Science.gov

Sample records for 5-ht7 receptor ligands

  1. Design and synthesis of dual 5-HT1A and 5-HT7 receptor ligands.

    PubMed

    Ofori, Edward; Zhu, Xue Y; Etukala, Jagan R; Peprah, Kwakye; Jordan, Kamanski R; Adkins, Adia A; Bricker, Barbara A; Kang, Hye J; Huang, Xi-Ping; Roth, Bryan L; Ablordeppey, Seth Y

    2016-08-15

    5-HT1A and 5-HT7 receptors have been at the center of discussions recently due in part to their major role in the etiology of major central nervous system diseases such as depression, sleep disorders, and schizophrenia. As part of our search to identify dual targeting ligands for these receptors, we have carried out a systematic modification of a selective 5HT7 receptor ligand culminating in the identification of several dual 5-HT1A and 5-HT7 receptor ligands. Compound 16, a butyrophenone derivative of tetrahydroisoquinoline (THIQ), was identified as the most potent agent with low nanomolar binding affinities to both receptors. Interestingly, compound 16 also displayed moderate affinity to other clinically relevant dopamine receptors. Thus, it is anticipated that compound 16 may serve as a lead for further exploitation in our quest to identify new ligands with the potential to treat diseases of CNS origin.

  2. High-affinity interactions of ligands at recombinant Guinea pig 5HT7 receptors

    NASA Astrophysics Data System (ADS)

    Wilcox, R. E.; Ragan, J. E.; Pearlman, R. S.; Brusniak, M. Y.-. K.; Eglen, R. M.; Bonhaus, D. W.; Tenner, T. E., Jr.; Miller, J. D.

    2001-10-01

    The serotonin 5HT7 receptor has been implicated in numerous physiological and pathological processes from circadian rhythms [1] to depression and schizophrenia. Clonal cell lines heterologously expressing recombinant receptors offer good models for understanding drug-receptor interactions and development of quantitative structure-activity relationships (QSAR). Comparative Molecular Field Analysis (CoMFA) is an important modern QSAR procedure that relates the steric and electrostatic fields of a set of aligned compounds to affinity. Here, we utilized CoMFA to predict affinity for a number of high-affinity ligands at the recombinant guinea pig 5HT7 receptor. Using R-lisuride as the template, a final CoMFA model was derived using procedures similar to those of our recent papers [2, 3, 4] The final cross-validated model accounted for >85% of the variance in the compound affinity data, while the final non-cross validated model accounted for >99% of the variance. Model evaluation was done using cross-validation methods with groups of 5 ligands. Twenty cross-validation runs yielded an average predictive r2(q2) of 0.779 ± 0.015 (range: 0.669-0.867). Furthermore, 3D-chemical database search queries derived from the model yielded hit lists of promising agents with high structural similarity to the template. Together, these results suggest a possible basis for high-affinity drug action at 5HT7 receptors.

  3. Novel highly potent serotonin 5-HT7 receptor ligands: structural modifications to improve pharmacokinetic properties.

    PubMed

    Lacivita, Enza; Di Pilato, Pantaleo; Stama, Madia Letizia; Colabufo, Nicola Antonio; Berardi, Francesco; Perrone, Roberto; De Filippis, Bianca; Laviola, Giovanni; Adriani, Walter; Niso, Mauro; Leopoldo, Marcello

    2013-11-15

    Here we report the synthesis, pharmacological and pharmacokinetic evaluation of a pilot set of compounds structurally related to the potent and selective 5-HT7 ligand LP-211. Among the studied compounds, N-pyridin-3-ylmethyl-3-[4-[2-(4-methoxyphenyl)phenyl]piperazin-1-yl]ethoxy]propanamide (4b) showed high affinity for 5-HT7 receptors (K(i)=23.8 nM), selectivity over 5-HT1A receptors (>50-fold), in vitro metabolic stability (82%) and weak interaction with P-glycoprotein (BA/AB=3.3). Compound 4b was injected ip in mice to preliminarily evaluate its distribution between blood and brain.

  4. Towards metabolically stable 5-HT7 receptor ligands: a study on 1-arylpiperazine derivatives and related isosters.

    PubMed

    Lacivita, Enza; De Giorgio, Paola; Patarnello, Daniela; Niso, Mauro; Colabufo, Nicola A; Berardi, Francesco; Perrone, Roberto; Satala, Grzegorz; Duszynska, Beata; Bojarski, Andrzej J; Leopoldo, Marcello

    2013-10-01

    Serotonin 7 (5-hydroxytryptamine7 or 5-HT7) is the most recently identified serotonin receptor. It is involved in mood disorders and is studied as a target for antidepressants. Here, we report on the structural manipulation of the 5-HT7 receptor ligand 4-[2-(3-methoxyphenyl)ethyl]-1-(2-methoxyphenyl)piperazine (1a) aimed at obtaining 5-HT7 receptor ligands endowed with good in vitro metabolic stability. A set of N-[3-methoxyphenyl)ethyl-substituted] 1-arylpiperazine, 4-arylpiperidine and 1-aryl-4-aminopiperidine was synthesized and tested in radioligand binding assays at human cloned 5-HT7 and 5-HT1A receptors. In vitro metabolic stability of the target compounds was assessed after incubation with rat hepatic S9 microsomal fraction. Among the new compounds, 1-(2-biphenyl)-4-[2-(3-methoxyphenyl)ethyl]piperazine (1d) and 4-(2-biphenyl)-1-[2-(3-methoxyphenyl)ethyl]piperidine (2d) showed a good compromise between affinity at 5-HT7 receptor (K i = 7.5 nM and 13 nM, respectively) and in vitro metabolic stability (26 and 65 % recovery of parent compound, respectively) but were poorly selective over 5-HT1A receptor.

  5. Serotonergic 5-HT7 receptors and cognition.

    PubMed

    Gasbarri, Antonella; Pompili, Assunta

    2014-01-01

    The abundant distribution of serotonin (5-HT) in different areas of the central nervous system can explain the involvement of this neurotransmitter in the regulation of several functions, such as sleep, pain, feeding, and sexual and emotional behaviors. Moreover, the serotonergic system is also involved in other more complex roles, such as cognition, including learning and memory processes. Recent studies led to the discovery of various types and subtypes of receptors differentially associated to cognitive mechanisms. 5-HT7 is the most recently discovered receptor for 5-HT; therefore, it is also one of the least well characterized. Studies exist hypothesizing the role of 5-HT7 on the modulation of learning and memory processes and other cognitive functions. Moreover, much attention has been devoted to the possible role of 5-HT7 receptors in psychiatric disorders. Therefore, the aim of this review is to clarify the behavioral role of the recently discovered 5-HT7 type receptor and highlight its involvement in the cognitive functions, with particular attention to the modulation of learning and memory processes, thus providing a basis to obtain new therapeutic agents and strategies for the treatment of cognitive disorders.

  6. Aminoalkyl Derivatives of 8-Alkoxypurine-2,6-diones: Multifunctional 5-HT1A /5-HT7 Receptor Ligands and PDE Inhibitors with Antidepressant Activity.

    PubMed

    Chłoń-Rzepa, Grażyna; Zagórska, Agnieszka; Żmudzki, Paweł; Bucki, Adam; Kołaczkowski, Marcin; Partyka, Anna; Wesołowska, Anna; Kazek, Grzegorz; Głuch-Lutwin, Monika; Siwek, Agata; Starowicz, Gabriela; Pawłowski, Maciej

    2016-12-01

    In the search for potential psychotropic agents, a new series of 3,7-dimethyl- and 1,3-dimethyl-8-alkoxypurine-2,6-dione derivatives of arylpiperazines, perhydroisoquinolines, or tetrahydroisoquinolines with flexible alkylene spacers (5-16 and 21-32) were synthesized and evaluated for 5-HT1A /5-HT7 receptor affinities as well as PDE4B1 and PDE10A inhibitory properties. The 1-(4-(4-(2-hydroxyphenyl)piperazin-1-yl)butyl)-3,7-dimethyl-8-propoxypurine-2,6-dione (16) and 7-(2-hydroxyphenyl)piperazinylalkyl-1,3-dimethyl-8-ethoxypurine-2,6-diones (31 and 32) as potent dual 5-HT1A /5-HT7 receptor ligands with antagonistic activity produced an antidepressant-like effect in the forced swim test in mice. This effect was similar to that produced by citalopram. All the tested compounds were stronger phosphodiesterase isoenzyme inhibitors than theophylline and theobromine. The most potent compounds, 15 and 16, were characterized by 51 and 52% inhibition, respectively, of PDE4B1 activity at a concentration of 10(-5)  M. Concerning the above findings, it may be assumed that the inhibition of PDE4B1 may impact on the signal strength and specificity resulting from antagonism toward the 5-HT1 and 5-HT7 receptors, especially in the case of compounds 15 and 16. This dual receptor and enzyme binding mode was analyzed and explained via molecular modeling studies.

  7. 5-HT7 receptor activation inhibits mechanical hypersensitivity secondary to capsaicin sensitization in mice.

    PubMed

    Brenchat, Alex; Romero, Luz; García, Mónica; Pujol, Marta; Burgueño, Javier; Torrens, Antoni; Hamon, Michel; Baeyens, José Manuel; Buschmann, Helmut; Zamanillo, Daniel; Vela, José Miguel

    2009-02-01

    This work aimed to evaluate the potential role of the 5-HT(7) receptor in nociception secondary to a sensitizing stimulus in mice. For this purpose, the effects of relevant ligands (5-HT(7) receptor agonists: AS-19, MSD-5a, E-55888; 5-HT(7) receptor antagonists: SB-258719, SB-269970; 5-HT(1A) receptor agonist: F-13640; 5-HT(1A) receptor antagonist: WAY-100635) were assessed on capsaicin-induced mechanical hypersensitivity, a pain behavior involving hypersensitivity of dorsal horn neurons (central sensitization). For the 5-HT(7) receptor agonists used, binding profile and intrinsic efficacy to stimulate cAMP formation in HEK-293F cells expressing the human 5-HT(7) receptor were also evaluated. AS-19 and E-55888 were selective for 5-HT(7) receptors. E-55888 was a full agonist whereas AS-19 and MSD-5a behaved as partial agonists, with maximal effects corresponding to 77% and 61%, respectively, of the cAMP response evoked by the full agonist 5-HT. Our in vivo results revealed that systemic administration of 5-HT(7) receptor agonists exerted a clear-cut dose-dependent antinociceptive effect that was prevented by 5-HT(7) receptor antagonists, but not by the 5-HT(1A) receptor antagonist. The order of efficacy (E-55888>AS-19>MSD-5a) matched their in vitro efficacy as 5-HT(7) receptor agonists. Contrary to agonists, a dose-dependent promotion of mechanical hypersensitivity was observed after administration of 5-HT(7) receptor antagonists, substantiating the involvement of the 5-HT(7) receptor in the control of capsaicin-induced mechanical hypersensitivity. These findings suggest that serotonin exerts an inhibitory role in the control of nociception through activation of 5-HT(7) receptors, and point to a new potential therapeutic use of 5-HT(7) receptor agonists in the field of analgesia.

  8. Inflammation and peripheral 5-HT7 receptors: the role of 5-HT7 receptors in carrageenan induced inflammation in rats.

    PubMed

    Albayrak, Abdulmecit; Halici, Zekai; Cadirci, Elif; Polat, Beyzagul; Karakus, Emre; Bayir, Yasin; Unal, Deniz; Atasoy, Mustafa; Dogrul, Ahmet

    2013-09-05

    The aim of this study was: (1) to investigate possible role for 5-HT7 receptors in carrageenan induced inflammatory paw oedema in rats; (2) to determine the presence of 5-HT7 receptors in rat paw tissue; (3) to observe the effects of 5-HT7 receptor agonist and antagonist administration on inflammation; and (4) to determine a unique mechanism for inflammatory processes via 5-HT7 receptors. Effects of 5-HT7 receptor agonist, antagonist and indomethacin were investigated in carrageenan induced paw oedema in rats. Blood and tissue samples were collected and evaluated biochemically for serum cytokine levels, tissue oxidant-antioxidant balance and histopathologically for inflammatory cell accumulation. We performed Real Time PCR analyses for tissue 5-HT7 receptor and COX mRNA expressions. The 5-HT7 receptor agonist AS-19 exerted significant anti-inflammatory effect both alone and in combination with indomethacin. Antagonist, SB269970, did not affect inflammation alone but decreased the effects of agonist when co-administered. 5-HT7 mRNA levels were higher in the carrageenan group than healthy control. Carrageenan+indometacin group decreased the mRNA expression of 5-HT7 when compared to carrageenan group. While agonist administration decreased 5-HT7 mRNA expression when compared to carrageenan group. Agonist decreased paw COX expression. Agonist also decreased serum cytokine levels and tissue oxidative stress. In conclusion, this study demonstrated for the first time that 5-HT7 receptors are expressed in rat paw tissue and that this expression responds to inflammatory stimuli. The 5-HT7 receptor may be a promising new therapeutic target for prevention of inflammation and inflammatory disorders and may also provide a new glimpse into inflammation pathophysiology.

  9. Aryl biphenyl-3-ylmethylpiperazines as 5-HT7 receptor antagonists.

    PubMed

    Kim, Jeeyeon; Kim, Youngjae; Tae, Jinsung; Yeom, Miyoung; Moon, Bongjin; Huang, Xi-Ping; Roth, Bryan L; Lee, Kangho; Rhim, Hyewhon; Choo, Il Han; Chong, Youhoon; Keum, Gyochang; Nam, Ghilsoo; Choo, Hyunah

    2013-11-01

    The 5-HT7 receptor (5-HT7 R) is a promising therapeutic target for the treatment of depression and neuropathic pain. The 5-HT7 R antagonist SB-269970 exhibited antidepressant-like activity, whereas systemic administration of the 5-HT7 R agonist AS-19 significantly inhibited mechanical hypersensitivity and thermal hyperalgesia. In our efforts to discover selective 5-HT7 R antagonists or agonists, aryl biphenyl-3-ylmethylpiperazines were designed, synthesized, and biologically evaluated against the 5-HT7 R. Among the synthesized compounds, 1-([2'-methoxy-(1,1'-biphenyl)-3-yl]methyl)-4-(2-methoxyphenyl)piperazine (28) was the best binder to the 5-HT7 R (pKi =7.83), and its antagonistic property was confirmed by functional assays. The selectivity profile of compound 28 was also recorded for the 5-HT7 R over other serotonin receptor subtypes, such as 5-HT1 R, 5-HT2 R, 5-HT3 R, and 5-HT6 R. In a molecular modeling study, the 2-methoxyphenyl moiety attached to the piperazine ring of compound 28 was proposed to be essential for the antagonistic function.

  10. Cloning, expression and pharmacology of a truncated splice variant of the human 5-HT7 receptor (h5-HT7(b))

    PubMed Central

    Jasper, J R; Kosaka, A; To, Z P; Chang, D J; Eglen, R M

    1997-01-01

    The rat 5-hydroxytryptamine (5-HT)7 receptor displays two splice variations, a long form, and a truncated splice isoform, arising from the introduction of a stop codon near the carboxy-terminus. The human 5-HT7 receptor gene contains at least two introns and encodes a 445 amino acid 5-HT receptor. A truncated splice variation in the human 5-HT7 receptor was isolated from a human placental cDNA library. In accordance with current NC-IUPHAR nomenclature guidelines, it is suggested that this receptor be denoted as the h5-HT7(b) receptor and the long form of the receptor as h5-HT7(a). The h5-HT7(b) receptor was stably expressed in HEK 293 cells and ligand affinities were determined by displacement of [3H]-5-carboxyamidotryptamine (5-CT; Kd=0.28±0.06 nM, Bmax=7.3±1.7 pmol mg−1 protein). The rank order of affinities (pKi) for a series of ligands was: 5-carboxamidotryptamine (5-CT, 9.65)>5-hydroxytryptamine (5-HT, 9.41)>methiothepin (8.87)>mesulergine (7.87)>8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT, 6.85)>ketanserin (6.44). The h5-HT7(b) receptor coupled positively to adenylyl cyclase in HEK 293 cells. This response was elicited by a number of agonists with the following order of potency (pEC50): 5-CT (8.7±0.11)>5-MeOT (5-methoxytryptamine; 8.1±0.20)>5-HT (7.5±0.13)>tryptamine (5.6±0.36)>8-OH-DPAT (5.3±0.28)>5-methoxytryptamine (5.0±0.06). This rank order was comparable to that observed in the radioligand binding studies. In a similar fashion to that described for the 5-HT7(a) receptor, PCR studies suggested that the 5-HT7(b) receptor mRNA is found in great abundance throughout the brain, in the small intestine and aorta. It is concluded that the h5-HT7 receptor, like the rat receptor, exists as splice variants exhibiting similar pharmacology, signal transduction and distribution. It is thus likely that there exists a complex physiological role for alternate splicing products of the 5-HT7 receptor gene. PMID:9298538

  11. An Algorithm to Identify Target-Selective Ligands – A Case Study of 5-HT7/5-HT1A Receptor Selectivity

    PubMed Central

    Kurczab, Rafał; Canale, Vittorio; Zajdel, Paweł; Bojarski, Andrzej J.

    2016-01-01

    A computational procedure to search for selective ligands for structurally related protein targets was developed and verified for serotonergic 5-HT7/5-HT1A receptor ligands. Starting from a set of compounds with annotated activity at both targets (grouped into four classes according to their activity: selective toward each target, not-selective and not-selective but active) and with an additional set of decoys (prepared using DUD methodology), the SVM (Support Vector Machines) models were constructed using a selective subset as positive examples and four remaining classes as negative training examples. Based on these four component models, the consensus classifier was then constructed using a data fusion approach. The combination of two approaches of data representation (molecular fingerprints vs. structural interaction fingerprints), different training set sizes and selection of the best SVM component models for consensus model generation, were evaluated to determine the optimal settings for the developed algorithm. The results showed that consensus models with molecular fingerprints, a larger training set and the selection of component models based on MCC maximization provided the best predictive performance. PMID:27271158

  12. The role of serotonin 5-HT7 receptor in regulating sleep and wakefulness.

    PubMed

    Monti, Jaime M; Jantos, Héctor

    2014-01-01

    Different approaches have been followed to characterize the role of 5-hydroxytryptamine (serotonin) receptor 7 (5-HT7) in the regulation of sleep-wake behavior: (1) 5-HT7 receptor knockout mice spend less time in rapid eye movement sleep than their wild-type counterparts, mainly during the light period. In contrast, there is no difference between the genotypes in time spent in wakefulness or slow-wave sleep. (2) Systemic administration of the selective 5-HT7 receptor agonist LP-211 significantly increased wakefulness (time spent awake) and reduced rapid eye movement sleep in the rat. Direct infusion of LP-211 into the dorsal raphe nucleus, locus coeruleus nucleus, basal forebrain (horizontal limb of the diagonal band of Broca), or laterodorsal tegmental nucleus also produced a decrease in rapid eye movement sleep. Additionally, microinjection of the 5-HT7 receptor agonist into the basal forebrain augmented the time animals remained awake. Local injection of the 5-HT7 receptor agonist LP-44 into the dorsal raphe nucleus also suppressed rapid eye movement sleep in the rat. (3) A similar reduction of rapid eye movement sleep has been described following intraperitoneal injection of the selective 5-HT7 receptor antagonists SB-269970 and SB-656104 in the rat and oral administration of the 5-HT7 receptor antagonist NJ-18038683 to rat and man. Local microinjection of SB-269970 into the dorsal raphe nucleus and basal forebrain also induced a decrease in rapid eye movement sleep in the rat. This tends to suggest that the on-off (activation/blockade), two-state ligand-receptor interaction model is not tenable for the 5-HT7 receptor.

  13. 5-HT7 receptor modulators: Amino groups attached to biphenyl scaffold determine functional activity.

    PubMed

    Kim, Youngjae; Park, Hyeri; Lee, Jeongeun; Tae, Jinsung; Kim, Hak Joong; Min, Sun-Joon; Rhim, Hyewhon; Choo, Hyunah

    2016-11-10

    5-HT7 receptor (5-HT7R) agonists and antagonists have been reported to be used for treatment of neuropathic pain and depression, respectively. In this study, as a novel scaffold for 5-HT7R modulators, we designed and prepared a series of biphenyl-3-yl-methanamine derivatives with various amino groups. Evaluation of functional activities as well as binding affinities of the title compounds identified partial agonists (EC50 = 0.55-3.2 μM) and full antagonists (IC50 = 5.57-23.1 μM) depending on the amino substituents. Molecular docking study suggested that the ligand-based switch in functional activity from agonist to antagonist results from the size of the amino groups and thereby different binding modes to 5-HT7R. In particular, interaction of the ligand with Arg367 of 5-HT7R is shown to differentiate agonists and antagonists. In the pharmacophore model study, two distinct pharmacophore models can tell whether a ligand is an agonist or an antagonist. Taken together, this study provides valuable information for designing novel compounds with selective agonistic or antagonistic properties against 5-HT7R.

  14. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  15. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation.

    PubMed

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G; Beazely, Michael A

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  16. The serotonin 5-HT7 receptors: two decades of research.

    PubMed

    Gellynck, Evelien; Heyninck, Karen; Andressen, Kjetil W; Haegeman, Guy; Levy, Finn Olav; Vanhoenacker, Peter; Van Craenenbroeck, Kathleen

    2013-10-01

    Like most neurotransmitters, serotonin possesses a simple structure. However, the pharmacological consequences are more complex and diverse. Serotonin is involved in numerous functions in the human body including the control of appetite, sleep, memory and learning, temperature regulation, mood, behavior, cardiovascular function, muscle contraction, endocrine regulation, and depression. Low levels of serotonin may be associated with several disorders, namely increase in aggressive and angry behaviors, clinical depression, Parkinson's disease, obsessive-compulsive disorder, eating disorders, migraine, irritable bowel syndrome, tinnitus, and bipolar disease. These effects are mediated via different serotonin (5-HT) receptors. In this review, we will focus on the last discovered member of this serotonin receptor family, the 5-HT7 receptor. This receptor belongs to the G protein-coupled receptor superfamily and was cloned two decades ago. Later, different splice variants were described but no major functional differences have been described so far. All 5-HT7 receptor variants are coupled to Gαs proteins and stimulate cAMP formation. Recently, several interacting proteins have been reported, which can influence receptor signaling and trafficking.

  17. Targeting the Serotonin 5-HT7 Receptor in the Search for Treatments for CNS Disorders: Rationale and Progress to Date.

    PubMed

    Nikiforuk, Agnieszka

    2015-04-01

    The 5-HT7 (5-hydroxytryptamine 7, serotonin 7) receptor is one of the most recently identified members of the serotonin receptor family. Pharmacological tools, including selective antagonists and, more recently, agonists, along with 5-HT7 receptor (5-HT7R) knock-out mice have revealed the involvement of this receptor in central nervous system processes. Its well-established role in controlling body temperature and regulating sleep and circadian rhythms has implicated this receptor in mood disorders. Thus, the 5-HT7R has gained much attention as a possible target for the treatment of depression. Although preclinical data support the antidepressant-like actions of 5-HT7R antagonists, their clinical efficacy has not been yet established. Other evidence has implicated the 5-HT7R in learning and memory. Preclinical findings suggest that blockade of this receptor may be beneficial against schizophrenia-like cognitive deficits. Other possible indications include nociception, epilepsy, migraine, autism spectrum disorders, and Rett Syndrome. However, the question is whether the beneficial effects may be achieved by activation or blockade of 5-HT7Rs. Hence, this review briefly summarises the recent findings on the role of 5-HT7Rs and their ligands in CNS disorders.

  18. Impaired effect of activation of rat hippocampal 5-HT7 receptors, induced by treatment with the 5-HT7 receptor antagonist SB 269970.

    PubMed

    Kusek, M; Sowa, J; Tokarski, K; Hess, G

    2015-04-01

    Effects of the 5-HT(7) receptor antagonist SB 269970, administered for 14 days (1.25 mg/kg), were studied in ex vivo slices of rat hippocampus. To activate the 5-HT(7) receptor, 5-carboxamidotryptamine (5-CT, 200 nM) was applied in the presence of WAY 100635 (2 μM), a 5-HT(1A) receptor antagonist. In contrast to control preparations, no 5-HT(7) receptor-mediated increase in excitability nor depolarization and an increase in the input resistance of CA1 and CA3 pyramidal neurons were present in slices prepared from rats treated with SB 269970. The treatment also abolished the stimulatory effect of 5-HT(7) receptor activation on spontaneous excitatory postsynaptic currents recorded from CA1 stratum radiatum/lacunosum-moleculare interneurons. These data demonstrate that repeated administration of SB 269970 impairs the reactivity of the CA1 hippocampal neuronal network to 5-HT(7) receptor activation.

  19. Pharmacological activation of 5-HT7 receptors reduces nerve injury-induced mechanical and thermal hypersensitivity.

    PubMed

    Brenchat, Alex; Nadal, Xavier; Romero, Luz; Ovalle, Sergio; Muro, Asunción; Sánchez-Arroyos, Ricard; Portillo-Salido, Enrique; Pujol, Marta; Montero, Ana; Codony, Xavier; Burgueño, Javier; Zamanillo, Daniel; Hamon, Michel; Maldonado, Rafael; Vela, José Miguel

    2010-06-01

    The involvement of the 5-HT(7) receptor in nociception and pain, particularly chronic pain (i.e., neuropathic pain), has been poorly investigated. In the present study, we examined whether the 5-HT(7) receptor participates in some modulatory control of nerve injury-evoked mechanical hypersensitivity and thermal (heat) hyperalgesia in mice. Activation of 5-HT(7) receptors by systemic administration of the selective 5-HT(7) receptor agonist AS-19 (1 and 10mg/kg) exerted a clear-cut reduction of mechanical and thermal hypersensitivities that were reversed by co-administering the selective 5-HT(7) receptor antagonist SB-258719. Interestingly, blocking of 5-HT(7) receptors with SB-258719 (2.5 and 10mg/kg) enhanced mechanical (but not thermal) hypersensitivity in nerve-injured mice and induced mechanical hypersensitivity in sham-operated mice. Effectiveness of the treatment with a 5-HT(7) receptor agonist was maintained after repeated systemic administration: no tolerance to the antiallodynic and antihyperalgesic effects was developed following treatment with the selective 5-HT(7) receptor agonist E-57431 (10mg/kg) twice daily for 11 days. The 5-HT(7) receptor co-localized with GABAergic cells in the dorsal horn of the spinal cord, suggesting that the activation of spinal inhibitory GABAergic interneurons could contribute to the analgesic effects of 5-HT(7) receptor agonists. In addition, a significant increase of 5-HT(7) receptors was found by immunohistochemistry in the ipsilateral dorsal horn of the spinal cord after nerve injury, suggesting a "pain"-triggered regulation of receptor expression. These results support the idea that the 5-HT(7) receptor subtype is involved in the control of pain and point to a new potential use of 5-HT(7) receptor agonists for the treatment of neuropathic pain.

  20. Cellular mechanisms of the 5-HT7 receptor-mediated signaling

    PubMed Central

    Guseva, Daria; Wirth, Alexander; Ponimaskin, Evgeni

    2014-01-01

    Serotonin (5-hydroxytryptamine or 5-HT) is an important neurotransmitter regulating a wide range of physiological and pathological functions via activation of heterogeneously expressed 5-HT receptors. The 5-HT7 receptor is one of the most recently described members of the 5-HT receptor family. Functionally, 5-HT7 receptor is associated with a number of physiological and pathological responses, including serotonin-induced phase shifting of the circadian rhythm, control of memory as well as locomotor and exploratory activity. A large body of evidence indicates involvement of the 5-HT7 receptor in anxiety and depression, and recent studies suggest that 5-HT7 receptor can be highly relevant for the treatment of major depressive disorders. The 5-HT7 receptor is coupled to the stimulatory Gs-protein, and receptor stimulation results in activation of adenylyl cyclase (AC) leading to a rise of cAMP concentration. In addition, this receptor is coupled to the G12-protein to activate small GTPases of the Rho family. This review focuses on molecular mechanisms responsible for the 5-HT7 receptor-mediated signaling. We provide detailed overview of signaling cascades controlled and regulated by the 5-HT7 receptor and discuss the functional impact of 5-HT7 receptor for the regulation of different cellular and subcellular processes. PMID:25324743

  1. Cellular mechanisms of the 5-HT7 receptor-mediated signaling.

    PubMed

    Guseva, Daria; Wirth, Alexander; Ponimaskin, Evgeni

    2014-01-01

    Serotonin (5-hydroxytryptamine or 5-HT) is an important neurotransmitter regulating a wide range of physiological and pathological functions via activation of heterogeneously expressed 5-HT receptors. The 5-HT7 receptor is one of the most recently described members of the 5-HT receptor family. Functionally, 5-HT7 receptor is associated with a number of physiological and pathological responses, including serotonin-induced phase shifting of the circadian rhythm, control of memory as well as locomotor and exploratory activity. A large body of evidence indicates involvement of the 5-HT7 receptor in anxiety and depression, and recent studies suggest that 5-HT7 receptor can be highly relevant for the treatment of major depressive disorders. The 5-HT7 receptor is coupled to the stimulatory Gs-protein, and receptor stimulation results in activation of adenylyl cyclase (AC) leading to a rise of cAMP concentration. In addition, this receptor is coupled to the G12-protein to activate small GTPases of the Rho family. This review focuses on molecular mechanisms responsible for the 5-HT7 receptor-mediated signaling. We provide detailed overview of signaling cascades controlled and regulated by the 5-HT7 receptor and discuss the functional impact of 5-HT7 receptor for the regulation of different cellular and subcellular processes.

  2. The 5-HT7 receptor is involved in allocentric spatial memory information processing.

    PubMed

    Sarkisyan, Gor; Hedlund, Peter B

    2009-08-24

    The hippocampus has been implicated in aspects of spatial memory. Its ability to generate new neurons has been suggested to play a role in memory formation. Hippocampal serotonin (5-HT) neurotransmission has also been proposed as a contributor to memory processing. Studies have shown that the 5-HT(7) receptor is present in the hippocampus in relatively high abundance. Thus the aim of the present study was to investigate the possible role of the 5-HT(7) receptor in spatial memory using 5-HT(7) receptor-deficient mice (5-HT(7)(-/-)). A hippocampus-associated spatial memory deficit in 5-HT(7)(-/-) mice was demonstrated using a novel location/novel object test. A similar reduction in novel location exploration was observed in C57BL/6J mice treated with the selective 5-HT(7) receptor antagonist SB-269970. These findings prompted an extended analysis using the Barnes maze demonstrating that 5-HT(7)(-/-) mice were less efficient in accommodating to changes in spatial arrangement than 5-HT(7)(+/+) mice. 5-HT(7)(-/-) mice had specific impairments in memory compilation required for resolving spatial tasks, which resulted in impaired allocentric spatial memory whereas egocentric spatial memory remained intact after the mice were forced to switch back from striatum-dependent egocentric to hippocampus-dependent allocentric memory. To further investigate the physiological bases underlining these behaviors we compared hippocampal neurogenesis in 5-HT(7)(+/+) and 5-HT(7)(-/-) mice employing BrdU immunohistochemistry. The rate of cell proliferation in the dentate gyrus was identical in the two genotypes. From the current data we conclude that the 5-HT(7)(-/-) mice performed by remembering a simple sequence of actions that resulted in successfully locating a hidden target in a static environment.

  3. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor β receptor expression.

    PubMed

    Vasefi, Maryam S; Kruk, Jeff S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2012-03-09

    Several antipsychotics have a high affinity for 5-HT7 receptors yet despite intense interest in the 5-HT7 receptor as a potential drug target to treat psychosis, the function and signaling properties of 5-HT7 receptors in neurons remain largely uncharacterized. In primary mouse hippocampal and cortical neurons, as well as in the SH-SY5Y cell line, incubation with 5-HT, 5-carboxamidotryptamine (5-CT), or 5-HT7 receptor-selective agonists increases the expression of platelet-derived growth factor (PDGF)β receptors. The increased PDGFβ receptor expression is cyclic AMP-dependent protein kinase (PKA)-dependent, suggesting that 5-HT7 receptors couple to Gα(s) in primary neurons. Interestingly, up-regulated PDGFβ receptors display an increased basal phosphorylation state at the phospholipase Cγ-activating tyrosine 1021. This novel linkage between the 5-HT7 receptor and the PDGF system may be an important GPCR-neurotrophic factor signaling pathway in neurons.

  4. The 5-HT7 receptor in learning and memory. Importance of the hippocampus

    PubMed Central

    Roberts, Amanda J.; Hedlund, Peter B.

    2011-01-01

    The 5-HT7 receptor is a more recently discovered G-protein-coupled receptor for serotonin. The functions and possible clinical relevance of this receptor are not yet fully understood. The present paper reviews to what extent the use of animal models of learning and memory and other techniques have implicated the 5-HT7 receptor in such processes. The studies have used a combination of pharmacological and genetic tools targeting the receptor to evaluate effects on behavior and cellular mechanisms. In tests such as the Barnes maze, contextual fear conditioning and novel location recognition that involve spatial learning and memory there is a considerable amount of evidence supporting an involvement of the 5-HT7 receptor. Supporting evidence has also been obtained in studies of mRNA expression and cellular signaling as well as in electrophysiological experiments. Especially interesting are the subtle but distinct effects observed in hippocampus-dependent models of place learning where impairments have been described in mice lacking the 5-HT7 receptor or after administration of a selective antagonist. While more work is required, it appears that 5-HT7 receptors are particularly important in allocentric representation processes. In instrumental learning tasks both procognitive effects and impairments in memory have been observed using pharmacological tools targeting the 5-HT7 receptor. In conclusion, the use of pharmacological and genetic tools in animal studies of learning and memory suggest a potentially important role for the 5-HT7 receptor in cognitive processes. PMID:21484935

  5. Serotonin 5-HT7 receptor agents: structure-activity relationships and potential therapeutic applications in central nervous system disorders

    PubMed Central

    Leopoldo, Marcello; Lacivita, Enza; Berardi, Francesco; Perrone, Roberto; Hedlund, Peter B.

    2010-01-01

    Since its discovery in the 1940s in serum, the mammalian intestinal mucosa, and in the central nervous system, serotonin (5-HT) has been shown to be involved in virtually all cognitive and behavioral human functions, and alterations in its neurochemistry have been implicated in the etiology of a plethora of neuropsychiatric disorders. The cloning of 5-HT receptor subtypes has been of importance in enabling them to be classified as specific protein molecules encoded by specific genes. The 5-HT7 receptor is the most recently classified member of the serotonin receptor family. Since its identification, it has been the subject of intense research efforts driven by its presence in functionally relevant regions of the brain. The availability of some selective antagonists and agonists, in combination with genetically modified mice lacking the 5-HT7 receptor, has allowed for a better understanding of the pathophysiological role of this receptor. This paper reviews data on localization and pharmacological properties of the 5-HT7 receptor, and summarizes the results of structure-activity relationship studies aimed at the discovery of selective 5-HT7 receptor ligands. Additionally, an overview of the potential therapeutic applications of 5-HT7 receptor agonists and antagonists in central nervous system disorders is presented. PMID:20923682

  6. The 5-HT7 receptor triggers cerebellar long-term synaptic depression via PKC-MAPK.

    PubMed

    Lippiello, Pellegrino; Hoxha, Eriola; Speranza, Luisa; Volpicelli, Floriana; Ferraro, Angela; Leopoldo, Marcello; Lacivita, Enza; Perrone-Capano, Carla; Tempia, Filippo; Miniaci, Maria Concetta

    2016-02-01

    The 5-HT7 receptor (5-HT7R) mediates important physiological effects of serotonin, such as memory and emotion, and is emerging as a therapeutic target for the treatment of cognitive disorders and depression. Although previous studies have revealed an expression of 5-HT7R in cerebellum, particularly at Purkinje cells, its functional role and signaling mechanisms have never been described. Using patch-clamp recordings in cerebellar slices of adult mice, we investigated the effects of a selective 5-HT7R agonist, LP-211, on the main plastic site of the cerebellar cortex, the parallel fiber-Purkinje cell synapse. Here we show that 5-HT7R activation induces long-term depression of parallel fiber-Purkinje cell synapse via a postsynaptic mechanism that involves the PKC-MAPK signaling pathway. Moreover, a 5-HT7R antagonist abolished the expression of PF-LTD, produced by pairing parallel fiber stimulation with Purkinje cell depolarization; whereas, application of a 5-HT7R agonist impaired LTP induced by 1 Hz parallel fiber stimulation. Our results indicate for the first time that 5-HT7R exerts a fine regulation of cerebellar bidirectional synaptic plasticity that might be involved in cognitive processes and neuropsychiatric disorders involving the cerebellum.

  7. Spinal 5-HT7 receptors induce phrenic motor facilitation via EPAC-mTORC1 signaling

    PubMed Central

    Fields, D. P.; Springborn, S. R.

    2015-01-01

    Spinal serotonin type 7 (5-HT7) receptors elicit complex effects on motor activity. Whereas 5-HT7 receptor activation gives rise to long-lasting phrenic motor facilitation (pMF), it also constrains 5-HT2 receptor-induced pMF via “cross-talk inhibition.” We hypothesized that divergent cAMP-dependent signaling pathways give rise to these distinct 5-HT7 receptor actions. Specifically, we hypothesized that protein kinase A (PKA) mediates cross-talk inhibition of 5-HT2 receptor-induced pMF whereas 5-HT7 receptor-induced pMF results from exchange protein activated by cAMP (EPAC) signaling. Anesthetized, paralyzed, and ventilated rats receiving intrathecal (C4) 5-HT7 receptor agonist (AS-19) injections expressed pMF for >90 min, an effect abolished by pretreatment with a selective EPAC inhibitor (ESI-05) but not a selective PKA inhibitor (KT-5720). Furthermore, intrathecal injections of a selective EPAC activator (8-pCPT-2′-Me-cAMP) were sufficient to elicit pMF. Finally, spinal mammalian target of rapamycin complex-1 (mTORC1) inhibition via intrathecal rapamycin abolished 5-HT7 receptor- and EPAC-induced pMF, demonstrating that spinal 5-HT7 receptors elicit pMF by an EPAC-mTORC1 signaling pathway. Thus 5-HT7 receptors elicit and constrain spinal phrenic motor plasticity via distinct signaling mechanisms that diverge at cAMP (EPAC vs. PKA). Selective manipulation of these molecules may enable refined regulation of serotonin-dependent spinal motor plasticity for therapeutic advantage. PMID:26269554

  8. Spinal 5-HT7 receptors induce phrenic motor facilitation via EPAC-mTORC1 signaling.

    PubMed

    Fields, D P; Springborn, S R; Mitchell, G S

    2015-09-01

    Spinal serotonin type 7 (5-HT7) receptors elicit complex effects on motor activity. Whereas 5-HT7 receptor activation gives rise to long-lasting phrenic motor facilitation (pMF), it also constrains 5-HT2 receptor-induced pMF via "cross-talk inhibition." We hypothesized that divergent cAMP-dependent signaling pathways give rise to these distinct 5-HT7 receptor actions. Specifically, we hypothesized that protein kinase A (PKA) mediates cross-talk inhibition of 5-HT2 receptor-induced pMF whereas 5-HT7 receptor-induced pMF results from exchange protein activated by cAMP (EPAC) signaling. Anesthetized, paralyzed, and ventilated rats receiving intrathecal (C4) 5-HT7 receptor agonist (AS-19) injections expressed pMF for >90 min, an effect abolished by pretreatment with a selective EPAC inhibitor (ESI-05) but not a selective PKA inhibitor (KT-5720). Furthermore, intrathecal injections of a selective EPAC activator (8-pCPT-2'-Me-cAMP) were sufficient to elicit pMF. Finally, spinal mammalian target of rapamycin complex-1 (mTORC1) inhibition via intrathecal rapamycin abolished 5-HT7 receptor- and EPAC-induced pMF, demonstrating that spinal 5-HT7 receptors elicit pMF by an EPAC-mTORC1 signaling pathway. Thus 5-HT7 receptors elicit and constrain spinal phrenic motor plasticity via distinct signaling mechanisms that diverge at cAMP (EPAC vs. PKA). Selective manipulation of these molecules may enable refined regulation of serotonin-dependent spinal motor plasticity for therapeutic advantage.

  9. 5-HT7 receptor signaling: improved therapeutic strategy in gut disorders.

    PubMed

    Kim, Janice J; Khan, Waliul I

    2014-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) is most commonly known for its role as a neurotransmitter in the central nervous system (CNS). However, the majority of the body's 5-HT is produced in the gut by enterochromaffin (EC) cells. Alterations in 5-HT signaling have been associated with various gut disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and enteric infections. Recently, our studies have identified a key role for 5-HT in the pathogenesis of experimental colitis. 5-HT7 receptors are expressed in the gut and very recently, we have shown evidence of 5-HT7 receptor expression on intestinal immune cells and demonstrated a key role for 5-HT7 receptors in generation of experimental colitis. This review summarizes the key findings of these studies and provides a comprehensive overview of our current knowledge of the 5-HT7 receptor in terms of its pathophysiological relevance and therapeutic potential in intestinal inflammatory conditions, such as IBD.

  10. [5-HT1A/5-HT7 receptor interplay: Chronic activation of 5-HT7 receptors decreases the functional activity of 5-HT1A receptor and its сontent in the mouse brain].

    PubMed

    Kondaurova, E M; Bazovkina, D V; Naumenko, V S

    2017-01-01

    Serotonin receptors 5-HT1A and 5-HT7 are involved in the development of various psychopathologies. Some data indicate that there is an interplay between 5-HT1A 5-HT7 receptors that could be implicated in the regulation of their function. This work analyzed the effects of chronic 5-HT7 activation on the functional activity of 5-HT7 and 5-HT1A receptors, on the corresponding protein levels, and on the expression of genes encoding 5-HT7 and 5-HT1A receptors in the mouse brain. Chronic administration of the 5-HT7 selective agonist LP44 (20.5 nmol, i.c.v., 14 days) produced considerable desensitization of both 5-HT7 and 5-HT1A receptors. In LP44-treated mice, the hypothermic responses mediated by both 5-HT7 and 5-HT1A receptors were attenuated. Moreover, the levels of 5-HT1A receptor protein in the midbrain and the frontal cortex of LP44-treated mice were significantly decreased. However, the brain levels of 5-HT7 receptor protein did not differ between LP44-treated and control mice. Chronic LP44 treatment did not alter the expression of the 5-HT7 and 5-HT1A receptor genes in all investigated brain structure. These data suggest that 5-HT7 receptors participate in the posttranscriptional regulation of the 5-HT1A receptors functioning.

  11. Effects of the potential 5-HT7 receptor agonist AS 19 in an autoshaping learning task.

    PubMed

    Perez-García, Georgina S; Meneses, A

    2005-08-30

    This work aimed to evaluate further the role of 5-HT7 receptors during memory formation in an autoshaping Pavlovian/instrumental learning task. Post-training administration of the potential 5-HT7 receptor agonist AS 19 or antagonist SB-269970 enhanced memory formation or had no effect, respectively. The AS 19 facilitatory effect was reversed by SB-269970, but not by the selective 5-HT1A antagonist WAY100635. Amnesia induced by scopolamine (cholinergic antagonist) or dizocilpine (NMDA antagonist) was also reversed by AS 19. Certainly, reservations regarding the selectivity of AS 19 for 5-HT7 and other 5-HT receptors in vivo are noteworthy and, therefore, its validity for use in animal models as a pharmacological tool. Having mentioned that, it should be noticed that together these data are providing further support to the notion of the 5-HT7 receptors role in memory formation. Importantly, this 5-HT7 receptor agonist AS 19 appears to represent a step forward respect to the notion that potent and selective 5-HT7 receptor agonists can be useful in the treatment of dysfunctional memory in aged-related decline and Alzheimer's disease.

  12. Improvement of ketamine-induced social withdrawal in rats: the role of 5-HT7 receptors.

    PubMed

    Hołuj, Małgorzata; Popik, Piotr; Nikiforuk, Agnieszka

    2015-12-01

    Social withdrawal, one of the core negative symptoms of schizophrenia, can be modelled in the social interaction (SI) test in rats using N-methyl-D-aspartate receptor glutamate receptor antagonists. We have recently shown that amisulpride, an antipsychotic with a high affinity for serotonin 5-HT7 receptors, reversed ketamine-induced SI deficits in rats. The aim of the present study was to further elucidate the potential involvement of 5-HT7 receptors in the prosocial action of amisulpride. Acute administration of amisulpride (3 mg/kg) and SB-269970 (1 mg/kg), a 5-HT7 receptor antagonist, reversed ketamine-induced social withdrawal, whereas sulpiride (20 or 30 mg/kg) and haloperidol (0.2 mg/kg) were ineffective. The 5-HT7 receptor agonist AS19 (10 mg/kg) abolished the prosocial efficacy of amisulpride (3 mg/kg). The coadministration of an inactive dose of SB-269970 (0.2 mg/kg) showed the prosocial effects of inactive doses of amisulpride (1 mg/kg) and sulpiride (20 mg/kg). The anxiolytic chlordiazepoxide (2.5 mg/kg) and the antidepressant fluoxetine (2.5 mg/kg) were ineffective in reversing ketamine-induced SI deficits. The present study suggests that the antagonism of 5-HT7 receptors may contribute towards the mechanisms underlying the prosocial action of amisulpride. These results may have therapeutic implications for the treatment of negative symptoms in schizophrenia and other disorders characterized by social withdrawal.

  13. New N- and O-arylpiperazinylalkyl pyrimidines and 2-methylquinazolines derivatives as 5-HT7 and 5-HT1A receptor ligands: Synthesis, structure-activity relationships, and molecular modeling studies.

    PubMed

    Intagliata, Sebastiano; Modica, Maria N; Pittalà, Valeria; Salerno, Loredana; Siracusa, Maria A; Cagnotto, Alfredo; Salmona, Mario; Kurczab, Rafał; Romeo, Giuseppe

    2017-02-01

    Based on our earlier studies of structure activity relationships on 4-substituted piperazine derivatives, in this work we synthesized a novel set of long-chain arylpiperazines with the purpose of elucidating if some structural modifications in the terminal fragment could affect the binding affinity for the 5-HT7 and 5-HT1A receptors. In this new series, the quinazolinone system of the previous derivatives was replaced by a 6-phenylpyrimidine or a 2-methylquinazoline, which were used as versatile building blocks for the preparation of new compounds. A 4-arylpiperazine moiety through a five methylene chain was anchored at the nitrogen or oxygen atom of the heterocyclic scaffolds. The substituents borne by the piperazine nucleus were phenyl, phenylmethyl, 3- or 4-chlorophenyl, and 2-ethoxyphenyl. Binding tests, performed on human cloned 5-HT7 and 5-HT1A receptors, showed that, among the newly synthesized derivatives, 4-[5-[4-(2-ethoxyphenyl)-1-piperazinyl]pentoxy]-6-phenyl-pyrimidine (13) and 3-[5-[4-(2-ethoxyphenyl)-1-piperazinyl]pentyl]-2-methyl-4(3H)-quinazolinone (20) displayed the best affinity values, Ki=23.5 and 8.42nM for 5-HT7 and 6.96 and 2.99nM for 5-HT1A receptors, respectively. Moreover, the functional properties for both compounds were further evaluated using the cAMP assay. Finally, a molecular modeling study has been performed for 5-HT7 and 5-HT1A receptor homology models to investigate the binding mode of N- and O-alkylated pyrimidinones/pyrimidines 4-13, 2-methylquinazolinones/quinazolines 17-22, and previously reported 2- and 3-substituted quinazolinones 23-30.

  14. Functional expression of the serotonin 5-HT7 receptor in human glioblastoma cell lines

    PubMed Central

    Mahé, Cécile; Bernhard, Michel; Bobirnac, Ionel; Keser, Corinna; Loetscher, Erika; Feuerbach, Dominik; Dev, Kumlesh K; Schoeffter, Philippe

    2004-01-01

    Serotonin 5-HT7 receptors are present in astrocytes. Understanding their role in this type of cell would greatly benefit from the identification of astroglial cell lines expressing this receptor type. The aim of the present study was to assess the expression of native 5-HT7 receptors and 5-HT7 receptor mRNA in a number of human glioblastoma cell lines, by means of cAMP measurements, Western blot analysis and reverse transcriptase–polymerase chain reaction (RT–PCR) analysis. 5-Hydroxytryptamine (5-HT), 5-carboxamidotryptamine (5-CT), 5-methoxytryptamine (5-MeOT) and 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced concentration-dependent stimulations of cAMP accumulation in the human glioblastoma cell lines, U-373 MG, U-138 MG, U-87 MG, DBTRG-05MG, T98G, H4, CCF-STTG1 and Hs 683. The rank order of potency was 5-CT>5-HT=5-MeOT≫8-OH-DPAT. The effect of 5-CT was inhibited in a concentration-dependent manner by the selective 5-HT7 receptor antagonist SB-269970 in all human glioblastoma cells. Schild analyses yielded slope factors close to unity (0.89–1.13) and pA2 values of 8.69–9.05. Western blot analysis revealed the presence of immunoreactive bands corresponding to the human 5-HT7 receptor in extracts of all human glioblastoma cell lines. The presence of the three splice variants of the 5-HT7 receptor (5-HT7(a/b/d)) was visualized by RT–PCR analysis with specific primers in all human glioblastoma cell lines. In conclusion, human glioblastoma cell lines express functional 5-HT7 receptors and the three splice variants of the corresponding mRNA. These cell lines could serve as model systems of native 5-HT7 receptors in glial cells to investigate their putative role in processes like release of neurotrophic factors or inflammatory cytokines. PMID:15339860

  15. Amisulpride promotes cognitive flexibility in rats: the role of 5-HT7 receptors.

    PubMed

    Nikiforuk, Agnieszka; Popik, Piotr

    2013-07-01

    The antagonism of 5-HT7 receptors may contribute to the antidepressant and procognitive actions of the atypical antipsychotic drug, amisulpride. It has been previously demonstrated that the selective 5-HT7 receptor antagonist reversed restraint stress-induced cognitive impairments in a rat model of frontal-dependent attentional set-shifting task (ASST). Therefore, the first aim of the present study was to assess the effectiveness of amisulpride against stress-evoked cognitive inflexibility. The second goal was to elucidate whether the pro-cognitive effect of amisulpride could be due to the compound's action at 5-HT7 receptors. Rats repeatedly exposed (1 h daily for 7 days) to restraint stress demonstrated impaired performance on the extra-dimensional (ED) set-shifting stage of the ASST. Amisulpride (3 mg/kg) given to stressed rats 30 min before testing reversed this restraint-induced cognitive inflexibility and improved ED performance of the unstressed control group. The 5-HT7 receptor agonist, AS19 (10 mg/kg), abolished the pro-cognitive efficacy of amisulpride (3 mg/kg). The present study suggests that the antagonism of 5-HT7 receptors may contribute to the mechanisms underlining the pro-cognitive action of amisulpride. These results may have therapeutic implications in frontal-like deficits associated with stress-related disorders.

  16. Molecular imaging of the serotonin 5-HT7 receptors: from autoradiography to positron emission tomography.

    PubMed

    Zimmer, Luc; Billard, Thierry

    2014-01-01

    Serotonin and its various receptors are involved in numerous brain functions and neuropsychiatric disorders. Of the 14 known serotoninergic receptors, the 5-HT7 receptor is the most recently identified and characterized. It is closely involved in the pathogenesis of depression, anxiety, epilepsy and pain and is therefore an important target for drug therapy. It is a crucial target in neuroscience, and there is a clear need for radioligands for in vitro and in vivo visualization and quantification, first in animal models and ultimately in humans. This review focuses on the main radioligands suggested for in vitro and in vivo imaging of the 5-HT7 receptor.

  17. Downregulation of 5-HT7 Serotonin Receptors by the Atypical Antipsychotics Clozapine and Olanzapine. Role of Motifs in the C-Terminal Domain and Interaction with GASP-1.

    PubMed

    Manfra, Ornella; Van Craenenbroeck, Kathleen; Skieterska, Kamila; Frimurer, Thomas; Schwartz, Thue W; Levy, Finn Olav; Andressen, Kjetil Wessel

    2015-07-15

    The human 5-HT7 serotonin receptor, a G-protein-coupled receptor (GPCR), activates adenylyl cyclase constitutively and upon agonist activation. Biased ligands differentially activate 5-HT7 serotonin receptor desensitization, internalization and degradation in addition to G protein activation. We have previously found that the atypical antipsychotics clozapine and olanzapine inhibited G protein activation and, surprisingly, induced both internalization and lysosomal degradation of 5-HT7 receptors. Here, we aimed to determine the mechanism of clozapine- and olanzapine-mediated degradation of 5-HT7 receptors. In the C-terminus of the 5-HT7 receptor, we identified two YXXΦ motifs, LR residues, and a palmitoylated cysteine anchor as potential sites involved in receptor trafficking to lysosomes followed by receptor degradation. Mutating either of these sites inhibited clozapine- and olanzapine-mediated degradation of 5-HT7 receptors and also interfered with G protein activation. In addition, we tested whether receptor degradation was mediated by the GPCR-associated sorting protein-1 (GASP-1). We show that GASP-1 binds the 5-HT7 receptor and regulates the clozapine-mediated degradation. Mutations of the identified motifs and residues, located in or close to Helix-VIII of the 5-HT7 receptor, modified antipsychotic-stimulated binding of proteins (such as GASP-1), possibly by altering the flexibility of Helix-VIII, and also interfered with G protein activation. Taken together, our data demonstrate that binding of clozapine or olanzapine to the 5-HT7 receptor leads to antagonist-mediated lysosomal degradation by exposing key residues in the C-terminal tail that interact with GASP-1.

  18. Assessment of 5-HT(7) Receptor Agonists Selectivity Using Nociceptive and Thermoregulation Tests in Knockout versus Wild-Type Mice.

    PubMed

    Brenchat, Alex; Rocasalbas, Maria; Zamanillo, Daniel; Hamon, Michel; Vela, José Miguel; Romero, Luz

    2012-01-01

    No study has ever examined the effect of 5-HT(7) receptor agonists on nociception by using 5-HT(7) receptor knockout mice. Basal sensitivity to noxious heat stimuli and formalin-induced nociception in both phase I and II of the formalin test did not differ in 5-HT(7) receptor knockout mice and paired wild-type controls. Similarly, there was no significant difference in basal body temperature between both genotypes. Subcutaneous administration of 5-HT(7) receptor agonists AS-19 (10 mg/kg), E-57431 (10 mg/kg), and E-55888 (20 mg/kg) significantly reduced formalin-induced licking/biting behavior during the phase II of the test in wild-type but not in 5-HT(7) receptor knockout mice. At these active analgesic doses, none of the three 5-HT(7) receptor agonists modified the basal body temperature neither in wild-type nor in 5-HT(7) receptor knockout mice. However, a significant decrease in body temperature was observed at a higher dose (20 mg/kg) of AS-19 and E-57431 in both genotypes. Our data strongly suggest that the 5-HT(7) receptor agonists AS-19, E-57431, and E-55888 produce antinociception in the formalin test by activating 5-HT(7) receptors. These results also strengthen the idea that the 5-HT(7) receptor plays a role in thermoregulation, but by acting in concert with other receptors.

  19. Assessment of 5-HT7 Receptor Agonists Selectivity Using Nociceptive and Thermoregulation Tests in Knockout versus Wild-Type Mice

    PubMed Central

    Brenchat, Alex; Rocasalbas, Maria; Zamanillo, Daniel; Hamon, Michel; Vela, José Miguel; Romero, Luz

    2012-01-01

    No study has ever examined the effect of 5-HT7 receptor agonists on nociception by using 5-HT7 receptor knockout mice. Basal sensitivity to noxious heat stimuli and formalin-induced nociception in both phase I and II of the formalin test did not differ in 5-HT7 receptor knockout mice and paired wild-type controls. Similarly, there was no significant difference in basal body temperature between both genotypes. Subcutaneous administration of 5-HT7 receptor agonists AS-19 (10 mg/kg), E-57431 (10 mg/kg), and E-55888 (20 mg/kg) significantly reduced formalin-induced licking/biting behavior during the phase II of the test in wild-type but not in 5-HT7 receptor knockout mice. At these active analgesic doses, none of the three 5-HT7 receptor agonists modified the basal body temperature neither in wild-type nor in 5-HT7 receptor knockout mice. However, a significant decrease in body temperature was observed at a higher dose (20 mg/kg) of AS-19 and E-57431 in both genotypes. Our data strongly suggest that the 5-HT7 receptor agonists AS-19, E-57431, and E-55888 produce antinociception in the formalin test by activating 5-HT7 receptors. These results also strengthen the idea that the 5-HT7 receptor plays a role in thermoregulation, but by acting in concert with other receptors. PMID:22761612

  20. Memory formation and memory alterations: 5-HT6 and 5-HT7 receptors, novel alternative.

    PubMed

    Meneses, Alfredo

    2014-01-01

    Agonists and antagonists of the 5-hydroxytryptamine (serotonin) receptor6 (5-HT6) or receptor7 (5-HT7) might improve memory and/or reverse amnesia, although the mechanisms involved are poorly understood. Hence, the current work summarizes recent reviews and findings involving these receptors. Evidence indicates that diverse 5-HT6 receptor antagonists produce promnesic and/or antiamnesic effect in conditions, such as memory formation, age-related cognitive impairments and memory deficit in preclinical studies, as well as in diseases such as schizophrenia, Parkinson's, and Alzheimer's disease (AD). Memory, aging, and AD modify 5-HT6 receptors and signaling cascades; likewise, the modulation of 5-HT6 drugs on memory seems to be accompanied with neural changes. Moreover, 5-HT7 receptors are localized in brain areas mediating memory, including the cortex, hippocampus (e.g., Zola-Morgan and Squire, 1993) and raphe nuclei; however, the role of these receptors on memory has yet to be fully explored. Hence, findings and reviews are summarized in this work. Evidence suggests that both 5-HT7 receptor agonists and antagonists might have promnesic and anti-amnesic effects. These effects seem to be dependent on the basal level of performance, i.e., normal or impaired. Available evidence suggests that a potential utility of 5-HT6 and 5-HT7 receptor in mild-to-moderate AD patients and other memory dysfunctions as therapeutic targets.

  1. Signalling properties and pharmacology of a 5-HT7 -type serotonin receptor from Tribolium castaneum.

    PubMed

    Vleugels, R; Lenaerts, C; Vanden Broeck, J; Verlinden, H

    2014-04-01

    In the last decade, genome sequence data and gene structure information on invertebrate receptors has been greatly expanded by large sequencing projects and cloning studies. This information is of great value for the identification of receptors; however, functional and pharmacological data are necessary for an accurate receptor classification and for practical applications. In insects, an important group of neurotransmitter and neurohormone receptors, for which ample sequence information is available but pharmacological information is missing, are the biogenic amine G protein-coupled receptors (GPCRs). In the present study, we investigated the sequence information, pharmacology and signalling properties of a 5-HT7 -type serotonin receptor from the red flour beetle, Tribolium castaneum (Trica5-HT7 ). The receptor encoding cDNA shows considerable sequence similarity with cognate 5-HT7 receptors and phylogenetic analysis also clusters the receptor within this 5-HT receptor group. Real-time reverse transcription PCR demonstrated high expression levels in the brain, indicating the possible importance of this receptor in neural processes. Trica5-HT7 was dose-dependently activated by 5-HT, which induced elevated intracellular cyclic AMP levels but had no effect on calcium signalling. The synthetic agonists, α-methyl 5-HT, 5-methoxytryptamine, 5-carboxamidotryptamine and 8-hydroxy-2-(dipropylamino)tetralin hydrobromide, showed a response, although with a much lower potency and efficacy than 5-HT. Ketanserin and methiothepin were the most potent antagonists. Both showed characteristics of competitive inhibition on Trica5-HT7 . The signalling pathway and pharmacological profile offer important information that will facilitate functional and comparative studies of 5-HT receptors in insects and other invertebrates. The pharmacology of invertebrate 5-HT receptors differs considerably from that of vertebrates. The present study may therefore contribute to establishing a more

  2. Spatial memory deficit across aging: current insights of the role of 5-HT7 receptors

    PubMed Central

    Beaudet, Gregory; Bouet, Valentine; Jozet-Alves, Christelle; Schumann-Bard, Pascale; Dauphin, François; Paizanis, Eleni; Boulouard, Michel; Freret, Thomas

    2015-01-01

    Elderly persons often face biological, psychological or social changes over time that may cause discomfort or morbidity. While some cognitive domains remain stable over time, others undergo a decline. Spatial navigation is a complex cognitive function essential for independence, safety and quality of life. While egocentric (body-centered) navigation is quite preserved during aging, allocentric (externally-centered) navigation—based on a cognitive map using distant landmarks—declines with age. Recent preclinical studies showed that serotonergic 5-HT7 receptors are localized in brain regions associated with allocentric spatial navigation processing. Behavioral assessments with pharmacological or genetic tools have confirmed the role of 5-HT7 receptors in allocentric navigation. Moreover, few data suggested a selective age-related decrease in the expression of 5-HT7 receptors in pivotal brain structures implicated in allocentric navigation such as the hippocampal CA3 region. We aim to provide a short overview of the potential role of 5-HT7 receptors in spatial navigation, and to argue for their interests as therapeutic targets against age-related cognitive decline. PMID:25642173

  3. Pharmacological Blockade of 5-HT7 Receptors as a Putative Fast Acting Antidepressant Strategy

    PubMed Central

    Mnie-Filali, Ouissame; Faure, Céline; Lambás-Señas, Laura; Mansari, Mostafa El; Belblidia, Hassina; Gondard, Elise; Etiévant, Adeline; Scarna, Hélène; Didier, Anne; Berod, Anne; Blier, Pierre; Haddjeri, Nasser

    2011-01-01

    Current antidepressants still display unsatisfactory efficacy and a delayed onset of therapeutic action. Here we show that the pharmacological blockade of serotonin 7 (5-HT7) receptors produced a faster antidepressant-like response than the commonly prescribed antidepressant fluoxetine. In the rat, the selective 5-HT7 receptor antagonist SB-269970 counteracted the anxiogenic-like effect of fluoxetine in the open field and exerted an antidepressant-like effect in the forced swim test. In vivo, 5-HT7 receptors negatively regulate the firing activity of dorsal raphe 5-HT neurons and become desensitized after long-term administration of fluoxetine. In contrast with fluoxetine, a 1-week treatment with SB-269970 did not alter 5-HT firing activity but desensitized cell body 5-HT autoreceptors, enhanced the hippocampal cell proliferation, and counteracted the depressive-like behavior in olfactory bulbectomized rats. Finally, unlike fluoxetine, early-life administration of SB-269970, did not induce anxious/depressive-like behaviors in adulthood. Together, these findings indicate that the 5-HT7 receptor antagonists may represent a new class of antidepressants with faster therapeutic action. PMID:21326194

  4. Spatial memory deficit across aging: current insights of the role of 5-HT7 receptors.

    PubMed

    Beaudet, Gregory; Bouet, Valentine; Jozet-Alves, Christelle; Schumann-Bard, Pascale; Dauphin, François; Paizanis, Eleni; Boulouard, Michel; Freret, Thomas

    2014-01-01

    Elderly persons often face biological, psychological or social changes over time that may cause discomfort or morbidity. While some cognitive domains remain stable over time, others undergo a decline. Spatial navigation is a complex cognitive function essential for independence, safety and quality of life. While egocentric (body-centered) navigation is quite preserved during aging, allocentric (externally-centered) navigation-based on a cognitive map using distant landmarks-declines with age. Recent preclinical studies showed that serotonergic 5-HT7 receptors are localized in brain regions associated with allocentric spatial navigation processing. Behavioral assessments with pharmacological or genetic tools have confirmed the role of 5-HT7 receptors in allocentric navigation. Moreover, few data suggested a selective age-related decrease in the expression of 5-HT7 receptors in pivotal brain structures implicated in allocentric navigation such as the hippocampal CA3 region. We aim to provide a short overview of the potential role of 5-HT7 receptors in spatial navigation, and to argue for their interests as therapeutic targets against age-related cognitive decline.

  5. Memory time-course: mRNA 5-HT1A and 5-HT7 receptors.

    PubMed

    Perez-Garcia, Georgina; Meneses, Alfredo

    2009-08-24

    In an attempt to clarify conflicting results about serotonin (5-hydroxytryptamine, 5-HT) 5-HT(1A) and 5-HT(7) receptors in memory formation, their mRNA expression was determined by RT-PCR in key brain areas for explicit and implicit memory. The time-course (0-120 h) of autoshaped responses was progressive and mRNA 5-HT(1A) or 5-HT(7) receptors expression monotonically augmented or declined in prefrontal cortex, hippocampus and raphe nuclei, respectively. At 24-48 h acutely 8-OH-DPAT (0.062 mg/kg) administration enhanced memory and attenuated mRNA 5-HT(1A)<5-HT(7) receptors expression respect to saline group. WAY100635 (0.3 mg/kg) or SB-269970 (10.0 mg/kg) did not affect the former, partially blocked or reversed the latter, respectively. Furthermore, lower WAY100635 (0.001-0.1 mg/kg) or SB-269970 (1.0-5.0 mg/kg) doses plus 8-OHDPAT not affected memory; however both combinations suppressed or up-regulated mRNA expression 5-HT(1A) or 5-HT(7) receptors. In contrast, AS19 (5.0 mg/kg) facilitated memory consolidation, decreased or increased hippocampal 5-HT(7) and 5-HT(1A) receptors expression. Together these data revealed that, when both 5-HT(1A) and 5-HT(7) receptors were stimulated by 8-OHDPAT under memory consolidation, subtle changes emerged, not evident at behavioral level though detectable at genes expression. Notably, high levels of efficient memory were maintained even when serotonergic tone, via either 5-HT(1A) or 5-HT(7) receptor, was down- or up-regulated. Nevertheless, WAY100635 plus SB-269970 impaired memory consolidation and suppressed their expression. Considering that serotonergic changes are prominent in AD patients with an earlier onset of disease the present approach might be useful in the identification of functional changes associated to memory formation, memory deficits and reversing or even preventing these deficits.

  6. 5-HT1A and 5-HT7 receptors contribute to lurasidone-induced dopamine efflux.

    PubMed

    Huang, Mei; Horiguchi, Masakuni; Felix, Anna R; Meltzer, Herbert Y

    2012-05-09

    Lurasidone is a novel, atypical antipsychotic drug with serotonin [5-hydroxytryptamine (5-HT)]2A, 5-HT7, dopamine (DA) D2 antagonist, and 5-HT1A receptor partial agonist properties. The ability of lurasidone to reverse the effects of subchronic administration phencyclidine, to impair novel object recognition in rats, an animal model of cognitive impairment in schizophrenia, is dependent, in part, on its 5-HT1A agonist and 5-HT7 receptor antagonist properties. We tested whether 5-HT1A partial agonism or 5-HT7 antagonism, or both, contributed to the ability of lurasidone to enhance cortical and hippocampal DA efflux, which may be related to its ability to improve cognition. Here, we report that lurasidone, 0.25 and 0.5, but not 0.1 mg/kg, subcutaneously, significantly increased DA efflux in the prefrontal cortex and hippocampus in a dose-dependent manner. Lurasidone, 0.5 mg/kg, also produced a smaller increase in DA efflux in the nucleus accumbens. Pretreatment with the 5-HT1A receptor antagonist, WAY100635 (0.2 mg/kg, subcutaneously), partially blocked the lurasidone-induced cortical and hippocampal DA efflux. Further, subeffective doses of the 5-HT1A receptor agonist, tandospirone (0.2 mg/kg), or the 5-HT7 antagonist, SB269970 (0.3 mg/kg), potentiated the ability of a subeffective dose of lurasidone (0.1 mg/kg) to increase DA efflux in the prefrontal cortex. These findings suggest that the effects of lurasidone on the prefrontal cortex and hippocampus, DA efflux are dependent, at least partially, on its 5-HT1A agonist and 5-HT7 antagonist properties and may contribute to its efficacy to reverse the effects of subchronic phencyclidine treatment and improve schizophrenia.

  7. Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders.

    PubMed

    Naumenko, Vladimir S; Popova, Nina K; Lacivita, Enza; Leopoldo, Marcello; Ponimaskin, Evgeni G

    2014-07-01

    Serotonin (5-hydroxytryptamine or 5-HT) is an important neurotransmitter regulating a wide range of physiological and pathological functions via activation of heterogeneously expressed 5-HT receptors. Besides the important role of 5-HT receptors in the pathogenesis of depressive disorders and in their clinical medications, underlying mechanisms are far from being completely understood. This review focuses on possible cross talk between two serotonin receptors, 5-HT1A and the 5-HT7 . Although these receptors are highly co-expressed in brain regions implicated in depression, and most agonists developed for the 5-HT1A or 5-HT7 receptors have cross-reactivity, their functional interaction has not been yet established. It has been recently shown that 5-HT1A and 5-HT7 receptors form homo- and heterodimers both in vitro and in vivo. From the functional point of view, heterodimerization has been shown to play an important role in regulation of receptor-mediated signaling and internalization, suggesting the implication of heterodimerization in the development and maintenance of depression. Interaction between these receptors is also of clinical interest, because both receptors represent an important pharmacological target for the treatment of depression and anxiety.

  8. Synthesis and evaluation of 1-[2-(4-[(11)C]methoxyphenyl)phenyl]piperazine for imaging of the serotonin 5-HT7 receptor in the rat brain.

    PubMed

    Shimoda, Yoko; Yui, Joji; Xie, Lin; Fujinaga, Masayuki; Yamasaki, Tomoteru; Ogawa, Masanao; Nengaki, Nobuki; Kumata, Katsushi; Hatori, Akiko; Kawamura, Kazunori; Zhang, Ming-Rong

    2013-09-01

    1-[2-(4-Methoxyphenyl)phenyl]piperazine (4) is a potent serotonin 5-HT7 receptor antagonist (Ki=2.6nM) with a low binding affinity for the 5-HT1A receptor (Ki=476nM). As a potential positron emission tomography (PET) radiotracer for the 5-HT7 receptor, [(11)C]4 was synthesized at high radiochemical yield and specific activity, by O-[(11)C]methylation of 2'-(piperazin-1-yl)-[1,1'-biphenyl]-4-ol (6) with [(11)C]methyl iodide. Autoradiography revealed that [(11)C]4 showed in vitro specific binding with 5-HT7 in the rat brain regions, such as the thalamus which is a region with high 5-HT7 expression. Metabolite analysis indicated that intact [(11)C]4 in the brain exceeded 90% of the radioactive components at 15min after the radiotracer injection, although two radiolabeled metabolites were found in the rat plasma. The PET study of rats showed moderated uptake of [(11)C]4 in the brain (1.2SUV), but no significant regional difference in radioactivity in the brain. Pretreatment with 5-HT7-selective antagonist SB269970 (3) did not decrease the uptake of [(11)C]4 in the rat brain. Further studies are warranted that focus on the development of PET ligand candidates with higher binding affinity for 5-HT7 and higher in vivo stability in brain than 4.

  9. Spinal 5-HT7 receptor activation induces long-lasting phrenic motor facilitation.

    PubMed

    Hoffman, M S; Mitchell, G S

    2011-03-15

    Acute intermittent hypoxia elicits a form of serotonin-dependent respiratory plasticity known as phrenic long term facilitation (pLTF). Episodic spinal serotonin-2 (5-HT2) receptor activation on or near phrenic motor neurons is necessary for pLTF. A hallmark of pLTF is the requirement for serotonin-dependent synthesis of brain-derived neurotrophic factor (BDNF), and activation of its high affinity receptor, TrkB. Activation of spinal Gs protein-coupled adenosine 2A receptors (GsPCRs) elicits a unique form of long-lasting phrenic motor facilitation (PMF), but via unique mechanisms (BDNF independent TrkB trans-activation).We hypothesized that other GsPCRs elicit PMF, specifically serotonin-7 (5-HT7) receptors, which are expressed in phrenic motor neurons. Cervical spinal (C4) injections of a selective 5-HT7 receptor agonist, AS-19 (10 μM, 5 μl; 3 × 5 min), in anaesthetized, vagotomized and ventilated male Sprague-Dawley rats elicited long-lasting PMF (>120 min), an effect prevented by pretreatment with a 5-HT7 receptor antagonist (SB 269970; 5mM, 7 μl).GsPCR activation 'trans-activates'TrkB by increasing synthesis of an immature TrkB isoform. Spinal injection of a TrkB inhibitor (k252a) and siRNAs that prevent TrkB (but not BDNF) mRNA translation both blocked 5-HT7 agonist-induced PMF, confirming a requirement for TrkB synthesis and activity. k252a affected late PMF (≥ 90 min) only. Spinal inhibition of the PI3K/AKT pathway blocked 5-HT7 agonist-induced PMF, whereas MEK/ERK inhibition delayed, but did not block, PMF. An understanding of signalling mechanisms giving rise to PMF may guide development of novel therapeutic strategies to treat ventilatory control disorders associated with respiratory insufficiency, such as spinal injury and motor neuron disease.

  10. Serotonin 5-HT7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons.

    PubMed

    Speranza, Luisa; Labus, Josephine; Volpicelli, Floriana; Guseva, Daria; Lacivita, Enza; Leopoldo, Marcello; Bellenchi, Gian Carlo; di Porzio, Umberto; Bijata, Monika; Perrone-Capano, Carla; Ponimaskin, Evgeni

    2017-01-25

    Precise control of dendritic spine density and synapse formation is critical for normal and pathological brain functions. Therefore, signaling pathways influencing dendrite outgrowth and remodeling remain a subject of extensive investigations. Here we report that prolonged activation of the serotonin 5-HT7 receptor (5-HT7R) with selective agonist LP-211 promotes formation of dendritic spines and facilitates synaptogenesis in postnatal cortical and striatal neurons. Critical role of 5-HT7R in neuronal morphogenesis was confirmed by analysis of neurons isolated from 5-HT7R-deficient mice and by pharmacological inactivation of the receptor. Acute activation of 5-HT7R results in pronounced neurite elongation in postnatal striatal and cortical neurons, thus extending previous data on the morphogenic role of 5-HT7R in embryonic and hippocampal neurons. We also observed decreased number of spines in neurons with either genetically (i.e. 5-HT7R-KO) or pharmacologically (i.e. antagonist treatment) blocked 5-HT7R, suggesting that constitutive 5-HT7R activity is critically involved in the spinogenesis. Moreover, cyclin-dependent kinase 5 (Cdk5) and small GTPase Cdc42 were identified as important downstream effectors mediating morphogenic effects of 5-HT7R in neurons. Altogether, our data suggest that the 5-HT7R-mediated structural reorganization during the postnatal development might have a crucial role for the development and plasticity of forebrain areas such as cortex and striatum, and thereby can be implicated in regulation of the higher cognitive functions. This article is protected by copyright. All rights reserved.

  11. The 5-HT7 receptor as a potential target for treating drug and alcohol abuse

    PubMed Central

    Hauser, Sheketha R.; Hedlund, Peter B.; Roberts, Amanda J.; Sari, Youssef; Bell, Richard L.; Engleman, Eric A.

    2015-01-01

    Alcohol and drug abuse take a large toll on society and affected individuals. However, very few effective treatments are currently available to treat alcohol and drug addiction. Basic and clinical research has begun to provide some insights into the underlying neurobiological systems involved in the addiction process. Several neurotransmitter pathways have been implicated and distinct reward neurocircuitry have been proposed—including the mesocorticolimbic dopamine (MCL-DA) system and the extended amygdala. The serotonin (5-HT) neurotransmitter system is of particular interest and multiple 5-HT receptors are thought to play significant roles in alcohol and drug self-administration and the development of drug dependence. Among the 5-HT receptors, the 5-HT7 receptor is currently undergoing characterization as a potential target for the treatment of several psychiatric disorders. Although this receptor has received only limited research regarding addictive behaviors, aspects of its neuroanatomical, biochemical, physiological, pharmacological, and behavioral profiles suggest that it could play a key role in the addiction process. For instance, genomic studies in humans have suggested a link between variants in the gene encoding the 5-HT7 receptor and alcoholism. Recent behavioral testing using high-affinity antagonists in mice and preliminary tests with alcohol-preferring rats suggest that this receptor could mediate alcohol consumption and/or reinforcement and play a role in seeking/craving behavior. Interest in the development of new and more selective pharmacological agents for this receptor will aid in examining the 5-HT7 receptor as a novel target for treating addiction. PMID:25628528

  12. The 5-HT7 receptor as a potential target for treating drug and alcohol abuse.

    PubMed

    Hauser, Sheketha R; Hedlund, Peter B; Roberts, Amanda J; Sari, Youssef; Bell, Richard L; Engleman, Eric A

    2014-01-01

    Alcohol and drug abuse take a large toll on society and affected individuals. However, very few effective treatments are currently available to treat alcohol and drug addiction. Basic and clinical research has begun to provide some insights into the underlying neurobiological systems involved in the addiction process. Several neurotransmitter pathways have been implicated and distinct reward neurocircuitry have been proposed-including the mesocorticolimbic dopamine (MCL-DA) system and the extended amygdala. The serotonin (5-HT) neurotransmitter system is of particular interest and multiple 5-HT receptors are thought to play significant roles in alcohol and drug self-administration and the development of drug dependence. Among the 5-HT receptors, the 5-HT7 receptor is currently undergoing characterization as a potential target for the treatment of several psychiatric disorders. Although this receptor has received only limited research regarding addictive behaviors, aspects of its neuroanatomical, biochemical, physiological, pharmacological, and behavioral profiles suggest that it could play a key role in the addiction process. For instance, genomic studies in humans have suggested a link between variants in the gene encoding the 5-HT7 receptor and alcoholism. Recent behavioral testing using high-affinity antagonists in mice and preliminary tests with alcohol-preferring rats suggest that this receptor could mediate alcohol consumption and/or reinforcement and play a role in seeking/craving behavior. Interest in the development of new and more selective pharmacological agents for this receptor will aid in examining the 5-HT7 receptor as a novel target for treating addiction.

  13. 5-HT7 receptor modulates GABAergic transmission in the rat dorsal raphe nucleus and controls cortical release of serotonin.

    PubMed

    Kusek, Magdalena; Sowa, Joanna; Kamińska, Katarzyna; Gołembiowska, Krystyna; Tokarski, Krzysztof; Hess, Grzegorz

    2015-01-01

    The 5-HT7 receptor is one of the several serotonin (5-HT) receptor subtypes that are expressed in the dorsal raphe nucleus (DRN). Some earlier findings suggested that 5-HT7 receptors in the DRN were localized on GABAergic interneurons modulating the activity of 5-HT projection neurons. The aim of the present study was to find out how the 5-HT7 receptor modulates the GABAergic synaptic input to putative 5-HT DRN neurons, and whether blockade of the 5-HT7 receptor would affect the release of 5-HT in the target structure. Male Wistar rats with microdialysis probes implanted in the prefrontal cortex (PFC) received injections of the 5-HT7 receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride (SB 269970), which induced an increase in the levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) in the PFC. In another set of experiments whole-cell recordings from presumed projection neurons were carried out using DRN slices. SB 269970 application resulted in depolarization and in an increase in the firing frequency of the cells. In order to activate 5-HT7 receptors, 5-carboxamidotryptamine (5-CT) was applied in the presence of N-[2-[4-(2-methoxyphenyl)-1piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY100635). Hyperpolarization of cells and a decrease in the firing frequency were observed after activation of the 5-HT7 receptor. Blockade of 5-HT7 receptors caused a decrease in the mean frequency of spontaneous inhibitory postsynaptic currents (sIPSCs), while its activation induced an increase. The mechanism of these effects appears to involve tonically-active 5-HT7 receptors modulating firing and/or GABA release from inhibitory interneurons which regulate the activity of DRN serotonergic projection neurons.

  14. Characterization of putative 5-HT7 receptors mediating tachycardia in the cat

    PubMed Central

    Villalón, Carlos M; Heiligers, Jan P C; Centurión, David; De Vries, Peter; Saxena, Pramod R

    1997-01-01

    , sumatriptan (30, 100 and 300 μg kg−1) and indorenate (300 and 1000 μg kg−1) or the 5-HT4 receptor (partial) agonist cisapride (300 and 1000 μg kg−1) were devoid of effects on feline heart rate per se and failed to modify significantly 5-HT-induced tachycardic responses. Based upon the above rank order of agonist potency, the failure of sumatriptan, indorenate or cisapride to produce cardioacceleration and the blockade by a series of drugs showing high affinity for the cloned 5-ht7 receptor, the present results indicate that the 5-HT receptor mediating tachycardia in the cat is operationally similar to other putative 5-HT7 receptors mediating vascular and non-vascular responses (e.g. relaxation of the rabbit femoral vein, canine external carotid and coronary arteries, rat systemic vasculature and guinea-pig ileum). Since these responses represent functional correlates of the 5-ht7 gene product, the 5-HT7 receptor appellation is reinforced. Therefore, the present experimental model, which is not complicated by the presence of other 5-HT receptors, can be utilized to characterize and develop new drugs with potential agonist and antagonist properties at functional 5-HT7 receptors. PMID:9249256

  15. [Role of brain 5-HT7 receptors as a functional molecule involved in the development of stress adaptation].

    PubMed

    Tsuji, Minoru; Takeuchi, Tomoko; Miyagawa, Kazuya; Takeda, Hiroshi

    2012-08-01

    A growing body of evidence suggests that the brain serotonin (5-HT) nervous system is an important component related to the etiology as well as the treatment of stress-related psychiatric disorders. Molecular cloning studies have revealed the existence of 14 different genes, each encoding a distinct 5-HT receptor subtype. The 5-HT7 receptor is the most recently identified member of the 5-HT receptor subtypes, and the physiological role of this receptor is still unknown. Recently, either selective agonists or antagonists for 5-HT7 receptors, as well as 5-HT7 receptor knockout mice, have been developed, and these have recently been used as the experimental tools for determining the actual function of 5-HT7 receptors. The first half of the present article introduces the reports that have examined the role of the 5-HT7 receptor on emotional regulation. On the other hand, it has been indicated that the ability to adapt to stress is an important defensive function of a living body, and impairment of this ability may contribute to some stress-related disorders. Thus, the examination of brain mechanisms involved in stress adaptation could help to pave the way for new therapeutic strategies for stress-related psychiatric disorders. The second half of the present article introduces our recent studies focusing on the relationship between brain 5-HT7 receptors and the mechanisms of stress adaptation.

  16. Evaluation of 5-HT7 receptor expression in the placentae of normal and pre-eclamptic women.

    PubMed

    Irge, Emine; Halici, Zekai; Yilmaz, Mehmet; Cadirci, Elif; Karakus, Emre

    2016-01-01

    In this study, by examining 5-HT7 receptor expression in placentae from pre-eclamptic and normal pregnancies, we aimed to discover a new step of pathophysiological cascade for preeclampsia. Patients whose blood pressure over the 140/90 mmHg were included when study after 20 weeks of gestation. 5-HT7 receptor expression was investigated on the placentae obtained after birth by real time PCR (RT-PCR) analysis. Pre-natal-post-natal, systolic-diastolic blood pressure values, proteinuria and renal function indicators as BUN and creatinine levels of pre-eclamptic pregnant women were higher than the healthy group. Similarly, 5-HT7 receptor expression determined in healthy placentae increased 8-fold in pre-eclamptic women. This study, for the first time we showed 5-HT7 receptor expression in normal placenta and increased expression in pre-eclamptic placenta.

  17. Peripheral 5-HT7 receptors as a new target for prevention of lung injury and mortality in septic rats.

    PubMed

    Cadirci, Elif; Halici, Zekai; Bayir, Yasin; Albayrak, Abdulmecit; Karakus, Emre; Polat, Beyzagul; Unal, Deniz; Atamanalp, Sabri S; Aksak, Selina; Gundogdu, Cemal

    2013-10-01

    Sepsis is a complex pathophysiological event involving metabolic acidosis, systemic inflammatory response syndrome, tissue damage and multiple organ dysfunction syndrome. Although many new mechanisms are being investigated to enlighten the pathophysiology of sepsis, there is no effective treatment protocol yet. Presence of 5-HT7 receptors in immune tissues prompted us to hypothesize that these receptors have roles in inflammation and sepsis. We investigated the effects of 5-HT7 receptor agonists and antagonists on serum cytokine levels, lung oxidative stress, lung histopathology, nuclear factor κB (NF-κB) positivity and lung 5-HT7 receptor density in cecal ligation and puncture (CLP) induced sepsis model of rats. Agonist administration to septic rats increased survival time; decreased serum cytokine response against CLP; decreased oxidative stress and increased antioxidant system in lungs; decreased the tissue NF-κB immunopositivity, which is high in septic rats; and decreased the sepsis-induced lung injury. In septic rats, as a result of high inflammatory response, 5-HT7 receptor expression in lungs increased significantly and agonist administration, which decreased inflammatory response and related mortality, decreased the 5-HT7 receptor expression. In conclusion, all these data suggest that stimulation of 5-HT7 receptors may be a new therapeutic target for prevention of impaired inflammatory response related lung injury and mortality.

  18. Novel insights into the potential involvement of 5-HT7 receptors in endocrine dysregulation in stress-related disorders.

    PubMed

    Terrón, José A

    2014-01-01

    A hyperactive hypothalamic-pituitary-adrenal (HPA) axis is a common feature of stress-related disorders, and the brain serotonin (5-HT) system plays a major role in HPA axis modulation. Glucocorticoids and stress profoundly affect the 5-HT system so it is possible that alterations of endocrine 5-HT mechanisms may underlie HPA axis overdrive in stress-related diseases. Available evidence suggests a role of 5-HT1A, 5-HT2A/2C and 5-HT7 receptors in HPA system activation, and pharmacological blockade of 5-HT7 receptors produces a fast-acting antidepressant-like action and shortens the onset of antidepressant-like effects of various classes of antidepressants. The mechanisms involved in this effect have not been elucidated, but recent findings suggest a role of 5-HT7 receptors in the development of HPA axis overdrive as a result of chronic stress. Remarkably, clinical findings have shown an association between corticosteroid-producing adenomas and expression of ectopic 5-HT7 receptors in corticosteroid-producing adrenocortical cells. These observations might therefore reveal an endocrine mechanism for the antidepressant-like action of 5-HT7 receptor blockers, possibly through normalization of HPA axis function. If such a preliminary hypothesis is confirmed, the potential therapeutic usefulness of 5-HT7 receptor antagonists could extend beyond depression to include other diseases, the pathophysiology of which has been associated with chronic stress and HPA axis dysregulation.

  19. Antihyperalgesic effect of 5-HT7 receptor activation on the midbrain periaqueductal gray in a rat model of neuropathic pain.

    PubMed

    Li, Shu-Fa; Zhang, Yuan-Yuan; Li, You-Yan; Wen, Song; Xiao, Zhi

    2014-12-01

    The 5-HT7 receptor is the most recently discovered receptor for 5-hydroxytryptamine (5-HT), and only little is known about the analgesic potential of this receptor. Adenosine triphosphate (ATP) modulates pain transmission by activating P2X/P2Y receptors, in which the P2X3 subtype is an important target for this effect. This study examined the antihyperalgesic effect of the 5-HT7 receptors in the ventrolateral midbrain periaqueductal gray (vlPAG), a crucial site for endogenous pain inhibition. This study also explored the importance of the interactions between the 5-HT7 and P2X3 receptors in this effect. To address this issue, neuropathic pain was induced through chronic constriction injury (CCI) of the sciatic nerve in Sprague-Dawley (SD) rats. The expression level and distribution of the 5-HT7 receptor were evaluated through Western blot and immunohistochemistry. The mechanical withdrawal threshold (MWT) was measured by using an electronic pressure meter test. Different doses (3, 6, and 12μmol) of AS-19, a selective agonist of the 5-HT7 receptor, were administered in the vlPAG of CCI rats. The effects of pretreatment with the selective 5-HT7 receptor antagonist SB-269970 or the selective P2X3 receptor antagonist A-317491 on the analgesic effect of AS-19 were observed. Results showed that CCI decreased the MWT values of the rats. The injury also increased the protein level of the 5-HT7 receptor in the vlPAG of neuropathic pain rats. AS-19 microinjection significantly elevated the MWT values in a dose-dependent manner, but SB-269970 pretreatment attenuated the antihyperalgesic effect of AS-19. Furthermore, the antihyperalgesic effect of the 5-HT7 receptor was partially but significantly blocked by A-317491 pretreatment. These data indicate that the 5-HT7 receptor in the vlPAG exerts an antihyperalgesic effect on rats with neuropathic pain. The 5-HT7 and P2X3 receptors interact in the vlPAG and exhibit an analgesic action through the enhanced function of the

  20. 5-HT(1A) and 5-HT(7) receptors differently modulate AMPA receptor-mediated hippocampal synaptic transmission.

    PubMed

    Costa, L; Trovato, C; Musumeci, S A; Catania, M V; Ciranna, L

    2012-04-01

    We have studied the effects of 5-HT(1A) and 5-HT(7) serotonin receptor activation in hippocampal CA3-CA1 synaptic transmission using patch clamp on mouse brain slices. Application of either 5-HT or 8-OH DPAT, a mixed 5-HT(1A)/5-HT(7) receptor agonist, inhibited AMPA receptor-mediated excitatory post synaptic currents (EPSCs); this effect was mimicked by the 5-HT(1A) receptor agonist 8-OH PIPAT and blocked by the 5-HT(1A) antagonist NAN-190. 8-OH DPAT increased paired-pulse facilitation and reduced the frequency of mEPSCs, indicating a presynaptic reduction of glutamate release probability. In another group of neurons, 8-OH DPAT enhanced EPSC amplitude but did not alter paired-pulse facilitation, suggesting a postsynaptic action; this effect persisted in the presence of NAN-190 and was blocked by the 5-HT(7) receptor antagonist SB-269970. To confirm that EPSC enhancement was mediated by 5-HT(7) receptors, we used the compound LP-44, which is considered a selective 5-HT(7) agonist. However, LP-44 reduced EPSC amplitude in most cells and instead increased EPSC amplitude in a subset of neurons, similarly to 8-OH DPAT. These effects were respectively antagonized by NAN-190 and by SB-269970, indicating that under our experimental condition LP-44 behaved as a mixed agonist. 8-OH DPAT also modulated the current evoked by exogenously applied AMPA, inducing either a reduction or an increase of amplitude in distinct neurons; these effects were respectively blocked by 5-HT(1A) and 5-HT(7) receptor antagonists, indicating that both receptors exert a postsynaptic action. Our results show that 5-HT(1A) receptors inhibit CA3-CA1 synaptic transmission acting both pre- and postsynaptically, whereas 5-HT(7) receptors enhance CA3-CA1 synaptic transmission acting exclusively at a postsynaptic site. We suggest that a selective pharmacological targeting of either subtype may be envisaged in pathological loss of hippocampal-dependent cognitive functions. In this respect, we underline the

  1. S100B interacts with the serotonin 5-HT7 receptor to regulate a depressive-like behavior.

    PubMed

    Stroth, Nikolas; Svenningsson, Per

    2015-12-01

    The serotonin 5-HT7 receptor (5-HT7) is an emerging target for psychiatric pharmacotherapy. Recent observations in rodent models and humans suggest that its blockade mediates antidepressant efficacy. In the present study, we identify the Ca(2+)-binding protein S100B as an interacting partner of 5-HT7 and show that S100B negatively regulates inducible cyclic AMP (cAMP) accumulation in transfected HeLa cells and mouse cortical astrocytes. Overexpression of S100B causes brain region-specific dysregulation of the cAMP pathway in vivo, such that concentrations of cAMP in the frontal cortex are higher in S100B transgenic female mice compared to wild-types. Finally, S100B transgenic female mice show depressive-like behavior in the forced swim test (FST) and pharmacological blockade of 5-HT7 with SB269970 normalizes FST behavior. Taken together, our results show that S100B affects behavioral despair in female mice through functional interaction with the 5-HT7 receptor. Furthermore, we identify S100B as a cAMP-regulatory protein in cultured astrocytes and the murine frontal cortex. Future experiments will clarify whether there is a direct link between the 5-HT7-associated and cAMP-regulatory actions of S100B.

  2. An mRNA expression analysis of stimulation and blockade of 5-HT7 receptors during memory consolidation.

    PubMed

    Pérez-García, Georgina; Gonzalez-Espinosa, Claudia; Meneses, Alfredo

    2006-04-25

    Despite the compelling support for 5-hydroxytryptamine (5-HT) receptors participation in learning and memory in mammal species, the molecular basis had been largely absent from any discussion of its mechanistic underpinnings. Here, we report that reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that there was a higher level of expression of the investigated 5-HT receptor mRNAs in autoshaping-trained relative to untrained groups. Actually, pharmacological naïve untrained and autoshaping-trained rats showed significant differences, the latter groups expressing, in decreasing order, 5-HT1A < 5-HT6 < 5-HT4 < or = 5-HT7 receptors mRNA in prefrontal cortex and hippocampus. In order to determine more precisely mRNA expression and memory consolidation, we combined selective 5-HT7 receptors stimulation or blockade in the same animals, and brain areas individually analyzed. 5-HT7 receptors were strongly expressed in all the three brain areas of vehicle-trained rats relative to untrained group. The potential selective 5-HT7 receptor agonist AS 19 enhanced memory consolidation, attenuated mRNA receptors expression, and the facilitatory memory effect was reversed by SB-269970. Finally, pharmacological stimulation of 5-HT7 receptors reversed scopolamine- or dizocilpine-induced amnesia and receptor down-regulation.

  3. The critical role of spinal 5-HT7 receptors in opioid and non-opioid type stress-induced analgesia.

    PubMed

    Yesilyurt, Ozgur; Seyrek, Melik; Tasdemir, Serdar; Kahraman, Serdar; Deveci, Mehmet Salih; Karakus, Emre; Halici, Zekai; Dogrul, Ahmet

    2015-09-05

    The opioid and non-opioid types of stress-induced analgesia have been well defined. One of the non-opioid type involve the endocannabinoid system. We previously reported that the spinal serotonin 7 receptor (5-HT7) blockers inhibit both morphine and cannabinoid-induced analgesia, thus we hypothesized that descending serotonergic pathways-spinal 5-HT7 receptor loop might contribute to stress-induced analgesia. Stress-induced analgesia was induced with warm (32°C) or cold (20°C) water swim stress in male Balb-C mice. The effects of intrathecal injection of a selective 5-HT7 receptor antagonist, SB 269970, of the denervation of serotonergic neurons by intrathecal administration of 5,7-dihydroxytryptamine (5,7-DHT) and of lesions of the dorsolateral funiculus on opioid and non-opioid type stress-induced analgesia were evaluated with the tail-flick and hot plate tests. The expression of 5-HT7 receptors mRNA in the dorsal lumbar region of spinal cord were analyzed by RT-PCR following spinal serotonin depletion or dorsolateral funiculus lesion. The effects of the selective 5-HT7 receptor agonists LP 44 and AS 19 were tested on nociception. Intrathecal SB 269970 blocked both opioid and non-opioid type stress-induced analgesia. Dorsolateral funiculus lesion or denervation of the spinal serotonergic neurons resulted in a marked decrease in 5-HT7 receptor expression in the dorsal lumbar spinal cord, accompanied by inhibition of opioid and non-opioid type stress-induced analgesia. However, the systemic or intrathecal LP 44 and AS 19 alone did not produce analgesia in unstressed mice. These results indicate that descending serotonergic pathways and the spinal 5-HT7 receptor loop play a crucial role in mediating both opioid and non-opioid type stress-induced analgesia.

  4. 5-HT7 Receptors Are Not Involved in Neuropeptide Release in Primary Cultured Rat Trigeminal Ganglion Neurons.

    PubMed

    Wang, Xiaojuan; Hu, Rong; Liang, Jianbo; Li, Ze; Sun, Weiwen; Pan, Xiaoping

    2016-06-01

    Migraine is a common but complex neurological disorder. Its precise mechanisms are not fully understood. Increasing indirect evidence indicates that 5-HT7 receptors may be involved; however, their role remains unknown. Our previous in vivo study showed that selective blockade of 5-HT7 receptors caused decreased serum levels of calcitonin gene-related peptide (CGRP) in the external jugular vein following electrical stimulation of the trigeminal ganglion (TG) in an animal model of migraine. In the present study, we used an in vitro model of cultured TG cells to further investigate whether 5-HT7 receptors are directly responsible for the release of CGRP and substance P from TG neurons. We stimulated rat primary cultured TG neurons with capsaicin or potassium chloride (KCl) to mimic neurogenic inflammation, resulting in release of CGRP and substance P. 5-HT7 receptors were abundantly expressed in TG neurons. Greater than 93 % of 5-HT7 receptor-positive neurons co-expressed CGRP and 56 % co-expressed substance P. Both the capsaicin- and KCl-induced release of CGRP and substance P were unaffected by pretreatment of cultured TG cells with the selective 5-HT7 receptor agonist AS19 and antagonist SB269970. This study demonstrates for the first time that 5-HT7 receptors are abundantly co-expressed with CGRP and substance P in rat primary TG neurons and suggests that they are not responsible for the release of CGRP and substance P from cultured TG neurons evoked by capsaicin or KCl.

  5. Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics.

    PubMed

    Speranza, Luisa; Giuliano, Teresa; Volpicelli, Floriana; De Stefano, M Egle; Lombardi, Loredana; Chambery, Angela; Lacivita, Enza; Leopoldo, Marcello; Bellenchi, Gian C; di Porzio, Umberto; Crispino, Marianna; Perrone-Capano, Carla

    2015-01-01

    Recent studies have indicated that the serotonin receptor subtype 7 (5-HT7R) plays a crucial role in shaping neuronal morphology during embryonic and early postnatal life. Here we show that pharmacological stimulation of 5-HT7R using a highly selective agonist, LP-211, enhances neurite outgrowth in neuronal primary cultures from the cortex, hippocampus and striatal complex of embryonic mouse brain, through multiple signal transduction pathways. All these signaling systems, involving mTOR, the Rho GTPase Cdc42, Cdk5, and ERK, are known to converge on the reorganization of cytoskeletal proteins that subserve neurite outgrowth. Indeed, our data indicate that neurite elongation stimulated by 5-HT7R is modulated by drugs affecting actin polymerization. In addition, we show, by 2D Western blot analyses, that treatment of neuronal cultures with LP-211 alters the expression profile of cofilin, an actin binding protein involved in microfilaments dynamics. Furthermore, by using microfluidic chambers that physically separate axons from the soma and dendrites, we demonstrate that agonist-dependent activation of 5-HT7R stimulates axonal elongation. Our results identify for the first time several signal transduction pathways, activated by stimulation of 5-HT7R, that converge to promote cytoskeleton reorganization and consequent modulation of axonal elongation. Therefore, the activation of 5-HT7R might represent one of the key elements regulating CNS connectivity and plasticity during development.

  6. Identification of essential residues for binding and activation in the human 5-HT7(a) serotonin receptor by molecular modeling and site-directed mutagenesis

    PubMed Central

    Impellizzeri, Agata Antonina Rita; Pappalardo, Matteo; Basile, Livia; Manfra, Ornella; Andressen, Kjetil Wessel; Krobert, Kurt Allen; Messina, Angela; Levy, Finn Olav; Guccione, Salvatore

    2015-01-01

    The human 5-HT7 receptor is expressed in both the central nervous system and peripheral tissues and is a potential drug target in behavioral and psychiatric disorders. We examined molecular determinants of ligand binding and G protein activation by the human 5-HT7(a) receptor. The role of several key residues in the 7th transmembrane domain (TMD) and helix 8 were elucidated combining in silico and experimental mutagenesis. Several single and two double point mutations of the 5-HT7(a) wild type receptor were made (W7.33V, E7.35T, E7.35R, E7.35D, E7.35A, R7.36V, Y7.43A, Y7.43F, Y7.43T, R8.52D, D8.53K; E7.35T-R7.36V, R8.52D-D8.53K), and their effects upon ligand binding were assessed by radioligand binding using a potent agonist (5-CT) and a potent antagonist (SB269970). In addition, the ability of the mutated 5-HT7(a) receptors to activate G protein after 5-HT-stimulation was determined through activation of adenylyl cyclase. In silico investigation on mutated receptors substantiated the predicted importance of TM7 and showed critical roles of residues E7.35, W7.33, R7.36 and Y7.43 in agonist and antagonist binding and conformational changes of receptor structure affecting adenylyl cyclase activation. Experimental data showed that mutants E7.35T and E7.35R were incapable of ligand binding and adenylyl cyclase activation, consistent with a requirement for a negatively charged residue at this position. The mutant R8.52D was unable to activate adenylyl cyclase, despite unaffected ligand binding, consistent with the R8.52 residue playing an important role in the receptor-G protein interface. The mutants Y7.43A and Y7.43T displayed reduced agonist binding and AC agonist potency, not seen in Y7.43F, consistent with a requirement for an aromatic residue at this position. Knowledge of the molecular interactions important in h5-HT7 receptor ligand binding and G protein activation will aid the design of selective h5-HT7 receptor ligands for potential pharmacological use. PMID

  7. Identification of essential residues for binding and activation in the human 5-HT7(a) serotonin receptor by molecular modeling and site-directed mutagenesis.

    PubMed

    Impellizzeri, Agata Antonina Rita; Pappalardo, Matteo; Basile, Livia; Manfra, Ornella; Andressen, Kjetil Wessel; Krobert, Kurt Allen; Messina, Angela; Levy, Finn Olav; Guccione, Salvatore

    2015-01-01

    The human 5-HT7 receptor is expressed in both the central nervous system and peripheral tissues and is a potential drug target in behavioral and psychiatric disorders. We examined molecular determinants of ligand binding and G protein activation by the human 5-HT7(a) receptor. The role of several key residues in the 7th transmembrane domain (TMD) and helix 8 were elucidated combining in silico and experimental mutagenesis. Several single and two double point mutations of the 5-HT7(a) wild type receptor were made (W7.33V, E7.35T, E7.35R, E7.35D, E7.35A, R7.36V, Y7.43A, Y7.43F, Y7.43T, R8.52D, D8.53K; E7.35T-R7.36V, R8.52D-D8.53K), and their effects upon ligand binding were assessed by radioligand binding using a potent agonist (5-CT) and a potent antagonist (SB269970). In addition, the ability of the mutated 5-HT7(a) receptors to activate G protein after 5-HT-stimulation was determined through activation of adenylyl cyclase. In silico investigation on mutated receptors substantiated the predicted importance of TM7 and showed critical roles of residues E7.35, W7.33, R7.36 and Y7.43 in agonist and antagonist binding and conformational changes of receptor structure affecting adenylyl cyclase activation. Experimental data showed that mutants E7.35T and E7.35R were incapable of ligand binding and adenylyl cyclase activation, consistent with a requirement for a negatively charged residue at this position. The mutant R8.52D was unable to activate adenylyl cyclase, despite unaffected ligand binding, consistent with the R8.52 residue playing an important role in the receptor-G protein interface. The mutants Y7.43A and Y7.43T displayed reduced agonist binding and AC agonist potency, not seen in Y7.43F, consistent with a requirement for an aromatic residue at this position. Knowledge of the molecular interactions important in h5-HT7 receptor ligand binding and G protein activation will aid the design of selective h5-HT7 receptor ligands for potential pharmacological use.

  8. Selective agonists for serotonin 7 (5-HT7) receptor and their applications in preclinical models: an overview.

    PubMed

    Di Pilato, Pantaleo; Niso, Mauro; Adriani, Walter; Romano, Emilia; Travaglini, Domenica; Berardi, Francesco; Colabufo, Nicola A; Perrone, Roberto; Laviola, Giovanni; Lacivita, Enza; Leopoldo, Marcello

    2014-01-01

    The serotonin 7 (5-HT7) receptor was the last serotonin receptor subtype to be discovered in 1993. This receptor system has been implicated in several central nervous system (CNS) functions, including circadian rhythm, rapid eye movement sleep, thermoregulation, nociception, memory and neuropsychiatric symptoms and pathologies, such as anxiety, depression and schizophrenia. In 1999, medicinal chemistry efforts led to the identification of SB-269970, which became the gold standard selective 5-HT7 receptor antagonist, and later of various selective agonists such as AS-19, LP-44, LP-12, LP-211 and E-55888. In this review, we summarize the preclinical pharmacological studies performed using these agonists, highlighting their strengths and weaknesses. The data indicate that 5-HT7 receptor agonists can have neuroprotective effects against N-methyl-d-aspartate-induced toxicity, modulate neuronal plasticity in rats, enhance morphine-induced antinociception and alleviate hyperalgesia consecutive to nerve lesion in neuropathic animals.

  9. Serotonin (5-HT) regulates neurite outgrowth through 5-HT1A and 5-HT7 receptors in cultured hippocampal neurons.

    PubMed

    Rojas, Paulina S; Neira, David; Muñoz, Mauricio; Lavandero, Sergio; Fiedler, Jenny L

    2014-08-01

    Serotonin (5-HT) production and expression of 5-HT receptors (5-HTRs) occur early during prenatal development. Recent evidence suggests that, in addition to its classical role as a neurotransmitter, 5-HT regulates neuronal connectivity during mammalian development by modulating cell migration and neuronal cytoarchitecture. Given the variety of 5-HTRs, researchers have had difficulty clarifying the specific role of each receptor subtype in brain development. Signalling mediated by the G-protein-coupled 5-HT1A R and 5-HT7 R, however, has been associated with neuronal plasticity. Thus, we hypothesized that 5-HT promotes neurite outgrowth through 5-HT1A R and 5-HT7 R. The involvement of 5-HT1A R and 5-HT7 R in the morphology of rat hippocampal neurons was evaluated by treating primary cultures at 2 days in vitro with 5-HT and specific antagonists for 5-HT1A R and 5-HT7 R (WAY-100635 and SB269970, respectively). The stimulation of hippocampal neurons with 100 nM 5-HT for 24 hr produced no effect on either the number or the length of primary neurites. Nonetheless, after 5HT7 R was blocked, the addition of 5-HT increased the number of primary neurites, suggesting that 5HT7 R could inhibit neuritogenesis. In contrast, 5-HT induced secondary neurite outgrowth, an effect inhibited by 1 μM WAY-100635 or SB269970. These results suggest that both serotonergic receptors participate in secondary neurite outgrowth. We conclude that 5-HT1A R and 5-HT7 R regulate neuronal morphology in primary hippocampal cultures by promoting secondary neurite outgrowth.

  10. 5-HT7 receptor activation attenuates thermal hyperalgesia in streptozocin-induced diabetic mice.

    PubMed

    Ulugol, Ahmet; Oltulu, Cagatay; Gunduz, Ozgur; Citak, Cihad; Carrara, Roberto; Shaqaqi, Mohammad Reza; Sanchez, Alicia Mansilla; Dogrul, Ahmet

    2012-08-01

    The role of 5-HT7 receptors in the nociceptive processing received most attention during the last few years. The involvement of 5-HT₇ receptors in nerve injury-induced neuropathic pain states have been reported only recently; however, there are no reports on its contribution in diabetic neuropathic pain. We therefore planned to investigate the effect of 5-HT₇ receptor activation on the changes of nociceptive threshold in diabetic mice. Diabetes was induced by a single intraperitoneal injection of streptozocin (150 mg/kg, i.p.). The nociceptive responses in normal and diabetic animals were tested in the hot-plate and tail-flick assays. Both hot-plate and tail-flick latencies significantly shortened at 1-3/4 weeks (thermal hyperalgesia) and prolonged at 6-7 weeks (thermal hypoalgesia) after streptozocin administration. At the dose of 10 mg/kg, systemic injections of AS-19, a selective 5-HT₇ receptor agonist, reduced thermal hyperalgesia at early stage of diabetes, but did not influence thermal hypoalgesia at late stage. Co-administration of SB-258719, a selective 5-HT₇ receptor antagonist, at a dose that had no effect on its own (10 mg/kg), reversed the anti-hyperalgesic effect of AS-19. Our results indicate that systemic administration of 5-HT₇ receptor agonists may have clinical utility in treating diabetic neuropathic pain.

  11. Microinjection of the 5-HT7 receptor antagonist SB-269970 into the rat brainstem and basal forebrain: site-dependent effects on REM sleep.

    PubMed

    Monti, Jaime M; Leopoldo, Marcello; Jantos, Héctor; Lagos, Patricia

    2012-08-01

    The effects of SB-269970, a selective 5-HT7 receptor antagonist, on spontaneous sleep were studied in adult rats implanted for chronic sleep recordings. The 5-HT7 receptor ligand was microinjected into the horizontal limb of the diagonal band of Broca (HDB) and the laterodorsal tegmental nucleus (LDT) during the light period of the 12-h light/12-h dark cycle. For comparative purposes the compound was administered systemically and, in addition, injected directly into the dorsal raphe nucleus (DRN). Microinjection of SB-269970 into the HDB and the DRN induced a significant reduction of rapid-eye-movement sleep (REMS). Similar effects were observed after systemic administration of the 5-HT7 receptor antagonist. On the other hand, local infusion of the compound into the LDT provoked the opposite effect. It is proposed that the deactivation of GABAergic cells located in the HDB, DRN and LDT is responsible for the changes induced by SB-269970 on REM sleep values. It is suggested that the antidepressant effect of the 5-HT7 receptor antagonist could partly depend on the involvement of neuronal systems located in the DRN and the HDB.

  12. Decreased agonist, but not antagonist, binding to the naturally occurring Thr92Lys variant of the h5-HT7(a) receptor.

    PubMed

    Brüss, Michael; Kiel, Sibylle; Bönisch, Heinz; Kostanian, Arevat; Göthert, Manfred

    2005-08-01

    In the present study on transfected human embryonic kidney (HEK)293 cells, we aimed at establishing whether expression of the naturally occurring Thr92Lys variation of the Gs-coupled h5-HT7(a) receptor leads to changes of ligand binding properties, of agonist-evoked cAMP formation and/or of antagonist-mediated blockade of the latter. Binding of [3H]5-carboxamidotryptamine ([3H]5-CT) to membranes and stimulated [3H]cAMP accumulation in whole cells were determined. Saturation binding experiments in membranes of transiently transfected cells expressing either the wild-type or the variant receptor revealed a single binding site in both cases and no difference in Bmax between both receptor isoforms. In competition binding experiments in membranes of stably transfected cells, the Thr92Lys variant exhibited a 2.8-11 times lower binding affinity of the ligands 5-hydroxytryptamine (5-HT), 5-CT, 5-methoxy-3-(1,2,3,6-tetrahydropyridin-4yl)-1H-indole (RU24969), (+/-)-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT) and sumatriptan compared to the wild-type receptor. However, the variant did not differ from the wild-type with respect to the binding properties of the antagonists (R)-3-(2-(2-(4-methylpiperidin-1-yl)ethyl)-pyrrolodine-1-sulfonyl)phenol hydrochloride (SB-269970), risperidone, mesulergine and clozapine. In agreement with the decreased binding affinity of 5-HT, 5-CT, RU24969 and 8-OH-DPAT for the variant receptor, these agonists were less potent in stimulating [3H]cAMP accumulation in cells stably expressing the Thr92Lys h5-HT7(a) receptor. Sumatriptan did not stimulate cAMP accumulation in spite of its affinity for both receptor isoforms pointing to a putative weak antagonistic property of this drug at the h5-HT7 receptor. SB-269970 and clozapine were equipotent at both the variant and the wild-type receptor in producing a rightward shift of the 5-HT concentration-response curve for its stimulant effect on [3H]cAMP accumulation. In view of, e.g., the

  13. Spinal 5-HT7 receptors and protein kinase A constrain intermittent hypoxia-induced phrenic long-term facilitation.

    PubMed

    Hoffman, M S; Mitchell, G S

    2013-10-10

    Phrenic long-term facilitation (pLTF) is a form of serotonin-dependent respiratory plasticity induced by acute intermittent hypoxia (AIH). pLTF requires spinal Gq protein-coupled serotonin-2 receptor (5-HT2) activation, new synthesis of brain-derived neurotrophic factor (BDNF) and activation of its high-affinity receptor, TrkB. Intrathecal injections of selective agonists for Gs protein-coupled receptors (adenosine 2A and serotonin-7; 5-HT7) also induce long-lasting phrenic motor facilitation via TrkB "trans-activation." Since serotonin released near phrenic motor neurons may activate multiple serotonin receptor subtypes, we tested the hypothesis that 5-HT7 receptor activation contributes to AIH-induced pLTF. A selective 5-HT7 receptor antagonist (SB-269970, 5mM, 12 μl) was administered intrathecally at C4 to anesthetized, vagotomized and ventilated rats prior to AIH (3, 5-min episodes, 11% O2). Contrary to predictions, pLTF was greater in SB-269970 treated versus control rats (80 ± 11% versus 45 ± 6% 60 min post-AIH; p<0.05). Hypoglossal LTF was unaffected by spinal 5-HT7 receptor inhibition, suggesting that drug effects were localized to the spinal cord. Since 5-HT7 receptors are coupled to protein kinase A (PKA), we tested the hypothesis that PKA inhibits AIH-induced pLTF. Similar to 5-HT7 receptor inhibition, spinal PKA inhibition (KT-5720, 100 μM, 15 μl) enhanced pLTF (99 ± 15% 60 min post-AIH; p<0.05). Conversely, PKA activation (8-br-cAMP, 100 μM, 15 μl) blunted pLTF versus control rats (16 ± 5% versus 45 ± 6% 60 min post-AIH; p<0.05). These findings suggest a novel mechanism whereby spinal Gs protein-coupled 5-HT7 receptors constrain AIH-induced pLTF via PKA activity.

  14. Effects of the 5-HT7 receptor antagonists SB-269970 and DR 4004 in autoshaping Pavlovian/instrumental learning task.

    PubMed

    Meneses, Alfredo

    2004-12-06

    There is an important debate regarding the functional role of the 5-HT(1A) and 5-HT(7) receptor in memory systems. Hence, the objective of this paper is to investigate the function of serotonin (5-hydroxytryptamine, 5-HT) in memory consolidation, utilising an autoshaping Pavlovian/instrumental learning test. Specific antagonists at 5-HT(1A) (WAY 100635) and 5-HT(7) (SB-269970 or DR 4004) receptors administered i.p. or s.c.) after training, significantly decreased the improvement of performance produced by the 5-HT(1A/7) agonist 8-OH-DPAT to levels lower than controls'. These same antagonists attenuated the decreased level of performance produced by mCPP, although they decrease the performance levels after p-chloroamphetamine (PCA) lesion of the 5-HT system, which has no effect on its own on the conditioned response. Moreover, SB-269970 or DR 4004 reversed amnesia induced by scopolamine and dizocilpine. These data confirm a role for 5-HT(1A) and 5-HT(7) receptors in memory formation and support the hypothesis that serotonergic, cholinergic, and glutamatergic systems interact in cognitively impaired animals. These findings support a potential role for both 5-HT(1A) and 5-HT(7) receptors in the pathophysiology and/or treatment of schizophrenia, cognitive deficits and the mechanism of action of atypical antipsychotic drugs.

  15. Role of 5-HT7 receptors in the inhibition of the vasodepressor sensory CGRPergic outflow in pithed rats.

    PubMed

    Cuesta, Cristina; García-Pedraza, José Ángel; García, Mónica; Villalón, Carlos M; Morán, Asunción

    2014-10-01

    The role of calcitonin gene-related peptide (CGRP) in the modulation of vascular tone has been widely documented. Indeed, electrical stimulation of the perivascular sensory outflow in pithed rats induces vasodepressor responses by activation of CGRP receptors. This study investigated the role of 5-HT7 receptors in the inhibition of the rat vasodepressor sensory outflow. Male Wistar pithed rats were pretreated with i.v. continuous infusions of hexamethonium and methoxamine, followed by physiological saline or AS-19 (a 5-HT7 receptor agonist). Then, electrical stimulation of the spinal cord resulted in frequency-dependent decreases in DBP. The infusions of AS-19, as compared to those of saline, inhibited the vasodepressor responses induced by electrical stimulation without affecting those to i.v. bolus injections of exogenous α-CGRP. This inhibition by AS-19 was abolished by the antagonists pimozide (5-HT7) or sulfisoxazole (ETA), but not by indomethacin (COX1/2) or losartan (AT1), at doses that did not affect per se the electrically-induced vasodepressor responses. Interestingly, glibenclamide (an ATP-dependent K(+) channel blocker) attenuated these vasodepressor responses. The present results suggest that AS-19-induced inhibition of the rat vasodepressor sensory CGRPergic outflow is mainly mediated by 5-HT7 receptors via endothelin release, with the possible involvement of ATP-dependent K(+) channels.

  16. Chronic Sarpogrelate Treatment Reveals 5-HT7 Receptor in the Serotonergic Inhibition of the Rat Vagal Bradycardia.

    PubMed

    García-Pedraza, José Ángel; García, Mónica; Martín, María Luisa; Eleno, Nélida; Morán, Asunción

    2017-01-01

    5-Hydroxytryptamine (5-HT) modulates the cardiac parasympathetic neurotransmission, inhibiting the bradyarrhythmia by 5-HT2 receptor activation. We aimed to determine whether the chronic selective 5-HT2 blockade (sarpogrelate) could modify the serotonergic modulation on vagal cardiac outflow in pithed rat. Bradycardic responses in rats treated with sarpogrelate (30 mg·kg·d; orally) were obtained by electrical stimulation of the vagal fibers (3, 6, and 9 Hz) or intravenous (IV) injections of acetylcholine (1, 5, and 10 μg/kg). 5-HT7 receptor expression was quantified by Western blot in vagus nerve and right atrium. The IV administration of 5-HT (10-200 μg/kg) dose dependently decreased the vagally induced bradycardia, and agonists 5-CT (5-HT1/7), 8-OH-DPAT (5-HT1A), or AS-19 (5-HT7) (50 μg/kg each) mimicked the 5-HT-induced inhibitory effect. Neither agonists CGS-12066B (5-HT1B), L-694,247 (5-HT1D), nor 1-phenylbiguanide (5-HT3) modified the electrically-induced bradycardic responses. Moreover, SB-258719 (5-HT7 antagonist) abolished the 5-HT-, 5-CT-, 8-OH-DPAT-, and AS-19-induced bradycardia inhibition; 5-HT or AS-19 did not modify the bradycardia induced by IV acetylcholine; and 5-HT7 receptor was expressed in both the vagus nerve and the right atrium. Our outcomes suggest that blocking chronically 5-HT2 receptors modifies the serotonergic influence on cardiac vagal neurotransmission exhibiting 5-HT as an exclusively inhibitory agent via prejunctional 5-HT7 receptor.

  17. Selective blockade of 5-HT7 receptors facilitates attentional set-shifting in stressed and control rats.

    PubMed

    Nikiforuk, Agnieszka

    2012-01-01

    Preclinical data demonstrate that the selective blockade of 5-HT7 receptors produces antidepressant-like behavioural effects. Although the involvement of 5-HT7 receptors in cognitive processes has been previously suggested, little is known about their role in the prefrontal cortex (PFC)-dependent processes that may be impaired in stress-related states. According to our previous study, repeated restraint stress induces the long-lasting cognitive impairment in a rat model of PFC-dependent attentional set-shifting task (ASST). Therefore, the first aim of the present experiments was to examine the impact of the selective 5-HT7 receptor antagonist, SB-269970, on ASST performance of stressed and control rats. Since the selective blockade of 5-HT7 receptors has been previously demonstrated to enhance the behavioural effects of antidepressants, the second goal was to examine the impact of the joint administration of inactive doses of SB-269970 and escitalopram in the ASST. SB-269970 (0.3 and 1mg/kg) given to stressed rats 30min before testing reversed the restraint-induced impairment of the extra-dimensional (ED) set-shifting ability. Additionally, SB-269970 (1mg/kg) also improved ED performance of the unstressed control group. Moreover, SB-269970, given at an inactive dose, enhanced the pro-cognitive efficacy of escitalopram. In conclusion, these results highlight the possibility that 5-HT7 receptor antagonism may represent a useful pharmacological approach in the treatment of frontal-like cognitive disturbances in stress-related psychiatric disorders.

  18. GABA, but not opioids, mediates the anti-hyperalgesic effects of 5-HT7 receptor activation in rats suffering from neuropathic pain.

    PubMed

    Viguier, Florent; Michot, Benoît; Kayser, Valérie; Bernard, Jean-François; Vela, José-Miguel; Hamon, Michel; Bourgoin, Sylvie

    2012-11-01

    Among receptors mediating serotonin actions in pain control, the 5-HT(7)R is of special interest because it is expressed by primary afferent fibers and intrinsic GABAergic and opioidergic interneurons within the spinal dorsal horn. Herein, we investigated whether GABA and/or opioids contribute to 5-HT(7)R-mediated control of neuropathic pain caused by nerve ligation. Acute administration of 5-HT(7)R agonists (AS-19, MSD-5a, E-55888) was found to markedly reduce mechanical and thermal hyperalgesia in rats with unilateral constriction injury to the sciatic nerve (CCI-SN). In contrast, mechanical hypersensitivity caused by unilateral constriction injury to the infraorbital nerve was essentially unaffected by these ligands. Further characterization of the anti-hyperalgesic effect of 5-HT(7)R activation by the selective agonist E-55888 showed that it was associated with a decrease in IL-1ß mRNA overexpression in ipsilateral L4-L6 dorsal root ganglia and lumbar dorsal horn in CCI-SN rats. In addition, E-55888 diminished CCI-SN-associated increase in c-Fos immunolabeling in superficial laminae of the lumbar dorsal horn and the locus coeruleus, but increased c-Fos immunolabeling in the nucleus tractus solitarius and the parabrachial area in both control and CCI-SN rats. When injected intrathecally (i.t.), bicuculline (3 μg i.t.), but neither phaclofen (5 μg i.t.) nor naloxone (10 μg i.t.), significantly reduced the anti-hyperalgesic effects of 5-HT(7)R activation (E-55888, 10 mg/kg s.c.) in CCI-SN rats. These data support the idea that 5-HT(7)R-mediated inhibitory control of neuropathic pain is underlain by excitation of GABAergic interneurons within the dorsal horn. In addition, 5-HT(7)R activation-induced c-Fos increase in the nucleus tractus solitarius and the parabrachial area suggests that supraspinal mechanisms might also be involved.

  19. Sensitization of restraint-induced corticosterone secretion after chronic restraint in rats: Involvement of 5-HT7 receptors

    PubMed Central

    García-Iglesias, Brenda B.; Mendoza-Garrido, María E.; Gutiérrez-Ospina, Gabriel; Rangel-Barajas, Claudia; Noyola-Díaz, Martha; Terrón, José A.

    2013-01-01

    Serotonin (5-HT) modulates the hypothalamic-pituitary-adrenal (HPA) axis response to stress. We examined the effect of chronic restraint stress (CRS; 20 min/day) as compared to control (CTRL) conditions for 14 days, on: 1) restraint-induced ACTH and corticosterone (CORT) secretion in rats pretreated with vehicle or SB-656104 (a 5-HT7 receptor antagonist); 2) 5-HT7 receptor-like immunoreactivity (5-HT7-LI) and protein in the hypothalamic paraventricular nucleus (PVN) and adrenal glands (AG); 3) baseline levels of 5-HT and 5-hydroxyindolacetic acid (5-HIAA), and 5-HIAA/5-HT ratio in PVN and AG; and 4) 5-HT-like immunoreactivity (5-HT-LI) in AG and tryptophan hydroxylase (TPH) protein in PVN and AG. On day 15, animals were subdivided into Treatment and No treatment groups. Treatment animals received an i.p. injection of vehicle or SB-656104; No Treatment animals received no injection. Sixty min later, Treatment animals were either decapitated with no further stress (0 min) or submitted to acute restraint (10, 30, 60 or 120 min); hormone serum levels were measured. No Treatment animals were employed for the rest of measurements. CRS decreased body weight gain and increased adrenal weight. In CTRL animals, acute restraint increased ACTH and CORT secretion in a time of restraint-dependent manner; both responses were inhibited by SB-656104. Exposure to CRS abolished ACTH but magnified CORT responses to restraint as compared to CTRL conditions; SB-656104 had no effect on ACTH levels but significantly inhibited sensitized CORT responses. In CTRL animals, 5-HT7-LI was detected in magnocellular and parvocellular subdivisions of PVN and sparsely in adrenal cortex. Exposure to CRS decreased 5-HT7-LI and protein in the PVN, but increased 5-HT7-LI in the adrenal cortex and protein in whole AG. Higher 5-HT and 5-HIAA levels were detected in PVN and AG from CRS animals but 5-HIAA/5-HT ratio increased in AG only. Finally, whereas 5-HT-LI was sparsely observed in the adrenal cortex

  20. The effects of combining serotonin reuptake inhibition and 5-HT7 receptor blockade on circadian rhythm regulation in rodents.

    PubMed

    Westrich, Ligia; Sprouse, Jeffrey; Sánchez, Connie

    2013-02-17

    Disruption of circadian rhythms may lead to mood disorders. The present study investigated the potential therapeutic utility of combining a 5-HT7 antagonist with a selective serotonin (5-HT) reuptake inhibitor (SSRI), the standard of care in depression, on circadian rhythm regulation. In tissue explants of the suprachiasmatic nucleus (SCN) from PER2::LUC mice genetically modified to report changes in the expression of a key clock protein, the period length of PER2 bioluminescence was shortened in the presence of AS19, a 5-HT7 partial agonist. This reduction was blocked by SB269970, a selective 5-HT7 antagonist. The SSRI, escitalopram, had no effect alone on period length, but a combination with SB269970, yielded significant increases. Dosed in vivo, escitalopram had little impact on the occurrence of activity onsets in rats given access to running wheels, whether the drug was given acutely or sub-chronically. However, preceding the escitalopram treatment with a single acute dose of SB269970 produced robust phase delays, in keeping with the in vitro explant data. Taken together, these findings suggest that the combination of an SSRI and a 5-HT7 receptor antagonist has a greater impact on circadian rhythms than that observed with either agent alone, and that such a multimodal approach may be of therapeutic value in treating patients with poor clock function.

  1. Synthesis and structural investigation of some pyrimido[5,4-c]quinolin-4(3H)-one derivatives with a long-chain arylpiperazine moiety as potent 5-HT(1A/2A) and 5-HT(7) receptor ligands.

    PubMed

    Lewgowd, Wieslawa; Bojarski, Andrzej J; Szczesio, Malgorzata; Olczak, Andrzej; Glowka, Marek L; Mordalski, Stefan; Stanczak, Andrzej

    2011-08-01

    A series of new pyrimido[5,4-c]quinolin-4(3H)-ones with variable length of the spacer between amide and 4-arylpiperazine moiety were prepared to further explore the role of a terminal portion in the serotonergic activity. The majority of compounds demonstrated high in vitro affinity for 5-HT(1A) receptor, and moderate-to-low affinity for 5-HT(2A) and 5-HT(7) receptors. X-ray analysis, two-dimensional NMR, conformational studies and docking into the 5-HT(1A) receptor model were conducted to investigate conformational preferences of selected 5-HT(1A) receptor ligands in different environments. The extended conformation of tetramethylene derivatives was found in a solid state, in DMSO (for a protonated form) and as a global energy minimum during conformational analysis in simulated water environment. Ligand geometry in top-scored complexes, obtained by docking to a set of 100 receptor models, were either fully extended or with central spacer torsion in synclinal conformation.

  2. Stimulation of 5-HT7 receptor during adolescence determines its persistent upregulation in adult rat forebrain areas.

    PubMed

    Nativio, Paola; Zoratto, Francesca; Romano, Emilia; Lacivita, Enza; Leopoldo, Marcello; Pascale, Esterina; Passarelli, Francesca; Laviola, Giovanni; Adriani, Walter

    2015-11-01

    Brain serotonin 7 (5-HT7) receptors play an important functional role in learning and memory, in regulation of mood and motivation, and for circadian rhythms. Recently, we have studied the modulatory effects of a developmental exposure (under subchronic regimen) in rats with LP-211, a brain-penetrant and selective 5-HT7 receptor agonist. We aimed at further deciphering long-term sequelae into adulthood. LP-211 (0.250 mg/kg i.p., once/day) was administered for 5 days during the adolescent phase (postnatal days 43-45 to 47-49). When adult (postnatal days >70), forebrain areas were obtained for ex vivo immunohistochemistry, whose results prompted us to reconsider the brain connectivity maps presented in our previous study (Canese et al., Psycho-Pharmacol 2015;232:75-89.) Significant elevation in levels of 5-HT7 receptors were evidenced due to adolescent LP-211 exposure, in dorsal striatum (which also shows an increase of dopaminergic D2 auto-receptors) and-unexpectedly-in piriform cortex, with no changes in ventral striatum. We observed that functional connectivity from a seed on the right hippocampus was more extended than reported, also including the piriform cortex. As a whole, the cortical loop rearranged by adolescent LP-211 exposure consisted in a hippocampus receiving connections from piriform cortex and dorsal striatum, the latter both directly and through functional control over the 'extended amygdala'. Such results represent a starting point to explore neurophysiology of 5-HT7 receptors. Further investigation is warranted to develop therapies for sleep disorders, for impaired emotional and motivational regulation, for attentive and executive deficit. The 5-HT7 agonist LP-211 (0.250 mg/kg i.p., once/day) was administered for 5 days during adolescence (postnatal days 43-45 to 47-49) in rats. When adult (postnatal days >70), a significant elevation in levels of 5-HT7 receptors were evidenced in dorsal striatum and-unexpectedly-in piriform cortex.

  3. Targeted inhibition of serotonin type 7 (5-HT7) receptor function modulates immune responses and reduces the severity of intestinal inflammation.

    PubMed

    Kim, Janice J; Bridle, Byram W; Ghia, Jean-Eric; Wang, Huaqing; Syed, Shahzad N; Manocha, Marcus M; Rengasamy, Palanivel; Shajib, Mohammad Sharif; Wan, Yonghong; Hedlund, Peter B; Khan, Waliul I

    2013-05-01

    Mucosal inflammation in conditions ranging from infective acute enteritis or colitis to inflammatory bowel disease is accompanied by alteration in serotonin (5-hydroxytryptamine [5-HT]) content in the gut. Recently, we have identified an important role of 5-HT in the pathogenesis of experimental colitis. 5-HT type 7 (5-HT7) receptor is one of the most recently identified members of the 5-HT receptor family, and dendritic cells express this receptor. In this study, we investigated the effect of blocking 5-HT7 receptor signaling in experimental colitis with a view to develop an improved therapeutic strategy in intestinal inflammatory disorders. Colitis was induced with dextran sulfate sodium (DSS) or dinitrobenzene sulfonic acid (DNBS) in mice treated with selective 5-HT7 receptor antagonist SB-269970, as well as in mice lacking 5-HT7 receptor (5-HT7(-/-)) and irradiated wild-type mice reconstituted with bone marrow cells harvested from 5-HT7(-/-) mice. Inhibition of 5-HT7 receptor signaling with SB-269970 ameliorated both acute and chronic colitis induced by DSS. Treatment with SB-269970 resulted in lower clinical disease, histological damage, and proinflammatory cytokine levels compared with vehicle-treated mice post-DSS. Colitis severity was significantly lower in 5-HT7(-/-) mice and in mice reconstituted with bone marrow cells from 5-HT7(-/-) mice compared with control mice after DSS colitis. 5-HT7(-/-) mice also had significantly reduced DNBS-induced colitis. These observations provide us with novel information on the critical role of the 5-HT7 receptor in immune response and inflammation in the gut, and highlight the potential benefit of targeting this receptor to alleviate the severity of intestinal inflammatory disorders such as inflammatory bowel disease.

  4. The serotonin 5-HT7 receptor agonist LP-44 microinjected into the dorsal raphe nucleus suppresses REM sleep in the rat.

    PubMed

    Monti, Jaime M; Leopoldo, Marcello; Jantos, Héctor

    2008-08-22

    The effects of LP-44, a selective 5-HT7 receptor agonist, and of SB-269970, a selective 5-HT7 receptor antagonist, on spontaneous sleep were studied in adult rats implanted for chronic sleep recordings. The 5-HT7 receptor ligands were microinjected directly into the dorsal raphe nucleus (DRN) during the light period of the 12-h light/12-h dark cycle. Infusion of LP-44 (1.25-5.0 mM) into the DRN induced a significant reduction of rapid-eye-movement sleep (REMS) and of the number of REM periods. Similar effects were observed after the direct administration into the DRN of SB-269970 (0.5-1.0 mM). Pretreatment with a dose of SB-269970 (0.5 mM) that significantly affects sleep variables antagonized the LP-44 (2.5 mM)-induced suppression of REMS and of the number of REM periods. It is proposed that the suppression of REMS after microinjection of LP-44 into the DRN is related, at least in part, to the activation of GABAergic neurons in the DRN that contribute to long projections that reach, among others, the laterodorsal and pedunculopontine tegmental nuclei involved in the promotion of REMS.

  5. The effects of a 5-HT7 receptor agonist and antagonist on morphine withdrawal syndrome in mice.

    PubMed

    Shahidi, Siamak; Hashemi-Firouzi, Nasrin

    2014-08-22

    Withdrawal from opioids leads to the expression of aversion behaviors. Previous studies have shown that the serotonergic system has an important role in morphine withdrawal syndrome. The 5-HT7 receptor is a recently discovered member of the 5-HT receptor family that has been shown to be involved in these behaviors. The aim of the present study was to test the role of the 5-HT7 receptor in withdrawal syndrome in morphine-dependent mice with AS19 and SB269970, a selective agonist and antagonist of this receptor, respectively. Dependence was induced by the repeated administration of morphine for five consecutive days. The morphine-dependent mice received AS19 (3, 5, or 10mg/kg, intraperitoneal) or SB269970 (1, 3, or 10mg/kg, intraperitoneal) 15 min prior to the precipitation of morphine withdrawal syndromes by naloxone (3mg/kg, subcutaneous). Withdrawal symptoms, including percent weight loss, jumping, teeth chattering, writhing, body and face grooming, sniffing, standing, and head and limb shaking, were recorded for 30 min after the naloxone injection. The morphine-dependent mice had significantly more withdrawal symptoms than naive control mice. The administration of AS19 reduced most of the morphine withdrawal symptoms. However, SB2699 increased some of the withdrawal symptoms, including teeth chattering, face grooming, jumping, and head and limb shaking. These findings suggest that the 5-HT7 receptor is involved in morphine withdrawal. Its activation decreased and its inactivation increased the morphine withdrawal syndrome. Further studies are recommended to better understand the role of the 5-HT7 receptor in morphine dependence and withdrawal.

  6. Pharmacological Blockade of Serotonin 5-HT7 Receptor Reverses Working Memory Deficits in Rats by Normalizing Cortical Glutamate Neurotransmission

    PubMed Central

    Bonaventure, Pascal; Aluisio, Leah; Shoblock, James; Boggs, Jamin D.; Fraser, Ian C.; Lord, Brian; Lovenberg, Timothy W.; Galici, Ruggero

    2011-01-01

    The role of 5-HT7 receptor has been demonstrated in various animal models of mood disorders; however its function in cognition remains largely speculative. This study evaluates the effects of SB-269970, a selective 5-HT7 antagonist, in a translational model of working memory deficit and investigates whether it modulates cortical glutamate and/or dopamine neurotransmission in rats. The effect of SB-269970 was evaluated in the delayed non-matching to position task alone or in combination with MK-801, a non-competitive NMDA receptor antagonist, and, in separate experiments, with scopolamine, a non-selective muscarinic antagonist. SB-269970 (10 mg/kg) significantly reversed the deficits induced by MK-801 (0.1 mg/kg) but augmented the deficit induced by scopolamine (0.06 mg/kg). The ability of SB-269970 to modulate MK-801-induced glutamate and dopamine extracellular levels was separately evaluated using biosensor technology and microdialysis in the prefrontal cortex of freely moving rats. SB-269970 normalized MK-801 -induced glutamate but not dopamine extracellular levels in the prefrontal cortex. Rat plasma and brain concentrations of MK-801 were not affected by co-administration of SB-269970, arguing for a pharmacodynamic rather than a pharmacokinetic mechanism. These results indicate that 5-HT7 receptor antagonists might reverse cognitive deficits associated with NMDA receptor hypofunction by selectively normalizing glutamatergic neurotransmission. PMID:21701689

  7. 5-HT7 receptor-mediated fear conditioning and possible involvement of extracellular signal-regulated kinase.

    PubMed

    Takeda, Kotaro; Tsuji, Minoru; Miyagawa, Kazuya; Takeda, Hiroshi

    2017-01-18

    Fear conditioning is a valuable behavioral paradigm for studying the neural basis of emotional learning and memory. The present study examined the involvement of extracellular signal-regulated kinase 1/2 (ERK) signaling on the serotonin (5-HT)7 receptor-mediated fear conditioning. Conditioning was performed in a trial in which a tone was followed by an electrical foot-shock. Context- and tone-dependent fear were examined in tests conducted 24 and 48h after conditioning, respectively. The selective 5-HT7 receptor antagonist 2a-[4-(4-phenyl-1,2,3,6-tetrahydropyridyl)butyl]-2a,3,4,-tetrahydrobenzo(c,d)indol-2-(1H)-one (DR4004) (5mg/kg), when administered intraperitoneally (i.p.) immediately after conditioning, caused a significant decrease in both context- and tone-dependent fear responses (freezing behavior). A significant increase in ERK activity was observed in the amygdala of mice that displayed context- or tone-dependent fear responses, and these changes were also inhibited by the administration of DR4004 (5mg/kg, i.p.) immediately after conditioning. In contrast, the increase in hippocampal ERK activity in mice that displayed context-dependent fear responses was further enhanced by the administration of DR4004 (5mg/kg, i.p.). These results suggest that 5-HT7 receptor-mediated ERK signaling may play a significant role in the processes of emotional learning and memory.

  8. 5-HT1A and 5-HT7 receptor crosstalk in the regulation of emotional memory: implications for effects of selective serotonin reuptake inhibitors.

    PubMed

    Eriksson, Therese M; Holst, Sarah; Stan, Tiberiu L; Hager, Torben; Sjögren, Benita; Ogren, Sven Öve; Svenningsson, Per; Stiedl, Oliver

    2012-11-01

    This study utilized pharmacological manipulations to analyze the role of direct and indirect activation of 5-HT(7) receptors (5-HT(7)Rs) in passive avoidance learning by assessing emotional memory in male C57BL/6J mice. Additionally, 5-HT(7)R binding affinity and 5-HT(7)R-mediated protein phosphorylation of downstream signaling targets were determined. Elevation of 5-HT by the selective serotonin reuptake inhibitor (SSRI) fluoxetine had no effect by itself, but facilitated emotional memory performance when combined with the 5-HT(1A)R antagonist NAD-299. This facilitation was blocked by the selective 5-HT(7)R antagonist SB269970, revealing excitatory effects of the SSRI via 5-HT(7)Rs. The enhanced memory retention by NAD-299 was blocked by SB269970, indicating that reduced activation of 5-HT(1A)Rs results in enhanced 5-HT stimulation of 5-HT(7)Rs. The putative 5-HT(7)R agonists LP-44 when administered systemically and AS19 when administered both systemically and into the dorsal hippocampus failed to facilitate memory. This finding is consistent with the low efficacy of LP-44 and AS19 to stimulate protein phosphorylation of 5-HT(7)R-activated signaling cascades. In contrast, increasing doses of the dual 5-HT(1A)R/5-HT(7)R agonist 8-OH-DPAT impaired memory, while co-administration with NAD-299 facilitated of emotional memory in a dose-dependent manner. This facilitation was blocked by SB269970 indicating 5-HT(7)R activation by 8-OH-DPAT. Dorsohippocampal infusion of 8-OH-DPAT impaired passive avoidance retention through hippocampal 5-HT(1A)R activation, while 5-HT(7)Rs appear to facilitate memory processes in a broader cortico-limbic network and not the hippocampus alone.

  9. Functional expression of 5-HT7 receptor on the substantia gelatinosa neurons of the trigeminal subnucleus caudalis in mice.

    PubMed

    Yang, Eun Ju; Han, Seong Kyu; Park, Soo Joung

    2013-10-25

    The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc; medullary dorsal horn) receives and processes orofacial nociceptive inputs, and serotonergic fibers involved in the descending modulation of nociception are more densely distributed in the superficial laminae of the Vc. This study investigated the direct effects of 5-HT1A/7 receptor agonist 8-OH-DPAT on SG neurons of the Vc to assess functional expression of the 5-HT7 receptor using gramicidin-perforated patch-clamp in postnatal day (PND) 5-84 male mice. Of the 70 SG neurons tested, bath application of 8-OH-DPAT (30μM) induced depolarization (n=33), hyperpolarization (n=16) or no response (n=21). In another 10 SG neurons, 8-OH-DPAT in the presence of 5-HT1A receptor antagonist WAY-100635 (1μM) elicited either depolarization (n=6) or no response (n=4); hyperpolarization was not observed. The 8-OH-DPAT-induced depolarization was significantly blocked by the selective 5-HT7 receptor antagonist SB-269970 (10μM; n=8), but not by WAY-100635 (1μM; n=5). The depolarizing effect of 8-OH-DPAT was maintained in the presence of TTX, CNQX, AP5, picrotoxin, and strychnine, indicating direct postsynaptic action of 8-OH-DPAT on SG neurons (n=6). 5-HT7 receptor mRNA was also detected in five of 21 SG neurons by single-cell RT-PCR. The mean amplitude of 8-OH-DPAT-induced depolarization in PND 5-21 mice (n=21) was significantly larger than that in PND 22-84 mice (n=12), although the proportion of SG neurons responding to 8-OH-DPAT by depolarization did not differ significantly between two age groups of mice. These results indicate that 5-HT7 receptors are functionally expressed in a subpopulation of SG neurons of the Vc and activation of 5-HT7 receptors plays an important role in modulating orofacial nociceptive processing in the SG neurons of the Vc.

  10. 5-HT7 receptors as modulators of neuronal excitability, synaptic transmission and plasticity: physiological role and possible implications in autism spectrum disorders

    PubMed Central

    Ciranna, Lucia; Catania, Maria Vincenza

    2014-01-01

    Serotonin type 7 receptors (5-HT7) are expressed in several brain areas, regulate brain development, synaptic transmission and plasticity, and therefore are involved in various brain functions such as learning and memory. A number of studies suggest that 5-HT7 receptors could be potential pharmacotherapeutic target for cognitive disorders. Several abnormalities of serotonergic system have been described in patients with autism spectrum disorder (ASD), including abnormal activity of 5-HT transporter, altered blood and brain 5-HT levels, reduced 5-HT synthesis and altered expression of 5-HT receptors in the brain. A specific role for 5-HT7 receptors in ASD has not yet been demonstrated but some evidence implicates their possible involvement. We have recently shown that 5-HT7 receptor activation rescues hippocampal synaptic plasticity in a mouse model of Fragile X Syndrome, a monogenic cause of autism. Several other studies have shown that 5-HT7 receptors modulate behavioral flexibility, exploratory behavior, mood disorders and epilepsy, which include core and co-morbid symptoms of ASD. These findings further suggest an involvement of 5-HT7 receptors in ASD. Here, we review the physiological roles of 5-HT7 receptors and their implications in Fragile X Syndrome and other ASD. PMID:25221471

  11. 5-HT7 receptors as modulators of neuronal excitability, synaptic transmission and plasticity: physiological role and possible implications in autism spectrum disorders.

    PubMed

    Ciranna, Lucia; Catania, Maria Vincenza

    2014-01-01

    Serotonin type 7 receptors (5-HT7) are expressed in several brain areas, regulate brain development, synaptic transmission and plasticity, and therefore are involved in various brain functions such as learning and memory. A number of studies suggest that 5-HT7 receptors could be potential pharmacotherapeutic target for cognitive disorders. Several abnormalities of serotonergic system have been described in patients with autism spectrum disorder (ASD), including abnormal activity of 5-HT transporter, altered blood and brain 5-HT levels, reduced 5-HT synthesis and altered expression of 5-HT receptors in the brain. A specific role for 5-HT7 receptors in ASD has not yet been demonstrated but some evidence implicates their possible involvement. We have recently shown that 5-HT7 receptor activation rescues hippocampal synaptic plasticity in a mouse model of Fragile X Syndrome, a monogenic cause of autism. Several other studies have shown that 5-HT7 receptors modulate behavioral flexibility, exploratory behavior, mood disorders and epilepsy, which include core and co-morbid symptoms of ASD. These findings further suggest an involvement of 5-HT7 receptors in ASD. Here, we review the physiological roles of 5-HT7 receptors and their implications in Fragile X Syndrome and other ASD.

  12. Corticosterone induced morphological changes of hippocampal and amygdaloid cell lines are dependent on 5-HT7 receptor related signal pathway.

    PubMed

    Xu, Y; Zhang, C; Wang, R; Govindarajan, S S; Barish, P A; Vernon, M M; Fu, C; Acharya, A P; Chen, L; Boykin, E; Yu, J; Pan, J; O'Donnell, J M; Ogle, W O

    2011-05-19

    Stress is an unavoidable life experience. It induces mood, cognitive dysfunction and plasticity changes in chronically stressed individuals. Among the various brain regions that have been studied, the hippocampus and amygdala have been observed to have different roles in controlling the limbic-hypothalamic-pituitary-adrenal axis (limbic-HPA axis). This study investigated how the stress hormone corticosterone (CORT) affects neuronal cells. The first aim is to test whether administration of CORT to hippocampal and amygdaloid cell lines induces different changes in the 5-HT receptor subtypes. The second goal is to determine whether stress induced morphological changes in these two cell lines were involved in the 5-HT receptor subtypes expression. We now show that 5-HT(7) receptor mRNA levels were significantly upregulated in HT-22 cells, but downregulated in AR-5 cells by exposure to a physiologically relevant level of CORT (50 μM) for 24 h, which was later confirmed by primary hippocampal and amygdaloid neuron cultures. Additionally, pretreatment of cells with 5-HT(7) antagonist SB-269970 or agonist LP-44 reversed CORT induced cell lesion in a dose-dependent manner. Moreover, CORT induced different changes in neurite length, number of neurites and soma size in HT-22 and AR-5 cells were also reversed by pretreatment with either SB-269970 or LP-44. The different effects of 5-HT(7) receptors on cell lines were observed in two members of the Rho family small GTPase expression: the Cdc-42 and RhoA. These observed results support the hypothesis that 5-HT may differentially modulate neuronal morphology in the hippocampus and amygdala depending on the expression levels of the 5-HT receptor subtypes during stress hormone insults.

  13. Effect of 5-HT7 receptor agonist, LP-211, on micturition following spinal cord injury in male rats

    PubMed Central

    Norouzi-Javidan, Abbas; Javanbakht, Javad; Barati, Fardin; Fakhraei, Nahid; Mohammadi, Fatemeh; Dehpour, Ahmad Reza

    2016-01-01

    Background and Purpose: Central and peripheral 5-hydroxytryptamine (5-HT) receptors play a critical role in regulation of micturition reflex. The aim of this study was to evaluate effect of a 5-HT7 receptor agonist, LP-211 (N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide) on micturition reflex in acute spinal cord-injured (SCI) rats during infusion of vehicle into the bladder. Methods: SCI was induced by compressing T10 segment using an aneurysm clip, extradurally in male rats. Following two weeks, LP-211 doses (0.003-0.3 mg/kg) were administered cumulatively (intraperitoneally, i.p.) with 20 min interval. The 5-HT7 antagonist, SB-269970 ((R)-3-[2-[2-(4-Methylpiperidin-1-yl) ethyl] pyrrolidine-1-sulfonyl] phenol hydrochloride), was administered after achievement of LP-211 dose-response. A cystometric study was performed 2 weeks after spinal crushing in all the animals. Cystometric variables consisting of micturition volume (voided volume), residual volume (volume remaining in the bladder after voiding), and bladder capacity (micturition volume plus residual volume). Voiding efficiency was calculated as the percent of micturition volume to bladder capacity. Findings: Intact and sham-operated rats showed few significant changes in micturition reflex. SCI rats responded to LP-211 (0.003-0.3, mg/kg, i.v.) with dose-dependent increases in bladder capacity, and residual volume. In this treatment group, LP-211 induced significant dose-dependent increases in micturition volume, resulting in significant increases in voiding efficiency (P<0.001) compared to intact and sham-operated rats, SB-269970 (0.1 mg/kg, i.v.) completely reversed the LP-211-induced changes on micturition volume and voiding efficiency was decreased significantly. Conclusion: The 5-HT7 receptors activation by LP-211 facilitated the micturition reflex. Furthermore, 5-HT7 receptors do seem to play an important role in physiological regulation of micturition, and as a result, may represent a

  14. Peripheral 5-HT1A and 5-HT7 Serotonergic Receptors Modulate Parasympathetic Neurotransmission in Long-Term Diabetic Rats

    PubMed Central

    Restrepo, Beatriz; Martín, María Luisa; San Román, Luis; Morán, Asunción

    2010-01-01

    We analyzed the modulation of serotonin on the bradycardia induced in vivo by vagal electrical stimulation in alloxan-induced long-term diabetic rats. Bolus intravenous administration of serotonin had a dual effect on the bradycardia induced either by vagal stimulation or exogenous Ach, increasing it at low doses and decreasing it at high doses of 5-hydroxytryptamine (5-HT), effect reproduced by 5-carboxamidotryptamine maleate (5-CT), a 5-HT1/7 agonist. The enhancement of the bradycardia at low doses of 5-CT was reproduced by 5-HT1A agonist 8-hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT) and abolished by WAY-100,635, 5-HT1A antagonist. Pretreatment with 5-HT1 antagonist methiothepin blocked the stimulatory and inhibitory effect of 5-CT, whereas pimozide, 5-HT7 antagonist, only abolished 5-CT inhibitory action. In conclusion, long-term diabetes elicits changes in the subtype of the 5-HT receptor involved in modulation of vagally induced bradycardia. Activation of the 5-HT1A receptors induces enhancement, whereas attenuation is due to 5-HT7 receptor activation. This 5-HT dual effect occurs at pre- and postjunctional levels. PMID:21403818

  15. Selective 5-HT7 receptor agonists LP 44 and LP 211 elicit an analgesic effect on formalin-induced orofacial pain in mice

    PubMed Central

    DEMİRKAYA, Kadriye; AKGÜN, Özlem Martı; ŞENEL, Buğra; ÖNCEL TORUN, Zeynep; SEYREK, Melik; LACİVİTA, Enza; LEOPOLDO, Marcello; DOĞRUL, Ahmet

    2016-01-01

    ABSTRACT The most recently identified serotonin (5-HT) receptor is the 5-HT7 receptor. The antinociceptive effects of a 5-HT7 receptor agonist have been shown in neuropathic and inflammatory animal models of pain. A recent study demonstrated the functional expression of 5-HT7 receptors in the substantia gelatinosa (SG) of the trigeminal subnucleus caudalis, which receives and processes orofacial nociceptive inputs. Objective To investigate the antinociceptive effects of pharmacological activation of 5-HT7 receptors on orofacial pain in mice. Material and Methods Nociception was evaluated by using an orofacial formalin test in male Balb-C mice. Selective 5-HT7 receptor agonists, LP 44 and LP 211 (1, 5, and 10 mg/kg), were given intraperitoneally 30 min prior to a formalin injection. A bolus of 10 µl of 4% subcutaneous formalin was injected into the upper lip of mice and facial grooming behaviors were monitored. The behavioral responses consisted of two distinct periods, the early phase corresponding to acute pain (Phase I: 0–12 min) and the late phase (Phase II: 12–30 min). Results LP 44 and LP 211 (1, 5, and 10 mg/kg) produced an analgesic effect with reductions in face rubbing time in both Phase I and Phase II of the formalin test. Conclusion Our results suggest that 5-HT7 receptor agonists may be promising analgesic drugs in the treatment of orofacial pain. PMID:27383702

  16. The arylpiperazine derivatives N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide and N-benzyl-4-(2-diphenyl)-1-piperazinehexanamide exert a long-lasting inhibition of human serotonin 5-HT7 receptor binding and cAMP signaling.

    PubMed

    Atanes, Patricio; Lacivita, Enza; Rodríguez, Javier; Brea, José; Burgueño, Javier; Vela, José Miguel; Cadavid, María Isabel; Loza, María Isabel; Leopoldo, Marcello; Castro, Marián

    2013-12-01

    We performed a detailed in vitro pharmacological characterization of two arylpiperazine derivatives, compound N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (LP-211) previously identified as a high-affinity brain penetrant ligand for 5-hydroxytryptamine (serotonin) type 7 (5-HT7) receptors, and its analog N-benzyl-4-(2-diphenyl)-1-piperazinehexanamide (MEL-9). Both ligands exhibited competitive displacement of [(3)H]-(2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine ([(3)H]-SB-269970) radioligand binding and insurmountable antagonism of 5-carboxamidotryptamine (5-CT)-stimulated cyclic adenosine monophosphate (cAMP) signaling in human embryonic kidney (HEK293) cells stably expressing human 5-HT7 receptors. They also inhibited forskolin-stimulated adenylate cyclase activity in 5-HT7-expressing HEK293 cells but not in the parental cell line. The compounds elicited long-lasting (at least 24 h) concentration-dependent inhibition of radioligand binding at 5-HT7-binding sites in whole-cell radioligand binding assays, after pretreatment of the cells with the compounds and subsequent compound removal. In cAMP assays, pretreatment of cells with the compounds rendered 5-HT7 receptors unresponsive to 5-CT and also rendered 5-HT7-expressing HEK293 cells unresponsive to forskolin. Compound 1-(2-biphenyl)piperazine (RA-7), a known active metabolite of LP-211 present in vivo, was able to partially inhibit 5-HT7 radioligand binding in a long-lasting irreversible manner. Hence, LP-211 and MEL-9 were identified as high-affinity long-acting inhibitors of human 5-HT7 receptor binding and function in cell lines. The detailed in vitro characterization of these two pharmacological tools targeting 5-HT7 receptors may benefit the study of 5-HT7 receptor function and it may lead to the development of novel selective pharmacological tools with defined functional properties at 5-HT7 receptors.

  17. The effects of the 5-HT(6) receptor agonist EMD and the 5-HT(7) receptor agonist AS19 on memory formation.

    PubMed

    Meneses, A; Perez-Garcia, G; Liy-Salmeron, G; Flores-Galvez, D; Castillo, C; Castillo, E

    2008-12-16

    Growing evidence indicates that 5-hydrohytryptamine (5-HT) receptors mediate learning and memory. Particularly interesting are 5-HT(6) and 5-HT(7) receptors, which are localized in brain areas involved in memory formation. Interestingly, recently selective 5-HT(6) and 5-HT(7) receptor agonists and antagonists have become available. Previous evidence indicates that 5-HT(6) or 5-HT(7) receptors antagonists had no effects, improved memory formation and/or reversed amnesia. Herein, the effects of EMD (a 5-HT(6) receptor agonist) and AS19 (a 5-HT(7) receptor agonist) in the associative learning task of autoshaping were studied. Post-training systemic administration of EMD (1-10 mg/kg) or AS19 (1-10 mg/kg) were tested in short-term memory (STM) and long-term memory (LTM). Results showed that only EMD 5.0mg/kg impaired both STM and LTM. AS19 at 1-10 mg/kg significantly impaired STM but not LTM. In those groups used to test only LTM, EMD impaired it; while AS19 improved LTM. Moreover, in the interaction experiments, the STM EMD-impairment effect was partially reversed by the selective 5-HT(6) receptor antagonist SB-399885 (10 mg/kg). The STM AS19-impairment effect (5.0 mg/kg) was not altered by the selective 5-HT(1A) antagonist WAY 100635 (0.3 mg/kg) but reversed by the selective 5-HT(7) receptor antagonist SB-269970 (10.0 mg/kg). The AS19-SB-269970 combination impaired LTM. Taken together these data suggest that the stimulation of 5-HT(6) impaired both STM and LTM. 5-HT(7) receptors stimulation impaired STM but improved LTM. And these results are discussed in the context of their possible neural bases.

  18. On the role of brain 5-HT7 receptor in the mechanism of hypothermia: comparison with hypothermia mediated via 5-HT1A and 5-HT3 receptor.

    PubMed

    Naumenko, Vladimir S; Kondaurova, Elena M; Popova, Nina K

    2011-12-01

    Intracerebroventricular administration of selective agonist of serotonin 5-HT(7) receptor LP44 (4-[2-(methylthio)phenyl]-N-(1,2,3,4-tetrahydro-1-naphthalenyl)-1-pyperasinehexanamide hydrochloride; 10.3, 20.5 or 41.0 nmol) produced considerable hypothermic response in CBA/Lac mice. LP44-induced (20.5 nmol) hypothermia was significantly attenuated by the selective 5-HT(7) receptor antagonist SB 269970 (16.1 fmol, i.c.v.) pretreatment. At the same time, intraperitoneal administration of LP44 in a wide range of doses 1.0, 2.0 or 10.0 mg/kg (2.0, 4.0, 20.0 μmol/kg) did not cause considerable hypothermic response. These findings indicate the implication of central, rather than peripheral 5-HT(7) receptors in the regulation of hypothermia. The comparison of LP44-induced (20.5 nmol) hypothermic reaction in eight inbred mouse strains (DBA/2J, CBA/Lac, C57BL/6, BALB/c, ICR, AKR/J, C3H and Asn) was performed and a significant effect of genotype was found. In the same eight mouse strains, functional activity of 5-HT(1A) and 5-HT(3) receptors was studied. The comparison of hypothermic responses produced by 5-HT(7) receptor agonist LP44 (20.5 nmol, i.c.v.) and 5-HT(1A) receptor agonist 8-OH-DPAT 1.0 mg/kg, i.p. (3.0 μmol/kg), 5-HT(3) receptor agonist m-CPBG (40.0 nmol, i.c.v.) did not reveal considerable interstrain correlations between 5-HT(7) and 5-HT(1A) or 5-HT(3) receptor-induced hypothermia. The selective 5-HT(7) receptor antagonist SB 269970 (16.1 fmol, i.c.v.) failed to attenuate the hypothermic effect of 8-OH-DPAT 1.0 mg/kg, i.p. (3.0 μmol/kg) and m-CPBG (40.0 nmol, i.c.v.) indicating that the brain 5-HT(7) receptor is not involved in the hypothermic effects of 8-OH-DPAT or m-CPBG. The obtained results suggest that the central 5-HT(7) receptor plays an essential role in the mediation of thermoregulation independent of 5-HT(1A) and 5-HT(3) receptors.

  19. The role of 5-HT7 receptor antagonism in the amelioration of MK-801-induced learning and memory deficits by the novel atypical antipsychotic drug lurasidone.

    PubMed

    Horisawa, Tomoko; Nishikawa, Hiroyuki; Toma, Satoko; Ikeda, Atsushi; Horiguchi, Masakuni; Ono, Michiko; Ishiyama, Takeo; Taiji, Mutsuo

    2013-05-01

    Lurasidone is a novel atypical antipsychotic with high affinity for dopamine D2, serotonin 5-HT7 and 5-HT2A receptors. We previously reported that lurasidone and the selective 5-HT7 receptor antagonist, SB-656104-A improved learning and memory deficits induced by MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist, in the rat passive avoidance test. In this study, we first examined the role of the 5-HT7 receptor antagonistic activity of lurasidone in its pro-cognitive effect to ameliorate MK-801-induced deficits in the rat passive avoidance test. The 5-HT7 receptor agonist, AS19, (2S)-(+)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino) tetralin, (3 mg/kg, s.c.) completely blocked the attenuating effects of lurasidone (3 mg/kg, p.o.), highlighting the importance of 5-HT7 receptor antagonism in the pro-cognitive effect of lurasidone. AS19 (3 mg/kg, s.c.) also blocked the ameliorating effect of SB-656104-A (10 mg/kg, i.p.) in the same experimental paradigm. To further extend our observation, we next tested whether 5-HT7 receptor antagonism still led to the amelioration of MK-801-induced deficits when combined with D2 and 5-HT2A receptor antagonists, and found that SB-656104-A (10 mg/kg, i.p.) significantly ameliorated MK-801-induced deficits even in the presence of the D2 receptor antagonist raclopride (0.1 mg/kg, s.c.) and 5-HT2A receptor antagonist ketanserin (1 mg/kg, s.c.). Taken together, these results suggest that the 5-HT7 receptor antagonistic activity of lurasidone plays an important role in its effectiveness against MK-801-induced deficits, and may contribute to its pharmacological actions in patients with schizophrenia.

  20. [CROSS-TALK BETWEEN 5-HT1A AND 5-HT7 RECEPTORS: ROLE IN THE AUTOREGULATION OF THE BRAIN SEROTONIN SYSTEM AND IN MECHANISM OF ANTIDEPRESSANTS ACTION].

    PubMed

    Popova, N K; Ponimaskin, E G; Naumenko, V S

    2015-11-01

    Recent studies considerably extended our knowledge of the mechanisms and physiological role of the interaction between different receptors in the brain. Current review summarizes data on the formation of receptor complexes and the role of such complexes in the autoregulation of the brain serotonin system, behavioral abnormalities and mechanism of antidepressants action. Particular attention is paid to 5-HT1A and 5-HT7 receptor heterodimers. The results described in the present review indicate that: i) dimerization and formation of mobile receptor complexes is a common feature for the members of G-protein coupled receptor superfamily; ii) 5-HT7 receptor appears to be a modulator for 5-HT1A receptor - the key autoregulator of the brain serotonin system; iii) 5-HT1A/5-HT7 receptor complexes formation is one of the mechanisms for inactivation and desensitization of the 5-HTIA receptors in the brain; iv) differences in the 5-HT7 receptor and 5-HTIA/5-HT7 heterodimers density define different sensitivity of pre- and postsynaptic 5-HTlA receptors to chronic treatment with selective serotonin reuptake inhibitors.

  1. Autoradiographic distribution of 5-HT7 receptors in the human brain using [3H]mesulergine: comparison to other mammalian species

    PubMed Central

    Martín-Cora, Francisco J; Pazos, Angel

    2003-01-01

    The main aim of this investigation was to delineate the distribution of the 5-HT7 receptor in human brain. Autoradiographic studies in guinea-pig and rat brain were also carried out in order to revisit and compare the anatomical distribution of 5-HT7 receptors in different mammalian species.Binding studies were performed in rat frontal cortex membranes using 10 nM [3H]mesulergine in the presence of raclopride (10 μM) and DOI (0.8 μM). Under these conditions, a binding site with pharmacological characteristics consistent with those of the 5-HT7 receptors was identified (rank order of binding affinity values: 5-CT>5-HT>5-MeOT>mesulergine ≈methiothepin>8-OH-DPAT=spiperone ≈(+)-butaclamol≫imipramine ≈(±)-pindolol≫ondansetron ≈clonidine ≈prazosin).The autoradiographic studies revealed that the anatomical distribution of 5-HT7 receptors throughout the human brain was heterogenous. High densities were found over the caudate and putamen nuclei, the pyramidal layer of the CA2 field of the hippocampus, the centromedial thalamic nucleus, and the dorsal raphe nucleus. The inner layer of the frontal cortex, the dentate gyrus of the hippocampus, the subthalamic nucleus and superior colliculus, among others, presented intermediate concentrations of 5-HT7 receptors. A similar brain anatomical distribution of 5-HT7 receptors was observed in all three mammalian species studied.By using [3H]mesulergine, we have mapped for the first time the anatomical distribution of 5-HT7 receptors in the human brain, overcoming the limitations previously found in radiometric studies with other radioligands, and also revisiting the distribution in guinea-pig and rat brain. PMID:14656806

  2. New 1-arylindoles based serotonin 5-HT7 antagonists. Synthesis and binding evaluation studies.

    PubMed

    Sagnes, Charlène; Fournet, Guy; Satala, Grzegorz; Bojarski, Andrzej J; Joseph, Benoît

    2014-03-21

    Based on 5-HT1A and 5-HT7 ligand MR25003 scaffold, a new series of 1-aryl indole analogues were prepared and evaluated against 5-HT7 receptors. Modulations of aryl moieties provided a large number of new indolic derivatives. Most of compounds tested have displayed 5-HT7 affinity in the nanomolar range. Among them, 1-(naphthyl)indole derivative 3p (Ki (5-HT7) = 4.5 nM) showed also a good selectivity over 5-HT1A, 5-HT2A and 5-HT6 receptors. This compound was pharmacology characterized as an antagonist.

  3. Effects of the selective 5-HT7 receptor antagonist SB-269970 and amisulpride on ketamine-induced schizophrenia-like deficits in rats.

    PubMed

    Nikiforuk, Agnieszka; Kos, Tomasz; Fijał, Katarzyna; Hołuj, Małgorzata; Rafa, Dominik; Popik, Piotr

    2013-01-01

    A wide body of evidence suggests that 5-HT7 receptors are implicated in a variety of central nervous system functions, including control of learning and memory processes. According to recent preclinical data, the selective blockade of these receptors may be a potential target for cognitive improvement in schizophrenia. The first aim of the present study was to evaluate the effects of the selective 5-HT7 receptor antagonist, SB-269970, and the antipsychotic drug with a high affinity for 5-HT7 receptors, amisulpride, on ketamine-induced deficits in attentional set-shifting and novel object recognition tasks in rats. Because the role of 5-HT7 receptor blockade in ameliorating positive and negative symptoms of schizophrenia remains equivocal, the second aim of these experiments was to examine the effectiveness of SB-269970 and amisulpride in reversing ketamine-induced deficits in prepulse inhibition of the startle reflex and in social interaction test in rats. The study revealed that acute administration of SB-269970 (1 mg/kg) or amisulpride (3 mg/kg) ameliorated ketamine-induced cognitive inflexibility and novel object recognition deficit in rats. Both compounds were also effective in attenuating ketamine-evoked disruption of social interactions. In contrast, neither SB-269970 nor amisulpride affected ketamine-disrupted prepulse inhibition or 50 kHz USVs accompanying social behaviour. In conclusion, antagonism of 5-HT7 receptors may represent a useful pharmacological approach in the treatment of cognitive deficits and some negative symptoms of schizophrenia.

  4. Antinociception by systemically-administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors.

    PubMed

    Liu, Jean; Reid, Allison R; Sawynok, Jana

    2013-03-01

    Acetaminophen (paracetamol) is a widely used analgesic, but its sites and mechanisms of action remain incompletely understood. Recent studies have separately implicated spinal adenosine A(1) receptors (A(1)Rs) and serotonin 5-HT(7) receptors (5-HT(7)Rs) in the antinociceptive effects of systemically administered acetaminophen. In the present study, we determined whether these two actions are linked by delivering a selective 5-HT(7)R antagonist to the spinal cord of mice and examining nociception using the formalin 2% model. In normal and A(1)R wild type mice, antinociception by systemic (i.p.) acetaminophen 300mg/kg was reduced by intrathecal (i.t.) delivery of the selective 5-HT(7)R antagonist SB269970 3μg. In mice lacking A(1)Rs, i.t. SB269970 did not reverse antinociception by systemic acetaminophen, indicating a link between spinal 5-HT(7)R and A(1)R mechanisms. We also explored potential roles of peripheral A(1)Rs in antinociception by acetaminophen administered both locally and systemically. In normal mice, intraplantar (i.pl.) acetaminophen 200μg produced antinociception in the formalin test, and this was blocked by co-administration of the selective A(1)R antagonist DPCPX 4.5μg. Acetaminophen administered into the contralateral hindpaw had no effect, indicating a local peripheral action. When acetaminophen was administered systemically, its antinociceptive effect was reversed by i.pl. DPCPX in normal mice; this was also observed in A(1)R wild type mice, but not in those lacking A(1)Rs. In summary, we demonstrate a link between spinal 5-HT(7)Rs and A(1)Rs in the spinal cord relevant to antinociception by systemic acetaminophen. Furthermore, we implicate peripheral A(1)Rs in the antinociceptive effects of locally- and systemically-administered acetaminophen.

  5. Antiallodynic effect of tianeptine via modulation of the 5-HT7 receptor of GABAergic interneurons in the spinal cord of neuropathic rats.

    PubMed

    Lin, Hai; Heo, Bong Ha; Kim, Woong Mo; Kim, Yong Chul; Yoon, Myung Ha

    2015-06-26

    Although tianeptine, an atypical antidepressant has been reported to have antinociceptive effects, the mode of action is different from that of tricyclic antidepressants despite structural similarities. We examined the antiallodynic effect of intrathecal tianeptine in neuropathic pain rats and determined the involvement of 5-hydroxytryptamine type 7 (5-HT7) receptor of the GABAergic interneurons in the spinal cord. Neuropathic pain was induced by spinal nerve ligation (SNL). After observation of the effect from intrathecal tianeptine, a 5-HT7 receptor antagonist (SB-269970) was administered intrathecally 10 min before delivery of tianeptine, to determine the contribution of spinal 5-HT7 receptor on the activity of tianeptine. GAD expression and GABA concentrations were assessed. Intrathecal tianeptine dose-dependently attenuated mechanical allodynia in SNL rats. Pre-treatment with intrathecal SB-269970 reversed the antiallodynic effect of tianeptine. Both GAD65 expression and the GABA concentration in the spinal cord were decreased in neuropathic rats but were increased by tianeptine. Additionally, 5-HT7 receptor and GAD65 were co-localized in the spinal cord. Intrathecal tianeptine reduces neuropathic pain. 5-HT7 receptor of the GABAergic interneurons together with GAD65 plays a role in the activity of tianeptine at the spinal cord level.

  6. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity

    PubMed Central

    Shelton, Jonathan; Yun, Sujin; Losee Olson, Susan; Turek, Fred; Bonaventure, Pascal; Dvorak, Curt; Lovenberg, Timothy; Dugovic, Christine

    2015-01-01

    Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg) in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT) points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6) induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg). Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15) or advance (CT22) wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals. PMID:25642174

  7. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity.

    PubMed

    Shelton, Jonathan; Yun, Sujin; Losee Olson, Susan; Turek, Fred; Bonaventure, Pascal; Dvorak, Curt; Lovenberg, Timothy; Dugovic, Christine

    2014-01-01

    Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg) in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT) points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6) induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg). Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15) or advance (CT22) wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals.

  8. Spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors, are involved in antinociception by systemically administered amitriptyline.

    PubMed

    Liu, Jean; Reid, Allison R; Sawynok, Jana

    2013-01-05

    The present study explored a link between spinal 5-HT(7) and adenosine A(1) receptors in antinociception by systemic amitriptyline in normal and adenosine A(1) receptor knock-out mice using the 2% formalin test. In normal mice, antinociception by systemic amitriptyline 3mg/kg was blocked by intrathecal administration of the selective adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) 10 nmol. Blockade was also seen in adenosine A(1) receptor +/+ mice, but not in -/- mice lacking these receptors. In both normal and adenosine A(1) receptor +/+ mice, the selective 5-HT(7) receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride (SB269970) 3 μg blocked antinociception by systemic amitriptyline, but it did not prevent antinociception in adenosine A(1) receptor -/- mice. In normal mice, flinching was unaltered when the selective 5-HT(7) receptor agonist (2S)-(+)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino)tetralin (AS-19) 20 μg was administered alone, but increased when co-administered intrathecally with DPCPX 10 nmol or SB269970 3 μg. Intrathecal AS-19 decreased flinching in adenosine A(1) receptor +/+ mice compared to -/- mice. Systemic amitriptyline appears to reduce nociception by activating spinal adenosine A(1) receptors secondarily to 5-HT(7) receptors. Spinal actions constitute only one aspect of antinociception by amitriptyline, as intraplantar DPCPX 10 nmol blocked antinociception by systemic amitriptyline in normal and adenosine A(1) receptor +/+, but not -/- mice. Adenosine A(1) receptor interactions are worthy of attention, as chronic oral caffeine (0.1, 0.3g/L, doses considered relevant to human intake levels) blocked antinociception by systemic amitriptyline in normal mice. In conclusion, adenosine A(1) receptors contribute to antinociception by systemic amitriptyline in both spinal and peripheral compartments.

  9. Human 5-HT7 receptor-induced inactivation of forskolin-stimulated adenylate cyclase by risperidone, 9-OH-risperidone and other "inactivating antagonists".

    PubMed

    Toohey, Nicole; Klein, Michael T; Knight, Jessica; Smith, Carol; Teitler, Milt

    2009-09-01

    We have previously reported on the unusual human 5-hydroxytryptamine(7) (h5-HT(7)) receptor-inactivating properties of risperidone, 9-OH-risperidone, bromocriptine, methiothepin, metergoline, and lisuride. Inactivation was defined as the inability of 10 microM 5-HT to stimulate cAMP accumulation after brief exposure and thorough removal of the drugs from HEK293 cells expressing h5-HT(7) receptors. Herein we report that brief exposure of the h5-HT(7) receptor-expressing cells to inactivating drugs, followed by removal of the drugs, results in potent and efficacious irreversible inhibition of forskolin-stimulated adenylate cyclase activity. Pretreatment, followed by removal of the inactivating drugs inhibited 10 microM forskolin-stimulated adenylate cyclase activity with potencies similar to the drugs' affinities for the h5-HT(7) receptor. The actions of the inactivating drugs were pertussis toxin-insensitive, indicating the lack of G(i) in their mechanism(s) of action. Methiothepin and bromocriptine maximally inhibited 10 microM forskolin-stimulated adenylate cyclase, whereas the other drugs produced partial inhibition, indicating the drugs are inducing slightly different inactive conformations of the h5-HT(7) receptor. Maximal effects of these inactivating drugs occurred within 15 to 30 min of exposure of the cells to the drugs. A G(s)-mediated inhibition of forskolin-stimulated activity has never been reported. The inactivating antagonists seem to induce a stable conformation of the h5-HT(7) receptor, which induces an altered state of G(s), which, in turn, inhibits forskolin-mediated stimulation of adenylate cyclase. These and previous observations indicate that the inactivating antagonists represent a unique class of drugs and may reveal GPCR regulatory mechanisms previously unknown. These drugs may produce innovative approaches to the development of therapeutic drugs.

  10. Solid-Supported Synthesis and 5-HT7 /5-HT1A Receptor Affinity of Arylpiperazinylbutyl Derivatives of 4,5-dihydro-1,2,4-triazine-6-(1H)-one.

    PubMed

    Grychowska, Katarzyna; Masurier, Nicolas; Verdié, Pascal; Satała, Grzegorz; Bojarski, Andrzej J; Martinez, Jean; Pawłowski, Maciej; Subra, Gilles; Zajdel, Paweł

    2015-10-01

    A series of arylpiperazinylbutyl derivatives of 4,5-dihydro-1,2,4-triazine-6(1H)-ones was designed and synthesized according to the new solid-supported methodology. In this approach, triazinone scaffold was constructed from the Fmoc-protected glycine. The library representatives showed different levels of affinity for 5-HT7 and 5-HT1A receptors; compounds 13, 14 and 18-20 were classified as dual 5-HT7 /5-HT1A receptors ligands. The structure-affinity relationship analysis revealed that the receptor affinity and selectivity of the tested compounds depended on the kind of substituent in position 3 of triazinone fragment as well as substitution pattern of the phenylpiperazine moiety.

  11. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory

    PubMed Central

    Stiedl, Oliver; Pappa, Elpiniki; Konradsson-Geuken, Åsa; Ögren, Sven Ove

    2015-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR) subtypes, the 5-HT1AR and 5-HT7R are associated with the development of anxiety, depression and cognitive function linked to mechanisms of emotional learning and memory. In rodents fear conditioning and passive avoidance (PA) are associative learning paradigms to study emotional memory. This review assesses the role of 5-HT1AR and 5-HT7R as well as their interplay at the molecular, neurochemical and behavioral level. Activation of postsynaptic 5-HT1ARs impairs emotional memory through attenuation of neuronal activity, whereas presynaptic 5-HT1AR activation reduces 5-HT release and exerts pro-cognitive effects on PA retention. Antagonism of the 5-HT1AR facilitates memory retention possibly via 5-HT7R activation and evidence is provided that 5HT7R can facilitate emotional memory upon reduced 5-HT1AR transmission. These findings highlight the differential role of these 5-HTRs in cognitive/emotional domains of behavior. Moreover, the results indicate that tonic and phasic 5-HT release can exert different and potentially opposing effects on emotional memory, depending on the states of 5-HT1ARs and 5-HT7Rs and their interaction. Consequently, individual differences due to genetic and/or epigenetic mechanisms play an essential role for the responsiveness to drug treatment, e.g., by SSRIs which increase intrasynaptic 5-HT levels thereby activating multiple pre- and postsynaptic 5-HTR subtypes. PMID:26300776

  12. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory.

    PubMed

    Stiedl, Oliver; Pappa, Elpiniki; Konradsson-Geuken, Åsa; Ögren, Sven Ove

    2015-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR) subtypes, the 5-HT1AR and 5-HT7R are associated with the development of anxiety, depression and cognitive function linked to mechanisms of emotional learning and memory. In rodents fear conditioning and passive avoidance (PA) are associative learning paradigms to study emotional memory. This review assesses the role of 5-HT1AR and 5-HT7R as well as their interplay at the molecular, neurochemical and behavioral level. Activation of postsynaptic 5-HT1ARs impairs emotional memory through attenuation of neuronal activity, whereas presynaptic 5-HT1AR activation reduces 5-HT release and exerts pro-cognitive effects on PA retention. Antagonism of the 5-HT1AR facilitates memory retention possibly via 5-HT7R activation and evidence is provided that 5HT7R can facilitate emotional memory upon reduced 5-HT1AR transmission. These findings highlight the differential role of these 5-HTRs in cognitive/emotional domains of behavior. Moreover, the results indicate that tonic and phasic 5-HT release can exert different and potentially opposing effects on emotional memory, depending on the states of 5-HT1ARs and 5-HT7Rs and their interaction. Consequently, individual differences due to genetic and/or epigenetic mechanisms play an essential role for the responsiveness to drug treatment, e.g., by SSRIs which increase intrasynaptic 5-HT levels thereby activating multiple pre- and postsynaptic 5-HTR subtypes.

  13. Assignment of the 5HT7 receptor gene (HTR7) to chromosome 10q and exclusion of genetic linkage with Tourette syndrome

    SciTech Connect

    Gelernter, J.; Rao, P.A.; Pauls, D.L.

    1995-03-20

    A novel serotonin receptor designated 5HT7 (genetic locus HTR7) was cloned in 1993. This receptor has interesting properties related to ligand affinity and CNS distribution that render HTR7 a very interesting candidate gene for neuropsychiatric disorders. We mapped this gene, first by physical methods and then by genetic linkage. First, we made a tentative assignment to chromosome 10, based on hybridization of an HTR7 probe to a Southern blot of DNA from somatic cell hybrids. We then identified a genetic polymorphism at the HTR7 locus. We identified one extended pedigree where the polymorphism segregated. Using the LEPED computer program for pairwise linkage analysis, we confirmed the assignment of the gene to chromosome 10, specifically 10q21-q24, based on a lod score of 5.37 at 0% recombination between HTR7 and D10S20 (a chromosome 10 reference marker). Finally, we excluded genetic linkage between this locus and Tourette syndrome under a reasonable set of assumptions. 15 refs., 1 fig., 1 tab.

  14. The Serotonin 5-HT7Dro Receptor Is Expressed in the Brain of Drosophila, and Is Essential for Normal Courtship and Mating

    PubMed Central

    Becnel, Jaime; Johnson, Oralee; Luo, Jiangnan; Nässel, Dick R.; Nichols, Charles D.

    2011-01-01

    The 5-HT7 receptor remains one of the less well characterized serotonin receptors. Although it has been demonstrated to be involved in the regulation of mood, sleep, and circadian rhythms, as well as relaxation of vascular smooth muscles in mammals, the precise mechanisms underlying these functions remain largely unknown. The fruit fly, Drosophila melanogaster, is an attractive model organism to study neuropharmacological, molecular, and behavioral processes that are largely conserved with mammals. Drosophila express a homolog of the mammalian 5-HT7 receptor, as well as homologs for the mammalian 5-HT1A, and 5-HT2, receptors. Each fly receptor couples to the same effector pathway as their mammalian counterpart and have been demonstrated to mediate similar behavioral responses. Here, we report on the expression and function of the 5-HT7Dro receptor in Drosophila. In the larval central nervous system, expression is detected postsynaptically in discreet cells and neuronal circuits. In the adult brain there is strong expression in all large-field R neurons that innervate the ellipsoid body, as well as in a small group of cells that cluster with the PDF-positive LNvs neurons that mediate circadian activity. Following both pharmacological and genetic approaches, we have found that 5-HT7Dro activity is essential for normal courtship and mating behaviors in the fly, where it appears to mediate levels of interest in both males and females. This is the first reported evidence of direct involvement of a particular serotonin receptor subtype in courtship and mating in the fly. PMID:21674056

  15. Synthesis and structure-activity relationships of new carbonyl guanidine derivatives as novel dual 5-HT2B and 5-HT7 receptor antagonists.

    PubMed

    Moritomo, Ayako; Yamada, Hiroyoshi; Watanabe, Toshihiro; Itahana, Hirotsune; Akuzawa, Shinobu; Okada, Minoru; Ohta, Mitsuaki

    2013-12-15

    To identify potent dual 5-HT2B and 5-HT7 receptor antagonists, we synthesized a series of novel carbonyl guanidine derivatives and examined their structure-activity relationships. Among these compounds, N-(9-hydroxy-9H-fluorene-2-carbonyl)guanidine (10) had a good in vitro profile, that is, potent affinity for human 5-HT2B and 5-HT7 receptor subtypes (Ki=1.8 nM and Ki=17.6 nM, respectively) and high selectivity over 5-HT2A, 5-HT2C, α1, D2 and M1 receptors. Compound 10 also showed a suppressing effect on 5-HT-induced dural protein extravasation in guinea pigs when orally administered.

  16. Effects of the selective 5-HT7 receptor antagonist SB-269970 on premature responding in the five-choice serial reaction time test in rats.

    PubMed

    Nikiforuk, Agnieszka; Hołuj, Małgorzata; Potasiewicz, Agnieszka; Popik, Piotr

    2015-08-01

    The antagonists of serotonin 5-HT7 receptors have been demonstrated to ameliorate cognitive impairments in pharmacological animal models of schizophrenia that involve blockade of N-methyl-D-aspartate receptors (NMDARs). The administration of NMDAR antagonists evokes a broad range of cognitive deficits, including a loss of impulse control. The involvement of 5-HT7 receptors in the modulation of impulsivity has been recently suggested but has not been studied in great detail. The aim of the present study was to examine the effect of a selective 5-HT7 receptor antagonist SB-269970 on a measure of impulsive action, i.e., premature responding on the five-choice serial reaction time task (5-CSRTT) in rats. The antagonist of 5-HT2A receptor M100,907 was used as a positive control. The efficacies of both compounds were assessed in conditions of increased impulsivity that were produced by the administration of the NMDAR antagonist MK-801 or/and non-drug stimuli, i.e., using variable inter-trial intervals (vITIs). To examine the general ability of SB-269970 to counteract the MK-801-induced impairments, a discrete paired-trial delayed alternation task in a T-maze was employed. MK-801 significantly increased the number of premature responses in 5-CSRTT, and this effect was abolished by the administration of M100,907 (0.5 mg/kg) and SB-269970 (1 mg/kg). In addition, M100,907, but not SB-269970, reduced premature responding in the prolonged ITI trials. Both M100,907 and SB-269970 attenuated MK-801-induced working memory impairment in a T-maze. The present study demonstrated the efficacy of SB-269970 against MK-801-induced premature responding in the 5-CSRTT. This anti-impulsive action may offer additional benefits to the cognitive-enhancing effects of pharmacological blockade of 5-HT7 receptors.

  17. The 5-HT(7) receptor antagonist SB 269970 counteracts restraint stress-induced attenuation of long-term potentiation in rat frontal cortex.

    PubMed

    Tokarski, K; Bobula, B; Kusek, M; Hess, G

    2011-12-01

    The effects of restraint lasting for 10 min, repeated twice daily for 3 days, were studied ex vivo in rat frontal cortex slices prepared 24 h after the last stress session. In slices originating from stressed animals, the amplitude of extracellular field potentials recorded in cortical layer II/III was increased. Stress also resulted in a reduced magnitude of long-term potentiation (LTP) of field potentials. In a separate experimental group, rats were subjected to restraint lasting for 10 min, twice daily for 3 days but, additionally, animals received injections of 5-HT(7) receptor antagonist SB 269970 (1.25 mg/kg) before each restraint stress session. In this group, the amplitude of field potentials and the magnitude of LTP were not different from the control, indicating that stress-induced modifications of basal glutamatergic transmission and synaptic plasticity were prevented by the 5-HT(7) receptor antagonist.

  18. In Vivo Effect of a 5-HT7 Receptor Agonist on 5-HT Neurons and GABA Interneurons in the Dorsal Raphe Nuclei of Sham and PD Rats.

    PubMed

    Wang, Shuang; Zhao, Yan; Gao, Jie; Guo, Yufang; Wang, Xiang; Huo, Jian; Wei, Ping; Cao, Jian

    2017-03-01

    The 5-hydroxytryptamine (5-HT; serotonin) neurotransmission is severely affected by the degeneration of nigrostriatal dopaminergic neurons. Here, we report the effects of the systemic administration of the 5-HT7 receptor agonist AS-19. In sham rats, the mean response of the 5-HT neurons in the dorsal raphe nucleus (DRN) to systemic AS-19 was excitatory and the mean response of the γ-aminobutyric acid (GABA) interneurons was inhibitory. In Parkinson disease (PD) rats, the same dose did not affect the 5-HT neurons and only high doses (640 μg/kg intravenous) were able to the increase GABA interneuron activity. These results indicate that DRN 5-HT neurons and GABA interneurons are regulated by the activation of 5-HT7 receptors and that the degeneration of the nigrostriatal pathway leads to decreased responses of these neurons to AS-19, which in turn suggests that the 5-HT7 receptors on 5-HT neurons and GABA interneurons in PD rats are dysfunctional and downregulated.

  19. Intrathecal nefopam-induced antinociception through activation of descending serotonergic projections involving spinal 5-HT7 but not 5-HT3 receptors.

    PubMed

    Lee, Hyung Gon; Kim, Woong Mo; Kim, Joung Min; Bae, Hong-Beom; Choi, Jeong Il

    2015-02-05

    We examined the involvement of spinal 5-HT(5-hydroxytryptamine) receptor 3(5-HT3R) and 7(5-HT7R) as well as the overall role of descending serotonergic projections in the analgesic effects of intrathecal(i.t.) nefopam for two rat models of formalin and paw incision test. I.t. nefopam produced an antinociceptive effect in a dose-dependent manner in both tests. Lesioning the spinal serotonergic projections using i.t. 5,7-dihydroxytryptamine(5,7-DHT) did not influence the intensity of allodynia in the paw incision test, but i.t. 5,7-DHT abolished the effect of nefopam. In the formain test, i.t. 5,7-DHT alone significantly diminished the flinches, but the effect of nefopam was not affected by i.t. 5,7-DHT. Antagonism study showed that i.t. 5-HT7R antagonist, SB269970 significantly blocked the antinociceptive effect of nefopam in both tests, but i.t. 5-HT3R antagonist, ondansetron has no influence on the effect of nefopam. The present study demonstrates that descending spinal serotonergic projections play a vital role in antinociceptive effect of i.t. nefopam in the paw incision test, but indeterminate in the formalin test. In both tests, the antinociceptive effect of i.t. nefopam involves the spinal 5-HT7R, but not 5-HT3R.

  20. Novel agonists for serotonin 5-HT7 receptors reverse metabotropic glutamate receptor-mediated long-term depression in the hippocampus of wild-type and Fmr1 KO mice, a model of Fragile X Syndrome.

    PubMed

    Costa, Lara; Sardone, Lara M; Lacivita, Enza; Leopoldo, Marcello; Ciranna, Lucia

    2015-01-01

    Serotonin 5-HT7 receptors are expressed in the hippocampus and modulate the excitability of hippocampal neurons. We have previously shown that 5-HT7 receptors modulate glutamate-mediated hippocampal synaptic transmission and long-term synaptic plasticity. In particular, we have shown that activation of 5-HT7 receptors reversed metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD) in wild-type (wt) and in Fmr1 KO mice, a mouse model of Fragile X Syndrome in which mGluR-LTD is abnormally enhanced, suggesting that 5-HT7 receptor agonists might be envisaged as a novel therapeutic strategy for Fragile X Syndrome. In this perspective, we have characterized the basic in vitro pharmacokinetic properties of novel molecules with high binding affinity and selectivity for 5-HT7 receptors and we have tested their effects on synaptic plasticity using patch clamp on acute hippocampal slices. Here we show that LP-211, a high affinity selective agonist of 5-HT7 receptors, reverses mGluR-LTD in wt and Fmr1 KO mice, correcting a synaptic malfunction in the mouse model of Fragile X Syndrome. Among novel putative agonists of 5-HT7 receptors, the compound BA-10 displayed improved affinity and selectivity for 5-HT7 receptors and improved in vitro pharmacokinetic properties with respect to LP-211. BA-10 significantly reversed mGluR-LTD in the CA3-CA1 synapse in wt and Fmr1KO mice, indicating that BA-10 behaved as a highly effective agonist of 5-HT7 receptors and reduced exaggerated mGluR-LTD in a mouse model of Fragile X Syndrome. On the other side, the compounds RA-7 and PM-20, respectively arising from in vivo metabolism of LP-211 and BA-10, had no effect on mGluR-LTD thus did not behave as agonists of 5-HT7 receptors in our conditions. The present results provide information about the structure-activity relationship of novel 5-HT7 receptor agonists and indicate that LP-211 and BA-10 might be used as novel pharmacological tools for the therapy of Fragile X Syndrome.

  1. Novel agonists for serotonin 5-HT7 receptors reverse metabotropic glutamate receptor-mediated long-term depression in the hippocampus of wild-type and Fmr1 KO mice, a model of Fragile X Syndrome

    PubMed Central

    Costa, Lara; Sardone, Lara M.; Lacivita, Enza; Leopoldo, Marcello; Ciranna, Lucia

    2015-01-01

    Serotonin 5-HT7 receptors are expressed in the hippocampus and modulate the excitability of hippocampal neurons. We have previously shown that 5-HT7 receptors modulate glutamate-mediated hippocampal synaptic transmission and long-term synaptic plasticity. In particular, we have shown that activation of 5-HT7 receptors reversed metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD) in wild-type (wt) and in Fmr1 KO mice, a mouse model of Fragile X Syndrome in which mGluR-LTD is abnormally enhanced, suggesting that 5-HT7 receptor agonists might be envisaged as a novel therapeutic strategy for Fragile X Syndrome. In this perspective, we have characterized the basic in vitro pharmacokinetic properties of novel molecules with high binding affinity and selectivity for 5-HT7 receptors and we have tested their effects on synaptic plasticity using patch clamp on acute hippocampal slices. Here we show that LP-211, a high affinity selective agonist of 5-HT7 receptors, reverses mGluR-LTD in wt and Fmr1 KO mice, correcting a synaptic malfunction in the mouse model of Fragile X Syndrome. Among novel putative agonists of 5-HT7 receptors, the compound BA-10 displayed improved affinity and selectivity for 5-HT7 receptors and improved in vitro pharmacokinetic properties with respect to LP-211. BA-10 significantly reversed mGluR-LTD in the CA3-CA1 synapse in wt and Fmr1KO mice, indicating that BA-10 behaved as a highly effective agonist of 5-HT7 receptors and reduced exaggerated mGluR-LTD in a mouse model of Fragile X Syndrome. On the other side, the compounds RA-7 and PM-20, respectively arising from in vivo metabolism of LP-211 and BA-10, had no effect on mGluR-LTD thus did not behave as agonists of 5-HT7 receptors in our conditions. The present results provide information about the structure-activity relationship of novel 5-HT7 receptor agonists and indicate that LP-211 and BA-10 might be used as novel pharmacological tools for the therapy of Fragile X Syndrome

  2. Role of 5-HT(1A) and 5-HT(7) receptors in the facilitatory response induced by 8-OH-DPAT on learning consolidation.

    PubMed

    Meneses, A; Terrón, J A

    2001-06-01

    The present study further explored the mechanisms involved in the facilitatory effect induced by (+/-)-8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) on learning consolidation. For this purpose, we analyzed in parallel the effects of LY215840 and ritanserin, two 5-HT(2) receptor antagonists with high affinity for the 5-HT(7) receptor, and WAY100635, a selective 5-HT(1A) receptor antagonist, on the facilitatory effect induced by 8-OH-DPAT on learning consolidation. We also determined whether LY215840 and/or ritanserin could be beneficial in restoring a deficient learning condition. Using the model of autoshaping task, post-training injection of LY215840 or WAY100635 had no effect on learning consolidation. However, both drugs abolished the enhancing effect of 8-OH-DPAT, with LY215840 being slightly more effective than WAY100635 in this respect. Ritanserin produced an increase in performance by itself and also abolished the effect of 8-OH-DPAT. Remarkably, selective blockade of 5-HT(2A) and 5-HT(2B/2C) receptors with MDL100907 and SB200646, respectively, failed to alter the 8-OH-DPAT effect. LY215840 and ritanserin, at the doses that inhibited the 8-OH-DPAT-induced response, reversed the learning deficits induced by scopolamine and dizocilpine. The present results suggest that the enhancing effect produced by 8-OH-DPAT on learning consolidation involves activation of 5-HT(1A) receptors and an additional mechanism, probably related to the 5-HT(7) receptor. Blockade of 5-HT(2) receptors, and perhaps of 5-HT(7) receptors as well, may provide some benefit in reversing learning deficits associated with decreased cholinergic and/or glutamatergic neurotransmission.

  3. Brown adipose tissue sympathetic nerve activity is potentiated by activation of 5-hydroxytryptamine (5-HT)1A/5-HT7 receptors in the rat spinal cord

    PubMed Central

    Madden, C. J.; Morrison, S. F.

    2008-01-01

    In urethane-chloralose anesthetized, neuromuscularly blocked, ventilated rats, microinjection of NMDA (12 pmol) into the right fourth thoracic segment (T4) spinal intermediolateral nucleus (IML) immediately increased ipsilateral brown adipose tissue (BAT) sympathetic nerve activity (SNA; peak +492% of control), expired CO2 (+0.1%) heart rate (+48 beats min−1) and arterial pressure (+8 mmHg). The increase in BAT SNA evoked by T4 IML microinjection of NMDA was potentiated when it was administered immediately following a T4 IML microinjection of 5-hydroxytryptamine (5-HT, 100 pmol) or the 5-HT1A/5-HT7 receptor agonist, 8-OH-DPAT (600 pmol), (area under the curve: 184%, and 259% of the NMDA-only response, respectively). In contrast, T4 IML microinjection of the 5-HT2 receptor agonist, DOI (28 pmol) did not potentiate the NMDA-evoked increase in BAT SNA (101% of NMDA-only response). Microinjection into the T4 IML of the selective 5-HT1A antagonist, WAY-100635 (500 pmol), plus the 5-HT7 antagonist, SB-269970 (500 pmol), prevented the 5-HT-induced potentiation of the NMDA-evoked increase in BAT SNA. When administered separately, WAY-100635 (800 pmol) and SB-269970 (800 pmol) attenuated the 8-OH-DPAT-induced potentiation of the NMDA-evoked increase in BAT SNA through effects on the amplitude and duration of the response, respectively. The selective 5-HT2 receptor antagonist, ketanserin (100 pmol), did not attenuate the potentiations of the NMDA-evoked increase in BAT SNA induced by either 5-HT or 8-OH-DPAT. These results demonstrate that activation of 5-HT1A/5-HT7 receptors can act synergistically with NMDA receptor activation within the IML to markedly increase BAT SNA. PMID:18082230

  4. An Orally Active Phenylaminotetralin-Chemotype Serotonin 5-HT7 and 5-HT1A Receptor Partial Agonist that Corrects Motor Stereotypy in Mouse Models.

    PubMed

    Canal, Clinton E; Felsing, Daniel E; Liu, Yue; Zhu, Wanying; Wood, JodiAnne T; Perry, Charles K; Vemula, Rajender; Booth, Raymond G

    2015-07-15

    Stereotypy (e.g., repetitive hand waving) is a key phenotype of autism spectrum disorder, Fragile X and Rett syndromes, and other neuropsychiatric disorders, and its severity correlates with cognitive and attention deficits. There are no effective treatments, however, for stereotypy. Perturbation of serotonin (5-HT) neurotransmission contributes to stereotypy, suggesting that distinct 5-HT receptors may be pharmacotherapeutic targets to treat stereotypy and related neuropsychiatric symptoms. For example, preclinical studies indicate that 5-HT7 receptor activation corrects deficits in mouse models of Fragile X and Rett syndromes, and clinical trials for autism are underway with buspirone, a 5-HT1A partial agonist with relevant affinity at 5-HT7 receptors. Herein, we report the synthesis, in vitro molecular pharmacology, behavioral pharmacology, and pharmacokinetic parameters in mice after subcutaneous and oral administration of (+)-5-(2'-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine ((+)-5-FPT), a new, dual partial agonist targeting both 5-HT7 (Ki = 5.8 nM, EC50 = 34 nM) and 5-HT1A (Ki = 22 nM, EC50 = 40 nM) receptors. Three unique, heterogeneous mouse models were used to assess the efficacy of (+)-5-FPT to reduce stereotypy: idiopathic jumping in C58/J mice, repetitive body rotations in C57BL/6J mice treated with the NMDA antagonist, MK-801, and repetitive head twitching in C57BL/6J mice treated with the 5-HT2 agonist, DOI. Systemic (+)-5-FPT potently and efficaciously reduced or eliminated stereotypy in each of the mouse models without altering locomotor behavior on its own, and additional tests showed that (+)-5-FPT, at the highest behaviorally active dose tested, enhanced social interaction and did not cause behaviors indicative of serotonin syndrome. These data suggest that (+)-5-FPT is a promising medication for treating stereotypy in psychiatric disorders.

  5. Selective blockade of 5-hydroxytryptamine (5-HT)7 receptors enhances 5-HT transmission, antidepressant-like behavior, and rapid eye movement sleep suppression induced by citalopram in rodents.

    PubMed

    Bonaventure, Pascal; Kelly, Lisa; Aluisio, Leah; Shelton, Jonathan; Lord, Brian; Galici, Ruggero; Miller, Kirsten; Atack, John; Lovenberg, Timothy W; Dugovic, Christine

    2007-05-01

    Evidence has accumulated supporting a role for 5-hydroxytryptamine (5-HT)7 receptors in circadian rhythms, sleep, and mood disorders, presumably as a consequence of the modulation of 5-HT-mediated neuronal activity. We hypothesized that a selective 5-HT7 receptor antagonist, (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]-pyrrolidine (SB-269970), should increase activity of 5-HT neurons and potentiate the effect of selective serotonin reuptake inhibitors (citalopram). In rats, administration of 3 mg/kg s.c. citalopram alone increased the extracellular concentration of 5-HT. This effect of citalopram on extracellular 5-HT concentration was significantly enhanced by an ineffective dose of SB-269970. Combining this dose of SB-269970 with a low dose of citalopram also resulted in a significant increase in extracellular concentration of 5-HT, suggesting a potentiation of neurochemical effects. In mice, citalopram and SB-269970 dose-dependently decreased immobility time in the tail suspension test. The dose-effect curve of citalopram was shifted leftward by coadministration of an effective dose of SB-269970. Furthermore, combining ineffective doses of citalopram and SB-269970 also resulted in a significant decrease of immobility time in the tail suspension test, suggesting potentiation of antidepressant-like effects. In rats, SB-269970 potentiated the increase of rapid eye movement (REM) latency and the REM sleep decrease induced by citalopram. SB-269970 also reversed the increase in sleep fragmentation induced by citalopram. Rat plasma and brain concentrations of citalopram were not affected by coadministration of SB-269970, arguing for a pharmacodynamic rather than a pharmacokinetic mechanism. Overall, these results indicate that selective blockade of 5-HT7 receptors may enhance the antidepressant efficacy of citalopram and may provide a novel therapy to alleviate sleep disturbances associated with depression.

  6. Selective 5-HT7 Receptor Activation May Enhance Synaptic Plasticity Through N-methyl-D-aspartate (NMDA) Receptor Activity in the Visual Cortex.

    PubMed

    Xiang, Kangjian; Zhao, Xuefei; Li, Youjun; Zheng, Liang; Wang, Jue; Li, Yan-Hai

    2016-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter that modulates N-methyl-D-aspartate (NMDA) receptor activity by binding to several different 5-HT receptor subtypes. In the present study, we used whole-cell patch-clamp recordings in transverse slice preparations to test the role of 5-HT receptors in modulating the NMDA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) in layer II/III pyramidal neurons of the rat visual cortex. We found that the NMDA receptor-mediated component of mEPSCs could be potentiated by exogenously applied 5-HT. Similar results were obtained by exogenously applied 5-CT or 8-OH-DPAT (the 5-HT1A and 5-HT7 receptor agonist). A specific antagonist for the 5-HT7 receptor, SB-269970, completely blocked the increase in NMDA receptor-mediated component of mEPSCs by 5-CT or 8- OH-DPAT. Moreover, the selective 5-HT1A receptor antagonist, WAY-100135, displayed no influence on the enhancement in NMDA receptor-mediated component of mEPSCs by 5-CT or 8-OHDPAT. These results indicated that the increase in NMDA receptor-mediated component of mEPSCs by 5-HT in layer II/III pyramidal neurons of the young rat visual cortex requires activation of 5-HT7 receptors, but not 5-HT1A receptors. These observations might be clinically relevant to schizophrenia and Alzheimer's disease (AD), where enhancing NMDA receptor-mediated neurotransmission is considered to be a promising strategy for treatment of these diseases.

  7. Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity.

    PubMed

    Ishibashi, Tadashi; Horisawa, Tomoko; Tokuda, Kumiko; Ishiyama, Takeo; Ogasa, Masaaki; Tagashira, Rie; Matsumoto, Kenji; Nishikawa, Hiroyuki; Ueda, Yoko; Toma, Satoko; Oki, Hitomi; Tanno, Norihiko; Saji, Ikutaro; Ito, Akira; Ohno, Yukihiro; Nakamura, Mitsutaka

    2010-07-01

    Lurasidone [(3aR,4S,7R,7aS)-2-[(1R,2R)-2-[4-(1,2-benzisothiazol-3-yl)piperazin-1-ylmethyl]cyclohexylmethyl]hexahydro-4,7-methano-2H-isoindole-1,3-dione hydrochloride; SM-13496] is an azapirone derivative and a novel antipsychotic candidate. The objective of the current studies was to investigate the in vitro and in vivo pharmacological properties of lurasidone. Receptor binding affinities of lurasidone and several antipsychotic drugs were tested under comparable assay conditions using cloned human receptors or membrane fractions prepared from animal tissue. Lurasidone was found to have potent binding affinity for dopamine D(2), 5-hydroxytryptamine 2A (5-HT(2A)), 5-HT(7), 5-HT(1A), and noradrenaline alpha(2C) receptors. Affinity for noradrenaline alpha(1), alpha(2A), and 5-HT(2C) receptors was weak, whereas affinity for histamine H(1) and muscarinic acetylcholine receptors was negligible. In vitro functional assays demonstrated that lurasidone acts as an antagonist at D(2) and 5-HT(7) receptors and as a partial agonist at the 5-HT(1A) receptor subtype. Lurasidone showed potent effects predictive of antipsychotic activity, such as inhibition of methamphetamine-induced hyperactivity and apomorphine-induced stereotyped behavior in rats, similar to other antipsychotics. Furthermore, lurasidone had only weak extrapyramidal effects in rodent models. In animal models of anxiety disorders and depression, treatment with lurasidone was associated with significant improvement. Lurasidone showed a preferential effect on the frontal cortex (versus striatum) in increasing dopamine turnover. Anti-alpha(1)-noradrenergic, anticholinergic, and central nervous system (CNS) depressant actions of lurasidone were also very weak. These results demonstrate that lurasidone possesses antipsychotic activity and antidepressant- or anxiolytic-like effects with potentially reduced liability for extrapyramidal and CNS depressant side effects.

  8. Activation of 5-HT1A and 5-HT7 receptors in the parafascicular nucleus suppresses the affective reaction of rats to noxious stimulation.

    PubMed

    Harte, Steven E; Kender, Robert G; Borszcz, George S

    2005-02-01

    The antinociceptive effects of the serotonin (5-HT)1A/7 receptor agonist 8-hydroxy-dipropylaminotetralin (8-OH-DPAT) administered into the medial thalamus were evaluated. Pain behaviors organized at spinal (spinal motor reflexes, SMRs), medullary (vocalizations during shock, VDSs), and forebrain (vocalization after discharges, VADs) levels of the neuraxis were elicited by tailshock. Administration of 8-OH-DPAT (5, 10, and 20 microg/side) into nucleus parafascicularis (nPf) produced dose-dependent increases in VDS and VAD thresholds, but failed to elevate SMR threshold. The increase in VAD threshold was significantly greater than that of VDS threshold. Similar effects were observed with administration of 8-OH-DPAT (20 microg/side) into the rostral portion of the central lateral thalamic nucleus. The bilateral or unilateral administration of 8-OH-DPAT (20 microg) into other thalamic nuclei, or into sites dorsal to nPf, did not elevate vocalization thresholds. Increases in vocalization thresholds produced by nPf-administered 8-OH-DPAT were mediated by both 5-HT1A and 5-HT7 receptors. Intra-nPf administration of the 5-HT1A receptor antagonist WAY-100635 (0.05 or 0.5 microg/side), or the 5-HT7 receptor antagonist SB-269970 (1 or 2 microg/side), but not the dopamine D2 receptor antagonist raclopride (10 microg/side), reversed 8-OH-DPAT induced elevations in vocalization thresholds. These results provide the first reported evidence of behavioral antinociception following the administration of a 5-HT agonist into the medial thalamus.

  9. Ex vivo study of 5-HT(1A) and 5-HT(7) receptor agonists and antagonists on cAMP accumulation during memory formation and amnesia.

    PubMed

    Perez-García, G; Meneses, A

    2008-12-16

    The cyclic adenosine monophosphate (cAMP) is a second messenger and a central component of intracellular signaling pathways that regulate a wide range of biological functions, including memory. Hence, in this work, firstly the time-course of memory formation was determined in an autoshaping learning task, which had allowed the identification of testing times for increases or decreases in performance. Next, untrained, trained and overtrained groups were compared in cAMP production. Moreover, selective stimulation and antagonism of 5-HT(1A) and 5-HT(7) receptors during memory formation and cAMP production were determined. Finally, since there is scarce information about how pharmacological models of amnesia affect cAMP production, the cholinergic or glutamatergic antagonists, scopolamine and dizocilpine, were tested. The major findings of this work showed that when the time-course was determined inasmuch as training and testing sessions occurred, memory performance was graduate and progressive. Notably, for the fourth to seventh (i.e., 48-120 h following autoshaping training session) testing session performance was significantly higher from the previous ones. When animals received 5-HT(1A) and 5-HT(7) receptor agonists and antagonists or amnesic drugs significant increases or decrements in memory performance were observed at 24 and 48 h. Moreover, when ex vivo cAMP production from trained and overtrained groups were compared to untrained ones, significant differences were observed among groups and brain areas. Trained animals treated with 8-OHDPAT, AS19, 8-OHDPAT plus AS19, WAY100635, SB-269970, scopolamine or dizocilpine were compared to similar untrained groups, and eightfold-reduced cAMP production was evident, showing the importance of cAMP production in the signaling case in mammalian memory formation.

  10. Serotonin 5-HT7 Receptor in the Ventral Hippocampus Modulates the Retrieval of Fear Memory and Stress-Induced Defecation

    PubMed Central

    Yoshida, Takayuki; Konno, Kohtarou; Minami, Masabumi; Watanabe, Masahiko; Yoshioka, Mitsuhiro

    2016-01-01

    Background: Patients with posttraumatic stress disorder or panic disorder are often troubled by inappropriate retrieval of fear memory. Moreover, these disorders are often comorbid with irritable bowel syndrome. The main aim of the present study is to elucidate the involvement of hippocampal serotonergic systems in fear memory retrieval and stress-induced defecation. Methods and Results: Microinjection of serotonin7 receptor antagonist, but not other serotonin receptor antagonists (serotonin 1A, 2A, 2C, 3, 4, and 6), into the rat ventral hippocampus significantly suppressed the expression of freezing behavior, an index of fear memory retrieval, and decreased the amount of feces, an index of stress-induced defecation, in the contextual fear conditioning test. Electrophysiological data indicated that the serotonin7 receptor agonist increased the frequency of action potentials in the ventral hippocampal CA3 pyramidal neuron via the activation of the hyperpolarization-activated nonselective cation current Ih. Moreover, in situ hybridization demonstrated that Htr7 mRNA was abundantly expressed in the CA3 compared with other subregions of the hippocampus and that these Htr7 mRNA-positive cells coexpressed hyperpolarization-activated cyclic nucleotide-gated channel 2 and 4 mRNAs, which are components of the Ih channel. Conclusions: These results indicated that the released serotonin activates the serotonin7 receptor in the CA3 ventral hippocampus subregion, enhances the sensitivity to inputs via hyperpolarization-activated cyclic nucleotide 2 and 4 channels, and thereby facilitates fear memory retrieval. The serotonin7 receptor might be a target of drug development for the treatment of mental disorders involving fear memory and gastrointestinal problems. PMID:26647382

  11. Serotonin regulates β-casein expression via 5-HT7 receptors in human mammary epithelial MCF-12A cells.

    PubMed

    Chiba, Takeshi; Kimura, Soichiro; Takahashi, Katsuo; Morimoto, Yasunori; Maeda, Tomoji; Sanbe, Atsushi; Ueda, Hideo; Kudo, Kenzo

    2015-01-01

    We previously reported that serotonin (5-hydroxytryptamine; 5-HT) suppresses β-casein expression, a differentiation marker in mammary epithelial cells, via inhibition of the signal transducer and activator of transcription 5 (STAT5) phosphorylation in the human mammary epithelial cell line, MCF-12A. In this study, we investigated the expression pattern of the different 5-HT receptor subtypes in MCF-12A cells, and identified the receptors involved in 5-HT-mediated suppression of β-casein protein expression. β-Casein mRNA expression was inhibited by 30 µM 5-HT in a time-dependent manner. Treatment with 30 µM 5-HT for 72 h decreased β-casein protein levels and STAT5 phosphorylation (pSTAT5). The cells expressed four 5-HT receptors subtypes (5-HTR1D, 2B, 3A, and 7) at the mRNA and protein level, and their expression was elevated by prolactin (PRL) treatment. Additionally, the mRNA levels of 5-HTR1D and 5-HTR7 were significantly higher than the other 5-HT receptors in the cells. Tryptophan hydroxylase 1 mRNA was detectable in the cells in the absence of PRL, and PRL treatment significantly increased its expression. β-Casein and pSTAT5/STAT5 levels in the cells co-treated with 5-HT and a selective 5-HTR1D inhibitor, BRL15572, were equal to those observed in cells treated with 5-HT alone. However, in the cells co-treated with 5-HT and a selective 5-HTR7 inhibitor, SB269970, β-casein and pSTAT5/STAT5 levels increased in a SB269970 concentration-dependent manner. In conclusion, we showed that 5-HT regulates β-casein expression via 5-HTR7 in MCF-12A human mammary epithelial cells.

  12. Mediation of 5-HT-induced external carotid vasodilatation in GR 127935-pretreated vagosympathectomized dogs by the putative 5-HT7 receptor

    PubMed Central

    Villalón, Carlos M; Centurión, David; Luján-Estrada, Miguel; Terrón, José A; Sánchez-López, Araceli

    1997-01-01

    mg kg−1) or ritanserin (100 μg kg−1) plus granisetron (300 μg kg−1), but were dose-dependently blocked by i.v. administration of methiothepin (10 and 30 μg kg−1, given after ritanserin plus granisetron), mesulergine (10 and 30 μg kg−1), metergoline (1 and 3 mg kg−1), methysergide (1 and 3 mg kg−1) or clozapine (0.3 and 1 mg kg−1). Nevertheless, the blockade of the above responses, not significant after treatment with the lower of the two doses of metergoline and mesulergine, was nonspecific after administration of the higher of the two doses of methysergide and clozapine.Based upon the above rank order of agonist potencies and the antagonism produced by a series of drugs showing high affinity for the cloned 5-ht7 receptor, our results indicate that the 5-HT receptor mediating external carotid vasodilatation in GR 127935-pretreated vagosympathectomized dogs is operationally similar to the putative 5-HT7 receptor mediating relaxation of vascular and non-vascular smooth muscles (e.g. rabbit femoral vein, canine coronary artery, rat systemic vasculature and guinea-pig ileum) as well as tachycardia in the cat. PMID:9105708

  13. Structural modifications of the serotonin 5-HT7 receptor agonist N-(4-cyanophenylmethyl)-4-(2-biphenyl)-1-piperazinehexanamide (LP-211) to improve in vitro microsomal stability: A case study.

    PubMed

    Lacivita, Enza; Podlewska, Sabina; Speranza, Luisa; Niso, Mauro; Satała, Grzegorz; Perrone, Roberto; Perrone-Capano, Carla; Bojarski, Andrzej J; Leopoldo, Marcello

    2016-09-14

    The 5-HT7 serotonin receptor is revealing a promising target for innovative therapeutic strategies of neurodevelopmental and neuropsychiatric disorders. Here, we report the synthesis of thirty long-chain arylpiperazine analogs of the selective and brain penetrant 5-HT7 receptor agonist LP-211 (1) designed to enhance stability towards microsomal oxidative metabolism. Commonly used medicinal chemistry strategies were used (i.e., reduction of overall lipophilicity, introduction of electron-withdrawing groups, blocking of potential vulnerable sites of metabolism), and in vitro microsomal stability was tested. The data showed that the adopted design strategy does not directly translate into improvements in stability. Instead, the metabolic stability of the compounds was related to the presence of specific substituents in well-defined regions of the molecule. The collected data allowed for the construction of a machine learning model that, in a given chemical space, is able to describe and quantitatively predict the metabolic stability of the compounds. The majority of the synthesized compounds maintained high affinity for 5-HT7 receptors and showed selectivity towards 5-HT6 and dopamine D2 receptors and different selectivity for 5-HT1A and α1 adrenergic receptors. Compound 50 showed 3-fold higher in vitro stability towards oxidative metabolism than 1 and was able to stimulate neurite outgrowth in neuronal primary cultures through the 5-HT7 receptor in a shorter time and at a lower concentration than the agonist 1. A preliminary disposition study in mice revealed that compound 50 was metabolically stable and was able to pass the blood-brain barrier, thus representing a new tool for studying the pharmacotherapeutic potential of 5-HT7 receptor in vivo.

  14. Evaluation of 5-HT7 Receptor Trafficking on In Vivo and In Vitro Model of Lipopolysaccharide (LPS)-Induced Inflammatory Cell Injury in Rats and LPS-Treated A549 Cells.

    PubMed

    Ayaz, Gulsen; Halici, Zekai; Albayrak, Abdulmecit; Karakus, Emre; Cadirci, Elif

    2017-02-01

    This study aimed to investigate the effects of the 5-HT7 receptor agonist (LP44) and antagonist (SB269970) on LPS-induced in vivo tissue damage and cell culture by molecular methods. This study was conducted in two steps. For in vivo studies, 24 female rats were divided into four groups. Group I: healthy; II (2nd h): LPS 5 mg/kg administered intraperitoneally (i.p.); III (4th h): LPS 5 mg/kg administered i.p.; IV (8th h): LPS 5 mg/kg administered i.p. For in vitro studies, we used the A549 cell line. Groups: I control (healthy) (2-4 h); II LPS: 1 µg/ml E. Coli O55:B5 strain (2-4 h); III agonist (LP44) 10(-9) M (2-4 h); IV antagonist (SB269970) 10(-9) M (2-4 h); V LPS+agonist 10(-9) M (LP44 1 µg/ml) (2-4 h); VI LPS+antagonist 10(-9) M (2-4 h). In molecular analyses, we determined increased TNF-α, IL-1β, NF-κB, and 5-HT7 mRNA expressions in rat lung tissues and increased TNF-α, iNOS, and 5-HT7 mRNA expressions in the A549 cell line. In in vitro parameters, LP44 agonist administration-related decrease was observed. Our study showed that lung 5-HT7 receptor expression is increased in LPS-induced endotoxemia. All this data suggest that 5-HT7 receptor overexpression is an important protective mechanism during LPS-induced sepsis-related cell damage.

  15. New arylpiperazinylalkyl derivatives of 8-alkoxy-purine-2,6-dione and dihydro[1,3]oxazolo[2,3-f]purinedione targeting the serotonin 5-HT1A /5-HT2A /5-HT7 and dopamine D2 receptors.

    PubMed

    Chłoń-Rzepa, Grażyna; Zagórska, Agnieszka; Bucki, Adam; Kołaczkowski, Marcin; Pawłowski, Maciej; Satała, Grzegorz; Bojarski, Andrzej J; Partyka, Anna; Wesołowska, Anna; Pękala, Elżbieta; Słoczyńska, Karolina

    2015-04-01

    To obtain potential antidepressants and/or antipsychotics, a series of new long-chain arylpiperazine derivatives of 8-alkoxy-purine-2,6-dione (10-24) and dihydro[1,3]oxazolo[2,3-f]purinedione (30-34) were synthesized and their serotonin (5-HT1A , 5-HT2A , 5-HT6 , 5-HT7 ) and dopamine (D2 ) receptor affinities were determined. The study allowed the identification of some potent 5-HT1A /5-HT7 /D2 ligands with moderate affinity for 5-HT2A sites. The binding mode of representative compounds from both chemical classes (11 and 31) in the site of 5-HT1A receptor was analyzed in computational studies. In functional in vitro studies, the selected compounds 15 and 16 showed antagonistic properties for the evaluated receptors. 8-Methoxy-7-{4-[4-(2-methoxyphenyl)-piperazin-1-yl]-butyl}-1,3-dimethyl-purine-2,6-dione (15) showed a lack of activity in terms and under the conditions of the forced swim, four plate and amphetamine-induced hyperactivity tests in mice, probably as a result of its high first pass effect in the liver.

  16. 5-HT1A/1B, 5-HT6, and 5-HT7 serotonergic receptors recruitment in tonic-clonic seizure-induced antinociception: role of dorsal raphe nucleus.

    PubMed

    Freitas, Renato Leonardo; Ferreira, Célio Marcos dos Reis; Urbina, Maria Angélica Castiblanco; Mariño, Andrés Uribe; Carvalho, Andressa Daiane; Butera, Giuseppe; de Oliveira, Ana Maria; Coimbra, Norberto Cysne

    2009-05-01

    Pharmacological studies have been focused on the involvement of different neural pathways in the organization of antinociception that follows tonic-clonic seizures, including 5-hydroxytryptamine (5-HT)-, norepinephrine-, acetylcholine- and endogenous opioid peptide-mediated mechanisms, giving rise to more in-depth comprehension of this interesting post-ictal antinociceptive phenomenon. The present work investigated the involvement of 5-HT(1A/1B), 5-HT(6), and 5-HT(7) serotonergic receptors through peripheral pretreatment with methiothepin at doses of 0.5, 1.0, 2.0 and 3.0 mg/kg in the organization of the post-ictal antinociception elicited by pharmacologically (with pentylenetetrazole at 64 mg/kg)-induced tonic-clonic seizures. Methiothepin at 1.0 mg/kg blocked the post-ictal antinociception recorded after the end of seizures, whereas doses of 2.0 and 3.0 mg/kg potentiated the post-ictal antinociception. The nociceptive thresholds were kept higher than those of the control group. However, when the same 5-hydroxytryptamine receptors antagonist was microinjected (at 1.0, 3.0 and 5.0 microg/0.2 microL) in the dorsal raphe nucleus, a mesencephalic structure rich in serotonergic neurons and 5-HT receptors, the post-ictal hypo-analgesia was consistently antagonized. The present findings suggest a dual effect of methiothepin, characterized by a disinhibitory effect on the post-ictal antinociception when peripherally administered (possibly due to an antagonism of pre-synaptic 5-HT(1A) serotonergic autoreceptors in the pain endogenous inhibitory system) and an inhibitory effect (possibly due to a DRN post-synaptic 5-HT(1B), 5-HT(6), and 5-HT(7) serotonergic receptors blockade) when centrally administered. The present data also suggest that serotonin-mediated mechanisms of the dorsal raphe nucleus exert a key-role in the modulation of the post-ictal antinociception.

  17. A Pharmacological Analysis of an Associative Learning Task: 5-HT1 to 5-HT7 Receptor Subtypes Function on a Pavlovian/Instrumental Autoshaped Memory

    PubMed Central

    Meneses, Alfredo

    2003-01-01

    Recent studies using both invertebrates and mammals have revealed that endogenous serotonin (5-hydroxytryptamine [5-HT]) modulates plasticity processes, including learning and memory. However, little is currently known about the mechanisms, loci, or time window of the actions of 5-HT. The aim of this review is to discuss some recent results on the effects of systemic administration of selective agonists and antagonists of 5-HT on associative learning in a Pavlovian/instrumental autoshaping (P/I-A) task in rats. The results indicate that pharmacological manipulation of 5-HT1-7 receptors or 5-HT reuptake sites might modulate memory consolidation, which is consistent with the emerging notion that 5-HT plays a key role in memory formation. PMID:14557609

  18. A pharmacological analysis of an associative learning task: 5-HT(1) to 5-HT(7) receptor subtypes function on a pavlovian/instrumental autoshaped memory.

    PubMed

    Meneses, Alfredo

    2003-01-01

    Recent studies using both invertebrates and mammals have revealed that endogenous serotonin (5-hydroxytryptamine [5-HT]) modulates plasticity processes, including learning and memory. However, little is currently known about the mechanisms, loci, or time window of the actions of 5-HT. The aim of this review is to discuss some recent results on the effects of systemic administration of selective agonists and antagonists of 5-HT on associative learning in a Pavlovian/instrumental autoshaping (P/I-A) task in rats. The results indicate that pharmacological manipulation of 5-HT1-7 receptors or 5-HT reuptake sites might modulate memory consolidation, which is consistent with the emerging notion that 5-HT plays a key role in memory formation.

  19. Effect of 5-HT(7) antagonist SB-269970 in the modulation of working and reference memory in the rat.

    PubMed

    Gasbarri, Antonella; Cifariello, Agata; Pompili, Assunta; Meneses, Alfredo

    2008-12-16

    It has been established that serotonergic pathways project to cerebral areas involved in learning and memory and that serotonin (5-HT) receptor agonists and antagonists modify these processes. Indeed, most of the 5-HT receptors characterized so far, i.e., 5-HT(1) through 5-HT(7), show a regional distribution in brain areas involved in learning and memory, such as hippocampal formation (HF), amygdala and cortex. Although 5-HT(7) receptor biological functions are still to be clarified, it was recently suggested that it may play a role in the control of learning and memory processes. The aim of our study was to assess the role of 5-HT(7) receptors antagonist SB-269970 on working and reference memory in a radial arm maze task, utilizing a two-phase procedure, comprising an acquisition and test phase, conducted to evaluate working and reference memory, respectively. Our results showed that 5-HT(7) receptors antagonist SB-269970 improved memory, decreasing the number of errors in test phase and, thus, affecting reference memory, while no effects were observed in working memory. These results could be explained taking into consideration the specific localization of 5-HT(7) receptors in the CNS. In fact, high concentrations of 5-HT(7) receptors were found in the HF, which exerts an important role on reference memory, while relatively low concentrations were present in the prefrontal cortex, involved in working memory. Thus, 5-HT(7) receptor blockade had procognitive effect, when the learning task implicated a high degree of difficulty. This conclusion has a major implication in the context that 5-HT receptors play an important role under amnesia states (e.g., Alzheimer's disease) or when the learning is complex.

  20. [3H]-Mesulergine labels 5-HT7 sites in rat brain and guinea-pig ileum but not rat jejunum

    PubMed Central

    Hemedah, Maggie; Coupar, Ian M; Mitchelson, Fred J

    1999-01-01

    The primary aim of this investigation was to determine whether binding sites corresponding to the 5-HT7 receptor could be detected in smooth muscle of the rat jejunum. Binding studies in rat brain (whole brain minus cerebellum) and guinea-pig ileal longitudinal muscle were also undertaken in order to compare the binding characteristics of these tissues. Studies were performed using [3H]-mesulergine, as it has a high affinity for 5-HT7 receptors.In the rat brain and guinea-pig ileum, pKD values for [3H]-mesulergine of 8.0±0.04 and 7.9±0.11 (n=3) and Bmax values of 9.9±0.3 and 21.5±4.9 fmol mg−1 protein were obtained respectively, but no binding was detected in the rat jejunum. [3H]-mesulergine binding in the rat brain and guinea-pig ileum was displaced with the agonists 5-carboxamidotryptamine (5-CT)>5-hydroxytryptamine (5-HT)⩾5-methoxytryptamine (5-MeOT)>sumatriptan and the antagonists risperidone⩾LSD⩾metergoline>ritanserin>>pindolol.Despite the lack of [3H]-mesulergine binding in the rat jejunum, functional studies undertaken revealed a biphasic contractile response to 5-HT which was partly blocked by ondansetron (1 μM). The residual response was present in over 50% of tissues studied and was found to be inhibited by risperidone>LSD>metergoline>mesulergine=ritanserin>pindolol, but was unaffected by RS 102221 (3 μM), cinanserin (30 nM), yohimbine (0.1 μM) and GR 113808 (1 μM). In addition, the agonist order of potency was 5-CT>5-HT>5-MeOT>sumatriptan.In conclusion, binding studies performed with [3H]-mesulergine were able to detect 5-HT7 sites in rat brain and guinea-pig ileum, but not in rat jejunum, where a functional 5-HT7-like receptor was present. PMID:10051134

  1. Emotional and risk seeking behavior after prepuberal subchronic or adult acute stimulation of 5-HT7-Rs in Naples High Excitability rats.

    PubMed

    Ruocco, Lucia A; Romano, Emilia; Treno, Concetta; Lacivita, Enza; Arra, Claudio; Gironi-Carnevale, Ugo A; Travaglini, Domenica; Leopoldo, Marcello; Laviola, Giovanni; Sadile, Adolfo G; Adriani, Walter

    2014-04-01

    We report here the results of studies aimed to investigate the involvement of serotonin receptor 7 subtype (5-HT7-R) in the modulation of emotional response in Naples High-Excitability (NHE) rat, a validated model for hyperactivity and impaired attention. A range of dosages (0.0, 0.125, 0.250, or 0.500 mg/kg) of LP-211, a selective agonist of 5-HT7-Rs, has been evaluated in animals at different age (adolescence and adulthood). Male NHE and random bred (NRB) control rats were tested in an Elevated Zero-Maze (EZM) after LP-211 treatment in two different regimens: at the issue of adolescent, subchronic exposure (14 intraperitoneal [i.p.] injections, once/day, pnd 31-44, tested on pnd 45--Exp. 1) or as adult, acute effect (15 min after i.p. injection--Exp. 2). Adolescent, subchronic LP-211 at 0.500 mg/kg dosage increased the frequency of head-dips only in NHE rats. Drug effect on time spent and entries in open EZM quadrants were revealed with adult, acute administration of 0.125 mg/kg LP-211 (both strains), indicating a tendency toward anxiolytic effects. In conclusion, data demonstrate that subchronic stimulation of 5-HT7-Rs during prepuberal period increases novelty-seeking/risk-taking propensity in NHE adults. These sequels are revealing increased disinhibition and/or motivation to explore in the NHE rats, which are characterized by a hyperactive dopaminergic system. These data may open new perspectives in studying mechanism of risk-seeking behavior.

  2. Differential responses to acute administration of a new 5-HT7-R agonist as a function of adolescent pre-treatment: phMRI and immuno-histochemical study.

    PubMed

    Altabella, Luisa; Sbriccoli, Marco; Zoratto, Francesca; Poleggi, Anna; Vinci, Ramona; Lacivita, Enza; Leopoldo, Marcello; Laviola, Giovanni; Cardone, Franco; Canese, Rossella; Adriani, Walter

    2014-01-01

    LP-211 is a new, selective agonist of serotonin (5-hydroxytryptamine, 5-HT) receptor 7 (5-HT7-R), which is part of a neuro-transmission system with a proposed role in neural plasticity and in mood, cognitive and sleep regulation. Adolescent subchronic LP-211 treatment produces some persisting changes in rats' forebrain structural and functional parameters. Here, using pharmacological MRI (phMRI), we investigated the effect of acute administration with LP-211 (10 mg/kg i.p.), or vehicle, to adult rats previously exposed to the same drug (0.25 mg/kg/day for 5 days), or vehicle, during adolescence (44-48 post-natal days); histology and immuno-histochemistry were performed ex vivo to evaluate neuro-anatomical and physiological long-term adaptation to pharmacological pre-treatment. The phMRI signal reveals forebrain areas (i.e., hippocampus, orbital prefrontal cortex), activated in response to LP-211 challenge independently of adolescent pre-treatment. In septum and nucleus accumbens, sensitized activation was found in adolescent pre-treated rats but not in vehicle-exposed controls. Immuno-histochemical analyses showed marked differences in septum as long-term consequence of the adolescent pre-treatment: increased level of 5-HT7-R, increased number of 5-HT7-R positive cells, and enhanced astrocyte activation. For nucleus accumbens, immuno-histochemical analyses did not reveal any difference between adolescent pre-treated rats and vehicle-exposed controls. In conclusion, subchronic LP-211 administration during adolescence is able to induce persistent physiological changes in the septal 5-HT7-R expression and astrocyte response that can still be observed in adulthood. Data shed new insights into roles of 5-HT7-R for normal and pathologic behavioral regulations.

  3. Differential responses to acute administration of a new 5-HT7-R agonist as a function of adolescent pre-treatment: phMRI and immuno-histochemical study

    PubMed Central

    Altabella, Luisa; Sbriccoli, Marco; Zoratto, Francesca; Poleggi, Anna; Vinci, Ramona; Lacivita, Enza; Leopoldo, Marcello; Laviola, Giovanni; Cardone, Franco; Canese, Rossella; Adriani, Walter

    2014-01-01

    LP-211 is a new, selective agonist of serotonin (5-hydroxytryptamine, 5-HT) receptor 7 (5-HT7-R), which is part of a neuro-transmission system with a proposed role in neural plasticity and in mood, cognitive and sleep regulation. Adolescent subchronic LP-211 treatment produces some persisting changes in rats' forebrain structural and functional parameters. Here, using pharmacological MRI (phMRI), we investigated the effect of acute administration with LP-211 (10 mg/kg i.p.), or vehicle, to adult rats previously exposed to the same drug (0.25 mg/kg/day for 5 days), or vehicle, during adolescence (44–48 post-natal days); histology and immuno-histochemistry were performed ex vivo to evaluate neuro-anatomical and physiological long-term adaptation to pharmacological pre-treatment. The phMRI signal reveals forebrain areas (i.e., hippocampus, orbital prefrontal cortex), activated in response to LP-211 challenge independently of adolescent pre-treatment. In septum and nucleus accumbens, sensitized activation was found in adolescent pre-treated rats but not in vehicle-exposed controls. Immuno-histochemical analyses showed marked differences in septum as long-term consequence of the adolescent pre-treatment: increased level of 5-HT7-R, increased number of 5-HT7-R positive cells, and enhanced astrocyte activation. For nucleus accumbens, immuno-histochemical analyses did not reveal any difference between adolescent pre-treated rats and vehicle-exposed controls. In conclusion, subchronic LP-211 administration during adolescence is able to induce persistent physiological changes in the septal 5-HT7-R expression and astrocyte response that can still be observed in adulthood. Data shed new insights into roles of 5-HT7-R for normal and pathologic behavioral regulations. PMID:25565998

  4. Serotonergic system and its role in epilepsy and neuropathic pain treatment: a review based on receptor ligands.

    PubMed

    Panczyk, Katarzyna; Golda, Sylwia; Waszkielewicz, Anna; Zelaszczyk, Dorota; Gunia-Krzyzak, Agnieszka; Marona, Henryk

    2015-01-01

    The serotonergic system is involved in pathomechanisms of both epilepsy and neuropathic pain. So far, participation in the epileptogenesis and maintenance of epilepsy was proved for 5-HT1A, 5-HT2C, 5-HT3, 5-HT4 and 5-HT7 receptors as well as 5-HTT serotonin transporter. Depending on the receptor type or its localization, its stimulation may increase or decrease neuronal excitability. According to the available data, neuropathic pain mechanisms involve 5-HT1A/1B/1D, 5-HT2A/2B/2C, 5-HT3, 5-HT4, 5-HT6, 5-HT7 receptors and 5-HTT serotonin transporter. Changes in their expression modulate pain mainly by affecting the transmission through serotonergic descending pathways. Several compounds, whose mechanisms of action base on influence on the serotonergic system, are already in use. These are 5-HT3 agonists (triptans) in case of migraine, tricyclic antidepressants or monoamine reuptake inhibitors in neuropathic pain treatment. In addition, selective and non-selective ligands are tested for their anticonvulsant or analgesic properties. Some ED50 values have been already obtained in such animal models as maximal electroshock (MES)-induced seizures (epilepsy), spinal nerve ligation (SNL), chronic constriction injury (CCI) or formalin (neuropathic pain). This review shows that in case of drug discovery within the serotonergic system one must take into account special significance of factors such as: the species, the type of model, the route of administration, and the dose range.

  5. EGF receptor ligands: recent advances

    PubMed Central

    Singh, Bhuminder; Carpenter, Graham; Coffey, Robert J.

    2016-01-01

    Seven ligands bind to and activate the mammalian epidermal growth factor (EGF) receptor (EGFR/ERBB1/HER1): EGF, transforming growth factor-alpha (TGFA), heparin-binding EGF-like growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG), epiregulin (EREG), and epigen (EPGN). Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR. PMID:27635238

  6. Antidepressant- and Anxiolytic-Like Effects of New Dual 5-HT1A and 5-HT7 Antagonists in Animal Models

    PubMed Central

    Pytka, Karolina; Partyka, Anna; Jastrzębska-Więsek, Magdalena; Siwek, Agata; Głuch-Lutwin, Monika; Mordyl, Barbara; Kazek, Grzegorz; Rapacz, Anna; Olczyk, Adrian; Gałuszka, Adam; Błachuta, Marian; Waszkielewicz, Anna; Marona, Henryk; Sapa, Jacek; Filipek, Barbara; Wesołowska, Anna

    2015-01-01

    The aim of this study was to further characterize pharmacological properties of two phenylpiperazine derivatives: 1-{2-[2-(2,6-dimethlphenoxy)ethoxy]ethyl}-4-(2-methoxyphenyl)piperazynine hydrochloride (HBK-14) and 2-[2-(2-chloro-6-methylphenoxy)ethoxy]ethyl-4-(2- methoxyphenyl)piperazynine dihydrochloride (HBK-15) in radioligand binding and functional in vitro assays as well as in vivo models. Antidepressant-like properties were investigated in the forced swim test (FST) in mice and rats. Anxiolytic-like activity was evaluated in the four-plate test in mice and elevated plus maze test (EPM) in rats. Imipramine and escitalopram were used as reference drugs in the FST, and diazepam was used as a standard anxiolytic drug in animal models of anxiety. Our results indicate that HBK-14 and HBK-15 possess high or moderate affinity for serotonergic 5-HT2, adrenergic α1, and dopaminergic D2 receptors as well as being full 5-HT1A and 5-HT7 receptor antagonists. We also present their potent antidepressant-like activity (HBK-14—FST mice: 2.5 and 5 mg/kg; FST rats: 5 mg/kg) and (HBK-15—FST mice: 1.25, 2.5 and 5 mg/kg; FST rats: 1.25 and 2.5 mg/kg). We show that HBK-14 (four-plate test: 2.5 and 5 mg/kg; EPM: 2.5 mg/kg) and HBK-15 (four-plate test: 2.5 and 5 mg/kg; EPM: 5 mg/kg) possess anxiolytic-like properties. Among the two, HBK-15 has stronger antidepressant-like properties, and HBK-14 displays greater anxiolytic-like activity. Lastly, we demonstrate the involvement of serotonergic system, particularly 5-HT1A receptor, in the antidepressant- and anxiolytic-like actions of investigated compounds. PMID:26554929

  7. What are Nuclear Receptor Ligands?

    PubMed Central

    Sladek, Frances M.

    2010-01-01

    Nuclear receptors (NRs) are a family of highly conserved transcription factors that regulate transcription in response to small lipophilic compounds. They play a role in every aspect of development, physiology and disease in humans. They are also ubiquitous in and unique to the animal kingdom suggesting that they may have played an important role in their evolution. In contrast to the classical endocrine receptors that originally defined the family, recent studies suggest that the first NRs might have been sensors of their environment, binding ligands that were external to the host organism. The purpose of this review is to provide a broad perspective on NR ligands and address the issue of exactly what constitutes a NR ligand from historical, biological and evolutionary perspectives. This discussion will lay the foundation for subsequent reviews in this issue as well as pose new questions for future investigation. PMID:20615454

  8. CB receptor ligands from plants.

    PubMed

    Woelkart, Karin; Salo-Ahen, Outi M H; Bauer, Rudolf

    2008-01-01

    Advances in understanding the physiology and pharmacology of the endogenous cannabinoid system have potentiated the interest of cannabinoid receptors as potential therapeutic targets. Cannabinoids have been shown to modulate a variety of immune cell functions and have therapeutic implications on central nervous system (CNS) inflammation, chronic inflammatory conditions such as arthritis, and may be therapeutically useful in treating autoimmune conditions such as multiple sclerosis. Many of these drug effects occur through cannabinoid receptor signalling mechanisms and the modulation of cytokines and other gene products. Further, endocannabinoids have been found to have many physiological and patho-physiological functions, including mood alteration and analgesia, control of energy balance, gut motility, motor and co-ordination activities, as well as alleviation of neurological, psychiatric and eating disorders. Plants offer a wide range of chemical diversity and have been a growing domain in the search for effective cannabinoid ligands. Cannabis sativa L. with the known plant cannabinoid, Delta(9-)tetrahydrocannabinol (THC) and Echinacea species with the cannabinoid (CB) receptor-binding lipophilic alkamides are the best known herbal cannabimimetics. This review focuses on the state of the art in CB ligands from plants, as well their possible therapeutic and immunomodulatory effects.

  9. Activation of 5-hyrdoxytryptamine 7 receptors within the rat nucleus tractus solitarii modulates synaptic properties

    PubMed Central

    Matott, Michael P.; Kline, David D.

    2016-01-01

    Serotonin (5-HT) is a potent neuromodulator with multiple receptor types within the cardiorespiratory system, including the nucleus tractus solitarii (nTS) - the central termination site of visceral afferent fibers. The 5-HT7 receptor facilitates cardiorespiratory reflexes through its action in the brainstem and likely in the nTS. However, the mechanism and site of action for these effects is not clear. In this study, we examined the expression and function of 5-HT7 receptors in the nTS of Sprague-Dawley rats. 5-HT7 receptor mRNA and protein were identified across the rostrocaudal extent of the nTS. To determine 5-HT7 receptor function, we examined nTS synaptic properties following 5-HT7 receptor activation in monosynaptic nTS neurons in the in vitro brainstem slice preparation. Application of 5-HT7 receptor agonists altered tractus solitarii evoked and spontaneous excitatory postsynaptic currents which were attenuated with a selective 5-HT7 receptor antagonist. 5-HT7 receptor-mediated changes in excitatory postsynaptic currents were also altered by block of 5-HT1A and GABAA receptors. Interestingly, 5-HT7 receptor activation also reduced the amplitude but not frequency of GABAA-mediated inhibitory currents. Together these results indicate a complex role for 5-HT7 receptors in the nTS that mediate its diverse effects on cardiorespiratory parameters. PMID:26779891

  10. Interrupting autocrine ligand-receptor binding: comparison between receptor blockers and ligand decoys.

    PubMed Central

    Forsten, K E; Lauffenburger, D A

    1992-01-01

    Stimulation of cell behavioral functions by ligand/receptor binding can be accomplished in autocrine fashion, where cells secrete ligand capable of binding to receptors on their own surfaces. This proximal secretion of autocrine ligands near the surface receptors on the secreting cell suggests that control of these systems by inhibitors of receptor/ligand binding may be more difficult than for systems involving exogenous ligands. Hence, it is of interest to predict the conditions under which successful inhibition of cell receptor binding by the autocrine ligand can be expected. Previous theoretical work using a compartmentalized model for autocrine cells has elucidated the conditions under which addition of solution decoys for the autocrine ligand can interrupt cell receptor/ligand binding via competitive binding of the secreted molecules (Forsten, K. E., and D. A. Lauffenburger. 1992. Biophys. J. 61:1-12.) We now apply a similar modeling approach to examine the addition of solution blockers targeted against the cell receptor. Comparison of the two alternative inhibition strategies reveals that a significantly lower concentration of receptor blockers, compared to ligand decoys, will obtain a high degree of inhibition. The more direct interruption scheme characteristic of the receptor blockers may make them a preferred strategy when feasible. PMID:1330038

  11. Prepuberal Stimulation of 5-HT7-R by LP-211 in a Rat Model of Hyper-Activity and Attention-Deficit: Permanent Effects on Attention, Brain Amino Acids and Synaptic Markers in the Fronto-Striatal Interface

    PubMed Central

    Treno, Concetta; Gironi Carnevale, Ugo A.; Arra, Claudio; Nieddu, Maria; Pagano, Cristina; Illiano, Placido; Barbato, Fabiana; Carboni, Ezio; Laviola, Giovanni; Lacivita, Enza; Leopoldo, Marcello; Adriani, Walter; Sadile, Adolfo G.

    2014-01-01

    The cross-talk at the prefronto-striatal interface involves excitatory amino acids, different receptors, transducers and modulators. We investigated long-term effects of a prepuberal, subchronic 5-HT7-R agonist (LP-211) on adult behaviour, amino acids and synaptic markers in a model for Attention-Deficit/Hyperactivity Disorder (ADHD). Naples High Excitability rats (NHE) and their Random Bred controls (NRB) were daily treated with LP-211 in the 5th and 6th postnatal week. One month after treatment, these rats were tested for indices of activity, non selective (NSA), selective spatial attention (SSA) and emotionality. The quantity of L-Glutamate (L-Glu), L-Aspartate (L-Asp) and L-Leucine (L-Leu), dopamine transporter (DAT), NMDAR1 subunit and CAMKIIα, were assessed in prefrontal cortex (PFC), dorsal (DS) and ventral striatum (VS), for their role in synaptic transmission, neural plasticity and information processing. Prepuberal LP-211 (at lower dose) reduced horizontal activity and (at higher dose) increased SSA, only for NHE but not in NRB rats. Prepuberal LP-211 increased, in NHE rats, L-Glu in the PFC and L-Asp in the VS (at 0.250 mg/kg dose), whereas (at 0.125 mg/kg dose) it decreased L-Glu and L-Asp in the DS. The L-Glu was decreased, at 0.125 mg/kg, only in the VS of NRB rats. The DAT levels were decreased with the 0.125 mg/kg dose (in the PFC), and increased with the 0.250 mg/kg dose (in the VS), significantly for NHE rats. The basal NMDAR1 level was higher in the PFC of NHE than NRB rats; LP-211 treatment (at 0.125 mg/kg dose) decreased NMDAR1 in the VS of NRB rats. This study represents a starting point about the impact of developmental 5-HT7-R activation on neuro-physiology of attentive processes, executive functions and their neural substrates. PMID:24709857

  12. Prepuberal stimulation of 5-HT7-R by LP-211 in a rat model of hyper-activity and attention-deficit: permanent effects on attention, brain amino acids and synaptic markers in the fronto-striatal interface.

    PubMed

    Ruocco, Lucia A; Treno, Concetta; Gironi Carnevale, Ugo A; Arra, Claudio; Boatto, Gianpiero; Nieddu, Maria; Pagano, Cristina; Illiano, Placido; Barbato, Fabiana; Tino, Angela; Carboni, Ezio; Laviola, Giovanni; Lacivita, Enza; Leopoldo, Marcello; Adriani, Walter; Sadile, Adolfo G

    2014-01-01

    The cross-talk at the prefronto-striatal interface involves excitatory amino acids, different receptors, transducers and modulators. We investigated long-term effects of a prepuberal, subchronic 5-HT7-R agonist (LP-211) on adult behaviour, amino acids and synaptic markers in a model for Attention-Deficit/Hyperactivity Disorder (ADHD). Naples High Excitability rats (NHE) and their Random Bred controls (NRB) were daily treated with LP-211 in the 5th and 6th postnatal week. One month after treatment, these rats were tested for indices of activity, non selective (NSA), selective spatial attention (SSA) and emotionality. The quantity of L-Glutamate (L-Glu), L-Aspartate (L-Asp) and L-Leucine (L-Leu), dopamine transporter (DAT), NMDAR1 subunit and CAMKIIα, were assessed in prefrontal cortex (PFC), dorsal (DS) and ventral striatum (VS), for their role in synaptic transmission, neural plasticity and information processing. Prepuberal LP-211 (at lower dose) reduced horizontal activity and (at higher dose) increased SSA, only for NHE but not in NRB rats. Prepuberal LP-211 increased, in NHE rats, L-Glu in the PFC and L-Asp in the VS (at 0.250 mg/kg dose), whereas (at 0.125 mg/kg dose) it decreased L-Glu and L-Asp in the DS. The L-Glu was decreased, at 0.125 mg/kg, only in the VS of NRB rats. The DAT levels were decreased with the 0.125 mg/kg dose (in the PFC), and increased with the 0.250 mg/kg dose (in the VS), significantly for NHE rats. The basal NMDAR1 level was higher in the PFC of NHE than NRB rats; LP-211 treatment (at 0.125 mg/kg dose) decreased NMDAR1 in the VS of NRB rats. This study represents a starting point about the impact of developmental 5-HT7-R activation on neuro-physiology of attentive processes, executive functions and their neural substrates.

  13. [Central effects of ORL1 receptor ligands].

    PubMed

    Maslov, L N; Lishmanov, Iu B; Calo, G; Ma, L

    2003-01-01

    It has been discussed literature data on molecular structure of ORL1 receptor and its interaction with intracellular signal systems and neurotransmitters. Data on chemical structure of ORL1 receptor ligands and their central effects (nociception, locomotion, feeding, cognition) are presented.

  14. Engineering death receptor ligands for cancer therapy.

    PubMed

    Wajant, Harald; Gerspach, Jeannette; Pfizenmaier, Klaus

    2013-05-28

    CD95, TNFR1, TRAILR1 and TRAILR2 belong to a subgroup of TNF receptors which is characterized by a conserved cell death-inducing protein domain that connects these receptors to the apoptotic machinery of the cell. Activation of death receptors in malignant cells attracts increasing attention as a principle to fight cancer. Besides agonistic antibodies the major way to stimulate death receptors is the use of their naturally occurring "death ligands" CD95L, TNF and TRAIL. However, dependent from the concept followed to develop a death ligand-based therapy various limiting aspects have to be taken into consideration on the way to a "bedside" usable drug. Problems arise in particular from the cell associated transmembrane nature of the death ligands, the poor serum half life of the soluble fragments derived from the transmembrane ligands, the ubiquitous expression of the death receptors and the existence of additional non-death receptors of the death ligands. Here, we summarize strategies how these limitations can be overcome by genetic engineering.

  15. [Functional selectivity of opioid receptors ligands].

    PubMed

    Audet, Nicolas; Archer-Lahlou, Elodie; Richard-Lalonde, Mélissa; Piñeyro-Filpo, Graciela

    2010-01-01

    Opiates are the most effective analgesics available for the treatment of severe pain. However, their clinical use is restricted by unwanted side effects such as tolerance, physical dependence and respiratory depression. The strategy to develop new opiates with reduced side effects has mainly focused on the study and production of ligands that specifically bind to different opiate receptors subtypes. However, this strategy has not allowed the production of novel therapeutic ligands with a better side effects profile. Thus, other research strategies need to be explored. One which is receiving increasing attention is the possibility of exploiting ligand ability to stabilize different receptor conformations with distinct signalling profiles. This newly described property, termed functional selectivity, provides a potential means of directing the stimulus generated by an activated receptor towards a specific cellular response. Here we summarize evidence supporting the existence of ligand-specific active conformations for two opioid receptors subtypes (delta and mu), and analyze how functional selectivity may contribute in the production of longer lasting, better tolerated opiate analgesics. double dagger.

  16. The Retinoid X Receptors and Their Ligands

    PubMed Central

    Dawson, Marcia I.; Xia, Zebin

    2014-01-01

    This chapter presents an overview of the current status of studies on the structural and molecular biology of the retinoid X receptor subtypes α, β, and γ (RXRs, NR2B1–3), their nuclear and cytoplasmic functions, post-transcriptional processing, and recently reported ligands. Points of interest are the different changes in the ligand-binding pocket induced by variously shaped agonists, the communication of the ligand–bound pocket with the coactivator binding surface and the heterodimerization interface, and recently identified ligands that are natural products, those that function as environmental toxins or drugs that had been originally designed to interact with other targets, as well as those that were deliberately designed as RXR-selective transcriptional agonists, synergists, or antagonists. Of these synthetic ligands, the general trend in design appears to be away from fully aromatic rigid structures to those containing partial elements of the flexible tetraene side chain of 9-cis-retinoic acid. PMID:22020178

  17. Early development of sigma-receptor ligands.

    PubMed

    Narayanan, Sanju; Bhat, Rohit; Mesangeau, Christophe; Poupaert, Jacques H; McCurdy, Christopher R

    2011-01-01

    Sigma receptors (σ-1 and σ-2) are non-opioid proteins implicated in the pathophysiology of various neurological disorders and cancer. The σ-1 subtype is a chaperon protein widely distributed in the CNS and peripheral tissues. These receptors are involved in the modulation of K(+)- and Ca(2+)-dependent signaling cascades at the endoplasmic reticulum and modulation of neurotransmitter release. σ-1 receptors are emerging targets for the treatment of neurophychiatric diseases (schizophrenia and depression) and cocaine addiction. σ-2 receptors are lipid raft proteins. They are highly expressed on many tumor cells and hence considered potential targets for anticancer drugs. σ receptors bind to a diverse class of pharmacological compounds like cocaine, methamphetamine, benzomorphans like (±)-pentazocine, (±)-SKF-10,047 and endogenous neurosteroids and sphingolipids. In this review we focus on the early development of σ receptor-specific ligands and radiolabeling agents.

  18. Ligands for Ionotropic Glutamate Receptors

    PubMed Central

    Swanson, Geoffrey T.; Sakai, Ryuichi

    2010-01-01

    Marine-derived small molecules and peptides have played a central role in elaborating pharmacological specificities and neuronal functions of mammalian ionotropic glutamate receptors (iGluRs), the primary mediators of excitatory synaptic transmission in the central nervous system (CNS). As well, the pathological sequelae elicited by one class of compounds (the kainoids) constitute a widely-used animal model for human mesial temporal lobe epilepsy (mTLE). New and existing molecules could prove useful as lead compounds for the development of therapeutics for neuropathologies that have aberrant glutamatergic signaling as a central component. In this chapter we discuss natural source origins and pharmacological activities of those marine compounds that target ionotropic glutamate receptors. PMID:19184587

  19. Nitrosamines as nicotinic receptor ligands

    PubMed Central

    Schuller, Hildegard M.

    2007-01-01

    Nitrosamines are carcinogens formed in the mammalian organism from amine precursors contained in food, beverages, cosmetics and drugs. The potent carcinogen, NNK, and the weaker carcinogen, NNN, are nitrosamines formed from nicotine. Metabolites of the nitrosamines react with DNA to form adducts responsible for genotoxic effects. We have identified NNK as a high affinity agonist for the alpha7 nicotinic acetylcholine receptor (α7nAChR) whereas NNN bound with high affinity to epibatidine-sensitive nAChRs. Diethylnitrosamine (DEN) bound to both receptors but with lower affinity. High levels of the α7nAChR were expressed in human small cell lung cancer (SCLC) cell lines and in hamster pulmonary neuroendocrine cells (PNECs), which serve as a model for the cell of origin of human SCLC. Exposure of SCLC or PNECs to NNK or nicotine increased expression of the a7nAChR and caused influx of Ca2+, activation of PKC, Raf-1, ERK1/2, and c-myc, resulting in the stimulation of cell proliferation. Signaling via the α7nAChR was enhanced when cells were maintained in an environment of 10–15% CO2 similar to that in the diseased lung. Hamsters with hyperoxia-induced pulmonary fibrosis developed neuroendocrine lung carcinomas similar to human SCLC when treated with NNK, DEN, or nicotine. The development of the NNK-induced tumors was prevented by green tea or theophylline. The beta-adrenergic receptor agonist, isoproterenol or theophylline blocked NNK-induced cell proliferation in vitro. NNK and nicotine-induced hyperactivity of the α7nAChR/RAF/ERK1/2 pathway thus appears to play a crucial role in the development of SCLC in smokers and could be targeted for cancer prevention. PMID:17459420

  20. Nitrosamines as nicotinic receptor ligands.

    PubMed

    Schuller, Hildegard M

    2007-05-30

    Nitrosamines are carcinogens formed in the mammalian organism from amine precursors contained in food, beverages, cosmetics and drugs. The potent carcinogen, NNK, and the weaker carcinogen, NNN, are nitrosamines formed from nicotine. Metabolites of the nitrosamines react with DNA to form adducts responsible for genotoxic effects. We have identified NNK as a high affinity agonist for the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) whereas NNN bound with high affinity to epibatidine-sensitive nAChRs. Diethylnitrosamine (DEN) bound to both receptors but with lower affinity. High levels of the alpha7nAChR were expressed in human small cell lung cancer (SCLC) cell lines and in hamster pulmonary neuroendocrine cells (PNECs), which serve as a model for the cell of origin of human SCLC. Exposure of SCLC or PNECs to NNK or nicotine increased expression of the alpha7nAChR and caused influx of Ca(2+), activation of PKC, Raf-1, ERK1/2, and c-myc, resulting in the stimulation of cell proliferation. Signaling via the alpha7nAChR was enhanced when cells were maintained in an environment of 10-15% CO(2) similar to that in the diseased lung. Hamsters with hyperoxia-induced pulmonary fibrosis developed neuroendocrine lung carcinomas similar to human SCLC when treated with NNK, DEN, or nicotine. The development of the NNK-induced tumors was prevented by green tea or theophylline. The beta-adrenergic receptor agonist, isoproterenol or theophylline blocked NNK-induced cell proliferation in vitro. NNK and nicotine-induced hyperactivity of the alpha7nAChR/RAF/ERK1/2 pathway thus appears to play a crucial role in the development of SCLC in smokers and could be targeted for cancer prevention.

  1. Molecular modulators of benzodiazepine receptor ligand binding

    SciTech Connect

    Villar, H.O.; Loew, G.H. )

    1989-01-01

    Ten derivatives of {beta}-carbolines with known affinities to the GABA{sub A}/BDZ (benzodiazepine) receptor were studied using the Am 1 and MNDO/H Semiempirical techniques to identify and characterize molecular modulators of receptor recognition. Steric, lipophilic, and electrostatic properties of these compounds were calculated and examined for their possible role in recognition. Particular attention was paid to the regions around the two most favorable proton-accepting sites, the ON and the substituent at the C{sub 3} position, already implicated in recognition, as well as to the acidic N9H group that could be a proton donating center. To probe further the role of these three ligand sites in receptor interactions, a model of the receptor using three methanol molecules was made and optimum interactions of these three sites with them characterized. The results indicate some similarity in the shape of these ligands, which could reflect a steric requirement. The receptor affinity appears to be modulated to some extent by the ratio of lipophilic to hydrophilic surface, the negative potential at the {beta}N, provided there is also one at the C{sub 3} substituent confirming the importance of two accepting sites in recognition. The acidic N9H does not appear to be a modulator of affinity or does it form a stable H-bond with methanol as acceptor. The two proton donating molecules do form such a stable complex, and both are needed for high affinity.

  2. Chemistry and pharmacology of GABAB receptor ligands.

    PubMed

    Froestl, Wolfgang

    2010-01-01

    This chapter presents new clinical applications of the prototypic GABA(B) receptor agonist baclofen for the treatment of addiction by drugs of abuse, such as alcohol, cocaine, nicotine, morphine, and heroin, a novel baclofen prodrug Arbaclofen placarbil, the GABA(B) receptor agonist AZD3355 (Lesogabaran) currently in Phase 2 clinical trials for the treatment of gastroesophageal reflux disease, and four positive allosteric modulators of GABA(B) receptors (CGP7930, GS39783, NVP-BHF177, and BHFF), which have less propensity for the development of tolerance due to receptor desensitization than classical GABA(B) receptor agonists. All four compounds showed anxiolytic affects. In the presence of positive allosteric modulators the "classical" GABA(B) receptor antagonists CGP35348 and 2-hydroxy-saclofen showed properties of partial GABA(B) receptor agonists. Seven micromolar affinity GABA(B) receptor antagonists, phaclofen; 2-hydroxy-saclofen; CGP's 35348, 36742, 46381, 51176; and SCH50911, are discussed. CGP36742 (SGS742) showed statistically significant improvements of working memory and attention in a Phase 2 clinical trial in mild, but not in moderate Alzheimer patients. Eight nanomolar affinity GABA(B) receptor antagonists are presented (CGP's 52432, 54626, 55845, 56433, 56999, 61334, 62349, and 63360) that were used by pharmacologists for numerous in vitro and in vivo investigations. CGP's 36742, 51176, 55845, and 56433 showed antidepressant effects. Several compounds are also available as radioligands, such as [(3)H]CGP27492, [(3)H]CGP54626, [(3)H]CGP5699, and [(3)H]CGP62349. Three novel fluorescent and three GABA(B) receptor antagonists with very high specific radioactivity (>2,000 Ci/mmol) are presented. [(125)I]CGP64213 and the photoaffinity ligand [(125)I]CGP71872 allowed the identification of GABA(B1a) and GABA(B1b) receptors in the expression cloning work.

  3. Affinity Regulates Spatial Range of EGF Receptor Autocrine Ligand Binding

    SciTech Connect

    Dewitt, Ann; Iida, Tomoko; Lam, Ho-Yan; Hill, Virginia; Wiley, H S.; Lauffenburger, Douglas A.

    2002-08-08

    Proper spatial localization of EGFR signaling activated by autocrine ligands represents a critical factor in embryonic development as well as tissue organization and function, and ligand/receptor binding affinity is among the molecular and cellular properties suggested to play a role in governing this localization. The authors employ a computational model to predict how receptor-binding affinity affects local capture of autocrine ligand vis-a-vis escape to distal regions, and provide experimental test by constructing cell lines expressing EGFR along with either wild-type EGF or a low-affinity mutant, EGF{sup L47M}. The model predicts local capture of a lower affinity autocrine ligand to be less efficient when the ligand production rate is small relative to receptor appearance rate. The experimental data confirm this prediction, demonstrating that cells can use ligand/receptor binding affinity to regulate ligand spatial distribution when autocrine ligand production is limiting for receptor signaling.

  4. ADN-1184 a monoaminergic ligand with 5-HT6/7 receptor antagonist activity: pharmacological profile and potential therapeutic utility

    PubMed Central

    Kołaczkowski, M; Mierzejewski, P; Bieńkowski, P; Wesołowska, A; Newman-Tancredi, A

    2014-01-01

    Background and Purpose Many dementia patients exhibit behavioural and psychological symptoms (BPSD) that include psychosis, aggressivity, depression and anxiety. Antipsychotic drugs are frequently prescribed but fail to significantly attenuate mood deficits, may interfere with cognitive function and are associated with motor and cardiac side effects, which are problematic in elderly patients. A need therefore exists for drugs that are better suited for the treatment of BPSD. Experimental Approach We used in vitro cellular and in vivo behavioural tests to characterize ADN-1184, a novel arylsulfonamide ligand with potential utility for treatment of BPSD. Key Results ADN-1184 exhibits substantial 5-HT6/5-HT7/5-HT2A/D2 receptor affinity and antagonist properties in vitro. In tests of antipsychotic-like activity, it reversed MK-801-induced hyperactivity and stereotypies and inhibited conditioned avoidance response (MED = 3 mg·kg−1 i.p.). Remarkably, ADN-1184 also reduced immobility time in the forced swim test at low doses (0.3 and 1 mg·kg−1 i.p.; higher doses were not significantly active). Notably, up to 30 mg·kg−1 ADN-1184 did not impair memory performance in the passive avoidance test or elicit significant catalepsy and only modestly inhibited spontaneous locomotor activity (MED = 30 mg·kg−1 i.p.). Conclusions and Implications ADN-1184 combines antipsychotic-like with antidepressant-like properties without interfering with memory function or locomotion. This profile is better than that of commonly used atypical antipsychotics tested under the same conditions and suggests that it is feasible to identify drugs that improve BPSD, without exacerbating cognitive deficit or movement impairment, which are of particular concern in patients with dementia. PMID:24199650

  5. [Peripheral effects of ligands of ORL1 receptors].

    PubMed

    Maslov, L N; Lishmanov, Iu B; Calo, G; Ma, L; Lambert, D G

    2003-01-01

    It has been discussed literature data on the role for ORL1 (NOR) receptors in the regulation of function of gastrointestinal, respiratory, cardiovascular, immune, endocrine systems. In addition, it has been discussed a possibility of penetration of blood brain barrier for ORL1 receptor ligands and species dependence of NOR-ligands' effects.

  6. Structural Analysis of Chemokine Receptor-Ligand Interactions.

    PubMed

    Arimont, Marta; Sun, Shan-Liang; Leurs, Rob; Smit, Martine; de Esch, Iwan J P; de Graaf, Chris

    2017-03-10

    This review focuses on the construction and application of structural chemokine receptor models for the elucidation of molecular determinants of chemokine receptor modulation and the structure-based discovery and design of chemokine receptor ligands. A comparative analysis of ligand binding pockets in chemokine receptors is presented, including a detailed description of the CXCR4, CCR2, CCR5, CCR9, and US28 X-ray structures, and their implication for modeling molecular interactions of chemokine receptors with small-molecule ligands, peptide ligands, and large antibodies and chemokines. These studies demonstrate how the integration of new structural information on chemokine receptors with extensive structure-activity relationship and site-directed mutagenesis data facilitates the prediction of the structure of chemokine receptor-ligand complexes that have not been crystallized. Finally, a review of structure-based ligand discovery and design studies based on chemokine receptor crystal structures and homology models illustrates the possibilities and challenges to find novel ligands for chemokine receptors.

  7. Bivalent Ligands for the Serotonin 5-HT3 Receptor

    PubMed Central

    2011-01-01

    The serotonin 5-HT3 receptor is a ligand-gated ion channel, which by virtue of its pentameric architecture, can be considered to be an intriguing example of intrinsically multivalent biological receptors. This paper describes a general design approach to the study of multivalency in this multimeric ion channel. Bivalent ligands for 5-HT3 receptor have been designed by linking an arylpiperazine moiety to probes showing different functional features. Both homobivalent and heterobivalent ligands have shown 5-HT3 receptor affinity in the nanomolar range, providing evidence for the viability of our design approach. Moreover, the high affinity shown by homobivalent ligands suggests that bivalency is a promising approach in 5-HT3 receptor modulation and provides the rational basis for applying the concepts of multivalency to the study of 5-HT3 receptor function. PMID:24900351

  8. Ligand binding was acquired during evolution of nuclear receptors

    PubMed Central

    Escriva, Hector; Safi, Rachid; Hänni, Catherine; Langlois, Marie-Claire; Saumitou-Laprade, Pierre; Stehelin, Dominique; Capron, André; Pierce, Raymond; Laudet, Vincent

    1997-01-01

    The nuclear receptor (NR) superfamily comprises, in addition to ligand-activated transcription factors, members for which no ligand has been identified to date. We demonstrate that orphan receptors are randomly distributed in the evolutionary tree and that there is no relationship between the position of a given liganded receptor in the tree and the chemical nature of its ligand. NRs are specific to metazoans, as revealed by a screen of NR-related sequences in early- and non-metazoan organisms. The analysis of the NR gene duplication pattern during the evolution of metazoans shows that the present NR diversity arose from two waves of gene duplications. Strikingly, our results suggest that the ancestral NR was an orphan receptor that acquired ligand-binding ability during subsequent evolution. PMID:9192646

  9. Limited proteolysis for assaying ligand binding affinities of nuclear receptors.

    PubMed

    Benkoussa, M; Nominé, B; Mouchon, A; Lefebvre, B; Bernardon, J M; Formstecher, P; Lefebvre, P

    1997-01-01

    The binding of natural or synthetic ligands to nuclear receptors is the triggering event leading to gene transcription activation or repression. Ligand binding to the ligand binding domain of these receptors induces conformational changes that are evidenced by an increased resistance of this domain to proteases. In vitro labeled receptors were incubated with various synthetic or natural agonists or antagonists and submitted to trypsin digestion. Proteolysis products were separated by SDS-PAGE and quantified. The amount of trypsin-resistant fragments was proportional to receptor occupancy by the ligand, and allowed the determination of dissociation constants (kDa). Using the wild-type or mutated human retinoic acid receptor alpha as a model, kDa values determined by classical competition binding assays using tritiated ligands are in agreement with those measured by the proteolytic assay. This method was successfully extended to human retinoic X receptor alpha, glucocorticoid receptor, and progesterone receptor, thus providing a basis for a new, faster assay to determine simultaneously the affinity and conformation of receptors when bound to a given ligand.

  10. Sliding tethered ligands add topological interactions to the toolbox of ligand-receptor design.

    PubMed

    Bauer, Martin; Kékicheff, Patrick; Iss, Jean; Fajolles, Christophe; Charitat, Thierry; Daillant, Jean; Marques, Carlos M

    2015-09-09

    Adhesion in the biological realm is mediated by specific lock-and-key interactions between ligand-receptor pairs. These complementary moieties are ubiquitously anchored to substrates by tethers that control the interaction range and the mobility of the ligands and receptors, thus tuning the kinetics and strength of the binding events. Here we add sliding anchoring to the toolbox of ligand-receptor design by developing a family of tethered ligands for which the spacer can slide at the anchoring point. Our results show that this additional sliding degree of freedom changes the nature of the adhesive contact by extending the spatial range over which binding may sustain a significant force. By introducing sliding tethered ligands with self-regulating length, this work paves the way for the development of versatile and reusable bio-adhesive substrates with potential applications for drug delivery and tissue engineering.

  11. Formyl peptide receptor chimeras define domains involved in ligand binding.

    PubMed

    Perez, H D; Holmes, R; Vilander, L R; Adams, R R; Manzana, W; Jolley, D; Andrews, W H

    1993-02-05

    We have begun to study the structural requirements for the binding of formyl peptides to their specific receptors. As an initial approach, we constructed C5a-formyl peptide receptor chimeras. Unique (and identical) restriction sites were introduced within the transmembrane domains of these receptors that allowed for the exchange of specific areas. Four types of chimeric receptors were generated. 1) The C5a receptor was progressively substituted by the formyl peptide receptor. 2) The formyl peptide receptor was progressively substituted by the C5a receptor. 3) Specific domains of the C5a receptor were substituted by the corresponding domain of the formyl peptide receptor. 4) Specific domains of the formyl peptide receptor were replaced by the same corresponding domain of the C5a receptor. Wild type and chimeric receptors were transfected into COS 7 cells and their ability to bind formyl peptide determined, taking into account efficiency of transfection and expression of chimeric protein. Based on these results, a ligand binding model is presented in which the second, third, and fourth extracellular (and/or their transmembrane) domains together with the first transmembrane domain form a ligand binding pocket for formyl peptides. It is proposed that the amino-terminal domain plays a role by presumably providing a "lid" to the pocket. The carboxyl-terminal cytoplasmic tail appears to modulate ligand binding by regulating receptor affinity.

  12. CLiBE: a database of computed ligand binding energy for ligand-receptor complexes.

    PubMed

    Chen, X; Ji, Z L; Zhi, D G; Chen, Y Z

    2002-11-01

    Consideration of binding competitiveness of a drug candidate against natural ligands and other drugs that bind to the same receptor site may facilitate the rational development of a candidate into a potent drug. A strategy that can be applied to computer-aided drug design is to evaluate ligand-receptor interaction energy or other scoring functions of a designed drug with that of the relevant ligands known to bind to the same binding site. As a tool to facilitate such a strategy, a database of ligand-receptor interaction energy is developed from known ligand-receptor 3D structural entries in the Protein Databank (PDB). The Energy is computed based on a molecular mechanics force field that has been used in the prediction of therapeutic and toxicity targets of drugs. This database also contains information about ligand function and other properties and it can be accessed at http://xin.cz3.nus.edu.sg/group/CLiBE.asp. The computed energy components may facilitate the probing of the mode of action and other profiles of binding. A number of computed energies of some PDB ligand-receptor complexes in this database are studied and compared to experimental binding affinity. A certain degree of correlation between the computed energy and experimental binding affinity is found, which suggests that the computed energy may be useful in facilitating a qualitative analysis of drug binding competitiveness.

  13. Database of Ligand-Receptor Partners, a DIP subset

    DOE Data Explorer

    Graeber, Thomas G.; Eisenberg, David

    The Database of Ligand-Receptor Partners (DLRP) is a subset of DIP (Database of Interacting Proteins). The DLRP is a database of protein ligand and protein receptor pairs that are known to interact with each other. By interact we mean that the ligand and receptor are members of a ligand-receptor complex and, unless otherwise noted, transduce a signal. In some instances the ligand and/or receptor may form a heterocomplex with other ligands/receptors in order to be functional. We have entered the majority of interactions in DLRP as full DIP entries, with links to references and additional information (see the DIP User's Guide). DLRP is a web supplement for: Thomas G. Graeber and David Eisenberg. Bioinformatic identification of potential autocrine signaling loops in cancers from gene expression profiles. Nature Genetics, 29(3):295-300 (November 2001). [Quoted from the DLRP homepage at http://dip.doe-mbi.ucla.edu/dip/DLRP.cgi] Also available from this page is the DLRP chemokine subset.

  14. The serotonin receptor 5-HT₇R regulates the morphology and migratory properties of dendritic cells.

    PubMed

    Holst, Katrin; Guseva, Daria; Schindler, Susann; Sixt, Michael; Braun, Armin; Chopra, Himpriya; Pabst, Oliver; Ponimaskin, Evgeni

    2015-08-01

    Dendritic cells are potent antigen-presenting cells endowed with the unique ability to initiate adaptive immune responses upon inflammation. Inflammatory processes are often associated with an increased production of serotonin, which operates by activating specific receptors. However, the functional role of serotonin receptors in regulation of dendritic cell functions is poorly understood. Here, we demonstrate that expression of serotonin receptor 5-HT7 (5-HT7R) as well as its downstream effector Cdc42 is upregulated in dendritic cells upon maturation. Although dendritic cell maturation was independent of 5-HT7R, receptor stimulation affected dendritic cell morphology through Cdc42-mediated signaling. In addition, basal activity of 5-HT7R was required for the proper expression of the chemokine receptor CCR7, which is a key factor that controls dendritic cell migration. Consistent with this, we observed that 5-HT7R enhances chemotactic motility of dendritic cells in vitro by modulating their directionality and migration velocity. Accordingly, migration of dendritic cells in murine colon explants was abolished after pharmacological receptor inhibition. Our results indicate that there is a crucial role for 5-HT7R-Cdc42-mediated signaling in the regulation of dendritic cell morphology and motility, suggesting that 5-HT7R could be a new target for treatment of a variety of inflammatory and immune disorders.

  15. Novel biosensors for the detection of estrogen receptor ligands.

    PubMed

    De, Siddhartha; Macara, Ian G; Lannigan, Deborah A

    2005-08-01

    There exists a significant need for the detection of novel estrogen receptor (ER) ligands for pharmaceutical uses, especially for treating complications associated with menopause. We have developed fluorescence resonance energy transfer (FRET)-based biosensors that permit the direct in vitro detection of ER ligands. These biosensors contain an ER ligand-binding domain (LBD) flanked by the FRET donor fluorophore, cyan fluorescent protein (CFP), and the acceptor fluorophore, yellow fluorescent protein (YFP). The ER-LBD has been modified so that Ala 430 has been changed to Asp, which increases the magnitude of the FRET signal in response to ligand-binding by more than four-fold compared to the wild-type LBD. The binding of agonists can be distinguished from that of antagonists on the basis of the distinct ligand-induced conformations in the ER-LBD. The approach to binding equilibrium occurs within 30min, and the FRET signal is stable over 24h. The biosensor demonstrates a high signal-to-noise, with a Z' value (a statistical determinant of assay quality) of 0.72. The affinity of the ER for different ligands can be determined using a modified version of the biosensor in which a truncated YFP and an enhanced CFP are used. Thus, we have developed platforms for high-throughput screens for the identification of novel estrogen receptor ligands. Moreover, we have demonstrated that this FRET technology can be applied to other nuclear receptors, such as the androgen receptor.

  16. Regulation of ligands for the NKG2D activating receptor

    PubMed Central

    Raulet, David H.; Gasser, Stephan; Gowen, Benjamin G.; Deng, Weiwen; Jung, Heiyoun

    2014-01-01

    NKG2D is an activating receptor expressed by all NK cells and subsets of T cells. It serves as a major recognition receptor for detection and elimination of transformed and infected cells and participates in the genesis of several inflammatory diseases. The ligands for NKG2D are self-proteins that are induced by pathways that are active in certain pathophysiological states. NKG2D ligands are regulated transcriptionally, at the level of mRNA and protein stability, and by cleavage from the cell surface. In some cases, ligand induction can be attributed to pathways that are activated specifically in cancer cells or infected cells. We review the numerous pathways that have been implicated in the regulation of NKG2D ligands, discuss the pathologic states in which those pathways are likely to act, and attempt to synthesize the findings into general schemes of NKG2D ligand regulation in NK cell responses to cancer and infection. PMID:23298206

  17. Orphan receptor ligand discovery by pickpocketing pharmacological neighbors.

    PubMed

    Ngo, Tony; Ilatovskiy, Andrey V; Stewart, Alastair G; Coleman, James L J; McRobb, Fiona M; Riek, R Peter; Graham, Robert M; Abagyan, Ruben; Kufareva, Irina; Smith, Nicola J

    2017-02-01

    Understanding the pharmacological similarity of G protein-coupled receptors (GPCRs) is paramount for predicting ligand off-target effects, drug repurposing, and ligand discovery for orphan receptors. Phylogenetic relationships do not always correctly capture pharmacological similarity. Previous family-wide attempts to define pharmacological relationships were based on three-dimensional structures and/or known receptor-ligand pairings, both unavailable for orphan GPCRs. Here, we present GPCR-CoINPocket, a novel contact-informed neighboring pocket metric of GPCR binding-site similarity that is informed by patterns of ligand-residue interactions observed in crystallographically characterized GPCRs. GPCR-CoINPocket is applicable to receptors with unknown structure or ligands and accurately captures known pharmacological relationships between GPCRs, even those undetected by phylogeny. When applied to orphan receptor GPR37L1, GPCR-CoINPocket identified its pharmacological neighbors, and transfer of their pharmacology aided in discovery of the first surrogate ligands for this orphan with a 30% success rate. Although primarily designed for GPCRs, the method is easily transferable to other protein families.

  18. The imidazoline receptors and ligands in pain modulation

    PubMed Central

    Bektas, Nurcan; Nemutlu, Dilara; Arslan, Rana

    2015-01-01

    Pain is an unpleasant experience and effects daily routine negatively. Although there are various drugs, many of them are not entirely successful in relieving pain, since pain modulation is a complex process involving numerous mediators and receptors. Therefore, it is a rational approach to identify the factors involved in the complex process and develop new agents that act on these pain producing mechanisms. In this respect, the involvement of the imidazoline receptors in pain modulation has drawn attention in recent years. In this review, it is aimed to focus on the imidazoline receptors and their ligands which contribute to the pain modulation. It is demonstrated that imidazoline-2 (I2) receptors are steady new drug targets for analgesics. Even if the mechanism of I2 receptor is not well known in the modulation of pain, it is known that it plays a role in tonic and chronic pain but not in acute phasic pain. Moreover, the I2 receptor ligands increase the analgesic effects of opioids in both acute and chronic pain and prevent the development of opioid tolerance. So, they are valuable for the chronic pain treatment and also therapeutic coadjuvants in the management of chronic pain with opiate drugs due to the attenuation of opioid tolerance and addiction. Thus, the use of the ligands which bind to the imidazoline receptors is an effective strategy for relieving pain. This educational forum exhibits the role of imidazoline receptors and ligands in pain process by utilizing experimental studies. PMID:26600633

  19. Ligand-Receptor Binding Measured by Laser-Scanning Imaging

    NASA Astrophysics Data System (ADS)

    Zuck, Paul; Lao, Zhege; Skwish, Stephen; Fraser Glickman, J.; Yang, Ke; Burbaum, Jonathan; Inglese, James

    1999-09-01

    This report describes the integration of laser-scanning fluorometric cytometry and nonseparation ligand-binding techniques to provide new assay methods adaptable to miniaturization and high-throughput screening. Receptor-bound, cyanine dye-labeled ligands, [Cy]ligands, were discriminated from those free in solution by measuring the accumulated fluorescence associated with a receptor-containing particle. To illustrate the various binding formats accommodated by this technique, saturation- and competition-binding analyses were performed with [Cy]ligands and their cognate receptors expressed in CHO cells or as fusion proteins coated on polystyrene microspheres. We have successfully applied this technique to the analysis of G protein-coupled receptors, cytokine receptors, and SH2 domains. Multiparameter readouts from ligands labeled separately with Cy5 and Cy5.5 demonstrate the simultaneous analysis of two target receptors in a single well. In addition, laser-scanning cytometry has been used to assay enzymes such as phosphatases and in the development of single-step fluorescent immunoassays.

  20. Pharmacology and therapeutic potential of sigma(1) receptor ligands.

    PubMed

    Cobos, E J; Entrena, J M; Nieto, F R; Cendán, C M; Del Pozo, E

    2008-12-01

    Sigma (sigma) receptors, initially described as a subtype of opioid receptors, are now considered unique receptors. Pharmacological studies have distinguished two types of sigma receptors, termed sigma(1) and sigma(2). Of these two subtypes, the sigma(1) receptor has been cloned in humans and rodents, and its amino acid sequence shows no homology with other mammalian proteins. Several psychoactive drugs show high to moderate affinity for sigma(1) receptors, including the antipsychotic haloperidol, the antidepressant drugs fluvoxamine and sertraline, and the psychostimulants cocaine and methamphetamine; in addition, the anticonvulsant drug phenytoin allosterically modulates sigma(1) receptors. Certain neurosteroids are known to interact with sigma(1) receptors, and have been proposed to be their endogenous ligands. These receptors are located in the plasma membrane and in subcellular membranes, particularly in the endoplasmic reticulum, where they play a modulatory role in intracellular Ca(2+) signaling. Sigma(1) receptors also play a modulatory role in the activity of some ion channels and in several neurotransmitter systems, mainly in glutamatergic neurotransmission. In accordance with their widespread modulatory role, sigma(1) receptor ligands have been proposed to be useful in several therapeutic fields such as amnesic and cognitive deficits, depression and anxiety, schizophrenia, analgesia, and against some effects of drugs of abuse (such as cocaine and methamphetamine). In this review we provide an overview of the present knowledge of sigma(1) receptors, focussing on sigma(1) ligand neuropharmacology and the role of sigma(1) receptors in behavioral animal studies, which have contributed greatly to the potential therapeutic applications of sigma(1) ligands.

  1. A Natural Mutation in Helix 5 of the Ligand Binding Domain of Glucocorticoid Receptor Enhances Receptor-Ligand Interaction

    PubMed Central

    Reyer, Henry; Ponsuksili, Siriluck; Kanitz, Ellen; Pöhland, Ralf; Wimmers, Klaus; Murani, Eduard

    2016-01-01

    The glucocorticoid receptor (GR) is a central player in the neuroendocrine stress response; it mediates feedback regulation of the hypothalamus-pituitary-adrenal (HPA) axis and physiological actions of glucocorticoids in the periphery. Despite intensive investigations of GR in the context of receptor-ligand interaction, only recently the first naturally occurring gain-of-function substitution, Ala610Val, of the ligand binding domain was identified in mammals. We showed that this mutation underlies a major quantitative trait locus for HPA axis activity in pigs, reducing cortisol production by about 40–50 percent. To unravel the molecular mechanisms behind this gain of function, receptor-ligand interactions were evaluated in silico, in vitro and in vivo. In accordance with previously observed phenotypic effects, the mutant Val610 GR showed significantly increased activation in response to glucocorticoid and non-glucocorticoid steroids, and, as revealed by GR-binding studies in vitro and in pituitary glands, enhanced ligand binding. Concordantly, the protein structure prediction depicted reduced binding distances between the receptor and ligand, and altered interactions in the ligand binding pocket. Consequently, the Ala610Val substitution opens up new structural information for the design of potent GR ligands and to examine effects of the enhanced GR responsiveness to glucocorticoids on the entire organism. PMID:27736993

  2. Optimizing electrostatic affinity in ligand-receptor binding: Theory, computation, and ligand properties

    NASA Astrophysics Data System (ADS)

    Kangas, Erik; Tidor, Bruce

    1998-11-01

    The design of a tight-binding molecular ligand involves a tradeoff between an unfavorable electrostatic desolvation penalty incurred when the ligand binds a receptor in aqueous solution and the generally favorable intermolecular interactions made in the bound state. Using continuum electrostatic models we have developed a theoretical framework for analyzing this problem and have shown that the ligand-charge distribution can be optimized to produce the most favorable balance of these opposing free energy contributions [L.-P. Lee and B. Tidor, J. Chem. Phys. 106, 8681 (1997)]. Herein the theoretical framework is extended and calculations are performed for a wide range of model receptors. We examine methods for computing optimal ligands (including cases where there is conformational change) and the resulting properties of optimized ligands. In particular, indicators are developed to aid in the determination of the deficiencies in a specific ligand or basis. A connection is established between the optimization problem here and a generalized image problem, from which an inverse-image basis set can be defined; this basis is shown to perform very well in optimization calculations. Furthermore, the optimized ligands are shown to have favorable electrostatic binding free energies (in contrast to many natural ligands), there is a strong correlation between the receptor desolvation penalty and the optimized binding free energy for fixed geometry, and the ligand and receptor cannot generally be mutually optimal. Additionally, we introduce the display of complementary desolvation and interaction potentials and the deviation of their relationship from ideal as a useful tool for judging effective complementarity. Scripts for computing and displaying these potentials with GRASP are available at http://mit.edu/tidor.

  3. Development of Benzophenone-Alkyne Bifunctional Sigma Receptor Ligands

    PubMed Central

    Guo, Lian-Wang; Hajipour, Abdol R.; Karaoglu, Kerim; Mavlyutov, Timur A.; Ruoho, Arnold E.

    2012-01-01

    Sigma (σ) receptors represent unique non-opioid binding sites that are associated with a broad range of disease states. Sigma-2 receptors provide a promising target for diagnostic imaging and pharmacological interventions to curb tumor progression. Most recently, the progesterone receptor (PGRMC1, 25 kDa) has been identified to contain σ2 receptor-like binding properties, highlighting the need to understand the biological function of an 18-kDa protein that exhibits σ2-like photoaffinity labeling (herein denoted as σ2-18k) but the amino acid sequence of which is not known. In order to provide novel tools for the study of the σ2-18k protein, we have developed bifunctional sigma receptor ligands that bear a benzophenone photo-crosslinking moiety and an alkyne group, to which an azide-containing biotin affinity tag can be covalently attached via click chemistry following photo-crosslink. While several compounds showed favorable σ2 binding properties, compound 22 exhibited the highest affinity (2 nM) and the greatest potency in blocking photolabeling of the σ2-18k by a radioactive photoaffinity ligand. Thus, these benzophenone-alkyne sigma receptor ligands may be amenable for studying the σ2-18k protein via chemical biology approaches. To our knowledge, these compounds represent the first reported benzophenone-containing clickable sigma receptor ligands, which may potentially serve broad applications by “plugging” in various tags. PMID:23001760

  4. Regulation of ligands for the activating receptor NKG2D

    PubMed Central

    Mistry, Anita R; O'Callaghan, Chris A

    2007-01-01

    The outcome of an encounter between a cytotoxic cell and a potential target cell depends on the balance of signals from inhibitory and activating receptors. Natural Killer group 2D (NKG2D) has recently emerged as a major activating receptor on T lymphocytes and natural killer cells. In both humans and mice, multiple different genes encode ligands for NKG2D, and these ligands are non-classical major histocompatibility complex class I molecules. The NKG2D–ligand interaction triggers an activating signal in the cell expressing NKG2D and this promotes cytotoxic lysis of the cell expressing the ligand. Most normal tissues do not express ligands for NKG2D, but ligand expression has been documented in tumour and virus-infected cells, leading to lysis of these cells. Tight regulation of ligand expression is important. If there is inappropriate expression in normal tissues, this will favour autoimmune processes, whilst failure to up-regulate the ligands in pathological conditions would favour cancer development or dissemination of intracellular infection. PMID:17614877

  5. The Principles of Ligand Specificity on beta-2-adrenergic receptor

    PubMed Central

    Chan, H. C. Stephen; Filipek, Slawomir; Yuan, Shuguang

    2016-01-01

    G protein-coupled receptors are recognized as one of the largest families of membrane proteins. Despite sharing a characteristic seven-transmembrane topology, G protein-coupled receptors regulate a wide range of cellular signaling pathways in response to various physical and chemical stimuli, and prevail as an important target for drug discovery. Notably, the recent progress in crystallographic methods led to a breakthrough in elucidating the structures of membrane proteins. The structures of β2-adrenergic receptor bound with a variety of ligands provide atomic details of the binding modes of agonists, antagonists and inverse agonists. In this study, we selected four representative molecules from each functional class of ligands and investigated their impacts on β2-adrenergic receptor through a total of 12 × 100 ns molecular dynamics simulations. From the obtained trajectories, we generated molecular fingerprints exemplifying propensities of protein-ligand interactions. For each functional class of compounds, we characterized and compared the fluctuation of the protein backbone, the volumes in the intracellular pockets, the water densities in the receptors, the domain interaction networks as well as the movements of transmembrane helices. We discovered that each class of ligands exhibits a distinct mode of interactions with mainly TM5 and TM6, altering the shape and eventually the state of the receptor. Our findings provide insightful prospective into GPCR targeted structure-based drug discoveries. PMID:27703221

  6. GPCR drug discovery: novel ligands for CNS receptors.

    PubMed

    Lim, William K

    2007-06-01

    G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors in humans. They convey extracellular signals into the cell interior by activating intracellular processes such as heterotrimeric G protein-dependent signaling pathways. They are widely distributed in the nervous system, and mediate key physiological processes including cognition, mood, appetite, pain and synaptic transmission. With at least 30% of marketed drugs being GPCR modulators, they are a major therapeutic target in the pharmaceutical industry's drug discovery programs. This review will survey recently patented ligands for GPCRs implicated in CNS disorders, in particular the metabotropic glutamate, adenosine and cannabinoid receptors. Metabotropic glutamate receptors regulate signaling by glutamate, the major excitatory brain neurotransmitter, while adenosine is a ubiquitous neuromodulater mediating diverse physiological effects. Recent patents for ligands of these receptors include mGluR5 antagonists and adenosine A(1) receptor agonists. Cannabinoid receptors remain one of the most important GPCR drug discovery target due to the intense interest in CB(1) receptor antagonists for treating obesity and metabolic syndrome. Such small molecule ligands are the outcome of the continuing focus of many pharmaceutical companies to identify novel GPCR agonist, antagonist or allosteric modulators useful for CNS disorders, for which more effective drugs are eagerly awaited.

  7. Identification of Ligand-Receptor Interactions: Ligand Molecular Arrays, SPR and NMR Methodologies.

    PubMed

    Day, Christopher J; Hartley-Tassell, Lauren E; Korolik, Victoria

    2017-01-01

    Despite many years of research into bacterial chemotaxis, the only well characterized system to date is that of E. coli. Even for E. coli, the direct ligand binding had been fully characterized only for aspartate and serene receptors Tar and Tsr. In 30 years since, no other direct receptor-ligand interaction had been described for bacteria, until the characterization of the C. jejuni aspartate and multiligand receptors (Hartley-Tassell et al. Mol Microbiol 75:710-730, 2010). While signal transduction components of many sensory pathways have now been characterized, ligand-receptor interactions remain elusive due to paucity of high-throughput screening methods. Here, we describe the use of microarray screening we developed to identify ligands, surface plasmon resonance, and saturation transfer difference nuclear magnetic resonance (STD-NMR) we used to verify the hits and to determine the affinity constants of the interactions, allowing for more targeted verification of ligands with traditional chemotaxis and in vivo assays described in Chapter 13 .

  8. Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis.

    PubMed

    Theofilopoulos, Spyridon; Wang, Yuqin; Kitambi, Satish Srinivas; Sacchetti, Paola; Sousa, Kyle M; Bodin, Karl; Kirk, Jayne; Saltó, Carmen; Gustafsson, Magnus; Toledo, Enrique M; Karu, Kersti; Gustafsson, Jan-Åke; Steffensen, Knut R; Ernfors, Patrik; Sjövall, Jan; Griffiths, William J; Arenas, Ernest

    2013-02-01

    Liver X receptors (Lxrα and Lxrβ) are ligand-dependent nuclear receptors critical for ventral midbrain neurogenesis in vivo. However, no endogenous midbrain Lxr ligand has so far been identified. Here we used LC/MS and functional assays to identify cholic acid as a new Lxr ligand. Moreover, 24(S),25-epoxycholesterol (24,25-EC) was found to be the most potent and abundant Lxr ligand in the developing mouse midbrain. Both Lxr ligands promoted neural development in an Lxr-dependent manner in zebrafish in vivo. Notably, each ligand selectively regulated the development of distinct midbrain neuronal populations. Whereas cholic acid increased survival and neurogenesis of Brn3a-positive red nucleus neurons, 24,25-EC promoted dopaminergic neurogenesis. These results identify an entirely new class of highly selective and cell type-specific regulators of neurogenesis and neuronal survival. Moreover, 24,25-EC promoted dopaminergic differentiation of embryonic stem cells, suggesting that Lxr ligands may thus contribute to the development of cell replacement and regenerative therapies for Parkinson's disease.

  9. Estrogen Receptor Ligands: A Review (2013–2015)

    PubMed Central

    Farzaneh, Shabnam; Zarghi, Afshin

    2016-01-01

    Estrogen receptors (ERs) are a group of compounds named for their importance in both menstrual and estrous reproductive cycles. They are involved in the regulation of various processes ranging from tissue growth maintenance to reproduction. Their action is mediated through ER nuclear receptors. Two subtypes of the estrogen receptor, ERα and ERβ, exist and exhibit distinct cellular and tissue distribution patterns. In humans, both receptor subtypes are expressed in many cells and tissues, and they control key physiological functions in various organ systems. Estrogens attract great attention due to their wide applications in female reproductive functions and treatment of some estrogen-dependent cancers and osteoporosis. This paper provides a general review of ER ligands published in international journals patented between 2013 and 2015. The broad physiological profile of estrogens has attracted the attention of many researchers to develop new estrogen ligands as therapeutic molecules for various clinical purposes. After the discovery of the ERβ receptor, subtype-selective ligands could be used to elicit beneficial estrogen-like activities and reduce adverse side effects, based on the different distributions and relative levels of the two ER subtypes in different estrogen target tissues. Therefore, recent literature has focused on selective estrogen ligands as highly promising agents for the treatment of some types of cancer, as well as for cardiovascular, inflammatory, and neurodegenerative diseases. Estrogen receptors are nuclear transcription factors that are involved in the regulation of many complex physiological functions in humans. Selective estrogen ligands are highly promising targets for treatment of some types of cancer, as well as for cardiovascular, inflammatory and neurodegenerative diseases. Extensive structure-activity relationship studies of ER ligands based on small molecules indicate that many different structural scaffolds may provide high

  10. Inside job: ligand-receptor pharmacology beneath the plasma membrane

    PubMed Central

    Babcock, Joseph J; Li, Min

    2013-01-01

    Most drugs acting on the cell surface receptors are membrane permeable and thus able to engage their target proteins in different subcellular compartments. However, these drugs' effects on cell surface receptors have historically been studied on the plasma membrane alone. Increasing evidence suggests that small molecules may also modulate their targeted receptors through membrane trafficking or organelle-localized signaling inside the cell. These additional modes of interaction have been reported for functionally diverse ligands of GPCRs, ion channels, and transporters. Such intracellular drug-target engagements affect cell surface expression. Concurrent intracellular and cell surface signaling may also increase the complexity and therapeutic opportunities of small molecule modulation. Here we discuss examples of ligand-receptor interactions that are present in both intra- and extracellular sites, and the potential therapeutic opportunities presented by this phenomenon. PMID:23685953

  11. Tools and techniques to study ligand-receptor interactions and receptor activation by TNF superfamily members.

    PubMed

    Schneider, Pascal; Willen, Laure; Smulski, Cristian R

    2014-01-01

    Ligands and receptors of the TNF superfamily are therapeutically relevant targets in a wide range of human diseases. This chapter describes assays based on ELISA, immunoprecipitation, FACS, and reporter cell lines to monitor interactions of tagged receptors and ligands in both soluble and membrane-bound forms using unified detection techniques. A reporter cell assay that is sensitive to ligand oligomerization can identify ligands with high probability of being active on endogenous receptors. Several assays are also suitable to measure the activity of agonist or antagonist antibodies, or to detect interactions with proteoglycans. Finally, self-interaction of membrane-bound receptors can be evidenced using a FRET-based assay. This panel of methods provides a large degree of flexibility to address questions related to the specificity, activation, or inhibition of TNF-TNF receptor interactions in independent assay systems, but does not substitute for further tests in physiologically relevant conditions.

  12. Ligand-induced ErbB receptor dimerization

    PubMed Central

    Lemmon, Mark A.

    2009-01-01

    Structural studies have provided important new insights into how ligand binding promotes homodimerization and activation of the EGF receptor and the other members of the ErbB family or receptor tyrosine kinases. These structures have also suggested possible explanations for the unique properties of ErbB2, which has no known ligand and can cause cell transformation (and tumorigenesis) by simple overexpression. In parallel with these advances, studies of the EGF receptor at the cell surface increasingly argue that the structural studies are missing key mechanistic components. This is particularly evident in the structural prediction that EGF binding linked to receptor dimerization should be positively cooperative, whereas cell-surface EGF-binding studies suggest negative cooperativity. In this review, I summarize studies of ErbB receptor extracellular regions in solution and of intact receptors at the cell surface, and attempt to reconcile the differences suggested by the two approaches. By combining results obtained with receptor ‘parts’, it is qualitatively possible to explain some models for the properties of the whole receptor. These considerations underline the need to consider the intact ErbB receptors as intact allosterically regulated enzymes, and to combine cellular and structural studies into a complete picture. PMID:19038249

  13. [Endorphines--the endogenous ligands of opiate receptors (author's transl)].

    PubMed

    Teschemacher, H

    1978-01-01

    The demonstration of opiate receptors in the nervous tissue of vertebrates in 1973 was the starting point of an intensive search for the endogenous ligands of these receptors. During the following years, several of such "edogenous opiates", called "endorphines", were isolated from various tissues of the mammalian organism. These are peptides which are able to elicit the same effects as do opiates. Possibly, they play a role in the reaction of the organism to stress.

  14. [Effect of ligand concentration on the precision of determining the parameters of ligand-receptor interaction by serial dilution methods].

    PubMed

    Bobrovnik, S A

    2004-01-01

    Earlier we suggested the method of serial dilution, which allows one to determine the parameters of ligand-receptor interaction even if the reactants are in a mixture and their concentrations are unknown. The method is especially useful if the liability of studied receptor does not allow its separation from corresponding ligand. The important prerequisite of the method's precision is that the concentration of the ligand should be sufficiently high comparing to the concentration of the receptor. In the present paper it was demonstrated that the method allows one to obtain sufficiently good precision even in the case when the concentration of the ligand is only one tenth of the receptor concentration.

  15. [Determining the parameters for receptor-ligand interaction by serial dilution method for the case when the ligand and receptor are in a pre-existing mixture].

    PubMed

    Bobrovnik, S A

    2005-01-01

    New methods of determining the binding parameters for ligand-receptor interaction are considered. The considered approaches are based on the earlier suggested method of serial dilution and application of so-called coordinates of dilution. It was shown that the suggested methods allow to evaluate affinity constant and ligand concentration even for the case, when the receptor and corresponding ligand of unknown concentration are in a mixture and their separation from each other is impossible. In this connection the suggested methods are especially useful for studying the ligand-receptor interaction if the receptor is very liable and its purification from the ligand would cause drastic changes of its binding properties.

  16. Pharmacokinetics and pharmacodynamics of nonsteroidal androgen receptor ligands.

    PubMed

    Gao, Wenqing; Kim, Juhyun; Dalton, James T

    2006-08-01

    Testosterone and structurally related anabolic steroids have been used to treat hypogonadism, muscle wasting, osteoporosis, male contraception, cancer cachexia, anemia, and hormone replacement therapy in aging men or age-related frailty; while antiandrogens may be useful for treatment of conditions like acne, alopecia (male-pattern baldness), hirsutism, benign prostatic hyperplasia (BPH) and prostate cancer. However, the undesirable physicochemical and pharmacokinetic properties of steroidal androgen receptor (AR) ligands limited their clinical use. Nonsteroidal AR ligands with improved pharmacological and pharmacokinetic properties have been developed to overcome these problems. This review focuses on the pharmacokinetics, metabolism, and pharmacology of clinically used and emerging nonsteroidal AR ligands, including antagonists, agonists, and selective androgen receptor modulators.

  17. REACTIVITY PROFILE OF CONFORMATIONALLY-FLEXIBLE RETINOID RECEPTOR LIGANDS

    EPA Science Inventory

    Retinoids and associated derivatives represent a class of endogenousr hormones that bind to and activate different families of retinoic acid receptors (RARs, RXRs), and control many aspects of normal vertebrate development. Identification of potential RAR and RXRs ligands is of i...

  18. Nonsteroidal Androgen Receptor Ligands: Versatile Syntheses and Biological Data

    PubMed Central

    2012-01-01

    We report herein a stereoselective and straightforward methodology for the synthesis of new androgen receptor ligands with (anti)-agonistic activities. Oxygen–nitrogen replacement in bicalutamide-like structures paves the way to the disclosure of a new class of analogues, including cyclized/nitrogen-substituted derivatives, with promising antiandrogen (or anabolic) activity. PMID:24900495

  19. Central nicotinic receptors: structure, function, ligands, and therapeutic potential.

    PubMed

    Romanelli, M Novella; Gratteri, Paola; Guandalini, Luca; Martini, Elisabetta; Bonaccini, Claudia; Gualtieri, Fulvio

    2007-06-01

    The growing interest in nicotinic receptors, because of their wide expression in neuronal and non-neuronal tissues and their involvement in several important CNS pathologies, has stimulated the synthesis of a high number of ligands able to modulate their function. These membrane proteins appear to be highly heterogeneous, and still only incomplete information is available on their structure, subunit composition, and stoichiometry. This is due to the lack of selective ligands to study the role of nAChR under physiological or pathological conditions; so far, only compounds showing selectivity between alpha4beta2 and alpha7 receptors have been obtained. The nicotinic receptor ligands have been designed starting from lead compounds from natural sources such as nicotine, cytisine, or epibatidine, and, more recently, through the high-throughput screening of chemical libraries. This review focuses on the structure of the new agonists, antagonists, and allosteric ligands of nicotinic receptors, it highlights the current knowledge on the binding site models as a molecular modeling approach to design new compounds, and it discusses the nAChR modulators which have entered clinical trials.

  20. Oxytocin receptors: ligand binding, signalling and cholesterol dependence.

    PubMed

    Gimpl, Gerald; Reitz, Julian; Brauer, Sabine; Trossen, Conny

    2008-01-01

    The G protein coupled oxytocin receptor (OTR) reveals some specific molecular and physiological characteristics. Ligand-receptor interaction has been analysed by photoaffinity labelling, site-directed mutagenesis, the construction of receptor chimeras and molecular modelling. Major results of these studies will be summarized. The N-terminus of the OTR is mainly involved in agonist binding. Notably, antagonists that are derived from the ground structure of oxytocin, bind the receptor at distinct sites partly non-overlapping with the agonist binding site. OTRs are able to couple to different G proteins, with a subsequent stimulation of phospholipase C-beta isoforms. In dependence on G protein coupling, OTRs can transduce growth-inhibitory or proliferatory signals. Some evidence is provided that OTRs are also present in form of dimeric or oligomeric complexes at the cell surface. The affinity of the receptor for ligands is strongly dependent on the presence of divalent cations (Mg(2+)) and cholesterol that both act like positive allosteric modulators. While the high-affinity state of the receptor for agonists requires divalent cations and cholesterol, the high-affinity state for antagonists is only dependent on a sufficient amount of cholesterol. Cholesterol affects ligand-binding affinity, receptor signalling and stability. Since the purification of the OTR has never been achieved, alternative methods to study the receptor in its native environment are necessary. Promising strategies for the site-specific labelling of the OTR will be presented. The employment of diverse reporter molecules introduced at different positions within the OTR might allow us in the near future to measure conformational changes of the receptor in its native lipid environment.

  1. Why do cannabinoid receptors have more than one endogenous ligand?

    PubMed Central

    Di Marzo, Vincenzo; De Petrocellis, Luciano

    2012-01-01

    The endocannabinoid system was revealed following the understanding of the mechanism of action of marijuana's major psychotropic principle, Δ9-tetrahydrocannabinol, and includes two G-protein-coupled receptors (GPCRs; the cannabinoid CB1 and CB2 receptors), their endogenous ligands (the endocannabinoids, the best studied of which are anandamide and 2-arachidonoylglycerol (2-AG)), and the proteins that regulate the levels and activity of these receptors and ligands. However, other minor lipid metabolites different from, but chemically similar to, anandamide and 2-AG have also been suggested to act as endocannabinoids. Thus, unlike most other GPCRs, cannabinoid receptors appear to have more than one endogenous agonist, and it has been often wondered what could be the physiological meaning of this peculiarity. In 1999, it was proposed that anandamide might also activate other targets, and in particular the transient receptor potential of vanilloid type-1 (TRPV1) channels. Over the last decade, this interaction has been shown to occur both in peripheral tissues and brain, during both physiological and pathological conditions. TRPV1 channels can be activated also by another less abundant endocannabinoid, N-arachidonoyldopamine, but not by 2-AG, and have been proposed by some authors to act as ionotropic endocannabinoid receptors. This article will discuss the latest discoveries on this subject, and discuss, among others, how anandamide and 2-AG differential actions at TRPV1 and cannabinoid receptors contribute to making this signalling system a versatile tool available to organisms to fine-tune homeostasis. PMID:23108541

  2. Thiophene-Core Estrogen Receptor Ligands Having Superagonist Activity

    PubMed Central

    Min, Jian; Wang, Pengcheng; Srinivasan, Sathish; Nwachukwu, Jerome C.; Guo, Pu; Huang, Minjian; Carlson, Kathryn E.; Katzenellenbogen, John A.; Nettles, Kendall W.; Zhou, Hai-Bing

    2013-01-01

    To probe the importance of the heterocyclic core of estrogen receptor (ER) ligands, we prepared a series of thiophene-core ligands by Suzuki cross-coupling of aryl boronic acids with bromo-thiophenes, and we assessed their receptor binding and cell biological activities. The disposition of the phenol substituents on the thiophene core, at alternate or adjacent sites, and the nature of substituents on these phenols all contribute to binding affinity and subtype selectivity. Most of the bis(hydroxyphenyl)-thiophenes were ERβ selective, whereas the tris(hydroxyphenyl)-thiophenes were ERα selective; analogous furan-core compounds generally have lower affinity and less selectivity. Some diarylthiophenes show distinct superagonist activity in reporter gene assays, giving maximal activities 2–3 times that of estradiol, and modeling suggests that these ligands have a different interaction with a hydrogen-bonding residue in helix-11. Ligand-core modification may be a new strategy for developing ER ligands whose selectivity is based on having transcriptional activity greater than that of estradiol. PMID:23586645

  3. Ligand specificity and evolution of liver X receptors§

    PubMed Central

    Reschly, Erica J.; Ai, Ni; Welsh, William J.; Ekins, Sean; Hagey, Lee R.; Krasowski, Matthew D.

    2008-01-01

    Liver X receptors (LXRs) are key regulators of lipid and cholesterol metabolism in mammals. Little is known, however, about the function and evolution of LXRs in non-mammalian species. The present study reports the cloning of LXRs from African clawed frog (Xenopus laevis), Western clawed frog (Xenopus tropicalis), and zebrafish (Danio rerio), and their functional characterization and comparison with human and mouse LXRs. Additionally, an ortholog of LXR in the chordate invertebrate Ciona intestinalis was cloned and functionally characterized. Ligand specificities of the frog and zebrafish LXRs were very similar to LXRα and LXRβ from human and mouse. All vertebrate LXRs studied were activated robustly by the synthetic ligands T-0901317 and GW3965 and by a variety of oxysterols. In contrast, Ciona LXR was not activated by T-0901317 or GW3965 but was activated by a limited number of oxysterols, as well as some androstane and pregnane steroids. Pharmacophore analysis, homology modeling, and docking studies of Ciona LXR predict a receptor with a more restricted ligand-binding pocket and less intrinsic disorder in the ligand-binding domain compared to vertebrate LXRs. The results suggest that LXRs have a long evolutionary history, with vertebrate LXRs diverging from invertebrate LXRs in ligand specificity. PMID:18395439

  4. Receptor Specific Ligands for Spect Imaging

    SciTech Connect

    Kung, H. F.

    2003-02-25

    In the past funding period we have concentrated in developing new 99mTc labeled MIBG analogs. Basic chemistry of ligand synthesis, radiochemistry of Re and 99mTc complex formation, separation of stereoisomers and in vitro stability were investigated. We have prepared a number of new MIBG derivatives containing chelating moiety N2S2 and additional groups to increase lipophilicity. Unfortunately none of the new 99mTc labeled MIBG analogs showed promise as an imaging agent for myocardial neuronal function. Radioactive-iodine-labeled meta-iodobenzylguanidine (MIBG) is currently being used as an in vivo imaging agent to evaluate neuroendocrine tumors as well as the myocardial sympathetic nervous system in patients with myocardial infarct and cardiomyopathy. It is generally accepted that MIBG is an analog of norepinephrine and its uptake in the heart corresponds to the distribution of norepinephrine and the density of sympathetic neurons. A series of MIBG derivatives containing suitable chelating functional groups N2S2 for the formation of [Tcv0]+3N2S2 complex was successfully synthesized and the 99mTc-labeled complexes were prepared and tested in rats. One of the compounds, [99mTc]M2, tested showed significant, albeit lower, heart uptakes post iv injection in rats (0.18% dose/organ at 4 hours) as compared to [l25l]MIBG (1.4% dose/organ at 4 hours). The heart uptake of the 99mTc-labeled complex, [99mTc]M2, appears to be specific and can be reduced by coinjection with nonradioactive MIBG or by pretreatment with desipramine. a selective norepinephrine transporter inhibitor. Further evaluation of the in vitro uptake of [99mTc]M2 in cultured neuroblastoma cells displayed consistently lower, but measurable uptake (app. 10% of that for [125l]MlBG). These preliminary results suggested that the mechanisms of heart uptake of [99mTc]M2 may be related to those for [125l]MIBG uptake. To improve the heart uptake of the MIBG derivatives we have developed chemistry related to the

  5. Ligands for cannabinoid receptors, promising anticancer agents.

    PubMed

    Nikan, Marjan; Nabavi, Seyed Mohammad; Manayi, Azadeh

    2016-02-01

    Cannabinoid compounds are unique to cannabis and provide some interesting biological properties. These compounds along with endocannabinoids, a group of neuromodulator compounds in the body especially in brain, express their effects by activation of G-protein-coupled cannabinoid receptors, CB1 and CB2. There are several physiological properties attributed to the endocannabinoids including pain relief, enhancement of appetite, blood pressure lowering during shock, embryonic development, and blocking of working memory. On the other hand, activation of endocannabinoid system may be suppresses evolution and progression of several types of cancer. According to the results of recent studies, CB receptors are over-expressed in cancer cell lines and application of multiple cannabinoid or cannabis-derived compounds reduce tumor size through decrease of cell proliferation or induction of cell cycle arrest and apoptosis along with desirable effect on decrease of tumor-evoked pain. Therefore, modulation of endocannabinoid system by inhibition of fatty acid amide hydrolase (FAAH), the enzyme, which metabolized endocannabinoids, or application of multiple cannabinoid or cannabis-derived compounds, may be appropriate for the treatment of several cancer subtypes. This review focuses on how cannabinoid affect different types of cancers.

  6. The AXL Receptor is a Sensor of Ligand Spatial Heterogeneity

    PubMed Central

    Meyer, Aaron S.; Zweemer, Annelien J.M.; Lauffenburger, Douglas A.

    2015-01-01

    The AXL receptor is a TAM (Tyro3, AXL, MerTK) receptor tyrosine kinase (RTK) important in physiological inflammatory processes such as blood clotting, viral infection, and innate immune-mediated cell clearance. Overexpression of the receptor in a number of solid tumors is increasingly appreciated as a key drug resistance and tumor dissemination mechanism. Although the ligand-receptor (Gas6-AXL) complex structure is known, literature reports on ligand-mediated signaling have provided conflicting conclusions regarding the influence of other factors such as phosphatidylserine binding, and a detailed, mechanistic picture of AXL activation has not emerged. Integrating quantitative experiments with mathematical modeling, we show here that AXL operates to sense local spatial heterogeneity in ligand concentration, a feature consistent with its physiological role in inflammatory cell responses. This effect arises as a result of an intricate reaction-diffusion interaction. Our results demonstrate that AXL functions distinctly from other RTK families, a vital insight for envisioned design of AXL-targeted therapeutic intervention. PMID:26236777

  7. Metabotropic glutamate receptor ligands as potential therapeutics for addiction

    PubMed Central

    Olive, M. F.

    2009-01-01

    There is now compelling evidence that the excitatory amino acid neurotransmitter glutamate plays a pivotal role in drug addiction and alcoholism. As a result, there has been increasing interest in developing glutamate-based therapies for the treatment of addictive disorders. Receptors for glutamate are primarily divided into two classes: ionotropic glutamate receptors (iGluRs) that mediate fast excitatory glutamate transmission, and metabotropic glutamate receptors (mGluRs), which are G-protein coupled receptors that mediate slower, modulatory glutamate transmission. Most iGluR antagonists, while showing some efficacy in animal models of addiction, exhibit serious side effects when tested in humans. mGluR ligands, on the other hand, which have been advanced to testing in clinical trials for various medical conditions, have demonstrated the ability to reduce drug reward, reinforcement, and relapse-like behaviors in animal studies. mGluR ligands that have been shown to be primarily effective are Group I (mGluR1 and mGluR5) negative allosteric modulators and Group II (mGluR2 and mGluR3) orthosteric presynaptic autoreceptor agonists. In this review, we will summarize findings from animal studies suggesting that these mGluR ligands may be of potential benefit in reducing on-going drug self-administration and may aid in the prevention of relapse. The neuroanatomical distribution of mGluR1, mGluR2/3, and mGluR5 receptors and the pharmacological properties of Group I negative allosteric modulators and Group II agonists will also be overviewed. Finally, we will discuss the current status of mGluR ligands in human clinical trials. PMID:19630739

  8. Probability description of ligand-receptor interactions. Evaluation of reliability of events with small and supersmall doses. I. Kinetics of ligand-receptor interactions.

    PubMed

    Gurevich, K G; Varfolomeev, S D

    1999-09-01

    We have developed mathematical methods for describing ligand-receptor interactions (LRI) using Markov chains. Under some conditions, the mean value of ligand-receptor complexes obtained using Markov chains coincides with that obtained from the law of mass action. Using the calculated ratio of standard deviation to mean number of ligand-receptor complexes, we show that with small concentrations of ligand-receptor complexes LRI must be described using probability methods. Using data from the literature, we show that LRI description using the mass-action law under these conditions can cause significant errors in interpretation of experimental data.

  9. Constitutive and ligand-induced nuclear localization of oxytocin receptor.

    PubMed

    Kinsey, Conan G; Bussolati, Gianni; Bosco, Martino; Kimura, Tadashi; Pizzorno, Marie C; Chernin, Mitchell I; Cassoni, Paola; Novak, Josef F

    2007-01-01

    Oxytocin receptor (OTR) is a membrane protein known to mediate oxytocin (OT) effects, in both normal and neoplastic cells. We report here that human osteosarcoma (U2OS, MG63, OS15 and SaOS2), breast cancer (MCF7), and primary human fibroblastic cells (HFF) all exhibit OTR not only on the cell membrane, but also in the various nuclear compartments including the nucleolus. Both an OTR-GFP fusion protein and the native OTR appear to be localized to the nucleus as detected by transfection and/or confocal immunofluorescence, respectively. Treatment with oxytocin causes internalization of OTR and the resulting vesicles accumulate in the vicinity of the nucleus and some of the perinuclear OTR enters the nucleus. Western blots indicate that OTR in the nucleus and on the plasma membrane are likely to be the same biochemical and immunological entities. It appears that OTR is first visible in the nucleoli and subsequently disperses within the nucleus into 4-20 spots while some of the OTR diffuses throughout the nucleoplasm. The behaviour and kinetics of OTR-GFP and OTR are different, indicating interference by GFP in both OTR entrance into the nucleus and subsequent relocalization of OTR within the nucleus. There are important differences among the tested cells, such as the requirement of a ligand for transfer of OTR in nuclei. A constitutive internalization of OTR was found only in osteosarcoma cells, while the nuclear localization in all other tested cells was dependent on ligand binding. The amount of OTR-positive material within and in the vicinity of the nucleus increased following a treatment with oxytocin in both constitutive and ligand-dependent type of cells. The evidence of OTR compartmentalization at the cell nucleus (either ligand-dependent or constitutive) in different cell types suggests still unknown biological functions of this protein or its ligand and adds this G-protein-coupled receptor to other heptahelical receptors displaying this atypical and unexpected

  10. Cancer therapy using natural ligands that target estrogen receptor beta

    PubMed Central

    Sareddy, Gangadhara R; Vadlamudi, Ratna K.

    2016-01-01

    Estrogen receptor beta (ERβ) is one of the two key receptors (ERα, ERβ) that facilitate biological actions of 17β-estradiol (E2). ERβ is widely expressed in many tissues, and its expression is reduced or lost during progression of many tumors. ERβ facilitates estrogen signaling by both genomic (classical and non-classical) and extra-nuclear signaling. Emerging evidence suggests that ERβ functions as a tissue-specific tumor suppressor with anti-proliferative actions. Recent studies have identified a number of naturally available selective ERβ agonists. Targeting ERβ using its naturally available ligands is an attractive approach for treating and preventing cancers. This review presents the beneficial actions of ERβ signaling and clinical utility of several natural ERβ ligands as potential cancer therapy. PMID:26614454

  11. High-affinity benzodiazepine receptor ligands among benzodiazepines and betacarbolines with different intrinsic activity

    SciTech Connect

    Yliniemelae, A.; Gynther, J. ); Konschin, H.; Tylli, H. ); Rouvinen, J. )

    1989-01-01

    Structural and electrostatic features of diazepam, flumazenil, and methyl betacarboline-3-carboxylate (BCCM) have been investigated using the molecular superimposition method. These high-affinity benzodiazepine (BZ) receptor ligands are structurally unrelated and they have different intrinsic activity. These ligands are superimposed in such a way that common structural and electrostatic features essential for the high receptor binding affinity overlap. In addition to this binding pharmacophore, there are roughly three separate binding zones in the BZ receptor, one for each class of ligands. The intrinsic activity of BZ receptor ligands depends on the molecular structures and the way the ligand approaches the receptor.

  12. GR-127935-sensitive mechanism mediating hypotension in anesthetized rats: are 5-HT5B receptors involved?

    PubMed

    Sánchez-Maldonado, Carolina; López-Sánchez, Pedro; Anguiano-Robledo, Liliana; Leopoldo, Marcello; Lacivita, Enza; Terrón, José A

    2015-04-01

    The 5-HT1B/1D receptor antagonist, GR-127935, inhibits hypotensive responses produced by the 5-HT1A, 5-HT1B/1D and 5-HT7 receptor agonist, and 5-HT5A/5B receptor ligand, 5-carboxamidotryptamine (5-CT), in rats. This work further characterized the above mechanism using more selective 5-HT1B and 5-HT1D receptor antagonists. Also, expression of 5-HT5A and 5-HT5B receptor mRNAs in blood vessels was searched by reverse transcription polymerase chain reaction. Decreases in diastolic blood pressure induced by 5-CT (0.001-10 μg/kg, intravenously) were analyzed in anesthetized rats that had received intravenous vehicle (1 mL/kg), SB-224289 (5-HT1B antagonist; 0.3 and 1.0 mg/kg), BRL15572 (5-HT1D antagonist; 0.3 and 1.0 mg/kg), SB-224289 + BRL15572 (0.3 mg/kg, each), or SB-224289 + BRL15572 (0.3 mg/kg, each) + GR-127935 (1 mg/kg). Because only the latter treatment inhibited 5-CT-induced hypotension, suggestive of a mechanism unrelated to 5-HT1B/1D receptors, the effects of antagonists/ligands at 5-HT5A (SB-699551, 1 mg/kg), 5-HT6 (SB-399885, 1 mg/kg), and 5-HT1B/1D/5A/5B/7 receptors (ergotamine, 0.1 mg/kg) on 5-CT-induced hypotension were tested. Interestingly, only ergotamine blocked 5-CT-induced responses; this effect closely paralleled that of SB-224289 + BRL-15572 + GR-127935. Neither did ergotamine nor GR-127935 inhibit hypotensive responses induced by the 5-HT7 receptor agonist, LP-44. Faint but clear bands corresponding to 5-HT5A and 5-HT5B receptor mRNAs in aorta and mesenteric arteries were detected. Results suggest that the GR-127935-sensitive mechanism mediating hypotension in rats is unrelated to 5-HT1B, 5-HT1D, 5-HT5A, 5-HT6, and 5-HT7 receptors. This mechanism, however, resembles putative 5-HT5B receptors.

  13. Optimizing Ligand Efficiency of Selective Androgen Receptor Modulators (SARMs).

    PubMed

    Handlon, Anthony L; Schaller, Lee T; Leesnitzer, Lisa M; Merrihew, Raymond V; Poole, Chuck; Ulrich, John C; Wilson, Joseph W; Cadilla, Rodolfo; Turnbull, Philip

    2016-01-14

    A series of selective androgen receptor modulators (SARMs) containing the 1-(trifluoromethyl)benzyl alcohol core have been optimized for androgen receptor (AR) potency and drug-like properties. We have taken advantage of the lipophilic ligand efficiency (LLE) parameter as a guide to interpret the effect of structural changes on AR activity. Over the course of optimization efforts the LLE increased over 3 log units leading to a SARM 43 with nanomolar potency, good aqueous kinetic solubility (>700 μM), and high oral bioavailability in rats (83%).

  14. Optimizing Ligand Efficiency of Selective Androgen Receptor Modulators (SARMs)

    PubMed Central

    2015-01-01

    A series of selective androgen receptor modulators (SARMs) containing the 1-(trifluoromethyl)benzyl alcohol core have been optimized for androgen receptor (AR) potency and drug-like properties. We have taken advantage of the lipophilic ligand efficiency (LLE) parameter as a guide to interpret the effect of structural changes on AR activity. Over the course of optimization efforts the LLE increased over 3 log units leading to a SARM 43 with nanomolar potency, good aqueous kinetic solubility (>700 μM), and high oral bioavailability in rats (83%). PMID:26819671

  15. Peptide ligand recognition by G protein-coupled receptors

    PubMed Central

    Krumm, Brian E.

    2015-01-01

    The past few years have seen spectacular progress in the structure determination of G protein-coupled receptors (GPCRs). We now have structural representatives from classes A, B, C, and F. Within the rhodopsin-like class A, most structures belong to the α group, whereas fewer GPCR structures are available from the β, γ, and δ groups, which include peptide GPCRs such as the receptors for neurotensin (β group), opioids, chemokines (γ group), and protease-activated receptors (δ group). Structural information on peptide GPCRs is restricted to complexes with non-peptidic drug-like antagonists with the exception of the chemokine receptor CXCR4 that has been crystallized in the presence of a cyclic peptide antagonist. Notably, the neurotensin receptor 1 is to date the only peptide GPCR whose structure has been solved in the presence of a peptide agonist. Although limited in number, the current peptide GPCR structures reveal great diversity in shape and electrostatic properties of the ligand binding pockets, features that play key roles in the discrimination of ligands. Here, we review these aspects of peptide GPCRs in view of possible models for peptide agonist binding. PMID:25852552

  16. 5D-QSAR for spirocyclic sigma1 receptor ligands by Quasar receptor surface modeling.

    PubMed

    Oberdorf, Christoph; Schmidt, Thomas J; Wünsch, Bernhard

    2010-07-01

    Based on a contiguous and structurally as well as biologically diverse set of 87 sigma(1) ligands, a 5D-QSAR study was conducted in which a quasi-atomistic receptor surface modeling approach (program package Quasar) was applied. The superposition of the ligands was performed with the tool Pharmacophore Elucidation (MOE-package), which takes all conformations of the ligands into account. This procedure led to four pharmacophoric structural elements with aromatic, hydrophobic, cationic and H-bond acceptor properties. Using the aligned structures a 3D-model of the ligand binding site of the sigma(1) receptor was obtained, whose general features are in good agreement with previous assumptions on the receptor structure, but revealed some novel insights since it represents the receptor surface in more detail. Thus, e.g., our model indicates the presence of an H-bond acceptor moiety in the binding site as counterpart to the ligands' cationic ammonium center, rather than a negatively charged carboxylate group. The presented QSAR model is statistically valid and represents the biological data of all tested compounds, including a test set of 21 ligands not used in the modeling process, with very good to excellent accuracy [q(2) (training set, n=66; leave 1/3 out) = 0.84, p(2) (test set, n=21)=0.64]. Moreover, the binding affinities of 13 further spirocyclic sigma(1) ligands were predicted with reasonable accuracy (mean deviation in pK(i) approximately 0.8). Thus, in addition to novel insights into the requirements for binding of spirocyclic piperidines to the sigma(1) receptor, the presented model can be used successfully in the rational design of new sigma(1) ligands.

  17. Steroid receptors and their ligands: Effects on male gamete functions

    SciTech Connect

    Aquila, Saveria; De Amicis, Francesca

    2014-11-01

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens

  18. Structural basis of ligand interaction with atypical chemokine receptor 3

    NASA Astrophysics Data System (ADS)

    Gustavsson, Martin; Wang, Liwen; van Gils, Noortje; Stephens, Bryan S.; Zhang, Penglie; Schall, Thomas J.; Yang, Sichun; Abagyan, Ruben; Chance, Mark R.; Kufareva, Irina; Handel, Tracy M.

    2017-01-01

    Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally driven models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor.

  19. Structural basis of ligand interaction with atypical chemokine receptor 3

    PubMed Central

    Gustavsson, Martin; Wang, Liwen; van Gils, Noortje; Stephens, Bryan S.; Zhang, Penglie; Schall, Thomas J.; Yang, Sichun; Abagyan, Ruben; Chance, Mark R.; Kufareva, Irina; Handel, Tracy M.

    2017-01-01

    Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally driven models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor. PMID:28098154

  20. Receptor-based 3D QSAR analysis of estrogen receptor ligands - merging the accuracy of receptor-based alignments with the computational efficiency of ligand-based methods

    NASA Astrophysics Data System (ADS)

    Sippl, Wolfgang

    2000-08-01

    One of the major challenges in computational approaches to drug design is the accurate prediction of binding affinity of biomolecules. In the present study several prediction methods for a published set of estrogen receptor ligands are investigated and compared. The binding modes of 30 ligands were determined using the docking program AutoDock and were compared with available X-ray structures of estrogen receptor-ligand complexes. On the basis of the docking results an interaction energy-based model, which uses the information of the whole ligand-receptor complex, was generated. Several parameters were modified in order to analyze their influence onto the correlation between binding affinities and calculated ligand-receptor interaction energies. The highest correlation coefficient ( r 2 = 0.617, q 2 LOO = 0.570) was obtained considering protein flexibility during the interaction energy evaluation. The second prediction method uses a combination of receptor-based and 3D quantitative structure-activity relationships (3D QSAR) methods. The ligand alignment obtained from the docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection, a significant and robust model was obtained ( r 2 = 0.991, q 2 LOO = 0.921). The predictive ability of the established model was further evaluated by using a test set of six additional compounds. The comparison with the generated interaction energy-based model and with a traditional CoMFA model obtained using a ligand-based alignment ( r 2 = 0.951, q 2 LOO = 0.796) indicates that the combination of receptor-based and 3D QSAR methods is able to improve the quality of the underlying model.

  1. Lighting up G protein-coupled purinergic receptors with engineered fluorescent ligands

    PubMed Central

    Ciruela, Francisco; Fernández-Dueñas, Víctor; Jacobson, Kenneth A.

    2015-01-01

    The use of G protein-coupled receptors fluorescent ligands is undergoing continuous expansion. In line with this, fluorescent agonists and antagonists of high affinity for G protein-coupled adenosine and P2Y receptors have been shown to be useful pharmacological probe compounds. Fluorescent ligands for A1R, A2AR, and A3R (adenosine receptors) and P2Y2R, P2Y4R, P2Y6R, and P2Y14R (nucleotide receptors) have been reported. Such ligands have been successfully applied to drug discovery and to GPCR characterization by flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer and scanning confocal microscopy. Here we summarize recently reported and readily available representative fluorescent ligands of purinergic receptors. In addition, we pay special attention on the use of this family of fluorescent ligands revealing two main aspects of purinergic receptor biology, namely ligand binding and receptor oligomerization. PMID:25890205

  2. Multiresolution imaging of in-vivo ligand-receptor interactions

    NASA Astrophysics Data System (ADS)

    Thevenaz, Philippe; Millet, Philippe

    2001-05-01

    The aim of this study is to obtain voxel-by-voxel images of binding parameters between [11C]-flumazenil and benzodiazepine receptors using positron emission tomography (PET). We estimate five local parameters (k1, k2, B'max, kon/VR, koff) by fitting a three- compartment ligand-receptor model for each voxel of a PET time series. It proves difficult to fit the ligand-receptor model to the data. We trade noise and spatial resolution to get better results. Our strategy is based on the use of a multiresolution pyramid. It is much easier to solve the problem at coarse resolution because there are fewer data to process. To increase resolution, we expand the parameter maps to the next finer level and use them as initial solution to further optimization, which then proceeds at a fast pace and is more likely to escape false local minima. For this approach to work optimally, the residue between data at a given pyramid level and data at the next level must be as small as possible. We satisfy this constraint by working with spline-based least- squares pyramids. To achieve speed, the optimizer must be efficient, particularly when it is nearing the solution. To that effect, we have developed a Marquardt-Levenberg algorithm that exhibits superlinear convergence properties.

  3. NKG2D receptor and its ligands in host defense

    PubMed Central

    Lanier, Lewis L.

    2015-01-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808

  4. NKG2D Receptor and Its Ligands in Host Defense.

    PubMed

    Lanier, Lewis L

    2015-06-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8(+) T cells, and subsets of CD4(+) T cells, invariant NKT cells (iNKT), and γδ T cells. In humans, NKG2D transmits signals by its association with the DAP10 adapter subunit, and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least eight genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and posttranslation. In general, healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyperproliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves as a mechanism for the immune system to detect and eliminate cells that have undergone "stress." Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system, and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases.

  5. Highly selective CB(1) cannabinoid receptor ligands and novel CB(1)/VR(1) vanilloid receptor "hybrid" ligands.

    PubMed

    Di Marzo, V; Bisogno, T; De Petrocellis, L; Brandi, I; Jefferson, R G; Winckler, R L; Davis, J B; Dasse, O; Mahadevan, A; Razdan, R K; Martin, B R

    2001-02-23

    Anandamide and the metabolically stabler analogs, (R)-1'-methyl-2'-hydroxy-ethyl-arachidonamide (Met-AEA) and N-(3-methoxy-4-hydroxy-benzyl)-arachidonamide (arvanil), are CB(1) cannabinoid and VR(1) vanilloid receptors agonists. We synthesized 1',1'-dimethylheptyl-arvanil (O-1839) and six other AEA analogs obtained by addition of either a hydroxy, cyano, or bromo group on the C-20 atom of 1,1'-dimethylpentyl-Met-AEA (O-1811, O-1812 and O-1860, respectively) or 1,1'-dimethylpentyl-arvanil (O-1856, O-1895 and O-1861, respectively). The compounds were tested for their (i) affinity for CB(1) and CB(2) receptors, (ii) capability to activate VR1 receptors, (iii) inhibitory effect on the anandamide hydrolysis and on the anandamide membrane transporter, and (iv) cannabimimetic activity in the mouse 'tetrad' of in vivo assays. O-1812 is the first ligand ever proven to be highly (500- to 1000-fold) selective for CB(1) vs both VR(1) and CB(2) receptors, while O-1861 is the first true "hybrid" agonist of CB(1)/VR(1) receptors and a compound with potential therapeutic importance. The activities of the seven compounds in vivo did not correlate with their activities at either CB(1) or VR(1) receptors, thus suggesting the existence of other brain sites of action mediating some of their neurobehavioral actions in mice.

  6. Probing an artificial polypeptide receptor library using a series of novel histamine H3 receptor ligands.

    PubMed

    Bak, Andrzej; Daszykowski, Michal; Kaminski, Zbigniew; Kiec-Kononowicz, Katarzyna; Kuder, Kamil; Fraczyk, Justyna; Kolesinska, Beata; Ciosek, Patrycja; Polanski, Jaroslaw

    2014-02-01

    An artificial polypeptide receptor (APR) library was created by using the self-organization of N-lipidated peptides attached to cellulose via m-aminophenylamino-1,3,5-triazine. The response of the library was probed using a series of novel H3 receptor ligands. Since no guidelines on how to design an APRs selective vs certain receptor types exist, a diverse set of amino acids (Ala, Trp, Pro, Glu, His, Lys and Ser) were used and coupled with one of three gating fatty acids (palmitic, ricinoleic or capric). A competitive adsorption-desorption of an appropriate reporter dye was used for the indirect visualization of the interactions of guests with particular receptors. The resulted library response to individual inhibitors was then arranged in a matrix, preprocessed and analyzed using the principal component analysis (PCA) and partial least squares (PLS) method. The most important conclusion obtained from the PCA analysis is that the library differentiates the probed compounds according to the lipophilicity of the gating unit. The PC3 with a dominant absolute contribution of the receptors containing Glu allowed for the best separation of the ligands with respect to their activity. This conclusion is in agreement with the fact that Glu 206 is a genuine ligand counterpart in the natural histamine receptor.

  7. Modulation of Opioid Receptor Ligand Affinity and Efficacy Using Active and Inactive State Receptor Models

    PubMed Central

    Anand, Jessica P.; Purington, Lauren C.; Pogozheva, Irina D.; Traynor, John R.; Mosberg, Henry I.

    2012-01-01

    Mu opioid receptor (MOR) agonists are widely used for the treatment of pain; however chronic use results in the development of tolerance and dependence. It has been demonstrated that co-administration of a MOR agonist with a delta opioid receptor (DOR) antagonist maintains the analgesia associated with MOR agonists, but with reduced negative side effects. Using our newly refined opioid receptor models for structure-based ligand design, we have synthesized several pentapeptides with tailored affinity and efficacy profiles. In particular, we have obtained pentapeptides 8, Tyr-c(S-S)[DCys-1Nal-Nle-Cys]NH2, and 12, Tyr-c(S-S)[DCys-1Nal-Nle-Cys]OH, which demonstrates high affinity and full agonist behavior at MOR, high affinity but very low efficacy for DOR, and minimal affinity for the kappa opioid receptor (KOR). Functional properties of these peptides as MOR agonists/DOR antagonists lacking undesired KOR activity make them promising candidates for future in vivo studies of MOR/DOR interactions. Subtle structural variation of 12, by substituting D-Cys5 for L-Cys5, generated analog 13 which maintains low nanomolar MOR and DOR affinity, but which displays no efficacy at either receptor. These results demonstrate the power and utility of accurate receptor models for structure-based ligand design, as well as the profound sensitivity of ligand function on its structure. PMID:22882801

  8. [Endomorphins--endogenous ligands of the mu-opioid receptor].

    PubMed

    Perlikowska, Renata; Fichna, Jakub; Janecka, Anna

    2009-01-01

    Two endogenous opioid peptides with extremely high mu-opioid receptor affinity and selectivity, endomorphin-1 and endomorphin-2, were: discovered and isolated from the mammalian brain in 1997. Endomorphins are amidated tetrapeptides, structurally different from so called typical opioids: enkephalins, dynorphins and endorphins. A protein precursor of endomorphins and a gene encoding their sequence remain unknown. Endomorphins are unable to cross the blood-brain barrier because of their low hydrophobicity. In animal models, these peptides turned out to be very potent in relieving neuropathic and inflammatory pain. In comparison with morphine, a prototype opioid receptor ligand, endomorphins produces less undesired side effects. In this article we describe the discovery of endomorphins, their cellular localization and functions in the organism, as well as their structure-activity relationships and biodegradation pathways.

  9. Beta-arrestin-biased ligands at seven-transmembrane receptors.

    PubMed

    Violin, Jonathan D; Lefkowitz, Robert J

    2007-08-01

    Seven-transmembrane receptors (7TMRs), the most common molecular targets of modern drug therapy, are critically regulated by beta-arrestins, which both inhibit classic G-protein signaling and initiate distinct beta-arrestin signaling. The interplay of G-protein and beta-arrestin signals largely determines the cellular consequences of 7TMR-targeted drugs. Until recently, a drug's efficacy for beta-arrestin recruitment was believed to be proportional to its efficacy for G-protein activities. This paradigm restricts 7TMR drug effects to a linear spectrum of responses, ranging from inhibition of all responses to stimulation of all responses. However, it is now clear that 'biased ligands' can selectively activate G-protein or beta-arrestin functions and thus elicit novel biological effects from even well-studied 7TMRs. Here, we discuss the current state of beta-arrestin-biased ligand research and the prospects for beta-arrestin bias as a therapeutic target. Consideration of ligand bias might have profound influences on the way scientists approach 7TMR-targeted drug discovery.

  10. MIPs are ancestral ligands for the sex peptide receptor.

    PubMed

    Kim, Young-Joon; Bartalska, Katarina; Audsley, Neil; Yamanaka, Naoki; Yapici, Nilay; Lee, Ju-Youn; Kim, Yong-Chul; Markovic, Milica; Isaac, Elwyn; Tanaka, Yoshiaki; Dickson, Barry J

    2010-04-06

    Upon mating, females of many animal species undergo dramatic changes in their behavior. In Drosophila melanogaster, postmating behaviors are triggered by sex peptide (SP), which is produced in the male seminal fluid and transferred to female during copulation. SP modulates female behaviors via sex peptide receptor (SPR) located in a small subset of internal sensory neurons that innervate the female uterus and project to the CNS. Although required for postmating responses only in these female sensory neurons, SPR is expressed broadly in the CNS of both sexes. Moreover, SPR is also encoded in the genomes of insects that lack obvious SP orthologs. These observations suggest that SPR may have additional ligands and functions. Here, we identify myoinhibitory peptides (MIPs) as a second family of SPR ligands that is conserved across a wide range of invertebrate species. MIPs are potent agonists for Drosophila, Aedes, and Aplysia SPRs in vitro, yet are unable to trigger postmating responses in vivo. In contrast to SP, MIPs are not produced in male reproductive organs, and are not required for postmating behaviors in Drosophila females. We conclude that MIPs are evolutionarily conserved ligands for SPR, which are likely to mediate functions other than the regulation of female reproductive behaviors.

  11. Identification of Putative Receptors for the Novel Adipokine CTRP3 Using Ligand-Receptor Capture Technology

    PubMed Central

    Li, Ying; Ozment, Tammy; Wright, Gary L.

    2016-01-01

    C1q TNF Related Protein 3 (CTRP3) is a member of a family of secreted proteins that exert a multitude of biological effects. Our initial work identified CTRP3’s promise as an effective treatment for Nonalcoholic fatty liver disease (NAFLD). Specifically, we demonstrated that mice fed a high fat diet failed to develop NAFLD when treated with CTRP3. The purpose of this current project is to identify putative receptors which mediate the hepatic actions of CTRP3. Methods We used Ligand-receptor glycocapture technology with TriCEPS™-based ligand-receptor capture (LRC-TriCEPS; Dualsystems Biotech AG). The LRC-TriCEPS experiment with CTRP3-FLAG protein as ligand and insulin as a control ligand was performed on the H4IIE rat hepatoma cell line. Results Initial analysis demonstrated efficient coupling of TriCEPS to CTRP3. Further, flow cytometry analysis (FACS) demonstrated successful oxidation and crosslinking of CTRP3-TriCEPS and Insulin-TriCEPS complexes to cell surface glycans. Demonstrating the utility of TriCEPS under these conditions, the insulin receptor was identified in the control dataset. In the CTRP3 treated cells a total enrichment of 261 peptides was observed. From these experiments 5 putative receptors for CTRP3 were identified with two reaching statistically significance: Lysosomal-associated membrane protein 1 (LAMP-1) and Lysosome membrane protein 2 (LIMP II). Follow-up Co-immunoprecipitation analysis confirmed the association between LAMP1 and CTRP3 and further testing using a polyclonal antibody to block potential binding sites of LAMP1 prevented CTRP3 binding to the cells. Conclusion The LRC-TriCEPS methodology was successful in identifying potential novel receptors for CTRP3. Relevance The identification of the receptors for CTRP3 are important prerequisites for the development of small molecule drug candidates, of which none currently exist, for the treatment NAFLD. PMID:27727322

  12. Molecular Basis of Ligand Dissociation in β-Adrenergic Receptors

    PubMed Central

    González, Angel; Perez-Acle, Tomas; Pardo, Leonardo; Deupi, Xavier

    2011-01-01

    The important and diverse biological functions of β-adrenergic receptors (βARs) have promoted the search for compounds to stimulate or inhibit their activity. In this regard, unraveling the molecular basis of ligand binding/unbinding events is essential to understand the pharmacological properties of these G protein-coupled receptors. In this study, we use the steered molecular dynamics simulation method to describe, in atomic detail, the unbinding process of two inverse agonists, which have been recently co-crystallized with β1 and β2ARs subtypes, along four different channels. Our results indicate that this type of compounds likely accesses the orthosteric binding site of βARs from the extracellular water environment. Importantly, reconstruction of forces and energies from the simulations of the dissociation process suggests, for the first time, the presence of secondary binding sites located in the extracellular loops 2 and 3 and transmembrane helix 7, where ligands are transiently retained by electrostatic and Van der Waals interactions. Comparison of the residues that form these new transient allosteric binding sites in both βARs subtypes reveals the importance of non-conserved electrostatic interactions as well as conserved aromatic contacts in the early steps of the binding process. PMID:21915263

  13. Ligands and receptors: common theme in insect storage protein transport.

    PubMed

    Burmester, T; Scheller, K

    1999-10-01

    The passage of macromolecules through biological membranes is an essential process for all multicellular organisms. Insects have developed a mechanism different from that known for all other eukaryotes investigated so far. This review discusses the function and evolution of this mechanism. Insect pupae do not feed during metamorphosis. Therefore they depend on material that has been accumulated during the larval life. At the end of this period, shortly before pupariation, a rise in titer of ecdysteroid hormones induces the incorporation of a large fraction of storage proteins (hexamerins) from the body fluid into the fat body cells. The transport of hexamerins across the cell-membrane is mediated by a specific ecdysteroid-controlled receptor. It is synthesized as a precursor protein that is subsequently processed into the active receptor. This receptor protein is very unusual because it is closely related to its own hexamerin ligand. Sequence comparison shows that the hexamerins and hexamerin receptors diverged early in insect evolution and derive from a common hemocyanin ancestor.

  14. Ligand and Structure-based Methodologies for the Prediction of the Activity of G Protein-Coupled Receptor Ligands

    PubMed Central

    Costanzi, Stefano; Tikhonova, Irina G.; Harden, T. Kendall; Jacobson, Kenneth A.

    2008-01-01

    Summary Accurate in silico models for the quantitative prediction of the activity of G protein-coupled receptor (GPCR) ligands would greatly facilitate the process of drug discovery and development. Several methodologies have been developed based on the properties of the ligands, the direct study of the receptor-ligand interactions, or a combination of both approaches. Ligand-based three-dimensional quantitative structure-activity relationships (3D-QSAR) techniques, not requiring knowledge of the receptor structure, have been historically the first to be applied to the prediction of the activity of GPCR ligands. They are generally endowed with robustness and good ranking ability; however they are highly dependent on training sets. Structure-based techniques generally do not provide the level of accuracy necessary to yield meaningful rankings when applied to GPCR homology models. However, they are essentially independent from training sets and have a sufficient level of accuracy to allow an effective discrimination between binders and nonbinders, thus qualifying as viable lead discovery tools. The combination of ligand and structure-based methodologies in the form of receptor-based 3D-QSAR and ligand and structure-based consensus models results in robust and accurate quantitative predictions. The contribution of the structure-based component to these combined approaches is expected to become more substantial and effective in the future, as more sophisticated scoring functions are developed and more detailed structural information on GPCRs is gathered. PMID:18483766

  15. Ligand and structure-based methodologies for the prediction of the activity of G protein-coupled receptor ligands

    NASA Astrophysics Data System (ADS)

    Costanzi, Stefano; Tikhonova, Irina G.; Harden, T. Kendall; Jacobson, Kenneth A.

    2009-11-01

    Accurate in silico models for the quantitative prediction of the activity of G protein-coupled receptor (GPCR) ligands would greatly facilitate the process of drug discovery and development. Several methodologies have been developed based on the properties of the ligands, the direct study of the receptor-ligand interactions, or a combination of both approaches. Ligand-based three-dimensional quantitative structure-activity relationships (3D-QSAR) techniques, not requiring knowledge of the receptor structure, have been historically the first to be applied to the prediction of the activity of GPCR ligands. They are generally endowed with robustness and good ranking ability; however they are highly dependent on training sets. Structure-based techniques generally do not provide the level of accuracy necessary to yield meaningful rankings when applied to GPCR homology models. However, they are essentially independent from training sets and have a sufficient level of accuracy to allow an effective discrimination between binders and nonbinders, thus qualifying as viable lead discovery tools. The combination of ligand and structure-based methodologies in the form of receptor-based 3D-QSAR and ligand and structure-based consensus models results in robust and accurate quantitative predictions. The contribution of the structure-based component to these combined approaches is expected to become more substantial and effective in the future, as more sophisticated scoring functions are developed and more detailed structural information on GPCRs is gathered.

  16. Fcγ receptors and ligands and cardiovascular disease.

    PubMed

    Tanigaki, Keiji; Sundgren, Nathan; Khera, Amit; Vongpatanasin, Wanpen; Mineo, Chieko; Shaul, Philip W

    2015-01-16

    Fcγ receptors (FcγRs) classically modulate intracellular signaling on binding of the Fc region of IgG in immune response cells. How FcγR and their ligands affect cardiovascular health and disease has been interrogated recently in both preclinical and clinical studies. The stimulation of activating FcγR in endothelial cells, vascular smooth muscle cells, and monocytes/macrophages causes a variety of cellular responses that may contribute to vascular disease pathogenesis. Stimulation of the lone inhibitory FγcR, FcγRIIB, also has adverse consequences in endothelial cells, antagonizing NO production and reparative mechanisms. In preclinical disease models, activating FcγRs promote atherosclerosis, whereas FcγRIIB is protective, and activating FcγRs also enhance thrombotic and nonthrombotic vascular occlusion. The FcγR ligand C-reactive protein (CRP) has undergone intense study. Although in rodents CRP does not affect atherosclerosis, it causes hypertension and insulin resistance and worsens myocardial infarction. Massive data have accumulated indicating an association between increases in circulating CRP and coronary heart disease in humans. However, Mendelian randomization studies reveal that CRP is not likely a disease mediator. CRP genetics and hypertension warrant further investigation. To date, studies of genetic variants of activating FcγRs are insufficient to implicate the receptors in coronary heart disease pathogenesis in humans. However, a link between FcγRIIB and human hypertension may be emerging. Further knowledge of the vascular biology of FcγR and their ligands will potentially enhance our understanding of cardiovascular disorders, particularly in patients whose greater predisposition for disease is not explained by traditional risk factors, such as individuals with autoimmune disorders.

  17. Ligand Binding Mechanism in Steroid Receptors: From Conserved Plasticity to Differential Evolutionary Constraints.

    PubMed

    Edman, Karl; Hosseini, Ali; Bjursell, Magnus K; Aagaard, Anna; Wissler, Lisa; Gunnarsson, Anders; Kaminski, Tim; Köhler, Christian; Bäckström, Stefan; Jensen, Tina J; Cavallin, Anders; Karlsson, Ulla; Nilsson, Ewa; Lecina, Daniel; Takahashi, Ryoji; Grebner, Christoph; Geschwindner, Stefan; Lepistö, Matti; Hogner, Anders C; Guallar, Victor

    2015-12-01

    Steroid receptor drugs have been available for more than half a century, but details of the ligand binding mechanism have remained elusive. We solved X-ray structures of the glucocorticoid and mineralocorticoid receptors to identify a conserved plasticity at the helix 6-7 region that extends the ligand binding pocket toward the receptor surface. Since none of the endogenous ligands exploit this region, we hypothesized that it constitutes an integral part of the binding event. Extensive all-atom unbiased ligand exit and entrance simulations corroborate a ligand binding pathway that gives the observed structural plasticity a key functional role. Kinetic measurements reveal that the receptor residence time correlates with structural rearrangements observed in both structures and simulations. Ultimately, our findings reveal why nature has conserved the capacity to open up this region, and highlight how differences in the details of the ligand entry process result in differential evolutionary constraints across the steroid receptors.

  18. Biased ligands at G-protein-coupled receptors: promise and progress.

    PubMed

    Violin, Jonathan D; Crombie, Aimee L; Soergel, David G; Lark, Michael W

    2014-07-01

    Drug discovery targeting G protein-coupled receptors (GPCRs) is no longer limited to seeking agonists or antagonists to stimulate or block cellular responses associated with a particular receptor. GPCRs are now known to support a diversity of pharmacological profiles, a concept broadly referred to as functional selectivity. In particular, the concept of ligand bias, whereby a ligand stabilizes subsets of receptor conformations to engender novel pharmacological profiles, has recently gained increasing prominence. This review discusses how biased ligands may deliver safer, better tolerated, and more efficacious drugs, and highlights several biased ligands that are in clinical development. Biased ligands targeting the angiotensin II type 1 receptor and the μ opioid receptor illustrate the translation of the biased ligand concept from basic biology to clinical drug development.

  19. Modeling of the Aryl Hydrocarbon Receptor (AhR) ligand binding domain and its utility in virtual ligand screening to predict new AhR ligands

    PubMed Central

    Bisson, William; Koch, Daniel; O’Donnell, Edmond; Khalil, Sammy M.; Kerkvliet, Nancy; Tanguay, Robert; Abagyan, Ruben; Kolluri, Siva Kumar

    2012-01-01

    The Aryl Hydrocarbon Receptor (AhR) is a ligand-activated transcription factor; the AhR Per-AhR/Arnt-Sim (PAS) domain binds ligands. We developed homology models of the AhR PAS domain to characterize previously observed intra- and inter-species differences in ligand binding using Molecular Docking. In silico structure-based virtual ligand screening using our model resulted in the identification of pinocembrin and 5-hydroxy-7-methoxyflavone, which promoted nuclear translocation and transcriptional activation of AhR and AhR-dependent induction of endogenous target genes. PMID:19719119

  20. Exploration of Bivalent Ligands Targeting Putative Mu Opioid Receptor and Chemokine Receptor CCR5 Dimerization

    PubMed Central

    Arnatt, Christopher K.; Falls, Bethany A.; Yuan, Yunyun; Raborg, Thomas J.; Masvekar, Ruturaj R.; El-Hage, Nazira; Selley, Dana E.; Nicola, Anthony V.; Knapp, Pamela E.; Hauser, Kurt F.; Zhang, Yan

    2016-01-01

    Modern antiretroviral therapies have provided HIV-1 infected patients longer lifespans and better quality of life. However, several neurological complications are now being seen in these patients due to HIV-1 associated injury of neurons by infected microglia and astrocytes. In addition, these effects can be further exacerbated with opiate use and abuse. One possible mechanism for such potentiation effects of opiates is the interaction of the mu opioid receptor (MOR) with the chemokine receptor CCR5 (CCR5), a known HIV-1 co-receptor, to form MOR-CCR5 heterodimer. In an attempt to understand this putative interaction and its relevance to neuroAIDS, we designed and synthesized a series of bivalent ligands targeting the putative CCR5-MOR heterodimer. To understand how these bivalent ligands may interact with the heterodimer, biological studies including calcium mobilization inhibition, binding affinity, HIV-1 invasion, and cell fusion assays were applied. In particular, HIV-1 infection assays using human peripheral blood mononuclear cells, macrophages, and astrocytes revealed a notable synergy in activity for one particular bivalent ligand. Further, a molecular model of the putative CCR5-MOR heterodimer was constructed, docked with the bivalent ligand, and molecular dynamics simulations of the complex was performed in a membrane-water system to help understand the biological observation. PMID:27720326

  1. Structure of the homodimeric androgen receptor ligand-binding domain

    PubMed Central

    Nadal, Marta; Prekovic, Stefan; Gallastegui, Nerea; Helsen, Christine; Abella, Montserrat; Zielinska, Karolina; Gay, Marina; Vilaseca, Marta; Taulès, Marta; Houtsmuller, Adriaan B.; van Royen, Martin E.; Claessens, Frank; Fuentes-Prior, Pablo; Estébanez-Perpiñá, Eva

    2017-01-01

    The androgen receptor (AR) plays a crucial role in normal physiology, development and metabolism as well as in the aetiology and treatment of diverse pathologies such as androgen insensitivity syndromes (AIS), male infertility and prostate cancer (PCa). Here we show that dimerization of AR ligand-binding domain (LBD) is induced by receptor agonists but not by antagonists. The 2.15-Å crystal structure of homodimeric, agonist- and coactivator peptide-bound AR-LBD unveils a 1,000-Å2 large dimerization surface, which harbours over 40 previously unexplained AIS- and PCa-associated point mutations. An AIS mutation in the self-association interface (P767A) disrupts dimer formation in vivo, and has a detrimental effect on the transactivating properties of full-length AR, despite retained hormone-binding capacity. The conservation of essential residues suggests that the unveiled dimerization mechanism might be shared by other nuclear receptors. Our work defines AR-LBD homodimerization as an essential step in the proper functioning of this important transcription factor. PMID:28165461

  2. IDENTIFICATION OF VDR ANTAGONISTS AMONG NUCLEAR RECEPTOR LIGANDS USING VIRTUAL SCREENING

    PubMed Central

    Teske, Kelly; Nandhikonda, Premchendar; Bogart, Jonathan W.; Feleke, Belaynesh; Sidhu, Preetpal; Yuan, Nina; Preston, Joshua; Goy, Robin; Han, Lanlan; Silvaggi, Nicholas R; Singh, Rakesh K.; Bikle, Daniel D.; Cook, James M.; Arnold, Leggy A.

    2014-01-01

    Herein, we described the development of two virtual screens to identify new vitamin D receptor (VDR) antagonists among nuclear receptor (NR) ligands. Therefore, a database of 14330 nuclear receptor ligands and their NR affinities was assembled using the online available “Binding Database”. Two different virtual screens were carried out in conjunction with a reported VDR crystal structure applying a stringent and less stringent pharmacophore model to filter docked NR ligand conformations. The pharmacophore models were based on the spatial orientation of the hydroxyl functionalities of VDR’s natural ligands 1,25(OH2)D3 and 25(OH2)D3. The first virtual screen identified 32 NR ligands with a calculate free energy of VDR binding of more than −6.0 kJ/mol. All but nordihydroguaiaretic acid (NDGA) are VDR ligands, which inhibited the interaction between VDR and coactivator peptide SRC2-3 with an IC50 value of 15.8 µM. The second screen identified 162 NR ligands with a calculate free energy of VDR binding of more than −6.0 kJ/mol. More than half of these ligands were developed to bind VDR followed by ERα/β ligands (26%), TRα/β ligands (7%) and LxRα/β ligands (7%). The binding between VDR and ERα ligand H6036 as well as TRα/β ligand triiodothyronine and a homoserine analog thereof was confirmed by fluorescence polarization. PMID:25419525

  3. Ligand binding by recombinant domains from insect ecdysone receptors.

    PubMed

    Graham, L D; Johnson, W M; Pawlak-Skrzecz, A; Eaton, R E; Bliese, M; Howell, L; Hannan, G N; Hill, R J

    2007-06-01

    The ligand binding domains (LBDs) from the EcR and USP proteins of four insect pests (Lucilia cuprina, Myzus persicae, Bemisia tabaci, Helicoverpa armigera) were purified as recombinant heterodimers. The K(d) values for [(3)H]-ponasterone A binding by LBD heterodimers that included the hinge regions (i.e., DE/F heterodimers) ranged 0.7-2.5 nM, with K(i) values for ecdysteroid and dibenzoylhydrazine ligands ranging from 0.1 nM to >448 microM. The K(d) and K(i) values for a recombinant H. armigera LBD heterodimer that lacked D-regions (i.e., an E/F heterodimer) were approximately 4 times higher than those for its DE/F counterpart. Rate constants were estimated for the L. cuprina LBD heterodimer. A fluorescein-inokosterone conjugate (K(i)~40 nM) was used to develop a novel binding assay based on fluorescence polarization. This assay, which ranked the affinity of competitor ecdysteroids in the same order as the [(3)H]-ponasterone A binding assay, is well suited to high-throughput screening. Ponasterone A had a higher affinity than muristerone A for the recombinant hemipteran LBD heterodimers, whereas the reverse was true for the recombinant dipteran one. The same preference was observed when these ligands were tested as inducers of ecdysone receptor-controlled gene expression in transfected mammalian cells. The binding data obtained in vitro using recombinant LBD heterodimers reflects the ability of agonists to induce transgene expression in recombinant mammalian cells, and can also reflect their efficacy as larvicides.

  4. Novel photoaffinity ligands for the GA-receptor

    SciTech Connect

    Suttle, J.C.; Hultstrand, J.F.; Tanaka, F.S. )

    1990-05-01

    Previous studies from this laboratory have shown that certain N-substituted phthalimides (NSPs) exhibit GA-like activity in a range of specific bioassays and that bioactive NSPs compete with ({sup 3}H)-GA{sub 4} for soluble binding sites in cucumber homogenates. As such, these compounds may prove useful in the purification and characterization of GA receptor proteins. To this end, five azido-NSPs have been synthesized and are currently being screened for biological activity and photochemical stability. Three azido-NSPs elicit {alpha}-amylase production in barley half-seeds and stimulate tissue elongation in d{sub 5} maize, lettuce, sunflower, and soybean. Further evaluations are in progress and these data as well as the utility of these compounds as photo-affinity ligands will be discussed.

  5. Functional phylogenetics reveals contributions of pleiotropic peptide action to ligand-receptor coevolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The evolution of peptidergic signaling has been accompanied by a significant degree of ligand-receptor coevolution. Closely related clusters of peptide signaling molecules are observed to activate related groups of receptors, implying that genes encoding these ligands may orchestrate an array of fu...

  6. Autocrine ligand binding to cell receptors. Mathematical analysis of competition by solution "decoys".

    PubMed Central

    Forsten, K E; Lauffenburger, D A

    1992-01-01

    Autocrine ligands have been demonstrated to regulate cell proliferation, cell adhesion, and cell migration in a number of different systems and are believed to be one of the underlying causes of malignant cell transformation. Binding of these ligands to their cellular receptors can be compromised by diffusive transport of ligand away from the secreting cell. Exogenous addition of antibodies or solution receptors capable of competing with cellular receptors for these autocrine ligands has been proposed as a means of inhibiting autocrine-stimulated cell behavioral responses. Such "decoys" complicate cellular binding by offering alternative binding targets, which may also be capable of aiding or abating transport of the ligand away from the cell surface. We present a mathematical model incorporating autocrine ligand production and the presence of competing cellular and solution receptors. We elucidate effects of key system parameters including ligand diffusion rate, binding rate constants, cell density, and secretion rate on the ability of solution receptors to inhibit cellular receptor binding. Both plated and suspension cell systems are considered. An approximate analytical expression relating the key parameters to the critical concentration of solution "decoys" required for inhibition is derived and compared to the numerical calculations. We find that in order to achieve essentially complete inhibition of surface receptor binding, the concentration of decoys may need to be as much as four to eight orders of magnitude greater than the equilibrium disociation constant for ligand binding to surface receptors. PMID:1312367

  7. Imaging of a glioma using peripheral benzodiazepine receptor ligands

    SciTech Connect

    Starosta-Rubinstein, S.; Ciliax, B.J.; Penney, J.B.; McKeever, P.; Young, A.B.

    1987-02-01

    Two types of benzodiazepine receptors have been demonstrated in mammalian tissues, one which is localized on neuronal elements in brain and the other, on glial cells and in peripheral tissues such as kidney. In vivo administration of /sup 3/H-labeled PK 11195 (1-(2-chlorophenyl-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide) or (/sup 3/H)flunitrazepam with 5 mg of clonazepam per kg to rats with intracranial C6 gliomas resulted in high levels of tritiated-drug binding to the tumor as shown by quantitative autoradiography. Pharmacological studies indicated that the bound drugs labeled the peripheral benzodiazepine binding site. Binding to the peripheral benzodiazepine site was confirmed primarily to malignant cells with little binding to adjacent normal brain tissue or to necrotic tissue. Tumor cell binding was completely inhibited by preadministration of the peripheral benzodiazepine blocking agent PK 11195 at 5 mg/kg. The centrally selective benzodiazepine ligand clonazepam had no effect on PK 11195 binding to the tumor cells. When binding to other tumor cell lines grown in nude mice and nude athymic rats was evaluated, little or no peripheral benzodiazepine binding was detected on human pheochromocytoma (RN1) and neuroblastoma (SK-N-MC, SK-N-SH) tumor cells, respectively. However, high densities of peripheral benzodiazepine binding sites were observed on tumors derived from a human glioma cell line (ATCC HTB 14, U-87 MG). The presence of high concentrations of specific peripheral benzodiazepine receptors on glial tumors suggests that human primary central nervous system tumors could be imaged and diagnosed using peripheral benzodiazepine ligands labeled with positron- or gamma-emitting isotopes.

  8. Development of radioiodinated receptor ligands for cerebral single photon emission tomography

    SciTech Connect

    Knapp, F.F. Jr.; McPherson, D.W.

    1992-01-01

    In the last decade the use of radiolabeled ligands for the imaging of cerebral receptors by emission computed tomography (ECT) has seen rapid growth. The opportunity to routinely perform cerebral single photon emission tomography (SPET) with iodine-123-labeled ligands depends on the availability of receptor ligands into which iodine can be introduced without decreasing the required high target receptor specificity. The use of iodine-123-labeled receptor-specific ligands also depends on the availability of high purity iodine-123 at reasonable costs and the necessary imaging instrumentation. In this paper, the development and current stage of evaluation of various iodine-123-labeled ligands for SPET imaging of dopaminergic, serotonergic and muscarinic acetylcholinergic receptor classes are discussed.

  9. Development of radioiodinated receptor ligands for cerebral single photon emission tomography

    SciTech Connect

    Knapp, F.F. Jr.; McPherson, D.W.

    1992-03-01

    In the last decade the use of radiolabeled ligands for the imaging of cerebral receptors by emission computed tomography (ECT) has seen rapid growth. The opportunity to routinely perform cerebral single photon emission tomography (SPET) with iodine-123-labeled ligands depends on the availability of receptor ligands into which iodine can be introduced without decreasing the required high target receptor specificity. The use of iodine-123-labeled receptor-specific ligands also depends on the availability of high purity iodine-123 at reasonable costs and the necessary imaging instrumentation. In this paper, the development and current stage of evaluation of various iodine-123-labeled ligands for SPET imaging of dopaminergic, serotonergic and muscarinic acetylcholinergic receptor classes are discussed.

  10. Ligand Receptor-Mediated Regulation of Growth in Plants.

    PubMed

    Haruta, Miyoshi; Sussman, Michael R

    2017-01-01

    Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase

  11. From α4β2 Nicotinic Ligands to the Discovery of σ1 Receptor Ligands: Pharmacophore Analysis and Rational Design.

    PubMed

    Yu, Li-Fang; Zhang, Han-Kun; Gunosewoyo, Hendra; Kozikowski, Alan P

    2012-12-13

    Comparative analyses of the pharmacophoric elements required for σ1 and nicotinic ligands led to the identification of a potent and selective σ1 ligand (15). Compound 15 displayed high selectivity for the σ1 receptor (Ki, σ1 = 4.1 nM, Ki, σ2 = 1312 nM) with moderate binding affinity for the DAT (Ki = 373 nM) and NET (Ki = 203 nM) in the PDSP broad screening panel of common CNS neurotransmitter transporters and receptors. The key finding in this present work is that a subtle structural modifica tion could be used as a tool to switch a ligand's selectivity between nAChRs and sigma receptors.

  12. Muscarinic acetylcholine receptors: location of the ligand binding site

    SciTech Connect

    Hulme, E.; Wheatley, M.; Curtis, C.; Birdsall, N.

    1987-05-01

    The key to understanding the pharmacological specificity of muscarinic acetylcholine receptors (mAChR's) is the location within the receptor sequence of the amino acid residues responsible for ligand binding. To approach this problem, they have purified mAChR's from rat brain to homogeneity by sequential ion-exchange chromatography, affinity chromatography and molecular weight fractionation. Following labelling of the binding site with an alkylating affinity label, /sup 3/H-propylbenzilycholine mustard aziridinium ion (/sup 3/H-PrBCM), the mAChR was digested with a lysine-specific endoproteinase, and a ladder of peptides of increasing molecular weight, each containing the glycosylated N-terminus, isolated by chromatography on wheat-germ agglutinin sepharose. The pattern of labelling showed that a residue in the peptides containing transmembrane helices 2 and/or 3 of the mAChR was alkylated. The linkage was cleaved by 1 M hydroxylamine, showing that /sup 3/H-PrBCM was attached to an acidic residue, whose properties strongly suggested it to be embedded in a hydrophobic intramembrane region of the mAChR. Examination of the cloned sequence of the mAChR reveals several candidate residues, the most likely of which is homologous to an aspartic acid residue thought to protonate the retinal Schiff's base in the congeneric protein rhodopsin.

  13. Labeling of receptor ligands and other compounds with halogen radionuclides

    SciTech Connect

    Welch, M.J. . Edward Mallinckrodt Inst. of Radiology)

    1989-08-01

    Major advances have been made in all the areas. Specifically, patient studies have been carried out. This work has shown that the uptake of fluorine-18 labeled 16{alpha}-fluoroestradiol-17{beta} correlates well with receptor levels measured in vivo and also that the uptake of the tracer is blocked in humans by the administration of the antiestrogen tamoxifen. An image from this work was designated Image of the Year by Dr. Wagner, Jr., following his summary of the 1987 Society of Nuclear Medicine Meeting. We have also evaluated the brain uptake of both estrogen and progesterone, and this work was awarded the Berson-Yalow Award from the Society of Nuclear Medicine in 1988. This publication represents a new application of radiolabeled sex hormones. Hines and coworkers have suggested that hormone levels in the brain are important for sexual differentiation of human behavior. We have shown that both 16{alpha}-(F-18)-fluoroestradiol-17{beta} and 21-(F-18)-fluoro-16{alpha}-ethyl-19-norprogesterone (FENP) accumulate in the hypothalamus and pituitary tissues of primates and humans; and in primates this uptake can be blocked by administration of nonradioactive competing ligands. This presents an opportunity for studying sex hormone receptors in mammalian brain.

  14. Argos inhibits epidermal growth factor receptor signalling by ligand sequestration.

    PubMed

    Klein, Daryl E; Nappi, Valerie M; Reeves, Gregory T; Shvartsman, Stanislav Y; Lemmon, Mark A

    2004-08-26

    The epidermal growth factor receptor (EGFR) has critical functions in development and in many human cancers. During development, the spatial extent of EGFR signalling is regulated by feedback loops comprising both well-understood activators and less well-characterized inhibitors. In Drosophila melanogaster the secreted protein Argos functions as the only known extracellular inhibitor of EGFR, with clearly identified roles in multiple stages of development. Argos is only expressed when the Drosophila EGFR (DER) is activated at high levels, and downregulates further DER signalling. Although there is ample genetic evidence that Argos inhibits DER activation, the biochemical mechanism has not been established. Here we show that Argos inhibits DER signalling without interacting directly with the receptor, but instead by sequestering the DER-activating ligand Spitz. Argos binds tightly to the EGF motif of Spitz and forms a 1:1 (Spitz:Argos) complex that does not bind DER in vitro or at the cell surface. Our results provide an insight into the mechanism of Argos function, and suggest new strategies for EGFR inhibitor design.

  15. Cell-based assays for screening androgen receptor ligands

    PubMed Central

    Campana, Carmela; Pezzi, Vincenzo; Rainey, William E

    2015-01-01

    The androgen receptor (AR, NR3C4), mediates the majority of androgen effects on target cells. The AR is activated following ligand binding that result in activation of target gene transcription. Several cell based model systems have been developed that allow sensitive detection and monitoring of steroids or other compounds with AR bioactivity. Most cell based AR reporter models use transgenic gene constructs that include an androgen response element (ARE) that controls reporter gene expression. The DNA cis-regulatory elements that respond to AR share sequence similarity with cis-regulatory elements for glucocorticoid (GR, NR3C1), mineralocorticoid (MR, NR3C2) and progesterone (PGR, NR3C3) receptors, which has compromised AR selectivity for some models. In recent years, the sensitivity and selectivity of AR bioassays have been significantly improved through careful selection of cell models, utilization of improved reporter genes and the use of yeast two hybrid AR systems. This review summarizes and compares the currently available androgen-responsive cell model systems. PMID:26036905

  16. Development of a photoactivatable allosteric ligand for the m1 muscarinic acetylcholine receptor.

    PubMed

    Davie, Briana J; Sexton, Patrick M; Capuano, Ben; Christopoulos, Arthur; Scammells, Peter J

    2014-10-15

    The field of G protein-coupled receptor drug discovery has benefited greatly from the structural and functional insights afforded by photoactivatable ligands. One G protein-coupled receptor subfamily for which photoactivatable ligands have been developed is the muscarinic acetylcholine receptor family, though, to date, all such ligands have been designed to target the orthosteric (endogenous ligand) binding site of these receptors. Herein we report the synthesis and pharmacological investigation of a novel photoaffinity label, MIPS1455 (4), designed to bind irreversibly to an allosteric site of the M1 muscarinic acetylcholine receptor; a target of therapeutic interest for the treatment of cognitive deficits. MIPS1455 may be a valuable molecular tool for further investigating allosteric interactions at this receptor.

  17. Acetylcholine receptors and cholinergic ligands: biochemical and genetic aspects in Torpedo californica and Drosophila melanogaster

    SciTech Connect

    Rosenthal, L.S.

    1987-01-01

    This study evaluates the biochemical and genetic aspects of the acetylcholine receptor proteins and cholinergic ligands in Drosophila melanogaster and Torpedo californica. Included are (1) a comparative study of nicotinic ligand-induced cation release from acetylcholine receptors isolated from Torpedo californica and from Drosophila melanogaster, (2) solution studies of the cholinergic ligands, nikethamide and ethamivan, aimed at measuring internal molecular rotational barriers in solvents of different polarity; and (3) the isolation and characterization of the gene(s) for the acetylcholine receptor in Drosophila melasogaster. Acetylcholine receptor proteins isolated from Drosphila melanogaster heads were found to behave kinetically similar (with regards to cholinergic ligand-induced /sup 155/Eu:/sup 3 +/ displacement from prelabeled proteins) to receptor proteins isolated from Torpedo californica electric tissue, providing additional biochemical evidence for the existence of a Drosophila acetylcholine receptor.

  18. Fluorescent Approaches for Understanding Interactions of Ligands with G Protein Coupled Receptors

    PubMed Central

    Sridharan, Rajashri; Zuber, Jeffrey; Connelly, Sara M.; Mathew, Elizabeth; Dumont, Mark E.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are responsible for a wide variety of signaling responses in diverse cell types. Despite major advances in the determination of structures of this class of receptors, the underlying mechanisms by which binding of different types of ligands specifically elicits particular signaling responses remains unclear. The use of fluorescence spectroscopy can provide important information about the process of ligand binding and ligand dependent conformational changes in receptors, especially kinetic aspects of these processes, that can be difficult to extract from x-ray structures. We present an overview of the extensive array of fluorescent ligands that have been used in studies of GPCRs and describe spectroscopic approaches for assaying binding and probing the environment of receptor-bound ligands with particular attention to examples involving yeast pheromone receptors. In addition, we discuss the use of fluorescence spectroscopy for detecting and characterizing conformational changes in receptors induced by the binding of ligands. Such studies have provided strong evidence for diversity of receptor conformations elicited by different ligands, consistent with the idea that GPCRs are not simple on and off switches. This diversity of states constitutes an underlying mechanistic basis for biased agonism, the observation that different stimuli can produce different responses from a single receptor. It is likely that continued technical advances will allow fluorescence spectroscopy to play an important role in continued probing of structural transitions in GPCRs. PMID:24055822

  19. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors.

    PubMed

    Oz, Murat; Al Kury, Lina; Keun-Hang, Susan Yang; Mahgoub, Mohamed; Galadari, Sehamuddin

    2014-05-15

    Cannabinoids are among the earliest known drugs to humanity. Cannabis plant contains various phytochemicals that bind to cannabinoid receptors. In addition, synthetic and endogenously produced cannabinoids (endocannabinoids) constitute other classes of cannabinoid receptor ligands. Although many pharmacological effects of these cannabinoids are mediated by the activation of cannabinoid receptors, recent studies indicate that cannabinoids also modulate the functions of various integral membrane proteins including ion channels, receptors, neurotransmitter transporters, and enzymes by mechanism(s) not involving the activation of known cannabinoid receptors. Currently, the mechanisms of these effects were not fully understood. However, it is likely that direct actions of cannabinoids are closely linked to their lipophilic structures. This report will focus on the actions of cannabinoids on nicotinic acetylcholine receptors and will examine the results of recent studies in this field. In addition some mechanistic approaches will be provided. The results discussed in this review indicate that, besides cannabinoid receptors, further molecular targets for cannabinoids exist and that these targets may represent important novel sites to alter neuronal excitability.

  20. Glucagon-Like Peptide-1 Receptor Ligand Interactions: Structural Cross Talk between Ligands and the Extracellular Domain

    PubMed Central

    West, Graham M.; Willard, Francis S.; Sloop, Kyle W.; Showalter, Aaron D.; Pascal, Bruce D.; Griffin, Patrick R.

    2014-01-01

    Activation of the glucagon-like peptide-1 receptor (GLP-1R) in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). Like other class B G protein-coupled receptors (GPCRs), the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX) to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R) were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R) peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R). In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands. PMID:25180755

  1. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  2. Biased ligands for better cardiovascular drugs: dissecting G-protein-coupled receptor pharmacology.

    PubMed

    DeWire, Scott M; Violin, Jonathan D

    2011-07-08

    Drug discovery efforts targeting G-protein-coupled receptors (GPCR) have been immensely successful in creating new cardiovascular medicines. Currently marketed GPCR drugs are broadly classified as either agonists that activate receptors or antagonists that prevent receptor activation by endogenous stimuli. However, GPCR couple to a multitude of intracellular signaling pathways beyond classical G-protein signals, and these signals can be independently activated by biased ligands to vastly expand the potential for new drugs at these classic targets. By selectively engaging only a subset of a receptor's potential intracellular partners, biased ligands may deliver more precise therapeutic benefit with fewer side effects than current GPCR-targeted drugs. In this review, we discuss the history of biased ligand research, the current understanding of how biased ligands exert their unique pharmacology, and how research into GPCR signaling has uncovered previously unappreciated capabilities of receptor pharmacology. We focus on several receptors to illustrate the approaches taken and discoveries made, and how these are steadily illuminating the intricacies of GPCR pharmacology. Discoveries of biased ligands targeting the angiotensin II type 1 receptor and of separable pharmacology suggesting the potential value of biased ligands targeting the β-adrenergic receptors and nicotinic acid receptor GPR109a highlight the powerful clinical promise of this new category of potential therapeutics.

  3. Targeting Ligand-Dependent and Ligand-Independent Androgen Receptor Signaling in Prostate Cancer

    DTIC Science & Technology

    2013-10-01

    sub 10nM range efficacy. Our primary objective was to establish a series of compounds blocking the AR ligand-dependent and ligand-independent gene ...of AR driven genes to be more comprehensive and more in line with what is currently known about AR-driven signaling in prostate cancer. We have...developed a robust panel of genes for AR signaling that is reflective of the clinical findings in both ligand dependent and ligand-independent androgen

  4. Computational studies of ligand-receptor interactions in bitter taste receptors.

    PubMed

    Miguet, Laurence; Zhang, Ziding; Grigorov, Martin G

    2006-01-01

    Phenylthiocarbamide tastes intensely bitter to some individuals, but others find it completely tasteless. Recently, it was suggested that phenylthiocarbamide elicits bitter taste by interacting with a human G protein-coupled receptor (hTAS2R38) encoded by the PTC gene. The phenylthiocarbamide nontaster trait was linked to three single nucleotide polymorphisms occurring in the PTC gene. Using the crystal structure of bovine rhodopsin as template, we generated the 3D structure of hTAS2R38 bitter taste receptor. We were able to map on the receptor structure the amino acids affected by the genetic polymorphisms and to propose molecular functions for two of them that explained the emergence of the nontaster trait. We used molecular docking simulations to find that phenylthiocarbamide exhibited a higher affinity for the target receptor than the structurally similar molecule 6-n-propylthiouracil, in line with recent experimental studies. A 3D model was constructed for the hTAS2R16 bitter taste receptor as well, by applying the same protocol. We found that the recently published experimental ligand binding affinity data for this receptor correlated well with the binding scores obtained from our molecular docking calculations.

  5. Extracellular loop 2 in the FSH receptor is crucial for ligand mediated receptor activation.

    PubMed

    Dupakuntla, Madhavi; Pathak, Bhakti; Roy, Binita Sur; Mahale, Smita D

    2012-10-15

    The present study aims to determine the role of the specific residues of the extracellular loops (ELs) of the FSH receptor (FSHR) in hormone binding and receptor activation. By substituting the sequences of each of the ELs of human FSHR with those of the luteinizing hormone/choriogonadotropin receptor (LH/CGR), we generated three mutant constructs where the three ELs were individually replaced. A fourth construct had all the three substituted ELs. The receptor expression and hormone binding ability of the mutants were comparable to that of the wild type. Hormone-induced signaling and internalization were lower in the EL2 substitution mutant (EL2M). In this mutant, the EL2 of FSHR was substituted with the corresponding loop of LH/CGR. Interestingly, homology modeling revealed a change in the orientation of EL2 in the mutant receptor. Thus, disruption of EL2 affected overall receptor function, suggesting the role of FSHR specific residues of the loop in ligand mediated signaling.

  6. Ligand binding to nicotinic acetylcholine receptor investigated by surface plasmon resonance.

    PubMed

    Kröger, D; Hucho, F; Vogel, H

    1999-08-01

    Ligand binding to the nicotinic acetylcholine receptor is studied by surface plasmon resonance. Biotinylated bungarotoxin, immobilized on a streptavidin-coated gold film, binds nicotinic acetylcholine receptor both in detergent-solubilized and in lipid vesicle-reconstituted form with high specificity. In the latter case, nonspecific binding to the sensor surface is significantly reduced by reconstituting the receptor into poly(ethylene glycol)-lipid-containing sterically stabilized vesicles. By preincubation of a bulk nicotinic acetylcholine receptor sample with the competing ligands carbamoylcholine and decamethonium bromide, the subsequent specific binding of the receptor to the surface-immobilized bungarotoxin is reduced, depending on the concentration of competing ligand. This competition assay allows the determination of the dissociation constants of the acetylcholine receptor-carbamoylcholine complex. A K(D) = 3.5 × 10(-)(6) M for the detergent-solubilized receptor and a K(D) = 1.4 × 10(-)(5) M for the lipid vesicle-reconstituted receptor are obtained. For decamethonium bromide, a K(D) = 4.5 × 10(-)(5) M is determined for the detergent-solubilized receptor. This approach is of general importance for investigating ligand-receptor interactions in case of small ligand molecules by mass-sensitive techniques.

  7. Trace amine-associated receptors and their ligands

    PubMed Central

    Zucchi, R; Chiellini, G; Scanlan, T S; Grandy, D K

    2006-01-01

    Classical biogenic amines (adrenaline, noradrenaline, dopamine, serotonin and histamine) interact with specific families of G protein-coupled receptors (GPCRs). The term ‘trace amines' is used when referring to p-tyramine, β-phenylethylamine, tryptamine and octopamine, compounds that are present in mammalian tissues at very low (nanomolar) concentrations. The pharmacological effects of trace amines are usually attributed to their interference with the aminergic pathways, but in 2001 a new gene was identified, that codes for a GPCR responding to p-tyramine and β-phenylethylamine but not to classical biogenic amines. Several closely related genes were subsequently identified and designated as the trace amine-associated receptors (TAARs). Pharmacological investigations in vitro show that many TAAR subtypes may not respond to p-tyramine, β-phenylethylamine, tryptamine or octopamine, suggesting the existence of additional endogenous ligands. A novel endogenous thyroid hormone derivative, 3-iodothyronamine, has been found to interact with TAAR1 and possibly other TAAR subtypes. In vivo, micromolar concentrations of 3-iodothyronamine determine functional effects which are opposite to those produced on a longer time scale by thyroid hormones, including reduction in body temperature and decrease in cardiac contractility. Expression of all TAAR subtypes except TAAR1 has been reported in mouse olfactory epithelium, and several volatile amines were shown to interact with specific TAAR subtypes. In addition, there is evidence that TAAR1 is targeted by amphetamines and other psychotropic agents, while genetic linkage studies show a significant association between the TAAR gene family locus and susceptibility to schizophrenia or bipolar affective disorder. PMID:17088868

  8. Cell surface receptors for signal transduction and ligand transport - a design principles study

    SciTech Connect

    Shankaran, Harish; Resat, Haluk; Wiley, H. S.

    2007-06-01

    Although many different receptors undergo endocytosis, the system-level design principles that govern the evolution of receptor dynamics are far from fully understood. We have constructed a generalized mathematical model to understand how receptor internalization dynamics encodes receptor function and regulation. Parametric analysis of the response of receptor systems to ligand inputs reveals that receptors can be categorized a being: i) avidity-controlled where the response control depends primarily on the extracelluar ligand capture efficiency, ii) consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii) dual-sensitivity where both the avidity and consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are avidity-controlled, the vitellogenin receptor is consumption-controlled and epidermal growth factor receptor is a dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to anhance the accuracy of signaling receptors rather than serving to attenuate signaling. Our analysis reveals that the location of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its regulations.

  9. Computational approaches for ligand discovery and design in class-A G protein- coupled receptors.

    PubMed

    Rodríguez, David; Gutiérrez-de-Terán, Hugo

    2013-01-01

    Our structural understanding of the superfamily of G-protein coupled receptors, a group of targets of utmost pharmacological importance, has improved dramatically in the last few years. This was directly translated in an increase of both the number and the relevance of computer-assisted drug design efforts devoted to these receptors. The field, which had been greatly influenced by ligand-based methods, has experienced a radical transformation with a number of successful structure-based ligand design and ligand discovery studies. This revolution has been accompanied by the exponential increase of computational resources, and as a result the scenario in GPCR structural and chemical studies is now more complex and richer than ever. Virtual screens, both structure- and ligand-based, co-exist with accurate computational characterizations of the receptor conformational dynamics and of the energy landscapes of receptor-ligand interactions. We here provide an integrated and updated view of the different computational techniques applied to the ligand design of GPCRs. Particular emphasis is put on the studies that take into account the novel structural information of GPCRs, together with those that consider the enormous amount of chemical information accumulated on these receptors in the last decades. Indeed, we propose that proper combinations of the different computational techniques: ligand-based, structure-based and molecular dynamics studies, should be performed to better integrate all available information whenever possible. With this in mind, a major impact of computational technologies in the ligand design on GPCRs is expected in the forthcoming years.

  10. PPAR-γ receptor ligands: novel therapy for pituitary adenomas

    PubMed Central

    Heaney, Anthony P.; Fernando, Manory; Melmed, Shlomo

    2003-01-01

    Pituitary tumors cause considerable morbidity due to local invasion, hypopituitarism, or hormone hypersecretion. In many cases, no suitable drug therapies are available, and surgical excision is currently the only effective treatment. We show here abundant expression of nuclear hormone receptor PPAR-γ in all of 39 human pituitary tumors. PPAR-γ activating thiazolidinediones (TZDs) rosiglitazone and troglitazone induced G0-G1 cell-cycle arrest and apoptosis in human, rat somatolactotroph, and murine gonadotroph pituitary tumor cells, and suppressed in vitro hormone secretion. In vivo development and growth of murine somatolactotroph and gonadotroph tumors, generated by subcutaneous injection of prolactin-secreting (PRL-secreting) and growth hormone–secreting (GH-secreting) GH3 cells, luteinizing hormone–secreting (LH-secreting) LβT2 cells, and α-T3 cells, was markedly suppressed in rosiglitazone-treated mice, and serum GH, PRL, and LH levels were attenuated in all treated animals (P < 0.009). These results demonstrate that PPAR-γ is an important molecular target in pituitary adenoma cells and PPAR-γ ligands inhibit tumor cell growth and GH, PRL, and LH secretion in vitro and in vivo. TZDs are proposed as novel oral medications for managing pituitary tumors. PMID:12727930

  11. Reliability theory for receptor-ligand bond dissociation

    NASA Astrophysics Data System (ADS)

    Tees, David F. J.; Woodward, John T.; Hammer, David A.

    2001-05-01

    Cell adhesion in the presence of hydrodynamic forces is a critical factor in inflammation, cancer metastasis, and blood clotting. A number of assays have recently been developed to apply forces to small numbers of the receptor-ligand bonds responsible for adhesion. Examples include assays using hydrodynamic shear in flow chambers or elastic probe deflection assays such as the atomic force microscope or the biomembrane force probe. One wishes to use the data on the time distribution of dissociation from these assays to derive information on the force dependence of reaction rates, an important determinant of cell adhesive behavior. The dissociation process can be described using the theory developed for reliability engineering of electronic components and networks. We use this framework along with the Bell model for the reverse reaction rate (kr=kr0exp[r0 f/kT], where f is the applied force and kr0 and r0 are Bell model parameters) to write closed form expressions for the probability distribution of break-up with multiple independent or interacting bonds. These expressions show that the average lifetime of n bonds scales with the nth harmonic number multiplied by the lifetime of a single bond. Results from calculation and simulations are used to describe the effect of experimental procedures in forced unbinding assays on the estimation of parameters for the force dependence of reverse reaction rates.

  12. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-04-28

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  13. Helix 8 of the ligand binding domain of the glucocorticoid receptor (GR) is essential for ligand binding.

    PubMed

    Deng, Qiong; Waxse, Bennett; Riquelme, Denise; Zhang, Jiabao; Aguilera, Greti

    2015-06-15

    Membrane association of estrogen receptors (ER) depends on cysteine palmitoylation and two leucines in the ligand binding domain (LBD), conserved in most steroid receptors. The role of this region, corresponding to helix 8 of the glucocorticoid receptor (GR) LBD, on membrane association of GR was studied in 4B cells, expressing endogenous GR, and Cos-7 cells transfected EGFP-GR constructs. 4B cells preloaded with radiolabeled palmitic acid showed no radioactivity incorporation into immunoprecipitated GR. Moreover, mutation C683A (corresponding to ER palmitoylation site) did not affect corticosterone-induced membrane association of GR. Mutations L687-690A, L682A, E680G and K685G prevented membrane and also nuclear localization through reduced ligand binding. L687-690A mutation decreased association of GR with heat shock protein 90 and transcriptional activity, without overt effects on receptor protein stability. The data demonstrate that palmitoylation does not mediate membrane association of GR, but that the region 680-690 (helix 8) is critical for ligand binding and receptor function.

  14. Challenges Predicting Ligand-Receptor Interactions of Promiscuous Proteins: The Nuclear Receptor PXR

    PubMed Central

    Ekins, Sean; Kortagere, Sandhya; Iyer, Manisha; Reschly, Erica J.; Lill, Markus A.; Redinbo, Matthew R.; Krasowski, Matthew D.

    2009-01-01

    Transcriptional regulation of some genes involved in xenobiotic detoxification and apoptosis is performed via the human pregnane X receptor (PXR) which in turn is activated by structurally diverse agonists including steroid hormones. Activation of PXR has the potential to initiate adverse effects, altering drug pharmacokinetics or perturbing physiological processes. Reliable computational prediction of PXR agonists would be valuable for pharmaceutical and toxicological research. There has been limited success with structure-based modeling approaches to predict human PXR activators. Slightly better success has been achieved with ligand-based modeling methods including quantitative structure-activity relationship (QSAR) analysis, pharmacophore modeling and machine learning. In this study, we present a comprehensive analysis focused on prediction of 115 steroids for ligand binding activity towards human PXR. Six crystal structures were used as templates for docking and ligand-based modeling approaches (two-, three-, four- and five-dimensional analyses). The best success at external prediction was achieved with 5D-QSAR. Bayesian models with FCFP_6 descriptors were validated after leaving a large percentage of the dataset out and using an external test set. Docking of ligands to the PXR structure co-crystallized with hyperforin had the best statistics for this method. Sulfated steroids (which are activators) were consistently predicted as non-activators while, poorly predicted steroids were docked in a reverse mode compared to 5α-androstan-3β-ol. Modeling of human PXR represents a complex challenge by virtue of the large, flexible ligand-binding cavity. This study emphasizes this aspect, illustrating modest success using the largest quantitative data set to date and multiple modeling approaches. PMID:20011107

  15. From α4β2 Nicotinic Ligands to the Discovery of σ1 Receptor Ligands: Pharmacophore Analysis and Rational Design

    PubMed Central

    2012-01-01

    Comparative analyses of the pharmacophoric elements required for σ1 and nicotinic ligands led to the identification of a potent and selective σ1 ligand (15). Compound 15 displayed high selectivity for the σ1 receptor (Ki, σ1 = 4.1 nM; Ki, σ2 = 1312 nM) with moderate binding affinity for the DAT (Ki = 373 nM) and NET (Ki = 203 nM) in the PDSP broad screening panel of common CNS neurotransmitter transporters and receptors. The key finding in this present work is that a subtle structural modification could be used as a tool to switch a ligand’s selectivity between nAChRs and sigma receptors. PMID:23641311

  16. Sigma-1 receptor ligands: potential in the treatment of neuropsychiatric disorders.

    PubMed

    Hayashi, Teruo; Su, Tsung-Ping

    2004-01-01

    The sigma receptor was originally proposed to be a subtype of the opioid receptor. However, it is now clear that sigma receptors are unique non-opioid, non-phencyclidine brain proteins. Two types of sigma receptor exist, the sigma-1 receptor and the sigma-2 receptor. sigma-1 receptors have been cloned and their distribution, physiological functions and roles in signal transduction were recently characterised. Certain sex hormones in the brain (neurosteroids) are known to interact with sigma-1 receptors. sigma-1 receptors regulate glutamate NMDA receptor function and the release of neurotransmitters such as dopamine. They are thus proposed to be involved in learning and memory as well as in certain neuropsychiatric disorders. Selective sigma-1 receptor ligands have been suggested to represent a new class of therapeutic agents for neuropsychiatric disorders, although none have yet been introduced into therapeutic use. Early studies showed that psychotomimetic benzomorphans, as well as several antipsychotics, can bind to sigma-1 receptors. As a result of these findings, sigma-1 receptor ligands have been proposed as being of potential use in the treatment of schizophrenia. Nevertheless, the relationship of sigma-1 receptors to the underlying pathogenesis of schizophrenia is still unclear. sigma-1 receptor ligands have failed to improve acute psychotic symptoms of schizophrenia in clinical trials, but, interestingly, a few studies have shown an improvement in negative symptoms in schizophrenic patients. A number of preclinical studies have shown that selective agonists of sigma-1 receptors affect higher-ordered brain functions such as learning and memory, cognition and mood. These studies indicate that sigma-1 receptor agonists may exert therapeutic effects in depression and senile dementia. Indeed, the sigma-1 receptor agonist igmesine, has been shown to improve depression in a clinical trial. The most distinctive feature of the action of sigma-1 receptor ligands is

  17. Molecular modeling study of the differential ligand-receptor interaction at the μ, δ and κ opioid receptors

    NASA Astrophysics Data System (ADS)

    Filizola, Marta; Carteni-Farina, Maria; Perez, Juan J.

    1999-07-01

    3D models of the opioid receptors μ, δ and κ were constructed using BUNDLE, an in-house program to build de novo models of G-protein coupled receptors at the atomic level. Once the three opioid receptors were constructed and before any energy refinement, models were assessed for their compatibility with the results available from point-site mutations carried out on these receptors. In a subsequent step, three selective antagonists to each of three receptors (naltrindole, naltrexone and nor-binaltorphamine) were docked onto each of the three receptors and subsequently energy minimized. The nine resulting complexes were checked for their ability to explain known results of structure-activity studies. Once the models were validated, analysis of the distances between different residues of the receptors and the ligands were computed. This analysis permitted us to identify key residues tentatively involved in direct interaction with the ligand.

  18. Potential applications for sigma receptor ligands in cancer diagnosis and therapy.

    PubMed

    van Waarde, Aren; Rybczynska, Anna A; Ramakrishnan, Nisha K; Ishiwata, Kiichi; Elsinga, Philip H; Dierckx, Rudi A J O

    2015-10-01

    Sigma receptors (sigma-1 and sigma-2) represent two independent classes of proteins. Their endogenous ligands may include the hallucinogen N,N-dimethyltryptamine (DMT) and sphingolipid-derived amines which interact with sigma-1 receptors, besides steroid hormones (e.g., progesterone) which bind to both sigma receptor subpopulations. The sigma-1 receptor is a ligand-regulated molecular chaperone with various ion channels and G-protein-coupled membrane receptors as clients. The sigma-2 receptor was identified as the progesterone receptor membrane component 1 (PGRMC1). Although sigma receptors are over-expressed in tumors and up-regulated in rapidly dividing normal tissue, their ligands induce significant cell death only in tumor tissue. Sigma ligands may therefore be used to selectively eradicate tumors. Multiple mechanisms appear to underlie cell killing after administration of sigma ligands, and the signaling pathways are dependent both on the type of ligand and the type of tumor cell. Recent evidence suggests that the sigma-2 receptor is a potential tumor and serum biomarker for human lung cancer and an important target for inhibiting tumor invasion and cancer progression. Current radiochemical efforts are focused on the development of subtype-selective radioligands for positron emission tomography (PET) imaging. Right now, the mostpromising tracers are [18F]fluspidine and [18F]FTC-146 for sigma-1 receptors and [11C]RHM-1 and [18F]ISO-1 for the sigma-2 subtype. Nanoparticles coupled to sigma ligands have shown considerable potential for targeted delivery of antitumor drugs in animal models of cancer, but clinical studies exploring this strategy in cancer patients have not yet been reported. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  19. Computer-aided design of a novel ligand for retinoic acid receptor in cancer chemotherapy

    NASA Astrophysics Data System (ADS)

    Silva, Carlos H. T. P.; Leopoldino, Andreia M.; Silva, Eloiza H. T.; Espinoza, V. A. A.; Taft, C. A.

    The isotypes of RAR and RXR are retinoic acid and retinoid X acid receptors, respectively, whose ligand-binding domain contains the ligand-dependent activation function, with distinct pharmacological targets for retinoids, involved in the treatment of various cancers and skin diseases. Due to the major challenge which cancer treatment and cure still imposes after many decades to the international scientific community, there is actually considerable interest in new ligands with increased bioactivity. We have focused on the retinoid acid receptor, which is considered an interesting target for drug design. In this work, we carried out density functional geometry optimizations and different docking procedures. We performed screening in a large database (hundreds of thousands of molecules which we optimized at the AM1 level) yielding a set of potential bioactive ligands. A new ligand was selected and optimized at the B3LYP/6-31G* level. A flexible docking program was used to investigate the interactions between the receptor and the new ligand. The result of this work is compared with several crystallographic ligands of RAR. Our theoretically more bioactive new ligand indicates stronger and more hydrogen bonds as well as hydrophobic interactions with the receptor.

  20. Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands

    ERIC Educational Resources Information Center

    King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M.

    2016-01-01

    Computational molecular docking is a fast and effective "in silico" method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The…

  1. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    SciTech Connect

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  2. Ligands Raise the Constraint That Limits Constitutive Activation in G Protein-coupled Opioid Receptors*

    PubMed Central

    Vezzi, Vanessa; Onaran, H. Ongun; Molinari, Paola; Guerrini, Remo; Balboni, Gianfranco; Calò, Girolamo; Costa, Tommaso

    2013-01-01

    Using a cell-free bioluminescence resonance energy transfer strategy we compared the levels of spontaneous and ligand-induced receptor-G protein coupling in δ (DOP) and μ (MOP) opioid receptors. In this assay GDP can suppress spontaneous coupling, thus allowing its quantification. The level of constitutive activity was 4–5 times greater at the DOP than at the MOP receptor. A series of opioid analogues with a common peptidomimetic scaffold displayed remarkable inversions of efficacy in the two receptors. Agonists that enhanced coupling above the low intrinsic level of the MOP receptor were inverse agonists in reducing the greater level of constitutive coupling of the DOP receptor. Yet the intrinsic activities of such ligands are identical when scaled over the GDP base line of both receptors. This pattern is in conflict with the predictions of the ternary complex model and the “two state” extensions. According to this theory, the order of spontaneous and ligand-induced coupling cannot be reversed if a shift of the equilibrium between active and inactive forms raises constitutive activation in one receptor type. We propose that constitutive activation results from a lessened intrinsic barrier that restrains spontaneous coupling. Any ligand, regardless of its efficacy, must enhance this constraint to stabilize the ligand-bound complexed form. PMID:23836900

  3. Ligands raise the constraint that limits constitutive activation in G protein-coupled opioid receptors.

    PubMed

    Vezzi, Vanessa; Onaran, H Ongun; Molinari, Paola; Guerrini, Remo; Balboni, Gianfranco; Calò, Girolamo; Costa, Tommaso

    2013-08-16

    Using a cell-free bioluminescence resonance energy transfer strategy we compared the levels of spontaneous and ligand-induced receptor-G protein coupling in δ (DOP) and μ (MOP) opioid receptors. In this assay GDP can suppress spontaneous coupling, thus allowing its quantification. The level of constitutive activity was 4-5 times greater at the DOP than at the MOP receptor. A series of opioid analogues with a common peptidomimetic scaffold displayed remarkable inversions of efficacy in the two receptors. Agonists that enhanced coupling above the low intrinsic level of the MOP receptor were inverse agonists in reducing the greater level of constitutive coupling of the DOP receptor. Yet the intrinsic activities of such ligands are identical when scaled over the GDP base line of both receptors. This pattern is in conflict with the predictions of the ternary complex model and the "two state" extensions. According to this theory, the order of spontaneous and ligand-induced coupling cannot be reversed if a shift of the equilibrium between active and inactive forms raises constitutive activation in one receptor type. We propose that constitutive activation results from a lessened intrinsic barrier that restrains spontaneous coupling. Any ligand, regardless of its efficacy, must enhance this constraint to stabilize the ligand-bound complexed form.

  4. Insights into Bombesin receptors and ligands: highlighting recent advances

    PubMed Central

    Ramos-Álvarez, Irene; Moreno, Paola; Mantey, Samuel A.; Nakamura, Taichi; Nuche-Berenguer, Bernardo; Moody, Terry W.; Coy, David H.; Jensen, Robert T.

    2015-01-01

    This following article is written for Prof. Abba Kastin’s Festschrift, to add to the tribute to his important role in the advancement of the role of peptides in physiological, as well as pathophysiological processes. There have been many advances during the 35 years of his prominent role in the Peptide field, not only as editor of the journal Peptides, but also as a scientific investigator and editor of two volumes of the Handbook of Biological Active Peptides [146,147]. Similar to the advances with many different peptides, during this 35 year period, there have been much progress made in the understanding of the pharmacology, cell biology and the role of (Bombesin) Bn receptors and their ligands in various disease states, since the original isolation of bombesin from skin of the European frog Bombina bombina in 1970 [76]. This paper will briefly review some of these advances over the time period of Prof Kastin 35 years in the peptide field concentrating on the advances since 2007 when many of the results from earlier studies were summarized [128,129]. It is appropriate to do this because there have been 280 articles published in Peptides during this time on Bombesin-related peptides and it accounts for almost 5% of all publications. Furthermore, 22 Bn publications we have been involved in have been published in either Peptides [14,39,55,58,81,92,93,119,152,216,225,226,231,280,302,309,355,361,362] or in the Prof Kastin’s Handbook of Biological Active Peptides [137,138,331]. PMID:25976083

  5. Ligand Promiscuity of Aryl Hydrocarbon Receptor Agonists and Antagonists Revealed by Site-Directed Mutagenesis

    PubMed Central

    Soshilov, Anatoly A.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by structurally diverse chemicals. To examine the mechanisms responsible for the promiscuity in AhR ligand binding, we determined the effects of mutations within the AhR ligand-binding domain (LBD) on the activity of diverse AhR ligands. Site-directed mutagenesis identified Ile319 of the mouse AhR and, to a lesser extent, Phe318 as residues involved in ligand-selective modulation of AhR transformation using a panel of 12 AhR ligands. These ligands could be categorized into four distinct structurally related groups based on their ability to activate AhR mutants at position 319 in vitro. The mutation I319K was selectively activated by FICZ and not by other examined ligands in vitro and in cell culture. F318L and F318A mutations resulted in the conversion of AhR agonists β-naphthoflavone and 3-methylcholanthrene, respectively, into partial agonists/antagonists. Hsp90 binding to the AhR was decreased with several mutations and was inversely correlated with AhR ligand-binding promiscuity. Together, these data define overlapping amino acid residues within the AhR LBD involved in the selectivity of ligand binding, the agonist or antagonist mode of ligand binding, and hsp90 binding and provide insights into the ligand diversity of AhR activators. PMID:24591650

  6. Oestrogen receptor beta ligand: a novel treatment to enhance endogenous functional remyelination.

    PubMed

    Crawford, Daniel K; Mangiardi, Mario; Song, Bingbing; Patel, Rhusheet; Du, Sienmi; Sofroniew, Michael V; Voskuhl, Rhonda R; Tiwari-Woodruff, Seema K

    2010-10-01

    Demyelinating diseases, such as multiple sclerosis, are characterized by inflammatory demyelination and neurodegeneration of the central nervous system. Therapeutic strategies that induce effective neuroprotection and enhance intrinsic repair mechanisms are central goals for future therapy of multiple sclerosis. Oestrogens and oestrogen receptor ligands are promising treatments to prevent multiple sclerosis-induced neurodegeneration. In the present study we investigated the capacity of oestrogen receptor β ligand treatment to affect callosal axon demyelination and stimulate endogenous myelination in chronic experimental autoimmune encephalomyelitis using electrophysiology, electron microscopy, immunohistochemistry and tract-tracing methods. Oestrogen receptor β ligand treatment of experimental autoimmune encephalomyelitis mice prevented both histopathological and functional abnormalities of callosal axons despite the presence of inflammation. Specifically, there were fewer demyelinated, damaged axons and more myelinated axons with intact nodes of Ranvier in oestrogen receptor β ligand-treated mice. In addition, oestrogen receptor β ligand treatment caused an increase in mature oligodendrocyte numbers, a significant increase in myelin sheath thickness and axon transport. Functional analysis of callosal axon conduction showed a significant improvement in compound action potential amplitudes, latency and in axon refractoriness. These findings show a direct neuroprotective effect of oestrogen receptor β ligand treatment on oligodendrocyte differentiation, myelination and axon conduction during experimental autoimmune encephalomyelitis.

  7. The Serotonin-6 Receptor as a Novel Therapeutic Target

    PubMed Central

    Yun, Hyung-Mun

    2011-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter that is found in both the central and peripheral nervous systems. 5-HT mediates its diverse physiological responses through 7 different 5-HT receptor families: 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6, and 5-HT7 receptors. Among them, the 5-HT6 receptor (5-HT6R) is the most recently cloned serotonin receptor and plays important roles in the central nervous system (CNS) and in the etiology of neurological diseases. Compared to other 5-HT receptors, the 5-HT6R has been considered as an attractive CNS therapeutic target because it is expressed exclusively in the CNS and has no known isoforms. This review evaluates in detail the role of the 5-HT6R in the physiology and pathophysiology of the CNS and the potential usefulness of 5-HT6R ligands in the development of therapeutic strategies for the treatment of CNS disorders. Preclinical studies provide support for the use of 5-HT6R ligands as promising medications to treat the cognitive dysfunction associated with Alzheimer's disease, obesity, depression, and anxiety. PMID:22355260

  8. Pharmacophore modeling improves virtual screening for novel peroxisome proliferator-activated receptor-gamma ligands

    PubMed Central

    Lewis, Stephanie N.; Garcia, Zulma; Hontecillas, Raquel; Bassaganya-Riera, Josep; Bevan, David R.

    2015-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear hormone receptor involved in regulating various metabolic and immune processes. The PPAR family of receptors possesses a large binding cavity that imparts promiscuity of ligand binding not common to other nuclear receptors. This feature increases the challenge of using computational methods to identify PPAR ligands that will dock favorably into a structural model. Utilizing both ligand- and structure-based pharmacophore methods, we sought to improve agonist prediction by grouping ligands according to pharmacophore features, and pairing models derived from these features with receptor structures for docking. For 22 of the 33 receptor structures evaluated we observed an increase in true positive rate (TPR) when screening was restricted to compounds sharing molecular features found in rosiglitazone. A combination of structure models used for docking resulted in a higher TPR (40%) when compared to docking with a single structure model (less than 20%). Prediction was also improved when specific protein-ligand interactions between the docked ligands and structure models were given greater weight than the calculated free energy of binding. A large-scale screen of compounds using a marketed drug database verified the predictive ability of the selected structure models. This study highlights the steps necessary to improve screening for PPARγ ligands using multiple structure models, ligand-based pharmacophore data, evaluation of protein-ligand interactions, and comparison of docking datasets. The unique combination of methods presented here holds potential for more efficient screening of compounds with unknown affinity for PPARγ that could serve as candidates for therapeutic development. PMID:25616366

  9. Pharmacophore modeling improves virtual screening for novel peroxisome proliferator-activated receptor-gamma ligands

    NASA Astrophysics Data System (ADS)

    Lewis, Stephanie N.; Garcia, Zulma; Hontecillas, Raquel; Bassaganya-Riera, Josep; Bevan, David R.

    2015-05-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear hormone receptor involved in regulating various metabolic and immune processes. The PPAR family of receptors possesses a large binding cavity that imparts promiscuity of ligand binding not common to other nuclear receptors. This feature increases the challenge of using computational methods to identify PPAR ligands that will dock favorably into a structural model. Utilizing both ligand- and structure-based pharmacophore methods, we sought to improve agonist prediction by grouping ligands according to pharmacophore features, and pairing models derived from these features with receptor structures for docking. For 22 of the 33 receptor structures evaluated we observed an increase in true positive rate (TPR) when screening was restricted to compounds sharing molecular features found in rosiglitazone. A combination of structure models used for docking resulted in a higher TPR (40 %) when compared to docking with a single structure model (<20 %). Prediction was also improved when specific protein-ligand interactions between the docked ligands and structure models were given greater weight than the calculated free energy of binding. A large-scale screen of compounds using a marketed drug database verified the predictive ability of the selected structure models. This study highlights the steps necessary to improve screening for PPARγ ligands using multiple structure models, ligand-based pharmacophore data, evaluation of protein-ligand interactions, and comparison of docking datasets. The unique combination of methods presented here holds potential for more efficient screening of compounds with unknown affinity for PPARγ that could serve as candidates for therapeutic development.

  10. Histamine H4 receptor ligands: future applications and state of art.

    PubMed

    Corrêa, Michelle Fidelis; dos Santos Fernandes, João Paulo

    2015-04-01

    Histamine is a chemical transmitter found practically in whole organism and exerts its effects through the interaction with H1 to H4 histaminergic receptors. Specifically, H4 receptors are found mainly in immune cells and blood-forming tissues, thus are involved in inflammatory and immune processes, as well as some actions in central nervous system. Therefore, H4 receptor ligands can have applications in the treatment of chronic inflammatory and immune diseases and may be novel therapeutic option in these conditions. Several H4 receptor ligands have been described from early 2000's until nowadays, being imidazole, indolecarboxamide, 2-aminopyrimidine, quinazoline, and quinoxaline scaffolds the most explored and discussed in this review. Moreover, several studies of molecular modeling using homology models of H4 receptor and QSAR data of the ligands are summarized. The increasing and promising therapeutic applications are leading these compounds to clinical trials, which probably will be part of the next generation of blockbuster drugs.

  11. Ligand Activation of TAM Family Receptors-Implications for Tumor Biology and Therapeutic Response

    PubMed Central

    Davra, Viralkumar; Kimani, Stanley G.; Calianese, David; Birge, Raymond B.

    2016-01-01

    The TAM family of receptors (i.e., Tyro3, Axl, and Mertk), and their ligands Growth arrest specific factor 6 (Gas6) and Protein S (Pros1) contribute to several oncogenic processes, such as cell survival, invasion, migration, chemo-resistance, and metastasis, whereby expression often correlates with poor clinical outcomes. In recent years, there has been great interest in the study of TAM receptors in cancer, stemming both from their roles as oncogenic signaling receptors, as well as their roles in tumor immunology. As a result, several classes of TAM inhibitors that include small molecule tyrosine kinase inhibitors, monoclonal antibodies, decoy receptors, as well as novel strategies to target TAM ligands are being developed. This paper will review the biology of TAM receptors and their ligands with a focus on cancer, as well as evidence-based data for the continued pursuit of TAM/Gas6 inhibitors in clinical practice. PMID:27916840

  12. Distinct second extracellular loop structures of the brain cannabinoid CB(1) receptor: implication in ligand binding and receptor function.

    PubMed

    Shim, Joong-Youn; Rudd, James; Ding, Tomas T

    2011-02-01

    The G-protein-coupled receptor (GPCR) second extracellular loop (E2) is known to play an important role in receptor structure and function. The brain cannabinoid (CB(1)) receptor is unique in that it lacks the interloop E2 disulfide linkage to the transmembrane (TM) helical bundle, a characteristic of many GPCRs. Recent mutation studies of the CB(1) receptor, however, suggest the presence of an alternative intraloop disulfide bond between two E2 Cys residues. Considering the oxidation state of these Cys residues, we determine the molecular structures of the 17-residue E2 in the dithiol form (E2(dithiol)) and in the disulfide form (E2(disulfide)) of the CB(1) receptor in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer, using a combination of simulated annealing and molecular dynamics simulation approaches. We characterize the CB(1) receptor models with these two E2 forms, CB(1)(E2(dithiol)) and CB(1)(E2(disulfide)), by analyzing interaction energy, contact number, core crevice, and cross correlation. The results show that the distinct E2 structures interact differently with the TM helical bundle and uniquely modify the TM helical topology, suggesting that E2 of the CB(1) receptor plays a critical role in stabilizing receptor structure, regulating ligand binding, and ultimately modulating receptor activation. Further studies on the role of E2 of the CB(1) receptor are warranted, particularly comparisons of the ligand-bound form with the present ligand-free form.

  13. Sigma receptor ligands: possible application as therapeutic drugs and as radiopharmaceuticals.

    PubMed

    Hashimoto, Kenji; Ishiwata, Kiichi

    2006-01-01

    Sigma receptors are classified into sigma(1) and sigma(2) subtypes. These subtypes display a different tissue distribution and a distinct physiological and pharmacological profile in the central and peripheral nervous system. The characterization of these subtypes and the discovery of new specific sigma receptor ligands demonstrated that sigma receptors are novel targets for the therapeutic treatment of neuropsychiatric diseases (schizophrenia, depression, and cognition), brain ischemia, and cocaine addiction. Furthermore, imaging of sigma(1) receptors in the human brain using specific PET radioligands has started. In addition, the two sigma receptor subtypes are also expressed on tumor cells, where they could be of prognostic relevance. The ability of sigma(2) receptor agonists to inhibit tumor cell proliferation through mechanisms that might involve apoptosis, intracellular Ca(2+), and sphingolipids has promoted the development of sigma(2) receptor agonists as novel therapeutic drugs for treating cancer. Consequently, sigma(2) receptor ligands have been demonstrated to be potentially useful tumor imaging ligands. In this article, we focus on the sigma receptor ligands as therapeutic agents and as radiopharmaceuticals.

  14. Direct identification of ligand-receptor interactions on living cells and tissues.

    PubMed

    Frei, Andreas P; Jeon, Ock-Youm; Kilcher, Samuel; Moest, Hansjoerg; Henning, Lisa M; Jost, Christian; Plückthun, Andreas; Mercer, Jason; Aebersold, Ruedi; Carreira, Erick M; Wollscheid, Bernd

    2012-10-01

    Many cellular responses are triggered by proteins, drugs or pathogens binding to cell-surface receptors, but it can be challenging to identify which receptors are bound by a given ligand. Here we describe TRICEPS, a chemoproteomic reagent with three moieties--one that binds ligands containing an amino group, a second that binds glycosylated receptors on living cells and a biotin tag for purifying the receptor peptides for identification by quantitative mass spectrometry. We validated this ligand-based, receptor-capture (LRC) technology using insulin, transferrin, apelin, epidermal growth factor, the therapeutic antibody trastuzumab and two DARPins targeting ErbB2. In some cases, we could also determine the approximate ligand-binding sites on the receptors. Using TRICEPS to label intact mature vaccinia viruses, we identified the cell surface proteins AXL, M6PR, DAG1, CSPG4 and CDH13 as binding factors on human cells. This technology enables the identification of receptors for many types of ligands under near-physiological conditions and without the need for genetic manipulations.

  15. C-type lectin-like receptors of the dectin-1 cluster: ligands and signaling pathways.

    PubMed

    Plato, Anthony; Willment, Janet A; Brown, Gordon D

    2013-04-01

    Innate immunity is constructed around genetically encoded receptors that survey the intracellular and extracellular environments for signs of invading microorganisms. These receptors recognise the invader and through complex intracellular networks of molecular signaling, they destroy the threat whilst instructing effective adaptive immune responses. Many of these receptors, like the Toll-like receptors in particular, are well-known for their ability to mediate downstream responses upon recognition of exogenous or endogenous ligands; however, the emerging family known as the C-type lectin-like receptors contains many members that have a huge impact on immune and homeostatic regulation. Of particular interest here are the C-type lectin-like receptors that make up the Dectin-1 cluster and their intracellular signaling motifs that mediate their functions. In this review, we aim to draw together current knowledge of ligands, motifs and signaling pathways, present downstream of Dectin-1 cluster receptors, and discuss how these dictate their role within biological systems.

  16. Bivalent Ligands Targeting Chemokine Receptor Dimerization: Molecular Design and Functional Studies

    PubMed Central

    Arnatt, Christopher Kent; Zhang, Yan

    2015-01-01

    Increasing evidence has shown that chemokine receptors may form functional dimers with unique pharmacological profiles. A common practice to characterize such G protein-coupled receptor dimerization processes is to apply bivalent ligands as chemical probes which can interact with both receptors simultaneously. Currently, two chemokine receptor dimers have been studied by applying bivalent compounds: the CXCR4-CXCR4 homodimer and the CCR5-MOR heterodimer. These bivalent compounds have revealed how dimerization influences receptor function and may lead to novel therapeutics. Future design of bivalent ligands for chemokine receptor dimers may be aided with the recently available CXCR4 homodimer, and CCR5 monomer crystal structures by more accurately simulating chemokine receptors and their dimers. PMID:25159160

  17. Design, synthesis and X-ray crystallographic study of new nonsecosteroidal vitamin D receptor ligands.

    PubMed

    Demizu, Yosuke; Takahashi, Takeo; Kaneko, Fumiya; Sato, Yukiko; Okuda, Haruhiro; Ochiai, Eiji; Horie, Kyohei; Takagi, Ken-Ichiro; Kakuda, Shinji; Takimoto-Kamimura, Midori; Kurihara, Masaaki

    2011-10-15

    We designed and synthesized nonsecosteroidal vitamin D receptor (VDR) ligands that formed H-bonds with six amino acid residues (Tyr143, Ser233, Arg270, Ser274, His301 and His393) of the VDR ligand-binding domain. The ligand YR335 exhibited potent transcriptional activity, which was comparable to those of 1α,25-dihydroxyvitamin D(3) and YR301. The crystal structure of the complex formed between YR335 and the VDR ligand-binding domain was solved, which revealed that YR335 formed H-bonds with the six amino acid residues mentioned above.

  18. Modulation of Retinoic Acid Receptor-related Orphan Receptor α and γ Activity by 7-Oxygenated Sterol Ligands*

    PubMed Central

    Wang, Yongjun; Kumar, Naresh; Solt, Laura A.; Richardson, Timothy I.; Helvering, Leah M.; Crumbley, Christine; Garcia-Ordonez, Ruben D.; Stayrook, Keith R.; Zhang, Xi; Novick, Scott; Chalmers, Michael J.; Griffin, Patrick R.; Burris, Thomas P.

    2010-01-01

    The retinoic acid receptor-related orphan receptors α and γ (RORα (NR1F1) and RORγ (NR1F3)) are orphan nuclear receptors and perform critical roles in regulation of development, metabolism, and immune function. Cholesterol and cholesterol sulfate have been suggested to be RORα ligands, but the physiological significance is unclear. To date, no endogenous RORγ ligands have been described. Here, we demonstrate that 7-oxygenated sterols function as high affinity ligands for both RORα and RORγ by directly binding to their ligand-binding domains (Ki ∼20 nm), modulating coactivator binding, and suppressing the transcriptional activity of the receptors. One of the 7-oxygenated sterols, 7α-hydroxycholesterol (7α-OHC), serves as a key intermediate in bile acid metabolism, and we show that 7α-OHC modulates the expression of ROR target genes, including Glc-6-Pase and phosphoenolpyruvate carboxykinase, in an ROR-dependent manner. Furthermore, glucose output from hepatocytes is suppressed by 7α-OHC functioning as an RORα/γ ligand. Thus, RORα and RORγ are ligand-regulated members of the NR superfamily and may serve as sensors for 7-oxygenated sterols. PMID:19965867

  19. Revealing a steroid receptor ligand as a unique PPAR[gamma] agonist

    SciTech Connect

    Lin, Shengchen; Han, Ying; Shi, Yuzhe; Rong, Hui; Zheng, Songyang; Jin, Shikan; Lin, Shu-Yong; Lin, Sheng-Cai; Li, Yong

    2012-06-28

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) regulates metabolic homeostasis and is a molecular target for anti-diabetic drugs. We report here the identification of a steroid receptor ligand, RU-486, as an unexpected PPAR{gamma} agonist, thereby uncovering a novel signaling route for this steroid drug. Similar to rosiglitazone, RU-486 modulates the expression of key PPAR{gamma} target genes and promotes adipocyte differentiation, but with a lower adipogenic activity. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for RU-486 in the PPAR{gamma} ligand-binding pocket with distinctive properties and epitopes, providing the molecular mechanisms for the discrimination of RU-486 from thiazolidinediones (TZDs) drugs. Our findings together indicate that steroid compounds may represent an alternative approach for designing non-TZD PPAR{gamma} ligands in the treatment of insulin resistance.

  20. Molecular modeling of sigma 1 receptor ligands: a model of binding conformational and electrostatic considerations.

    PubMed

    Gund, Tamara M; Floyd, Jie; Jung, Dawoon

    2004-01-01

    We have performed molecular modeling studies on several sigma 1 specific ligands, including PD144418, spipethiane, haloperidol, pentazocine, and others to develop a pharmacophore for sigma 1 receptor-ligand binding, under the assumption that all the compounds interact at the same receptor binding site. The modeling studies have investigated the conformational and electrostatic properties of the ligands. Superposition of active molecules gave the coordinates of the hypothetical 5-point sigma 1 pharmacophore, as follows: R1 (0.85, 7.26, 0.30); R2 (5.47, 2.40, -1.51); R3 (-2.57, 4.82, -7.10); N (-0.71, 3.29, -6.40); carbon centroid (3.16, 4.83, -0.60), where R1, R2 were constructed onto the aromatic ring of each compound to represent hydrophobic interactions with the receptor; and R3 represents a hydrogen bond between the nitrogen atom and the receptor. Additional analyses were used to describe secondary binding sites to electronegative groups such as oxygen or sulfur atom. Those coordinates are (2.34, 5.08, -4.18). The model was verified by fitting other sigma 1 receptor ligands. This model may be used to search conformational databases for other possibly active ligands. In conjunction with rational drug design techniques the model may be useful in design and synthesis of novel sigma 1 ligands of high selectivity and potency. Calculations were performed using Sybyl 6.5.

  1. Free energy calculations offer insights into the influence of receptor flexibility on ligand-receptor binding affinities.

    PubMed

    Dolenc, Jožica; Riniker, Sereina; Gaspari, Roberto; Daura, Xavier; van Gunsteren, Wilfred F

    2011-08-01

    Docking algorithms for computer-aided drug discovery and design often ignore or restrain the flexibility of the receptor, which may lead to a loss of accuracy of the relative free enthalpies of binding. In order to evaluate the contribution of receptor flexibility to relative binding free enthalpies, two host-guest systems have been examined: inclusion complexes of α-cyclodextrin (αCD) with 1-chlorobenzene (ClBn), 1-bromobenzene (BrBn) and toluene (MeBn), and complexes of DNA with the minor-groove binding ligands netropsin (Net) and distamycin (Dist). Molecular dynamics simulations and free energy calculations reveal that restraining of the flexibility of the receptor can have a significant influence on the estimated relative ligand-receptor binding affinities as well as on the predicted structures of the biomolecular complexes. The influence is particularly pronounced in the case of flexible receptors such as DNA, where a 50% contribution of DNA flexibility towards the relative ligand-DNA binding affinities is observed. The differences in the free enthalpy of binding do not arise only from the changes in ligand-DNA interactions but also from changes in ligand-solvent interactions as well as from the loss of DNA configurational entropy upon restraining.

  2. The gamma-chain cytokine/receptor system in fish: more ligands and receptors.

    PubMed

    Wang, Tiehui; Huang, Wenshu; Costa, Maria M; Secombes, Christopher J

    2011-11-01

    The mammalian gamma-chain (γC) cytokine family consists of interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15 and IL-21. They signal through a receptor complex containing the common γC and a private alpha chain, and in the case of IL-2 and IL-15 an additional common IL-2/15Rβ chain. Deficiency of γC signalling in mammals prevents CD4+ T cells from developing effector functions and CD8+ T cells from developing immunological memory. Thus γC cytokines are critical for the generation and peripheral homeostasis of naïve and memory T cells. This review will give an update on the γC ligands and receptor subunits in fish, and also present some new data on the cloning and expression of a second γC and two IL-2Rβ chains in rainbow trout Oncorhynchus mykiss. In recent years, aided by the availability of sequenced fish genomes and expressed sequence tag databases, five of the six mammalian γC cytokines and their cognate receptors have been discovered in fish, with only the IL-9/IL-9R homologues apparently absent. Paralogues have been discovered in diploid fish and all the receptors described in the tetraploid rainbow trout, including γC itself, IL-2Rβ, IL-4Rα, IL-13Rα1, IL-13Rα2 and IL-2/15Rα, have duplicates. As a consequence of the teleost and salmonid whole genome duplications, even more paralogues may yet be discovered. Some of the paralogues have changes in domain structures and show differential expression and modulation, suggesting the potential for a change in function. Functional characterisation of fish γC cytokines is beginning but made more difficult by the co-existence of so many paralogues of the ligands and their receptors. Initial functional studies have shown that fish γC cytokines can modulate the expression of key cytokines (e.g. interferon-γ, IL-10 and IL-22) of the adaptive immune response, and may thus have promise as adjuvants to improve vaccination efficiency in fish.

  3. Visualization and ligand-induced modulation of dopamine receptor dimerization at the single molecule level

    PubMed Central

    Tabor, Alina; Weisenburger, Siegfried; Banerjee, Ashutosh; Purkayastha, Nirupam; Kaindl, Jonas M.; Hübner, Harald; Wei, Luxi; Grömer, Teja W.; Kornhuber, Johannes; Tschammer, Nuska; Birdsall, Nigel J. M.; Mashanov, Gregory I.; Sandoghdar, Vahid; Gmeiner, Peter

    2016-01-01

    G protein–coupled receptors (GPCRs), including dopamine receptors, represent a group of important pharmacological targets. An increased formation of dopamine receptor D2 homodimers has been suggested to be associated with the pathophysiology of schizophrenia. Selective labeling and ligand-induced modulation of dimerization may therefore allow the investigation of the pathophysiological role of these dimers. Using TIRF microscopy at the single molecule level, transient formation of homodimers of dopamine receptors in the membrane of stably transfected CHO cells has been observed. The equilibrium between dimers and monomers was modulated by the binding of ligands; whereas antagonists showed a ratio that was identical to that of unliganded receptors, agonist-bound D2 receptor-ligand complexes resulted in an increase in dimerization. Addition of bivalent D2 receptor ligands also resulted in a large increase in D2 receptor dimers. A physical interaction between the protomers was confirmed using high resolution cryogenic localization microscopy, with ca. 9 nm between the centers of mass. PMID:27615810

  4. Modeling multivalent ligand-receptor interactions with steric constraints on configurations of cell surface receptor aggregates

    SciTech Connect

    Monine, Michael; Posner, Richard; Savage, Paul; Faeder, James; Hlavacek, William S

    2008-01-01

    Signal transduction generally involves multivalent protein-protein interactions, which can produce various protein complexes and post-translational modifications. The reaction networks that characterize these interactions tend to be so large as to challenge conventional simulation procedures. To address this challenge, a kinetic Monte Carlo (KMC) method has been developed that can take advantage of a model specification in terms of reaction rules for molecular interactions. A set of rules implicitly defines the reactions that can occur as a result of the interactions represented by the rules. With the rule-based KMC method, explicit generation of the underlying chemical reaction network implied by rules is avoided. Here, we apply and extend this method to characterize the interactions of a trivalent ligand with a bivalent cell-surface receptor. This system is also studied experimentally. We consider the following kinetic models: an equivalent-site model, an extension of this model, which takes into account steric constraints on the configurations of receptor aggregates, and finally, a model that accounts for cyclic receptor aggregates. Simulation results for the equivalent-site model are consistent with an equilibrium continuum model. Using these models, we investigate the effects of steric constraints and the formation of cyclic aggregates on the kinetics and equilibria of small and large aggregate formation and the percolation phase transition that occurs in this system.

  5. New Insights in Glucocorticoid Receptor Signaling—More Than Just a Ligand-Binding Receptor

    PubMed Central

    Scheschowitsch, Karin; Leite, Jacqueline Alves; Assreuy, Jamil

    2017-01-01

    The clinical use of classical glucocorticoids (GC) is narrowed by the many side effects it causes and the resistance to GC observed in some diseases. Since the great majority of GC effects depend on the activation of a glucocorticoid receptor (GR), many research groups had focused to better understand the signaling pathways involving those receptors. Transgenic animal models and genetic modifications of the receptor brought a huge insight into GR mechanisms of action. This in turn opened a new window for the search of selective GR modulators that ideally may have agonistic and antagonistic combined effects and activate one specific signaling pathway, inducing mostly transrepression or transactivation mechanisms. Another important research field concerns to posttranslational modifications that affect the GR and consequently also affect its signaling and function. In this mini review, we discuss many of those aspects of GR signaling, as well as findings like the ligand-independent activation of GR, which add another layer of complexity in GR signaling pathways. Although several recent data have been added to the GR field, much work has yet to be done, especially to find out the biological relevance of those alternative GR signaling pathways. Improving the knowledge about alternative GR signaling pathways and understanding how these pathways intercommunicate and in which situations they are relevant might help to develop new strategies to take benefit of it and to improve GC or other compounds efficacy causing minimal side effects. PMID:28220107

  6. Heterologous production of death ligands' and death receptors' extracellular domains: structural features and efficient systems.

    PubMed

    Muraki, Michiro

    2012-08-01

    The extracellular domains of death ligands and those of death receptors are closely related to many serious human diseases through the initiation of apoptosis. Recombinant production of the extracellular domains has been investigated due to demand for a large amount of purified samples, which are a prerequisite for their biochemical characterization and constitute the fundamentals of medical applications. This review focuses on the recombinant production of extracellular domains of the major members of death ligand and death receptor families using non-mammalian expression systems with an emphasis on Fas ligand and Fas receptor. In contrast to the efficient production of the functional extracellular domains of TRAIL, TNFα and LTα by intracellular expression systems using Escherichia coli or Pichia pastoris, that of Fas ligand requires the secretory expression systems using P. pastoris or Dictyostelium discoideum, and the productivity in P. pastoris was largely dependent on tag sequence, potential N-glycosylation site and expressed protein region. On the other hand, the exploitation of insect cell systems is generally useful for the preparation of functional extracellular domains of death receptors containing many disulfide bridges in the absence of extended secondary structure, and a Bombyx mori larvae secretion system presented a superior productivity for human Fas receptor extracellular domain. Based on the results obtained so far, further efforts should be devoted to the artificial control of death ligand - death receptor interactions in order to make a contribution to medicine, represented by the development of novel biopharmaceuticals.

  7. Folding and stability of the ligand-binding domain of the glucocorticoid receptor

    PubMed Central

    McLaughlin, Stephen H.; Jackson, Sophie E.

    2002-01-01

    A complex pathway involving many molecular chaperones has been proposed for the folding, assembly, and maintenance of a high-affinity ligand-binding form of steroid receptors in vivo, including the glucocorticoid receptor. To better understand this intricate folding and assembly process, we studied the folding of the ligand-binding domain of the glucocorticoid receptor in vitro. We found that this domain can be refolded into a compact, highly structured state in vitro in the absence of chaperones. However, the presence of zwitterionic detergent is required to maintain the domain in a soluble form. In this state, the protein is dimeric and has considerable helical structure as shown by far-UV circular dichroism. Further investigation of the properties of this in vitro refolded state show that it is stable and resistant to denaturation by heat or low concentrations of chemical denaturants. A detailed analysis of the unfolding equilibria using three different structural probes demonstrated that this state unfolds via a highly populated dimeric intermediate state. Together, these data clearly show that the ligand-binding domain of the glucocorticoid receptor does not require chaperones for folding per se. However, this in vitro refolded state binds the ligand dexamethasone only weakly (Kd = 45 μM) compared to the in vivo assembled receptor (Kd = 3.4 nM). We suggest that the role of Hsp90 and associated chaperones is to bind to, and stabilize, a specific conformational state of the receptor which binds ligand with high affinity. PMID:12142447

  8. Structural and functional characterization of the human formyl peptide receptor ligand-binding region.

    PubMed Central

    Radel, S J; Genco, R J; De Nardin, E

    1994-01-01

    The formyl peptide (N-formyl-1-methionyl-1-leucyl-1-phenylalanine [FMLP]) receptor is involved in the activation of neutrophils and their subsequent response to chemotactic N-formylated peptides. Recently, we found that the first extracellular loop closest to the N-terminal end of the FMLP receptor exhibited the strongest ligand binding compared with that shown by other extracellular regions. By constructing amino acid substitutional variants of this domain, we have determined that residues Arg-84 and Lys-85 on this loop play major roles in ligand-binding activity. Furthermore, random rearrangement of the residues of this receptor region demonstrated that the position of these charged amino acids did not affect their involvement in ligand binding, although their presence was essential for this binding to occur. We propose that the portion of the first N-terminal extracellular loop of the FMLP receptor containing residues Arg-84 and Lys-85 contributes significantly to the active site in ligand-receptor binding. We further propose that this binding is not dependent on defined structure but rather that these charged moieties may function as important "contacts" in receptor-ligand interactions. Images PMID:8168934

  9. Characterization of receptor proteins using affinity cross-linking with biotinylated ligands.

    PubMed

    Shinya, Tomonori; Osada, Tomohiko; Desaki, Yoshitake; Hatamoto, Masahiro; Yamanaka, Yuko; Hirano, Hisashi; Takai, Ryota; Che, Fang-Sik; Kaku, Hanae; Shibuya, Naoto

    2010-02-01

    The plant genome encodes a wide range of receptor-like proteins but the function of most of these proteins is unknown. We propose the use of affinity cross-linking of biotinylated ligands for a ligand-based survey of the corresponding receptor molecules. Biotinylated ligands not only enable the analysis of receptor-ligand interactions without the use of radioactive compounds but also the isolation and identification of receptor molecules by a simple affinity trapping method. We successfully applied this method for the characterization, isolation and identification of the chitin elicitor binding protein (CEBiP). A biocytin hydrazide conjugate of N-acetylchitooctaose (GN8-Bio) was synthesized and used for the detection of CEBiP in the plasma or microsomal membrane preparations from rice and carrot cells. Binding characteristics of CEBiP analyzed by inhibition studies were in good agreement with the previous results obtained with the use of a radiolabeled ligand. The biotin-tagged CEBiP could be purified by avidin affinity chromatography and identified by LC-MALDI-MS/MS after tryptic digestion. We also used this method to detect OsFLS2, a rice receptor-like kinase for the perception of the peptide elicitor flg22, in membrane preparations from rice cells overexpressing OsFLS2. This work demonstrates the applicability of this method to the purification and identification of plant receptor proteins.

  10. Purinergic P2X receptors: structural models and analysis of ligand-target interaction.

    PubMed

    Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Marucci, Gabriella; Thomas, Ajiroghene; Volpini, Rosaria

    2015-01-07

    The purinergic P2X receptors are ligand-gated cation channels activated by the endogenous ligand ATP. They assemble as homo- or heterotrimers from seven cloned subtypes (P2X1-7) and all trimer subunits present a common topology consisting in intracellular N- and C- termini, two transmembrane domains and a large extracellular domain. These membrane proteins are present in virtually all mammalian tissues and regulate a large variety of responses in physio- and pathological conditions. The development of ligands that selectively activate or block specific P2X receptor subtypes hence represents a promising strategy to obtain novel pharmacological tools for the treatment of pain, cancer, inflammation, and neurological, cardiovascular, and endocrine diseases. The publication of the crystal structures of zebrafish P2X4 receptor in inactive and ATP-bound active forms provided structural data for the analysis of the receptor structure, the interpretation of mutagenesis data, and the depiction of ligand binding and receptor activation mechanism. In addition, the availability of ATP-competitive ligands presenting selectivity for P2X receptor subtypes supports the design of new potent and selective ligands with possibly improved pharmacokinetic profiles, with the final aim to obtain new drugs. This study describes molecular modelling studies performed to develop structural models of the human and rat P2X receptors in inactive and active states. These models allowed to analyse the role of some non-conserved residues at ATP binding site and to study the receptor interaction with some non-specific or subtype selective agonists and antagonists.

  11. Thiophene bioisosteres of spirocyclic σ receptor ligands: relationships between substitution pattern and σ receptor affinity.

    PubMed

    Oberdorf, Christoph; Schepmann, Dirk; Vela, Jose Miguel; Buschmann, Helmut; Holenz, Jörg; Wünsch, Bernhard

    2012-06-14

    On the basis of the 6',7'-dihydrospiro[piperidine-4,4'-thieno[3,2-c]pyran] framework, a series of more than 30 σ ligands with versatile substituents in 1-, 2'-, and 6'-position has been synthesized and pharmacologically evaluated in order to find novel structure-affinity relationships. It was found that a cyclohexylmethyl residue at the piperidine N-atom instead of a benzyl moiety led to increased σ(2) affinity and therefore to decreased σ(1)/σ(2) selectivity. Small substituents (e.g., OH, OCH(3), CN, CH(2)OH) in 6'-position adjacent to the O-atom were well tolerated by the σ(1) receptor. Removal of the substituent in 6'-position resulted in very potent but unselective σ ligands (13). A broad range of substituents with various lipophilic and H-bond forming properties was introduced in 2'-position adjacent to the S-atom without loss of σ(1) affinity. However, very polar and basic substituents in both 2'- and 6'-position decreased the σ(1) affinity considerably. It is postulated that the electron density of the thiophene moiety has a big impact on the σ(1) affinity.

  12. Structure-based discovery of selective serotonin 5-HT(1B) receptor ligands.

    PubMed

    Rodríguez, David; Brea, José; Loza, María Isabel; Carlsson, Jens

    2014-08-05

    The development of safe and effective drugs relies on the discovery of selective ligands. Serotonin (5-hydroxytryptamine [5-HT]) G protein-coupled receptors are therapeutic targets for CNS disorders but are also associated with adverse drug effects. The determination of crystal structures for the 5-HT1B and 5-HT2B receptors provided an opportunity to identify subtype selective ligands using structure-based methods. From docking screens of 1.3 million compounds, 22 molecules were predicted to be selective for the 5-HT1B receptor over the 5-HT2B subtype, a requirement for safe serotonergic drugs. Nine compounds were experimentally verified as 5-HT1B-selective ligands, with up to 300-fold higher affinities for this subtype. Three of the ligands were agonists of the G protein pathway. Analysis of state-of-the-art homology models of the two 5-HT receptors revealed that the crystal structures were critical for predicting selective ligands. Our results demonstrate that structure-based screening can guide the discovery of ligands with specific selectivity profiles.

  13. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  14. Synthesis and Biological Evaluation of Bivalent Ligands for the CB1 Receptor

    PubMed Central

    Zhang, Yanan; Gilliam, Anne; Maitra, Rangan; Damaj, M. Imad; Tajuba, Julianne M.; Seltzman, Herbert H.; Thomas, Brian F.

    2011-01-01

    Dimerization or oligomerization of many G protein-coupled receptors, including the CB1 receptor, is now widely accepted and may have significant implications towards medications development targeting these receptor complexes. A library of bivalent ligands composed of two identical CB1 antagonist pharmacophores derived from SR141716 linked by spacers of various lengths were developed. The affinities of these bivalent ligands at CB1 and CB2 receptors were determined using radiolabeled binding assays. Their functional activities were measured using GTP-γ-S accumulation and intracellular calcium mobilization assays. The results suggest that the nature of the linker and its length are crucial factors for optimum interactions of these ligands at CB1 receptor binding sites. Finally, selected bivalent ligands (5d and 7b) were able to attenuate the antinociceptive effects of the cannabinoid agonist CP55,940 in a rodent tail-flick assay. These novel compounds as probes will enable further evaluation of CB1 receptor dimerization and oligomerization, its functional significance, and may prove useful in the development of new therapeutic approaches to G protein-coupled receptor mediated disorders. PMID:20845959

  15. Versatility or promiscuity: the estrogen receptors, control of ligand selectivity and an update on subtype selective ligands.

    PubMed

    Ng, Hui Wen; Perkins, Roger; Tong, Weida; Hong, Huixiao

    2014-08-26

    The estrogen receptors (ERs) are a group of versatile receptors. They regulate an enormity of processes starting in early life and continuing through sexual reproduction, development, and end of life. This review provides a background and structural perspective for the ERs as part of the nuclear receptor superfamily and discusses the ER versatility and promiscuity. The wide repertoire of ER actions is mediated mostly through ligand-activated transcription factors and many DNA response elements in most tissues and organs. Their versatility, however, comes with the drawback of promiscuous interactions with structurally diverse exogenous chemicals with potential for a wide range of adverse health outcomes. Even when interacting with endogenous hormones, ER actions can have adverse effects in disease progression. Finally, how nature controls ER specificity and how the subtle differences in receptor subtypes are exploited in pharmaceutical design to achieve binding specificity and subtype selectivity for desired biological response are discussed. The intent of this review is to complement the large body of literature with emphasis on most recent developments in selective ER ligands.

  16. Kappa-opioid receptor-selective dicarboxylic ester-derived salvinorin A ligands.

    PubMed

    Polepally, Prabhakar R; White, Kate; Vardy, Eyal; Roth, Bryan L; Ferreira, Daneel; Zjawiony, Jordan K

    2013-05-15

    Salvinorin A, the active ingredient of the hallucinogenic plant Salvia divinorum is the most potent known naturally occurring hallucinogen and is a selective κ-opioid receptor agonist. To better understand the ligand-receptor interactions, a series of dicarboxylic ester-type of salvinorin A derivatives were synthesized and evaluated for their binding affinity at κ-, δ- and μ-opioid receptors. Most of the analogues show high affinity to the κ-opioid receptor. Methyl malonyl derivative 4 shows the highest binding affinity (Ki=2nM), analogues 5, 7, and 14 exhibit significant affinity for the κ-receptor (Ki=21, 36 and 39nM).

  17. Kappa-Opioid Receptor-Selective Dicarboxylic Ester-Derived Salvinorin A Ligands

    PubMed Central

    Polepally, Prabhakar R.; White, Kate; Vardy, Eyal; Roth, Bryan L.; Ferreira, Daneel; Zjawiony, Jordan K.

    2013-01-01

    Salvinorin A, the active ingredient of the hallucinogenic plant Salvia divinorum is the most potent known naturally occurring hallucinogen and is a selective κ-opioid receptor agonist. To better understand the ligand-receptor interactions, a series of dicarboxylic ester-type of salvinorin A derivatives were synthesized and evaluated for their binding affinity at κ, δ, and μ-opioid receptors. Most of the analogues show high affinity to the κ-opioid receptor. Methyl malonyl derivative 4 shows the highest binding affinity (Ki = 2 nM), analogues 5, 7, and 14 exhibit significant affinity for the κ-receptor (Ki = 21, 36 and 39 nM). PMID:23587424

  18. Development of a unique 3D interaction model of endogenous and synthetic peripheral benzodiazepine receptor ligands

    NASA Astrophysics Data System (ADS)

    Cinone, Nunzia; Höltje, Hans-Dieter; Carotti, Angelo

    2000-11-01

    Different classes of Peripheral-type Benzodiazepine Receptor (PBR) ligands were examined and common structural elements were detected and used to develop a rational binding model based on energetically allowed ligand conformations. Two lipophilic regions and one electrostatic interaction site are essential features for high affinity ligand binding, while a further lipophilic region plays an important modulator role. A comparative molecular field analysis, performed over 130 PBR ligands by means of the GRID/GOLPE methodology, led to a PLS model with both high fitting and predictive values (r2 = 0.898, Q2 = 0.761). The outcome from the 3D QSAR model and the GRID interaction fields computed on the putative endogenous PBR ligands DBI (Diazepam Binding Inhibitor) and TTN (Tetracontatetraneuropeptide) was used to identify the amino acids most probably involved in PBR binding. Three amino acids, bearing lipophilic side chains, were detected in DBI (Phe49, Leu47 and Met46) and in TTN (Phe33, Leu31 and Met30) as likely residues underlying receptor binding. Moreover, a qualitative comparison of the molecular electrostatic potentials of DBI, TTN and selected synthetic ligands indicated also similar electronic properties. Convergent results from the modeling studies of synthetic and endogenous ligands suggest a common binding mode to PBRs. This may help the rational design of new high affinity PBR ligands.

  19. Cell receptor and surface ligand density effects on dynamic states of adhering circulating tumor cells.

    PubMed

    Zheng, Xiangjun; Cheung, Luthur Siu-Lun; Schroeder, Joyce A; Jiang, Linan; Zohar, Yitshak

    2011-10-21

    Dynamic states of cancer cells moving under shear flow in an antibody-functionalized microchannel are investigated experimentally and theoretically. The cell motion is analyzed with the aid of a simplified physical model featuring a receptor-coated rigid sphere moving above a solid surface with immobilized ligands. The motion of the sphere is described by the Langevin equation accounting for the hydrodynamic loadings, gravitational force, receptor-ligand bindings, and thermal fluctuations; the receptor-ligand bonds are modeled as linear springs. Depending on the applied shear flow rate, three dynamic states of cell motion have been identified: (i) free motion, (ii) rolling adhesion, and (iii) firm adhesion. Of particular interest is the fraction of captured circulating tumor cells, defined as the capture ratio, via specific receptor-ligand bonds. The cell capture ratio decreases with increasing shear flow rate with a characteristic rate. Based on both experimental and theoretical results, the characteristic flow rate increases monotonically with increasing either cell-receptor or surface-ligand density within certain ranges. Utilizing it as a scaling parameter, flow-rate dependent capture ratios for various cell-surface combinations collapse onto a single curve described by an exponential formula.

  20. Acetylated deoxycholic (DCA) and cholic (CA) acids are potent ligands of pregnane X (PXR) receptor.

    PubMed

    Carazo, Alejandro; Hyrsova, Lucie; Dusek, Jan; Chodounska, Hana; Horvatova, Alzbeta; Berka, Karel; Bazgier, Vaclav; Gan-Schreier, Hongying; Chamulitrat, Waleé; Kudova, Eva; Pavek, Petr

    2017-01-04

    The Pregnane X (PXR), Vitamin D (VDR) and Farnesoid X (FXR) nuclear receptors have been shown to be receptors of bile acids controlling their detoxification or synthesis. Chenodeoxycholic (CDCA) and lithocholic (LCA) acids are ligands of FXR and VDR, respectively, whereas 3-keto and acetylated derivates of LCA have been described as ligands for all three receptors. In this study, we hypothesized that oxidation or acetylation at position 3, 7 and 12 of bile acids DCA (deoxycholic acid), LCA, CA (cholic acid), and CDCA by detoxification enzymes or microbiome may have an effect on the interactions with bile acid nuclear receptors. We employed reporter gene assays in HepG2 cells, the TR-FRET assay with recombinant PXR and RT-PCR to study the effects of acetylated and keto bile acids on the nuclear receptors activation and their target gene expression in differentiated hepatic HepaRG cells. We demonstrate that the DCA 3,12-diacetate and CA 3,7,12-triacetate derivatives are ligands of PXR and DCA 3,12-diacetate induces PXR target genes such as CYP3A4, CYP2B6 and ABCB1/MDR1. In conclusion, we found that acetylated DCA and CA are potent ligands of PXR. Whether the acetylated bile acid derivatives are novel endogenous ligands of PXR with detoxification or physiological functions should be further studied in ongoing experiments.

  1. Design and synthesis of novel dimeric morphinan ligands for kappa and micro opioid receptors.

    PubMed

    Neumeyer, John L; Zhang, Ao; Xiong, Wennan; Gu, Xiao-Hui; Hilbert, James E; Knapp, Brian I; Negus, S Stevens; Mello, Nancy K; Bidlack, Jean M

    2003-11-20

    A novel series of morphinans were synthesized, and their binding affinity at and functional selectivity for micro, delta, and kappa opioid receptors were evaluated. These dimeric ligands can be viewed as dimeric morphinans, which were formed by coupling two identical morphinan pharmacophores (cyclorphan (1) or MCL 101 (2)) with varying connecting spacers. Ligands 6 and 7 with alkyl spacers on the nitrogen position and ligands 8 and 9 in which the two morphinan pharmacophores were coupled by ether moieties at the 3-hydroxyl positions showed significant decrease in affinity at all three opioid receptors. An improvement in the affinity was achieved by introducing an ester moiety as the spacer in the dimeric morphinans. It was observed that the affinity of these ligands was sensitive to the character and length of the spacer. Compound 13 (MCL-139) with a 4-carbon ester spacer, compound 17 (MCL-144) containing a 10-carbon spacer, and compound 19 (MCL-145) with the conformationally constrained fumaryl spacer were the most potent ligands in this series, displaying excellent affinities at micro and kappa receptors (K(i) = 0.09-0.2 nM at micro and K(i) = 0.078-0.049 nM at kappa), which were comparable to the parent compound 2. Ligand 12, a compound containing only one morphinan pharmacophore and a long-chain ester group, had affinity at both micro and kappa receptors almost identical to that of the parent ligand 2. In the [(35)S]GTPgammaS binding assay, ligands 13, 17, and 19 and their parent morphinans 1 and 2 stimulated [(35)S]GTPgammaS binding mediated by the micro and kappa receptors. Compounds 13 and 17 were full kappa agonists and partial micro agonists, while compound 19 was a partial agonist at both micro and kappa receptors. These novel ligands, as well as their interesting pharmacological properties, will serve as the basis for our continuing investigation of the dimeric ligands as potential probes for the pharmacotherapy of cocaine abuse and may also open new

  2. Antihyperalgesic effects of imidazoline I2 receptor ligands in rat models of inflammatory and neuropathic pain

    PubMed Central

    Li, Jun-Xu; Thorn, David A; Qiu, Yanyan; Peng, Bi-Wen; Zhang, Yanan

    2014-01-01

    Background and Purpose A new imidazoline I2 receptor ligand, CR4056, is effective for chronic inflammatory pain and diabetic neuropathy. However, it is unclear whether other I2 receptor ligands have similar effects and whether antinociceptive tolerance develops with repeated treatment. Experimental Approach The Von Frey filament test was used to measure mechanical hyperalgesia and the plantar test to measure thermal hyperalgesia in rats injected with complete Freund's adjuvant (CFA) treatment or had undergone surgery to induce chronic constriction injury (CCI), models of inflammatory pain and peripheral neuropathic pain respectively. The effects of morphine and I2 receptor ligands, 2-BFI, BU224, tracizoline and CR4056, 3.2–32 mg·kg−1, i.p., on hyperalgesia or affective pain (as measured by a place escape/avoidance paradigm) were studied in separate experiments. Key Results Morphine and the I2 receptor ligands (2-BFI, BU224 and tracizoline) all dose-dependently attenuated mechanical and thermal hyperalgesia in CFA-treated rats. The anti-hyperalgesic effects of 2-BFI in CFA-treated and CCI rats were attenuated by the I2 receptor antagonist idazoxan. The combination of 2-BFI and morphine produced additive effects against mechanical hyperalgesia in CFA-treated rats. Repeated treatment (daily for 7–9 days) with 2-BFI or CR4056 did not produce antinociceptive tolerance in CFA-treated or CCI rats. Morphine and the I2 receptor ligands (2-BFI, BU224 and CR4056) were all effective at attenuating place escape/avoidance behaviour in CFA-treated rats. Conclusions and Implications Imidazoline I2 receptor ligands have antihyperalgesic effects in rat models of inflammatory and neuropathic pain and may represent a new class of pharmacotherapeutics for the management of chronic pain. PMID:24329196

  3. Ligands of the Neuropeptide Y Y2 receptor

    PubMed Central

    Mittapalli, Gopi Kumar; Roberts, Edward

    2015-01-01

    Neuropeptide Y (NPY) is one of the most abundant neuropeptides in the mammalian brain and exerts a variety of physiological processes in humans via four different receptor subtypes Y1, Y2, Y4 and Y5. Y2 receptor is the most abundant Y subtype receptor in the central nervous system and implicated with food intake, bone formation, affective disorders, alcohol and drugs of abuse, epilepsy, pain, and cancer. The lack of small molecule non-peptidic Y2 receptor modulators suitable as in vivo pharmacological tools hampered the progress to uncover the precise pharmacological role of Y2. Only in recent years, several potent, selective and non-peptidic Y2 antagonists have been discovered providing the tools to validate Y2 receptor as a therapeutic target. This article reviews Y2 receptor modulators mainly non-peptidic antagonists and their structure-activity relationships. PMID:24365162

  4. Identification of Receptor Ligands and Receptor Subtypes Using Antagonists in a Capillary Electrophoresis Single-Cell Biosensor Separation System

    NASA Astrophysics Data System (ADS)

    Fishman, Harvey A.; Orwar, Owe; Scheller, Richard H.; Zare, Richard N.

    1995-08-01

    A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3 acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B_2 receptor subtype (B_2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B_2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

  5. Programmable Multivalent Display of Receptor Ligands using Peptide Nucleic Acid Nanoscaffolds

    PubMed Central

    Englund, Ethan A.; Wang, Deyun; Fujigaki, Hidetsugu; Sakai, Hiroyasu; Micklitsch, Christopher M.; Ghirlando, Rodolfo; Martin-Manso, Gema; Pendrak, Michael L.; Roberts, David D.; Durell, Stewart R.; Appella, Daniel H.

    2012-01-01

    Multivalent effects dictate the binding affinity of multiple ligands on one molecular entity to receptors. Integrins are receptors that mediate cell attachment through multivalent binding to peptide sequences within the extracellular matrix, and overexpression promotes the metastasis of some cancers. Multivalent display of integrin antagonists enhances their efficacy, but current scaffolds have limited ranges and precision for the display of ligands. Here we present an approach to study multivalent effects across wide ranges of ligand number, density, and three-dimensional arrangement. Using L-lysine γ-substituted peptide nucleic acids, the multivalent effects of an integrin antagonist were examined over a range of 1 to 45 ligands. The optimal construct improves the inhibitory activity of the antagonist by two orders of magnitude against the binding of melanoma cells to the extracellular matrix in both in vitro and in vivo models. PMID:22233624

  6. A new Lamarckian genetic algorithm for flexible ligand-receptor docking.

    PubMed

    Fuhrmann, Jan; Rurainski, Alexander; Lenhof, Hans-Peter; Neumann, Dirk

    2010-07-15

    We present a Lamarckian genetic algorithm (LGA) variant for flexible ligand-receptor docking which allows to handle a large number of degrees of freedom. Our hybrid method combines a multi-deme LGA with a recently published gradient-based method for local optimization of molecular complexes. We compared the performance of our new hybrid method to two non gradient-based search heuristics on the Astex diverse set for flexible ligand-receptor docking. Our results show that the novel approach is clearly superior to other LGAs employing a stochastic optimization method. The new algorithm features a shorter run time and gives substantially better results, especially with increasing complexity of the ligands. Thus, it may be used to dock ligands with many rotatable bonds with high efficiency.

  7. Photomodulation of G Protein-Coupled Adenosine Receptors by a Novel Light-Switchable Ligand

    PubMed Central

    2015-01-01

    The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e., receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable, and nonselective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N6 substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities. PMID:25248077

  8. Ligand-binding dynamics rewire cellular signaling via Estrogen Receptor

    PubMed Central

    Srinivasan, Sathish; Nwachukwu, Jerome C.; Parent, Alex A.; Cavett, Valerie; Nowak, Jason; Hughes, Travis S.; Kojetin, Douglas J.; Katzenellenbogen, John A.; Nettles, Kendall W.

    2013-01-01

    Ligand-binding dynamics control allosteric signaling through the estrogen receptor-α (ERα), but the biological consequences of such dynamic binding orientations are unknown. Here, we compare a set of ER ligands having dynamic binding orientation (dynamic ligands) with a control set of isomers that are constrained to bind in a single orientation (constrained ligands). Proliferation of breast cancer cells directed by constrained ligands is associated with DNA binding, coactivator recruitment and activation of the estrogen-induced gene GREB1, reflecting a highly interconnected signaling network. In contrast, proliferation driven by dynamic ligands is associated with induction of ERα-mediated transcription in a DNA-binding domain (DBD)-dependent manner. Further, dynamic ligands displayed enhanced anti-inflammatory activity. The DBD-dependent profile was predictive of these signaling patterns in a larger diverse set of natural and synthetic ligands. Thus, ligand dynamics directs unique signaling pathways, and reveals a novel role of the DBD in allosteric control of ERα-mediated signaling. PMID:23524984

  9. The unique extracellular disulfide loop of the glycine receptor is a principal ligand binding element.

    PubMed Central

    Rajendra, S; Vandenberg, R J; Pierce, K D; Cunningham, A M; French, P W; Barry, P H; Schofield, P R

    1995-01-01

    A loop structure, formed by the putative disulfide bridging of Cys198 and Cys209, is a principal element of the ligand binding site in the glycine receptor (GlyR). Disruption of the loop's tertiary structure by Ser mutations of these Cys residues either prevented receptor assembly on the cell surface, or created receptors unable to be activated by agonists or to bind the competitive antagonist, strychnine. Mutation of residues Lys200, Tyr202 and Thr204 within this loop reduced agonist binding and channel activation sensitivities by up to 55-, 520- and 190-fold, respectively, without altering maximal current sizes, and mutations of Lys200 and Tyr202 abolished strychnine binding to the receptor. Removal of the hydroxyl moiety from Tyr202 by mutation to Phe profoundly reduced agonist sensitivity, whilst removal of the benzene ring abolished strychnine binding, thus demonstrating that Tyr202 is crucial for both agonist and antagonist binding to the GlyR. Tyr202 also influences receptor assembly on the cell surface, with only large chain substitutions (Phe, Leu and Arg, but not Thr, Ser and Ala) forming functional receptors. Our data demonstrate the presence of a second ligand binding site in the GlyR, consistent with the three-loop model of ligand binding to the ligand-gated ion channel superfamily. Images PMID:7621814

  10. A comprehensive ligand based mapping of the σ₂ receptor binding pocket.

    PubMed

    Rhoades, Derek J; Kinder, David H; Mahfouz, Tarek M

    2014-01-01

    The sigma (σ) receptor system consists of at least two major receptor subtypes: σ₁ and σ₂. Several potential therapeutic applications would benefit from structural knowledge of the σ₂ receptor but gaining this knowledge has been hampered by the difficulties associated with its isolation and, thus, characterization. Here, a ligand based approach has been adopted using the program PHASE® and a group of 41 potent and structurally diverse σ₂ ligands to develop several pharmacophore models for different families of σ₂ ligands. These pharmacophores were analyzed to identify the different binding modes to the receptor and were combined together to construct a comprehensive pharmacophore that was used to develop a structural model for the σ₂ binding pocket. A total of six binding modes were identified and could be classified as neutral or charged modes. The results presented here also indicate the significance of hydrophobic interactions to σ₂ binding and the requirement of hydrogen bonding interactions to increase the affinity for this receptor subtype. This work adds breadth to our knowledge of this receptor's binding site, and should contribute significantly to the development of novel selective σ₂ ligands.

  11. Ligand specificities of recombinant retinoic acid receptors RAR alpha and RAR beta.

    PubMed Central

    Crettaz, M; Baron, A; Siegenthaler, G; Hunziker, W

    1990-01-01

    Binding of retinoic acid (RA) to specific RA receptors alpha and beta (RAR alpha and RAR beta) was studied. Receptors were obtained in two ways: (1) full-length receptors were produced by transient expression of the respective human cDNAs in COS 1 cells; and (2) the ligand-binding domains of RAR alpha and RAR beta were produced in Escherichia coli. RA binding to the wild-type and truncated forms of the receptor was identical for both RAR alpha and RAR beta, indicating that the ligand-binding domains have retained the binding characteristics of the intact receptors. Furthermore, RA bound with the same affinity to both RAR alpha and RAR beta. Only retinoid analogues with an acidic end-group were able to actively bind to both receptors. On measuring the binding of various retinoids, we have found that the properties of the ligand-binding sites of RAR alpha and RAR beta were rather similar. Two retinoid analogues were capable of binding preferentially to either RAR alpha or RAR beta, suggesting that it may be possible to synthesize specific ligands for RAR alpha and RAR beta. PMID:2176462

  12. Identification of a ligand-dependent switch within a muscarinic receptor.

    PubMed

    Spalding, T A; Burstein, E S; Henderson, S C; Ducote, K R; Brann, M R

    1998-08-21

    G-protein-coupled receptors spontaneously switch between active and inactive conformations. Agonists stabilize the active conformation, whereas antagonists stabilize the inactive conformation. In a systematic search for residues that participate in receptor function, several regions of the m5 muscarinic receptor were randomly mutated and tested for their functional properties. Mutations spanning one face of transmembrane 6 (TM6) were found to induce high levels of receptor activity in the absence of agonists (constitutive activity). The same face of TM6 contained several residues crucial for receptor activation by agonists and one residue identified as a contact site for both agonists and antagonists. In addition, one mutation induced agonist-like responses from the receptor when exposed to classical antagonists. These results suggest that TM6 is a switch that defines the activation state of the receptor, and that ligand interactions with TM6 stabilize the receptor in either an active or an inactive conformation.

  13. Targeting Ligand-Dependent and Ligand-Independent Androgen Receptor Signaling in Prostate Cancer

    DTIC Science & Technology

    2015-10-01

    Pugh M, Raj GV, Brown GD, D’Santos C, Robinson JL, Silva G, Launchbury R, Perou CM, Stingl J, Caldas C, Tilley WD, Carroll JS. Progesterone receptor... Peng Y, Raj GV, Yee D, Lange CA. Progesterone receptor-B enhances estrogen responsiveness of breast cancer cells via scaffolding PELP1- and estrogen

  14. Generating "fragment-based virtual library" using pocket similarity search of ligand-receptor complexes.

    PubMed

    Khashan, Raed S

    2015-01-01

    As the number of available ligand-receptor complexes is increasing, researchers are becoming more dedicated to mine these complexes to aid in the drug design and development process. We present free software which is developed as a tool for performing similarity search across ligand-receptor complexes for identifying binding pockets which are similar to that of a target receptor. The search is based on 3D-geometric and chemical similarity of the atoms forming the binding pocket. For each match identified, the ligand's fragment(s) corresponding to that binding pocket are extracted, thus forming a virtual library of fragments (FragVLib) that is useful for structure-based drug design. The program provides a very useful tool to explore available databases.

  15. Sliding tethered ligands add topological interactions to the toolbox of ligand–receptor design

    PubMed Central

    Bauer, Martin; Kékicheff, Patrick; Iss, Jean; Fajolles, Christophe; Charitat, Thierry; Daillant, Jean; Marques, Carlos M.

    2015-01-01

    Adhesion in the biological realm is mediated by specific lock-and-key interactions between ligand–receptor pairs. These complementary moieties are ubiquitously anchored to substrates by tethers that control the interaction range and the mobility of the ligands and receptors, thus tuning the kinetics and strength of the binding events. Here we add sliding anchoring to the toolbox of ligand–receptor design by developing a family of tethered ligands for which the spacer can slide at the anchoring point. Our results show that this additional sliding degree of freedom changes the nature of the adhesive contact by extending the spatial range over which binding may sustain a significant force. By introducing sliding tethered ligands with self-regulating length, this work paves the way for the development of versatile and reusable bio-adhesive substrates with potential applications for drug delivery and tissue engineering. PMID:26350224

  16. NMR and computational methods in the structural and dynamic characterization of ligand-receptor interactions.

    PubMed

    Ghitti, Michela; Musco, Giovanna; Spitaleri, Andrea

    2014-01-01

    The recurrent failures in drug discovery campaigns, the asymmetry between the enormous financial investments and the relatively scarce results have fostered the development of strategies based on complementary methods. In this context in recent years the rigid lock-and-key binding concept had to be revisited in favour of a dynamic model of molecular recognition accounting for conformational changes of both the ligand and the receptor. The high level of complexity required by a dynamic description of the processes underlying molecular recognition requires a multidisciplinary investigation approach. In this perspective, the combination of nuclear magnetic resonance spectroscopy with molecular docking, conformational searches along with molecular dynamics simulations has given new insights into the dynamic mechanisms governing ligand receptor interactions, thus giving an enormous contribution to the identification and design of new and effective drugs. Herein a succinct overview on the applications of both NMR and computational methods to the structural and dynamic characterization of ligand-receptor interactions will be presented.

  17. Tuned-Affinity Bivalent Ligands for the Characterization of Opioid Receptor Heteromers

    PubMed Central

    2012-01-01

    Opioid receptors, including the μ- and δ-opioid receptors (MOR and DOR), are important targets for the treatment of pain. Although there is mounting evidence that these receptors form heteromers, the functional role of the MOR/DOR heteromer remains unresolved. We have designed and synthesized bivalent ligands as tools to elucidate the functional role of the MOR/DOR heteromer. Our ligands (L2 and L4) are comprised of a compound with low affinity at the DOR tethered to a compound with high affinity at the MOR, with the goal of producing ligands with “tuned affinity” at MOR/DOR heteromers as compared to DOR homomers. Here, we show that both L2 and L4 demonstrate enhanced affinity at MOR/DOR heteromers as compared to DOR homomers, thereby providing unique pharmacological tools to dissect the role of the MOR/DOR heteromer in pain. PMID:23585918

  18. Muscarinic receptors as model targets and antitargets for structure-based ligand discovery.

    PubMed

    Kruse, Andrew C; Weiss, Dahlia R; Rossi, Mario; Hu, Jianxin; Hu, Kelly; Eitel, Katrin; Gmeiner, Peter; Wess, Jürgen; Kobilka, Brian K; Shoichet, Brian K

    2013-10-01

    G protein-coupled receptors (GPCRs) regulate virtually all aspects of human physiology and represent an important class of therapeutic drug targets. Many GPCR-targeted drugs resemble endogenous agonists, often resulting in poor selectivity among receptor subtypes and restricted pharmacologic profiles. The muscarinic acetylcholine receptor family exemplifies these problems; thousands of ligands are known, but few are receptor subtype-selective and nearly all are cationic in nature. Using structure-based docking against the M2 and M3 muscarinic receptors, we screened 3.1 million molecules for ligands with new physical properties, chemotypes, and receptor subtype selectivities. Of 19 docking-prioritized molecules tested against the M2 subtype, 11 had substantial activity and 8 represented new chemotypes. Intriguingly, two were uncharged ligands with low micromolar to high nanomolar Ki values, an observation with few precedents among aminergic GPCRs. To exploit a single amino-acid substitution among the binding pockets between the M2 and M3 receptors, we selected molecules predicted by docking to bind to the M3 and but not the M2 receptor. Of 16 molecules tested, 8 bound to the M3 receptor. Whereas selectivity remained modest for most of these, one was a partial agonist at the M3 receptor without measurable M2 agonism. Consistent with this activity, this compound stimulated insulin release from a mouse β-cell line. These results support the ability of structure-based discovery to identify new ligands with unexplored chemotypes and physical properties, leading to new biologic functions, even in an area as heavily explored as muscarinic pharmacology.

  19. Unnatural agrochemical ligands for engineered abscisic acid receptors.

    PubMed

    Rodriguez, Pedro L; Lozano-Juste, Jorge

    2015-06-01

    Existing agrochemicals can be endowed with new applications through protein engineering of plant receptors. A recent study shows an engineered PYR1 ABA receptor can be activated by mandipropamid. Plants engineered with such PYR1 variant are responsive to this agrochemical, which confers protection against drought through activation of ABA signaling.

  20. Photoaffinity ligand for dopamine D2 receptors: azidoclebopride

    SciTech Connect

    Niznik, H.B.; Guan, J.H.; Neumeyer, J.L.; Seeman, P.

    1985-02-01

    In order to label D2 dopamine receptors selectively and covalently by means of a photosensitive compound, azidoclebopride was synthesized directly from clebopride. The dissociation constant (KD) of clebopride for the D2 dopamine receptor (canine brain striatum) was 1.5 nM, while that for azidoclebopride was 21 nM. The affinities of both clebopride and azidoclebopride were markedly reduced in the absence of sodium chloride. In the presence of ultraviolet light, azidoclebopride inactivated D2 dopamine receptors irreversibly, as indicated by the inability of the receptors to bind (/sup 3/H)spiperone. Maximal photoinactivation of about 60% of the D2 dopamine receptors occurred at 1 microM azidoclebopride; 30% of the receptors were inactivated at 80 nM azidoclebopride (pseudo-IC50). Dopamine agonists selectively protected the D2 receptors from being inactivated by azidoclebopride, the order of potency being (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than noradrenaline greater than serotonin. Similarly, dopaminergic antagonists prevented the photoinactivation of D2 receptors by azidoclebopride with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than (-)-butaclamol.

  1. Could sigma receptor ligands be a treatment for methamphetamine addiction?

    PubMed

    Rodvelt, Kelli R; Miller, Dennis K

    2010-09-01

    Methamphetamine's effects are generally considered to be mediated via monoamine transporters; however, it has comparable affinity for sigma receptors. Sigma receptors influence the downstream dopamine systems that are targeted by methamphetamine treatment. Research investigating the effect of sigma receptor agonists on methamphetamine-associated neurochemical and behavioral properties remains controversial; however, the general trend indicates an enhancement of stimulant effects. In contrast, sigma receptor antagonists attenuate methamphetamine-induced neurotoxic and behavioral properties. Together, these studies highlight an important role for sigma receptors in methamphetamine's addictive properties and the consequences of methamphetamine intoxication. Additional research is necessary to elucidate the precise mechanisms underlying their involvement and their role as a potential target for anti-methamphetamine pharmacotherapies.

  2. A Simple Method for Improving Torsion Optimization of Ligand Molecules in Receptor Binding Sites.

    PubMed

    Che, Jianwei

    2005-07-01

    A simple but effective method is introduced for optimizing ligand molecules in torsion space within receptor binding sites. The algorithm makes use of geometric constraints of ligand molecules to search for energetically favorable conformations. It is applied to a conjugate gradient (CG) method as an example. During conformational energy optimization, new line search directions are modified according to the spatial span of rotational groups in ligand molecules. Significant improvements were observed in terms of the abilities both to recover global optimal structures and to obtain lower energy ensembles. This simple algorithm allows rapid implementation and can be incorporated into other conformational energy optimization techniques.

  3. Structure-based design of estrogen receptor-beta selective ligands.

    PubMed

    Manas, Eric S; Unwalla, Rayomand J; Xu, Zhang B; Malamas, Michael S; Miller, Chris P; Harris, Heather A; Hsiao, Chulai; Akopian, Tatos; Hum, Wah-Tung; Malakian, Karl; Wolfrom, Scott; Bapat, Ashok; Bhat, Ramesh A; Stahl, Mark L; Somers, William S; Alvarez, Juan C

    2004-11-24

    We present the structure-based optimization of a series of estrogen receptor-beta (ERbeta) selective ligands. X-ray cocrystal structures of these ligands complexed to both ERalpha and ERbeta are described. We also discuss how molecular modeling was used to take advantage of subtle differences between the two binding cavities in order to optimize selectivity for ERbeta over ERalpha. Quantum chemical calculations are utilized to gain insight into the mechanism of selectivity enhancement. Despite only two relatively conservative residue substitutions in the ligand binding pocket, the most selective compounds have greater than 100-fold selectivity for ERbeta relative to ERalpha when measured using a competitive radioligand binding assay.

  4. Conserved residues in RF-NH₂ receptor models identify predicted contact sites in ligand-receptor binding.

    PubMed

    Bass, C; Katanski, C; Maynard, B; Zurro, I; Mariane, E; Matta, M; Loi, M; Melis, V; Capponi, V; Muroni, P; Setzu, M; Nichols, R

    2014-03-01

    Peptides in the RF-NH2 family are grouped together based on an amidated dipeptide C terminus and signal through G-protein coupled receptors (GPCRs) to influence diverse physiological functions. By determining the mechanisms underlying RF-NH2 signaling targets can be identified to modulate physiological activity; yet, how RF-NH2 peptides interact with GPCRs is relatively unexplored. We predicted conserved residues played a role in Drosophila melanogaster RF-NH2 ligand-receptor interactions. In this study D. melanogaster rhodopsin-like family A peptide GPCRs alignments identified eight conserved residues unique to RF-NH2 receptors. Three of these residues were in extra-cellular loops of modeled RF-NH2 receptors and four in transmembrane helices oriented into a ligand binding pocket to allow contact with a peptide. The eighth residue was unavailable for interaction; yet its conservation suggested it played another role. A novel hydrophobic region representative of RF-NH2 receptors was also discovered. The presence of rhodopsin-like family A GPCR structural motifs including a toggle switch indicated RF-NH2s signal classically; however, some features of the DMS receptors were distinct from other RF-NH2 GPCRs. Additionally, differences in RF-NH2 receptor structures which bind the same peptide explained ligand specificity. Our novel results predicted conserved residues as RF-NH2 ligand-receptor contact sites and identified unique and classic structural features. These discoveries will aid antagonist design to modulate RF-NH2 signaling.

  5. Importance of the pharmacological profile of the bound ligand in enrichment on nuclear receptors: toward the use of experimentally validated decoy ligands.

    PubMed

    Lagarde, Nathalie; Zagury, Jean-François; Montes, Matthieu

    2014-10-27

    The evaluation of virtual ligand screening methods is of major importance to ensure their reliability. Taking into account the agonist/antagonist pharmacological profile should improve the quality of the benchmarking data sets since ligand binding can induce conformational changes in the nuclear receptor structure and such changes may vary according to the agonist/antagonist ligand profile. We indeed found that splitting the agonist and antagonist ligands into two separate data sets for a given nuclear receptor target significantly enhances the quality of the evaluation. The pharmacological profile of the ligand bound in the binding site of the target structure was also found to be an additional critical parameter. We also illustrate that active compound data sets for a given pharmacological activity can be used as a set of experimentally validated decoy ligands for another pharmacological activity to ensure a reliable and challenging evaluation of virtual screening methods.

  6. Human NK cells in acute myeloid leukaemia patients: analysis of NK cell-activating receptors and their ligands.

    PubMed

    Sanchez-Correa, Beatriz; Morgado, Sara; Gayoso, Inmaculada; Bergua, Juan M; Casado, Javier G; Arcos, Maria Jose; Bengochea, Maria Luisa; Duran, Esther; Solana, Rafael; Tarazona, Raquel

    2011-08-01

    Natural killer (NK) cell activation is strictly regulated to ensure that healthy cells are preserved, but tumour-transformed or virus-infected cells are recognized and eliminated. To carry out this selective killing, NK cells have an ample repertoire of receptors on their surface. Signalling by inhibitory and activating receptors by interaction with their ligands will determine whether the NK cell becomes activated and kills the target cell. Here, we show reduced expression of NKp46, NKp30, DNAM-1, CD244 and CD94/NKG2C activating receptors on NK cells from acute myeloid leukaemia patients. This reduction may be induced by chronic exposure to their ligands on leukaemic blasts. The analysis of ligands for NK cell-activating receptors showed that leukaemic blasts from the majority of patients express ligands for NK cell-activating receptors. DNAM-1 ligands are frequently expressed on blasts, whereas the expression of the NKG2D ligand MICA/B is found in half of the patients and CD48, a ligand for CD244, in only one-fourth of the patients. The decreased expression of NK cell-activating receptors and/or the heterogeneous expression of ligands for major receptors on leukaemic blasts can lead to an inadequate tumour immunosurveillance by NK cells. A better knowledge of the activating receptor repertoire on NK cells and their putative ligands on blasts together with the possibility to modulate their expression will open new possibilities for the use of NK cells in immunotherapy against leukaemia.

  7. Segregation of receptor-ligand complexes in cell adhesion zones: phase diagrams and the role of thermal membrane roughness

    NASA Astrophysics Data System (ADS)

    Różycki, B.; Lipowsky, R.; Weikl, T. R.

    2010-09-01

    The adhesion zone of immune cells, the 'immunological synapse', exhibits characteristic domains of receptor-ligand complexes. The domain formation is probably caused by a length difference of the receptor-ligand complexes, and has been investigated in experiments in which T cells adhere to supported membranes with anchored ligands. For supported membranes with two types of anchored ligands, MHCp and ICAM1, which bind to the T-cell receptor (TCR) and the receptor LFA1 in the cell membrane, the coexistence of domains of the TCR-MHCp and LFA1-ICAM1 complexes in the cell adhesion zone has been observed for a wide range of ligand concentrations and affinities. For supported membranes with long and short ligands that bind to the same cell receptor CD2, in contrast, domain coexistence has been observed for a quite narrow ratio of ligand concentrations. In this paper, we determine detailed phase diagrams for cells adhering to supported membranes with a statistical-physical model of cell adhesion. We find a characteristic difference between the adhesion scenarios in which two types of ligands in a supported membrane bind (i) to the same cell receptor or (ii) to two different cell receptors, which helps us to explain the experimental observations. Our phase diagrams fully include thermal shape fluctuations of the cell membranes on nanometer scales, which lead to a critical point for the domain formation and to a cooperative binding of the receptors and ligands.

  8. Molecular Approach to Hypothalamic Rhythms.

    DTIC Science & Technology

    1995-03-14

    identified a novel receptor for serotonin, the 5 - HT7 receptor, and determined its aminoacid structure. Its pharmacological ligand binding properties...ahve been measured and a unique profile of agonists and antagonists defined. These allowed demonstration that the 5 - HT7 receptor mediated circadian

  9. A semisynthetic Eph receptor tyrosine kinase provides insight into ligand-induced kinase activation

    PubMed Central

    Singla, Nikhil; Erdjument-Bromage, Hediye; Himanen, Juha P.; Muir, Tom W.; Nikolov, Dimitar B.

    2011-01-01

    SUMMARY We have developed a methodology for generating milligram amounts of functional Eph tyrosine kinase receptor using the protein engineering approach of expressed protein ligation. Stimulation with ligand induces efficient autophosphorylation of the semisynthetic Eph construct. The in vitro phosphorylation of key Eph tyrosine residues upon ligand-induced activation was monitored via time-resolved, quantitative phosphoproteomics, suggesting a precise and unique order of phosphorylation of the Eph tyrosines in the kinase activation process. To our knowledge, this work represents the first reported semisynthesis of a receptor tyrosine kinase and provides a potentially general method for producing single-pass membrane proteins for structural and biochemical characterization. PMID:21439481

  10. Budded baculoviruses as a tool for a homogeneous fluorescence anisotropy-based assay of ligand binding to G protein-coupled receptors: the case of melanocortin 4 receptors.

    PubMed

    Veiksina, Santa; Kopanchuk, Sergei; Rinken, Ago

    2014-01-01

    We present here the implementation of budded baculoviruses that display G protein-coupled receptors on their surfaces for the investigation of ligand-receptor interactions using fluorescence anisotropy (FA). Melanocortin 4 (MC4) receptors and the fluorescent ligand Cy3B-NDP-α-MSH were used as the model system. The real-time monitoring of reactions and the high assay quality allow the application of global data analysis with kinetic mechanistic models that take into account the effect of nonspecific interactions and the depletion of the fluorescent ligand during the reaction. The receptor concentration, affinity and kinetic parameters of fluorescent ligand binding as well as state anisotropies for different fluorescent ligand populations were determined. At low Cy3B-NDP-α-MSH concentrations, a one-site receptor-ligand binding model described the processes, whereas divergence from this model was observed at higher ligand concentrations, which indicated a more complex mechanism of interactions similar to those mechanisms that have been found in experiments with radioactive ligands. The information obtained from our kinetic experiments and the inherent flexibility of FA assays also allowed the estimation of binding parameters for several MC4 receptor-specific unlabelled compounds. In summary, the FA assay that was developed with budded baculoviruses led the experimental data to a level that would solve complex models of receptor-ligand interactions also for other receptor systems and would become as a valuable tool for the screening of pharmacologically active compounds.

  11. Dual Role of the Second Extracellular Loop of the Cannabinoid Receptor 1: Ligand Binding and Receptor Localization

    PubMed Central

    Ahn, Kwang H.; Bertalovitz, Alexander C.; Mierke, Dale F.

    2009-01-01

    The seven transmembrane α-helices of G protein-coupled receptors (GPCRs) are the hallmark of this superfamily. Intrahelical interactions are critical to receptor assembly and, for the GPCR subclass that binds small molecules, ligand binding. Most research has focused on identifying the ligand binding pocket within the helical bundle, whereas the role of the extracellular loops remains undefined. Molecular modeling of the cannabinoid receptor 1 (CB1) extracellular loop 2 (EC2), however, suggests that EC2 is poised for key interactions. To test this possibility, we employed alanine scanning mutagenesis of CB1 EC2 and identified two distinct regions critical for ligand binding, G protein coupling activity, and receptor trafficking. Receptors with mutations in the N terminus of EC2 (W255A, N256A) were retained in the endoplasmic reticulum and did not bind the agonist (1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)-phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol (CP55940) or the inverse agonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide(SR141716A). In contrast, the C terminus of EC2 differentiates agonist and inverse agonist; the P269A, H270A, and I271A receptors exhibited diminished binding for several agonists but bound inverse agonists SR141716A, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), and 4-[6-methoxy-2-(4-methoxyphenyl)benzofuran-3-carbonyl]benzonitrile (LY320135) with wild-type receptor affinity. The F268A receptor involving substitution in the Cys-X-X-X-Ar motif, displayed both impaired localization and ligand binding. Other amino acid substitutions at position 268 revealed that highly hydrophobic residues are required to accomplish both functions. It is noteworthy that a F268W receptor was trafficked to the cell surface yet displayed differential binding preference for inverse agonists comparable with the P269A, H270A, and I271A receptors. The findings

  12. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  13. A nonplanar porphyrin-based receptor molecule for chiral amine ligands

    SciTech Connect

    MUZZI,CINZIA M.; MEDFORTH,CRAIG J.; SMITH,KEVIN M.; JIA,SONG-LING; SHELNUTT,JOHN A.

    2000-03-06

    A novel porphyrin-based receptor molecule for chiral amine ligands is described in which nonplanarity of the porphyrin macrocycle is used to orient the ligand and to enhance porphyrin-ligand interactions. The porphyrin macrocycle provides a versatile platform upon which to build elaborate superstructures, and this feature coupled with a rich and well-developed synthetic chemistry has led to the synthesis of many elegant models of heme protein active sites and numerous porphyrin-based receptor molecules. One design feature which is not usually considered in the design of porphyrin-based receptor molecules is nonplanarity of the porphyrin ring, although there are a few systems such as the pyridine sensitive Venus Flytrap and the chirality-memory molecule which illustrate that nonplanar porphyrin-based receptors can display unique and interesting behavior. Given the novel properties of these receptors and the continuing interest in the effects of nonplanarity on the properties of porphyrins the authors decided to investigate in more detail the potential applications of nonplanarity in the design of porphyrin-based receptors. Herein, they describe the design, synthesis, and characterization of a new kind of nonplanar porphyrin-based receptor molecule for chiral amines.

  14. Expression of a glycosylphosphatidylinositol-anchored ligand, growth hormone, blocks receptor signalling

    PubMed Central

    Guesdon, François; Kaabi, Yahia; Riley, Aiden H.; Wilkinson, Ian R.; Gray, Colin; James, David C.; Artymiuk, Peter J.; Sayers, Jon R.; Ross, Richard J.

    2012-01-01

    We have investigated the interaction between GH (growth hormone) and GHR (GH receptor). We previously demonstrated that a truncated GHR that possesses a transmembrane domain but no cytoplasmic domain blocks receptor signalling. Based on this observation we investigated the impact of tethering the receptor's extracellular domain to the cell surface using a native lipid GPI (glycosylphosphatidylinositol) anchor. We also investigated the effect of tethering GH, the ligand itself, to the cell surface and demonstrated that tethering either the ecGHR (extracellular domain of GHR) or the ligand itself to the cell membrane via a GPI anchor greatly attenuates signalling. To elucidate the mechanism for this antagonist activity, we used confocal microscopy to examine the fluorescently modified ligand and receptor. GH–GPI was expressed on the cell surface and formed inactive receptor complexes that failed to internalize and blocked receptor activation. In conclusion, contrary to expectation, tethering an agonist to the cell surface can generate an inactive hormone receptor complex that fails to internalize. PMID:23013472

  15. Expression of a glycosylphosphatidylinositol-anchored ligand, growth hormone, blocks receptor signalling.

    PubMed

    Guesdon, François; Kaabi, Yahia; Riley, Aiden H; Wilkinson, Ian R; Gray, Colin; James, David C; Artymiuk, Peter J; Sayers, Jon R; Ross, Richard J

    2012-12-01

    We have investigated the interaction between GH (growth hormone) and GHR (GH receptor). We previously demonstrated that a truncated GHR that possesses a transmembrane domain but no cytoplasmic domain blocks receptor signalling. Based on this observation we investigated the impact of tethering the receptor's extracellular domain to the cell surface using a native lipid GPI (glycosylphosphatidylinositol) anchor. We also investigated the effect of tethering GH, the ligand itself, to the cell surface and demonstrated that tethering either the ecGHR (extracellular domain of GHR) or the ligand itself to the cell membrane via a GPI anchor greatly attenuates signalling. To elucidate the mechanism for this antagonist activity, we used confocal microscopy to examine the fluorescently modified ligand and receptor. GH-GPI was expressed on the cell surface and formed inactive receptor complexes that failed to internalize and blocked receptor activation. In conclusion, contrary to expectation, tethering an agonist to the cell surface can generate an inactive hormone receptor complex that fails to internalize.

  16. Divergent Label-free Cell Phenotypic Pharmacology of Ligands at the Overexpressed β2-Adrenergic Receptors

    NASA Astrophysics Data System (ADS)

    Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye

    2014-01-01

    We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.

  17. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM

    NASA Astrophysics Data System (ADS)

    Pfreundschuh, Moritz; Alsteens, David; Wieneke, Ralph; Zhang, Cheng; Coughlin, Shaun R.; Tampé, Robert; Kobilka, Brian K.; Müller, Daniel J.

    2015-11-01

    A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution.

  18. The CXC Chemokine Receptor 4 Ligands Ubiquitin and Stromal Cell-derived Factor-1α Function through Distinct Receptor Interactions*

    PubMed Central

    Saini, Vikas; Staren, Daniel M.; Ziarek, Joshua J.; Nashaat, Zayd N.; Campbell, Edward M.; Volkman, Brian F.; Marchese, Adriano; Majetschak, Matthias

    2011-01-01

    Recently, we identified extracellular ubiquitin as an endogenous CXC chemokine receptor (CXCR) 4 agonist. However, the receptor selectivity and molecular basis of the CXCR4 agonist activity of ubiquitin are unknown, and functional consequences of CXCR4 activation with ubiquitin are poorly defined. Here, we provide evidence that ubiquitin and the cognate CXCR4 ligand stromal cell-derived factor (SDF)-1α do not share CXCR7 as a receptor. We further demonstrate that ubiquitin does not utilize the typical two-site binding mechanism of chemokine-receptor interactions, in which the receptor N terminus is important for ligand binding. CXCR4 activation with ubiquitin and SDF-1α lead to similar Gαi-responses and to a comparable magnitude of phosphorylation of ERK-1/2, p90 ribosomal S6 kinase-l and Akt, although phosphorylations occur more transiently after activation with ubiquitin. Despite the similarity of signal transduction events after activation of CXCR4 with both ligands, ubiquitin possesses weaker chemotactic activity than SDF-lα in cell migration assays and does not interfere with productive entry of HIV-1 into P4.R5 multinuclear activation of galactosidase indicator cells. Unlike SDF-1α, ubiquitin lacks interactions with an N-terminal CXCR4 peptide in NMR spectroscopy experiments. Binding and signaling studies in the presence of antibodies against the N terminus and extracellular loops 2/3 of CXCR4 confirm that the ubiquitin CXCR4 interaction is independent of the N-terminal receptor domain, whereas blockade of extracellular loops 2/3 prevents receptor binding and activation. Our findings define ubiquitin as a CXCR4 agonist, which does not interfere with productive cellular entry of HIV-1, and provide new mechanistic insights into interactions between CXCR4 and its natural ligands. PMID:21757744

  19. Molecular dynamics simulations and molecular flooding studies of the retinoid X-receptor ligand binding domain.

    PubMed

    Gray, Geoffrey M; Ma, Ning; Wagner, Carl E; van der Vaart, Arjan

    2017-03-01

    Bexarotene is an FDA approved retinoid X-receptor (RXR) agonist for the treatment of cutaneous T-cell lymphoma, and its use in other cancers and Alzheimer's disease is being investigated. The drug causes serious side effects, which might be reduced by chemical modifications of the molecule. To rationalize known agonists and to help identify sites for potential substitutions we present molecular simulations in which the RXR ligand-binding domain was flooded with a large number of drug-like molecules, and molecular dynamics simulations of a series of bexarotene-like ligands bound to the RXR ligand-binding domain. Based on the flooding simulations, two regions of interest for ligand modifications were identified: a hydrophobic area near the bridgehead and another near the fused ring. In addition, positional fluctuations of the phenyl ring were generally smaller than fluctuations of the fused ring of the ligands. Together, these observations suggest that the fused ring might be a good target for the design of higher affinity bexarotene-like ligands, while the phenyl ring is already optimized. In addition, notable differences in ligand position and interactions between the RXRα and RXRβ were observed, as well as differences in hydrogen bonding and solvation, which might be exploited in the development of subspecies-specific ligands.

  20. A selective sigma-2 receptor ligand antagonizes cocaine-induced hyperlocomotion in mice.

    PubMed

    Lever, John R; Miller, Dennis K; Green, Caroline L; Fergason-Cantrell, Emily A; Watkinson, Lisa D; Carmack, Terry L; Fan, Kuo-Hsien; Lever, Susan Z

    2014-02-01

    Cocaine functions, in part, through agonist actions at sigma-1 (σ1 ) receptors, while roles played by sigma-2 (σ2 ) receptors are less established. Attempts to discriminate σ2 receptor-mediated effects of cocaine in locomotor hyperactivity assays have been hampered by the lack of potent and selective antagonists. Certain tetrahydroisoquinolinyl benzamides display high σ2 receptor affinity, and excellent selectivity for binding to σ2 over σ1 receptors. The behavioral properties of this structural class of σ ligands have not yet been investigated. The present study evaluated 5-bromo-N-[4-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-butyl)]-2,3-dimethoxy-benzamide, 1, a ligand shown by others to bind preferentially to σ2 over σ1 receptors, as well as dopamine D2 and D3 sites. First, we determined binding to monoamine transporters and opioid receptors, and noted 57-fold selectivity for σ2 receptors over the serotonin transporter, and >800-fold selectivity for σ2 receptors over the other sites tested. We then examined 1 in locomotor activity studies using male CD-1® mice, and saw no alteration of basal activity at doses up to 31.6 µmol/kg. Cocaine produced a fivefold increase in locomotor activity, which was attenuated by 66% upon pretreatment of mice with 1 at 31.6 µmol/kg. In vivo radioligand binding studies also were performed, and showed no occupancy of σ1 receptors or the dopamine transporter by 1, or its possible metabolites, at the 31.6 µmol/kg dose. Thus, ligand 1 profiles behaviorally as a σ2 receptor-selective antagonist that is able to counteract cocaine's motor stimulatory effects.

  1. Distinct Second Extracellular Loop Structures of the Brain Cannabinoid CB1 Receptor: Implication in Ligand Binding and Receptor Function

    PubMed Central

    Shim, Joong-Youn; Rudd, James; Ding, Tomas T.

    2010-01-01

    The G-protein coupled receptor (GPCR) second extracellular loop (E2) is known to play an important role in receptor structure and function. The brain cannabinoid (CB1) receptor is unique in that it lacks the inter-loop E2 disulfide linkage to the transmembrane (TM) helical bundle, a characteristic of many GPCRs. Recent mutation studies of the CB1 receptor, however, suggest the presence of an alternative intra-loop disulfide bond between two E2 Cys residues. Considering the oxidation state of these Cys residues, we determine the molecular structures of the 17-residue E2 in the dithiol form (E2dithiol) and in the disulfide form (E2disulfide) of the CB1 receptor in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer, employing a combination of simulated annealing (SA) and molecular dynamics (MD) simulation approaches. We characterize the CB1 receptor models with these two E2 forms, CB1(E2dithiol) and CB1(E2disulfide), by analyzing interaction energy, contact number, core crevice and cross-correlation. The results show that the distinct E2 structures interact differently with the TM helical bundle and uniquely modify the TM helical topology, suggesting that E2 plays a critical role in stabilizing receptor structure, regulating ligand binding, and ultimately modulating receptor activation. Further studies on the role of E2 of the CB1 receptor are warranted; particularly comparisons of the ligand-bound form with the present ligand-free form. PMID:21120862

  2. Localization of ligand-binding domains of human corticotropin-releasing factor receptor: a chimeric receptor approach.

    PubMed

    Liaw, C W; Grigoriadis, D E; Lovenberg, T W; De Souza, E B; Maki, R A

    1997-06-01

    Two CRF receptors, CRFR1 and CRFR2, have recently been cloned and characterized. CRFR1 shares 70% sequence identity with CRFR2, yet has much higher affinity for rat/human CRF (r/hCRF) than CRFR2. As a first step toward understanding the interactions between rat/human CRF and its receptor, the regions that are involved in receptor-ligand binding and/or receptor activation were determined by using chimeric receptor constructs of the two human CRFR subtypes, CRFR1 and CRFR2, followed by generating point mutations of the receptor. The EC50 values in stimulation of intracellular cAMP of the chimeric and mutant receptors for the peptide ligand were determined using a cAMP-dependent reporter system. Three regions of the receptor were found to be important for optimal binding of r/hCRF and/or receptor activation. The first region was mapped to the junction of the third extracellular domain and the fifth transmembrane domain; substitution of three amino acids of CRFR1 in this region (Val266, Tyr267, and Thr268) by the corresponding CRFR2 amino acids (Asp266, Leu267, and Val268) increased the EC50 value by approximately 10-fold. The other two regions were localized to the second extracellular domain of the CRFR1 involving amino acids 175-178 and His189 residue. Substitutions in these two regions each increased the EC50 value for r/hCRF by approximately 7- to 8-fold only in the presence of the amino acid 266-268 mutation involving the first region, suggesting that their roles in peptide ligand binding might be secondary.

  3. Modulation of the ligand-independent activation of the human estrogen receptor by hormone and antihormone.

    PubMed Central

    Smith, C L; Conneely, O M; O'Malley, B W

    1993-01-01

    It has been previously demonstrated that several members of the steroid receptor superfamily may be activated by the neurotransmitter dopamine in the apparent absence of cognate ligand. We have examined wild-type and mutant human estrogen receptors (ERs, [Gly400]ER and [Val400]ER, respectively) for their abilities to activate ER-dependent transcription of a transgene in a ligand-independent manner. In cells expressing the wild-type ER, dopamine was nearly as effective as 17 beta-estradiol at inducing the chloramphenicol acetyltransferase activity of the reporter gene in a dose-dependent manner; simultaneous addition of suboptimal concentrations of 17 beta-estradiol and dopamine stimulated transcription more than either compound alone. Dopamine alone was unable to induce gene expression in cells expressing [Val400]ER mutant receptors, but concomitant treatment with 17 beta-estradiol produced a synergistic increase in transcription, suggesting that the ligand may alter the mutant receptor's conformation such that it can be activated subsequently by a dopaminergic signaling mechanism. In the presence of the antiestrogen ICI 164,384, dopamine-stimulated gene expression was undetectable in cells expressing either form of ER. However, simultaneous treatment of cells expressing wild-type ER with trans-4-hydroxytamoxifen and dopamine resulted in transgene expression that was additive in nature compared to either compound alone; similar treatment of cells expressing [Val400]ER produced a synergistic increase. Our results suggest that ligand and ligand-independent activation of the ER initiate from distinct pathways and that the latter may occur in a variety of target tissues subject to modulation by receptor ligands. Images Fig. 5 PMID:8327492

  4. Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol

    SciTech Connect

    Suino-Powell, Kelly; Xu, Yong; Zhang, Chenghai; Tao, Yong-guang; Tolbert, W. David; Simons, Jr., S. Stoney; Xu, H. Eric

    2010-03-08

    A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GR LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 {angstrom}{sup 3}, effectively doubling the size of the GR dexamethasone-binding pocket of 540 {angstrom}{sup 3} and yet leaving the structure of the coactivator binding site intact. DAC occupies only {approx}50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.

  5. Ligand-Based Peptide Design and Combinatorial Peptide Libraries to Target G Protein-Coupled Receptors

    PubMed Central

    Gruber, Christian W.; Muttenthaler, Markus; Freissmuth, Michael

    2016-01-01

    G protein-coupled receptors (GPCRs) are considered to represent the most promising drug targets; it has been repeatedly said that a large fraction of the currently marketed drugs elicit their actions by binding to GPCRs (with cited numbers varying from 30–50%). Closer scrutiny, however, shows that only a modest fraction of (~60) GPCRs are, in fact, exploited as drug targets, only ~20 of which are peptide-binding receptors. The vast majority of receptors in the humane genome have not yet been explored as sites of action for drugs. Given the drugability of this receptor class, it appears that opportunities for drug discovery abound. In addition, GPCRs provide for binding sites other than the ligand binding sites (referred to as the “orthosteric site”). These additional sites include (i) binding sites for ligands (referred to as “allosteric ligands”) that modulate the affinity and efficacy of orthosteric ligands, (ii) the interaction surface that recruits G proteins and arrestins, (iii) the interaction sites of additional proteins (GIPs, GPCR interacting proteins that regulate G protein signaling or give rise to G protein-independent signals). These sites can also be targeted by peptides. Combinatorial and natural peptide libraries are therefore likely to play a major role in identifying new GPCR ligands at each of these sites. In particular the diverse natural peptide libraries such as the venom peptides from marine cone-snails and plant cyclotides have been established as a rich source of drug leads. High-throughput screening and combinatorial chemistry approaches allow for progressing from these starting points to potential drug candidates. This will be illustrated by focusing on the ligand-based drug design of oxytocin (OT) and vasopressin (AVP) receptor ligands using natural peptide leads as starting points. PMID:20687879

  6. Antibodies and carbohydrate ligands binding to DC-SIGN differentially modulate receptor trafficking.

    PubMed

    Tacken, Paul J; Ter Huurne, Menno; Torensma, Ruurd; Figdor, Carl G

    2012-08-01

    DCs are regarded as key APCs that initiate humoral and cellular immune responses. Consequently, targeted delivery of Ag toward DC-specific receptors enhances vaccine efficacy. DC-SIGN is a C-type lectin receptor that facilitates DC-specific delivery of Ag. This is accomplished by conjugating Ag to receptor-specific Ab or carbohydrate ligands that bind to its carbohydrate recognition domain. Here, we investigated the fate of DC-SIGN following receptor triggering with Ab. Both whole and single-chain Ab induced rapid internalization of about half of the surface receptor molecules. Biochemical studies showed that about half of the receptor molecules were still intracellular after 3 h, while minimal or no resurfacing of internalized or newly synthesized unbound DC-SIGN molecules was observed. Prolonged exposure of DCs to DC-SIGN Ab, but not carbohydrate ligands, resulted in reduced receptor expression levels, which lasted up to 2 days following removal of the Ab. In addition, exposure to DC-SIGN Ab reduced the ability of the receptor to internalize. Consequently, DC-SIGN showed a poor ability to accumulate targeting Abs within DCs. Vaccine efficacy may therefore be enhanced by strategies increasing the amount of Ag entering via a single receptor molecule, such as the use of targeting moieties allowing DC-SIGN recycling or Ab-coated vaccine carriers.

  7. Controlling the Dissociation of Ligands from the Adenosine A2A Receptor through Modulation of Salt Bridge Strength.

    PubMed

    Segala, Elena; Guo, Dong; Cheng, Robert K Y; Bortolato, Andrea; Deflorian, Francesca; Doré, Andrew S; Errey, James C; Heitman, Laura H; IJzerman, Adriaan P; Marshall, Fiona H; Cooke, Robert M

    2016-07-14

    The association and dissociation kinetics of ligands binding to proteins vary considerably, but the mechanisms behind this variability are poorly understood, limiting their utilization for drug discovery. This is particularly so for G protein-coupled receptors (GPCRs) where high resolution structural information is only beginning to emerge. Engineering the human A2A adenosine receptor has allowed structures to be solved in complex with the reference compound ZM241385 and four related ligands at high resolution. Differences between the structures are limited, with the most pronounced being the interaction of each ligand with a salt bridge on the extracellular side of the receptor. Mutagenesis experiments confirm the role of this salt bridge in controlling the dissociation kinetics of the ligands from the receptor, while molecular dynamics simulations demonstrate the ability of ligands to modulate salt bridge stability. These results shed light on a structural determinant of ligand dissociation kinetics and identify a means by which this property may be optimized.

  8. Human formyl peptide receptor ligand binding domain(s). Studies using an improved mutagenesis/expression vector reveal a novel mechanism for the regulation of receptor occupancy.

    PubMed

    Perez, H D; Vilander, L; Andrews, W H; Holmes, R

    1994-09-09

    Recently, we reported the domain requirements for the binding of formyl peptide to its specific receptor. Based on experiments using receptor chimeras, we also postulated an importance for the amino-terminal domain of the receptor in ligand binding (Perez, H. D., Holmes, R., Vilander, L., Adams, R., Manzana, W., Jolley, D., and Andrews, W. H. (1993) J. Biol. Chem. 268, 2292-2295). We have begun to perform a detailed analysis of the regions within the formyl peptide receptor involved in ligand binding. To address the importance of the receptor amino-terminal domain, we substituted (or inserted) hydrophilic sequences within the amino-terminal domain, expressed the receptors, and determined their ability to bind ligand. A stretch of nine amino acids next to the initial methionine was identified as crucial for receptor occupancy. A peptide containing such a sequence specifically completed binding of the ligand to the receptor. Alanine screen mutagenesis of the second extracellular domain also identified amino acids involved in ligand binding as well as a disulfide bond (Cys98 to Cys176) crucial for maintaining the binding pocket. These studies provide evidence for a novel mechanism involved in regulation of receptor occupancy. Binding of the ligand induces conformational changes in the receptor that result in the apposition of the amino-terminal domain over the ligand, providing a lid to the binding pocket.

  9. The Nuclear Receptor HIZR-1 Uses Zinc as a Ligand to Mediate Homeostasis in Response to High Zinc

    PubMed Central

    Warnhoff, Kurt; Roh, Hyun C.; Kocsisova, Zuzana; Tan, Chieh-Hsiang; Morrison, Andrew; Croswell, Damari; Schneider, Daniel L.; Kornfeld, Kerry

    2017-01-01

    Nuclear receptors were originally defined as endocrine sensors in humans, leading to the identification of the nuclear receptor superfamily. Despite intensive efforts, most nuclear receptors have no known ligand, suggesting new ligand classes remain to be discovered. Furthermore, nuclear receptors are encoded in the genomes of primitive organisms that lack endocrine signaling, suggesting the primordial function may have been environmental sensing. Here we describe a novel Caenorhabditis elegans nuclear receptor, HIZR-1, that is a high zinc sensor in an animal and the master regulator of high zinc homeostasis. The essential micronutrient zinc acts as a HIZR-1 ligand, and activated HIZR-1 increases transcription of genes that promote zinc efflux and storage. The results identify zinc as the first inorganic molecule to function as a physiological ligand for a nuclear receptor and direct environmental sensing as a novel function of nuclear receptors. PMID:28095401

  10. Nuclear receptor ligand-binding domains: reduction of helix H12 dynamics to favour crystallization

    SciTech Connect

    Nahoum, Virginie; Lipski, Alexandra; Quillard, Fabien; Guichou, Jean-François; Boublik, Yvan; Pérez, Efrèn; Germain, Pierre; Lera, Angel R. de; Bourguet, William

    2008-07-01

    Attempts have been made to crystallize the ligand-binding domain of the human retinoid X receptor in complex with a variety of newly synthesized ligands. An inverse correlation was observed between the ‘crystallizability’ and the structural dynamics of the various receptor–ligand complexes. Crystallization trials of the human retinoid X receptor α ligand-binding domain (RXRα LBD) in complex with various ligands have been carried out. Using fluorescence anisotropy, it has been found that when compared with agonists these small-molecule effectors enhance the dynamics of the RXRα LBD C-terminal helix H12. In some cases, the mobility of this helix could be dramatically reduced by the addition of a 13-residue co-activator fragment (CoA). In keeping with these observations, crystals have been obtained of the corresponding ternary RXRα LBD–ligand–CoA complexes. In contrast, attempts to crystallize complexes with a highly mobile H12 remained unsuccessful. These experimental observations substantiate the previously recognized role of co-regulator fragments in facilitating the crystallization of nuclear receptor LBDs.

  11. Novel selective allosteric and bitopic ligands for the S1P(3) receptor.

    PubMed

    Jo, Euijung; Bhhatarai, Barun; Repetto, Emanuela; Guerrero, Miguel; Riley, Sean; Brown, Steven J; Kohno, Yasushi; Roberts, Edward; Schürer, Stephan C; Rosen, Hugh

    2012-12-21

    Sphingosine 1-phosphate (S1P) is a lysophospholipid signaling molecule that regulates important biological functions, including lymphocyte trafficking and vascular development, by activating G protein-coupled receptors for S1P, namely, S1P(1) through S1P(5). Here, we map the S1P(3) binding pocket with a novel allosteric agonist (CYM-5541), an orthosteric agonist (S1P), and a novel bitopic antagonist (SPM-242). With a combination of site-directed mutagenesis, ligand competition assay, and molecular modeling, we concluded that S1P and CYM-5541 occupy different chemical spaces in the ligand binding pocket of S1P(3). CYM-5541 allowed us to identify an allosteric site where Phe263 is a key gate-keeper residue for its affinity and efficacy. This ligand lacks a polar moiety, and the novel allosteric hydrophobic pocket permits S1P(3) selectivity of CYM-5541 within the highly similar S1P receptor family. However, a novel S1P(3)-selective antagonist, SPM-242, in the S1P(3) pocket occupies the ligand binding spaces of both S1P and CYM-5541, showing its bitopic mode of binding. Therefore, our coordinated approach with biochemical data and molecular modeling, based on our recently published S1P(1) crystal structure data in a highly conserved set of related receptors with a shared ligand, provides a strong basis for the successful optimization of orthosteric, allosteric, and bitopic modulators of S1P(3).

  12. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems

    PubMed Central

    Bruchas, Michael R.; Calo', Girolamo; Cox, Brian M.; Zaveri, Nurulain T.

    2016-01-01

    The NOP receptor (nociceptin/orphanin FQ opioid peptide receptor) is the most recently discovered member of the opioid receptor family and, together with its endogenous ligand, N/OFQ, make up the fourth members of the opioid receptor and opioid peptide family. Because of its more recent discovery, an understanding of the cellular and behavioral actions induced by NOP receptor activation are less well developed than for the other members of the opioid receptor family. All of these factors are important because NOP receptor activation has a clear modulatory role on mu opioid receptor-mediated actions and thereby affects opioid analgesia, tolerance development, and reward. In addition to opioid modulatory actions, NOP receptor activation has important effects on motor function and other physiologic processes. This review discusses how NOP pharmacology intersects, contrasts, and interacts with the mu opioid receptor in terms of tertiary structure and mechanism of receptor activation; location of receptors in the central nervous system; mechanisms of desensitization and downregulation; cellular actions; intracellular signal transduction pathways; and behavioral actions with respect to analgesia, tolerance, dependence, and reward. This is followed by a discussion of the agonists and antagonists that have most contributed to our current knowledge. Because NOP receptors are highly expressed in brain and spinal cord and NOP receptor activation sometimes synergizes with mu receptor-mediated actions and sometimes opposes them, an understanding of NOP receptor pharmacology in the context of these interactions with the opioid receptors will be crucial to the development of novel therapeutics that engage the NOP receptor. PMID:26956246

  13. Retinoid X receptor-selective ligands produce malformations in Xenopus embryos.

    PubMed Central

    Minucci, S; Saint-Jeannet, J P; Toyama, R; Scita, G; DeLuca, L M; Tiara, M; Levin, A A; Ozato, K; Dawid, I B

    1996-01-01

    Retinoids exert pleiotropic effects on the development of vertebrates through the action of retinoic acid receptors (RAR) and retinoid X receptors (RXR). We have investigated the effect of synthetic retinoids selective for RXR and RAR on the development of Xenopus and zebrafish embryos. In Xenopus, both ligands selective for RAR and RXR caused striking malformations along the anterior-posterior axis, whereas in zebrafish only ligands specific for RAR caused embryonic malformations. In Xenopus, RAR- and RXR-selective ligands regulated the expression of the Xlim-1, gsc, and HoxA1 genes similarly as all-trans-retinoic acid. Nevertheless, RXR-selective ligands activated only an RXR responsive reporter but not an RAR responsive reporter introduced by microinjection into the Xenopus embryo, consistent with our failure to detect conversion of an RXR-selective ligand to different derivatives in the embryo. These results suggest that Xenopus embryos possess a unique response pathway in which liganded RXR can control gene expression. Our observations further illustrate the divergence in retinoid responsiveness between different vertebrate species. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:8700839

  14. Synthetic Multivalent Ligands as Probes of Inter-Receptor Communication in Bacterial Chemotaxis

    NASA Astrophysics Data System (ADS)

    Gestwicki, Jason

    2004-03-01

    Bacteria can sense chemotactic signals, such as nutrients and toxins, with remarkable sensitivity. Escherichia coli, respond to changes in stimulant concentration of less than 10to maintain sensitivity, the relationship between ligand concentration and output response must be non-linear. For example, at low ligand levels, substantial amplification of the chemotactic signal is required to trigger locomotion. Signal amplification must be quickly suppressed, however, to restore proper sensitivity to small changes in ligand at higher concentrations. Because of the rapid flexibility of this system, it has been hypothesized that alterations in the organization of the chemotactic signaling proteins, rather than changes in their expression, provide this exquisite sensitivity. The interaction between chemoreceptors within lattices has been proposed to play a role in this process. Using a series of synthetic multivalent ligands directed at the chemoreceptors, we have demonstrated a requirement for dynamic changes in inter-receptor interactions for amplification and integration of sensory information. Multivalent ligands that interact through the galactose-sensing receptor Trg, enforce proximal interactions between chemoreceptors and enhance signal output. Further, upon treatment with multivalent ligands, the response to the attractant serine is amplified by at least 100-fold. These results, and those from genetic and structural studies by other laboratories, suggest that the entire array is involved in sensing. These results support general strategy by which biological responses may be regulated.

  15. Kinetics of membrane adhesion mediated by ligand-receptor interaction studied with a biomimetic system.

    PubMed Central

    Boulbitch, A; Guttenberg, Z; Sackmann, E

    2001-01-01

    We report the first measurement of the kinetics of adhesion of a single giant vesicle controlled by the competition between membrane-substrate interaction mediated by ligand-receptor interaction, gravitation, and Helfrich repulsion. To model the cell-tissue interaction, we doped the vesicles with lipid-coupled polymers (mimicking the glycocalix) and the reconstituted ligands selectively recognized by alpha(IIb)beta(3) integrin-mediating specific attraction forces. The integrin was grafted on glass substrates to act as a target cell. The adhesion of the vesicle membrane to the integrin-covered surface starts with the spontaneous formation of a small (approximately 200 nm) domain of tight adhesion, which then gradually grows until the whole adhesion area is in the state of tight adhesion. The time of adhesion varies from few tens of seconds to about one hour depending on the ligand and lipopolymer concentration. At small ligand concentrations, we observed the displacement xi of the front of tight adhesion following the square root law xi approximately t(1/2), whereas, at high concentrations, we found a linear law xi approximately t. We show both experimentally and theoretically that the t(1/2)-regime is dominated by diffusion of ligands, and the xi approximately t-regime by the kinetics of ligands-receptors association. PMID:11606287

  16. A Nuclear Receptor Ligand-based Probe Enables Temporal Control of C. elegans Development

    PubMed Central

    Judkins, Joshua C.; Mahanti, Parag; Hoffman, Jacob; Yim, Isaiah; Antebi, Adam; Schroeder, Frank C.

    2014-01-01

    C. elegans development and lifespan are controlled by the nuclear hormone receptor DAF-12, an important model for vertebrate vitamin D and liver-X receptors. Similar to its mammalian homologs, DAF-12 function is regulated by bile acid-like steroidal ligands, the dafachronic acids; however, tools for investigating their biosynthesis and function in vivo are lacking. We report a flexible synthesis for DAF-12 ligands and masked ligand derivatives that enable precise temporal control of DAF-12 function. For ligand masking, we introduce photocleavable amides of 5-methoxy-N-methyl-2-nitroaniline (MMNA). MMNA-masked ligands are bioavailable and after incorporation into the worm can be used to trigger expression of DAF-12 target genes and initiate development from dauer larvae to adults by brief, innocuous UV-irradiation. In-vivo release of DAF-12 ligands and other small-molecule signals using MMNA-based probes will enable functional studies with precise spatial and temporal resolution. PMID:24453122

  17. Functional studies of host-specific ephrin-B ligands as Henipavirus receptors.

    PubMed

    Bossart, Katharine N; Tachedjian, Mary; McEachern, Jennifer A; Crameri, Gary; Zhu, Zhongyu; Dimitrov, Dimiter S; Broder, Christopher C; Wang, Lin-Fa

    2008-03-15

    Hendra virus (HeV) and Nipah virus (NiV) are closely related paramyxoviruses that infect and cause disease in a wide range of mammalian hosts. To determine whether host receptor molecules play a role in species-specific and/or virus-specific infection we have cloned and characterized ephrin-B2 and ephrin-B3 ligands from a range of species, including human, horse, pig, cat, dog, bats (Pteropus alecto and Pteropus vampyrus) and mouse. HeV and NiV were both able to infect cells expressing any of the ephrin-B2 and ephrin-B3 molecules. There did not appear to be significant differences in receptor function from different species or receptor usage by HeV and NiV. Soluble ephrin ligands, their receptors and G-specific human monoclonal antibodies differentially blocked henipavirus infections suggesting different receptor affinities, overlapping receptor binding domains of the henipavirus attachment glycoprotein (G) and that the functional domains of the ephrin ligands may be important for henipavirus binding.

  18. Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91).

    PubMed Central

    Greenlund, A C; Farrar, M A; Viviano, B L; Schreiber, R D

    1994-01-01

    Herein we report that interferon-gamma (IFN gamma) induces the rapid and reversible tyrosine phosphorylation of the IFN gamma receptor. Using a panel of receptor intracellular domain mutants, we show that a membrane-proximal LPKS sequence (residues 266-269) is required for ligand-induced tyrosine kinase activation and/or kinase-receptor association and biological responsiveness, and a functionally critical membrane-distal tyrosine residue (Y440) is a target of the activated enzyme. The biological significance of Y440 phosphorylation was demonstrated by showing that a receptor-derived nonapeptide corresponding to receptor residues 436-444 and containing phosphorylated Y440 bound specifically to p91, blocked p91 phosphorylation and inhibited the generation of an active p91-containing transcription factor complex. In contrast, nonphosphorylated wild-type, phosphorylated mutant, or phosphorylated irrelevant peptides did not. Moreover, the phosphorylated Y440-containing peptide did not interact with a related but distinct latent transcription factor (p113) which is activatible by IFN alpha but not IFN gamma. These results thus document the specific and inducible association of p91 with the phosphorylated IFN gamma receptor and thereby elucidate the mechanism by which ligand couples the IFN gamma receptor to its signal transduction system. Images PMID:8156998

  19. Selective nonpeptidic fluorescent ligands for oxytocin receptor: design, synthesis, and application to time-resolved FRET binding assay.

    PubMed

    Karpenko, Iuliia A; Margathe, Jean-François; Rodriguez, Thiéric; Pflimlin, Elsa; Dupuis, Elodie; Hibert, Marcel; Durroux, Thierry; Bonnet, Dominique

    2015-03-12

    The design and the synthesis of the first high-affinity fluorescent ligands for oxytocin receptor (OTR) are described. These compounds enabled the development of a TR-FRET based assay for OTR, readily amenable to high throughput screening. The validation of the assay was achieved by competition experiments with both peptide and nonpeptide OTR ligands as competitors. These probes represent the first selective fluorescent ligands for the oxytocin G protein-coupled receptor.

  20. Structure- and conformation-activity studies of nociceptin/orphanin FQ receptor dimeric ligands

    PubMed Central

    Pacifico, Salvatore; Carotenuto, Alfonso; Brancaccio, Diego; Novellino, Ettore; Marzola, Erika; Ferrari, Federica; Cerlesi, Maria Camilla; Trapella, Claudio; Preti, Delia; Salvadori, Severo; Calò, Girolamo; Guerrini, Remo

    2017-01-01

    The peptide nociceptin/orphanin FQ (N/OFQ) and the N/OFQ receptor (NOP) constitute a neuropeptidergic system that modulates various biological functions and is currently targeted for the generation of innovative drugs. In the present study dimeric NOP receptor ligands with spacers of different lengths were generated using both peptide and non-peptide pharmacophores. The novel compounds (12 peptide and 7 nonpeptide ligands) were pharmacologically investigated in a calcium mobilization assay and in the mouse vas deferens bioassay. Both structure- and conformation-activity studies were performed. Results demonstrated that dimerization did not modify the pharmacological activity of both peptide and non-peptide pharmacophores. Moreover, when dimeric compounds were obtained with low potency peptide pharmacophores, dimerization recovered ligand potency. This effect depends on the doubling of the C-terminal address sequence rather than the presence of an additional N-terminal message sequence or modifications of peptide conformation. PMID:28383520

  1. Using GFP--ligand fusions to measure receptor-mediated endocytosis in living cells.

    PubMed

    Medina-Kauwe, Lali K; Chen, Xinhua

    2002-01-01

    Recombinant DNA technology has enabled the production of many types of chimeric proteins containing heterologous functional domains that have served a variety of useful capacities for cell biology research. Among proteins gaining wide use as a fusion partner is Aequorea victoria green fluorescent protein (GFP). GFP has been employed by numerous groups as a reporter gene for cell transfection and as an autofluorescent tag by recombinant fusion to foreign sequences. Here we describe the use of GFP as a tag for ligands, and provide examples of how purified recombinant GFP-ligand fusion proteins may be used to detect ligand-receptor interactions, including receptor-mediated endocytosis. Both its utility and limitations are discussed.

  2. Calculations of distance distributions and probabilities of binding by ligands between parallel plane membranes comprising receptors

    NASA Astrophysics Data System (ADS)

    Plante, Ianik; Devroye, Luc; Cucinotta, Francis A.

    2014-03-01

    Cell communication through biochemical signaling pathways is a key determinant of tissue responses to radiation. Several molecules, such as the transforming growth factor β (TGFβ), are implicated in radiation-induced signaling between cells. Brownian Dynamics (BD) algorithms have recently been used to simulate the interaction of ligands with receptors and to elucidate signal transduction and autocrine loops in ligand-receptors systems. In this paper, we discuss the simulation of particle diffusion and binding kinetics in a space bounded by two parallel plane membranes, using an exact algorithm to sample the propagator (Green’s function) of a particle located between 2 membranes. We also show that the simulation results are independent of the number of time steps used, in accordance with time discretization equations. These simulations could be used to simulate the motion and binding of ligand molecules in a cell culture, and possibly in neuronal synapses.

  3. Structural basis for ligand and innate immunity factor uptake by the trypanosome haptoglobin-haemoglobin receptor

    PubMed Central

    Lane-Serff, Harriet; MacGregor, Paula; Lowe, Edward D; Carrington, Mark; Higgins, Matthew K

    2014-01-01

    The haptoglobin-haemoglobin receptor (HpHbR) of African trypanosomes allows acquisition of haem and provides an uptake route for trypanolytic factor-1, a mediator of innate immunity against trypanosome infection. In this study, we report the structure of Trypanosoma brucei HpHbR in complex with human haptoglobin-haemoglobin (HpHb), revealing an elongated ligand-binding site that extends along its membrane distal half. This contacts haptoglobin and the β-subunit of haemoglobin, showing how the receptor selectively binds HpHb over individual components. Lateral mobility of the glycosylphosphatidylinositol-anchored HpHbR, and a ∼50o kink in the receptor, allows two receptors to simultaneously bind one HpHb dimer. Indeed, trypanosomes take up dimeric HpHb at significantly lower concentrations than monomeric HpHb, due to increased ligand avidity that comes from bivalent binding. The structure therefore reveals the molecular basis for ligand and innate immunity factor uptake by trypanosomes and identifies adaptations that allow efficient ligand uptake in the context of the complex trypanosome cell surface. DOI: http://dx.doi.org/10.7554/eLife.05553.001 PMID:25497229

  4. Binding kinetics of membrane-anchored receptors and ligands: Molecular dynamics simulations and theory.

    PubMed

    Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard; Weikl, Thomas R

    2015-12-28

    The adhesion of biological membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. Central questions are how the binding kinetics of these proteins is affected by the membranes and by the membrane anchoring of the proteins. In this article, we (i) present detailed data for the binding of membrane-anchored proteins from coarse-grained molecular dynamics simulations and (ii) provide a theory that describes how the binding kinetics depends on the average separation and thermal roughness of the adhering membranes and on the anchoring, lengths, and length variations of the proteins. An important element of our theory is the tilt of bound receptor-ligand complexes and transition-state complexes relative to the membrane normals. This tilt results from an interplay of the anchoring energy and rotational entropy of the complexes and facilitates the formation of receptor-ligand bonds at membrane separations smaller than the preferred separation for binding. In our simulations, we have considered both lipid-anchored and transmembrane receptor and ligand proteins. We find that the binding equilibrium constant and binding on-rate constant of lipid-anchored proteins are considerably smaller than the binding constant and on-rate constant of rigid transmembrane proteins with identical binding domains.

  5. Structural basis for ligand and innate immunity factor uptake by the trypanosome haptoglobin-haemoglobin receptor.

    PubMed

    Lane-Serff, Harriet; MacGregor, Paula; Lowe, Edward D; Carrington, Mark; Higgins, Matthew K

    2014-12-12

    The haptoglobin-haemoglobin receptor (HpHbR) of African trypanosomes allows acquisition of haem and provides an uptake route for trypanolytic factor-1, a mediator of innate immunity against trypanosome infection. In this study, we report the structure of Trypanosoma brucei HpHbR in complex with human haptoglobin-haemoglobin (HpHb), revealing an elongated ligand-binding site that extends along its membrane distal half. This contacts haptoglobin and the β-subunit of haemoglobin, showing how the receptor selectively binds HpHb over individual components. Lateral mobility of the glycosylphosphatidylinositol-anchored HpHbR, and a ∼50° kink in the receptor, allows two receptors to simultaneously bind one HpHb dimer. Indeed, trypanosomes take up dimeric HpHb at significantly lower concentrations than monomeric HpHb, due to increased ligand avidity that comes from bivalent binding. The structure therefore reveals the molecular basis for ligand and innate immunity factor uptake by trypanosomes and identifies adaptations that allow efficient ligand uptake in the context of the complex trypanosome cell surface.

  6. REACTIVITY PROFILE OF LIGANDS OF MAMMALIAN RETINOIC ACID RECEPTORS: A PRELIMINARY COREPA ANALYSIS

    EPA Science Inventory

    Retinoic acid and associated derivatives comprise a class of endogenous hormones that bind to and activate different families of retinoic acid receptors (RARs, RXRs), and control many aspects of vertebrate development. Identification of potential RAR and RXR ligands is of interes...

  7. Tension-compression asymmetry in the binding affinity of membrane-anchored receptors and ligands.

    PubMed

    Xu, Guang-Kui; Liu, Zishun; Feng, Xi-Qiao; Gao, Huajian

    2016-03-01

    Cell adhesion plays a crucial role in many biological processes of cells, e.g., immune responses, tissue morphogenesis, and stem cell differentiation. An essential problem in the molecular mechanism of cell adhesion is to characterize the binding affinity of membrane-anchored receptors and ligands under different physiological conditions. In this paper, a theoretical model is presented to study the binding affinity between a large number of anchored receptors and ligands under both tensile and compressive stresses, and corroborated by demonstrating excellent agreement with Monte Carlo simulations. It is shown that the binding affinity becomes lower as the magnitude of the applied stress increases, and drops to zero at a critical tensile or compressive stress. Interestingly, the critical compressive stress is found to be substantially smaller than the critical tensile stress for relatively long and flexible receptor-ligand complexes. This counterintuitive finding is explained by using the Euler instability theory of slender columns under compression. The tension-compression asymmetry in the binding affinity of anchored receptors and ligands depends subtly on the competition between the breaking and instability of their complexes. This study helps in understanding the role of mechanical forces in cell adhesion mediated by specific binding molecules.

  8. NEW DEVELOPMENTS IN A HAZARD IDENTIFICATION ALGORITHM FOR HORMONE RECEPTOR LIGANDS

    EPA Science Inventory

    Recently we described the COmmon REactivity PAttern (COREPA) techniques to screen data sets of diverse structures for their ability to serve as ligands for steroid hormone receptors (Environ. Sci. Technol. 31:3702-3711). The approach identifies and quantifies similar global and l...

  9. Chemical Genetics: receptor-ligand pairs for rapid manipulation of neuronal activity

    PubMed Central

    Wulff, Peer; Arenkiel, Benjamin R.

    2012-01-01

    Towards the functional dissection of neuronal circuits, a number of new genetic tools have been developed that enable rapid and reversible manipulation of genetically defined neuronal subtypes in intact mammalian brain circuits. Alongside the breakthrough technology of optogenetics, receptor-ligand pairs provide complementary approaches to modulate neuronal activity using chemical-genetics. PMID:22119143

  10. CADASIL-associated Notch3 mutations have differential effects both on ligand binding and ligand-induced Notch3 receptor signaling through RBP-Jk.

    PubMed

    Peters, Nils; Opherk, Christian; Zacherle, Simone; Capell, Anja; Gempel, Petra; Dichgans, Martin

    2004-10-01

    Mutations in the NOTCH3 gene are the cause of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary angiopathy leading to strokes and dementia. Pathogenic mutations remove or insert cysteine residues within epidermal growth factor (EGF) repeats in the extracellular domain of the Notch3 receptor (N3ECD). Vascular smooth muscle cells (VSMC) are the predominant site of Notch3 expression in adults. In CADASIL patients, VSMC degenerate and N3ECD is deposited within the vasculature. However, the mechanisms underlying VSMC degeneration and N3ECD accumulation are still unknown. In this study, we investigated the consequences of three pathogenic Notch3 mutations on the biological activity of the receptor by analyzing ligand (Delta-/Jagged-)-induced signaling via RBP-Jk. Two mutations (R133C and C183R) that are located outside the putative ligand binding domain (LBD) of the receptor were found to result in normal Jagged1-induced signaling in A7r5 VSMC, whereas the third mutation (C455R located within the putative LBD) showed strongly reduced signaling activity. Ligand binding assays with soluble Delta1 and Jagged1 revealed that C455R interferes with ligand binding through disruption of the LBD which, as we show here, is located in EGF repeats 10/11 of Notch3. All mutant receptors including Notch3C455R were targeted to the cell surface but showed an elevated ratio between the unprocessed full-length 280-kDa receptor and S1-cleaved receptor fragments. Taken together, these data indicate that CADASIL-associated Notch3 mutations differ with respect to their consequences both on ligand binding and ligand-induced signaling through RBP-Jk, whereas they have similar effects on receptor maturation. Moreover, the data suggest that ligand-induced receptor shedding may not be required for N3ECD deposition in CADASIL.

  11. Ligand-Driven T Cell Receptor Selection in Celiac Disease.

    PubMed

    Singh, Nishant K; Baker, Brian M

    2016-10-04

    Recognition of antigens by T cell receptors (TCRs) underlies cellular immunity. By comparing how different TCRs recognize the key antigens associated with celiac disease, Petersen et al. (2016), in this issue of Structure, show how celiac antigen properties select immunologically distinct yet structurally and physically compatible TCRs, ultimately driving autoimmunity.

  12. The glucocorticoid receptor hormone binding domain mediates transcriptional activation in vitro in the absence of ligand.

    PubMed Central

    Schmitt, J; Stunnenberg, H G

    1993-01-01

    We show that recombinant rat glucocorticoid receptor (vvGR) expressed using vaccinia virus is indistinguishable from authentic GR with respect to DNA and hormone binding. In the absence of hormone, vvGR is mainly found in the cytoplasm in a complex with heat shock protein 90. Upon incubation with ligand, vvGR is released from this complex and translocated to the nucleus. Thus, the ligand binding domain displays the known biochemical properties. However, in vitro, transcription from a synthetic promoter and from the mouse mammary tumor virus (MMTV) promoter is enhanced by recombinant GR in a ligand independent manner. Both transactivation domains contribute to the transcriptional activity, additively on a synthetic promoter and cooperatively on the MMTV promoter. We thus provide the first evidence that in vitro the hormone binding domain has a transcriptional activity even in the absence of ligand. Images PMID:8392705

  13. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands.

    PubMed

    Chilmonczyk, Zdzisław; Bojarski, Andrzej Jacek; Pilc, Andrzej; Sylte, Ingebrigt

    2015-08-07

    Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies.

  14. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands

    PubMed Central

    Chilmonczyk, Zdzisław; Bojarski, Andrzej Jacek; Pilc, Andrzej; Sylte, Ingebrigt

    2015-01-01

    Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies. PMID:26262615

  15. Synthesis and evaluation of bivalent ligands for binding to the human melanocortin-4 receptor

    PubMed Central

    Fernandes, Steve M.; Lee, Yeon Sun; Gillies, Robert J.; Hruby, Victor J.

    2014-01-01

    Membrane proteins, especially G-protein coupled receptors (GPCRs), are interesting and important theragnostic targets since many of them serve in intracellular signaling critical for all aspects of health and disease. The potential utility of designed bivalent ligands as targeting agents for cancer diagnosis and/or therapy can be evaluated by determining their binding to the corresponding receptors. As proof of concept, GPCR cell surface proteins are shown to be targeted specifically using multivalent ligands. We designed, synthesized, and tested a series of bivalent ligands targeting the over-expressed human melanocortin 4 receptor (hMC4R) in human embryonic kidney (HEK) 293 cells. Based on our data suggesting an optimal linker length of 25±10 Å inferred from the bivalent melanocyte stimulating hormone (MSH) agonist, the truncated heptapeptide, referred to as MSH(7): Ac-Ser-Nle-Glu-His-D-Phe-Arg-Trp-NH2 was used to construct a set of bivalent ligands incorporating a hMC4R antagonist, SHU9119: Ac-Nle-c[Asp-His-2′-D-Nal-Arg-Trp-Lys]-NH2 and another set of bivalent ligands containing the SHU9119 antagonist pharmacophore on both side of the optimized linkers. These two binding motifs within the bivalent constructs were conjoined by semi-rigid (Pro-Gly)3 units with or without the flexible poly(ethylene glycol) (PEGO) moieties. Lanthanide-based competitive binding assays showed bivalent ligands binds to the hMC4R with up to 240-fold higher affinity than the corresponding linked monovalent ligands. PMID:25438759

  16. Synthesis and evaluation of bivalent ligands for binding to the human melanocortin-4 receptor.

    PubMed

    Fernandes, Steve M; Lee, Yeon Sun; Gillies, Robert J; Hruby, Victor J

    2014-11-15

    Membrane proteins, especially G-protein coupled receptors (GPCRs), are interesting and important theragnostic targets since many of them serve in intracellular signaling critical for all aspects of health and disease. The potential utility of designed bivalent ligands as targeting agents for cancer diagnosis and/or therapy can be evaluated by determining their binding to the corresponding receptors. As proof of concept, GPCR cell surface proteins are shown to be targeted specifically using multivalent ligands. We designed, synthesized, and tested a series of bivalent ligands targeting the over-expressed human melanocortin 4 receptor (hMC4R) in human embryonic kidney (HEK) 293 cells. Based on our data suggesting an optimal linker length of 25±10Å inferred from the bivalent melanocyte stimulating hormone (MSH) agonist, the truncated heptapeptide, referred to as MSH(7): Ac-Ser-Nle-Glu-His-D-Phe-Arg-Trp-NH2 was used to construct a set of bivalent ligands incorporating a hMC4R antagonist, SHU9119: Ac-Nle-c[Asp-His-2'-D-Nal-Arg-Trp-Lys]-NH2 and another set of bivalent ligands containing the SHU9119 antagonist pharmacophore on both side of the optimized linkers. These two binding motifs within the bivalent constructs were conjoined by semi-rigid (Pro-Gly)3 units with or without the flexible poly(ethylene glycol) (PEGO) moieties. Lanthanide-based competitive binding assays showed bivalent ligands binds to the hMC4R with up to 240-fold higher affinity than the corresponding linked monovalent ligands.

  17. CoMFA and docking study of novel estrogen receptor subtype selective ligands

    NASA Astrophysics Data System (ADS)

    Wolohan, Peter; Reichert, David E.

    2003-05-01

    We present the results from a Comparative Molecular Field Analysis (CoMFA) and docking study of a diverse set of 36 estrogen receptor ligands whose relative binding affinities (RBA) with respect to 17β-Estradiol were available in both isoforms of the nuclear estrogen receptors (ERα, ERβ). Initial CoMFA models exhibited a correlation between the experimental relative binding affinities and the molecular steric and electrostatic fields; ERα: r2=0.79, q2=0.44 ERβ: r2=0.93, q2=0.63. Addition of the solvation energy of the isolated ligand improved the predictive nature of the ERβ model initially; r2=0.96, q2=0.70 but upon rescrambling of the data-set and reselecting the training set at random, inclusion of the ligand solvation energy was found to have little effect on the predictive nature of the CoMFA models. The ligands were then docked inside the ligand binding domain (LBD) of both ERα and ERβ utilizing the docking program Gold, after-which the program CScore was used to rank the resulting poses. Inclusion of both the Gold and CScore scoring parameters failed to improve the predictive ability of the original CoMFA models. The subtype selectivity expressed as RBA(ERα/ERβ) of the test sets was predicted using the most predictive CoMFA models, as illustrated by the cross-validated r2. In each case the most selective ligands were ranked correctly illustrating the utility of this method as a prescreening tool in the development of novel estrogen receptor subtype selective ligands.

  18. A structural feature of the non-peptide ligand interactions with mice mu-opioid receptors.

    PubMed

    Noori, Hamid R; Mucksch, Christian; Urbassek, Herbert M

    2014-01-01

    By binding to and activating the G-protein coupled μ-, κ- and δ-opioid receptors in the central nervous system, opiates are known to induce analgesic and sedative effects. In particular, non-peptide opioid ligands are often used in clinical applications to induce these therapeutically beneficial effects, due to their superior pharmacokinetics and bioavailability in comparison to endogenous neuropeptides. However, since opioid alkaloids are highly addictive substances, it is necessary to understand the exact mechanisms of their actions, specifically the ligand-binding properties of the target receptors, in order to safely apply opiates for therapeutic purposes. Using an in silico molecular docking approach (AutoDock Vina) combined with two-step cluster analysis, we have computationally obtained the docking scores and the ligand-binding pockets of twelve representative non-peptide nonendogenous agonists and antagonists at the crystallographically identified μ-opioid receptor. Our study predicts the existence of two main binding sites that are congruently present in all opioid receptor types. Interestingly, in terms of the agonist or antagonist properties of the substances on the receptors, the clustering analysis suggests a relationship with the position of the ligand-binding pockets, particularly its depth within the receptor structure. Furthermore, the binding affinity of the substances is directly correlated to the proximity of the binding pockets to the extracellular space. In conclusion, the results provide further insights into the structural features of the functional pharmacology of opioid receptors, suggesting the importance of the binding position of non-peptide agonists and antagonists- specifically the distance and the level of exposure to the extracellular space- to their dissociation kinetics and subsequent potency.

  19. Ligand-induced interaction between. alpha. - and. beta. -type platelet-derived growth factor (PDGF) receptors: Role of receptor heterodimers in kinase activation

    SciTech Connect

    Kanakaraj, P.; Raj, S.; Bishayee, S. ); Khan, S.A. )

    1991-02-19

    Two types of PDGF receptors have been cloned and sequenced. Both receptors are transmembrane glycoproteins with a ligand-stimulatable tyrosine kinase site. The authors have shown earlier that ligand-induced activation of the {beta}-type PDGF receptor is due to the conversion of the monomeric form of the receptor to the dimeric form. In the present studies, they have established the ligand-binding specificity of two receptor types and extended it further to investigate the ligand-induced association state of the {alpha}-receptor and the role of {alpha}-receptor in the activation of {beta}-receptor. These studies were conducted with cells that express one or the other type of PDGF receptor as well as with cells that express both types of receptors. Moreover, ligand-binding characteristics of the receptor were confirmed by immunoprecipitation of the receptor-{sup 125}I-PDGF covalent complex with type-specific anti-PDGF receptor antibodies. These studies revealed that all three isoforms of PDGF bind to {alpha}-receptor, and such binding leads to dimerization as well as activation of the receptor. In contrast, {beta}-receptor can be activated only by PDGF BB and not by PDGF AB or PDGF AA. However, by using antipeptide antibodies that are specific for {alpha}- or {beta}-type PDGF receptor, they demonstrated that in the presence of {alpha}-receptor, {beta}-receptor kinase can be activated by PDGF AB. They present here direct evidence that strongly suggests that such PDGF AB induced activation of {beta}-receptor is due to the formation of a noncovalently linked {alpha}-{beta} receptor heterodimer.

  20. A python-based docking program utilizing a receptor bound ligand shape: PythDock.

    PubMed

    Chung, Jae Yoon; Cho, Seung Joo; Hah, Jung-Mi

    2011-09-01

    PythDock is a heuristic docking program that uses Python programming language with a simple scoring function and a population based search engine. The scoring function considers electrostatic and dispersion/repulsion terms. The search engine utilizes a particle swarm optimization algorithm. A grid potential map is generated using the shape information of a bound ligand within the active site. Therefore, the searching area is more relevant to the ligand binding. To evaluate the docking performance of PythDock, two well-known docking programs (AutoDock and DOCK) were also used with the same data. The accuracy of docked results were measured by the difference of the ligand structure between x-ray structure, and docked pose, i.e., average root mean squared deviation values of the bound ligand were compared for fourteen protein-ligand complexes. Since the number of ligands' rotational flexibility is an important factor affecting the accuracy of a docking, the data set was chosen to have various degrees of flexibility. Although PythDock has a scoring function simpler than those of other programs (AutoDock and DOCK), our results showed that PythDock predicted more accurate poses than both AutoDock4.2 and DOCK6.2. This indicates that PythDock could be a useful tool to study ligand-receptor interactions and could also be beneficial in structure based drug design.

  1. Noncontiguous domains of the alpha-factor receptor of yeasts confer ligand specificity.

    PubMed

    Sen, M; Marsh, L

    1994-01-14

    The Saccharomyces cerevisiae alpha-factor receptor has a 3400-fold higher affinity for the S. cerevisiae alpha-factor peptide (c-alpha-f) than for the Saccharomyces kluyveri alpha-factor peptide (k-alpha-f) as determined by competition for [3H] c-alpha-f binding. The S. kluyveri alpha-factor receptor has an approximately 2-fold higher affinity for k-alpha-f than for c-alpha-f. The S. kluyveri receptor gene (k-STE2) is incompletely regulated by S. cerevisiae mating type and poorly expressed on the surface of an S. cerevisiae mating type a strain. A chimeric receptor (c/k1) with amino acid residues 1-45 derived from S. cerevisiae and amino acid residues 46-427 from S. kluyveri exhibits the binding specificity of the S. kluyveri receptor. However, chimeric receptors containing residues 1-168 (c/k2) or 1-250 (c/k3) from S. cerevisiae and the remainder from the S. kluyveri receptor exhibit specificities similar to one another, but intermediate between the parent S. cerevisiae and S. kluyveri receptors. The relative ability of c-alpha-f and k-alpha-f to induce growth arrest in strains expressing chimeric receptors parallels relative affinity. Thus, two noncontiguous domains that include putative extracellular loops 1 and 3 and associated transmembrane segments, but exclude the extracellular NH2 terminus and loop 2, appear to contribute to alpha-factor receptor ligand specificity. COOH-terminal regions of the S. kluyveri receptor appear to confer a desensitization defect when expressed in S. cerevisiae. The S. cerevisiae receptor truncated at residue 296 retains ligand specificity for growth arrest.

  2. Ligand binding and signalling pathways of PTH receptors in sea bream (Sparus auratus) enterocytes.

    PubMed

    Rotllant, J; Guerreiro, P M; Redruello, B; Fernandes, H; Apolónia, L; Anjos, L; Canario, A V M; Power, D M

    2006-02-01

    Whole animal studies have indicated that Ca(2+) uptake by the gastrointestinal tract is regulated by the action of parathyroid hormone-related peptide (PTHrP) in teleost fish. We have characterised PTH receptors (PTHR) in piscine enterocytes and established, by using amino-terminal PTHrP peptides, the amino acid residues important for receptor activation and for stabilising the ligand/receptor complex. Ligand binding of (125)I-(1-35(tyr)) PTHrP to the membrane fraction of isolated sea bream enterocytes revealed the existence of a single saturable high-affinity receptor (K (D)=2.59 nM; B (max)=71 fmol/mg protein). Reverse transcription/polymerase chain reaction with specific primers for sea bream PTH1R and PTH3R confirmed the mRNA expression of only the later receptor. Fugu (1-34)PTHrP increased cAMP levels in enterocytes but had no effect on total inositol phosphate accumulation. The amino-terminal peptides (2-34)PTHrP, (3-34)PTHrP and (7-34)PTHrP bound efficiently to the receptor but were severely defective in stimulating cAMP in enterocyte cells indicating that the first six residues of piscine (1-34)PTHrP, although not important for receptor binding, are essential for activation of the adenylate cyclase/phosphokinase A (AC-PKA)-receptor-coupled intracellular signalling pathway. Therefore, PTHrP in teleosts acts on the gastrointestinal tract through PTH3R and the AC-PKA intracellular signalling pathway and might regulate Ca(2+) uptake at this site. Ligand-receptor binding and activity throughout the vertebrates appears to be allocated to the same amino acid residues of the amino-terminal domain of the PTHrP molecule.

  3. Proliferating cell nuclear antigen is a novel inhibitory ligand for the natural cytotoxicity receptor NKp44.

    PubMed

    Rosental, Benyamin; Brusilovsky, Michael; Hadad, Uzi; Oz, Dafna; Appel, Michael Y; Afergan, Fabian; Yossef, Rami; Rosenberg, Lior Ann; Aharoni, Amir; Cerwenka, Adelheid; Campbell, Kerry S; Braiman, Alex; Porgador, Angel

    2011-12-01

    NK cells play an important role in the early immune response to cancer. The NKp44 activating receptor is the only natural cytotoxicity receptor that is expressed exclusively by primate NK cells, yet its cellular ligands remain largely unknown. Proliferating cell nuclear Ag (PCNA) is overexpressed in cancer cells. In this study, we show that the NKp44 receptor recognizes PCNA. Their interaction inhibits NK cell function through NKp44/ITIM. The physical interaction of NKp44 and PCNA is enabled by recruitment of target cell PCNA to the NK immunological synapse. We demonstrate that PCNA promotes cancer survival by immune evasion through inhibition of NKp44-mediated NK cell attack.

  4. 3-Chlorotyramine Acting as Ligand of the D2 Dopamine Receptor. Molecular Modeling, Synthesis and D2 Receptor Affinity.

    PubMed

    Angelina, Emilio; Andujar, Sebastian; Moreno, Laura; Garibotto, Francisco; Párraga, Javier; Peruchena, Nelida; Cabedo, Nuria; Villecco, Margarita; Cortes, Diego; Enriz, Ricardo D

    2015-01-01

    We synthesized and tested 3-chlorotyramine as a ligand of the D2 dopamine receptor. This compound displayed a similar affinity by this receptor to that previously reported for dopamine. In order to understand further the experimental results we performed a molecular modeling study of 3-chlorotyramine and structurally related compounds. By combining molecular dynamics simulations with semiempirical (PM6), ab initio and density functional theory calculations, a simple and generally applicable procedure to evaluate the binding energies of these ligands interacting with the D2 dopamine receptors is reported here. These results provided a clear picture of the binding interactions of these compounds from both structural and energetic view points. A reduced model for the binding pocket was used. This approach allowed us to perform more accurate quantum mechanical calculations as well as to obtain a detailed electronic analysis using the Quantum Theory of Atoms in Molecules (QTAIM) technique. Molecular aspects of the binding interactions between ligands and the D2 dopamine receptor are discussed in detail. A good correlation between the relative binding energies obtained from theoretical calculations and experimental IC50 values was obtained. These results allowed us to predict that 3-chlorotyramine possesses a significant affinity by the D2 -DR. Our theoretical predictions were experimentally corroborated when we synthesized and tested 3-chlorotyramine which displayed a similar affinity by the D2 -DR to that reported for DA.

  5. A photoregulated ligand for the nuclear import receptor karyopherin alpha.

    PubMed

    Park, S B; Standaert, R F

    2001-12-01

    The ability to orchestrate the transport of proteins between nucleus and cytoplasm provides cells with a powerful regulatory mechanism. Selective translocation between these compartments is often used to propagate cellular signals, and it is an intimate part of the processes that control cell division, viral replication, and other cellular events. Therefore, precise experimental control over protein localization, through the agency of light, would provide a powerful tool for the study and manipulation of these events. To this end, a prototype photoregulated nuclear localization signal (NLS) was derived from a native NLS. A library of 30 mutants of the bipartite NLS from Xenopus laevis nucleoplasmin containing a novel, photoisomerizable amino acid was prepared by parallel, solid-phase synthesis and screened in vitro for binding to the nuclear import receptor karyopherin alpha, which mediates the nuclear import of cellular proteins. A single peptide was identified in which the cis and trans photoisomers bind the receptor differentially. The strategy used to obtain this peptide is systematic and empirical; therefore, it is potentially applicable to any peptide-receptor system.

  6. Molecular Modelling Approaches for the Analysis of Histamine Receptors and Their Interaction with Ligands.

    PubMed

    Strasser, Andrea; Wittmann, Hans-Joachim

    2017-01-22

    Several experimental techniques to analyse histamine receptors are available, e.g. pharmacological characterisation of known or new compounds by different types of assays or mutagenesis studies. To obtain insights into the histamine receptors on a molecular and structural level, crystal structures have to be determined and molecular modelling studies have to be performed. It is widely accepted to generate homology models of the receptor of interest based on an appropriate crystal structure as a template and to refine the resulting models by molecular dynamic simulations. A lot of modelling techniques, e.g. docking, QSAR or interaction fingerprint methods, are used to predict binding modes of ligands and pharmacological data, e.g. affinity or even efficacy. However, within the last years, molecular dynamic simulations got more and more important: First of all, molecular dynamic simulations are very helpful to refine the binding mode of a ligand to a histamine receptor, obtained by docking studies. Furthermore, with increasing computational performance it got possible to simulate complete binding pathways of ions or ligands from the aqueous extracellular phase into the allosteric or orthosteric binding pocket of histamine receptors.

  7. Ligand-induced EGF Receptor Oligomerization Is Kinase-dependent and Enhances Internalization*

    PubMed Central

    Hofman, Erik G.; Bader, Arjen N.; Voortman, Jarno; van den Heuvel, Dave J.; Sigismund, Sara; Verkleij, Arie J.; Gerritsen, Hans C.; van Bergen en Henegouwen, Paul M. P.

    2010-01-01

    The current activation model of the EGF receptor (EGFR) predicts that binding of EGF results in dimerization and oligomerization of the EGFR, leading to the allosteric activation of the intracellular tyrosine kinase. Little is known about the regulatory mechanism of receptor oligomerization. In this study, we have employed FRET between identical fluorophores (homo-FRET) to monitor the dimerization and oligomerization state of the EGFR before and after receptor activation. Our data show that, in the absence of ligand, ∼40% of the EGFR molecules were present as inactive dimers or predimers. The monomer/predimer ratio was not affected by deletion of the intracellular domain. Ligand binding induced the formation of receptor oligomers, which were found in both the plasma membrane and intracellular structures. Ligand-induced oligomerization required tyrosine kinase activity and nine different tyrosine kinase substrate residues. This indicates that the binding of signaling molecules to activated EGFRs results in EGFR oligomerization. Induction of EGFR predimers or pre-oligomers using the EGFR fused to the FK506-binding protein did not affect signaling but was found to enhance EGF-induced receptor internalization. Our data show that EGFR oligomerization is the result of EGFR signaling and enhances EGFR internalization. PMID:20940297

  8. Cholinesterase inhibitory activity of chlorophenoxy derivatives-Histamine H3 receptor ligands.

    PubMed

    Łażewska, Dorota; Jończyk, Jakub; Bajda, Marek; Szałaj, Natalia; Więckowska, Anna; Panek, Dawid; Moore, Caitlin; Kuder, Kamil; Malawska, Barbara; Kieć-Kononowicz, Katarzyna

    2016-08-15

    In recent years, multitarget-directed ligands have become an interesting strategy in a search for a new treatment of Alzheimer's disease. Combination of both: a histamine H3 receptor antagonist/inverse agonist and a cholinesterases inhibitor in one molecule could provide a new therapeutic opportunity. Here, we present biological evaluation of histamine H3 receptor ligands-chlorophenoxyalkylamine derivatives against cholinesterases: acetyl- and butyrylcholinesterase. The target compounds showed cholinesterase inhibitory activity in a low micromolar range. The most potent in this group was 1-(7-(4-chlorophenoxy)heptyl)homopiperidine (18) inhibiting the both enzymes (EeAChE IC50=1.93μM and EqBuChE IC50=1.64μM). Molecular modeling studies were performed to explain the binding mode of 18 with histamine H3 receptor as well as with cholinesterases.

  9. The active analog approach applied to the pharmacophore identification of benzodiazepine receptor ligands

    NASA Astrophysics Data System (ADS)

    Tebib, Souhail; Bourguignon, Jean-Jacques; Wermuth, Camille-Georges

    1987-07-01

    Applied to seven potent benzodiazepine-receptor ligands belonging to chemically different classes, the active analog approach allowed the stepwise identification of the pharmacophoric pattern associated with the recognition by the benzodiazepine receptor. A unique pharmacophore model was derived which involves six critical zones: (a) a π-electron rich aromatic (PAR) zone; (b) two electron-rich zones δ1 and δ2 placed at 5.0 and 4.5 Å respectively from the reference centroid in the PAR zone; (c) a freely rotating aromatic ring (FRA) region; (d) an out-of-plane region (OPR), strongly associated with agonist properties; and (e) an additional hydrophobic region (AHR). The model accommodates all presently known ligands of the benzodiazepine receptor, identifies sensitivity to steric hindrance close to the δ1 zone, accounts for R and S differential affinities and distinguishes requirements for agonist versus non-agonist activity profiles.

  10. The thrombin receptor extracellular domain contains sites crucial for peptide ligand-induced activation.

    PubMed Central

    Bahou, W F; Coller, B S; Potter, C L; Norton, K J; Kutok, J L; Goligorsky, M S

    1993-01-01

    A thrombin receptor (TR) demonstrating a unique activation mechanism has recently been isolated from a megakaryocytic (Dami) cell line. To further study determinants of peptide ligand-mediated activation phenomenon, we have isolated, cloned, and stably expressed the identical receptor from a human umbilical vein endothelial cell (HUVEC) library. Chinese hamster ovary (CHO) cells expressing a functional TR (CHO-TR), platelets, and HUVECs were then used to specifically characterize alpha-thrombin- and peptide ligand-induced activation responses using two different antibodies: anti-TR34-52 directed against a 20-amino acid peptide spanning the thrombin cleavage site, and anti-TR1-160 generated against the NH2-terminal 160 amino acids of the TR expressed as a chimeric protein in Escherichia coli. Activation-dependent responses to both alpha-thrombin (10 nM) and peptide ligand (20 microM) were studied using fura 2-loaded cells and microspectrofluorimetry. Whereas preincubation of CHO-TR with anti-TR34-52 abolished only alpha-thrombin-induced [Ca2+]i transients, preincubation with anti-TR1-160 abrogated both alpha-thrombin- and peptide ligand-induced responses. This latter inhibitory effect was dose dependent and similar for both agonists, with an EC50 of approximately 90 micrograms/ml. Anti-TR1-160 similarly abolished peptide ligand-induced [Ca2+]i transients in platelets and HUVECs, whereas qualitatively different responses characterized by delayed but sustained elevations in [Ca2+]i transients were evident using alpha-thrombin. Platelet aggregation to low concentrations of both ligands was nearly abolished by anti-TR1-160, although some shape change remained; anti-TR34-52 only inhibited alpha-thrombin-induced aggregation. These data establish that a critical recognition sequence for peptide ligand-mediated receptor activation is contained on the NH2-terminal portion of the receptor, upstream from the first transmembrane domain. Furthermore, alpha

  11. Only high-affinity receptors for interleukin 2 mediate internalization of ligand

    SciTech Connect

    Weissman, A.M.; Harford, J.B.; Svetlik, P.B.; Leonard, W.L.; Depper, J.M.; Waldmann, T.A.; Greene, W.C.; Klausner, R.D.

    1986-03-01

    Interleukin 2 (IL-2) receptors are expressed on activated T cells and in select T-cell leukemias. Recently, it has been demonstrated that at least two classes of receptor for IL-2 exist with markedly different affinities for ligand. All known biological actions of IL-2 have been correlated with occupancy of high-affinity sites; the function of the low-affinity sites remains unknown. Receptor-mediated endocytosis is the primary means of internalization of cell-surface receptors and their ligands. The internalization of IL-2 bound to high- and low-affinity receptor sites was studied in a human T-cell lymphotrophic virus type 1 (HTLV-1)-infected human T-cell leukemia cell line and in a cloned murine cytotoxic T-cell line (CTLL). Internalization of IL-2 occurred only when bound to high-affinity sites. In addition, an anti-receptor antibody (anti-Tac), which binds equally well to high- and low-affinity sites, demonstrated no detectable internalization. The implications of these findings as they relate to IL-2 receptor structure and function are discussed.

  12. Aryl Hydrocarbon Receptor Ligand Effects in RBL2H3 Cells

    PubMed Central

    Maaetoft-Udsen, Kristina; Shimoda, Lori M.N.; Frøkiær, Hanne; Turner, Helen

    2012-01-01

    The aryl hydrocarbon receptor (AHR) mediates toxic effects of dioxin and xenobiotic metabolism. AHR has an emerging role in the immune system but its physiological ligands and functional role in immunocytes remain poorly understood. Mast cells are immunocytes that are central to inflammatory responses and release a spectrum of pro-inflammatory mediators including histamine, mast cell proteases, and pro-inflammatory cytokines such as IL-6 upon stimulation. Our aim was to investigate the AHR in model mast