 5-HT2 and 5-HT3 receptors; furthermore, the 5-HT1A/1B receptor is involved in mechanical allodynia, but not thermal allodynia. PMID:24876059

  13. Rationale and design of a randomized trial on the impact of aldosterone antagonism on cardiac structure and function in diabetic cardiomyopathy

    PubMed Central

    2013-01-01

    Development of a cardiomyopathy in diabetes mellitus is independent of traditional risk factors, with no clinical trials targeting specific therapeutic interventions. Myocardial fibrosis is one of the key mechanisms and aldosterone is a key mediator of myocardial fibrosis. We propose that aldosterone antagonism will improve cardiac function. We aim to evaluate the efficacy of selective aldosterone receptor antagonism with eplerenone added to optimal medical treatment in improving cardiac structure and function in diabetic cardiomyopathy. We will randomize 130 patients with type 2 diabetes mellitus, stable metabolic control and impaired left ventricular (LV) systolic or diastolic function, to either eplerenone (target dose 50mg) or matching placebo, in addition to optimal medical therapy for 12 months. The primary endpoints are changes in LV systolic and diastolic function, measured by echocardiographic 2-dimensional speckle tracking strain and strain rate and tissue Doppler imaging. The secondary endpoints include changes in echocardiographic markers and plasma biomarkers of collagen turnover; left atrial dimensions and function, incidence of atrial fibrillation and changes in exercise capacity and dyspnea score. The present study will assess whether specific aldosterone antagonism with eplerenone in addition to standard therapy will prevent progression or reverse cardiac dysfunction in diabetic cardiomyopathy using sensitive, robust and quantifiable echocardiographic measures that allow early detection of change. The study may offer a new direction in the management of this condition. Trial registration ACTRN12610001063000 PMID:24083804

  14. Antagonism of P2Y₁₂ reduces physiological thromboxane levels.

    PubMed

    Bhavaraju, Kamala; Georgakis, Alexander; Jin, Jianguo; Gartner, Theodore Kent; Tomiyama, Yoshiaki; Nurden, Alan; Nurden, Paquita; Kunapuli, Satya P

    2010-01-01

    Antiplatelet therapy for the management of patients with cardiovascular risks often includes a combination therapy of aspirin and clopidogrel, acting through inhibition of thromboxane generation and blockade of G(i)-coupled P2Y₁₂ receptor, respectively. We hypothesized that ADP acting through P2Y₁₂ regulates physiological thromboxane levels. The serum thromboxane levels in mice (n = 3) dosed with clopidogrel and prasugrel were decreased by 83.1 ± 5.3% and 94.26 ± 1.75% respectively compared to untreated mice. Pre-treatment of human blood (n = 3) ex vivo with active metabolites of clopidogrel or prasugrel led to a reduction in thromboxane levels to 16.3 ± 3.2% and 4.9 ± 0.8% respectively, compared to untreated human serum. We also evaluated serum thromboxane levels in P2Y receptor null mice (n = 4). Whereas serum thromboxane levels in P2Y₁ null mice were similar to those in wild type littermates, those in the P2Y₁₂ null mice were inhibited by 83.15 ± 3.8%. Finally, in a pilot study, serum thromboxane levels were reduced by 76.05 ± 8.41% in healthy human volunteers (n = 6) upon dosing with clopidogrel, compared to the levels before dosing. In conclusion, P2Y₁₂ antagonism alone can decrease physiological thromboxane levels. Thus, this study could pave way the for newer/modified treatment regimens for the management of patients with thrombotic complications who are allergic or non-responsive to aspirin. PMID:21067313

  15. Mitragynine/Corynantheidine Pseudoindoxyls As Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit β-Arrestin-2.

    PubMed

    Váradi, András; Marrone, Gina F; Palmer, Travis C; Narayan, Ankita; Szabó, Márton R; Le Rouzic, Valerie; Grinnell, Steven G; Subrath, Joan J; Warner, Evelyn; Kalra, Sanjay; Hunkele, Amanda; Pagirsky, Jeremy; Eans, Shainnel O; Medina, Jessica M; Xu, Jin; Pan, Ying-Xian; Borics, Attila; Pasternak, Gavril W; McLaughlin, Jay P; Majumdar, Susruta

    2016-09-22

    Natural products found in Mitragyna speciosa, commonly known as kratom, represent diverse scaffolds (indole, indolenine, and spiro pseudoindoxyl) with opioid activity, providing opportunities to better understand opioid pharmacology. Herein, we report the pharmacology and SAR studies both in vitro and in vivo of mitragynine pseudoindoxyl (3), an oxidative rearrangement product of the corynanthe alkaloid mitragynine. 3 and its corresponding corynantheidine analogs show promise as potent analgesics with a mechanism of action that includes mu opioid receptor agonism/delta opioid receptor antagonism. In vitro, 3 and its analogs were potent agonists in [(35)S]GTPγS assays at the mu opioid receptor but failed to recruit β-arrestin-2, which is associated with opioid side effects. Additionally, 3 developed analgesic tolerance more slowly than morphine, showed limited physical dependence, respiratory depression, constipation, and displayed no reward or aversion in CPP/CPA assays, suggesting that analogs might represent a promising new generation of novel pain relievers. PMID:27556704

  16. Mitragynine/Corynantheidine Pseudoindoxyls As Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit β-Arrestin-2.

    PubMed

    Váradi, András; Marrone, Gina F; Palmer, Travis C; Narayan, Ankita; Szabó, Márton R; Le Rouzic, Valerie; Grinnell, Steven G; Subrath, Joan J; Warner, Evelyn; Kalra, Sanjay; Hunkele, Amanda; Pagirsky, Jeremy; Eans, Shainnel O; Medina, Jessica M; Xu, Jin; Pan, Ying-Xian; Borics, Attila; Pasternak, Gavril W; McLaughlin, Jay P; Majumdar, Susruta

    2016-09-22

    Natural products found in Mitragyna speciosa, commonly known as kratom, represent diverse scaffolds (indole, indolenine, and spiro pseudoindoxyl) with opioid activity, providing opportunities to better understand opioid pharmacology. Herein, we report the pharmacology and SAR studies both in vitro and in vivo of mitragynine pseudoindoxyl (3), an oxidative rearrangement product of the corynanthe alkaloid mitragynine. 3 and its corresponding corynantheidine analogs show promise as potent analgesics with a mechanism of action that includes mu opioid receptor agonism/delta opioid receptor antagonism. In vitro, 3 and its analogs were potent agonists in [(35)S]GTPγS assays at the mu opioid receptor but failed to recruit β-arrestin-2, which is associated with opioid side effects. Additionally, 3 developed analgesic tolerance more slowly than morphine, showed limited physical dependence, respiratory depression, constipation, and displayed no reward or aversion in CPP/CPA assays, suggesting that analogs might represent a promising new generation of novel pain relievers.

  17. CRF antagonism within the ventral tegmental area but not the extended amygdala attenuates the anxiogenic effects of cocaine in rats.

    PubMed

    Ettenberg, Aaron; Cotten, Samuel W; Brito, Michael A; Klein, Adam K; Ohana, Tatum A; Margolin, Benjamin; Wei, Alex; Wenzel, Jennifer M

    2015-11-01

    In addition to its initial rewarding effects, cocaine has been shown to produce profound negative/anxiogenic actions. Recent work on the anxiogenic effects of cocaine has examined the role of corticotropin releasing factor (CRF), with particular attention paid to the CRF cell bodies resident to the extended amygdala (i.e., the central nucleus of the amygdala [CeA] and the bed nucleus of the stria terminalis [BNST]) and the interconnections within and projections outside the region (e.g., to the ventral tegmental area [VTA]). In the current study, localized CRF receptor antagonism was produced by intra-BNST, intra-CeA or intra-VTA application of the CRF antagonists, D-Phe CRF(12-41) or astressin-B. The effect of these treatments were examined in a runway model of i.v. cocaine self-administration that has been shown to be sensitive to both the initial rewarding and delayed anxiogenic effects of the drug in the same animal on the same trial. These dual actions of cocaine are reflected in the development of an approach-avoidance conflict ("retreat behaviors") about goal box entry that stems from the mixed associations that subjects form about the goal. CRF antagonism within the VTA, but not the CeA or BNST, significantly reduced the frequency of approach-avoidance retreat behaviors while leaving start latencies (an index of the positive incentive properties of cocaine) unaffected. These results suggest that the critical CRF receptors contributing to the anxiogenic state associated with acute cocaine administration may lie outside the extended amygdala, and likely involve CRF projections to the VTA.

  18. Bilberry extract, its major polyphenolic compounds, and the soy isoflavone genistein antagonize the cytostatic drug erlotinib in human epithelial cells.

    PubMed

    Aichinger, G; Pahlke, G; Nagel, L J; Berger, W; Marko, D

    2016-08-10

    Erlotinib (Tarceva®) is a chemotherapeutic drug approved for the treatment of pancreatic cancer and non-small cell lung cancer. Its primary mode of action is the inhibition of the epidermal growth factor receptor (EGFR), a receptor tyrosine kinase (RTK). Recently, RTK-inhibiting polyphenols have been reported to interact synergistically with erlotinib. Furthermore some anthocyanidins and anthocyanin-rich berry extracts have been reported to inhibit tyrosine kinases, including the EGFR, which raises the question of potential interactions with erlotinib. Polyphenol-rich preparations such as berry- or soy-based products are commercially available as food supplements. In the present study we tested a bilberry extract, its major anthocyanin and potential intestinal degradation products, as well as genistein, with respect to possible interactions with erlotinib. Cell growth inhibition was assessed using the sulforhodamine B assay, while interactions with EGFR phosphorylation were analyzed by SDS-PAGE/western blotting with subsequent immunodetection. Genistein, bilberry extract, delphinidin-3-O-glucoside and delphinidin were found to antagonize erlotinib whereas phloroglucinol aldehyde was found to enhance cytostatic effects of the drug on human epithelial A431 cells. Genistein also antagonized the EGFR inhibitory effects of erlotinib, whereas bilberry anthocyanins showed no significant interactions in this regard. Our data indicate that different polyphenols are potentially able to impair the cytostatic effect of erlotinib in vitro. Genistein interacts via the modulation of erlotinib-mediated EGFR inhibition whereas bilberry anthocyanins modulated the growth-inhibitory effect of erlotinib without affecting EGFR phosphorylation, thus indicating a different mechanism of interference. PMID:27485636

  19. CRF antagonism within the ventral tegmental area but not the extended amygdala attenuates the anxiogenic effects of cocaine in rats

    PubMed Central

    Ettenberg, Aaron; Cotten, Samuel W.; Brito, Michael A.; Klein, Adam K.; Ohana, Tatum A.; Margolin, Benjamin; Wei, Alex; Wenzel, Jennifer M.

    2015-01-01

    In addition to its initial rewarding effects, cocaine has been shown to produce profound negative/anxiogenic actions. Recent work on the anxiogenic effects of cocaine has examined the role of corticotropin releasing factor (CRF), with particular attention paid to the CRF cell bodies resident to the extended amygdala (i.e, the central nucleus of the amygdala [CeA] and the bed nucleus of the stria terminalis [BNST]) and the interconnections within and projections outside the region (e.g., to the ventral tegmental area [VTA]). In the current study, localized CRF receptor antagonism was produced by intra-BNST, intra-CeA or intra-VTA application of the CRF antagonists, D-Phe CRF (12-41) or astressin-B. The effect of these treatments were examined in a runway model of i.v. cocaine self-administration that has been shown to be sensitive to both the initial rewarding and delayed anxiogenic effects of the drug in the same animal on the same trial. These dual actions of cocaine are reflected in the development of an approach-avoidance conflict (“retreat behaviors”) about goal box entry that stems from the mixed associations that subjects form about the goal. CRF antagonism within the VTA, but not the CeA or BNST, significantly reduced the frequency of approach-avoidance retreat behaviors while leaving start latencies (an index of the positive incentive properties of cocaine) unaffected. These results suggest that the critical CRF receptors contributing to the anxiogenic state associated with acute cocaine administration may lie outside the extended amygdala, and likely involve CRF projections to the VTA. PMID:26441142

  20. Delta(9)-tetrahydrocannabinol prolongs the immobility time in the mouse forced swim test: involvement of cannabinoid CB(1) receptor and serotonergic system.

    PubMed

    Egashira, Nobuaki; Matsuda, Tomomi; Koushi, Emi; Higashihara, Fuminori; Mishima, Kenichi; Chidori, Shozo; Hasebe, Nobuyoshi; Iwasaki, Katsunori; Nishimura, Ryoji; Oishi, Ryozo; Fujiwara, Michihiro

    2008-07-28

    In the present study, we investigated the effect of Delta(9)-tetrahydrocannabinol (THC), the principal psychoactive component of marijuana, on immobility time during the forced swim test. THC (2 and 6 mg/kg, i.p.) significantly prolonged the immobility time. In addition, THC at the same doses did not significantly affect locomotor activity in the open-field test. The selective cannabinoid CB(1) receptor antagonist rimonabant (3 mg/kg, i.p.) significantly reduced the enhancement of immobility by THC (6 mg/kg). Similarly, the selective serotonin (5-HT) reuptake inhibitor (SSRI) citalopram (10 mg/kg, i.p.) and 5-HT(1A/7) receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT, 0.3 mg/kg, i.p.) significantly reduced this THC-induced effect. Moreover, the selective 5-HT(1A) receptor antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane carboxamide dihydrochloride (WAY100635, 1 mg/kg, i.p.) and the postsynaptic 5-HT(1A) receptor antagonist MM-77 (0.1 mg/kg, i.p.) reversed this reduction effect of 8-OH-DPAT (0.3 mg/kg). In contrast, the selective 5-HT(7) receptor antagonist (R)-3-[2-[2-(4-methylpiperidin-1-yl)ethyl]pyrrolidine-1-sulfonyl]phenol hydrochloride (SB269970) had no effect on this reduction effect of 8-OH-DPAT. WAY100635 (1 mg/kg) also reversed the reduction effect of citalopram (10 mg/kg). These findings suggest that the 5-HT(1A) receptors are involved in THC-induced enhancement of immobility.

  1. Cooperation, Trust, and Antagonism: How Public Goods Are Promoted.

    PubMed

    Parks, Craig D; Joireman, Jeff; Van Lange, Paul A M

    2013-12-01

    One of the most continually vexing problems in society is the variability with which citizens support endeavors that are designed to help a great number of people. In this article, we examine the twin roles of cooperative and antagonistic behavior in this variability. We find that each plays an important role, though their contributions are, understandably, at odds. It is this opposition that produces seeming unpredictability in citizen response to collective need. In fact, we suggest that careful consideration of the research allows one to often predict when efforts to provide a collectively beneficial good will succeed and when they will fail. To understand the dynamics of participation in response to collective need, it is necessary to distinguish between the primary types of need situations. A public good is an entity that relies in whole or in part on contributions to be provided. Examples of public goods are charities and public broadcasting. Public goods require that citizens experience a short-term loss (of their contribution) in order to realize a long-term gain (of the good). However, because everyone can use the good once it is provided, there is also an incentive to not contribute, let others give, and then take advantage of their efforts. This state of affairs introduces a conflict between doing what is best for oneself and what is best for the group. In a public goods situation, cooperation and antagonism impact how one resolves this conflict. The other major type of need situation is a common-pool resource problem. Here, a good is fully provided at the outset, and citizens may sample from it. The resource is usually, but not necessarily, partially replenished. Examples of replenished resources are drinking water and trees; examples of resources that are functionally not replenished are oil and minerals. Common-pool resources allow citizens to experience a short-term gain (by getting what they want in the early life of the resource) but also present

  2. Photoperiod regulates genes encoding melanocortin 3 and serotonin receptors and secretogranins in the dorsomedial posterior arcuate of the Siberian hamster.

    PubMed

    Nilaweera, K N; Archer, Z A; Campbell, G; Mayer, C-D; Balik, A; Ross, A W; Mercer, J G; Ebling, F J P; Morgan, P J; Barrett, P

    2009-02-01

    The mechanism(s) involved in the regulation of the seasonal-appropriate body weight of the Siberian hamster are currently unknown. We have identified photoperiodically regulated genes including VGF in a sub-region of the arcuate nucleus termed the dorsomedial posterior arcuate (dmpARC). Gene expression changes in this nucleus so far account for a significant number of those reported as photoperiodically regulated and are therefore likely to contribute to seasonal physiological responses of the hamsters. The present study aimed to identify additional genes expressed in the dmpARC regulated by photoperiod that could be involved in regulating the activity of this nucleus with respect to seasonal physiology of the Siberian hamster. Using laser capture microdissection coupled with a microarray analysis and a candidate gene approach, we have identified several photoperiodically regulated genes in the dmpARC that are known to have roles in secretory and intracellular signalling pathways. These include secretogranin (sg) III and SgVI (secretory pathway), melanocortin 3 receptor (MC3-R) and serotonin (5-HT) receptors 2A and 7 (signalling pathway), all of which increase in expression under a short photoperiod. The spatial relationship between receptor signalling and potential secretory pathways was investigated by dual in situ hybridisation, which revealed that 5-HT2A and 5-HT7 receptors are expressed in neurones expressing VGF mRNA and that a sub-population (approximately 40%) of these neurones express MC3-R. These gene expression changes in dmpARC neurones may reflect the functional requirement of these neurones for seasonal physiological responses of the hamster.

  3. Cooperation, Trust, and Antagonism: How Public Goods Are Promoted.

    PubMed

    Parks, Craig D; Joireman, Jeff; Van Lange, Paul A M

    2013-12-01

    One of the most continually vexing problems in society is the variability with which citizens support endeavors that are designed to help a great number of people. In this article, we examine the twin roles of cooperative and antagonistic behavior in this variability. We find that each plays an important role, though their contributions are, understandably, at odds. It is this opposition that produces seeming unpredictability in citizen response to collective need. In fact, we suggest that careful consideration of the research allows one to often predict when efforts to provide a collectively beneficial good will succeed and when they will fail. To understand the dynamics of participation in response to collective need, it is necessary to distinguish between the primary types of need situations. A public good is an entity that relies in whole or in part on contributions to be provided. Examples of public goods are charities and public broadcasting. Public goods require that citizens experience a short-term loss (of their contribution) in order to realize a long-term gain (of the good). However, because everyone can use the good once it is provided, there is also an incentive to not contribute, let others give, and then take advantage of their efforts. This state of affairs introduces a conflict between doing what is best for oneself and what is best for the group. In a public goods situation, cooperation and antagonism impact how one resolves this conflict. The other major type of need situation is a common-pool resource problem. Here, a good is fully provided at the outset, and citizens may sample from it. The resource is usually, but not necessarily, partially replenished. Examples of replenished resources are drinking water and trees; examples of resources that are functionally not replenished are oil and minerals. Common-pool resources allow citizens to experience a short-term gain (by getting what they want in the early life of the resource) but also present

  4. Antiphospholipid antibodies promote leukocyte-endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via β2GPI and apoER2.

    PubMed

    Ramesh, Sangeetha; Morrell, Craig N; Tarango, Cristina; Thomas, Gail D; Yuhanna, Ivan S; Girardi, Guillermina; Herz, Joachim; Urbanus, Rolf T; de Groot, Philip G; Thorpe, Philip E; Salmon, Jane E; Shaul, Philip W; Mineo, Chieko

    2011-01-01

    In antiphospholipid syndrome (APS), antiphospholipid antibodies (aPL) binding to β2 glycoprotein I (β2GPI) induce endothelial cell-leukocyte adhesion and thrombus formation via unknown mechanisms. Here we show that in mice both of these processes are caused by the inhibition of eNOS. In studies of cultured human, bovine, and mouse endothelial cells, the promotion of monocyte adhesion by aPL entailed decreased bioavailable NO, and aPL fully antagonized eNOS activation by diverse agonists. Similarly, NO-dependent, acetylcholine-induced increases in carotid vascular conductance were impaired in aPL-treated mice. The inhibition of eNOS was caused by antibody recognition of domain I of β2GPI and β2GPI dimerization, and it was due to attenuated eNOS S1179 phosphorylation mediated by protein phosphatase 2A (PP2A). Furthermore, LDL receptor family member antagonism with receptor-associated protein (RAP) prevented aPL inhibition of eNOS in cell culture, and ApoER2-/- mice were protected from aPL inhibition of eNOS in vivo. Moreover, both aPL-induced increases in leukocyte-endothelial cell adhesion and thrombus formation were absent in eNOS-/- and in ApoER2-/- mice. Thus, aPL-induced leukocyte-endothelial cell adhesion and thrombosis are caused by eNOS antagonism, which is due to impaired S1179 phosphorylation mediated by β2GPI, apoER2, and PP2A. Our results suggest that novel therapies for APS can now be developed targeting these mechanisms. PMID:21123944

  5. Enhanced antagonism of BST-2 by a neurovirulent SIV envelope

    PubMed Central

    Matsuda, Kenta; Chen, Chia-Yen; Whitted, Sonya; Chertova, Elena; Roser, David J.; Wu, Fan; Plishka, Ronald J.; Ourmanov, Ilnour; Buckler-White, Alicia; Lifson, Jeffrey D.; Strebel, Klaus; Hirsch, Vanessa M.

    2016-01-01

    Current antiretroviral therapy (ART) is not sufficient to completely suppress disease progression in the CNS, as indicated by the rising incidence of HIV-1–associated neurocognitive disorders (HAND) among infected individuals on ART. It is not clear why some HIV-1–infected patients develop HAND, despite effective repression of viral replication in the circulation. SIV-infected nonhuman primate models are widely used to dissect the mechanisms of viral pathogenesis in the CNS. Here, we identified 4 amino acid substitutions in the cytoplasmic tail of viral envelope glycoprotein gp41 of the neurovirulent virus SIVsm804E that enhance replication in macrophages and associate with enhanced antagonism of the host restriction factor BM stromal cell antigen 2 (BST-2). Rhesus macaques were inoculated with a variant of the parental virus SIVsmE543-3 that had been engineered to contain the 4 amino acid substitutions present in gp41 of SIVsm804E. Compared with WT virus–infected controls, animals infected with mutant virus exhibited higher viral load in cerebrospinal fluid. Together, these results are consistent with a potential role for BST-2 in the CNS microenvironment and suggest that BST-2 antagonists may serve as a possible target for countermeasures against HAND. PMID:27159392

  6. Transferred interbacterial antagonism genes augment eukaryotic innate immune function.

    PubMed

    Chou, Seemay; Daugherty, Matthew D; Peterson, S Brook; Biboy, Jacob; Yang, Youyun; Jutras, Brandon L; Fritz-Laylin, Lillian K; Ferrin, Michael A; Harding, Brittany N; Jacobs-Wagner, Christine; Yang, X Frank; Vollmer, Waldemar; Malik, Harmit S; Mougous, Joseph D

    2015-02-01

    Horizontal gene transfer allows organisms to rapidly acquire adaptive traits. Although documented instances of horizontal gene transfer from bacteria to eukaryotes remain rare, bacteria represent a rich source of new functions potentially available for co-option. One benefit that genes of bacterial origin could provide to eukaryotes is the capacity to produce antibacterials, which have evolved in prokaryotes as the result of eons of interbacterial competition. The type VI secretion amidase effector (Tae) proteins are potent bacteriocidal enzymes that degrade the cell wall when delivered into competing bacterial cells by the type VI secretion system. Here we show that tae genes have been transferred to eukaryotes on at least six occasions, and that the resulting domesticated amidase effector (dae) genes have been preserved for hundreds of millions of years through purifying selection. We show that the dae genes acquired eukaryotic secretion signals, are expressed within recipient organisms, and encode active antibacterial toxins that possess substrate specificity matching extant Tae proteins of the same lineage. Finally, we show that a dae gene in the deer tick Ixodes scapularis limits proliferation of Borrelia burgdorferi, the aetiologic agent of Lyme disease. Our work demonstrates that a family of horizontally acquired toxins honed to mediate interbacterial antagonism confers previously undescribed antibacterial capacity to eukaryotes. We speculate that the selective pressure imposed by competition between bacteria has produced a reservoir of genes encoding diverse antimicrobial functions that are tailored for co-option by eukaryotic innate immune systems. PMID:25470067

  7. Requirements within the Ebola Viral Glycoprotein for Tetherin Antagonism

    PubMed Central

    Vande Burgt, Nathan H.; Kaletsky, Rachel L.; Bates, Paul

    2015-01-01

    Tetherin is an interferon-induced, intrinsic cellular response factor that blocks release of numerous viruses, including Ebola virus, from infected cells. As with many viruses targeted by host factors, Ebola virus employs a tetherin antagonist, the viral glycoprotein (EboGP), to counteract restriction and promote virus release. Unlike other tetherin antagonists such as HIV-1 Vpu or KSHV K5, the features within EboGP needed to overcome tetherin are not well characterized. Here, we describe sequences within the EboGP ectodomain and membrane spanning domain (msd) as necessary to relieve tetherin restriction of viral particle budding. Fusing the EboGP msd to a normally secreted form of the glycoprotein effectively promotes Ebola virus particle release. Cellular protein or lipid anchors could not substitute for the EboGP msd. The requirement for the EboGP msd was not specific for filovirus budding, as similar results were seen with HIV particles. Furthermore trafficking of chimeric proteins to budding sites did not correlate with an ability to counter tetherin. Additionally, we find that a glycoprotein construct, which mimics the cathepsin-activated species by proteolytic removal of the EboGP glycan cap and mucin domains, is unable to counteract tetherin. Combining these results suggests an important role for the EboGP glycan cap and msd in tetherin antagonism. PMID:26516900

  8. Spironolactone Attenuates Experimental Uremic Cardiomyopathy by Antagonizing Marinobufagenin

    PubMed Central

    Tian, Jiang; Shidyak, Amjad; Periyasamy, Sankaridrug M.; Haller, Steven; Taleb, Mohamed; El-Okdi, Nasser; Elkareh, Jihad; Gupta, Shalini; Gohara, Sabry; Fedorova, Olga V.; Cooper, Christopher J.; Xie, Zijian; Malhotra, Deepak; Bagrov, Alexei Y.; Shapiro, Joseph I.

    2009-01-01

    Spironolactone has been noted to attenuate cardiac fibrosis. We have observed that the cardiotonic steroid marinobufagenin plays an important role in the diastolic dysfunction and cardiac fibrosis seen with experimental renal failure. We performed the following studies to determine whether and how spironolactone might ameliorate these changes. First, we studied rats subjected to partial nephrectomy or administration of exogenous marinobufagenin. We found that spironolactone (20 mg/kg per day) attenuated the diastolic dysfunction as assessed by ventricular pressure-volume loops and essentially eliminated cardiac fibrosis as assessed by trichrome staining and Western blot. Next, we examined the effects of spironolactone and its major metabolite, canrenone (both 100 nM), on marinobufagenin stimulation of rat cardiac fibroblasts. Both spironolactone and canrenone prevented the stimulation of collagen production by 1 nM marinobufagenin but not 100 nM marinobufagenin, as assessed by proline incorporation and procollagen 1 expression, as well as signaling through the sodium-potassium-ATPase, as evidenced by protein kinase C isoform δ translocation and extracellular signal regulated kinase 1/2 activation. Both spironolactone and canrenone also altered ouabain binding to cultured porcine cells in a manner consistent with competitive inhibition. Our data suggest that some of the antifibrotic effects of spironolactone may be attributed to antagonism of marinobufagenin signaling through the sodium-potassium-ATPase. PMID:19884563

  9. Spironolactone attenuates experimental uremic cardiomyopathy by antagonizing marinobufagenin.

    PubMed

    Tian, Jiang; Shidyak, Amjad; Periyasamy, Sankaridrug M; Haller, Steven; Taleb, Mohamed; El-Okdi, Nasser; Elkareh, Jihad; Gupta, Shalini; Gohara, Sabry; Fedorova, Olga V; Cooper, Christopher J; Xie, Zijian; Malhotra, Deepak; Bagrov, Alexei Y; Shapiro, Joseph I

    2009-12-01

    Spironolactone has been noted to attenuate cardiac fibrosis. We have observed that the cardiotonic steroid marinobufagenin plays an important role in the diastolic dysfunction and cardiac fibrosis seen with experimental renal failure. We performed the following studies to determine whether and how spironolactone might ameliorate these changes. First, we studied rats subjected to partial nephrectomy or administration of exogenous marinobufagenin. We found that spironolactone (20 mg/kg per day) attenuated the diastolic dysfunction as assessed by ventricular pressure-volume loops and essentially eliminated cardiac fibrosis as assessed by trichrome staining and Western blot. Next, we examined the effects of spironolactone and its major metabolite, canrenone (both 100 nM), on marinobufagenin stimulation of rat cardiac fibroblasts. Both spironolactone and canrenone prevented the stimulation of collagen production by 1 nM marinobufagenin but not 100 nM marinobufagenin, as assessed by proline incorporation and procollagen 1 expression, as well as signaling through the sodium-potassium-ATPase, as evidenced by protein kinase C isoform delta translocation and extracellular signal regulated kinase 1/2 activation. Both spironolactone and canrenone also altered ouabain binding to cultured porcine cells in a manner consistent with competitive inhibition. Our data suggest that some of the antifibrotic effects of spironolactone may be attributed to antagonism of marinobufagenin signaling through the sodium-potassium-ATPase. PMID:19884563

  10. Antagonizing Integrin β3 Increases Immunosuppression in Cancer.

    PubMed

    Su, Xinming; Esser, Alison K; Amend, Sarah R; Xiang, Jingyu; Xu, Yalin; Ross, Michael H; Fox, Gregory C; Kobayashi, Takayuki; Steri, Veronica; Roomp, Kirsten; Fontana, Francesca; Hurchla, Michelle A; Knolhoff, Brett L; Meyer, Melissa A; Morgan, Elizabeth A; Tomasson, Julia C; Novack, Joshua S; Zou, Wei; Faccio, Roberta; Novack, Deborah V; Robinson, Stephen D; Teitelbaum, Steven L; DeNardo, David G; Schneider, Jochen G; Weilbaecher, Katherine N

    2016-06-15

    Integrin β3 is critical for tumor invasion, neoangiogenesis, and inflammation, making it a promising cancer target. However, preclinical and clinical data of integrin β3 antagonists have demonstrated no benefit or worse outcomes. We hypothesized that integrin β3 could affect tumor immunity and evaluated tumors in mice with deletion of integrin β3 in macrophage lineage cells (β3KOM). β3KOM mice had increased melanoma and breast cancer growth with increased tumor-promoting M2 macrophages and decreased CD8(+) T cells. Integrin β3 antagonist, cilengitide, also enhanced tumor growth and increased M2 function. We uncovered a negative feedback loop in M2 myeloid cells, wherein integrin β3 signaling favored STAT1 activation, an M1-polarizing signal, and suppressed M2-polarizing STAT6 activation. Finally, disruption of CD8(+) T cells, macrophages, or macrophage integrin β3 signaling blocked the tumor-promoting effects of integrin β3 antagonism. These results suggest that effects of integrin β3 therapies on immune cells should be considered to improve outcomes. Cancer Res; 76(12); 3484-95. ©2016 AACR.

  11. Eliminating hepatitis B by antagonizing cellular inhibitors of apoptosis

    PubMed Central

    Ebert, Gregor; Allison, Cody; Preston, Simon; Cooney, James; Toe, Jesse G.; Stutz, Michael D.; Ojaimi, Samar; Baschuk, Nikola; Nachbur, Ueli; Torresi, Joseph; Silke, John; Begley, C. Glenn; Pellegrini, Marc

    2015-01-01

    We have shown that cellular inhibitor of apoptosis proteins (cIAPs) impair clearance of hepatitis B virus (HBV) infection by preventing TNF-mediated killing/death of infected cells. A key question, with profound therapeutic implications, is whether this finding can be translated to the development of drugs that promote elimination of infected cells. Drug inhibitors of cIAPs were developed as cancer therapeutics to promote TNF-mediated tumor killing. These drugs are also known as Smac mimetics, because they mimic the action of the endogenous protein Smac/Diablo that antagonizes cIAP function. Here, we show using an immunocompetent mouse model of chronic HBV infection that birinapant and other Smac mimetics are able to rapidly reduce serum HBV DNA and serum HBV surface antigen, and they promote the elimination of hepatocytes containing HBV core antigen. The efficacy of Smac mimetics in treating HBV infection is dependent on their chemistry, host CD4+ T cells, and TNF. Birinapant enhances the ability of entecavir, an antiviral nucleoside analog, to reduce viral DNA production in HBV-infected animals. These results indicate that birinapant and other Smac mimetics may have efficacy in treating HBV infection and perhaps, other intracellular infections. PMID:25902530

  12. Requirements within the Ebola Viral Glycoprotein for Tetherin Antagonism.

    PubMed

    Vande Burgt, Nathan H; Kaletsky, Rachel L; Bates, Paul

    2015-10-01

    Tetherin is an interferon-induced, intrinsic cellular response factor that blocks release of numerous viruses, including Ebola virus, from infected cells. As with many viruses targeted by host factors, Ebola virus employs a tetherin antagonist, the viral glycoprotein (EboGP), to counteract restriction and promote virus release. Unlike other tetherin antagonists such as HIV-1 Vpu or KSHV K5, the features within EboGP needed to overcome tetherin are not well characterized. Here, we describe sequences within the EboGP ectodomain and membrane spanning domain (msd) as necessary to relieve tetherin restriction of viral particle budding. Fusing the EboGP msd to a normally secreted form of the glycoprotein effectively promotes Ebola virus particle release. Cellular protein or lipid anchors could not substitute for the EboGP msd. The requirement for the EboGP msd was not specific for filovirus budding, as similar results were seen with HIV particles. Furthermore trafficking of chimeric proteins to budding sites did not correlate with an ability to counter tetherin. Additionally, we find that a glycoprotein construct, which mimics the cathepsin-activated species by proteolytic removal of the EboGP glycan cap and mucin domains, is unable to counteract tetherin. Combining these results suggests an important role for the EboGP glycan cap and msd in tetherin antagonism. PMID:26516900

  13. Multimodal antidepressant vortioxetine increases frontal cortical oscillations unlike escitalopram and duloxetine – a quantitative EEG study in rats

    PubMed Central

    Leiser, S C; Pehrson, A L; Robichaud, P J; Sanchez, C

    2014-01-01

    Background and Purpose EEG studies show that 5-HT is involved in regulation of sleep–wake state and modulates cortical oscillations. Vortioxetine is a 5-HT3, 5-HT7, and 5-HT1D receptor antagonist, 5-HT1B partial agonist, 5-HT1A agonist, and 5-HT transporter inhibitor. Preclinical (animal) and clinical studies with vortioxetine show positive impact on cognitive metrics involving cortical function. Here we assess vortioxetine's effect on cortical neuronal oscillations in actively awake rats. Experimental Approach Telemetric EEG recordings were obtained with the following treatments (mg·kg−1, s.c.): vehicle, vortioxetine (0.1, 1.0, 3.0, 10), 5-HT1A agonist flesinoxan (2.5), 5-HT3 antagonist ondansetron (0.30), 5-HT7 antagonist SB-269970-A (10), escitalopram (2.0), duloxetine (10) and vortioxetine plus flesinoxan. Target occupancies were determined by ex vivo autoradiography. Key Results Vortioxetine dose-dependently increased wakefulness. Flesinoxan, duloxetine, ondansetron, but not escitalopram or SB-269970-A increased wakefulness. Quantitative spectral analyses showed vortioxetine alone and with flesinoxan increased θ (4–8 Hz), α (8–12 Hz) and γ (30–50 Hz) power. Duloxetine had no effect on θ and γ, but decreased α power, while escitalopram produced no changes. Ondansetron and SB-269970 (≈31–35% occupancy) increased θ power. Flesinoxan (≈41% occupancy) increased θ and γ power. Conclusions and Implications Vortioxetine increased wakefulness and increased frontal cortical activity, most likely because of its 5-HT7 and 5-HT3 antagonism and 5-HT1A agonism. Vortioxetine differs from escitalopram and duloxetine by increasing cortical θ, α and γ oscillations. These preclinical findings suggest a role of vortioxetine in modulating cortical circuits known to be recruited during cognitive behaviours and warrant further investigation as to their clinical impact. PMID:24846338

  14. Receptor binding properties of amperozide.

    PubMed

    Svartengren, J; Simonsson, P

    1990-01-01

    The receptor pharmacology of amperozide was investigated with in vitro radioligand binding technique. Amperozide possessed a high affinity to the 5-HT2 receptors (Ki = 16.5 +/- 2.1 nM) and a moderate affinity to alpha 1-adrenergic receptors of rat cerebral cortical membranes (Ki = 172 +/- 14 nM). The affinity of amperozide for striatal and limbic dopamine D2 receptors was low and not significantly different (Ki +/- S.E.M. = 540 +/- 59 nM vs 403 +/- 42 nM; p less than 0.11, n = 4). The affinity for striatal and limbic 5-HT2 receptors was measured as well and found to be very close to the affinity to the cerebral cortical 5-HT2 receptor. The drug affinity for D2 and 5-HT2 receptors seems thus not to be influenced by the location of the receptor moiety. The affinity for several other rat brain receptors such as 5-HT1A, alpha 2-adrenergic, dopamine D1, muscarinic M1 and M2, opiate sigma and beta 2-adrenergic was low. The pseudo-Hill coefficient of the amperozide competition binding curve was consistently higher than one indicating antagonistic and complex interactions with the 5-HT2 receptor or with alpha 1-adrenergic and dopamine D2 receptors. The antagonistic properties of amperozide were investigated by its ability to antagonize the serotonin-induced formation of inositol-1-phosphate in human blood platelets. Amperozide inhibited this 5-HT2 receptor-mediated intracellular response with similar potency as ketanserin. These results suggest that amperozide is a selective 5-HT2 receptor antagonist.

  15. Balanced olfactory antagonism as a concept for understanding evolutionary shifts in moth sex pheromone blends.

    PubMed

    Baker, Thomas C

    2008-07-01

    In the sex pheromone communication systems of moths, both heterospecific sex pheromone components and individual conspecific pheromone components may act as behavioral antagonists when they are emitted at excessive rates and ratios. In such cases, the resulting blend composition does not comprise the sex pheromone of a given species. That is, unless these compounds are emitted at optimal rates and ratios with other compounds, they act as behavioral antagonists. Thus, the array of blend compositions that are attractive to males is centered around the characterized female-produced sex pheromone blend of a species. I suggest here that the resulting optimal attraction of males to a sex pheromone is the result of olfactory antagonistic balance, compared to the would-be olfactory antagonistic imbalance imparted by behaviorally active compounds when they are emitted individually or in other off-ratio blends. Such balanced olfactory antagonism might be produced in any number of ways in olfactory pathways, one of which would be mutual, gamma-aminobutyric-acid-related disinhibition by local interneurons in neighboring glomeruli that receive excitatory inputs from pheromone-stimulated olfactory receptor neurons. Such mutual disinhibition would facilitate greater excitatory transmission to higher centers by projection interneurons arborizing in those glomeruli. I propose that in studies of moth sex pheromone olfaction, we should no longer artificially compartmentalize the olfactory effects of heterospecific behavioral antagonists into a special category distinct from olfaction involving conspecific sex pheromone components. Indeed, continuing to impose such a delineation among these compounds may retard advances in understanding how moth olfactory systems can evolve to allow males to exhibit correct behavioral responses (that is, attraction) to novel sex-pheromone-related compositions emitted by females.

  16. A family of photoswitchable NMDA receptors

    PubMed Central

    Berlin, Shai; Szobota, Stephanie; Reiner, Andreas; Carroll, Elizabeth C; Kienzler, Michael A; Guyon, Alice; Xiao, Tong; Trauner, Dirk; Isacoff, Ehud Y

    2016-01-01

    NMDA receptors, which regulate synaptic strength and are implicated in learning and memory, consist of several subtypes with distinct subunit compositions and functional properties. To enable spatiotemporally defined, rapid and reproducible manipulation of function of specific subtypes, we engineered a set of photoswitchable GluN subunits ('LiGluNs'). Photo-agonism of GluN2A or GluN2B elicits an excitatory drive to hippocampal neurons that can be shaped in time to mimic synaptic activation. Photo-agonism of GluN2A at single dendritic spines evokes spine-specific calcium elevation and expansion, the morphological correlate of LTP. Photo-antagonism of GluN2A alone, or in combination with photo-antagonism of GluN1a, reversibly blocks excitatory synaptic currents, prevents the induction of long-term potentiation and prevents spine expansion. In addition, photo-antagonism in vivo disrupts synaptic pruning of developing retino-tectal projections in larval zebrafish. By providing precise and rapidly reversible optical control of NMDA receptor subtypes, LiGluNs should help unravel the contribution of specific NMDA receptors to synaptic transmission, integration and plasticity. DOI: http://dx.doi.org/10.7554/eLife.12040.001 PMID:26929991

  17. Mechanistic understanding of MeHg-Se antagonism in soil-rice systems: the key role of antagonism in soil

    NASA Astrophysics Data System (ADS)

    Wang, Yongjie; Dang, Fei; Evans, R. Douglas; Zhong, Huan; Zhao, Jiating; Zhou, Dongmei

    2016-01-01

    Methylmercury (MeHg) accumulation in rice has great implications for human health. Here, effects of selenium (Se) on MeHg availability to rice are explored by growing rice under soil or foliar fertilization with Se. Results indicate that soil amendment with Se could reduce MeHg levels in soil and grain (maximally 73%). In contrast, foliar fertilization with Se enhanced plant Se levels (3-12 folds) without affecting grain MeHg concentrations. This evidence, along with the distinct distribution of MeHg and Se within the plant, demonstrate for the first time that Se-induced reduction in soil MeHg levels (i.e., MeHg-Se antagonism in soil) rather than MeHg-Se interactions within the plant might be the key process triggering the decreased grain MeHg levels under Se amendment. The reduction in soil MeHg concentrations could be mainly attributed to the formation of Hg-Se complexes (detected by TEM-EDX and XANES) and thus reduced microbial MeHg production. Moreover, selenite and selenate were equally effective in reducing soil MeHg concentrations, possibly because of rapid changes in Se speciation. The dominant role of Se-induced reduction in soil MeHg levels, which has been largely underestimated previously, together with the possible mechanisms advance our mechanistic understanding about MeHg dynamics in soil-rice systems.

  18. Mechanistic understanding of MeHg-Se antagonism in soil-rice systems: the key role of antagonism in soil

    PubMed Central

    Wang, Yongjie; Dang, Fei; Evans, R. Douglas; Zhong, Huan; Zhao, Jiating; Zhou, Dongmei

    2016-01-01

    Methylmercury (MeHg) accumulation in rice has great implications for human health. Here, effects of selenium (Se) on MeHg availability to rice are explored by growing rice under soil or foliar fertilization with Se. Results indicate that soil amendment with Se could reduce MeHg levels in soil and grain (maximally 73%). In contrast, foliar fertilization with Se enhanced plant Se levels (3–12 folds) without affecting grain MeHg concentrations. This evidence, along with the distinct distribution of MeHg and Se within the plant, demonstrate for the first time that Se-induced reduction in soil MeHg levels (i.e., MeHg-Se antagonism in soil) rather than MeHg-Se interactions within the plant might be the key process triggering the decreased grain MeHg levels under Se amendment. The reduction in soil MeHg concentrations could be mainly attributed to the formation of Hg-Se complexes (detected by TEM-EDX and XANES) and thus reduced microbial MeHg production. Moreover, selenite and selenate were equally effective in reducing soil MeHg concentrations, possibly because of rapid changes in Se speciation. The dominant role of Se-induced reduction in soil MeHg levels, which has been largely underestimated previously, together with the possible mechanisms advance our mechanistic understanding about MeHg dynamics in soil-rice systems. PMID:26778218

  19. Cholinolytic antagonism to the disruptive effects of oral low doses of pyridostigmine on simple discrimination performance in rats.

    PubMed

    Liu, W F

    1991-12-01

    We have previously reported that acute oral administration of low doses (less than or equal to 12 mg/kg) of pyridostigmine bromide (PYR) to rats resulted in a dose-dependent decrement in reinforcement rate under two different multiple schedules of response-produced water presentation, which involved motivational dysfunction rather than motor impairment and alterations in visual perception. The purpose of the present investigation was to examine further if the anticipated operant behavioral deficits of PYR are mediated by central and/or peripheral cholinergic mechanisms. Lever-press responses of male Sprague-Dawley rats were maintained under a multiple fixed-ratio GO/differential-reinforcement-of-low-rate NO GO, brightness discrimination, schedule of water reinforcement. The effects of the muscarinic antagonists atropine (ATR) and methylatropine (MAT), both at doses of 0.25, 0.5 and 1.0 mg/kg (SC), against a single oral low dose of PYR (12 mg/kg)-induced behavioral disruption were compared. ATR partially antagonized the reinforcement loss of PYR with concomitant dose-related increases in nonreinforced responses, whereas MAT completely antagonized the reinforcement loss without affecting the frequency of nonreinforced responses. These results suggest that in rats, the debilitating effects of oral PYR on operant behavior are primarily due to the stimulation of peripheral muscarinic receptors via its anticholinesterase activity. The increments of nonreinforced responses observed after coadministration of PYR with ATR may reflect a central, excitatory action of ATR which could affect the discrimination performance. The present results have practical implications for the clinical utilization of PYR in combination with the peripherally active muscarinic antagonist in situations where optimal performance is required.

  20. A multivariate approach linking reported side effects of clinical antidepressant and antipsychotic trials to in vitro binding affinities

    PubMed Central

    Michl, Johanna; Scharinger, Christian; Zauner, Miriam; Kasper, Siegfried; Freissmuth, Michael; Sitte, Harald H.; Ecker, Gerhard F.; Pezawas, Lukas

    2015-01-01

    The vast majority of approved antidepressants and antipsychotics exhibit a complex pharmacology. The mechanistic understanding of how these psychotropic medications are related to adverse drug reactions (ADRs) is crucial for the development of novel drug candidates and patient adherence. This study aims to associate in vitro assessed binding affinity profiles (39 compounds, 24 molecular drug targets) and ADRs (n=22) reported in clinical trials of antidepressants and antipsychotics (n>59.000 patients) by the use of robust multivariate statistics. Orthogonal projection to latent structures (O-PLS) regression models with reasonable predictability were found for several frequent ADRs such as nausea, diarrhea, hypotension, dizziness, headache, insomnia, sedation, sleepiness, increased sweating, and weight gain. Results of the present study support many well-known pharmacological principles such as the association of hypotension and dizziness with α1-receptor or sedation with H1-receptor antagonism. Moreover, the analyses revealed novel or hardly investigated mechanisms for common ADRs including the potential involvement of 5-HT6-antagonism in weight gain, muscarinic receptor antagonism in dizziness, or 5-HT7-antagonism in sedation. To summarize, the presented study underlines the feasibility and value of a multivariate data mining approach in psychopharmacological development of antidepressants and antipsychotics. PMID:25044049

  1. The effects of histamine and leukotriene receptor antagonism on nasal mannitol challenge in allergic rhinitis

    PubMed Central

    Lee, Daniel K C; Haggart, Kay; Currie, Graeme P; Anderson, Sandra D; Lipworth, Brian J

    2003-01-01

    Aims It is unclear as to which mediators are involved in mediating the response to nasal mannitol challenge, a novel osmotic stimulus. Methods A double-blind, randomized, placebo-controlled, crossover design was employed. Nine patients with allergic rhinitis were randomized to receive a single-dose of desloratadine 5 mg, montelukast 10 mg or placebo, and underwent nasal mannitol challenges with nasal peak inspiratory flow recordings over 60 min. The change in peak nasal inspiratory flow was calculated as percentage change from baseline as the peak response and area under the time–response curve (AUC). Results Desloratadine and montelukast conferred a significant degree of protection compared to placebo for peak and AUC response, but there were no significant differences between the two drugs. For the peak response as percentage fall, the mean difference (95% CI) vs placebo was 27.7 (8.0, 47.4)% for desloratadine and 17.6 (1.9, 33.3)% for montelukast. Conclusions Our results suggest that histamine and cysteinyl-leukotrienes are involved in mediating the response to nasal mannitol in allergic rhinitis. PMID:12814463

  2. MANDIBULAR REPATTERNING RESULTS FROM IN UTERO ANTAGONISM OF ENDOTHELIN RECEPTORS IN MICE

    EPA Science Inventory

    BRANNEN, K.C.1,2, E.S. HUNTER1,2, M.B. ROSEN2, and J.M. ROGERS1,2. 1Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; 2Reproductive Toxicology Division, NHEERL, U.S. EPA, Research Triangle Park, North Carolina. Mandibular repatte...

  3. Aluminum-zinc antagonism in Bufo arenarum embryos

    SciTech Connect

    Herkovits, J.; Herkovits, F.D.; Perez-Coll

    1995-12-31

    As a result of their aquatic embryonic and larval development, many species of amphibians are potentially affected by adverse environmental conditions. In this study the possibility of reducing the lethal effect of aluminum (ALC13, Mallinckrodt) in Bufo arenarum embryos by means of simultaneous zinc (ZnSO4) treatment is reported. The aluminum hazard was evaluated in a 7 day renewal toxicity testing study conducted with batches of 10 individuals (by quadruplicate) in six concentrations of aluminum plus the control at 20 C. The pH of the experimental solutions were measured. The LC100 expressed as Al(3 +) mg/L at 24 and up till 168 hours of treatment were 0.9 (the pH of the solution was 6.2 while in control Holtfreter solution the pH was 6.8). Therefore, aluminum exert a lethal effect on amphibian embryos in concentrations which reduce only slightly the pH of the maintaining solution. The lethal effect of aluminum could be reduced 100% by means of simultaneous treatment with 2 mg Zn(2 +)/L. The results point out the high sensibility of the amphibian embryos to aluminum (LC100/24hs:0.9mg Al(3 +)/L) and therefore, episodic increases in dissolved aluminum, usually concomitant with surface water pH decreases, could produce very harmful effects during embryonic stages of amphibians. The noteworthy beneficial effect of zinc against the lethal effect of aluminum could be of practical value in reducing the harmful effects exerted by aluminum. The conspicuous Al-Zn antagonism points out the need of biological test systems for recording the integrated effects of substances released to the environment.

  4. Cardiovascular effects of N-methyl leukotriene C4, a nonmetabolizable leukotriene C4 analogue, and the antagonism of leukotriene-induced hypotension by Ro 23-3544, in the American bullfrog, Rana catesbeiana.

    PubMed

    Sun, J; Herman, C A

    1995-03-01

    Although some leukotriene antagonists have been reported to block leukotriene (LT) C4 responses in vivo, it is difficult to determine whether those antagonists block the effect of LTC4 directly or act via blocking the action of LTD4, as LTC4 is metabolized to LTD4 rapidly in vivo. In this study, the dose-response curves of N-methyl LTC4 (NMLTC4), the nonmetabolizable LTC4 analogue, and the peptidoleukotrienes (LTC4, LTD4, and LTE4) were obtained in the absence and presence of the leukotriene antagonist Ro 23-3544 in cannulated frogs. The more potent effect of NMLTC4 suggests that receptors that preferentially bind LTC4 exist in frog vascular smooth muscle and the previously reported LTC4 effect is a combination of LTC4 and its less potent metabolite LTD4. The NMLTC4- and LTC4-induced hypotensive effects were antagonized by Ro 23-3544. Ro 23-3544 also antagonized the effects induced by high doses of LTD4 and LTE4. Ro 23-3544 had no effect on duration of response and did not affect heart rate responses to LTC4 at low dose of the antagonist. The data suggest that receptors that preferentially bind LTC4 in bullfrog vascular smooth muscle regulate the hypotensive effect and that they can be antagonized by Ro 23-3544.

  5. Proline-Directed Androgen Receptor Phosphorylation

    PubMed Central

    Gao, Yanfei; Chen, Shaoyong

    2015-01-01

    The androgen receptor (AR) has been identified for decades and mediates essential steroid functions. Like most of biological molecules, AR functional activities are modulated by post-translational modifications. This review is focused on the reported activities and significance of AR phosphorylation, with particular emphasis on proline-directed serine/threonine phosphorylation that occurs predominantly on the receptor. The marked enrichment of AR phosphorylation in the most diverse N-terminal domain suggests that targeting AR phosphorylation can be synergistic to antagonizing the C-terminal domain by clinical antiandrogens. PMID:25866551

  6. Targeting a family B GPCR/RAMP receptor complex: CGRP receptor antagonists and migraine

    PubMed Central

    Moore, Eric L; Salvatore, Christopher A

    2012-01-01

    The clinical effectiveness of antagonizing the calcitonin gene-related peptide (CGRP) receptor for relief of migraine pain has been clearly demonstrated, but the road to the development of these small molecule antagonists has been daunting. The key hurdle that needed to be overcome was the CGRP receptor itself. The vast majority of the current antagonists recognize similar epitopes on the calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). RAMP1 is a relatively small, single, transmembrane-spanning protein and along with the G-protein-coupled receptor CLR comprise a functional CGRP receptor. The tri-helical extracellular domain of RAMP1 plays a key role in the high affinity binding of CGRP receptor antagonists and drives their species-selective pharmacology. Over the years, a significant amount of mutagenesis data has been generated to identify specific amino acids or regions within CLR and RAMP1 that are critical to antagonist binding and has directed attention to the CLR/RAMP1 extracellular domain (ECD) complex. Recently, the crystal structure of the CGRP receptor ECD has been elucidated and not only reinforces the early mutagenesis data, but provides critical insight into the molecular mechanism of CGRP receptor antagonism. This review will highlight the drug design hurdles that must be overcome to meet the desired potency, selectivity and pharmacokinetic profile while retaining drug-like properties. Although the development of these antagonists has proved challenging, blocking the CGRP receptor may one day represent a new way to manage migraine and offer hope to migraine sufferers. LINKED ARTICLES This article is part of a themed section on Secretin Family (Class B) G Protein-Coupled Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-1 PMID:21871019

  7. Context-dependent antagonism between Akt inhibitors and topoisomerase poisons.

    PubMed

    Gálvez-Peralta, Marina; Flatten, Karen S; Loegering, David A; Peterson, Kevin L; Schneider, Paula A; Erlichman, Charles; Kaufmann, Scott H

    2014-05-01

    Signaling through the phosphatidylinositol-3 kinase (PI3K)/Akt pathway, which is aberrantly activated in >50% of carcinomas, inhibits apoptosis and contributes to drug resistance. Accordingly, several Akt inhibitors are currently undergoing preclinical or early clinical testing. To examine the effect of Akt inhibition on the activity of multiple widely used classes of antineoplastic agents, human cancer cell lines were treated with the Akt inhibitor A-443654 [(2S)-1-(1H-indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan-2-amine; ATP-competitive] or MK-2206 (8-[4-(1-aminocyclobutyl)phenyl]-9-phenyl-2H-[1,2,4]triazolo[3,4-f][1,6]naphthyridin-3-one;dihydrochloride; allosteric inhibitor) or with small interfering RNA (siRNA) targeting phosphoinositide-dependent kinase 1 (PDK1) along with cisplatin, melphalan, camptothecin, or etoposide and assayed for colony formation. Surprisingly different results were observed when Akt inhibitors were combined with different drugs. Synergistic effects were observed in multiple cell lines independent of PI3K pathway status when A-443654 or MK-2206 was combined with the DNA cross-linking agents cisplatin or melphalan. In contrast, effects of the Akt inhibitors in combination with camptothecin or etoposide were more complicated. In HCT116 and DLD1 cells, which harbor activating PI3KCA mutations, A-443654 over a broad concentration range enhanced the effects of camptothecin or etoposide. In contrast, in cell lines lacking activating PI3KCA mutations, partial inhibition of Akt signaling synergized with camptothecin or etoposide, but higher A-443654 or MK-2206 concentrations (>80% inhibition of Akt signaling) or PDK1 siRNA antagonized the topoisomerase poisons by diminishing DNA synthesis, a process that contributes to effective DNA damage and killing by these agents. These results indicate that the effects of combining inhibitors of the PI3K/Akt pathway with certain classes of chemotherapeutic agents might be more

  8. Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability

    PubMed Central

    Cui, Yun-Liang; Zhang, Sheng; Tian, Zhao-Tao; Lin, Zhao-Fen; Chen, De-Chang

    2016-01-01

    -carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose, daucosterol linoleate, and rhein, at a low concentration, antagonized the MMP9-induced HUVEC monolayer permeability by promoting HUVEC proliferation and reducing extracellular VE-cadherin concentrations. PMID:27411464

  9. Manipulating grooming by decreasing ectoparasite load causes unpredicted changes in antagonism.

    PubMed

    Madden, Joah R; Clutton-Brock, Tim H

    2009-04-01

    It is thought that allogrooming is practised strategically in order to establish, maintain and reinforce social bonds between group members, exchanging one altruistic behaviour for a different form of reciprocated benefit at a later date. Correlational evidence supports this, but evidence of causality is lacking. We reduced parasite loads in eight meerkat Suricata suricatta groups, generating a substantial decrease in grooming. Contrary to the predictions, overall antagonism did not increase. However, within group networks, grooming increased towards individuals who increased their antagonism. This was restricted to antagonism focused on social position, rather than access to physical resources. The treatment also increased an alternative placatory behaviour: unprompted submissions. Following treatment, individuals performed higher rates of guarding and marking behaviours, suggesting that they were stressed. A reduction in opportunity to mediate stress through grooming may explain local rises in antagonism and corresponding increases in placatory behaviours. We suggest that meerkats use allogrooming (and submissions) as a facultative response to antagonism, rather than a pre-emptive strategy to avert it by establishing a network of associations, as has been suggested for primates.

  10. Manipulating grooming by decreasing ectoparasite load causes unpredicted changes in antagonism.

    PubMed

    Madden, Joah R; Clutton-Brock, Tim H

    2009-04-01

    It is thought that allogrooming is practised strategically in order to establish, maintain and reinforce social bonds between group members, exchanging one altruistic behaviour for a different form of reciprocated benefit at a later date. Correlational evidence supports this, but evidence of causality is lacking. We reduced parasite loads in eight meerkat Suricata suricatta groups, generating a substantial decrease in grooming. Contrary to the predictions, overall antagonism did not increase. However, within group networks, grooming increased towards individuals who increased their antagonism. This was restricted to antagonism focused on social position, rather than access to physical resources. The treatment also increased an alternative placatory behaviour: unprompted submissions. Following treatment, individuals performed higher rates of guarding and marking behaviours, suggesting that they were stressed. A reduction in opportunity to mediate stress through grooming may explain local rises in antagonism and corresponding increases in placatory behaviours. We suggest that meerkats use allogrooming (and submissions) as a facultative response to antagonism, rather than a pre-emptive strategy to avert it by establishing a network of associations, as has been suggested for primates. PMID:19129138

  11. Involvement of 5-HT3 receptors in the action of vortioxetine in rat brain: Focus on glutamatergic and GABAergic neurotransmission.

    PubMed

    Riga, Maurizio S; Sánchez, Connie; Celada, Pau; Artigas, Francesc

    2016-09-01

    The antidepressant vortioxetine is a 5-HT3-R, 5-HT7-R and 5-HT1D-R antagonist, 5-HT1B-R partial agonist, 5-HT1A-R agonist, and serotonin (5-HT) transporter (SERT) inhibitor. Vortioxetine occupies all targets at high therapeutic doses and only SERT and 5-HT3-R at low doses. Vortioxetine increases extracellular monoamine concentrations in rat forebrain more than selective serotonin reuptake inhibitors (SSRI) and shows pro-cognitive activity in preclinical models. Given its high affinity for 5-HT3-R (Ki = 3.7 nM), selectively expressed in GABA interneurons, we hypothesized that vortioxetine may disinhibit glutamatergic and monoaminergic neurotransmission following 5-HT3-R blockade. Here we assessed vortioxetine effect on pyramidal neuron activity and extracellular 5-HT concentration using in vivo extracellular recordings of rat medial prefrontal cortex (mPFC) pyramidal neurons and microdialysis in mPFC and ventral hippocampus (vHPC). Vortioxetine, but not escitalopram, increased pyramidal neuron discharge in mPFC. This effect was prevented by SR57227A (5-HT3-R agonist) and was mimicked by ondansetron (5-HT3-R antagonist) and by escitalopram/ondansetron combinations. In microdialysis experiments, ondansetron augmented the 5-HT-enhancing effect of escitalopram in mPFC and vHPC. Local ondansetron in vHPC augmented escitalopram effect, indicating the participation of intrinsic mechanisms. Since 5-HT neurons express GABAB receptors, we examined their putative involvement in controlling 5-HT release after 5-HT3-R blockade. Co-perfusion of baclofen (but not muscimol) reversed the increased 5-HT levels produced by vortioxetine and escitalopram/ondansetron combinations in vHPC. The present results suggest that vortioxetine increases glutamatergic and serotonergic neurotransmission in rat forebrain by blocking 5-HT3 receptors in GABA interneurons. PMID:27106166

  12. Bimodal antagonism of PKA signalling by ARHGAP36

    PubMed Central

    Eccles, Rebecca L.; Czajkowski, Maciej T.; Barth, Carolin; Müller, Paul Markus; McShane, Erik; Grunwald, Stephan; Beaudette, Patrick; Mecklenburg, Nora; Volkmer, Rudolf; Zühlke, Kerstin; Dittmar, Gunnar; Selbach, Matthias; Hammes, Annette; Daumke, Oliver; Klussmann, Enno; Urbé, Sylvie; Rocks, Oliver

    2016-01-01

    Protein kinase A is a key mediator of cAMP signalling downstream of G-protein-coupled receptors, a signalling pathway conserved in all eukaryotes. cAMP binding to the regulatory subunits (PKAR) relieves their inhibition of the catalytic subunits (PKAC). Here we report that ARHGAP36 combines two distinct inhibitory mechanisms to antagonise PKA signalling. First, it blocks PKAC activity via a pseudosubstrate motif, akin to the mechanism employed by the protein kinase inhibitor proteins. Second, it targets PKAC for rapid ubiquitin-mediated lysosomal degradation, a pathway usually reserved for transmembrane receptors. ARHGAP36 thus dampens the sensitivity of cells to cAMP. We show that PKA inhibition by ARHGAP36 promotes derepression of the Hedgehog signalling pathway, thereby providing a simple rationale for the upregulation of ARHGAP36 in medulloblastoma. Our work reveals a new layer of PKA regulation that may play an important role in development and disease. PMID:27713425

  13. Central ghrelin increases food foraging/hoarding that is blocked by GHSR antagonism and attenuates hypothalamic paraventricular nucleus neuronal activation.

    PubMed

    Thomas, Michael A; Ryu, Vitaly; Bartness, Timothy J

    2016-02-01

    The stomach-derived "hunger hormone" ghrelin increases in the circulation in direct response to time since the last meal, increasing preprandially and falling immediately following food consumption. We found previously that peripheral injection of ghrelin potently stimulates food foraging (FF), food hoarding (FH), and food intake (FI) in Siberian hamsters. It remains, however, largely unknown if central ghrelin stimulation is necessary/sufficient to increase these behaviors regardless of peripheral stimulation of the ghrelin receptor [growth hormone secretagogue receptor (GHSR)]. We injected three doses (0.01, 0.1, and 1.0 μg) of ghrelin into the third ventricle (3V) of Siberian hamsters and measured changes in FF, FH, and FI. To test the effects of 3V ghrelin receptor blockade, we used the potent GHSR antagonist JMV2959 to block these behaviors in response to food deprivation or a peripheral ghrelin challenge. Finally, we examined neuronal activation in the arcuate nucleus and paraventricular hypothalamic nucleus in response to peripheral ghrelin administration and 3V GHSR antagonism. Third ventricular ghrelin injection significantly increased FI through 24 h and FH through day 4. Pretreatment with 3V JMV2959 successfully blocked peripheral ghrelin-induced increases in FF, FH, and FI at all time points and food deprivation-induced increases in FF, FH, and FI up to 4 h. c-Fos immunoreactivity was significantly reduced in the paraventricular hypothalamic nucleus, but not in the arcuate nucleus, following pretreatment with intraperitoneal JMV2959 and ghrelin. Collectively, these data suggest that central GHSR activation is both necessary and sufficient to increase appetitive and consummatory behaviors in Siberian hamsters.

  14. Model of influenza A virus infection: dynamics of viral antagonism and innate immune response.

    PubMed

    Fribourg, M; Hartmann, B; Schmolke, M; Marjanovic, N; Albrecht, R A; García-Sastre, A; Sealfon, S C; Jayaprakash, C; Hayot, F

    2014-06-21

    Viral antagonism of host responses is an essential component of virus pathogenicity. The study of the interplay between immune response and viral antagonism is challenging due to the involvement of many processes acting at multiple time scales. Here we develop an ordinary differential equation model to investigate the early, experimentally measured, responses of human monocyte-derived dendritic cells to infection by two H1N1 influenza A viruses of different clinical outcomes: pandemic A/California/4/2009 and seasonal A/New Caledonia/20/1999. Our results reveal how the strength of virus antagonism, and the time scale over which it acts to thwart the innate immune response, differs significantly between the two viruses, as is made clear by their impact on the temporal behavior of a number of measured genes. The model thus sheds light on the mechanisms that underlie the variability of innate immune responses to different H1N1 viruses.

  15. The role of water in protoplasmic permeability and in antagonism.

    PubMed

    OSTERHOUT, W J

    1956-07-20

    The behavior of the cell depends to a large extent on the permeability of the outer non-aqueous surface layer of the protoplasm. This layer is immiscible with water but may be quite permeable to it. It seems possible that a reversible increase or decrease in permeability may be due to a corresponding increase or decrease in the water content of the non-aqueous surface layer. Irreversible increase in permeability need not be due primarily to increase in the water content of the surface layer but may be caused chiefly by changes in the protoplasm on which the surface layer rests. It may include desiccation, precipitation, and other alterations. An artificial cell is described in which the outer protoplasmic surface layer is represented by a layer of guaiacol on one side of which is a solution of KOH + KCl representing the external medium and on the other side is a solution of CO(2) representing the protoplasm. The K(+) unites with guaiacol and diffuses across to the artificial protoplasm where its concentration becomes higher than in the external solution. The guaiacol molecule thus acts as a carrier molecule which transports K(+) from the external medium across the protoplasmic surface. The outer part of the protoplasm may contain relatively few potassium ions so that the outwardly directed potential at the outer protoplasmic surface may be small but the inner part of the protoplasm may contain more potassium ions. This may happen when potassium enters in combination with carrier molecules which do not completely dissociate until they reach the vacuole. Injury and recovery from injury may be studied by measuring the movements of water into and out of the cell. Metabolism by producing CO(2) and other acids may lower the pH and cause local shrinkage of the protoplasm which may lead to protoplasmic motion. Antagonism between Na(+) and Ca(++) appears to be due to the fact that in solutions of NaCl the surface layer takes up an excessive amount of water and this may be

  16. Tianeptine: 5-HT uptake sites and 5-HT(1-7) receptors modulate memory formation in an autoshaping Pavlovian/instrumental task.

    PubMed

    Meneses, Alfredo

    2002-05-01

    Recent studies using invertebrate and mammal species have revealed that, endogenous serotonin (5-hydroxytryptamine, 5-HT) modulates cognitive processes, particularly learning and memory, though, at present, it is unclear the manner, where, and how long 5-HT systems are involved. Hence in this work, an attempt was made to study the effects of 5-HT endogenous on memory formation, using a 5-HT uptake facilitator (tianeptine) and, selective 5-HT(1-7) receptor antagonists to determine whether 5-HT uptake sites and which 5-HT receptors are involved, respectively. Results showed that post-training tianeptine injection enhanced memory consolidation in an autoshaping Pavlovian/instrumental learning task, which has been useful to detect changes on memory formation elicited by drugs or aging. On interaction experiments, ketanserin (5-HT(1D/2A/2C) antagonist) slightly enhanced tianeptine effects, while WAY 100635 (5-HT(1A) antagonist), SB-224289 (5-HT(1B) inverse agonist), SB-200646 (5-HT(2B/2C) antagonist), ondansetron (5-HT(3) antagonist), GR 127487 (5-HT(4) antagonist), Ro 04-6790 (5-HT(6) antagonist), DR 4004 (5-HT(7) antagonist), or fluoxetine (an inhibitor of 5-HT reuptake) blocked the facilitatory tianeptine effect. Notably, together tianeptine and Ro 04-6790 impaired learning consolidation. Moreover, 5-HT depletion completely reversed the tianeptine effect. Tianeptine also normalized an impaired memory elicited by scopolamine (an antimuscarinic) or dizocilpine (non-competitive glutamatergic antagonist), while partially reversed that induced by TFMPP (5-HT(1B/1D/2A-2C/7) agonist/antagonist). Finally, tianeptine-fluoxetine coadministration had no effect on learning consolidation; nevertheless, administration of an acetylcholinesterase inhibitor, phenserine, potentiated subeffective tianeptine or fluoxetine doses. Collectively, these data confirmed that endogenously 5-HT modulates, via uptake sites and 5-HT(1-7) receptors, memory consolidation, and are consistent with the

  17. The antagonism of muscle relaxants by ambenonium and methoxyambenonium in the cat.

    PubMed

    Blaber, L C

    1960-09-01

    The ability of ambenonium and a methoxy analogue to antagonize paralysis produced either by tubocurarine or by decamethonium has been studied in the tibialis anterior muscle of the cat under chloralose anaesthesia. In small doses, both oxamides facilitated neuromuscular transmission, but in larger doses they depressed the sensitivity of the motor end plates to depolarizing substances and it is considered that this latter action is sufficient to account for their anti-decamethonium action. Although both compounds possess anticholinesterase activity, there was found to be no correlation between their relative abilities to antagonize tubocurarine paralysis and their abilities to inhibit muscle cholinesterase in vitro.

  18. Exendin-4 antagonizes Aβ1-42-induced suppression of long-term potentiation by regulating intracellular calcium homeostasis in rat hippocampal neurons.

    PubMed

    Wang, Xiaohui; Wang, Li; Jiang, Ruirui; Yuan, Yuan; Yu, Qianqian; Li, Yameng

    2015-11-19

    An imbalance of intracellular calcium homeostasis induced by amyloid β-protein (Aβ) contributes to the pathogenesis of Alzheimer's disease (AD), such as deficits in learning and memory. Therefore, regulation of calcium homeostasis may represent a new strategy for treatment of AD. Growing evidence suggests that type 2 diabetes mellitus (T2DM) and AD are closely related in pathogenesis. Thus, drugs used in treatment of T2DM may modify the pathogenesis of AD. This study demonstrated that Exendin-4, which is a glucagon-like peptide-1 (GLP-1) analog used as a therapeutic drug for T2DM, significantly antagonized suppression of long-term potentiation (LTP) induced by Aβ1-42 in the rat hippocampal CA1 region in vivo. This neuroprotection may be mediated by regulation of calcium homeostasis. Pretreatment with Exendin-4 suppressed Aβ1-42-induced elevation in intracellular calcium concentration ([Ca(2+)]i) through L-type voltage-dependent calcium channels (L-VDCCs) and N-methyl-D-aspartate receptors (NMDARs). Furthermore, Exendin-4 antagonized the decrease in p-Ca(2+)/calmodulin-dependent protein kinase IIα (p-CaMKIIα) induced by Aβ1-42 in the rat hippocampal CA1 region. Thus, the neuroprotective effects of Exendin-4, which likely involve regulation of calcium homeostasis, provide theoretical support for using Exendin-4 to treat and prevent AD in the future.

  19. Exendin-4 antagonizes Aβ1-42-induced suppression of long-term potentiation by regulating intracellular calcium homeostasis in rat hippocampal neurons.

    PubMed

    Wang, Xiaohui; Wang, Li; Jiang, Ruirui; Yuan, Yuan; Yu, Qianqian; Li, Yameng

    2015-11-19

    An imbalance of intracellular calcium homeostasis induced by amyloid β-protein (Aβ) contributes to the pathogenesis of Alzheimer's disease (AD), such as deficits in learning and memory. Therefore, regulation of calcium homeostasis may represent a new strategy for treatment of AD. Growing evidence suggests that type 2 diabetes mellitus (T2DM) and AD are closely related in pathogenesis. Thus, drugs used in treatment of T2DM may modify the pathogenesis of AD. This study demonstrated that Exendin-4, which is a glucagon-like peptide-1 (GLP-1) analog used as a therapeutic drug for T2DM, significantly antagonized suppression of long-term potentiation (LTP) induced by Aβ1-42 in the rat hippocampal CA1 region in vivo. This neuroprotection may be mediated by regulation of calcium homeostasis. Pretreatment with Exendin-4 suppressed Aβ1-42-induced elevation in intracellular calcium concentration ([Ca(2+)]i) through L-type voltage-dependent calcium channels (L-VDCCs) and N-methyl-D-aspartate receptors (NMDARs). Furthermore, Exendin-4 antagonized the decrease in p-Ca(2+)/calmodulin-dependent protein kinase IIα (p-CaMKIIα) induced by Aβ1-42 in the rat hippocampal CA1 region. Thus, the neuroprotective effects of Exendin-4, which likely involve regulation of calcium homeostasis, provide theoretical support for using Exendin-4 to treat and prevent AD in the future. PMID:26390937

  20. Atranorin and lecanoric acid antagonize TCDD-induced xenobiotic response element-driven activity, but not xenobiotic response element-independent activity.

    PubMed

    Nakashima, Ken-Ichi; Tanabe, Hiroki; Fujii-Kuriyama, Yoshiaki; Hayashi, Hidetoshi; Inoue, Makoto

    2016-07-01

    Lichens are symbiotic organisms that consist of fungi and photosynthetic symbionts (algae and/or cyanobacteria). Previous studies of their constituents suggested lichens produce many kinds of aromatic secondary metabolites, such as depsides, quinones, and dibenzofurans. In this study, we evaluated the aryl hydrocarbon receptor (AhR) antagonistic activity of 17 lichen substances and demonstrated that atranorin (1) and lecanoric acid (2), isolated from Parmotrema tinctorum Hale, showed an inhibitory effect on luciferase activity increased by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), using an XRE-driven pX4TK-Luc reporter gene assay. In addition, CYP1A1 mRNA and protein levels increased by TCDD were also suppressed by 1 and 2. Conversely, neither 1 nor 2 antagonized the suppressive effect of TCDD on interleukin (IL)-1β-induced acute-phase response (APR) gene expression. Thus, we concluded that 1 and 2 were selective AhR modulators that antagonize XRE-dependent activity, but not XRE-independent activity. However, 1 has different characteristics to 2 in that 1 alone showed a suppressive effect on IL-1β-induced APR gene expression in a similar fashion to TCDD. PMID:26979434

  1. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor

    PubMed Central

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick

    2016-01-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)–forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally. PMID:26994072

  2. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    PubMed

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally.

  3. Kinematic and dynamic gait compensations in a rat model of lumbar radiculopathy and the effects of tumor necrosis factor-alpha antagonism

    PubMed Central

    2011-01-01

    Introduction Tumor necrosis factor-α (TNFα) has received significant attention as a mediator of lumbar radiculopathy, with interest in TNF antagonism to treat radiculopathy. Prior studies have demonstrated that TNF antagonists can attenuate heightened nociception resulting from lumbar radiculopathy in the preclinical model. Less is known about the potential impact of TNF antagonism on gait compensations, despite being of clinical relevance. In this study, we expand on previous descriptions of gait compensations resulting from lumbar radiculopathy in the rat and describe the ability of local TNF antagonism to prevent the development of gait compensations, altered weight bearing, and heightened nociception. Methods Eighteen male Sprague-Dawley rats were investigated for mechanical sensitivity, weight-bearing, and gait pre- and post-operatively. For surgery, tail nucleus pulposus (NP) tissue was collected and the right L5 dorsal root ganglion (DRG) was exposed (Day 0). In sham animals, NP tissue was discarded (n = 6); for experimental animals, autologous NP was placed on the DRG with or without 20 μg of soluble TNF receptor type II (sTNFRII, n = 6 per group). Spatiotemporal gait characteristics (open arena) and mechanical sensitivity (von Frey filaments) were assessed on post-operative Day 5; gait dynamics (force plate arena) and weight-bearing (incapacitance meter) were assessed on post-operative Day 6. Results High-speed gait characterization revealed animals with NP alone had a 5% decrease in stance time on their affected limbs on Day 5 (P ≤0.032). Ground reaction force analysis on Day 6 aligned with temporal changes observed on Day 5, with vertical impulse reduced in the affected limb of animals with NP alone (area under the vertical force-time curve, P <0.02). Concordant with gait, animals with NP alone also had some evidence of affected limb mechanical allodynia on Day 5 (P = 0.08) and reduced weight-bearing on the affected limb on Day 6 (P <0.05). Delivery

  4. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    PubMed Central

    Chee, Hyun Keun

    2013-01-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands. PMID:24465242

  5. The 5-HT1A receptor agonist flesinoxan shares discriminative stimulus properties with some 5-HT2 receptor antagonists.

    PubMed

    Herremans, A H; van der Heyden, J A; van Drimmelen, M; Olivier, B

    1999-10-01

    Ten homing pigeons were trained to discriminate the selective 5-HT1A receptor agonist flesinoxan (0.25 mg/kg p.o.) from its vehicle in a fixed-ratio (FR) 30 two-key operant drug discrimination procedure. The 5-HT2 receptor antagonist mianserin (ED50 = 4.8 mg/kg) fully substituted for flesinoxan, whereas ketanserin, ritanserin, mesulergine, and SB200646A substituted only partially, suggesting an interaction between 5-HT1A and 5-HT2 receptors. However, the 5-HT2 receptor agonists [DOI (0.6 mg/kg), TFMPP (10 mg/kg), mCPP (4 mg/kg)] were unable to antagonize the flesinoxan cue. The 5-HT1A receptor antagonists DU125530 (0.5-13 mg/kg) and WAY100,635 (0.1-1 mg/kg) partially antagonized the generalization of mianserin to flesinoxan. Taken together, these results are in accordance with the hypothesis that 5-HT1A receptor activation exerts an inhibitory effect on activation of 5-HT2 receptors. These results are in broad agreement with existing theories on 5-HT1A and 5-HT2 receptor interaction. Furthermore, it is argued that the discriminative stimulus properties of a drug may undergo qualitative changes with prolonged training.

  6. Determining Pharmacological Selectivity of the Kappa Opioid Receptor Antagonist LY2456302 Using Pupillometry as a Translational Biomarker in Rat and Human

    PubMed Central

    Witcher, Jennifer W.; Lowe, Stephen L.; Gonzales, Celedon R.; Weller, Mary Ann; Bell, Robert L.; Hart, John C.; Need, Anne B.; McKinzie, Jamie H.; Statnick, Michael A.; Suico, Jeffrey G.; McKinzie, David L.; Tauscher-Wisniewski, Sitra; Mitch, Charles H.; Stoltz, Randall R.; Wong, Conrad J.

    2015-01-01

    Background: Selective kappa opioid receptor antagonism is a promising experimental strategy for the treatment of depression. The kappa opioid receptor antagonist, LY2456302, exhibits ~30-fold higher affinity for kappa opioid receptors over mu opioid receptors, which is the next closest identified pharmacology. Methods: Here, we determined kappa opioid receptor pharmacological selectivity of LY2456302 by assessing mu opioid receptor antagonism using translational pupillometry in rats and humans. Results: In rats, morphine-induced mydriasis was completely blocked by the nonselective opioid receptor antagonist naloxone (3mg/kg, which produced 90% mu opioid receptor occupancy), while 100 and 300mg/kg LY2456302 (which produced 56% and 87% mu opioid receptor occupancy, respectively) only partially blocked morphine-induced mydriasis. In humans, fentanyl-induced miosis was completely blocked by 50mg naltrexone, and LY2456302 dose-dependently blocked miosis at 25 and 60mg (minimal-to-no blockade at 4–10mg). Conclusions: We demonstrate, for the first time, the use of translational pupillometry in the context of receptor occupancy to identify a clinical dose of LY2456302 achieving maximal kappa opioid receptor occupancy without evidence of significant mu receptor antagonism. PMID:25637376

  7. THE FUNGICIDE PROCHLORAZ: IN VITRO ANDROGEN ANTAGONISM, PARTURITION DELAYS, AND MALE REPRODUCTIVE MALFORMATIONS IN RATS

    EPA Science Inventory

    The Fungicide Prochloraz: In vitro Androgen Antagonism, Parturition Delays, and Male Reproductive Malformations in Rats.
    Nigel C. Noriega, Joseph Ostby, Christy Lambright, Vickie S. Wilson, and L. Earl Gray Jr.,
    noriega.nigel@epa.gov
    US EPA
    Prochloraz (PZ) is an imid...

  8. A `Clicked' Tetrameric Hydroxamic Acid Glycopeptidomimetic Antagonizes Sugar-Lectin Interactions On The Cellular Level

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Lin; Zang, Yi; Xie, Juan; Li, Jia; Chen, Guo-Rong; He, Xiao-Peng; Tian, He

    2014-07-01

    A tetrameric N-acetyl galactosaminyl (GalNAc) peptidomimetic was constructed by N-acetylation of repeating proline-based hydroxamic acid units, followed by a convergent `click chemistry' coupling. This novel glycopeptidomimetic was determined to effectively antagonize the interaction between a transmembrane hepatic lectin and GalNAc on the cellular level.

  9. Selective GPR55 antagonism reduces chemoresistance in cancer cells.

    PubMed

    Singh, Nagendra S; Bernier, Michel; Wainer, Irving W

    2016-09-01

    G protein-coupled receptor 55 (GPR55) possesses pro-oncogenic activity and its function can be competitively inhibited with (R,R')-4'-methoxy-1-naphthylfenoterol (MNF) through poorly defined signaling pathways. Here, the anti-tumorigenic effect of MNF was investigated in the human pancreatic cancer cell line, PANC-1, by focusing on the expression of known cancer biomarkers and the expression and function of multidrug resistance (MDR) exporters such as P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP). Incubation of PANC1 cells with MNF (1μM) for 24h significantly decreased EGF receptor, pyruvate kinase M2 (PKM2), and β-catenin protein levels and was accompanied by significant reduction in nuclear accumulation of HIF-1α and the phospho-active forms of PKM2 and β-catenin. Inhibition of GPR55 with either MNF or the GPR55 antagonist CID 16020046 lowered the amount of MDR proteins in total cellular extracts while diminishing the nuclear expression of Pgp and BCRP. There was significant nuclear accumulation of doxorubicin in PANC-1 cells treated with MNF and the pre-incubation with MNF increased the cytotoxicity of doxorubicin and gemcitabine in these cells. Potentiation of doxorubicin cytotoxicity by MNF was also observed in MDA-MB-231 breast cancer cells and U87MG glioblastoma cells, which express high levels of GPR55. The data suggest that inhibition of GPR55 activity produces antitumor effects via attenuation of the MEK/ERK and PI3K-AKT pathways leading to a reduction in the expression and function of MDR proteins. PMID:27423937

  10. BCL-xL/MCL-1 inhibition and RARγ antagonism work cooperatively in human HL60 leukemia cells.

    PubMed

    Perri, Mariarita; Yap, Jeremy L; Yu, Jianshi; Cione, Erika; Fletcher, Steven; Kane, Maureen A

    2014-10-01

    The acute promyelocytic leukemia (APL) subtype of acute myeloid leukemia (AML) is characterized by chromosomal translocations that result in fusion proteins, including the promyelocytic leukemia-retinoic acid receptor, alpha fusion protein (PML-RARα). All-trans retinoic acid (atRA) treatment is the standard drug treatment for APL yielding cure rates > 80% by activating transcription and proteasomal degradation of retinoic acid receptor, alpha (RARα). Whereas combination therapy with As2O3 has increased survival further, patients that experience relapse and are refractory to atRA and/or As2O3 is a clinically significant problem. BCL-2 family proteins regulate apoptosis and over-expression of anti-apoptotic B-cell leukemia/lymphoma 2 (BCL-2) family proteins has been associated with chemotherapeutic resistance in APL including impairment of the ability of atRA to induce growth arrest and differentiation. Here we investigated the novel BH3 domain mimetic, JY-1-106, which antagonizes the anti-apoptotic BCL-2 family members B-cell lymphoma-extra large (BCL-xL) and myeloid cell leukemia-1 (MCL-1) alone and in combination with retinoids including atRA, AM580 (RARα agonist), and SR11253 (RARγ antagonist). JY-1-106 reduced cell viability in HL-60 cells alone and in combination with retinoids. The combination of JY-1-106 and SR11253 had the greatest impact on cell viability by stimulating apoptosis. These studies indicate that dual BCL-xL/MCL-1 inhibitors and retinoids could work cooperatively in leukemia treatment.

  11. BCL-xL/MCL-1 inhibition and RARγ antagonism work cooperatively in human HL60 leukemia cells

    PubMed Central

    Perri, Mariarita; Yap, Jeremy L.; Cione, Erika; Fletcher, Steven; Kane, Maureen A.

    2015-01-01

    The acute promyelocytic leukemia (APL) subtype of acute myeloid leukemia (AML) is characterized by chromosomal translocations that result in fusion proteins, including the promyelocytic leukemia-retinoic acid receptor, alpha fusion protein (PML-RARα). All-trans retinoic acid (atRA) treatment is the standard drug treatment for APL yielding cure rates >80% by activating transcription and proteasomal degradation of retinoic acid receptor, alpha (RARα). Whereas combination therapy with As2O3 has increased survival further, patients that experience relapse and are refractory to atRA and/or As2O3 is a clinically significant problem. BCL-2 family proteins regulate apoptosis and over-expression of anti-apoptotic B-cell leukemia/lymphoma 2 (BCL-2) family proteins has been associated with chemotherapeutic resistance in APL including impairment of the ability of atRA to induce growth arrest and differentiation. Here we investigated the novel BH3 domain mimetic, JY-1-106, which antagonizes the anti-apoptotic BCL-2 family members B-cell lymphoma-extra large (BCL-xL) and myeloid cell leukemia-1 (MCL-1) alone and in combination with retinoids including atRA, AM580 (RARα agonist), and SR11253 (RARγ antagonist). JY-1-106 reduced cell viability in HL-60 cells alone and in combination with retinoids. The combination of JY-1-106 and SR11253 had the greatest impact on cell viability by stimulating apoptosis. These studies indicate that dual BCL-xL/MCL-1 inhibitors and retinoids could work cooperatively in leukemia treatment. PMID:25088254

  12. Accentuated antagonism by angiotensin II on guinea-pig cardiac L-type Ca-currents enhanced by beta-adrenergic stimulation.

    PubMed

    Ai, T; Horie, M; Obayashi, K; Sasayama, S

    1998-07-01

    To examine mechanism(s) underlying the accentuated antagonism by angiotensin II (A-II) on twitch tension, we recorded L-type Ca2+ currents (ICa,L) using conventional patch-clamp techniques in single, guinea-pig, ventricular myocytes. ICa,L was recorded by a step-pulse protocol after eliminating K+ conductances (internal Cs+ plus tetraethylammonium chloride and K+-free extracellular solution). A-II (100 nM) did not affect basal ICa,L, but inhibited ICa,L that had been enhanced (approximately 200% of control) by (ISO, isoproterenol 100 nM). The inhibitory action of A-II was concentration dependent (concentration eliciting 50% inhibition 88+/-9 pM, n=41) and the ISO-enhanced component of ICa,L was completely blocked by A-II at concentrations above 10 nM. CV-11974 (500 nM), an A-II type-1 receptor (AT1) antagonist, prevented the inhibitory action of A-II. Pre-incubation with pertussis toxin (PTX) abolished the inhibitory effect of A-II. A-II also inhibited the ICa, L enhanced by histamine (500 nM) and forskolin (1 microM), but failed to affect ICa,L enhanced by intracellular cyclic adenosine monophosphate (1 mM). The inhibitory action of A-II may therefore involve AT1 receptors/PTX-sensitive, guanine nucleotide-binding (G) proteins (Gi)/adenylate cyclase and partially explains the A-II-dependent accentuated antagonism of inotropy.

  13. Mechanism of the estrogen receptor interaction with 4-hydroxytamoxifen.

    PubMed

    Sasson, S; Notides, A C

    1988-04-01

    The binding mechanism of the estrogen receptor with 4-[3H]hydroxytamoxifen was investigated. The equilibrium binding analysis with 4-[3H]hydroxytamoxifen indicated a positive cooperative interaction: the Scatchard plot was convex and the Hill coefficient was 1.4-1.5. This binding appears similar to the positively cooperative interaction of the estrogen receptor with [3H]estradiol. However, a competitive binding assay with a saturating concentration of [3H] estradiol and variable concentrations of 4-hydroxytamoxifen produced nonparallel displacement curves indicating that the binding mechanism of the receptor with these two ligands is different. The competitive binding assay with [3H]estradiol and 4-hydroxytamoxifen at constant molar ratios demonstrated that the receptor's affinity for estradiol was reduced and the receptor preferentially bound 4-hydroxytamoxifen. These data suggest that 4-hydroxytamoxifen interacts with the receptor differently than estradiol; it antagonizes the binding of estradiol when these two ligands are simultaneously present.

  14. Mechanism of the estrogen receptor interaction with 4-hydroxytamoxifen

    SciTech Connect

    Sasson, S.; Notides, A.C.

    1988-04-01

    The binding mechanism of the estrogen receptor with 4-(/sup 3/H)hydroxytamoxifen was investigated. The equilibrium binding analysis with 4-(/sup 3/H)hydroxytamoxifen indicated a positive cooperative interaction: the Scatchard plot was convex and the Hill coefficient was 1.4-1.5. This binding appears similar to the positively cooperative interaction of the estrogen receptor with (/sup 3/H)estradiol. However, a competitive binding assay with a saturating concentration of (/sup 3/H) estradiol and variable concentrations of 4-hydroxytamoxifen produced nonparallel displacement curves indicating that the binding mechanism of the receptor with these two ligands is different. The competitive binding assay with (/sup 3/H)estradiol and 4-hydroxytamoxifen at constant molar ratios demonstrated that the receptor's affinity for estradiol was reduced and the receptor preferentially bound 4-hydroxytamoxifen. These data suggest that 4-hydroxytamoxifen interacts with the receptor differently than estradiol; it antagonizes the binding of estradiol when these two ligands are simultaneously present.

  15. Azogabazine; a photochromic antagonist of the GABAA receptor.

    PubMed

    Huckvale, Rosemary; Mortensen, Martin; Pryde, David; Smart, Trevor G; Baker, James R

    2016-07-12

    The design and synthesis of azogabazine is described, which represents a highly potent (IC50 = 23 nM) photoswitchable antagonist of the GABAA receptor. An azologization strategy is adopted, in which a benzyl phenyl ether in a high affinity gabazine analogue is replaced by an azobenzene, with resultant retention of antagonist potency. We show that cycling from blue to UV light, switching between trans and cis isomeric forms, leads to photochemically controlled antagonism of the GABA ion channel. PMID:27327397

  16. Molecular mechanisms of viral inhibitors of RIG-I-like receptors

    PubMed Central

    Leung, Daisy W.; Basler, Christopher F.; Amarasinghe, Gaya K.

    2012-01-01

    Activation of innate immune signaling pathways through cytosolic RIG-I like receptors (RLR) is a critical response that is antagonized by many viruses. A variety of RNA related pathogen associated molecular patterns have been identified and their role in RLR activation has been examined. Recent studies suggest that several virally encoded components that antagonize RLR signaling interact with and inhibit the interferon (IFN)-α/β activation pathway using both RNA-dependent and RNA-independent mechanisms. The structural basis for these RLR inhibitory mechanisms, as well as the multifunctional nature of viral RLR antagonists, is reviewed in the context of recent biochemical and structural studies. PMID:22325030

  17. High-affinity neuropeptide Y receptor antagonists.

    PubMed Central

    Daniels, A J; Matthews, J E; Slepetis, R J; Jansen, M; Viveros, O H; Tadepalli, A; Harrington, W; Heyer, D; Landavazo, A; Leban, J J

    1995-01-01

    Neuropeptide Y (NPY) is one of the most abundant peptide transmitters in the mammalian brain. In the periphery it is costored and coreleased with norepinephrine from sympathetic nerve terminals. However, the physiological functions of this peptide remain unclear because of the absence of specific high-affinity receptor antagonists. Three potent NPY receptor antagonists were synthesized and tested for their biological activity in in vitro, ex vivo, and in vivo functional assays. We describe here the effects of these antagonists inhibiting specific radiolabeled NPY binding at Y1 and Y2 receptors and antagonizing the effects of NPY in human erythroleukemia cell intracellular calcium mobilization perfusion pressure in the isolated rat kidney, and mean arterial blood pressure in anesthetized rats. PMID:7568074

  18. Foxg1 promotes olfactory neurogenesis by antagonizing Gdf11.

    PubMed

    Kawauchi, Shimako; Kim, Joon; Santos, Rosaysela; Wu, Hsiao-Huei; Lander, Arthur D; Calof, Anne L

    2009-05-01

    Foxg1, a winged-helix transcription factor, promotes the development of anterior neural structures; in mice lacking Foxg1, development of the cerebral hemispheres and olfactory epithelium (OE) is severely reduced. It has been suggested that Foxg1 acts by positively regulating the expression of growth factors, such as Fgf8, which support neurogenesis. However, Foxg1 also binds Smad transcriptional complexes, allowing it to negatively regulate the effects of TGFbeta family ligands. Here, we provide evidence that this latter effect explains much of the ability of Foxg1 to drive neurogenesis in the OE. We show that Foxg1 is expressed in developing OE at the same time as the gene encoding growth differentiation factor 11 (Gdf11), a TGFbeta family member that mediates negative-feedback control of OE neurogenesis. Mutations in Gdf11 rescue, to a considerable degree, the major defects in Foxg1(-/-) OE, including the early, severe loss of neural precursors and olfactory receptor neurons, and the subsequent collapse of both neurogenesis and nasal cavity formation. Rescue is gene-dosage dependent, with loss of even one allele of Gdf11 restoring substantial neurogenesis. Notably, we find no evidence for a disruption of Fgf8 expression in Foxg1(-/-) OE. However, we do observe both a failure of expression of follistatin (Fst), which encodes a secreted Gdf11 antagonist normally expressed in and around OE, and an increase in the expression of Gdf11 itself within the remaining OE in these mutants. Fst expression is rescued in Foxg1(-/-);Gdf11(-/-) and Foxg1(-/-);Gdf11(+/-) mice. These data suggest that the influence of Foxg1 on Gdf11-mediated negative feedback of neurogenesis may be both direct and indirect. In addition, defects in development of the cerebral hemispheres in Foxg1(-/-) mice are not rescued by mutations in Gdf11, nor is Gdf11 expressed at high levels within these structures. Thus, the pro-neurogenic effects of Foxg1 are likely to be mediated through different

  19. A receptor binding assay applied to monitoring the neurotoxicity of parathion to Peromyscus after oral exposure

    USGS Publications Warehouse

    Jett, D.A.; Eldefrawi, A.T.; Eldefrawi, M.E.

    1993-01-01

    Many naturally occurring toxins, as well as pesticides, metals, and other compounds that occur in our environment from anthropogenic activities, stimulate or antagonize neuro-receptors to produce acute and/or chronic toxicities. Recent advances in laboratory instrumentation and the availability of a variety of radiolabeled ligands and type-specific drugs for numerous receptors make it possible to easily screen large numbers of samples and detect changes in sensitivity and density of receptor types and subtypes. A receptor binding assay for examining the chronic dietary toxicity of parathion will be used as a model to describe the methodology.

  20. Endothelial Nitric Oxide Mediates Caffeine Antagonism of Alcohol-Induced Cerebral Artery Constriction.

    PubMed

    Chang, Jennifer; Fedinec, Alexander L; Kuntamallappanavar, Guruprasad; Leffler, Charles W; Bukiya, Anna N; Dopico, Alex M

    2016-01-01

    Despite preventive education, the combined consumption of alcohol and caffeine (particularly from "energy drinks") continues to rise. Physiologic perturbations by separate intake of ethanol and caffeine have been widely documented. However, the biologic actions of the alcohol-caffeine combination and their underlying subcellular mechanisms have been scarcely studied. Using intravital microscopy on a closed-cranial window and isolated, pressurized vessels, we investigated the in vivo and in vitro action of ethanol-caffeine mixtures on cerebral arteries from rats and mice, widely recognized models to address cerebrovascular pathophysiology and pharmacology. Caffeine at concentrations found in human circulation after ingestion of one to two cups of coffee (10 µM) antagonized the endothelium-independent constriction of cerebral arteries evoked by ethanol concentrations found in blood during moderate-heavy alcohol intoxication (40-70 mM). Caffeine antagonism against alcohol was similar whether evaluated in vivo or in vitro, suggesting independence of systemic factors and drug metabolism, but required a functional endothelium. Moreover, caffeine protection against alcohol increased nitric oxide (NO•) levels over those found in the presence of ethanol alone, disappeared upon blocking NO• synthase, and could not be detected in pressurized cerebral arteries from endothelial nitric-oxide synthase knockout (eNOS(-/-)) mice. Finally, incubation of de-endothelialized cerebral arteries with the NO• donor sodium nitroprusside (10 µM) fully restored the protective effect of caffeine. This study demonstrates for the first time that caffeine antagonizes ethanol-induced cerebral artery constriction and identifies endothelial NO• as the critical caffeine effector on smooth muscle targets. Conceivably, situations that perturb endothelial function and/or NO• availability will critically alter caffeine antagonism of alcohol-induced cerebrovascular constriction without

  1. Endothelial Nitric Oxide Mediates Caffeine Antagonism of Alcohol-Induced Cerebral Artery Constriction.

    PubMed

    Chang, Jennifer; Fedinec, Alexander L; Kuntamallappanavar, Guruprasad; Leffler, Charles W; Bukiya, Anna N; Dopico, Alex M

    2016-01-01

    Despite preventive education, the combined consumption of alcohol and caffeine (particularly from "energy drinks") continues to rise. Physiologic perturbations by separate intake of ethanol and caffeine have been widely documented. However, the biologic actions of the alcohol-caffeine combination and their underlying subcellular mechanisms have been scarcely studied. Using intravital microscopy on a closed-cranial window and isolated, pressurized vessels, we investigated the in vivo and in vitro action of ethanol-caffeine mixtures on cerebral arteries from rats and mice, widely recognized models to address cerebrovascular pathophysiology and pharmacology. Caffeine at concentrations found in human circulation after ingestion of one to two cups of coffee (10 µM) antagonized the endothelium-independent constriction of cerebral arteries evoked by ethanol concentrations found in blood during moderate-heavy alcohol intoxication (40-70 mM). Caffeine antagonism against alcohol was similar whether evaluated in vivo or in vitro, suggesting independence of systemic factors and drug metabolism, but required a functional endothelium. Moreover, caffeine protection against alcohol increased nitric oxide (NO•) levels over those found in the presence of ethanol alone, disappeared upon blocking NO• synthase, and could not be detected in pressurized cerebral arteries from endothelial nitric-oxide synthase knockout (eNOS(-/-)) mice. Finally, incubation of de-endothelialized cerebral arteries with the NO• donor sodium nitroprusside (10 µM) fully restored the protective effect of caffeine. This study demonstrates for the first time that caffeine antagonizes ethanol-induced cerebral artery constriction and identifies endothelial NO• as the critical caffeine effector on smooth muscle targets. Conceivably, situations that perturb endothelial function and/or NO• availability will critically alter caffeine antagonism of alcohol-induced cerebrovascular constriction without

  2. Antagonism of Sorafenib and Regorafenib actions by platelet factors in hepatocellular carcinoma cell lines

    PubMed Central

    2014-01-01

    Background Platelets are frequently altered in hepatocellular carcinoma (HCC) patients. Platelet lysates (hPL) can enhance HCC cell growth and decrease apoptosis. The aims were to evaluate whether hPL can modulate the actions of Sorafenib or Regorafenib, two clinical HCC multikinase antagonists. Methods Several human HCC cell lines were grown in the presence and absence of Sorafenib or Regorafenib, with or without hPL. Growth was measured by MTT assay, apoptosis was assessed by Annexin V and by western blot, and autophagy and MAPK growth signaling were also measured by western blot, and migration and invasion were measured by standard in vitro assays. Results Both Sorafenib and Regorafenib-mediated inhibition of cell growth, migration and invasion were all antagonized by hPL. Drug-mediated apoptosis and decrease in phospho-ERK levels were both blocked by hPL, which also increased anti-apoptotic phospho-STAT, Bax and Bcl-xL levels. Preliminary data, obtained with epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I), included in hPL, revealed that these factors were able to antagonized Sorafenib in a proliferation assay, in particular when used in combination. Conclusions Platelet factors can antagonize Sorafenib or Regorafenib-mediated growth inhibition and apoptosis in HCC cells. The modulation of platelet activity or numbers has the potential to enhance multikinase drug actions. PMID:24885890

  3. Antagonism of antifungal metabolites from Streptomyces griseus H7602 against Phytophthora capsici.

    PubMed

    Nguyen, Xuan Hoa; Naing, Kyaw Wai; Lee, Young Seong; Kim, Yong Hwan; Moon, Jae Hak; Kim, Kil Yong

    2015-01-01

    In this study, evidences for antagonism were established by production of antifungal metabolites from Streptomyces griseus H7602, which were active to inhibit mycelial growth of Phytophthora capsici in the in vitro assays. Mycelial growth and zoosporangia formation of P. capsici was strongly inhibited in the medium containing the cell free culture filtrate of S. griseus H7602. Antifungal metabolites from the cell free culture filtrate of S. griseus H7602 showed substantial antagonistic effects on P. capsici. In addition, a purified antifungal compound was separated from the antifungal metabolites of S. griseus H7602 and identified to be 1H-pyrrole-2-carboxylic acid (PCA) by spectra analyses. PCA showed strong antifungal activity and was evaluated for the first time for its antagonism against P. capsici under in vitro conditions. Minimum inhibitory concentration (MIC) value of PCA was low (4 µg ml(-1)), and the mycelial growth of P. capsici was almost inhibited at concentration of 64 µg ml(-1). This study suggests that the PCA may be useful as biofungicides against P. capsici, and the prominent antagonism of antifungal metabolites from S. griseus H7602 highlights it as a candidate for biocontrol of P. capsici.

  4. The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism.

    PubMed

    Parnell, Timothy J; Schlichter, Alisha; Wilson, Boris G; Cairns, Bradley R

    2015-01-01

    ISWI family chromatin remodelers typically organize nucleosome arrays, while SWI/SNF family remodelers (RSC) typically disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex or mutations in the 'basic patch' of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. RSC and ISW1a largely co-localize, and genomic nucleosome studies using rsc isw1 mutant combinations revealed opposing functions: promoters classified with a nucleosome-deficient region (NDR) gain nucleosome occupancy in rsc mutants, but this gain is attenuated in rsc isw1 double mutants. Furthermore, promoters lacking NDRs have the highest occupancy of both remodelers, consistent with regulation by nucleosome occupancy, and decreased transcription in rsc mutants. Taken together, we provide the first genetic and genomic evidence for RSC-ISW1a antagonism and reveal different mechanisms at two different promoter architectures.

  5. Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism

    PubMed Central

    2014-01-01

    Activation of nuclear factor-kappa B (NF- κB) as a mechanism of host defense against infection and stress is the central mediator of inflammatory responses. A normal (acute) inflammatory response is activated on urgent basis and is auto-regulated. Chronic inflammation that results due to failure in the regulatory mechanism, however, is largely considered as a critical determinant in the initiation and progression of various forms of cancer. Mechanistically, NF- κB favors this process by inducing various genes responsible for cell survival, proliferation, migration, invasion while at the same time antagonizing growth regulators including tumor suppressor p53. It has been shown by various independent investigations that a down regulation of NF- κB activity directly, or indirectly through the activation of the p53 pathway reduces tumor growth substantially. Therefore, there is a huge effort driven by many laboratories to understand the NF- κB signaling pathways to intervene the function of this crucial player in inflammation and tumorigenesis in order to find an effective inhibitor directly, or through the p53 tumor suppressor. We discuss here on the role of NF- κB in chronic inflammation and cancer, highlighting mutual antagonism between NF- κB and p53 pathways in the process. We also discuss prospective pharmacological modulators of these two pathways, including those that were already tested to affect this mutual antagonism. PMID:25152696

  6. E2A Antagonizes PU.1 Activity through Inhibition of DNA Binding.

    PubMed

    Rogers, Jason H; Owens, Kristin S; Kurkewich, Jeffrey; Klopfenstein, Nathan; Iyer, Sangeeta R; Simon, M Celeste; Dahl, Richard

    2016-01-01

    Antagonistic interactions between transcription factors contribute to cell fate decisions made by multipotent hematopoietic progenitor cells. Concentration of the transcription factor PU.1 affects myeloid/lymphoid development with high levels of PU.1 directing myeloid cell fate acquisition at the expense of B cell differentiation. High levels of PU.1 may be required for myelopoiesis in order to overcome inhibition of its activity by transcription factors that promote B cell development. The B cell transcription factors, E2A and EBF, are necessary for commitment of multipotential progenitors and lymphoid primed multipotential progenitors to lymphocytes. In this report we hypothesized that factors required for early B cell commitment would bind to PU.1 and antagonize its ability to induce myeloid differentiation. We investigated whether E2A and/or EBF associate with PU.1. We observed that the E2A component, E47, but not EBF, directly binds to PU.1. Additionally E47 represses PU.1-dependent transactivation of the MCSFR promoter through antagonizing PU.1's ability to bind to DNA. Exogenous E47 expression in hematopoietic cells inhibits myeloid differentiation. Our data suggest that E2A antagonism of PU.1 activity contributes to its ability to commit multipotential hematopoietic progenitors to the lymphoid lineages.

  7. Antagonism between local dispersal and self-incompatibility systems in a continuous plant population.<