Science.gov

Sample records for 5-hydroxytryptamine 5-ht transporter

  1. Platelet 5-hydroxytryptamine (5-HT) transporter and 5-HT2A receptor binding after chronic hypercorticosteronemia, (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane administration or neurotoxin-induced depletion of central nervous system 5-HT in the rat.

    PubMed

    Owens, M J; Ballenger, C A; Knight, D L; Nemeroff, C B

    1996-09-01

    There is considerable evidence that the number of platelet 5-hydroxytryptamine (5-HT) transporter binding sites, as measured by [3H]imipramine binding, are significantly decreased, and platelet 5-HT2 receptor density is increased, in drug-free patients with major depression. To investigate whether these changes in the platelet 5-HT transporter or 5-HT2 receptor sites resulted from known or hypothesized biochemical changes observed in major depression, we examined, in the rat, whether a chronic hyperglucocorticoid state, or decreases or increases in central nervous system 5-HT neurotransmission, altered binding of the selective ligands [3H]citalopram and [125I] (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane to platelet and brain 5-HT transporters and 5-HT2 receptors, respectively. Chronic (6 weeks) hypercorticosteronemia did not alter either brain or platelet 5-HT transporter or 5-HT2A receptor binding. Similarly, 8-week administration of the 5-HT2A/5-HT2C agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane, at a dose which down-regulates brain 5-HT2A/2C receptors, did not alter brain or platelet 5-HT transporters or platelet 5-HT2A receptors. Additionally, para-chloroamphetamine-(11 weeks) or fenfluramine-induced chronic (1.5-10 weeks) depletion of central nervous system 5-HT did not alter platelet 5-HT transporter or 5-HT2A receptor binding. Finally, there was no correlation between the number of 5-HT transporters in brain and platelets in any of the control or treatment groups. These findings suggest that the observed changes in platelet 5-HT transporter and 5-HT2A receptor binding in depressed patients are more apt to be of genetic origin (i.e., trait-dependent) rather than an epiphenomenon of hypercortisolemia or altered central nervous system 5-HT status.

  2. 5-Hydroxytryptamine (5-HT) Cellular Sequestration during Chronic Exposure Delays 5-HT3 Receptor Resensitization due to Its Subsequent Release*

    PubMed Central

    Hothersall, J. Daniel; Alexander, Amy; Samson, Andrew J.; Moffat, Christopher; Bollan, Karen A.; Connolly, Christopher N.

    2014-01-01

    The serotonergic synapse is dynamically regulated by serotonin (5-hydroxytryptamine (5-HT)) with elevated levels leading to the down-regulation of the serotonin transporter and a variety of 5-HT receptors, including the 5-HT type-3 (5-HT3) receptors. We report that recombinantly expressed 5-HT3 receptor binding sites are reduced by chronic exposure to 5-HT (IC50 of 154.0 ± 45.7 μm, t½ = 28.6 min). This is confirmed for 5-HT3 receptor-induced contractions in the guinea pig ileum, which are down-regulated after chronic, but not acute, exposure to 5-HT. The loss of receptor function does not involve endocytosis, and surface receptor levels are unaltered. The rate and extent of down-regulation is potentiated by serotonin transporter function (IC50 of 2.3 ± 1.0 μm, t½ = 3.4 min). Interestingly, the level of 5-HT uptake correlates with the extent of down-regulation. Using TX-114 extraction, we find that accumulated 5-HT remains soluble and not membrane-bound. This cytoplasmically sequestered 5-HT is readily releasable from both COS-7 cells and the guinea pig ileum. Moreover, the 5-HT level released is sufficient to prevent recovery from receptor desensitization in the guinea pig ileum. Together, these findings suggest the existence of a novel mechanism of down-regulation where the chronic release of sequestered 5-HT prolongs receptor desensitization. PMID:25281748

  3. Hydrogen peroxide (H/sub 2/O/sub 2/) stimulates the active transport of 5-hydroxytryptamine (5-HT) into platelets

    SciTech Connect

    Bosin, T.R.

    1986-03-01

    Platelets function in a variety of physiological and pathological processes which may be altered by oxidant injury. One such process is the active transport 5-HT, which is an important mechanism in the control of circulating 5-HT levels. Exposure of mouse platelets (10/sup 8//ml) to H/sub 2/O/sub 2/ caused a time-dependent and dose-dependent increase in 5-HT (10/sup -7/M) uptake. The uptake 4 and 10 min following H/sub 2/O/sub 2/ (50 ..mu..M) was 228% and 145% of control values, respectively. Fluoxetine (10/sup -6/M) blocked all 5-HT uptake and catalase (1500 U/ml) blocked the H/sub 2/O/sub 2/-stimulated uptake. Enzymatically produced H/sub 2/O/sub 2/ (glucose/glucose oxidase) and xanthine (X)/xanthine oxidase (XO) generated oxygen radicals produced quantitatively and qualitatively similar results. The stimulatory response of platelets to X/XO generated oxidants was unaffected by superoxide dismutase (250 U/ml) but, was inhibited using heat-denatured XO, allopurinol (0.5 mM) and catalase; fluoxetine inhibited all 5-HT uptake. Platelets exposed to X/XO in the presence of chelated (EDTA, 100 ..mu..M) or unchelated FeSO/sub 4/, FeNH/sub 4/(SO/sub 4/)/sub 2/ or CuCl (50 ..mu..M) did not have altered 5-HT uptake. These data indicate that brief exposure of platelets to physiological levels of H/sub 2/O/sub 2/ results in marked, reversible stimulation of active 5-HT uptake which may represent a homeostatic defense mechanism when H/sub 2/O/sub 2/ is elevated in the platelet microenvironment.

  4. Predictive In Silico Studies of Human 5-hydroxytryptamine Receptor Subtype 2B (5-HT2B) and Valvular Heart Disease

    PubMed Central

    Reid, Terry-Elinor; Kumar, Krishna

    2014-01-01

    Serotonin (5-HT) receptors are neuromodulator neurotransmitter receptors which when activated generate a signal transduction pathway within cells resulting in cell-cell communication. 5-hydroxytryptamine (serotonin) receptor 2B (5-HT2B) is a subtype of the seven members of 5-hydroxytrytamine (5-HT) family of receptors which is the largest member of the super family of 7-transmembrane G-protein coupled receptors (GPCRs). Not only do 5-HT receptors play physiological roles in the cardiovascular system, gastrointestinal and endocrine function and the central nervous, but they also play a role in behavioral functions. In particular 5-HT2B receptor is wide spread with regards to its distribution throughout bodily tissues and is expressed at high levels in the lungs, peripheral tissues, liver, kidney and prostate just to name a few. Hence 5-HT2B participates in multiple biological functions including CNS regulation, regulation of gastrointestinal motality, cardiovascular regulation and 5-HT transport system regulation. While 5-HT2B is a viable drug target and has therapeutic indications for treating obesity, psychotherapy, Parkinson’s disease etc. there is a growing concern regarding adverse drug reactions, specifically valvulopathy associated with 5-HT2B agonists. Due to the sequence homology experienced by 5-HT2 subtypes there is also a concern regarding the off target effects of 5-HT2A and 5-HT2C agonists. The concept of subtype selectivity is of paramount importance and can be tackled with the aid of in silico studies, specifically cheminformatics, to develop models to predict valvulopathy associated toxicity of drug candidates prior to clinical trials. This review has highlighted three in silico approaches thus far that have been successful in either predicting 5-HT2B toxicity of molecules or identifying important interactions between 5-HT2B and drug molecules that bring about valvulopathy related toxicities. PMID:23675941

  5. Medial hypothalamic 5-hydroxytryptamine (5-HT)1A receptors regulate neuroendocrine responses to stress and exploratory locomotor activity: application of recombinant adenovirus containing 5-HT1A sequences.

    PubMed

    Li, Qian; Holmes, Andrew; Ma, Li; Van de Kar, Louis D; Garcia, Francisca; Murphy, Dennis L

    2004-12-01

    Our previous studies found that serotonin transporter (SERT) knock-out mice showed increased sensitivity to minor stress and increased anxiety-like behavior but reduced locomotor activity. These mice also showed decreased density of 5-hydroxytryptamine (5-HT1A) receptors in the hypothalamus, amygdala, and dorsal raphe. To evaluate the contribution of hypothalamic 5-HT1A receptors to these phenotypes of SERT knock-out mice, two studies were conducted. Recombinant adenoviruses containing 5-HT1A sense and antisense sequences (Ad-1AP-sense and Ad-1AP-antisense) were used to manipulate 5-HT1A receptors in the hypothalamus. The expression of the 5-HT1A genes is controlled by the 5-HT1A promoter, so that they are only expressed in 5-HT1A receptor-containing cells. (1) Injection of Ad-1AP-sense into the hypothalamus of SERT knock-out mice restored 5-HT1A receptors in the medial hypothalamus; this effect was accompanied by elimination of the exaggerated adrenocorticotropin responses to a saline injection (minor stress) and reduced locomotor activity but not by a change in increased exploratory anxiety-like behavior. (2) To further confirm the observation in SERT-/- mice, Ad-1AP-antisense was injected into the hypothalamus of normal mice. The density and the function of 5-HT1A receptors in the medial hypothalamus were significantly reduced in Ad-1AP-antisense-treated mice. Compared with the control group (injected with Ad-track), Ad-1A-antisense-treated mice showed a significant reduction in locomotor activity, but again no changes in exploratory anxiety-like behaviors, tested by elevated plus-maze and open-field tests. Thus, the present results demonstrate that medial hypothalamic 5-HT1A receptors regulate stress responses and locomotor activity but may not regulate exploratory anxiety-like behaviors.

  6. Potentiation of RSU-1069 tumour cytotoxicity by 5-hydroxytryptamine (5-HT).

    PubMed Central

    Chaplin, D. J.

    1986-01-01

    It is known that many solid animal tumours have a lower oxygenation level than most normal tissues and, in addition, that this level of oxygenation can be further decreased by systemic administration of 5-hydroxytryptamine (5-HT). The present study has investigated if such selective decrease in tumour oxygenation can be exploited by using the hypoxic cell cytotoxin, RSU-1069. The results obtained show that 5-HT at a dose of 5 mg kg-1, although not cytotoxic alone, can potentiate the cytotoxic effects of RSU-1069 in the Lewis lung carcinoma over the dose range 0.01-0.15 mg g-1. Maximum potentiation occurs when 5-HT is administered after RSU-1069. Potentiation of RSU-1069 cytotoxicity was observed using both the soft agar excision assay as an endpoint as well as in situ growth delay. In addition, the study shows that potentiation of RSU-1069 (0.1 mg g-1) cytotoxicity can be seen with 5-HT doses as low as 0.5 mg kg-1. In contrast to the tumour cytotoxicity results, 5-HT at a dose of 5 mg kg-1 i.p. did not affect the systemic toxicity, as measured by LD50/7d of RSU-1069. Thus, these results indicate that 5-HT can increase the therapeutic efficiency of RSU-1069. Such a finding is consistent with the rationale that selective reduction in tumour blood flow and oxygenation induced by 5-HT can be exploited using the hypoxic cell cytotoxin RSU-1069. PMID:3801269

  7. Emesis and Defecations Induced by the 5-Hydroxytryptamine (5-HT3) Receptor Anatagonist Zacopride in the Ferret

    DTIC Science & Technology

    1990-02-16

    and Defecations Induced by the 5 -Hydroxytryptamine ( 5 -HT 3) Receptor Antagonist Zacopride in the Ferret1 GREGORY L. KING Department of Physiology...benzamides and 5 -hydroxytryptamine ( 5 - Zacopride (4-amino-N-[ 1-azabicyclo(2.2.2)oct-3-yl]- 5 -chloro- HT:i) receptor antagonists are effective...prompted development of 5 - the dose-response properties of zacop -ide-induced emesis and HT, receptor antagonist antiemetics with limited gastric

  8. 5-hydroxytryptamine (5-HT) reduces total peripheral resistance during chronic infusion: direct arterial mesenteric relaxation is not involved

    PubMed Central

    2012-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) delivered over 1 week results in a sustained fall in blood pressure in the sham and deoxycorticosterone acetate (DOCA)-salt rat. We hypothesized 5-HT lowers blood pressure through direct receptor-mediated vascular relaxation. In vivo, 5-HT reduced mean arterial pressure (MAP), increased heart rate, stroke volume, cardiac index, and reduced total peripheral resistance during a 1 week infusion of 5-HT (25 µg/kg/min) in the normotensive Sprague Dawley rat. The mesenteric vasculature was chosen as an ideal candidate for the site of 5-HT receptor mediated vascular relaxation given the high percentage of cardiac output the site receives. Real-time RT-PCR demonstrated that mRNA transcripts for the 5-HT2B, 5-HT1B, and 5-HT7 receptors are present in sham and DOCA-salt superior mesenteric arteries. Immunohistochemistry and Western blot validated the presence of the 5-HT2B, 5- HT1B and 5-HT7 receptor protein in sham and DOCA-salt superior mesenteric artery. Isometric contractile force was measured in endothelium-intact superior mesenteric artery and mesenteric resistance arteries in which the contractile 5- HT2A receptor was antagonized. Maximum concentrations of BW-723C86 (5- HT2B agonist), CP 93129 (5-HT1B agonist) or LP-44 (5-HT7 agonist) did not relax the superior mesenteric artery from DOCA-salt rats vs. vehicle. Additionally, 5-HT (10–9 M to 10–5 M) did not cause relaxation in either contracted mesenteric resistance arteries or superior mesenteric arteries from normotensive Sprague- Dawley rats. Thus, although 5-HT receptors known to mediate vascular relaxation are present in the superior mesenteric artery, they are not functional, and are therefore not likely involved in a 5-HT-induced fall in total peripheral resistance and MAP. PMID:22559843

  9. 5-hydroxytryptamine (5-HT) reduces total peripheral resistance during chronic infusion: direct arterial mesenteric relaxation is not involved.

    PubMed

    Davis, Robert Patrick; Pattison, Jill; Thompson, Janice M; Tiniakov, Ruslan; Scrogin, Karie E; Watts, Stephanie W

    2012-05-06

    Serotonin (5-hydroxytryptamine; 5-HT) delivered over 1 week results in a sustained fall in blood pressure in the sham and deoxycorticosterone acetate (DOCA)-salt rat. We hypothesized 5-HT lowers blood pressure through direct receptor-mediated vascular relaxation. In vivo, 5-HT reduced mean arterial pressure (MAP), increased heart rate, stroke volume, cardiac index, and reduced total peripheral resistance during a 1 week infusion of 5-HT (25 µg/kg/min) in the normotensive Sprague Dawley rat. The mesenteric vasculature was chosen as an ideal candidate for the site of 5-HT receptor mediated vascular relaxation given the high percentage of cardiac output the site receives. Real-time RT-PCR demonstrated that mRNA transcripts for the 5-HT2B, 5-HT1B, and 5-HT7 receptors are present in sham and DOCA-salt superior mesenteric arteries. Immunohistochemistry and Western blot validated the presence of the 5-HT2B, 5- HT1B and 5-HT7 receptor protein in sham and DOCA-salt superior mesenteric artery. Isometric contractile force was measured in endothelium-intact superior mesenteric artery and mesenteric resistance arteries in which the contractile 5- HT2A receptor was antagonized. Maximum concentrations of BW-723C86 (5- HT2B agonist), CP 93129 (5-HT1B agonist) or LP-44 (5-HT7 agonist) did not relax the superior mesenteric artery from DOCA-salt rats vs. vehicle. Additionally, 5-HT (10-9 M to 10-5 M) did not cause relaxation in either contracted mesenteric resistance arteries or superior mesenteric arteries from normotensive Sprague- Dawley rats. Thus, although 5-HT receptors known to mediate vascular relaxation are present in the superior mesenteric artery, they are not functional, and are therefore not likely involved in a 5-HT-induced fall in total peripheral resistance and MAP.

  10. Modulation of the hypoxic sensory response of the carotid body by 5-hydroxytryptamine: role of the 5-HT2 receptor.

    PubMed

    Jacono, F J; Peng, Y-J; Kumar, G K; Prabhakar, N R

    2005-02-15

    Previous studies have shown that glomus cells of the carotid body express 5-hydroxytryptamine (5-HT). The aim of this study was to elucidate the role of 5-HT on the hypoxic sensory response (HSR) of the carotid body. Sensory activity was recorded from multi-fiber (n=16) and single-fiber (n=8) preparations of ex vivo carotid bodies harvested from anesthetized, adult rats. 5-HT (3 microM) had no significant effect on the magnitude or on the onset of the HSR. However, 5-HT consistently prolonged the time necessary for the sensory activity to return to baseline following the termination of the hypoxic challenge. Ketanserin (40 microM), a 5-HT2 receptor antagonist completely prevented 5-HT-induced prolongation of the HSR, whereas had no effect on the control HSR (onset, magnitude, and time for decay without 5-HT). Carotid bodies expressed 5-HT, but hypoxia did not facilitate 5-HT release. These observations suggest that 5-HT is not critical for the HSR of the rat carotid body, but it modulates the dynamics of the HSR via its action on 5-HT2 receptors.

  11. 5-HT1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis.

    PubMed Central

    Sharp, T.; Bramwell, S. R.; Grahame-Smith, D. G.

    1989-01-01

    1. An intracerebral perfusion method, brain microdialysis, was used to assess changes of 5-hydroxytryptamine (5-HT) release in the ventral hippocampus of the chloral hydrate-anaesthetized rat in response to systemic administration of a variety of 5-HT1 receptor agonists. 2. A stable output of reliably detectable endogenous 5-HT was measured in dialysates collected from ventral hippocampus with the 5-HT reuptake inhibitor, citalopram, present in the perfusion medium. 3. Under these conditions the putative 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) caused a dose-dependent (5-250 micrograms kg-1, s.c.) reduction of 5-HT in hippocampal dialysates. 4. Similarly, the putative 5-HT1A agonists gepirone (5 mg kg-1, s.c.), ipsapirone (5 mg kg-1, s.c.) and buspirone (5 mg kg-1, s.c.) markedly reduced levels of 5-HT in hippocampal perfusates whereas their common metabolite 1-(2-pyrimidinyl) piperazine (5 mg kg-1, s.c.), which does not bind to central 5-HT1A recognition sites, had no effect. 5. 5-Methoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-indole (RU 24969), a drug with reported high affinity for brain 5-HT1B binding sites, also produced a dose-dependent (0.25-5 mg kg-1, s.c.) decrease of hippocampal 5-HT output. 6. These data are direct biochemical evidence that systemically administered putative 5-HT1A and 5-HT1B agonists markedly inhibit 5-HT release in rat ventral hippocampus in vivo. PMID:2466516

  12. Brown adipose tissue sympathetic nerve activity is potentiated by activation of 5-hydroxytryptamine (5-HT)1A/5-HT7 receptors in the rat spinal cord

    PubMed Central

    Madden, C. J.; Morrison, S. F.

    2008-01-01

    In urethane-chloralose anesthetized, neuromuscularly blocked, ventilated rats, microinjection of NMDA (12 pmol) into the right fourth thoracic segment (T4) spinal intermediolateral nucleus (IML) immediately increased ipsilateral brown adipose tissue (BAT) sympathetic nerve activity (SNA; peak +492% of control), expired CO2 (+0.1%) heart rate (+48 beats min−1) and arterial pressure (+8 mmHg). The increase in BAT SNA evoked by T4 IML microinjection of NMDA was potentiated when it was administered immediately following a T4 IML microinjection of 5-hydroxytryptamine (5-HT, 100 pmol) or the 5-HT1A/5-HT7 receptor agonist, 8-OH-DPAT (600 pmol), (area under the curve: 184%, and 259% of the NMDA-only response, respectively). In contrast, T4 IML microinjection of the 5-HT2 receptor agonist, DOI (28 pmol) did not potentiate the NMDA-evoked increase in BAT SNA (101% of NMDA-only response). Microinjection into the T4 IML of the selective 5-HT1A antagonist, WAY-100635 (500 pmol), plus the 5-HT7 antagonist, SB-269970 (500 pmol), prevented the 5-HT-induced potentiation of the NMDA-evoked increase in BAT SNA. When administered separately, WAY-100635 (800 pmol) and SB-269970 (800 pmol) attenuated the 8-OH-DPAT-induced potentiation of the NMDA-evoked increase in BAT SNA through effects on the amplitude and duration of the response, respectively. The selective 5-HT2 receptor antagonist, ketanserin (100 pmol), did not attenuate the potentiations of the NMDA-evoked increase in BAT SNA induced by either 5-HT or 8-OH-DPAT. These results demonstrate that activation of 5-HT1A/5-HT7 receptors can act synergistically with NMDA receptor activation within the IML to markedly increase BAT SNA. PMID:18082230

  13. Mediation of 5-hydroxytryptamine-induced tachycardia in the pig by the putative 5-HT4 receptor.

    PubMed Central

    Villalón, C. M.; den Boer, M. O.; Heiligers, J. P.; Saxena, P. R.

    1990-01-01

    Intravenous bolus injections of 5-hydroxytryptamine (5-HT; 3, 10 and 30 micrograms kg-1), 5-methoxytryptamine (5-MeO-T; 3, 10 and 30 micrograms kg-1), renzapride (BRL 24924; 3, 10, 30 and 100 micrograms kg-1) and isoprenaline (0.03, 0.1 and 0.3 micrograms kg-1) to anaesthetized pigs increased heart rate by, respectively, 22 +/- 3, 44 +/- 3 and 65 +/- 4 beats min-1 (5-HT; n = 17); 12 +/- 1, 26 +/- 2 and 44 +/- 4 beats min-1 (5-MeO-T; n = 15), 5 +/- 2, 11 +/- 2, 18 +/- 4 and 37 +/- 5 beats min-1 (renzapride; n = 8) and 17 +/- 2, 46 +/- 3 and 75 +/- 3 beats min-1 (isoprenaline; n = 13). The responses to 5-HT, 5-MeO-T and renzapride were antagonized by ICS 205-930 (1 and 3 mg kg-1, i.v.), which did not modify the increases in heart rate by isoprenaline. Renzapride showed tachyphylaxis and attenuated the responses to 5-HT. These findings indicate that 5-HT elicits tachycardia in the pig by acting on a novel receptor, either similar or identical to the 5-HT4 receptor identified in mouse brain colliculi. PMID:2207493

  14. Selective blockade of 5-hydroxytryptamine (5-HT)7 receptors enhances 5-HT transmission, antidepressant-like behavior, and rapid eye movement sleep suppression induced by citalopram in rodents.

    PubMed

    Bonaventure, Pascal; Kelly, Lisa; Aluisio, Leah; Shelton, Jonathan; Lord, Brian; Galici, Ruggero; Miller, Kirsten; Atack, John; Lovenberg, Timothy W; Dugovic, Christine

    2007-05-01

    Evidence has accumulated supporting a role for 5-hydroxytryptamine (5-HT)7 receptors in circadian rhythms, sleep, and mood disorders, presumably as a consequence of the modulation of 5-HT-mediated neuronal activity. We hypothesized that a selective 5-HT7 receptor antagonist, (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]-pyrrolidine (SB-269970), should increase activity of 5-HT neurons and potentiate the effect of selective serotonin reuptake inhibitors (citalopram). In rats, administration of 3 mg/kg s.c. citalopram alone increased the extracellular concentration of 5-HT. This effect of citalopram on extracellular 5-HT concentration was significantly enhanced by an ineffective dose of SB-269970. Combining this dose of SB-269970 with a low dose of citalopram also resulted in a significant increase in extracellular concentration of 5-HT, suggesting a potentiation of neurochemical effects. In mice, citalopram and SB-269970 dose-dependently decreased immobility time in the tail suspension test. The dose-effect curve of citalopram was shifted leftward by coadministration of an effective dose of SB-269970. Furthermore, combining ineffective doses of citalopram and SB-269970 also resulted in a significant decrease of immobility time in the tail suspension test, suggesting potentiation of antidepressant-like effects. In rats, SB-269970 potentiated the increase of rapid eye movement (REM) latency and the REM sleep decrease induced by citalopram. SB-269970 also reversed the increase in sleep fragmentation induced by citalopram. Rat plasma and brain concentrations of citalopram were not affected by coadministration of SB-269970, arguing for a pharmacodynamic rather than a pharmacokinetic mechanism. Overall, these results indicate that selective blockade of 5-HT7 receptors may enhance the antidepressant efficacy of citalopram and may provide a novel therapy to alleviate sleep disturbances associated with depression.

  15. Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity.

    PubMed

    Ishibashi, Tadashi; Horisawa, Tomoko; Tokuda, Kumiko; Ishiyama, Takeo; Ogasa, Masaaki; Tagashira, Rie; Matsumoto, Kenji; Nishikawa, Hiroyuki; Ueda, Yoko; Toma, Satoko; Oki, Hitomi; Tanno, Norihiko; Saji, Ikutaro; Ito, Akira; Ohno, Yukihiro; Nakamura, Mitsutaka

    2010-07-01

    Lurasidone [(3aR,4S,7R,7aS)-2-[(1R,2R)-2-[4-(1,2-benzisothiazol-3-yl)piperazin-1-ylmethyl]cyclohexylmethyl]hexahydro-4,7-methano-2H-isoindole-1,3-dione hydrochloride; SM-13496] is an azapirone derivative and a novel antipsychotic candidate. The objective of the current studies was to investigate the in vitro and in vivo pharmacological properties of lurasidone. Receptor binding affinities of lurasidone and several antipsychotic drugs were tested under comparable assay conditions using cloned human receptors or membrane fractions prepared from animal tissue. Lurasidone was found to have potent binding affinity for dopamine D(2), 5-hydroxytryptamine 2A (5-HT(2A)), 5-HT(7), 5-HT(1A), and noradrenaline alpha(2C) receptors. Affinity for noradrenaline alpha(1), alpha(2A), and 5-HT(2C) receptors was weak, whereas affinity for histamine H(1) and muscarinic acetylcholine receptors was negligible. In vitro functional assays demonstrated that lurasidone acts as an antagonist at D(2) and 5-HT(7) receptors and as a partial agonist at the 5-HT(1A) receptor subtype. Lurasidone showed potent effects predictive of antipsychotic activity, such as inhibition of methamphetamine-induced hyperactivity and apomorphine-induced stereotyped behavior in rats, similar to other antipsychotics. Furthermore, lurasidone had only weak extrapyramidal effects in rodent models. In animal models of anxiety disorders and depression, treatment with lurasidone was associated with significant improvement. Lurasidone showed a preferential effect on the frontal cortex (versus striatum) in increasing dopamine turnover. Anti-alpha(1)-noradrenergic, anticholinergic, and central nervous system (CNS) depressant actions of lurasidone were also very weak. These results demonstrate that lurasidone possesses antipsychotic activity and antidepressant- or anxiolytic-like effects with potentially reduced liability for extrapyramidal and CNS depressant side effects.

  16. Effects of serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibition plus 5-HT(2A) receptor antagonism on the firing activity of norepinephrine neurons.

    PubMed

    Szabo, Steven T; Blier, Pierre

    2002-09-01

    YM992 [(S)-2-[[(7-fluoro-4-indanyl)oxy]methyl]morpholine monohydrochloride] is a selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor (SSRI) and a potent 5-HT(2A) antagonist. The aim of the present study was to assess, using in vivo extracellular unitary recordings, the effect of acute and sustained administration of YM992 (40 mg kg(-1) day(-1) s.c., using osmotic minipumps) on the spontaneous firing activity of locus coeruleus (LC) norepinephrine (NE) neurons. Acute intravenous injection of YM992 (4 mg kg(-1)) significantly decreased NE neuron firing activity by 29% and blocked the inhibitory effect of a subsequent injection of the 5-HT(2) agonist DOI [1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride]. A 2-day treatment with YM992 decreased the firing rate of NE neurons by 66%, whereas a partial recovery was observed after a 7-day treatment and a complete one after a 21-day treatment. Following the injection of the alpha(2)-adrenoceptor antagonist idazoxan (1 mg kg(-1) i.v.), NE neuron firing was equalized in controls and 2-day YM992-treated rats. This put into evidence an increased degree of activation of alpha(2)-adrenergic autoreceptors in the treated rats. The suppressant effect of the alpha(2)-adrenoceptor agonist clonidine was significantly decreased in long-term YM992-treated rats. The recovery of LC firing activity after long-term YM992 administration could thus be explained by a decreased sensitivity of alpha(2)-adrenergic autoreceptors. Sustained SSRI administration leads to a gradual reduction of the firing activity of NE neurons during long-term administration, whereas YM992 produced opposite effects. The exact basis for the increased synaptic availability of NE by YM992 remains to be elucidated. This NE activity, resulting from 5-HT reuptake inhibition plus 5-HT(2A) receptor antagonism, might confer additional benefits in affective and anxiety disorders.

  17. 5-hydroxytryptamine receptor (5-HT1DR) promotes colorectal cancer metastasis by regulating Axin1/β-catenin/MMP-7 signaling pathway

    PubMed Central

    Ji, Qing; Liu, Xuan; Zhou, Lihong; Song, Haiyan; Zhou, Xiqiu; Xu, Yangxian; Chen, Zhesheng; Cai, Jianfeng; Ji, Guang; Li, Qi

    2015-01-01

    Overexpression of 5-hydroxytryptamine (5-HT) in human cancer contributes to tumor metastasis, but the role of 5-HT receptor family in cancer has not been thoroughly explored. Here, we report overexpression of 5-HT1D receptor (5-HT1DR) was associated with Wnt signaling pathway and advanced tumor stage. The underlying mechanism of 5-HT1DR-promoted tumor invasion was through its activation on the Axin1/β-catenin/MMP-7 pathway. In an orthotopic colorectal cancer mouse model, we demonstrated that a 5-HT1DR antagonist (GR127935) effectively inhibited tumor metastasis through targeting Axin1. Furthermore, in intestinal epithelium cells, we observed that 5-HT1DR played an important role in cell invasion via Axin1/β-catenin/MMP-7 pathway. Together, our findings reveal an essential role of the physiologic level of 5-HT1DR in pulmonary metastasis of colorectal cancer. PMID:26214021

  18. Superagonist, Full Agonist, Partial Agonist, and Antagonist Actions of Arylguanidines at 5-Hydroxytryptamine-3 (5-HT3) Subunit A Receptors.

    PubMed

    Alix, Katie; Khatri, Shailesh; Mosier, Philip D; Casterlow, Samantha; Yan, Dong; Nyce, Heather L; White, Michael M; Schulte, Marvin K; Dukat, Małgorzata

    2016-11-16

    Introduction of minor variations to the substitution pattern of arylguanidine 5-hydroxytryptamine-3 (5-HT3) receptor ligands resulted in a broad spectrum of functionally-active ligands from antagonist to superagonist. For example, (i) introduction of an additional Cl-substituent(s) to our lead full agonist N-(3-chlorophenyl)guanidine (mCPG, 2; efficacy % = 106) yielded superagonists 7-9 (efficacy % = 186, 139, and 129, respectively), (ii) a positional isomer of 2, p-Cl analog 11, displayed partial agonist actions (efficacy % = 12), and (iii) replacing the halogen atom at the meta or para position with an electron donating OCH3 group or a stronger electron withdrawing (i.e., CF3) group resulted in antagonists 13-16. We posit based on combined mutagenesis, crystallographic, and computational analyses that for the 5-HT3 receptor, the arylguanidines that are better able to simultaneously engage the primary and complementary subunits, thus keeping them in close proximity, have greater agonist character while those that are deficient in this ability are antagonists.

  19. Serotonin (5-hydroxytryptamine, 5-HT) immunoreactive endocrine and neural elements in the chromaffin enteropancreatic system of amphibians and reptiles.

    PubMed

    Trandaburu, Tiberiu; Trandaburu, Ioana

    2007-01-01

    The diffuse chromaffin enteropancreatic system of nine species of amphibians (newts, frogs) and reptiles (turtles, lizards, snakes) was investigated immunohistochemically for the presence and topographic distribution of serotonin (5-hydroxytryptamine, 5-HT). The study revealed various numbers of serotonin-producing cells in the pancreas and intestinal epithelium and also immunolabelled nerve profiles in the villi of all species studied. In addition, two different morphological populations of serotonin cells ("open" and "closed") were localized in the functional segments of the intestines in the representative species of all the taxa investigated. Semi-quantitative evaluation of the immunolabelled pancreatic and enteric cells revealed significantly different mean numbers of labelled cells in different amphibian and reptilian taxa, and also between the various successive gut segments of each taxon. The ratio between "open" and "closed" varieties of serotonin cells recorded along the intestines followed a decreasing trend, progressive in lizards and snakes and more abrupt in newts, frogs and turtles. The above findings may help resolve several key stages of the phylogenetic evolution of poikilothermic vertebrates.

  20. Detection of 5-hydroxytryptamine (5-HT) in vitro using a hippocampal neuronal network-based biosensor with extracellular potential analysis of neurons.

    PubMed

    Hu, Liang; Wang, Qin; Qin, Zhen; Su, Kaiqi; Huang, Liquan; Hu, Ning; Wang, Ping

    2015-04-15

    5-hydroxytryptamine (5-HT) is an important neurotransmitter in regulating emotions and related behaviors in mammals. To detect and monitor the 5-HT, effective and convenient methods are demanded in investigation of neuronal network. In this study, hippocampal neuronal networks (HNNs) endogenously expressing 5-HT receptors were employed as sensing elements to build an in vitro neuronal network-based biosensor. The electrophysiological characteristics were analyzed in both neuron and network levels. The firing rates and amplitudes were derived from signal to determine the biosensor response characteristics. The experimental results demonstrate a dose-dependent inhibitory effect of 5-HT on hippocampal neuron activities, indicating the effectiveness of this hybrid biosensor in detecting 5-HT with a response range from 0.01μmol/L to 10μmol/L. In addition, the cross-correlation analysis of HNNs activities suggests 5-HT could weaken HNN connectivity reversibly, providing more specificity of this biosensor in detecting 5-HT. Moreover, 5-HT induced spatiotemporal firing pattern alterations could be monitored in neuron and network levels simultaneously by this hybrid biosensor in a convenient and direct way. With those merits, this neuronal network-based biosensor will be promising to be a valuable and utility platform for the study of neurotransmitter in vitro.

  1. Effects of methysergide and 5-hydroxytryptamine on carotid blood flow distribution in pigs: further evidence for the presence of atypical 5-HT receptors.

    PubMed Central

    Saxena, P. R.; Verdouw, P. D.

    1984-01-01

    The effects of acute (50-350 micrograms kg-1, i.v.) and subacute (350 micrograms kg-1 orally per day for six days) administration of methysergide, and of intra-arterial infusions of 0.5 and 2.0 micrograms kg-1 min-1 5-hydroxytryptamine (5-HT) on the distribution of carotid blood flow into the capillary (nutrient) and arterio-venous anastomotic (AVA) fractions were studied in anaesthetized pigs. The acute, but not the subacute, administration of methysergide caused a moderate reduction of carotid blood flow. This reduction, noticed only in the AVA fraction, was due to a constriction of the arterio-venous anastomoses (AVAs). Both doses of 5-HT reduced total carotid blood flow but its nutrient fraction--particularly that distributed to the skin and ears--increased substantially. The AVA fraction was greatly diminished. After treatment with methysergide, 5-HT no longer reduced the total carotid blood flow, but increased it. Despite this reversal the constriction of AVAs by the amine was only slightly diminished. On the other hand, the vasodilatation of the nutrient channels was enhanced. The results of the interaction between methysergide and 5-HT provide further evidence for the presence of 'atypical' 5-HT receptors (probably corresponding to 5-HT1 binding sites) mediating AVA contraction and nutrient vasodilatation. The 5-HT2 receptors mediate vasoconstriction and are located in the large conducting arteries and possibly, in smaller numbers, in the AVAs and arterioles. PMID:6478112

  2. The effect of the selective 5-HT1A agonists alnespirone (S-20499) and 8-OH-DPAT on extracellular 5-hydroxytryptamine in different regions of rat brain

    PubMed Central

    Casanovas, J M; Lésourd, M; Artigas, F

    1997-01-01

    We have examined the effects of the systemic administration of the selective 5-HT1A agonist alnespirone (S-20499) on in vivo 5-hydroxytryptamine (5-HT) release in the dorsal raphe nucleus, the median raphe nucleus and four forebrain areas innervated differentially by both (dorsal striatum, frontal cortex, ventral hippocampus and dorsal hippocampus). Alnespirone (0.1–3 mg kg−1, s.c.) dose-dependently reduced extracellular 5-HT in the six areas examined. In forebrain, the maximal reductions occurred in striatum and frontal cortex (maximal reduction to 23 and 29% of baseline, respectively). Those in dorsal and ventral hippocampus were more moderate (to ca 65% of baseline). In contrast, the decrease in 5-HT elicited in the median raphe nucleus was more marked than that in the dorsal raphe nucleus (to ca 30 and 60% of baseline, respectively). The selective 5-HT1A antagonist WAY-100635 (0.5 mg kg−1, s.c.) prevented the decrease in 5-HT induced by alnespirone (0.3 mg kg−1, s.c.) in frontal cortex. 8-OH-DPAT (0.025, 0.1 and 0.3 mg kg−1, s.c.) also reduced extracellular 5-HT in a regionally-selective manner (e.g., to 32% of baseline in striatum and to 69% in dorsal hippocampus at 0.1 mg kg−1, s.c.). In midbrain, 8-OH-DPAT reduced the dialysate 5-HT slightly more in the median than in the dorsal raphe nucleus at all doses examined. Doses of both compounds close to their respective ED50 values (0.3 mg kg−1 alnespirone, 0.025 mg kg−1 8-OH-DPAT) reduced 5-HT to a comparable extent in all regions examined. However, the reductions attained at higher doses were more pronounced for 8-OH-DPAT. These data show that the reduction of 5-HT release elicited by alnespirone and 8-OH-DPAT is more important in forebrain areas innervated by 5-hydroxytryptaminergic neurones of the dorsal raphe nucleus. This regional selectivity seems unlikely to be accounted for by differences in the sensitivity of 5-HT1A autoreceptors controlling 5-HT release, given

  3. 5-Hydroxytryptamine (5-HT)4 receptors in post mortem human brain tissue: distribution, pharmacology and effects of neurodegenerative diseases.

    PubMed Central

    Reynolds, G P; Mason, S L; Meldrum, A; De Keczer, S; Parnes, H; Eglen, R M; Wong, E H

    1995-01-01

    1. The distribution, pharmacology and effects of neurodegenerative diseases on 5-HT4 receptors in human brain have been characterized in vitro. 2. The 5-HT4 receptor in post mortem human brain tissue was specifically labelled with [3H]-GR 113808. In human putamen, this ligand labelled a homogeneous population of sites, with an apparent affinity (-log Kd) of 10.1 and a density (Bmax) of 5.73 fmol mg-1 tissue. The pharmacology of this site was characterized by use of a series of displacing ligands, and the following rank order of apparent affinities (with mean +/- s.d. -log Ki values in parentheses) was generated: GR113808 (10.05 +/- 0.04) > SDZ 205,557 (8.65 +/- 0.08) > DAU 6285 (7.95 +/- 0.04) > BIMU-1 (7.81 +/- 0.06) > DAU 6215 (7.42 +/- 0.23) > tropisetron (7.39 +/- 0.23) > 5-HT (7.32 +/- 1.00) > BIMU-8 (7.25 +/- 0.04) > (R)-zacopride (5.82 +/- 0.04). The Hill coefficients were not significantly different from unity, consistent with an interaction at a single site. A comparison of the affinities of these compounds with those obtained from guinea-pig striatum indicated no evidence of species differences. 3. The regional distribution of 5-HT4 receptors was assessed by determining the density of binding sites for [3H]-GR 113808.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7780656

  4. Comparison of the performance of different DFT methods in the calculations of the molecular structure and vibration spectra of serotonin (5-hydroxytryptamine, 5-HT)

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Gao, Hongwei

    2012-04-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransmitter which plays an important role in treating acute or clinical stress. The comparative performance of different density functional theory (DFT) methods at various basis sets in predicting the molecular structure and vibration spectra of serotonin was reported. The calculation results of different methods including mPW1PW91, HCTH, SVWN, PBEPBE, B3PW91 and B3LYP with various basis sets including LANL2DZ, SDD, LANL2MB, 6-31G, 6-311++G and 6-311+G* were compared with the experimental data. It is remarkable that the SVWN/6-311++G and SVWN/6-311+G* levels afford the best quality to predict the structure of serotonin. The results also indicate that PBEPBE/LANL2DZ level show better performance in the vibration spectra prediction of serotonin than other DFT methods.

  5. Regulation of extrasynaptic 5-HT by serotonin reuptake transporter function in 5-HT-absorbing neurons underscores adaptation behavior in Caenorhabditis elegans.

    PubMed

    Jafari, Gholamali; Xie, Yusu; Kullyev, Andrey; Liang, Bin; Sze, Ji Ying

    2011-06-15

    Serotonin [5-hydroxytryptamine (5-HT)]-absorbing neurons use serotonin reuptake transporter (SERT) to uptake 5-HT from extracellular space but do not synthesize it. While 5-HT-absorbing neurons have been identified in diverse organisms from Caenorhabditis elegans to humans, their function has not been elucidated. Here, we show that SERT in 5-HT-absorbing neurons controls behavioral response to food deprivation in C. elegans. The AIM and RIH interneurons uptake 5-HT released from chemosensory neurons and secretory neurons. Genetic analyses suggest that 5-HT secreted by both synaptic vesicles and dense core vesicles diffuse readily to the extrasynaptic space adjacent to the AIM and RIH neurons. Loss of mod-5/SERT function blocks the 5-HT absorption. mod-5/SERT mutants have been shown to exhibit exaggerated locomotor response to food deprivation. We found that transgenic expression of MOD-5/SERT in the 5-HT-absorbing neurons fully corrected the exaggerated behavior. Experiments of cell-specific inhibition of synaptic transmission suggest that the synaptic release of 5-HT from the 5-HT-absorbing neurons is not required for this behavioral modulation. Our data point to the role of 5-HT-absorbing neurons as temporal-spatial regulators of extrasynaptic 5-HT. Regulation of extrasynaptic 5-HT levels by 5-HT-absorbing neurons may represent a fundamental mechanism of 5-HT homeostasis, integrating the activity of 5-HT-producing neurons with distant targets in the neural circuits, and could be relevant to some actions of selective serotonin reuptake inhibitors in humans.

  6. 5-HT system and cognition.

    PubMed

    Meneses, A

    1999-12-01

    The study of 5-hydroxytryptamine (5-HT) system has benefited from the identification, classification and cloning of multiple 5-HT receptors (5-HT1 to 5-HT7). Growing evidence suggests that 5-HT is important in learning and memory and all its receptors might be implicated in this. Actually, 5-HT pathways, 5-HT reuptake site/transporter complex and 5-HT receptors show regional distribution in brain areas implicated in learning and memory. Likewise, the stimulation or blockade of presynaptic 5-HT1A, 5-HT1B, 5-HT(2A/2C) and 5-HT3 receptors, postsynaptic 5-HT(2B/2C) and 5-HT4 receptors and 5-HT uptake/transporter sites modulate these processes. Available evidence strongly suggests that the 5-HT system may be important in normal function, the treatment and/or pathogenesis of cognitive disorders. Further investigation will help to specify the 5-HT system nature involvement in cognitive processes, pharmacotherapies, their mechanisms and action sites and to determine under which conditions they could operate. In this regard, it is probable that selective drugs with agonists, neutral antagonist, agonists or inverse agonist properties for 5-HT1A, 5-HT(1B/1D), 5-HT(2A/2B/2C), 5-HT4 and 5-HT7 receptors could constitute a new therapeutic opportunity for learning and memory alterations.

  7. The highly selective 5-hydroxytryptamine (5-HT)2A receptor antagonist, EMD 281014, significantly increases swimming and decreases immobility in male congenital learned helpless rats in the forced swim test.

    PubMed

    Patel, Jignesh G; Bartoszyk, Gerd D; Edwards, Emmeline; Ashby, Charles R

    2004-04-01

    We examined the effect of the highly selective 5-hydroxytryptamine (5-HT)(2A) receptor antagonist 7-[4-[2-(4-fluoro-phenyl)-ethyl]-piperazine-1-carbonyl]-1H-indole-3-carbonitrile HCl (EMD 281014) in congenital learned helpless male rats in the forced swim test. The administration of EMD-281014 (0.3-30 mg/kg i.p.) to congenital learned helpless rats dose-dependently and significantly (at 10 and 30 mg/kg) decreased immobility and increased swimming compared to vehicle-treated animals. Thus, EMD 281014 produces effects in the forced swim test resembling those of antidepressants.

  8. Localization of serotoni (5-hydroxytryptamine, 5-HT) with partial purification and characterization of a serotonin binding protein in the intestinal tissue of the nematode Ascaris suum

    SciTech Connect

    Martin, R.E.

    1989-01-01

    An intracellular 5-HT binding protein (SBP) from intestinal tissue was partially purified and characterized. Binding of ({sup 3}H) 5-HT to the protein appeared to be Fe{sup +2}-sensitive and maximal (20.8pmol/mg protein) at 5 {times} 10{sup {minus}4}M Fe{sup +2} and 10{sup {minus}7}M ({sup 3}H) 5-HT. There were two 5-HT binding sites present at optimum Fe{sup +2} concentrations. The Bmax values of these sites were more sensitive to Fe{sup +2} than Kd values. Sulfhydryl reducing agents, cation chelators, Fe{sup +3}, Ca{sup +2} and antagonists of 5-HT uptake and storage inhibited binding of 5-HT to SBP. Gel exclusion chromatography indicated the presence of a 45Kda SBP that in 5 {times} 10{sup {minus}5}M Fe{sup +2} may form aggregates ranging in size from approximately 80 to >1000Kda. The data indicate these in vitro aggregates may correspond to the electron-opaque patches observed in situ. Ascaris suum may provide a model system to further elucidate the physiological role of analogous serotonin binding proteins that have been identified in mammalian systems.

  9. The 5-hydroxytryptamine transporter is functional in human coronary artery smooth muscle cells proliferation and is regulated by Interleukin-1 beta

    PubMed Central

    Wang, Qing-Jie; Wang, Dong; Tang, Cheng-Chun

    2015-01-01

    Abnormal human coronary artery smooth muscle cells (hCASMCs) proliferation and migration are key factors in coronary artery restenosis after percutaneous coronary intervention. Platelets release 5-hydroxytryptamine (5-HT), which is a strong mitogen for pulmonary artery smooth muscle cells proliferation and migration. Here, we investigated the effects of 5-HT and role of 5-HT transporter (5-HTT) on hCASMCs proliferation and migration. The 5-HT (10-6-10-5 mol/l) significantly increased hCASMCs proliferation and migration, and these effects were inhibited by fluoxetine (10-5 mol/l) and citalopram (10-6 mol/l), two 5-HTT blocker. Overexpression in hCASMCs enhanced 5-HT induced cells proliferation and migration. The 5-HTT and interleukin-1 beta (IL-1β) expression were increased in rat balloon injury carotid arteries. Treatment with IL-1β (10 ng/ml, 3d) upregulates 5-HTT expression in hCASMCs and increased 5-HT induced currents in Human Embryonic Kidney 293-5-HTT cells. PMID:26221231

  10. 5-Hydroxytryptamine (5HT, serotonin)-1A receptor in brain areas of alcohol-preferring P and non-preferring NP rats

    SciTech Connect

    Reid, L.R.; Wong, D.T.; Li, T.K.; Lumeng, L. Indiana Univ., Indianapolis )

    1991-03-11

    Binding of {sup 3}H-80HDPAT to 5HT-1A receptor in membranes isolated from cerebral cortex of P and NP rats which had not been exposed to ethanol were equally sensitive to the displacement by nanomolar concentrations of agonists, including 5HT, buspirone and ipsapirone, and of antagonists metergoline and spiperone. Binding with increasing concentrations of {sup 3}H-80HDPAT was saturable in membranes of cerebral cortex from P and NP rats. Scatchard analysis revealed single components of binding sites with dissociation constants of 1.54 and 2.03 nM and maximum density of 177.3 and 129.3 fmol/mg protein, respectively, suggesting higher affinity and density of 5HT-1A receptors in cerebral cortex of P than NP rats. Higher densities are also found in other brain areas, including hypothalamus, striatum and hippocampus, of P than NP rats, but not in brainstem. Thus, an enrichment of 5HT-1A receptors in specific brain areas was developed during selective breeding for alcohol preference, or an upregulation of the receptors resulted from the lower concentrations of 5HT in brain areas of P as compared with NP rats.

  11. Repeated administration of Yokukansan inhibits DOI-induced head-twitch response and decreases expression of 5-hydroxytryptamine (5-HT)2A receptors in the prefrontal cortex.

    PubMed

    Egashira, Nobuaki; Iwasaki, Katsunori; Ishibashi, Ayumi; Hayakawa, Kazuhide; Okuno, Ryoko; Abe, Moe; Uchida, Naoki; Mishima, Kenichi; Takasaki, Kotaro; Nishimura, Ryoji; Oishi, Ryozo; Fujiwara, Michihiro

    2008-08-01

    Behavioral and psychological symptoms of dementia (BPSD) are commonly seen in patients with Alzheimer's disease (AD) and other forms of senile dementia. BPSD have a serious impact on the quality of life of dementia patients, as well as their caregivers. However, an effective drug therapy for BPSD has not been established. Recently, the traditional Japanese medicine Yokukansan (YKS, Yi-gan san in Chinese) has been reported to improve BPSD in a randomized, single-blind, placebo-controlled study. Moreover, abnormalities of the serotonin (5-HT) system such as 5-HT2A receptors have been reported to be associated with BPSD of AD patients. In the present study, we investigated the effect of YKS on head-twitch response induced by 2,5-dimethoxy-4-iodoamphetamine (DOI, 5 mg/kg, i.p.) in mice, a behavioral response that is mediated, in part, by 5-HT2A receptors. Acute treatment with YKS (100 and 300 mg/kg, p.o.) had no effect on the DOI-induced head-twitch response, whilst 14 days repeated treatment with YKS (300 mg/kg, p.o.) significantly inhibited this response. Moreover, repeated treatment with YKS (300 mg/kg, p.o.) decreased expression of 5-HT2A receptors in the prefrontal cortex, which is part of the circuitry mediating the head-twitch response. These findings suggest that the inhibition of DOI-induced head-twitch response by YKS may be mediated, in part, by altered expression of 5-HT2A receptors in the prefrontal cortex, which suggests the involvement of the 5-HT system in psychopharmacological effects of YKS.

  12. Neuropharmacology of 5-hydroxytryptamine

    PubMed Central

    Richard Green, A

    2006-01-01

    This review outlines the history of our knowledge of the neuropharmacology of 5-hydroxytryptamine (5-HT; serotonin), focusing primarily on the work of U.K. scientists. The existence of a vasoconstrictive substance in the blood has been known for over 135 years. The substance was named serotonin and finally identified as 5-HT in 1949. The presence of 5-HT in the brain was reported by Gaddum in 1954 and it was Gaddum who also demonstrated that the action of 5-HT (in the gut) was antagonised by the potent hallucinogen lysergic acid diethylamide. This provoked the notion that 5-HT played a pivotal role in the control of mood and subsequent investigations have generally confirmed this hypothesis. Over the last 50 years a good understanding has been gained of the mechanisms involved in control of the storage, synthesis and degradation of 5-HT in the brain. Knowledge has also been gained on control of the functional activity of this monoamine, often by the use of behavioural models. A considerable literature also now exists on the mechanisms by which many of the drugs used to treat psychiatric illness alter the functional activity of 5-HT, particularly the drugs used to treat depression. Over the last 20 years the number of identified 5-HT receptor subtypes has increased from 2 to 14, or possibly more. A major challenge now is to utilise this knowledge to develop receptor-specific drugs and use the information gained to better treat central nervous system disorders. PMID:16402098

  13. Simultaneous measurements of capillary filtration and diffusion capacities during graded infusions of noradrenaline (NA) and 5-hydroxytryptamine (5-HT) into the rat hindquarter vascular bed.

    PubMed

    Rippe, B; Folkow, B

    1980-07-01

    The relationships between capillary diffusion capacity (PS) for Cr-EDTA respective capillary filtration capacity (CFC) and vascular resistance during graded intraarterial infusions of NA and 5-HT into the artificially constant flow perfused rat hindquarter vascular bed were investigated. During maximal vasodilatation PS for Cr-EDTA was some 5.5--5.7 ml/min x 100 g, CFC some 0.04 ml/min x mmHg x 100 g, while vascular resistance was 2.8 mmHg x ml-1 x min x 100 g (PRU100) and isogravimetric capillary pressure 12.8 mmHg on an average. Setting out from maximal vasodilatation, increasing doses of NA and 5-HT produced graded reductions in capillary surface area as reflected by progressive decreases in both PS for Cr-EDTA and CFC. These changes occurred simultaneously with progressive increases in both pre- and postcapillary resistances, causing elevations in both arterial and capillary hydrostatic pressures and hance in capillary fluid filtration at constant flow. Capillary hydrostatic pressure increased maximally to 45 mmHg (calculated for NA) and vascular resistance to some 21 mmHg x ml-1 x min x 100 g on an average. PS for Cr-EDTA decreased maximally to some 0.7--1 ml/min x 100 g for both NA and 5-HT and furthermore, the relationships between PS for Cr-EDTA and PRU100 for NA respective 5-HT were almost identical. This was taken to indicate that capillary surface area for nutritional exchange is affected similarly by both drugs. However, the CFU-PRU100 relationship was shifted towards some 30--50% higher CFC values for 5-HT than for NA at almost every level of vasoconstriction. This might suggest that 5-HT besides reducing capillary surface area also induced moderate increases in capillary permeability though increases in number and/or radius of large pores (gaps) (cf. Rippe, Kamiya & Folkow 1978). Even during NA-induced vasoconstriction, when virtually no changes in capillary permeability occurred, PS for Cr-EDTA was reduced to a relatively greater extent than CFC, the

  14. Reduced sensitivity to both positive and negative reinforcement in mice over-expressing the 5-hydroxytryptamine transporter.

    PubMed

    Line, Samantha J; Barkus, Chris; Rawlings, Nancy; Jennings, Katie; McHugh, Stephen; Sharp, Trevor; Bannerman, David M

    2014-12-01

    The 5-hydroxytryptamine (5-HT) transporter (5-HTT) is believed to play a key role in both normal and pathological psychological states. Much previous data suggest that the s allele of the polymorphic regulatory region of the 5-HTT gene promoter is associated with reduced 5-HTT expression and vulnerability to psychiatric disorders, including anxiety and depression. In comparison, the l allele, which increases 5-HTT expression, is generally considered protective. However, recent data link this allele to both abnormal 5-HT signalling and psychopathic traits. Here, we studied the processing of aversive and rewarding cues in transgenic mice that over-express the 5-HTT (5-HTTOE mice). Compared with wild-type mice, 5-HTTOE mice froze less in response to both a tone that had previously been paired with footshock, and the conditioning context. In addition, on a decision-making T-maze task, 5-HTTOE mice displayed reduced preference for a larger, delayed reward and increased preference for a smaller, immediate reward, suggesting increased impulsiveness compared with wild-type mice. However, further inspection of the data revealed that 5-HTTOE mice displayed a relative insensitivity to reward magnitude, irrespective of delay. In contrast, 5-HTTOE mice appeared normal on tests of spatial working and reference memory, which required an absolute choice between options associated with either reward or no reward. Overall, the present findings suggest that 5-HTT over-expression results in a reduced sensitivity to both positive and negative reinforcers. Thus, these data show that increased 5-HTT expression has some maladaptive effects, supporting recent suggestions that l allele homozygosity may be a potential risk factor for disabling psychiatric traits.

  15. Participation of a transmembrane proton gradient in 5-hydroxytryptamine transport by platelet dense granules and dense-granule ghosts.

    PubMed Central

    Wilkins, J A; Salganicoff, L

    1981-01-01

    Dense granules, the storage organelles for 5-hydroxytryptamine in blood platelets, have been isolated from porcine platelets and are shown to transport 5-hydroxytryptamine in response to a transmembrane proton gradient (delta pH). Transport in the absence of delta pH is minimal, and it is shown that a rapid increase in transport takes place as delta pH increases. Direct measurements with [14C]methylamine show a delta pH of 1.1 units (acid inside) for intact granules. Osmotically active ghosts of dense granules from which 95% of the endogenous 5-hydroxytryptamine content has been released have also been prepared. Ghosts swell in the presence of ATP and Mg2+, and this swelling is shown to be due to the entry of protons via a process linked to ATP hydrolysis. Proton entry is also apparently linked to anion penetration in ghosts. Steady-state 5-hydroxytryptamine transport in ghosts is stimulated approx. 3-fold on the addition of ATP to the incubation medium, and the stimulation of 5-hydroxytryptamine transport in ghosts correlates with the formation of a transmembrane delta pH. Ghosts generate a delta pH of 1.1-1.3 pH units (acid inside) in the presence of 5 mM-ATP/2.5 mM-MgSO4. delta pH is generated within 3 min at 37 degrees C and is dissipated by the ionophore nigericin and by NH4Cl. It is shown that an Mg2+-stimulated ATPase activity is present on the ghost membrane, and inhibition of the ATPase leads to a corresponding decrease in 5-hydroxytryptamine transport. The results presented support the idea that 5-hydroxytryptamine transport into platelet dense granules is dependent on the presence of a transmembrane delta pH and, together with previous findings by others, suggest a generalized mechanism for biogenic amine transport into subcellular storage organelles. Images Fig. 2. PMID:6459780

  16. Sucrose preload reduces snacking after mild mental stress in healthy participants as a function of 5-hydroxytryptamine transporter gene promoter polymorphism.

    PubMed

    Markus, C Rob; Jonkman, Lisa M; Capello, Aimee; Leinders, Sacha; Hüsch, Fabian

    2015-01-01

    Brain serotonin (5-hydroxytryptamine, 5-HT) dysfunction is considered to promote food intake and eating-related disturbances, especially under stress or negative mood. Vulnerability for 5-HT disturbances is considered to be genetically determined, including a short (S) allele polymorphism in the serotonin transporter gene (5-HTTLPR) that is associated with lower serotonin function. Since 5-HT function may be slightly increased by carbohydrate consumption, S-allele 5-HTTLPR carriers in particular may benefit from a sugar-preload due to their enhanced 5-HT vulnerability. The aim of the current study was to investigate whether a sugar-containing preload may reduce appetite and energy intake after exposure to stress to induce negative mood, depending on genetic 5-HT vulnerability. From a population of 771 healthy young male and female genotyped college students 31 S/S carriers (8 males, 23 females) and 26 long allele (L/L) carriers (9 males, 17 females) (mean ± S.D. 22 ± 1.6 years; body mass index, BMI, 18-33 kg/m(2)) were monitored for changes in appetite and snacking behavior after stress exposure. Results revealed an increased energy intake after mild mental stress (negative mood) mainly for high-fat sweet foods, which was significantly greater in S/S carriers, and only in these genotypes this intake was significantly reduced by a sucrose-containing preload. Although alternative explanations are possible, it is suggested that S/S participants may have enhanced brain (hypothalamic) 5-HT responsiveness to food that makes them more susceptible to the beneficial satiation effects of a sucrose-preload as well as to the negative effects of mild mental stress on weight gain.

  17. Methylene blue inhibits function of the 5-HT transporter

    PubMed Central

    Oz, Murat; Isaev, Dmytro; Lorke, Dietrich E; Hasan, Muhammed; Petroianu, Georg; Shippenberg, Toni S

    2012-01-01

    BACKGROUND AND PURPOSE Methylene blue (MB) is commonly employed as a treatment for methaemoglobinaemia, malaria and vasoplegic shock. An increasing number of studies indicate that MB can cause 5-HT toxicity when administered with a 5-HT reuptake inhibitor. MB is a potent inhibitor of monoamine oxidases, but other targets that may contribute to MB toxicity have not been identified. Given the role of the 5-HT transporter (SERT) in the regulation of extracellular 5-HT concentrations, the present study aimed to characterize the effect of MB on SERT. EXPERIMENTAL APPROACH Live cell imaging, in conjunction with the fluorescent SERT substrate 4-(4-(dimethylamino)-styryl)-N-methylpyridinium (ASP+), [3H]5-HT uptake and whole-cell patch-clamp techniques were employed to examine the effects of MB on SERT function. KEY RESULTS In EM4 cells expressing GFP-tagged human SERT (hSERT), MB concentration-dependently inhibited ASP+ accumulation (IC50: 1.4 ± 0.3 µM). A similar effect was observed in N2A cells. Uptake of [3H]5-HT was decreased by MB pretreatment. Furthermore, patch-clamp studies in hSERT expressing cells indicated that MB significantly inhibited 5-HT-evoked ion currents. Pretreatment with 8-Br-cGMP did not alter the inhibitory effect of MB on hSERT activity, and intracellular Ca2+ levels remained unchanged during MB application. Further experiments revealed that ASP+ binding to cell surface hSERT was reduced after MB treatment. In whole-cell radioligand experiments, exposure to MB (10 µM; 10 min) did not alter surface binding of the SERT ligand [125I]RTI-55. CONCLUSIONS AND IMPLICATIONS MB modulated SERT function and suggested that SERT may be an additional target upon which MB acts to produce 5-HT toxicity. PMID:21542830

  18. Effects of MDMA and related analogs on plasma 5-HT: relevance to 5-HT transporters in blood and brain.

    PubMed

    Yubero-Lahoz, Samanta; Ayestas, Mario A; Blough, Bruce E; Partilla, John S; Rothman, Richard B; de la Torre, Rafael; Baumann, Michael H

    2012-01-15

    (±)-3,4-Methylenedioxymethamphetamine (MDMA) is an illicit drug that evokes transporter-mediated release of serotonin (5-HT) in the brain. 5-HT transporter (SERT) proteins are also expressed in non-neural tissues (e.g., blood), and evidence suggests that MDMA targets platelet SERT to increase plasma 5-HT. Here we tested two hypotheses related to the effects of MDMA on circulating 5-HT. First, to determine if MDMA metabolites might contribute to actions of the drug in vivo, we used in vitro microdialysis in rat blood specimens to examine the effects of MDMA and its metabolites on plasma 5-HT. Second, to determine whether effects of MDMA on plasma 5-HT might be used as an index of central SERT activity, we carried out in vivo microdialysis in blood and brain after intravenous MDMA administration. The in vitro results show that test drugs evoke dose-related increases in plasma 5-HT ranging from two- to sevenfold above baseline, with MDMA and its metabolite, (±)-3,4-methylenedioxyamphetamine (MDA), producing the largest effects. The ability of MDMA and related analogs to elevate plasma 5-HT is correlated with their potency as SERT substrates in rat brain synaptosomes. The in vivo results reveal that MDMA causes concurrent increases in extracellular 5-HT in blood and brain, but there are substantial individual differences in responsiveness to the drug. Collectively, our findings indicate that MDMA and its metabolites increase plasma 5-HT by a SERT-dependent mechanism, and suggest the possibility that measures of evoked 5-HT release in blood may reflect central SERT activity.

  19. Antidepressant activity: contribution of brain microdialysis in knock-out mice to the understanding of BDNF/5-HT transporter/5-HT autoreceptor interactions

    PubMed Central

    Gardier, Alain M.

    2013-01-01

    Why antidepressants vary in terms of efficacy is currently unclear. Despite the leadership of selective serotonin reuptake inhibitors (SSRIs) in the treatment of depression, the precise neurobiological mechanisms involved in their therapeutic action are poorly understood. A better knowledge of molecular interactions between monoaminergic system, pre- and post-synaptic partners, brain neuronal circuits and regions involved may help to overcome limitations of current treatments and identify new therapeutic targets. Intracerebral in vivo microdialysis (ICM) already provided important information about the brain mechanism of action of antidepressants first in anesthetized rats in the early 1990s, and since then in conscious wild-type or knock-out mice. The principle of ICM is based on the balance between release of neurotransmitters (e.g., monoamines) and reuptake by selective transporters [e.g., serotonin transporter for serotonin 5-hydroxytryptamine (5-HT)]. Complementary to electrophysiology, this technique reflects pre-synaptic monoamines release and intrasynaptic events corresponding to ≈80% of whole brain tissue content. The inhibitory role of serotonergic autoreceptors infers that they limit somatodendritic and nerve terminal 5-HT release. It has been proposed that activation of 5-HT1A and 5-HT1B receptor sub-types limits the antidepressant-like activity of SSRIs. This hypothesis is based partially on results obtained in ICM experiments performed in naïve, non-stressed rodents. The present review will first remind the principle and methodology of ICM performed in mice. The crucial need of developing animal models that display anxiety and depression-like behaviors, neurochemical and brain morphological phenotypes reminiscent of these mood disorders in humans, will be underlined. Recently developed genetic mouse models have been generated to independently manipulate 5-HT1A auto and heteroreceptors and ICM helped to clarify the role of the pre-synaptic component

  20. 5-HT1B autoreceptor regulation of serotonin transporter activity in synaptosomes

    PubMed Central

    Hagan, Catherine E.; McDevitt, Ross A.; Liu, Yusha; Furay, Amy R.; Neumaier, John F.

    2012-01-01

    Serotonin-1B (5-HT1B) autoreceptors are located in serotonin (5-HT) terminals along with serotonin transporters (SERT), and play a critical role in autoregulation of serotonergic neurotransmission, and are implicated in disorders of serotonergic function, particularly emotional regulation. SERT modulates serotonergic neurotransmission by high-affinity reuptake of 5-HT. Alterations in SERT activity are associated with increased risk for depression and anxiety. Several neurotransmitter receptors are known to regulate SERT Km and Vmax, and previous work suggests that 5-HT1B autoreceptors may regulate 5-HT reuptake, in addition to modulating 5-HT release and synthesis. We used rotating disk electrode voltammetry to investigate 5-HT1B autoreceptor regulation of SERT-mediated 5-HT uptake into synaptosomes. The selective 5-HT1B antagonist SB224289 decreased SERT activity in synaptosomes prepared from wild-type but not 5-HT1B knockout mice, whereas SERT uptake was enhanced after pre-treatment with the selective 5-HT1B agonist CP94253. Furthermore, SERT activity varies as a function of 5-HT1B receptor expression—specifically, genetic deletion of 5-HT1B decreased SERT function, while viral-mediated overexpression of 5-HT1B autoreceptors in rat raphe neurons increased SERT activity in rat hippocampal synaptosomes. Considered collectively, these results provide evidence that 5-HT1B autoreceptors regulate SERT activity. Since SERT clearance rate varies as a function of 5-HT1B autoreceptor expression levels and is modulated by both activation and inhibition of 5-HT1B autoreceptors, this dynamic interaction may be an important mechanism of serotonin autoregulation with therapeutic implications. PMID:22961814

  1. Quantitation of 5HT3 receptors in forebrain of serotonin transporter deficient mice.

    PubMed

    Mössner, R; Schmitt, A; Hennig, T; Benninghoff, J; Gerlach, M; Riederer, P; Deckert, J; Lesch, K P

    2004-01-01

    Mice deficient in the serotonin transporter (5HTT) display highly elevated extracellular 5HT levels. 5HT exerts ist effects via at least fourteen different cloned 5HT receptors located pre- and postsynaptically. In contrast to the other 5HT receptors, the 5HT3 receptor is a ionotropic receptor with ligand-gated cation channel function. Since G-protein-coupled 5HT receptors show extensive adaptive changes in 5HTT-deficient mice, we investigated whether 5HT3 receptors are also altered in these mice. Using quantitative autoradiography, we found that 5HT3 receptors are upregulated in frontal cortex (+46%), parietal cortex (+42%), and in stratum oriens of the CA3 region of the hippocampus (+18%) of 5HTT knockout mice. Changes in 5HT3 receptor mRNA expression, as determined by quantitative in situ hybridisation, were less pronounced. The adaptive changes of 5HT3 receptor expression constitute a part of the complex regulatory pattern of 5HT receptors in 5HTT knockout mice.

  2. 5-HT(1A) receptors and memory.

    PubMed

    Meneses, Alfredo; Perez-Garcia, Georgina

    2007-01-01

    The study of 5-hydroxytryptamine (5-HT) systems has benefited from the identification, classification and cloning of multiple 5-HT receptors (5-HT(1)-5-HT(7)). Increasing evidence suggests that 5-HT pathways, reuptake site/transporter complex and 5-HT receptors represent a strategic distribution for learning and memory. A key question still remaining is whether 5-HT markers (e.g., receptors) are directly or indirectly contributing to the physiological and pharmacological basis of memory and its pathogenesis or, rather, if they represent protective or adaptable mechanisms (at least in initial stages). In the current paper, the major aim is to revise recent advances regarding mammalian 5-HT(1A) receptors in light of their physiological, pathophysiological and therapeutic implications in memory. An attempt is made to identify and discuss sources of discrepancies by employing an analytic approach to examine the nature and degree of difficulty of behavioral tasks used, as well as implicating other factors (for example, brain areas, training time or duration, and drug administration) which might offer new insights into the understanding and interpretation of these data. In this context, 8-OH-DPAT deserves special attention since for many years it has been the more selective 5-HT drug and, hence, more frequently used. As 5-HT(1A) receptors are key components of serotonergic signaling, investigation of their memory mechanisms and action sites and the conditions under which they might operate, could yield valuable insights. Moreover, selective drugs with agonists, neutral antagonists or inverse agonist properties for 5-HT(1A) (and 5-HT(7)) receptors may constitute a new therapeutic opportunity for learning and memory disorders.

  3. Fluvoxamine, a specific 5-hydroxytryptamine uptake inhibitor.

    PubMed

    Claassen, V; Davies, J E; Hertting, G; Placheta, P

    1977-08-01

    1. On the basis of both in vitro and in vivo experiments fluvoxamine has been characterized as a potential anti-depressant drug with almost exclusively 5-hydroxytryptamine (5-HT) uptake inhibiting properties. 2. Fluvoxamine is effective in inhibiting 5-ht uptake by blood platelets and brain synaptosomes. Due to inhibition of the membrane pump the compound prevents 5-HT depletion by the tyramine-derivatives H 75/12 and H 77/77. As a result of the interference with the neuronal re-uptake mechanism for 5-HT, fluvoxamine produces a decreased 5-HT turnover in the brain. Effects of 5-hydroxytryptophan (5-HTP) are potentiated in mice and in combination with pargyline, fluvoxamine induces 5-HT-like behavioural effects. 3. In contrast to tricyclic antidepressants, noradrenaline uptake processes are either unaffected or only slightly inhibited by fluvoxamine. The noradrenaline depleting effects of tyramine derivates are not influenced by fluvoxamine. Reserpine effects, such as ptosis are affected only at very high doses of the test compound. The antagonism by fluvoxamine of the reserpine-induced lowering of the pentamethylenetetrazole convulsive threshold can be regarded as due to an effect upon 5-HT uptake. In contrast to the effects of desmethylimipramine and imipramine, no stimulatory effects are found in rats when rapidly acting reserpine-like compounds are given following a dose of fluvoxamine.

  4. Fluvoxamine, a specific 5-hydroxytryptamine uptake inhibitor.

    PubMed Central

    Claassen, V; Davies, J E; Hertting, G; Placheta, P

    1977-01-01

    1. On the basis of both in vitro and in vivo experiments fluvoxamine has been characterized as a potential anti-depressant drug with almost exclusively 5-hydroxytryptamine (5-HT) uptake inhibiting properties. 2. Fluvoxamine is effective in inhibiting 5-ht uptake by blood platelets and brain synaptosomes. Due to inhibition of the membrane pump the compound prevents 5-HT depletion by the tyramine-derivatives H 75/12 and H 77/77. As a result of the interference with the neuronal re-uptake mechanism for 5-HT, fluvoxamine produces a decreased 5-HT turnover in the brain. Effects of 5-hydroxytryptophan (5-HTP) are potentiated in mice and in combination with pargyline, fluvoxamine induces 5-HT-like behavioural effects. 3. In contrast to tricyclic antidepressants, noradrenaline uptake processes are either unaffected or only slightly inhibited by fluvoxamine. The noradrenaline depleting effects of tyramine derivates are not influenced by fluvoxamine. Reserpine effects, such as ptosis are affected only at very high doses of the test compound. The antagonism by fluvoxamine of the reserpine-induced lowering of the pentamethylenetetrazole convulsive threshold can be regarded as due to an effect upon 5-HT uptake. In contrast to the effects of desmethylimipramine and imipramine, no stimulatory effects are found in rats when rapidly acting reserpine-like compounds are given following a dose of fluvoxamine. PMID:302726

  5. Amelioration of hypoxia-induced striatal 5-HT(2A) receptor, 5-HT transporter and HIF1 alterations by glucose, oxygen and epinephrine in neonatal rats.

    PubMed

    Anju, T R; Paulose, C S

    2011-09-20

    Alterations in neurotransmitters and its receptors expression induce brain injury during neonatal hypoxic insult. Molecular processes regulating the serotonergic receptors play an important role in the control of respiration under hypoxic insult. The present study focused on the serotonergic regulation of neonatal hypoxia and its resuscitation methods. Receptor binding assays and gene expression studies were done to evaluate the changes in 5HT(2A) receptors and its transporter in the corpus striatum of hypoxic neonatal rats and hypoxic rats resuscitated with glucose, oxygen and epinephrine. Total 5HT and 5HT(2A) receptor number was increased in hypoxic neonates along with an up regulation of 5HT(2A) receptor and 5HT transporter gene. The enhanced striatal 5HT(2A) receptors modulate the ventilatory response to hypoxia. Immediate glucose resuscitation was found to ameliorate the receptor and transporter alterations. Hypoxia induced ATP depletion mediated reduction in blood glucose levels can be encountered by glucose administration and oxygenation helps in overcoming the anaerobic condition. The adverse effect of immediate oxygenation and epinephrine supplementation was also reported. This has immense clinical significance in establishing a proper resuscitation for the management of neonatal hypoxia.

  6. Development of 5-HT transporter density and long-term effects of methylphenidate in an animal model of ADHD.

    PubMed

    Roessner, Veit; Manzke, Till; Becker, Andreas; Rothenberger, Aribert; Bock, Nathalie

    2009-01-01

    Although stimulants as the treatment of choice are widely prescribed in ADHD, little is known about their long-term neurobiological effects. Hence, for the first time the present study examined the long-term effects of chronic methylphenidate (MPH) administration on striatal 5-hydroxytryptamine transporter (5-HTT) densities in an animal model of ADHD. First, it compared the normal development of striatal 5-HTT densities of spontaneously hypertensive rats (SHR) as an animal model of ADHD and Wistar Kyoto (WKY) rats as controls; binding of the highly selective ligand of 5-HTT [(3)H]paroxetine was determined on membrane preparations of the striatum of SHR and WKY rats on postnatal days 25, 50, and 90, i.e. from the time of weaning until adulthood. Second, the long-term effect of chronic administration of 2 mg/kg per day MPH at two different developmental stages (days 25-39 or 50-64) on the striatal 5-HTT density was examined in both rat strains at day 90. Long-term effects of MPH treatment on striatal 5-HTT density in adulthood could be ruled out in both healthy (WKY) and "ADHD" rats (SHR). But a higher striatal 5-HTT density in older SHR versus WKY rats might indicate ADHD specific changes in the 5-HT system that needs further investigation not only in animals.

  7. An examination of 5-hydroxytryptamine receptors in human saphenous vein.

    PubMed Central

    Docherty, J. R.; Hyland, L.

    1986-01-01

    We have examined the effects of antagonists on the isometric contraction of the human saphenous vein produced by 5-hydroxytryptamine (5-HT). The 5-HT2-antagonist ketanserin (1 microM) had little effect on the lower part of the concentration-response curve to 5-HT, but markedly shifted the upper part of the curve. Yohimbine caused an approximately parallel shift of the concentration-response curve to 5-HT, with a pA2 of 5.48, much lower than its pA2 against noradrenaline in the absence (6.36) or presence (7.06) of cocaine. It is concluded that there are two components to the contractile response to 5-HT in human saphenous vein: at low concentrations 5-HT activates a yohimbine-sensitive receptor, and at higher concentrations 5-HT activates a 5-HT2-receptor. PMID:3801780

  8. Caulis Sinomenii extracts activate DA/NE transporter and inhibit 5HT transporter.

    PubMed

    Zhao, Gang; Bi, Cheng; Qin, Guo-Wei; Guo, Li-He

    2009-08-01

    Caulis Sinomenii (QFT) has analgesic, sedative, and anxiolytic-like actions, and is proven effective for improving drug dependence that is known to be associated with abnormal monoaminergic transmission. We assessed whether QFT would be biologically active in functionally regulating monoamine transporters using CHO cells expressing dopamine transporter (DAT), norepinephrine transporter (NET), or serotonin transporter (SERT) (i.e. D8, N1, or S6 cells, respectively). Here, we showed that its primary extracts, such as QA, QC, QE, QD, and QB (QFT ethanol, chloroform, ethyl acetate, alkaloid-free chloroform, and alkaloid-containing chloroform extract, respectively), and secondary extracts, such as QE-2, - 3, - 5, - 7, QD-1, - 2, - 3, - 4, - 5, and QB-1, - 2, - 3, - 4, - 5 (fractioned from QE, QD, and QB, respectively), in differing degrees, either increased DA/ NE uptake by corresponding D8/N1 cells or decreased 5HT uptake by S6 cells; wherein, QE-2, QD-3, and QE-7 were potent DA/NE uptake activators while both QE-7 and QB-5 were potent 5HT uptake inhibitors. Furthermore, the enhancement of DA/NE uptake was dependent of DAT/NET activity, and the inhibition of 5HT uptake was typical of competition. Thus, QFT extracts, especially QE-2 and QE-7 (both with stronger potencies), are novel monoamine transporter modulators functioning as DAT/ NET activators and/or SERT inhibitors, and would likely improve neuropsychological disorders through regulating monoamine transporters.

  9. PET imaging of the serotonin transporter and 5HT1A receptor in alcohol dependence

    PubMed Central

    Martinez, Diana; Slifstein, Mark; Gil, Roberto; Hwang, Dah-Ren; Huang, Yiyun; Perez, Audrey; Frankle, W. Gordon; Laruelle, Marc; Krystal, John; Abi-Dargham, Anissa

    2009-01-01

    Background Rodent models as well as studies in humans have suggested alterations in serotonin (5HT) innervation and transmission in early onset genetically determined or type II alcoholism. This study examines two indices of serotonergic transmission, 5HT transporter levels and 5-HT1A availability, in vivo, in type II alcoholism. This is the first report of combined tracers for pre and post-synaptic serotonergic transmission in the same alcoholic subjects and the first study of 5HT1A receptors in alcoholism. Method Fourteen alcohol dependent subjects were scanned (11 with both tracers, 1 with [11C]DASB only and two with [11C]WAY100635 only). Twelve healthy controls (HC) subjects were scanned with [11C]DASB and another 13 were scanned with [11C]WAY100635. Binding Potential (BPp, mL/cm3) and the specific to nonspecific partition coefficient (BPND, unitless) were derived for both tracers using 2 tissue compartment model and compared to HC across different brain regions. Relationships to severity of alcoholism were assessed. Results No significant differences were observed in regional BPp or BPND between patients and controls in any of the regions examined. No significant relationships were observed between regional 5HT transporter availability, 5-HT1A availability, and disease severity with the exception of a significant negative correlation between SERT and years of dependence in amygdala and insula. Conclusion This study did not find alterations in measures of 5-HT1A or 5HT transporter levels in patients with type II alcoholism. PMID:18962444

  10. Interaction between tricyclic and nontricyclic 5-hydroxytryptamine uptake inhibitors and the presynaptic 5-hydroxytryptamine inhibitory autoreceptors in the rat hypothalamus.

    PubMed

    Galzin, A M; Moret, C; Verzier, B; Langer, S Z

    1985-10-01

    In slices of the rat hypothalamus prelabeled with [3H]-5-hydroxytryptamine [( 3H]-5-HT), exposure to lysergic acid diethylamide or 5-methoxytryptamine decreased, in a concentration-dependent manner, the release of 3H-transmitter elicited by electrical stimulation. These inhibitory effects were antagonized by the 5-HT receptor antagonist methiothepin (1 microM). Exposure to methiothepin on its own increased in a concentration-dependent manner the electrically evoked overflow of [3H]-5-HT. Exposure to tricyclic antidepressants, like imipramine and amitriptyline, and to nontricyclic 5-HT uptake inhibitors, like paroxetine and citalopram, did not modify by themselves the electrically evoked overflow of [3H]-5-HT. Yet, the four inhibitors of neuronal uptake of 5-HT, antagonized the inhibition by lysergic acid diethylamide or 5-methoxytryptamine of the electrically induced release of [3H]-5-HT. After depletion of endogenous stores of 5-HT by pretreatment with para-chlorophenylalanine (300 mg/kg i.p.), the inhibitors of 5-HT uptake increased the electrically evoked release of [3H]-5-HT in a concentration-dependent manner. Their order of potency to enhance 5-HT overflow after pretreatment with parachlorophenylalanine paralleled their potency at inhibiting neuronal uptake of 5-HT (paroxetine = citalopram greater than imipramine greater than amitriptyline). In para-chlorophenylalanine-treated rat hypothalamic slices, these inhibitors of 5-HT uptake antagonized the inhibition by 5-HT autoreceptor agonists of the electrically evoked release of [3H]-5-HT to a similar extent than was observed in control rats. It is concluded that inhibition of 5-HT uptake reduces the effectiveness of 5-HT autoreceptor agonists to inhibit the electrically evoked release of [3H]-5-HT, irrespective of the chemical structure of the uptake inhibitor or of the levels of endogenous 5-HT achieved in the synaptic gap.

  11. 5-hydroxytryptamine induced relaxation in the pig urinary bladder neck

    PubMed Central

    Recio, Paz; Barahona, María Victoria; Orensanz, Luis M; Bustamante, Salvador; Martínez, Ana Cristina; Benedito, Sara; García-Sacristán, Albino; Prieto, Dolores; Hernández, Medardo

    2009-01-01

    Background and purpose 5-Hydroxytryptamine (5-HT) is one of the inhibitory mediators in the urinary bladder outlet region. Here we investigated mechanisms involved in 5-HT-induced relaxations of the pig bladder neck. Experimental approach Urothelium-denuded strips of pig bladder were mounted in organ baths for isometric force recordings of responses to 5-HT and electrical field stimulation (EFS). Key results After phenylephrine-induced contraction, 5-HT and 5-HT receptor agonists concentration-dependently relaxed the preparations, with the potency order: 5-carboxamidotryptamine (5-CT) > 5-HT = RS67333 > (±)-8-hydroxy-2-dipropylaminotetralinhydrobromide > m-chlorophenylbiguanide > α-methyl-5-HT > ergotamine. 5-HT and 5-CT relaxations were reduced by the 5-HT7 receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulphonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride and potentiated by (S)-N-tert-butyl-3-(4-(2-methoxyphenyl)-piperazin-1-yl)-2-phenylpropanamide dihydrochloride (WAY 100135) and cyanopindolol, 5-HT1A and 5-HT1A/1B receptor antagonists respectively. Inhibitors of 5-HT1B/1D, 5-HT2, 5-HT2B/2C, 5-HT3, 5-HT4, 5-HT5A and 5-HT6 receptors failed to modify 5-HT responses. Blockade of monoamine oxidase A/B, noradrenergic neurotransmission, α-adrenoceptors, muscarinic and purinergic receptors, nitric oxide synthase, guanylate cyclase and prostanoid synthesis did not alter relaxations to 5-HT. Inhibitors of Ca2+-activated K+ and ATP-dependent K+ channels failed to modify 5-HT responses but blockade of neuronal voltage-gated Na+-, Ca2+-and voltage-gated K+ (Kv)-channels potentiated these relaxations. Adenylyl cyclase activation and cAMP-dependent protein kinase (PKA) inhibition potentiated and reduced, respectively, 5-HT-induced responses. Under non-adrenergic, non-cholinergic, non-nitrergic conditions, EFS induced neurogenic, frequency-dependent, relaxations which were resistant to WAY 100135 and cyanopindolol. Conclusions and implications 5-HT relaxed

  12. 5-HT systems: emergent targets for memory formation and memory alterations.

    PubMed

    Meneses, Alfredo

    2013-01-01

    Drugs acting through 5-hydroxytryptamine (serotonin or 5-HT) systems modulate memory and its alterations, although the mechanisms involved are poorly understood. 5-HT drugs may present promnesic and/or antiamnesic (or even being amnesic) effects. Key questions regarding 5-HT markers include whether receptors directly or indirectly participate and/or contribute to the physiological and pharmacological basis of memory and its pathogenesis; hence, the major aim of this article was to examine recent advances in emergent targets of the 5-HT systems for memory formation and memory alterations. Recent reviews and findings are summarized, mainly in the context of the growing notion of memory deficits in brain disorders (e.g., posttraumatic stress disorder, mild cognitive impairment, consumption of drugs, poststroke cognitive dysfunctions, schizophrenia, Parkinson disease, and infection-induced memory impairments). Mainly, mammalian and (some) human data were the focus. At least agonists and antagonists for 5-HT1A/1B, 5-HT2A/2B/2C, 5-HT3, 5-HT4, 5-HT6, and 5-HT7 receptors as well as serotonin uptake inhibitors seem to have a promnesic and/or antiamnesic effect in different conditions and 5-HT markers seem to be associated to neural changes. Available evidence offers clues about the possibilities, but the exact mechanisms remain unclear. For instance, 5-HT transporter expression seems to be a reliable neural marker related to memory mechanisms and its alterations.

  13. 5-Hydroxytryptamine-induced tachycardia in the pig: possible involvement of a new type of 5-hydroxytryptamine receptor.

    PubMed Central

    Bom, A. H.; Duncker, D. J.; Saxena, P. R.; Verdouw, P. D.

    1988-01-01

    1. The mechanism of 5-hydroxytryptamine (5-HT)-induced tachycardia is species-dependent and is mediated directly or indirectly either by '5-HT1-like' (cat), 5-HT2 (rat, dog) or 5-HT3 (rabbit) receptors, or by an action similar to tyramine (guinea-pig). The present investigation is devoted to the analysis of the positive chronotropic effect of 5-HT in the pentobarbitone-anaesthetized pig. 2. Intravenous bolus injections of 5-HT (3, 10 and 30 micrograms kg-1) in pigs resulted in dose-dependent increases in heart rate of 24 +/- 2, 38 +/- 3 and 51 +/- 3 beats min-1, respectively (n = 39). Topical application of a high concentration of 5-HT (150 micrograms kg-1 in 5 ml) on the right atrium was also followed by tachycardia (38 +/- 6 beats min-1, n = 4). 3. A number of drugs which antagonize responses mediated by different 5-HT receptors--phenoxybenzamine, methiothepin, metergoline, methysergide and mesulergine ('5-HT1-like' and 5-HT2 receptors), ketanserin, cyproheptadine, pizotifen and mianserin (5-HT2 receptors), and MDL 72222 and ICS 205-930 (5-HT3 receptors)--did not attenuate the chronotropic responses to 5-HT. 4. The 5-HT-induced tachycardia was also not affected by antagonists at alpha- and beta-adrenoceptors, muscarinic, nicotinic, histamine and dopamine receptors, and calcium channels. 5. Selective inhibitors of 5-HT-uptake, indalpine and fluvoxamine, themselves increased porcine heart rate and facilitated 5-HT-induced tachycardia both in magnitude and in duration.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3370393

  14. Allergic sensitization modifies the pulmonary expression of 5-hydroxytryptamine receptors in guinea pigs.

    PubMed

    Córdoba-Rodríguez, Guadalupe; Vargas, Mario H; Ruiz, Víctor; Carbajal, Verónica; Campos-Bedolla, Patricia; Mercadillo-Herrera, Paulina; Arreola-Ramírez, José Luis; Segura-Medina, Patricia

    2016-03-01

    There is mounting evidence that 5-hydroxytryptamine (5-HT) plays a role in asthma. However, scarce information exists about the pulmonary expression of 5-HT receptors and its modification after allergic sensitization. In the present work, we explored the expression of 5-HT1A, 5-HT2A, 5-HT3, 5-HT4, 5-ht5a, 5-HT6, and 5-HT7 receptors in lungs from control and sensitized guinea pigs through qPCR and Western blot. In control animals, mRNA from all receptors was detectable in lung homogenates, especially from 5-HT2A and 5-HT4 receptors. Sensitized animals had decreased mRNA expression of 5-HT2A and 5-HT4 receptors and increased that of 5-HT7 receptor. In contrast, they had increased protein expression of 5-HT2A receptor in bronchial epithelium and of 5-HT4 receptor in lung parenchyma. The degree of airway response to the allergic challenge was inversely correlated with mRNA expression of the 5-HT1A receptor. In summary, our results showed that major 5-HT receptor subtypes are constitutively expressed in the guinea pig lung, and that allergic sensitization modifies the expression of 5-HT2A, 5-HT4, and 5-HT7 receptors.

  15. A quantitative model of amphetamine action on the 5-HT transporter

    PubMed Central

    Sandtner, Walter; Schmid, Diethart; Schicker, Klaus; Gerstbrein, Klaus; Koenig, Xaver; Mayer, Felix P; Boehm, Stefan; Freissmuth, Michael; Sitte, Harald H

    2014-01-01

    Background and Purpose Amphetamines bind to the plasmalemmal transporters for the monoamines dopamine (DAT), noradrenaline (NET) and 5-HT (SERT); influx of amphetamine leads to efflux of substrates. Various models have been proposed to account for this amphetamine-induced reverse transport in mechanistic terms. A most notable example is the molecular stent hypothesis, which posits a special amphetamine-induced conformation that is not likely in alternative access models of transport. The current study was designed to evaluate the explanatory power of these models and the molecular stent hypothesis. Experimental Approach Xenopus laevis oocytes and HEK293 cells expressing human (h) SERT were voltage-clamped and exposed to 5-HT, p-chloroamphetamine (pCA) or methylenedioxyamphetamine (MDMA). Key Results In contrast to the currents induced by 5-HT, pCA-triggered currents through SERT decayed slowly in Xenopus laevis oocytes once the agonist was removed (consistent with the molecular stent hypothesis). However, when SERT was expressed in HEK293 cells, currents induced by 3 or 100 μM pCA decayed 10 or 100 times faster, respectively, after pCA removal. Conclusions and Implications This discrepancy in decay rates is inconsistent with the molecular stent hypothesis. In contrast, a multistate version of the alternative access model accounts for all the observations and reproduces the kinetic parameters extracted from the electrophysiological recordings. A crucial feature that explains the action of amphetamines is their lipophilic nature, which allows for rapid diffusion through the membrane. PMID:24251585

  16. Electroacupuncture Restores 5-HT System Deficit in Chronic Mild Stress-Induced Depressed Rats

    PubMed Central

    Tu, Ya; Yang, Xiuyan; Liu, Ping

    2016-01-01

    Objective. The current study is designed to investigate the antidepressant efficacy of electroacupuncture (EA) treatment by evaluating its effect on the synthesis, metabolism, reuptake, and receptors of 5-hydroxytryptamine (5-HT), so as to clarify the molecular mechanisms of EA for antidepression. Materials and Methods. Solitary combined with the chronic unpredictable mild stress (CUMS) was used to establish the rat model with depression. The depressed rats were supplied with EA treatment for 4 weeks, and the behavior change and the following indices including 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), monoamine oxidase A (MAO-A), tryptophan hydroxylase (TPH), 5-HT transporter (SERT), 5-HT1A, and 5-HT2A in hippocampus and prefrontal cortex were examined. Results. EA treatment significantly improved the behavior of rats and increased 5-HT level in hippocampus of depressed rats. Similarly, EA treatment could significantly increase protein and mRNA expression of TPH and 5-HT1A during 5-HT synthesis process in hippocampus of depressed rats. However, EA treatment had no effect on the activity of MAO-A and the expression of SERT protein and mRNA. Conclusion. Antidepressant efficacy of EA treatment can be accomplished through enhancing 5-HT synthesis, upregulating 5-HT1A level, and improving 5-HT content in brain and synaptic gaps. PMID:27994633

  17. Effect of halothane on metabolism of 5-hydroxytryptamine by rat lungs perfused in situ.

    PubMed Central

    Watkins, C A; Wartell, S A; Rannels, D E

    1983-01-01

    The effect of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on the uptake of 14C-labelled 5-hydroxytryptamine (5-HT) and its metabolism to 5-hydroxyindol-3-ylacetic acid (5-HIAA) was investigated in rat lungs perfused in situ. The rate of accumulation of 14C-labelled 5-HIAA in the tissue, monitored as an index of 5-HT metabolism, was linear with time, displayed saturation kinetics and remained stable for at least 180 min of perfusion. Exposure of the lungs to halothane (4%) for 60 min reversibly reduced production of 5-HIAA through an increase in the apparent Km for metabolism of the amine from 1.45 to 3.52 microM (P less than 0.001); the anaesthetic had no effect on the Vmax. of the process. The magnitude of the inhibition increased with time of exposure to the anaesthetic. Halothane exposure did not alter the distribution of [3H]sorbitol or [14C]5-HT, pulmonary vascular resistance, levels of ATP or the kinetics of amino acid transport in the tissue. Inhibition of protein synthesis by cycloheximide did not mimic the effect of the anaesthetic. These observations, together with those made in lungs exposed to inhibitors of 5-HT uptake and metabolism, were consistent with a halothane-mediated inhibition of 5-HT uptake, which did not appear to involve non-specific changes in membrane permeability. PMID:6847641

  18. Inactivation of 5HT transport in mice: modeling altered 5HT homeostasis implicated in emotional dysfunction, affective disorders, and somatic syndromes.

    PubMed

    Lesch, K P; Mössner, R

    2006-01-01

    Animal models have not only become an essential tool for investigating the neurobiological function of genes that are involved in the etiopathogenesis of human behavioral and psychiatric disorders but are also fundamental in the development novel therapeutic strategies. As an example, inactivation of the serotonin (5HT) transporter (5Htt, Slc6a4) gene in mice expanded our view of adaptive 5HT uptake regulation and maintenance of 5HT homeostasis in the developing human brain and molecular processes underlying anxiety-related traits, as well as affective spectrum disorders including depression. 5Htt-deficient mice have been employed as a model complementary to direct studies of genetically complex traits and disorders, with important findings in biochemical, morphological, behavioral, and pharmacological areas. Based on growing evidence for a critical role of the 5HTT in the integration of synaptic connections in the rodent, nonhuman primate, and human brain during critical periods of development and adult life, more in-depth knowledge of the molecular mechanisms implicated in these fine-tuning processes is currently evolving. Moreover, demonstration of a joint influence of the 5HTT variation and environmental sources during early brain development advanced our understanding of the mechanism of genexgene and genexenvironment interactions in the developmental neurobiology of anxiety and depression. Lastly, imaging techniques, which become increasingly elaborate in displaying the genomic influence on brain system activation in response to environmental cues, have provided the means to bridge the gap between small effects of 5HTT variation and complex behavior, as well as psychopathological dimensions. The combination of elaborate genetic, epigenetic, imaging, and behavioral analyses will continue to generate new insight into 5HTT's role as a master control gene of emotion regulation.

  19. Effects of 5-hydroxytryptamine on canine isolated coronary arteries.

    PubMed Central

    Porquet, M. F.; Pourrias, B.; Santamaria, R.

    1982-01-01

    The effects of 5-hydroxytryptamine (5-HT) were studied in vitro on proximal and distal portions of canine interventricular and circumflex coronary arterial strips. 5-HT produced concentration-related contractions in the proximal portion whether contracted previously with KCl or not. These responses were still present after either chemical sympathetic denervation or release of noradrenaline induced by K+-free salt solution. In contrast, the distal portions of coronary arteries did not respond to 5-HT. Concentration-response curves to 5-HT exhibited a classical hyperbolic shape with a calculated Hill-coefficient of approximately 1. Methysergide and phentolamine but not morphine shifted to the right and depressed the maximum of the dose-response curves to 5-HT. It is concluded that the contractions produced by 5-HT in the proximal portion of the interventricular and circumflex coronary arteries are not due to the release of endogenous noradrenaline. The vessels appear to possess separate receptors for 5-HT and noradrenaline and the 5-HT responses belong to neither the M nor the D type. PMID:7186819

  20. Release of ( sup 14 C)5-hydroxytryptamine from human platelets by red wine

    SciTech Connect

    Jarman, J.; Glover, V.; Sandler, M. )

    1991-01-01

    Red wine, at a final dilution of 1/50, caused released of ({sup 14}C)5-hydroxytryptamine (5-HT) from preloaded platelets, an effect which was not observed with any white wines or beers tested. Since 5-HT, is probably released from body stores during migraine attacks and red wine is known to provoke migraine episodes in susceptible individuals, release of 5-HT, possibly from central stores, could represent a plausible mechanism for its mode of action.

  1. Separate 5-hydroxytryptamine receptors on the salivary gland of the blowfly are linked to the generation of either cyclic adenosine 3',5'-monophosphate or calcium signals.

    PubMed Central

    Berridge, M. J.; Heslop, J. P.

    1981-01-01

    1 5'-Hydroxytryptamine (5-HT) stimulates the formation of two separate second messengers in the salivary gland of the blowfly. Activation of adenylate cyclase raises adenosine 3',5'-monophosphate (cyclic AMP) whereas the hydrolysis of phosphatidylinositol (PI) is associated with an increase in calcium permeability. The possibility that these two signal pathways might be controlled by separate 5-HT receptors was studied by testing the specificity of 5-HT analogues and antagonists. 2 The parent compound 5-HT was found to stimulate both cyclic AMP formation and the related parameters of PI hydrolysis and calcium transport with similar dose-response relationships. 3 Certain analogues such as 4- and 5-fluoro-alpha-methyltryptamine were capable of raising cyclic AMP levels and stimulating fluid secretion but did not stimulate the hydrolysis of PI or the entry of calcium. 4 Other analogues, which had chloro or methyl substituents at the 5-position, were found to stimulate the hydrolysis of PI and the transport of calcium at much lower doses than those required to stimulate the formation of cyclic AMP. 5 Antagonists were also found to exert selective effects. Methysergide was a potent inhibitor of PI hydrolysis whereas cinanserin was far more selective in blocking the stimulatory effect of 5-HT on cyclic AMP formation. 6 It is concluded that 5-HT acts on two separate receptors, a 5-HT1 receptor acting through calcium and a 5-HT2 receptor which mediates its effects through cyclic AMP. PMID:6265018

  2. Selectivity of (3)H-MADAM binding to 5-hydroxytryptamine transporters in vitro and in vivo in mice; correlation with behavioural effects.

    PubMed

    Larsen, A K; Brennum, L T; Egebjerg, J; Sánchez, C; Halldin, C; Andersen, P H

    2004-03-01

    1. Binding of the novel radioligand (3)H-2-(2-dimethylaminomethyl-phenylsulphanyl)-5-methyl-phenylamine ((3)H-MADAM) to the serotonin transporter (SERT) was used to characterise a range of selective serotonin re-uptake inhibitors (SSRIs) in vitro and in vivo. 2. (3)H-MADAM bound with high affinity in a saturable manner to both human SERT expressed in CHO cells (K(d)=0.20 nm (pK(d)=9.74+/-0.12), B(max)=35+/-4 fmol mg(-1) protein) and mouse cerebral cortex membranes (K(d)=0.21 nm (pK(d)=9.66+/-0.10), B(max)=50+/-24 fmol mg(-1) protein). 3. Binding of (3)H-MADAM was highly selective for SERT in vitro as demonstrated by the in vitro profile of MADAM tested at 75 different receptors, ion channels and transporters. This was further substantiated by the pharmacological profile of the binding. Hence, the binding of (3)H-MADAM was potently inhibited by SSRIs but not by selective inhibitors of noradrenaline transport and dopamine transport. Likewise, a 5-HT(2A/2C) receptor antagonist did not inhibit (3)H-MADAM binding. 4. (3)H-MADAM binding in vivo was inhibited only by compounds which also inhibited the binding of (3)H-MADAM in vitro (the SSRIs, mixed SERT/noradrenaline transport inhibitors and clomipramine), confirming the selectivity of (3)H-MADAM for SERT also in vivo. Moreover, compounds effective in inhibiting (3)H-MADAM binding were the only ones found to be active in the mouse 5-HTP potentiation test confirming the model as a behavioural correlate to in vivo 5-HT uptake. 5. Finally, it was found that a SERT occupancy of 85-95% was necessary to produce 50% of the maximum behavioural response (ED(50)).

  3. Measuring endogenous 5-HT release by emission tomography: promises and pitfalls

    PubMed Central

    Paterson, Louise M; Tyacke, Robin J; Nutt, David J; Knudsen, Gitte M

    2010-01-01

    Molecular in vivo neuroimaging techniques can be used to measure regional changes in endogenous neurotransmitters, evoked by challenges that alter synaptic neurotransmitter concentration. This technique has most successfully been applied to the study of endogenous dopamine release using positron emission tomography, but has not yet been adequately extended to other neurotransmitter systems. This review focuses on how the technique has been applied to the study of the 5-hydroxytryptamine (5-HT) system. The principles behind visualising fluctuations in neurotransmitters are introduced, with reference to the dopaminergic system. Studies that aim to image acute, endogenous 5-HT release or depletion at 5-HT receptor targets are summarised, with particular attention to studies in humans. Radiotracers targeting the 5-HT1A, 5-HT2A, and 5-HT4 receptors and the serotonin reuptake transporter have been explored for their sensitivity to 5-HT fluctuations, but with mixed outcomes; tracers for these targets cannot reliably image endogenous 5-HT in humans. Shortcomings in our basic knowledge of the mechanisms underlying changes in binding potential are addressed, and suggestions are made as to how the selection of targets, radiotracers, challenge paradigms, and experimental design might be optimised to improve our chances of successfully imaging endogenous neurotransmitters in the future. PMID:20664611

  4. γ-Aminobutyric acid suppresses enhancement of hamster sperm hyperactivation by 5-hydroxytryptamine

    PubMed Central

    FUJINOKI, Masakatsu; TAKEI, Gen L.

    2016-01-01

    Sperm hyperactivation is regulated by hormones present in the oviduct. In hamsters, 5-hydroxytryptamine (5HT) enhances hyperactivation associated with the 5HT2 receptor and 5HT4 receptor, while 17β-estradiol (E2) and γ-aminobutyric acid (GABA) suppress the association of the estrogen receptor and GABAA receptor, respectively. In the present study, we examined the regulatory interactions among 5HT, GABA, and E2 in the regulation of hamster sperm hyperactivation. When sperm were exposed to E2 prior to 5HT exposure, E2 did not affect 5HT-enhanced hyperactivation. In contrast, GABA partially suppressed 5HT-enhanced hyperactivation when sperm were exposed to GABA prior to 5HT. GABA suppressed 5HT-enhanced hyperactivation associated with the 5HT2 receptor although it did not suppress 5HT-enhanced hyperactivation associated with the 5HT4 receptor. These results demonstrate that hamster sperm hyperactivation is regulated by an interaction between the 5HT2 receptor-mediated action of 5HT and GABA. PMID:27773888

  5. Methotrexate causes a change in intestinal 5-hydroxytryptamine metabolism in rats.

    PubMed

    Takano, Yuho; Machida, Takuji; Obara, Yusuke; Hirano, Megumi; Kudo, Sae; Takagi, Minako; Hamaue, Naoya; Iizuka, Kenji; Hirafuji, Masahiko

    2014-10-05

    The effects of methotrexate on 5-hydroxytryptamine (5-HT) metabolism in the intestinal tissue of rats were investigated during the delayed phase after a single administration. Rats were i.p. injected with methotrexate or with saline as a control, and kaolin and food intakes were measured by an automatic monitoring apparatus. At 96 h after administration, dissected-out ileal tissue was frozen rapidly in liquid nitrogen for further analysis or fixed for immunohistochemical staining. Methotrexate at a dose of 50 mg/kg caused a time-dependent increase in kaolin intake lasting up to 72 h after administration, which returned to the control level at 96 h after administration. This dose of methotrexate caused a gradual decrease in body weight, food intake, and water intake lasting up to 72 h, which approached the control level at 96 h. Methotrexate caused pathologic changes, including a moderate inflammatory response in the ileal tissue and an increase in the number of L-tryptophan hydroxylase (TPH)-expressing cells in the ileal mucosa. Methotrexate also caused a significant increase in 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) content and in TPH1 mRNA expression in the ileal tissues. It had no significant effects on mRNA expression of serotonin transporter, COX-1, or COX-2 or on myeloperoxidase activity. This study demonstrated, for the first time, that methotrexate caused a change in the ileal 5-HT metabolism associated with hyperplasia of mucosal enterochromaffin cells.

  6. Skimmianine and related furoquinolines function as antagonists of 5-hydroxytryptamine receptors in animals.

    PubMed

    Cheng, J T; Chang, T K; Chen, I S

    1994-10-01

    1. Skimmianine, kokusaginine and confusameline, three furoquinolines extracted from the leaves of Evodia merrillii (Rutaceae), were investigated to characterize their selective effects on subtypes of 5-hydroxytryptamine (5-HT) receptors. 2. In the isolated membranes of rat cerebrocortex, using [3H]-5-HT and [3H]-ketanserin as radioligands, skimmianine and the two other furoquinolines displaced radioligand bindings in a concentration-dependent manner. Lower concentrations were required to affect [3H]-ketanserin binding than [3H]-5-HT binding in the order skimmianine > kokusaginine > confusameline. 3. Furoquinolines inhibited 5-HT-induced contraction mediated by 5-HT2 receptors in the presence of methiothepin in rat isolated aorta. Also, the combination of furoquinolines with ketanserin showed an additive antagonism. 4. These furoquinolines were inactive on the 5-carboxamidotryptamine-induced relaxation of guinea-pig ileum, a 5-HT1-mediated event. However, 5-HT-induced contraction via 5-HT2 receptors was reduced by these furoquinolines in a way similar to that in blood vessels. 5. The failure of these compounds to affect the 5-HT-induced Bezold-Jarisch-like reflex in anaesthetized rats, the major 5-HT3-mediated action, ruled out an action on 5-HT3 receptors. 6. The results obtained suggest that three furoquinoline alkaloids may act on 5-HT receptors in animals, more selectively to the 5-HT2 subtype, in the order of skimmianine > kokusaginine > confusameline.

  7. 5-HT spatial distribution imaging with multiphoton excitation of 5-HT correlative visible fluorescence in live cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihong; Zeng, Shaoqun; Liu, Yafeng; Zhou, Wei; Chen, Tongsheng; Luo, Qingming

    2002-04-01

    The autofluorescence of 5-Hydroxytryptamine (5-HT) loaded rat mucosal mast cells (RBL-2H3 cells) is imaged with multiphoton excitation laser scanning microscope (MPELSM). 5-HT correlative visible fluorescence (Fco-vis) excited with 740-nm multiphoton excitation is observed in live cells for the first time, and the generating mechanism of 5-HT Fco-vis is studied. The spatial distribution of 5-HT in live cells is imaged at high spatial resolution in our experiment, which provides a new way to study the correlation between 5-HT spatial distribution and content, and the cellular functional state in live tissue or cells.

  8. Pharmacokinetic–pharmacodynamic modelling of fluvoxamine 5-HT transporter occupancy in rat frontal cortex

    PubMed Central

    Geldof, M; Freijer, J I; van Beijsterveldt, L; Langlois, X; Danhof, M

    2008-01-01

    Background and purpose: The pharmacokinetic–pharmacodynamic (PK–PD) correlation of fluvoxamine 5-HT transporter (SERT) occupancy was determined in rat frontal cortex ex vivo. Experimental approach: Rats (n=47) with permanent arterial and venous cannulas received a 30 min intravenous infusion of fluvoxamine (1 or 7.3 mg kg−1). At various time points after dosing, brains were collected for determination of fluvoxamine concentration and SERT occupancy. In addition, the time course of fluvoxamine concentration in plasma was determined up to the time of brain collection. In a separate study (n=26), the time course of fluvoxamine concentration in brain extracellular fluid (ECF) and plasma was determined. The results of the investigations were interpreted by nonlinear mixed effects modeling Key results: Highest SERT occupancy was reached at the first time point (10 or 15 min) and maintained for 1.5 and 7 h after 1 and 7.3 mg kg−1, respectively. Thereafter, SERT occupancy decreased linearly at a rate of 8% h−1. SERT occupancy could be directly related to plasma, brain ECF and brain tissue concentrations by a hyperbolic function (Bmax model). Maximal SERT occupancy (Bmax) was 95%. Estimated concentrations at half-maximal SERT occupancy (EC50) in plasma, ECF and brain tissue were 0.48, 0.22 and 14.8 ng mL−1 respectively. The minimum value of the objective function decreased 12 points for ECF and brain tissue concentrations relative to plasma (P<0.01), presumably as a result of nonlinear brain distribution. Conclusions and implications: The proposed PK–PD model constitutes a useful basis for prediction of the time course of ex vivo SERT occupancy in behavioural studies with selective serotonin reuptake inhibitors. PMID:18493251

  9. Correlated gene expression encoding serotonin (5-HT) receptor 4 and 5-HT transporter in proximal colonic segments of mice across different colonization states and sexes.

    PubMed

    Reigstad, C S; Linden, D R; Szurszewski, J H; Sonnenburg, J L; Farrugia, G; Kashyap, P C

    2016-09-01

    The production and handling of serotonin (5-HT) is an important determinant of colonic motility and has been reported to be altered in gastrointestinal (GI) disorders such as irritable bowel syndrome (IBS). Recent studies suggest that the intestinal microbiota and sex of the host can influence expression of genes involved in 5-HT biosynthesis and signaling. While expression of genes in serotonergic pathways has been shown to be variable, it remains unclear whether genes within this pathway are coregulated. As a first step in that direction, we investigated potential correlations in relative mRNA expression of serotonergic genes, in the proximal colon isolated from male and female mice in different states of microbial association: germ-free (GF), humanized (ex-germ-free colonized with human gut microbiota, HM), and conventionally raised (CR) mice. Among the 10 pairwise comparisons conducted between five serotonergic transcripts, Tph1, Chga, Maoa, Slc6a4, and Htr4, we found a strong, positive correlation between colonic expression of Slc6a4 and Htr4 across different colonization states and sexes. We also identified a positive correlation between the expression of Tph1 and Chga; however, there were no correlations observed between any other tested pair of 5-HT-related transcripts. These data suggest that correlated expression of Slc6a4 and Htr4 likely involves coregulation of genes located on different chromosomes which modulate serotonergic activity in the gut. Further work will need to be done to understand the pathways and cell types responsible for this correlated expression, given the important role of 5-HT in gastrointestinal physiology.

  10. Amantadin e tremor, a 5-hydroxytryptamine-mediated response?

    PubMed

    Cox, B; Tha, S J

    1975-02-01

    Amantadine-induced tremor has been investigated using mice. Experiments with, mebanazine, reserpine, diethyldithiocarbamate, and p-chlorophenylalanine suggest that the tremorgenic action of amantadine is influenced by a balance between three putative central nervous system (CNS) transmitters: noradrenaline, dopamine and 5-hydroxytryptamine (5-HT). Drugs which reduce the concentration of the catecholamines in brain increase amantadine induced tremor. p-Chlorophenylalanine, which specifically depletes brain 5-HT, antagonises amantadine-induced tremor. An ED50 (tremor) dose of amantadine decreases the concentration of 5-hydroxy-indoleacetic acid (5-HIAA) in rat brain, particularly when this elevated due to pretreatment with 5-hydroxytryptophan. Neither inhibition of monoamine oxidase nor reduction of 5-HT-reuptake appear to be responsible for this decrease. Experiments on rat fundus suggest that amantadine increased the sensitivity of receptors to 5-HT. A similar mechanism of action in the CNS could explain both the tremor and the decrease in brain 5-HIAA. The possible relevance of these findings is discussed with respect to the known anti-Parkinson action of amantadine.

  11. Blockade of the high-affinity noradrenaline transporter (NET) by the selective 5-HT reuptake inhibitor escitalopram: an in vivo microdialysis study in mice

    PubMed Central

    Nguyen, Hai T; Guiard, Bruno P; Bacq, Alexandre; David, Denis J; David, Indira; Quesseveur, Gaël; Gautron, Sophie; Sanchez, Connie; Gardier, Alain M

    2013-01-01

    BACKGROUND AND PURPOSE Escitalopram, the S(+)-enantiomer of citalopram is the most selective 5-HT reuptake inhibitor approved. Although all 5-HT selective reuptake inhibitors (SSRIs) increase extracellular levels of 5-HT ([5-HT]ext). some also enhance, to a lesser extent, extracellular levels of noradrenaline ([NA]ext). However, the mechanisms by which SSRIs activate noradrenergic transmission in the brain remain to be determined. EXPERIMENTAL APPROACH This study examined the effects of escitalopram, on both [5-HT]ext and [NA]ext in the frontal cortex (FCx) of freely moving wild-type (WT) and mutant mice lacking the 5-HT transporter (SERT−/−) by using intracerebral microdialysis. We explored the possibilities that escitalopram enhances [NA]ext, either by a direct mechanism involving the inhibition of the low- or high-affinity noradrenaline transporters, or by an indirect mechanism promoted by [5-HT]ext elevation. The forced swim test (FST) was used to investigate whether enhancing cortical [5-HT]ext and/or [NA]ext affected the antidepressant-like activity of escitalopram. KEY RESULTS In WT mice, a single systemic administration of escitalopram produced a significant increase in cortical [5-HT]ext and [NA]ext. As expected, escitalopram failed to increase cortical [5-HT]ext in SERT−/− mice, whereas its neurochemical effects on [NA]ext persisted in these mutants. In WT mice subjected to the FST, escitalopram increased swimming parameters without affecting climbing behaviour. Finally, escitalopram, at relevant concentrations, failed to inhibit cortical noradrenaline and 5-HT uptake mediated by low-affinity monoamine transporters. CONCLUSIONS AND IMPLICATIONS These experiments suggest that escitalopram enhances, although moderately, cortical [NA]extin vivo by a direct mechanism involving the inhibition of the high-affinity noradrenaline transporter (NET). PMID:22233336

  12. Effects of 5-HT2B, 5-HT3 and 5-HT4 receptor antagonists on gastrointestinal motor activity in dogs

    PubMed Central

    Morita, Hiroki; Mochiki, Erito; Takahashi, Nobuyuki; Kawamura, Kiyoshi; Watanabe, Akira; Sutou, Toshinaga; Ogawa, Atsushi; Yanai, Mitsuhiro; Ogata, Kyoichi; Fujii, Takaaki; Ohno, Tetsuro; Tsutsumi, Souichi; Asao, Takayuki; Kuwano, Hiroyuki

    2013-01-01

    AIM: To study the effects of 5-hydroxytryptamine (5-HT) receptor antagonists on normal colonic motor activity in conscious dogs. METHODS: Colonic motor activity was recorded using a strain gauge force transducer in 5 dogs before and after 5-HT2B, 5-HT3 and 5-HT4 receptor antagonist administration. The force transducers were implanted on the serosal surfaces of the gastric antrum, terminal ileum, ileocecal sphincter and colon. Test materials or vehicle alone was administered as an intravenous bolus injection during a quiescent period of the whole colon in the interdigestive state. The effects of these receptor antagonists on normal gastrointestinal motor activity were analyzed. RESULTS: 5-HT2B, 5-HT3 and 5-HT4 receptor antagonists had no contractile effect on the fasting canine terminal ileum. The 5-HT3 and 5-HT4 receptor antagonists inhibited phase III of the interdigestive motor complex of the antrum and significantly inhibited colonic motor activity. In the proximal colon, the inhibitory effect was dose dependent. Dose dependency, however, was not observed in the distal colon. The 5-HT2B receptor antagonist had no contractile effect on normal colonic motor activity. CONCLUSION: The 5-HT3 and 5-HT4 receptor antagonists inhibited normal colonic motor activity. The 5-HT2B receptor antagonist had no contractile effect on normal colonic motor activity. PMID:24151388

  13. Species differences in the responses of pulmonary vascular preparations to 5-hydroxytryptamine.

    PubMed

    Morcillo, E J; Cortijo, J

    1999-01-01

    5-Hydroxytryptamine (5-HT) has been implicated in pulmonary hypertension, hypoxic pulmonary vasoconstriction, and the pulmonary side-effects of some drugs. 5-HT contracts bovine, ovine, canine, caprine, feline, rabbit, guinea-pig and rat isolated pulmonary arteries mainly by activation of 5-HT2A receptors but relaxes porcine pulmonary artery through activation of endothelial 5-HT2B receptors. Pharmacological responses of the pulmonary veins to 5-HT have been less studied and comprise both contraction (bovine, canine, feline, equine, rabbit) and relaxation (ovine, caprine). Functional and radioligand binding studies in human isolated intrapulmonary arteries and veins have demonstrated a mixed population of 5-HT1B/1D and 5-HT2A receptors mediating vasoconstriction but no evidence of involvement of 5-HT1A, 5-HT3 and 5-HT4 receptors. Remarkable differences exist in the in vitro pulmonary vasoreactivity to 5-HT and related drugs in humans compared with other mammals. Therefore, the use of human tissues is to be preferred to study pathophysiological responses of pulmonary circulation with clinical relevance.

  14. Memory formation and memory alterations: 5-HT6 and 5-HT7 receptors, novel alternative.

    PubMed

    Meneses, Alfredo

    2014-01-01

    Agonists and antagonists of the 5-hydroxytryptamine (serotonin) receptor6 (5-HT6) or receptor7 (5-HT7) might improve memory and/or reverse amnesia, although the mechanisms involved are poorly understood. Hence, the current work summarizes recent reviews and findings involving these receptors. Evidence indicates that diverse 5-HT6 receptor antagonists produce promnesic and/or antiamnesic effect in conditions, such as memory formation, age-related cognitive impairments and memory deficit in preclinical studies, as well as in diseases such as schizophrenia, Parkinson's, and Alzheimer's disease (AD). Memory, aging, and AD modify 5-HT6 receptors and signaling cascades; likewise, the modulation of 5-HT6 drugs on memory seems to be accompanied with neural changes. Moreover, 5-HT7 receptors are localized in brain areas mediating memory, including the cortex, hippocampus (e.g., Zola-Morgan and Squire, 1993) and raphe nuclei; however, the role of these receptors on memory has yet to be fully explored. Hence, findings and reviews are summarized in this work. Evidence suggests that both 5-HT7 receptor agonists and antagonists might have promnesic and anti-amnesic effects. These effects seem to be dependent on the basal level of performance, i.e., normal or impaired. Available evidence suggests that a potential utility of 5-HT6 and 5-HT7 receptor in mild-to-moderate AD patients and other memory dysfunctions as therapeutic targets.

  15. Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders.

    PubMed

    Naumenko, Vladimir S; Popova, Nina K; Lacivita, Enza; Leopoldo, Marcello; Ponimaskin, Evgeni G

    2014-07-01

    Serotonin (5-hydroxytryptamine or 5-HT) is an important neurotransmitter regulating a wide range of physiological and pathological functions via activation of heterogeneously expressed 5-HT receptors. Besides the important role of 5-HT receptors in the pathogenesis of depressive disorders and in their clinical medications, underlying mechanisms are far from being completely understood. This review focuses on possible cross talk between two serotonin receptors, 5-HT1A and the 5-HT7 . Although these receptors are highly co-expressed in brain regions implicated in depression, and most agonists developed for the 5-HT1A or 5-HT7 receptors have cross-reactivity, their functional interaction has not been yet established. It has been recently shown that 5-HT1A and 5-HT7 receptors form homo- and heterodimers both in vitro and in vivo. From the functional point of view, heterodimerization has been shown to play an important role in regulation of receptor-mediated signaling and internalization, suggesting the implication of heterodimerization in the development and maintenance of depression. Interaction between these receptors is also of clinical interest, because both receptors represent an important pharmacological target for the treatment of depression and anxiety.

  16. Feeding increases 5-hydroxytryptamine and norepinephrine within the hypothalamus of chicks.

    PubMed

    Tachibana, T; Tazawa, M; Sugahara, K

    2001-11-01

    It is thought that hypothalamic 5-hydroxytryptamine (5HT) and norepinephrine (NE) are involved in the regulation of feeding in chicks. The present study was conducted to elucidate changes in the levels of extracellular 5HT and NE in the hypothalamus during feeding of chicks. In order to measure 5HT, NE and 4-hydroxy-3-methoxyphenylglycol (MHPG), which is a major metabolite of NE, we used brain microdialysis and high-pressure liquid chromatography with an electrochemical detector. After collecting samples to determine the basal levels of 5HT, NE and MHPG, food-deprived birds were given access to food. 5HT levels in the medial hypothalamus (MH) and lateral hypothalamus (LH) increased during the first 30 min of feeding, and then returned to basal levels. NE and MHPG in the LH increased during feeding, and remained elevated throughout the experiment. This study supports an idea that hypothalamic monoamines in the chick brain are involved in the regulation of feeding.

  17. Influence of sodium substitutes on 5-HT-mediated effects at mouse 5-HT3 receptors

    PubMed Central

    Barann, M; Schmidt, K; Göthert, M; Urban, B W; Bönisch, H

    2004-01-01

    The influence of sodium ion substitutes on the 5-hydroxytryptamine (5-HT)-induced flux of the organic cation [14C]guanidinium through the ion channel of the mouse 5-HT3 receptor and on the competition of 5-HT with the selective 5-HT3 receptor antagonist [3H]GR 65630 was studied, unless stated otherwise, in mouse neuroblastoma N1E-115 cells. Under physiological conditions (135 mM sodium), 5-HT induced a concentration-dependent [14C]guanidinium influx with an EC50 (1.3 μM) similar to that in electrophysiological studies. The stepwise replacement of sodium by increasing concentrations of the organic cation hydroxyethyl trimethylammonium (choline) concentration dependently caused both a rightward shift of the 5-HT concentration–response curve and an increase in the maximum effect of 5-HT. Complete replacement of sodium resulted in a 34-fold lower potency of 5-HT and an almost two times higher maximal response. A low potency of 5-HT in choline buffer was also observed in other 5-HT3 receptor-expressing rodent cell lines (NG 108-15 or NCB 20). Replacement of Na+ by Li+ left the potency and maximal effects of 5-HT almost unchanged. Replacement by tris (hydroxymethyl) methylamine (Tris), tetramethylammonium (TMA) or N-methyl-D-glucamine (NMDG) caused an increase in maximal response to 5-HT similar to that caused by choline. The potency of 5-HT was only slightly reduced by Tris, to a high degree decreased by TMA (comparable to the decrease by choline), but not influenced by NMDG. The potency of 5-HT in inhibiting [3H]GR65630 binding to intact cells was 35-fold lower when sodium was completely replaced by choline, but remained unchanged after replacement by NMDG. The results are compatible with the suggestion that choline competes with 5-HT for the 5-HT3 receptor; the increase in maximal response may be partly due to a choline-mediated delay of the 5-HT-induced desensitization. For studies of 5-HT-evoked [14C]guanidinium flux through 5-HT3 receptor channels, NMDG appears

  18. Inhibitory 5-hydroxytryptamine receptors involved in pressor effects obtained by stimulation of sympathetic outflow from spinal cord in pithed rats.

    PubMed

    Morán, A; Velasco, C; Salvador, T; Martín, M L; San Román, L

    1994-12-01

    1. A study was made of the effects of 5-hydroxytryptamine (5-HT) on pressor response induced in vivo by electrical stimulation of the sympathetic outflow from the spinal cord of pithed rats. All animals had been pretreated with atropine. Intravenous infusion of 5-hydroxytryptamine at doses of 10 and 20 micrograms kg-1 min-1 reduced the pressor effects obtained by electrical stimulation at intervals of 10 min over the 1 h of infusion. 2. This inhibitory action of 5-HT was depressed by cyproheptadine and methiothepin but was not modified by ketanserin or MDL-72222. By contrast, the inhibitory action of 5-HT was lost in pithed rats that had been pretreated with exogenous noradrenaline. 3. The 5-HT1 receptor agonist 5-carboxamidotryptamine (5-CT) caused an inhibition of the pressor response, whereas the 5-HT3 receptor agonist, 1-phenylbiguanide, produced a variable but significant increase in the pressor response. The 5-HT2 receptor agonist, m-CPP, did not modify the pressor sympathetic response. 4. Our results suggest that 5-hydroxytryptamine interferes with sympathetic neurotransmission by inhibiting pressor effects as a result of stimulation of the complete sympathetic outflow, and that this inhibition is mainly through a presynaptic 5-HT1 mechanism.

  19. 5-HT1A and 5-HT7 receptors contribute to lurasidone-induced dopamine efflux.

    PubMed

    Huang, Mei; Horiguchi, Masakuni; Felix, Anna R; Meltzer, Herbert Y

    2012-05-09

    Lurasidone is a novel, atypical antipsychotic drug with serotonin [5-hydroxytryptamine (5-HT)]2A, 5-HT7, dopamine (DA) D2 antagonist, and 5-HT1A receptor partial agonist properties. The ability of lurasidone to reverse the effects of subchronic administration phencyclidine, to impair novel object recognition in rats, an animal model of cognitive impairment in schizophrenia, is dependent, in part, on its 5-HT1A agonist and 5-HT7 receptor antagonist properties. We tested whether 5-HT1A partial agonism or 5-HT7 antagonism, or both, contributed to the ability of lurasidone to enhance cortical and hippocampal DA efflux, which may be related to its ability to improve cognition. Here, we report that lurasidone, 0.25 and 0.5, but not 0.1 mg/kg, subcutaneously, significantly increased DA efflux in the prefrontal cortex and hippocampus in a dose-dependent manner. Lurasidone, 0.5 mg/kg, also produced a smaller increase in DA efflux in the nucleus accumbens. Pretreatment with the 5-HT1A receptor antagonist, WAY100635 (0.2 mg/kg, subcutaneously), partially blocked the lurasidone-induced cortical and hippocampal DA efflux. Further, subeffective doses of the 5-HT1A receptor agonist, tandospirone (0.2 mg/kg), or the 5-HT7 antagonist, SB269970 (0.3 mg/kg), potentiated the ability of a subeffective dose of lurasidone (0.1 mg/kg) to increase DA efflux in the prefrontal cortex. These findings suggest that the effects of lurasidone on the prefrontal cortex and hippocampus, DA efflux are dependent, at least partially, on its 5-HT1A agonist and 5-HT7 antagonist properties and may contribute to its efficacy to reverse the effects of subchronic phencyclidine treatment and improve schizophrenia.

  20. Important messages in the 'post': recent discoveries in 5-HT neurone feedback control.

    PubMed

    Sharp, Trevor; Boothman, Laura; Raley, Josie; Quérée, Philip

    2007-12-01

    The neurotransmitter 5-hydroxytryptamine (5-HT, serotonin) mediates important brain functions and contributes to the pathophysiology and successful drug treatment of many common psychiatric disorders, especially depression. It is established that a key mechanism involved in the control of 5-HT neurones is feedback inhibition by presynaptic 5-HT autoreceptors, which are located on 5-HT cell bodies and nerve terminals. However, recent experiments have discovered an unexpected complexity of 5-HT neurone control, specifically in the form of postsynaptic 5-HT feedback mechanisms. These mechanisms have the physiological effects of 5-HT autoreceptors but use additional 5-HT receptor subtypes and operate through neural inputs to 5-HT neurones. A postsynaptic feedback system that excites 5-HT neurones has also been reported. This article discusses current knowledge of the pharmacology and physiology of these new found 5-HT feedback mechanisms and considers their possible contribution to depression pathophysiology and utility as a resource of novel antidepressant drug strategies.

  1. Benzothiazoles as probes for the 5HT1A receptor and the serotonin transporter (SERT): a search for new dual-acting agents as potential antidepressants.

    PubMed

    Zhu, Xue Y; Etukala, Jagan R; Eyunni, Suresh V K; Setola, Vincent; Roth, Bryan L; Ablordeppey, Seth Y

    2012-07-01

    The synthesis and evaluation of several benzothiazole-based compounds are described in an attempt to identify novel dual-acting 5HT(1A) receptor and SERT inhibitors as new antidepressants. Binding affinities at the 5HT(1A) receptor and the serotonin transporter do not appear to be congruent and other areas of the binding sites would need to be explored in order to improve binding simultaneously at both sites. Compounds 20 and 23 show moderate binding affinity at the 5HT(1A) receptor and the SERT site and thus, have the potential to be further explored as dual-acting agents. In addition, compound 20 binds with low affinity to the dopamine transporter (DAT), the norepinephrine transporter (NET) and 5HT(2C) receptor, which are desirable properties as selectivity for SERT (and not DAT or NET) is associated with an absence of cardiovascular side effects.

  2. Influence of AMPA/kainate receptors on extracellular 5-hydroxytryptamine in rat midbrain raphe and forebrain

    PubMed Central

    Tao, Rui; Ma, Zhiyuan; Auerbach, Sidney B

    1997-01-01

    The regulation of 5-hydroxytryptamine (5-HT) release by excitatory amino acid (EAA) receptors was examined by use of microdialysis in the CNS of freely behaving rats. Extracellular 5-HT was measured in the dorsal raphe nucleus (DRN), median raphe nucleus (MRN), nucleus accumbens, hypothalamus, frontal cortex, dorsal and ventral hippocampus. Local infusion of kainate produced increases in extracellular 5-HT in the DRN and MRN. Kainate infusion into forebrain sites had a less potent effect. In further studies of the DRN and nucleus accumbens, kainate-induced increases in extracellular 5-HT were blocked by the EAA receptor antagonists, kynurenate and 6,7-dinitroquinoxaline-2,3-dione (DNQX). The effect of infusing kainate into the DRN or nucleus accumbens was attenuated or abolished by tetrodotoxin (TTX), suggesting that the increase in extracellular 5-HT is dependent on 5-HT neuronal activity. In contrast, ibotenate-induced lesion of intrinsic neurones did not attenuate the effect of infusing kainate into the nucleus accumbens. Thus, the effect of kainate in the nucleus accumbens does not depend on intrinsic neurones. Infusion of α-amino-3-hydroxy-5-methyl-4-isoxazolaproprionate (AMPA) into the DRN and nucleus accumbens induced nonsignificant changes in extracellular 5-HT. Cyclothiazide and diazoxide, which attenuate receptor desensitization, greatly enhanced the effect of AMPA on 5-HT in the DRN, but not in the nucleus accumbens. In conclusion, AMPA/kainate receptors regulate 5-HT in the raphe and in forebrain sites. PMID:9283707

  3. Contractile 5-HT1 receptors in human isolated pial arterioles: correlation with 5-HT1D binding sites.

    PubMed Central

    Hamel, E.; Bouchard, D.

    1991-01-01

    1. The 5-hydroxytryptamine (5-HT) receptor responsible for inducing vasoconstriction in human isolated pial arterioles has been pharmacologically characterized. 2. Of several 5-HT agonists tested, 5-carboxamidotryptamine (5-CT) was the most potent and the rank order of agonist potency can be summarized as: 5-CT greater than 5-HT greater than RU 24969 = alpha-methyl-5-HT = methysergide much greater than MDL 72832 = 2-methyl-5-HT much greater than 2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydro-naphthalene (8-OH-DPAT). With few exceptions, the maximal contractile responses of these agonists were comparable to that induced by 5-HT. 3. A correlation analysis performed between the agonists vascular potency (pD2 values) and their affinities (pKD values) published at various subtypes of 5-HT binding sites showed a positive significant correlation with rat cortical 5-HT1B (r = 0.86; P less than 0.01) and human caudate 5-HT1D (r = 0.98; P less than 0.005) subtypes. 4. Selective antagonists at 5-HT2 (ketanserin, mianserin, MDL 11939) and 5-HT3 (MDL 72222) sites were totally devoid of inhibitory activity on the 5-HT-induced contraction, an observation which agreed with the agonist data and further excluded activation of these receptors. In contrast, the 5-HT1-like/5-HT2 antagonist methiothepin and the non-selective 5-HT1D compound metergoline inhibited with high affinity the contraction induced by 5-HT with respective pA2 values of 8.55 +/- 0.16 and 6.88 +/- 0.05. This contractile response was, however, insensitive to 5-HT1B (propranolol) and 5-HT1C (mesulergine, mianserin) antagonists.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2043924

  4. 5-HT induces cAMP production in crypt colonocytes at a 5-HT4 receptor.

    PubMed

    Albuquerque, F C; Smith, E H; Kellum, J M

    1998-07-01

    Previous studies demonstrate that both 5-hydroxytryptamine (5-HT) and cyclic AMP (cAMP) induce chloride efflux from crypt colonocytes in the rat distal colon; antagonist studies suggest that the 5-HT response is mediated primarily by the 5-HT4 receptor. Since this receptor is known to be positively coupled to adenylate cyclase, we postulated that 5-HT should induce generation of cAMP, which should be inhibited by 5-HT4 antagonists. Method. Mucosal cells from rat distal colon were taken by a sequential calcium chelation technique for enrichment of crypt cells. Cytokeratin stains demonstrated that >99% of cells were colonocytes. [3H]Thymidine uptake studies demonstrate a fivefold increased incorporation in this cell preparation compared to earlier fractions. 3-Isobutyl-l-methylxanthine (IBMX, 100 microM) was added to all cell suspensions in order to prevent cAMP metabolism. Cell suspensions were incubated for 2 min at 37 degreesC with different concentrations of 5-HT (n = 7). cAMP was measured by enzyme immunoassay. In another series of experiments, 5-HT (0.3 microM) stimulation of cAMP was similarly measured in the presence and absence of 5-HT receptor antagonists: 10 microM 5-HTP-DP (5-HT1P; n = 4), 0.1 microM ketanserin (5-HT2A; n = 4), 0.3 microM ondansetron (5-HT3; n = 4), 3 microM tropisetron (5-HT3 and 5-HT4; n = 4), and 10 nM GR-113808 (5-HT4; n = 5). Results. 5-HT produced a dose-dependent increase in cAMP. The increase was significant at concentrations >/=0.3 microM when compared to cells incubated with IBMX alone. In the second series of experiment, 5-HT-induced generation of cAMP at a dose of 0.3 microM was significantly inhibited in the presence of GR-113808 and tropisetron. Conclusion. 5-HT acts at a 5-HT4 receptor to induce production of cAMP in rat distal crypt colonocytes.

  5. Cardiovascular afferents cause the release of 5-HT in the nucleus tractus solitarii; this release is regulated by the low- (PMAT) not the high-affinity transporter (SERT)

    PubMed Central

    Hosford, Patrick S; Millar, Julian; Ramage, Andrew G

    2015-01-01

    Key points The nucleus tractus solitarii (NTS) integrates visceral afferent information essential for cardiovascular haemostasis. Using fast-cyclic voltammetry in anaesthetized rats, 5-HT (serotonin) release was detected in NTS in response to activation of these afferents. Removal of 5-HT from the extracellular space is usually regulated by the low-capacity, high-affinity 5-HT transporter (5-HTT/SERT). The present data demonstrate that 5-HT removal in the NTS is regulated by the plasma membrane monoamine transporter (PMAT), a high-capacity, low-affinity transporter. The present data also demonstrate that the 5-HT released by afferent activation comes from at least two different sources. It is suggested that one of these sources is the afferents themselves. These results demonstrate a physiological role for the low-affinity uptake transporter in the regulation of 5-HT concentration in NTS. Abstract The nucleus tractus solitarii (NTS) integrates inputs from cardiovascular afferents and thus is crucial for cardiovascular homeostasis. These afferents primarily release glutamate, although 5-HT has also been shown to play a role in their actions. Using fast-cyclic voltammetry, an increase in 5-HT concentrations (range 12–50 nm) could be detected in the NTS in anaesthetized rats in response to electrical stimulation of the vagus and activation of cardiopulmonary, chemo- and baroreceptor reflexes. This 5-HT signal was not potentiated by the serotonin transporter (SERT) or the noradrenaline transporter (NET) inhibitors citalopram and desipramine (1 mg kg−1). However, decynium-22 (600 μg kg−1), an organic cation 3 transporter (OCT3)/plasma membrane monoamine transporter (PMAT) inhibitor, increased the 5-HT signal by 111 ± 21% from 29 ± 10 nm. The effectiveness of these inhibitors was tested against the removal time of 5-HT and noradrenaline applied by microinjection to the NTS. Citalopram and decynium-22 attenuated the removal of 5-HT but not

  6. Ethanol Stabilizes the Open State of Single 5-Hydroxytryptamine3A(QDA) Receptors

    PubMed Central

    Feinberg-Zadek, Paula L.

    2010-01-01

    Ethanol enhancement of 5-hydroxytryptamine (5-HT)3A receptor-mediated responses may have important consequences in the intoxicating and addictive properties of ethanol. Although the exact mechanism is unknown, ethanol-mediated enhancement of 5-HT3 receptor current has been proposed to occur due to stabilization of the open-channel state. It has not been possible to directly measure the open state of the channel due to the extremely low single-channel conductance of 5-HT3A channels. Recently, three arginine residues within the large intracellular loop of the 5-HT3A subunit were substituted by their equivalent residues (glutamine, aspartate, and alanine) of the 5-HT3B subunit to produce a 5-HT3A(QDA) subunit that forms functional homomeric channels exhibiting a measurable single-channel conductance. Using whole-cell rapid-agonist application techniques and the cell-attached single-channel recording configuration, we examined human 5-HT3A(QDA) receptors expressed in human embryonic kidney 293 cells. The agonist sensitivity, macroscopic kinetics, and modulation by ethanol were similar between mutant and wild-type channels, suggesting the substitutions had not altered these channel structure-function properties. The open time histogram for single-channel events mediated by 5-HT3A(QDA) receptors in the presence of maximal 5-HT was best fit by three exponentials, but in the presence of ethanol a fourth open state was evident. In summary, the QDA substitution greatly enhanced single-channel conductance with little effect on 5-HT3A channel's kinetic properties and ethanol enhances agonist action on 5-HT3A receptors by inducing a new, long-lived open-channel state. Furthermore, the 5-HT3A(QDA) receptor appears to be suitable for pharmacological studies of 5-HT3A receptor modulation at a single-channel level. PMID:20200118

  7. 5-HT3 receptors as important mediators of nausea and vomiting due to chemotherapy.

    PubMed

    Navari, Rudolph M

    2015-10-01

    Chemotherapy-induced nausea and vomiting (CINV) is associated with a significant deterioration in quality of life. The emetogenicity of the chemotherapeutic agents, repeated chemotherapy cycles, and patient risk factors significantly influence CINV. The use of a combination of a 5-hydroxytryptamine-3 (5-HT3) receptor antagonist, dexamethasone, and a neurokinin-1 (NK-1) receptor antagonist has significantly improved the control of acute and delayed emesis in single-day chemotherapy. The first generation 5-HT3 receptor antagonists have been very effective in the control of chemotherapy induced emesis in the first 24 h postchemotherapy (acute emesis), but have not been as effective against delayed emesis (24-120 h postchemotherapy). Palonosetron, a second generation 5-HT3 receptor antagonist with a different half-life, a different binding capacity, and a different mechanism of action than the first generation 5-HT3 receptor antagonists appears to be the most effective agent in its class. Despite the control of emesis, nausea has not been well controlled by current agents. Olanzapine, a FDA approved antipsychotic that blocks multiple neurotransmitters: dopamine at D1, D2, D3, D4 brain receptors, serotonin at 5-HT2a, 5-HT2c, 5-HT3, 5-HT6 receptors, catecholamines at alpha1 adrenergic receptors, acetylcholine at muscarinic receptors, and histamine at H1 receptors, has emerged in recent trials as an effective preventative agent for chemotherapy-induced emesis and nausea, as well as a very effective agent for the treatment of breakthrough emesis and nausea. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.

  8. Selective 5-hydroxytryptamine2 antagonists have antidepressant-like effects on differential-reinforcement-of-low-rate 72-second schedule.

    PubMed

    Marek, G J; Li, A A; Seiden, L S

    1989-07-01

    The effects of eleven 5-hydroxytryptamine antagonists with varying selectivity for the 5-hydroxytryptamine2 (5-HT2) relative to the 5-HT1 binding site were assessed in rats responding under a differential-reinforcement-of-low rate 72-sec (DRL 72-s) schedule of reinforcement. Three drugs with a 1000-fold selectivity for the 5-HT2 binding site (ketanserin, ritanserin, pipamperone) increased the reinforcement rate and decreased the response rate similar to antidepressant drugs. The two drugs with roughly the same affinity for both 5-HT1 and 5-HT2 binding sites (methysergide and metergoline) did not increase the reinforcement rate. The maximal increase in the reinforcement rate after 5-HT antagonist administration was positively correlated with the selectivity of the 5-HT antagonists for the 5-HT2 versus the 5-HT1 binding site. The increase in the reinforcement rate after administration of 5-HT antagonists was not correlated with the affinity of the 5-HT antagonists for the alpha-1 adrenergic, alpha-2 adrenergic, histamine-1 or dopamine-2 receptors. The 1000-fold selective 5-HT2 antagonist xylamidine, which does not pass the blood-brain barrier, did not increase the reinforcement rate or decrease the response rate. Thus, selective antagonism of central 5-HT2 relative to 5-HT1 receptors results in antidepressant-like effects on the DRL 72-s schedule. Furthermore, the specificity of the DRL 72-s schedule as a screen for antidepressant drugs was strengthened by the observation that the alpha-1 adrenergic antagonist, prazosin, did not increase the reinforcement rate despite significant decreases in the response rate.

  9. Constitutively Active 5-HT Receptors: An Explanation of How 5-HT Antagonists Inhibit Gut Motility in Species Where 5-HT is Not an Enteric Neurotransmitter?

    PubMed Central

    Spencer, Nick J.

    2015-01-01

    Antagonists of 5-Hydroxytryptamine (5-HT) receptors are well known to inhibit gastrointestinal (GI)-motility and transit in a variety of mammals, including humans. Originally, these observations had been interpreted by many investigators (including us) as evidence that endogenous 5-HT plays a major role in GI motility. This seemed a logical assumption. However, the story changed dramatically after recent studies revealed that 5-HT antagonists still blocked major GI motility patterns (peristalsis and colonic migrating motor complexes) in segments of intestine depleted of all 5-HT. Then, these results were further supported by Dr. Gershons' laboratory, which showed that genetic deletion of all genes that synthesizes 5-HT had minor, or no inhibitory effects on GI transit in vivo. If 5-HT was essential for GI motility patterns and transit, then one would expect major disruptions in motility and transit when 5-HT synthesis was genetically ablated. This does not occur. The inhibitory effects of 5-HT antagonists on GI motility clearly occur independently of any 5-HT in the gut. Evidence now suggests that 5-HT antagonists act on 5-HT receptors in the gut which are constitutively active, and don't require 5-HT for their activation. This would explain a long-standing mystery of how 5-HT antagonists inhibit gut motility in species like mice, rats, and humans where 5-HT is not an enteric neurotransmitter. Studies are now increasingly demonstrating that the presence of a neurochemical in enteric neurons does not mean they function as neurotransmitters. Caution should be exercised when interpreting any inhibitory effects of 5-HT antagonists on GI motility. PMID:26732863

  10. Release of endogenous 5-hydroxytryptamine from the myenteric plexus of the guinea-pig isolated small intestine.

    PubMed Central

    Holzer, P.; Skofitsch, G.

    1984-01-01

    The presence of 5-hydroxytryptamine (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in, and the release of these substances from, the myenteric plexus-longitudinal muscle (MPLM) layer of the guinea-pig isolated small intestine were investigated. 5-HT and 5-HIAA were measured by high performance liquid chromatography and electrochemical detection. Freshly prepared MPLM contained measurable amounts of 5-HT and 5-HIAA. For the release experiments, the MPLM was incubated in a medium containing the 5-HT uptake inhibitor fluoxetine and the monoamine oxidase inhibitor nialamide; this led to a decrease in the 5-HIAA content of the MPLM whereas the 5-HT content remained unchanged. There was a spontaneous release of 5-HT and 5-HIAA from the MPLM. The release of 5-HT was so small that it was just detectable; it seemed equivalent to about 0.8% of the tissue stores released per min. Depolarization of the tissue by increasing the [K+] or by exposing it to veratridine enhanced the release of 5-HT in a Ca2+-dependent manner whereas the release of 5-HIAA was not increased. Tetrodotoxin inhibited the veratridine-evoked release of 5-HT but did not affect the K+-evoked release of 5-HT. The presence of 5-HT in myenteric neurones and the characteristics of the release of 5-HT from these neurones strongly support the hypothesis that 5-HT is an enteric neurotransmitter. PMID:6200171

  11. The selective 5-HT2A receptor antagonist M100907 enhances antidepressant-like behavioral effects of the SSRI fluoxetine.

    PubMed

    Marek, Gerard J; Martin-Ruiz, Raul; Abo, Allyson; Artigas, Francesc

    2005-12-01

    The addition of low doses of atypical antipsychotic drugs, which saturate 5-HT(2A) receptors, enhances the therapeutic effect of selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitors (SSRIs) in patients with major depression as well as treatment-refractory obsessive-compulsive disorder. The purpose of the present studies was to test the effects of combined treatment with a low dose of a highly selective 5-HT(2A) receptor antagonist (M100907; formerly MDL 100,907) and low doses of a SSRI using a behavioral screen in rodents (the differential-reinforcement-of low rate 72-s schedule of reinforcement; DRL 72-s) which previously has been shown to be sensitive both to 5-HT(2) antagonists and SSRIs. M100907 has a approximately 100-fold or greater selectivity at 5-HT(2A) receptors vs other 5-HT receptor subtypes, and would not be expected to appreciably occupy non-5-HT(2A) receptors at doses below 100 microg/kg. M100907 increased the reinforcement rate, decreased the response rate, and shifted the inter-response time distributions to the right in a pattern characteristic of antidepressant drugs. In addition, a positive synergistic interaction occurred when testing low doses of the 5-HT(2A) receptor antagonist (6.25-12.5 microg/kg) with clinically relevant doses of the SSRI fluoxetine (2.5-5 mg/kg), which both exerted minimal antidepressant-like effects by themselves. In vivo microdialysis study revealed that a low dose of M100907 (12.5 microg/kg) did not elevate extracellular 5-HT levels in the prefrontal cortex over those observed with fluoxetine alone (5 mg/kg). These results will be discussed in the context that the combined blockade of 5-HT(2A) receptors and serotonin transporters (SERT) may result in greater efficacy in treating neuropsychiatric syndromes than blocking either site alone.

  12. The effect of altered 5-hydroxytryptamine levels on beta-endorphin

    NASA Technical Reports Server (NTRS)

    Soliman, Karam F. A.; Mash, Deborah C.; Walker, Charles A.

    1986-01-01

    The purpose of the present study was to examine the effect of altering the concentration of 5-hydroxytryptamine (5-HT) on beta-endorphin (beta-Ep) content in the hypothalamus, thalamus, and periaqueductal gray (PAG)-rostral pons regions of the rat brain. The selective 5-HT reuptake inhibitor, fluoxetine (10 mg/kg), significantly lowered beta-Ep content in the hypothalamus and the PAG. Parachlorophenylalanine, which inhibits 5-HT synthesis, significantly elevated beta-Ep in all brain parts studied. Intracisternal injections of the neurotoxin 5-prime, 7-prime-dihydroxytryptamine with desmethylimipramine pretreatment significantly increased beta-Ep content in the hypothalamus and the PAG. In adrenalectomized rats, fluoxetine significantly decreased beta-Ep levels in the hypothalamus and increased the levels in the PAG. The results indicate that 5-HT may modulate the levels of brain beta-Ep.

  13. Photoaffinity labeling of the 5-hydroxytryptamine 1A receptor in rat hippocampus.

    PubMed

    Ransom, R W; Asarch, K B; Shih, J C

    1986-10-01

    1-[2-(4-Azidophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (p-azido-PAPP) inhibits [3H]5-hydroxytryptamine [( 3H]5-HT) binding to 5-HT1A and 5-HT1B sites in rat brain with equilibrium dissociation constants (KD) of 0.9 nM and 230 nM, respectively. [3H]p-Azido-PAPP was synthesized and its reversible and irreversible binding properties to the hippocampal 5-HT1A site characterized. [3H]p-Azido-PAPP labeled a single class of sites in rat hippocampal membranes with a KD of 1 nM and a maximal binding density of 370 fmol/mg protein. The pharmacological profile of [3H]p-azido-PAPP binding was consistent with the radioligand's selective interaction with the 5-HT1A receptor. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membranes preincubated with [3H]p-azido-PAPP and irradiated showed a major band of incorporation of radioactivity at approximately 55,000 daltons. This incorporation could be blocked when membranes were incubated with 1 microM of several agents that have high affinity for 5-HT1A sites [5-HT, 8-hydroxy-2-(di-n-propylamino)tetraline, TVX Q 7821, spiperone, buspirone, d-lysergic acid diethylamide, metergoline]. The results indicate that on photolysis [3H]p-azido-PAPP irreversibly labels a polypeptide that is, or is a subunit of, the 5-HT1A receptor in rat hippocampus.

  14. The 5-HT1-like receptors mediating inhibition of sympathetic vasopressor outflow in the pithed rat: operational correlation with the 5-HT1A, 5-HT1B and 5-HT1D subtypes

    PubMed Central

    Villalón, Carlos M; Centurión, David; Rabelo, Gonzalo; de Vries, Peter; Saxena, Pramod R; Sánchez-López, Araceli

    1998-01-01

    It has been suggested that the inhibition of sympathetically-induced vasopressor responses produced by 5-hydroxytryptamine (5-HT) in pithed rats is mediated by 5-HT1-like receptors. The present study has re-analysed this suggestion with regard to the classification schemes recently proposed by the NC-IUPHAR subcommittee on 5-HT receptors.Intravenous (i.v.) continuous infusions of 5-HT and the 5-HT1 receptor agonists, 8-OH-DPAT (5-HT1A), indorenate (5-HT1A), CP 93,129 (5-HT1B) and sumatriptan (5-HT1B/1D), resulted in a dose-dependent inhibition of sympathetically-induced vasopressor responses.The sympatho-inhibitory responses induced by 5-HT, 8-OH-DPAT, indorenate, CP 93,129 or sumatriptan were analysed before and after i.v. treatment with blocking doses of the putative 5-HT receptor antagonists, WAY 100635 (5-HT1A), cyanopindolol (5-HT1A/1B) or GR 127935 (5-HT1B/1D). Thus, after WAY 100635, the responses to 5-HT and indorenate, but not to 8-OH-DPAT, CP 93,129 and sumatriptan, were blocked. After cyanopindolol, the responses to 5-HT, indorenate and CP 93,129 were abolished, whilst those to 8-OH-DPAT and sumatriptan (except at the lowest frequency of stimulation) remained unaltered. In contrast, after GR 127935, the responses to 5-HT, CP 93,129 and sumatriptan, but not to 8-OH-DPAT and indorenate, were abolished.In additional experiments, the inhibition induced by 5-HT was not modified after 5-HT7 receptor blocking doses of mesulergine.The above results suggest that the 5-HT1-like receptors, which inhibit the sympathetic vasopressor outflow in pithed rats, display the pharmacological profile of the 5-HT1A, 5-HT1B and 5-HT1D, but not that of 5-HT7, receptors. PMID:9692787

  15. Memory time-course: mRNA 5-HT1A and 5-HT7 receptors.

    PubMed

    Perez-Garcia, Georgina; Meneses, Alfredo

    2009-08-24

    In an attempt to clarify conflicting results about serotonin (5-hydroxytryptamine, 5-HT) 5-HT(1A) and 5-HT(7) receptors in memory formation, their mRNA expression was determined by RT-PCR in key brain areas for explicit and implicit memory. The time-course (0-120 h) of autoshaped responses was progressive and mRNA 5-HT(1A) or 5-HT(7) receptors expression monotonically augmented or declined in prefrontal cortex, hippocampus and raphe nuclei, respectively. At 24-48 h acutely 8-OH-DPAT (0.062 mg/kg) administration enhanced memory and attenuated mRNA 5-HT(1A)<5-HT(7) receptors expression respect to saline group. WAY100635 (0.3 mg/kg) or SB-269970 (10.0 mg/kg) did not affect the former, partially blocked or reversed the latter, respectively. Furthermore, lower WAY100635 (0.001-0.1 mg/kg) or SB-269970 (1.0-5.0 mg/kg) doses plus 8-OHDPAT not affected memory; however both combinations suppressed or up-regulated mRNA expression 5-HT(1A) or 5-HT(7) receptors. In contrast, AS19 (5.0 mg/kg) facilitated memory consolidation, decreased or increased hippocampal 5-HT(7) and 5-HT(1A) receptors expression. Together these data revealed that, when both 5-HT(1A) and 5-HT(7) receptors were stimulated by 8-OHDPAT under memory consolidation, subtle changes emerged, not evident at behavioral level though detectable at genes expression. Notably, high levels of efficient memory were maintained even when serotonergic tone, via either 5-HT(1A) or 5-HT(7) receptor, was down- or up-regulated. Nevertheless, WAY100635 plus SB-269970 impaired memory consolidation and suppressed their expression. Considering that serotonergic changes are prominent in AD patients with an earlier onset of disease the present approach might be useful in the identification of functional changes associated to memory formation, memory deficits and reversing or even preventing these deficits.

  16. Spinal 5-HT1A, not the 5-HT1B or 5-HT3 receptors, mediates descending serotonergic inhibition for late-phase mechanical allodynia of carrageenan-induced peripheral inflammation.

    PubMed

    Kim, Joung Min; Jeong, Seong Wook; Yang, Jihoon; Lee, Seong Heon; Kim, Woon Mo; Jeong, Seongtae; Bae, Hong Beom; Yoon, Myung Ha; Choi, Jeong Il

    2015-07-23

    Previous electrophysiological studies demonstrated a limited role of 5-hydroxytryptamine 3 receptor (5-HT3R), but facilitatory role of 5-HT1AR and 5-HT1BR in spinal nociceptive processing of carrageenan-induced inflammatory pain. The release of spinal 5-HT was shown to peak in early-phase and return to baseline in late-phase of carrageenan inflammation. We examined the role of the descending serotonergic projections involving 5-HT1AR, 5-HT1BR, and 5-HT3R in mechanical allodynia of early- (first 4h) and late-phase (24h after) carrageenan-induced inflammation. Intrathecal administration of 5-HT produced a significant anti-allodynic effect in late-phase, but not in early-phase. Similarly, intrathecal 5-HT1AR agonist (8-OH-DPAT) attenuated the intensity of late-phase allodynia in a dose dependent fashion which was antagonized by 5-HT1AR antagonist (WAY-100635), but produced no effect on the early-phase allodynia. However, other agonists or antagonists of 5-HT1BR (CP-93129, SB-224289) and 5-HT3R (m-CPBG, ondansetron) did not produce any anti- or pro-allodynic effect in both early- and late- phase allodynia. These results suggest that spinal 5-HT1A, but not 5-HT1B or 5-HT3 receptors mediate descending serotonergic inhibition on nociceptive processing of late-phase mechanical allodynia in carrageenan-induced inflammation.

  17. Regional distribution of 5-HT transporters in the brain of wild type and 'Purkinje cell degeneration' mutant mice: a quantitative autoradiographic study with [3H]citalopram.

    PubMed

    Le Marec, N; Hébert, C; Amdiss, F; Botez, M I; Reader, T A

    1998-09-01

    The neurological mutant 'Purkinje cell degeneration' (pcd) is characterized by a primary degeneration of Purkinje cells, as well as by retrograde and secondary partial degeneration of cerebellar granule cells and inferior olivary neurons, and can be considered as an animal model of human degenerative ataxias. The serotonin (5-HT) innervation was examined in wild type and pcd mice, by quantifying 5-HT uptake sites, or transporters, using [3H]citalopram binding autoradiography. In both wild type and pcd mutants, the highest densities of 5-HT transporters were in mesencephalic and rostral pontine regions, in limbic structures, in hypothalamus and in discrete thalamic divisions, while the lowest labelling was found in cerebellum and brainstem reticular formation. In pcd mice, although [3H]citalopram labelling was higher in cerebellar cortex and deep cerebellar nuclei, when binding densities were corrected for surface area, the up-regulation of 5-HT transporters was present only in deep cerebellar nuclei. Also, higher labelling was found in nuclei raphe dorsalis and medialis, in ventral divisions of rostral neostriatum, caudal neostriatum, rostral globus pallidus, posteromedial amygdaloid nucleus, septum, olfactory tubercles, vertical limb of Broca's diagonal band, periventricular, latero-ventral and medio-ventral thalamic nuclei, medial geniculate nucleus, anterior hypothalamus and entorhinal cortex. The results indicate a relative integrity of the 5-HT innervation, but with a reorganization of serotoninergic terminals in the cerebellum, in particular in the deep cerebellar nuclei. This suggests that in progressive cerebellar degeneration, as found in the pcd mutant, the modified 5-HT system may still participate in motor functions by exerting an overall modulation of excitatory amino acid neurotransmission, but the availability of 5-HT may be altered in defined brain targets, as is the case for other spontaneous cerebellar mutants, in particular for the 'Lurcher

  18. 5-HT receptor classification and nomenclature: towards a harmonization with the human genome.

    PubMed

    Hoyer, D; Martin, G

    1997-01-01

    Molecular biology has dramatically advanced our knowledge and understanding of receptors for 5-hydroxytryptamine (5-HT). The existence of multiple 5-HT receptors defined using traditional pharmacological and biochemical approaches has now been amply confirmed, but gene products encoding putative "new" 5-HT receptors have also been discovered. In some cases, the absence of suitably selective agonists and antagonists has hampered determination of a physiological role for these gene products. This makes their classification as formally recognised receptors premature.

  19. Behavioural evidence for a functional interaction between central 5-HT2 and 5-HT1A receptors.

    PubMed Central

    Backus, L. I.; Sharp, T.; Grahame-Smith, D. G.

    1990-01-01

    1. The possibility of 5-HT2 receptor modulation of central 5-HT1A receptor function has been examined using the 5-hydroxytryptamine (5-HT) behavioural syndrome induced by 5-HT1A receptor active drugs in rats. 2. The 5-HT2/5-HTIC antagonist ritanserin (0.1-2 mg kg-1) increased the 5-HT behavioural syndrome induced by submaximally effective doses of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) and gepirone. 3. Pretreatment with the 5-HT2/5-HT1C antagonist ICI 170,809 (0.25-5 mg kg-1) also enhanced the behavioural syndrome induced by 8-OH-DPAT or 5-MeODMT. 4. The 5-HT2/alpha 1-adrenoceptor antagonist ketanserin in a low dose (0.25 mg kg-1) significantly increased the 5-HT behavioural syndrome induced by 8-OH-DPAT or 5-MeODMT, while in a higher dose (2.5 mg kg-1) this drug decreased the response. Experiments with prazosin indicate that the higher dose of ketanserin might reduce the 5-HT behavioural syndrome through blockade of alpha 1-adrenoceptors. 5. Ritanserin and ICI 170,809 had no effect on apomorphine-induced stereotypy or hyperactivity, indicating that these drugs do not produce non-specific behavioural activation. 6. Ritanserin and ICI 170,809 inhibited quipazine-induced wet dog shakes at doses similar to those enhancing the 5-HT behavioural syndrome. 7. We suggest that ritanserin, ICI 170,809 and ketanserin enhance 5-HT1A agonist-induced behaviour through blockade of an inhibitory 5-HT2 receptor regulating or coupled to 5-HT1A receptor-mediated function. PMID:2145051

  20. Pharmacological profile of the 5-HT-induced inhibition of cardioaccelerator sympathetic outflow in pithed rats: correlation with 5-HT1 and putative 5-ht5A/5B receptors

    PubMed Central

    Sánchez-López, Araceli; Centurión, David; Vázquez, Erika; Arulmani, Udayasankar; Saxena, Pramod R; Villalón, Carlos M

    2003-01-01

    Continuous infusions of 5-hydroxytryptamine (5-HT) inhibit the tachycardiac responses to preganglionic (C7-T1) sympathetic stimulation in pithed rats pretreated with desipramine. The present study identified the pharmacological profile of this inhibitory action of 5-HT. The inhibition induced by intravenous (i.v.) continuous infusions of 5-HT (5.6 μg kg−1 min−1) on sympathetically induced tachycardiac responses remained unaltered after i.v. treatment with saline or the antagonists GR 127935 (5-HT1B/1D), the combination of WAY 100635 (5-HT1A) plus GR 127935, ritanserin (5-HT2), tropisetron (5-HT3/4), LY215840 (5-HT7) or a cocktail of antagonists/inhibitors consisting of yohimbine (α2), prazosin (α1), ritanserin, GR 127935, WAY 100635 and indomethacin (cyclooxygenase), but was abolished by methiothepin (5-HT1/2/6/7 and recombinant 5-ht5A/5B). These drugs, used in doses high enough to block their respective receptors/mechanisms, did not modify the sympathetically induced tachycardiac responses per se. I.v. continuous infusions of the agonists 5-carboxamidotryptamine (5-CT; 5-HT1/7 and recombinant 5-ht5A/5B), CP 93,129 (r5-HT1B), sumatriptan (5-HT1B/1D), PNU-142633 (5-HT1D) and ergotamine (5-HT1B/1D and recombinant 5-ht5A/5B) mimicked the above sympatho-inhibition to 5-HT. In contrast, the agonists indorenate (5-HT1A) and LY344864 (5-ht1F) were inactive. Interestingly, 5-CT-induced cardiac sympatho-inhibition was abolished by methiothepin, the cocktail of antagonists/inhibitors, GR 127935 or the combination of SB224289 (5-HT1B) plus BRL15572 (5-HT1D), but remained unchanged when SB224289 or BRL15572 were given separately. Therefore, 5-HT-induced cardiac sympatho-inhibition, being unrelated to 5-HT2, 5-HT3, 5-HT4, 5-ht6, 5-HT7 receptors, α1/2-adrenoceptor or prostaglandin synthesis, seems to be primarily mediated by (i) 5-HT1 (probably 5-HT1B/1D) receptors and (ii) a novel mechanism antagonized by methiothepin that, most likely, involves putative 5-ht5A/5B

  1. Peripheral 5-HT1A and 5-HT7 Serotonergic Receptors Modulate Parasympathetic Neurotransmission in Long-Term Diabetic Rats

    PubMed Central

    Restrepo, Beatriz; Martín, María Luisa; San Román, Luis; Morán, Asunción

    2010-01-01

    We analyzed the modulation of serotonin on the bradycardia induced in vivo by vagal electrical stimulation in alloxan-induced long-term diabetic rats. Bolus intravenous administration of serotonin had a dual effect on the bradycardia induced either by vagal stimulation or exogenous Ach, increasing it at low doses and decreasing it at high doses of 5-hydroxytryptamine (5-HT), effect reproduced by 5-carboxamidotryptamine maleate (5-CT), a 5-HT1/7 agonist. The enhancement of the bradycardia at low doses of 5-CT was reproduced by 5-HT1A agonist 8-hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT) and abolished by WAY-100,635, 5-HT1A antagonist. Pretreatment with 5-HT1 antagonist methiothepin blocked the stimulatory and inhibitory effect of 5-CT, whereas pimozide, 5-HT7 antagonist, only abolished 5-CT inhibitory action. In conclusion, long-term diabetes elicits changes in the subtype of the 5-HT receptor involved in modulation of vagally induced bradycardia. Activation of the 5-HT1A receptors induces enhancement, whereas attenuation is due to 5-HT7 receptor activation. This 5-HT dual effect occurs at pre- and postjunctional levels. PMID:21403818

  2. Identification and characterization of a truncated variant of the 5-hydroxytryptamine(2A) receptor produced by alternative splicing.

    PubMed

    Guest, P C; Salim, K; Skynner, H A; George, S E; Bresnick, J N; McAllister, G

    2000-09-08

    We have identified an alternatively spliced 5-hydroxytryptamine 2A receptor (5-HT(2A)-R) transcript by PCR of human brain cDNA using degenerate oligonucleotide primers to transmembrane (TM) domains 3 and 7 of the 5-HT(2)-R subfamily. The variant contains a 118-bp insertion at the exon II/III boundary of the 5-HT(2A)-R, which produces a frame shift in the coding sequence and a premature stop codon. PCR analysis showed that the truncated receptor (5-HT(2A-tr)) and native 5-HT(2A)-R were co-expressed in most brain tissues, with the highest levels being found in hippocampus, corpus collosum, amygdala and caudate nucleus. Western blot analysis of HEK-293 cells transfected transiently with a 5-HT(2A-tr) construct showed that a 30-kDa protein was expressed on cell membranes. Co-transfection studies showed no effect of the 5-HT(2A-tr) variant on 3H-ketanserin binding to the native 5-HT(2A)-R or on functional coupling of the 5-HT(2A)-R to 5-HT-stimulated Ca(2+) mobilization. The functional significance of the 5-HT(2A-tr) variant and other truncated receptors remains to be established.

  3. 5-hydroxytryptamine stimulation of phospholipase D activity in the rabbit isolated mesenteric artery.

    PubMed

    Hinton, J M; Adams, D; Garland, C J

    1999-04-01

    1. The involvement of phospholipase D (PLD) in the 5-hydroxytryptamine 5-HT1B/5-HT1D-signalling pathway was assessed in the rabbit isolated mesenteric artery. 2. RT-PCR analysis of mesenteric smooth muscle cells revealed a strong signal corresponding to mRNA transcript for the 5-HT1B receptor. The PCR fragment corresponded to the known sequence for the 5-HT1B receptor. No signal corresponding to 5-HT1D mRNA was detected. 3. Neither 5-HT (3 microM) nor KCl (45 mM) individually stimulated any significant increase in the smooth muscle concentration of [33P]-PtdBut to reflect PLD activity. However, in the presence of KCl (45 mM), 5-HT evoked a concentration-dependent increase in [33P]-PtdBut, to a maximum of 84% with 5-HT (3 microM). 4. [33P]-PtdBut accumulation evoked by 5-HT in the presence of KCl was abolished in nominally calcium-free Krebs-Henseleit Buffer (KHB) or with the selective protein kinase C inhibitor, Ro-31 8220 (10 microM, 20 min). 5. 5-HT (3 microM) in the presence of KCl (45 mM) failed to increase either the accumulation of [33P]-phosphatidic acid in the presence of butanol, or total [3H]-inositol phosphates ([3H]-InsP) in the presence of LiCl (10 mM). 6. 5-HT (0.1-1 microM) abolished forskolin (1 microM) stimulated increases in cyclic AMP (15 fold increase), an action which was pertussis toxin-sensitive. 7. Therefore, in the presence of raised extracellular potassium 5-HT can stimulate PLD via 5-HT1B receptors in the rabbit mesenteric artery. This action requires extracellular calcium and the activation of protein kinase C. These characteristics are identical to the profile for 5-HT1B/5-HT1D-receptor evoked contraction in vascular smooth muscle cells, suggesting a role for PLD in this response to 5-HT.

  4. Identification of 5-hydroxytryptamine1D binding sites in sheep caudate nucleus membranes.

    PubMed

    Pauwels, P J; Palmier, C; Briley, M

    1993-08-03

    Radioligand binding measurements were performed in membranes of sheep caudate nucleus using [3H]5-hydroxytryptamine (5-HT). [3H]5-HT labeled a population of high affinity binding sites with a Kd of 1.9 +/- 0.1 nM and a Bmax of 19.8 +/- 2.2 fmol/mg tissue. Combined 5-HTID/E binding sites were the predominant 5-HT1 subtype, accounting for 78% of the total population of 5-HT1 binding sites. 5-Carboxamidotryptamine (5-CT) and sumatriptan yielded inhibition curves which best fitted a two-site model with high affinity values of 0.8 and 10.1 nM, and 1000 and 206 nM for their low affinity components. The proportion of the high affinity 5-CT and sumatriptan binding sites was 79 and 72%. The binding affinity profile of 5-HT1D binding sites [5-CT > 5-HT > d-LSD > 5-MeOT > sumatriptan > RU 24,969 > metergoline > tryptamine = rauwolscine = methylsergide > yohimbine = methiothepin > TFMPP = 8-OH-DPAT > 2-methyl-5-HT > mCPP = quipazine = CP 93,129 > ketanserin > (-)-propranolol = haloperidol = ipsapirone] compares well to that reported for 5-HT1D receptor sites in human caudate and cortex (correlation coefficient: 0.99 and 0.98). The present results indicate that sheep caudate nucleus is a valid tissue for studying interaction of compounds with 5-HT1D binding sites in the relative absence of 5-HT1E binding sites.

  5. Serotonin transporter, 5-HT1A receptor, and behavior in DBA/2J mice in comparison with four inbred mouse strains.

    PubMed

    Popova, Nina K; Naumenko, Vladimir S; Tibeikina, Marina A; Kulikov, Alexander V

    2009-12-01

    Prepulse inhibition (PPI), the reduction in acoustic startle produced when it is preceded by a weak prepulse stimulus, is impaired in schizophrenic patients. The DBA/2J mouse strain displayed deficient PPI and is therefore suggested as an experimental animal model for the loss of sensorimotor gating in schizophrenia. Brain serotonin (5-HT) has been implicated in the pathophysiology of several psychiatric disorders, including major depressive disorder and schizophrenia. In the present study, behavior, 5-HT transporter (5-HTT) mRNA level, 5-HT(1A) receptor mRNA level, and 5-HT(1A) receptor density in the brain regions were studied in DBA/2J mice in comparison with four inbred mouse strains (CBA/Lac, C57BL/6, BALB/c, and ICR). A decrease in 5-HTT mRNA level in the midbrain and a reduced density of 5-HT(1A) receptors in the frontal cortex without significant changes in 5-HT(1A) receptor mRNA level in DBA/2J mice were found. It was shown that, along with decreased PPI, DBA/2J mice demonstrated considerably reduced immobility in the tail suspension test and in the forced swim test. No significant interstrain differences in intermale aggression, or in light-dark box and elevated plus-maze tests, were found. The results suggested the involvement of decreased 5-HTT gene expression and 5-HT(1A) receptor density in genetically defined PPI deficiency and showed a lack of any association between PPI deficiency and predisposition to aggressive, anxiety, and depressive-like behaviors.

  6. Tianeptine: 5-HT uptake sites and 5-HT(1-7) receptors modulate memory formation in an autoshaping Pavlovian/instrumental task.

    PubMed

    Meneses, Alfredo

    2002-05-01

    Recent studies using invertebrate and mammal species have revealed that, endogenous serotonin (5-hydroxytryptamine, 5-HT) modulates cognitive processes, particularly learning and memory, though, at present, it is unclear the manner, where, and how long 5-HT systems are involved. Hence in this work, an attempt was made to study the effects of 5-HT endogenous on memory formation, using a 5-HT uptake facilitator (tianeptine) and, selective 5-HT(1-7) receptor antagonists to determine whether 5-HT uptake sites and which 5-HT receptors are involved, respectively. Results showed that post-training tianeptine injection enhanced memory consolidation in an autoshaping Pavlovian/instrumental learning task, which has been useful to detect changes on memory formation elicited by drugs or aging. On interaction experiments, ketanserin (5-HT(1D/2A/2C) antagonist) slightly enhanced tianeptine effects, while WAY 100635 (5-HT(1A) antagonist), SB-224289 (5-HT(1B) inverse agonist), SB-200646 (5-HT(2B/2C) antagonist), ondansetron (5-HT(3) antagonist), GR 127487 (5-HT(4) antagonist), Ro 04-6790 (5-HT(6) antagonist), DR 4004 (5-HT(7) antagonist), or fluoxetine (an inhibitor of 5-HT reuptake) blocked the facilitatory tianeptine effect. Notably, together tianeptine and Ro 04-6790 impaired learning consolidation. Moreover, 5-HT depletion completely reversed the tianeptine effect. Tianeptine also normalized an impaired memory elicited by scopolamine (an antimuscarinic) or dizocilpine (non-competitive glutamatergic antagonist), while partially reversed that induced by TFMPP (5-HT(1B/1D/2A-2C/7) agonist/antagonist). Finally, tianeptine-fluoxetine coadministration had no effect on learning consolidation; nevertheless, administration of an acetylcholinesterase inhibitor, phenserine, potentiated subeffective tianeptine or fluoxetine doses. Collectively, these data confirmed that endogenously 5-HT modulates, via uptake sites and 5-HT(1-7) receptors, memory consolidation, and are consistent with the

  7. The effect of DA-9701 on 5-hydroxytryptamine-induced contraction of feline esophageal smooth muscle cells.

    PubMed

    Oh, Kyung Hoon; Nam, Yoonjin; Jeong, Ji Hoon; Kim, In Kyeom; Sohn, Uy Dong

    2014-04-22

    Serotonin, or 5-hydroxytryptamine (5-HT), is a monoamine neurotransmitter found in blood platelets, the gastrointestinal (GI) tract, and the central nervous system (CNS) of animals and humans. The signaling pathways of 5-hydroxytryptamine (5-HT)-induced contractions in cat esophageal smooth muscle cell (ESMC)s have been identified, but the downstream components of the 5-HT signaling pathway remain unclear. DA-9701 is the standardized extract of the Pharbitis nil Choisy seed (Pharbitidis Semen, Convolvulaceae) and the root of Corydalis yahusuo W.T. Wang (Corydalis Tuber, Papaveraceae). DA-9701 is known to have strong gastroprokinetic effects and a good safety profile. In this study, we investigated the 5-HT signaling pathway at the G-protein level, and we explored the mechanisms by which DA-9701 induces smooth muscle contraction. Freshly isolated smooth muscle cells were harvested from the feline esophagus, and cells were permeabilized to measure their length. 5-HT produced esophageal smooth muscle contractions in a dose-dependent manner. Furthermore, 5-HT produced a relatively long-acting contraction. 5-HT binds to the 5-HT2, 5-HT3 and 5-HT4 receptors to induce smooth muscle contraction in feline ESMCs. These receptors, which are located in esophageal smooth muscle, are coupled to Gαq, Gαo and Gαs. These G proteins activate PLC, which leads to Ca2+/calmodulin-dependent MLCK activation, resulting in MLC20 phosphorylation and cell contraction. Conversely, DA-9701 inhibits 5-HT-induced contraction by inhibiting MLC20 phosphorylation.

  8. On the role of 5-hydroxytryptamine in drug-induced antinociception.

    PubMed Central

    Sugrue, M F

    1979-01-01

    1. The effects of four specific inhibitors of 5-hydroxytryptamine (K-HT) uptake on morphine-, methadone- or pethidine-induced antinociception was studied in rats. Antinociception was assessed by means of hot plate (55 degrees C) reaction times. The effect of the compounds on the uptake of [3H]-5-HT into rat whole brain synaptosomes was also investigated. 2. Pretreatment with Org 6582, citalopram, zimelidine or femoxetine at doses devoid of antinociceptive activity potentiated morphine- but not methadone- or pethidine-induced antinociception. 3. A temporal correlation existed between the ability of Org 6582 to potentiate morphine-induced antinociception and to block synaptosomal [3H]-5-HT uptake. 4. 5-HT plays a critical role in the antinociceptive effect of morphine but not of methadone or pethidine. PMID:435690

  9. Platelet 5-hydroxytryptamine release and aggregation promoted by cotton bracts tannin.

    PubMed

    Rohrbach, M S; Rolstad, R A; Tracy, P B; Russell, J A

    1984-01-01

    The effect of aqueous extracts of cotton bract (CBE) on platelet secretion and aggregation was examined by using washed bovine and human platelets. The CBE promoted the release of 75% to 90% of the 5-hydroxytryptamine (5-HT) stored in both human and bovine platelets in a dose-dependent manner. This release reaction occurred without the lysis of the platelets and was not inhibited by indomethacin, 2-deoxyglucose, or KCN. Fractionation of the CBE indicated that the platelet secretagogue present in the CBE was the condensed polyphenol, tannin. In addition to promoting the secretion of 5-HT, tannin also aggregated the platelets in a dose-dependent manner. We conclude that the secretion of platelet 5-HT and the aggregation of platelets by tannin could potentially contribute to the pulmonary symptoms associated with byssinosis.

  10. The serotonin 5-HT3 receptor: a novel neurodevelopmental target.

    PubMed

    Engel, Mareen; Smidt, Marten P; van Hooft, Johannes A

    2013-01-01

    Serotonin (5-hydroxytryptamine, 5-HT), next to being an important neurotransmitter, recently gained attention as a key-regulator of pre- and postnatal development in the mammalian central nervous system (CNS). Several receptors for 5-HT are expressed in the developing brain including a ligand-gated ion channel, the 5-HT3 receptor. Over the past years, evidence has been accumulating that 5-HT3 receptors are involved in the regulation of neurodevelopment by serotonin. Here, we review the spatial and temporal expression patterns of 5-HT3 receptors in the pre- and early postnatal rodent brain and its functional implications. First, 5-HT3 receptors are expressed on GABAergic interneurons in neocortex and limbic structures derived from the caudal ganglionic eminence. Mature inhibitory GABAergic interneurons fine-tune neuronal excitability and thus are crucial for the physiological function of the brain. Second, 5-HT3 receptors are expressed on specific glutamatergic neurons, Cajal-Retzius cells in the cortex and granule cells in the cerebellum, where they regulate morphology, positioning, and connectivity of the local microcircuitry. Taken together, the 5-HT3 receptor emerges as a potential key-regulator of network formation and function in the CNS, which could have a major impact on our understanding of neurodevelopmental disorders in which 5-HT plays a role.

  11. Cerebral metabolic responses to 5-HT2A/C receptor activation in mice with genetically modified serotonin transporter (SERT) expression.

    PubMed

    Dawson, Neil; Ferrington, Linda; Lesch, Klaus-Peter; Kelly, Paul A T

    2011-01-01

    Variation in the human serotonin transporter gene (hSERT; 5-HTT) resulting in a life-long alteration in SERT function influences anxiety and the risk of developing affective disorders. The mechanisms underlying the influence of the hSERT gene on these phenotypes remain unclear but may involve altered 5-HT receptor function. Here we characterise the cerebral metabolic response to 5-HT(2A/C) receptor activation in two transgenic mouse models of altered SERT function, SERT knock-out (SERT KO) and hSERT over-expressing (hSERT OE) mice, to test the hypothesis that genetically mediated variability in SERT expression alters 5-HT(2A/C) function. We found that a constitutive increase in SERT expression (hSERT OE) enhanced, whereas a constitutive decrease in SERT expression (SERT KO) attenuated, 5-HT(2A/C) function. Therefore, altered 5-HT(2A/C) receptor functioning in response to hSERT gene variation may contribute to its influence on affective phenotypes.

  12. Discovery of SMP-304, a novel benzylpiperidine derivative with serotonin transporter inhibitory activity and 5-HT1A weak partial agonistic activity showing the antidepressant-like effect.

    PubMed

    Yoshinaga, Hidefumi; Masumoto, Shuji; Koyama, Koji; Kinomura, Naoya; Matsumoto, Yuji; Kato, Taro; Baba, Satoko; Matsumoto, Kenji; Horisawa, Tomoko; Oki, Hitomi; Yabuuchi, Kazuki; Kodo, Toru

    2017-01-01

    We report the discovery of a novel benzylpiperidine derivative with serotonin transporter (SERT) inhibitory activity and 5-HT1A receptor weak partial agonistic activity showing the antidepressant-like effect. The 3-methoxyphenyl group and the phenethyl group of compound 1, which has weak SERT binding activity, but potent 5-HT1A binding activity, were optimized, leading to compound 35 with potent and balanced dual SERT and 5-HT1A binding activity, but also potent CYP2D6 inhibitory activity. Replacement of the methoxy group in the left part of compound 35 with a larger alkoxy group, such as ethoxy, isopropoxy or methoxy-ethoxy group ameliorated CYP2D6 inhibition, giving SMP-304 as a candidate. SMP-304 with serotonin uptake inhibitory activity and 5-HT1A weak partial agonistic activity, which could work as a 5-HT1A antagonist, displayed faster onset of antidepressant-like effect than a representative SSRI paroxetine in an animal model.

  13. Interaction between serotonin 5-HT2A receptor gene and dopamine transporter (DAT1) gene polymorphisms influences personality trait of persistence in Austrian Caucasians.

    PubMed

    Schosser, Alexandra; Fuchs, Karoline; Scharl, Theresa; Schloegelhofer, Monika; Kindler, Jochen; Mossaheb, Nilufar; Kaufmann, Rainer M; Leisch, Friedrich; Kasper, Siegfried; Sieghart, Werner; Aschauer, Harald N

    2010-03-01

    We examined 89 normal volunteers using Cloninger's Temperament and Character Inventory (TCI). Genotyping the 102T/C polymorphism of the serotonin 5HT2A receptor gene and the ser9gly polymorphism in exon 1 of the dopamine D3 receptor (DRD3) gene was performed using PCR-RFLP, whereas the dopamine transporter (DAT1) gene variable number of tandem repeats (VNTR) polymorphism was investigated using PCR amplification followed by electrophoresis in an 8% acrylamide gel with a set of size markers. We found a nominally significant association between gender and harm avoidance (P=0.017; women showing higher scores). There was no association of either DAT1, DRD3 or 5HT2A alleles or genotypes with any dimension of the TCI applying Kruskal-Wallis rank-sum tests. Comparing homozygote and heterozygote DAT1 genotypes, we found higher novelty seeking scores in homozygotes (P=0.054). We further found a nominally significant interaction between DAT1 and 5HT2A homo-/heterozygous gene variants (P=0.0071; DAT1 and 5HT2A genotypes P value of 0.05), performing multivariate analysis of variance (MANOVA). Examining the temperamental TCI subscales, this interaction was associated with persistence (genotypes: P=0.004; homo-/heterozygous gene variants: P=0.0004). We conclude that an interaction between DAT1 and 5HT2A genes might influence the temperamental personality trait persistence.

  14. Physiological, pathophysiological and therapeutic roles of 5-HT systems in learning and memory.

    PubMed

    Meneses, A

    1998-01-01

    Multiple 5-hydroxytryptamine (5-HT) receptors have been identified (5-HT1A/1B/1D/1E/1F, 5-HT2A/2B/2C, 5-HT3A/3B, 5-HT4A/4B, 5-HT5A/5B, 5-HT6 and 5-HT7A/7B/7C/7D) and extensive evidence suggests that 5-HT receptors have a role in learning and memory. Indeed, available evidence strongly supports physiological, pathophysiological and therapeutic roles of 5-HT systems in cognitive processes, although the evidence seems incomplete. Indeed, there has been a clear tendency to use pre-learning administration most frequently, whereas post-learning and pre-retention administration protocols have been utilized in only a few studies, and probably this trend has led to missed relevant information. For instance, when pre- vs post-training administration of 5-HT1A agonist, 5-HT2 antagonists and 5-HT4 agonists have been compared contrasting findings were reported in aversive and appetitive learning tasks. Emerging evidence also indicates that 5-HT1A and 5-HT4 receptor agonists, as well as, 5-HT1A antagonists, 5-HT2 antagonists, 5-HT3 antagonists and 5-HT uptake inhibitors may have therapeutic utility in the treatment of Alzheimer's disease and amnesia. Inasmuch as the activation or blockade of diverse 5-HT receptors is able to modulate cognitive processes, and 5-HT uptake inhibition could have therapeutic applications in the treatment of cognitive disorders, it seems evident that the role of 5-HT in learning and memory is more complex than a simple imbalance. Consequently, the notion that activation of the 5-HT systems impairs performance, whereas reduced serotonergic function may facilitate learning, must be reconsidered.

  15. The Role of 5-Hydroxytryptamine in the Pathophysiology of Migraine and its Relevance to the Design of Novel Treatments.

    PubMed

    Villalón, Carlos M; VanDenBrink, Antoinette Maassen

    2016-07-28

    Migraine is a highly prevalent neurovascular disorder. Of the many factors that have been implicated over the years, 5-hydroxytryptamine (5-HT; serotonin) has long been involved in the pathophysiology of migraine. Certainly, some lines of evidence suggest: (i) a 5-HT depletion from blood platelets resulting in cranial extracerebral vasodilatation; and (ii) the effectiveness of an intravenous (i.v.) infusion of 5 HT to abort migraine in some patients. More direct evidence comes from some drugs that influence 5-HT release and/or interact (as agonists or antagonists) with 5-HT receptors to treat this disorder. Indeed, the development of sumatriptan and second generation triptans in the 1990's led to discover that these drugs produce selective cranial extracerebral vasoconstriction (via 5 HT1B receptors) and inhibition of the trigeminovascular system responses implicated in migraine (via 5 HT1D/5 HT1F receptors). Although the triptans represent the current mainstay of acute antimigraine treatment, a number of patients do not respond well to the triptans and are contraindicated in patients with cardiovascular pathologies. This mini-review outlines further developments in the design of novel (non-vasoconstrictor) antimigraine treatments acting via 5-HT receptors, including selective agonists at 5 HT1D and 5-HT1F receptors, agonists at 5-HT1B/1D receptors combined with other properties as well as antagonists at 5-HT2B/2C, 5-HT3 and 5 HT7 receptors. It also touches upon the recent development of antagonists and antibodies at calcitonin gene-related peptide (CGRP) and its receptors, which produce a direct blockade of the CGRPergic vasodilator mechanisms involved in migraine. These alternative pharmacological approaches will hopefully lead to less side effects.

  16. Effects of olanzapine and betahistine co-treatment on serotonin transporter, 5-HT2A and dopamine D2 receptor binding density.

    PubMed

    Lian, Jiamei; Huang, Xu-Feng; Pai, Nagesh; Deng, Chao

    2013-12-02

    Olanzapine is widely used in treating multiple domains of schizophrenia symptoms but induces serious metabolic side-effects. Recent evidence has showed that co-treatment of betahistine (a histaminergic H1 receptor agonist and H3 receptor antagonist) is effective for preventing olanzapine-induced weight gain/obesity, however it is not clear whether this co-treatment affects on the primary therapeutic receptor binding sites of olanzapine such as serotonergic 5-HT2A receptors (5-HT2AR) and dopaminergic D2 receptors (D2R). Therefore, this study investigated the effects of this co-treatment on 5-HT2AR, 5-HT transporter (5-HTT) and D2R bindings in various brain regions involved in antipsychotic efficacy. Female Sprague Dawley rats were administered orally (t.i.d.) with either olanzapine (1mg/kg), betahistine (2.7 mg/kg), olanzapine plus betahistine (O+B), or vehicle (control) for 2 weeks. Quantitative autoradiography was used to detect the density of [(3)H]ketanserin, [(3)H]paroxetine and [(3)H]raclopride binding site to 5-HT2AR, 5-HTT and D2R. Compared to the controls, olanzapine significantly decreased [(3)H]ketanserin bindings to 5-HT2AR in the prefrontal cortex, cingulate cortex, and nucleus accumbens. Similar changes in 5-HT2AR bindings in these nuclei were also observed in the O+B co-treatment group. Olanzapine also significantly decreased [(3)H]paroxetine binding to 5-HTT in the ventral tegmental area and substantia nigra, however, both olanzapine only and O+B co-treatment did not affect [(3)H]raclopride binding to D2R. The results confirmed the important role of 5-HT2AR in the efficacy of olanzapine, which is not influenced by the O+B co-treatment. Therefore, betahistine co-treatment would be an effective combination therapy to reduce olanzapine-induced weight gain side-effects without affecting olanzapine's actions on 5-HT2AR transmissions.

  17. 5-HT7 receptor signaling: improved therapeutic strategy in gut disorders.

    PubMed

    Kim, Janice J; Khan, Waliul I

    2014-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) is most commonly known for its role as a neurotransmitter in the central nervous system (CNS). However, the majority of the body's 5-HT is produced in the gut by enterochromaffin (EC) cells. Alterations in 5-HT signaling have been associated with various gut disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and enteric infections. Recently, our studies have identified a key role for 5-HT in the pathogenesis of experimental colitis. 5-HT7 receptors are expressed in the gut and very recently, we have shown evidence of 5-HT7 receptor expression on intestinal immune cells and demonstrated a key role for 5-HT7 receptors in generation of experimental colitis. This review summarizes the key findings of these studies and provides a comprehensive overview of our current knowledge of the 5-HT7 receptor in terms of its pathophysiological relevance and therapeutic potential in intestinal inflammatory conditions, such as IBD.

  18. Studies of the biogenic amine transporters. V. Demonstration of two binding sites for the cocaine analog [125I]RTI-55 associated with the 5-HT transporter in rat brain membranes.

    PubMed

    Silverthorn, M L; Dersch, C M; Baumann, M H; Cadet, J L; Partilla, J S; Rice, K C; Carroll, F I; Becketts, K M; Brockington, A; Rothman, R B

    1995-04-01

    Earlier work characterized the binding of the high-affinity cocaine analog 3 beta-(4-125iodophenyl)-tropane-2-carboxylic acid methyl ester ([125I]RTI-55) to membranes prepared from rat caudate. That investigation demonstrated that [125I]RTI-55-labeled serotonin (5-HT) transporters in addition to dopamine (DA) transporters and resolved [125I]RTI-55 binding to 5-HT transporters into two distinct components. In the present study, we characterized [125I]RTI-55 binding to membranes prepared from whole rat brain minus caudate. The first series of experiments established that [125I]RTI-55 labels both DA and 5-HT transporters and that 50 nM paroxetine and either 1000 nM 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)homopiperazine (LR1111) or 500 nM (RTI-120) could be used to block [125I]RTI-55 binding to the 5-HT and DA transporters, thereby generating selective assay conditions for the DA and 5-HT transporters, respectively. Selective lesioning of dopaminergic and serotonergic neurons with intracerebroventricular 6-hydroxydopamine and 5,7-dihydroxytryptamine selectively decreased [125I]RTI-55 binding to DA and 5-HT transporters, respectively, thereby confirming the selectivity of the assay conditions. The ligand-selectivity pattern of the whole brain minus caudate 5-HT transporter correlated significantly with that of the caudate 5-HT transporter, although there were some striking differences for selected test agents. Additional experiments resolved [125I]RTI-55 binding to the 5-HT transporter into two components. A ligand-selectivity analysis of the two components failed to identify a highly selective test agent. In summary, the major findings of the present study are that [125I]RTI-55 labels both DA and 5-HT transporters in membranes prepared from whole brain minus caudate, that 50 nM paroxetine and either 1000 nM LR1111 or 500 nM RTI-120 can be used as a blocking agent to generate selective assay conditions for the DA and 5-HT transporters, respectively, and that [125

  19. Chronic treatment with escitalopram but not R-citalopram translocates Galpha(s) from lipid raft domains and potentiates adenylyl cyclase: a 5-hydroxytryptamine transporter-independent action of this antidepressant compound.

    PubMed

    Zhang, Lanqiu; Rasenick, Mark M

    2010-03-01

    Chronic antidepressant treatment has been shown to increase adenylyl cyclase activity, in part, due to translocation of Galpha(s) from lipid rafts to a nonraft fraction of the plasma membrane where they engage in a more facile stimulation of adenylyl cyclase. This effect holds for multiple classes of antidepressants, and for serotonin uptake inhibitors, it occurs in the absence of the serotonin transporter. In the present study, we examined the change in the amount of Galpha(s) in lipid raft and whole cell lysate after exposing C6 cells to escitalopram. The results showed that chronic (but not acute) escitalopram decreased the content of Galpha(s) in lipid rafts, whereas there was no change in overall Galpha(s) content. These effects were drug dose- and exposure time-dependent. Although R-citalopram has been reported to antagonize some effects of escitalopram, this compound was without effect on Galpha(s) localization in lipid rafts, and R-citalopram did not inhibit these actions of escitalopram. Escitalopram treatment increased cAMP accumulation, and this seemed due to increased coupling between Galpha(s) and adenylyl cyclase. Thus, escitalopram is potent, rapid and efficacious in translocating Galpha(s) from lipid rafts, and this effect seems to occur independently of 5-hydroxytryptamine transporters. Our results suggest that, although antidepressants display distinct affinities for well identified targets (e.g., monoamine transporters), several presynaptic and postsynaptic molecules are probably modified during chronic antidepressant treatment, and these additional targets may be required for clinical efficacy of these drugs.

  20. The GR127935-sensitive 5-HT1 receptors mediating canine internal carotid vasoconstriction: resemblance to the 5-HT1B, but not to the 5-HT1D or 5-ht1F, receptor subtype

    PubMed Central

    Centurión, David; Sánchez-López, Araceli; De Vries, Peter; Saxena, Pramod R; Villalón, Carlos M

    2001-01-01

    This study has further investigated the pharmacological profile of the GR127935-sensitive 5-HT1 receptors mediating vasoconstriction in the internal carotid bed of anaesthetized vagosympathectomized dogs. One-minute intracarotid infusions of the agonists 5-hydroxytryptamine (5-HT; 0.1–10 μg min−1; endogenous ligand) and sumatriptan (0.3–10 μg min−1; 5-HT1B/1D), but not PNU-142633 (1–1000 μg min−1; 5-HT1D) or LY344864 (1–1000 μg min−1; 5-ht1F), produced dose-dependent decreases in internal carotid blood flow without changing blood pressure or heart rate. The responses to 5-HT were apparently resistant to blockade by i.v. administration of the antagonists SB224289 (300 μg kg−1; 5-HT1B), BRL15572 (300 μg kg−1; 5-HT1D) or ritanserin (100 μg kg−1; 5-HT2). In contrast, the responses to sumatriptan were antagonized by SB224289, but not by BRL15572. In the animals receiving SB224289, but not those receiving BRL15572, the subsequent administration of ritanserin abolished the 5-HT-induced vasoconstriction and unmasked a vasodilator component. Similarly, in ritanserin-treated animals, the subsequent administration of SB224289, but not BRL15572, completely blocked the 5-HT-induced vasoconstriction, revealing vasodilatation. In animals receiving initially BRL15572, the subsequent administration of SB224289 did not affect (except at 10 μg min−1) the vasoconstrictor responses to 5-HT. Notably, in animals pretreated with 1000 μg kg−1 of mesulergine, a 5-HT2/7 receptor antagonist, 5-HT produced a dose-dependent vasoconstriction, which was practically abolished by SB224289. After BRL15572, no further blockade was produced and the subsequent administration of ritanserin was similarly inactive. These results suggest that the GR127935-sensitive 5-HT1 receptors mediating canine internal carotid vasoconstriction resemble the 5-HT1B but not the 5-HT1D or 5-ht1F, receptor subtype. PMID:11226129

  1. Functional properties of a cloned 5-hydroxytryptamine ionotropic receptor subunit: comparison with native mouse receptors.

    PubMed Central

    Hussy, N; Lukas, W; Jones, K A

    1994-01-01

    1. A comparative study of the whole-cell and single-channel properties of cloned and native mouse 5-hydroxytryptamine ionotropic receptors (5-HT3) was undertaken using mammalian cell lines expressing the cloned 5-HT3 receptor subunit A (5-HT3R-A), superior cervical ganglia (SCG) neurones and N1E-115 cells. 2. No pharmacological difference was found in the sensitivity to the agonists 5-HT and 2-methyl-5-HT, or to the antagonists d-tubocurare and 3-tropanyl-3,5-dichlorobenzoate (MDL-72222). 3. Current-voltage (I-V) relationships of whole-cell currents showed inward rectification in the three preparations. Rectification was stronger both in cells expressing the 5-HT3R-A subunit and in N1E-115 cells when compared with SCG neurones. 4. No clear openings could be resolved in 5-HT-activated currents in patches excised from cells expressing the 5-HT3R-A subunit or N1E-115 cells. Current fluctuation analysis of whole-cell and excised-patch records revealed a slope conductance of 0.4-0.6 pS in both preparations. Current-voltage relationships of these channels showed strong rectification that fully accounted for the whole-cell voltage dependence. 5. In contrast, single channels of about 10 pS were activated by 5-HT in patches excised from SCG neurones. The weak voltage dependence of their conductance did not account completely for the rectification of whole-cell currents. A lower unitary conductance (3.4 pS) was inferred from whole-cell noise analysis. 6. We conclude that the receptor expressed from the cloned cDNA is indistinguishable from the 5-HT3 receptor of N1E-115 cells, suggesting an identical structure for these two receptors. The higher conductance and different voltage dependence of the 5-HT3 receptor in SCG neurones might indicate the participation of an additional subunit in the structure of native ganglionic 5-HT3 receptors. Homo-oligomeric 5-HT3R-A channels may also be present as suggested by the lower conductance estimated by whole-cell noise analysis. PMID

  2. Effects of p-chlorophenylalanine on the sensitivity of rat intestine to agonists and on intestinal 5-hydroxytryptamine levels during Nippostrongylus brasiliensis infection.

    PubMed Central

    Farmer, S. G.; Laniyonu, A. A.

    1984-01-01

    Infection of rats with the nematode N. brasiliensis caused non-specific increases in maximum response of isolated intestine to acetylcholine and 5-hydroxytryptamine (5-HT), and a specific subsensitivity to 5-HT. Intestinal levels of 5-HT, measured fluorimetrically, increased approximately 2 fold during infection. Treatment of infected rats with parachlorophenylalanine (PCPA) depleted the gut of 5-HT, and prevented the specific subsensitivity to the amine but not the increases in maximum response. Depletion of intestinal 5-HT did not prevent the immune expulsion of the parasites. It is concluded that the specific subsensitivity of the gut is due to the elevated levels of 5-HT during infection, but that the increased maximum responses are due to some other factor. Further, the lack of effect of PCPA on parasite rejection casts doubt on the proposed role of 5-HT in this process. PMID:6236863

  3. Inhibition by 5-hydroxytryptamine and noradrenaline in substantia gelatinosa of guinea-pig spinal trigeminal nucleus.

    PubMed

    Grudt, T J; Williams, J T; Travagli, R A

    1995-05-15

    1. Whole-cell and intracellular recordings were made from neurons in slices of guinea-pig spinal trigeminal nucleus pars caudalis. 2. 5-Hydroxytryptamine (5-HT) hyperpolarized 70% of neurons by activating 5-HT1A receptors. The effect was mimicked by 5-carboxamidotryptamine (5-CT) and (+/-)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronapthalene hydrobromide (8-OH-DPAT) and antagonized by 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)-butyl]-piperazine hydrobromide (NAN 190) and pindobind-5-HT1A. Nine per cent of the neurons were depolarized by 5-HT. 3. In about 20% of recordings, 5-HT also evoked repetitive inhibitory postsynaptic potentials that were mediated by glycine. 4. Noradrenaline (NA) hyperpolarized 71% of neurons. This effect was mediated by activation of alpha 2-adrenoceptors, since 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK14304) also caused a hyperpolarization and idazoxan (1 microM) blocked the hyperpolarization to both NA and UK14304. Phenylephrine depolarized a subset of neurons and this depolarization was blocked by prazosin, suggesting an action mediated by activation of alpha 1-adrenoceptors. 5. NA also evoked repetitive GABAA-mediated inhibitory postsynaptic potentials in about 20% of recordings. The increase in synaptic activity was mimicked by phenylephrine and blocked by prazosin. 6. These results indicate that there are at least two mechanisms through which 5-HT and NA inhibit neurons: (i) in many cells both 5-HT and NA mediate a hyperpolarization through an increase of a potassium conductance; (ii) 5-HT and NA also activated GABA- and glycine-containing interneurons to cause IPSPs in separate groups of cells.

  4. Peptide displacement of ( sup 3 H)5-hydroxytryptamine binding to bovine cortical membranes

    SciTech Connect

    Takeuchi, Y.; Root-Bernstein, R.S.; Shih, J.C. )

    1990-12-01

    Chemical studies have demonstrated that peptides such as the encephalitogenic (EAE) peptide of myelin basic protein (MBP) and luteinizing hormone-releasing hormone (LHRH) can bind serotonin (5-hydroxytryptamine, 5-HT) in vitro. The present research was undertaken to determine whether such binding interferes with 5-HT binding to its 5-HT1 receptors on bovine cerebral cortical membranes. EAE peptide and LHRH displaced ({sup 3}H)5-HT with IC50s of 4.0 x 10(-4) and 1.8 x 10(-3) M respectively. MBP itself also showed apparent displacing ability with an IC50 of 6.0 x 10(-5) M, though it also caused aggregation of cortical membranes that might have interfered with normal receptor binding. These results support previous suggestions that the tryptophan peptide region of MBP may act as a 5-HT receptor in the neural system. We also tested the effects of muramyl dipeptide (N-acetyl-muramyl-L-Ala-D-isoGln, MD), a bacterial cell-wall breakdown product that acts as a slow-wave sleep promoter, binds to LHRH and EAE peptide, and competes for 5-HT binding sites on macrophages. It showed no significant displacement of 5-HT binding to cortical membranes (IC50 greater than 10(-1) M), but its D-Ala analogue did (IC50 = 1.7 x 10(-3) M). Thus, it seems likely that the 5-HT-related effects of naturally occurring muramyl peptides are physiologically limited by receptor types.

  5. QGP-1 cells release 5-HT via TRPA1 activation; a model of human enterochromaffin cells.

    PubMed

    Doihara, Hitoshi; Nozawa, Katsura; Kojima, Ryosuke; Kawabata-Shoda, Eri; Yokoyama, Toshihide; Ito, Hiroyuki

    2009-11-01

    Recently, we discovered that transient receptor potential ankyrin1 channel (TRPA1) is highly expressed in human and rat enterochromaffin (EC) cells, and those TRPA1 agonists such as allyl isothiocyanates (AITC) and cinnamaldehyde (CA) enhance the release of serotonin (5-hydroxytryptamine; 5-HT) from EC cells in vitro. In this study, QGP-1 cells, a human pancreatic endocrine cell line, were found to highly express TRPA1 and EC cell marker genes, such as tryptophan hydroxylase 1 (TPH1), chromogranin A (CgA), synaptophysin, ATP-dependent vesicular monoamine transporter 1 (VMAT1), metabotropic glutamate receptor 4 (mGluR4), beta1-adrenergic receptor (ADB1), muscarinic 4 acetylcholine receptor (ACM4), substance P, serotonin transporter (SERT), and guanylin. Furthermore, the TRPA1 agonists AITC, CA, and acrolein concentration dependently evoked an increase in intracellular Ca(2+) influx and the release of 5-HT in QGP-1 cells. The effects of these TRPA1 agonists were inhibited by ruthenium red, a TRPA1 antagonist, and TRPA1-specific siRNA. These results indicate that the Ca(2+) influx increase and 5-HT release induced by AITC, CA and acrolein in QGP-1 cells were mediated by TRPA1, and that the QGP-1 cell line could be a new model for the investigation of TRPA1 function in the human EC cell.

  6. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory

    PubMed Central

    Stiedl, Oliver; Pappa, Elpiniki; Konradsson-Geuken, Åsa; Ögren, Sven Ove

    2015-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR) subtypes, the 5-HT1AR and 5-HT7R are associated with the development of anxiety, depression and cognitive function linked to mechanisms of emotional learning and memory. In rodents fear conditioning and passive avoidance (PA) are associative learning paradigms to study emotional memory. This review assesses the role of 5-HT1AR and 5-HT7R as well as their interplay at the molecular, neurochemical and behavioral level. Activation of postsynaptic 5-HT1ARs impairs emotional memory through attenuation of neuronal activity, whereas presynaptic 5-HT1AR activation reduces 5-HT release and exerts pro-cognitive effects on PA retention. Antagonism of the 5-HT1AR facilitates memory retention possibly via 5-HT7R activation and evidence is provided that 5HT7R can facilitate emotional memory upon reduced 5-HT1AR transmission. These findings highlight the differential role of these 5-HTRs in cognitive/emotional domains of behavior. Moreover, the results indicate that tonic and phasic 5-HT release can exert different and potentially opposing effects on emotional memory, depending on the states of 5-HT1ARs and 5-HT7Rs and their interaction. Consequently, individual differences due to genetic and/or epigenetic mechanisms play an essential role for the responsiveness to drug treatment, e.g., by SSRIs which increase intrasynaptic 5-HT levels thereby activating multiple pre- and postsynaptic 5-HTR subtypes. PMID:26300776

  7. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory.

    PubMed

    Stiedl, Oliver; Pappa, Elpiniki; Konradsson-Geuken, Åsa; Ögren, Sven Ove

    2015-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR) subtypes, the 5-HT1AR and 5-HT7R are associated with the development of anxiety, depression and cognitive function linked to mechanisms of emotional learning and memory. In rodents fear conditioning and passive avoidance (PA) are associative learning paradigms to study emotional memory. This review assesses the role of 5-HT1AR and 5-HT7R as well as their interplay at the molecular, neurochemical and behavioral level. Activation of postsynaptic 5-HT1ARs impairs emotional memory through attenuation of neuronal activity, whereas presynaptic 5-HT1AR activation reduces 5-HT release and exerts pro-cognitive effects on PA retention. Antagonism of the 5-HT1AR facilitates memory retention possibly via 5-HT7R activation and evidence is provided that 5HT7R can facilitate emotional memory upon reduced 5-HT1AR transmission. These findings highlight the differential role of these 5-HTRs in cognitive/emotional domains of behavior. Moreover, the results indicate that tonic and phasic 5-HT release can exert different and potentially opposing effects on emotional memory, depending on the states of 5-HT1ARs and 5-HT7Rs and their interaction. Consequently, individual differences due to genetic and/or epigenetic mechanisms play an essential role for the responsiveness to drug treatment, e.g., by SSRIs which increase intrasynaptic 5-HT levels thereby activating multiple pre- and postsynaptic 5-HTR subtypes.

  8. 5-HT1B receptor-mediated contractions in human temporal artery: evidence from selective antagonists and 5-HT receptor mRNA expression

    PubMed Central

    Verheggen, R; Hundeshagen, A G; Brown, A M; Schindler, M; Kaumann, A J

    1998-01-01

    In the human temporal artery both 5-HT1-like and 5-HT2A receptors mediate the contractile effects of 5-hydroxytryptamine (5-HT) and we have suggested that the 5-HT1-like receptors resemble more closely recombinant 5-HT1B than 5-HT1D receptors. To investigate further which subtype is involved, we investigated the blockade of 5-HT-induced contractions by the 5-HT1B-selective antagonist SB-224289 (2,3,6,7-tetrahydro-1′-methyl-5-{2-methyl-4′[(5-methyl-1,2,4-oxadiazole-3-yl) biphenyl-4-yl] carbonyl} furo[2,3-f]indole-3-spiro-4′-piperidine oxalate) and the 5-HT1D-selective antagonist BRL-15572 (1-phenyl-3[4-3-chlorophenyl piperazin-1-yl] phenylpropan-2-ol). We also used RT-PCR to search for the mRNA of 5-HT1B, 5-HT1D and other 5-HT receptors.The contractile effects of 5-HT in temporal artery rings were partially antagonized by SB-224289 (20, 200 nM) (apparent KB=1 nM) and ketanserin (1 μM) but not by BRL-15572 (500 nM).Sumatriptan evoked contractions (EC50, 170 nM) that were resistant to blockade by BRL-15572 (500 nM) but antagonized by SB-224289 (20, 200 nM).The potency of 5-HT (EC50) was estimated to be 94 nM for the ketanserin-sensitive receptor and 34 nM for the SB-224289-sensitive receptor. The fraction of maximal 5-HT response mediated through SB-224289-sensitive receptors was 0.20–0.67, the remainder being mediated through ketanserin-sensitive receptors.We detected arterial receptor mRNA for the following receptors (incidence): 5-HT1B (8/8), 5-HT1D (2/8), 5-HT1F (0/4), 5-HT2A (0/8), 5-HT2B (0/8), 5-HT2C (0/8), 5-HT4 (4/8) and 5-HT7 (4/8).We conclude that the ketanserin-resistant fraction of the 5-HT effects and the effects of sumatriptan are mediated by 5-HT1B receptors. The lack of antagonism by BRL-15572 rules out 5-HT1D receptors as mediators of the contractile effects of 5-HT and sumatriptan. PMID:9723944

  9. Increased responsiveness to 5-hydroxytryptamine after antigenic challenge is inhibited by nifedipine and niflumic acid in rat trachea in vitro.

    PubMed

    Moura, Carlos Tiago Martins; Bezerra, Fernanda Carvalho; de Moraes, Isabelle Maciel; Magalhães, Pedro Jorge Caldas; Capaz, Francisco Ruy

    2005-12-01

    Antigenic challenge often induces hyperreactivity in asthmatic airway, although the precise mechanism(s) underlying this increased responsiveness is not entirely known. Tracheae obtained from ovalbumin (OVA)-sensitized saline- or OVA-challenged rats were placed in 10 mL bath chambers for isometric recording of 5-hydroxytryptamine (5-HT)-induced contractions. 5-Hydroxytryptamine induced a stronger contraction compared with control in antigen-challenged trachea under normal or Ca2+-free conditions. In tracheae pretreated with the L-type Ca2+ channel blocker nifedipine (10(-6) mol/L) or the Ca2+-activated Cl- channel blocker niflumic acid (10(-4) mol/L), this hyperresponsiveness was not developed in either normal or Ca2+-free medium. The increased contractile response to 5-HT in allergic rat isolated trachea may be related to a greater ionic (Ca2+ and Cl-) channel involvement.

  10. Voltage-dependent transient currents of human and rat 5-HT transporters (SERT) are blocked by HEPES and ion channel ligands.

    PubMed

    Li, Ming; Farley, Robert A; Lester, Henry A

    2002-02-27

    The hyperpolarization-activated transient current of mammalian 5-hydroxytryptamine transporters (SERT) expressed in Xenopus oocytes was studied. Human (h) and rat (r) SERT transient currents are blocked by HEPES with changes in the waveform kinetics, and the blockade of hSERT has use-dependent properties. HEPES also changes the time course of the prepriming step, especially for hSERT. Transient currents at hSERT and rSERT are also blocked by spermine and spermidine in the mM range, and by fluoxetine, cocaine, QX-314, and QX-222 in the microM range. These pharmacological and kinetic properties of transient current blockade emphasize the similarities between the transient current and phenomena at ion channels.

  11. Selective 5-hydroxytryptamine2 receptor antagonists protect against the neurotoxicity of methylenedioxymethamphetamine in rats.

    PubMed

    Schmidt, C J; Abbate, G M; Black, C K; Taylor, V L

    1990-11-01

    The serotonergic deficits resulting from methylenedioxymethamphetamine (MDMA)-induced neurotoxicity were prevented by the simultaneous administration of 5-hydroxytryptamine2 (5-HT2) receptor antagonists such as MDL 11,939 or ritanserin. This effect was not region specific as protection was observed in the cortex, hippocampus and striatum 1 week after the administration of a single dose of MDMA. MDL 11,939 also showed some efficacy at reducing the deficits in 5-HT concentrations and tryptophan hydroxylase activity produced by multiple administrations of MDMA. Protection against the neurotoxicity required the administration of MDL 11,939 within 1 hr of MDMA indicating 5-HT2 receptor activation was an early event in the process leading to terminal damage. Examination of the effect of the 5-HT2 receptor blockade on the early neurochemical alterations induced by MDMA revealed an inhibitory effect on MDMA-stimulated dopamine synthesis. Analysis of these data and the associated changes in dopamine metabolites indicates that 5-HT2 receptor antagonists block MDMA-induced neurotoxicity by interfering with the ability of the dopamine neuron to maintain its cytoplasmic pool of transmitter and thereby sustain carrier-mediated dopamine release.

  12. Increased reactivity to 5-hydroxytryptamine of portal veins from mice infected with Schistosoma mansoni.

    PubMed

    Silva, C L; Morel, N; Lenzi, H L; Noël, F

    1998-07-01

    In chronic severe infection with Schistosoma mansoni, portal hypertension accompanied by anatomical changes of the portal vasculature can develop as a consequence of granulomatous response to eggs. Mice infected unisexually with male worms were used in the present study in order to investigate a direct effect of worms on the reactivity of their host portal vein. A higher reactivity in the presence of 5-hydroxytryptamine (5-HT), but not in the presence of KCl 100 mM solution, was observed in portal vein from infected mice compared to healthy mice. It was characterized by an increase in the maximal contraction and sensitivity to 5-HT. Blockade of NO-synthase with N omega-nitro-L-arginine methyl ester (L-NAME) induced a small increase in 5-HT potency in the portal vein from non-infected mice, but did not change the amplitude of the contractions. In portal veins from infected mice, preincubation with L-NAME did not affect the reactivity to 5-HT. Histological analysis indicated endothelial damage, subendothelial fibrous plaques, and focal areas of inflammatory infiltrates in the adventitial layer. As a conclusion, these results show that unisexual infection of mice with male S. mansoni increased the reactivity of the portal vein to 5-HT which seems to be only partially related to an alteration in the endothelial production of nitric oxide.

  13. The Pharmacology of TD-8954, a Potent and Selective 5-HT4 Receptor Agonist with Gastrointestinal Prokinetic Properties

    PubMed Central

    Beattie, David T.; Armstrong, Scott R.; Vickery, Ross G.; Tsuruda, Pamela R.; Campbell, Christina B.; Richardson, Carrie; McCullough, Julia L.; Daniels, Oranee; Kersey, Kathryn; Li, Yu-Ping; Kim, Karl H. S.

    2011-01-01

    This study evaluated the in vitro and in vivo pharmacological properties of TD-8954, a potent and selective 5-HT4 receptor agonist. TD-8954 had high affinity (pKi = 9.4) for human recombinant 5-HT4(c) (h5-HT4(c)) receptors, and selectivity (>2,000-fold) over all other 5-hydroxytryptamine (5-HT) receptors and non-5-HT receptors, ion channels, enzymes and transporters tested (n = 78). TD-8954 produced an elevation of cAMP in HEK-293 cells expressing the h5-HT4(c) receptor (pEC50 = 9.3), and contracted the guinea pig colonic longitudinal muscle/myenteric plexus preparation (pEC50 = 8.6). TD-8954 had moderate intrinsic activity in the in vitro assays. In conscious guinea pigs, subcutaneous administration of TD-8954 (0.03–3 mg/kg) increased the colonic transit of carmine red dye, reducing the time taken for its excretion. Following intraduodenal dosing to anesthetized rats, TD-8954 (0.03–10 mg/kg) evoked a dose-dependent relaxation of the esophagus. Following oral administration to conscious dogs, TD-8954 (10 and 30 μg/kg) produced an increase in contractility of the antrum, duodenum, and jejunum. In a single ascending oral dose study in healthy human subjects, TD-8954 (0.1–20 mg) increased bowel movement frequency and reduced the time to first stool. It is concluded that TD-8954 is a potent and selective 5-HT4 receptor agonist in vitro, with robust in vivo stimulatory activity in the gastrointestinal (GI) tract of guinea pigs, rats, dogs, and humans. TD-8954 may have clinical utility in patients with disorders of reduced GI motility. PMID:21687517

  14. A Pharmacological Analysis of an Associative Learning Task: 5-HT1 to 5-HT7 Receptor Subtypes Function on a Pavlovian/Instrumental Autoshaped Memory

    PubMed Central

    Meneses, Alfredo

    2003-01-01

    Recent studies using both invertebrates and mammals have revealed that endogenous serotonin (5-hydroxytryptamine [5-HT]) modulates plasticity processes, including learning and memory. However, little is currently known about the mechanisms, loci, or time window of the actions of 5-HT. The aim of this review is to discuss some recent results on the effects of systemic administration of selective agonists and antagonists of 5-HT on associative learning in a Pavlovian/instrumental autoshaping (P/I-A) task in rats. The results indicate that pharmacological manipulation of 5-HT1-7 receptors or 5-HT reuptake sites might modulate memory consolidation, which is consistent with the emerging notion that 5-HT plays a key role in memory formation. PMID:14557609

  15. A pharmacological analysis of an associative learning task: 5-HT(1) to 5-HT(7) receptor subtypes function on a pavlovian/instrumental autoshaped memory.

    PubMed

    Meneses, Alfredo

    2003-01-01

    Recent studies using both invertebrates and mammals have revealed that endogenous serotonin (5-hydroxytryptamine [5-HT]) modulates plasticity processes, including learning and memory. However, little is currently known about the mechanisms, loci, or time window of the actions of 5-HT. The aim of this review is to discuss some recent results on the effects of systemic administration of selective agonists and antagonists of 5-HT on associative learning in a Pavlovian/instrumental autoshaping (P/I-A) task in rats. The results indicate that pharmacological manipulation of 5-HT1-7 receptors or 5-HT reuptake sites might modulate memory consolidation, which is consistent with the emerging notion that 5-HT plays a key role in memory formation.

  16. Functions of 5-HT2A receptor and its antagonists in the cardiovascular system.

    PubMed

    Nagatomo, Takafumi; Rashid, Mamunur; Abul Muntasir, Habib; Komiyama, Tadazumi

    2004-10-01

    The serotonin (5-hydroxytryptamine, 5-HT) receptors have conventionally been divided into seven subfamilies, most of which have several subtypes. Among them, 5-HT(2A) receptor is associated with the contraction of vascular smooth muscle, platelet aggregation and thrombus formation and coronary artery spasms. Accordingly, selective 5-HT(2A) antagonists may have potential in the treatment of cardiovascular diseases. Sarpogrelate, a selective 5-HT(2A) antagonist, has been introduced clinically as a therapeutic agent for the treatment of ischemic diseases associated with thrombosis. Molecular modeling studies also suggest that sarpogrelate is a 5-HT(2A) selective antagonist and is likely to have pharmacological effects beneficial in the treatment of cardiovascular diseases. This review describes the above findings as well as the signaling linkages of the 5-HT(2A) receptors and the mode of agonist binding to 5-HT(2A) receptor using data derived from molecular modeling and site-directed mutagenesis.

  17. Age-dependent effects of the 5-hydroxytryptamine-2a-receptor polymorphism (His452Tyr) on human memory.

    PubMed

    Papassotiropoulos, Andreas; Henke, Katharina; Aerni, Amanda; Coluccia, Daniel; Garcia, Esmeralda; Wollmer, Marc A; Huynh, Kim-Dung; Monsch, Andreas U; Stähelin, Hannes B; Hock, Christoph; Nitsch, Roger M; de Quervain, Dominique J-F

    2005-05-31

    A polymorphism (His452Tyr) of the 5-hydroxytryptamine (5-HT)2a receptor is associated with episodic memory in healthy young humans. Because 5-HT2a-receptor density decreases with increasing age, we tested whether the 5-HT2a receptor genotype effect on memory is influenced by age. We investigated the association of the His452Tyr genotype with memory performance in 622 healthy study participants aged from 18 to 90 years. In young to middle-aged participants, age significantly influenced genotype effects on episodic memory: the His452Tyr genotype exerted a significant influence on memory only in young participants. In the group of elderly cognitively healthy participants, the His452Tyr genotype did not affect memory performance. We conclude that age strongly modulates the effect of the 5-HT2a receptor polymorphism at residue 452 on episodic memory.

  18. Interaction of tryptamine and ergoline compounds with threonine 196 in the ligand binding site of the 5-hydroxytryptamine6 receptor.

    PubMed

    Boess, F G; Monsma, F J; Meyer, V; Zwingelstein, C; Sleight, A J

    1997-09-01

    We examined the ligand-binding site of the 5-hydroxytryptamine6 (5-HT6) receptor using site-directed mutagenesis. Interactions with residues in two characteristic positions of trans-membrane region V are important for ligand binding in several bioamine receptors. In the 5-HT6 receptor, one of these residues is a threonine (Thr196), whereas in most other mammalian 5-HT receptors, the corresponding residue is alanine. After transient expression in human embryonic kidney 293 cells, we determined the effects of the mutation T196A on [3H]d-lysergic acid diethylamide (LSD) binding and adenylyl cyclase stimulation. This mutation produced a receptor with a 10-fold reduced affinity for [3H]LSD and a 6-fold reduced affinity for 5-HT. The potency of both LSD and 5-HT for stimulation of adenylyl cyclase was also reduced by 18- and 7-fold, respectively. The affinity of other N1-unsubstituted ergolines (e.g., ergotamine, lisuride) was reduced 10-30 fold, whereas the affinity of N1-methylated ergolines (e.g., metergoline, methysergide, mesulergine) and other ligands, such as methiothepine, clozapine, ritanserin, amitriptyline, and mainserin, changed very little or increased. This indicates that in wild-type 5-HT6 receptor, Thr196 interacts with the N1 of N1-unsubstituted ergolines and tryptamines, probably forming a hydrogen bond. Based on molecular modeling, a serine residue in transmembrane region IV of the 5-HT2A receptor has previously been proposed to interact with the N1-position of 5-HT. When the corresponding residue of the 5-HT6 receptor (Ala154) was converted to serine, no change in the affinity of twelve 5-HT6 receptor ligands or in the potency of 5-HT and LSD could be detected, suggesting that this position does not contribute to the ligand binding site of the 5-HT6 receptor.

  19. Hippocampal 5-HT1A Receptor and Spatial Learning and Memory

    PubMed Central

    Glikmann-Johnston, Yifat; Saling, Michael M.; Reutens, David C.; Stout, Julie C.

    2015-01-01

    Spatial cognition is fundamental for survival in the topographically complex environments inhabited by humans and other animals. The hippocampus, which has a central role in spatial cognition, is characterized by high concentration of serotonin (5-hydroxytryptamine; 5-HT) receptor binding sites, particularly of the 1A receptor (5-HT1A) subtype. This review highlights converging evidence for the role of hippocampal 5-HT1A receptors in spatial learning and memory. We consider studies showing that activation or blockade of the 5-HT1A receptors using agonists or antagonists, respectively, lead to changes in spatial learning and memory. For example, pharmacological manipulation to induce 5-HT release, or to block 5-HT uptake, have indicated that increased extracellular 5-HT concentrations maintain or improve memory performance. In contrast, reduced levels of 5-HT have been shown to impair spatial memory. Furthermore, the lack of 5-HT1A receptor subtype in single gene knockout mice is specifically associated with spatial memory impairments. These findings, along with evidence from recent cognitive imaging studies using positron emission tomography (PET) with 5-HT1A receptor ligands, and studies of individual genetic variance in 5-HT1A receptor availability, strongly suggests that 5-HT, mediated by the 5-HT1A receptor subtype, plays a key role in spatial learning and memory. PMID:26696889

  20. Multiple 5-HT receptors in the guinea-pig superior cervical ganglion.

    PubMed Central

    Watkins, C. J.; Newberry, N. R.

    1996-01-01

    1. We have studied the pharmacology of the depolarization by 5-hydroxytryptamine (5-HT) of the guinea-pig isolated superior cervical ganglion (SCG) using the grease-gap technique. We studied the effects of selective and non-selective antagonists on the responses to 5-HT and other 5-HT receptor agonists. 2. We have extended the pharmacology of the 5-HT3 receptor in this preparation by studying the effects of granisetron, BRL 46470 and mianserin on the concentration-response curve (CRC) to 2-methyl-5-HT. As with other 5-HT3 receptor antagonists, these compounds exhibited a lower affinity for guinea-pig 5-HT3 receptors than for rat 5-HT3 receptors. 3. We have confirmed that low concentrations of 5-HT (< or = 1 microM) mediate ketanserin-sensitive responses and higher concentrations of 5-HT also recruit 5-HT3 receptors. The responses to low concentrations of 5-HT were antagonized by low concentrations of ketanserin, spiperone, mianserin, DOI and LSD indicating probably mediation by 5-HT2A receptors. At high concentrations, the hallucinogen, DOI, but not LSD, evoked a ketanserin-sensitive depolarization. 4. Although mianserin could bind to the 5-HT2A receptors in this preparation, we could not demonstrate a down-regulation of depolarizations evoked by these receptors after a 10 day oral treatment with mianserin (10 mg kg-1, daily). 5. 5-Carboxamidotryptamine (5-CT) evoked a prolonged depolarization. Although high concentrations of 5-CT (> or = microM) appeared to activate 5-HT2A receptors, lower concentrations of 5-CT evoked a response with a distinct pharmacology. After studying the action of 20 selective and non-selective 5-HT receptor ligands we believe that this response may be mediated by a novel receptor; but its pharmacology is closest to that of receptors in the 5-HT2 receptor family. Like 5-CT, 5-HT (3-300 microM) could evoke an LSD-sensitive response in the presence of the 5-HT2 receptor antagonist, ketanserin and the 5-HT3 receptor antagonist, tropisetron

  1. Serotonin modifies the spontaneous spiking activity of gracile nucleus neurons in rats: role of 5-HT1A and 5-HT2 receptors.

    PubMed

    Grasso, C; Li Volsi, G; Barresi, M

    2016-06-01

    We tested the effects of microiontophoretic application of serotonin (5-HT) on the firing rate of neurons located in the gracile nucleus (GN) of rats. Application of 5-HT1A and 5-HT2 agonists and antagonists respectively mimicked/ modulated and blocked the effects produced by the amine, respectively. Among the tested neurons, 88.2% modified their background firing activity in the presence of 5-HT. Responsive neurons decreased their mean firing activity (MFA) in 56.7% of cases and increased it in the remaining 43.3%. To ascertain the specificity of the effects induced by 5-HT, we utilized 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) and alpha-methyl-5-hydroxytryptamine (α-MET-5-HT), agonists for 5-HT1A and 5-HT2 receptors, respectively. The microiontophoresis of 8-OH-DPAT modified the background firing rate of all GN neurons (100% of tested neurons) mimicking the decrease of MFA evoked by 5-HT. The application of a-MET-5-HT modified the MFA in 76.9% of tested neurons, decreasing it in 61.5% of cases and increasing in the remaining 23.1%. The decrease of MFA induced by 8-OH-DPAT was antagonized by application of the 5-HT1A receptor antagonist N-[2-[-(2-Methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate salt (WAY100635), while application of 5-HT2 receptor antagonist ketanserine tartrate (KET) antagonized only the increase of MFA induced by a-MET-5-HT. These results indicate that 5-HT is able to modulate the background firing activity of GN neurons by 5-HT1A and 5-HT2 receptors.

  2. Metabolic and Cardiovascular Benefits and Risks of EMD386088—A 5-HT6 Receptor Partial Agonist and Dopamine Transporter Inhibitor

    PubMed Central

    Kotańska, Magdalena; Śniecikowska, Joanna; Jastrzębska-Więsek, Magdalena; Kołaczkowski, Marcin; Pytka, Karolina

    2017-01-01

    Since 5-HT6 receptors play role in controlling feeding and satiety and dopamine is essential for normal feeding behavior, we evaluated the ability of EMD 386088—5-HT6 receptor partial agonist and dopamine transporter inhibitor—to reduce body weight in obese rats, as well as its anorectic properties (calorie intake reduction) in rat model of excessive eating and the influence on metabolism (plasma glucose and glycerol levels). We also determined the effect of the studied compound on pica behavior in rats and its influence on blood pressure after single administration. EMD 386088 reduced body weight in obese rats fed high-fat diet and decreased calorie intake in both models applied (rat model of obesity and of excessive eating). In both models EMD 386088 regulated plasma glucose and increased plasma glycerol levels. The latter proves that the compound reduced body fat. We think that it might have increased lipolysis, but this requires further studies. The reduction in glucose levels is the first symptom of metabolic disorders compensation. EMD 386088 did not cause pica behavior in rats but increased blood pressure after single administration. We think that partial 5-HT6 agonists might have potential in the treatment of obesity. Thus, EMD 386088 requires extended studies. PMID:28228713

  3. Role of 5-hydroxytryptamine in the regulation of brain neuropeptides in normal and diabetic rat

    NASA Technical Reports Server (NTRS)

    Kolta, Malak G.; Williams, Byron B.; Soliman, Karam F. A.

    1986-01-01

    The effect of 5-hydroxytryptamine (5-HT) alteration on brain dopamine (DA), norepinephrine (NE), beta-endorphin (beta-E), and immunoreactive insulin was studied in Sprague-Dawley diabetic and control rats. Diabetes was induced using alloxan (45 mg/kg), 15 days prior to sacrificing. Both control and diabetic animals were treated with either p-chlorophenylalanine (PCPA, 300 mg/kg) three days prior to sacrificing or fluoxetine (10 mg/kg) twice daily for three days. PCPA treatment significantly decreased brain content of 5-HT and 5-hydroxyindolel acetic acid, while it caused significant increase and decrease in brain beta-E and insulin levels, respectively, in both normal and diabetic rat. Meanwhile, the administration of fluoxetine resulted in significant increase in brain content of 5-HT, DA, NE and insulin but significant decline of beta-E in diabetic and saline control rats. The results of this experiment indicate that 5-HT may be regulating both beta-E and insulin regardless of the availability of pancreatic insulin.

  4. Neuronal localization of the 5-HT2 receptor family in the amygdaloid complex.

    PubMed

    Bombardi, Cristiano

    2014-01-01

    The amygdaloid complex (or amygdala), a heterogeneous structure located in the medial portion of the temporal lobe, is composed of deep, superficial, and "remaining" nuclei. This structure is involved in the generation of emotional behavior, in the formation of emotional memories and in the modulation of the consolidation of explicit memories for emotionally arousing events. The serotoninergic fibers originating in the dorsal and medial raphe nuclei are critically involved in amygdalar functions. Serotonin (5-hydroxytryptamine, 5-HT) regulates amygdalar activity through the activation of the 5-HT2 receptor family, which includes three receptor subtypes: 5-HT2A, 5-HT2B, and 5-HT2C. The distribution and the functional activity of the 5-HT2 receptor family has been studied more extensively than that of the 5-HT2A receptor subtypes, especially in the deep nuclei. In these nuclei, the 5-HT2A receptor is expressed on both pyramidal and non-pyramidal neurons, and could play a critical role in the formation of emotional memories. However, the exact role of the 5-HT2A receptor subtypes, as well as that of the 5-HT2B and 5-HT2C receptor subtypes, in the modulation of the amygdalar microcircuits requires additional study. The present review reports data concerning the distribution and the functional roles of the 5-HT2 receptor family in the amygdala.

  5. Characterization of 5-HT receptors mediating constriction of porcine carotid arteriovenous anastomoses; involvement of 5-HT1B/1D and novel receptors

    PubMed Central

    De Vries, Peter; Villalón, Carlos M; Heiligers, Jan P C; Saxena, Pramod R

    1998-01-01

    It was previously shown that porcine cranial arteriovenous anastomoses (AVAs) constrict to 5-hydroxytryptamine (5-HT), ergotamine, dihydroergotamine, as well as sumatriptan and that sumatriptan acts exclusively via 5-HT1B/1D receptors. The present study was devoted to establish the contribution of 5-HT1B/1D receptors in the constriction of AVAs elicited by 5-HT (in presence of 0.5 mg kg−1 ketanserin), ergotamine and dihydroergotamine in anaesthetized pigs.Intracarotid infusion of 5-HT (2 μg kg−1 min−1) and intravenous doses of ergotamine (2.5–20 μg kg−1) and dihydroergotamine (3–100 μg kg−1) reduced AVA and increased nutrient blood flows and vascular conductances. The vasodilator response to 5-HT, observed mainly in the skin and ear, was much more prominent than that of the ergot alkaloids.Treatment with the 5-HT1B/1D receptor antagonist GR127935 (0.5 mg kg−1, i.v.) significantly attenuated both ergot-induced AVA constriction and arteriolar dilatation, whereas GR127935 only slightly affected the carotid vascular effects of 5-HT.The results suggest that 5-HT constricts carotid AVAs primarily via receptors, which seem to differ from those (5-HT1B/1D) stimulated by sumatriptan. The ergot alkaloids produce AVA constriction for a substantial part via 5-HT1B/1D receptors, but also stimulate unidentified receptors. Both these non-5-HT1B/1D receptors may be targets for the development of novel antimigraine drugs.The moderate vasodilator response to the ergot derivatives seems to be mediated, at least in part, by 5-HT1B/1D receptors, whereas the arteriolar dilatation caused by 5-HT may be mediated by other, possibly 5-HT7 receptors. PMID:9605562

  6. An update on the role of the 5-hydroxytryptamine6 receptor in cognitive function.

    PubMed

    Fone, Kevin C F

    2008-11-01

    As the 5-hydroxytryptamine(6) (5-HT(6)) receptor is almost exclusively expressed in the CNS, particularly in areas associated with learning and memory, many studies have examined its role in cognitive function in the rodent, as reviewed herein. Most studies, in healthy adult rats, report that 5-HT(6) receptor antagonists enhance retention of spatial learning in the Morris water maze, improve consolidation in autoshaping tasks and reverse natural forgetting in object recognition. Antagonists appear to facilitate both cholinergic and glutamatergic neurotransmission, reversing scopolamine- and NMDA receptor antagonist-induced memory impairments. Recent reports show that the 5-HT(6) receptor antagonist, PRX-07034, restores the impairment of novel object recognition produced in rats reared in social isolation, a neurodevelopmental model producing behavioural changes similar to several core symptoms seen in schizophrenia. The 5-HT(6) receptor antagonist, Ro 04-6790, modestly improved reversal learning in isolation reared but not group-housed controls in the water maze. Ro 04-6790 also improved novel object discrimination both in adult rats that received chronic intermittent phencyclidine and drug-naïve 18-month-old rats. However, more information on their effect in animal models of schizophrenia and Alzheimer's disease is required. Several selective high-affinity 5-HT(6) receptor agonists developed recently also improve object discrimination and extra-dimensional set-shifting behaviour. Thus both 5-HT(6) receptor agonist and antagonist compounds show promise as pro-cognitive agents in pre-clinical studies but the explanation for their paradoxical analogous effect is currently unclear, and is discussed in this article.

  7. Nelotanserin, a novel selective human 5-hydroxytryptamine2A inverse agonist for the treatment of insomnia.

    PubMed

    Al-Shamma, Hussien A; Anderson, Christen; Chuang, Emil; Luthringer, Remy; Grottick, Andrew J; Hauser, Erin; Morgan, Michael; Shanahan, William; Teegarden, Bradley R; Thomsen, William J; Behan, Dominic

    2010-01-01

    5-Hydroxytryptamine (5-HT)(2A) receptor inverse agonists are promising therapeutic agents for the treatment of sleep maintenance insomnias. Among these agents is nelotanserin, a potent, selective 5-HT(2A) inverse agonist. Both radioligand binding and functional inositol phosphate accumulation assays suggest that nelotanserin has low nanomolar potency on the 5-HT(2A) receptor with at least 30- and 5000-fold selectivity compared with 5-HT(2C) and 5-HT(2B) receptors, respectively. Nelotanserin dosed orally prevented (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI; 5-HT(2A) agonist)-induced hypolocomotion, increased sleep consolidation, and increased total nonrapid eye movement sleep time and deep sleep, the latter marked by increases in electroencephalogram (EEG) delta power. These effects on rat sleep were maintained after repeated subchronic dosing. In healthy human volunteers, nelotanserin was rapidly absorbed after oral administration and achieved maximum concentrations 1 h later. EEG effects occurred within 2 to 4 h after dosing, and were consistent with vigilance-lowering. A dose response of nelotanserin was assessed in a postnap insomnia model in healthy subjects. All doses (up to 40 mg) of nelotanserin significantly improved measures of sleep consolidation, including decreases in the number of stage shifts, number of awakenings after sleep onset, microarousal index, and number of sleep bouts, concomitant with increases in sleep bout duration. Nelotanserin did not affect total sleep time, or sleep onset latency. Furthermore, subjective pharmacodynamic effects observed the morning after dosing were minimal and had no functional consequences on psychomotor skills or memory. These studies point to an efficacy and safety profile for nelotanserin that might be ideally suited for the treatment of sleep maintenance insomnias.

  8. Peptide YY3–36 and 5-Hydroxytryptamine Mediate Emesis Induction by Trichothecene Deoxynivalenol (Vomitoxin)

    PubMed Central

    Pestka, James J.

    2013-01-01

    Deoxynivalenol (DON, vomitoxin), a trichothecene mycotoxin produced by Fusarium sp. that frequently occurs in cereal grains, has been associated with human and animal food poisoning. Although a common hallmark of DON-induced toxicity is the rapid onset of emesis, the mechanisms for this adverse effect are not fully understood. Recently, our laboratory has demonstrated that the mink (Neovison vison) is a suitable small animal model for investigating trichothecene-induced emesis. The goal of this study was to use this model to determine the roles of two gut satiety hormones, peptide YY3–36 (PYY3–36) and cholecystokinin (CCK), and the neurotransmitter 5-hydroxytryptamine (5-HT) in DON-induced emesis. Following ip exposure to DON at 0.1 and 0.25mg/kg bw, emesis induction ensued within 15–30min and then persisted up to 120min. Plasma DON measurement revealed that this emesis period correlated with the rapid distribution and clearance of the toxin. Significant elevations in both plasma PYY3–36 (30–60min) and 5-HT (60min) but not CCK were observed during emesis. Pretreatment with the neuropeptide Y2 receptor antagonist JNJ-31020028 attenuated DON- and PYY-induced emesis, whereas the CCK1 receptor antagonist devezapide did not alter DON’s emetic effects. The 5-HT3 receptor antagonist granisetron completely suppressed induction of vomiting by DON and the 5-HT inducer cisplatin. Granisetron pretreatment also partially blocked PYY3–36-induced emesis, suggesting a potential upstream role for this gut satiety hormone in 5-HT release. Taken together, the results suggest that both PYY3–36 and 5-HT play contributory roles in DON-induced emesis. PMID:23457120

  9. Comparative effects of niflumic acid and nifedipine on 5-hydroxytryptamine- and acetylcholine-induced contraction of the rat trachea.

    PubMed

    Teixeira, M C; Coelho, R R; Leal-Cardoso, J H; Criddle, D N

    2000-04-07

    The effects of niflumic acid, an inhibitor of Ca(2+)-activated Cl(-) (Cl((Ca))) channels, were compared with those of the voltage-dependent Ca(2+) channel (VDCC) blocker nifedipine on 5-hydroxytryptamine (5-HT)- and acetylcholine-induced contractions of the rat isolated trachea. Niflumic acid (3-100 microM) induced a concentration-dependent inhibition of 5-HT (10 microM)-induced contractions, with a reduction to 37.0+/-9.5% of the control at the highest concentration. One micromolar nifedipine, which completely blocked 60 mM KCl-induced contractions, reduced the response to 5-HT similarly to 39.2+/-11.5% of the control. The inhibition of the 5-HT response was not significantly different from that produced by the combined presence of nifedipine (1 microM) and niflumic acid (100 microM), suggesting that their effects were not additive. In contrast, neither niflumic acid (3-100 microM) nor nifedipine (1 microM) inhibited acetylcholine-induced contractions. The contraction to 5-HT (10 microM) in Cl(-)-free solution was decreased by more than approximately 85% of the control, whilst that of acetylcholine was reduced only by approximately 36%. Our data show that niflumic acid exerts selective inhibitory effects on 5-HT-induced contraction, and suggest that activation of Cl((Ca)) channels may be a mechanism whereby 5-HT (but not acetylcholine) induces Ca(2+) entry via VDCCs to elicit contraction.

  10. Identification of 5-Hydroxytryptamine-Producing Cells by Detection of Fluorescence in Paraffin-Embedded Tissue Sections

    PubMed Central

    Kaneko, Y.; Onda, N.; Watanabe, Y.; Shibutani, M.

    2016-01-01

    5-Hydroxytryptamine (5-HT) produced by enterochromaffin (EC) cells is an important enteric mucosal signaling ligand and has been implicated in several gastrointestinal diseases, including inflammatory bowel disease and functional disorders such as irritable bowel syndrome. The present study reports a new, simple and rapid visualization method of 5-HT-producing EC cells utilizing detection of fluorescence in paraffin-embedded tissue sections after formalin fixation. In human samples, there was a high incidence of fluorescence+ cells in the 5-HT+ cells in the pyloric, small intestinal and colonic glands, while co-localization was lacking between fluorescence+ and gastrin+ cells in the pyloric and small intestinal glands. Fluorescence+ EC cells were detected in the colon of mice and rats. Fluorescence+ cells were also observed in 5-HT+ β cells in the pancreatic islets of Langerhans in pregnant mice, while non-pregnant mouse pancreatic islet cells showed no 5-HT immunoreactivity or fluorescence. These results suggest that fluorescence+ cells are identical to 5-HT+ cells, and the source of fluorescence may be 5-HT itself or molecules related to its synthesis or degradation. This fluorescence signal detection method may be applicable for monitoring of inflammatory status of inflammatory bowel diseases in both the experimental and clinical settings. PMID:27734992

  11. Cartography of 5-HT1A and 5-HT2A Receptor Subtypes in Prefrontal Cortex and Its Projections.

    PubMed

    Mengod, Guadalupe; Palacios, José M; Cortés, Roser

    2015-07-15

    Since the development of chemical neuroanatomical tools in the 1960s, a tremendous wealth of information has been generated on the anatomical components of the serotonergic system, at the microscopic level in the brain including the prefrontal cortex (PFC). The PFC receives a widespread distribution of serotonin (5-hydroxytryptamine, 5-HT) terminals from the median and dorsal raphe nuclei. 5-HT receptors were first visualized using radioligand autoradiography in the late 1980s and early 1990s and showed, in contrast to 5-HT innervation, a differential distribution of binding sites associated with different 5-HT receptor subtypes. Due to the cloning of the different 5-HT receptor subtype genes in the late 1980s and early 1990s, it was possible, using in situ hybridization histochemistry, to localize cells expressing mRNA for these receptors. Double in situ hybridization histochemistry and immunohistochemistry allowed for the chemical characterization of the phenotype of cells expressing 5-HT receptors. Tract tracing technology allowed a detailed cartography of the neuronal connections of PFC and other brain areas. Based on these data, maps have been constructed that reflect our current understanding of the different circuits where 5-HT receptors can modulate the electrophysiological, pharmacological, and behavioral functions of the PFC. We will review current knowledge regarding the cellular localization of 5-HT1A and 5-HT2A receptors in mammalian PFC and their possible functions in the neuronal circuits of the PFC. We will discuss data generated in our laboratory as well as in others, focusing on localization in the pyramidal and GABAergic neuronal cell populations in different mammalian species using molecular neuroanatomy and on the connections with other brain regions.

  12. Evidence for 5-HT1B/1D and 5-HT2A receptors mediating constriction of the canine internal carotid circulation

    PubMed Central

    Centurión, David; Ortiz, Mario I; Sánchez-López, Araceli; De Vries, Peter; Saxena, Pramod R; Villalón, Carlos M

    2001-01-01

    The present study has investigated the preliminary pharmacological profile of the receptors mediating vasoconstriction to 5-hydroxytryptamine (5-HT) in the internal carotid bed of vagosympathectomised dogs. One minute intracarotid infusions of the agonists 5-HT (0.1–10 μg min−1), sumatriptan (0.3–10 μg min−1; 5-HT1B/1D), 5-methoxytryptamine (1–100 μg min−1; 5-HT1, 5-HT2, 5-HT4, 5-ht6 and 5-HT7) or DOI (0.31–10 μg min−1; 5-HT2), but not 5-carboxamidotryptamine (0.01–0.3 μg min−1; 5-HT1, 5-ht5A and 5-HT7), 1-(m-chlorophenyl)-biguanide (mCPBG; 1–1000 μg min−1; 5-HT3) or cisapride (1–1000 μg min−1; 5-HT4), resulted in dose-dependent decreases in internal carotid blood flow, without changing blood pressure or heart rate. The vasoconstrictor responses to 5-HT, which remained unaffected after saline, were resistant to blockade by i.v. administration of the antagonists ritanserin (100 μg kg−1; 5-HT2A/2B/2C) in combination with tropisetron (3000 μg kg−1; 5-HT3/4) or the cyclo-oxygenase inhibitor, indomethacin (5000 μg kg−1), but were abolished by the 5-HT1B/1D receptor antagonist, GR127935 (30 μg kg−1). Interestingly, after administration of GR127935, the subsequent administration of ritanserin unmasked a dose-dependent vasodilator component. GR127935 or saline did not practically modify the vasoconstrictor effects of 5-MeO-T. In animals receiving GR127935, the subsequent administration of ritanserin abolished the vasoconstrictor responses to 5-MeO-T unmasking a dose-dependent vasodilator component. The vasoconstriction induced by sumatriptan was antagonized by GR127935, but not by ritanserin. Furthermore, ritanserin (100 μg kg−1) or ketanserin (100 μg kg−1; 5-HT2A), but not GR127935, abolished DOI-induced vasoconstrictor responses. The above results suggest that 5-HT-induced internal carotid vasoconstriction is predominantly mediated by 5-HT1B/1D and 5-HT2A receptors

  13. Corticotropin-releasing factor increases GABA synaptic activity and induces inward current in 5-hydroxytryptamine dorsal raphe neurons.

    PubMed

    Kirby, Lynn G; Freeman-Daniels, Emily; Lemos, Julia C; Nunan, John D; Lamy, Christophe; Akanwa, Adaure; Beck, Sheryl G

    2008-11-26

    Stress-related psychiatric disorders such as anxiety and depression involve dysfunction of the serotonin [5-hydroxytryptamine (5-HT)] system. Previous studies have found that the stress neurohormone corticotropin-releasing factor (CRF) inhibits 5-HT neurons in the dorsal raphe nucleus (DRN) in vivo. The goals of the present study were to characterize the CRF receptor subtypes (CRF-R1 and -R2) and cellular mechanisms underlying CRF-5-HT interactions. Visualized whole-cell patch-clamp recording techniques in brain slices were used to measure spontaneous or evoked GABA synaptic activity in DRN neurons of rats and CRF effects on these measures. CRF-R1 and -R2-selective agonists were bath applied alone or in combination with receptor-selective antagonists. CRF increased presynaptic GABA release selectively onto 5-HT neurons, an effect mediated by the CRF-R1 receptor. CRF increased postsynaptic GABA receptor sensitivity selectively in 5-HT neurons, an effect to which both receptor subtypes contributed. CRF also had direct effects on DRN neurons, eliciting an inward current in 5-HT neurons mediated by the CRF-R2 receptor and in non-5-HT neurons mediated by the CRF-R1 receptor. These results indicate that CRF has direct membrane effects on 5-HT DRN neurons as well as indirect effects on GABAergic synaptic transmission that are mediated by distinct receptor subtypes. The inhibition of 5-HT DRN neurons by CRF in vivo may therefore be primarily an indirect effect via stimulation of inhibitory GABA synaptic transmission. These results regarding the cellular mechanisms underlying the complex interaction between CRF, 5-HT, and GABA systems could contribute to the development of novel treatments for stress-related psychiatric disorders.

  14. CORTICOTROPIN-RELEASING FACTOR INCREASES GABA SYNAPTIC ACTIVITY AND INDUCES INWARD CURRENT IN 5-HYDROXYTRYPTAMINE DORSAL RAPHE NEURONS

    PubMed Central

    Kirby, Lynn G.; Freeman-Daniels, Emily; Lemos, Julia C.; Nunan, John D.; Lamy, Christophe; Akanwa, Adaure; Beck, Sheryl G.

    2008-01-01

    Stress-related psychiatric disorders such as anxiety and depression involve dysfunction of the serotonin (5-hydroxytryptamine; 5-HT) system. Previous studies have found that the stress neurohormone corticotropin-releasing factor (CRF) inhibits 5-HT neurons in the dorsal raphe nucleus (DRN) in vivo. The goals of the present study were to characterize the CRF receptor subtypes (CRF-R1 and R2) and cellular mechanisms underlying CRF-5-HT interactions. Visualized whole-cell patch clamp recording techniques in brain slices were used to measure spontaneous or evoked GABA synaptic activity in DRN neurons of rats and CRF effects on these measures. CRF-R1 and -R2-selective agonists were bath applied alone or in combination with receptor-selective antagonists. CRF increased presynaptic GABA release selectively onto 5-HT neurons, an effect mediated by the CRF-R1 receptor. CRF increased postsynaptic GABA receptor sensitivity selectively in 5-HT neurons, an effect to which both receptor subtypes contributed. CRF also had direct effects on DRN neurons, eliciting an inward current in 5-HT neurons mediated by the CRF-R2 receptor and in non 5-HT neurons mediated by the CRF-R1 receptor. These results indicate that CRF has direct membrane effects on 5-HT DRN neurons as well as indirect effects on GABAergic synaptic transmission that are mediated by distinct receptor subtypes. The inhibition of 5-HT DRN neurons by CRF in vivo may therefore be largely an indirect effect via stimulation of inhibitory GABA synaptic transmission. These results regarding the cellular mechanisms underlying the complex interaction between CRF, 5-HT and GABA systems could contribute to the development of novel treatments for stress-related psychiatric disorders. PMID:19036986

  15. Pharmacological Characterization of a 5-HT1-Type Serotonin Receptor in the Red Flour Beetle, Tribolium castaneum

    PubMed Central

    Vleugels, Rut; Lenaerts, Cynthia; Baumann, Arnd; Vanden Broeck, Jozef; Verlinden, Heleen

    2013-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is known for its key role in modulating diverse physiological processes and behaviors by binding various 5-HT receptors. However, a lack of pharmacological knowledge impedes studies on invertebrate 5-HT receptors. Moreover, pharmacological information is urgently needed in order to establish a reliable classification system for invertebrate 5-HT receptors. In this study we report on the molecular cloning and pharmacological characterization of a 5-HT1 receptor from the red flour beetle, Tribolium castaneum (Trica5-HT1). The Trica5-HT1 receptor encoding cDNA shows considerable sequence similarity with members of the 5-HT1 receptor class. Real time PCR showed high expression in the brain (without optic lobes) and the optic lobes, consistent with the role of 5-HT as neurotransmitter. Activation of Trica5-HT1 in mammalian cells decreased NKH-477-stimulated cyclic AMP levels in a dose-dependent manner, but did not influence intracellular Ca2+ signaling. We studied the pharmacological profile of the 5-HT1 receptor and demonstrated that α-methylserotonin, 5-methoxytryptamine and 5-carboxamidotryptamine acted as agonists. Prazosin, methiothepin and methysergide were the most potent antagonists and showed competitive inhibition in presence of 5-HT. This study offers important information on a 5-HT1 receptor from T. castaneum facilitating functional research of 5-HT receptors in insects and other invertebrates. The pharmacological profiles may contribute to establish a reliable classification scheme for invertebrate 5-HT receptors. PMID:23741451

  16. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves

    PubMed Central

    Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C.; Finger, Thomas E.

    2015-01-01

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT3A promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT3A mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μm 5-HT and this response is blocked by 1 μm ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μm m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. SIGNIFICANCE STATEMENT Historically, serotonin (5-hydroxytryptamine; 5-HT) has been described as a candidate neurotransmitter in the gustatory system and recent studies show that type III taste receptor cells release 5-HT in response to various taste stimuli. In the present study, we demonstrate that a subset of gustatory sensory neurons express functional

  17. 5-HT1A/1B, 5-HT6, and 5-HT7 serotonergic receptors recruitment in tonic-clonic seizure-induced antinociception: role of dorsal raphe nucleus.

    PubMed

    Freitas, Renato Leonardo; Ferreira, Célio Marcos dos Reis; Urbina, Maria Angélica Castiblanco; Mariño, Andrés Uribe; Carvalho, Andressa Daiane; Butera, Giuseppe; de Oliveira, Ana Maria; Coimbra, Norberto Cysne

    2009-05-01

    Pharmacological studies have been focused on the involvement of different neural pathways in the organization of antinociception that follows tonic-clonic seizures, including 5-hydroxytryptamine (5-HT)-, norepinephrine-, acetylcholine- and endogenous opioid peptide-mediated mechanisms, giving rise to more in-depth comprehension of this interesting post-ictal antinociceptive phenomenon. The present work investigated the involvement of 5-HT(1A/1B), 5-HT(6), and 5-HT(7) serotonergic receptors through peripheral pretreatment with methiothepin at doses of 0.5, 1.0, 2.0 and 3.0 mg/kg in the organization of the post-ictal antinociception elicited by pharmacologically (with pentylenetetrazole at 64 mg/kg)-induced tonic-clonic seizures. Methiothepin at 1.0 mg/kg blocked the post-ictal antinociception recorded after the end of seizures, whereas doses of 2.0 and 3.0 mg/kg potentiated the post-ictal antinociception. The nociceptive thresholds were kept higher than those of the control group. However, when the same 5-hydroxytryptamine receptors antagonist was microinjected (at 1.0, 3.0 and 5.0 microg/0.2 microL) in the dorsal raphe nucleus, a mesencephalic structure rich in serotonergic neurons and 5-HT receptors, the post-ictal hypo-analgesia was consistently antagonized. The present findings suggest a dual effect of methiothepin, characterized by a disinhibitory effect on the post-ictal antinociception when peripherally administered (possibly due to an antagonism of pre-synaptic 5-HT(1A) serotonergic autoreceptors in the pain endogenous inhibitory system) and an inhibitory effect (possibly due to a DRN post-synaptic 5-HT(1B), 5-HT(6), and 5-HT(7) serotonergic receptors blockade) when centrally administered. The present data also suggest that serotonin-mediated mechanisms of the dorsal raphe nucleus exert a key-role in the modulation of the post-ictal antinociception.

  18. Cellular mechanisms of the 5-HT7 receptor-mediated signaling

    PubMed Central

    Guseva, Daria; Wirth, Alexander; Ponimaskin, Evgeni

    2014-01-01

    Serotonin (5-hydroxytryptamine or 5-HT) is an important neurotransmitter regulating a wide range of physiological and pathological functions via activation of heterogeneously expressed 5-HT receptors. The 5-HT7 receptor is one of the most recently described members of the 5-HT receptor family. Functionally, 5-HT7 receptor is associated with a number of physiological and pathological responses, including serotonin-induced phase shifting of the circadian rhythm, control of memory as well as locomotor and exploratory activity. A large body of evidence indicates involvement of the 5-HT7 receptor in anxiety and depression, and recent studies suggest that 5-HT7 receptor can be highly relevant for the treatment of major depressive disorders. The 5-HT7 receptor is coupled to the stimulatory Gs-protein, and receptor stimulation results in activation of adenylyl cyclase (AC) leading to a rise of cAMP concentration. In addition, this receptor is coupled to the G12-protein to activate small GTPases of the Rho family. This review focuses on molecular mechanisms responsible for the 5-HT7 receptor-mediated signaling. We provide detailed overview of signaling cascades controlled and regulated by the 5-HT7 receptor and discuss the functional impact of 5-HT7 receptor for the regulation of different cellular and subcellular processes. PMID:25324743

  19. Cellular mechanisms of the 5-HT7 receptor-mediated signaling.

    PubMed

    Guseva, Daria; Wirth, Alexander; Ponimaskin, Evgeni

    2014-01-01

    Serotonin (5-hydroxytryptamine or 5-HT) is an important neurotransmitter regulating a wide range of physiological and pathological functions via activation of heterogeneously expressed 5-HT receptors. The 5-HT7 receptor is one of the most recently described members of the 5-HT receptor family. Functionally, 5-HT7 receptor is associated with a number of physiological and pathological responses, including serotonin-induced phase shifting of the circadian rhythm, control of memory as well as locomotor and exploratory activity. A large body of evidence indicates involvement of the 5-HT7 receptor in anxiety and depression, and recent studies suggest that 5-HT7 receptor can be highly relevant for the treatment of major depressive disorders. The 5-HT7 receptor is coupled to the stimulatory Gs-protein, and receptor stimulation results in activation of adenylyl cyclase (AC) leading to a rise of cAMP concentration. In addition, this receptor is coupled to the G12-protein to activate small GTPases of the Rho family. This review focuses on molecular mechanisms responsible for the 5-HT7 receptor-mediated signaling. We provide detailed overview of signaling cascades controlled and regulated by the 5-HT7 receptor and discuss the functional impact of 5-HT7 receptor for the regulation of different cellular and subcellular processes.

  20. Long-term Stress with Hyperglucocorticoidemia-induced Hepatic Steatosis with VLDL Overproduction Is Dependent on both 5-HT2 Receptor and 5-HT Synthesis in Liver

    PubMed Central

    Fu, Jihua; Ma, Shaoxin; Li, Xin; An, Shanshan; Li, Tao; Guo, Keke; Lin, Min; Qu, Wei; Wang, Shanshan; Dong, Xinyue; Han, Xiaoyu; Fu, Ting; Huang, Xinping; Wang, Tianying; He, Siyu

    2016-01-01

    Hepatic triglycerides production and adipose lipolysis are pivotal for long-term stress (LTS) or hyperglucocorticoidemia-induced insulin resistance. 5-hydroxytryptamine (5-HT) has been demonstrated to induce hepatic lipid metabolic abnormality by activating mammalian target of rapamycin (mTOR). In present study, we explored whether 5-HT is involved in LTS effects in liver using restraint stress-exposed rats and cultured primary rat hepatocytes and HepG2 cells. LTS with hyperglucocorticoidemia induced hepatic 5-HT synthetic increase with tryptophan hydroxylase 1 (Tph1) up-regulation, and 5-HT2 receptor (5-HT2R, including 5-HT2A, 2B receptor) up-regulation in liver and visceral adipose, as well as hepatic mTOR activation with triglycerides and VLDL overproduction with steatosis, and visceral adipose lipolytic increase with high blood free fatty acids (FFAs) level. 5-HT exposure exhibited LTS-like effects in both tissues, and both LTS and 5-HT effects could be abolished significantly by blocking 5-HT2R. In HepG2 cells dexamethasone or palmitate-induced mTOR activation with triglycerides and VLDL overproduction were accompanied by up-regulations of 5-HT synthesis and 5-HT2R, which were significantly abolished by gene silencing Tph1 or 5-HT2R and were almost fully abolished by co-silencing of both, especially on VLDL overproduction. Chemical inhibition of Tph1 or/and 5-HT2R in both hepatocytes exhibited similar abolishment with genetic inhibition on dexamethason-induced effects. 5-HT-stimulated effects in both hepatocytes were fully abolished by blocking 5-HT2R, while 5-HT itself also up-regulated 5-HT2R. In conclusion, up-regulated hepatic 5-HT synthesis and 5-HT2R induced by both glucocorticoid and FFAs are crucial for LTS-induced hepatic steatosis with VLDL overproduction, while 5-HT by acting on 5-HT2R mediates mTOR activation in liver. PMID:26884719

  1. Long-term Stress with Hyperglucocorticoidemia-induced Hepatic Steatosis with VLDL Overproduction Is Dependent on both 5-HT2 Receptor and 5-HT Synthesis in Liver.

    PubMed

    Fu, Jihua; Ma, Shaoxin; Li, Xin; An, Shanshan; Li, Tao; Guo, Keke; Lin, Min; Qu, Wei; Wang, Shanshan; Dong, Xinyue; Han, Xiaoyu; Fu, Ting; Huang, Xinping; Wang, Tianying; He, Siyu

    2016-01-01

    Hepatic triglycerides production and adipose lipolysis are pivotal for long-term stress (LTS) or hyperglucocorticoidemia-induced insulin resistance. 5-hydroxytryptamine (5-HT) has been demonstrated to induce hepatic lipid metabolic abnormality by activating mammalian target of rapamycin (mTOR). In present study, we explored whether 5-HT is involved in LTS effects in liver using restraint stress-exposed rats and cultured primary rat hepatocytes and HepG2 cells. LTS with hyperglucocorticoidemia induced hepatic 5-HT synthetic increase with tryptophan hydroxylase 1 (Tph1) up-regulation, and 5-HT2 receptor (5-HT2R, including 5-HT2A, 2B receptor) up-regulation in liver and visceral adipose, as well as hepatic mTOR activation with triglycerides and VLDL overproduction with steatosis, and visceral adipose lipolytic increase with high blood free fatty acids (FFAs) level. 5-HT exposure exhibited LTS-like effects in both tissues, and both LTS and 5-HT effects could be abolished significantly by blocking 5-HT2R. In HepG2 cells dexamethasone or palmitate-induced mTOR activation with triglycerides and VLDL overproduction were accompanied by up-regulations of 5-HT synthesis and 5-HT2R, which were significantly abolished by gene silencing Tph1 or 5-HT2R and were almost fully abolished by co-silencing of both, especially on VLDL overproduction. Chemical inhibition of Tph1 or/and 5-HT2R in both hepatocytes exhibited similar abolishment with genetic inhibition on dexamethason-induced effects. 5-HT-stimulated effects in both hepatocytes were fully abolished by blocking 5-HT2R, while 5-HT itself also up-regulated 5-HT2R. In conclusion, up-regulated hepatic 5-HT synthesis and 5-HT2R induced by both glucocorticoid and FFAs are crucial for LTS-induced hepatic steatosis with VLDL overproduction, while 5-HT by acting on 5-HT2R mediates mTOR activation in liver.

  2. Menthol inhibits 5-HT3 receptor-mediated currents.

    PubMed

    Ashoor, Abrar; Nordman, Jacob C; Veltri, Daniel; Yang, Keun-Hang Susan; Shuba, Yaroslav; Al Kury, Lina; Sadek, Bassem; Howarth, Frank C; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-11-01

    The effects of alcohol monoterpene menthol, a major active ingredient of the peppermint plant, were tested on the function of human 5-hydroxytryptamine type 3 (5-HT3) receptors expressed in Xenopus laevis oocytes. 5-HT (1 μM)-evoked currents recorded by two-electrode voltage-clamp technique were reversibly inhibited by menthol in a concentration-dependent (IC50 = 163 μM) manner. The effects of menthol developed gradually, reaching a steady-state level within 10-15 minutes and did not involve G-proteins, since GTPγS activity remained unaltered and the effect of menthol was not sensitive to pertussis toxin pretreatment. The actions of menthol were not stereoselective as (-), (+), and racemic menthol inhibited 5-HT3 receptor-mediated currents to the same extent. Menthol inhibition was not altered by intracellular 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid injections and transmembrane potential changes. The maximum inhibition observed for menthol was not reversed by increasing concentrations of 5-HT. Furthermore, specific binding of the 5-HT3 antagonist [(3)H]GR65630 was not altered in the presence of menthol (up to 1 mM), indicating that menthol acts as a noncompetitive antagonist of the 5-HT3 receptor. Finally, 5-HT3 receptor-mediated currents in acutely dissociated nodose ganglion neurons were also inhibited by menthol (100 μM). These data demonstrate that menthol, at pharmacologically relevant concentrations, is an allosteric inhibitor of 5-HT3 receptors.

  3. 5-HT is a potent relaxant in rat superior mesenteric veins.

    PubMed

    Watts, Stephanie W; Darios, Emma S; Seitz, Bridget M; Thompson, Janice M

    2015-02-01

    Serotonin (5-HT, 5-hydroxytryptamine) reduces blood pressure of the conscious rat when administered chronically (1 week). 5-HT does not directly relax isolated arteries, and microsphere experiments in 5-HT-infused rats suggested that 5-HT increased flow to the splanchnic bed. We hypothesized that 5-HT increased splanchnic flow because of direct venous relaxation; our focus was thus on the superior mesenteric vein (SMV) as an important vein in splanchnic circulation. Real-time RT-PCR, immunohistochemistry and Western analyses supported the predominant expression of the 5-HT2B and 5-HT7 receptor in the SMV. The SMV was mounted in tissue baths for measurement of isometric contraction. 5-HT caused a concentration-dependent relaxation of the endothelin-1 (ET-1)-contracted vein. The threshold of 5-HT-induced venous relaxation was significantly lower than for 5-HT-induced venous contraction (∼2 vs. 700 nmol/L, respectively). A series of serotonergic agonists established in their use of receptor characterization was tested, and the following rank order of potency found for agonist-induced relaxation (receptor selectivity): 5-CT (5-HT1/5-HT7)>5-HT = LP-44 (5-HT7)>PNU109291 (5-HT1D) = BW723C86 (5-HT2B). 8-OH-DPAT (5-HT1A/7), CP93129 (5-HT1B), mCPBG (5-HT3/4), AS19 (5-HT7) and TCB-2 (5-HT2A) did not relax the isolated vein. Consistent with these findings, two different 5-HT7 receptor antagonists SB 269970 and LY215840 but not the 5-HT2B receptor antagonist LY272015 nor the nitric oxide synthase inhibitor LNNA abolished 5-CT-induced relaxation of the isolated SMV. 5-CT (1 μg kg(-1) min(-1), sc) also reduced blood pressure over 7 days. These findings suggest that 5-HT directly relaxes the SMV primarily through activation of the 5-HT7 receptor.

  4. 5-HT is a potent relaxant in rat superior mesenteric veins

    PubMed Central

    Watts, Stephanie W; Darios, Emma S; Seitz, Bridget M; Thompson, Janice M

    2015-01-01

    Serotonin (5-HT, 5-hydroxytryptamine) reduces blood pressure of the conscious rat when administered chronically (1 week). 5-HT does not directly relax isolated arteries, and microsphere experiments in 5-HT-infused rats suggested that 5-HT increased flow to the splanchnic bed. We hypothesized that 5-HT increased splanchnic flow because of direct venous relaxation; our focus was thus on the superior mesenteric vein (SMV) as an important vein in splanchnic circulation. Real-time RT-PCR, immunohistochemistry and Western analyses supported the predominant expression of the 5-HT2B and 5-HT7 receptor in the SMV. The SMV was mounted in tissue baths for measurement of isometric contraction. 5-HT caused a concentration-dependent relaxation of the endothelin-1 (ET-1)-contracted vein. The threshold of 5-HT-induced venous relaxation was significantly lower than for 5-HT-induced venous contraction (∼2 vs. 700 nmol/L, respectively). A series of serotonergic agonists established in their use of receptor characterization was tested, and the following rank order of potency found for agonist-induced relaxation (receptor selectivity): 5-CT (5-HT1/5-HT7)>5-HT = LP-44 (5-HT7)>PNU109291 (5-HT1D) = BW723C86 (5-HT2B). 8-OH-DPAT (5-HT1A/7), CP93129 (5-HT1B), mCPBG (5-HT3/4), AS19 (5-HT7) and TCB-2 (5-HT2A) did not relax the isolated vein. Consistent with these findings, two different 5-HT7 receptor antagonists SB 269970 and LY215840 but not the 5-HT2B receptor antagonist LY272015 nor the nitric oxide synthase inhibitor LNNA abolished 5-CT-induced relaxation of the isolated SMV. 5-CT (1 μg kg−1 min−1, sc) also reduced blood pressure over 7 days. These findings suggest that 5-HT directly relaxes the SMV primarily through activation of the 5-HT7 receptor. PMID:25692021

  5. The 5-HT(2A) receptor and serotonin transporter in Asperger's disorder: A PET study with [¹¹C]MDL 100907 and [¹¹C]DASB.

    PubMed

    Girgis, Ragy R; Slifstein, Mark; Xu, Xiaoyan; Frankle, W Gordon; Anagnostou, Evdokia; Wasserman, Stacey; Pepa, Lauren; Kolevzon, Alexander; Abi-Dargham, Anissa; Laruelle, Marc; Hollander, Eric

    2011-12-30

    Evidence from biochemical, imaging, and treatment studies suggest abnormalities of the serotonin system in autism spectrum disorders, in particular in frontolimbic areas of the brain. We used the radiotracers [(11)C]MDL 100907 and [(11)C]DASB to characterize the 5-HT(2A) receptor and serotonin transporter in Asperger's Disorder. Seventeen individuals with Asperger's Disorder (age=34.3 ± 11.1 years) and 17 healthy controls (age=33.0 ± 9.6 years) were scanned with [(11)C]MDL 100907. Of the 17 patients, eight (age=29.7 ± 7.0 years) were also scanned with [¹¹C]DASB, as were eight healthy controls (age=28.7 ± 7.0 years). Patients with Asperger's Disorder and healthy control subjects were matched for age, gender, and ethnicity, and all had normal intelligence. Metabolite-corrected arterial plasma inputs were collected and data analyzed by two-tissue compartment modeling. The primary outcome measure was regional binding potential BP(ND). Neither regional [¹¹C]MDL 100907 BP(ND) nor [¹¹C]DASB BP(ND) was statistically different between the Asperger's and healthy subjects. This study failed to find significant alterations in binding parameters of 5-HT(2A) receptors and serotonin transporters in adult subjects with Asperger's disorder.

  6. Contribution of a helix 5 locus to selectivity of hallucinogenic and nonhallucinogenic ligands for the human 5-hydroxytryptamine2A and 5-hydroxytryptamine2C receptors: direct and indirect effects on ligand affinity mediated by the same locus.

    PubMed

    Almaula, N; Ebersole, B J; Ballesteros, J A; Weinstein, H; Sealfon, S C

    1996-07-01

    An important determinant of the neurobehavioral responses induced by a drug is its relative receptor selectivity. The molecular basis of ligand selectivity of hallucinogenic and nonhallucinogenic compounds of varying structural classes for the human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors was investigated with the use of reciprocal site-directed mutagenesis. Because these two closely related receptor subtypes differ in the amino acid present at position 5.46 (residues 242 and 222 in the sequences, respectively), the effects of corresponding substitutions in the 5-HT2A[S5.46(242)-->A] and 5-HT2C[A5.46(222)-->S] receptors were studied in tandem. By studying both receptors, the direct and indirect effects of mutations on affinity and selectivity can be distinguished. The ergolines studied, mesulergine (selective for the 5-HT2C receptor) and d-lysergic acid diethylamide (selective for the 5-HT2A receptor), reversed their relative affinity with mutations in each receptor, supporting a direct role of this locus in the selectivity of these ligands. However, interchange mutations in either receptor led to decreased or unchanged affinity for (+/-)-1-)(2,5-dimethoxy-4-iodophenyl)-2-aminopropane and ketanserin, which have higher affinity for the 5-HT2A receptor, consistent with little contribution of this locus to the selectivity of these ligands. The indoleamines studied were affected differently by mutations in each receptor, suggesting that they bind differently to the two receptor subtypes. Mutation of this locus in the 5-HT2A receptor decreased the affinity of all indoleamines, whereas the interchange mutation of the 5-HT2C receptor did not affect indoleamine affinity. These results are consistent with a direct interaction between this side chain and indoleamines for the 5-HT2A receptor but not for the 5-HT2C receptor. Furthermore, this analysis shows that the higher affinity of 5-HT and tryptamine for the 5-HT2C receptor than for the 5-HT2A receptors is not

  7. Lamotrigine, carbamazepine and phenytoin differentially alter extracellular levels of 5-hydroxytryptamine, dopamine and amino acids.

    PubMed

    Ahmad, Shagufta; Fowler, Leslie J; Whitton, Peter S

    2005-02-01

    We have studied the effects of treatment with the anticonvulsants lamotrigine (LTG), phenytoin (PHN) and carbamazepine (CBZ) on basal and stimulated extracellular aspartate (ASP), glutamate (GLU), taurine (TAU), GABA, 5-hydroxytryptamine (5-HT) and dopamine (DA) in the hippocampus of freely moving rats using microdialysis. All of the drugs investigated have had inhibition of Na(+) channel activity implicated as their principal mechanism of action. Neither LTG (10-20 mg/kg), PHN (20-40 mg/kg) or CBZ (10-20 mg/kg) had an effect on the basal extracellular concentrations of any of the amino acids studied with the exception of glutamate, which was decreased at the highest LTG dose. However, when amino acid transmitter levels were increased with 50 microM veratridine, LTG was found to cause a dose-dependent decrease in dialysate levels of all four amino acids, with the effect being most pronounced for glutamate. In contrast, PHN decreased extracellular aspartate levels but had no effect on evoked-extracellular GLU, TAU or GABA. Somewhat unexpectedly, CBZ did not alter the stimulated increase in the excitatory amino acids, GLU and ASP, but, rather surprisingly for an antiepileptic drug, markedly decreased that of the inhibitory substances TAU and GABA. The three drugs had differing effects on basal extracellular 5-HT and DA. LTG caused a dose-dependent decrease in both, while CBZ and PHN both increased extracellular 5-HT and DA. When extracellular 5-HT and DA was evoked by veratridine LTG had no significant effect on this, while PHN but not CBZ increased stimulated extracellular 5-HT and both PHN and CBZ augmented DA. Thus, the effects of the three drugs studied seemed to depend on whether extracellular transmitter levels are evoked or basal and the particular transmitter in question. This suggests that there are marked differences in the neurochemical mechanisms of antiepileptic drug action of the three compounds studied.

  8. 5-Carboxamidotryptamine is a selective agonist at 5-hydroxytryptamine receptors mediating vasodilatation and tachycardia in anaesthetized cats.

    PubMed Central

    Connor, H. E.; Feniuk, W.; Humphrey, P. P.; Perren, M. J.

    1986-01-01

    We have attempted to characterize the 5-hydroxytryptamine (5-HT) receptors mediating bronchoconstriction, vasodilatation, vasodepression and tachycardia in anaesthetized cats following bilateral vagosympathectomy and beta-adrenoceptor blockade with propranolol. 5-HT (1-100 micrograms/kg-1 i.v.) caused dose-related bronchoconstriction and tachycardia but variable and complex effects on diastolic blood pressure and carotid arterial vascular resistance. In contrast, 5-carboxamidotryptamine (5-CT; 0.01-1 micrograms kg-1 i.v.) caused consistent, dose-related decreases in diastolic blood pressure and carotid arterial vascular resistance and increases in heart rate. 5-CT did not cause bronchoconstriction. The 5-HT-induced bronchoconstriction was dose-dependently antagonized by methiothepin, methysergide and ketanserin (10-100 micrograms kg-1 i.v.). The highest doses used of these antagonists did not antagonize bronchoconstriction induced by prostaglandin F2 alpha. The high potency of all three antagonists indicate a 5-HT2-receptor mediated effect. The 5-HT- and 5-CT-induced tachycardia as well as the 5-CT-induced vasodepressor and carotid arterial vasodilator responses were dose-dependently antagonized by low doses of methiothepin (10-100 micrograms kg-1 i.v.) and by high doses of methysergide (100-1000 micrograms kg-1 i.v.) but were little affected by ketanserin in doses up to 1000 micrograms kg-1 i.v. These selective effects of 5-CT appear to be mediated by '5-HT1-like' receptors. PMID:2937503

  9. Synthesis and molecular modeling of new 1-aryl-3-[4-arylpiperazin-1-yl]-1-propane derivatives with high affinity at the serotonin transporter and at 5-HT(1A) receptors.

    PubMed

    Orús, Lara; Pérez-Silanes, Silvia; Oficialdegui, Ana-M; Martínez-Esparza, Javier; Del Castillo, Juan-C; Mourelle, Marisa; Langer, Thierry; Guccione, Salvatore; Donzella, Giuseppina; Krovat, Eva M; Poptodorov, Konstantin; Lasheras, Berta; Ballaz, Santiago; Hervías, Isabel; Tordera, Rosa; Del Río, Joaquín; Monge, Antonio

    2002-09-12

    It has been proposed that 5-HT(1A) receptor antagonists augment the antidepressant efficacy of selective serotonin (5-HT) reuptake inhibitors. In a search toward new and efficient antidepressants, 1-(aryl)-3-[4-arylpiperazin-1-yl]-1-propane molecular hybrids were designed, synthesized, and evaluated for 5-HT reuptake inhibition and 5-HT(1A) receptor affinity. The design was based in coupling structural moieties related to inhibition of serotonin reuptake, such as benzo[b]thiophene derivatives to arylpiperazines, typical 5-HT(1A) receptor ligands. In binding studies, several compounds showed affinity at the 5-HT transporter and at 5-HT(1A) receptors. Molecular modeling studies predicted the pharmacophore elements required for high affinity binding and the features that enable to discriminate between agonist, partial agonist, or antagonist action at 5-HT(1A) receptors and 5-HT transporter inhibition. Solvent interactions in desolvation prior to the binding step along with enthalpy and enthropy compensations might be responsible to explain agonist, partial agonist, and antagonist character. Hydrogen-bonding capability seems to be important to break hydrogen interhelical hydrogen bonds or alternatively to form other bonds upon ligand binding. Partial agonists and antagonists are unable to do this as the full agonist, which interacts closely by long-range forces or directly. The compounds showing the higher affinity at both the 5-HT transporter (K(i) < 50 nM) and the 5-HT(1A) receptors (K(i) < 20 nM) were further explored for their ability to stimulate [(35)S]GTPgammaS binding or to antagonize 8-hydroxy-2-di-n-propylamino-tetralin (8-OH-DPAT)-stimulated [(35)]GTPgammaS binding to rat hippocampal membranes, an index of agonist/antagonist action at 5-HT(1A) receptors, respectively. Compound 8g exhibited agonist activity (EC(50) = 30 nM) in this assay, whereas compounds 7g and 8h,i behaved as weak partial agonists and 7h-j and 8j,l antagonized the R(+)-8-OH

  10. Effects of chlorphentermine and phentermine on the pulmonary disposition of 5-hydroxytryptamine in the rat in vivo

    SciTech Connect

    Morita, T.; Mehendale, H.M.

    1983-06-01

    This study was designed to examine whether chlorphentermine (CP) affects pulmonary disposition of 5-hydroxytryptamine (5-HT) in rat in vivo. Further, the effects of CP were compared with those of phentermine (P), the nonchlorinated congener. The right jugular vein and left carotid artery of male Sprague-Dawley rats were cannulated and fresh saline solution containing 150 micrograms indocyanine green and a mixture of labeled and unlabeled 5-HT was injected into the jugular vein, and arterial blood samples were collected for 20 s. In order to compare the effect of CP and P on pulmonary disposition of 5-HT, 2.6 nmol (/sup 14/C)-5-HT was employed for in vivo single-pass experiments. Each animal was used for 2 in vivo single-pass experiments. After the first experiment, which served as a control, animals received an indicated dose of CP or P, to commence the second ''drug-treated'' in vivo experiment. Pulmonary clearance of 5-HT was inhibited by prior administration of CP (1 mg/kg) by 42%, whereas at the highest dose (20 mg/kg) P inhibited 5-HT clearance by only 25%. Pulmonary accumulation of CP was greater than P at higher doses, and the inhibition of 5-HT clearance correlated with the pulmonary accumulation of these drugs. In addition to the in vivo demonstration of the CP inhibition of pulmonary clearance of 5-HT in the rat, these studies also demonstrate a higher affinity of the lung tissue for CP than for P and a greater propensity for the impairment of pulmonary 5-HT clearance.

  11. Portal veins of mice infected with Schistosoma mansoni exhibit an increased reactivity to 5-hydroxytryptamine.

    PubMed

    Silva, C L; Morel, N; Noël, F

    1998-01-01

    In chronic severe infection with Schistosoma mansoni, portal hypertension and related vascular alterations usually develop as a consequence of granulomatous response to eggs. In order to investigate a putative direct effect of worms on the reactivity of their host portal vein, mice infected only with male worms were used in the present study. An higher reactivity to 5-hydroxytryptamine (5-HT) characterized by an increase in the maximal contraction and sensitivity was observed in portal vein from infected mice compared to healthy mice. Blockade of NO-synthase with l-NAME induced a small increase in 5-HT potency in portal vein from non-infected mice without changing the amplitude of the contractions, whereas it did not alter the reactivity of veins from infected mice. The present results show that unisexual infection of mice with male S. mansoni increased the reactivity of the portal vein to 5-HT which seems to be partially related to an alteration in the nitric oxide release by endothelium.

  12. Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells

    PubMed Central

    Kim, Ki Jung; Jeun, Seung Hyun

    2017-01-01

    Lamotrigine is an antiepileptic drug widely used to treat epileptic seizures. Using whole-cell voltage clamp recordings in combination with a fast drug application approach, we investigated the effects of lamotrigine on 5-hydroxytryptamine (5-HT)3 receptors in NCB-20 neuroblastoma cells. Co-application of lamotrigine (1~300 µM) resulted in a concentration-dependent reduction in peak amplitude of currents induced by 3 µM of 5-HT for an IC50 value of 28.2±3.6 µM with a Hill coefficient of 1.2±0.1. These peak amplitude decreases were accompanied by the rise slope reduction. In addition, 5-HT3-mediated currents evoked by 1 mM dopamine, a partial 5-HT3 receptor agonist, were inhibited by lamotrigine co-application. The EC50 of 5-HT for 5-HT3 receptor currents were shifted to the right by co-application of lamotrigine without a significant change of maximal effect. Currents activated by 5-HT and lamotrigine co-application in the presence of 1 min pretreatment of lamotrigine were similar to those activated by 5-HT and lamotrigine co-application alone. Moreover, subsequent application of lamotrigine in the presence of 5-HT and 5-hydroxyindole, known to attenuate 5-HT3 receptor desensitization, inhibited 5-HT3 receptor currents in a concentration-dependent manner. The deactivation of 5-HT3 receptor was delayed by washing with an external solution containing lamotrigine. Lamotrigine accelerated the desensitization process of 5-HT3 receptors. There was no voltage-dependency in the inhibitory effects of lamotrigine on the 5-HT3 receptor currents. These results indicate that lamotrigine inhibits 5-HT3-activated currents in a competitive manner by binding to the open state of the channels and blocking channel activation or accelerating receptor desensitization. PMID:28280410

  13. The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.

    PubMed

    Larson, Eric D; Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C; Finger, Thomas E

    2015-12-02

    Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response.

  14. Methylenedioxymethamphetamine induces spontaneous tail-flicks in the rat via 5-HT1A receptors.

    PubMed

    Millan, M J; Colpaert, F C

    1991-02-07

    In rats lightly restrained in horizontal cylinders, (+/-)-3,4-methylenedioxymethamphetamine (MDMA) dose dependently (0.16-10.0 mg/kg, s.c.) elicited spontaneous tail-flicks; that is, tail-flicks in the absence of extraneous stimulation. In contrast, amphetamine over a similar dose-range was inactive. Selective inhibitors of 5-hydroxytryptamine (5-HT) uptake and carrier-mediated 5-HT release, paroxetine and citalopram, did not induce spontaneous tail-flicks themselves and blocked those induced by MDMA. In distinction, maprotiline and bupropion, selective inhibitors of noradrenaline and dopamine uptake, respectively, failed to modify the action of MDMA. Spontaneous tail-flicks elicited by MDMA were unaffected by the selective 5-HT3 receptor antagonists, ICS 205,930 and GR 38032F. They were attenuated by the mixed 5-HT1/5-HT2 receptor antagonist, methiotepin, the mixed 5-HT1A/5-HT1B receptor antagonist, (-)-alprenolol and the mixed 5-HT1A/5-HT2 receptor antagonist, spiperone, but not by the selective 5-HT1C/5-HT2 receptor antagonists, ritanserin, ICI 169,369 and ketanserin. The novel 5-HT1A receptor antagonists, BMY 7378 and NAN-190, each abolished MDMA-evoked spontaneous tail-flicks. Selective D1, D2, alpha 1, alpha 2, beta 1 and beta 2 antagonists had little influence upon induction of spontaneous tail-flicks by MDMA. These data indicate that MDMA evokes spontaneous tail-flicks in the rat via a release of 5-HT which acts at 5-HT1A receptors. Thus, 5-HT1A receptors appear to be involved in the acute functional actions of MDMA.

  15. Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells.

    PubMed

    Kim, Ki Jung; Jeun, Seung Hyun; Sung, Ki-Wug

    2017-03-01

    Lamotrigine is an antiepileptic drug widely used to treat epileptic seizures. Using whole-cell voltage clamp recordings in combination with a fast drug application approach, we investigated the effects of lamotrigine on 5-hydroxytryptamine (5-HT)3 receptors in NCB-20 neuroblastoma cells. Co-application of lamotrigine (1~300 µM) resulted in a concentration-dependent reduction in peak amplitude of currents induced by 3 µM of 5-HT for an IC50 value of 28.2±3.6 µM with a Hill coefficient of 1.2±0.1. These peak amplitude decreases were accompanied by the rise slope reduction. In addition, 5-HT3-mediated currents evoked by 1 mM dopamine, a partial 5-HT3 receptor agonist, were inhibited by lamotrigine co-application. The EC50 of 5-HT for 5-HT3 receptor currents were shifted to the right by co-application of lamotrigine without a significant change of maximal effect. Currents activated by 5-HT and lamotrigine co-application in the presence of 1 min pretreatment of lamotrigine were similar to those activated by 5-HT and lamotrigine co-application alone. Moreover, subsequent application of lamotrigine in the presence of 5-HT and 5-hydroxyindole, known to attenuate 5-HT3 receptor desensitization, inhibited 5-HT3 receptor currents in a concentration-dependent manner. The deactivation of 5-HT3 receptor was delayed by washing with an external solution containing lamotrigine. Lamotrigine accelerated the desensitization process of 5-HT3 receptors. There was no voltage-dependency in the inhibitory effects of lamotrigine on the 5-HT3 receptor currents. These results indicate that lamotrigine inhibits 5-HT3-activated currents in a competitive manner by binding to the open state of the channels and blocking channel activation or accelerating receptor desensitization.

  16. Functional evidence for a 5-HT2B receptor mediating contraction of longitudinal muscle in human small intestine.

    PubMed Central

    Borman, R A; Burleigh, D E

    1995-01-01

    Application of 5-hydroxytryptamine induces contraction of longitudinal muscle strips from human terminal ileum. The response was resistant to antagonism by ketanserin, ondansetron or DAU6285, but was non-surmountably antagonized by methysergide. The selective 5-HT2B/2C receptor antagonist, SB 200646A evoked a concentration-dependent, parallel and dextral displacement of the concentration-response curve to 5-HT, yielding a pA2 estimate of 7.17. Application of yohimbine, a 5-HT1 and 5-HT2B receptor antagonist, also induced a rightward shift of the response curve to 5-HT, yielding a pA2 estimate of 8.10. In conclusion, it appears that a 5-HT2B receptor mediates the contractile response of the longitudinal muscle of human small intestine to 5-HT. PMID:7599919

  17. Analysis of the agonist activity of fenoldopam (SKF 82526) at the vascular 5-HT2 receptor.

    PubMed Central

    Christie, M. I.; Harper, D.; Smith, G. W.

    1992-01-01

    1. The 5-HT2 receptor agonist activity of fenoldopam (SKF 82526) was characterized in the rabbit isolated aorta preparation. 2. Fenoldopam was an agonist at the vascular 5-HT2 receptor with lower affinity and efficacy than the naturally occurring agonist 5-hydroxytryptamine (5-HT). Fenoldopam had an affinity (pKA) of 5.84 +/- 0.04 and efficacy (tau) of 0.57 +/- 0.04, whereas 5-HT had a pKA of 6.65 +/- 0.12 and tau of 2.66 +/- 0.41. 3. The constrictor effects of fenoldopam and 5-HT were competitively antagonized by the 5-HT2 antagonist, ketanserin, with pKB values of 8.81 +/- 0.11 and 8.83 +/- 0.10 respectively. 4. Prior incubation with fenoldopam produced a concentration-related rightward shift of a subsequent 5-HT concentration-response curve. This inhibition was specific for 5-HT since constrictor responses to angiotensin II were unaffected. 5. This study indicates that the D1 receptor agonist, fenoldopam, acts as an agonist at the vascular 5-HT2 receptor, but with an affinity and efficacy less than that of the naturally occurring agonist, 5-HT. PMID:1361397

  18. Cloning, expression and pharmacology of a truncated splice variant of the human 5-HT7 receptor (h5-HT7(b))

    PubMed Central

    Jasper, J R; Kosaka, A; To, Z P; Chang, D J; Eglen, R M

    1997-01-01

    The rat 5-hydroxytryptamine (5-HT)7 receptor displays two splice variations, a long form, and a truncated splice isoform, arising from the introduction of a stop codon near the carboxy-terminus. The human 5-HT7 receptor gene contains at least two introns and encodes a 445 amino acid 5-HT receptor. A truncated splice variation in the human 5-HT7 receptor was isolated from a human placental cDNA library. In accordance with current NC-IUPHAR nomenclature guidelines, it is suggested that this receptor be denoted as the h5-HT7(b) receptor and the long form of the receptor as h5-HT7(a). The h5-HT7(b) receptor was stably expressed in HEK 293 cells and ligand affinities were determined by displacement of [3H]-5-carboxyamidotryptamine (5-CT; Kd=0.28±0.06 nM, Bmax=7.3±1.7 pmol mg−1 protein). The rank order of affinities (pKi) for a series of ligands was: 5-carboxamidotryptamine (5-CT, 9.65)>5-hydroxytryptamine (5-HT, 9.41)>methiothepin (8.87)>mesulergine (7.87)>8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT, 6.85)>ketanserin (6.44). The h5-HT7(b) receptor coupled positively to adenylyl cyclase in HEK 293 cells. This response was elicited by a number of agonists with the following order of potency (pEC50): 5-CT (8.7±0.11)>5-MeOT (5-methoxytryptamine; 8.1±0.20)>5-HT (7.5±0.13)>tryptamine (5.6±0.36)>8-OH-DPAT (5.3±0.28)>5-methoxytryptamine (5.0±0.06). This rank order was comparable to that observed in the radioligand binding studies. In a similar fashion to that described for the 5-HT7(a) receptor, PCR studies suggested that the 5-HT7(b) receptor mRNA is found in great abundance throughout the brain, in the small intestine and aorta. It is concluded that the h5-HT7 receptor, like the rat receptor, exists as splice variants exhibiting similar pharmacology, signal transduction and distribution. It is thus likely that there exists a complex physiological role for alternate splicing products of the 5-HT7 receptor gene. PMID:9298538

  19. Chronic Sarpogrelate Treatment Reveals 5-HT7 Receptor in the Serotonergic Inhibition of the Rat Vagal Bradycardia.

    PubMed

    García-Pedraza, José Ángel; García, Mónica; Martín, María Luisa; Eleno, Nélida; Morán, Asunción

    2017-01-01

    5-Hydroxytryptamine (5-HT) modulates the cardiac parasympathetic neurotransmission, inhibiting the bradyarrhythmia by 5-HT2 receptor activation. We aimed to determine whether the chronic selective 5-HT2 blockade (sarpogrelate) could modify the serotonergic modulation on vagal cardiac outflow in pithed rat. Bradycardic responses in rats treated with sarpogrelate (30 mg·kg·d; orally) were obtained by electrical stimulation of the vagal fibers (3, 6, and 9 Hz) or intravenous (IV) injections of acetylcholine (1, 5, and 10 μg/kg). 5-HT7 receptor expression was quantified by Western blot in vagus nerve and right atrium. The IV administration of 5-HT (10-200 μg/kg) dose dependently decreased the vagally induced bradycardia, and agonists 5-CT (5-HT1/7), 8-OH-DPAT (5-HT1A), or AS-19 (5-HT7) (50 μg/kg each) mimicked the 5-HT-induced inhibitory effect. Neither agonists CGS-12066B (5-HT1B), L-694,247 (5-HT1D), nor 1-phenylbiguanide (5-HT3) modified the electrically-induced bradycardic responses. Moreover, SB-258719 (5-HT7 antagonist) abolished the 5-HT-, 5-CT-, 8-OH-DPAT-, and AS-19-induced bradycardia inhibition; 5-HT or AS-19 did not modify the bradycardia induced by IV acetylcholine; and 5-HT7 receptor was expressed in both the vagus nerve and the right atrium. Our outcomes suggest that blocking chronically 5-HT2 receptors modifies the serotonergic influence on cardiac vagal neurotransmission exhibiting 5-HT as an exclusively inhibitory agent via prejunctional 5-HT7 receptor.

  20. A slow voltage-dependent Na(+)-current induced by 5-hydroxytryptamine and the G-protein-coupled activation mechanism in the ganglion cells of Aplysia.

    PubMed

    Kudo, A; Sasaki, K; Tamazawa, Y; Matsumoto, M

    1991-01-01

    Application of 5-hydroxytryptamine (5HT) induces a slowly depolarizing response in the neurons of Aplysia abdominal ganglion. In voltage-clamped cells, 5HT induced a slow inward current that increased steeply with membrane depolarization from -85 mV showing a negative slope conductance, but never reversed into outward when hyperpolarized beyond the equilibrium potential for K+. The 5HT-induced response was markedly augmented in Ca(2+)-free media, but depressed in Na(+)-free media, and unaffected by a change in external potassium. Intracellular injection of guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) significantly depressed the 5HT response in a dose-dependent way. Injection of cholera toxin (CTX) selectively blocked the 5HT-induced response, the effect being irreversible. Neither 3'-deoxyadenosine, an inhibitor of adenylate cyclase, nor H-8, an inhibitor of protein kinase A, depressed the 5HT response. 3-Isobutyl-1-methylxanthine (IBMX) did not augment the 5HT response appreciably. The 5HT responses were not depressed at all during a saturated response to Br-cyclic AMP injected intracellularly. It was concluded that the 5HT response is produced by opening of the voltage-dependent Na(+)-channels with activation of CTX-sensitive G-protein but not necessarily with an increase in intracellular cyclic AMP.

  1. Characterization of the 5-HT receptor subtypes involved in the motor behaviours produced by intrathecal administration of 5-HT agonists in rats.

    PubMed Central

    Fone, K. C.; Robinson, A. J.; Marsden, C. A.

    1991-01-01

    1. The motor behavioural effects of intrathecal injections of 5-hydroxytryptamine (5-HT) and a variety of 5-HT receptor agonists were examined in adult Wistar rats to establish; (a) which 5-HT receptor subtype/s elicit each behaviour and (b) whether these receptors are located within the spinal cord. 2. Intrathecal injection of 5-methoxy-N,N'-dimethyltryptamine (5-MeODMT), (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI) or 2,5-dimethoxy-alpha,4-dimethylbenzene ethamine hydrochloride (DOM) produced dose-related back muscle contractions (BMC) and wet dog shakes (WDS) which were both markedly attenuated by intraperitoneal pretreatment with either ritanserin (1 mg kg-1), ketanserin (0.16 mg kg-1) or mianserin (0.6 mg kg-1) indicating the involvement of 5-HT2 receptors in both these motor behaviours. Both fluoxetine (1-20 mg kg-1, i.p.) and high doses of 5-HT (50 micrograms) following fluoxetine (5 mg kg-1, i.p.) also elicited BMC, further confirming the involvement of 5-HT in this behaviour. 3. Intrathecal 5-carboxamidotryptamine (5-CT) evoked a marked wet-dog shake response without producing any BMC. Intrathecal pretreatment with 8-hydroxy-2-(di-n-propylamino)tetraline (8-OH-DPAT) enhanced, while in contrast 2-methyl-5-HT pretreatment attenuated, 5-HT agonist-induced BMC without affecting WDS. These data suggest that the spinal 5-HT2 receptors mediating BMC are positively modulated by 5-HT1A but negatively influenced by 5-HT3 receptor activation and may be of a different subtype to the supra-spinal 5-HT2 receptors which elicit WDS.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 Figure 5 PMID:1832068

  2. Evidence for excitatory 5-HT2-receptors on rat brainstem neurones.

    PubMed Central

    Davie, M.; Wilkinson, L. S.; Roberts, M. H.

    1988-01-01

    1. The technique of microiontophoresis was used to investigate the identity of the receptor mediating the excitatory effects of 5-hydroxytryptamine (5-HT) upon neurones in the midline of the medullary brainstem of the rat in vivo. 2. The 5-HT1-like receptor agonists 5-carboxamidotryptamine (5-CT) and 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) failed to excite the majority of neurones excited by 5-HT. The mobilities of 5-CT and 8-OH-DPAT when tested in vitro were found not to differ significantly from that of 5-HT, suggesting that the lack of effect of these agonists was not due to a lower rate of release from the microelectrodes. 3. The excitatory responses to 5-HT were attenuated by the 5-HT 2-receptor antagonists ketanserin and methysergide when applied microiontophoretically or administered intravenously (0.3 and 1 mg kg-1 respectively). Excitatory responses to glutamate and noradrenaline were not reduced. 4. The 5-HT3-receptor antagonist MDL 72222 failed to attenuate selectively the excitatory response to 5-HT when applied either by microiontophoresis or administered intravenously (1 mg kg-1). 5. Microiontophoretic application of the alpha 1-adrenoceptor antagonist prazosin did not attenuate excitatory responses to either 5-HT or noradrenaline. Intravenously administered prazosin (0.8 mg kg-1) also failed to attenuate excitatory responses to 5-HT, but did block excitatory responses to noradrenaline. 6. These results suggest that 5-HT2-receptors, but not 5-HT1-like receptors, 5-HT3-receptors or alpha 1-adrenoceptors, are involved in the excitatory response of midline medullary neurones to 5-HT. PMID:3395786

  3. False labelling of dopaminergic terminals in the rabbit caudate nucleus: uptake and release of [3H]-5-hydroxytryptamine.

    PubMed Central

    Feuerstein, T. J.; Hertting, G.; Lupp, A.; Neufang, B.

    1986-01-01

    The effect of the catecholamine uptake inhibitor nomifensine and of the 5-hydroxytryptamine (5-HT) uptake blocker 6-nitroquipazine on the accumulation of [3H]-5-HT (0.1 microM, 60 min incubation) and [3H]-dopamine (0.1 microM, 30 min incubation) into slices of hippocampus and caudate nucleus of the rabbit was investigated. In addition, the influence of nomifensine on the electrically evoked [3H]-5-HT release from caudate nucleus slices and of nomifensine and 6-nitroquipazine on [3H]-5-HT released from caudate nucleus slices was analysed. In hippocampal slices, which contain practically no dopaminergic but densely distributed 5-hydroxytryptaminergic and noradrenergic nerve terminals (ratio of dopamine:5-HT:noradrenaline about 1:30:25), nomifensine (1, 10 microM) did not affect the accumulation of [3H]-5-HT; 6-nitroquipazine (1 microM) reduced [3H]-5-HT uptake to about 35% of controls. In the caudate nucleus, however, where dopamine is the predominant monoamine (ratio of dopamine:5-HT:noradrenaline about 400:25:15) nomifensine (1, 10 microM) reduced the tritium accumulation to 65% whereas 6-nitroquipazine (1 microM) was ineffective. The combination of both drugs (1 microM each) led to a further decrease to about 15%. The uptake of [3H]-dopamine into hippocampal slices was blocked by both nomifensine (1 microM) and 6-nitroquipazine (1 microM) whereas in caudate nucleus slices only nomifensine (1, 10 microM) reduced the accumulation of [3H]-dopamine. The combination of both drugs was not more effective than nomifensine alone. The different effects of both uptake inhibitors in the hippocampus and caudate nucleus suggest a neurone specific rather than a substrate specific mode of action.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3742155

  4. Fluvoxamine, a selective serotonin reuptake inhibitor, and 5-HT2C receptor inactivation induce appetite-suppressing effects in mice via 5-HT1B receptors.

    PubMed

    Nonogaki, Katsunori; Nozue, Kana; Takahashi, Yukiko; Yamashita, Nobuyuki; Hiraoka, Shuichi; Kumano, Hiroaki; Kuboki, Tomifusa; Oka, Yohsitomo

    2007-10-01

    Serotonin (5-hydroxytryptamine; 5-HT) 2C receptors and the downstream melanocortin pathway are suggested to mediate the appetite-suppressing effects of 5-HT drugs such as m-chlorophenylpiperazine (mCPP) and fenfluramine. Here, we report that fluvoxamine (3-30 mg/kg), a selective serotonin reuptake inhibitor (SSRI), in the presence of SB 242084 (1-2 mg/kg), a selective 5-HT2C receptor antagonist, exerts appetite-suppressing effects while fluvoxamine or SB 242084 alone has no effect. The appetite-suppressing effects were attenuated in the presence of SB 224289 (5 mg/kg), a selective 5-HT1B receptor antagonist. Moreover, CP 94253 (5-10 mg/kg), a selective 5-HT1B receptor agonist, exerted appetite-suppressing effects and significantly increased hypothalamic pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) gene expression and decreased hypothalamic orexin gene expression. These results suggest that fluvoxamine and inactivation of 5-HT2C receptors exert feeding suppression through activation of 5-HT1B receptors, and that 5-HT1B receptors up-regulate hypothalamic POMC and CART gene expression and down-regulate hypothalamic orexin gene expression in mice.

  5. Increased hypothalamic 5-HT2A receptor gene expression and effects of pharmacologic 5-HT2A receptor inactivation in obese A{sup y} mice

    SciTech Connect

    Nonogaki, Katsunori . E-mail: knonogaki-tky@umin.ac.jp; Nozue, Kana; Oka, Yoshitomo

    2006-12-29

    Serotonin (5-hydroxytryptamine; 5-HT) 2A receptors contribute to the effects of 5-HT on platelet aggregation and vascular smooth muscle cell proliferation, and are reportedly involved in decreases in plasma levels of adiponectin, an adipokine, in diabetic subjects. Here, we report that systemic administration of sarpogrelate, a 5-HT2A receptor antagonist, suppressed appetite and increased hypothalamic pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript, corticotropin releasing hormone, 5-HT2C, and 5-HT1B receptor gene expression. A{sup y} mice, which have ectopic expression of the agouti protein, significantly increased hypothalamic 5-HT2A receptor gene expression in association with obesity compared with wild-type mice matched for age. Systemic administration of sarpogrelate suppressed overfeeding, body weight gain, and hyperglycemia in obese A{sup y} mice, whereas it did not increase plasma adiponectin levels. These results suggest that obesity increases hypothalamic 5-HT2A receptor gene expression, and pharmacologic inactivation of 5-HT2A receptors inhibits overfeeding and obesity in A{sup y} mice, but did not increase plasma adiponectin levels.

  6. The 5-HT deficiency theory of depression: perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2Arg439His knockin mouse

    PubMed Central

    Jacobsen, Jacob P. R.; Medvedev, Ivan O.; Caron, Marc G.

    2012-01-01

    A decreased level of brain 5-hydroxytryptamine (5-HT) has been theorized to be a core pathogenic factor in depression for half a century. The theory arose from clinical observations that drugs enhancing extracellular levels of 5-HT (5-HTExt) have antidepressant effects in many patients. However, whether such drugs indeed correct a primary deficit remains unresolved. Still, a number of anomalies in putative biomarkers of central 5-HT function have been repeatedly reported in depression patients over the past 40 years, collectively indicating that 5-HT deficiency could be present in depression, particularly in severely ill and/or suicidal patients. This body of literature on putative 5-HT biomarker anomalies and depression has recently been corroborated by data demonstrating that such anomalies indeed occur consequent to severely reduced 5-HTExt levels in a mouse model of naturalistic 5-HT deficiency, the tryptophan hydroxylase 2 His439 knockin (Tph2KI) mouse. In this review, we will critically assess the evidence for 5-HT deficiency in depression and the possible role of polymorphisms in the Tph2 gene as a causal factor in 5-HT deficiency, the latter investigated from a clinical as well as preclinical angle. PMID:22826344

  7. In Vivo Effect of a 5-HT7 Receptor Agonist on 5-HT Neurons and GABA Interneurons in the Dorsal Raphe Nuclei of Sham and PD Rats.

    PubMed

    Wang, Shuang; Zhao, Yan; Gao, Jie; Guo, Yufang; Wang, Xiang; Huo, Jian; Wei, Ping; Cao, Jian

    2017-03-01

    The 5-hydroxytryptamine (5-HT; serotonin) neurotransmission is severely affected by the degeneration of nigrostriatal dopaminergic neurons. Here, we report the effects of the systemic administration of the 5-HT7 receptor agonist AS-19. In sham rats, the mean response of the 5-HT neurons in the dorsal raphe nucleus (DRN) to systemic AS-19 was excitatory and the mean response of the γ-aminobutyric acid (GABA) interneurons was inhibitory. In Parkinson disease (PD) rats, the same dose did not affect the 5-HT neurons and only high doses (640 μg/kg intravenous) were able to the increase GABA interneuron activity. These results indicate that DRN 5-HT neurons and GABA interneurons are regulated by the activation of 5-HT7 receptors and that the degeneration of the nigrostriatal pathway leads to decreased responses of these neurons to AS-19, which in turn suggests that the 5-HT7 receptors on 5-HT neurons and GABA interneurons in PD rats are dysfunctional and downregulated.

  8. Signalling pathways activated by 5-HT(1B)/5-HT(1D) receptors in native smooth muscle and primary cultures of rabbit renal artery smooth muscle cells.

    PubMed

    Hinton, J M; Hill, P; Jeremy, J; Garland, C

    2000-01-01

    The potential of primary cultures of rabbit renal artery vascular smooth muscle cells (VSMCs) was assessed as a means to investigate the signalling pathways linked to 5-hydroxytryptamine (5-HT) 5-HT(1B)/5-HT(1D) receptors in native arteries. In renal artery segments denuded of endothelium, incubated with ketanserin and prazosin (each 1 microM), and prestimulated with 20 mM K(+) Krebs buffer, 5-HT and CP 93,129, a 5-HT(1B) receptor agonist, evoked concentration-dependent contractions. GR 127935, a 5-HT(1B)/5-HT(1D) receptor antagonist, significantly antagonised 5-HT-evoked contractions at nanomolar concentrations. Reverse transcription polymerase chain reaction (RT-PCR) of mRNA from smooth muscle cells from the isolated renal artery and from primary cultures of VSMCs from the same artery expressed mRNA transcripts for the 5-HT(1B) receptor and the 5-HT(1D) receptor in both preparations. The sequence of the PCR fragments corresponded to the known sequence for these receptors. Application of 5-HT evoked a concentration-dependent, pertussis toxin (PTx)-sensitive reduction in cyclic AMP in both cultured cells and intact artery (cyclic AMP concentration reduced by 65.53 +/- 3.33 and 52.65 +/- 5.34% from basal with 10 microM 5-HT, respectively). The effect of 10 microM 5-HT on cAMP was increased in the presence of 20 mM K(+) (reduced by 82.50 +/- 2.50 and 87.54 +/- 3.97%, respectively). In intact arteries, contraction through 5-HT(1B)/5-HT(1D) receptors was significantly attenuated by inhibitors of phosphatidylinositol 3-kinase (wortmannin) and activated mitogen-activated protein kinase (MAPK), MEK (U0126). In the cultured VSMCs, activated MAPK was identified by immunocytochemistry and immunoblotting after stimulation with 5-HT, but only if 20 mM K(+) was present at the onset of stimulation. These data provide the first direct evidence that 5-HT(1B)/5-HT(1B) receptors are linked to the activation of MAPK and indicate that primary cultures of renal VSMCs could provide a

  9. 6-Substituted tricyclic partial ergoline compounds are selective and potent 5-hydroxytryptamine sub 1A receptor agents

    SciTech Connect

    Slaughter, J.L.; Harrington, M.A.; Peroutka, S.J. )

    1990-01-01

    A series of 6 tricyclic partial ergoline derivatives was analyzed using radioligand binding assays. Four agents (LY 178210, LY 254089, LY 197205, and LY 197206) display high affinity for 5-hydroxytryptamine{sub 1A} (5-HT{sub 1A}) receptor binding sites labeled by ({sup 3}H)8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) and display {ge} 150 fold selectivity for the 5-HT{sub 1A} over the 5-HT{sub 1D} receptor binding site. The most potent agent investigated, LY 178210, is essentially inactive at a total of 12 other neurotransmitter receptor binding sites in the brain. Using a forskolin-stimulated adenylate cyclase assay as a model of 5-HT{sub 1A} receptor function, LY 178210 was found to display partial agonist activity which was blocked by 10{sup {minus}5} M ({minus})pindolol. These data indicate that LY 178210 is a potent and selective 5-HT{sub 1A} receptor partial agonist.

  10. Conservation of 5-HT1A receptor-mediated autoinhibition of serotonin (5-HT) neurons in mice with altered 5-HT homeostasis.

    PubMed

    Araragi, Naozumi; Mlinar, Boris; Baccini, Gilda; Gutknecht, Lise; Lesch, Klaus-Peter; Corradetti, Renato

    2013-01-01

    Firing activity of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) is controlled by inhibitory somatodendritic 5-HT1A autoreceptors. This autoinhibitory mechanism is implicated in the etiology of disorders of emotion regulation, such as anxiety disorders and depression, as well as in the mechanism of antidepressant action. Here, we investigated how persistent alterations in brain 5-HT availability affect autoinhibition in two genetically modified mouse models lacking critical mediators of serotonergic transmission: 5-HT transporter knockout (Sert-/-) and tryptophan hydroxylase-2 knockout (Tph2-/-) mice. The degree of autoinhibition was assessed by loose-seal cell-attached recording in DRN slices. First, application of the 5-HT1A-selective agonist R(+)-8-hydroxy-2-(di-n-propylamino)tetralin showed mild sensitization and marked desensitization of 5-HT1A receptors in Tph2-/- mice and Sert-/- mice, respectively. While 5-HT neurons from Tph2-/- mice did not display autoinhibition in response to L-tryptophan, autoinhibition of these neurons was unaltered in Sert-/- mice despite marked desensitization of their 5-HT1A autoreceptors. When the Tph2-dependent 5-HT synthesis step was bypassed by application of 5-hydroxy-L-tryptophan (5-HTP), neurons from both Tph2-/- and Sert-/- mice decreased their firing rates at significantly lower concentrations of 5-HTP compared to wildtype controls. Our findings demonstrate that, as opposed to the prevalent view, sensitivity of somatodendritic 5-HT1A receptors does not predict the magnitude of 5-HT neuron autoinhibition. Changes in 5-HT1A receptor sensitivity may rather be seen as an adaptive mechanism to keep autoinhibition functioning in response to extremely altered levels of extracellular 5-HT resulting from targeted inactivation of mediators of serotonergic signaling.

  11. Differential classification of vascular smooth muscle and endothelial cell 5-HT receptors by use of tryptamine analogues.

    PubMed Central

    Leff, P.; Martin, G. R.; Morse, J. M.

    1987-01-01

    In ring preparations of the rabbit external jugular vein contracted with the thromboxane-mimetic U-46619, submicromolar concentrations of 5-hydroxytryptamine (5-HT) and chemically related analogues produced relaxations that were dependent on the integrity of the vascular endothelium. The receptor mediating endothelium-dependent relaxations was evidently similar to previously described endothelial 5-HT receptors since relaxation responses to alpha-methyl-5-HT were not blocked by atropine, (+/-)-propranolol, yohimbine, indomethacin, ketanserin or MDL-72222, but were non-competitively antagonized by methysergide, methiothepin and cyproheptadine. The activities of some tryptamine agonists and antagonists at the endothelial 5-HT receptor in rabbit jugular vein were compared with their activities at the smooth muscle 5-HT2-receptor in rabbit aortic rings. Differences in the tryptamines' affinities and relative efficacies showed that the endothelial 5-HT receptor was not of the 5-HT2-type. The high agonist potencies of 5-HT and 5-carboxamidotryptamine, the susceptibility to antagonism by both methiothepin and methysergide and the resistance to blockade by selective 5-HT2 and 5-HT3 ('M') receptor antagonists implies that the endothelial receptor belongs to the '5-HT1-like' class. However, the agonist potency order 5-HT = alpha-methyl-5-HT greater than 5-carboxamidotryptamine suggested that the receptor is not the same as the peripheral '5-HT1-like' receptors reported to mediate directly contraction of the dog saphenous vein or relaxation of vascular and non-vascular smooth muscles. At these receptors, the potency order is 5-carboxamidotryptamine greater than 5-HT greater than alpha-methyl-5-HT. These results constitute preliminary evidence that peripheral '5-HT1-like' receptors, like central 5-HT1 recognition sites, are a heterogeneous population. Further comparative studies with a wider range of receptor probes are necessary to establish whether or not these receptors

  12. The 5-HT3 receptor is essential for exercise-induced hippocampal neurogenesis and antidepressant effects.

    PubMed

    Kondo, M; Nakamura, Y; Ishida, Y; Shimada, S

    2015-11-01

    Exercise has a variety of beneficial effects on brain structure and function, such as hippocampal neurogenesis, mood and memory. Previous studies have shown that exercise enhances hippocampal neurogenesis, induces antidepressant effects and improves learning behavior. Brain serotonin (5-hydroxytryptamine, 5-HT) levels increase following exercise, and the 5-HT system has been suggested to have an important role in these exercise-induced neuronal effects. However, the precise mechanism remains unclear. In this study, analysis of the 5-HT type 3A receptor subunit-deficient (htr3a(-/-)) mice revealed that lack of the 5-HT type 3 (5-HT3) receptor resulted in loss of exercise-induced hippocampal neurogenesis and antidepressant effects, but not of learning enhancement. Furthermore, stimulation of the 5-HT3 receptor promoted neurogenesis. These findings demonstrate that the 5-HT3 receptor is the critical target of 5-HT action in the brain following exercise, and is indispensable for hippocampal neurogenesis and antidepressant effects induced by exercise. This is the first report of a pivotal 5-HT receptor subtype that has a fundamental role in exercise-induced morphological changes and psychological effects.

  13. 5-HT2 receptors facilitate JC polyomavirus entry.

    PubMed

    Assetta, Benedetta; Maginnis, Melissa S; Gracia Ahufinger, Irene; Haley, Sheila A; Gee, Gretchen V; Nelson, Christian D S; O'Hara, Bethany A; Allen Ramdial, Stacy-ann A; Atwood, Walter J

    2013-12-01

    The human JC polyomavirus (JCPyV) causes the rapidly progressing demyelinating disease progressive multifocal leukoencephalopathy (PML). The disease occurs most often in individuals with AIDS but also occurs in individuals receiving immunomodulatory therapies for immune-related diseases such as multiple sclerosis. JCPyV infection of host cells requires the pentasaccharide lactoseries tetrasaccharide c (LSTc) and the serotonin receptor 5-hydroxytryptamine (5-HT) receptor 5-HT2AR. While LSTc is involved in the initial attachment of virus to cells via interactions with VP1, the mechanism by which 5-HT2AR contributes to infection is not clear. To further define the roles of serotonin receptors in infection, HEK293A cells, which are poorly permissive to JCPyV, were transfected with 14 different isoforms of serotonin receptor. Only 5-HT2 receptors were found to support infection by JCPyV. None of the other 11 isoforms of serotonin receptor supported JCPyV infection. Expression of 5-HT2 receptors did not increase binding of JCPyV to cells, but this was not unexpected, given that the cells uniformly expressed the major attachment receptor, LSTc. Infection of these cells remained sensitive to inhibition with soluble LSTc, confirming that LSTc recognition is required for JCPyV infection. Virus internalization into HEK293A cells was significantly and specifically enhanced when 5HT2 receptors were expressed. Taken together, these data confirm that the carbohydrate LSTc is the attachment receptor for JCPyV and that the type 2 serotonin receptors contribute to JCPyV infection by facilitating entry.

  14. Guinea pig hippocampal 5-HT(1E) receptors: a tool for selective drug development.

    PubMed

    Klein, Michael T; Teitler, Milt

    2009-04-01

    Recent studies have indicated that the serotonin [5-hydroxytryptamine (5-HT)] 1E receptor, originally discovered in human brain tissue, is not expressed in rat or mouse brain. Thus, there have been few reports on 5-HT(1E) receptor drug development. However, expression of 5-HT(1E) receptor mRNA has been shown in guinea pig brain. To establish this species as an animal model for 5-HT(1E) drug development, we identified brain regions that exhibit 5-carboxyamidotryptamine, ritanserin, and LY344864 - insensitive [(3)H]5-HT binding (characteristic of the 5-HT(1E) receptor). In hippocampal homogenates, where 5-HT(1E) receptor density was sufficiently high for radioligand binding analysis, 100 nM 5-carboxyamidotryptamine, 30 nM ritanserin, and 100 nM LY344864 were used to mask [(3)H]5-HT binding at non-5-HT(1E) receptors. The K(d) of [(3)H]5-HT was 5.7 +/- 0.7 nM and is indistinguishable from the cloned receptor K(d) of 6.5 +/- 0.6 nM. The affinities of 16 drugs for the cloned and hippocampal-expressed guinea pig 5-HT(1E) receptors are essentially identical (R(2) = 0.97). These findings indicate that using these conditions autoradiographical distribution and signal transduction studies of the 5-HT(1E) receptor in guinea pig brain are feasible. Using the guinea pig as an animal model should provide important insights into possible functions of this receptor and the therapeutic potential of selective human 5-HT(1E) drugs.

  15. Effects of Constant Flickering Light on Refractive Status, 5-HT and 5-HT2A Receptor in Guinea Pigs

    PubMed Central

    Li, Tao; Zheng, Changyue; Ji, Shunmei; Ma, Yuanyuan; Zhang, Shuangshuang; Zhou, Xiaodong

    2016-01-01

    Purpose To investigate the effects of constant flickering light on refractive development, the role of serotonin (i.e.5-hydroxytryptamine, 5-HT)and 5-HT2A receptor in myopia induced by flickering light in guinea pigs. Methods Forty-five guinea pigs were randomly divided into three groups: control, form deprivation myopia (FDM) and flickering light induced myopia (FLM) groups(n = 15 for each group). The right eyes of the FDM group were covered with semitransparent hemispherical plastic shells serving as eye diffusers. Guinea pigs in FLM group were raised with illumination of a duty cycle of 50% at a flash frequency of 0.5Hz. The refractive status, axial length (AL), corneal radius of curvature(CRC) were measured by streak retinoscope, A-scan ultrasonography and keratometer, respectively. Ultramicroscopy images were taken by electron microscopy. The concentrations of 5-HTin the retina, vitreous body and retinal pigment epithelium (RPE) were assessed by high performance liquid chromatography, the retinal 5-HT2A receptor expression was evaluated by immunohistofluorescence and western blot. Results The refraction of FDM and FLM eyes became myopic from some time point (the 4th week and the 6th week, respectively) in the course of the experiment, which was indicated by significantly decreased refraction and longer AL when compared with the controls (p<0.05). The concentrations of 5-HT in the retina, vitreous body and RPE of FDM and FLM eyes were significantly increased in comparison with those of control eyes (both p<0.05). Similar to FDM eyes, the expression of retinal 5-HT2A receptor in FLM eyes was significantly up-regulated compared to that of control eyes (both p<0.05). Western blot analysis showed that retinal 5-HT2A receptor level elevated less in the FLM eyes than that in the FDM eyes. Moreover, the levels of norepinephrine and epinephrine in FDM and FLM groups generally decreased when compared with control groups (all p<0.05). Conclusions Constant flickering

  16. 5-Hydroxytryptamine 1A receptors in the dorsomedial hypothalamus connected to dorsal raphe nucleus inputs modulate defensive behaviours and mediate innate fear-induced antinociception.

    PubMed

    Biagioni, Audrey Franceschi; de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; da Silva, Juliana Almeida; dos Anjos-Garcia, Tayllon; Roncon, Camila Marroni; Corrado, Alexandre Pinto; Zangrossi, Hélio; Coimbra, Norberto Cysne

    2016-03-01

    The dorsal raphe nucleus (DRN) is an important brainstem source of 5-hydroxytryptamine (5-HT), and 5-HT plays a key role in the regulation of panic attacks. The aim of the present study was to determine whether 5-HT1A receptor-containing neurons in the medial hypothalamus (MH) receive neural projections from DRN and to then determine the role of this neural substrate in defensive responses. The neurotracer biotinylated dextran amine (BDA) was iontophoretically microinjected into the DRN, and immunohistochemical approaches were then used to identify 5HT1A receptor-labelled neurons in the MH. Moreover, the effects of pre-treatment of the dorsomedial hypothalamus (DMH) with 8-OH-DPAT and WAY-100635, a 5-HT1A receptor agonist and antagonist, respectively, followed by local microinjections of bicuculline, a GABAA receptor antagonist, were investigated. We found that there are many projections from the DRN to the perifornical lateral hypothalamus (PeFLH) but also to DMH and ventromedial (VMH) nuclei, reaching 5HT1A receptor-labelled perikarya. DMH GABAA receptor blockade elicited defensive responses that were followed by antinociception. DMH treatment with 8-OH-DPAT decreased escape responses, which strongly suggests that the 5-HT1A receptor modulates the defensive responses. However, DMH treatment with WAY-100635 failed to alter bicuculline-induced defensive responses, suggesting that 5-HT exerts a phasic influence on 5-HT1A DMH neurons. The activation of the inhibitory 5-HT1A receptor had no effect on antinociception. However, blockade of the 5-HT1A receptor decreased fear-induced antinociception. The present data suggest that the ascending pathways from the DRN to the DMH modulate panic-like defensive behaviours and mediate antinociceptive phenomenon by recruiting 5-HT1A receptor in the MH.

  17. Parallel Functional Activity Profiling Reveals Valvulopathogens Are Potent 5-Hydroxytryptamine2B Receptor Agonists: Implications for Drug Safety Assessment

    PubMed Central

    Huang, Xi-Ping; Setola, Vincent; Yadav, Prem N.; Allen, John A.; Rogan, Sarah C.; Hanson, Bonnie J.; Revankar, Chetana; Robers, Matt; Doucette, Chris

    2009-01-01

    Drug-induced valvular heart disease (VHD) is a serious side effect of a few medications, including some that are on the market. Pharmacological studies of VHD-associated medications (e.g., fenfluramine, pergolide, methysergide, and cabergoline) have revealed that they and/or their metabolites are potent 5-hydroxytryptamine2B (5-HT2B) receptor agonists. We have shown that activation of 5-HT2B receptors on human heart valve interstitial cells in vitro induces a proliferative response reminiscent of the fibrosis that typifies VHD. To identify current or future drugs that might induce VHD, we screened approximately 2200 U.S. Food and Drug Administration (FDA)-approved or investigational medications to identify 5-HT2B receptor agonists, using calcium-based high-throughput screening. Of these 2200 compounds, 27 were 5-HT2B receptor agonists (hits); 14 of these had previously been identified as 5-HT2B receptor agonists, including seven bona fide valvulopathogens. Six of the hits (guanfacine, quinidine, xylometazoline, oxymetazoline, fenoldopam, and ropinirole) are approved medications. Twenty-three of the hits were then “functionally profiled” (i.e., assayed in parallel for 5-HT2B receptor agonism using multiple readouts to test for functional selectivity). In these assays, the known valvulopathogens were efficacious at concentrations as low as 30 nM, whereas the other compounds were less so. Hierarchical clustering analysis of the pEC50 data revealed that ropinirole (which is not associated with valvulopathy) was clearly segregated from known valvulopathogens. Taken together, our data demonstrate that patterns of 5-HT2B receptor functional selectivity might be useful for identifying compounds likely to induce valvular heart disease. PMID:19570945

  18. Interactions between GABA and 5-hydroxytryptamine in the guinea-pig ileum.

    PubMed

    Ong, J; Kerr, D I

    1983-10-28

    In isolated segments of the guinea-pig ileum, there was: (a) an early, short-lived (less than 20 s) depression by gamma-aminobutyric acid (GABA) of contractile responses to 5-hydroxytryptamine (5-HT), acetylcholine(ACh), or nicotine, also seen with 3-amino-1-propanesulphonic acid (3APS) or muscimol in place of GABA, and sensitive to bicuculline, picrotoxinin or piretanide, and (b) a delayed, longer-lasting (30 s-1 min) depression of responses to 5-HT and nicotine, but not exogenously applied ACh, also seen with baclofen and only antagonised by delta-aminovaleric acid (DAVA). At 25 degrees C, all these effects were still observed but slowed, whilst at 37 degrees C after cold storage (6 degrees C) overnight, the early, short-lived depression was reduced or eliminated, yet the delayed depression was enhanced. It is concluded that the early, short-lived depression is mediated through GABAA-receptor sites, and the delayed, longer-lasting depression through GABAB-receptor sites on neurones of the myenteric plexus; effects consistent with GABA being a neurotransmitter in the enteric nervous system.

  19. Effect of mouse chromosome 13 terminal fragment on liability to catalepsy and expression of tryptophane hydroxylase-2, serotonin transporter, and 5-HT1A receptor genes in the brain.

    PubMed

    Kulikov, A V; Naumenko, V S; Bazovkina, D V; Dee, V Yu; Osipova, D V; Popova, N K

    2009-05-01

    Congenic mice obtained by genome fragments transfer from one strain to another are a potent tool for studies of the molecular mechanisms of behavioral mutations. The 59-70 cM fragment of chromosome 13 containing the locus determining predisposition to freezing reaction (catalepsy) and the gene encoding 5-HT(1A) receptor were transferred from cataleptic CBA/Lac mice into the genome of catalepsy-resistant AKR/J mice. The impact of this fragment for the severity of catalepsy and expression of genes encoding tryptophane hydroxylase-2, serotonin transporter, and 5-HT(1A) receptor was studied. Half of mice of the resultant congenic AKR.CBA-D13Mit76 strain exhibited pronounced catalepsy, similarly to donor CBA animals. The expression of 5-HT(1A) receptor gene in the midbrain of AKR animals was significantly higher than in CBA. The level of 5-HT(1A) receptor mRNA in AKR.CBA-D13Mit76 animals was significantly higher than in the donor strain. Mice of parental AKR and CBA strains did not differ from each other and from AKR.CBA-D13Mit76 animals by the levels of tryptophane hydroxylase-2 and serotonin transporter genes mRNA. These data prove the location of catalepsy regulating gene in the distal fragment of chromosome 13. The recipient strain genome enhanced the expression of 5-HT(1A) receptor gene in the brain without modulating the expression of catalepsy gene.

  20. 5-HT2A SEROTONIN RECEPTOR BIOLOGY: Interacting proteins, kinases and paradoxical regulation

    PubMed Central

    Roth, Bryan L

    2011-01-01

    5-hydroxytryptamine2A (5-HT2A) serotonin receptors are important pharmacological targets for a large number of central nervous system and peripheral serotonergic medications. In this review article I summarize work mainly from my lab regarding serotonin receptor anatomy, pharmacology, signaling and regulation. I highlight the role of serotonin receptor interacting proteins and the emerging paradigm of G-protein coupled receptor functional selectivity. PMID:21288474

  1. Intrathecal nefopam-induced antinociception through activation of descending serotonergic projections involving spinal 5-HT7 but not 5-HT3 receptors.

    PubMed

    Lee, Hyung Gon; Kim, Woong Mo; Kim, Joung Min; Bae, Hong-Beom; Choi, Jeong Il

    2015-02-05

    We examined the involvement of spinal 5-HT(5-hydroxytryptamine) receptor 3(5-HT3R) and 7(5-HT7R) as well as the overall role of descending serotonergic projections in the analgesic effects of intrathecal(i.t.) nefopam for two rat models of formalin and paw incision test. I.t. nefopam produced an antinociceptive effect in a dose-dependent manner in both tests. Lesioning the spinal serotonergic projections using i.t. 5,7-dihydroxytryptamine(5,7-DHT) did not influence the intensity of allodynia in the paw incision test, but i.t. 5,7-DHT abolished the effect of nefopam. In the formain test, i.t. 5,7-DHT alone significantly diminished the flinches, but the effect of nefopam was not affected by i.t. 5,7-DHT. Antagonism study showed that i.t. 5-HT7R antagonist, SB269970 significantly blocked the antinociceptive effect of nefopam in both tests, but i.t. 5-HT3R antagonist, ondansetron has no influence on the effect of nefopam. The present study demonstrates that descending spinal serotonergic projections play a vital role in antinociceptive effect of i.t. nefopam in the paw incision test, but indeterminate in the formalin test. In both tests, the antinociceptive effect of i.t. nefopam involves the spinal 5-HT7R, but not 5-HT3R.

  2. Carrier-dependent and Ca2+-dependent 5-HT and dopamine release induced by (+)-amphetamine, 3,4-methylendioxy-methamphetamine, p-chloroamphetamine and (+)-fenfluramine

    PubMed Central

    Crespi, Daniela; Mennini, Tiziana; Gobbi, Marco

    1997-01-01

    The mechanism underlying 5-hydroxytryptamine (5-HT) and/or dopamine release induced by (+)-amphetamine ((+)-Amph), 3,4-methylendioxymethamphetamine (MDMA), p-chloroamphetamine (pCA) and (+)-fenfluramine ((+)-Fen) was investigated in rat brain superfused synaptosomes preloaded with the 3H neurotransmitters. Their rank order of potency for [3H]-5-HT-releasing activity was the same as for inhibition of 5-HT uptake (pCA⩾MDMA⩾(+)-Fen>>(+)-Amph). Similarly, their rank order as [3H]-dopamine releasers and dopamine uptake inhibitors was the same ((+)-Amph>>pCA=MDMA>>(+)-Fen). We also confirmed that the release induced by these compounds was prevented by selective transporter inhibitors (indalpine or nomifensine). [3H]-5-HT and/or [3H]-dopamine release induced by all these compounds was partially (31–80%), but significantly Ca2+-dependent. Lack of extracellular Ca2+ did not alter uptake mechanisms nor did it modify the carrier-dependent dopamine-induced [3H]-dopamine release. (+)-Amph-induced [3H]-dopamine release and pCA- and MDMA-induced [3H]-5-HT release were significantly inhibited by ω-agatoxin-IVA, a specific blocker of P-type voltage-operated Ca2+-channels, similar to the previous results on (+)-Fen-induced [3H]-5-HT release. Methiothepin inhibited the Ca2+-dependent component of (+)-Amph-induced [3H]-dopamine release with high potency (70 nM), as previously found with (+)-Fen-induced [3H]-5-HT release. The inhibitory effect of methiothepin was not due to its effects as a transporter inhibitor or Ca2+-channel blocker and is unlikely to be due to its antagonist properties on 5-HT1/2, dopamine or any other extracellular receptor. These results indicate that the release induced by these compounds is both ‘carrier-mediated' and Ca2+-dependent (possibly exocytotic-like), with the specific carrier allowing the amphetamines to enter the synaptosome. The Ca2+-dependent release is mediated by Ca2+-influx (mainly through P-type Ca2+-channels), possibly triggered by

  3. Rapid intracellular release of calcium in human platelets by stimulation of 5-HT2-receptors.

    PubMed Central

    Erne, P.; Pletscher, A.

    1985-01-01

    The concentration of intracellular free Ca2+ ( [Ca2+]i) in human blood platelets was measured by use of the fluorescent probe quin-2. 5-Hydroxytryptamine (5-HT) caused a rapid increase of [Ca2+]i in the presence or absence of Ca2+ in the medium. The [Ca2+]i-rise was less marked in the absence of Ca2+ and could be antagonized by 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate-hydrochloride (TMB-8), an inhibitor of calcium release from internal stores. 5-HT induced a shape change reaction in the presence or absence of extracellular Ca2+, but the pEC50 of 5-HT was slightly higher in the presence of the cation. Shape change reaction and [Ca2+]i-rise showed similar time courses. Various 5-HT-agonists caused a rise of [Ca2+]i, whereas 5-HT-antagonists, but not the 5-HT-uptake inhibitor desmethylimipramine and the alpha 2-adrenoceptor antagonist yohimbine, counteracted the 5-HT-induced rise of the cation in a stereospecific manner. The antagonists were more potent than the agonists. The orders of potencies of the drugs affecting [Ca2+]i and platelet shape were similar. It is concluded that stimulation of 5-HT2-receptors of platelets causes a rapid release of intracellular calcium which, by activation of the contractile system, mediates the shape change reaction. PMID:3156650

  4. Serotonin 5-HT2 Receptor Interactions with Dopamine Function: Implications for Therapeutics in Cocaine Use Disorder

    PubMed Central

    Cunningham, Kathryn A.

    2015-01-01

    Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder. PMID:25505168

  5. Effects of the 5-HT7 receptor antagonists SB-269970 and DR 4004 in autoshaping Pavlovian/instrumental learning task.

    PubMed

    Meneses, Alfredo

    2004-12-06

    There is an important debate regarding the functional role of the 5-HT(1A) and 5-HT(7) receptor in memory systems. Hence, the objective of this paper is to investigate the function of serotonin (5-hydroxytryptamine, 5-HT) in memory consolidation, utilising an autoshaping Pavlovian/instrumental learning test. Specific antagonists at 5-HT(1A) (WAY 100635) and 5-HT(7) (SB-269970 or DR 4004) receptors administered i.p. or s.c.) after training, significantly decreased the improvement of performance produced by the 5-HT(1A/7) agonist 8-OH-DPAT to levels lower than controls'. These same antagonists attenuated the decreased level of performance produced by mCPP, although they decrease the performance levels after p-chloroamphetamine (PCA) lesion of the 5-HT system, which has no effect on its own on the conditioned response. Moreover, SB-269970 or DR 4004 reversed amnesia induced by scopolamine and dizocilpine. These data confirm a role for 5-HT(1A) and 5-HT(7) receptors in memory formation and support the hypothesis that serotonergic, cholinergic, and glutamatergic systems interact in cognitively impaired animals. These findings support a potential role for both 5-HT(1A) and 5-HT(7) receptors in the pathophysiology and/or treatment of schizophrenia, cognitive deficits and the mechanism of action of atypical antipsychotic drugs.

  6. Adrenoceptor- and cholinoceptor-mediated mechanisms in the regulation of 5-hydroxytryptamine release from isolated tracheae of newborn rabbits.

    PubMed Central

    Freitag, A.; Wessler, I.; Racké, K.

    1996-01-01

    1. Isolated tracheae of newborn rabbits were incubated in vitro and the outflow of 5-hydroxytryptamine (5-HT) was determined by h.p.l.c. with electrochemical detection. Evidence has previously been provided that this 5-HT outflow derives from neuroendocrine epithelial (NEE) cells of the airway mucosa. 2. Phenylephrine (1, 10 and 30 microM) enhanced the outflow of 5-HT by 80, 290 and 205%, respectively. 5-HT outflow evoked by 10 microM phenylephrine was not affected by the presence of the neurotoxin tetrodotoxin (1 microM). 3. Rauwolscine, ARC 239 (an alpha(2B)-adrenoceptor preferring antagonist), yohimbine and prazosin antagonized the effect of 10 microM phenylephrine in a concentration-dependent manner with IC50 values of 150, 295, 300 and 1,700 nM, respectively. Comparison of the ratios (between all antagonists) of the present IC50 values with the corresponding ratios of Ki values obtained in binding studies for the alpha(2A)-, alpha(2B)-, alpha(2C)- and alpha(2D)-adrenoceptor subtypes strongly suggests the involvement of an alpha(2B)-receptor. 4. 5-HT outflow evoked by 10 microM phenylephrine was inhibited by 65% in the presence of 1 microM forskolin and abolished in the presence of 10 microM forskolin. 5. 5-HT outflow evoked by 10 microM phenylephrine was inhibited by about 45 and 70% in the presence of 0.1 and 1 microM isoprenaline, respectively. The inhibitory effect of 1 microM isoprenaline was only marginally antagonized by 1 microM, but blocked by 10 microM propranolol. 6. 5-HT outflow was not affected by the muscarine receptor agonist oxotremorine (10 microM), but was enhanced by 175% by 100 microM nicotine. The effect of nicotine was blocked by 100 microM hexamethonium and prevented by 1 microM tetrodotoxin or 1 microM yohimbine. 7. In conclusion, 5-HT release from NEE cells of the rabbit trachea is stimulated via alpha-adrenoceptors most likely of the alpha(2B)-subtype localized directly at the NEE cells. Activation of beta-adrenoceptors as well as

  7. The rapid recovery of 5-HT cell firing induced by the antidepressant vortioxetine involves 5-HT(3) receptor antagonism.

    PubMed

    Bétry, Cécile; Pehrson, Alan L; Etiévant, Adeline; Ebert, Bjarke; Sánchez, Connie; Haddjeri, Nasser

    2013-06-01

    The therapeutic effect of current antidepressant drugs appears after several weeks of treatment and a significant number of patients do not respond to treatment. Here, we report the effects of the multi-modal antidepressant vortioxetine (Lu AA21004), a 5-HT(3) and 5-HT(7) receptor antagonist, 5-HT(1B) receptor partial agonist, 5-HT(1A) receptor agonist and 5-HT transporter (SERT) inhibitor, on rat 5-HT neurotransmission. Using in vivo electrophysiological recordings in the dorsal raphe nucleus of anaesthetized rats, we assessed the acute and subchronic effects of vortioxetine and/or the selective 5-HT(3) receptor agonist, SR57227 or the selective 5-HT(1A) receptor agonist flesinoxan, on 5-HT neuronal firing activity. Using ex-vivo autoradiography, we correlated SERT occupancy and presumed 5-HT firing activity. The selective serotonin reuptake inhibitor, fluoxetine, was used as comparator. Importantly, the recovery of 5-HT neuronal firing was achieved after 1 d with vortioxetine and 14 d with fluoxetine. SR57227 delayed this recovery. In contrast, vortioxetine failed to alter the reducing action of 3 d treatment of flesinoxan. Acute dosing of vortioxetine inhibited neuronal firing activity more potently than fluoxetine. SR57227 prevented the suppressant effect of vortioxetine, but not of fluoxetine. In contrast, flesinoxan failed to modify the suppressant effect of vortioxetine acutely administered. Differently to fluoxetine, vortioxetine suppressed neuronal firing without saturating occupancy at the SERT. Vortioxetine produced a markedly faster recovery of 5-HT neuronal firing than fluoxetine. This is at least partly due to 5-HT(3) receptor antagonism of vortioxetine in association with its reduced SERT occupancy.

  8. 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes.

    PubMed

    Dürk, Thorsten; Panther, Elisabeth; Müller, Tobias; Sorichter, Stephan; Ferrari, Davide; Pizzirani, Cinzia; Di Virgilio, Francesco; Myrtek, Daniel; Norgauer, Johannes; Idzko, Marco

    2005-05-01

    The neurotransmitter 5-hydroxytryptamine (5-HT), commonly known as serotonin, is released at peripheral sites from activated enterochromaffin cells, mast cells and platelets. In this study we analyzed the biological activity and intracellular signaling of 5-HT in human monocytes. By reverse transcription (RT) and PCR, messenger RNA (mRNA) expression of 5-HT receptor 1E (5-HTR(1E)), 5-HTR(2A), 5-HTR(3), 5-HTR(4) and 5-HTR(7) could be revealed. Functional studies showed that 5-HT modulates the release of IL-1beta, IL-6, IL-8/CXCL8, IL-12p40 and tumor necrosis factor-alpha (TNF-alpha), while it has no effect on the production of IL-18 and IFN-gamma in LPS-stimulated human blood monocytes. Moreover, RT and PCR revealed that 5-HT modulated mRNA levels of IL-6 and IL-8/CXCL8, but did not influence mRNA levels of IL-1beta and TNF-alpha. Pharmacological studies with isotype-selective receptor agonists allowed us to show that 5-HTR(3) subtype up-regulates the LPS-induced production of IL-1beta, IL-6 and IL-8/CXCL8, while it was not involved in TNF-alpha and IL-12p40 secretion. Furthermore, activation of the G(s)-coupled 5-HTR(4) and 5-HTR(7) subtypes increased intracellular cyclic AMP (cAMP) and secretion of IL-1beta, IL-6, IL-12p40 and IL-8/CXCL8, while, on the contrary, it inhibited LPS-induced TNF-alpha release. Interestingly, 5-HTR(1) and 5-HTR(2) agonists did not modulate the LPS-induced cytokine production in human monocytes. Our results point to a new role for 5-HT in inflammation by modulating cytokine production in monocytes via activation of 5-HTR(3), 5-HTR(4) and 5-HTR(7) subtypes.

  9. Hypersensitivity of mesenteric veins to 5-hydroxytryptamine- and ketanserin-induced reduction of portal pressure in portal hypertensive rats.

    PubMed Central

    Cummings, S. A.; Groszmann, R. J.; Kaumann, A. J.

    1986-01-01

    Isolated superior mesenteric veins from portal hypertensive rats were 3 to 10 times more sensitive to 5-hydroxytryptamine (5-HT) and 3 times less sensitive to (-)-noradrenaline than veins from sham-operated rats. The sensitivity to vasopressin did not differ in the 2 groups. Ketanserin competitively antagonized the effects of 5-HT in superior mesenteric veins and portal veins with high affinity (KB values 0.1-0.3 nM), as expected for 5-HT2-receptors. The affinity of ketanserin for 5-HT2-receptors was similar in veins from normal, sham-operated or portal-hypertensive rats. Intraportal injections of low doses of 5-HT caused increases in portal pressure which were more pronounced in portal hypertensive rats than in sham-operated rats and were blocked by 0.3 mg kg-1 ketanserin in both groups. Ketanserin 0.3 mg kg-1 did not block the portal pressor response to (-)-noradrenaline in either group of rats. In portal hypertensive rats but not in sham-operated rats, 0.3 mg kg-1 ketanserin caused decreases in portal pressure, portal flow and cardiac output, as estimated by radioactive microspheres. The reduction in portal pressure caused by ketanserin was due mainly to a decrease in portal venous inflow secondary to a decreased cardiac output. The reduction in cardiac output, which was observed only in the portal hypertensive rats but not in sham-operated rats, is consistent with venous dilatation and pooling of blood in the portal venous system. The venous pooling could be secondary to the blockade of 5-HT2-receptors in the portal venous system. It is proposed that ketanserin should be explored for the treatment of patients with portal hypertension. PMID:3801785

  10. Treadmill exercise alleviates stress-induced impairment of social interaction through 5-hydroxytryptamine 1A receptor activation in rats

    PubMed Central

    Kim, Tae-Woon; Lim, Baek-Vin; Kim, Kijeong; Seo, Jin-Hee; Kim, Chang-Ju

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) and its receptors tyrosine kinase B (trkB), and cyclic adenosine monophosphate response element binding protein (CREB) have been suggested as the neurobiological risk factors causing depressive disorder. Serotonin (5-hydroxytryptamine, 5-HT) plays an important role in the pathogenesis of depression. We in-vestigated the effect of treadmill exercise on social interaction in relation with BDNF and 5-HT expressions following stress in rats. Stress was induced by applying inescapable 0.2 mA electric foot shock to the rats for 7 days. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks. Social interaction test and western blot for BDNF, TrkB, pCREB, and 5-HT1A in the hippocampus were performed. The results indicate that the spend time with unfamiliar partner was decreased by stress, in contrast, treadmill exercise increased the spending time in the stress-induced rats. Expressions of BDNF, TrkB, and pCREB were decreased by stress, in contrast, treadmill exercise enhanced expressions of BDNF, TrkB, and pCREB in the stress-induced rats. In addition, 5-HT1A receptor expression was de-creased by stress, in contrast, treadmill exercise enhanced 5-HT1A expression in the stress-induced rats. In the present study, treadmill exercise alleviated stress-induced social interaction impairment through enhancing hippocampal plasticity and serotonergic function in the hippocampus. These effects of treadmill exercise are achieved through 5-HT1A receptor activation. PMID:26331133

  11. The effects of single and repeated electroconvulsive shock administration on the release of 5-hydroxytryptamine and noradrenaline from cortical slices of rat brain.

    PubMed Central

    Green, A. R.; Heal, D. J.; Vincent, N. D.

    1987-01-01

    1 A method is described of measuring the K+-evoked release of endogenous 5-hydroxytryptamine (5-HT) and noradrenaline (NA) from slices prepared from rat cortex. 2 There was no difference in either the spontaneous (basal) or K+-evoked release of 5-HT or NA from cortical slices prepared from handled animals and those given a single electroconvulsive shock (ECS) either 30 min or 24 h earlier. 3 In chronic studies, rats were either handled or given an ECS 5 times over 10 days and cortical slices prepared. There was no difference in 5-HT or NA release between the groups 30 min after the last treatment other than a modest attentuation of spontaneous NA release following ECS treatment. However 24 h after the last treatment K+-evoked release (above basal release) of 5-HT and NA was inhibited by 84% and 48%, respectively. 4 These data demonstrate that following a single ECS, normal 5-HT and NA release is seen at a time when GABA release is markedly inhibited. After repeated ECS the release of both monoamines was markedly inhibited. These 5-HT changes may be involved in the enhanced 5-HT-receptor function seen after repeated ECS. PMID:3664089

  12. Quipazine reduces food intake in the rat by activation of 5-HT2-receptors.

    PubMed Central

    Hewson, G.; Leighton, G. E.; Hill, R. G.; Hughes, J.

    1988-01-01

    1. To determine which subtype(s) of 5-hydroxytryptamine (5-HT) receptor are involved in the anorectic action of quipazine, the ability of selective antagonists at 5-HT2- and 5-HT3-receptors, and an antagonist at 5-HT1-like receptors, to block this response were investigated in non-deprived rats, trained to eat a palatable diet. 2. Quipazine (0.5-8 mg kg-1, i.p.) produced a dose-related reduction in the intake of palatable diet. 3. The anorectic effect of 4 mg kg-1 quipazine was antagonized by the nonselective 5-HT-receptor antagonist methysergide (5 mg kg-1, i.p.) and by the selective 5-HT2-receptor antagonists ketanserin (1 mg kg-1 and 2.5 mg kg-1, i.p.) and ritanserin (0.5 mg kg-1 and 1 mg kg-1, i.p.). The selective 5-HT3-receptor antagonist GR38032F (1 mg kg-1, i.p.) and (-)-pindolol (4 mg kg-1, i.p.), which blocks some of the effects mediated at 5-HT1-like receptors, did not block the reduction in food intake produced by this dose of quipazine. 4. None of the 5-HT-receptor antagonists had any effect on food intake when they were administered alone, suggesting that endogenous 5-HT is not involved in the tonic control of food intake under the conditions of these experiments. 5. It is concluded that the anorectic action of quipazine is mediated, at least in part, by activation of 5-HT2-receptors. PMID:2906561

  13. Role of central vagal 5-HT3 receptors in gastrointestinal physiology and pathophysiology

    PubMed Central

    Browning, Kirsteen N.

    2015-01-01

    Vagal neurocircuits are vitally important in the co-ordination and modulation of GI reflexes and homeostatic functions. 5-hydroxytryptamine (5-HT; serotonin) is critically important in the regulation of several of these autonomic gastrointestinal (GI) functions including motility, secretion and visceral sensitivity. While several 5-HT receptors are involved in these physiological responses, the ligand-gated 5-HT3 receptor appears intimately involved in gut-brain signaling, particularly via the afferent (sensory) vagus nerve. 5-HT is released from enterochromaffin cells in response to mechanical or chemical stimulation of the GI tract which leads to activation of 5-HT3 receptors on the terminals of vagal afferents. 5-HT3 receptors are also present on the soma of vagal afferent neurons, including GI vagal afferent neurons, where they can be activated by circulating 5-HT. The central terminals of vagal afferents also exhibit 5-HT3 receptors that function to increase glutamatergic synaptic transmission to second order neurons of the nucleus tractus solitarius within the brainstem. While activation of central brainstem 5-HT3 receptors modulates visceral functions, it is still unclear whether central vagal neurons, i.e., nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV) neurons themselves also display functional 5-HT3 receptors. Thus, activation of 5-HT3 receptors may modulate the excitability and activity of gastrointestinal vagal afferents at multiple sites and may be involved in several physiological and pathophysiological conditions, including distention- and chemical-evoked vagal reflexes, nausea, and vomiting, as well as visceral hypersensitivity. PMID:26578870

  14. Characterization of prejunctional 5-HT receptors mediating inhibition of sympathetic vasopressor responses in the pithed rat.

    PubMed

    Villalón, C M; Contreras, J; Ramírez-San Juan, E; Castillo, C; Perusquía, M; Terrón, J A

    1995-12-01

    1. It has recently been shown that continuous infusions of 5-hydroxytryptamine (5-HT) are able to inhibit, in a dose-dependent manner, the pressor responses induced by preganglionic (T7-T9) sympathetic stimulation in pithed rats pretreated with desipramine (50 micrograms kg-1, i.v.). This inhibitory effect, besides being significantly more pronounced at lower frequencies of stimulation (0.03-I Hz) and devoid of tachyphylaxis, is reversible after interrupting the infusions of 5-HT (up to 5.6 micrograms kg-1 min-1). In the present study we have characterized the pharmacological profile of the receptors mediating the above inhibitory effect of 5-HT. 2. The inhibition induced by 5.6 micrograms kg-1 min-1 of 5-HT on sympathetically-induced pressor responses was not blocked after i.v. treatment with physiological saline (1 ml kg-1), ritanserin (0.1 mg kg-1), MDL 72222 (0.15 mg kg-1) or tropisetron (3 mg kg-1), which did not modify the sympathetically-induced pressor responses per se, but was significantly antagonized by the 5-HT1-like and 5-HT2 receptor antagonist, methysergide (0.3 mg kg-1), which also produced a slight attenuation of the pressor responses to 0.03 and 0.1 Hz per se. 3. Unexpectedly and contrasting with methysergide, the 5-HT1-like and 5-HT2 receptor antagonists, methiothepin (0.01, 0.03 and 0.1 mg kg-1) and metergoline (1 and 3 mg kg-1), apparently failed to block the above 5-HT-induced inhibition. Nevertheless, it is noteworthy that these antagonists also blocked the electrically-induced pressor responses per se, presumably by blockade of vascular alpha 1-adrenoceptors and, indeed, this property might have masked their potential antagonism at the inhibitory 5-HT1-like receptors. 4. Consistent with the above findings, 5-carboxamidotryptamine (5-CT, a potent 5-HT1-like receptor agonist), metergoline and methysergide mimicked the inhibitory action of 5-HT with the following rank order of agonist potency: 5CT > > 5-HT > metergoline > or = methysergide. 5

  15. Characterization of prejunctional 5-HT receptors mediating inhibition of sympathetic vasopressor responses in the pithed rat.

    PubMed Central

    Villalón, C. M.; Contreras, J.; Ramírez-San Juan, E.; Castillo, C.; Perusquía, M.; Terrón, J. A.

    1995-01-01

    1. It has recently been shown that continuous infusions of 5-hydroxytryptamine (5-HT) are able to inhibit, in a dose-dependent manner, the pressor responses induced by preganglionic (T7-T9) sympathetic stimulation in pithed rats pretreated with desipramine (50 micrograms kg-1, i.v.). This inhibitory effect, besides being significantly more pronounced at lower frequencies of stimulation (0.03-I Hz) and devoid of tachyphylaxis, is reversible after interrupting the infusions of 5-HT (up to 5.6 micrograms kg-1 min-1). In the present study we have characterized the pharmacological profile of the receptors mediating the above inhibitory effect of 5-HT. 2. The inhibition induced by 5.6 micrograms kg-1 min-1 of 5-HT on sympathetically-induced pressor responses was not blocked after i.v. treatment with physiological saline (1 ml kg-1), ritanserin (0.1 mg kg-1), MDL 72222 (0.15 mg kg-1) or tropisetron (3 mg kg-1), which did not modify the sympathetically-induced pressor responses per se, but was significantly antagonized by the 5-HT1-like and 5-HT2 receptor antagonist, methysergide (0.3 mg kg-1), which also produced a slight attenuation of the pressor responses to 0.03 and 0.1 Hz per se. 3. Unexpectedly and contrasting with methysergide, the 5-HT1-like and 5-HT2 receptor antagonists, methiothepin (0.01, 0.03 and 0.1 mg kg-1) and metergoline (1 and 3 mg kg-1), apparently failed to block the above 5-HT-induced inhibition. Nevertheless, it is noteworthy that these antagonists also blocked the electrically-induced pressor responses per se, presumably by blockade of vascular alpha 1-adrenoceptors and, indeed, this property might have masked their potential antagonism at the inhibitory 5-HT1-like receptors. 4. Consistent with the above findings, 5-carboxamidotryptamine (5-CT, a potent 5-HT1-like receptor agonist), metergoline and methysergide mimicked the inhibitory action of 5-HT with the following rank order of agonist potency: 5CT > > 5-HT > metergoline > or = methysergide. 5

  16. Serotonin (5-HT) 5-HT2A Receptor (5-HT2AR):5-HT2CR Imbalance in Medial Prefrontal Cortex Associates with Motor Impulsivity.

    PubMed

    Anastasio, Noelle C; Stutz, Sonja J; Fink, Latham H L; Swinford-Jackson, Sarah E; Sears, Robert M; DiLeone, Ralph J; Rice, Kenner C; Moeller, F Gerard; Cunningham, Kathryn A

    2015-07-15

    A feature of multiple neuropsychiatric disorders is motor impulsivity. Recent studies have implicated serotonin (5-HT) systems in medial prefrontal cortex (mPFC) in mediating individual differences in motor impulsivity, notably the 5-HT2AR receptor (5-HT2AR) and 5-HT2CR. We investigated the hypothesis that differences in the ratio of 5-HT2AR:5-HT2CR protein expression in mPFC would predict the individual level of motor impulsivity and that the engineered loss of the 5-HT2CR would result in high motor impulsivity concomitant with elevated 5-HT2AR expression and pharmacological sensitivity to the selective 5-HT2AR antagonist M100907. High and low impulsive rats were identified in a 1-choice serial reaction time task. Native protein levels of the 5-HT2AR and the 5-HT2CR predicted the intensity of motor impulsivity and the 5-HT2AR:5-HT2CR ratio in mPFC positively correlated with levels of premature responses in individual outbred rats. The possibility that the 5-HT2AR and 5-HT2CR act in concert to control motor impulsivity is supported by the observation that high phenotypic motor impulsivity associated with a diminished mPFC synaptosomal 5-HT2AR:5-HT2CR protein:protein interaction. Knockdown of mPFC 5-HT2CR resulted in increased motor impulsivity and triggered a functional disruption of the local 5-HT2AR:5-HT2CR balance as evidenced by a compensatory upregulation of 5-HT2AR protein expression and a leftward shift in the potency of M100907 to suppress impulsive behavior. We infer that there is an interactive relationship between the mPFC 5-HT2AR and 5-HT2CR, and that a 5-HT2AR:5-HT2CR imbalance may be a functionally relevant mechanism underlying motor impulsivity.

  17. Serotonin (5-HT) 5-HT2A Receptor (5-HT2AR):5-HT2CR Imbalance in Medial Prefrontal Cortex Associates with Motor Impulsivity

    PubMed Central

    Anastasio, Noelle C.; Stutz, Sonja J.; Fink, Latham H. L.; Swinford-Jackson, Sarah E.; Sears, Robert M; DiLeone, Ralph J.; Rice, Kenner C.; Moeller, F. Gerard; Cunningham, Kathryn A.

    2016-01-01

    A feature of multiple neuropsychiatric disorders is motor impulsivity. Recent studies have implicated serotonin (5-HT) systems in medial prefrontal cortex (mPFC) in mediating individual differences in motor impulsivity, notably the 5-HT2AR receptor (5-HT2AR) and 5-HT2CR. We investigated the hypothesis that differences in the ratio of 5-HT2AR:5-HT2CR protein expression in mPFC would predict the individual level of motor impulsivity and that the engineered loss of the 5-HT2CR would result in high motor impulsivity concomitant with elevated 5-HT2AR expression and pharmacological sensitivity to the selective 5-HT2AR antagonist M100907. High and low impulsive rats were identified in a 1-choice serial reaction time task. Native protein levels of the 5-HT2AR and the 5-HT2CR predicted the intensity of motor impulsivity and the 5-HT2AR:5-HT2CR ratio in mPFC positively correlated with levels of premature responses in individual outbred rats. The possibility that the 5-HT2AR and 5-HT2CR act in concert to control motor impulsivity is supported by the observation that high phenotypic motor impulsivity associated with a diminished mPFC synaptosomal 5-HT2AR:5-HT2CR protein:protein interaction. Knockdown of mPFC 5-HT2CR resulted in increased motor impulsivity and triggered a functional disruption of the local 5-HT2AR:5-HT2CR balance as evidenced by a compensatory upregulation of 5-HT2AR protein expression and a leftward shift in the potency of M100907 to suppress impulsive behavior. We infer that there is an interactive relationship between the mPFC 5-HT2AR and 5-HT2CR, and that a 5-HT2AR:5-HT2CR imbalance may be a functionally-relevant mechanism underlying motor impulsivity. PMID:26120876

  18. Pharmacological and genetic interventions in serotonin (5-HT)(2C) receptors to alter drug abuse and dependence processes.

    PubMed

    Filip, Małgorzata; Spampinato, Umberto; McCreary, Andrew C; Przegaliński, Edmund

    2012-10-02

    The present review provides an overview on serotonin (5-hydroxytryptamine; 5-HT)(2C) receptors and their relationship to drug dependence. We have focused our discussion on the impact of 5-HT(2C) receptors on the effects of different classes of addictive drugs, illustrated by reference to data using pharmacological and genetic tools. The neurochemical mechanism of the interaction between 5-HT(2C) receptors, with focus on the mesocorticolimbic dopaminergic system, and drugs of abuse (using cocaine as an example) is discussed. Finally, we integrate recent nonclinical and clinical research and information with marketed products possessing 5-HT(2C) receptor binding affinities. Accordingly, available nonclinical data and some clinical observations targeting 5-HT(2C) receptors may offer innovative translational strategies for combating drug dependence.This article is part of a Special Issue entitled: Brain Integration.

  19. An mRNA expression analysis of stimulation and blockade of 5-HT7 receptors during memory consolidation.

    PubMed

    Pérez-García, Georgina; Gonzalez-Espinosa, Claudia; Meneses, Alfredo

    2006-04-25

    Despite the compelling support for 5-hydroxytryptamine (5-HT) receptors participation in learning and memory in mammal species, the molecular basis had been largely absent from any discussion of its mechanistic underpinnings. Here, we report that reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that there was a higher level of expression of the investigated 5-HT receptor mRNAs in autoshaping-trained relative to untrained groups. Actually, pharmacological naïve untrained and autoshaping-trained rats showed significant differences, the latter groups expressing, in decreasing order, 5-HT1A < 5-HT6 < 5-HT4 < or = 5-HT7 receptors mRNA in prefrontal cortex and hippocampus. In order to determine more precisely mRNA expression and memory consolidation, we combined selective 5-HT7 receptors stimulation or blockade in the same animals, and brain areas individually analyzed. 5-HT7 receptors were strongly expressed in all the three brain areas of vehicle-trained rats relative to untrained group. The potential selective 5-HT7 receptor agonist AS 19 enhanced memory consolidation, attenuated mRNA receptors expression, and the facilitatory memory effect was reversed by SB-269970. Finally, pharmacological stimulation of 5-HT7 receptors reversed scopolamine- or dizocilpine-induced amnesia and receptor down-regulation.

  20. 5-HT2 presynaptic receptors mediate inhibition of glutamate release from cerebellar mossy fibre terminals.

    PubMed

    Maura, G; Carbone, R; Guido, M; Pestarino, M; Raiteri, M

    1991-09-17

    'Giant' synaptosomes originating from mossy fibre terminals and having sedimentation properties different from those of standard synaptosomes were obtained from rat cerebellum. Exposure of superfused giant synaptosomes to 15 mM KCl caused the release of endogenous glutamate in a largely (about 80%) calcium-dependent manner. The K(+)-evoked overflow of glutamate was inhibited in a concentration-dependent manner by 5-hydroxytryptamine (5-HT) and by the 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl (DOI), but not by the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). The effects of 5-HT and DOI were quite potent, already reaching significant inhibition (about 25%) at 10 nM. The 5-HT2 receptor antagonist ketanserin counteracted the inhibitory effect of 5-HT. In cerebellar slices, ketanserin increased on its own the calcium-dependent K(+)-evoked release of glutamate and this effect was not prevented by tetrodotoxin (TTX). The results support the idea that cerebellar mossy fibres use glutamate as a transmitter and show that the release of glutamate can be inhibited via presynaptic heteroreceptors of the 5-HT2 type probably localized on the mossy fibre terminals.

  1. 5-HT6 receptor memory and amnesia: behavioral pharmacology--learning and memory processes.

    PubMed

    Meneses, Alfredo; Pérez-García, Georgina; Ponce-Lopez, Teresa; Castillo, Carlos

    2011-01-01

    Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor6 (5-HT6) improve memory and reverse amnesia, although the mechanisms involved are poorly understood. Hence, in this paper an attempt was made to summarize recent findings. Available evidence indicates that diverse 5-HT6 receptor antagonists produce promnesic and/or antiamnesic effects in diverse conditions, including memory formation, age-related cognitive impairments, memory deficits in diseases such as schizophrenia, Parkinson, and Alzheimer's disease (AD). Notably, some 5-HT6 receptor agonists seem to have promnesic and/or antiamnesic effects. At the present, it is unclear why 5-HT6 receptor agonists and antagonists may facilitate memory or may reverse amnesia in some memory tasks. Certainly, 5-HT6 drugs modulate memory, which are accompanied with neural changes. Likewise, memory, aging, and AD modify 5-HT6 receptors and signaling cascades. Further investigation in different memory tasks, times, and amnesia models together with more complex control groups might provide further clues. Notably, human studies suggest a potential utility of 5-HT6 receptor antagonists in mild-to-moderate AD patients. Even individuals with mild cognitive impairment (MCI) offer a great opportunity to test them.

  2. Structure-based discovery of selective serotonin 5-HT(1B) receptor ligands.

    PubMed

    Rodríguez, David; Brea, José; Loza, María Isabel; Carlsson, Jens

    2014-08-05

    The development of safe and effective drugs relies on the discovery of selective ligands. Serotonin (5-hydroxytryptamine [5-HT]) G protein-coupled receptors are therapeutic targets for CNS disorders but are also associated with adverse drug effects. The determination of crystal structures for the 5-HT1B and 5-HT2B receptors provided an opportunity to identify subtype selective ligands using structure-based methods. From docking screens of 1.3 million compounds, 22 molecules were predicted to be selective for the 5-HT1B receptor over the 5-HT2B subtype, a requirement for safe serotonergic drugs. Nine compounds were experimentally verified as 5-HT1B-selective ligands, with up to 300-fold higher affinities for this subtype. Three of the ligands were agonists of the G protein pathway. Analysis of state-of-the-art homology models of the two 5-HT receptors revealed that the crystal structures were critical for predicting selective ligands. Our results demonstrate that structure-based screening can guide the discovery of ligands with specific selectivity profiles.

  3. Vortioxetine, but not escitalopram or duloxetine, reverses memory impairment induced by central 5-HT depletion in rats: evidence for direct 5-HT receptor modulation.

    PubMed

    Jensen, Jesper Bornø; du Jardin, Kristian Gaarn; Song, Dekun; Budac, David; Smagin, Gennady; Sanchez, Connie; Pehrson, Alan Lars

    2014-01-01

    Depressed patients suffer from cognitive dysfunction, including memory deficits. Acute serotonin (5-HT) depletion impairs memory and mood in vulnerable patients. The investigational multimodal acting antidepressant vortioxetine is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, 5-HT1B receptor partial agonist, 5-HT1A receptor agonist and 5-HT transporter (SERT) inhibitor that enhances memory in normal rats in novel object recognition (NOR) and conditioned fear (Mørk et al., 2013). We hypothesized that vortioxetine's 5-HT receptor mechanisms are involved in its memory effects, and therefore investigated these effects in 5-HT depleted rats. Four injections of the irreversible tryptophan hydroxylase inhibitor 4-chloro-dl-phenylalanine methyl ester hydrochloride (PCPA, 86mg/kg, s.c.) induced 5-HT depletion, as measured in hippocampal homogenate and microdialysate. The effects of acute challenge with vortioxetine or the 5-HT releaser fenfluramine on extracellular 5-HT were measured in PCPA-treated and control rats. PCPA's effects on NOR and spontaneous alternation (SA) performance were assessed along with the effects of acute treatment with 5-hydroxy-l-tryptophan (5-HTP), vortioxetine, the selective 5-HT reuptake inhibitor escitalopram, or the 5-HT norepinephrine reuptake inhibitor duloxetine. SERT occupancies were estimated by ex vivo autoradiography. PCPA depleted central 5-HT by >90% in tissue and microdialysate, and impaired NOR and SA performance. Restoring central 5-HT with 5-HTP reversed these deficits. At similar SERT occupancies (>90%) vortioxetine, but not escitalopram or duloxetine, restored memory performance. Acute fenfluramine significantly increased extracellular 5-HT in control and PCPA-treated rats, while vortioxetine did so only in control rats. Thus, vortioxetine restores 5-HT depletion impaired memory performance in rats through one or more of its receptor activities.

  4. GABA, 5-HT and amino acids in the rotifers Brachionus plicatilis and Brachionus rotundiformis.

    PubMed

    Gallardo, W G; Hagiwara, A; Hara, K; Soyano, K; Snell, T W

    2000-11-01

    gamma-Aminobutyric acid (GABA) and 5-hydroxytryptamine (5-HT) have been shown to increase the reproduction of the Brachionus plicatilis (NH3L strain). In the present study, the endogenous presence of GABA and 5-HT in the rotifers B. plicatilis (NH3L and Kamiura strains) and Brachionus rotundiformis (Langkawi strain) were confirmed by dot blot immunoassay and high-performance liquid chromatography (HPLC). HPLC showed that GABA and 5-HT concentrations in the three rotifer strains range from 71 to 188 pmol/mg and from 12 to 64 pmol/mg, respectively. A total of 33 amino acids were also detected in B. plicatilis and B. rotundiformis, with glutamic acid, serine, glycine, taurine, threonine, alanine, arginine, proline, valine and isoleucine in high concentrations relative to other amino acids.

  5. 3D Pharmacophore, hierarchical methods, and 5-HT4 receptor binding data.

    PubMed

    Varin, Thibault; Saettel, Nicolas; Villain, Jonathan; Lesnard, Aurelien; Dauphin, François; Bureau, Ronan; Rault, Sylvain

    2008-10-01

    5-Hydroxytryptamine subtype-4 (5-HT(4)) receptors have stimulated considerable interest amongst scientists and clinicians owing to their importance in neurophysiology and potential as therapeutic targets. A comparative analysis of hierarchical methods applied to data from one thousand 5-HT(4) receptor-ligand binding interactions was carried out. The chemical structures were described as chemical and pharmacophore fingerprints. The definitions of indices, related to the quality of the hierarchies in being able to distinguish between active and inactive compounds, revealed two interesting hierarchies with the Unity (1 active cluster) and pharmacophore fingerprints (4 active clusters). The results of this study also showed the importance of correct choice of metrics as well as the effectiveness of a new alternative of the Ward clustering algorithm named Energy (Minimum E-Distance method). In parallel, the relationship between these classifications and a previously defined 3D 5-HT(4) antagonist pharmacophore was established.

  6. Potentiation by endothelin-1 of 5-hydroxytryptamine-induced contraction in coronary artery of the pig.

    PubMed Central

    Nakayama, K.; Ishigai, Y.; Uchida, H.; Tanaka, Y.

    1991-01-01

    1. In order to elucidate the physiological and potential pathological roles of endothelin-1 (ET-1) in coronary artery contraction and relaxation, we undertook the present study to examine the action of ET-1 itself, and the combined effects of ET-1 with vasoconstrictor agonists such as acetylcholine (ACh), histamine, and 5-hydroxytryptamine (5-HT), all of which have been implicated in the genesis of coronary spasm. 2. Isometric tension and cytosolic Ca2+ concentration ([Ca2+]i) in a ring segment of porcine coronary artery loaded with fura-2 were measured simultaneously. 3. ET-1 contracted the artery in a concentration-dependent manner; and nisoldipine, a Ca2+ channel blocking drug of the 1,4-dihydropyridine type, antagonized the ET-1 action non-competitively. A radio-receptor binding assay also indicated the mutually exclusive binding of ET-1 and (+)-[3H]-PN200-110, a Ca2+ channel ligand, to the membrane fraction of porcine coronary artery. 4. ET-1 (10-100 pM) increased tension and [Ca2+]i in a parallel manner, while at higher concentrations (1-10 nM) it produced further contraction with a small increase in [Ca2+]i. 5. ET-1 (30-100 pM) selectively potentiated the 5-HT-induced contraction 1.5 to 2 times over the control without causing a significant increase in [Ca2+]i, which seems to be qualitatively similar to a tumour promoting phorbol ester, 12-deoxyphorbol 13-isobutylate (DPB). Bay K 8644 (10 nM), on the other hand, potentiated the contraction in response to practically all agonists used and affected a concomitant increase in [Ca2+]i.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1810605

  7. Serotonin (5-HT) regulates neurite outgrowth through 5-HT1A and 5-HT7 receptors in cultured hippocampal neurons.

    PubMed

    Rojas, Paulina S; Neira, David; Muñoz, Mauricio; Lavandero, Sergio; Fiedler, Jenny L

    2014-08-01

    Serotonin (5-HT) production and expression of 5-HT receptors (5-HTRs) occur early during prenatal development. Recent evidence suggests that, in addition to its classical role as a neurotransmitter, 5-HT regulates neuronal connectivity during mammalian development by modulating cell migration and neuronal cytoarchitecture. Given the variety of 5-HTRs, researchers have had difficulty clarifying the specific role of each receptor subtype in brain development. Signalling mediated by the G-protein-coupled 5-HT1A R and 5-HT7 R, however, has been associated with neuronal plasticity. Thus, we hypothesized that 5-HT promotes neurite outgrowth through 5-HT1A R and 5-HT7 R. The involvement of 5-HT1A R and 5-HT7 R in the morphology of rat hippocampal neurons was evaluated by treating primary cultures at 2 days in vitro with 5-HT and specific antagonists for 5-HT1A R and 5-HT7 R (WAY-100635 and SB269970, respectively). The stimulation of hippocampal neurons with 100 nM 5-HT for 24 hr produced no effect on either the number or the length of primary neurites. Nonetheless, after 5HT7 R was blocked, the addition of 5-HT increased the number of primary neurites, suggesting that 5HT7 R could inhibit neuritogenesis. In contrast, 5-HT induced secondary neurite outgrowth, an effect inhibited by 1 μM WAY-100635 or SB269970. These results suggest that both serotonergic receptors participate in secondary neurite outgrowth. We conclude that 5-HT1A R and 5-HT7 R regulate neuronal morphology in primary hippocampal cultures by promoting secondary neurite outgrowth.

  8. Action of angiotensin II, 5-hydroxytryptamine and adenosine triphosphate on ionic currents in single ear artery cells of the rabbit.

    PubMed

    Hughes, A D; Bolton, T B

    1995-10-01

    1. Angiotensin II, 5-hydroxytryptamine (5-HT) and adenosine triphosphate (ATP) evoked a transient inward current in isolated single car artery cells of rabbit held at -60 mV by whole cell voltage clamp in physiological saline using a KCL-containing pipette solution. Under these conditions agonist did not activate a calcium-dependent potassium current. 2. Responses to each agonist were transient and desensitized rapidly. Inward current at -60 mV holding potential was not abolished by blockade of voltage-dependent calcium channels or by buffering intracellular calcium with BAPTA, a calcium chelator, or following depletion of intracellular calcium stores with ryanodine. 3. The shape of the current-voltage relationships and the reversal potentials of the current induced by angiotensin II, 5-HT and ATP were similar under a variety of ionic conditions. Agonist-induced current was unaffected by replacing intracellular chloride with citrate ions or by replacing intracellular sodium with caesium or extracellular sodium with barium or calcium. Replacement of extracellular sodium with Tris shifted the reversal potential in all cases by around 30 mV negatively. 4. These data suggest that angiotensin II, 5-HT and ATP activate similar cationic conductances which are relatively non-selective allowing mono- and divalent cations to cross the smooth muscle cell membrane. These channels may allow the influx of calcium under physiological conditions.

  9. Differences in agonist dissociation constant estimates for 5-HT at 5-HT2-receptors: a problem of acute desensitization?

    PubMed Central

    Leff, P.; Martin, G. R.

    1988-01-01

    1. The agonist dissociation constant for 5-hydroxytryptamine (5-HT) was estimated in the guinea-pig isolated trachea by the method of receptor inactivation. The value obtained (pKA = 6.45) was significantly lower than estimates previously obtained in the rabbit aorta and rat jugular vein, although all three tissues are supposed to contain the same 5-HT2 class of receptor. 2. The antagonist dissociation constant for alpha,alpha-dimethyltryptamine was also estimated in the guinea-pig trachea. The pKB value (5.43) was not significantly different from previous estimates in the rabbit aorta and rat jugular vein, consistent with receptor homogeneity between the three tissues. 3. The effect-time profiles corresponding to individual 5-HT applications were more transient in the guinea-pig trachea than in the rabbit aorta. This difference could be accounted for using a simple model of acute receptor desensitization (Leff, 1986), assuming that the conversion of active agonist-receptor complexes into inactive ones was faster in the guinea-pig trachea than in the rabbit aorta. 4. Computer simulation of the desensitization model showed that the discrepancy of pKA estimates for 5-HT between the rabbit aorta and guinea-pig trachea could also be explained using the same rate constant difference that accounted for the difference in effect-time profiles. This analysis indicated that the estimate made in the trachea was erroneously low, whereas that made in the aorta was concluded to be correct. 5. The apparent association between transience of response and pKA estimates is discussed with particular attention to the reliability of agonist affinity estimates in receptor classification. PMID:3228675

  10. Disrupting 5-HT2A Receptor/PDZ Protein Interactions Reduces Hyperalgesia and Enhances SSRI Efficacy in Neuropathic Pain

    PubMed Central

    Pichon, Xavier; Wattiez, Anne S; Becamel, Carine; Ehrlich, Ingrid; Bockaert, Joel; Eschalier, Alain; Marin, Philippe; Courteix, Christine

    2010-01-01

    Antidepressants are one of the first-line treatments for neuropathic pain. Despite the influence of serotonin (5-hydroxytryptamine, 5-HT) in pain modulation, selective serotonin reuptake inhibitors (SSRIs) are less effective than tricyclic antidepressants. Here, we show, in diabetic neuropathic rats, an alteration of the antihyperalgesic effect induced by stimulation of 5-HT2A receptors, which are known to mediate SSRI-induced analgesia. 5-HT2A receptor density was not changed in the spinal cord of diabetic rats, whereas postsynaptic density protein-95 (PSD-95), one of the PSD-95/disc large suppressor/zonula occludens-1 (PDZ) domain containing proteins interacting with these receptors, was upregulated. Intrathecal injection of a cell-penetrating peptidyl mimetic of the 5-HT2A receptor C-terminus, which disrupts 5-HT2A receptor–PDZ protein interactions, induced an antihyperalgesic effect in diabetic rats, which results from activation of 5-HT2A receptors by endogenous 5-HT. The peptide also enhanced antihyperalgesia induced by the SSRI fluoxetine. Its effects likely resulted from an increase in receptor responsiveness, because it revealed functional 5-HT2A receptor-operated Ca2+ responses in neurons, an effect mimicked by knockdown of PSD-95. Hence, 5-HT2A receptor/PDZ protein interactions might contribute to the resistance to SSRI-induced analgesia in painful diabetic neuropathy. Disruption of these interactions might be a valuable strategy to design novel treatments for neuropathic pain and to increase the effectiveness of SSRIs. PMID:20531396

  11. Expression of 5-HT3 receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying.

    PubMed

    Raybould, Helen E; Glatzle, Jorg; Robin, Carla; Meyer, James H; Phan, Thomas; Wong, Helen; Sternini, Catia

    2003-03-01

    Intestinal perfusion with carbohydrates inhibits gastric emptying via vagal and spinal capsaicin-sensitive afferent pathways. The aim of the present study was to determine the role of 1) 5-hydroxytryptamine (5-HT)(3) receptors (5-HT(3)R) in mediating glucose-induced inhibition of gastric emptying and 2) 5-HT(3)R expression in vagal and spinal afferents in innervating the duodenum. In awake rats fitted with gastric and duodenal cannulas, perfusion of the duodenum with glucose (50 and 100 mg) inhibited gastric emptying. Intestinal perfusion of mannitol inhibited gastric emptying only at the highest concentration (990 mosm/kgH(2)O). Pretreatment with the 5-HT(3)R antagonist tropisetron abolished both glucose- and mannitol-induced inhibition of gastric emptying. Retrograde labeling of visceral afferents by injection of dextran-conjugated Texas Red into the duodenal wall was used to identify extrinsic primary afferents. Immunoreactivity for 5-HT(3)R, visualized with an antibody directed to the COOH terminus of the rat 5-HT(3)R, was found in >80% of duodenal vagal and spinal afferents. These results show that duodenal extrinsic afferents express 5-HT(3)R and that the receptor mediates specific glucose-induced inhibition of gastric emptying. These findings support the hypothesis that enterochromaffin cells in the intestinal mucosa release 5-HT in response to glucose, which activates 5-HT(3)R on afferent nerve terminals to evoke reflex changes in gastric motility. The primary glucose sensors of the intestine may be mucosal enterochromaffin cells.

  12. Pharmacological profile of the receptors that mediate external carotid vasoconstriction by 5-HT in vagosympathectomized dogs.

    PubMed

    Villalón, C M; Ramírez-San Juan, E; Castillo, C; Castillo, E; López-Muñoz, F J; Terrón, J A

    1995-11-01

    1. 5-Hydroxytryptamine (5-HT) can produce vasodilatation or vasoconstriction of the canine external carotid bed depending upon the degree of carotid sympathetic tone. Hence, external carotid vasodilatation to 5-HT in dogs with intact sympathetic tone is primarily mediated by prejunctional 5-HT1-like receptors similar to the 5-HT1D subtype, which inhibit the carotid sympathetic outflow. The present investigation is devoted to the pharmacological analysis of the receptors mediating external carotid vasoconstriction by 5-HT in vagosympathectomized dogs. 2. Intracarotid (i.c.) infusions for 1 min of 5-HT (0.3, 1, 3, 10, 30 and 100 micrograms) resulted in dose-dependent decreases in both external carotid blood flow and the corresponding conductance; both mean arterial blood pressure and heart rate remained unchanged during the infusions of 5-HT. These responses to 5-HT were resistant to blockade by antagonists at 5-HT2 (ritanserin) and 5-HT3/5-HT4 (tropisetron) receptors, but were partly blocked by the 5-HT1-like and 5-HT2 receptor antagonist, methiothepin (0.3 mg kg-1); higher doses of methiothepin (1 and 3 mg kg-1) caused little, if any, further blockade. These methiothepin (3 mg kg-1)-resistant responses to 5-HT were not significantly antagonized by MDL 72222 (0.3 mg kg-1) or tropisetron (3 mg kg-1). 3. The external carotid vasoconstrictor effects of 5-HT were mimicked by the selective 5-HT1-like receptor agonist, sumatriptan (3, 10, 30 and 100 micrograms during 1 min, i.c.), which produced dose-dependent decreases in external carotid blood flow and the corresponding conductance; these effects of sumatriptan were dose-dependently antagonized by methiothepin (0.3, 1 and 3 mg kg-1), but not by 5-HT1D-like receptor blocking doses of metergoline (0.1 mg kg-1). 4. The above vasoconstrictor effects of 5-HT remained unaltered after administration of phentolamine, propranolol, atropine, hexamethonium, brompheniramine, cimetidine and haloperidol, thus excluding the

  13. Pharmacological profile of the receptors that mediate external carotid vasoconstriction by 5-HT in vagosympathectomized dogs.

    PubMed Central

    Villalón, C. M.; Ramírez-San Juan, E.; Castillo, C.; Castillo, E.; López-Muñoz, F. J.; Terrón, J. A.

    1995-01-01

    1. 5-Hydroxytryptamine (5-HT) can produce vasodilatation or vasoconstriction of the canine external carotid bed depending upon the degree of carotid sympathetic tone. Hence, external carotid vasodilatation to 5-HT in dogs with intact sympathetic tone is primarily mediated by prejunctional 5-HT1-like receptors similar to the 5-HT1D subtype, which inhibit the carotid sympathetic outflow. The present investigation is devoted to the pharmacological analysis of the receptors mediating external carotid vasoconstriction by 5-HT in vagosympathectomized dogs. 2. Intracarotid (i.c.) infusions for 1 min of 5-HT (0.3, 1, 3, 10, 30 and 100 micrograms) resulted in dose-dependent decreases in both external carotid blood flow and the corresponding conductance; both mean arterial blood pressure and heart rate remained unchanged during the infusions of 5-HT. These responses to 5-HT were resistant to blockade by antagonists at 5-HT2 (ritanserin) and 5-HT3/5-HT4 (tropisetron) receptors, but were partly blocked by the 5-HT1-like and 5-HT2 receptor antagonist, methiothepin (0.3 mg kg-1); higher doses of methiothepin (1 and 3 mg kg-1) caused little, if any, further blockade. These methiothepin (3 mg kg-1)-resistant responses to 5-HT were not significantly antagonized by MDL 72222 (0.3 mg kg-1) or tropisetron (3 mg kg-1). 3. The external carotid vasoconstrictor effects of 5-HT were mimicked by the selective 5-HT1-like receptor agonist, sumatriptan (3, 10, 30 and 100 micrograms during 1 min, i.c.), which produced dose-dependent decreases in external carotid blood flow and the corresponding conductance; these effects of sumatriptan were dose-dependently antagonized by methiothepin (0.3, 1 and 3 mg kg-1), but not by 5-HT1D-like receptor blocking doses of metergoline (0.1 mg kg-1). 4. The above vasoconstrictor effects of 5-HT remained unaltered after administration of phentolamine, propranolol, atropine, hexamethonium, brompheniramine, cimetidine and haloperidol, thus excluding the

  14. Gaddum and LSD: the birth and growth of experimental and clinical neuropharmacology research on 5-HT in the UK

    PubMed Central

    Green, A R

    2008-01-01

    The vasoconstrictor substance named serotonin was identified as 5-hydroxytryptamine (5-HT) by Maurice Rapport in 1949. In 1951, Rapport gave Gaddum samples of 5-HT substance allowing him to develop a bioassay to both detect and measure the amine. Gaddum and colleagues rapidly identified 5-HT in brain and showed that lysergic acid diethylamide (LSD) antagonized its action in peripheral tissues. Gaddum accordingly postulated that 5-HT might have a role in mood regulation. This review examines the role of UK scientists in the first 20 years following these major discoveries, discussing their role in developing assays for 5-HT in the CNS, identifying the enzymes involved in the synthesis and metabolism of 5-HT and investigating the effect of drugs on brain 5-HT. It reviews studies on the effects of LSD in humans, including Gaddum's self-administration experiments. It outlines investigations on the role of 5-HT in psychiatric disorders, including studies on the effect of antidepressant drugs on the 5-HT concentration in rodent and human brain, and the attempts to examine 5-HT biochemistry in the brains of patients with depressive illness. It is clear that a rather small group of both preclinical scientists and psychiatrists in the UK made major advances in our understanding of the role of 5-HT in the brain, paving the way for much of the knowledge now taken for granted when discussing ways that 5-HT might be involved in the control of mood and the idea that therapeutic drugs used to alleviate psychiatric illness might alter the function of cerebral 5-HT. PMID:18516072

  15. Gaddum and LSD: the birth and growth of experimental and clinical neuropharmacology research on 5-HT in the UK.

    PubMed

    Green, A R

    2008-08-01

    The vasoconstrictor substance named serotonin was identified as 5-hydroxytryptamine (5-HT) by Maurice Rapport in 1949. In 1951, Rapport gave Gaddum samples of 5-HT substance allowing him to develop a bioassay to both detect and measure the amine. Gaddum and colleagues rapidly identified 5-HT in brain and showed that lysergic acid diethylamide (LSD) antagonized its action in peripheral tissues. Gaddum accordingly postulated that 5-HT might have a role in mood regulation. This review examines the role of UK scientists in the first 20 years following these major discoveries, discussing their role in developing assays for 5-HT in the CNS, identifying the enzymes involved in the synthesis and metabolism of 5-HT and investigating the effect of drugs on brain 5-HT. It reviews studies on the effects of LSD in humans, including Gaddum's self-administration experiments. It outlines investigations on the role of 5-HT in psychiatric disorders, including studies on the effect of antidepressant drugs on the 5-HT concentration in rodent and human brain, and the attempts to examine 5-HT biochemistry in the brains of patients with depressive illness. It is clear that a rather small group of both preclinical scientists and psychiatrists in the UK made major advances in our understanding of the role of 5-HT in the brain, paving the way for much of the knowledge now taken for granted when discussing ways that 5-HT might be involved in the control of mood and the idea that therapeutic drugs used to alleviate psychiatric illness might alter the function of cerebral 5-HT.

  16. Peripheral 5-HT2-like receptors. Can they be classified with the available antagonists?

    PubMed Central

    Leff, P.; Martin, G. R.

    1986-01-01

    Interactions between 5-hydroxytryptamine (5-HT) and the so-called 5-HT2 receptor antagonists ketanserin, spiperone, trazodone and methysergide were studied in isolated preparations of the rabbit aorta, rat jugular vein, and rat caudal artery. Trazodone and spiperone were apparently simple competitive antagonists since they produced antagonism that was surmountable over the concentration range studied and, in each tissue, their apparent affinity appeared to be independent of the antagonist concentration. Furthermore, concentration-ratios obtained with the two antagonists in combination suggested that antagonism was additive, implying mutual competition with a single population of 5-HT receptors. Ketanserin was a non-surmountable antagonist of 5-HT in the rat caudal artery and methysergide demonstrated surmountable, competitive antagonism only in the rabbit aorta. Antagonist dissociation constants estimated for apparently competitive interactions showed that ketanserin, spiperone and trazodone expressed affinities which differed according to the tissue used. In the case of trazodone, affinity estimates differed by as much as 12 fold. These discrepancies were independent of the 5-HT receptor agonist used and could not be attributed to an inadequate equilibration of the antagonist. These results can be interpreted in two ways: either the receptors in the different tissues are heterogeneous or the antagonists used here must be considered as unreliable probes for the classification of 5-HT2-like receptors. PMID:2943354

  17. Seizure susceptibility alteration through 5-HT(3) receptor: modulation by nitric oxide.

    PubMed

    Gholipour, Taha; Ghasemi, Mehdi; Riazi, Kiarash; Ghaffarpour, Majid; Dehpour, Ahmad Reza

    2010-01-01

    There is some evidence that epileptic seizures could be induced or increased by 5-hydroxytryptamine (5-HT) attenuation, while augmentation of serotonin functions within the brain (e.g. by SSRIs) has been reported to be anticonvulsant. This study was performed to determine the effect of selective 5-HT(3) channel/receptor antagonist granisetron and agonist SR57227 hydrochloride on the pentylenetetrazole (PTZ)-induced seizure threshold in mice. The possible interaction of this effect with nitrergic system was also examined using the nitric oxide (NO) synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) and the NO precursor l-arginine. SR57227 (10mg/kg, i.p.) significantly increased the seizure threshold compared to control group, while high dose granisetron (10mg/kg, i.p.) proved proconvulsant. Co-administration of sub-effective doses of the 5-HT(3) agonist with l-NAME (5 and 60mg/kg, i.p., respectively) exerted a significant anticonvulsive effect, while sub-effective doses of granisetron (3mg/kg) was observed to have a proconvulsive action with the addition of l-arginine (75mg/kg, i.p.). Our data demonstrate that enhancement of 5-HT(3) receptor function results in as anticonvulsant effect in the PTZ-induced seizure model, and that selective antagonism at the 5-HT(3) receptor yields proconvulsive effects. Furthermore, the NO system may play a role in 5-HT(3) receptor function.

  18. Role of 5-HT1-7 receptors in short- and long-term memory for an autoshaping task: intrahippocampal manipulations.

    PubMed

    Liy-Salmeron, Gustavo; Meneses, Alfredo

    2007-05-25

    It was previously reported that brain areas containing serotonin (5-hydroxytryptamine, 5-HT) receptors mediate memory consolidation as well as short (STM)- and long-term memory (LTM). Here the effects of systemic and intrahippocampal administration of 5-HT agonists and antagonists on an autoshaping learning task were explored, which requires hippocampal translation and transduction as well as 5-HT receptors expression. As previously reported ketamine (glutamatergic antagonist) and two well-known amnesic drugs, scopolamine (cholinergic antagonist) and dizocilpine (NMDA antagonist) impaired STM but not LTM; dizocilpine even improved the latter. Since ketamine produces hallucinations and impairs memory in humans, we address the question if well-known antipsychotic haloperidol and clozapine might affect STM deficit. Indeed, systemic administration of clozapine5-HT(1A/2A/6/7) receptors, systemic and intrahippocampal administration of 5-HT drugs were further explored. The ketamine STM-induced deficit was blocked by 8-OHDPAT (5-HT(1A/7) agonist) and SB-399885 (a 5-HT(6) antagonist) but not by 5-HT(1B), 5-HT(2) and 5-HT(7) antagonists, thus implicating 5-HT(1A/7) and 5-HT(6) receptors. These data also suggest that ketamine (at 10 mg/kg) represents a reliable pharmacological tool to explore memory deficits related to hippocampus and schizophrenia.

  19. Therapeutic Potential of 5-HT2C Receptor Agonists for Addictive Disorders.

    PubMed

    Higgins, Guy A; Fletcher, Paul J

    2015-07-15

    The neurotransmitter 5-hydroxytryptamine (5-HT; serotonin) has long been associated with the control of a variety of motivated behaviors, including feeding. Much of the evidence linking 5-HT and feeding behavior was obtained from studies of the effects of the 5-HT releaser (dex)fenfluramine in laboratory animals and humans. Recently, the selective 5-HT2C receptor agonist lorcaserin received FDA approval for the treatment of obesity. This review examines evidence to support the use of selective 5-HT2C receptor agonists as treatments for conditions beyond obesity, including substance abuse (particularly nicotine, psychostimulant, and alcohol dependence), obsessive compulsive, and excessive gambling disorder. Following a brief survey of the early literature supporting a role for 5-HT in modulating food and drug reinforcement, we propose that intrinsic differences between SSRI and serotonin releasers may have underestimated the value of serotonin-based pharmacotherapeutics to treat clinical forms of addictive behavior beyond obesity. We then highlight the critical involvement of the 5-HT2C receptor in mediating the effect of (dex)fenfluramine on feeding and body weight gain and the evidence that 5-HT2C receptor agonists reduce measures of drug reward and impulsivity. A recent report of lorcaserin efficacy in a smoking cessation trial further strengthens the idea that 5-HT2C receptor agonists may have potential as a treatment for addiction. This review was prepared as a contribution to the proceedings of the 11th International Society for Serotonin Research Meeting held in Hermanus, South Africa, July 9-12, 2014.

  20. Effects of intracerebroventricular injections of 5-HT on systemic vascular resistances of conscious rats.

    PubMed

    Davisson, Robin L; Bates, James N; Johnson, Alan Kim; Lewis, Stephen J

    2014-09-01

    The aims of this study were to determine (i) the effects of intracerebroventricular (i.c.v.) injections of 5-hydroxytryptamine (5-HT, 10μg) on mean arterial blood pressure (MAP), heart rate (HR) and mesenteric (MR), renal (RR) and hindquarter (HQR) vascular resistances of conscious rats, (ii) the central 5-HT receptor subtype which mediates these effects, and (iii) the role of nitric oxide (NO) in the expression of these responses. The i.c.v. injection of 5-HT had minor effects on MAP but produced a decrease in HR (-18±4%), which lasted for 20min. The i.c.v. injection of 5-HT elicited marked increases in MR (+50±7%) and reductions in HQR (-31±3%). These responses occurred promptly and lasted for 25-35min. 5-HT also produced a transient decrease in RR (-26±8% at 10min). All of these responses were prevented by the prior i.c.v. injection of the 5-HT1/5-HT2-receptor antagonist, methysergide (10μg). The intravenous injection of the NO synthesis inhibitor, L-NAME (25μmol/kg), produced a sustained pressor response, bradycardia and increases in MR, RR and HQR. Subsequent i.c.v. injection of 5-HT produced a minor pressor response (+7±2%), bradycardia (-18±3%), an increase in MR (+52±8%) but no decreases in RR or HQR. This study demonstrates that i.c.v. 5-HT differentially affects peripheral vascular resistances by activation of central 5-HT1/5-HT2-receptors. It appears that L-NAME did not interfere with the central actions of 5-HT as it did not prevent the 5-HT-induced bradycardia or mesenteric vasoconstriction. Since the 5-HT-induced falls in RR and HQR were abolished by L-NAME, it is possible that these responses are mediated by an active neurogenic process involving the release of NO within the vasculature.

  1. Shifting topographic activation and 5-HT1A receptor-mediated inhibition of dorsal raphe serotonin neurons produced by nicotine exposure and withdrawal.

    PubMed

    Sperling, Robin; Commons, Kathryn G

    2011-05-01

    Nicotine activates serotonin [5-hydroxytryptamine (5-HT)] neurons innervating the forebrain, and this is thought to reduce anxiety. Nicotine withdrawal has also been associated with an activation of 5-HT neurotransmission, although withdrawal increases anxiety. In each case, 5-HT1A receptors have been implicated in the response. To determine whether there are different subgroups of 5-HT cells activated during nicotine administration and withdrawal, we mapped the appearance of Fos, a marker of neuronal activation, in 5-HT cells of the dorsal raphe nucleus (DR) and median raphe nucleus (MR). To understand the role of 5-HT1A receptor feedback inhibitory pathways in 5-HT cell activity during these conditions, we administered a selective 5-HT1A receptor antagonist and measured novel disinhibited Fos expression within 5-HT cells. Using these approaches, we found evidence that acute nicotine exposure activates 5-HT neurons rostrally and in the lateral wings of the DR, whereas there is 5-HT1A receptor-dependent inhibition of cells located ventrally at both the rostral level and mid-level. Previous chronic nicotine exposure did not modify the pattern of activation produced by acute nicotine exposure, but increased 5-HT1A receptor-dependent inhibition of 5-HT cells in the caudal DR. This pattern was nearly reversed during nicotine withdrawal, when there was evidence for caudal activation and mid-level and rostral 5-HT1A receptor-dependent inhibition. These results suggest that the distinct behavioral states produced by nicotine exposure and withdrawal correlate with reciprocal rostral-caudal patterns of activation and 5-HT1A receptor-mediated inhibition of DR 5-HT neurons. The complementary patterns of activation and inhibition suggest that 5-HT1A receptors may help to shape distinct topographic patterns of activation within the DR.

  2. Selective Recognition of 5-Hydroxytryptamine and Dopamine on a Multi-Walled Carbon Nanotube-Chitosan Hybrid Film-Modified Microelectrode Array

    PubMed Central

    Xu, Huiren; Wang, Li; Luo, Jinping; Song, Yilin; Liu, Juntao; Zhang, Song; Cai, Xinxia

    2015-01-01

    It is difficult to determine dopamine (DA) and 5-hydroxytryptamine (5-HT) accurately because of the interference of ascorbic acid (AA) in vitro, which has a high concentration and can be oxidized at a potential close to DA and 5-HT at a conventional electrode, combined with the overlapping voltammetric signal of DA and 5-HT at a bare electrode. Herein, chitosan (CS) was used as a stabilizing matrix by electrochemical reaction, and multi-walled carbon nanotubes (MWCNTs) were modified onto the microelectrode array (MEA). The CS-MWCNT hybrid film-modified MEA was quite effective at simultaneously recognizing these species in a mixture and resolved the overlapping anodic peaks of AA, DA and 5-HT into three well-defined oxidation peaks in differential pulse voltammetry (DPV) at −80 mV, 105 mV and 300 mV (versus Ag|AgCl), respectively. The linear responses were obtained in the range of 5 × 10−6 M to 2 × 10−4 M for DA (r = 0.996) and in the range of 1 × 10−5 M to 3 × 10−4 M for 5-HT (r = 0.999) using the DPV under the presence of a single substance. While DA coexisted with 5-HT in the interference of 3 × 10−4 M AA, the linear responses were obtained in the range of 1 × 10−5 M to 3 × 10−4 M for selective molecular recognition of DA (r = 0.997) and 5-HT (r = 0.997) using the DPV. Therefore, this proposed MEA was successfully used for selective molecular recognition and determination of DA and 5-HT using the DPV, which has a potential application for real-time determination in vitro experiments. PMID:25580900

  3. Selective recognition of 5-hydroxytryptamine and dopamine on a multi-walled carbon nanotube-chitosan hybrid film-modified microelectrode array.

    PubMed

    Xu, Huiren; Wang, Li; Luo, Jinping; Song, Yilin; Liu, Juntao; Zhang, Song; Cai, Xinxia

    2015-01-08

    It is difficult to determine dopamine (DA) and 5-hydroxytryptamine (5-HT) accurately because of the interference of ascorbic acid (AA) in vitro, which has a high concentration and can be oxidized at a potential close to DA and 5-HT at a conventional electrode, combined with the overlapping voltammetric signal of DA and 5-HT at a bare electrode. Herein, chitosan (CS) was used as a stabilizing matrix by electrochemical reaction, and multi-walled carbon nanotubes (MWCNTs) were modified onto the microelectrode array (MEA). The CS-MWCNT hybrid film-modified MEA was quite effective at simultaneously recognizing these species in a mixture and resolved the overlapping anodic peaks of AA, DA and 5-HT into three well-defined oxidation peaks in differential pulse voltammetry (DPV) at -80 mV, 105 mV and 300 mV (versus Ag|AgCl), respectively. The linear responses were obtained in the range of 5 × 10(-6) M to 2 × 10(-4) M for DA (r = 0.996) and in the range of 1 × 10(-5) M to 3 × 10(-4) M for 5-HT (r = 0.999) using the DPV under the presence of a single substance. While DA coexisted with 5-HT in the interference of 3 × 10(-4) M AA, the linear responses were obtained in the range of 1 × 10(-5) M to 3 × 10(-4) M for selective molecular recognition of DA (r = 0.997) and 5-HT (r = 0.997) using the DPV. Therefore, this proposed MEA was successfully used for selective molecular recognition and determination of DA and 5-HT using the DPV, which has a potential application for real-time determination in vitro experiments.

  4. Molecular Regulation of Sexual Preference Revealed by Genetic Studies of 5-HT in the Brain of Male Mice

    PubMed Central

    Liu, Yan; Jiang, Yun’ai; Si, Yunxia; Kim, Ji-Young; Chen, Zhou-Feng; Rao, Yi

    2014-01-01

    To whom should a male directs his mating? While it is a critical social interaction, little is known about molecular and cellular mechanisms controlling mammalian sexual preference. Here we report that the neurotransmitter 5-HT is required for male sexual preference. Male mice lacking central serotonergic neurons lost sexual preference but were not generally defective in olfaction. A role for 5-hydroxytryptamine (5-HT) was demonstrated by the phenotype of mice unable to synthesize 5-HT in the brain when lacking tryptophan hydroxylase 2 (Tph2). 5-hydroxytryptophan (5-HTP) injection rescued the phenotype of adult Tph2 knockout mice within 35 minutes. These results indicate that 5-HT and serotonergic neurons in the adult brain regulate mammalian sexual preference. PMID:21441904

  5. A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT1 and 5-HT2 receptors.

    PubMed Central

    Goodwin, G. M.; Green, A. R.

    1985-01-01

    Radioligand binding techniques have demonstrated the existence of 5-hydroxytryptamine (5-HT) binding subtypes: 5-HT2, 5-HT1A and 5-HT1B. These techniques have also indicated that certain drugs appear to show sub-type specificity: 8-hydroxy-2-(di-n-propylamino)tetralin(8-OH-DPAT), a 5-HT1A agonist; 5-methoxy-3(1,2,3,6-tetrahydropyridin-4-yl)1-H indole (RU 24969), a 5-HT1B agonist; and ritanserin, a 5-HT2 antagonist. (-)-Propranolol is a 5-HT1 antagonist of uncertain sub-type specificity. An examination has been made in mice and rats of the behavioural and biochemical effects of these drugs to determine whether the binding sites have physiological functions and further characterise the behavioural models. Administration of carbidopa (25 mg kg-1) plus 5-hydroxytryptophan (100 mg kg-1) produced head-twitch behaviour in mice which was antagonized by ritanserin (ED50 = 65 micrograms kg-1) but not (-)-propranolol (20 mg kg-1). 8-OH-DPAT (1-10 mg kg-1 s.c.) and RU 24949 (5 mg kg-1 i.p.) did not produce head-twitch behaviour. 8-OH-DPAT decreased 5-HTP- but not 5-methoxy-N-N-dimethyltryptamine (5 mg kg-1)-induced head-twitch by a (-)-propranolol-insensitive mechanism. Locomotor activity produced in mice by RU 24969 (3 mg kg-1) was antagonized by (-)-propranolol (20 mg kg-1) but not the (+)-isomer. (-)-Propranolol did not antagonize the behaviour induced in rats. In mice, both 8-OH-DPAT and RU 24969 markedly inhibited whole brain 5-HT synthesis and this effect was not antagonized by (-)-propranolol. In rats, 8-OH-DPAT (3 mg kg-1 s.c.) produced all the behavioural changes seen after quipazine (25 mg kg-1). (-)-Propranolol inhibited the behaviour changes produced by both agonists, while ritanserin antagonized the behaviour produced by quipazine but not 8-OH-DPAT. It is concluded, therefore, that the 5-HT1A receptor exists between the 5-HT2 receptor and the behavioural effectors. 8-OH-DPAT (at 20 degrees C ambient temperature) rapidly decreased rat body temperature, an effect

  6. Changes in the regulation of 5-hydroxytryptamine release by alpha2-adrenoceptors in the rat hippocampus after long-term desipramine treatment.

    PubMed

    Yoshioka, M; Matsumoto, M; Numazawa, R; Togashi, H; Smith, C B; Saito, H

    1995-12-29

    In vivo microdialysis was used to measure the effects of long-term treatment of rats with desipramine upon the regulation by alpha2-adrenoceptors of serotonin (5-hydroxytryptamine, 5-HT) release from the serotonergic neurons in the hippocampus. Rats were injected with saline or desipramine, 10 mg/kg, i.p., every 12 h for 14 days. When added to the perfusion solution, brimonidine, an alpha2-adrenoceptor agonist, significantly inhibited the K+-evoked release of 5-HT in the hippocampi of saline-treated, control rats. This action of brimonidine was prevented by pretreating the rats with idazoxan, an alpha2-adrenoceptor antagonist. Long-term desipramine treatment significantly reduced the inhibitory effect of brimonidine upon the K+-evoked 5-HT release. With long-term administration of desipramine, noradrenaline content in the hippocampi was significantly decreased as compared with that of the control rats, whereas the basal noradrenaline concentration in the dialysate was significantly increased. On the other hand, both the 5-HT content of the hippocampus and the basal 5-HT concentration in the dialysate were significantly increased. The present study suggests that long-term administration of desipramine causes a functional subsensitivity of the presynaptic alpha2-adrenoceptors that regulate serotonergic neuronal function in the rat hippocampus. It also supports the concept that changes in the sensitivity of alpha2-adrenoceptors that regulate neurotransmitter release play an important role in the mechanism of antidepressant drug action.

  7. Interaction between the effects of 5-hydroxytryptamine and adrenaline on the growth of platelet thrombi in the coronary artery of the anaesthetized dog.

    PubMed Central

    McAuliffe, S. J.; Snow, H. M.; Cox, B.; Smith, C. C.; Noble, M. I.

    1993-01-01

    1. The interaction between adrenaline and 5-hydroxytryptamine (5-HT) has been quantitated on the rate of thrombus formation, in the stenosed coronary artery with damaged endothelium of the anaesthetized dog. 2. Changes in the plasma concentration of adrenaline were produced by varying the rate of an intravenous infusion of adrenaline and in the effects of 5-HT, by intravenous injections of the selective 5-HT2 receptor antagonist, ICI 170809. 3. Increases in the plasma concentration of adrenaline, which did not cause significant changes in blood pressure and heart rate, increased the rate of thrombus formation. 4. Antagonism of the 5-HT2 receptor by ICI 170809, in the absence of an infusion of adrenaline, abolished thrombus formation (mean ED50 0.41 microgram kg-1, i.v.). 5. The effects of adrenaline were non-competitively antagonized by ICI 170809; maximum effects were obtained in the dose-range 50-200 micrograms kg-1, i.v., when the mean dose-ratio increase in adrenaline required to restore equivalent rates of thrombus formation was 39 fold. 6. These results are consistent with a synergism between adrenaline and 5-HT and emphasize the importance of both on thrombus formation. PMID:8358542

  8. Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells

    SciTech Connect

    Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko; Nishio, Hiroaki

    2010-05-28

    In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.

  9. Functional evidence for the rapid desensitization of 5-HT(3) receptors on vagal afferents mediating the Bezold-Jarisch reflex

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    2000-01-01

    The aim of this study was to determine whether 5-hydroxytryptamine (5-HT)(3) receptors on cardiopulmonary afferents mediating the Bezold-Jarisch reflex (BJR) desensitize upon repeated exposure to selective agonists. BJR-mediated falls in heart rate, diastolic arterial blood pressure and cardiac output elicited by the 5-HT(3)-receptor agonists, phenylbiguanide (100 microg/kg, i.v.) or 2-methyl-5-HT (100 microg/kg, i.v.), progressively diminished upon repeated injection in conscious rats. The BJR responses elicited by 5-HT (40 microg/kg, i.v.) were markedly reduced in rats which had received the above injections of phenylbiguanide or 2-methyl-5-HT whereas the BJR responses elicited by L-S-nitrosocysteine (10 micromol/kg, i.v.) were similar before and after the injections of the 5-HT(3) receptor agonists. These findings suggest that tachyphylaxis to 5-HT(3) receptor agonists may be due to the desensitization of 5-HT(3) receptors on cardiopulmonary afferents rather than the impairment of the central or peripheral processing of the BJR.

  10. Targeting the Serotonin 5-HT7 Receptor in the Search for Treatments for CNS Disorders: Rationale and Progress to Date.

    PubMed

    Nikiforuk, Agnieszka

    2015-04-01

    The 5-HT7 (5-hydroxytryptamine 7, serotonin 7) receptor is one of the most recently identified members of the serotonin receptor family. Pharmacological tools, including selective antagonists and, more recently, agonists, along with 5-HT7 receptor (5-HT7R) knock-out mice have revealed the involvement of this receptor in central nervous system processes. Its well-established role in controlling body temperature and regulating sleep and circadian rhythms has implicated this receptor in mood disorders. Thus, the 5-HT7R has gained much attention as a possible target for the treatment of depression. Although preclinical data support the antidepressant-like actions of 5-HT7R antagonists, their clinical efficacy has not been yet established. Other evidence has implicated the 5-HT7R in learning and memory. Preclinical findings suggest that blockade of this receptor may be beneficial against schizophrenia-like cognitive deficits. Other possible indications include nociception, epilepsy, migraine, autism spectrum disorders, and Rett Syndrome. However, the question is whether the beneficial effects may be achieved by activation or blockade of 5-HT7Rs. Hence, this review briefly summarises the recent findings on the role of 5-HT7Rs and their ligands in CNS disorders.

  11. Memory formation, amnesia, improved memory and reversed amnesia: 5-HT role.

    PubMed

    Perez-Garcia, G; Meneses, A

    2008-12-16

    Traditionally, the search for memory circuits has been focused on examinations of amnesic and AD patients, cerebral lesions and neuroimaging. A complementary alternative has become the use of autoradiography with radioligands, aiming to identify neurobiological markers associated with memory formation, amnesia states and (more recently) recovery from memory deficits. Indeed, ex vivo autoradiographic studies offer the advantage of detecting functionally active receptors altered by pharmacological tools during memory formation, amnesia states and memory recovery. Moreover, serotonin (5-hydroxytryptamine, 5-HT) systems have become a pharmacological and genetic target in the treatment of memory disorders. Herein evidence from studies involving expression of 5-HT(1A), 5-HT(2A), 5-HT(4), and 5-HT(6) receptors in memory formation, amnesia conditions (e.g., pharmacological models or aging) and recovery of memory is reviewed. Thus, specific 5-HT receptors were expressed in trained animals relative to untrained in brain areas such as cortex, hippocampus and amygdala. However, relative to the control group, rats showing amnesia or recovered memory, showed in the hippocampus, region where explicit memory is formed, a complex pattern of 5-HT receptor expression. An intermediate expression occurred in amygdala, septum and some cortical areas in charge of explicit memory storage. Even in brain areas thought to be in charge of procedural memory such as basal ganglia, animals showing recovered memory displayed an intermediate expression, while amnesic groups, depending on the pharmacological amnesia model, showed up- or down-regulation. In conclusion, evidence indicates that autoradiography, by using specific radioligands, offers excellent opportunities to map dynamic changes in brain areas engaged in these cognitive processes. The 5-HT modulatory role strengthens or suppresses memory is critically depend on the timing of the memory formation.

  12. The role of serotonin 5-HT7 receptor in regulating sleep and wakefulness.

    PubMed

    Monti, Jaime M; Jantos, Héctor

    2014-01-01

    Different approaches have been followed to characterize the role of 5-hydroxytryptamine (serotonin) receptor 7 (5-HT7) in the regulation of sleep-wake behavior: (1) 5-HT7 receptor knockout mice spend less time in rapid eye movement sleep than their wild-type counterparts, mainly during the light period. In contrast, there is no difference between the genotypes in time spent in wakefulness or slow-wave sleep. (2) Systemic administration of the selective 5-HT7 receptor agonist LP-211 significantly increased wakefulness (time spent awake) and reduced rapid eye movement sleep in the rat. Direct infusion of LP-211 into the dorsal raphe nucleus, locus coeruleus nucleus, basal forebrain (horizontal limb of the diagonal band of Broca), or laterodorsal tegmental nucleus also produced a decrease in rapid eye movement sleep. Additionally, microinjection of the 5-HT7 receptor agonist into the basal forebrain augmented the time animals remained awake. Local injection of the 5-HT7 receptor agonist LP-44 into the dorsal raphe nucleus also suppressed rapid eye movement sleep in the rat. (3) A similar reduction of rapid eye movement sleep has been described following intraperitoneal injection of the selective 5-HT7 receptor antagonists SB-269970 and SB-656104 in the rat and oral administration of the 5-HT7 receptor antagonist NJ-18038683 to rat and man. Local microinjection of SB-269970 into the dorsal raphe nucleus and basal forebrain also induced a decrease in rapid eye movement sleep in the rat. This tends to suggest that the on-off (activation/blockade), two-state ligand-receptor interaction model is not tenable for the 5-HT7 receptor.

  13. Pharmacological properties of phenyldiguanide and other amidine derivatives in relation to those of 5-hydroxytryptamine

    PubMed Central

    Fastier, F. N.; McDowall, M. A.; Waal, Hendrieka

    1959-01-01

    Cats in which the coronary and allied chemoreflexes could not be obtained with small intravenous doses of 5-hydroxytryptamine were insensitive also to phenyldiguanide. In cats which responded to phenyldiguanide with reflex falls of blood pressure and heart rate, abolished by vagotomy, the effects of graded doses (5 to 150 μg./kg.) of phenyldiguanide bore a striking resemblance to those produced initially by 5-hydroxytryptamine in somewhat smaller doses. Differences in the cardiovascular responses to the two drugs are attributed to additional (non-reflex) actions of 5-hydroxytryptamine. The reflex actions of both drugs were blocked reversibly also by 2-naphthylguanidine (500 μg.). Certain other drugs (bufotenine, procaine, S-decylisothiourea) antagonized the depressor action of phenyldiguanide as well as the reflex depressor action of 5-hydroxytryptamine. Like 5-hydroxytryptamine, phenyldiguanide and certain other amidine derivatives caused pain when applied to the base of blisters in human subjects. Unlike 5-hydroxytryptamine, phenyldiguanide did not constrict perfused rat blood vessels or increase the tone of the rat fundal strip preparation of Vane (1957). Phenyldiguanide did not affect the sensitivity of these smooth muscle preparations to 5-hydroxytryptamine, but other amidine derivatives proved to be moderately strong antagonists of the vasoconstrictor actions of 5-hydroxytryptamine and of adrenaline. Unlike 5-hydroxytryptamine, phenyldiguanide did not produce gastric haemorrhage in the mouse. Phenyldiguanide did not prolong chloral hydrate sleeping time in mice by the same mechanism as did 5-hydroxytryptamine. Phenyldiguanide was not highly toxic to mice (LD50 being 240 mg./kg.). It is concluded that phenyldiguanide and certain other amidine derivatives act on sensory receptors which respond to 5-hydroxytryptamine, but that they show little pharmacological resemblance to 5-hydroxytryptamine in other respects. PMID:13821683

  14. Serotonin and psychostimulant addiction: focus on 5-HT1A-receptors.

    PubMed

    Müller, Christian P; Carey, Robert J; Huston, Joseph P; De Souza Silva, Maria A

    2007-02-01

    Serotonin(1A)-receptors (5-HT(1A)-Rs) are important components of the 5-HT system in the brain. As somatodendritic autoreceptors they control the activity of 5-HT neurons, and, as postsynaptic receptors, the activity in terminal areas. Cocaine (COC), amphetamine (AMPH), methamphetamine (METH) and 3,4-methylenedioxymethamphetamine ("Ecstasy", MDMA) are psychostimulant drugs that can lead to addiction-related behavior in humans and in animals. At the neurochemical level, these psychostimulant drugs interact with monoamine transporters and increase extracellular 5-HT, dopamine and noradrenalin activity in the brain. The increase in 5-HT, which, in addition to dopamine, is a core mechanism of action for drug addiction, hyperactivates 5-HT(1A)-Rs. Here, we first review the role of the various 5-HT(1A)-R populations in spontaneous behavior to provide a background to elucidate the contribution of the 5-HT(1A)-Rs to the organization of psychostimulant-induced addiction behavior. The progress achieved in this field shows the fundamental contribution of brain 5-HT(1A)-Rs to virtually all behaviors associated with psychostimulant addiction. Importantly, the contribution of pre- and postsynaptic 5-HT(1A)-Rs can be dissociated and frequently act in opposite directions. We conclude that 5-HT(1A)-autoreceptors mainly facilitate psychostimulant addiction-related behaviors by a limitation of the 5-HT response in terminal areas. Postsynaptic 5-HT(1A)-Rs, in contrast, predominantly inhibit the expression of various addiction-related behaviors directly. In addition, they may also influence the local 5-HT response by feedback mechanisms. The reviewed findings do not only show a crucial role of 5-HT(1A)-Rs in the control of brain 5-HT activity and spontaneous behavior, but also their complex role in the regulation of the psychostimulant-induced 5-HT response and subsequent addiction-related behaviors.

  15. Antagonism of fenfluramine-induced hyperthermia in rats by some, but not all, selective inhibitors of 5-hydroxytryptamine uptake.

    PubMed Central

    Sugrue, M. F.

    1984-01-01

    The injection of fenfluramine (7.5 mg kg-1,i.p.) to rats housed at 27-28 degrees C was associated with an elevation of core body temperature which peaked at approximately 1 h post-injection. One h pretreatment with citalopram (20 mg kg-1, i.p.), chlorimipramine (10 mg kg-1, i.p.), femoxetine (10 mg kg-1, i.p.) and fluoxetine (20 mg kg-1, i.p.) resulted in an attenuated response to fenfluramine. In contrast, Org 6582 (20 mg kg-1) and zimelidine (20 mg kg-1) were devoid of an effect on fenfluramine-induced hyperthermia. The response to fenfluramine was was also blocked by i.p. injections of metergoline (0.2 mg kg-1), methysergide (5 mg kg-1) and mianserin (0.5 mg kg-1). Rectal temperature was unaltered by both the 5-hydroxytryptamine (5-HT) uptake inhibitors and the 5-HT receptor antagonists. The IC50 values (nM) for in vitro inhibition of [3H]-5-HT uptake into rat hypothalamic synaptosomes were for citalopram 2.4, chlorimipramine 8.8, femoxetine 14, fluoxetine 16, Org 6582 75 and zimelidine 250. The injection of all six compounds (20 mg kg-1, i.p.) 1 h before death was associated with an inhibition of [3H]-5-HT uptake into rat hypothalamic synaptosomes which ranged from 47.2% for chlorimipramine to 83.3% for citalopram. Rat hypothalamic 5-HT levels were decreased by approximately 50% 3 h after the injection of fenfluramine (15 mg kg-1, i.p.). This effect was blocked by a 1 h pretreatment with fluoxetine, Org 6582 and zimelidine (all 20 mg kg-1, i.p.). Ki values for displacement of specifically bound [3H]-5-HT (1 nM) to rat hypothalamic membranes were for metergoline 26 nM, methysergide 1.1 microM, mianserin 3.6 microM, chlorimipramine 9.2 microM and fluoxetine 32.7 microM. Values for citalopram, femoxetine, Org 6582 and zimelidine were in excess of 65.4 microM.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6722394

  16. Application of Quantitative Structure–Activity Relationship Models of 5-HT1A Receptor Binding to Virtual Screening Identifies Novel and Potent 5-HT1A Ligands

    PubMed Central

    2015-01-01

    The 5-hydroxytryptamine 1A (5-HT1A) serotonin receptor has been an attractive target for treating mood and anxiety disorders such as schizophrenia. We have developed binary classification quantitative structure–activity relationship (QSAR) models of 5-HT1A receptor binding activity using data retrieved from the PDSP Ki database. The prediction accuracy of these models was estimated by external 5-fold cross-validation as well as using an additional validation set comprising 66 structurally distinct compounds from the World of Molecular Bioactivity database. These validated models were then used to mine three major types of chemical screening libraries, i.e., drug-like libraries, GPCR targeted libraries, and diversity libraries, to identify novel computational hits. The five best hits from each class of libraries were chosen for further experimental testing in radioligand binding assays, and nine of the 15 hits were confirmed to be active experimentally with binding affinity better than 10 μM. The most active compound, Lysergol, from the diversity library showed very high binding affinity (Ki) of 2.3 nM against 5-HT1A receptor. The novel 5-HT1A actives identified with the QSAR-based virtual screening approach could be potentially developed as novel anxiolytics or potential antischizophrenic drugs. PMID:24410373

  17. 5-HT3 receptors antagonists reduce serotonin-induced scratching in mice.

    PubMed

    Ostadhadi, Sattar; Kordjazy, Nastaran; Haj-Mirzaian, Arya; Mansouri, Parvin; Dehpour, Ahmad Reza

    2015-06-01

    Serotonin (5-hydroxytryptamine, 5-HT) acts as a pruritogen in humans and animals, but the mechanisms of action through that serotonin induces itch response have not been extensively discovered. In our study, we attempted to investigate the role of 5-HT3 receptors in scratching behavior due to intradermal serotonin injection. Intradermal injection of serotonin (14.1-235 nmol/site) into the nape of the neck of mice was performed to elicit itch. Scratching behavior was evaluated by measuring the number of bouts during 60 min after injection. We evaluated the effect of intraperitoneal pretreatment with ondansetron and tropisetron (0.1, 0.3, and 1 mg/kg) on itch induced by serotonin. Also, intradermal ondansetron and tropisetron at doses 50, 100, and 200 nmol/site were concurrently administrated with serotonin. Serotonin produced a significant enhancement in scratching at dose 141 nmol/site. Concurrent administration of ondansetron (50, 100, and 200 nmol/site) and tropisetron (100 and 200 nmol/site) with serotonin reduced scratching activity compared to the animals that only received serotonin. Also, pretreatment with intraperitoneal ondansetron and tropisetron (0.3 and 1 mg/kg) 30 min before serotonin attenuated the itch response. We showed that the scratching induced by intradermal serotonin is mediated by 5-HT3 receptors subtype. It can be concluded that 5-HT3 may play a role in mediating serotonin-associated itch responses, and we introduce 5-HT3 receptors as possible targets for antipruritic agents.

  18. Deletion of Munc18-1 in 5-HT Neurons Results in Rapid Degeneration of the 5-HT System and Early Postnatal Lethality

    PubMed Central

    Dudok, Jacobus J.; Groffen, Alexander J. A.; Toonen, Ruud F. T.; Verhage, Matthijs

    2011-01-01

    The serotonin (5-HT) system densely innervates many brain areas and is important for proper brain development. To specifically ablate the 5-HT system we generated mutant mice carrying a floxed Munc18-1 gene and Cre recombinase driven by the 5-HT-specific serotonin reuptake transporter (SERT) promoter. The majority of mutant mice died within a few days after birth. Immunohistochemical analysis of brains of these mice showed that initially 5-HT neurons are formed and the cortex is innervated with 5-HT projections. From embryonic day 16 onwards, however, 5-HT neurons started to degenerate and at postnatal day 2 hardly any 5-HT projections were present in the cortex. The 5-HT system of mice heterozygous for the floxed Munc18-1 allele was indistinguishable from control mice. These data show that deletion of Munc18-1 in 5-HT neurons results in rapid degeneration of the 5-HT system and suggests that the 5-HT system is important for postnatal survival. PMID:22140524

  19. Characterization of putative 5-HT7 receptors mediating tachycardia in the cat

    PubMed Central

    Villalón, Carlos M; Heiligers, Jan P C; Centurión, David; De Vries, Peter; Saxena, Pramod R

    1997-01-01

    It has been suggested that the tachycardic response to 5-hydroxytryptamine (5-HT) in the spinal-transected cat is mediated by ‘5-HT1-like' receptors since this effect, being mimicked by 5-carboxamidotryptamine (5-CT), is not modified by ketanserin or MDL 72222, but it is blocked by methiothepin, methysergide or mesulergine. The present study was set out to reanalyse this suggestion in terms of the IUPHAR 5-HT receptor classification schemes proposed in 1994 and 1996. Intravenous (i.v.) bolus injections of the tryptamine derivatives, 5-CT (0.01, 0.03, 0.1, 0.3, 1, 3, 10 and 30 μg kg−1), 5-HT (3, 10 and 30 μg kg−1) and 5-methoxytryptamine (3, 10 and 30 μg kg−1) as well as the atypical antipsychotic drug, clozapine (1000 and 3000 μg kg−1) resulted in dose-dependent increases in heart rate, with a rank order of agonist potency of 5-CT >> 5-HT > 5-methoxytryptamine >> clozapine. The tachycardic effects of 5-HT and 5-methoxytryptamine were dose-dependently antagonized by i.v. administration of lisuride (30 and 100 μg kg−1), ergotamine (100 and 300 μg kg−1) or mesulergine (100, 300 and 1000 μg kg−1); the highest doses of these antagonists used also blocked the tachycardic effects of 5-CT. Clozapine (1000 and 3000 μg kg−1) did not affect the 5-HT-induced tachycardia, but attenuated, with its highest dose, the responses to 5-methoxytryptamine and 5-CT. However, these doses of clozapine as well as the high doses of ergotamine (300 μg kg−1) and mesulergine (300 and 1000 μg kg−1) also attenuated the tachycardic effects of isoprenaline. In contrast, 5-HT-, 5-methoxytryptamine- and 5-CT-induced tachycardia were not significantly modified after i.v. administration of physiological saline (0.1 and 0.3 ml kg−1), the 5-HT1B/1D receptor antagonist, GR127935 (500 μg kg−1) or the 5-HT3/4 receptor antagonist, tropisetron (3000 μg kg−1). Intravenous injections of the 5-HT1 receptor agonists

  20. Sevoflurane induced amnesia inhibits hippocampal Arc expression partially through 5-hydroxytryptamine-7 receptors in the bilateral basolateral amygdala in rats.

    PubMed

    Zhang, Fujun; Feng, Xiaomei; Zeng, Qingwen; Wang, Bo; Wilhelmsen, Kevin; Li, Qiang; Cao, Xiaohua; Yu, Buwei

    2014-03-06

    This study aimed to investigate whether the regulation of 5-hydroxytryptamine-7 (5-HT7) receptors in the bilateral basolateral amygdala (BLA) could alter the amnesic effects of sevoflurane and change the hippocampal expression of Arc and neural apoptosis. Male Sprague-Dawley rats were randomized into ten groups. First, the animals received bilateral injection of SB269970 (20, 50, or 100 pmol/0.2 μl) or saline (0.2 μl) or AS-19 (2, 10, or 50 pmol/0.2 μl), followed by inhalation of 2% sevoflurane or air for 2h. Then, fear conditioning training was carried out, and the percentage of freezing was detected 24h later. Furthermore, hippocampal Arc protein level and neural apoptosis were measured. Pre-training inhalation of sevoflurane reduced the extent of freezing, and hippocampal Arc expression. The largest dose of SB269970 (100 pmol) could block sevoflurane-induced amnesia and reverse the inhibitive effect of sevoflurane on Arc expression, while the maximal dose of AS-19 could exacerbate the amnesic effect, and further inhibit Arc expression. Furthermore, pre-training inhalation of 2% sevoflurane for 6h could not induce neural apoptosis in the hippocampus. The amnesic effect of sevoflurane might partly attribute to its impairment of memory formation in the hippocampus via activation of 5-HT7 receptors in the BLA.

  1. A behavioural and biochemical study in rats of 5-hydroxytryptamine receptor agonists and antagonists, with observations on structure-activity requirements for the agonists

    PubMed Central

    Green, A.R.; Hall, J.E.; Rees, A.R.

    1981-01-01

    1 The effect of the putative 5-hydroxytryptamine (5-HT) receptor antagonists, methysergide, methergoline, mianserin, cyproheptadine, cinanserin (all at 10 mg/kg), methiothepin (5 mg/kg) and (-)-propranolol (20 mg/kg) on the behavioural responses to tranylcypromine (10 mg/kg) followed 30 min later by L-tryptophan (100 mg/kg) was examined. 2 Methysergide, methergoline, methiothepin and (-)-propranolol inhibited head weaving, forepaw treading and hind-limb abduction. Methysergide and methergoline increased reactivity. In contrast, cypropheptadine, cinanserin and mianserin had no effects on the behaviour. 3 Similar findings were obtained when the behaviours were elicited by administration of tranylcypromine (10 mg/kg) followed by the putative 5-HT receptor agonist, 5-methoxy-N,N-dimethyltryptamine (5-MeODMT) (2 mg/kg). 4 When the behaviours were elicited by the putative 5-HT receptor agonist, quipazine (50 mg/kg), all the drugs effectively inhibited head weaving and forepaw treading. 5 When the dose of cypropheptadine was doubled to 20 mg/kg an inhibition of the tranylcypromine/L-tryptophan induced behaviours was seen. 6 Methiothepin produced a marked inhibition of apomorphine-induced locomotor activity whilst all the others enhanced this response, suggesting that only methiothepin inhibits the 5-HT behaviours by dopamine antagonism and that the increased reactivity seen following tranylcypromine/L-tryptophan after pretreatment with methysergide or methergoline might be due to enhanced dopamine function. 7 Pretreatment with p-chlorophenylalanine resulted in enhanced behavioural responses to both 5-MeODMT and quipazine. 8 Both methergoline and methiothepin decreased the rate of 5-HT synthesis in whole brain but not spinal cord and methergoline decreased spinal cord 5-HIAA concentration. None of the other drugs had any significant effects on the concentration of 5-HT, 5-HIAA or 5-HT synthesis rate in brain or spinal cord. 9 Experiments with compounds structurally related

  2. Serotonin regulates β-casein expression via 5-HT7 receptors in human mammary epithelial MCF-12A cells.

    PubMed

    Chiba, Takeshi; Kimura, Soichiro; Takahashi, Katsuo; Morimoto, Yasunori; Maeda, Tomoji; Sanbe, Atsushi; Ueda, Hideo; Kudo, Kenzo

    2015-01-01

    We previously reported that serotonin (5-hydroxytryptamine; 5-HT) suppresses β-casein expression, a differentiation marker in mammary epithelial cells, via inhibition of the signal transducer and activator of transcription 5 (STAT5) phosphorylation in the human mammary epithelial cell line, MCF-12A. In this study, we investigated the expression pattern of the different 5-HT receptor subtypes in MCF-12A cells, and identified the receptors involved in 5-HT-mediated suppression of β-casein protein expression. β-Casein mRNA expression was inhibited by 30 µM 5-HT in a time-dependent manner. Treatment with 30 µM 5-HT for 72 h decreased β-casein protein levels and STAT5 phosphorylation (pSTAT5). The cells expressed four 5-HT receptors subtypes (5-HTR1D, 2B, 3A, and 7) at the mRNA and protein level, and their expression was elevated by prolactin (PRL) treatment. Additionally, the mRNA levels of 5-HTR1D and 5-HTR7 were significantly higher than the other 5-HT receptors in the cells. Tryptophan hydroxylase 1 mRNA was detectable in the cells in the absence of PRL, and PRL treatment significantly increased its expression. β-Casein and pSTAT5/STAT5 levels in the cells co-treated with 5-HT and a selective 5-HTR1D inhibitor, BRL15572, were equal to those observed in cells treated with 5-HT alone. However, in the cells co-treated with 5-HT and a selective 5-HTR7 inhibitor, SB269970, β-casein and pSTAT5/STAT5 levels increased in a SB269970 concentration-dependent manner. In conclusion, we showed that 5-HT regulates β-casein expression via 5-HTR7 in MCF-12A human mammary epithelial cells.

  3. Targeted inhibition of serotonin type 7 (5-HT7) receptor function modulates immune responses and reduces the severity of intestinal inflammation.

    PubMed

    Kim, Janice J; Bridle, Byram W; Ghia, Jean-Eric; Wang, Huaqing; Syed, Shahzad N; Manocha, Marcus M; Rengasamy, Palanivel; Shajib, Mohammad Sharif; Wan, Yonghong; Hedlund, Peter B; Khan, Waliul I

    2013-05-01

    Mucosal inflammation in conditions ranging from infective acute enteritis or colitis to inflammatory bowel disease is accompanied by alteration in serotonin (5-hydroxytryptamine [5-HT]) content in the gut. Recently, we have identified an important role of 5-HT in the pathogenesis of experimental colitis. 5-HT type 7 (5-HT7) receptor is one of the most recently identified members of the 5-HT receptor family, and dendritic cells express this receptor. In this study, we investigated the effect of blocking 5-HT7 receptor signaling in experimental colitis with a view to develop an improved therapeutic strategy in intestinal inflammatory disorders. Colitis was induced with dextran sulfate sodium (DSS) or dinitrobenzene sulfonic acid (DNBS) in mice treated with selective 5-HT7 receptor antagonist SB-269970, as well as in mice lacking 5-HT7 receptor (5-HT7(-/-)) and irradiated wild-type mice reconstituted with bone marrow cells harvested from 5-HT7(-/-) mice. Inhibition of 5-HT7 receptor signaling with SB-269970 ameliorated both acute and chronic colitis induced by DSS. Treatment with SB-269970 resulted in lower clinical disease, histological damage, and proinflammatory cytokine levels compared with vehicle-treated mice post-DSS. Colitis severity was significantly lower in 5-HT7(-/-) mice and in mice reconstituted with bone marrow cells from 5-HT7(-/-) mice compared with control mice after DSS colitis. 5-HT7(-/-) mice also had significantly reduced DNBS-induced colitis. These observations provide us with novel information on the critical role of the 5-HT7 receptor in immune response and inflammation in the gut, and highlight the potential benefit of targeting this receptor to alleviate the severity of intestinal inflammatory disorders such as inflammatory bowel disease.

  4. Posttranslational regulation of TPH1 is responsible for the nightly surge of 5-HT output in the rat pineal gland.

    PubMed

    Huang, Zheping; Liu, Tiecheng; Chattoraj, Asamanja; Ahmed, Samreen; Wang, Michael M; Deng, Jie; Sun, Xing; Borjigin, Jimo

    2008-11-01

    Serotonin (5-hydroxytryptamine, 5-HT), a precursor for melatonin production, is produced abundantly in the pineal gland of all vertebrate animals. The synthesis of 5-HT in the pineal gland is rate limited by tryptophan hydroxylase 1 (TPH1) whose activity displays a twofold increase at night. Earlier studies from our laboratory demonstrate that pineal 5-HT secretion exhibits dynamic circadian rhythms with elevated levels during the early night, and that the increase is controlled by adrenergic signaling at night. In this study, we report that (a) 5-HT total output from the pineal gland and TPH1 protein levels both display diurnal rhythms with a twofold increase at night; (b) stimulation of cAMP signaling elevates 5-HT output in vivo; (c) 5-HT total output and TPH1 protein content in rat pineal gland are both acutely inhibited by light exposure at night. Consistent with these findings, molecular analysis of TPH1 protein revealed that (a) TPH1 is phosphorylated at the serine 58 in vitro and in the night pineal gland; and (b) phosphorylation of TPH1 at this residue is required for cAMP-enhanced TPH1 protein stability. These data support the model that increased nocturnal 5-HT synthesis in the pineal gland is mediated by the phosphorylation of TPH1 at the serine 58, which elevates the TPH1 protein content and activity at night.

  5. Towards metabolically stable 5-HT7 receptor ligands: a study on 1-arylpiperazine derivatives and related isosters.

    PubMed

    Lacivita, Enza; De Giorgio, Paola; Patarnello, Daniela; Niso, Mauro; Colabufo, Nicola A; Berardi, Francesco; Perrone, Roberto; Satala, Grzegorz; Duszynska, Beata; Bojarski, Andrzej J; Leopoldo, Marcello

    2013-10-01

    Serotonin 7 (5-hydroxytryptamine7 or 5-HT7) is the most recently identified serotonin receptor. It is involved in mood disorders and is studied as a target for antidepressants. Here, we report on the structural manipulation of the 5-HT7 receptor ligand 4-[2-(3-methoxyphenyl)ethyl]-1-(2-methoxyphenyl)piperazine (1a) aimed at obtaining 5-HT7 receptor ligands endowed with good in vitro metabolic stability. A set of N-[3-methoxyphenyl)ethyl-substituted] 1-arylpiperazine, 4-arylpiperidine and 1-aryl-4-aminopiperidine was synthesized and tested in radioligand binding assays at human cloned 5-HT7 and 5-HT1A receptors. In vitro metabolic stability of the target compounds was assessed after incubation with rat hepatic S9 microsomal fraction. Among the new compounds, 1-(2-biphenyl)-4-[2-(3-methoxyphenyl)ethyl]piperazine (1d) and 4-(2-biphenyl)-1-[2-(3-methoxyphenyl)ethyl]piperidine (2d) showed a good compromise between affinity at 5-HT7 receptor (K i = 7.5 nM and 13 nM, respectively) and in vitro metabolic stability (26 and 65 % recovery of parent compound, respectively) but were poorly selective over 5-HT1A receptor.

  6. Role of Central Serotonin in Anticipation of Rewarding and Punishing Outcomes: Effects of Selective Amygdala or Orbitofrontal 5-HT Depletion.

    PubMed

    Rygula, Rafal; Clarke, Hannah F; Cardinal, Rudolf N; Cockcroft, Gemma J; Xia, Jing; Dalley, Jeff W; Robbins, Trevor W; Roberts, Angela C

    2015-09-01

    Understanding the role of serotonin (or 5-hydroxytryptamine, 5-HT) in aversive processing has been hampered by the contradictory findings, across studies, of increased sensitivity to punishment in terms of subsequent response choice but decreased sensitivity to punishment-induced response suppression following gross depletion of central 5-HT. To address this apparent discrepancy, the present study determined whether both effects could be found in the same animals by performing localized 5-HT depletions in the amygdala or orbitofrontal cortex (OFC) of a New World monkey, the common marmoset. 5-HT depletion in the amygdala impaired response choice on a probabilistic visual discrimination task by increasing the effectiveness of misleading, or false, punishment and reward, and decreased response suppression in a variable interval test of punishment sensitivity that employed the same reward and punisher. 5-HT depletion in the OFC also disrupted probabilistic discrimination learning and decreased response suppression. Computational modeling of behavior on the discrimination task showed that the lesions reduced reinforcement sensitivity. A novel, unitary account of the findings in terms of the causal role of 5-HT in the anticipation of both negative and positive motivational outcomes is proposed and discussed in relation to current theories of 5-HT function and our understanding of mood and anxiety disorders.

  7. The antimalarial drug proguanil is an antagonist at 5-HT3 receptors.

    PubMed

    Lochner, Martin; Thompson, Andrew J

    2014-12-01

    Proguanil is an antimalarial prodrug that is metabolized to 4-chlorophenyl-1-biguanide (CPB) and the active metabolite cycloguanil (CG). These compounds are structurally related to meta-chlorophenyl biguanide (mCPBG), a 5-hydroxytryptamine 3 (5-HT3) receptor agonist. Here we examine the effects of proguanil and its metabolites on the electrophysiology and ligand-binding properties of human 5-HT3A receptors expressed in Xenopus oocytes and human embryonic kidney 293 cells, respectively. 5-HT3 receptor responses were reversibly inhibited by proguanil, with an IC50 of 1.81 μM. Competitive antagonism was shown by a lack of voltage-dependence, Schild plot (Kb = 1.70 μM), and radioligand competition (Ki = 2.61 μM) with the 5-HT3 receptor antagonist [(3)H]granisetron. Kinetic measurements (kon = 4.0 × 10(4) M(-1) s(-1) ; koff = 0.23 s(-1)) were consistent with a simple bimolecular reaction scheme with a Kb of 4.35 μM. The metabolites CG and CPB similarly inhibited 5-HT3 receptors as assessed by IC50 (1.48 and 4.36 μM, respectively), Schild plot (Kb = 2.97 and 11.4 μM), and radioligand competition (Ki = 4.89 and 0.41 μM). At higher concentrations, CPB was a partial agonist (EC50 = 14.1 μM; I/Imax = 0.013). These results demonstrate that proguanil competitively inhibits 5-HT3 receptors, with an IC50 that exceeds whole-blood concentrations following its oral administration. They may therefore be responsible for the occasional gastrointestinal side effects, nausea, and vomiting reported following its use. Clinical development of related compounds should therefore consider effects at 5-HT3 receptors as an early indication of possible unwanted gastrointestinal side effects.

  8. The effects of 5-HT on articular sensory receptors in normal and arthritic rats.

    PubMed Central

    Birrell, G. J.; McQueen, D. S.; Iggo, A.; Grubb, B. D.

    1990-01-01

    1. The effects of intra arterial (i.a.) injections of 5-hydroxytryptamine (5-HT, 1-100 micrograms) on the discharge of (a) identified articular high threshold mechanoreceptors and (b) unidentified chemosensitive receptors in the ankle joint have been studied electrophysiologically in anaesthetized normal and arthritic rats. Recordings were made from a fine branch of the medial plantar nerve. 2. 5-HT increased the mechanical responsiveness of high threshold nociceptive mechanoreceptors with C and A delta fibre afferents in both normal and adjuvant-arthritic rats. Receptors in arthritic joints were more sensitive to 5-HT than were those from normal joints. 3. 5-HT produced a complex response from both types of articular receptors following i.a. injection. Two separate components were identified: (a) a fast transient burst of activity was obtained within 10 s of this injection in 66% of units from normal animals and 45% from arthritics, followed by (b) a delayed slow longer-lasting excitation seen in 62% of the units examined from normals and 77% of units from arthritic rats. 4. Increased mechanoreceptor responsiveness produced by 5-HT was reduced or abolished by the 5-HT3 receptor antagonists studied (MDL 72222, ICS 205-930, or GR 38032F, in single doses of 100 micrograms kg-1, i.a.). 5. Fast excitation showed marked tachyphylaxis and was antagonized by MDL 72222, ICS 205-930 or GR 38032F. It was unaffected by ketanserin (100 micrograms kg-1, i.a.). Delayed excitation was reduced or abolished by ketanserin but was unaffected by the 5-HT3-receptor antagonists.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2076487

  9. Increased extracellular dopamine and 5-hydroxytryptamine levels contribute to enhanced subthalamic nucleus neural activity during exhausting exercise

    PubMed Central

    Hu, Y; Liu, X

    2015-01-01

    The purpose of the study was to explore the mechanism underlying the enhanced subthalamic nucleus (STN) neural activity during exhausting exercise from the perspective of monoamine neurotransmitters and changes of their corresponding receptors. Rats were randomly divided into microdialysis and immunohistochemistry study groups. For microdialysis study, extracellular fluid of the STN was continuously collected with a microdialysis probe before, during and 90 min after one bout of exhausting exercise. Dopamine (DA) and 5-hydroxytryptamine (5-HT) levels were subsequently detected with high-performance liquid chromatography (HPLC). For immunohistochemistry study, the expression of DRD2 and HT2C receptors in the STN, before, immediately after and 90 min after exhaustion was detected through immunohistochemistry technique. Microdialysis study results showed that the extracellular DA and 5-HT neurotransmitters increased significantly throughout the procedure of exhausting exercise and the recovery period (P<0.05 or P<0.01). Immunohistochemistry study results showed that the expression levels of DRD2 and HT2C in the rat STN immediately after exhausting exercise and at the time point of 90 min after exhaustion were both higher than those of the rest condition, but the difference was not significant (P>0.05). Our results suggest that the increased extracellular DA and 5-HT in the STN might be one important factor leading to the enhanced STN neural activity and the development of fatigue during exhausting exercise. This study may essentially offer useful evidence for better understanding of the mechanism of the central type of exercise-induced fatigue. PMID:26424920

  10. Changes in 5-hydroxytryptamine and cortisol plasma levels in menopausal women after inhalation of clary sage oil.

    PubMed

    Lee, Kyung-Bok; Cho, Eun; Kang, Young-Sook

    2014-11-01

    The purpose of this study was to examine the antidepressant-like effects of clary sage oil on human beings by comparing the neurotransmitter level change in plasma. The voluntary participants were 22 menopausal women in 50's. Subjects were classified into normal and depression tendency groups using each of Korean version of Beck Depression Inventory-I (KBDI-I), KBDI-II, and Korean version of Self-rating Depression Scale. Then, the changes in neurotransmitter concentrations were compared between two groups. After inhalation of clary sage oil, cortisol levels were significantly decreased while 5-hydroxytryptamine (5-HT) concentration was significantly increased. Thyroid stimulating hormone was also reduced in all groups but not statistically significantly. The different change rate of 5-HT concentration between normal and depression tendency groups was variable according to the depression measurement inventory. When using KBDI-I and KBDI-II, 5-HT increased by 341% and 828% for the normal group and 484% and 257% for the depression tendency group, respectively. The change rate of cortisol was greater in depression tendency groups compared with normal groups, and this difference was statistically significant when using KBDI-II (31% vs. 16% reduction) and Self-rating Depression Scale inventory (36% vs. 8.3% reduction). Among three inventories, only KBDI-II differentiated normal and depression tendency groups with significantly different cortisol level. Finally, clary sage oil has antidepressant-like effect, and KBDI-II inventory may be the most sensitive and valid tool in screening for depression status or severity.

  11. The sites of action of 5-hydroxytryptamine in nerve-muscle preparations from the guinea-pig small intestine and colon

    PubMed Central

    Costa, M.; Furness, J.B.

    1979-01-01

    1 The sites of action of 5-hydroxytryptamine (5-HT) were examined in isolated segments of guinea-pig intestine. Mechanical records were taken from the longitudinal muscle of the ileum and proximal colon and from the circular muscle of the ileum and distal colon. 2 In order to examine direct actions of 5-HT, nerve-mediated responses were blocked with tetrodotoxin (0.2 μg/ml). There was a gradient in the responsiveness of the longitudinal muscle of the ileum; in the proximal ileum it was usually unresponsive, whereas in the distal ileum about 30% of the amplitude of contraction was caused by a direct effect on the muscle. In the circular muscle from all parts of the ileum, direct effects on the muscle were weak or absent. In the distal colon, the circular muscle was almost always unresponsive to direct effects of 5-HT even when concentrations of 5-HT as great as 100 μg/ml were used. All direct actions of 5-HT on intestinal muscle were blocked by methysergide (1 μg/ml), which itself did not affect nerve-mediated responses. 3 Excitatory cholinergic nerves and excitatory and inhibitory nerves which released unidentified substances were all stimulated by 5-HT. The contractions mediated through cholinergic nerves were blocked by hyoscine (0.6 μg/ml). 4 Tachyphylaxis to the action of 5-HT occurred both for effects mediated through nerves and for direct effects on the muscle. Responses returned promptly after 5-HT was washed from the organ bath. 5 While 5-HT blocked its own action on neural receptors, it did not antagonize the stimulation of nicotinic receptors on cholinergic neurones by 1-1 dimethyl-4-phenylpiperazinium iodide (DMPP). Moreover, pentolinium markedly reduced contractions caused by DMPP without significantly affecting responses to 5-HT. In contrast, (+)-tubocurarine, another nicotinic receptor antagonist, was effective in reducing contractions caused by 5-HT. 6 Phenyldiguanide, which has been reported to antagonize the stimulant action of 5-HT on

  12. Functional expression of the serotonin 5-HT7 receptor in human glioblastoma cell lines

    PubMed Central

    Mahé, Cécile; Bernhard, Michel; Bobirnac, Ionel; Keser, Corinna; Loetscher, Erika; Feuerbach, Dominik; Dev, Kumlesh K; Schoeffter, Philippe

    2004-01-01

    Serotonin 5-HT7 receptors are present in astrocytes. Understanding their role in this type of cell would greatly benefit from the identification of astroglial cell lines expressing this receptor type. The aim of the present study was to assess the expression of native 5-HT7 receptors and 5-HT7 receptor mRNA in a number of human glioblastoma cell lines, by means of cAMP measurements, Western blot analysis and reverse transcriptase–polymerase chain reaction (RT–PCR) analysis. 5-Hydroxytryptamine (5-HT), 5-carboxamidotryptamine (5-CT), 5-methoxytryptamine (5-MeOT) and 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced concentration-dependent stimulations of cAMP accumulation in the human glioblastoma cell lines, U-373 MG, U-138 MG, U-87 MG, DBTRG-05MG, T98G, H4, CCF-STTG1 and Hs 683. The rank order of potency was 5-CT>5-HT=5-MeOT≫8-OH-DPAT. The effect of 5-CT was inhibited in a concentration-dependent manner by the selective 5-HT7 receptor antagonist SB-269970 in all human glioblastoma cells. Schild analyses yielded slope factors close to unity (0.89–1.13) and pA2 values of 8.69–9.05. Western blot analysis revealed the presence of immunoreactive bands corresponding to the human 5-HT7 receptor in extracts of all human glioblastoma cell lines. The presence of the three splice variants of the 5-HT7 receptor (5-HT7(a/b/d)) was visualized by RT–PCR analysis with specific primers in all human glioblastoma cell lines. In conclusion, human glioblastoma cell lines express functional 5-HT7 receptors and the three splice variants of the corresponding mRNA. These cell lines could serve as model systems of native 5-HT7 receptors in glial cells to investigate their putative role in processes like release of neurotrophic factors or inflammatory cytokines. PMID:15339860

  13. Sensitive determination of norepinephrine, epinephrine, dopamine and 5-hydroxytryptamine by coupling HPLC with [Ag(HIO6 )2 ](5-) -luminol chemiluminescence detection.

    PubMed

    Wu, Dong; Xie, He; Lu, Haifeng; Li, Wei; Zhang, Qunlin

    2016-09-01

    Based on the enhancing effects of norepinephrine (NE), epinephrine (EP), dopamine (DA) and 5-hydroxytryptamine (5-HT) on the chemiluminescence (CL) reaction between [Ag(HIO6 )2 ](5-) and luminol in alkaline solution, a high-performance liquid chromatography (HPLC) method with CL detection was explored for the sensitive determination of monoamine neurotransmitters for the first time. The UV-visible absorption spectra were recorded to study the enhancement mechanism of monoamine neurotransmitters on the CL of [Ag(HIO6 )2 ](5-) and luminol reaction. The HPLC separation of NE, EP, DA and 5-HT was achieved with isocratic elution using a mixture of aqueous 0.2% phosphoric acid and methanol (5:95, v/v) within 11.0 min. Under the optimized conditions, the detection limits of NE, EP, DA, and 5-HT were 4.8, 0.9, 1.9 and 2.3 ng/mL, respectively, corresponding to 17.6-96.0 pg for 20 μL sample injection. The recoveries of monoamine neurotransmitters in rat brain were >95.6% with the precisions expressed by RSD <5.0%. The validated HPLC-CL method was successfully applied for the quantification of NE, EP, DA and 5-HT in rat brain. This method has promising potential for some biological and clinical investigations focusing on the levels of monoamine neurotransmitters. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Chemocentric informatics approach to drug discovery: identification and experimental validation of selective estrogen receptor modulators as ligands of 5-hydroxytryptamine-6 receptors and as potential cognition enhancers.

    PubMed

    Hajjo, Rima; Setola, Vincent; Roth, Bryan L; Tropsha, Alexander

    2012-06-28

    We have devised a chemocentric informatics methodology for drug discovery integrating independent approaches to mining biomolecular databases. As a proof of concept, we have searched for novel putative cognition enhancers. First, we generated Quantitative Structure-Activity Relationship (QSAR) models of compounds binding to 5-hydroxytryptamine-6 receptor (5-HT(6)R), a known target for cognition enhancers, and employed these models for virtual screening to identify putative 5-HT(6)R actives. Second, we queried chemogenomics data from the Connectivity Map ( http://www.broad.mit.edu/cmap/ ) with the gene expression profile signatures of Alzheimer's disease patients to identify compounds putatively linked to the disease. Thirteen common hits were tested in 5-HT(6)R radioligand binding assays and ten were confirmed as actives. Four of them were known selective estrogen receptor modulators that were never reported as 5-HT(6)R ligands. Furthermore, nine of the confirmed actives were reported elsewhere to have memory-enhancing effects. The approaches discussed herein can be used broadly to identify novel drug-target-disease associations.

  15. The mechanism of body temperature changes induced by intraventricular injections of adrenaline, noradrenaline and 5-hydroxytryptamine in the ox (bos taurus)

    PubMed Central

    Findlay, J. D.; Robertshaw, D.

    1967-01-01

    1. Adrenaline, noradrenaline and 5-hydroxytryptamine (5-HT) were injected into the lateral ventricle of the ox. The effect of these drugs was measured on the respiratory rate, tidal volume, heat production, skin temperature of the ear, evaporative loss from the skin and the rectal temperature at 20 and 10° C ambient temperature. 2. Neither adrenaline (3 mg) nor noradrenaline (3 mg) had any effect on the temperature regulating mechanisms of the ox, except to produce vasoconstriction if vasodilatation was already present due to high ambient temperature or previous injection of 5-HT. 3. Injection of 5-HT (5 mg) caused a rise in respiratory rate, a fall in tidal volume and heat production, elevation of ear skin temperature and skin evaporative loss and a decrease in rectal temperature. Sedation of the animals occurred. 4. In its reaction to these monoamines the ox is similar to the goat, sheep and rabbit, but is unlike the cat and dog. 5. It was concluded that neither adrenaline nor noradrenaline has a role in the central control of temperature regulation in the ox, but that 5-HT may be involved in the control of heat dissipation mechanisms. PMID:6034117

  16. Mapping the binding site pocket of the serotonin 5-Hydroxytryptamine2A receptor. Ser3.36(159) provides a second interaction site for the protonated amine of serotonin but not of lysergic acid diethylamide or bufotenin.

    PubMed

    Almaula, N; Ebersole, B J; Zhang, D; Weinstein, H; Sealfon, S C

    1996-06-21

    Like other amine neurotransmitters that activate G-protein-coupled receptors, 5-hydroxytryptamine (5-HT) binds to the 5-HT2A receptor through the interaction of its cationic primary amino group with the conserved Asp3.32(155) in transmembrane helix 3. Computational experiments with a 5-HT2A receptor model suggest that the same functional group of 5-hydroxytryptamine also forms a hydrogen bond with the side chain of Ser3.36(159), which is adjacent in space to Asp3.32(155). However, other 5-HT2A receptor ligands like lysergic acid diethylamide (LSD), in which the amine nitrogen is embedded in a heterocycle, or N,N-dimethyl 5-HT, in which the side chain is a tertiary amine, are found in the computational simulations to interact with the aspartate but not with the serine, due mainly to steric hindrance. The predicted difference in the interaction of various ligands in the same receptor binding pocket was tested with site-directed mutagenesis of Ser3.36(159) --> Ala and Ser3.36(159) --> Cys. The alanine substitution led to an 18-fold reduction in 5-HT affinity and the cysteine substitution to an intermediate 5-fold decrease. LSD affinity, in contrast, was unaffected by either mutation. N,N-Dimethyl 5-HT affinity was unaffected by the cysteine mutation and had a comparatively small 3-fold decrease in affinity for the alanine mutant. These findings identify a mode of ligand-receptor complexation that involves two receptor side chains interacting with the same functional group of specific serotonergic ligands. This interaction serves to orient the ligands in the binding pocket and may influence the degree of receptor activation.

  17. Effects of 5-HT receptor agonists on depolarization-induced [3H]-noradrenaline release in rabbit hippocampus and human neocortex.

    PubMed Central

    Allgaier, C.; Warnke, P.; Stangl, A. P.; Feuerstein, T. J.

    1995-01-01

    1. The present study attempted to determine whether noradrenaline (NA) release in rabbit hippocampus and human neocortex is modulated by presynaptic 5-hydroxytryptamine (5-HT) receptors. 2. Slices of rabbit hippocampus and human neocortex, loaded with [3H]-noradrenaline ([3H]-NA) were superfused and the effects of 5-hydroxytryptamine (5-HT) receptor ligands on electrically evoked [3H]-NA release were investigated. 3. In rabbit hippocampus, 5-HT, 5-carboxamidotryptamine (5-CT; 32 microM) and 2-CH3-5-HT (32 microM) increased [3H]-NA release elicited with 360 pulses/3 Hz. Facilitation of transmitter release was not influenced by the 5-HT3 receptor antagonist, tropisetron but was prevented by the alpha 2-adrenoceptor antagonist, rauwolscine. When autoinhibition was avoided by stimulating the tissue with 4 pulses/100 Hz (pseudo-one pulse-(POP) stimulation), 2-CH3-5-HT decreased evoked transmitter release, whereas 5-HT and 5-CT had no effect. Inhibition caused by 2-CH3-5-HT was not affected by tropisetron but counteracted by the alpha 2-adrenoceptor ligands, clonidine and rauwolscine. Inhibition caused by clonidine was diminished in the presence of 5-CT or 2-CH3-5-HT. 4. In human neocortex, [3H]-NA release elicited with 360 pulses/3 Hz was increased by 10 microM 5-HT and 32 microM 5-CT, whereas 2-CH3-5-HT was ineffective. [3H]-NA release evoked with a modified POP stimulation (2 bursts of 4 pulses/100 Hz, 3.5 min apart) was not affected by 2-CH3-5-HT or 5-CT. 5. The present results indicate that 5-HT, 2-CH3-5-HT and 5-CT can act on presynaptic alpha 2-autoreceptors as partial agonists (2-CH3-5-HT; in rabbit hippocampal tissue) or antagonists (5-HT and 5-CT; in tissue of rabbit hippocampus and human neocortex). Furthermore the existence of autoinhibition dictates whether these drugs cause facilitation of release, inhibition or have no effect. PMID:8528558

  18. Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.

    PubMed

    Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A

    2010-01-01

    Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues.

  19. Effect of selective serotonin reuptake inhibitors on expression of 5-HT1AR and neurotransmitters in rats with vascular dementia.

    PubMed

    Guo, K; Yin, G; Zi, X H; Zhu, H X; Pan, Q

    2016-12-02

    5-hydroxytryptamine receptor 1A (5-HT1AR) is closely associated with cognitive functions. Selective serotonin reuptake inhibitors (SSRIs) can protect individuals from brain damage following ischemia/hypoxia. To investigate the function of SSRIs in vascular dementia (VD), we established a rat model of VD, and observed the effect of SSRIs on the expression of 5-HT1AR mRNA and neurotransmitters. Male SD rats (6 months) were randomly assigned into sham, model, and SSRI groups (N = 30). VD was achieved by permanent ligation of the bilateral common carotid artery. Escitalopram, a highly selective 5-HT reabsorption inhibitor, was ip injected into the rats for three consecutive weeks. The Morris water-maze was used to test learning and memory. H&E staining for neuronal injury was conducted on cortical and hippocampal tissues. HPLC was used to determine the levels of dopamine (DA), 5-HT, and norepinephrine (NE). RT-PCR was used to determine expression of 5-HT1AR mRNA. As compared to control rats, model animals demonstrated elongated escape latency, lower platform crossing times, and significant injuries to hippocampal CA1 neurons. This was accompanied by reductions in DA, 5-HT, and NE levels in hippocampal tissues, as well as reduced cortical 5-HT and decreased 5-HT1AR mRNA expression (P < 0.05). Escitalopram treatments reduced escape latency, elevated platform crossing times, improved CA1 neuronal damage, increased DA and 5-HT levels in hippocampal and cortical neurons, as well as elevated expression of 5-HT1AR mRNA (P < 0.05). Therefore, SSRIs may improve cognitive dysfunction of VD rats, possibly by stimulating expression of neurotransmitters and protecting neurons.

  20. Further characterization, by use of tryptamine and benzamide derivatives, of the putative 5-HT4 receptor mediating tachycardia in the pig.

    PubMed Central

    Villalón, C. M.; den Boer, M. O.; Heiligers, J. P.; Saxena, P. R.

    1991-01-01

    1. It has recently been shown that the tachycardic response to 5-hydroxytryptamine (5-HT) in the anaesthetized pig, being mimicked by 5-methoxytryptamine and renzapride and blocked by high doses of ICS 205-930, is mediated by the putative 5-HT4 receptor. In the present investigation we have further characterized this receptor. 2. Intravenous bolus injections of the tryptamine derivatives, 5-HT (3, 10 and 30 micrograms kg-1), 5-methoxytryptamine (3, 10 and 30 micrograms kg-1) and alpha-methyl-5-hydroxytryptamine (alpha-methyl-5-HT; 3, 10, 30 and 100 micrograms kg-1), resulted in dose-dependent increases in heart rate of, respectively, 25 +/- 2, 48 +/- 3 and 68 +/- 3 beats min-1 (5-HT; n = 35); 15 +/- 1, 32 +/- 2 and 57 +/- 3 beats min-1 (5-methoxytryptamine; n = 30); 6 +/- 4, 18 +/- 6, 34 +/- 6 and 64 +/- 11 beats min-1 (alpha-methyl-5-HT; n = 3).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2043916

  1. Ontogeny and Regulation of the Serotonin Transporter: Providing Insights into Human Disorders

    PubMed Central

    Daws, Lynette C.; Gould, Georgianna G.

    2011-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) was one of the first neurotransmitters for which a role in development was identified. Pharmacological and gene knockout studies have revealed a critical role for 5-HT in numerous processes, including cell division, neuronal migration, differentiation and synaptogenesis. An excess in brain 5-HT appears to be mechanistically linked to abnormal brain development, which in turn is associated with neurological disorders. Ambient levels of 5-HT are controlled by a vast orchestra of proteins, including a multiplicity of pre- and post-synaptic 5-HT receptors, heteroreceptors, enzymes and transporters. The 5-HT transporter (SERT, 5-HTT) is arguably the most powerful regulator of ambient extracellular 5-HT. SERT is the high-affinity uptake mechanism for 5-HT and exerts tight control over the strength and duration of serotonergic neurotransmission. Perturbation of its expression level or function has been implicated in many diseases, prominent among them are psychiatric disorders. This review synthesizes existing information on the ontogeny of SERT during embryonic and early postnatal development though adolescence, along with factors that influence its expression and function during these critical developmental windows. We integrate this knowledge to emphasize how inappropriate SERT expression or its dysregulation may be linked to the pathophysiology of psychiatric, cardiovascular and gastrointestinal diseases. PMID:21447358

  2. The 5-hydroxytryptamine4 receptor agonists prucalopride and PRX-03140 increase acetylcholine and histamine levels in the rat prefrontal cortex and the power of stimulated hippocampal θ oscillations.

    PubMed

    Johnson, David E; Drummond, Elena; Grimwood, Sarah; Sawant-Basak, Aarti; Miller, Emily; Tseng, Elaine; McDowell, Laura L; Vanase-Frawley, Michelle A; Fisher, Katherine E; Rubitski, David M; Stutzman-Engwall, Kim J; Nelson, Robin T; Horner, Weldon E; Gorczyca, Roxanne R; Hajos, Mihaly; Siok, Chester J

    2012-06-01

    5-Hydroxytryptamine (5-HT)(4) receptor agonists reportedly stimulate brain acetylcholine (ACh) release, a property that might provide a new pharmacological approach for treating cognitive deficits associated with Alzheimer's disease. The purpose of this study was to compare the binding affinities, functional activities, and effects on neuropharmacological responses associated with cognition of two highly selective 5-HT(4) receptor agonists, prucalopride and 6,7-dihydro-4-hydroxy-7-isopropyl-6-oxo-N-[3-(piperidin-1-yl)propyl]thieno[2,3-b]pyridine-5-carboxamide (PRX-03140). In vitro, prucalopride and PRX-03140 bound to native rat brain 5-HT(4) receptors with K(i) values of 30 nM and 110 nM, respectively, and increased cAMP production in human embryonic kidney-293 cells expressing recombinant rat 5-HT(4) receptors. In vivo receptor occupancy studies established that prucalopride and PRX-03140 were able to penetrate the brain and bound to 5-HT(4) receptors in rat brain, achieving 50% receptor occupancy at free brain exposures of 330 nM and 130 nM, respectively. Rat microdialysis studies revealed that prucalopride maximally increased ACh and histamine levels in the prefrontal cortex at 5 and 10 mg/kg, whereas PRX-03140 significantly increased cortical histamine levels at 50 mg/kg, failing to affect ACh release at doses lower than 150 mg/kg. In combination studies, donepezil-induced increases in cortical ACh levels were potentiated by prucalopride and PRX-03140. Electrophysiological studies in rats demonstrated that both compounds increased the power of brainstem-stimulated hippocampal θ oscillations at 5.6 mg/kg. These findings show for the first time that the 5-HT(4) receptor agonists prucalopride and PRX-03140 can increase cortical ACh and histamine levels, augment donepezil-induced ACh increases, and increase stimulated-hippocampal θ power, all neuropharmacological parameters consistent with potential positive effects on cognitive processes.

  3. Down-regulation of the rat serotonin transporter upon exposure to a selective serotonin reuptake inhibitor.

    PubMed

    Horschitz, S; Hummerich, R; Schloss, P

    2001-07-20

    The serotonin transporter (SERT) terminates serotonergic neurotransmission by rapid reuptake of 5-hydroxytryptamine (5-HT) into the nerve terminal or axonal varicosities. SERT represents the target of various antidepressants which inhibit 5-HT transport and are widely used for the pharmacotherapy of depression. Here, we have analyzed the function of SERT stably expressed in HEK 293 cells upon exposure to citalopram, a selective serotonin reuptake inhibitor (SSRI), with respect to 5-HT transport activity and protein expression as estimated by ligand binding experiments. Our results show that long-term exposure to an SSRI causes a down-regulation of transport activity as revealed by a reduction of the maximal transport rate, without affecting substrate affinity, accompanied by a decrease in ligand binding sites.

  4. Synthesis and structure-activity relationship of novel conformationally restricted analogues of serotonin as 5-HT6 receptor ligands.

    PubMed

    Nirogi, Ramakrishna V S; Kambhampati, Ramasastri; Kothmirkar, Prabhakar; Konda, Jagadishbabu; Bandyala, Thrinath Reddy; Gudla, Parandhama; Arepalli, Sobhanadri; Gangadasari, Narasimhareddy P; Shinde, Anil K; Deshpande, Amol D; Dwarampudi, Adireddy; Chindhe, Anil K; Dubey, Pramod Kumar

    2012-06-01

    5-Hydroxytryptamine 6 receptors (5-HT(6)R) are being perceived as the possible target for treatment of cognitive disorders as well as obesity. The present article deals with the design, synthesis, in vitro binding and structure-activity relationship of a novel series of tetracyclic tryptamines with the rigidized N-arylsulphonyl, N-arylcarbonyl and N-benzyl substituents as 5-HT(6) receptor ligands. The chiral sulphonyl derivatives 15a and 17a showed high affinity at 5-HT(6)R with the K(i) of 23.4 and 20.5 nM, respectively. The lead compound from the series 15a has acceptable ADME properties, adequate brain penetration and is active in animal models of cognition like Novel Object Recognition Task (NORT) and water maze.

  5. 5-HT 1A/1B receptor-mediated effects of the selective serotonin reuptake inhibitor, citalopram, on sleep: studies in 5-HT 1A and 5-HT 1B knockout mice.

    PubMed

    Monaca, Christelle; Boutrel, Benjamin; Hen, René; Hamon, Michel; Adrien, Joëlle

    2003-05-01

    Selective serotonin reuptake inhibitors (SSRIs) are extensively used for the treatment of depression. Aside from their antidepressant properties, they provoke a deficit in paradoxical sleep (PS) that is most probably mediated by the transporter blockade-induced increase in serotonin concentration in the extracellular space. Such an effect can be accounted for by the action of serotonin at various types of serotonergic receptors involved in PS regulation, among which the 5-HT(1A) and 5-HT(1B) types are the best candidates. According to this hypothesis, we examined the effects of citalopram, the most selective SSRI available to date, on sleep in the mouse after inactivation of 5-HT(1A) or 5-HT(1B) receptors, either by homologous recombination of their encoding genes, or pharmacological blockade with selective antagonists. For this purpose, sleep parameters of knockout mice that do not express these receptors and their wild-type counterparts were monitored during 8 h after injection of citalopram alone or in association with 5-HT(1A) or 5-HT(1B) receptor antagonists. Citalopram induced mainly a dose-dependent inhibition of PS during 2-6 h after injection, which was observed in wild-type and 5-HT(1B)-/- mice, but not in 5-HT(1A)-/- mutants. This PS inhibition was fully antagonized by pretreatment with the 5-HT(1A) antagonist WAY 100635, but only partially with the 5-HT(1B) antagonist GR 127935. These data indicate that the action of the SSRI citalopram on sleep in the mouse is essentially mediated by 5-HT(1A) receptors. Such a mechanism of action provides further support to the clinical strategy of antidepressant augmentation by 5-HT(1A) antagonists, because the latter would also counteract the direct sleep-inhibitory side-effects of SSRIs.

  6. Expression of the 5-HT receptors in rat brain during memory consolidation.

    PubMed

    Meneses, A; Manuel-Apolinar, L; Rocha, L; Castillo, E; Castillo, C

    2004-07-09

    Serotonin (5-hydroxytryptamine, 5-HT) system displays more than 14 receptors subtypes on brain areas involved in learning and memory processes, and pharmacological manipulation of specific receptors selectively affects memory formation. In order to begin the search of 5-HT receptors expression during memory formation, in this work, we aimed to determine, by autoradiography (using 3H 5-HT as ligand, 2 nM, specific activity 123 Ci/mmol), 5-HT receptors (5-HTR) expression in passive (untrained) and autoshaping trained (3 sessions) adult (3 months) and old (9 months) male rats. Thus, trained adult rats had better retention than old animals. Raphe nuclei of adult and old trained rats expressed less receptors on medial and dorsal, respectively. Hippocampal CA1 area and dentate gyrus of adult trained rats expressed less 5-HTR, while dentate gyrus of old increased them. Basomedial amygdaloid nucleus in old trained rats expressed more 5-HTR; while in the basolateral amygdaloid nucleus they were augmented in both groups. Training decreased or did not change 5-HTR in caudate-putamen of adult or old animals. The above profile of 5-HTR expression is consistent with previous reports, and suggests that memory formation and aging modulates 5-HTR expression in brain areas relevant to memory systems.

  7. An in vivo dialysis and behavioural study of the release of 5-HT by p-chloroamphetamine in reserpine-treated rats.

    PubMed Central

    Adell, A.; Sarna, G. S.; Hutson, P. H.; Curzon, G.

    1989-01-01

    1. Reserpine (2.5 mg kg-1 i.p.) decreased rat brain 5-hydroxytryptamine (5-HT) by 86% 24 h later but most components of the 5-HT-dependent behavioural syndrome induced by p-chloroamphetamine (PCA, 5 mg kg-1 i.p.) or 5-methoxy-N,N-dimethyltryptamine (5-MeODMT, 5 mg kg-1 i.p.) over 1 h after administration were unaffected. However, Straub tail was increased after giving PCA or 5-MeODMT and head weaving was decreased after giving 5-MeODMT. 2. Frontal cortex extracellular 5-HT concentrations of vehicle pretreated rats before injection of PCA, as calculated from dialysate 5-HT concentrations, were about 1/1000th of corresponding brain values. Extracellular 5-hydroxyindoleacetic acid (5-HIAA) and brain values were comparable with each other. Dialysate 5-HT increased after PCA with peak values at 20-40 min. 3. Reserpine pretreatment reduced dialysate 5-HT concentration before PCA was given but the net increase (AUC) over the 1 h after PCA did not differ significantly from that seen in animals pretreated with vehicle. Dialysate 5-HIAA values slowly decreased after PCA injection in both reserpine and vehicle pretreated groups. 4. The results suggest that PCA causes the 5-HT syndrome by releasing 5-HT from the neuronal cytoplasm but that physiological release of 5-HT occurs from vesicular stores. PMID:2720308

  8. 5-HT4-Receptors Modulate Induction of Long-Term Depression but Not Potentiation at Hippocampal Output Synapses in Acute Rat Brain Slices

    PubMed Central

    Wawra, Matthias; Fidzinski, Pawel; Heinemann, Uwe; Mody, Istvan; Behr, Joachim

    2014-01-01

    The subiculum is the principal target of CA1 pyramidal cells and mediates hippocampal output to various cortical and subcortical regions of the brain. The majority of subicular pyramidal cells are burst-spiking neurons. Previous studies indicated that high frequency stimulation in subicular burst-spiking cells causes presynaptic NMDA-receptor dependent long-term potentiation (LTP) whereas low frequency stimulation induces postsynaptic NMDA-receptor-dependent long-term depression (LTD). In the present study, we investigate the effect of 5-hydroxytryptamine type 4 (5-HT4) receptor activation and blockade on both forms of synaptic plasticity in burst-spiking cells. We demonstrate that neither activation nor block of 5-HT4 receptors modulate the induction or expression of LTP. In contrast, activation of 5-HT4 receptors facilitates expression of LTD, and block of the 5-HT4 receptor prevents induction of short-term depression and LTD. As 5-HT4 receptors are positively coupled to adenylate cyclase 1 (AC1), 5-HT4 receptors might modulate PKA activity through AC1. Since LTD is blocked in the presence of 5-HT4 receptor antagonists, our data are consistent with 5-HT4 receptor activation by ambient serotonin or intrinsically active 5-HT4 receptors. Our findings provide new insight into aminergic modulation of hippocampal output. PMID:24505387

  9. Efficacy and safety of 5-hydroxytryptamine 3 receptor antagonists in irritable bowel syndrome: A systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    Tang, Yurong; Xiong, Wenjie; Shen, Xiaoxue; Jiang, Ling; Lin, Lin

    2017-01-01

    Aim We assessed the efficacy and safety of 5-hydroxytryptamine (5-HT3) receptor antagonists in adults with non-constipated irritable bowel syndrome (IBS) or diarrhea-predominant IBS (IBS-D). Methods We searched PubMed, MEDLINE, EMBASE, and the Cochrane Controlled Trials Register for randomized controlled trials (RCTs) involving adults with non-constipated IBS or IBS-D that compared 5-HT3 receptor antagonists with placebo or other conventional treatment. Dichotomous symptom data were pooled to obtain the relative risk (RR) and 95% confidence intervals (CIs) for improving global IBS symptoms, abdominal pain and abnormal bowel habits, or stool consistency symptoms after therapy, and adverse events, including constipation. Meta- analysis was performed with Mantel Haenszel method using Revman 5.3 software. Results We included 21 RCTs; 16 were high quality (Jadad score ≥ 4). The pooled RR of global IBS symptoms improved by 5-HT3 receptor antagonists versus placebo or mebeverine was 1.56 (95% CI: 1.43–1.71); alosetron, ramosetron, and cilansetron had similar treatment effects. The pooled RR of abdominal pain relieved by 5-HT3 receptor antagonists versus placebo was 1.33 (95% CI: 1.26–1.39). The pooled RR showed that 5-HT3 receptor antagonists improved abnormal bowel habits or stool consistency symptoms (RR = 1.63, 95% CI: 1.33, 1.99). The pooled RR of adverse events following 5-HT3 receptor antagonist treatment was 1.15 (95% CI: 1.08, 1.22). Subgroup analysis indicated that alosetron had a high rate of adverse effects (RR = 1.16, 95% CI: 1.08, 1.25); adverse events following ramosetron treatment were not statistically significantly different. 5-HT3 receptor antagonists were likelier to cause constipation: the pooled RR of constipation developing with 5-HT3 receptor antagonist versus placebo was 3.71 (95% CI: 2.98–4.61). However, constipation was likelier in patients with non-constipated IBS after taking 5-HT3 receptor antagonists than in patients with IBS-D only

  10. Control of Amygdala Circuits by 5-HT Neurons via 5-HT and Glutamate Cotransmission

    PubMed Central

    Bannerman, David M.

    2017-01-01

    The serotonin (5-HT) system and the amygdala are key regulators of emotional behavior. Several lines of evidence suggest that 5-HT transmission in the amygdala is implicated in the susceptibility and drug treatment of mood disorders. Therefore, elucidating the physiological mechanisms through which midbrain 5-HT neurons modulate amygdala circuits could be pivotal in understanding emotional regulation in health and disease. To shed light on these mechanisms, we performed patch-clamp recordings from basal amygdala (BA) neurons in brain slices from mice with channelrhodopsin genetically targeted to 5-HT neurons. Optical stimulation of 5-HT terminals at low frequencies (≤1 Hz) evoked a short-latency excitation of BA interneurons (INs) that was depressed at higher frequencies. Pharmacological analysis revealed that this effect was mediated by glutamate and not 5-HT because it was abolished by ionotropic glutamate receptor antagonists. Optical stimulation of 5-HT terminals at higher frequencies (10–20 Hz) evoked both slow excitation and slow inhibition of INs. These effects were mediated by 5-HT because they were blocked by antagonists of 5-HT2A and 5-HT1A receptors, respectively. These fast glutamate- and slow 5-HT-mediated responses often coexisted in the same neuron. Interestingly, fast-spiking and non-fast-spiking INs displayed differential modulation by glutamate and 5-HT. Furthermore, optical stimulation of 5-HT terminals did not evoke glutamate release onto BA principal neurons, but inhibited these cells directly via activation of 5-HT1A receptors and indirectly via enhanced GABA release. Collectively, these findings suggest that 5-HT neurons exert a frequency-dependent, cell-type-specific control over BA circuitry via 5-HT and glutamate co-release to inhibit the BA output. SIGNIFICANCE STATEMENT The modulation of the amygdala by serotonin (5-HT) is important for emotional regulation and is implicated in the pathogenesis and treatment of affective disorders

  11. 5-HT Obesity Medication Efficacy via POMC Activation is Maintained During Aging

    PubMed Central

    Burke, Luke K.; Doslikova, Barbora; D'Agostino, Giuseppe; Garfield, Alastair S.; Farooq, Gala; Burdakov, Denis; Low, Malcolm J.; Rubinstein, Marcelo; Evans, Mark L.; Billups, Brian

    2014-01-01

    The phenomenon commonly described as the middle-age spread is the result of elevated adiposity accumulation throughout adulthood until late middle-age. It is a clinical imperative to gain a greater understanding of the underpinnings of age-dependent obesity and, in turn, how these mechanisms may impact the efficacy of obesity treatments. In particular, both obesity and aging are associated with rewiring of a principal brain pathway modulating energy homeostasis, promoting reduced activity of satiety pro-opiomelanocortin (POMC) neurons within the arcuate nucleus of the hypothalamus (ARC). Using a selective ARC-deficient POMC mouse line, here we report that former obesity medications augmenting endogenous 5-hydroxytryptamine (5-HT) activity d-fenfluramine and sibutramine require ARC POMC neurons to elicit therapeutic appetite-suppressive effects. We next investigated whether age-related diminished ARC POMC activity therefore impacts the potency of 5-HT obesity pharmacotherapies, lorcaserin, d-fenfluramine, and sibutramine and report that all compounds reduced food intake to a comparable extent in both chow-fed young lean (3–5 months old) and middle-aged obese (12–14 months old) male and female mice. We provide a mechanism through which 5-HT anorectic potency is maintained with age, via preserved 5-HT–POMC appetitive anatomical machinery. Specifically, the abundance and signaling of the primary 5-HT receptor influencing appetite via POMC activation, the 5-HT2CR, is not perturbed with age. These data reveal that although 5-HT obesity medications require ARC POMC neurons to achieve appetitive effects, the anorectic efficacy is maintained with aging, findings of clinical significance to the global aging obese population. PMID:25051442

  12. Role of 5-HT3 Receptor on Food Intake in Fed and Fasted Mice

    PubMed Central

    Li, Bingjin; Shao, Dongyuan; Luo, Yungang; Wang, Pu; Liu, Changhong; Zhang, Xingyi; Cui, Ranji

    2015-01-01

    Background Many studies have shown that 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the regulation of feeding behavior. However, the relative contribution of 5-HT3 receptor remains unclear. The present study was aimed to investigate the role of 5-HT3 receptor in control of feeding behavior in fed and fasted mice. Methodology/Principal Findings Food intake and expression of c-Fos, tyrosine hydroxylase (TH), proopiomelanocortin (POMC) and 5-HT in the brain were examined after acute treatment with 5-HT3 receptor agonist SR-57227 alone or in combination with 5-HT3 receptor antagonist ondansetron. Food intake was significantly inhibited within 3 h after acute treatment with SR 57227 in fasted mice but not fed mice, and this inhibition was blocked by ondansetron. Immunohistochemical study revealed that fasting-induced c-Fos expression was further enhanced by SR 57227 in the brainstem and the hypothalamus, and this enhancement was also blocked by ondansetron. Furthermore, the fasting-induced downregulation of POMC expression in the hypothalamus and the TH expression in the brain stem was blocked by SR 57227 in the fasted mice, and this effect of SR 57227 was also antagonized by ondansetron. Conclusion/Significance Taken together, our findings suggest that the effect of SR 57227 on the control of feeding behavior in fasted mice may be, at least partially, related to the c-Fos expression in hypothalamus and brain stem, as well as POMC system in the hypothalamus and the TH system in the brain stem. PMID:25789930

  13. Polymorphisms of the serotonin transporter and receptor genes: susceptibility to substance abuse.

    PubMed

    Herman, Aryeh I; Balogh, Kornelia N

    2012-06-01

    Serotonin (5-hydroxytryptamine [5-HT]) is an important neurotransmitter implicated in regulating substance-use disorder (SUD) acquisition, maintenance, and recovery. During the past several years, an abundance of research has begun discovering and describing specific 5-HT genetic polymorphisms associated with SUDs. Genetic variations in the 5-HT system, such as SLC6A4, HTR1B, HTR2A, HTR2C, HTR3 (HTR3A, HTR3B, HTR3C, HTR3D, and HTR3E), likely play a role contributing to SUD patient heterogeneity. The 5-HT transporter-linked polymorphic region S allele, located in SLC6A4, has now been modestly associated with alcohol dependence in two large meta-analyses. Additional 5-HT genes may also play a role but have not been extensively investigated. A limited number of SUD treatment studies have included 5-HT gene variation as moderating treatment outcomes, but the results have been equivocal. Future research on 5-HT addiction genetics should adopt whole-genome sequencing technology, utilize large study samples, and collect data from multiple ethnic groups. Together, these methods will build on the work already conducted with the aim of utilizing 5-HT genetics in SUD treatment settings.

  14. Mediation of 5-HT-induced external carotid vasodilatation in GR 127935-pretreated vagosympathectomized dogs by the putative 5-HT7 receptor

    PubMed Central

    Villalón, Carlos M; Centurión, David; Luján-Estrada, Miguel; Terrón, José A; Sánchez-López, Araceli

    1997-01-01

    The vasodilator effects of 5-hydroxytryptamine (5-HT) in the external carotid bed of anaesthetized dogs with intact sympathetic tone are mediated by prejunctional sympatho-inhibitory 5-HT1B/1D receptors and postjunctional 5-HT receptors. The prejunctional vasodilator mechanism is abolished after vagosympathectomy which results in the reversal of the vasodilator effect to vasoconstriction. The blockade of this vasoconstrictor effect of 5-HT with the 5-HT1B/1D receptor antagonist, GR 127935, unmasks a dose-dependent vasodilator effect of 5-HT, but not of sumatriptan. Therefore, the present study set out to analyse the pharmacological profile of this postjunctional vasodilator 5-HT receptor in the external carotid bed of vagosympathectomized dogs pretreated with GR 127935 (20 μg kg−1, i.v.).One-minute intracarotid (i.c.) infusions of 5-HT (0.330 μg min−1), 5-carboxamidotryptamine (5-CT; 0.010.3 μg min−1), 5-methoxytryptamine (1100 μg min−1) and lisuride (31000 μg min−1) resulted in dose-dependent increases in external carotid blood flow (without changes in blood pressure or heart rate) with a rank order of agonist potency of 5-CT>>5-HT⩾5-methoxytryptamine>lisuride, whereas cisapride (1001000 μg min−1, i.c.) was practically inactive. Interestingly, lisuride (mean dose of 85±7 μg kg−1, i.c.), but not cisapride (mean dose of 67±7 μg kg−1, i.c.), specifically abolished the responses induced by 5-HT, 5-CT and 5-methoxytryptamine, suggesting that a common site of action may be involved. In contrast, 1 min i.c. infusions of 8-OH-DPAT (33000 μg min−1) produced dose-dependent decreases, not increases, in external carotid blood flow and failed to antagonize (mean dose of 200±33 μg kg−1, i.c.) the agonist-induced vasodilator responses.The external carotid vasodilator responses to 5-HT, 5-CT and 5-methoxytryptamine were not modified by intravenous (i.v.) pretreatment with either saline, (±)-pindolol (4

  15. AHR-16303B, a novel antagonist of 5-HT2 receptors and voltage-sensitive calcium channels

    SciTech Connect

    Barrett, R.J.; Appell, K.C.; Kilpatrick, B.F.; Proakis, A.G.; Nolan, J.C.; Walsh, D.A. )

    1991-01-01

    In vivo and in vitro methods were used to characterize AHR-16303B, a novel compound with antagonistic action at 5-HT2 receptors and voltage-sensitive calcium channels. The 5-HT2 receptor-antagonistic properties of AHR-16303B were demonstrated by inhibition of (a) (3H)ketanserin binding to rat cerebral cortical membranes (IC50 = 165 nM); (b) 5-hydroxytryptamine (5-HT)-induced foot edema in rats (minimum effective dose, (MED) = 0.32 mg/kg orally, p.o.); (c) 5-HT-induced vasopressor responses in spontaneously hypertensive rats (SHR) (ID50 = 0.18 mg/kg intravenously (i.v.), 1.8 mg/kg p.o.), (d) 5-HT-induced antidiuresis in rats (MED = 1 mg/kg p.o.), and (e) platelet aggregation induced by 5-HT + ADP (IC50 = 1.5 mM). The calcium antagonist properties of AHR-16303B were demonstrated by inhibition of (a) (3H)nimodipine binding to voltage-sensitive calcium channels on rabbit skeletal muscle membranes (IC50 = 15 nM), (b) KCl-stimulated calcium flux into cultured PC12 cells (IC50 = 81 nM), and (c) CaCl2-induced contractions of rabbit thoracic aortic strips (pA2 = 8.84). AHR-16303B had little or no effect on binding of radioligands to dopamine2 (DA2) alpha 1, alpha 2, H1, 5-HT1 alpha, beta 2, muscarinic M1, or sigma opioid receptors; had no effect on 5-HT3 receptor-mediated vagal bradycardia; and had only minor negative inotropic, chronotropic, and dromotropic effects on isolated guinea pig atria. In conscious SHR, 30 mg/kg p.o. AHR-16303B completely prevented the vasopressor responses to i.v. 5-HT, and decreased blood pressure (BP) by 24% 3 h after dosing.

  16. Activation of 5-HT and NR2B contributes to visceral hypersensitivity in irritable bowel syndrome in rats

    PubMed Central

    Chen, Ming-Xian; Chen, Yu; Fu, Rui; Liu, Sai-Yue; Yang, Qin-Qin; Shen, Tang-Biao

    2016-01-01

    The roles of 5-hydroxytryptamine (5-HT) and spinal N-methyl-D-aspartic acid receptor 2B (NR2B) in visceral hypersensitivity were investigated. A rat model with irritable bowel syndrome (IBS) was established by intracolonic injections of acetic acid onpost-natal days 8-21. Rats were randomly divided into five groups: normal intact (control) group, IBS model group, Ro25-6981-treated IBS rats (Ro25-6981, a NR2B antagonist) group, amitriptyline-treated IBS rats (amitriptyline, a 5-HT antagonist) and Ro25-6981 plus amitriptyline-treated IBS rats (Ro25-6981+amitriptyline) group. The expressions of 5-HT, NR2B, 5-HT2AR, 5-HT7R, SERT, TNF-α and IL-1β in colon, dorsal root ganglion (DRG) and hypothalamus, respectively, were measured by Immunohistochemical staining, Real-Time Reverse Transcription-PCR and Western blotting. Our results showed increased DRG and hypothalamus expression of 5-HT, NR2B, 5-HT2AR, 5-HT7R in IBS model group and decreased expression of those in Ro25-6981 and amitriptyline alone or both treatment groups. Moreover, SERT expression was decreased in colorectal, DRG and hypothalamus of ISB model rats, but increased by Ro25-6981 and amitriptyline alone or both treatments. Ro25-6981 and amitriptyline treatment also decreased colorectal expression of TNF-α and IL-1β induced by IBS model. In conclusion, activation of 5-HT and NR2B may play a crucial role in visceral hypersensitivity in irritable bowel syndrome in rats. PMID:28078028

  17. Activation of 5-HT and NR2B contributes to visceral hypersensitivity in irritable bowel syndrome in rats.

    PubMed

    Chen, Ming-Xian; Chen, Yu; Fu, Rui; Liu, Sai-Yue; Yang, Qin-Qin; Shen, Tang-Biao

    2016-01-01

    The roles of 5-hydroxytryptamine (5-HT) and spinal N-methyl-D-aspartic acid receptor 2B (NR2B) in visceral hypersensitivity were investigated. A rat model with irritable bowel syndrome (IBS) was established by intracolonic injections of acetic acid onpost-natal days 8-21. Rats were randomly divided into five groups: normal intact (control) group, IBS model group, Ro25-6981-treated IBS rats (Ro25-6981, a NR2B antagonist) group, amitriptyline-treated IBS rats (amitriptyline, a 5-HT antagonist) and Ro25-6981 plus amitriptyline-treated IBS rats (Ro25-6981+amitriptyline) group. The expressions of 5-HT, NR2B, 5-HT2AR, 5-HT7R, SERT, TNF-α and IL-1β in colon, dorsal root ganglion (DRG) and hypothalamus, respectively, were measured by Immunohistochemical staining, Real-Time Reverse Transcription-PCR and Western blotting. Our results showed increased DRG and hypothalamus expression of 5-HT, NR2B, 5-HT2AR, 5-HT7R in IBS model group and decreased expression of those in Ro25-6981 and amitriptyline alone or both treatment groups. Moreover, SERT expression was decreased in colorectal, DRG and hypothalamus of ISB model rats, but increased by Ro25-6981 and amitriptyline alone or both treatments. Ro25-6981 and amitriptyline treatment also decreased colorectal expression of TNF-α and IL-1β induced by IBS model. In conclusion, activation of 5-HT and NR2B may play a crucial role in visceral hypersensitivity in irritable bowel syndrome in rats.

  18. Protein kinase mediated upregulation of endothelin A, endothelin B and 5-hydroxytryptamine 1B/1D receptors during organ culture in rat basilar artery

    PubMed Central

    Hansen-Schwartz, Jacob; Svensson, Carl-Lennart; Xu, Cang-Bao; Edvinsson, Lars

    2002-01-01

    Organ culture has been shown to upregulate both endothelin (ET) and 5-hydroxytryptamine 1B/1D (5-HT1B/1D) receptors in rat cerebral arteries. The purpose of the present study was to investigate the involvement of protein kinases, especially protein kinases C (PKC) and A (PKA) in this process. The effect of inhibiting protein kinases during organ culture with staurosporine (unspecific protein kinase inhitor), RO 31-7549 (specific inhibitor of classical PKC's) and H 89 (specific inhibitor of PKA) was examined using in vitro pharmacological examination of cultured vessel segments with ET-1 (unspecific ETA and ETB agonist), S6c (specific ETB agonist) and 5-CT (5-HT1 agonist). Levels of mRNA coding for the ETA, ETB, 5-HT1B and 5-HT1D receptors were analysed using real-time RT–PCR. Classical PKC's are critically involved in the appearance of the ETB receptor; co-culture with RO 31-7549 abolished the contractile response (6.9±1.8%) and reduced the ETB receptor mRNA by 44±4% as compared to the cultured control. Correlation between decreased ETB receptor mRNA and abolished contractile function indicates upstream involvement of PKC. Inhibition of PKA generally had an enhancing effect on the induced changes giving rise to a 7–25% increase in Emax in response to ET-1, S6c and 5-CT as compared to the cultured control. Staurosporine inhibited the culture induced upregulation of the response of both the ETA and the 5-HT1B/1D receptors, but had no significant effect on the mRNA levels of these receptors. This lack of correlation indicates an additional downstream involvement of protein kinases. PMID:12183337

  19. Calcineurin-dependent cofilin activation and increased retrograde actin flow drive 5-HT-dependent neurite outgrowth in Aplysia bag cell neurons.

    PubMed

    Zhang, Xiao-Feng; Hyland, Callen; Van Goor, David; Forscher, Paul

    2012-12-01

    Neurite outgrowth in response to soluble growth factors often involves changes in intracellular Ca(2+); however, mechanistic roles for Ca(2+) in controlling the underlying dynamic cytoskeletal processes have remained enigmatic. Bag cell neurons exposed to serotonin (5-hydroxytryptamine [5-HT]) respond with a threefold increase in neurite outgrowth rates. Outgrowth depends on phospholipase C (PLC) → inositol trisphosphate → Ca(2+) → calcineurin signaling and is accompanied by increased rates of retrograde actin network flow in the growth cone P domain. Calcineurin inhibitors had no effect on Ca(2+) release or basal levels of retrograde actin flow; however, they completely suppressed 5-HT-dependent outgrowth and F-actin flow acceleration. 5-HT treatments were accompanied by calcineurin-dependent increases in cofilin activity in the growth cone P domain. 5-HT effects were mimicked by direct activation of PLC, suggesting that increased actin network treadmilling may be a widespread mechanism for promoting neurite outgrowth in response to neurotrophic factors.

  20. Effects of iodoproxyfan, a potent and selective histamine H3 receptor antagonist, on alpha 2 and 5-HT3 receptors.

    PubMed

    Schlicker, E; Pertz, H; Bitschnau, H; Purand, K; Kathmann, M; Elz, S; Schunack, W

    1995-07-01

    We determined the affinity and/or potency of the novel H3 receptor antagonist iodoproxyfan at alpha 2 and 5-HT3 receptors. Iodoproxyfan and rauwolscine (a reference alpha 2 ligand) (i) monophasically displaced 3H-rauwolscine binding to rat brain cortex membranes (pKi 6.79 and 8.59); (ii) facilitated the electrically evoked tritium overflow from superfused mouse brain cortex slices preincubated with 3H-noradrenaline (pEC50 6.46 and 7.91) and (iii) produced rightward shifts of the concentration-response curve (CRC) of (unlabelled) noradrenaline for its inhibitory effect on the evoked overflow (pA2 6.65 and 7.88). In the guinea-pig ileum, iodoproxyfan 6.3 mumol/l failed to evoke a contraction by itself but depressed the maximum of the CRC of 5-hydroxytryptamine (pD'2 5.24). Tropisetron (a reference 5-HT3 antagonist) produced rightward shifts of the CRC of 5-hydroxytryptamine (pA2 7.84). In conclusion, the affinity/potency of iodoproxyfan at H3 receptors (range 8.3-9.7 [1]) exceeds that at alpha 2 receptors by at least 1.5 log units and that at 5-HT3 receptors by at least 3 log units.

  1. Involvement of 5-HT3 receptors in the action of vortioxetine in rat brain: Focus on glutamatergic and GABAergic neurotransmission.

    PubMed

    Riga, Maurizio S; Sánchez, Connie; Celada, Pau; Artigas, Francesc

    2016-09-01

    The antidepressant vortioxetine is a 5-HT3-R, 5-HT7-R and 5-HT1D-R antagonist, 5-HT1B-R partial agonist, 5-HT1A-R agonist, and serotonin (5-HT) transporter (SERT) inhibitor. Vortioxetine occupies all targets at high therapeutic doses and only SERT and 5-HT3-R at low doses. Vortioxetine increases extracellular monoamine concentrations in rat forebrain more than selective serotonin reuptake inhibitors (SSRI) and shows pro-cognitive activity in preclinical models. Given its high affinity for 5-HT3-R (Ki = 3.7 nM), selectively expressed in GABA interneurons, we hypothesized that vortioxetine may disinhibit glutamatergic and monoaminergic neurotransmission following 5-HT3-R blockade. Here we assessed vortioxetine effect on pyramidal neuron activity and extracellular 5-HT concentration using in vivo extracellular recordings of rat medial prefrontal cortex (mPFC) pyramidal neurons and microdialysis in mPFC and ventral hippocampus (vHPC). Vortioxetine, but not escitalopram, increased pyramidal neuron discharge in mPFC. This effect was prevented by SR57227A (5-HT3-R agonist) and was mimicked by ondansetron (5-HT3-R antagonist) and by escitalopram/ondansetron combinations. In microdialysis experiments, ondansetron augmented the 5-HT-enhancing effect of escitalopram in mPFC and vHPC. Local ondansetron in vHPC augmented escitalopram effect, indicating the participation of intrinsic mechanisms. Since 5-HT neurons express GABAB receptors, we examined their putative involvement in controlling 5-HT release after 5-HT3-R blockade. Co-perfusion of baclofen (but not muscimol) reversed the increased 5-HT levels produced by vortioxetine and escitalopram/ondansetron combinations in vHPC. The present results suggest that vortioxetine increases glutamatergic and serotonergic neurotransmission in rat forebrain by blocking 5-HT3 receptors in GABA interneurons.

  2. Short-term effect on intestinal epithelial Na(+)/H(+) exchanger by Gi(alpha1,2)-coupled 5-HT(1A) and G(q/11)-coupled 5-HT(2) receptors.

    PubMed

    Magro, Fernando; Fraga, Sónia; Soares-da-Silva, Patrício

    2007-07-26

    The present study evaluated the effect of 5-hydroxytryptamine (5-HT) on intestinal Na(+)/H(+) exchanger (NHE) activity and the cellular signaling pathways involved in T84 cells. T84 cells express endogenous NHE1 and NHE2 proteins, detected by immunoblotting, but not NHE3. The rank order for inhibition of NHE activity in acid-loaded T84 cells was 5-(N-ethyl-N-isopropyl)-amiloride (EIPA; IC(50)=519 [465, 579] nM)>cariporide (IC(50)=630 [484, 819] nM)>amiloride (IC(50)=19 [16, 24] microM); the NHE3 inhibitor S3226 was found to be devoid of effect. This different inhibitory sensitivity indicates that both NHE1 and NHE2 isoforms may play an active role in Na(+)-dependent intracellular pH (pH(i)) recovery in T84 cells. Short-term exposure (0.5 h) of T84 cells to 5-HT increased NHE activity in a concentration-dependent manner. The stimulation induced by 5-HT (30 microM) was partially inhibited by both WAY 100135 (300 nM) and ketanserin (300 nM), antagonists of 5-HT(1A) and 5-HT(2) receptors, respectively. NHE activity was significantly increased by 8-OH-DPAT and alpha-methyl-5-HT, agonists of, respectively, 5-HT(1A) and 5-HT(2) receptors. An incubation of T84 cells with anti-G(s) and anti-G(beta) antibodies complexed with lipofectin did not prevent the 5-HT-induced stimulation of NHE activity. Overnight treatment with anti-G(ialpha1,2) and anti-G(q/11) antibodies complexed with lipofectin blocked the stimulatory effect induced by 8-OH-DPAT and alpha-methyl-5-HT, respectively. It is concluded that in T84 cells 5-HT enhances intestinal NHE activity through stimulation of G(ialpha1,2)-coupled 5-HT(1A) and G(q/11)-coupled 5-HT(2) receptors.

  3. Synergistic effect of 5-hydroxytryptamine 3 and neurokinin 1 receptor antagonism in rodent models of somatic and visceral pain.

    PubMed

    Greenwood-Van Meerveld, Beverley; Mohammadi, Ehsan; Tyler, Karl; Pietra, Claudio; Bee, Lucy A; Dickenson, Anthony

    2014-10-01

    Synergistic activity has been observed between serotonergic 5-hydroxytryptamine 3 (5-HT3) and tachykinergic neurokinin 1 (NK1) receptor-mediated responses. This study investigated the efficacy of a 5-HT3 antagonist, palonosetron, and a NK1 antagonist, netupitant, alone or in combination in rodent models of somatic and visceral colonic hypersensitivity. In a rat model of experimental neuropathic pain, somatic hypersensitivity was quantified by the number of ipsilateral paw withdrawals to a von Frey filament (6g). Electrophysiologic responses were recorded in the dorsal horn neurons after mechanical or thermal stimuli. Acute colonic hypersensitivity was induced experimentally in rats by infusing dilute acetic acid (0.6%) directly into the colon. Colonic sensitivity was assessed by a visceromotor behavioral response quantified as the number of abdominal contractions in response to graded isobaric pressures (0-60 mm Hg) of colorectal distension. Palonosetron or netupitant was administered alone or in combination via oral gavage. When dosed alone, both significantly reduced somatic sensitivity, decreased the evoked response of spinal dorsal horn neurons to mechanical or thermal stimulation, and caused significant (P < 0.05) inhibition of colonic hypersensitivity in a dose-dependent manner. The combined administration of palonosetron and netupitant at doses that were ineffective alone significantly reduced both somatic and visceral sensitivity and decreased the evoked response of spinal dorsal horn neurons to mechanical or thermal stimulation. In summary, the combination of palonosetron with a NK1 receptor antagonist showed synergistic analgesic activity in rodent models of somatic and visceral hypersensitivity, and may prove to be a useful therapeutic approach to treat pain associated with irritable bowel syndrome.

  4. Inhibitory action of niflumic acid on noradrenaline- and 5-hydroxytryptamine-induced pressor responses in the isolated mesenteric vascular bed of the rat.

    PubMed

    Criddle, D N; de Moura, R S; Greenwood, I A; Large, W A

    1997-03-01

    1. The effects of niflumic acid, an inhibitor of calcium-activated chloride currents, were compared with the actions of the calcium channel blocker nifedipine on noradrenaline- and 5-hydroxytryptamine (5-HT)-induced pressor responses of the rat perfused isolated mesenteric vascular bed. 2. Bolus injections of noradrenaline (1 and 10 nmol) increased the perfusion pressure in a dose-dependent manner. Nifedipine (1 microM) inhibited the increase in pressure produced by 1 nmol noradrenaline by 31 +/- 5%. Niflumic acid (10 and 30 microM) also inhibited the noradrenaline-induced increase in perfusion pressure and 30 microM niflumic acid reduced the pressor response to 1 nmol noradrenaline by 34 +/- 6%. 3. The increases in perfusion elicited by 5-HT (0.3 and 3 nmol) were reduced by niflumic acid (10 and 30 microM) in a concentration-dependent manner and 30 microM niflumic acid inhibited responses to 0.3 and 3 nmol 5-HT by, respectively, 49 +/- 8% and 50 +/- 7%. Nifedipine (1 microM) decreased the pressor response to 3 nmol 5-HT by 44 +/- 9%. 4. In the presence of a combination of 30 microM niflumic acid and 1 microM nifedipine the inhibition of the pressor effects of noradrenaline (10 nmol) and 5-HT (3 nmol) was not significantly greater than with niflumic acid (30 microM) alone. Thus the effects of niflumic acid and nifedipine were not additive. 5. In Ca-free conditions the transient contractions induced by 5-HT (3 nmol) were not reduced by 30 microM niflumic acid, suggesting that this agent does not inhibit calcium release from the intracellular store or the binding of 5-HT to its receptor. 6. Niflumic acid 30 microM did not inhibit the pressor responses induced by KCl (20 and 60 mumol) which were markedly reduced by 1 microM nifedipine. In addition, 1 microM levcromakalim decreased pressor responses produced by 20 mumol KCl. These data suggest that niflumic acid does not block directly calcium channels or activate potassium channels. 7. It is concluded that niflumic

  5. The 5-hydroxytryptamine2A receptor is involved in (+)-norfenfluramine-induced arterial contraction and blood pressure increase in deoxycorticosterone acetate-salt hypertension.

    PubMed

    Ni, Wei; Fink, Gregory D; Watts, Stephanie W

    2007-05-01

    The highly effective anorexigen (+)-fenfluramine was widely used to control body weight until the association with primary pulmonary hypertension and valvular heart disease. (+)-Norfenfluramine is the major hepatic metabolite of (+)-fenfluramine and is primarily responsible for the anorexic effect as well as side effects. We reported that (+)-norfenfluramine causes vasoconstriction and a blood pressure increase in rats with normal blood pressure via the 5-hydroxytryptamine (5-HT)2A receptor. With the knowledge that (+)-norfenfluramine also has affinity for 5-HT2B receptors and that arterial 5-HT2B receptor expression is up-regulated in deoxycorticosterone acetate (DOCA)-salt hypertension, we tested the hypothesis that (+)-norfenfluramine-induced vasoconstriction and pressor effects are potentiated in DOCA-salt hypertensive rats in a 5-HT2 receptor-dependent manner. Contractions of arteries were measured using an isolated tissue bath system or myograph. Mean arterial blood pressure was measured in chronically instrumented conscious rats. Effects of (+)-norfenfluramine in stimulating arterial contraction (leftward shift versus SHAM, aorta, 5.13-fold; renal artery, 1.95-fold; mesenteric resistance artery, 1.77-fold) and raising blood pressure were significantly enhanced in hypertension. In arteries from both normotensive and hypertensive rats, (+)-norfenfluramine-induced contraction in aorta was inhibited by 5-HT2A receptor antagonists, ketanserin and LY53857 (4-isopropyl-7-methyl-9-(2-hydroxy-1-meth ylpropoxycarbonyl)4,6,6a,7,8,9,10,10a-octahydroindolo[4,3-fg]quinoline), but not by the 5-HT2B receptor antagonist, LY272015 [6-chloro-5-methyl-N-(5-quinolinyl)-2,3-dihydro-1H-indole-1-carboxamide]. Ketanserin (3 mg/kg) reduced (+)-norfenfluramine-induced pressor response in both SHAM and DOCA rats. Our results demonstrate that (+)-norfenfluramine-induced arterial contraction and blood pressure increases are potentiated in DOCA-salt hypertensive rats. However, it is the 5

  6. 5-HT6 receptors and Alzheimer's disease

    PubMed Central

    2013-01-01

    During the past 20 years, the 5-HT6 receptor has received increasing attention and become a promising target for improving cognition. Several studies with structurally different compounds have shown that not only antagonists but also 5-HT6 receptor agonists improve learning and memory in animal models. A large number of publications describing the development of ligands for this receptor have come to light, and it is now quite evident that 5-HT6 receptors have great pharmaceutical potential in terms of related patents. However, 5-HT6 receptor functionality is much more complex than initially defined. According to the existing data, different cellular pathways may be activated, depending on the drug being used. This article reviews preclinical and clinical evidence of the effects that 5-HT6 receptor compounds have on cognition. In addition, the biochemical and neurochemical mechanisms of action through which 5-HT6 receptor compounds can influence cognition will be described. Overall, several 5-HT6-targeted compounds can reasonably be regarded as powerful drug candidates for the treatment of Alzheimer's disease. PMID:23607787

  7. Postnatal Treadmill Exercise Alleviates Prenatal Stress-Induced Anxiety in Offspring Rats by Enhancing Cell Proliferation Through 5-Hydroxytryptamine 1A Receptor Activation

    PubMed Central

    2016-01-01

    Purpose: Stress during pregnancy is a risk factor for the development of anxiety-related disorders in offspring later in life. The effects of treadmill exercise on anxiety-like behaviors and hippocampal cell proliferation were investigated using rats exposed to prenatal stress. Methods: Exposure of pregnant rats to a hunting dog in an enclosed room was used to induce stress. Anxiety-like behaviors of offspring were evaluated using the elevated plus maze test. Immunohistochemistry for the detection of 5-bromo-2ʹ- deoxyuridine and doublecortin (DCX) in the hippocampal dentate gyrus and 5-hydroxytryptamine 1A receptors (5-HT1A) in the dorsal raphe was conducted. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) levels in the hippocampus were evaluated by western blot analysis. Results: Offspring of maternal rats exposed to stress during pregnancy showed anxiety-like behaviors. Offspring also showed reduced expression of BDNF, TrkB, and DCX in the dentate gyrus, decreased cell proliferation in the hippocampus, and reduced 5-HT1A expression in the dorsal raphe. Postnatal treadmill exercise by offspring, but not maternal exercise during pregnancy, enhanced cell proliferation and expression of these proteins. Conclusions: Postnatal treadmill exercise ameliorated anxiety-like behaviors in offspring of stressed pregnant rats, and the alleviating effect of exercise on these behaviors is hypothesized to result from enhancement of cell proliferation through 5-HT1A activation in offspring rats. PMID:27230461

  8. Stimulation of 5-HT1A, 5-HT1B, 5-HT2A/2C, 5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition: short- and long-term memory.

    PubMed

    Meneses, Alfredo

    2007-11-22

    In order to determine whether short- (STM) and long-term memory (LTM) function in serial or parallel manner, serotonin (5-hydroxtryptamine, 5-HT) receptor agonists were tested in autoshaping task. Results show that control-vehicle animals were modestly but significantly mastering the autoshaping task as illustrated by memory scores between STM and LTM. Thus, post-training administration of 8-OHDPAT (agonist for 5-HT(1A/7) receptors) only at 0.250 and 0.500 mg/kg impaired both STM and LTM. CGS12066 (agonist for 5-HT(1B)) produced biphasic affects, at 5.0 mg/kg impaired STM but at 1.0 and 10.0 mg/kg, respectively, improved or impaired LTM. DOI (agonist for 5-HT(2A/2C) receptors) dose-dependently impaired STM and, at 10.0 mg/kg only impaired LTM. Both, STM and LTM were impaired by either mCPP (mainly agonist for 5-HT(2C) receptors) or mesulergine (mainly antagonist for 5-HT(2C) receptors) lower dose. The 5-HT(3) agonist mCPBG at 1.0 impaired STM and its higher dose impaired both STM and LTM. RS67333 (partial agonist for 5-HT(4) receptors), at 5.0 and 10.0 mg/kg facilitated both STM and LTM. The higher dose of fluoxetine (a 5-HT uptake inhibitor) improved both STM and LTM. Using as head-pokes during CS as an indirect measure of food-intake showed that of 30 memory changes, 21 of these were unrelated to the former. While some STM or LTM impairments can be attributed to decrements in food-intake, but not memory changes (either increase or decreases) produced by 8-OHDPAT, CGS12066, RS67333 or fluoxetine. Except for animals treated with DOI, mCPBG or fluoxetine, other groups treated with 5-HT agonists 6 h following autoshaping training showed similar LTM and unmodified CS-head-pokes scores.

  9. COMMUNICATION BETWEEN 5-HT AND SMALL GTPases

    PubMed Central

    Mercado, Charles P.; Ziu, Endrit; Kilic, Fusun

    2011-01-01

    Advances over the past decade have improved our understanding of the serotonin (5-HT) biology outside the central nervous system specifically the molecular mechanisms of serotonergic signaling in association with small GTPases. It is now recognized that the communication between 5-HT and GTPases plays important roles in peripheral tissues, vascular cells and are involved in coagulation, hypertension, inflammation, healing and protection. Furthermore, 5-HT receptors as heterotrimeric GTP-binding protein-coupled receptors act as effector protein on the small GTPases. Therefore, the antagonists or agonists of the effector proteins of small GTPases could be useful therapeutic agents for the treatment of several diseases and disorders. PMID:21320798

  10. Vortioxetine restores reversal learning impaired by 5-HT depletion or chronic intermittent cold stress in rats.

    PubMed

    Wallace, Ashley; Pehrson, Alan L; Sánchez, Connie; Morilak, David A

    2014-10-01

    Current treatments for depression, including serotonin-specific reuptake inhibitors (SSRIs), are only partially effective, with a high incidence of residual symptoms, relapse, and treatment resistance. Loss of cognitive flexibility, a component of depression, is associated with dysregulation of the prefrontal cortex. Reversal learning, a form of cognitive flexibility, is impaired by chronic stress, a risk factor for depression, and the stress-induced impairment in reversal learning is sensitive to chronic SSRI treatment, and is mimicked by serotonin (5-HT) depletion. Vortioxetine, a novel, multimodal-acting antidepressant, is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, a 5-HT1B receptor partial agonist, a 5-HT1A receptor agonist, and inhibits the 5-HT transporter. Using adult male rats, we first investigated the direct effects of vortioxetine, acting at post-synaptic 5-HT receptors, on reversal learning that was compromised by 5-HT depletion using 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA), effectively eliminating any contribution of 5-HT reuptake blockade. PCPA induced a reversal learning impairment that was alleviated by acute or sub-chronic vortioxetine administration, suggesting that post-synaptic 5-HT receptor activation contributes to the effects of vortioxetine. We then investigated the effects of chronic dietary administration of vortioxetine on reversal learning that had been compromised in intact animals exposed to chronic intermittent cold (CIC) stress, to assess vortioxetine's total pharmacological effect. CIC stress impaired reversal learning, and chronic vortioxetine administration prevented the reversal-learning deficit. Together, these results suggest that the direct effect of vortioxetine at 5-HT receptors may contribute to positive effects on cognitive flexibility deficits, and may enhance the effect of 5-HT reuptake blockade.

  11. 5-HT2A receptors are involved in cognitive but not antidepressant effects of fluoxetine.

    PubMed

    Castañé, Anna; Kargieman, Lucila; Celada, Pau; Bortolozzi, Analía; Artigas, Francesc

    2015-08-01

    The prefrontal cortex (PFC) plays a crucial role in cognitive and affective functions. It contains a rich serotonergic (serotonin, 5-HT) innervation and a high density of 5-HT receptors. Endogenous 5-HT exerts robust actions on the activity of pyramidal neurons in medial PFC (mPFC) via excitatory 5-HT2A and inhibitory 5-HT1A receptors, suggesting the involvement of 5-HT neurotransmission in cortical functions. However, the underlying mechanisms must be elucidated. Here we examine the role of 5-HT2A receptors in the processing of emotional and cognitive signals evoked by increasing the 5-HT tone after acute blockade of the 5-HT transporter. Fluoxetine (5-20mg/kg i.p.) dose-dependently reduced the immobility time in the tail-suspension test in wild-type (WT) and 5-HT2Aknockout (KO2A) mice, with non-significant differences between genotypes. Fluoxetine (10mg/kg i.p.) significantly impaired mice performance in the novel object recognition test 24h post-administration in WT, but not in KO2A mice. The comparable effect of fluoxetine on extracellular 5-HT in the mPFC of both genotypes suggests that presynaptic differences are not accountable. In contrast, single unit recordings of mPFC putative pyramidal neurons showed that fluoxetine (1.8-7.2mg/kg i.v.) significantly increased neuronal discharge in KO2A but not in WT mice. This effect is possibly mediated by an altered excitatory/inhibitory balance in the PFC in KO2A mice. Overall, the present results suggest that 5-HT2A receptors play a detrimental role in long-term memory deficits mediated by an excess 5-HT in PFC.

  12. Spinal 5-HT3AR contributes to BmK I-induced inflammatory pain in rats.

    PubMed

    Fu, Jin; Jiao, Yun-Lu; Li, Zheng-Wei; Ji, Yong-Hua

    2015-06-25

    Subcutaneous injection of BmK I could be adopted to well establish a novel pain model. Moreover, 5-hydroxytryptamine (serotonin, 5-HT) receptor is involved in regulating animal pain-related behaviors. However, the underlying mechanism of 5-HT3R on BmK I-induced pain remains unclear. Animal behavioral testing, RT-PCR and Western blotting were used to yield the following results: first, intraplantar (i.pl.) injection of BmK I (10 μg) induced elevated mRNA and protein levels of 5-HT3AR in bilateral L4-L5 spinal cord; Second, intrathecal (i.t.) injection of ondansetron (a specific antagonist of 5-HT3AR) reduced spontaneous pain responses, attenuated unilateral thermal and bilateral mechanical hypersensitivity elicited by BmK I; Microglia could be activated by BmK I (i.pl.) in both sides of L4-L5 spinal cord, and this effect was reversed by intrathecal pre-treatment with 5-HT3AR antagonist. Meanwhile, the 5-HT3AR in L4-L5 spinal cord was almost co-localized with NeuN (a marker of nerve cell), but not co-expressed with Iba-1 (a marker of microglia). Finally, the expression level of CX3CL1 and CX3CR1 was reduced by intrathecal pre-treatment with ondansetron. Our results indicate that both 5-HT3AR signaling pathway and microglia are activated in the process of induction and maintenance of BmK I-induced pain nociception. Meanwhile, our results suggest that the neuronal 5-HT3AR may communicate with microglia indirectly via CX3CL1 which is involved in regulating the BmK I-induced hyperalgesia and sensitization.

  13. Robust presynaptic serotonin 5-HT1B receptor inhibition of the striatonigral output and its sensitization by chronic fluoxetine treatment

    PubMed Central

    Ding, Shengyuan; Li, Li

    2015-01-01

    The striatonigral projection is a striatal output pathway critical to motor control, cognition, and emotion regulation. Its axon terminals in the substantia nigra pars reticulata (SNr) express a high level of serotonin (5-HT) type 1B receptors (5-HT1BRs), whereas the SNr also receives an intense 5-HT innervation that expresses 5-HT transporters, providing an anatomic substrate for 5-HT and selective 5-HT reuptake inhibitor (SSRI)-based antidepressant treatment to regulate the striatonigral output. In this article we show that 5-HT, by activating presynaptic 5-HT1BRs on the striatonigral axon terminals, potently inhibited the striatonigral GABA output, as reflected in the reduction of the striatonigral inhibitory postsynaptic currents in SNr GABA neurons. Functionally, 5-HT1BR agonism reduced the striatonigral GABA output-induced pause of the spontaneous high-frequency firing in SNr GABA neurons. Equally important, chronic SSRI treatment with fluoxetine enhanced this presynaptic 5-HT1BR-mediated pause reduction in SNr GABA neurons. Taken together, these results indicate that activation of the 5-HT1BRs on the striatonigral axon terminals can limit the motor-promoting GABA output. Furthermore, in contrast to the desensitization of 5-HT1 autoreceptors, chronic SSRI-based antidepressant treatment sensitizes this presynaptic 5-HT1BR-mediated effect in the SNr, a novel cellular mechanism that alters the striatonigral information transfer, potentially contributing to the behavioral effects of chronic SSRI treatment. PMID:25787955

  14. Serotonin (5-HT3) receptor antagonists for the reduction of symptoms of low anterior resection syndrome

    PubMed Central

    Itagaki, Ryohei; Koda, Keiji; Yamazaki, Masato; Shuto, Kiyohiko; Kosugi, Chihiro; Hirano, Atsushi; Arimitsu, Hidehito; Shiragami, Risa; Yoshimura, Yukino; Suzuki, Masato

    2014-01-01

    Purpose Serotonin (5-hydroxytryptamine [5-HT])3 receptor antagonists are effective for the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D), in which exaggerated intestinal/colonic hypermotility is often observed. Recent studies have suggested that the motility disorder, especially spastic hypermotility, seen in the neorectum following sphincter-preserving operations for rectal cancer may be the basis of the postoperative defecatory malfunction seen in these patients. We investigated the efficacy of 5-HT3 receptor antagonists in patients suffering from severe low anterior resection syndrome. Patients and methods A total of 25 male patients with complaints of uncontrollable urgency or fecal incontinence following sphincter-preserving operations were enrolled in this study. Defecatory status, assessed on the basis of incontinence score (0–20), urgency grade (0–3), and number of toilet visits per day, was evaluated using a questionnaire before and 1 month after the administration of the 5-HT3 antagonist ramosetron. Results All the parameters assessed improved significantly after taking ramosetron for 1 month. The effect was more prominent in cases whose anastomotic line was lower, ie, inside the anal canal. Defecatory function was better in patients who commenced ramosetron therapy within 6 months postoperatively, as compared to those who were not prescribed ramosetron for more than 7 months postoperatively. Conclusion These results suggest that 5-HT3 antagonists are effective for the treatment of low anterior resection syndrome, as in diarrhea-predominant irritable bowel syndrome. The improvement in symptoms is not merely time dependent, but it is related to treatment with 5-HT3 antagonists. PMID:24648748

  15. Serotonergic 5-HT7 receptors and cognition.

    PubMed

    Gasbarri, Antonella; Pompili, Assunta

    2014-01-01

    The abundant distribution of serotonin (5-HT) in different areas of the central nervous system can explain the involvement of this neurotransmitter in the regulation of several functions, such as sleep, pain, feeding, and sexual and emotional behaviors. Moreover, the serotonergic system is also involved in other more complex roles, such as cognition, including learning and memory processes. Recent studies led to the discovery of various types and subtypes of receptors differentially associated to cognitive mechanisms. 5-HT7 is the most recently discovered receptor for 5-HT; therefore, it is also one of the least well characterized. Studies exist hypothesizing the role of 5-HT7 on the modulation of learning and memory processes and other cognitive functions. Moreover, much attention has been devoted to the possible role of 5-HT7 receptors in psychiatric disorders. Therefore, the aim of this review is to clarify the behavioral role of the recently discovered 5-HT7 type receptor and highlight its involvement in the cognitive functions, with particular attention to the modulation of learning and memory processes, thus providing a basis to obtain new therapeutic agents and strategies for the treatment of cognitive disorders.

  16. Low-dose prazosin in combination with 5-HT6 antagonist PRX-07034 has antipsychotic effects.

    PubMed

    Abraham, Renny; Nirogi, Ramakrishna; Shinde, Anil; Irupannanavar, Shantaveer

    2015-01-01

    An extensive amount of research has focused on the development of new pharmacological agents to treat schizophrenia. Varying from person to person, schizophrenia is a heterogeneous disease with symptoms of positive, negative, and cognitive deficits. PRX-07034, a 5-hydroxytryptamine6 (5-HT6) receptor antagonist has been evaluated for its potential in treating obesity and cognitive deficits. This study evaluated PRX-07034 (0.1, 0.3, and 1.0 mg/kg body mass, by intraperitoneal (i.p.) injection), in combination with a low dose of prazosin (0.3 mg/kg, i.p.), for its antipsychotic potential. The research utilized a stereotypy assay, an open field test, an object recognition task, and prepulse inhibition. Dizocilpine, a non-competitive N-methyl-d-aspartate (NMDA) antagonist, was also administered in the above-mentioned assays as a psychomimetic. The combination of PRX-07034 and prazosin alleviated stereotypy and hyperlocomotor activity while enhancing memory in an object recognition task, and reversed sensory-gating deficits induced by dizocilpine. Examination of the medial prefrontal cortex revealed that a combination of PRX-07034 and prazosin reduced the dizocilpine-mediated increase of 5-HT. These results suggest that the combination of a 5-HT6 antagonist with low doses of prazosin could have therapeutic potential in the treatment of schizophrenia.

  17. Reward processing by the dorsal raphe nucleus: 5-HT and beyond

    PubMed Central

    Zhou, Jingfeng; Liu, Zhixiang

    2015-01-01

    The dorsal raphe nucleus (DRN) represents one of the most sensitive reward sites in the brain. However, the exact relationship between DRN neuronal activity and reward signaling has been elusive. In this review, we will summarize anatomical, pharmacological, optogenetics, and electrophysiological studies on the functions and circuit mechanisms of DRN neurons in reward processing. The DRN is commonly associated with serotonin (5-hydroxytryptamine; 5-HT), but this nucleus also contains neurons of the neurotransmitter phenotypes of glutamate, GABA and dopamine. Pharmacological studies indicate that 5-HT might be involved in modulating reward- or punishment-related behaviors. Recent optogenetic stimulations demonstrate that transient activation of DRN neurons produces strong reinforcement signals that are carried out primarily by glutamate. Moreover, activation of DRN 5-HT neurons enhances reward waiting. Electrophysiological recordings reveal that the activity of DRN neurons exhibits diverse behavioral correlates in reward-related tasks. Studies so far thus demonstrate the strong power of DRN neurons in reward signaling and at the same time invite additional efforts to dissect the roles and mechanisms of different DRN neuron types in various processes of reward-related behaviors. PMID:26286655

  18. Blockade of 5-hydroxytryptamine(3) receptors prevents cisplatin-induced but not motion- or xylazine-induced emesis in the cat

    NASA Technical Reports Server (NTRS)

    Lucot, James B.

    1989-01-01

    The effects of the 5-hydroxytryptamine(3) (5-HT-3) antagonists ICS 205-930 and MDL 72222 on the emesis induced by motion or by emetic doses of xylazine (0.66 mg/kg administered SC) or cisplatin (7.5 mg/kg infused over a period of 4-5 min) were investigated in cats. It was found that neither the low (0.1 mg/kg) or the high (1.0 mg.kg) doses of ICS 205-930 or MDL 72222 prevented emesis elicited by screening motion challenges or xylazine. On the other hand, treatment cats by 1.0 mg/kg of ICS 205-930 was effective against cisplatin-induced motion sickness, in agreement with earlier results obtained on other mammals.

  19. [5-HT1A/5-HT7 receptor interplay: Chronic activation of 5-HT7 receptors decreases the functional activity of 5-HT1A receptor and its сontent in the mouse brain].

    PubMed

    Kondaurova, E M; Bazovkina, D V; Naumenko, V S

    2017-01-01

    Serotonin receptors 5-HT1A and 5-HT7 are involved in the development of various psychopathologies. Some data indicate that there is an interplay between 5-HT1A 5-HT7 receptors that could be implicated in the regulation of their function. This work analyzed the effects of chronic 5-HT7 activation on the functional activity of 5-HT7 and 5-HT1A receptors, on the corresponding protein levels, and on the expression of genes encoding 5-HT7 and 5-HT1A receptors in the mouse brain. Chronic administration of the 5-HT7 selective agonist LP44 (20.5 nmol, i.c.v., 14 days) produced considerable desensitization of both 5-HT7 and 5-HT1A receptors. In LP44-treated mice, the hypothermic responses mediated by both 5-HT7 and 5-HT1A receptors were attenuated. Moreover, the levels of 5-HT1A receptor protein in the midbrain and the frontal cortex of LP44-treated mice were significantly decreased. However, the brain levels of 5-HT7 receptor protein did not differ between LP44-treated and control mice. Chronic LP44 treatment did not alter the expression of the 5-HT7 and 5-HT1A receptor genes in all investigated brain structure. These data suggest that 5-HT7 receptors participate in the posttranscriptional regulation of the 5-HT1A receptors functioning.

  20. Molecular regulation of sexual preference revealed by genetic studies of 5-HT in the brains of male mice.

    PubMed

    Liu, Yan; Jiang, Yun'ai; Si, Yunxia; Kim, Ji-Young; Chen, Zhou-Feng; Rao, Yi

    2011-04-07

    Although the question of to whom a male directs his mating attempts is a critical one in social interactions, little is known about the molecular and cellular mechanisms controlling mammalian sexual preference. Here we report that the neurotransmitter 5-hydroxytryptamine (5-HT) is required for male sexual preference. Wild-type male mice preferred females over males, but males lacking central serotonergic neurons lost sexual preference although they were not generally defective in olfaction or in pheromone sensing. A role for 5-HT was demonstrated by the phenotype of mice lacking tryptophan hydroxylase 2 (Tph2), which is required for the first step of 5-HT synthesis in the brain. Thirty-five minutes after the injection of the intermediate 5-hydroxytryptophan (5-HTP), which circumvented Tph2 to restore 5-HT to the wild-type level, adult Tph2 knockout mice also preferred females over males. These results indicate that 5-HT and serotonergic neurons in the adult brain regulate mammalian sexual preference.

  1. Burst-firing activity of presumed 5-HT neurones of the rat dorsal raphe nucleus: electrophysiological analysis by antidromic stimulation.

    PubMed

    Hajós, M; Sharp, T

    1996-11-18

    We recently reported raphe neurones which frequently fired spikes in short bursts. However, the action potentials were broad and the neurones fired in a slow and regular pattern, suggesting they were an unusual type of 5-hydroxytryptamine (5-HT) neurone. In the present study, we investigated whether these putative burst-firing 5-HT neurones project to the forebrain and whether all spikes fired in bursts propagate along the axon. In anaesthetised rats, electrical stimulation of the medial forebrain bundle evoked antidromic spikes in both burst-firing neurones and in single-spiking, classical 5-HT neurones recorded in the dorsal raphe nucleus. Although the antidromic spike latency of the single-spiking and burst-firing neurones showed a clear overlap, burst-firing neurones had a significantly shorter latency than single-spiking neurones. For both burst-firing neurones and classical 5-HT neurones, antidromic spikes made collisions with spontaneously occurring spikes. Furthermore, in all burst-firing neurones tested, first, second and third order spikes in a burst could be made to collide with antidromic spike. Interestingly, in a small number of burst-firing neurones, antidromic stimulation evoked spike doublets, similar to those recorded spontaneously. From these data we conclude that burst-firing neurones in the dorsal raphe nucleus project to the forebrain, and each spike generated by the burst propagates along the axon and could thereby release transmitter (5-HT).

  2. Mechanisms intrinsic to 5-HT2B receptor-induced potentiation of NMDA receptor responses in frog motoneurones.

    PubMed

    Holohean, Alice M; Hackman, John C

    2004-10-01

    In the presence of NMDA receptor open-channel blockers [Mg(2+); (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801); 1-amino-3,5-dimethyladamantane (memantine)] and TTX, high concentrations (30-100 microm) of either 5-hydroxytryptamine (5-HT) or alpha-methyl-5-hydroxytryptamine (alpha-Me-5-HT) significantly potentiated NMDA-induced depolarizations of frog spinal cord motoneurones. Potentiation was blocked by LY-53,857 (10-30 microm), SB 206553 (10 microm), and SB 204741 (30 microm), but not by spiroxatrine (10 microm), WAY 100,635 (1-30 microm), ketanserin (10 microm), RS 102221 (10 microm), or RS 39604 (10-20 microm). Therefore, alpha-Me-5-HT's facilitatory effects appear to involve 5-HT(2B) receptors. These effects were G-protein dependent as they were prevented by prior treatment with guanylyl-5'-imidodiphosphate (GMP-PNP, 100 microm) and H-Arg-Pro-Lys-Pro-Gln-Gln-D-Trp-Phe-D-Trp-D-Trp-Met-NH(2) (GP antagonist 2A, 3-6 microm), but not by pertussis toxin (PTX, 3-6 ng ml(-1), 48 h preincubation). This potentiation was not reduced by protein kinase C inhibition with staurosporine (2.0 microm), U73122 (10 microm) or N-(2-aminoethyl)-5-isoquinolinesulfonamide HCl (H9) (77 microm) or by intracellular Ca(2+) depletion with thapsigargin (0.1 microm) (which inhibits Ca(2+)/ATPase). Exposure of the spinal cord to the L-type Ca(2+) channel blockers nifedipine (10 microm), KN-62 (5 microm) or gallopamil (100 microm) eliminated alpha-Me-5-HT's effects. The calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphtalenesulfonamide (W7) (100 microm) diminished the potentiation. However, the calcium/calmodulin-dependent protein kinase II (CaM Kinase II) blocker KN-93 (10 microm) did not block the 5-HT enhancement of the NMDA responses. In summary, activation of 5-HT(2B) receptors by alpha-Me-5-HT facilitates NMDA-depolarizations of frog motoneurones via a G-protein, a rise in [Ca(2+)](i) from the entry of extracellular Ca(2+) through L-type Ca(2

  3. Signal Transduction Mechanism for Serotonin 5-HT2B Receptor-Mediated DNA Synthesis and Proliferation in Primary Cultures of Adult Rat Hepatocytes.

    PubMed

    Naito, Kota; Tanaka, Chizuru; Mitsuhashi, Manami; Moteki, Hajime; Kimura, Mitsutoshi; Natsume, Hideshi; Ogihara, Masahiko

    2016-01-01

    The involvement of serotonin (5-hydroxytryptamine; 5-HT) and the 5-HT2 receptor subtypes in the induction of DNA synthesis and proliferation was investigated in primary cultures of adult rat hepatocytes to elucidate the intracellular signal transduction mechanisms. Hepatocyte parenchymal cells maintained in a serum-free, defined medium, synthesized DNA and proliferated in the presence of 5-HT or a selective 5-HT2B receptor agonist, BW723C86, but not in the presence of 5-HT2A, or 5-HT2C receptor agonists (TCB-2 and CP809101, respectively), in a time- and dose-dependent manner. A selective 5-HT2B receptor antagonist, LY272015 (10(-7) M), and a specific phospholipase C (PLC) inhibitor, U-73122 (10(-6) M), as well as specific inhibitors of growth-related signal transducers-including AG1478, LY294002, PD98059, and rapamycin-completely inhibited 5-HT (10(-6) M)- or BW723C86 (10(-6) M)-induced hepatocyte DNA synthesis and proliferation. Both 5-HT and BW723C86 were shown to significantly stimulate the phosphorylation of epidermal growth factor (EGF)/transforming growth factor (TGF)-α receptor tyrosine kinase (p175 kDa) and extracellular signal-regulated kinase (ERK) 2 on Western blot analysis. These results suggest that the proliferative mechanism of activating 5-HT is mediated mainly through 5-HT2B receptor-stimulated Gq/PLC and EGF/TGF-α-receptor/phosphatidylinositol 3-kinase (PI3K)/ERK2/mammalian target of rapamycin (mTOR) signaling pathways in primary cultured hepatocytes.

  4. Selective 5-HT7 Receptor Activation May Enhance Synaptic Plasticity Through N-methyl-D-aspartate (NMDA) Receptor Activity in the Visual Cortex.

    PubMed

    Xiang, Kangjian; Zhao, Xuefei; Li, Youjun; Zheng, Liang; Wang, Jue; Li, Yan-Hai

    2016-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter that modulates N-methyl-D-aspartate (NMDA) receptor activity by binding to several different 5-HT receptor subtypes. In the present study, we used whole-cell patch-clamp recordings in transverse slice preparations to test the role of 5-HT receptors in modulating the NMDA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) in layer II/III pyramidal neurons of the rat visual cortex. We found that the NMDA receptor-mediated component of mEPSCs could be potentiated by exogenously applied 5-HT. Similar results were obtained by exogenously applied 5-CT or 8-OH-DPAT (the 5-HT1A and 5-HT7 receptor agonist). A specific antagonist for the 5-HT7 receptor, SB-269970, completely blocked the increase in NMDA receptor-mediated component of mEPSCs by 5-CT or 8- OH-DPAT. Moreover, the selective 5-HT1A receptor antagonist, WAY-100135, displayed no influence on the enhancement in NMDA receptor-mediated component of mEPSCs by 5-CT or 8-OHDPAT. These results indicated that the increase in NMDA receptor-mediated component of mEPSCs by 5-HT in layer II/III pyramidal neurons of the young rat visual cortex requires activation of 5-HT7 receptors, but not 5-HT1A receptors. These observations might be clinically relevant to schizophrenia and Alzheimer's disease (AD), where enhancing NMDA receptor-mediated neurotransmission is considered to be a promising strategy for treatment of these diseases.

  5. Cerebral circulatory and metabolic effects of 5-hydroxytryptamine in anesthetized baboons.

    PubMed Central

    Harper, M A; MacKenzie, E T

    1977-01-01

    1. The cerebral circulatory effects of the intracarotid administration of 5-hydroxytryptamine were examined in anaesthetized baboons. Cerebral blood flow was measured by the intracarotid 133Xe technique, cerebral O2 consumption and glucose uptake were measured as indices of brain metabolism and electrocortical activity was continuously monitored. 2. Despite a marked reduction in the calibre of the internal carotid artery (assessed angiographically), the intracarotid infusion of 5-hydroxytryptamine 0-1 microgram/kg. min did not effect any significant changes in cerebral blood flow, O2 consumption or glucose uptake. 3. Following transient osmotic disruption of the blood-brain barrier with the intracarotid infusion of hypertonic urea, the same dose of 5-hydroxytryptamine effected a marked reduction in cerebral blood flow from 51 +/- 2 to 36 +/- 2 ml./100 g. min (mean +/- S.E.; P less than 0-01). Both indices of cerebral metabolism were reduced significantly and the e.e.g. showed a more pronounced suppression-burst pattern. 4. We postulate that the cerebral circulatory responses to 5-hydroxytryptamine are dependent upon the integrity of the blood-brain barrier and the predominant effect of the intravascular administration of 5-hydroxytryptamine is on cortical activity or metabolism, rather than on cerebrovascular smooth muscle. Images Plate 1 PMID:411921

  6. 5-HT Radioligands for Human Brain Imaging With PET and SPECT

    PubMed Central

    Paterson, Louise M.; Kornum, Birgitte R.; Nutt, David J.; Pike, Victor W.; Knudsen, Gitte M.

    2014-01-01

    The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists for the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 receptors, and for SERT. Here we describe the evolution of these radioligands, along with the attempts made to develop radioligands for additional serotonergic targets. We describe the properties needed for a radioligand to become successful and the main caveats. The success of a PET or SPECT radioligand can ultimately be assessed by its frequency of use, its utility in humans, and the number of research sites using it relative to its invention date, and so these aspects are also covered. In conclusion, the development of PET and SPECT radioligands to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging. PMID:21674551

  7. Platelet 5-HT(1A) receptor correlates with major depressive disorder in drug-free patients.

    PubMed

    Zhang, Zhang-Jin; Wang, Di; Man, Sui Cheung; Ng, Roger; McAlonan, Grainne M; Wong, Hei Kiu; Wong, Wendy; Lee, Jade; Tan, Qing-Rong

    2014-08-04

    The platelet serotonergic system has potential biomarker utility for major depressive disorder (MDD). In the present study, platelet expression of 5-HT1A receptors and serotonin transporter (SERT) proteins, and serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were quantified in 53 patients with MDD and 22 unaffected controls. All were drug-free, non-smokers and had no other psychiatric and cardiovascular comorbidity. The severity of depression symptoms was evaluated using the 17-item Hamilton Depression Rating Scale (HAMD-17) and the Self-rating Depression Scale (SDS). Patients with MDD had significantly higher expression of platelet 5-HT1A receptors but significantly lower contents of platelet 5-HT, platelet-poor plasma (PPP) 5-HT and PPP 5-HIAA compared to healthy controls, and this was correlated with the severity of depression. SERT expression did not differ between the two groups. Correlation analysis confirmed a strong, inverse relationship between the 5-HT1A receptor expression and the 5-HT and 5-HIAA levels. Thus overexpression of platelet 5-HT1A receptors and reduced 5-HT tone may function as a peripheral marker of depression.

  8. 5-Hydroxytryptamine2C receptor contribution to m-chlorophenylpiperazine and N-methyl-beta-carboline-3-carboxamide-induced anxiety-like behavior and limbic brain activation.

    PubMed

    Hackler, Elizabeth A; Turner, Greg H; Gresch, Paul J; Sengupta, Saikat; Deutch, Ariel Y; Avison, Malcolm J; Gore, John C; Sanders-Bush, Elaine

    2007-03-01

    Activation of 5-hydroxytryptamine2C (5-HT(2C)) receptors by the 5-HT(2) receptor agonist m-chlorophenylpiperazine (m-CPP) elicits anxiety in humans and anxiety-like behavior in animals. We compared the effects of m-CPP with the anxiogenic GABA(A) receptor inverse agonist N-methyl-beta-carboline-3-carboxamide (FG-7142) on both anxiety-like behavior and regional brain activation using functional magnetic resonance imaging (fMRI) in the rat. We also determined whether the selective 5-HT(2C) receptor antagonist SB 242084 [6-chloro-2,3-dihydro-5-methyl-N-[6-[(2-methyl-3-pyridinyl)oxy]-3-pyridinyl]-1H-indole-1-carboxyamide dihydrochloride] would blunt m-CPP or FG-7142-induced neuronal activation. Both m-CPP (3 mg/kg i.p.) and FG-7142 (10 mg/kg i.p.) elicited anxiety-like behavior when measured in the social interaction test, and pretreatment with SB 242084 (1 mg/kg i.p.) completely blocked the behavioral effects of both anxiogenic drugs. Regional brain activation in vivo in response to anxiogenic drug challenge was determined by blood oxygen level-dependent (BOLD) fMRI using a powerful 9.4T magnet. Region of interest analyses revealed that m-CPP and FG-7142 significantly increased BOLD signals in brain regions that have been linked to anxiety, including the amygdala, dorsal hippocampus, and medial hypothalamus. These BOLD signal increases were blocked by pretreatment with SB 242084. In contrast, injection of m-CPP and FG-7142 resulted in BOLD signal decreases in the medial prefrontal cortex that were not blocked by SB 242084. In conclusion, the brain activation signals produced by anxiogenic doses of both m-CPP and FG-7142 are mediated at least partially by the 5-HT(2C) receptor, indicating that this receptor is a key component in anxiogenic neural circuitry.

  9. 5-HT3 and 5-HT4 receptor-mediated facilitation of the emptying phase of the peristaltic reflex in the marmoset isolated ileum.

    PubMed Central

    Tuladhar, B. R.; Costall, B.; Naylor, R. J.

    1996-01-01

    1. The patterns of intestinal motility and the effect of an increase in intraluminal pressure were studied in vitro on segments obtained from the marmoset small intestine. 2. Segments obtained from the distal half of the marmoset small intestine exhibited segmentation, consisting of narrow annular contractions (lasting for 2-3 s) interposed between the relaxed segments of varying length. The subsequent contractions occurred slightly distal to the previous contraction, with ring-like contractions appearing to move in the aboral direction. Such segmentation was infrequent or absent in the segments obtained from the proximal half of the small intestine. An increase in intraluminal pressure inhibited segmentation and finally produced peristalsis in most of the tissues. 3. The influence of 5-hydroxytryptamine (5-HT) receptor agonists and antagonists on the threshold of the peristaltic reflex was investigated in the segments obtained from the distal half of the intestine after segmentation had subsided. The effect of drug application to the serosal surface was measured as a change in threshold pressure required to trigger the peristaltic reflex. A facilitation was defined in two ways (a) as a reduction in the threshold pressure required to trigger the reflex and (b) in those tissues that failed to respond with peristalsis on raising intraluminal pressure to the maximum attainable (1 kPa), as a reduction in threshold pressure compared to this value. 4. 5-HT (7.85 +/- 0.19), 5-methoxytryptamine (7.79 +/- 0.24), 5-carboxamidotryptamine (6.66 +/- 0.13) and 2-methyl-5-HT (6.24 +/- 0.16) caused a concentration related facilitation of the peristaltic reflex, the pD2 values (mean +/- s.e.mean) being shown in parentheses. 5. The concentration-response curves to both 5-HT and 5-methoxytryptamine were dextrally shifted in a surmountable manner in the presence of GR 113808 (30 nM). pD2 values for 5-HT and 5-methoxytryptamine were significantly decreased to 6.98 +/- 0.24 and 6

  10. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  11. Serum serotonin reduced the expression of hepatic transporter Mrp2 and P-gp via regulating nuclear receptor CAR in PI-IBS rats.

    PubMed

    Shao, Yun-Yun; Huang, Jing; Ma, Yan-Rong; Han, Miao; Ma, Kang; Qin, Hong-Yan; Rao, Zhi; Wu, Xin-An

    2015-08-01

    Hepatic transporters and drug metabolizing enzymes (DMEs) play important roles in the pharmacological effects and (or) side-effects of many drugs, and are regulated by several mediators, including neurotransmitters. This work aimed to investigate whether serum levels of 5-hydroxytryptamine (5-HT) affected the expression of hepatic transporters or DMEs. The expression of hepatic transporters was assessed using the Western-blot technique in a 2,4,6-trinitrobenzenesulfonic-acid-induced rat model of post-infectious irritable bowel syndrome (PI-IBS), in which serum levels of 5-HT were significantly elevated. To further clarify the underlying mechanism, the 5-HT precursor 5-hydroxytryptophan (5-HTP) and the 5-HT depleting agent parachlorophenylalanine (pCPA) were applied to adjust serum levels of 5-HT. Serum levels of 5-HT were measured using LC-MS/MS; the expression of hepatic transporters, DMEs, and nuclear receptors were examined by Western-blot technique. Our results showed that in PI-IBS rats the expression of multidrug resistance protein 2 (Mrp2) was significantly decreased, while colonic enterochromaffin cell density and serum levels of 5-HT were all significantly increased. Moreover, 5-HTP treatment significantly increased serum levels of 5-HT and decreased the expression of Mrp2 and glycoprotein P (P-gp), whereas treatment with pCPA markedly decreased serum levels of 5-HT and increased the expression of Mrp2 and P-gp. Our results indicated that serum 5-HT regulates the expression of Mrp2 and P-gp, and the underlying mechanism may be related to the altered expression of the nuclear receptor constitutive androstane receptor (CAR).

  12. Investigation of 5-HT3 receptor-triggered serotonin release from guinea-pig isolated colonic mucosa: a role of PYY-containing endocrine cell.

    PubMed

    Kojima, Shu-Ichi; Kojima, Ken; Fujita, Tomoe

    2017-03-15

    The effect of a 5-HT3 receptor-selective agonist SR57227A was investigated on the outflow of 5-hydroxytryptamine (5-HT) from isolated muscle layer-free mucosal preparations of guinea-pig colon. The mucosal preparations were incubated in vitro and the outflow of 5-HT from these preparations was determined by high-performance liquid chromatography with electrochemical detection. SR57227A (100μM) produced a tetrodotoxin-resistant and sustained increase in the outflow of 5-HT from the mucosal preparations. The SR57227A-evoked sustained 5-HT outflow was completely inhibited by the 5-HT3 receptor antagonist ramosetron (1μM). The neuropeptide Y1 receptor antagonist BIBO3304 (100nM) partially inhibited the SR57227A-evoked sustained 5-HT outflow, but the Y2 receptor antagonist BIIE0246 (1μM) or the glucagon-like peptide-1 (GLP-1) receptor antagonist exendin-(9-39) (1μM), showed a minimal effect on the SR57227A-evoked sustained 5-HT outflow. In the presence of BIBO3304 (100nM) and exendin-(9-39) (1μM), SR57227A (100μM) failed to produce a sustained increase in the outflow of 5-HT. The Y1 receptor agonist [Leu(31), Pro(34)]-neuropeptide Y (10nM), but not GLP-1-(7-36) amide (100nM), produced a sustained increase in the outflow of 5-HT. We found that 5-HT3 receptor-triggered 5-HT release from guinea-pig colonic mucosa is mediated by the activation of 5-HT3 receptors located at endocrine cells (enterochromaffin cells and peptide YY (PYY)-containing endocrine cells). The activation of both Y1 and GLP-1 receptors appears to be required for the maintenance of 5-HT3 receptor-triggered 5-HT release. It is therefore considered that 5-HT3 receptors located at colonic mucosa play a crucial role in paracrine signaling between enterochromaffin cells and PYY-containing endocrine cells.

  13. Role of basal extracellular Ca2+ entry during 5-HT-induced vasoconstriction of canine pulmonary arteries

    PubMed Central

    Wilson, Sean M; Mason, Helen S; Ng, Lih C; Montague, Stephen; Johnston, Louise; Nicholson, Neil; Mansfield, Sarah; Hume, Joseph R

    2005-01-01

    Measurements of artery contraction, cytosolic [Ca2+], and Ca2+ permeability were made to examine contractile and cytosolic [Ca2+] responses of canine pulmonary arteries and isolated cells to 5-hydroxytryptamine (5-HT), and to determine the roles of intracellular Ca2+ release and extracellular Ca2+ entry in 5-HT responses. The EC50 for 5-HT-mediated contractions and cytosolic [Ca2+] increases was ∼10−7 M and responses were inhibited by ketanserin, a 5-HT2A-receptor antagonist. 5-HT induced cytosolic [Ca2+] increases were blocked by 20 μM Xestospongin-C and by 2-APB (IC50=32 μM), inhibitors of InsP3 receptor activation. 5-HT-mediated contractions were reliant on release of InsP3 but not ryanodine-sensitive Ca2+ stores. 5-HT-mediated contractions and cytosolic [Ca2+] increases were partially inhibited by 10 μM nisoldipine, a voltage-dependent Ca2+ channel blocker. Extracellular Ca2+ removal reduced 5-HT-mediated contractions further than nisoldipine and ablated cytosolic [Ca2+] increases and [Ca2+] oscillations. Similar to Ca2+ removal, Ni2+ reduced cytosolic [Ca2+] and [Ca2+] oscillations. Mn2+ quench of fura-2 and voltage-clamp experiments showed that 5-HT failed to activate any significant voltage-independent Ca2+ entry pathways, including store-operated and receptor-activated nonselective cation channels. Ni2+ but not nisoldipine or Gd3+ blocked basal Mn2+ entry. Voltage-clamp experiments showed that simultaneous depletion of both InsP3 and ryanodine-sensitive intracellular Ca2+ stores activates a current with linear voltage dependence and a reversal potential consistent with it being a nonselective cation channel. 5-HT did not activate this current. Basal Ca2+ entry, rather than CCE, is important to maintain 5-HT-induced cytosolic [Ca2+] responses and contraction in canine pulmonary artery. PMID:15655514

  14. Antihyperalgesic effect of 5-HT7 receptor activation on the midbrain periaqueductal gray in a rat model of neuropathic pain.

    PubMed

    Li, Shu-Fa; Zhang, Yuan-Yuan; Li, You-Yan; Wen, Song; Xiao, Zhi

    2014-12-01

    The 5-HT7 receptor is the most recently discovered receptor for 5-hydroxytryptamine (5-HT), and only little is known about the analgesic potential of this receptor. Adenosine triphosphate (ATP) modulates pain transmission by activating P2X/P2Y receptors, in which the P2X3 subtype is an important target for this effect. This study examined the antihyperalgesic effect of the 5-HT7 receptors in the ventrolateral midbrain periaqueductal gray (vlPAG), a crucial site for endogenous pain inhibition. This study also explored the importance of the interactions between the 5-HT7 and P2X3 receptors in this effect. To address this issue, neuropathic pain was induced through chronic constriction injury (CCI) of the sciatic nerve in Sprague-Dawley (SD) rats. The expression level and distribution of the 5-HT7 receptor were evaluated through Western blot and immunohistochemistry. The mechanical withdrawal threshold (MWT) was measured by using an electronic pressure meter test. Different doses (3, 6, and 12μmol) of AS-19, a selective agonist of the 5-HT7 receptor, were administered in the vlPAG of CCI rats. The effects of pretreatment with the selective 5-HT7 receptor antagonist SB-269970 or the selective P2X3 receptor antagonist A-317491 on the analgesic effect of AS-19 were observed. Results showed that CCI decreased the MWT values of the rats. The injury also increased the protein level of the 5-HT7 receptor in the vlPAG of neuropathic pain rats. AS-19 microinjection significantly elevated the MWT values in a dose-dependent manner, but SB-269970 pretreatment attenuated the antihyperalgesic effect of AS-19. Furthermore, the antihyperalgesic effect of the 5-HT7 receptor was partially but significantly blocked by A-317491 pretreatment. These data indicate that the 5-HT7 receptor in the vlPAG exerts an antihyperalgesic effect on rats with neuropathic pain. The 5-HT7 and P2X3 receptors interact in the vlPAG and exhibit an analgesic action through the enhanced function of the

  15. Design and synthesis of dual 5-HT1A and 5-HT7 receptor ligands.

    PubMed

    Ofori, Edward; Zhu, Xue Y; Etukala, Jagan R; Peprah, Kwakye; Jordan, Kamanski R; Adkins, Adia A; Bricker, Barbara A; Kang, Hye J; Huang, Xi-Ping; Roth, Bryan L; Ablordeppey, Seth Y

    2016-08-15

    5-HT1A and 5-HT7 receptors have been at the center of discussions recently due in part to their major role in the etiology of major central nervous system diseases such as depression, sleep disorders, and schizophrenia. As part of our search to identify dual targeting ligands for these receptors, we have carried out a systematic modification of a selective 5HT7 receptor ligand culminating in the identification of several dual 5-HT1A and 5-HT7 receptor ligands. Compound 16, a butyrophenone derivative of tetrahydroisoquinoline (THIQ), was identified as the most potent agent with low nanomolar binding affinities to both receptors. Interestingly, compound 16 also displayed moderate affinity to other clinically relevant dopamine receptors. Thus, it is anticipated that compound 16 may serve as a lead for further exploitation in our quest to identify new ligands with the potential to treat diseases of CNS origin.

  16. Subunit rotation models activation of serotonin 5-HT3AB receptors by agonists

    NASA Astrophysics Data System (ADS)

    Maksay, Gábor; Simonyi, Miklós; Bikádi, Zsolt

    2004-10-01

    The N-terminal extracellular regions of heterooligomeric 3AB-type human 5-hydroxytryptamine receptors (5-HT 3ABR) were modelled based on the crystal structure of snail acetylcholine binding protein AChBP. Stepwise rotation of subunit A by 5° was performed between -10° and 15° to mimic agonist binding and receptor activation. Anticlockwise rotation reduced the size of the binding cavity in interface AB and reorganised the network of hydrogen bonds along the interface. AB subunit dimers with different rotations were applied for docking of ligands with different efficacies: 5-HT, m-chlorophenylbiguanide, SR 57227, quinolinyl piperazine and lerisetron derivatives. All ligands were docked into the dimer with -10° rotation representing ligand-free, open binding cavities similarly, without pharmacological discrimination. Their ammonium ions were in hydrogen bonding distance to the backbone carbonyl of W183. Anticlockwise rotation and contraction of the binding cavity led to distinctive docking interactions of agonists with E129 and cation-π interactions of their ammonium ions. Side chains of several further amino acids participating in docking (Y143, Y153, Y234 and E236) are in agreement with the effects of point mutations in the binding loops. Our model postulates that 5-HT binds to W183 in a hydrophobic cleft as well as to E236 in a hydrophilic vestibule. Then it elicits anticlockwise rotation to draw in loop C via π-cation-π interactions of␣its ammonium ion with W183 and Y234. Finally, closure of the binding cavity might end in rebinding of 5-HT to E129 in the hydrophilic vestibule.

  17. Effects of 5-hydroxytryptamine on human isolated placental chorionic arteries and veins.

    PubMed Central

    Reviriego, J.; Marín, J.

    1989-01-01

    1. Effects of 5-hydroxytrypamine (5-HT) on cylindrical segments of human chorionic arteries and veins were investigated. Concentrations of 5-HT (up to 3 x 10(-6) M) produced concentration-dependent contractions; higher concentrations induced a reduction of the maximal response. These responses were antagonized by methysergide and ketanserin in a non-competitive manner. The contractions elicited by low 5-HT concentrations were more affected by methysergide (10(-7) M) than by ketanserin (10(-7) M). Ketanserin apparently increased the responses to high 5-HT concentrations in veins. Arteries appeared to be more sensitive to both drugs than veins. Single concentrations of 5-HT elicited transient contractions in both kinds of vessel. 2. Marked tachyphylaxis was seen in segments exposed to high concentrations of 5-HT or in which a concentration-response curve was determined. 3. Contractions induced by 5-HT were reduced in a Ca2+-free medium. Veins were more affected by the Ca2+ antagonists, nifedipine (10(-7) M), nicardipine (10(-5) M) and diltiazem (10(-5) M) than arteries. 4. 5-HT (10(-6) M) enhanced 45Ca2+ uptake in those vessels in which a concentration-response curve had not been previously determined. In veins, this increase was reduced by the three Ca2+ antagonists. 5. The results indicate that 5-HT responses in these vessels were greatly dependent on extracellular Ca2+. A type of 5-HT1-receptor may mediate responses to low 5-HT concentrations, while higher concentrations may activate 5-HT2-receptors. 5-HT may desensitize the latter by interconversion between a high affinity and low affinity state, as suggested by others, a change prevented in part by ketanserin. PMID:2743086

  18. Computational approaches for the study of serotonin and its membrane transporter SERT: implications for drug design in neurological sciences.

    PubMed

    Pratuangdejkul, J; Schneider, B; Launay, J-M; Kellermann, O; Manivet, P

    2008-01-01

    Serotonin (5-hydroxytryptamine, 5-HT), a monoamine neurotransmitter of the central nervous and peripheral systems (CNS), plays a critical role in a wide variety of physiological and behavioral processes. In the serotonergic system, deregulation of the tightly controlled extracellular concentration of 5-HT appears to be at the origin of a host of metabolic and psychiatric disorders. A key step that regulates 5-HT external level is the re-uptake of 5-HT into cells by the 5-HT transporter (SERT), which is besides the target of numerous drugs interacting with the serotonergic system. Therapeutic strategies have mainly focused on the development of compounds that block the activity of SERT, for instance reuptake inhibitors (e.g. tricyclics, "selective" serotonin reuptake inhibitors) and in the past, specific substrate-type releasers (e.g. amphetamine and cocaine derivatives). Today, generation of new drugs targetting SERT with enhanced selectivity and reduced toxicity is one of the most challenging tasks in drug design. In this context, studies aiming at characterizing the physicochemical properties of 5-HT as well as the biological active conformation of SERT are a prerequisite to the design of new leads. However, the absence of a high-resolution 3D-structure for SERT has hampered the design of new transporter inhibitors. Using computational approaches, numerous efforts were made to shed light on the structure of 5-HT and its transporter. In this review, we compared several in silico methods dedicated to the modeling of 5-HT and SERT with an emphasis on i) quantum chemistry for study of 5-HT conformation and ii) ligand-based (QSAR and pharmacophore models) and transporter-based (homology models) approaches for studying SERT molecule. In addition, we discuss some methodological aspects of the computational work in connection with the construction of putative but reliable 3D structural models of SERT that may help to predict the mechanisms of neurotransmitter transport.

  19. Effects of 5-hydroxytryptamine (serotonin) and forskolin on intracellular free calcium in isolated and fura-2 loaded smooth-muscle cells from the anterior byssus retractor (catch) muscle of Mytilus edulis.

    PubMed

    Ishii, N; Simpson, A W; Ashley, C C

    1989-06-01

    Effects of 5-hydroxytryptamine (5-HT) and forskolin on intracellular free calcium concentration [( Ca2+]i) were studied in suspensions of fura-2 loaded smooth-muscle cells from the anterior byssus retractor 'catch' muscle of Mytilus edulis. The successive addition of 5 mM carbachol (CCh) and 100 mM KCl to the suspension evoked a transient elevation of [Ca2+]i from the resting value of 124 +/- 2.7 nM (mean +/- SE, n = 18) to 300-400 nM, which was associated with contraction. The change in [Ca2+]i induced CCh was concentration-dependent with the EC50 of 10(-5) M. The resting [Ca2+]i was unaffected by 10 microM 5-HT. The change in [Ca2+]i induced by 5 mM CCh was suppressed by 5-HT from 167 +/- 14.0 (n = 11) to 124 +/- 14.9 (n = 8) nM whereas that induced by 100 mM KCl was enhanced from 321 +/- 31.9 to 405 +/- 17.6 nM (n = 8). 5-HT applied during the decaying phase of the CCh response caused a rapid decline in [Ca2+]i. In both the responses to CCh and KCl, the falling phase was accelerated by 5-HT. 10 microM forskolin, a potent activator of adenylate cyclase, mimicked the effects of 5-HT as did a membrane-permeant cyclic AMP analogue, 8-parachlorophenylthio cyclic AMP (cpt-cAMP). Application of 100 microM cpt-cAMP partially suppressed the Ca2+i response to CCh and enhanced that to KCl. D-Tubocurarine (500 microM) added during the decaying phase of the response induced by 100 microM CCh, caused a rapid decline in [Ca2+]i similar to that caused by both 5-HT and forskolin.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. gamma-Aminobutyric acid-A receptor-mediated suppression of 5-hydroxytryptamine-induced guinea-pig basilar artery smooth muscle contractility.

    PubMed

    Shirakawa, J; Hosoda, K; Taniyama, K; Matsumoto, S; Tanaka, C

    1989-01-01

    The mechanism of gamma-aminobutyric acid (GABA)-induced suppression of 5-hydroxytryptamine (5HT)-induced contractility of cerebral blood vessels was studied in single smooth muscle cells isolated from the guinea-pig basilar artery. GABA reduced 5HT-induced contraction of single smooth muscle cells, and the effect of GABA was mimicked by muscimol, but not baclofen. The response of muscimol was antagonized by bicuculline, thereby indicating that GABAA receptors exist on the smooth muscle of the basilar artery. Since GABA did not change the contraction induced by the addition of Ca2+ to the Ca2+-free medium in the presence of high K+, it is unlikely that GABA inhibits the influx of extracellular Ca2+. The caffeine-induced contraction in the Ca2+-free medium was reduced by GABA, and the effect of GABA was not obtained by treatment with furosemide and in the Cl- -free medium. These results indicate that GABA acts on the GABAA receptor located on smooth muscle cells and reduces the contractility of the basilar artery by suppression of the mobilization of intracellular Ca2+.

  1. Activation of constitutive 5-hydroxytryptamine(1B) receptor by a series of mutations in the BBXXB motif: positioning of the third intracellular loop distal junction and its G(o)alpha protein interactions.

    PubMed Central

    Pauwels, P J; Gouble, A; Wurch, T

    1999-01-01

    Constitutive activity of the recombinant human 5-hydroxytryptamine(1B) (5-HT(1B)) receptor (RC code 2.1.5HT.01.B) was investigated by mutagenesis of the BBXXB motif (in which B represents a basic residue and X a non-basic residue) located in the C-terminal portion of the third intracellular loop. In contrast with wild-type 5-HT(1B) receptors, three receptor mutants (Thr(313)-->Lys, Thr(313)-->Arg and Thr(313)-->Gln) increased their agonist-independent guanosine 5'-[gamma-[(35)S]thio]triphosphate binding response by 26-41%. This activity represented approx. 30% of the maximal response induced by 5-HT and could be reversed by the inverse agonists methiothepin and 3-(3-dimethylaminopropyl)-4-hydroxy-N-(4-pyridin-4-yl phenyl)-benzenamide (GR 55562). Enhanced agonist-independent and agonist-dependent 5-HT(1B) receptor activation was provided by co-expression of a pertussis toxin-resistant rat G(o)alpha Cys(351)-->Ile protein. The wild-type 5-HT(1B) receptor displayed a doubling in basal activity, whereas a spectrum of enhanced basal activities (313-571%) was observed with a series of diverse amino acid substitutions (isoleucine, glycine, asparagine, alanine, lysine, phenylalanine, glutamine and arginine) at the 5-HT(1B) receptor position 313 in the presence of pertussis toxin (100 ng/ml). Consequently, the constitutive 5-HT(1B) receptor activity can be modulated by the mutation of Thr(313), and displays a graded range between 11% and 59% of maximal 5-HT(1B) receptor activation by 5-HT. No clear pattern is apparent in the framework of traditionally cited amino acid characteristics (i.e. residue size, charge or hydrophobicity) to explain the observed constitutive activities. The various amino acid substitutions that yielded enhanced activity are unlikely to make similar intramolecular interactions within the 5-HT(1B) receptor. It is hypothesized that the positioning of the junction between the third intracellular loop and transmembrane domain VI is altered by mutation of

  2. The relation of developmental changes in brain serotonin transporter (5HTT) and 5HT1A receptor binding to emotional behavior in female rhesus monkeys: effects of social status and 5HTT genotype.

    PubMed

    Embree, M; Michopoulos, V; Votaw, J R; Voll, R J; Mun, J; Stehouwer, J S; Goodman, M M; Wilson, M E; Sánchez, M M

    2013-01-03

    The goal of the present study was to examine how social subordination stress and 5HTT polymorphisms affect the development of brain serotonin (5HT) systems during the pubertal transition in female rhesus monkeys. We also examined associations with developmental changes in emotional reactivity in response to a standardized behavioral test, the Human Intruder (HI). Our findings provide the first longitudinal evidence of developmental increases in 5HT1A receptor and 5HTT binding in the brain of female primates from pre- to peripuberty. The increase in 5HT1A BP(ND) in these socially housed female rhesus monkeys is a robust finding, occurring across all groups, regardless of social status or 5HTT genotype, and occurring in the left and right hemispheres of all prefrontal regions studied, as well as the amygdala, hippocampus, hypothalamus, and raphe nuclei. 5HTT BP(ND) also showed an increase with age in raphe, anterior cingulate cortex, and dorsolateral prefrontal cortex. These changes in brain 5HT systems take place as females establish more adult-like patterns of social behavior, as well as during the HI paradigm. Indeed, the main developmental changes in behavior during the HI (increase in freezing and decrease in submission/appeasement) were related to neurodevelopmental increases in 5HT1A receptors and 5HTT, because the associations between these behaviors and 5HT endpoints emerge at peripuberty. We detected an effect of social status on 5HT1A BP(ND) in the hypothalamus and on 5HTT BP(ND) in the orbitofrontal cortex, with subordinates showing higher BP(ND) than dominants in both cases during the pubertal transition. No main effects of 5HTT genotype were observed for 5HT1A or 5HTT BP(ND). Our findings indicate that adolescence in female rhesus monkeys is a period of central 5HT reorganization, partly influenced by exposure to the social stress of subordination, that likely functions to integrate adrenal and gonadal systems and shape the behavioral response to

  3. Effects of 5-hydroxytryptamine on the dorsal muscle of the leech (hirudo medicinalis)

    PubMed Central

    Schain, R. J.

    1961-01-01

    5-Hydroxytryptamine has an inhibiting effect on the leech muscle. It reduces the contractions produced by acetylcholine or nicotine and accelerates the relaxation of the muscle when these substances are washed out. This acceleration of relaxation allows a more rapid assay of acetylcholine in this preparation. PMID:13747232

  4. Transcriptome of pancreas-specific Bmpr1a-deleted islets links to TPH1–5-HT axis

    PubMed Central

    Jiang, Fang-Xu; Mishina, Yuji; Baten, Akma; Morahan, Grant; Harrison, Leonard C.

    2015-01-01

    ABSTRACT Bone morphogenetic protein (BMP) signaling is crucial for the development and function of numerous organs, but its role on the function of pancreatic islets is not completely clear. To explore this question, we applied the high throughput transcriptomic analyses on the islets isolated from mice with a pancreas-specific deletion of the gene, Bmpr1a, encoding the type 1a BMP receptor. Consistently, these pBmpr1aKO mice had impaired glucose homeostasis at 3 months, and were more severely affected at 12 months of age. These had lower fasting blood insulin concentrations, with reduced expression of several key regulators of β-cell function. Importantly, transcriptomic profiling of 3-month pBmpr1aKO islets and bioinformatic analyses revealed abnormal expression of 203 metabolic genes. Critically among these, the tryptophan hydroxylase 1 gene (Tph1), encoding the rate-limiting enzyme for the production of 5-hydroxytryptamine (5-HT) was the highest over-expressed one. 5-HT is an important regulator of insulin secretion from β cells. Treatment with excess 5-HT inhibited this secretion. Thus our transcriptomic analysis links two highly conserved molecular pathways the BMP signaling and the TPH1–5-HT axis on glucose homeostasis. PMID:26187948

  5. Reduced 5-HT(1B) receptor binding in the dorsal brain stem after cognitive behavioural therapy of major depressive disorder.

    PubMed

    Tiger, Mikael; Rück, Christian; Forsberg, Anton; Varrone, Andrea; Lindefors, Nils; Halldin, Christer; Farde, Lars; Lundberg, Johan

    2014-08-30

    Major depression is a significant contributor to the global burden of disease, and its pathophysiology is largely unknown. The serotonin hypothesis is, however, the model with most supporting data, although the details are only worked out to some extent. Recent clinical imaging measurements indeed imply a role in major depressive disorder (MDD) for the inhibitory serotonin autoreceptor 5-hydroxytryptamine1B (5-HT1B). The aim of the current study was to examine 5-HT1B receptor binding in the brain of MDD patients before and after psychotherapy. Ten patients with an ongoing untreated moderate depressive episode were examined with positron emission tomography (PET) and the 5-HT1B receptor selective radioligand [(11)C]AZ10419369, before and after treatment with internet-based cognitive behavioural therapy. All of the patients examined responded to treatment, and 70% were in remission by the time of the second PET measurement. A statistically significant 33% reduction of binding potential (BPND) was found in the dorsal brain stem (DBS) after treatment. No other significant changes in BPND were found. The DBS contains the raphe nuclei, which regulate the serotonin system. This study gives support for the importance of serotonin and the 5-HT1B receptor in the biological response to psychological treatment of MDD.

  6. Comparative receptor mapping of serotoninergic 5-HT3 and 5-HT4 binding sites*

    NASA Astrophysics Data System (ADS)

    López-Rodríguez, María L.; Morcillo, María José; Benhamú, Bellinda; Rosado, María Luisa

    1997-11-01

    The clinical use of currently available drugs acting at the5-HT4 receptor has been hampered by their lack of selectivityover 5-HT3 binding sites. For this reason, there is considerableinterest in the medicinal chemistry of these serotonin receptor subtypes, andsignificant effort has been made towards the discovery of potent and selectiveligands. Computer-aided conformational analysis was used to characterizeserotoninergic 5-HT3 and 5-HT4 receptorrecognition. On the basis of the generally accepted model of the5-HT3 antagonist pharmacophore, we have performed a receptormapping of this receptor binding site, following the active analog approach(AAA) defined by Marshall. The receptor excluded volume was calculated as theunion of the van der Waals density maps of nine active ligands(pKi ≥ 8.9), superimposed in pharmacophoric conformations.Six inactive analogs (pKi < 7.0) were subsequently used todefine the essential volume, which in its turn can be used to define theregions of steric intolerance of the 5-HT3 receptor. Five activeligands (pKi ≥ 9.3) at 5-HT4 receptors wereused to construct an antagonist pharmacophore for this receptor, and todetermine its excluded volume by superimposition of pharmacophoricconformations. The volume defined by the superimposition of five inactive5-HT4 receptor analogs that possess the pharmacophoric elements(pKi ≤ 6.6) did not exceed the excluded volume calculated forthis receptor. In this case, the inactivity may be due to the lack of positiveinteraction of the amino moiety with a hypothetical hydrophobic pocket, whichwould interact with the voluminous substituents of the basic nitrogen ofactive ligands. The difference between the excluded volumes of both receptorshas confirmed that the main difference is indeed in the basic moiety. Thus,the 5-HT3 receptor can only accommodate small substituents inthe position of the nitrogen atom, whereas the 5-HT4 receptorrequires more voluminous groups. Also, the basic nitrogen is located at ca

  7. Evidence that mCPP may have behavioural effects mediated by central 5-HT1C receptors.

    PubMed Central

    Kennett, G. A.; Curzon, G.

    1988-01-01

    1. The effects of 1-(3-chlorophenyl)piperazine (mCPP) and 1-[3-(trifluoromethyl)phenyl] piperazine (TFMPP) on activity of rats in a novel cage, and on the rotorod and elevated bar co-ordination tests was examined. 2. Peripherally administered mCPP and TFMPP dose-dependently reduced locomotion, rearing, and feeding scores but not grooming of freely fed rats placed in a novel observation cage. Yawning behaviour was increased. Similar effects were also observed after injection of mCPP into the 3rd ventricle. 3. Co-ordination on a rotating drum of both untrained and trained rats was impaired following mCPP but co-ordination on an elevated bar was not. 4. The hypoactivity induced by mCPP was opposed by three antagonists with high affinity for the 5-hydroxytryptamine (5-HT1C) site; metergoline, mianserin, cyproheptadine and possibly also by a fourth antagonist mesulergine. Metergoline, mianserin and cyproheptadine also opposed the reduction in feeding scores. However, neither effect of mCPP was antagonized by the 5-HT2-receptor antagonists ketanserin or ritanserin, the 5-HT3-receptor antagonist ICS 205-930, the 5-HT1A and 5-HT1B-receptor antagonists (-)-pindolol, (-)-propranolol and (+/-)-cyanopindolol or the 5-HT1A-, 5-HT2- and dopamine receptor antagonist spiperone. The specific alpha 2-adrenoceptor antagonist idazoxan was also without effect. 5. Hypoactivity induced by TFMPP was similarly antagonized by mianserin but unaffected by (+/-)-cyanopindolol. 6. These results suggest that the hypoactivity is mediated by central 5-HT1C-receptors and that mCPP and possibly TFMPP may be 5-HT1C-receptor agonists. 7. As mianserin, cyproheptadine and mesulergine in the absence of mCPP did not increase locomotion but increased the number of feeding scores, the activation of 5-HT1C-receptors may be of physiological importance in the control of appetite. The possible relevance of these results to the therapeutic and side-effects of clinically used antidepressants (particularly

  8. Impact of 5-HT3 receptor antagonists on chemotherapy-induced nausea and vomiting: a retrospective cohort study

    PubMed Central

    2012-01-01

    Background 1st generation 5-hydroxytryptamine receptor antagonists (5-HT3 RAs), and palonosetron, a 2nd generation 5-HT3 RA, are indicated for the prevention of chemotherapy (CT)-induced nausea and vomiting (CINV) associated with moderately (MEC) and highly emetogenic CT agents (HEC). This study explores the impact of step therapy policies requiring use of an older 5-HT3 RA before palonosetron on risk of CINV associated with hospital or emergency department (ED) admissions. Methods Patients who received cyclophosphamide post breast cancer (BC) surgery or who were diagnosed with lung cancer on carboplatin (LC-carboplatin) or cisplatin (LC-cisplatin) were selected from PharMetrics’ (IMS LifeLink) claims dataset (2005-2008). Patients were followed for 6 months from initial CT administration for CINV events identified through ICD-9-CM codes. Patients were grouped into those initiated with older, generic 5-HT3 RAs (ondansetron, granisetron, and dolasetron) and those initiated and maintained on palonosetron throughout study follow-up. CINV events and CINV days were analyzed using multivariate regressions controlling for demographic and clinical variables. Results Eligible patients numbered 3,606 in BC, 4,497 in LC-carboplatin and 1,154 in LC-cisplatin cohorts, with 52%, 40%, and 34% in the palonosetron group, respectively. There was no significant difference between the two 5-HT3 RA groups in age or Charlson Comorbidity Index among the two MEC cohorts (BC and LC-carboplatin). Among the LC-cisplatin cohort, palonosetron users were older with more males than the older 5-HT3 RA group (age: 60.1 vs. 61.3; males, 66.9% vs. 56.9%). Compared to the older 5-HT3 RAs, the palonosetron groups incurred 22%-51% fewer 5-HT3 RA pharmacy claims, had fewer patients with CINV events (3.5% vs. 5.5% in BC, 9.5% vs. 12.8% in LC-carboplatin, 16.4% vs. 21.7% in LC-cisplatin), and had lower risk for CINV events (odds ratios 0.62, 0.71, or 0.71, respectively; p < 0.05). The BC and LC

  9. The influence of cerebral 5-hydroxytryptamine on catalepsy induced by brain-amine depleting neuroleptics or by cholinomimetics

    PubMed Central

    Fuenmayor, Luis D.; Vogt, Marthe

    1979-01-01

    1 Catalepsy was produced in rats and mice by the subcutaneous injection of either tetrabenazine or the butyrophenone U-32,802A (4′-fluoro-4-{[4-(p-fluorophenyl)-3-cyclohexen-1-yl]amino} butyrophenone hydrochloride). Catalepsy was evaluated by the duration of total immobility on a vertical grid. 2 Pretreatment with p-chlorophenylalanine (PCPA) reduced the intensity of catalepsy by 50% or more, whereas its time course remained the same. 3 5-Hydroxytryptophan (5-HTP), 10 mg/kg, enhanced the catalepsy induced by U-32,802A or tetrabenazine, provided it was administered soon (45 min) after the neuroleptic; injections at 90 min had no effect. Otherwise untreated rats given this dose of 5-HTP behaved normally on the grid. 4 The anticataleptic effect of PCPA was reversed by 5-HTP. 5 Measurable changes in 5-hydroxytryptamine (5-HT) metabolism in the rat forebrain accompanied the modification of catalepsy by 5-HTP and PCPA. 6 Methysergide (5 mg/kg) given 30 min before the neuroleptics to either mice or rats reduced the catalepsy, assessed 2.5 h after the methysergide. It also prevented the increase in neuroleptic-induced catalepsy following 5-HTP, 10 mg/kg. 7 Tryptophan, like 5-HTP, increased the catalepsy seen in mice after U-32,802A and tetrabenazine, and increased the production of 5-hydroxyindol-3-ylacetic acid in the forebrain. 8 In the rat, intracerebroventricular injection of physostigmine produced catalepsy which was not modified by methysergide or PCPA but was abolished by atropine. Similarly, in the mouse, catalepsy induced by the subcutaneous injection of pilocarpine was abolished by atropine but not affected by either methysergide or 5-HTP. 9 Atropine greatly reduced the catalepsy induced by U-32,802A and tetrabenazine but lowered striatal homovanillic acid (HVA) only after U-32,802A. D,L-DOPA, 20 mg/kg, diminished the cataleptogenic effect of both neuroleptics and raised striatal HVA. 10 The results support the view that there is a facilitating or permissive

  10. Role of 5-HT1B, 5-HT2A and 5-HT2C receptors in learning.

    PubMed

    Meneses, A; Hong, E

    1997-08-01

    The effects of post-training (i.p.) injection of TFMPP, mCPP, DOI or 1-NP in the autoshaping learning task was explored. Furthermore, the post-training effects of these agonists after treatment with the antagonists (+/-)-pindolol, (+/-)-propranolol, NAN-190, ketanserin, ritanserin, mesulergine, MDL-72222 or p-chloroamphetamine (5-HT depleter) were studied. Rats were individually trained with a lever-press response (conditioned response; CR) on the autoshaping task and tested 24 h later. The results showed that the injection of TFMPP (1-10 mg/kg), mCPP (1-10 mg/kg), 1-NP (0.1-1.0 mg/kg) or mesulergine (0.4 mg/kg) decreased the rate of CR, while DOI (0.01-0.1 mg/kg) and ritanserin (0.5 mg/kg) and ketanserin (0.001-0.1 mg/kg) increased it. However, the effect induced by TFMPP was reversed by (+/-)-pindolol, ketanserin, ritanserin and PCA; the mCPP-induced effect was antagonized by (+/-)-propranolol, ketanserin, ritanserin and MDL-72222; and the effect produced by 1-NP was reversed by ketanserin, ritanserin and PCA. In addition, the increment in CR provoked by DOI was enhanced by ketanserin, and reversed by ritanserin, mesulergine and PCA. These findings suggest that TFMPP, 1-NP and DOI exerted their effects via stimulation of presynaptic 5-HT receptors. The effects of mCPP most probably reflect activation of postsynaptic receptors. The present data suggest that both 5-HT1B and 5-HT2A-2C receptors play a significant role in the consolidation of learning.

  11. Treadmill exercise improves depression-like symptoms by enhancing serotonergic function through upregulation of 5-HT1A expression in the olfactory bulbectomized rats

    PubMed Central

    Shin, Mal-Soon; Park, Sang-Seo; Lee, Jae-Min; Kim, Tae-Woon; Kim, Young-Pyo

    2017-01-01

    The olfactory bulbectomy (OBX) is a well-known method inducing animal model of depression. Depression is associated with dysfunction of serotonin (5-hydroxytryptamine, 5-HT) system. In the present study, antidepressive effect of treadmill exercise was investigated using olfactory bulbectomized rats. After bilateral bulbectomy, the rats in the treadmill exercise groups were subjected to run on a treadmill for 30 min once a day during 28 days. Increased immobility time and decreased fast time in the forced swim test were observed in the olfactory bulbectomized rats. Sucrose preference in the sucrose preference test was decreased and activity in the open field test was also increased in the olfactory bulbectomized rats. Treadmill exercise decreased immobility time and activity and increased fast time and sucrose preference in the olfactory bulbectomized rats. Expressions of 5-HT and tryptophan hydroxylase (TPH) in the dorsal raphe of rats were suppressed by OBX and treadmill exercise increased the expressions of 5-HT and TPH in the olfactory bulbectomized rats. Serotonin receptor type 1A (5-HT1A) expression in the dorsal raphe was reduced by OBX and treadmill exercise increased 5-HT1A expression in the olfactory bulbectomized rats. In the present study, treadmill exercise ameliorated OBX-induced depressive symptoms. The antidepressive effect of treadmill exercise might be ascribed to the enhancement of serotonergic function through upregulation of 5-HT1A expression in the dorsal raphe. PMID:28349031

  12. Translational evaluation of JNJ-18038683, a 5-hydroxytryptamine type 7 receptor antagonist, on rapid eye movement sleep and in major depressive disorder.

    PubMed

    Bonaventure, Pascal; Dugovic, Christine; Kramer, Michelle; De Boer, Peter; Singh, Jaskaran; Wilson, Sue; Bertelsen, Kirk; Di, Jianing; Shelton, Jonathan; Aluisio, Leah; Dvorak, Lisa; Fraser, Ian; Lord, Brian; Nepomuceno, Diane; Ahnaou, Abdellah; Drinkenburg, Wilhelmus; Chai, Wenying; Dvorak, Curt; Sands, Steve; Carruthers, Nicholas; Lovenberg, Timothy W

    2012-08-01

    In rodents 5-hydroxytryptamine type 7 (5-HT(7)) receptor blockade has been shown to be effective in models of depression and to increase the latency to rapid eye movement (REM) sleep and decrease REM duration. In the clinic, the REM sleep reduction observed with many antidepressants may serve as a biomarker. We report here the preclinical and clinical evaluation of a 5-HT(7) receptor antagonist, (3-(4-chlorophenyl)-1,4,5,6,7,8-hexahydro-1-(phenylmethyl)pyrazolo[3,4-d]azepine 2-hydroxy-1,2,3-propanetricarboxylate) (JNJ-18038683). In rodents, JNJ-18038683 increased the latency to REM sleep and decreased REM duration, and this effect was maintained after repeated administration for 7 days. The compound was effective in the mouse tail suspension test. JNJ-18038683 enhanced serotonin transmission, antidepressant-like behavior, and REM sleep suppression induced by citalopram in rodents. In healthy human volunteers JNJ-18038683 prolonged REM latency and reduced REM sleep duration, demonstrating that the effect of 5-HT(7) blockade on REM sleep translated from rodents to humans. Like in rats, JNJ-18038683 enhanced REM sleep suppression induced by citalopram in humans, although a drug-drug interaction could not be ruled out. In a double-blind, active, and placebo-controlled clinical trial in 225 patients suffering from major depressive disorder, neither treatment with pharmacologically active doses of JNJ-18038683 or escitalopram separated from placebo, indicating a failed study lacking assay sensitivity. Post hoc analyses using an enrichment window strategy, where all the efficacy data from sites with an implausible high placebo response [placebo group Montgomery-Åsberg Depression Rating Scale (MADRS) < = 12] and from sites with no placebo response (MADRS > = 28) are removed, there was a clinically meaningful difference between JNJ-18038683 and placebo. Further clinical studies are required to characterize the potential antidepressant efficacy of JNJ-18038683.

  13. Third Trimester Equivalent Alcohol Exposure Reduces Modulation of Glutamatergic Synaptic Transmission by 5-HT1A Receptors in the Rat Hippocampal CA3 Region

    PubMed Central

    Morton, Russell A.; Valenzuela, C. Fernando

    2016-01-01

    Fetal alcohol exposure has been associated with many neuropsychiatric disorders that have been linked to altered serotonin (5-hydroxytryptamine; 5-HT) signaling, including depression and anxiety. During the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy) 5-HT neurons undergo significant functional maturation and their axons reach target regions in the forebrain (e.g., cortex and hippocampus). The objective of this study was to identify the effects of third trimester ethanol (EtOH) exposure on hippocampal 5-HT signaling. Using EtOH vapor inhalation chambers, we exposed rat pups to EtOH for 4 h/day from postnatal day (P) 2 to P12. The average serum EtOH concentration in the pups was 0.13 ± 0.04 g/dl (legal intoxication limit in humans = 0.08 g/dl). We used brain slices to assess the modulatory actions of 5-HT on field excitatory postsynaptic potentials in the hippocampal CA3 region at P13-P15. Application of the GABAA/glycine receptor antagonist, picrotoxin, caused broadening of field excitatory postsynaptic potentials (fEPSPs), an effect that was reversed by application of 5-HT in slices from air exposed rats. However, this effect of 5-HT was absent in EtOH exposed animals. In slices from naïve animals, application of a 5-HT1A receptor antagonist blocked the effect of 5-HT on the fEPSPs recorded in presence of picrotoxin, suggesting that third trimester ethanol exposure acts by inhibiting the function of these receptors. Studies indicate that 5-HT1A receptors play a critical role in the development of hippocampal circuits. Therefore, inhibition of these receptors by third trimester ethanol exposure could contribute to the pathophysiology of fetal alcohol spectrum disorders. PMID:27375424

  14. Redistribution by 5-hydroxytryptamine of carotid arterial blood at the expense of arteriovenous anastomotic blood flow

    PubMed Central

    Saxena, Pramod R.; Verdouw, Pieter D.

    1982-01-01

    1. The effects of 5-hydroxytryptamine by intravenous (1, 5 and 10 μg kg-1 min-1 in cats) and intracarotid (0·5 and 2 μg kg-1 min-1 in pigs) routes were studied on the complete distribution of common carotid artery blood flow, measured with radioactive microspheres (15 μm). In addition, the amine was also infused (0·75-3 μg kg-1 min-1) into the carotid artery of cats to observe its influence on the shunting of microspheres in the jugular venous blood. 2. The basal total common carotid blood flow was distributed ipsilaterally mainly to extracerebral tissues and only little blood entered the brain. As shown by the presence of microspheres in the lungs after injection into the carotid artery (52% in cats; 82% in pigs), a major fraction of the carotid blood by-passed the capillary bed through arteriovenous anastomoses in the head (non-nutrient fraction). 3. 5-Hydroxytryptamine redistributed the blood in favour of the nutrient compartment at the expense of arteriovenous anastomotic fraction. In cats, tissue blood flow did not significantly change but, in the pig, blood flow to all tissues, particularly to skin and ears, was substantially increased despite a reduction in total carotid blood flow. This reduction was entirely due to a change in the non-nutrient fraction. 4. Intracarotid infusion of 5-hydroxytryptamine in vagosympathectomized intact or spinal cats decreased the number of microspheres appearing in the jugular venous blood, again indicating a reduction in arteriovenous anastomotic flow due to a constriction of these non-nutrient vessels. 5. Cyproheptadine (1 mg kg-1) completely reversed the effect of 5-hydroxytryptamine on the total carotid blood flow. However, the vasoconstriction of arteriovenous anastomoses was only partially attenuated and the vasodilatatory response was either unchanged (muscle) or even enhanced (skin, ear and bones). 6. It is suggested that 5-hydroxytryptamine causes vasoconstriction of the large arteries via D-receptors which are

  15. Increased Serotonin Transporter Expression Reduces Fear and Recruitment of Parvalbumin Interneurons of the Amygdala.

    PubMed

    Bocchio, Marco; Fucsina, Giulia; Oikonomidis, Lydia; McHugh, Stephen B; Bannerman, David M; Sharp, Trevor; Capogna, Marco

    2015-12-01

    Genetic association studies suggest that variations in the 5-hydroxytryptamine (5-HT; serotonin) transporter (5-HTT) gene are associated with susceptibility to psychiatric disorders such as anxiety or posttraumatic stress disorder. Individuals carrying high 5-HTT-expressing gene variants display low amygdala reactivity to fearful stimuli. Mice overexpressing the 5-HTT (5-HTTOE), an animal model of this human variation, show impaired fear, together with reduced fear-evoked theta oscillations in the basolateral amygdala (BLA). However, it is unclear how variation in 5-HTT gene expression impacts on the microcircuitry of the BLA to change behavior. We addressed this issue by investigating the activity of parvalbumin (PV)-expressing interneurons (PVINs), the biggest IN population in the basal amygdala (BA). We found that increased 5-HTT expression impairs the recruitment of PVINs (measured by their c-Fos immunoreactivity) during fear. Ex vivo patch-clamp recordings demonstrated that the depolarizing effect of 5-HT on PVINs was mediated by 5-HT2A receptor. In 5-HTTOE mice, 5-HT-evoked depolarization of PVINs and synaptic inhibition of principal cells, which provide the major output of the BA, were impaired. This deficit was because of reduced 5-HT2A function and not because of increased 5-HT uptake. Collectively, these findings provide novel cellular mechanisms that are likely to contribute to differences in emotional behaviors linked with genetic variations of the 5-HTT.

  16. Influence of excitatory amino acids on basal and sensory stimuli-induced release of 5-HT in the locus coeruleus

    PubMed Central

    Singewald, Nicolas; Kaehler, Stefan T; Hemeida, Ramadan; Philippu, Athineos

    1998-01-01

    The interactions between 5-hydroxytryptaminergic neurones and excitatory amino acid utilizing neurones were studied in the locus coeruleus of conscious, freely moving rats. The locus coeruleus was superfused with artificial cerebrospinal fluid through a push-pull cannula and 5-hydroxytryptamine (5-HT) was determined in the superfusate that was continuously collected in time periods of 10 min. Superfusion of the locus coeruleus with the NMDA receptor antagonist AP5 (10 μM), kynurenic acid (1 mM), or the AMPA/kainate receptor antagonist DNQX (10 μM) reduced the 5-HT release in the locus coeruleus. Superfusion with the agonists NMDA (50 μM), kainic acid (50 μM) or AMPA (10 μM) enhanced the release rate of 5-HT. AP5 (10 μM) blocked the stimulant effect of NMDA, while tetrodotoxin (1 μM) failed to influence the NMDA-induced release of 5-HT. In the presence of 10 μM DNQX, the releasing effect of 50 μM kainic acid was abolished. Pain elicited by tail pinch, as well as noise-induced stress, increased the release of 5-HT. Superfusion of the locus coeruleus with 10 μM AP5 reduced the tail pinch-induced 5-HT release. AP5 (10 μM) did not affect the noise-induced release of 5-HT which was reduced, when the locus coeruleus was superfused simultaneously with this concentration of AP5 and 1 μM kynurenic acid. DNQX (10 mM) failed to influence the release of 5-HT induced by tail pinch or noise. The findings suggest that 5-hydroxytryptaminergic neurones of the locus coeruleus are tonically modulated by excitatory amino acids via NMDA and AMPA/kainate receptors. The release of 5-HT elicited by tail pinch and noise is mediated to a considerable extent through endogenous excitatory amino acids acting on NMDA receptors, while AMPA/kainate receptors are not involved in this process. PMID:9517395

  17. Effects of the benzodiazepine receptor agonist midazolam and antagonist flumazenil on 5-hydroxytryptamine release from guinea-pig intestine in vitro. Indirect support for a "natural" benzodiazepine-like substance in the intestine.

    PubMed

    Racké, K; Schwörer, H; Kilbinger, H

    1990-01-01

    Isolated segments of the guinea-pig small intestine and the guinea-pig stomach were vascularly perfused and the release of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid into the portal venous effluent determined by high pressure liquid chromatography with electrochemical detection. Test substances were applied intraarterially. The benzodiazepine receptor agonist, midazolam, concentration-dependently increased (by 58%, at 1 nmol/l) and decreased (by 32%, at 100 nmol/l) the release of 5-HT from small intestine preparations. Both effects were blocked by the benzodiazepine receptor antagonist flumazenil (10 nmol/l) The stimulatory effect of midazolam was also abolished in the presence of tetrodotoxin (1 mumol/l) or scopolamine (100 nmol/l). In the absence of tetrodotoxin, flumazenil (10 nmol/l) alone decreased the release of 5-HT from the small intestine by 41%, but it increased the release of 5-HT by 50% in the presence of tetrodotoxin. Both effects of flumazenil were abolished in the presence of bicuculline (50 mumol/l). In the absence of tetrodotoxin, flumazenil (10 nmol/l) decreased also the release of 5-HT and its metabolite from the perfused stomach by about 40%, whereas midazolam (1 nmol/l) caused an increase by about 60%. In conclusion, benzodiazepine receptors modulate the previously described intrinsic GABAergic regulation of 5-HT release from enterochromaffin cells in the guinea-pig intestine. It is suggested that an endogenous benzodiazepine-like substance of non-neuronal origin is present in the small intestine and stomach of the guinea-pig.

  18. Voltage-dependent inhibition of recombinant NMDA receptor-mediated currents by 5-hydroxytryptamine

    PubMed Central

    Kloda, Anna; Adams, David J

    2005-01-01

    The effect of 5-HT and related indolealkylamines on heteromeric recomb