Science.gov

Sample records for 5-lipoxygenase 5-lo catalyzes

  1. Stress-induced nuclear export of 5-lipoxygenase

    SciTech Connect

    Hanaka, Hiromi; Shimizu, Takao; Izumi, Takashi . E-mail: takizumi@med.gunma-u.ac.jp

    2005-12-09

    A key enzyme for leukotriene biosynthesis is 5-lipoxygenase (5-LO), which we found is exported from the nucleus when p38 MAPK is activated. CHO-K1 cells stably express green fluorescent protein-5-lipoxygenase fusion protein (GFP-5LO), which is located predominantly in the nucleus, and is exported by anisomycin, hydrogen peroxide, and sorbitol, with activation of p38 MAPK. SB203580, an inhibitor of p38 MAPK, and Leptomycin B, an inhibitor of the nuclear export, blocked the anisomycin-induced export of GFP-5LO. When HEK293 cells were transformed with plasmids for wild-type GFP-5LO, GFP-5LO-S271A or GFP-5LO-S271E mutants, most wild-type GFP-5LO and GFP-5LO-S271A localized in the nucleus, but GFP-5LO-S271E localized in the cytosol. Thus, phosphorylation at Ser-271 of 5-LO is important for its export. Endogenous 5-LO in RBL cells stimulated with anisomycin was also exported from the nucleus. These results suggest that the nuclear export of 5-LO depends on the stress-induced activation of the p38 MAPK pathway.

  2. Distinct parts of leukotriene C{sub 4} synthase interact with 5-lipoxygenase and 5-lipoxygenase activating protein

    SciTech Connect

    Strid, Tobias; Svartz, Jesper; Franck, Niclas; Hallin, Elisabeth; Ingelsson, Bjoern; Soederstroem, Mats; Hammarstroem, Sven

    2009-04-17

    Leukotriene C{sub 4} is a potent inflammatory mediator formed from arachidonic acid and glutathione. 5-Lipoxygenase (5-LO), 5-lipoxygenase activating protein (FLAP) and leukotriene C{sub 4} synthase (LTC{sub 4}S) participate in its biosynthesis. We report evidence that LTC{sub 4}S interacts in vitro with both FLAP and 5-LO and that these interactions involve distinct parts of LTC{sub 4}S. FLAP bound to the N-terminal part/first hydrophobic region of LTC{sub 4}S. This part did not bind 5-LO which bound to the second hydrophilic loop of LTC{sub 4}S. Fluorescent FLAP- and LTC{sub 4}S-fusion proteins co-localized at the nuclear envelope. Furthermore, GFP-FLAP and GFP-LTC{sub 4}S co-localized with a fluorescent ER marker. In resting HEK293/T or COS-7 cells GFP-5-LO was found mainly in the nuclear matrix. Upon stimulation with calcium ionophore, GFP-5-LO translocated to the nuclear envelope allowing it to interact with FLAP and LTC{sub 4}S. Direct interaction of 5-LO and LTC{sub 4}S in ionophore-stimulated (but not un-stimulated) cells was demonstrated by BRET using GFP-5-LO and Rluc-LTC{sub 4}S.

  3. Molecular cloning and amino acid sequence of human 5-lipoxygenase

    SciTech Connect

    Matsumoto, T.; Funk, C.D.; Radmark, O.; Hoeoeg, J.O.; Joernvall, H.; Samuelsson, B.

    1988-01-01

    5-Lipoxygenase (EC 1.13.11.34), a Ca/sup 2 +/- and ATP-requiring enzyme, catalyzes the first two steps in the biosynthesis of the peptidoleukotrienes and the chemotactic factor leukotriene B/sub 4/. A cDNA clone corresponding to 5-lipoxygenase was isolated from a human lung lambda gt11 expression library by immunoscreening with a polyclonal antibody. Additional clones from a human placenta lambda gt11 cDNA library were obtained by plaque hybridization with the /sup 32/P-labeled lung cDNA clone. Sequence data obtained from several overlapping clones indicate that the composite DNAs contain the complete coding region for the enzyme. From the deduced primary structure, 5-lipoxygenase encodes a 673 amino acid protein with a calculated molecular weight of 77,839. Direct analysis of the native protein and its proteolytic fragments confirmed the deduced composition, the amino-terminal amino acid sequence, and the structure of many internal segments. 5-Lipoxygenase has no apparent sequence homology with leukotriene A/sub 4/ hydrolase or Ca/sup 2 +/-binding proteins. RNA blot analysis indicated substantial amounts of an mRNA species of approx. = 2700 nucleotides in leukocytes, lung, and placenta.

  4. 5-Lipoxygenase Deficiency Reduces Acetaminophen-Induced Hepatotoxicity and Lethality

    PubMed Central

    Hohmann, Miriam S. N.; Cardoso, Renato D. R.; Pinho-Ribeiro, Felipe A.; Crespigio, Jefferson; Cunha, Thiago M.; Alves-Filho, José C.; da Silva, Rosiane V.; Pinge-Filho, Phileno; Ferreira, Sergio H.; Cunha, Fernando Q.; Casagrande, Rubia; Verri, Waldiceu A.

    2013-01-01

    5-Lipoxygenase (5-LO) converts arachidonic acid into leukotrienes (LTs) and is involved in inflammation. At present, the participation of 5-LO in acetaminophen (APAP)-induced hepatotoxicity and liver damage has not been addressed. 5-LO deficient (5-LO−/−) mice and background wild type mice were challenged with APAP (0.3–6 g/kg) or saline. The lethality, liver damage, neutrophil and macrophage recruitment, LTB4, cytokine production, and oxidative stress were assessed. APAP induced a dose-dependent mortality, and the dose of 3 g/kg was selected for next experiments. APAP induced LTB4 production in the liver, the primary target organ in APAP toxicity. Histopathological analysis revealed that 5-LO−/− mice presented reduced APAP-induced liver necrosis and inflammation compared with WT mice. APAP-induced lethality, increase of plasma levels of aspartate aminotransferase and alanine aminotransferase, liver cytokine (IL-1β, TNF-α, IFN-γ, and IL-10), superoxide anion, and thiobarbituric acid reactive substances production, myeloperoxidase and N-acetyl-β-D-glucosaminidase activity, Nrf2 and gp91phox mRNA expression, and decrease of reduced glutathione and antioxidant capacity measured by 2,2′-azinobis(3-ethylbenzothiazoline 6-sulfonate) assay were prevented in 5-LO−/− mice compared to WT mice. Therefore, 5-LO deficiency resulted in reduced mortality due to reduced liver inflammatory and oxidative damage, suggesting 5-LO is a promising target to reduce APAP-induced lethality and liver inflammatory/oxidative damage. PMID:24288682

  5. Inhibition of 5-lipoxygenase by vitamin E.

    PubMed

    Reddanna, P; Rao, M K; Reddy, C C

    1985-11-25

    Purified 5-lipoxygenase from potato tubers was inhibited strongly by vitamin E and its analogs. The inhibition by d-alpha-tocopherol was found to be irreversible and non-competitive with respect to arachidonic acid. An IC50 of 5 microM was calculated for d-alpha-tocopherol. The inhibition appears to be unrelated to its antioxidant function. Binding studies with 14C-labelled d-alpha-tocopherol revealed that there is a strong interaction between vitamin E and 5-lipoxygenase. Tryptic digestion and peptide mapping of 5-lipoxygenase-vitamin E complex indicate that vitamin E binds strongly to a single peptide. These studies suggest that cellular vitamin E levels may have profound influence on the formation of leukotrienes. PMID:3934003

  6. Phospholipid Ozonation Products Activate the 5-Lipoxygenase Pathway in Macrophages.

    PubMed

    Zemski Berry, Karin A; Murphy, Robert C

    2016-08-15

    Ozone is a highly reactive environmental toxicant that can react with the double bonds of lipids in pulmonary surfactant. This study was undertaken to investigate the proinflammatory properties of the major lipid-ozone product in pulmonary surfactant, 1-palmitoyl-2-(9'-oxo-nonanoyl)-glycerophosphocholine (16:0/9al-PC), with respect to eicosanoid production. A dose-dependent increase in the formation of 5-lipoxygenase (5-LO) products was observed in murine resident peritoneal macrophages (RPM) and alveolar macrophages (AM) upon treatment with 16:0/9al-PC. In contrast, the production of cyclooxygenase (COX) derived eicosanoids did not change from basal levels in the presence of 16:0/9al-PC. When 16:0/9al-PC and the TLR2 ligand, zymosan, were added to RPM or AM, an enhancement of 5-LO product formation along with a concomitant decrease in COX product formation was observed. Neither intracellular calcium levels nor arachidonic acid release was influenced by the addition of 16:0/9al-PC to RPM. Results from mitogen-activated protein kinase (MAPK) inhibitor studies and direct measurement of phosphorylation of MAPKs revealed that 16:0/9al-PC activates the p38 MAPK pathway in RPM, which results in the activation of 5-LO. Our results indicate that 16:0/9al-PC has a profound effect on the eicosanoid pathway, which may have implications in inflammatory pulmonary disease states where eicosanoids have been shown to play a role. PMID:27448436

  7. On the interference of boswellic acids with 5-lipoxygenase: mechanistic studies in vitro and pharmacological relevance.

    PubMed

    Siemoneit, Ulf; Pergola, Carlo; Jazzar, Bianca; Northoff, Hinnak; Skarke, Carsten; Jauch, Johann; Werz, Oliver

    2009-03-15

    Boswellic acids are pharmacologically active ingredients of frankincense with anti-inflammatory properties. It was shown that in vitro 11-keto-boswellic acids inhibit 5-lipoxygenase (5-LO, EC 1.13.11.34), the key enzyme in leukotriene biosynthesis, which may account for their anti-inflammatory effectiveness. However, whether 11-keto-boswellic acids interfere with 5-LO under physiologically relevant conditions (i.e., in whole blood assays) and whether they inhibit 5-LO in vivo is unknown. Inhibition of human 5-LO by the major naturally occurring boswellic acids was analyzed in cell-free and cell-based activity assays. Moreover, interference of boswellic acids with 5-LO in neutrophil incubations in the presence of albumin and in human whole blood was assessed, and plasma leukotriene B(4) of frankincense-treated healthy volunteers was determined. Factors influencing 5-LO activity (i.e., Ca(2+), phospholipids, substrate concentration) significantly modulate the potency of 11-keto-boswellic acids to inhibit 5-LO. Moreover, 11-keto-boswellic acids efficiently suppressed 5-LO product formation in isolated neutrophils (IC(50)=2.8 to 8.8 muM) but failed to inhibit 5-LO product formation in human whole blood. In the presence of albumin (10 mg/ml), 5-LO inhibition by 11-keto-boswellic acids (up to 30 muM) in neutrophils was abolished, apparently due to strong albumin-binding (>95%) of 11-keto-boswellic acids. Finally, single dose (800 mg) oral administration of frankincense extracts to human healthy volunteers failed to suppress leukotriene B(4) plasma levels. Our data show that boswellic acids are direct 5-LO inhibitors that efficiently suppress 5-LO product synthesis in common in vitro test models, however, the pharmacological relevance of such interference in vivo seems questionable.

  8. Electrophilic Fatty Acid Species Inhibit 5-Lipoxygenase and Attenuate Sepsis-Induced Pulmonary Inflammation

    PubMed Central

    Awwad, Khader; Steinbrink, Svenja D.; Frömel, Timo; Lill, Nicole; Isaak, Johann; Häfner, Ann-Kathrin; Roos, Jessica; Hofmann, Bettina; Heide, Heinrich; Geisslinger, Gerd; Steinhilber, Dieter; Freeman, Bruce A.; Maier, Thorsten J.; Fleming, Ingrid

    2014-01-01

    Abstract Aims: The reaction of nitric oxide and nitrite-derived species with polyunsaturated fatty acids yields electrophilic fatty acid nitroalkene derivatives (NO2-FA), which display anti-inflammatory properties. Given that the 5-lipoxygenase (5-LO, ALOX5) possesses critical nucleophilic amino acids, which are potentially sensitive to electrophilic modifications, we determined the consequences of NO2-FA on 5-LO activity in vitro and on 5-LO-mediated inflammation in vivo. Results: Stimulation of human polymorphonuclear leukocytes (PMNL) with nitro-oleic (NO2-OA) or nitro-linoleic acid (NO2-LA) (but not the parent lipids) resulted in the concentration-dependent and irreversible inhibition of 5-LO activity. Similar effects were observed in cell lysates and using the recombinant human protein, indicating a direct reaction with 5-LO. NO2-FAs did not affect the activity of the platelet-type 12-LO (ALOX12) or 15-LO-1 (ALOX15) in intact cells or the recombinant protein. The NO2-FA-induced inhibition of 5-LO was attributed to the alkylation of Cys418, and the exchange of Cys418 to serine rendered 5-LO insensitive to NO2-FA. In vivo, the systemic administration of NO2-OA to mice decreased neutrophil and monocyte mobilization in response to lipopolysaccharide (LPS), attenuated the formation of the 5-LO product 5-hydroxyeicosatetraenoic acid (5-HETE), and inhibited lung injury. The administration of NO2-OA to 5-LO knockout mice had no effect on LPS-induced neutrophil or monocyte mobilization as well as on lung injury. Innovation: Prophylactic administration of NO2-OA to septic mice inhibits inflammation and promotes its resolution by interfering in 5-LO-mediated inflammatory processes. Conclusion: NO2-FAs directly and irreversibly inhibit 5-LO and attenuate downstream acute inflammatory responses. Antioxid. Redox Signal. 20, 2667–2680. PMID:24206143

  9. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    SciTech Connect

    Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Bae, Jin U.; Bae, Sun S.; Kim, Chi D.

    2010-05-15

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B{sub 4} (LTB{sub 4}) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB{sub 4} production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB{sub 4}. Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB{sub 4}, subsequent MMP-9 production and plaque rupture.

  10. Structural and Functional Analysis of Calcium Ion Mediated Binding of 5-Lipoxygenase to Nanodiscs

    PubMed Central

    Kumar, Ramakrishnan B.; Zhu, Lin; Idborg, Helena; Rådmark, Olof; Jakobsson, Per-Johan; Rinaldo-Matthis, Agnes; Hebert, Hans; Jegerschöld, Caroline

    2016-01-01

    An important step in the production of inflammatory mediators of the leukotriene family is the Ca2+ mediated recruitment of 5 Lipoxygenase (5LO) to nuclear membranes. To study this reaction in vitro, the natural membrane mimicking environment of nanodiscs was used. Nanodiscs with 10.5 nm inner diameter were made with the lipid POPC and membrane scaffolding protein MSP1E3D1. Monomeric and dimeric 5LO were investigated. Monomeric 5LO mixed with Ca2+ and nanodiscs are shown to form stable complexes that 1) produce the expected leukotriene products from arachidonic acid and 2) can be, for the first time, visualised by native gel electrophoresis and negative stain transmission electron microscopy and 3) show a highest ratio of two 5LO per nanodisc. We interpret this as one 5LO on each side of the disc. The dimer of 5LO is visualised by negative stain transmission electron microscopy and is shown to not bind to nanodiscs. This study shows the advantages of nanodiscs to obtain basic structural information as well as functional information of a complex between a monotopic membrane protein and the membrane. PMID:27010627

  11. Gene expression of 5-lipoxygenase and LTA4 hydrolase in renal tissue of nephrotic syndrome patients

    PubMed Central

    Menegatti, E; Roccatello, D; Fadden, K; Piccoli, G; De Rosa, G; Sena, L M; Rifai, A

    1999-01-01

    Leukotrienes (LT) of the 5-lipoxygenase pathway constitute a class of potent biological lipid mediators of inflammation implicated in the pathogenesis of different models of experimental glomerulonephritis. The key enzyme, 5-lipoxygenase (5-LO), catalyses oxygenation of arachidonic acid to generate the primary leukotriene LTA4. This LT, in turn, serves as a substrate for either LTA4 hydrolase, to form the potent chemoattractant LTB4, or LTC4 synthase, to produce the powerful vasoconstrictor LTC4. To investigate the potential role of LT in the pathogenesis of human glomerulonephritis with nephrotic syndrome, we examined the gene expression of 5-LO and LTA4 hydrolase in renal tissue of 21 adult patients with nephrotic syndrome and 11 controls. The patients consisted of 11 cases of membranous nephropathy (MN), seven focal and segmental glomerulosclerosis (FSGS), two non-IgA mesangial glomerulonephritis and one minimal change disease. Total RNA purified from renal tissue was reverse transcribed into cDNA and amplified with specific primers in a polymerase chain reaction (RT-PCR). Eight patients' renal tissue, four MN and four FSGS, co-expressed 5-LO and LTA4 hydrolase. In situ hybridization analysis revealed 5-LO expression and distribution limited to the interstitial cells surrounding the peritubular capillaries. Comparative clinical and immunohistological data showed that these eight patients had impaired renal function and interstitial changes that significantly correlated with 5-LO expression. These findings suggest that leukotrienes may play an important role in the pathogenesis of MN and FSGS. These results are also relevant to elucidating the pathophysiologic mechanisms which underlie progression to renal failure in these diseases. PMID:10337029

  12. 5-Lipoxygenase Negatively Regulates Th1 Response during Brucella abortus Infection in Mice

    PubMed Central

    Fahel, Júlia Silveira; de Souza, Mariana Bueno; Gomes, Marco Túlio Ribeiro; Corsetti, Patricia P.; Carvalho, Natalia B.; Marinho, Fabio A. V.; de Almeida, Leonardo A.; Caliari, Marcelo V.; Machado, Fabiana Simão

    2015-01-01

    Brucella abortus is a Gram-negative bacterium that infects humans and cattle, causing a chronic inflammatory disease known as brucellosis. A Th1-mediated immune response plays a critical role in host control of this pathogen. Recent findings indicate contrasting roles for lipid mediators in host responses against infections. 5-Lipoxygenase (5-LO) is an enzyme required for the production of the lipid mediators leukotrienes and lipoxins. To determine the involvement of 5-LO in host responses to B. abortus infection, we intraperitoneally infected wild-type and 5-LO-deficient mice and evaluated the progression of infection and concomitant expression of immune mediators. Here, we demonstrate that B. abortus induced the upregulation of 5-LO mRNA in wild-type mice. Moreover, this pathogen upregulated the production of the lipid mediators leukotriene B4 and lipoxin A4 in a 5-LO-dependent manner. 5-LO-deficient mice displayed lower bacterial burdens in the spleen and liver and less severe liver pathology, demonstrating an enhanced resistance to infection. Host resistance paralleled an increased expression of the proinflammatory mediators interleukin-12 (IL-12), gamma interferon (IFN-γ), and inducible nitric oxide synthase (iNOS) during the course of infection. Moreover, we demonstrated that 5-LO downregulated the expression of IL-12 in macrophages during B. abortus infection. Our results suggest that 5-LO has a major involvement in B. abortus infection, by functioning as a negative regulator of the protective Th1 immune responses against this pathogen. PMID:25583526

  13. Age-dependent relevance of endogenous 5-lipoxygenase derivatives in anxiety-like behavior in mice.

    PubMed

    Leo, Luciana M; Almeida-Corrêa, Suellen; Canetti, Claudio A; Amaral, Olavo B; Bozza, Fernando A; Pamplona, Fabricio A

    2014-01-01

    When 5-lipoxygenase (5-LO) is inhibited, roughly half of the CNS effect of the prototypic endocannabinoid anandamide (AEA) is lost. Therefore, we decided to investigate whether inhibiting this enzyme would influence physiological functions classically described as being under control of the endocannabinoid system. Although 5-LO inhibition by MK-886 reduced lipoxin A4 levels in the brain, no effect was found in the elevated plus maze (EPM), even at the highest possible doses, via i.p. (10 mg/kg,) or i.c.v. (500 pmol/2 µl) routes. Accordingly, no alterations in anxiety-like behavior in the EPM test were observed in 5-LO KO mice. Interestingly, aged mice, which show reduced circulating lipoxin A4 levels, were sensitive to MK-886, displaying an anxiogenic-like state in response to treatment. Moreover, exogenous lipoxin A4 induced an anxiolytic-like profile in the EPM test. Our findings are in line with other reports showing no difference between FLAP KO or 5-LO KO and their control strains in adult mice, but increased anxiety-like behavior in aged mice. We also show for the first time that lipoxin A4 affects mouse behavior. In conclusion, we propose an age-dependent relevancy of endogenous 5-LO derivatives in the modulation of anxiety-like behavior, in addition to a potential for exogenous lipoxin A4 in producing an anxiolytic-like state.

  14. The 5-lipoxygenase pathway: oxidative and inflammatory contributions to the Alzheimer’s disease phenotype

    PubMed Central

    Joshi, Yash B.; Praticò, Domenico

    2015-01-01

    Alzheimer’s disease (AD) is the most common, and, arguably, one of the most-well studied, neurodegenerative conditions. Several decades of investigation have revealed that amyloid-β and tau proteins are critical pathological players in this condition. Genetic analyses have revealed specific mutations in the cellular machinery that produces amyloid-β, but these mutations are found in only a small fraction of patients with the early-onset variant of AD. In addition to development of amyloid-β and tau pathology, oxidative damage and inflammation are consistently found in the brains of these patients. The 5-lipoxygenase protein enzyme (5LO) and its downstream leukotriene metabolites have long been known to be important modulators of oxidation and inflammation in other disease states. Recent in vivo evidence using murine knock-out models has implicated the 5LO pathway, which also requires the 5LO activating protein (FLAP), in the molecular pathology of AD, including the metabolism of amyloid-β and tau. In this manuscript, we will provide an overview of 5LO and FLAP, discussing their involvement in biochemical pathways relevant to AD pathogenesis. We will also discuss how the 5LO pathway contributes to the molecular and behavioral insults seen in AD and provide an assessment of how targeting these proteins could lead to therapeutics relevant not only for AD, but also other related neurodegenerative conditions. PMID:25642165

  15. 5-Lipoxygenase facilitates healing after myocardial infarction.

    PubMed

    Blömer, Nadja; Pachel, Christina; Hofmann, Ulrich; Nordbeck, Peter; Bauer, Wolfgang; Mathes, Denise; Frey, Anna; Bayer, Barbara; Vogel, Benjamin; Ertl, Georg; Bauersachs, Johann; Frantz, Stefan

    2013-07-01

    Early healing after myocardial infarction (MI) is characterized by a strong inflammatory reaction. Most leukotrienes are pro-inflammatory and are therefore potential mediators of healing and remodeling after myocardial ischemia. The enzyme 5-lipoxygenase (5-LOX) has a key role in the transformation of arachidonic acid in leukotrienes. Thus, we tested the effect of 5-LOX on healing after MI. After chronic coronary artery ligation, early mortality was significantly increased in 5-LOX(-/-) when compared to matching wildtype (WT) mice due to left ventricular rupture. This effect could be reproduced in mice treated with the 5-LOX inhibitor Zileuton. A perfusion mismatch due to the vasoactive potential of leukotrienes is not responsible for left ventricular rupture since local blood flow assessed by magnetic resonance perfusion measurements was not different. However, after MI, there was an accentuation of the inflammatory reaction with an increase of pro-inflammatory macrophages. Yet, mortality was not changed in chimeric mice (WT vs. 5-LOX(-/-) bone marrow in 5-LOX(-/-) animals), indicating that an altered function of 5-LOX(-/-) inflammatory cells is not responsible for the phenotype. Collagen production and accumulation of fibroblasts were significantly reduced in 5-LOX(-/-) mice in vivo after MI. This might be due to an impaired migration of 5-LOX(-/-) fibroblasts, as shown in vitro to serum. In conclusion, a lack or inhibition of 5-LOX increases mortality after MI because of healing defects. This is not mediated by a change in local blood flow, but through an altered inflammation and/or fibroblast function.

  16. 5-Lipoxygenase is a direct p53 target gene in humans.

    PubMed

    Gilbert, Bianca; Ahmad, Khalil; Roos, Jessica; Lehmann, Christoph; Chiba, Tomohiro; Ulrich-Rückert, Sandra; Smeenk, Leonie; van Heeringen, Simon; Maier, Thorsten J; Groner, Bernd; Steinhilber, Dieter

    2015-08-01

    The p53 tumor suppressor plays a critical role in cancer, and more than 50% of human tumors contain mutations or deletions of the TP53 gene. p53 can transactivate or repress target genes in response to diverse stress signals, such as transient growth arrest, DNA repair, cellular differentiation, senescence and apoptosis. Through an unbiased genome-wide ChIP-seq analysis, we have found that 5-lipoxygenase (ALOX5, 5-LO) which is a key enzyme of leukotriene (LT) biosynthesis, is a direct target gene of p53 and its expression is induced by genotoxic stress via actinomycin D (Act.D) or etoposide (Eto) treatment. 5-LO and LTs play a role in immunological diseases as well as in tumorigenesis and tumor growth. p53 binds to a specific binding site consisting of a complete p53 consensus-binding motif in ALOX5 intron G which is located about 64kbp downstream of the transcriptional start site. We confirmed the strong binding of p53 to the 5-LO target site in ChIP-qPCR experiments. Expression analyses by qRT-PCR and immunoblot further revealed that genotoxic stress induces the ALOX5 mRNA and protein expression in a p53-dependent manner. Knockdown of p53 in U2OS cells leads to a downregulation of 5-LO mRNA and protein expression. In addition, immunofluorescence and immunoprecipitation assays indicate the direct binding of 5-LO to p53 protein. Furthermore, we found that 5-LO can inhibit the transcriptional activity of p53 suggesting that 5-LO acts in a negative feedback loop to limit induction of p53 target genes.

  17. Chronic adventitial inflammation, vasa vasorum expansion, and 5-lipoxygenase up-regulation in irradiated arteries from cancer survivors

    PubMed Central

    Halle, Martin; Christersdottir, Tinna; Bäck, Magnus

    2016-01-01

    Radiation-induced cardiovascular disease is an emerging problem in a steadily increasing population of survivors of cancer. However, the underlying biology is poorly described, and the late onset, which occurs several years after exposure, precludes adequate investigations in animal and cell culture models. We investigated the role of the 5-lipoxygenase (5-LO)/leukotriene pathway in radiation-induced vascular changes. Use of paired samples of irradiated arteries and nonirradiated internal control arteries from the same patient that were harvested during surgery for cancer reconstruction ≤10 yr after radiotherapy provides a unique human model of chronic radiation–induced vascular changes. Immunohistochemical stainings and perioperative inspection revealed an adventitial inflammatory response, with vasa vasorum expansion and chronic infiltration of CD68+ macrophages. These macrophages stained positive for the leukotriene-forming enzyme 5-LO. Messenger RNA levels of 5-LO and leukotriene B4 receptor 1 were increased in irradiated arterial segments compared with control vessels. These results point to targeting the 5-LO/leukotriene pathway as a therapeutic adjunct to prevent late adverse vascular effects of radiotherapy.—Halle, M., Christersdottir, T., Bäck, M. Chronic adventitial inflammation, vasa vasorum expansion, and 5-lipoxygenase up-regulation in irradiated arteries from cancer survivors. PMID:27530979

  18. Sulphatides trigger polymorphonuclear granulocyte spreading on collagen-coated surfaces and inhibit subsequent activation of 5-lipoxygenase.

    PubMed Central

    Sud'ina, G F; Brock, T G; Pushkareva, M A; Galkina, S I; Turutin, D V; Peters-Golden, M; Ullrich, V

    2001-01-01

    Sulphatides are sulphate esters of galactocerebrosides that are present on the surfaces of many cell types and act as specific ligands to selectins. The present study was undertaken to investigate the effect of sulphatides on polymorphonuclear granulocyte (PMN) attachment, spreading and 5-lipoxygenase (5-LO) metabolism. Sulphatides, but not non-sulphated galactocerebrosides, dose-dependently enhanced attachment to collagen, as measured by the myeloperoxidase assay. Studies with blocking antibodies indicated that the increased attachment was mediated by CD11b/CD18 (Mac-1) beta 2 integrin. Scanning electron microscopy indicated that sulphatides also greatly enhanced the degree of cell spreading. In PMNs treated in suspension, sulphatides had no effect on the ionophore A23187-stimulated release of arachidonic acid and the synthesis of 5-LO metabolites. In contrast, in PMNs attached to collagen, the enzymic conversion of arachidonic acid by 5-LO was inhibited by sulphatides. Inhibition of 5-LO metabolism by sulphatides was observed even in the presence of exogenous substrate, suggesting that sulphatides directly inhibited 5-LO action. Consistent with this, sulphatides interfered with ionophore-induced translocation of the 5-LO to the nuclear envelope. Substances competing with sulphatide binding to cells, like dextran sulphate, or a strong inhibitor of cell spreading, like the actin-polymerizing agent jasplakinolide, prevented the effects of sulphatides on PMN attachment and spreading and leukotriene synthesis. We conclude that shape changes occurring in response to sulphatides specifically impair PMN leukotriene synthesis by inhibiting translocation of 5-LO. PMID:11672437

  19. Design, synthesis and evaluation of semi-synthetic triazole-containing caffeic acid analogues as 5-lipoxygenase inhibitors.

    PubMed

    De Lucia, Daniela; Lucio, Oscar Méndez; Musio, Biagia; Bender, Andreas; Listing, Monika; Dennhardt, Sophie; Koeberle, Andreas; Garscha, Ulrike; Rizzo, Roberta; Manfredini, Stefano; Werz, Oliver; Ley, Steven V

    2015-08-28

    In this work the synthesis, structure-activity relationship (SAR) and biological evaluation of a novel series of triazole-containing 5-lipoxygenase (5-LO) inhibitors are described. The use of structure-guided drug design techniques provided compounds that demonstrated excellent 5-LO inhibition with IC50 of 0.2 and 3.2 μm in cell-based and cell-free assays, respectively. Optimization of binding and functional potencies resulted in the identification of compound 13d, which showed an enhanced activity compared to the parent bioactive compound caffeic acid 5 and the clinically approved zileuton 3. Compounds 15 and 16 were identified as lead compounds in inhibiting 5-LO products formation in neutrophils. Their interference with other targets on the arachidonic acid pathway was also assessed. Cytotoxicity tests were performed to exclude a relationship between cytotoxicity and the increased activity observed after structure optimization.

  20. Systems Pharmacology Models Can Be Used to Understand Complex Pharmacokinetic-Pharmacodynamic Behavior: An Example Using 5-Lipoxygenase Inhibitors

    PubMed Central

    Demin, O; Karelina, T; Svetlichniy, D; Metelkin, E; Speshilov, G; Demin Jr, O; Fairman, D; van der Graaf, P H; Agoram, B M

    2013-01-01

    Zileuton, a 5-lipoxygenase (5LO) inhibitor, displays complex pharmaokinetic (PK)-pharmacodynamic (PD) behavior. Available clinical data indicate a lack of dose–bronchodilatory response during initial treatment, with a dose response developing after ~1–2 weeks. We developed a quantitative systems pharmacology (QSP) model to understand the mechanism behind this phenomenon. The model described the release, maturation, and trafficking of eosinophils into the airways, leukotriene synthesis by the 5LO enzyme, leukotriene signaling and bronchodilation, and the PK of zileuton. The model provided a plausible explanation for the two-phase bronchodilatory effect of zileuton–the short-term bronchodilation was due to leukotriene inhibition and the long-term bronchodilation was due to inflammatory cell infiltration blockade. The model also indicated that the theoretical maximum bronchodilation of both 5LO inhibition and leukotriene receptor blockade is likely similar. QSP modeling provided interesting insights into the effects of leukotriene modulation. PMID:24026253

  1. Regulation of gamma-secretase activating protein by the 5Lipoxygenase: in vitro and in vivo evidence

    PubMed Central

    Chu, Jin; Li, Jian-Guo; Hoffman, Nicholas E.; Stough, Alexandra M.; Madesh, Muniswamy; Praticò, Domenico

    2015-01-01

    The formation of Aβ is directly controlled by the γ-secretase complex and its activator, γ-secretase activating protein (GSAP). GSAP derives from a C-terminal fragment of a larger precursor protein via a caspase-3 mediated cleavage. However, the mechanism regulating this process remains unknown. Here we provide in vitro experimental evidence that 5-Lipoxygenase (5LO) is as an endogenous regulator for GSAP formation, but not for other known γ-secretase modulators, by directly and specifically activating caspase-3. These results were confirmed in vivo by using transgenic mouse models of Alzheimer’s disease in which 5LO level and activity were modulated genetically or pharmacologically. Taken together, our findings demonstrate that GSAP cleavage via caspase-3 is regulated and depend upon the availability of 5LO further establishing this protein as an attractive and viable therapeutic target for Alzheimer’s disease. PMID:26076991

  2. Deletion of 5-Lipoxygenase in the Tumor Microenvironment Promotes Lung Cancer Progression and Metastasis through Regulating T Cell Recruitment

    PubMed Central

    Poczobutt, Joanna M.; Nguyen, Teresa T.; Hanson, Dwight; Li, Howard; Sippel, Trisha R.; Weiser-Evans, Mary C. M.; Gijon, Miguel; Murphy, Robert C.

    2016-01-01

    Eicosanoids, including PGs, produced by cyclooxygenases (COX), and leukotrienes, produced by 5-lipoxygenase (5-LO) have been implicated in cancer progression. These molecules are produced by both cancer cells and the tumor microenvironment (TME). We previously reported that both COX and 5-LO metabolites increase during progression in an orthotopic immunocompetent model of lung cancer. Although PGs in the TME have been well studied, less is known regarding 5-LO products produced by the TME. We examined the role of 5-LO in the TME using a model in which Lewis lung carcinoma cells are directly implanted into the lungs of syngeneic WT mice or mice globally deficient in 5-LO (5-LO-KO). Unexpectedly, primary tumor volume and liver metastases were increased in 5-LO-KO mice. This was associated with an ablation of leukotriene (LT) production, consistent with production mainly mediated by the microenvironment. Increased tumor progression was partially reproduced in global LTC4 synthase KO or mice transplanted with LTA4 hydrolase-deficient bone marrow. Tumor-bearing lungs of 5-LO-KO had decreased numbers of CD4 and CD8 T cells compared with WT controls, as well as fewer dendritic cells. This was associated with lower levels of CCL20 and CXL9, which have been implicated in dendritic and T cell recruitment. Depletion of CD8 cells increased tumor growth and eliminated the differences between WT and 5-LO mice. These data reveal an antitumorigenic role for 5-LO products in the microenvironment during lung cancer progression through regulation of T cells and suggest that caution should be used in targeting this pathway in lung cancer. PMID:26663781

  3. On the inhibition of 5-lipoxygenase product formation by tryptanthrin: mechanistic studies and efficacy in vivo

    PubMed Central

    Pergola, C; Jazzar, B; Rossi, A; Northoff, H; Hamburger, M; Sautebin, L; Werz, O

    2012-01-01

    BACKGROUND AND PURPOSE Leukotrienes (LTs) are pro-inflammatory mediators produced by 5-lipoxygenase (5-LO). Currently available 5-LO inhibitors either lack efficacy or are toxic and novel approaches are required to establish a successful anti-LT therapy. Here we provide a detailed evaluation of the effectiveness of the plant-derived alkaloid tryptanthrin as an inhibitor of LT biosynthesis. EXPERIMENTAL APPROACH We analysed LT formation and performed mechanistic studies in human neutrophils stimulated with pathophysiologically relevant stimuli (LPS and formyl peptide), as well as in cell-free assays (neutrophil homogenates or recombinant human 5-LO) and in human whole blood. The in vivo effectiveness of tryptanthrin was evaluated in the rat model of carrageenan-induced pleurisy. KEY RESULTS Tryptanthrin potently reduced LT-formation in human neutrophils (IC50 = 0.6 µM). However, tryptanthrin is not a redox-active compound and did not directly interfere with 5-LO activity in cell-free assays. Similarly, tryptanthrin did not inhibit the release of arachidonic acid, the activation of MAPKs, or the increase in [Ca2+]i, but it modified the subcellular localization of 5-LO. Moreover, tryptanthrin potently suppressed LT formation in human whole blood (IC50 = 10 µM) and reduced LTB4 levels in the rat pleurisy model after a single oral dose of 10 mg·kg−1. CONCLUSIONS AND IMPLICATIONS Our data reveal that tryptanthrin is a potent natural inhibitor of cellular LT biosynthesis with proven efficacy in whole blood and is effective in vivo after oral administration. Its unique pharmacological profile supports further analysis to exploit its pharmacological potential. PMID:21797843

  4. 5-Lipoxygenase inhibitors suppress RANKL-induced osteoclast formation via NFATc1 expression.

    PubMed

    Kang, Ju-Hee; Ting, Zheng; Moon, Mi-ran; Sim, Jung-Seon; Lee, Jung-Min; Doh, Kyung-Eun; Hong, Sunhye; Cui, Minghua; Choi, Sun; Chang, Hyeun Wook; Park Choo, Hea-Young; Yim, Mijung

    2015-11-01

    5-Lipoxygenase synthesizes leukotrienes from arachidonic acid. We developed three novel 5-LO inhibitors having a benzoxazole scaffold as a potential anti-osteoclastogenics. They significantly suppressed RANKL-induced osteoclast formation in mouse bone marrow-derived macrophages. Furthermore, one compound, K7, inhibited the bone resorptive activity of osteoclasts. The anti-osteoclastogenic effect of K7 was mainly attributable to reduction in the expression of NFATc1, an essential transcription factor for osteoclast differentiation. K7 inhibited osteoclast formation via ERK and p38 MAPK, as well as NF-κB signaling pathways. K7 reduced lipopolysaccharide (LPS)-induced osteoclast formation in vivo, corroborating the in vitro data. Thus, K7 exerted an inhibitory effect on osteoclast formation in vitro and in vivo, properties that make it a potential candidate for the treatment of bone diseases associated with excessive bone resorption.

  5. Eugenol--the active principle from cloves inhibits 5-lipoxygenase activity and leukotriene-C4 in human PMNL cells.

    PubMed

    Raghavenra, H; Diwakr, B T; Lokesh, B R; Naidu, K A

    2006-01-01

    Polymorphonuclear leukocytes (PMNL) play an important role in the modulation of inflammatory conditions in humans. PMNL cells recruited at the site of inflammation, release inflammatory mediators such as leukotrienes, proteolytic enzymes and reactive oxygen species. Among these, leukotrienes are implicated in pathophysiology of allergic and inflammatory disorders like asthma, allergic rhinitis, arthritis, inflammatory bowel disease and psoriasis. 5-lipoxygenase (5-LO) is the key enzyme in biosynthetic pathway of leukotrienes. Our earlier studies showed that spice phenolic active principles significantly inhibit 5-LO enzyme in human PMNLs. In this study we have further characterized the inhibitory mechanism of eugenol, the active principle of spice-clove on 5-LO enzyme and also its effect on leukotriene C((4)) (LTC(4)). Substrate dependent enzyme kinetics showed that the inhibitory effect of eugenol on 5-LO was of a non-competitive nature. Further, eugenol was found to significantly inhibit the formation of LTC(4) in calcium ionophore A23187 and arachidonic acid (AA) stimulated PMNL cells. These data clearly suggest that eugenol inhibits 5-LO by non-competitive mechanism and also inhibits formation of LTC(4) in human PMNL cells and thus may have beneficial role in modulating 5-LO pathway in human PMNL cells. PMID:16216483

  6. Eugenol--the active principle from cloves inhibits 5-lipoxygenase activity and leukotriene-C4 in human PMNL cells.

    PubMed

    Raghavenra, H; Diwakr, B T; Lokesh, B R; Naidu, K A

    2006-01-01

    Polymorphonuclear leukocytes (PMNL) play an important role in the modulation of inflammatory conditions in humans. PMNL cells recruited at the site of inflammation, release inflammatory mediators such as leukotrienes, proteolytic enzymes and reactive oxygen species. Among these, leukotrienes are implicated in pathophysiology of allergic and inflammatory disorders like asthma, allergic rhinitis, arthritis, inflammatory bowel disease and psoriasis. 5-lipoxygenase (5-LO) is the key enzyme in biosynthetic pathway of leukotrienes. Our earlier studies showed that spice phenolic active principles significantly inhibit 5-LO enzyme in human PMNLs. In this study we have further characterized the inhibitory mechanism of eugenol, the active principle of spice-clove on 5-LO enzyme and also its effect on leukotriene C((4)) (LTC(4)). Substrate dependent enzyme kinetics showed that the inhibitory effect of eugenol on 5-LO was of a non-competitive nature. Further, eugenol was found to significantly inhibit the formation of LTC(4) in calcium ionophore A23187 and arachidonic acid (AA) stimulated PMNL cells. These data clearly suggest that eugenol inhibits 5-LO by non-competitive mechanism and also inhibits formation of LTC(4) in human PMNL cells and thus may have beneficial role in modulating 5-LO pathway in human PMNL cells.

  7. 5-Lipoxygenase gene transfer worsens memory, amyloid and tau brain pathologies in a mouse model of AD

    PubMed Central

    Chu, Jin; Giannopoulos, Phillip F.; Ceballos-Diaz, Carolina; Golde, Todd E.; Pratico, Domenico

    2012-01-01

    Objective The 5-lipoxygenase (5LO) enzyme is up-regulated in Alzheimer’s disease (AD), and its genetic absence reduces Aβ levels in APP mice. However, its functional role in modulating tau neuropathology remains to be elucidated. Methods To this end, we generated triple transgenic mice (3xTg-AD) over-expressing neuronal 5LO and investigated their phenotype. Results Compared with controls, 3xTg-AD mice over-expressing 5LO manifested an exacerbation of memory deficits, plaques and tangles pathologies. The elevation in Aβ was secondary to an up-regulation of γ-secretase pathway, whereas tau hyperphosphorylation resulted from an activation of the Cdk5 kinase. In vitro study confirmed the involvement of this kinase in the 5-LO-dependent tau phosphorylation, which was independent of the effect on Aβ. Interpretation Our findings highlight the novel functional role that neuronal 5LO plays in exacerbating AD-related tau pathologies. They provide critical preclinical evidence to justify testing selective 5LO inhibitors for AD treatment. PMID:23034916

  8. 5-lipoxygenase pathway is essential for the control of granuloma extension induced by Schistosoma mansoni eggs in lung.

    PubMed

    Toffoli da Silva, Gabriel; Espíndola, Milena Sobral; Fontanari, Caroline; Rosada, Rogerio Silva; Faccioli, Lúcia Helena; Ramos, Simone Gusmão; Rodrigues, Vanderlei; Frantz, Fabiani Gai

    2016-08-01

    According to WHO, it is estimated that approximately 2 billion people are infected with intestinal helminths worldwide and the number of people who are cured of these diseases is relatively low, resulting in a large percentage of chronically infected individuals. Schistosomiasis is one of the most important parasitic diseases present in developing countries configuring it as a serious public health problem, directly related to poverty and social disadvantage. Once the parasite infection is established, Schistosoma mansoni eggs fall into the bloodstream and are trapped in the liver microcirculation where a strong granulomatous response and fibrosis formation occurs. In the experimental model, granulomas develop in the mouse lung after intravenous injection of purified eggs. Here we aim to understand how leukotrienes are involved in the granuloma formation. Leukotrienes are lipid mediators derived from arachidonic acid metabolites via 5-lipoxygenase (5LO) enzyme. They are potent proinflammatory agents and induce recruitment, cell activation, regulation of microbicidal activity of polymorphonuclear and mononuclear cells. In this study, 5LO deficient mice (5LO(-/-)) were inoculated with S. mansoni eggs for evaluation of immunopathological parameters involved in the induction of type 2 granulomas. We showed that in the absence of leukotrienes, the size of granulomas were decreased comparing to the wild type mice and the inflammatory compromised areas had a lower extension. In 5LO(-/-) mice granulomas presented extensive areas of fibrosis, detected by α-SMA expression along the lesions, indicating remodeling in attempt to reestablish the normal tissue. Also, comparing to WT mice we detected decrease of IL-4 and IL-13 and increase of TGF-β in the lung of 5LO(-/-), but these mice failed to produce protective IFN-γ and IL-12. These results evidenced 5-Lipoxygenase as an important pathway during lung injury due to Schistosoma-eggs injection. PMID:27262746

  9. Syntheses and evaluation of novel isoliquiritigenin derivatives as potential dual inhibitors for amyloid-beta aggregation and 5-lipoxygenase.

    PubMed

    Chen, Yi-Ping; Zhang, Zi-Ying; Li, Yan-Ping; Li, Ding; Huang, Shi-Liang; Gu, Lian-Quan; Xu, Jun; Huang, Zhi-Shu

    2013-08-01

    A series of new isoliquiritigenin (ISL) derivatives were synthesized and evaluated as dual inhibitors for amyloid-beta (Aβ) aggregation and 5-lipoxygenase (5-LO). It was found that all these synthetic compounds inhibited Aβ (1-42) aggregation effectively with their IC₅₀ values ranged from 2.2 ± 1.5 μM to 23.8 ± 2.0 μM. These derivatives also showed inhibitory activity to 5-LO with their IC50 values ranged from 6.1 ± 0.1 μM to 35.9 ± 0.3 μM. Their structure-activity relationships (SAR) and mechanisms of inhibitions were studied. This study provided potentially important information for further development of ISL derivatives as multifunctional agents for Alzheimer's disease (AD) treatment.

  10. Analysis of a nucleotide-binding site of 5-lipoxygenase by affinity labelling: binding characteristics and amino acid sequences.

    PubMed Central

    Zhang, Y Y; Hammarberg, T; Radmark, O; Samuelsson, B; Ng, C F; Funk, C D; Loscalzo, J

    2000-01-01

    5-Lipoxygenase (5LO) catalyses the first two steps in the biosynthesis of leukotrienes, which are inflammatory mediators derived from arachidonic acid. 5LO activity is stimulated by ATP; however, a consensus ATP-binding site or nucleotide-binding site has not been found in its protein sequence. In the present study, affinity and photoaffinity labelling of 5LO with 5'-p-fluorosulphonylbenzoyladenosine (FSBA) and 2-azido-ATP showed that 5LO bound to the ATP analogues quantitatively and specifically and that the incorporation of either analogue inhibited ATP stimulation of 5LO activity. The stoichiometry of the labelling was 1.4 mol of FSBA/mol of 5LO (of which ATP competed with 1 mol/mol) or 0.94 mol of 2-azido-ATP/mol of 5LO (of which ATP competed with 0.77 mol/mol). Labelling with FSBA prevented further labelling with 2-azido-ATP, indicating that the same binding site was occupied by both analogues. Other nucleotides (ADP, AMP, GTP, CTP and UTP) also competed with 2-azido-ATP labelling, suggesting that the site was a general nucleotide-binding site rather than a strict ATP-binding site. Ca(2+), which also stimulates 5LO activity, had no effect on the labelling of the nucleotide-binding site. Digestion with trypsin and peptide sequencing showed that two fragments of 5LO were labelled by 2-azido-ATP. These fragments correspond to residues 73-83 (KYWLNDDWYLK, in single-letter amino acid code) and 193-209 (FMHMFQSSWNDFADFEK) in the 5LO sequence. Trp-75 and Trp-201 in these peptides were modified by the labelling, suggesting that they were immediately adjacent to the C-2 position of the adenine ring of ATP. Given the stoichiometry of the labelling, the two peptide sequences of 5LO were probably near each other in the enzyme's tertiary structure, composing or surrounding the ATP-binding site of 5LO. PMID:11042125

  11. Modulation of LPS-induced memory insult, γ-secretase and neuroinflammation in 3xTg mice by 5-Lipoxygenase

    PubMed Central

    Joshi, Yash B.; Giannopoulos, Phillip F.; Chu, Jin; Praticò, Domenico

    2014-01-01

    Besides amyloid and tau pathology, a constant feature of Alzheimer’s disease (AD) is an intense inflammatory response, which is considered an active player in its pathogenesis. The 5-Lipoxygenase (5LO) is a proinflammatory enzyme and an endogenous modulator of AD-like phenotype in mouse models of the disease. To further understand the role of 5LO in AD pathogenesis, we exposed the 3xTg and 3xTg/5LO knockout mice to lipopolysaccharide (LPS), a known inducer of neuroinflammation, and evaluated its effect on their AD-like phenotype. 3xTg mice treated with LPS manifested a worsening of behavior, γ-secretase up-regulation, and increased neuroinflammatory responses. These effects were completely prevented in 3xTg mice genetically deficient for 5LO. By contrast, the absence of 5LO did not protect against increase in tau phosphorylation at specific epitopes that were mediated by the activation of the cyclin-dependent kinase 5. Our data demonstrate that the 5LO pathway affects key neuropathological features of the AD-like phenotype (behavior, Abeta, microgliosis, astrocytosis) but not others (tau pathology) in the LPS-dependent neuroinflammation model. The opposite ways whereby 5LO influences the LPS-dependent effects in vivo supports the complex nature of the neuroinflammatory response in AD and its differential role in modulating amyloid and tau neuropathology. PMID:24332986

  12. 4,5-Diarylisoxazol-3-carboxylic acids: A new class of leukotriene biosynthesis inhibitors potentially targeting 5-lipoxygenase-activating protein (FLAP).

    PubMed

    Banoglu, Erden; Çelikoğlu, Erşan; Völker, Susanna; Olgaç, Abdurrahman; Gerstmeier, Jana; Garscha, Ulrike; Çalışkan, Burcu; Schubert, Ulrich S; Carotti, Andrea; Macchiarulo, Antonio; Werz, Oliver

    2016-05-01

    In this article, we report novel leukotriene (LT) biosynthesis inhibitors that may target 5-lipoxygenase-activating protein (FLAP) based on the previously identified isoxazole derivative (8). The design and synthesis was directed towards a subset of 4,5-diaryl-isoxazole-3-carboxylic acid derivatives as LT biosynthesis inhibitors. Biological evaluation disclosed a new skeleton of potential anti-inflammatory agents, exemplified by 39 and 40, which potently inhibit cellular 5-LO product synthesis (IC50 = 0.24 μM, each) seemingly by targeting FLAP with weak inhibition on 5-LO (IC50 ≥ 8 μM). Docking studies and molecular dynamic simulations with 5-LO and FLAP provide valuable insights into potential binding modes of the inhibitors. Together, these diaryl-isoxazol-3-carboxylic acids may possess potential as leads for development of effective anti-inflammatory drugs through inhibition of LT biosynthesis. PMID:26922224

  13. One-step semisynthesis of oleacein and the determination as a 5-lipoxygenase inhibitor.

    PubMed

    Vougogiannopoulou, Konstantina; Lemus, Christelle; Halabalaki, Maria; Pergola, Carlo; Werz, Oliver; Smith, Amos B; Michel, Sylvie; Skaltsounis, Leandros; Deguin, Brigitte

    2014-03-28

    The dialdehydes oleacein (2) and oleocanthal (4) are closely related to oleuropein (1) and ligstroside (3), the two latter compounds being abundant iridoids of Olea europaea. By exploiting oleuropein isolated from the plant leaf extract, an efficient procedure has been developed for a one-step semisynthesis of oleacein under Krapcho decarbomethoxylation conditions. Highlighted is the fact that 5-lipoxygenase is a direct target for oleacein with an inhibitory potential (IC50: 2 μM) more potent than oleocanthal (4) and oleuropein (1). This enzyme catalyzes the initial steps in the biosynthesis of pro-inflammatory leukotrienes. Taken together, the methodology presented here offers an alternative solution to isolation or total synthesis for the procurement of oleacein, thus facilitating the further development as a potential anti-inflammatory agent. PMID:24568174

  14. 5-lipoxygenase and 5-lipoxygenase-activating protein gene polymorphisms, dietary linoleic acid, and risk for breast cancer.

    PubMed

    Wang, Jun; John, Esther M; Ingles, Sue Ann

    2008-10-01

    The n-6 polyunsaturated fatty acid 5-lipoxygenase pathway has been shown to play a role in the carcinogenesis of breast cancer. We conducted a population-based case-control study among Latina, African-American, and White women from the San Francisco Bay area to examine the association of the 5-lipoxygenase gene (ALOX5) and 5-lipoxygenase-activating protein gene (ALOX5AP) with breast cancer risk. Three ALOX5AP polymorphisms [poly(A) microsatellite, -4900 A>G (rs4076128), and -3472 A>G (rs4073259)] and three ALOX5 polymorphisms [Sp1-binding site (-GGGCGG-) variable number of tandem repeat polymorphism, -1279 G>T (rs6593482), and 760 G>A (rs2228065)] were genotyped in 802 cases and 888 controls. We did not find significant main effects of ALOX5 and ALOX5AP genotypes on breast cancer risk that were consistent across race or ethnicity; however, there was a significant interaction between the ALOX5AP -4900 A>G polymorphism and dietary linoleic acid intake (P=0.03). Among women consuming a diet high in linoleic acid (top quartile of intake, >17.4 g/d), carrying the AA genotype was associated with higher breast cancer risk (age- and race-adjusted odds ratio, 1.8; 95% confidence interval, 1.2-2.9) compared with carrying genotypes AG or GG. Among women consuming

  15. Arachidonate 5-lipoxygenase (ALOX5) gene polymorphism is associated with Alzheimer's disease and body mass index.

    PubMed

    Šerý, Omar; Hlinecká, Lýdia; Povová, Jana; Bonczek, Ondřej; Zeman, Tomáš; Janout, Vladimír; Ambroz, Petr; Khan, Naim A; Balcar, Vladimir J

    2016-03-15

    Dementias of old age, in particular Alzheimer's disease (AD), pose a growing threat to the longevity and quality of life of individuals as well as whole societies world-wide. The risk factors are both genetic and environmental (life-style) and there is an overlap with similar factors predisposing to cardiovascular diseases (CVD). Using a case-control genetic approach, we have identified a SNP (rs10507391) in ALOX5 gene, previously associated with an increased risk of stroke, as a novel genetic risk factor for AD. ALOX5 gene encodes a 5'-lipoxygenase (5'-LO) activating protein (FLAP), a crucial component of the arachidonic acid/leukotriene inflammatory cascade. A-allele of rs4769874 polymorphism increases the risk of AD 1.41-fold (p<0.0001), while AA genotype does so 1.79-fold (p<0.0001). In addition, GG genotype of rs4769874 polymorphism is associated with a modest increase in body mass index (BMI). We discuss potential biochemical mechanisms linking the SNP to AD and suggest possible preventive pharmacotherapies some of which are based on commonly available natural products. Finally, we set the newly identified AD risk factors into a broader context of similar CVD risk factors to generate a more comprehensive picture of interacting genetics and life-style habits potentially leading to the deteriorating mental health in the old age. PMID:26944113

  16. Synthesis and biological evaluation of novel myrtucommulones and structural analogues that target mPGES-1 and 5-lipoxygenase.

    PubMed

    Wiechmann, Katja; Müller, Hans; Huch, Volker; Hartmann, David; Werz, Oliver; Jauch, Johann

    2015-08-28

    The natural acylphloroglucinol myrtucommulone A (1) inhibits microsomal prostaglandin E2 synthase (mPGES)-1 and 5-lipoxygenase (5-LO), and induces apoptosis of cancer cells. Starting from 1 as lead, 28 analogues were synthesized following a straightforward modular strategy with high yielding convergent steps. Major structural variations concerned (I) replacement of the syncarpic acid moieties by dimedone or indandione, (II) cyclization of the syncarpic acid with the acylphloroglucinol core, and (III) substitution of the methine bridges and the acyl residue with isopropyl, isobutyl, n-pentyl or phenyl groups, each. The potency for mPGES-1 inhibition was improved by 12.5-fold for 43 (2-(1-(3-hexanoyl-2,4,6-trihydroxy-5-(1-(3-hydroxy-1-oxo-1H-inden-2-yl)-2-methylpropyl)phenyl)-2-methylpropyl)-3-hydroxy-1H-inden-1-one) with IC50 = 0.08 μM, and 5-LO inhibition was improved 33-fold by 47 (2-((3-hexanoyl-2,4,6-trihydroxy-5-((3-hydroxy-1-oxo-1H-inden-2-yl) (phenyl)methyl)phenyl) (phenyl)methyl)-3-hydroxy-1H-inden-1-one) with IC50 = 0.46 μM. SAR studies revealed divergent structural determinants for induction of cell death and mPGES-1/5-LO inhibition, revealing 43 and 47 as non-cytotoxic mPGES-1 and 5-LO inhibitors that warrant further preclinical assessment as anti-inflammatory drugs. PMID:26123643

  17. 4-Hydroxynonenal enhances MMP-9 production in murine macrophages via 5-lipoxygenase-mediated activation of ERK and p38 MAPK

    SciTech Connect

    Lee, Seung J.; Kim, Chae E.; Yun, Mi R.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Shin, Hwa K.; Bae, Sun S.; Kim, Chi D.

    2010-01-15

    Exaggerated levels of 4-hydroxynonenal (HNE) and 5-lipoxygenase (5-LO) co-exist in macrophages in atherosclerotic lesions, and activated macrophages produce MMP-9 that degrades atherosclerotic plaque constituents. This study investigated the effects of HNE on MMP-9 production, and the potential role for 5-LO derivatives in MMP-9 production in murine macrophages. Stimulation of J774A.1 cells with HNE led to activation of 5-LO, as measured by leukotriene B{sub 4} (LTB{sub 4}) production. This was associated with an increased production of MMP-9, which was blunted by inhibition of 5-LO with MK886, a 5-LO inhibitor or with 5-LO siRNA. A cysteinyl-LT{sub 1} (cysLT{sub 1}) receptor antagonist, REV-5901 as well as a BLT{sub 1} receptor antagonist, U-75302, also attenuated MMP-9 production induced by HNE. Furthermore, LTB{sub 4} and cysLT (LTC{sub 4} and LTD{sub 4}) enhanced MMP-9 production in macrophages, suggesting a pivotal role for 5-LO in HNE-mediated production of MMP-9. Among the MAPK pathways, LTB{sub 4} and cysLT enhanced phosphorylation of ERK and p38 MAPK, but not JNK. Linked to these results, a p38 MAPK inhibitor as well as an ERK inhibitor blunted MMP-9 production induced by LT. Collectively, these data suggest that 5-LO-derived LT mediates HNE-induced MMP-9 production via activation of ERK and p38 MAPK pathways, consequently leading to plaque instability in atherosclerosis.

  18. Gene Knockout of 5-Lipoxygenase Rescues Synaptic Dysfunction and Improves Memory in the Triple-Transgenic Model of Alzheimer’s Disease

    PubMed Central

    Giannopoulos, Phillip F.; Chu, Jin; Joshi, Yash B.; Sperow, Margaret; Li, Jin-Luo; Kirby, Lynn G.; Praticò, Domenico

    2013-01-01

    The 5-Lipoxygenase (5LO) is upregulated in Alzheimer’s disease (AD), and in vivo modulates the amyloidotic phenotype of APP transgenic mice. However, no data are available on the effects that 5LO has on synaptic function, integrity and cognition. To address this issue we used a genetic and a pharmacologic approach by generating 3xTg mice deficient for 5LO, and administering 3xTg mice which a 5LO inhibitor. Compared with controls, we found that even before the development of overt neuropathology, both animals manifested significant memory improvement, rescue of their synaptic dysfunction and amelioration of synaptic integrity. In addition, later in life these mice had a significant reduction of Aβ and tau pathology. Our findings support a novel functional role for 5LO in regulating synaptic plasticity and memory. They establish this proetin as a pleiotropic contributor to the development of the full spectrum of the AD phenotype, making it a valid therapeutic target for the treatment of AD. PMID:23478745

  19. Identification of the substrate access portal of 5-Lipoxygenase

    PubMed Central

    Mitra, Sunayana; Bartlett, Sue G.

    2016-01-01

    The overproduction of inflammatory lipid mediators derived from arachidonic acid contributes to asthma and cardiovascular diseases, among other pathologies. Consequently, the enzyme that initiates the synthesis of pro-inflammatory leukotrienes, 5-lipoxygenase (5-LOX), is a target for drug design. The crystal structure of 5-LOX revealed a fully encapsulated active site, thus the point of substrate entry is not known. We asked whether a structural motif, a “cork” present in 5-LOX but absent in other mammalian lipoxygenases, might be ejected to allow substrate access. Our results indicate that reduction of cork volume facilitates access to the active site. However, if cork entry into the site is obstructed, enzyme activity is significantly compromised. The results support a model in which the “cork” that shields the active site in the absence of substrate serves as the active site portal, but the “corking” amino acid Phe-177 plays a critical role in providing a fully functional active site. Thus the more appropriate metaphor for this structural motif is a “twist-and-pour” cap. Additional mutagenesis data are consistent with a role for His-600, deep in the elongated cavity, in positioning the substrate for catalysis. PMID:26427761

  20. Kinetic investigation of human 5-lipoxygenase with arachidonic acid.

    PubMed

    Mittal, Monica; Kumar, Ramakrishnan B; Balagunaseelan, Navisraj; Hamberg, Mats; Jegerschöld, Caroline; Rådmark, Olof; Haeggström, Jesper Z; Rinaldo-Matthis, Agnes

    2016-08-01

    Human 5-lipoxygenase (5-LOX) is responsible for the formation of leukotriene (LT)A4, a pivotal intermediate in the biosynthesis of the leukotrienes, a family of proinflammatory lipid mediators. 5-LOX has thus gained attention as a potential drug target. However, details of the kinetic mechanism of 5-LOX are still obscure. In this Letter, we investigated the kinetic isotope effect (KIE) of 5-LOX with its physiological substrate, arachidonic acid (AA). The observed KIE is 20±4 on kcat and 17±2 on kcat/KM at 25°C indicating a non-classical reaction mechanism. The observed rates show slight temperature dependence at ambient temperatures ranging from 4 to 35°C. Also, we observed low Arrhenius prefactor ratio (AH/AD=0.21) and a small change in activation energy (Ea(D)-Ea(H)=3.6J/mol) which suggests that 5-LOX catalysis involves tunneling as a mechanism of H-transfer. The measured KIE for 5-LOX involves a change in regioselectivity in response to deuteration at position C7, resulting in H-abstraction form C10 and formation of 8-HETE. The viscosity experiments influence the (H)kcat, but not (D)kcat. However the overall kcat/KM is not affected for labeled or unlabeled AA, suggesting that either the product release or conformational rearrangement might be involved in dictating kinetics of 5-LOX at saturating conditions. Investigation of available crystal structures suggests the role of active site residues (F421, Q363 and L368) in regulating the donor-acceptor distances, thus affecting H-transfer as well as regiospecificity. In summary, our study shows that that the H-abstraction is the rate limiting step for 5-LOX and that the observed KIE of 5-LOX is masked by a change in regioselectivity. PMID:27363940

  1. Expression of 5-lipoxygenase (5-LOX) in T lymphocytes

    PubMed Central

    Cook-Moreau, Jeanne M; El-Makhour Hojeij, Yola; Barrière, Guislaine; Rabinovitch-Chable, Hélène C; Faucher, Karine S; Sturtz, Franck G; Rigaud, Michel A

    2007-01-01

    5-lipoxygenase (5-LOX) is the key enzyme responsible for the synthesis of the biologically active leukotrienes. Its presence has been reported in cells of the myeloid lineage and B lymphocytes but has not been formally defined in T lymphocytes. In this study, we provide evidence for 5-LOX expression on both transcriptional and translational levels in highly purified peripheral blood T cells as well as in human T lymphoblastoid cell lines (MOLT4 and Jurkat). Messenger RNA (mRNA) of 5-LOX was amplified by conventional reverse transcription–polymerase chain reaction (RT-PCR; MOLT4 and Jurkat cells) and by in situ RT-PCR (T lymphocytes). 5-LOX protein expression was confirmed by Western blot and immunofluorescence studies. 5-LOX was present primarily in the cytoplasm with some nuclear localization and was translocated to the nuclear periphery after culture in a mitosis-supporting medium. Fluorescence-activated cell sorter analysis of different T-lymphocyte populations, including CD4, CD8, CD45RO, CD45RA, T helper type 2, and T-cell receptor-αβ and -γδ expressing cells, did not identify a differential distribution of the enzyme. Purified peripheral blood T lymphocytes were incapable of synthesizing leukotrienes in the absence of exogenous arachidonic acid. Jurkat cells produced leukotriene C4 and a small amount of leukotriene B4 in response to CD3–CD28 cross-linking. This synthesis was abolished by two inhibitors of leukotriene synthesis, MK-886 and AA-861. The presence of 5-LOX in T lymphocytes but the absence of endogenous lipoxygenase metabolite production compared to Jurkat cells may constitute a fundamental difference between resting peripheral lymphocytes and leukaemic cells. PMID:17484769

  2. Exogenous action of 5-lipoxygenase by its metabolites on luteinizing hormone release in rat pituitary cells.

    PubMed

    Przylipiak, A; Kiesel, L; Habenicht, A J; Przylipiak, M; Runnebaum, B

    1990-02-12

    The stimulatory effect of exogenously administered potato 5-lipoxygenase (0.1-0.3 U/2 ml) on luteinizing hormone (LH) release was demonstrated in rat anterior pituitary cells in a superfusion system. Nordihydroguaiaretic acid (NDGA), an inhibitor of 5-lipoxygenase, abolished the effect of the enzyme on LH secretion. The secretory effect on LH after 5-lipoxygenase administration was biphasic and dependent on Ca2+ indicating that 5-lipoxygenase affects LH release through its oxygenation reaction. Another series of experiments demonstrated that activation of 5-lipoxygenase, expressed as production of leukotriene (LT) B4 and C4 (728 +/- 127 pg/10(6) cells and 178 +/- 23 pg/10(6) cells, respectively) occurs in rat pituitary cells after addition of Ca2+ ionophore A23187. However, LTB4 and LTC4 were not formed by pituitary cells that had previously been desensitized by gonadotropin-releasing hormone (GnRH), the physiological ligand of LH release. These results are consistent with a role of 5-lipoxygenase metabolites in the mechanism of GnRH-induced LH secretion. PMID:2157615

  3. Effect of the 5-lipoxygenase inhibitor ZD2138 on aspirin-induced asthma.

    PubMed Central

    Nasser, S. M.; Bell, G. S.; Foster, S.; Spruce, K. E.; MacMillan, R.; Williams, A. J.; Lee, T. H.; Arm, J. P.

    1994-01-01

    BACKGROUND--The cysteinyl leukotrienes may play a central part in the mechanisms of aspirin-sensitive asthma. Previous work has shown that individuals with aspirin-sensitive asthma have high basal urinary LTE4 levels which increase further upon aspirin ingestion, and that sulphidopeptide leukotriene receptor antagonists attenuate aspirin-induced airflow obstruction. If the cysteinyl leukotrienes cause aspirin-induced asthmatic reactions, inhibition of the 5-lipoxygenase pathway should prevent aspirin-induced bronchospasm. This hypothesis has been tested with ZD2138, a specific non-redox 5-lipoxygenase inhibitor. METHODS--Seven subjects (four men) with aspirin-sensitive asthma with baseline FEV1 values > 67% were studied. ZD2138 (350 mg) or placebo was given on two separate occasions two weeks apart in a randomised double blind fashion. A single dose of aspirin was administered four hours after dosing and FEV1 was measured for six hours. Inhibition of the 5-lipoxygenase pathway by ZD2138 was assessed by measurements of urinary LTE4 levels and ex vivo calcium ionophore stimulated LTB4 generation in whole blood, before administration of drug or placebo and at regular time intervals after dosing and aspirin administration. RESULTS--ZD2138 protected against the aspirin-induced reduction in FEV1 with a 20.3 (4.9)% fall in FEV1 following placebo compared with 4.9 (2.9)% following ZD2138. This was associated with 72% inhibition of ex vivo LTB4 generation in whole blood at 12 hours and a 74% inhibition of the rise in urinary LTE4 excretion at six hours after aspirin ingestion. CONCLUSIONS--In aspirin-sensitive asthma the 5-lipoxygenase inhibitor ZD2138 inhibits the fall in FEV1 induced by aspirin and this is associated with substantial inhibition of 5-lipoxygenase. PMID:8091318

  4. Roles of 5-lipoxygenase and cysteinyl-leukotriene type 1 receptors in the hematological response to allergen challenge and its prevention by diethylcarbamazine in a murine model of asthma.

    PubMed

    Masid-de-Brito, Daniela; Queto, Túlio; Gaspar-Elsas, Maria Ignez C; Xavier-Elsas, Pedro

    2014-01-01

    Diethylcarbamazine (DEC), which blocks leukotriene production, abolishes the challenge-induced increase in eosinopoiesis in bone-marrow from ovalbumin- (OVA-) sensitized mice, suggesting that 5-lipoxygenase (5-LO) products contribute to the hematological responses in experimental asthma models. We explored the relationship between 5-LO, central and peripheral eosinophilia, and effectiveness of DEC, using PAS or BALB/c mice and 5-LO-deficient mutants. We quantified eosinophil numbers in freshly harvested or cultured bone-marrow, peritoneal lavage fluid, and spleen, with or without administration of leukotriene generation inhibitors (DEC and MK886) and cisteinyl-leukotriene type I receptor antagonist (montelukast). The increase in eosinophil numbers in bone-marrow, observed in sensitized/challenged wild-type mice, was abolished by MK886 and DEC pretreatment. In ALOX mutants, by contrast, there was no increase in bone-marrow eosinophil counts, nor in eosinophil production in culture, in response to sensitization/challenge. In sensitized/challenged ALOX mice, challenge-induced migration of eosinophils to the peritoneal cavity was significantly reduced relative to the wild-type PAS controls. DEC was ineffective in ALOX mice, as expected from a mechanism of action dependent on 5-LO. In BALB/c mice, challenge significantly increased spleen eosinophil numbers and DEC treatment prevented this increase. Overall, 5-LO appears as indispensable to the systemic hematological response to allergen challenge, as well as to the effectiveness of DEC. PMID:25477712

  5. Expression, purification and crystallization of human 5-lipoxygenase-activating protein with leukotriene-biosynthesis inhibitors

    SciTech Connect

    Xu, Shihua; McKeever, Brian M.; Wisniewski, Douglas; Miller, Douglas K.; Spencer, Robert H.; Chu, Lin; Ujjainwalla, Feroze; Yamin, Ting-Ting; Evans, Jilly F.; Becker, Joseph W.; Ferguson, Andrew D.

    2007-12-01

    The expression, purification and crystallization of human 5-lipoxygenase-activating protein in complex with two leukotriene-biosynthesis inhibitors is decribed. The processes that were used to generate diffraction quality crystals are presented in detail. The nuclear membrane protein 5-lipoxygenase-activating protein (FLAP) plays an essential role in leukotriene synthesis. Recombinant full-length human FLAP with a C-terminal hexahistidine tag has been expressed and purified from the cytoplasmic membrane of Escherichia coli. Diffraction-quality crystals of FLAP in complex with leukotriene-synthesis inhibitor MK-591 and with an iodinated analogue of MK-591 have been grown using the sitting-drop vapor-diffusion method. The crystals exhibit tetragonal symmetry (P42{sub 1}2) and diffracted to a resolution limit of 4 Å.

  6. Granulocyte/macrophage colony-stimulating factor stimulates the expression of the 5-lipoxygenase-activating protein (FLAP) in human neutrophils

    PubMed Central

    1994-01-01

    The synthesis of leukotrienes in human blood neutrophils chiefly relies on the activity of two enzymes, phospholipase A2 and 5-lipoxygenase (5- LO). In turn, the activation of the 5-LO requires the participation of a recently characterized membrane-bound protein, the 5-LO-activating protein (FLAP). In this study, we have investigated conditions under which FLAP expression in neutrophils may be modulated. Of several cytokines tested, only granulocyte/macrophage colony-stimulating factor (GM-CSF) (and to a lesser extent tumor necrosis factor alpha) significantly increased expression of FLAP. GM-CSF increased FLAP mRNA steady-state levels in a time- and dose-dependent manner. The stimulatory effect of GM-CSF on FLAP mRNA was inhibited by prior treatment of the cells with the transcription inhibitor, actinomycin D, and pretreatment of the cells with the protein synthesis inhibitor, cycloheximide, failed to prevent the increase in FLAP mRNA induced by GM-CSF. The accumulation of newly synthesized FLAP, as determined by immunoprecipitation after incorporation of 35S-labeled amino acids, was also increased after incubation of neutrophils with GM-CSF. In addition, the total level of FLAP protein was increased in GM-CSF- treated neutrophils, as determined by two-dimensional gel electrophoresis, followed by Western blot. GM-CSF did not alter the stability of the FLAP protein, indicating that the effect of GM-CSF on FLAP accumulation was the consequence of increased de novo synthesis as opposed to decreased degradation of FLAP. Finally, incubation of neutrophils with the synthetic glucocorticoid dexamethasone directly stimulated the upregulation of FLAP mRNA and protein, and enhanced the effect of GM-CSF. Taken together, these data demonstrate that FLAP expression may be upmodulated after appropriate stimulation of neutrophils. The increase in FLAP expression induced by GM-CSF in inflammatory conditions could confer upon neutrophils a prolonged capacity to synthesize

  7. A new 5-lipoxygenase selective inhibitor derived from Artocarpus communis strongly inhibits arachidonic acid-induced ear edema.

    PubMed

    Koshihara, Y; Fujimoto, Y; Inoue, H

    1988-06-01

    Natural compounds isolated from the Indonesian plant, Artocarpus communis, inhibit 5-lipoxygenase of cultured mastocytoma cells. One of five compounds, AC-5-1, strongly inhibits 5-lipoxygenase with a half-inhibition dose of 5 +/- 0.12 X 10(-8) M. However, prostaglandin synthesizing activity is not inhibited until 10(-5) M. AC-5-1 is a highly selective inhibitor for 5-lipoxygenase. The AC-5-1 at 10(-5) M inhibits 96% of leukotriene C4 synthesis of mouse peritoneal cells facilitated by calcium-ionophore. Arachidonic acid-induced ear edema of mice, an in vivo inflammatory model, involving leukotriene induction, is strongly inhibited by AC-5-1 in a dose-dependent manner. The inhibition is the strongest of any inhibitors of 5-lipoxygenase reported previously. Since the natural compound AC-5-1 can selectively inhibit 5-lipoxygenase and affect in vivo inflammation, it will be interesting to investigate the role of leukotrienes on inflammation and other physiological processes.

  8. 5-Lipoxygenase Inhibitors Attenuate TNF-α-Induced Inflammation in Human Synovial Fibroblasts

    PubMed Central

    Lin, Han-Ching; Lin, Tzu-Hung; Wu, Ming-Yueh; Chiu, Yung-Cheng; Tang, Chih-Hsin; Hour, Mann-Jen; Liou, Houng-Chi; Tu, Huang-Ju; Yang, Rong-Sen; Fu, Wen-Mei

    2014-01-01

    The lipoxygenase isoform of 5-lipoxygenase (5-LOX) is reported to be overexpressed in human rheumatoid arthritis synovial tissue and involved in the progress of inflammatory arthritis. However, the detailed mechanism of how 5-lipoxygenase regulates the inflammatory response in arthritis synovial tissue is still unclear. The aim of this study was to investigate the involvement of lipoxygenase pathways in TNF-α-induced production of cytokines and chemokines. Human synovial fibroblasts from rheumatoid patients were used in this study. 5-LOX inhibitors and shRNA were used to examine the involvement of 5-LOX in TNF-α-induced cytokines and chemokines expression. The signaling pathways were examined by Western Blotting or immunofluorescence staining. The effect of 5-LOX inhibitor on TNF-α-induced chemokine expression and paw edema was also explored in vivo in C57BL/6 mice. Treatment with 5-LOX inhibitors significantly decreased TNF-α-induced pro-inflammatory mediators including interleukin-6 (IL-6) and monocyte chemo-attractant protein-1 (MCP-1) in human synovial fibroblasts. Knockdown of 5-LOX using shRNA exerted similar inhibitory effects. The abrogation of NF-κB activation was involved in the antagonizing effects of these inhibitors. Furthermore, 5-LOX inhibitor decreased TNF-α-induced up-regulation of serum MCP-1 level and paw edema in mouse model. Our results provide the evidence that the administration of 5-LOX inhibitors is able to ameliorate TNF-α-induced cytokine/chemokine release and paw edema, indicating that 5-LOX inhibitors may be developed for therapeutic treatment of inflammatory arthritis. PMID:25229347

  9. Synthesis and Evaluation of 5-Lipoxygenase Translocation Inhibitors from Acylnitroso Hetero-Diels-Alder Cycloadducts†

    PubMed Central

    Bolger, Joshua K.; Tian, Wen; Wolter, William R.; Cho, Wonhwa; Suckow, Mark A.

    2012-01-01

    Acylnitroso cycloadducts have proven to be valuable intermediates in the syntheses of a plethora of biologically active molecules. Recently, organometallic reagents were shown to open bicyclic acylnitroso cycloadducts and, more interestingly, the prospect of highly regioselective openings was raised. This transformation was employed in the synthesis of a compound with excellent inhibitory activity against 5-lipoxygenase ((±)-4a, IC50 51 nM), an important mediator of inflammation intimately involved in a number of disease states including asthma and cancer. Optimization of the copper-mediated organometallic ring opening reaction was accomplished allowing the further exploration of the biological activity. Synthesis of a number of derivatives with varying affinity for metal binding as well as pendant groups in a range of sizes was accomplished. Analogues were tested in a whole cell assay which revealed a subset of the compounds to be inhibitors of enzyme translocation, a mode of action not previously known and, potentially, extremely important for better understanding of the enzyme and inhibitor development. Additionally, the lead compound was tested in vivo in an established colon cancer model and showed very encouraging anti-tumorogenic properties. PMID:21365098

  10. Synthesis and biological evaluation of novel pyrazolopyrimidines derivatives as anticancer and anti-5-lipoxygenase agents.

    PubMed

    Rahmouni, Ameur; Souiei, Sawssen; Belkacem, Mohamed Amine; Romdhane, Anis; Bouajila, Jalloul; Ben Jannet, Hichem

    2016-06-01

    A novel series of 6-aryl-3-methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-ones 3a-h were synthesized in a single step via condensation of carboxamide 2 with some aromatic aldehydes (presence of iodine). Treatment of aminopyrazole 1a with acetic anhydride afforded pyrazolopyrimidines 4 which on treatment with ethyl chloroacetate in refluxing dry DMF furnished a single product identified as ethyl 2-(3,6-dimethyl-4-oxo-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-5(4H)-yl) acetate 5. On the other hand, esterification of compound 6 with different alcohol, led to the formation of new esters linked pyrazolo[3,4-d]pyrimidinones hybrids 7a-f. The reaction of compound 2 with 3-propargyl bromide gave the compound 8 used as a dipolarophile to access to triazoles (4- and 5-regioisomers (9a-e) and (10a-e), respectively) via the 1,3-dipoar cycloaddition reaction. Finally, condensation reaction of aminopyrazole 1b with α-cyanocinnamonitiles gave the new pyrazolo[1,5-a]pyrimidine-3,6-dicarbonitriles 11a-e. Structures of compounds were established on the basis of (1)H/(13)C NMR and ESI-HRMS. Compounds were screened for their cytotoxic (HCT-116 and MCF-7) and 5-lipoxygenase inhibition activities. The structure-activity relationship (SAR) was discussed.

  11. Synthesis and biological evaluation of novel pyrazolopyrimidines derivatives as anticancer and anti-5-lipoxygenase agents.

    PubMed

    Rahmouni, Ameur; Souiei, Sawssen; Belkacem, Mohamed Amine; Romdhane, Anis; Bouajila, Jalloul; Ben Jannet, Hichem

    2016-06-01

    A novel series of 6-aryl-3-methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-ones 3a-h were synthesized in a single step via condensation of carboxamide 2 with some aromatic aldehydes (presence of iodine). Treatment of aminopyrazole 1a with acetic anhydride afforded pyrazolopyrimidines 4 which on treatment with ethyl chloroacetate in refluxing dry DMF furnished a single product identified as ethyl 2-(3,6-dimethyl-4-oxo-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-5(4H)-yl) acetate 5. On the other hand, esterification of compound 6 with different alcohol, led to the formation of new esters linked pyrazolo[3,4-d]pyrimidinones hybrids 7a-f. The reaction of compound 2 with 3-propargyl bromide gave the compound 8 used as a dipolarophile to access to triazoles (4- and 5-regioisomers (9a-e) and (10a-e), respectively) via the 1,3-dipoar cycloaddition reaction. Finally, condensation reaction of aminopyrazole 1b with α-cyanocinnamonitiles gave the new pyrazolo[1,5-a]pyrimidine-3,6-dicarbonitriles 11a-e. Structures of compounds were established on the basis of (1)H/(13)C NMR and ESI-HRMS. Compounds were screened for their cytotoxic (HCT-116 and MCF-7) and 5-lipoxygenase inhibition activities. The structure-activity relationship (SAR) was discussed. PMID:27179178

  12. Arachidonate 5 Lipoxygenase Expression in Papillary Thyroid Carcinoma Promotes Invasion via MMP-9 Induction

    PubMed Central

    Kummer, Nicolas T.; Nowicki, Theodore S; Azzi, Jean Paul; Reyes, Ismael; Iacob, Codrin; Xie, Suqing; Swati, Ismatun; Suslina, Nina; Schantz, Stimson; Tiwari, Raj K.; Geliebter, Jan

    2012-01-01

    Arachidonate 5-lipoxygenase (ALOX5) expression and activity has been implicated in tumor pathogenesis, yet its role in papillary thyroid carcinoma (PTC) has not been characterized. ALOX5 protein and mRNA were upregulated in PTC compared to matched, normal thyroid tissue, and ALOX5 expression correlated with invasive tumor histopathology. Evidence suggests that PTC invasion is mediated through the induction of matrix metalloproteinases (MMPs) that can degrade and remodel the extracellular matrix (ECM). A correlation between MMP-9 and ALOX5 protein expression was established by immunohistochemical analysis of PTC and normal thyroid tissues using a tissue array. Transfection of ALOX5 into a PTC cell line (BCPAP) increased MMP-9 secretion and cell invasion across an ECM barrier. The ALOX5 product, 5(S)-hydroxyeicosatetraenoic acid also increased MMP-9 protein expression by BCPAP in a dose-dependent manner. Inhibitors of MMP-9 and ALOX5 reversed ALOX5-enhanced invasion. Here we describe a new role for ALOX5 as a mediator of invasion via MMP-9 induction; this ALOX5/MMP9 pathway represents a new avenue in the search for functional biomarkers and/or potential therapeutic targets for aggressive PTC. PMID:22253131

  13. Substituted (pyridylmethoxy)naphthalenes as potent and orally active 5-lipoxygenase inhibitors; synthesis, biological profile, and pharmacokinetics of L-739,010.

    PubMed

    Hamel, P; Riendeau, D; Brideau, C; Chan, C C; Desmarais, S; Delorme, D; Dubé, D; Ducharme, Y; Ethier, D; Grimm, E; Falgueyret, J P; Guay, J; Jones, T R; Kwong, E; McAuliffe, M; McFarlane, C S; Piechuta, H; Roumi, M; Tagari, P; Young, R N; Girard, Y

    1997-08-29

    Dioxabicyclooctanyl naphthalenenitriles have been reported as a class of potent and nonredox 5-lipoxygenase (5-LO) inhibitors. These bicyclo derivatives were shown to be metabolically more stable than their tetrahydropyranyl counterparts but were not well orally absorbed. Replacement of the phenyl ring in the naphthalenenitrile 1 by a pyridine ring leads to the potent and orally absorbed inhibitor 3g (L-739,010, 2-cyano-4-(3-furyl)-7-[[6-[3-(3-hydroxy-6,8-dioxabicyclo[3.2.1] octanyl)]-2-pyridyl]methoxy]naphthalene). Compound 3g inhibits 5-HPETE production by human 5-LO and LTB4 biosynthesis by human PMN leukocytes and human whole blood (IC50S of 20, 1.6, and 42 nM, respectively). Derivative 3g is orally active in the rat pleurisy model (inhibition of LTB4, ED50 = 0.3 mg/kg) and in the anesthetized dog model (inhibition of ex vivo whole blood LTB4 and urinary LTE4, ED50 = 0.45 and 0.23 microgram/kg/min, respectively, i.v. infusion). In addition, 3g shows excellent functional activity against ovalbumin-induced dyspnea in rats (60% inhibition at 0.5 mg/kg, 4 h pretreatment) and Ascaris-induced bronchoconstriction in conscious sheep (50% and > 85% inhibition in early and late phases, respectively at 2.5 micrograms/kg/min, i.v. infusion) and, more particularly in the conscious antigen sensitive squirrel monkey model (53% inhibition of the increase in RL and 76% in the decrease of Cdyn, at 0.1 mg/kg, po). In rats and dogs, 3g presents excellent pharmacokinetics (estimated half-lives of 5 and 16 h, respectively) and bioavailabilities (26% and 73% when dosed as its hydrochloride salt at doses of 20 and 10 mg/kg, respectively, in methocel suspension). Based on its overall biological profile, compound 3g has been selected for preclinical animal toxicity studies.

  14. A dual inhibitor of cyclooxygenase and 5-lipoxygenase protects against kainic acid-induced brain injury.

    PubMed

    Minutoli, Letteria; Marini, Herbert; Rinaldi, Mariagrazia; Bitto, Alessandra; Irrera, Natasha; Pizzino, Gabriele; Pallio, Giovanni; Calò, Margherita; Adamo, Elena Bianca; Trichilo, Vincenzo; Interdonato, Monica; Galfo, Federica; Squadrito, Francesco; Altavilla, Domenica

    2015-06-01

    Systemic administration of kainic acid causes inflammation and apoptosis in the brain, resulting in neuronal loss. Dual cyclooxygenase/5-lipoxygenase (COX/5-LOX) inhibitors could represent a possible neuroprotective approach in preventing glutamate excitotoxicity. Consequently, we investigated the effects of a dual inhibitor of COX/5-LOX following intraperitoneal administration of kainic acid (KA, 10 mg/kg) in rats. Animals were randomized to receive either the dual inhibitor of COX/5-LOX (flavocoxid, 20 mg/kg i.p.) or its vehicle (1 ml/kg i.p.) 30 min after KA administration. Sham brain injury rats were used as controls. We evaluated protein expression of phosphorylated extracellular signal-regulated kinase (p-ERK1/2) and tumor necrosis factor alpha (TNF-α) as well as levels of malondialdehyde (MDA), prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) in the hippocampus. Animals were also observed for monitoring behavioral changes according to Racine Scale. Finally, histological analysis and brain edema evaluation were carried out. Treatment with the dual inhibitor of COX/5-LOX decreased protein expression of p-ERK1/2 and TNF-α in hippocampus, markedly reduced MDA, LTB4 and PGE2 hippocampal levels, and also ameliorated brain edema. Histological analysis showed a reduction in cell damage in rats treated with the dual inhibitor of COX/5-LOX, particularly in hippocampal subregion CA3c. Moreover, flavocoxid significantly improved behavioral signs following kainic acid administration. Our results suggest that dual inhibition of COX/5-LOX by flavocoxid has neuroprotective effects during kainic acid-induced excitotoxicity. PMID:25893744

  15. Effects of flavocoxid, a dual inhibitor of COX and 5-lipoxygenase enzymes, on benign prostatic hyperplasia

    PubMed Central

    Altavilla, D; Minutoli, L; Polito, F; Irrera, N; Arena, S; Magno, C; Rinaldi, M; Burnett, BP; Squadrito, F; Bitto, A

    2012-01-01

    BACKGROUND AND PURPOSE Inflammation plays a key role in the development of benign prostatic hyperplasia (BPH). Eicosanoids derived from the COX and 5-lipoxygenase (5-LOX) pathways are elevated in the enlarging prostate. Flavocoxid is a novel flavonoid–based ‘dual inhibitor’ of the COX and 5-LOX enzymes. This study evaluated the effects of flavocoxid in experimental BPH. EXPERIMENTAL APPROACH Rats were treated daily with testosterone propionate (3 mg·kg−1 s.c.) or its vehicle for 14 days to induce BPH. Animals receiving testosterone were randomized to receive vehicle (1 mL·kg−1, i.p.) or flavocoxid (20 mg·kg−1, i.p.) for 14 days. Histological changes, eicosanoid content and mRNA and protein levels for apoptosis-related proteins and growth factors were assayed in prostate tissue. The effects of flavocoxid were also tested on human prostate carcinoma PC3 cells. KEY RESULTS Flavocoxid reduced prostate weight and hyperplasia, blunted inducible expression of COX-2 and 5-LOX as well as the increased production of PGE2 and leukotriene B4 (LTB4), enhanced pro-apoptotic Bax and caspase-9 and decreased the anti-apoptotic Bcl-2 mRNA. Flavocoxid also reduced EGF and VEGF expression. In PC3 cells, flavocoxid stimulated apoptosis and inhibited growth factor expression. Flavocoxid-mediated induction of apoptosis was inhibited by the pan-caspase inhibitor, Z-VAD-FMK, in PC3 cells, suggesting an essential role of caspases in flavocoxid-mediated apoptosis during prostatic growth. CONCLUSION AND IMPLICATIONS Our results show that a ‘dual inhibitor’ of the COX and 5-LOX enzymes, such as flavocoxid, might represent a rational approach to reduce BPH through modulation of eicosanoid production and a caspase-induced apoptotic mechanism. PMID:22471974

  16. Pharmacophore modeling and virtual screening for designing potential 5-lipoxygenase inhibitors.

    PubMed

    Aparoy, P; Kumar Reddy, K; Kalangi, Suresh K; Chandramohan Reddy, T; Reddanna, P

    2010-02-01

    Inhibitors of the 5-Lipoxygenase (5-LOX) pathway have a therapeutic potential in a variety of inflammatory disorders such as asthma. In this study, chemical feature based pharmacophore models of inhibitors of 5-LOX have been developed with the aid of HipHop and HypoGen modules within Catalyst program package. The best quantitative pharmacophore model, Hypo1, which has the highest correlation coefficient (0.97), consists of two hydrogen-bond acceptors, one hydrophobic feature and one ring aromatic feature. Hypo1 was further validated by test set and cross validation method. The application of the model shows great success in predicting the activities of 65 known 5-LOX inhibitors in our test set with a correlation coefficient of 0.85 with a cross validation of 95% confidence level, proving that the model is reliable in identifying structurally diverse compounds for inhibitory activity against 5-LOX. Furthermore, Hypo1 was used as a 3D query for screening Maybridge and NCI databases within catalyst and also drug like compounds obtained from Enamine Ltd, which follow Lipinski's rule of five. The hit compounds were subsequently subjected to filtering by docking and visualization, to identify the potential lead molecules. Finally 5 potential lead compounds, identified in the above process, were evaluated for their inhibitory activities. These studies resulted in the identification of two compounds with potent inhibition of 5-LOX activity with IC(50) of 14 microM and 35 microM, respectively. These studies thus validate the pharmacophore model generated and suggest the usefulness of the model in screening of various small molecule libraries and identification of potential lead compounds for 5-LOX inhibition. PMID:20045317

  17. Pharmacophore modeling and virtual screening for designing potential 5-lipoxygenase inhibitors.

    PubMed

    Aparoy, P; Kumar Reddy, K; Kalangi, Suresh K; Chandramohan Reddy, T; Reddanna, P

    2010-02-01

    Inhibitors of the 5-Lipoxygenase (5-LOX) pathway have a therapeutic potential in a variety of inflammatory disorders such as asthma. In this study, chemical feature based pharmacophore models of inhibitors of 5-LOX have been developed with the aid of HipHop and HypoGen modules within Catalyst program package. The best quantitative pharmacophore model, Hypo1, which has the highest correlation coefficient (0.97), consists of two hydrogen-bond acceptors, one hydrophobic feature and one ring aromatic feature. Hypo1 was further validated by test set and cross validation method. The application of the model shows great success in predicting the activities of 65 known 5-LOX inhibitors in our test set with a correlation coefficient of 0.85 with a cross validation of 95% confidence level, proving that the model is reliable in identifying structurally diverse compounds for inhibitory activity against 5-LOX. Furthermore, Hypo1 was used as a 3D query for screening Maybridge and NCI databases within catalyst and also drug like compounds obtained from Enamine Ltd, which follow Lipinski's rule of five. The hit compounds were subsequently subjected to filtering by docking and visualization, to identify the potential lead molecules. Finally 5 potential lead compounds, identified in the above process, were evaluated for their inhibitory activities. These studies resulted in the identification of two compounds with potent inhibition of 5-LOX activity with IC(50) of 14 microM and 35 microM, respectively. These studies thus validate the pharmacophore model generated and suggest the usefulness of the model in screening of various small molecule libraries and identification of potential lead compounds for 5-LOX inhibition.

  18. Regulation of rotenone-induced microglial activation by 5-lipoxygenase and cysteinyl leukotriene receptor 1.

    PubMed

    Zhang, Xiao-Yan; Chen, Lu; Yang, Yi; Xu, Dong-Min; Zhang, Si-Ran; Li, Chen-Tan; Zheng, Wei; Yu, Shu-Ying; Wei, Er-Qing; Zhang, Li-Hui

    2014-07-14

    The 5-lipoxygenase (5-LOX) products cysteinyl leukotrienes (CysLTs) are potent pro-inflammatory mediators. CysLTs mediate their biological actions through activating CysLT receptors (CysLT(1)R and CysLT(2)R). We have recently reported that 5-LOX and CysLT(1)R mediated PC12 cell injury induced by high concentrations of rotenone (0.3-10 μM), which was reduced by the selective 5-LOX inhibitor zileuton and CysLT(1)R antagonist montelukast. The purpose of this study was to examine the regulatory roles of the 5-LOX/CysLT(1)R pathway in microglial activation induced by low concentration rotenone. After mouse microglial BV2 cells were stimulated with rotenone (0.3-3 nM), phagocytosis and release of pro-inflammatory cytokine were assayed as indicators of microglial activation. We found that rotenone (1 and 3 nM) increased BV2 microglial phagocytosis and the release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Zileuton and montelukast prevented rotenone (3 nM)-induced phagocytosis and cytokine release. Furthermore, rotenone significantly up-regulated 5-LOX expression, induced 5-LOX translocation to the nuclear envelope, and increased the production of CysLTs. These responses were inhibited by zileuton. Rotenone also increased CysLT(1)R expression and induced nuclear translocation of CysLT(1)R. In primary rat microglia, rotenone (10 nM) increased release of IL-1β and TNF-α, whereas zileuton (0.1 μΜ) and montelukast (0.01 μΜ) significantly inhibited this response. These results indicated that 5-LOX and CysLT(1)R might be key regulators of microglial activation induced by low concentration of rotenone. Interference of 5-LOX/CysLT(1)R pathway may be an effective therapeutic strategy for microglial inflammation.

  19. MK-886, an inhibitor of the 5-lipoxygenase-activating protein, inhibits cyclooxygenase-1 activity and suppresses platelet aggregation.

    PubMed

    Koeberle, Andreas; Siemoneit, Ulf; Northoff, Hinnak; Hofmann, Bettina; Schneider, Gisbert; Werz, Oliver

    2009-04-17

    MK-886, an inhibitor of the 5-lipoxygenase-activating protein (FLAP), potently suppresses leukotriene biosynthesis in intact cells and is frequently used to define a role of the 5-lipoxygenase (EC 1.13.11.34) pathway in cellular or animal models of inflammation, allergy, cancer, and cardiovascular disease. Here we show that MK-886 also interferes with the activities of cyclooxygenases (COX, EC 1.14.99.1). MK-886 inhibited isolated COX-1 (IC(50)=8 microM) and blocked the formation of the COX-1-derived products 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid (12-HHT) and thromboxane B(2) in washed human platelets in response to collagen as well as from exogenous arachidonic acid (IC(50)=13-15 microM). Isolated COX-2 was less affected (IC(50)=58 microM), and in A549 cells, MK-886 (33 microM) failed to suppress COX-2-dependent 6-keto-prostaglandin (PG)F(1alpha) formation. The distinct susceptibility of MK-886 towards COX-1 and -2 is apparent in automated molecular docking studies that indicate a preferred binding of MK-886 to COX-1 into the active site. MK-886 (10 microM) inhibited COX-1-mediated platelet aggregation induced by collagen or arachidonic acid whereas thrombin- or U-46619-induced (COX-independent) aggregation was not affected. Since leukotrienes and prostaglandins share (patho)physiological properties in the development and regulation of carcinogenesis, inflammation, and vascular functions, caution should be used when interpreting data where MK-886 is used as tool to determine the involvement of FLAP and/or the 5-lipoxygenase pathway in respective experimental models.

  20. The selective 5-lipoxygenase inhibitor, A63162 reduces PC3 proliferation and initiates morphologic changes consistent with secretion.

    SciTech Connect

    Anderson, K. M.; Seed, T.; Ondrey, F.; Harris, J. E.; Center for Mechanistic Biology and Biotechnology; Rush Medical Coll.; Univ. of Minnesota

    1994-09-01

    We examined the effect of A63162 (Abbott), a selective inhibitor of 5-lipoxygenase on human prostate (PC3) cell proliferation. Within 5 min DNA synthesis was reversibly inhibited by 40 {micro}M A63162, without altered cellular attachment or uptake of trypan blue. After 72 Hr, cells continues to be attached and exclude dye, were reduced in number and their histology was altered. Many treated cells were larger, more pleomorphic, with nuclear and cytoplasmic ultrastructural changes consistent with preparation for secretion. Some cells contained moderately swollen, distorted mitochondria. ETYA, a less selective inhibitor of 5-lipoxygenase that also inhibits cell replication, acutely reduced O2 uptake by 40%, but A63162 did not. The retention of the supravital mitochondrial dye, rhodamine 123 was increased by ETYA at 4 hr, but not after 24 hr; retention was not altered by A63162. Although the mechanism by which A63162 reversibly inhibits PC3 proliferation and initiates preparation for secretion is not identified, additional studies should further define its role in these events

  1. 5-Lipoxygenase-dependent apoptosis of human lymphocytes in the International Space Station: data from the ROALD experiment.

    PubMed

    Battista, Natalia; Meloni, Maria A; Bari, Monica; Mastrangelo, Nicolina; Galleri, Grazia; Rapino, Cinzia; Dainese, Enrico; Agrò, Alessandro Finazzi; Pippia, Proto; Maccarrone, Mauro

    2012-05-01

    The functional adaptation of the immune system to the surrounding environment is also a fundamental issue in space. It has been suggested that a decreased number of lymphocytes might be a cause of immunosuppression, possibly due to the induction of apoptosis. Early activation of 5-lipoxygenase (5-LOX) might play a central role in the initiation of the apoptotic program. The goal of the role of apoptosis in lymphocyte depression (ROALD) experiment, flown on the International Space Station as part of the BIO-4 mission of the European Space Agency, was to ascertain the induction of apoptosis in human lymphocytes under authentic microgravity, and to elucidate the possible involvement of 5-LOX. Our results demonstrate that exposure of human lymphocytes to microgravity for 48 h onboard the ISS remarkably increased apoptotic hallmarks such as DNA fragmentation (∼3-fold compared to ground-based controls) and cleaved-poly (ADP-ribose) polymerase (PARP) protein expression (∼3-fold), as well as mRNA levels of apoptosis-related markers such as p53 (∼3-fold) and calpain (∼4-fold); these changes were paralleled by an early increase of 5-LOX activity (∼2-fold). Our findings provide a molecular background for the immune dysfunction observed in astronauts during space missions, and reveal potential new markers to monitor health status of ISS crew members.

  2. Structural optimization and biological evaluation of 1,5-disubstituted pyrazole-3-carboxamines as potent inhibitors of human 5-lipoxygenase

    PubMed Central

    Zhou, Yu; Liu, Jun; Zheng, Mingyue; Zheng, Shuli; Jiang, Chunyi; Zhou, Xiaomei; Zhang, Dong; Zhao, Jihui; Ye, Deju; Zheng, Mingfang; Jiang, Hualiang; Liu, Dongxiang; Cheng, Jian; Liu, Hong

    2016-01-01

    Human 5-lipoxygenase (5-LOX) is a well-validated drug target and its inhibitors are potential drugs for treating leukotriene-related disorders. Our previous work on structural optimization of the hit compound 2 from our in-house collection identified two lead compounds, 3a and 3b, exhibiting a potent inhibitory profile against 5-LOX with IC50 values less than 1 µmol/L in cell-based assays. Here, we further optimized these compounds to prepare a class of novel pyrazole derivatives by opening the fused-ring system. Several new compounds exhibited more potent inhibitory activity than the lead compounds against 5-LOX. In particular, compound 4e not only suppressed lipopolysaccharide-induced inflammation in brain inflammatory cells and protected neurons from oxidative toxicity, but also significantly decreased infarct damage in a mouse model of cerebral ischemia. Molecular docking analysis further confirmed the consistency of our theoretical results and experimental data. In conclusion, the excellent in vitro and in vivo inhibitory activities of these compounds against 5-LOX suggested that these novel chemical structures have a promising therapeutic potential to treat leukotriene-related disorders. PMID:26904397

  3. Naturally occurring biflavonoid, ochnaflavone, inhibits cyclooxygenases-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells.

    PubMed

    Son, Min Jung; Moon, Tae Chul; Lee, Eun Kyung; Son, Kun Ho; Kim, Hyun Pyo; Kang, Sam Sik; Son, Jong Keun; Lee, Seung Ho; Chang, Hyeun Wook

    2006-04-01

    Ochnaflavone is a medicinal herbal product isolated from Lonicera japonica that inhibits cyclooxygenase-2 (COX-2) dependent phases of prostaglandin D2 (PGD2) generation in bone marrow-derived mast cells (BMMC) in a concentration-dependent manner with IC50 values of 0.6 microM. Western blotting probed with specific anti-COX-2 antibodies showed that the decrease in quantity of the PGD2 product was accompanied by a decrease in the COX-2 protein level. In addition, this compound consistently inhibited the production of leukotriene C4 (LTC4) in a dose dependent manner, with an IC50 value of 6.56 microM. These results demonstrate that ochnaflavone has a dual cyclooxygenase-2/5-lipoxygenase inhibitory activity. Furthermore, this compound strongly inhibited degranulation reaction in a dose dependent manner, with an IC50 value of 3.01 microM. Therefore, this compound might provide a basis for novel anti-inflammatory drugs.

  4. Conversion of human 5-lipoxygenase to a 15-lipoxygenase by a point mutation to mimic phosphorylation at Serine-663

    SciTech Connect

    Gilbert, Nathaniel C.; Rui, Zhe; Neau, David B.; Waight, Maria T.; Bartlett, Sue G.; Boeglin, William E.; Brash, Alan R.; Newcomer, Marcia E.

    2012-08-31

    The enzyme 5-lipoxygenase (5-LOX) initiates biosynthesis of the proinflammatory leukotriene lipid mediators and, together with 15-LOX, is also required for synthesis of the anti-inflammatory lipoxins. The catalytic activity of 5-LOX is regulated through multiple mechanisms, including Ca{sup 2+}-targeted membrane binding and phosphorylation at specific serine residues. To investigate the consequences of phosphorylation at S663, we mutated the residue to the phosphorylation mimic Asp, providing a homogenous preparation suitable for catalytic and structural studies. The S663D enzyme exhibits robust 15-LOX activity, as determined by spectrophotometric and HPLC analyses, with only traces of 5-LOX activity remaining; synthesis of the anti-inflammatory lipoxin A4 from arachidonic acid is also detected. The crystal structure of the S663D mutant in the absence and presence of arachidonic acid (in the context of the previously reported Stable-5-LOX) reveals substantial remodeling of helices that define the active site so that the once fully encapsulated catalytic machinery is solvent accessible. Our results suggest that phosphorylation of 5-LOX at S663 could not only down-regulate leukotriene synthesis but also stimulate lipoxin production in inflammatory cells that do not express 15-LOX, thus redirecting lipid mediator biosynthesis to the production of proresolving mediators of inflammation.

  5. Repeated allergen exposure reduce early phase airway response and leukotriene release despite upregulation of 5-lipoxygenase pathways

    PubMed Central

    2012-01-01

    Background Allergen induced early phase airway response and airway plasma exudation are predominantly mediated by inflammatory mast cell mediators including histamine, cysteinyl leukotrienes (cysLTs) and thromboxane A2 (TXA2). The aim of the present study was to evaluate whether repeated allergen exposure affects early phase airway response to allergen challenge. Methods A trimellitic anhydride (TMA) sensitized guinea pig model was used to investigate the effects of low dose repeated allergen exposure on cholinergic airway responsiveness, early phase airway response and plasma exudation, as well as local airway production of mast cell derived cysteinyl leukotrienes and thromboxane B2 (TXB2) after allergen challenge. Results Repeated low dose allergen exposure increased cholinergic airway responsiveness. In contrast, early phase airway response and plasma exudation in response to a high-dose allergen challenge were strongly attenuated after repeated low dose allergen exposure. Inhibition of the airway response was unspecific to exposed allergen and independent of histamine receptor blocking. Furthermore, a significant reduction of cysteinyl leukotrienes and TXB2 was found in the airways of animals repeatedly exposed to a low dose allergen. However, in vitro stimulation of airway tissue from animals repeatedly exposed to a low dose allergen with arachidonic acid and calcium ionophore (A23187) induced production of cysteinyl leukotrienes and TXB2, suggesting enhanced activity of 5-lipoxygenase and cyclooxygenase pathways. Conclusions The inhibition of the early phase airway response, cysteinyl leukotriene and TXB2 production after repeated allergen exposure may result from unresponsive effector cells. PMID:22439792

  6. Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: A basis for novel drugs targeting cancer cells?

    PubMed

    Roos, Jessica; Grösch, Sabine; Werz, Oliver; Schröder, Peter; Ziegler, Slava; Fulda, Simone; Paulus, Patrick; Urbschat, Anja; Kühn, Benjamin; Maucher, Isabelle; Fettel, Jasmin; Vorup-Jensen, Thomas; Piesche, Matthias; Matrone, Carmela; Steinhilber, Dieter; Parnham, Michael J; Maier, Thorsten J

    2016-01-01

    Canonical Wnt signaling is a highly conserved pathway with a prominent role in embryogenic development, adult tissue homeostasis, cell polarization, stem cell biology, cell differentiation, and proliferation. Furthermore, canonical Wnt signaling is of pivotal importance in the pathogenesis of a number of cancer types and crucially affects tumor initiation, cancer cell proliferation, cancer cell apoptosis, and metastasis. Reports over the last decade have provided strong evidence for a pathophysiological role of Wnt signaling in non-malignant classical inflammatory and neurodegenerative diseases. Although, several agents suppressing the Wnt pathway at different levels have been identified, the development of clinically relevant Wnt-inhibiting agents remains challenging due to selectivity and toxicity issues. Several studies have shown that long-term administration of non-steroidal anti-inflammatory drugs protects against colon cancer and potentially other tumor types by interfering both with the COX and the Wnt pathway. Our own studies have shown that non-steroidal anti-inflammatory drugs suppress Wnt signaling by targeting the pro-inflammatory enzyme 5-lipoxygenase which is the key enzyme pathophysiologically involved in the synthesis of leukotrienes. Furthermore, we found a direct link between the 5-lipoxygenase and Wnt signaling pathways, which is essential for the maintenance of leukemic stem cells. Accordingly, genetic and pharmacological inhibition of 5-lipoxygenase led to an impairment of Wnt-dependent acute and chronic myeloid leukemic stem cells. We believe that 5-lipoxygenase inhibitors might represent a novel type of Wnt inhibitor activating a potentially naturally occurring novel mechanism of suppression of Wnt signaling that is non-toxic, at least in mice, and is potentially well tolerated in patients.

  7. Suppression of oxidative stress and 5-lipoxygenase activation by edaravone improves depressive-like behavior after concussion.

    PubMed

    Higashi, Youichirou; Hoshijima, Michihiro; Yawata, Toshio; Nobumoto, Atsuya; Tsuda, Masayuki; Shimizu, Takahiro; Saito, Motoaki; Ueba, Tetuya

    2014-10-15

    Brain concussions are a serious public concern and are associated with neuropsychiatric disorders, such as depression. Patients with concussion who suffer from depression often experience distress. Nevertheless, few pre-clinical studies have examined concussion-induced depression, and there is little information regarding its pharmacological management. Edaravone, a free radical scavenger, can exert neuroprotective effects in several animal models of neurological disorders. However, the effectiveness of edaravone in animal models of concussion-induced depression remains unclear. In this study, we examined whether edaravone could prevent concussion-induced depression. Mice were subjected to a weight-drop injury and intravenously administered edaravone (3.0 mg/kg) or vehicle immediately after impact. Serial magnetic resonance imaging showed no abnormalities of the cerebrum on diffusion T1- and T2-weighted images. We found that edaravone suppressed concussion-induced depressive-like behavior in the forced swim test, which was accompanied by inhibition of increased hippocampal and cortical oxidative stress (OS) and suppression of 5-lipoxygenase (5-LOX) translocation to the nuclear envelope in hippocampal astrocytes. Hippocampal OS in concussed mice was also prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor, apocynin, and administration of BWB70C, a 5-LOX inhibitor, immediately and 24 h after injury prevented depressive-like behaviors in concussed mice. Further, antidepressant effects of edaravone were observed in mice receiving 1.0 or 3.0 mg/kg of edaravone immediately after impact, but not at a lower dose of 0.1 mg/kg. This antidepressant effect persisted up to 1 h after impact, whereas edaravone treatment at 3 h after impact had no effect on concussion-induced depressive-like behavior. These results suggest that edaravone protects against concussion-induced depression, and this protection is mediated by suppression of OS and 5

  8. Caffeic acid phenethyl ester, a 5-lipoxygenase enzyme inhibitor, alleviates diabetic atherosclerotic manifestations: effect on vascular reactivity and stiffness.

    PubMed

    Hassan, Noura Ahmed; El-Bassossy, Hany M; Mahmoud, Mona Fouad; Fahmy, Ahmed

    2014-04-25

    Atherosclerosis is a major macrovascular complication of diabetes that increases the risks for myocardial infarction, stroke, and other vascular diseases. The effect of a selective 5-lipoxygenase enzyme inhibitor; caffeic acid phenethyl ester (CAPE) on diabetes-induced atherosclerotic manifestations was investigated. Insulin deficiency or resistance was induced by STZ or fructose respectively. Atherosclerosis developed when rats were left for 8 or 12 weeks subsequent STZ or fructose administration respectively. CAPE (30 mg kg(-1) day(-1)) was given in the last 6 weeks. Afterwards, blood pressure (BP) was recorded. Then, isolated aorta reactivity to KCl and phenylephrine (PE) was studied. Blood glucose level, serum levels of insulin, tumor necrosis factor α (TNF-α) as well as advanced glycation end products (AGEs) were determined. Moreover aortic haem oxygenase-1 (HO-1) protein expression and collagen deposition were also assessed. Insulin deficiency and resistance were accompanied with elevated BP, exaggerated response to KCl and PE, elevated serum TNF-α and AGEs levels. Both models showed marked increase in collagen deposition. However, CAPE alleviated systolic and diastolic BP elevations and the exaggerated vascular contractility to both PE and KCl in both models without affecting AGEs level. CAPE inhibited TNF-α serum level elevation, induced aortic HO-1 expression and reduced collagen deposition. CAPE prevented development of hyperinsulinemia in insulin resistance model without any impact on the developed hyperglycemia in insulin deficiency model. In conclusion, CAPE offsets the atherosclerotic changes associated with diabetes via amelioration of the significant functional and structural derangements in the vessels in addition to its antihyperinsulinemic effect in insulin resistant model.

  9. Active site characterization and structure based 3D-QSAR studies on non-redox type 5-lipoxygenase inhibitors.

    PubMed

    Ul-Haq, Zaheer; Khan, Naveed; Zafar, Syed Kashif; Moin, Syed Tarique

    2016-06-10

    Structure-based 3D-QSAR study was performed on a class of 5-benzylidene-2-phenylthiazolinones non-redox type 5-LOX inhibitors. In this study, binding pocket of 5-Lipoxygenase (pdb id 3o8y) was identified by manual docking using 15-LOX (pdb id 2p0m) as a reference structure. Additionally, most of the binding site residues were found conserved in both structures. These non-redox inhibitors were then docked into the binding site of 5-LOX. To generate reliable CoMFA and CoMSIA models, atom fit data base alignment method using docked conformation of the most active compound was employed. The q(2)cv and r(2)ncv values for CoMFA model were found to be 0.549 and 0.702, respectively. The q(2)cv and r(2)ncv values for the selected CoMSIA model comprised four descriptors steric, electrostatic, hydrophobic and hydrogen bond donor fields were found to be 0.535 and 0.951, respectively. Obtained results showed that our generated model was statistically reliable. Furthermore, an external test set validates the reliability of the predicted model by calculating r(2)pred i.e.0.787 and 0.571 for CoMFA and CoMSIA model, respectively. 3D contour maps generated from CoMFA and CoMSIA models were utilized to determine the key structural features of ligands responsible for biological activities. The applied protocol will be helpful to design more potent and selective inhibitors of 5-LOX. PMID:27044904

  10. Ethanol Promotes Chemically Induced Oral Cancer in Mice through Activation of the 5-Lipoxygenase Pathway of Arachidonic Acid Metabolism

    PubMed Central

    Guo, Yizhu; Wang, Xin; Zhang, Xinyan; Sun, Zheng; Chen, Xiaoxin

    2011-01-01

    Alcohol drinking is a known risk factor for oral cancer in humans. However, previous animal studies on the promoting effect of ethanol on oral carcinogenesis were inconclusive. It is necessary to develop an animal model with which the molecular mechanism of ethanol-related oral carcinogenesis may be elucidated in order to develop effective prevention strategies. In this study, mice were first treated with 4-nitroquinoline-1-oxide (4NQO, 100μg/ml in drinking water) for 8 weeks, and then given water or ethanol (8%) as the sole drink for another 16 weeks. During the experiment, 8% ethanol was well tolerated by mice. The incidence of squamous cell carcinoma (SCC) increased from 20% (8/41) to 43% (17/40; p<0.05). Expression of 5-lipoxygenase (5-Lox) and cyclooxygenase 2 (Cox-2) was increased in dysplasia and SCC of 4NQO-treated tongues, and further enhanced by ethanol. Using this mouse model, we further demonstrated that fewer cancers were induced in Alox5−/− mice, as were cell proliferation, inflammation, and angiogenesis in the tongue, as compared with Alox5+/+ mice. Interestingly, Cox-2 expression was induced by ethanol in knockout mice, while 5-Lox and leukotriene A4 hydrolase (LTA4H) expression and leukotriene B4 (LTB4) biosynthesis were dramatically reduced. Moreover, ethanol enhanced expression and nuclear localization of 5-Lox and stimulated LTB4 biosynthesis in human tongue SCC cells (SCC-15 and SCC-4) in vitro. In conclusion, this study clearly demonstrated that ethanol promoted 4NQO-induced oral carcinogenesis, at least in part, through further activation of the 5-Lox pathway of arachidonic acid metabolism. PMID:21881027

  11. 5-Lipoxygenase metabolite 4-HDHA is a mediator of the antiangiogenic effect of ω-3 polyunsaturated fatty acids.

    PubMed

    Sapieha, Przemyslaw; Stahl, Andreas; Chen, Jing; Seaward, Molly R; Willett, Keirnan L; Krah, Nathan M; Dennison, Roberta J; Connor, Kip M; Aderman, Christopher M; Liclican, Elvira; Carughi, Arianna; Perelman, Dalia; Kanaoka, Yoshihide; Sangiovanni, John Paul; Gronert, Karsten; Smith, Lois E H

    2011-02-01

    Lipid signaling is dysregulated in many diseases with vascular pathology, including cancer, diabetic retinopathy, retinopathy of prematurity, and age-related macular degeneration. We have previously demonstrated that diets enriched in ω-3 polyunsaturated fatty acids (PUFAs) effectively reduce pathological retinal neovascularization in a mouse model of oxygen-induced retinopathy, in part through metabolic products that suppress microglial-derived tumor necrosis factor-α. To better understand the protective effects of ω-3 PUFAs, we examined the relative importance of major lipid metabolic pathways and their products in contributing to this effect. ω-3 PUFA diets were fed to four lines of mice deficient in each key lipid-processing enzyme (cyclooxygenase 1 or 2, or lipoxygenase 5 or 12/15), retinopathy was induced by oxygen exposure; only loss of 5-lipoxygenase (5-LOX) abrogated the protection against retinopathy of dietary ω-3 PUFAs. This protective effect was due to 5-LOX oxidation of the ω-3 PUFA lipid docosahexaenoic acid to 4-hydroxy-docosahexaenoic acid (4-HDHA). 4-HDHA directly inhibited endothelial cell proliferation and sprouting angiogenesis via peroxisome proliferator-activated receptor γ (PPARγ), independent of 4-HDHA's anti-inflammatory effects. Our study suggests that ω-3 PUFAs may be profitably used as an alternative or supplement to current anti-vascular endothelial growth factor (VEGF) treatment for proliferative retinopathy and points to the therapeutic potential of ω-3 PUFAs and metabolites in other diseases of vasoproliferation. It also suggests that cyclooxygenase inhibitors such as aspirin and ibuprofen (but not lipoxygenase inhibitors such as zileuton) might be used without losing the beneficial effect of dietary ω-3 PUFA. PMID:21307302

  12. Morphologic changes of apoptosis induced in human chronic myelogenous leukemia "blast" cells by SC41661A (SEARLE), a selective inhibitor of 5-Lipoxygenase.

    SciTech Connect

    Anderson, K. M.; Seed, T. M.; Jajeh, A.; Jia, P.; Harris, J. E.; Center for Mechanistic Biology and Biotechnology; Rush Medical Coll.; Cook County Hospital

    1994-01-01

    Several inhibitors of the arachidonic acid-metabolizing enzyme, 5-lipoxygenase reduce proliferation of hematopoietic and non-hematopoietic cells and cell lines and some cells undergo limited differentiation. Cells were cultured from patients with chronic myelogenous leukemia in 'blast' crisis with the selective inhibitor of 5-lipoxygenase, SC41661A[3-(3,5-bis(1,1-dimethyl)-4-hydroxyphenyl)hiol]-N-me thyl-N-[2-(2- phridinyl-propanamide)]. Cells cultured for 3 to 5 days with 40 {micro}M SC41661A exhibited reduced cellular numbers along with ultrastructural changes and DNA laddering characteristic of apoptosis. Similar culture conditions reduced proliferation of U937 monoblastoid cells. In U937 cells, the ultrastructural features of apoptosis were not observed at 72 hours, when DNA laddering was present and cell numbers were reduced, but was present after 144 hours of culture. Dissociation between certain morphologic and biochemical sequelae of apoptosis has been described in other systems. These observations are of interest since the induction of apoptosis in dividing chronic myelogenous leukemia (CML) cells by a non-cytotoxic agent suggests paradigmatically new sites for therapeutic intervention.

  13. Integrin-dependent homotypic adhesion of neutrophils. Arachidonic acid activates Raf-1/Mek/Erk via a 5-lipoxygenase- dependent pathway.

    PubMed Central

    Capodici, C; Pillinger, M H; Han, G; Philips, M R; Weissmann, G

    1998-01-01

    AA stimulates integrin-dependent neutrophil adhesion, a critical early step in acute inflammation. However, neither the signaling pathway(s) of AA-stimulated adhesion, nor whether AA acts directly or through the generation of active metabolites, has been elucidated. Previously, we have observed a tight association between neutrophil Erk activation and homotypic adhesion in response to chemoattractants acting through G protein-linked receptors. We now report a similar association between homotypic adhesion and Erk activation in response to AA. Erk activation was cyclooxygenase independent and required AA metabolism to 5(S)- hydroperoxyeicosatetraenoic acid (5-HpETE) via 5-lipoxygenase, but not the further lipoxygenase-dependent metabolism of 5-HpETE to leukotrienes. AA stimulation of Erk was accompanied by Raf-1 activation and was sensitive to inhibitors of Raf-1 and Mek. Whereas activation of Erk by AA was pertussis toxin sensitive, [3H]-AA binding to neutrophils was not saturable, suggesting that an AA metabolite activates a G protein. Consistent with this hypothesis, Erk activation by 5(S)-hydroxyeicosatetraenoic acid (5-HETE; lipoxygenase-independent metabolite of 5-HpETE) was also pertussis toxin sensitive. These data suggest that a 5-lipoxygenase metabolite of AA, e.g., 5-HETE, is released from AA-treated cells to engage a plasma membrane-associated, pertussis toxin-sensitive, G protein-linked receptor, leading to activation of Erk and adhesion via the Raf-1/Mek signal transduction pathway. PMID:9649570

  14. Molecular cloning and functional characterization of arachidonate 5-lipoxygenase (Alox5), and its expression in response to the ratio of linolenic acid to linoleic acid in diets of large yellow croaker (Larmichthys crocea).

    PubMed

    Wang, Tianjiao; Zuo, Rantao; Mai, Kangsen; Xu, Wei; Ai, Qinghui

    2016-11-01

    This study was conducted to clone and functionally characterize a full-length cDNA encoding arachidonate 5-lipoxygenase (Alox5) from large yellow croaker (Larmichthys crocea) and investigate its gene expression in response to graded dietary ratio of linolenic acid (ALA) to linoleic acid (LNA) (0.03, 0.06, 0.45, 0.90 and 1.51). An isolated 2372bp cDNA clone of Alox5 contained an open reading frame spanning 2025bp encoding a protein with the ability to modify arachidonate acid (AA) to 5-hydroxyeicosatetraenoic (5-HETE). In the liver, the Alox5 mRNA expression levels significantly increased to the maximum when the dietary ALA/LNA increased from 0.03 to 0.06, and then significantly decreased with dietary ALA/LNA increased to 1.51 (P<0.05). In the kidney, the expression levels of Alox5 of fish fed diets with low dietary ALA/LNA (0.03-0.06) were significantly higher than those of fish fed diets with high dietary ALA/LNA (0.45-1.51) (P<0.05). The dual-luciferase reporter assays showed that the nuclear factor kappa B (NF-κB) could act on cognate cis-acting elements in the promoter of Alox5 and increased the transcription of Alox5. Results of the present study suggested that the expression of Alox5 is higher in croakers fed high concentrations of LNA compared to those fed high concentrations of ALA, which might be regulated by NF-κB and contribute to the inflammation process by catalyzing the dioxygenation of AA. PMID:27378407

  15. Molecular cloning and functional characterization of arachidonate 5-lipoxygenase (Alox5), and its expression in response to the ratio of linolenic acid to linoleic acid in diets of large yellow croaker (Larmichthys crocea).

    PubMed

    Wang, Tianjiao; Zuo, Rantao; Mai, Kangsen; Xu, Wei; Ai, Qinghui

    2016-11-01

    This study was conducted to clone and functionally characterize a full-length cDNA encoding arachidonate 5-lipoxygenase (Alox5) from large yellow croaker (Larmichthys crocea) and investigate its gene expression in response to graded dietary ratio of linolenic acid (ALA) to linoleic acid (LNA) (0.03, 0.06, 0.45, 0.90 and 1.51). An isolated 2372bp cDNA clone of Alox5 contained an open reading frame spanning 2025bp encoding a protein with the ability to modify arachidonate acid (AA) to 5-hydroxyeicosatetraenoic (5-HETE). In the liver, the Alox5 mRNA expression levels significantly increased to the maximum when the dietary ALA/LNA increased from 0.03 to 0.06, and then significantly decreased with dietary ALA/LNA increased to 1.51 (P<0.05). In the kidney, the expression levels of Alox5 of fish fed diets with low dietary ALA/LNA (0.03-0.06) were significantly higher than those of fish fed diets with high dietary ALA/LNA (0.45-1.51) (P<0.05). The dual-luciferase reporter assays showed that the nuclear factor kappa B (NF-κB) could act on cognate cis-acting elements in the promoter of Alox5 and increased the transcription of Alox5. Results of the present study suggested that the expression of Alox5 is higher in croakers fed high concentrations of LNA compared to those fed high concentrations of ALA, which might be regulated by NF-κB and contribute to the inflammation process by catalyzing the dioxygenation of AA.

  16. Meso-dihydroguaiaretic acid isolated from Saururus chinensis inhibits cyclooxygenase-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells.

    PubMed

    Moon, Tae Chul; Seo, Chang Seob; Haa, Kyungmi; Kim, Jin Cheul; Hwang, Nam Kyung; Hong, Tae Gyun; Kim, Jee Hyeun; Kim, Do Hun; Son, Jong Keun; Chang, Hyeun Wook

    2008-05-01

    Meso-dihydroguaiaretic acid (MDGA) is a medicinal herbal product isolated from the aerial parts of Saururus chinensis that inhibits the cyclooxygenase-2 (COX-2)-dependent phase of prostaglandin D(2) (PGD(2)) generation in bone marrow-derived mast cells (BMMC) (IC(50) 9.8 microM). However, this compound did not inhibit COX-2 protein expression in BMMC at concentrations up to 30 microM, indicating that MDGA directly inhibits COX-2 activity. In addition, this compound consistently inhibited the production of leukotriene C(4) (IC(50) 1.3 microM). These results demonstrate that MDGA inhibits both COX-2 and 5-lipoxygenase. Furthermore, this compound strongly inhibited the degranulation reaction in BMMC (IC(50) 11.4 microM). Therefore, this compound might provide a basis for novel anti-inflammatory drug development.

  17. Chemoprevention of 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster cheek pouch carcinogenesis by a 5-lipoxygenase inhibitor, garcinol.

    PubMed

    Chen, Xin; Zhang, Xinyan; Lu, Ye; Shim, Joong-Youn; Sang, Shengmin; Sun, Zheng; Chen, Xiaoxin

    2012-01-01

    Our previous studies have shown that aberrant arachidonic acid metabolism, especially the 5-lipoxygenase (5-Lox) pathway, is involved in oral carcinogenesis and can be targeted for cancer prevention. To develop potent topical agents for oral cancer chemoprevention, 5 known 5-Lox inhibitors from dietary and synthetic sources (Zileuton, ABT-761, licofelone, curcumin, and garcinol) were evaluated in silico for their potential efficacy. Garcinol, a polyisoprenylated benzophenone from the fruit rind of Garcinia spp., was found to be a promising agent based on the calculation of a theoretical activity index. Computer modeling showed that garcinol well fit the active site of 5-Lox, and potentially inhibited enzyme activity through interactions between the phenolic hydroxyl groups and the non-heme catalytic iron. In a short-term study on 7,12-dimethylbenz[a]anthracene (DMBA)-treated hamster cheek pouch, topical garcinol suppressed leukotriene B4 (LTB4) biosynthesis and inhibited inflammation and cell proliferation in the oral epithelium. In a long-term carcinogenesis study, topical garcinol significantly reduced the size of visible tumors, the number of cancer lesions, cell proliferation, and LTB4 biosynthesis. These results demonstrated that topical application of a 5-Lox inhibitor, garcinol, had chemopreventive effect on DMBA-induced hamster cheek pouch carcinogenesis. PMID:23137051

  18. Possible role for interactions between 5-lipoxygenase (5-LOX) and AMPA GluR1 receptors in depression and in antidepressant therapy

    PubMed Central

    Manev, Radmila; Mrazovac, Danijela; Manev, Hari

    2009-01-01

    Summary Emerging evidence suggests that 5-lipoxygenase (5-LOX) plays a role in central nervous system functioning. It has been shown that 5-LOX metabolic products can decrease the phosphorylation of the glutamate reseptor subunit GluR1, and that this effect can be antagonized by 5-LOX inhibitors. Recent concepts about the pathobiological mechanisms of depression and the molecular mechanisms of antidepressant activity postulate a significant role for glutamatergic neurotransmission and the GluR1 receptor. Regulation of GluR1 phosphorylation, i.e., enhancement of this phosphorylation, may be a part of antidepressant activity. On the other hand, reduced GluR1 phosphorylation may be a pathobiological mechanism contributing to depression. Since 5-LOX inhibitors, along with antidepressants share the capacity to increase GluR1 phosphorylation, we hypothesize that they may also have antidepressant properties. Furthermore, we postulate that increased brain 5-LOX expression may lead to decreased GluR1 phosphorylation and favor the development of depression. For example, brain 5-LOX expression is stimulated by stress hormone glucocorticoids, and stress is a known as a contributing factor to depression. PMID:17449191

  19. Computational insight into the catalytic implication of head/tail-first orientation of arachidonic acid in human 5-lipoxygenase: consequences for the positional specificity of oxygenation.

    PubMed

    Saura, Patricia; Maréchal, Jean-Didier; Masgrau, Laura; Lluch, José M; González-Lafont, Àngels

    2016-08-17

    In the present work we have combined homology modeling, protein-ligand dockings, quantum mechanics/molecular mechanics calculations and molecular dynamics simulations to generate human 5-lipoxygenase (5-LOX):arachidonic acid (AA) complexes consistent with the 5-lipoxygenating activity (which implies hydrogen abstraction at the C7 position). Our results suggest that both the holo and the apo forms of human Stable 5-LOX could accommodate AA in a productive form for 5-lipoxygenation. The former, in a tail-first orientation, with the AA carboxylate end interacting with Lys409, gives the desired structures with C7 close to the Fe-OH(-) cofactor and suitable barrier heights for H7 abstraction. Only when using the apo form structure, a head-first orientation with the AA carboxylate close to His600 (a residue recently proposed as essential for AA positioning) is obtained in the docking calculations. However, the calculated barrier heights for this head-first orientation are in principle consistent with 5-LOX specificity, but also with 12/8 regioselectivity. Finally, long MD simulations give support to the recent hypothesis that the Phe177 + Tyr181 pair needs to close the active site access during the chemical reaction, and suggest that in the case of a head-first orientation Phe177 may be the residue interacting with the AA carboxylate. PMID:27489112

  20. Exploring the roles of UGT1A1 and UGT1A3 in oral clearance of GSK2190915, a 5-lipoxygenase-activating protein inhibitor.

    PubMed

    Mosteller, Michael; Condreay, Lynn D; Harris, Elizabeth C; Ambery, Claire; Beerahee, Misba; Ghosh, Soumitra

    2014-12-01

    Pharmacokinetic variability in drug exposure is a concern for all compounds in development including those for the treatment of asthma and other respiratory disorders. Substantial variability in the oral clearance of GSK2190915, a 5-lipoxygenase-activating protein inhibitor that attenuates the production of leukotriene B4 and cysteinyl leukotrienes, is largely unaccounted for by clinical variables. A study of 41 patients, 78% (32/41) of whom were non-Hispanic whites, with mild to moderate asthma identified an association of UGT1A1*28 and UGT1A3*2 with the oral clearance of GSK2190915 (P=3.8×10⁻⁴ and 1.2×10⁻⁵, respectively). However, in a subsequent replication study of 403 non-Hispanic white patients with asthma, we failed to observe a statistically significant association between oral clearance of GSK2190915 and either UGT1A1*28 or UGT1A3*2 (P>0.05). Therefore, genetic effects that could explain the systemic exposure level variability of GSK2190915 were not identified. PMID:25192553

  1. A Single Amino Acid Difference between Mouse and Human 5-Lipoxygenase Activating Protein (FLAP) Explains the Speciation and Differential Pharmacology of Novel FLAP Inhibitors.

    PubMed

    Blevitt, Jonathan M; Hack, Michael D; Herman, Krystal; Chang, Leon; Keith, John M; Mirzadegan, Tara; Rao, Navin L; Lebsack, Alec D; Milla, Marcos E

    2016-06-10

    5-Lipoxygenase activating protein (FLAP) plays a critical role in the metabolism of arachidonic acid to leukotriene A4, the precursor to the potent pro-inflammatory mediators leukotriene B4 and leukotriene C4 Studies with small molecule inhibitors of FLAP have led to the discovery of a drug binding pocket on the protein surface, and several pharmaceutical companies have developed compounds and performed clinical trials. Crystallographic studies and mutational analyses have contributed to a general understanding of compound binding modes. During our own efforts, we identified two unique chemical series. One series demonstrated strong inhibition of human FLAP but differential pharmacology across species and was completely inactive in assays with mouse or rat FLAP. The other series was active across rodent FLAP, as well as human and dog FLAP. Comparison of rodent and human FLAP amino acid sequences together with an analysis of a published crystal structure led to the identification of amino acid residue 24 in the floor of the putative binding pocket as a likely candidate for the observed speciation. On that basis, we tested compounds for binding to human G24A and mouse A24G FLAP mutant variants and compared the data to that generated for wild type human and mouse FLAP. These studies confirmed that a single amino acid mutation was sufficient to reverse the speciation observed in wild type FLAP. In addition, a PK/PD method was established in canines to enable preclinical profiling of mouse-inactive compounds. PMID:27129215

  2. 5-Lipoxygenase Activating Protein Reduction Ameliorates Cognitive Deficit, Synaptic Dysfunction, and Neuropathology in a Mouse Model of Alzheimer’s Disease

    PubMed Central

    Giannopoulos, Phillip F.; Chu, Jin; Joshi, Yash B.; Sperow, Margaret; Li, Jin-Guo; Kirby, Lynn G.; Praticò, Domenico

    2013-01-01

    Background 5-lipoxygenase activating protein (FLAP) is abundantly present in the central nervous system. Although its function has been extensively interrogated in the context of peripheral inflammation, novel roles for this protein are emerging in the central nervous system. The objective of our study was to investigate the functional role that FLAP plays in a mouse model of Alzheimer’s disease (AD) with plaques and tangles (i.e., 3×Tg mice). Methods By implementing a genetic knockout of FLAP and pharmacologic inhibition with a FLAP inhibitor (MK-591), we evaluated the effect on the AD-like neuropathology, cognition, and synaptic plasticity in the 3×Tg mice. Results We show that reduction of FLAP leads to amelioration of cognition and memory along with the rescuing of synaptic dysfunction at an early age before the development of overt neuropathology. Genetic knockout and pharmacologic inhibition of FLAP also yielded an improvement in AD pathology through a reduction in Aβ via the γ-secretase pathway and a decrease in tau phosphorylation through the cdk5 pathway. Conclusions Our studies identify a novel functional role for FLAP in regulating memory and synaptic plasticity. They establish this protein at the crossroad of multiple pathways that ultimately contribute to the development of the entire AD-like phenotype, making it a viable therapeutic target with disease-modifying capacity for the treatment of this disease. PMID:23683389

  3. A Single Amino Acid Difference between Mouse and Human 5-Lipoxygenase Activating Protein (FLAP) Explains the Speciation and Differential Pharmacology of Novel FLAP Inhibitors.

    PubMed

    Blevitt, Jonathan M; Hack, Michael D; Herman, Krystal; Chang, Leon; Keith, John M; Mirzadegan, Tara; Rao, Navin L; Lebsack, Alec D; Milla, Marcos E

    2016-06-10

    5-Lipoxygenase activating protein (FLAP) plays a critical role in the metabolism of arachidonic acid to leukotriene A4, the precursor to the potent pro-inflammatory mediators leukotriene B4 and leukotriene C4 Studies with small molecule inhibitors of FLAP have led to the discovery of a drug binding pocket on the protein surface, and several pharmaceutical companies have developed compounds and performed clinical trials. Crystallographic studies and mutational analyses have contributed to a general understanding of compound binding modes. During our own efforts, we identified two unique chemical series. One series demonstrated strong inhibition of human FLAP but differential pharmacology across species and was completely inactive in assays with mouse or rat FLAP. The other series was active across rodent FLAP, as well as human and dog FLAP. Comparison of rodent and human FLAP amino acid sequences together with an analysis of a published crystal structure led to the identification of amino acid residue 24 in the floor of the putative binding pocket as a likely candidate for the observed speciation. On that basis, we tested compounds for binding to human G24A and mouse A24G FLAP mutant variants and compared the data to that generated for wild type human and mouse FLAP. These studies confirmed that a single amino acid mutation was sufficient to reverse the speciation observed in wild type FLAP. In addition, a PK/PD method was established in canines to enable preclinical profiling of mouse-inactive compounds.

  4. A Novel Inhibitor of 5-Lipoxygenase (5-LOX) Prevents Oxidative Stress–Induced Cell Death of Retinal Pigment Epithelium (RPE) Cells

    PubMed Central

    Subramanian, Preeti; Mendez, Emily F.; Becerra, S. Patricia

    2016-01-01

    Purpose 5-Lipoxygenase (5-LOX) oxygenates arachidonic acid to form 5-hydroperoxyeicosatetraenoic acid, which is further converted into biologically detrimental leukotrienes, such as leukotriene B4 (LTB4). The RPE and retina express the PNPLA2 gene for pigment epithelium–derived factor receptor (PEDF-R), a lipase involved in cell survival. The purpose here was to investigate the role of PEDF-R on the 5-LOX pathway in oxidative stress of RPE. Methods Lipoxygenase activity assays were performed with soybean and potato lipoxygenase. Binding was evaluated by peptide-affinity chromatography and pull-down assays with PEDF-R–derived synthetic peptides or recombinant protein. Oxidative stress was induced in human ARPE-19 and primary pig RPE cells with indicated concentrations of H2O2/TNF-α. Reverse transcription–PCR of ALOX5 and PNPLA2 genes was performed. Cell viability and death rates were determined using respective biomarkers. Leukotriene B4 levels were measured by ELISA. Results Among five peptides spanning between positions Leu159 and Met325 of human PEDF-R polypeptide, only two overlapping peptides, E5b and P1, bound and inhibited lipoxygenase activity. Human recombinant 5-LOX bound specifically to peptide P1 and to His6/Xpress-tagged PEDF-R via ionic interactions. The two inhibitor peptides E5b and P1 promoted cell viability and decreased cell death of RPE cells undergoing oxidative stress. Oxidative stress decreased the levels of PNPLA2 transcripts with no effect on ALOX5 expression. Exogenous additions of P1 peptide or overexpression of the PNPLA2 gene decreased both LTB4 levels and death of RPE cells undergoing oxidative stress. Conclusions A novel peptide region of PEDF-R inhibits 5-LOX, which intersects with RPE cell death pathways induced by oxidative stress. PMID:27635633

  5. Inhibition of soluble epoxide hydrolase enhances the anti-inflammatory effects of aspirin and 5-lipoxygenase activation protein inhibitor in a murine model.

    PubMed

    Liu, Jun-Yan; Yang, Jun; Inceoglu, Bora; Qiu, Hong; Ulu, Arzu; Hwang, Sung-Hee; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2010-03-15

    Inflammation is a multi-staged process whose expansive phase is thought to be driven by acutely released arachidonic acid (AA) and its metabolites. Inhibition of cyclooxygenase (COX), lipoxygenase (LOX), or soluble epoxide hydrolase (sEH) is known to be anti-inflammatory. Inhibition of sEH stabilizes the cytochrome P450 (CYP450) products epoxyeicosatrienoic acids (EETs). Here we used a non-selective COX inhibitor aspirin, a 5-lipoxygenase activation protein (FLAP) inhibitor MK886, and a sEH inhibitor t-AUCB to selectively modulate the branches of AA metabolism in a lipopolysaccharide (LPS)-challenged murine model. We used metabolomic profiling to simultaneously monitor representative AA metabolites of each branch. In addition to the significant crosstalk among branches of the AA cascade during selective modulation of COX, LOX, or sEH, we demonstrated that co-administration of t-AUCB enhanced the anti-inflammatory effects of aspirin or MK886, which was evidenced by the observations that co-administration resulted in favorable eicosanoid profiles and better control of LPS-mediated hypotension as well as hepatic protein expression of COX-2 and 5-LOX. Targeted disruption of the sEH gene displayed a parallel profile to that produced by t-AUCB. These observations demonstrate a significant level of crosstalk among the three major branches of the AA cascade and that they are not simply parallel pathways. These data illustrate that inhibition of sEH by both pharmacological intervention and gene knockout enhances the anti-inflammatory effects of aspirin and MK886, suggesting the possibility of modulating multiple branches to achieve better therapeutic effects. PMID:19896470

  6. Preclinical toxicity evaluation of tepoxalin, a dual inhibitor of cyclooxygenase and 5-lipoxygenase, in Sprague-Dawley rats and beagle dogs.

    PubMed

    Knight, E V; Kimball, J P; Keenan, C M; Smith, I L; Wong, F A; Barrett, D S; Dempster, A M; Lieuallen, W G; Panigrahi, D; Powers, W J; Szot, R J

    1996-09-01

    Tepoxalin [5- (4-chlorophenyl)-N-hydroxy-1-(4-methoxyphenyl)-N-methyl-1H-pyrazole -3-propanamide] is an orally active anti-inflammatory agent, which inhibits both cyclooxygenase and 5-lipoxygenase activities. The oral toxicity of tepoxalin was evaluated in 1- and 6-month rat (up to 50 mg/kg/day) and dog (up to 150 mg/kg bid) studies. In rats, increased liver weight, centrilobular hypertrophy, and hepatic necrosis were observed at dosages >/=20 mg/kg/day. Renal changes indicative of analgesic nephropathy syndrome (i.e., papillary edema or necrosis, cortical tubular dilatation) were seen at >/=15 mg/kg. In rats treated for 1 month, these hepatic and renal effects were largely reversible after a 1-month recovery period. Gastrointestinal erosions and ulcers were seen in female rats given 40 mg/kg/day for 6 months. Changes in clinical pathology parameters included decreases in red blood cell count, hemoglobin, and hematocrit mean values; elevation in platelet counts; and an increase in prothrombin and activated partial thromboplastin times. Mild increases in alanine aminotransferase, aspartate aminotransferase, and cholesterol were also noted in rats. Decreased erythrocyte parameters, increased leukocyte counts, and decreased total protein, albumin, and/or calcium were noted in some dogs in the 300 mg/kg/day group following 6 months of dosing. Small pyloric ulcerations were seen at 100 and 300 mg/kg/day dosages for up to 6 months. In both rats and dogs, no accumulation of tepoxalin or its carboxylic acid metabolite was detected in plasma following multiple dosing over a range of 5 to 50 mg/kg/day for rats and 20 to 300 mg/kg/day for dogs. Plasma concentrations of the carboxylic acid metabolite were severalfold higher than those of the parent compound. The no-effect dosages in rats (5 mg/kg/day) and dogs (20 mg/kg/day) were approximately one and six times the ED50 (3.5 mg/kg), respectively, for inhibition of inflammatory effects in the adjuvant arthritic rat without

  7. Novel di-tertiary-butyl phenylhydrazones as dual cyclooxygenase-2/5-lipoxygenase inhibitors: synthesis, COX/LOX inhibition, molecular modeling, and insights into their cytotoxicities.

    PubMed

    Ghatak, Shibnath; Vyas, Alok; Misra, Suniti; O'Brien, Paul; Zambre, Ajit; Fresco, Victor M; Markwald, Roger R; Swamy, K Venkateshwara; Afrasiabi, Zahra; Choudhury, Amitava; Khetmalas, Madhukar; Padhye, Subhash

    2014-01-01

    Although dual inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipoxygenase (5-LOX) enzymes is highly effective than targeting COX or LOX alone, there are only a few reports of examining such compounds in case of colorectal cancers (CRC). In the present work we report that the novel di-tert-butyl phenol-based dual inhibitors DTPSAL, DTPBHZ, DTPINH, and DTPNHZ exhibit significant cytotoxicity against human CRC cell lines. Molecular docking studies revealed a good fit of these compounds in the COX-2 and 5-LOX protein cavities. The inhibitors show significant inhibition of COX-2 and 5-LOX activities and are effective against a panel of human colon cancer cell lines including HCA-7, HT-29, SW480 and intestinal Apc10.1 cells as well as the hyaluronan synthase-2 (Has2) enzyme over-expressing colon cancer cells, through inhibition of the Hyaluronan/CD44v6 cell survival pathway. Western blot analysis and qRT-PCR analyses indicated that the di-tert-butyl phenol-based dual inhibitors reduce the expression of COX-2, 5-LOX, and CD44v6 in human colon cancer HCA-7 cells, while the combination of CD44v6shRNA and DTPSAL has an additional inhibitory effect on CD44v6 mRNA expression. The synergistic inhibitory effect of Celecoxib and Licofelone on CD44v6 mRNA expression suggests that the present dual inhibitors down-regulate cyclooxygenase and lipoxygenase enzymes through CD44v6. The compounds also exhibited enhanced antiproliferative potency compared to standard dual COX/LOX inhibitor, viz. Licofelone. Importantly, the HA/CD44v6 antagonist CD44v6shRNA in combination with synthetic compounds had a sensitizing effect on the cancer cells which enhanced their antiproliferative potency, a finding which is crucial for the anti-proliferative potency of the novel synthetic di-tert-butyl phenol based dual COX-LOX inhibitors in colon cancer cells.

  8. Novel di-tertiary-butyl phenylhydrazones as dual cyclooxygenase-2/5-lipoxygenase inhibitors: synthesis, COX/LOX inhibition, molecular modeling, and insights into their cytotoxicities.

    PubMed

    Ghatak, Shibnath; Vyas, Alok; Misra, Suniti; O'Brien, Paul; Zambre, Ajit; Fresco, Victor M; Markwald, Roger R; Swamy, K Venkateshwara; Afrasiabi, Zahra; Choudhury, Amitava; Khetmalas, Madhukar; Padhye, Subhash

    2014-01-01

    Although dual inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipoxygenase (5-LOX) enzymes is highly effective than targeting COX or LOX alone, there are only a few reports of examining such compounds in case of colorectal cancers (CRC). In the present work we report that the novel di-tert-butyl phenol-based dual inhibitors DTPSAL, DTPBHZ, DTPINH, and DTPNHZ exhibit significant cytotoxicity against human CRC cell lines. Molecular docking studies revealed a good fit of these compounds in the COX-2 and 5-LOX protein cavities. The inhibitors show significant inhibition of COX-2 and 5-LOX activities and are effective against a panel of human colon cancer cell lines including HCA-7, HT-29, SW480 and intestinal Apc10.1 cells as well as the hyaluronan synthase-2 (Has2) enzyme over-expressing colon cancer cells, through inhibition of the Hyaluronan/CD44v6 cell survival pathway. Western blot analysis and qRT-PCR analyses indicated that the di-tert-butyl phenol-based dual inhibitors reduce the expression of COX-2, 5-LOX, and CD44v6 in human colon cancer HCA-7 cells, while the combination of CD44v6shRNA and DTPSAL has an additional inhibitory effect on CD44v6 mRNA expression. The synergistic inhibitory effect of Celecoxib and Licofelone on CD44v6 mRNA expression suggests that the present dual inhibitors down-regulate cyclooxygenase and lipoxygenase enzymes through CD44v6. The compounds also exhibited enhanced antiproliferative potency compared to standard dual COX/LOX inhibitor, viz. Licofelone. Importantly, the HA/CD44v6 antagonist CD44v6shRNA in combination with synthetic compounds had a sensitizing effect on the cancer cells which enhanced their antiproliferative potency, a finding which is crucial for the anti-proliferative potency of the novel synthetic di-tert-butyl phenol based dual COX-LOX inhibitors in colon cancer cells. PMID:24295787

  9. The metabolic effects of inhibitors of 5-lipoxygenase and of cyclooxygenase 1 and 2 are an advancement in the efficacy and safety of anti-inflammatory therapy.

    PubMed

    Celotti, Fabio; Durand, Thierry

    2003-07-01

    Chronic treatment of inflammatory diseases with non-steroidal anti-inflammatory drugs is effective but not always devoid of serious side effects. In particular, the use of traditional non-steroidal aspirin-like drugs has been associated with a high incidence of gastrointestinal bleedings. The development of a new class of drugs, the selective cyclooxygenase type 2 (COX-2) inhibitors, has generated much expectation on the possibility to have safer compounds. After the initial enthusiasm of the scientific community, a re-evaluation of some large, randomized double-blind clinical studies performed with two of these compounds, has disclosed that the late serious gastrointestinal complications are not significantly reduced in comparison with non-selective inhibitors and that cardiovascular concerns might arise particularly if theses drugs are utilized in patients with underlying heart diseases. A new promising class of drugs to control inflammatory diseases is in advanced clinical development. The balanced inhibitors of 5-lipoxygenase (5-LOX) and of cyclooxygenase (both types 1 and 2) block the formation of all the enzymatically arachidonic acid-derived metabolites, both prostaglandins (like COX inhibitors) and leukotrienes (LT); these drugs have been shown to possess a very good anti-inflammatory efficacy without serious side effects. Licofelone, previously known as ML3000, is the molecule in the most advanced phase of clinical development (phase III) among this class of compounds; it is a potent, competitive, and well balanced inhibitor of 5-LOX and COX pathways. The drug has been shown to possess analgesic, anti-inflammatory, antipyretic antibronchocostrictory and antiplatelet properties at doses which are safe for the gastrointestinal tract. Moreover, the newly performed preclinical studies, here briefly reviewed, appear to indicate that the compound seems particularly suitable to protect the articular cartilage and the synovial space in degenerative joint disease

  10. Effects of exogenous arachidonic, eicosapentaenoic, and docosahexaenoic acids on the generation of 5-lipoxygenase pathway products by ionophore-activated human neutrophils.

    PubMed Central

    Lee, T H; Mencia-Huerta, J M; Shih, C; Corey, E J; Lewis, R A; Austen, K F

    1984-01-01

    Exogenous eicosapentaenoic acid (EPA) and docosahexaenoic acid (DCHA) have been compared with exogenous arachidonic acid for their capacity to modulate the oxidative metabolism of membrane-derived arachidonic acid by the 5-lipoxygenase pathway in ionophore-activated human neutrophils and for their suitability as parallel substrates in this pathway. The products from specific 14C- or 3H-labeled substrates were isolated by reverse phase high performance liquid chromatography (RP-HPLC) and were identified by elution of radiolabel at the retention times of the appropriate synthetic standards. Each product was also characterized by its ultraviolet (UV) absorption spectrum, and 7-hydroxy-DCHA was defined in addition by analysis of its mass spectrum. The metabolites, 5-hydroxyeicosatetraenoic acid, leukotriene B4 (LTB4), 6-trans-LTB4 diastereoisomers, 5-hydroxyeicosapentaenoic acid, 6-trans-leukotriene B5 diastereoisomers, leukotriene B5 (LTB5), and 7-hydroxy-DCHA were quantitated by integrated UV absorbance during resolution by RP-HPLC. LTB4 and LTB5 were also quantitated by radioimmunoassay of the eluate fractions, and leukotrienes C4 and C5 (LTC4 and LTC5, respectively) were quantitated by radioimmunoassay alone. None of the unlabeled exogenous fatty acids (5-40 micrograms/ml) altered the release of radioactivity from [14C]arachidonic acid-labeled, ionophore-activated neutrophils. The metabolism of 5 and 10 micrograms/ml of exogenous EPA by ionophore-activated, [14C]arachidonic acid-labeled neutrophils not only generated 5-hydroxyeicosapentaenoic acid, 6-trans-LTB5, LTB5, and LTC5, but also stimulated the formation of 5-hydroxyeicosatetraenoic acid, 6-trans-LTB4 diastereoisomers, and LTC4 from membrane-derived arachidonic acid. In contrast, LTB4 production was diminished throughout the EPA dose-response, beginning at 5 micrograms/ml EPA and reaching 50% suppression at 10 micrograms/ml and 84% suppression at 40 micrograms/ml. The selective decrease in extracellular LTB4

  11. Modulation of coronary flow rate and cardiac contractility by the divalent cation ionophore A23187 and inhibitors of the cyclooxygenase and 5-lipoxygenase pathways: development of heterogeneous patterns of myocardial ischemia.

    PubMed

    Björnsson, O G; Kobayashi, K; Williamson, J R

    1988-02-01

    In the present studies, we demonstrate in buffer-perfused isolated working guinea pig hearts that indometacin reduces coronary flow rate in a dose-dependent manner (max 56.7 +/- 5.5%, SEM, n = 6, of control at 5 x 10(-6) mol/l of indometacin, P less than 0.01), and that this leads to a development of heterogeneous patterns of myocardial ischemia (elevated myocardial levels of reduced pyridine nucleotide, NADH) and depressed cardiac work (64.7 +/- 11.7%, SEM, of control at 5 x 10(-6) mol/l of indometacin, P less than 0.05). The effect of indometacin on coronary flow rate and consequently on myocardial tissue oxygenation was completely prevented by the preferential 5-lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) (1 x 10(-6) mol/l), or the sulfidopeptide leukotriene receptor antagonist FPL 55712 (2 x 10(-5) mol/l), indicating that the isolated working guinea pig heart, even when deprived of blood, is able to produce vasoactive sulfidopeptide leukotrienes at significant levels. At higher concentrations of indometacin (5 x 10(-5) mol/l, 1 x 10(-4) mol/l), coronary flow rate returned to initial levels while cardiac work became further depressed despite normoxic levels of NADH. These data support that indometacin also has a direct suppressive effect on the myocardium independent of its coronary vascular effect. This conclusion is supported by the observation that addition of sodium arachidonate (6 x 10(-5) mol/l) completely inhibited the vascular effect of indometacin, but not the depressive effect on the myocardium. The divalent cation ionophore A23187 (6 x 10(-6) mol/l) had a strong positive chronotropic effect on the heart and a biphasic effect on coronary flow rate. After a brief period of increased coronary flow rate, presumably due to coronary vasodilatation, the ionophore caused a sustained reduction in coronary flow, and this was accompanied by high myocardial levels of NADH fluorescence of characteristically heterogeneous pattern. This is presumably

  12. Western blot expression of 5-lipoxygenase in the brain from striped dolphins (stenella coeruleoalba) and bottlenose dolphins (tursiops truncatus) with or without encephalitis/meningo-encephalitis of infectious nature.

    PubMed

    Di Guardo, G; Falconi, A; Di Francesco, A; Mazzariol, S; Centelleghe, C; Casalone, C; Pautasso, A; Cocumelli, C; Eleni, C; Petrella, A; Di Francesco, C E; Sabatucci, A; Leonardi, L; Serroni, A; Marsili, L; Storelli, M M; Giacominelli-Stuffler, R

    2015-01-01

    Dolphin Morbillivirus (DMV), Toxoplasma gondii and Brucella ceti are pathogens of major concern for wild cetaceans. Although a more or less severe encephalitis/meningo-encephalitis may occur in striped dolphins (Stenella coeruleoalba) and bottlenose dolphins (Tursiops truncatus) infected by the aforementioned agents, almost no information is available on the neuropathogenesis of brain lesions, including the neuronal and non-neuronal cells targeted during infection, along with the mechanisms underlying neurodegeneration. We analyzed 5-lipoxygenase (5-LOX) expression in the brain of 11 striped dolphins and 5 bottlenose dolphins, affected or not by encephalitic lesions of various degrees associated with DMV, T. gondii and B. ceti. All the 8 striped dolphins with encephalitis showed a more consistent 5-LOX expression than that observed in the 3 striped dolphins showing no morphologic evidence of brain lesions, with the most prominent band intensity being detected in a B. ceti-infected animal. Similar results were not obtained in T. gondii-infected vs T. gondii-uninfected bottlenose dolphins. Overall, the higher 5-LOX expression found in the brain of the 8 striped dolphins with infectious neuroinflammation is of interest, given that 5-LOX is a putative marker for neurodegeneration in human patients and in experimental animal models. Therefore, further investigation on this challenging issue is also needed in stranded cetaceans affected by central neuropathies.

  13. Western blot expression of 5-lipoxygenase in the brain from striped dolphins (stenella coeruleoalba) and bottlenose dolphins (tursiops truncatus) with or without encephalitis/meningo-encephalitis of infectious nature.

    PubMed

    Di Guardo, G; Falconi, A; Di Francesco, A; Mazzariol, S; Centelleghe, C; Casalone, C; Pautasso, A; Cocumelli, C; Eleni, C; Petrella, A; Di Francesco, C E; Sabatucci, A; Leonardi, L; Serroni, A; Marsili, L; Storelli, M M; Giacominelli-Stuffler, R

    2015-01-01

    Dolphin Morbillivirus (DMV), Toxoplasma gondii and Brucella ceti are pathogens of major concern for wild cetaceans. Although a more or less severe encephalitis/meningo-encephalitis may occur in striped dolphins (Stenella coeruleoalba) and bottlenose dolphins (Tursiops truncatus) infected by the aforementioned agents, almost no information is available on the neuropathogenesis of brain lesions, including the neuronal and non-neuronal cells targeted during infection, along with the mechanisms underlying neurodegeneration. We analyzed 5-lipoxygenase (5-LOX) expression in the brain of 11 striped dolphins and 5 bottlenose dolphins, affected or not by encephalitic lesions of various degrees associated with DMV, T. gondii and B. ceti. All the 8 striped dolphins with encephalitis showed a more consistent 5-LOX expression than that observed in the 3 striped dolphins showing no morphologic evidence of brain lesions, with the most prominent band intensity being detected in a B. ceti-infected animal. Similar results were not obtained in T. gondii-infected vs T. gondii-uninfected bottlenose dolphins. Overall, the higher 5-LOX expression found in the brain of the 8 striped dolphins with infectious neuroinflammation is of interest, given that 5-LOX is a putative marker for neurodegeneration in human patients and in experimental animal models. Therefore, further investigation on this challenging issue is also needed in stranded cetaceans affected by central neuropathies. PMID:25864766

  14. Synthesis and biological evaluation of salicylic acid and N-acetyl-2-carboxybenzenesulfonamide regioisomers possessing a N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore: dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity.

    PubMed

    Chowdhury, Morshed A; Abdellatif, Khaled R A; Dong, Ying; Das, Dipankar; Yu, Gang; Velázquez, Carlos A; Suresh, Mavanur R; Knaus, Edward E

    2009-12-15

    A novel class of salicylic acid and N-acetyl-2-carboxybenzenesulfonamide regioisomers possessing a N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore attached to its C-4 or C-5 position was designed for evaluation as anti-inflammatory (AI) agents. Replacement of the 2,4-difluorophenyl ring in diflunisal by the N-difluoromethyl-1,2-dihydropyrid-2-one moiety provided compounds showing dual selective cyclooxygenase-2 (COX-2)/5-lipoxygenase (5-LOX) inhibitory activities. AI structure-activity studies showed that the C-4 (14a) and C-5 (14b) salicylate regioisomers were 1.4- and 1.6-fold more potent than aspirin, and the C-5 N-acetyl-2-carboxybenzenesulfonamide regioisomer (22b) was 1.3- and 2.8-fold more potent than ibuprofen and aspirin, respectively. In vivo ulcer index (UI) studies showed that the 4- and 5-(N-difluoromethyl-1,2-dihydropyrid-2-one-4-yl)salicylic acids (14a and 14b) were completely non-ulcerogenic since no gastric lesions were present (UI=0) relative to aspirin (UI=57) at an equivalent mumol/kg oral dose. The N-difluoromethyl-1,2-dihydropyridin-2-one moiety provides a novel 5-LOX pharmacophore for the design of cyclic hydroxamic mimetics for exploitation in the development of dual COX-2/5-LOX inhibitory AI drugs.

  15. Synthesis, SAR, and series evolution of novel oxadiazole-containing 5-lipoxygenase activating protein inhibitors: discovery of 2-[4-(3-{(r)-1-[4-(2-amino-pyrimidin-5-yl)-phenyl]-1-cyclopropyl-ethyl}-[1,2,4]oxadiazol-5-yl)-pyrazol-1-yl]-N,N-dimethyl-acetamide (BI 665915).

    PubMed

    Takahashi, Hidenori; Riether, Doris; Bartolozzi, Alessandra; Bosanac, Todd; Berger, Valentina; Binetti, Ralph; Broadwater, John; Chen, Zhidong; Crux, Rebecca; De Lombaert, Stéphane; Dave, Rajvee; Dines, Jonathon A; Fadra-Khan, Tazmeen; Flegg, Adam; Garrigou, Michael; Hao, Ming-Hong; Huber, John; Hutzler, J Matthew; Kerr, Steven; Kotey, Adrian; Liu, Weimin; Lo, Ho Yin; Loke, Pui Leng; Mahaney, Paige E; Morwick, Tina M; Napier, Spencer; Olague, Alan; Pack, Edward; Padyana, Anil K; Thomson, David S; Tye, Heather; Wu, Lifen; Zindell, Renee M; Abeywardane, Asitha; Simpson, Thomas

    2015-02-26

    The synthesis, structure-activity relationship (SAR), and evolution of a novel series of oxadiazole-containing 5-lipoxygenase-activating protein (FLAP) inhibitors are described. The use of structure-guided drug design techniques provided compounds that demonstrated excellent FLAP binding potency (IC50 < 10 nM) and potent inhibition of LTB4 synthesis in human whole blood (IC50 < 100 nM). Optimization of binding and functional potencies, as well as physicochemical properties resulted in the identification of compound 69 (BI 665915) that demonstrated an excellent cross-species drug metabolism and pharmacokinetics (DMPK) profile and was predicted to have low human clearance. In addition, 69 was predicted to have a low risk for potential drug-drug interactions due to its cytochrome P450 3A4 profile. In a murine ex vivo whole blood study, 69 demonstrated a linear dose-exposure relationship and a dose-dependent inhibition of LTB4 production. PMID:25671290

  16. Muon Catalyzed Fusion

    NASA Technical Reports Server (NTRS)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  17. Catalyzed sodium chlorate candles

    NASA Technical Reports Server (NTRS)

    Malich, C. W.; Wydeven, T.

    1972-01-01

    The catalytic effect of cobalt powder on chlorate decomposition has been confirmed. Catalysis is enhanced by oxidation of the metal during burning. Catalysts other than cobalt compounds should also be effective; the complete elimination of fuel has shown that the oxidation of cobalt during decomposition is not a vital factor in the improved performance of catalyzed candles.

  18. Tritium catalyzed deuterium tokamaks

    SciTech Connect

    Greenspan, E.; Miley, G.H.; Jung, J.; Gilligan, J.

    1984-04-01

    A preliminary assessment of the promise of the Tritium Catalyzed Deuterium (TCD) tokamak power reactors relative to that of deuterium-tritium (D-T) and catalyzed deuterium (Cat-D) tokamaks is undertaken. The TCD mode of operation is arrived at by converting the /sup 3/He from the D(D,n)/sup 3/He reaction into tritium, by neutron capture in the blanket; the tritium thus produced is fed into the plasma. There are three main parts to the assessment: blanket study, reactor design and economic analysis and an assessment of the prospects for improvements in the performance of TCD reactors (and in the promise of the TCD mode of operation, in general).

  19. Catalyzed Ceramic Burner Material

    SciTech Connect

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant

  20. Hydroxide-catalyzed bonding

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung (Inventor)

    2003-01-01

    A method of bonding substrates by hydroxide-catalyzed hydration/dehydration involves applying a bonding material to at least one surface to be bonded, and placing the at least one surface sufficiently close to another surface such that a bonding interface is formed between them. A bonding material of the invention comprises a source of hydroxide ions, and may optionally include a silicate component, a particulate filling material, and a property-modifying component. Bonding methods of the invention reliably and reproducibly provide bonds which are strong and precise, and which may be tailored according to a wide range of possible applications. Possible applications for bonding materials of the invention include: forming composite materials, coating substrates, forming laminate structures, assembly of precision optical components, and preparing objects of defined geometry and composition. Bonding materials and methods of preparing the same are also disclosed.

  1. Nickel-Catalyzed Reductive Couplings.

    PubMed

    Wang, Xuan; Dai, Yijing; Gong, Hegui

    2016-08-01

    The Ni-catalyzed reductive coupling of alkyl/aryl with other electrophiles has evolved to be an important protocol for the construction of C-C bonds. This chapter first emphasizes the recent progress on the Ni-catalyzed alkylation, arylation/vinylation, and acylation of alkyl electrophiles. A brief overview of CO2 fixation is also addressed. The chemoselectivity between the electrophiles and the reactivity of the alkyl substrates will be detailed on the basis of different Ni-catalyzed conditions and mechanistic perspective. The asymmetric formation of C(sp(3))-C(sp(2)) bonds arising from activated alkyl halides is next depicted followed by allylic carbonylation. Finally, the coupling of aryl halides with other C(sp(2))-electrophiles is detailed at the end of this chapter. PMID:27573395

  2. Silanediol-Catalyzed Chromenone Functionalization.

    PubMed

    Hardman-Baldwin, Andrea M; Visco, Michael D; Wieting, Joshua M; Stern, Charlotte; Kondo, Shin-Ichi; Mattson, Anita E

    2016-08-01

    Promising levels of enantiocontrol are observed in the silanediol-catalyzed addition of silyl ketene acetals to benzopyrylium triflates. This rare example of enantioselective, intermolecular chromenone functionalization with carbonyl-containing nucleophiles has potential applications in the synthesis of bioactive chromanones and tetrahydroxanthones. PMID:27453257

  3. Iodine-Catalyzed Polysaccharide Esterification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A review is provided of the recent reports to use iodine-catalyzed esterification reaction to produce esters from polysaccharides. The process entails reaction of the polysaccharide with an acid anhydride in the presence of a catalytic level of iodine, and in the absence of additional solvents. T...

  4. Pd-catalyzed steroid reactions.

    PubMed

    Czajkowska-Szczykowska, Dorota; Morzycki, Jacek W; Wojtkielewicz, Agnieszka

    2015-05-01

    We review the most important achievements of the last decade in the field of steroid synthesis in the presence of palladium catalysts. Various palladium-catalyzed cross-coupling reactions, including Heck, Suzuki, Stille, Sonogashira, Negishi and others, are exemplified with steroid transformations.

  5. Gold-Catalyzed Synthesis of Heterocycles

    NASA Astrophysics Data System (ADS)

    Arcadi, Antonio

    2014-04-01

    The following sections are included: * Introduction * Synthesis of Heterocycles via Gold-Catalyzed Heteroatom Addition to Unsaturated C-C Bonds * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cyclization of Polyunsaturated Compounds * Synthesis of Heterocyclic Compounds via α-Oxo Gold Carbenoid * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cycloaddition Reactions * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Activation of Carbonyl Groups and Alcohols * Synthesis of Heterocyclic Compounds through Gold-Mediated C-H Bond Functionalization * Gold-Catalyzed Domino Cyclization/Oxidative Coupling Reactions * Conclusions * References

  6. Catalyzed oxidation for nanowire growth

    NASA Astrophysics Data System (ADS)

    Tai, Kaiping; Sun, Ke; Huang, Bo; Dillon, Shen J.

    2014-04-01

    A simple, low-cost and scalable route to substrate-supported nanowire growth is reported based on catalyzed oxidation. The process shares common features with popular catalyzed nanowire growth techniques such as vapor-liquid-solid (VLS), vapor-solid-solid (VSS), or vapor-quasi-solid (VQS) that use catalyst nanoparticles to direct the deposition of reactants from the vapor phase. Catalyzed oxidation for nanowire growth (CONG) utilizes catalyzed anion (e.g. O2) reduction from the vapor phase and metal (e.g. Fe) oxidation from the substrate to produce oxide nanowires (e.g. Fe3O4). The approach represents a new class of nanowire growth methodology that may be applied to a broad range of systems. CONG does not require expensive chemical vapor deposition or physical vapor deposition equipment and can be implemented at intermediate temperatures (400-600 °C) in a standard laboratory furnace. This work also demonstrates a passive approach to catalyst deposition that allows the process to be implemented simply with no lithography or physical vapor deposition steps. This effort validates the general approach by synthesizing MnO, Fe3O4, WO3, MgO, TiO2, ZnO, ReO3, and NiO nanowires via CONG. The process produces single crystalline nanowires that can be grown to high aspect ratio and as high-density nanowire forests. Applications of the as-grown Fe3O4 and ReO3 nanowires for lithium ion battery systems are demonstrated to display high areal energy density and power.

  7. Catalyzed oxidation for nanowire growth.

    PubMed

    Tai, Kaiping; Sun, Ke; Huang, Bo; Dillon, Shen J

    2014-04-11

    A simple, low-cost and scalable route to substrate-supported nanowire growth is reported based on catalyzed oxidation. The process shares common features with popular catalyzed nanowire growth techniques such as vapor-liquid-solid (VLS), vapor-solid-solid (VSS), or vapor-quasi-solid (VQS) that use catalyst nanoparticles to direct the deposition of reactants from the vapor phase. Catalyzed oxidation for nanowire growth (CONG) utilizes catalyzed anion (e.g. O2) reduction from the vapor phase and metal (e.g. Fe) oxidation from the substrate to produce oxide nanowires (e.g. Fe3O4). The approach represents a new class of nanowire growth methodology that may be applied to a broad range of systems. CONG does not require expensive chemical vapor deposition or physical vapor deposition equipment and can be implemented at intermediate temperatures (400-600 °C) in a standard laboratory furnace. This work also demonstrates a passive approach to catalyst deposition that allows the process to be implemented simply with no lithography or physical vapor deposition steps. This effort validates the general approach by synthesizing MnO, Fe3O4, WO3, MgO, TiO2, ZnO, ReO3, and NiO nanowires via CONG. The process produces single crystalline nanowires that can be grown to high aspect ratio and as high-density nanowire forests. Applications of the as-grown Fe3O4 and ReO3 nanowires for lithium ion battery systems are demonstrated to display high areal energy density and power.

  8. Thermodynamics of Enzyme-Catalyzed Reactions Database

    National Institute of Standards and Technology Data Gateway

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  9. Gold-catalyzed naphthalene functionalization.

    PubMed

    Pérez, Pedro J; Díaz-Requejo, M Mar; Rivilla, Iván

    2011-01-01

    The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'(4) (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO(2)Et (R = H, Me) from N(2)C(R)CO(2)Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C-H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed.

  10. Gold-catalyzed naphthalene functionalization

    PubMed Central

    Rivilla, Iván

    2011-01-01

    Summary The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'4 (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO2Et (R = H, Me) from N2C(R)CO2Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C–H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed. PMID:21647320

  11. Gold-catalyzed naphthalene functionalization.

    PubMed

    Pérez, Pedro J; Díaz-Requejo, M Mar; Rivilla, Iván

    2011-01-01

    The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'(4) (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO(2)Et (R = H, Me) from N(2)C(R)CO(2)Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C-H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed. PMID:21647320

  12. Rh-Catalyzed Five-Membered Heterocycle Synthesis

    NASA Astrophysics Data System (ADS)

    Kathiravan, Subban; Nicholls, Ian A.

    The following sections are included: * Introduction * Rhodium-catalyzed nitrogen containing five-membered heterocycle synthesis * Rhodium-catalyzed oxygen containing five-membered heterocycle synthesis * Rhodium-catalyzed sulfur containing five-membered heterocycle synthesis * Rhodium-catalyzed phosphorous containing five-membered heterocycle synthesis * Rhodium-catalyzed silicon containing five-membered heterocycle synthesis * Rhodium-catalyzed synthesis of bis-heterocycles * Conclusions and outlook * References

  13. Discovery of a novel activator of 5-lipoxygenase from an anacardic acid derived compound collection

    PubMed Central

    Wisastra, Rosalina; Kok, Petra A.M; Eleftheriadis, Nikolaos; Baumgartner, Matthew P.; Camacho, Carlos J.; Haisma, Hidde J.; Dekker, Frank J.

    2013-01-01

    Lipoxygenases (LOXs) and cyclooxygenases (COXs) metabolize poly-unsaturated fatty acids into inflammatory signaling molecules. Modulation of the activity of these enzymes may provide new approaches for therapy of inflammatory diseases. In this study, we screened novel anacardic acid derivatives as modulators of human 5-LOX and COX-2 activity. Interestingly, a novel salicylate derivative 23a was identified as a surprisingly potent activator of human 5-LOX. This compound showed both non-competitive activation towards the human 5-LOX activator adenosine triphosphate (ATP) and non-essential mixed type activation against the substrate linoleic acid, while having no effect on the conversion of the substrate arachidonic acid. The kinetic analysis demonstrated a non-essential activation of the linoleic acid conversion with a KA of 8.65 μM, αKA of 0.38 μM and a β value of 1.76. It is also of interest that a comparable derivative 23d showed a mixed type inhibition for linoleic acid conversion. These observations indicate the presence of an allosteric binding site in human 5-LOX distinct from the ATP binding site. The activatory and inhibitory behavior of 23a and 23d on the conversion of linoleic compared to arachidonic acid are rationalized by docking studies, which suggest that the activator 23a stabilizes linoleic acid, whereas the larger inhibitor 23d blocks the enzyme active site. PMID:24231650

  14. Structural insights into human 5-lipoxygenase inhibition: combined ligand-based and target-based approach.

    PubMed

    Charlier, Caroline; Hénichart, Jean-Pierre; Durant, François; Wouters, Johan

    2006-01-12

    The human 5-LOX enzyme and its interaction with competitive inhibitors were investigated by means of a combined ligand-based and target-based approach. First, a pharmacophore model was generated for 16 non redox 5-LOX inhibitors with Catalyst (HipHop module). It includes two hydrophobic groups, an aromatic ring, and two hydrogen bond acceptors. The 3D structure of human 5-LOX was then modeled based on the crystal structure of rabbit 15-LOX, and the binding modes of representative ligands were studied by molecular docking. Confrontation of the docking results with the pharmacophore model allowed the weighting of the pharmacophoric features and the integration of structural information. This led to the proposal of an interaction model inside the 5-LOX active site, consisting of four major and two secondary interaction points: on one hand, two hydrophobic groups, an aromatic ring, and a hydrogen bond acceptor, and, on the other hand, an acidic moiety and an additional hydrogen bond acceptor. PMID:16392803

  15. Structural insights into human 5-lipoxygenase inhibition: combined ligand-based and target-based approach.

    PubMed

    Charlier, Caroline; Hénichart, Jean-Pierre; Durant, François; Wouters, Johan

    2006-01-12

    The human 5-LOX enzyme and its interaction with competitive inhibitors were investigated by means of a combined ligand-based and target-based approach. First, a pharmacophore model was generated for 16 non redox 5-LOX inhibitors with Catalyst (HipHop module). It includes two hydrophobic groups, an aromatic ring, and two hydrogen bond acceptors. The 3D structure of human 5-LOX was then modeled based on the crystal structure of rabbit 15-LOX, and the binding modes of representative ligands were studied by molecular docking. Confrontation of the docking results with the pharmacophore model allowed the weighting of the pharmacophoric features and the integration of structural information. This led to the proposal of an interaction model inside the 5-LOX active site, consisting of four major and two secondary interaction points: on one hand, two hydrophobic groups, an aromatic ring, and a hydrogen bond acceptor, and, on the other hand, an acidic moiety and an additional hydrogen bond acceptor.

  16. Transition metal-catalyzed functionalization of pyrazines.

    PubMed

    Nikishkin, Nicolai I; Huskens, Jurriaan; Verboom, Willem

    2013-06-14

    Transition metal-catalyzed reactions are generally used for carbon-carbon bond formation on pyrazines and include, but are not limited to, classical palladium-catalyzed reactions like Sonogashira, Heck, Suzuki, and Stille reactions. Also a few examples of carbon-heteroatom bond formation in pyrazines are known. This perspective reviews recent progress in the field of transition metal-catalyzed cross-coupling reactions on pyrazine systems. It deals with the most important C-C- and C-X-bond formation methodologies.

  17. Iron catalyzed asymmetric oxyamination of olefins.

    PubMed

    Williamson, Kevin S; Yoon, Tehshik P

    2012-08-01

    The regioselective and enantioselective oxyamination of alkenes with N-sulfonyl oxaziridines is catalyzed by a novel iron(II) bis(oxazoline) complex. This process affords oxazolidine products that can be easily manipulated to yield highly enantioenriched free amino alcohols. The regioselectivity of this process is complementary to that obtained from the analogous copper(II)-catalyzed reaction. Thus, both regioisomers of enantioenriched 1,2-aminoalcohols can be obtained using oxaziridine-mediated oxyamination reactions, and the overall sense of regiochemistry can be controlled using the appropriate choice of inexpensive first-row transition metal catalyst. PMID:22793789

  18. Attractor Explosions and Catalyzed Vacuum Decay

    SciTech Connect

    Green, Daniel; Silverstein, Eva; Starr, David

    2006-05-05

    We present a mechanism for catalyzed vacuum bubble production obtained by combining moduli stabilization with a generalized attractor phenomenon in which moduli are sourced by compact objects. This leads straightforwardly to a class of examples in which the Hawking decay process for black holes unveils a bubble of a different vacuum from the ambient one, generalizing the new endpoint for Hawking evaporation discovered recently by Horowitz. Catalyzed vacuum bubble production can occur for both charged and uncharged bodies, including Schwarzschild black holes for which massive particles produced in the Hawking process can trigger vacuum decay. We briefly discuss applications of this process to the population and stability of metastable vacua.

  19. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C.; Hu, Jianli; Hart, Todd R.; Neuenschwander, Gary G.

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  20. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

    2011-06-07

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  1. Iridium-catalyzed enantioselective polyene cyclization.

    PubMed

    Schafroth, Michael A; Sarlah, David; Krautwald, Simon; Carreira, Erick M

    2012-12-19

    A highly enantioselective polycyclization method has been developed using the combination of Lewis acid activation with iridium-catalyzed allylic substitution. This strategy relies on direct use of branched, racemic allylic alcohols and furnishes a diverse and unique set of carbo- and heteropolycyclic ring systems in good yields and ≥99% ee. PMID:23193947

  2. Microorganisms detected by enzyme-catalyzed reaction

    NASA Technical Reports Server (NTRS)

    Vango, S. P.; Weetall, H. H.; Weliky, N.

    1966-01-01

    Enzymes detect the presence of microorganisms in soils. The enzyme lysozymi is used to release the enzyme catalase from the microorganisms in a soil sample. The catalase catalyzes the decomposition of added hydrogen peroxide to produce oxygen which is detected manometrically. The partial pressure of the oxygen serves as an index of the samples bacteria content.

  3. Rhodium-catalyzed restructuring of carbon frameworks.

    PubMed

    Murakami, Masahiro

    2010-10-01

    Metal-catalyzed reactions involving an elementary step which cleaves a carbon-carbon bond provide unique organic transformations. Restructuring reactions recently developed in our laboratory, through which the carbon framework of a starting substance is restructured into a totally different carbon framework, are discussed, with the possibility of applying such methods to the synthesis of natural products.

  4. Data, Leadership, and Catalyzing Culture Change

    ERIC Educational Resources Information Center

    Benson, R. Todd; Trower, Cathy A.

    2012-01-01

    It is crucial to understand today's tenure-track workers so that colleges and universities can continue to attract and retain a large subset of them by understanding and supporting their satisfaction and success at work. In this article, the authors talk about data, leadership, and catalyzing culture change. They discuss data use in the academy…

  5. Zinc-catalyzed depolymerization of artificial polyethers.

    PubMed

    Enthaler, Stephan; Weidauer, Maik

    2012-02-13

    Recycling polymers: In the present study, the efficient zinc-catalyzed depolymerization of a variety of artificial polyethers has been investigated. Chloroesters were obtained as the depolymerization products, which are suitable precursors for new polymers. By using straightforward zinc salts, extraordinary catalyst activities and selectivities were feasible (see scheme). PMID:22253040

  6. Mechanochemical ruthenium-catalyzed olefin metathesis.

    PubMed

    Do, Jean-Louis; Mottillo, Cristina; Tan, Davin; Štrukil, Vjekoslav; Friščić, Tomislav

    2015-02-25

    We describe the development of a mechanochemical approach for Ru-catalyzed olefin metathesis, including cross-metathesis and ring-closing metathesis. The method uses commercially available catalysts to achieve high-yielding, rapid, room-temperature metathesis of solid or liquid olefins on a multigram scale using either no or only a catalytic amount of a liquid. PMID:25668586

  7. Catalyzing curriculum evolution in graduate science education.

    PubMed

    Gutlerner, Johanna L; Van Vactor, David

    2013-05-01

    Strategies in life science graduate education must evolve in order to train a modern workforce capable of integrative solutions to challenging problems. Our institution has catalyzed such evolution through building a postdoctoral Curriculum Fellows Program that provides a collaborative and scholarly education laboratory for innovation in graduate training.

  8. Copper-Catalyzed Borylcupration of Allenylsilanes.

    PubMed

    Yuan, Weiming; Song, Liu; Ma, Shengming

    2016-02-24

    A highly regio- and stereoselective copper-catalyzed borylcupration of 1,2-allenylsilanes affords an unexpected regioreversed allylic boronate bearing an extra C-Si bond at the 3-position, with a thermodynamically disfavored Z geometry. Such stereodefined allylic boronates containing an extra alkenyl silane moiety are very useful organodimetallic reagents for organic synthesis. PMID:26821774

  9. Mechanochemical ruthenium-catalyzed olefin metathesis.

    PubMed

    Do, Jean-Louis; Mottillo, Cristina; Tan, Davin; Štrukil, Vjekoslav; Friščić, Tomislav

    2015-02-25

    We describe the development of a mechanochemical approach for Ru-catalyzed olefin metathesis, including cross-metathesis and ring-closing metathesis. The method uses commercially available catalysts to achieve high-yielding, rapid, room-temperature metathesis of solid or liquid olefins on a multigram scale using either no or only a catalytic amount of a liquid.

  10. Zeolite 5A Catalyzed Etherification of Diphenylmethanol

    ERIC Educational Resources Information Center

    Cooke, Jason; Henderson, Eric J.; Lightbody, Owen C.

    2009-01-01

    An experiment for the synthetic undergraduate laboratory is described in which zeolite 5A catalyzes the room temperature dehydration of diphenylmethanol, (C[subscript 6]H[subscript 5])[subscript 2]CHOH, producing 1,1,1',1'-tetraphenyldimethyl ether, (C[subscript 6]H[subscript 5])[subscript 2]CHOCH(C[subscript 6]H[subscript 5])[subscript 2]. The…

  11. Gold(I)-catalyzed enantioselective cycloaddition reactions.

    PubMed

    López, Fernando; Mascareñas, José L

    2013-10-30

    In recent years there have been extraordinary developments of gold(I)-catalyzed enantioselective processes. This includes progress in the area of cycloaddition reactions, which are of particular interest due to their potential for the rapid construction of optically active cyclic products. In this article we will summarize some of the most remarkable examples, emphasizing reaction mechanisms and key intermediates involved in the processes.

  12. Iridium-catalyzed enantioselective polyene cyclization.

    PubMed

    Schafroth, Michael A; Sarlah, David; Krautwald, Simon; Carreira, Erick M

    2012-12-19

    A highly enantioselective polycyclization method has been developed using the combination of Lewis acid activation with iridium-catalyzed allylic substitution. This strategy relies on direct use of branched, racemic allylic alcohols and furnishes a diverse and unique set of carbo- and heteropolycyclic ring systems in good yields and ≥99% ee.

  13. Palladium-Catalyzed Environmentally Benign Acylation.

    PubMed

    Suchand, Basuli; Satyanarayana, Gedu

    2016-08-01

    Recent trends in research have gained an orientation toward developing efficient strategies using innocuous reagents. The earlier reported transition-metal-catalyzed carbonylations involved either toxic carbon monoxide (CO) gas as carbonylating agent or functional-group-assisted ortho sp(2) C-H activation (i.e., ortho acylation) or carbonylation by activation of the carbonyl group (i.e., via the formation of enamines). Contradicting these methods, here we describe an environmentally benign process, [Pd]-catalyzed direct carbonylation starting from simple and commercially available iodo arenes and aldehydes, for the synthesis of a wide variety of ketones. Moreover, this method comprises direct coupling of iodoarenes with aldehydes without activation of the carbonyl and also without directing group assistance. Significantly, the strategy was successfully applied to the synthesis n-butylphthalide and pitofenone. PMID:27377566

  14. Heterogeneously-Catalyzed Conversion of Carbohydrates

    NASA Astrophysics Data System (ADS)

    Vigier, Karine De Oliveira; Jérôme, François

    Polyfunctionality of carbohydrates and their low solubility in conventional organic solvents make rather complex their conversion to higher value added chemicals. Therefore, innovative processes are now strongly needed in order to increase the selectivity of these reactions. Here, we report an overview of the different heterogeneously-catalyzed processes described in the literature. In particular, hydrolysis, dehydration, oxidation, esterification, and etherification of carbohydrates are presented. We shall discuss the main structural parameters that need to be controlled and that permit the conversion of carbohydrates to bioproducts with good selectivity. The conversion of monosaccharides and disaccharides over solid catalysts, as well as recent advances in the heterogeneously-catalyzed conversion of cellulose, will be presented.

  15. Cold fusion catalyzed by muons and electrons

    SciTech Connect

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed.

  16. Antiproton catalyzed microfission/fusion propulsion

    NASA Technical Reports Server (NTRS)

    Chiang, Pi-Ren; Lewis, Raymond A.; Smith, Gerald A.; Newton, Richard; Dailey, James; Werthman, W. Lance; Chakrabarti, Suman

    1994-01-01

    Inertial confinement fusion (ICF) utilizing an antiproton catalyzed hybrid fission/fusion target is discussed as a potential energy source for interplanetary propulsion. A proof-of-principle experiment underway at Phillips Laboratory, Kirtland AFB and antiproton trapping experiments at CERN, Geneva, Switzerland, are presented. The ICAN propulsion concept is described and results of performance analyses are reviewed. Future work to further define the ICAN concept is outlined.

  17. Gold(I)-catalyzed enantioselective cycloaddition reactions

    PubMed Central

    2013-01-01

    Summary In recent years there have been extraordinary developments of gold(I)-catalyzed enantioselective processes. This includes progress in the area of cycloaddition reactions, which are of particular interest due to their potential for the rapid construction of optically active cyclic products. In this article we will summarize some of the most remarkable examples, emphasizing reaction mechanisms and key intermediates involved in the processes. PMID:24204438

  18. Desaturation reactions catalyzed by soluble methane monooxygenase.

    PubMed

    Jin, Y; Lipscomb, J D

    2001-09-01

    Soluble methane monooxygenase (MMO) is shown to be capable of catalyzing desaturation reactions in addition to the usual hydroxylation and epoxidation reactions. Dehydrogenated products are generated from MMO-catalyzed oxidation of certain substrates including ethylbenzene and cyclohexadienes. In the reaction of ethylbenzene, desaturation of ethyl C-H occurred along with the conventional hydroxvlations of ethyl and phenyl C-Hs. As a result, styrene is formed together with ethylphenols and phenylethanols. Similarly, when 1,3- and 1,4-cyclohexadienes were used as substrates, benzene was detected as a product in addition to the corresponding alcohols and epoxides. In all cases, reaction conditions were found to significantly affect the distribution among the different products. This new activity of MMO is postulated to be associated with the chemical properties of the substrates rather than fundamental changes in the nature of the oxygen and C-H activation chemistries. The formation of the desaturated products is rationalized by formation of a substrate cationic intermediate, possibly via a radical precursor. The cationic species is then proposed to partition between recombination (alcohol formation) and elimination (alkene production) pathways. This novel function of MMO indicates close mechanistic kinship between the hydroxylation and desaturation reactions catalyzed by the nonheme diiron clusters.

  19. Fe-catalyzed etching of graphene layers

    NASA Astrophysics Data System (ADS)

    Cheng, Guangjun; Calizo, Irene; Hight Walker, Angela; PML, NIST Team

    We investigate the Fe-catalyzed etching of graphene layers in forming gas. Fe thin films are deposited by sputtering onto mechanically exfoliated graphene, few-layer graphene (FLG), and graphite flakes on a Si/SiO2 substrate. When the sample is rapidly annealed in forming gas, particles are produced due to the dewetting of the Fe thin film and those particles catalyze the etching of graphene layers. Monolayer graphene and FLG regions are severely damaged and that the particles catalytically etch channels in graphite. No etching is observed on graphite for the Fe thin film annealed in nitrogen. The critical role of hydrogen indicates that this graphite etching process is catalyzed by Fe particles through the carbon hydrogenation reaction. By comparing with the etched monolayer and FLG observed for the Fe film annealed in nitrogen, our Raman spectroscopy measurements identify that, in forming gas, the catalytic etching of monolayer and FLG is through carbon hydrogenation. During this process, Fe particles are catalytically active in the dissociation of hydrogen into hydrogen atoms and in the production of hydrogenated amorphous carbon through hydrogen spillover.

  20. Transition-Metal-Catalyzed Bioorthogonal Cycloaddition Reactions.

    PubMed

    Yang, Maiyun; Yang, Yi; Chen, Peng R

    2016-02-01

    In recent years, bioorthogonal reactions have emerged as a powerful toolbox for specific labeling and visualization of biomolecules, even within the highly complex and fragile living systems. Among them, copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is one of the most widely studied and used biocompatible reactions. The cytotoxicity of Cu(I) ions has been greatly reduced due to the use of Cu(I) ligands, which enabled the CuAAC reaction to proceed on the cell surface, as well as within an intracellular environment. Meanwhile, other transition metals such as ruthenium, rhodium and silver are now under development as alternative sources for catalyzing bioorthogonal cycloadditions. In this review, we summarize the development of CuAAC reaction as a prominent bioorthogonal reaction, discuss various ligands used in reducing Cu(I) toxicity while promoting the reaction rate, and illustrate some of its important biological applications. The development of additional transition metals in catalyzing cycloaddition reactions will also be briefly introduced. PMID:27572985

  1. Imidazole catalyzes chlorination by unreactive primary chloramines.

    PubMed

    Roemeling, Margo D; Williams, Jared; Beckman, Joseph S; Hurst, James K

    2015-05-01

    Hypochlorous acid and simple chloramines (RNHCl) are stable biologically derived chlorinating agents. In general, the chlorination potential of HOCl is much greater than that of RNHCl, allowing it to oxidize or chlorinate a much wider variety of reaction partners. However, in this study we demonstrate by kinetic analysis that the reactivity of RNHCl can be dramatically promoted by imidazole and histidyl model compounds via intermediary formation of the corresponding imidazole chloramines. Two biologically relevant reactions were investigated--loss of imidazole-catalyzed chlorinating capacity and phenolic ring chlorination using fluorescein and the tyrosine analog, 4-hydroxyphenylacetic acid (HPA). HOCl reacted stoichiometrically with imidazole, N-acetylhistidine (NAH), or imidazoleacetic acid to generate the corresponding imidazole chloramines which subsequently decomposed. Chloramine (NH2Cl) also underwent a markedly accelerated loss in chlorinating capacity when NAH was present, although in this case N-α-acetylhistidine chloramine (NAHCl) did not accumulate, indicating that the catalytic intermediate must be highly reactive. Mixing HOCl with 1-methylimidazole (MeIm) led to very rapid loss in chlorinating capacity via formation of a highly reactive chlorinium ion (MeImCl(+)) intermediate; this behavior suggests that the reactive forms of the analogous imidazole chloramines are their conjugate acids, e.g., the imidazolechlorinium ion (HImCl(+)). HOCl-generated imidazole chloramine (ImCl) reacted rapidly with fluorescein in a specific acid-catalyzed second-order reaction to give 3'-monochloro and 3',5'-dichloro products. Equilibrium constants for the transchlorination reactions HOCl + HIm = H2O + ImCl and NH2Cl + HIm = NH3 + ImCl were estimated from the dependence of the rate constants on [HIm]/[HOCl] and literature data. Acid catalysis again suggests that the actual chlorinating agent is HImCl(+); consistent with this interpretation, MeIm markedly catalyzed

  2. Imidazole catalyzes chlorination by unreactive primary chloramines

    PubMed Central

    Roemeling, Margo D.; Williams, Jared; Beckman, Joseph S.; Hurst, James K.

    2015-01-01

    Hypochlorous acid and simple chloramines (RNHCl) are stable biologically-derived chlorinating agents. In general, the chlorination potential of HOCl is much greater than that of RNHCl, allowing it to oxidize or chlorinate a much wider variety of reaction partners. However, in this study we demonstrate by kinetic analysis that the reactivity of RNHCl can be dramatically promoted by imidazole and histidyl model compounds via intermediary formation of the corresponding imidazole chloramines. Two biologically relevant reactions were investigated—loss of imidazole-catalyzed chlorinating capacity and phenolic ring chlorination using fluorescein and the tyrosine analog, 4-hydroxyphenylacetic acid (HPA). HOCl reacted stoichiometrically with imidazole, N-acetylhistidine (NAH), or imidazoleacetic acid to generate the corresponding imidazole chloramines which subsequently decomposed. Chloramine (NH2Cl) also underwent a markedly accelerated loss in chlorinating capacity when NAH was present, although in this case NAHCl did not accumulate, indicating that the catalytic intermediate must be highly reactive. Mixing HOCl with 1-methylimidazole (MeIm) led to very rapid loss in chlorinating capacity via formation of a highly reactive chlorinium ion (MeImCl+) intermediate; this behavior suggests that the reactive forms of the analogous imidazole chloramines are their conjugate acids, e.g., the imidazolechlorinium ion (HImCl+). HOCl-generated imidazole chloramine (ImCl) reacted rapidly with fluorescein in a specific acid-catalyzed second order reaction to give 3′-monochloro and 3′,5′-dichloro products. Equilibrium constants for the transchlorination reactions: HOCl + HIm = H2O + ImCl and NH2Cl + HIm = NH3 + ImCl were estimated from the dependence of the rate constants upon [HIm]/[HOCl] and literature data. Acid catalysis again suggests that the actual chlorinating agent is HImCl+; consistent with this interpretation, MeIm markedly catalyzed fluorescein chlorination by HOCl

  3. Hydroxylation and dealkylation reactions catalyzed by hemoglobin.

    PubMed

    Mieyal, J J; Starke, D W

    1994-01-01

    Red blood cells contain many enzymes that are akin to those that catalyze xenobiotic metabolism in liver and other tissues. An obvious exception is the cytochrome P-450 system that is found in virtually all other tissues. In vitro studies, however, have shown that hemoglobin can be a broad monooxygenase catalyst, exhibiting the properties of a monooxygenase enzyme. Thus, catalysis by Hb displays typical Michaelis-Menten kinetics, dependence on the native protein, coupling to NADPH-dependent flavoprotein reductases, and inhibition by carbon monoxide. The reconstituted system containing Hb along with P-450 reductase utilizes NADPH and O2 to catalyze typical monooxygenase reactions, including O- and N-demethylations as well as aromatic and aliphatic hydroxylations, and the catalytic cycle appears to mimic the typical P-450 mechanism. Turnover numbers for aniline hydroxylation are similar for Hb and P-450 reconstituted systems, whereas P-450 systems are more effective for other reactions. Catalysis by Hb seems to be restricted to the beta-heme sites of the tetramer, reflecting more facile substrate access. Overall the similarities and differences between Hb and P-450 provide an opportunity to examine the basis for their differential monooxygenase or peroxidase/peroxygenase activities in a comparative manner. Hb may be especially useful in delineating the early events in the respective reaction schemes, because it can be studied in various stable redox/ligand states, including the oxyferrous form. Similar hemoglobin-catalyzed oxidative biotransformations occur within intact erythrocytes, but apparent turnover numbers are much lower than those with the reconstituted Hb system, suggesting different mechanisms of catalysis. Although Hb-mediated oxidase activity in erythrocytes is low relative to other sites of xenobiotic metabolism, it may contribute to in situ activation of xenobiotics leading to oxidative stress, disruption of sulfhydryl homeostasis in the erythrocytes

  4. Asymmetric petasis reactions catalyzed by chiral biphenols.

    PubMed

    Lou, Sha; Schaus, Scott E

    2008-06-01

    Chiral biphenols catalyze the enantioselective Petasis reaction of alkenyl boronates, secondary amines, and ethyl glyoxylate. The reaction requires the use of 15 mol % of (S)-VAPOL as the catalyst, alkenyl boronates as nucleophiles, ethyl glyoxylate as the aldehyde component, and 3 A molecular sieves as an additive. The chiral alpha-amino ester products are obtained in good yields (71-92%) and high enantiomeric ratios (89:11-98:2). Mechanistic investigations indicate single ligand exchange of acyclic boronate with VAPOL and tetracoordinate boronate intermediates. PMID:18459782

  5. Ligand Intermediates in Metal-Catalyzed Reactions

    SciTech Connect

    Gladysz, John A.

    1999-07-31

    The longest-running goal of this project has been the synthesis, isolation, and physical chemical characterization of homogeneous transition metal complexes containing ligand types believed to be intermediates in the metal-catalyzed conversion of CO/H{sub 2}, CO{sub 2}, CH{sub 4}, and similar raw materials to organic fuels, feedstocks, etc. In the current project period, complexes that contain unusual new types of C{sub x}(carbide) and C{sub x}O{sub y} (carbon oxide) ligands have been emphasized. A new program in homogeneous fluorous phase catalysis has been launched as described in the final report.

  6. Metal-Catalyzed Cross-Coupling Reactions for Indoles

    NASA Astrophysics Data System (ADS)

    Li, Jie Jack; Gribble, Gordon W.

    Metal-catalyzed cross-coupling reactions for indoles are reviewed. Palladium-catalyzed cross-coupling reactions are the most widely explored and applied of all metal-catalyzed cross-coupling reactions. Applications of Kumada coupling, Negishi coupling, Suzuki coupling, Stille coupling, Sonogashira reaction, the Heck reaction, carbonylation, and C-N bond formation reactions in indoles are summarized. In addition, other transition metal-catalyzed cross-coupling reactions using copper, rhodium, iron, and nickel in indole synthesis are also discussed.

  7. New concept for muon catalyzed fusion reactor

    SciTech Connect

    Tajima, T.; Eliezer, S.; Kulsrud, R.M.

    1988-12-27

    A new concept for a muon catalyzed pure fusion reactor is considered. To our best knowledge this constitutes a first plausible configuration to make energy gain without resorting to fissile matter breeding by fusion neutrons, although a number of crucial physical and engineering questions as well as details have yet to be resolved. A bundle of DT ice ribbons (with a filling factor f) is immersed in the magnetic field. The overall magnetic field in the mirror configuration confines pions created by the injected high energy deuterium (or tritium) beam. The DT materials is long enough to be inertially confined along the axis of mirror. The muon catalyzed mesomolecule formation and nuclear fusion take place in the DT target, leaving ..cap alpha../sup + +/ and occasionally (..cap alpha mu..)/sup +/ (muon sticking). The stuck muons are stripped fast enough in the target, while they are accelerated by ion cyclotron resonance heating when they circulate in the vaccum (or dilute plasma). The ribbon is (eventually) surrounded and pressure-confined by this coronal plasma, whereas the corona is magnetically confined. The overall bundle of ribbons (a pellet) is inertially confined. This configuration may also be of use for stripping stuck muons via the plasma mechanism of Menshikov and Ponomarev.

  8. Palladium-Catalyzed Arylation of Fluoroalkylamines

    PubMed Central

    Brusoe, Andrew T.; Hartwig, John F.

    2015-01-01

    We report the synthesis of fluorinated anilines by palladium-catalyzed coupling of fluoroalkylamines with aryl bromides and aryl chlorides. The products of these reactions are valuable because anilines typically require the presence of an electron-withdrawing substituent on nitrogen to suppress aerobic or metabolic oxidation, and the fluoroalkyl groups have steric properties and polarity distinct from those of more common electron-withdrawing amide and sulfonamide units. The fluoroalkylaniline products are unstable under typical conditions for C–N coupling reactions (heat and strong base). However, the reactions conducted with the weaker base KOPh, which has rarely been used in cross-coupling to form C–N bonds, occurred in high yield in the presence of a catalyst derived from commercially available AdBippyPhos and [Pd(allyl)Cl]2. Under these conditions, the reactions occur with low catalyst loadings (<0.50 mol % for most substrates) and tolerate the presence of various functional groups that react with the strong bases that are typically used in Pd-catalyzed C–N cross-coupling reactions of aryl halides. The resting state of the catalyst is the phenoxide complex, (BippyPhosPd(Ar)OPh); due to the electron-withdrawing property of the fluoroalkyl substituent, the turnover-limiting step of the reaction is reductive elimination to form the C–N bond. PMID:26065341

  9. Catalyzed D-D stellarator reactor

    DOE PAGES

    Sheffield, John; Spong, Donald A.

    2016-05-12

    The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusionmore » program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, FR = 0.9 to 1.15, <β> ≈ 8.0% to 11.5%, Zeff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, Bm ≈ 14 to 16 T, and R ≈ 18 to 24 m.« less

  10. Manganese Catalyzed C-H Halogenation.

    PubMed

    Liu, Wei; Groves, John T

    2015-06-16

    The remarkable aliphatic C-H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon-halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C-H bonds to C-Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L-Mn(V)═O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn-F fluorine source, effecting carbon-fluorine bond formation. Indeed, this idea

  11. Differential localization of 5- and 15-lipoxygenases to the nuclear envelope in RAW macrophages.

    PubMed

    Christmas, P; Fox, J W; Ursino, S R; Soberman, R J

    1999-09-01

    Leukotriene formation is initiated in myeloid cells by an increase in intracellular calcium and translocation of 5-lipoxygenase from the cytoplasm to the nuclear envelope where it can utilize arachidonic acid. Monocyte- macrophages and eosinophils also express 15-lipoxygenase, which converts arachidonic acid to 15(S)-hydroxyeicosatetraenoic acid. Enhanced green fluorescent 5-lipoxygenase (5-LO) and 15-lipoxygenase (15-LO) fusion proteins were expressed in the cytoplasm of RAW 264.7 macrophages. Only 5-lipoxygenase translocated to the nuclear envelope after cell stimulation, suggesting that differential subcellular compartmentalization can regulate the generation of leukotrienes versus 15(S)-hydroxyeicosatetraenoic acid in cells that possess both lipoxygenases. A series of truncation mutants of 5-LO were created to identify putative targeting domains; none of these mutants localized to the nuclear envelope. The lack of targeting of 15-LO was then exploited to search for specific targeting motifs in 5-LO, by creating 5-LO/15-LO chimeric molecules. The only chimera that could sustain nuclear envelope translocation was one which involved replacement of the N-terminal 237 amino acids with the corresponding segment of 15-LO. Significantly, no discrete targeting domain could be identified in 5-LO, suggesting that sequences throughout the molecule are required for nuclear envelope localization.

  12. Acid-Catalyzed Isomerization of Carvone to Carvacrol

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Mattingly, Shawn P.

    2005-01-01

    The acid-catalyzed isomerization of carvone to carvacrol, first reported by Ritter and Ginsburg, is especially well suited with a permanent-magnet FT instrument. The acid-catalyzed isomerization of carvone to carvacrol produced a 61% yield after a three hour reflux with 30% aqueous sulfuric acid.

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: ENVIROFUELS DIESEL FUEL CATALYZER FUEL ADDITIVE

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested EnviroFuels diesel fuel additive, called the Diesel Fuel Catalyzer. EnviroFuels has stated that heavy-duty on and off road diesel engines are the intended market for the catalyzer. Preliminary tests conducted indicate...

  14. Representing Rate Equations for Enzyme-Catalyzed Reactions

    ERIC Educational Resources Information Center

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  15. RNA-Catalyzed RNA Ligation on an External RNA Template

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Joyce, Gerald F.

    2002-01-01

    Variants of the hc ligase ribozyme, which catalyzes ligation of the 3' end of an RNA substrate to the 5' end of the ribozyme, were utilized to evolve a ribozyme that catalyzes ligation reactions on an external RNA template. The evolved ribozyme catalyzes the joining of an oligonucleotide 3'-hydroxyl to the 5'-triphosphate of an RNA hairpin molecule. The ribozyme can also utilize various substrate sequences, demonstrating a largely sequence-independent mechanism for substrate recognition. The ribozyme also carries out the ligation of two oligonucleotides that are bound at adjacent positions on a complementary template. Finally, it catalyzes addition of mononucleoside '5-triphosphates onto the '3 end of an oligonucleotide primer in a template-dependent manner. The development of ribozymes that catalyze polymerase-type reactions contributes to the notion that an RNA world could have existed during the early history of life on Earth.

  16. The Dual Cyclooxygenase/5-Lipoxygenase Inhibitor Licofelone Attenuates P-Glycoprotein-Mediated Drug Resistance in the Injured Spinal Cord

    PubMed Central

    Dulin, Jennifer N.; Moore, Meredith L.

    2013-01-01

    Abstract There are currently no proven effective treatments that can improve recovery of function in spinal cord injury (SCI) patients. Many therapeutic compounds have shown promise in pre-clinical studies, but clinical trials have been largely unsuccessful. P-glycoprotein (Pgp, Abcb1b) is a drug efflux transporter of the blood–spinal cord barrier that limits spinal cord penetration of blood-borne xenobiotics. Pathological Pgp upregulation in diseases such as cancer causes heightened resistance to a broad variety of therapeutic drugs. Importantly, several drugs that have been evaluated for the treatment of SCI, such as riluzole, are known substrates of Pgp. We therefore examined whether Pgp-mediated pharmacoresistance diminishes delivery of riluzole to the injured spinal cord. Following moderate contusion injury at T10 in male Sprague–Dawley rats, we observed a progressive, spatial spread of increased Pgp expression from 3 days to 10 months post-SCI. Spinal cord uptake of i.p.-delivered riluzole was significantly reduced following SCI in wild type but not Abcb1a-knockout rats, highlighting a critical role for Pgp in mediating drug resistance following SCI. Because inflammation can drive Pgp upregulation, we evaluated the ability of the new generation dual anti-inflammatory drug licofelone to promote spinal cord delivery of riluzole following SCI. We found that licofelone both reduced Pgp expression and enhanced riluzole bioavailability within the lesion site at 72 h post-SCI. This work highlights Pgp-mediated drug resistance as an important obstacle to therapeutic drug delivery for SCI, and suggests licofelone as a novel combinatorial treatment strategy to enhance therapeutic drug delivery to the injured spinal cord. PMID:22947335

  17. Catalyzed modified clean fractionation of switchgrass.

    PubMed

    Cybulska, Iwona; Brudecki, Grzegorz P; Hankerson, Brett R; Julson, James L; Lei, Hanwu

    2013-01-01

    Switchgrass was used as a lignocellulosic feedstock for second generation ethanol production, after pretreatment using sulfuric acid-catalyzed modified clean fractionation based on NREL's (National Renewable Energy Laboratory) original procedure. Optimization of temperature, catalyst concentration and solvent composition was performed using Response Surface Methodology, and 59.03 ± 7.01% lignin recovery, 84.85 ± 1.34% glucose, and 44.11 ± 3.44% aqueous fraction xylose yields were obtained at 140.00 °C, 0.46% w/w catalyst concentration, 36.71% w/w ethyl acetate concentration, and 25.00% w/w ethanol concentration. The cellulose fraction did not inhibit the fermentation performance of Saccharomyces cerevisiae and resulted in an ethanol yield of 89.60 ± 2.1%.

  18. Efficient antibody-catalyzed oxygenation reaction

    SciTech Connect

    Hsieh, L.C.; Stephans, J.C.; Schultz, P.G. )

    1994-03-09

    Biological oxygen-transfer reactions are essential for the biosynthesis of steroids and neurotransmitters, the degradation of endogenous substances, and the detoxification of xenobiotics. The monooxygenase enzymes responsible for these transformations require biological cofactors such as flavin, heme and non-heme iron, copper, or pterin and typically utilize NADPH for cofactor regeneration. We now report an antibody-catalyzed sulfide oxygenation reaction mediated by the chemical cofactor sodium periodate, with turnover numbers similar to those of the corresponding enzymatic reactions. Sodium periodate NaIO[sub 4]O was chosen as the oxidant, since sulfoxide formation occurs under mild aqueous conditions with minimal overoxidation to the sulfone. Furthermore, compared to the flavin and heme cofactors required by the monooxygenase enzymes, NaIO[sub 4] is very inexpensive, obviating the need for cofactor recycling. Overall, these results raise the possibility of using antibodies as catalysts for regio- and stereoselective sulfide oxidations. 18 refs., 1 fig.

  19. Fabrication of catalyzed ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  20. Enzyme-catalyzed degradation of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Kotchey, Gregg P.

    Carbon nanotubes and graphene, the nanoscale sp 2 allotropes of carbon, have garnered widespread attention as a result of their remarkable electrical, mechanical, and optical properties and the promise of new technologies that harness these properties. Consequently, these carbon nanomaterials (CNMs) have been employed for diverse applications such as electronics, sensors, composite materials, energy conversion devices, and nanomedicine. The manufacture and eventual disposal of these products may result in the release of CNMs into the environment and subsequent exposure to humans, animals, and vegetation. Given the possible pro-inflammatory and toxic effects of CNMs, much attention has been focused on the distribution, toxicity, and persistence of CNMs both in living systems and the environment. This dissertation will guide the reader though recent studies aimed at elucidating fundamental insight into the persistence of CNMs such as carbon nanotubes (CNTs) and graphene derivatives (i.e., graphene oxide and reduced graphene oxide). In particular, in-testtube oxidation/degradation of CNMs catalyzed by peroxidase enzymes will be examined, and the current understanding of the mechanisms underlying these processes will be discussed. Finally, an outlook of the current field including in vitro and in vivo biodegradation experiments, which have benefits in terms of human health and environmental safety, and future directions that could have implications for nanomedical applications such as imaging and drug delivery will be presented. Armed with an understanding of how and why CNMs undergo enzyme-catalyzed oxidation/biodegradation, researchers can tailor the structure of CNMs to either promote or inhibit these processes. For example, in nanomedical applications such as drug delivery, the incorporation of carboxylate functional groups could facilitate biodegradation of the nanomaterial after delivery of the cargo. Also, the incorporation of CNMs with defect sites in consumer

  1. Fracture healing and lipid mediators.

    PubMed

    O'Connor, J Patrick; Manigrasso, Michaele B; Kim, Brian D; Subramanian, Sangeeta

    2014-01-01

    Lipid mediators regulate bone regeneration during fracture healing. Prostaglandins and leukotrienes are well-known lipid mediators that regulate inflammation and are synthesized from the Ω-6 fatty acid, arachidonic acid. Cyclooxygenase (COX-1 or COX-2) and 5-lipoxygenase (5-LO) catalyze the initial enzymatic steps in the synthesis of prostaglandins and leukotrienes, respectively. Inhibition or genetic ablation of COX-2 activity impairs fracture healing in animal models. Genetic ablation of COX-1 does not affect the fracture callus strength in mice, suggesting that COX-2 activity is primarily responsible for regulating fracture healing. Inhibition of cyclooxygenase activity with nonsteroidal anti-inflammatory drugs (NSAIDs) is performed clinically to reduce heterotopic ossification, although clinical evidence that NSAID treatment impairs fracture healing remains controversial. In contrast, inhibition or genetic ablation of 5-LO activity accelerates fracture healing in animal models. Even though prostaglandins and leukotrienes regulate inflammation, loss of COX-2 or 5-LO activity appears to primarily affect chondrogenesis during fracture healing. Prostaglandin or prostaglandin analog treatment, prostaglandin-specific synthase inhibition and prostaglandin or leukotriene receptor antagonism also affect callus chondrogenesis. Unlike the Ω-6-derived lipid mediators, lipid mediators derived from Ω-3 fatty acids, such as resolvin E1 (RvE1), have anti-inflammatory activity. In vivo, RvE1 can inhibit osteoclastogenesis and limit bone resorption. Although Ω-6 and Ω-3 lipid mediators have clear-cut effects on inflammation, the role of these lipid mediators in bone regeneration is more complex, with apparent effects on callus chondrogenesis and bone remodeling. PMID:24795811

  2. NEW CORDIERITE DIESEL PARTICULATE FILTERS FOR CATALYZED AND NON-CATALYZED APPLICATIONS

    SciTech Connect

    Merkel, G; Cutler, W; Tao, T Chiffey, A; Phillips, P; Twigg, M; Walker, A

    2003-08-24

    Cordierite diesel particulate filters provide an economical approach to diesel emissions control. However, further reduction in the pressure drop of catalyzed and non-catalyzed cordierite filters is desirable. In order to derive a fundamental understanding of the relationship between clean and sootloaded pressure drop and the pore microstructure of the ceramic, and to optimize the microstructure for filter performance, cordierite filters have been fabricated spanning an extended range in porosity, pore size distribution, and pore connectivity. Analysis of the results has been applied to the development of several new cordierite diesel particulate filters that possess a unique combination of high filtration efficiency, high strength, and very low clean and soot-loaded pressure drop. Furthermore, catalyst systems have been developed that result in a minimal pressure drop increase of the catalyzed filter. Optimization of porosity and cell geometry has enabled fabrication o f filters with either high or low thermal mass appropriate to the regeneration strategy employed for a given engine management system.

  3. Pulmonary epithelial cancer cells and their exosomes metabolize myeloid cell-derived leukotriene C4 to leukotriene D4.

    PubMed

    Lukic, Ana; Ji, Jie; Idborg, Helena; Samuelsson, Bengt; Palmberg, Lena; Gabrielsson, Susanne; Rådmark, Olof

    2016-09-01

    Leukotrienes (LTs) play major roles in lung immune responses, and LTD4 is the most potent agonist for cysteinyl LT1, leading to bronchoconstriction and tissue remodeling. Here, we studied LT crosstalk between myeloid cells and pulmonary epithelial cells. Monocytic cells (Mono Mac 6 cell line, primary dendritic cells) and eosinophils produced primarily LTC4 In coincubations of these myeloid cells and epithelial cells, LTD4 became a prominent product. LTC4 released from the myeloid cells was further transformed by the epithelial cells in a transcellular manner. Formation of LTD4 was rapid when catalyzed by γ-glutamyl transpeptidase (GGT)1 in the A549 epithelial lung cancer cell line, but considerably slower when catalyzed by GGT5 in primary bronchial epithelial cells. When A549 cells were cultured in the presence of IL-1β, GGT1 expression increased about 2-fold. Also exosomes from A549 cells contained GGT1 and augmented LTD4 formation. Serine-borate complex (SBC), an inhibitor of GGT, inhibited conversion of LTC4 to LTD4 Unexpectedly, SBC also upregulated translocation of 5-lipoxygenase (LO) to the nucleus in Mono Mac 6 cells, and 5-LO activity. Our results demonstrate an active role for epithelial cells in biosynthesis of LTD4, which may be of particular relevance in the lung. PMID:27436590

  4. Mechanisms of bacterially catalyzed reductive dehalogenation

    SciTech Connect

    Picardal, F.W.

    1992-12-31

    Nine bacteria were tested for the ability to dehalogenate tetrachloromethane (CT), tetrachloroethene (PCE), and 1, 1, 1-trichloroethane (TCA) under anaerobic conditions. Three bacteria were able to reductively dehalogenate CT. Dehalogenation ability was not readily linked to a common metabolism or changes in culture redox potential. None of the bacteria tested were able to dehalogenate PCE or TCA. One of the bacteria capable of dehalogenating CT, Shewanella putrefaciens, was chosen as a model organism to study mechanisms of bacterially catalyzed reductive dehalogenation. The effect of a variety of alternate electron acceptors on CT dehalogenation ability by S. putrefaciens was determined. oxygen and nitrogen oxides were inhibitory but Fe (III), trimethylamine oxide, and fumarate were not. A model of the electron transport chain of S. putrefaciens was developed to explain inhibition patterns. A period of microaerobic growth prior to CT exposure increased the ability of S. putrefaciens to dehalogenate CT. A microaerobic growth period also increased cytochrome concentrations. A relationship between cytochrome content and dehalogenation ability was developed from studies in which cytochrome concentrations in S. putrefaciens were manipulated by changing growth conditions. Stoichiometry studies using {sup 14}C-CT suggested that CT was first reduced to form a trichloromethyl radical. Reduction of the radical to produce chloroform and reaction of the radical with cellular biochemicals explained observed product distributions. Carbon dioxide or other fully dehalogenated products were not found.

  5. Horseradish peroxidase catalyzed hydroxylations: mechanistic studies.

    PubMed

    Dordick, J S; Klibanov, A M; Marletta, M A

    1986-05-20

    The hydroxylation of phenol to hydroquinone and catechol in the presence of dihydroxyfumaric acid and oxygen catalyzed by horseradish peroxidase was studied under conditions where the product yield was high and the side reactions were minimal. The reaction is partially uncoupled with a molar ratio of dihydroxyfumaric acid consumed to hydroxylated products of 12:1. Hydrogen peroxide does not participate in the reaction as evidenced by the lack of effect of catalase and by the direct addition of hydrogen peroxide. Conversely, superoxide and hydroxyl radicals are involved as their scavengers are potent inhibitors. Experiments were all consistent with the involvement of compound III (oxygenated ferrous complex) of peroxidase in the reaction. Compound III is stable in the presence of phenol alone but decomposes rapidly in the presence of both phenol and dihydroxyfumaric acid with the concomitant formation of product. Therefore, phenol and dihydroxyfumaric acid must be present with compound III in order for the hydroxylation reaction to occur. A mechanism consistent with the experimental results is proposed. PMID:3718931

  6. Peptide Bond Formation Mechanism Catalyzed by Ribosome

    PubMed Central

    Świderek, Katarzyna; Marti, Sergio; Tuñón, Iñaki; Moliner, Vicent; Bertran, Juan

    2015-01-01

    In this paper we present a study of the peptide bond formation reaction catalyzed by ribosome. Different mechanistic proposals have been explored by means of Free Energy Perturbation methods within hybrid QM/MM potentials, where the chemical system has been described by the M06-2X functional and the environment by means of the AMBER force field. According to our results, the most favourable mechanism in the ribosome would proceed through an eight-membered ring transition state, involving a proton shuttle mechanism through the hydroxyl group of the sugar and a water molecule. This transition state is similar to that described for the reaction in solution (J. Am. Chem. Soc. 2013, 135, 8708–8719) but the reaction mechanisms are noticeable different. Our simulations reproduce the experimentally determined catalytic effect of ribosome that can be explained by the different behaviour of the two environments. While the solvent reorganizes during the chemical process involving an entropic penalty, the ribosome is preorganized in the formation of the Michaelis complex and does not suffer important changes along the reaction, dampening the charge redistribution of the chemical system. PMID:26325003

  7. Thioglycoside hydrolysis catalyzed by {beta}-glucosidase

    SciTech Connect

    Shen Hong; Byers, Larry D.

    2007-10-26

    Sweet almond {beta}-glucosidase (EC 3.2.1.21) has been shown to have significant thioglycohydrolase activity. While the K{sub m} values for the S- and O-glycosides are similar, the k{sub cat} values are about 1000-times lower for the S-glycosides. Remarkably, the pH-profile for k{sub cat}/K{sub m} for hydrolysis of p-nitrophenyl thioglucoside (pNPSG) shows the identical dependence on a deprotonated carboxylate (pK{sub a} 4.5) and a protonated group (pK{sub a} 6.7) as does the pH-profile for hydrolysis of the corresponding O-glycoside. Not surprisingly, in spite of the requirement for the presence of this protonated group in catalytically active {beta}-glucosidase, thioglucoside hydrolysis does not involve general acid catalysis. There is no solvent kinetic isotope effect on the enzyme-catalyzed hydrolysis of pNPSG.

  8. Biotransformations catalyzed by the genus rhodococcus

    SciTech Connect

    Warhurst, A.M.; Fewson, C.A. . Dept. of Biochemistry)

    1994-01-01

    Rhodococci display a diverse range of metabolic capabilities and they are a ubiquitous feature of many environments. They are able to degrade short-chain, long-chain, and halogenated hydrocarbons, and numerous aromatic compounds, including halogenated and other substituted aromatics, heteroaromatics, hydroaromatics, and polycyclic aromatic hydrocarbons. They possess a wide variety of pathways for degrading and modifying aromatic compounds, including dioxygenase and monooxygenase ring attack, and cleavage of catechol by both ortho- and meta-routes, and some strains posses a modified 3-oxoadipate pathway. Biotransformations catalyzed by rhodococci include steroid modification, enantioselective synthesis, and the transformation of nitriles to amides and acids. Tolerance of rhodococci to starvation, their frequent lack of catabolite repression, and their environmental persistence make them excellent candidates for bioremediation treatments. Some strains can produce poly(3-hydroxyalkanoate)s, others can accumulate cesium, and still others are the source of useful enzymes such as phenylalanine dehydrogenase and endoglycosidases. Other actual or potential applications of rhodococci include desulfurization of coal, bioleaching, use of their surfactants in enhancement of oil recovery and as industrial dispersants, and the construction of biosensors.

  9. Pd-catalyzed arylation of chlorotrifluoroethylene using arylboronic acids.

    PubMed

    Yamamoto, Tetsuya; Yamakawa, Tetsu

    2012-07-01

    The palladium-catalyzed cross-coupling of chlorotrifluoroethylene and arylboronic acids proceeds in the presence of a base and H(2)O to provide α,β,β-trifluorostyrene derivatives in satisfactory yields. PMID:22691065

  10. Hydrolase-catalyzed biotransformations in deep eutectic solvents.

    PubMed

    Gorke, Johnathan T; Srienc, Friedrich; Kazlauskas, Romas J

    2008-03-14

    Hydrolases show good catalytic activity in deep eutectic solvents, despite the presence of urea, which can denature enzymes, or alcohols, which can interfere with hydrolase-catalyzed reactions. PMID:18309428

  11. Copper-catalyzed trifluoromethylthiolation of primary and secondary alkylboronic acids.

    PubMed

    Shao, Xinxin; Liu, Tianfei; Lu, Long; Shen, Qilong

    2014-09-19

    A Cu-catalyzed trifluoromethylthiolation of primary and secondary alkylboronic acids with an electrophilic trifluoromethylthiolating reagent is described. Tolerance for a variety of functional groups was observed. PMID:25198142

  12. Recent developments in gold-catalyzed cycloaddition reactions.

    PubMed

    López, Fernando; Mascareñas, José L

    2011-01-01

    In the last years there have been extraordinary advances in the development of gold-catalyzed cycloaddition processes. In this review we will summarize some of the most remarkable examples, and present the mechanistic rational underlying the transformations.

  13. Nitroreductase catalyzed biotransformation of CL-20.

    PubMed

    Bhushan, Bharat; Halasz, Annamaria; Hawari, Jalal

    2004-09-10

    Previously, we reported that a salicylate 1-monooxygenase from Pseudomonas sp. ATCC 29352 biotransformed CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane) (C(6)H(6)N(12)O(12)) and produced a key metabolite with mol. wt. 346 Da corresponding to an empirical formula of C(6)H(6)N(10)O(8) which spontaneously decomposed in aqueous medium to produce N(2)O, NH(4)(+), and HCOOH [Appl. Environ. Microbiol. (2004)]. In the present study, we found that nitroreductase from Escherichia coli catalyzed a one-electron transfer to CL-20 to form a radical anion (CL-20(-)) which upon initial N-denitration also produced metabolite C(6)H(6)N(10)O(8). The latter was tentatively identified as 1,4,5,8-tetranitro-1,3a,4,4a,5,7a,8,8a-octahydro-diimidazo[4,5-b:4',5'-e]pyrazine [IUPAC] which decomposed spontaneously in water to produce glyoxal (OHCCHO) and formic acid (HCOOH). The rates of CL-20 biotransformation under anaerobic and aerobic conditions were 3.4+/-0.2 and 0.25+/-0.01 nmol min(-1)mg of protein(-1), respectively. The product stoichiometry showed that each reacted CL-20 molecule produced about 1.8 nitrite ions, 3.3 molecules of nitrous oxide, 1.6 molecules of formic acid, 1.0 molecule of glyoxal, and 1.3 ammonium ions. Carbon and nitrogen products gave mass-balances of 60% and 81%, respectively. A comparative study between native-, deflavo-, and reconstituted-nitroreductase showed that FMN-site was possibly involved in the biotransformation of CL-20. PMID:15313201

  14. Conservation Kickstart- Catalyzing Conservation Initiatives Worldwide

    NASA Astrophysics Data System (ADS)

    Treinish, G.

    2014-12-01

    Adventurers and Scientists for Conservation (ASC) is a nonprofit organization that collects environmental data to catalyze conservation initiatives worldwide. Adventure athletes have the skills and motivation to reach the most remote corners of the world. ASC utilizes those skills to provide the scientific community with data while providing the outdoor community with purpose beyond the personal high of reaching a summit or rowing across an ocean. We carefully select projects, choosing partnerships that will maximize the impact of ASC volunteers. Each project must have a clear path to a tangible conservation outcome and demonstrate a clear need for our brand of volunteers. We partner with government agencies, universities, and independant reseachers to kickstart data collection efforts around the world. Last year, through a partnership with the Olympic National Forest, 20 volunteers from the Seattle area set up and monitored camera traps in an effort to survey for costal Pacific marten. Our work led to the species' listing as "critically imperiled" with NatureServe. A partnership with the inaugural Great Pacific Race, engaging trans-Pacific rowing teams, searched for microplastics in the Pacific Ocean as part of our ongoing microplastics campaign. In a multi-year partnership with the American Prairie Reserve (APR), ASC volunteer crews live and work on the Reserve collecting wildlife data year round. The data we obtain directly informs the Reserve's wildlife management decisions. On this project, our crews have safely and effectively navigated temperature extremes from -30 degrees to 100+ degrees while traveling in a remote location. We are currently scouting projects in the Okavango Delta of Botswana and the rainforest of Suriname where we will be able to cover large amounts of area in a short periord of time. ASC is at the crossroads of the adventure and coservation science communities. Our approach of answering specific questions by using highly skilled and

  15. Length distributions of Au-catalyzed and In-catalyzed InAs nanowires

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Sibirev, N. V.; Berdnikov, Y.; Gomes, U. P.; Ercolani, D.; Zannier, V.; Sorba, L.

    2016-09-01

    We present experimental data on the length distributions of InAs nanowires grown by chemical beam epitaxy with Au catalyst nanoparticles obtained by thermal dewetting of Au film, Au colloidal nanoparticles and In droplets. Poissonian length distributions are observed in the first case. Au colloidal nanoparticles produce broader and asymmetric length distributions of InAs nanowires. However, the distributions can be strongly narrowed by removing the high temperature annealing step. The length distributions for the In-catalyzed growth are instead very broad. We develop a generic model that is capable of describing the observed behaviors by accounting for both the incubation time for nanowire growth and secondary nucleation of In droplets. These results allow us to formulate some general recipes for obtaining more uniform length distributions of III-V nanowires.

  16. Length distributions of Au-catalyzed and In-catalyzed InAs nanowires.

    PubMed

    Dubrovskii, V G; Sibirev, N V; Berdnikov, Y; Gomes, U P; Ercolani, D; Zannier, V; Sorba, L

    2016-09-16

    We present experimental data on the length distributions of InAs nanowires grown by chemical beam epitaxy with Au catalyst nanoparticles obtained by thermal dewetting of Au film, Au colloidal nanoparticles and In droplets. Poissonian length distributions are observed in the first case. Au colloidal nanoparticles produce broader and asymmetric length distributions of InAs nanowires. However, the distributions can be strongly narrowed by removing the high temperature annealing step. The length distributions for the In-catalyzed growth are instead very broad. We develop a generic model that is capable of describing the observed behaviors by accounting for both the incubation time for nanowire growth and secondary nucleation of In droplets. These results allow us to formulate some general recipes for obtaining more uniform length distributions of III-V nanowires.

  17. Length distributions of Au-catalyzed and In-catalyzed InAs nanowires.

    PubMed

    Dubrovskii, V G; Sibirev, N V; Berdnikov, Y; Gomes, U P; Ercolani, D; Zannier, V; Sorba, L

    2016-09-16

    We present experimental data on the length distributions of InAs nanowires grown by chemical beam epitaxy with Au catalyst nanoparticles obtained by thermal dewetting of Au film, Au colloidal nanoparticles and In droplets. Poissonian length distributions are observed in the first case. Au colloidal nanoparticles produce broader and asymmetric length distributions of InAs nanowires. However, the distributions can be strongly narrowed by removing the high temperature annealing step. The length distributions for the In-catalyzed growth are instead very broad. We develop a generic model that is capable of describing the observed behaviors by accounting for both the incubation time for nanowire growth and secondary nucleation of In droplets. These results allow us to formulate some general recipes for obtaining more uniform length distributions of III-V nanowires. PMID:27501469

  18. Palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides.

    PubMed

    Shaughnessy, Kevin H

    2015-05-22

    Synthetic modification of nucleoside structures provides access to molecules of interest as pharmaceuticals, biochemical probes, and models to study diseases. Covalent modification of the purine and pyrimidine bases is an important strategy for the synthesis of these adducts. Palladium-catalyzed cross-coupling is a powerful method to attach groups to the base heterocycles through the formation of new carbon-carbon and carbon-heteroatom bonds. In this review, approaches to palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides are reviewed. Polar reaction media, such as water or polar aprotic solvents, allow reactions to be performed directly on the hydrophilic nucleosides and nucleotides without the need to use protecting groups. Homogeneous aqueous-phase coupling reactions catalyzed by palladium complexes of water-soluble ligands provide a general approach to the synthesis of modified nucleosides, nucleotides, and oligonucleotides.

  19. Nickel-Catalyzed Aromatic C-H Functionalization.

    PubMed

    Yamaguchi, Junichiro; Muto, Kei; Itami, Kenichiro

    2016-08-01

    Catalytic C-H functionalization using transition metals has received significant interest from organic chemists because it provides a new strategy to construct carbon-carbon bonds and carbon-heteroatom bonds in highly functionalized, complex molecules without pre-functionalization. Recently, inexpensive catalysts based on transition metals such as copper, iron, cobalt, and nickel have seen more use in the laboratory. This review describes recent progress in nickel-catalyzed aromatic C-H functionalization reactions classified by reaction types and reaction partners. Furthermore, some reaction mechanisms are described and cutting-edge syntheses of natural products and pharmaceuticals using nickel-catalyzed aromatic C-H functionalization are presented. PMID:27573407

  20. Recent advances in copper-catalyzed asymmetric coupling reactions

    PubMed Central

    2015-01-01

    Summary Copper-catalyzed (or -mediated) asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C–C, C–N, C–O and other carbon–heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C–C and carbon–heteroatom bonds. PMID:26734106

  1. Muon-catalyzed fusion theory: Introduction and review

    SciTech Connect

    Cohen, J.S.

    1989-01-01

    Muon-catalyzed fusion ({mu}CF) has proved to be a fruitful subject for basic physics research as well as a source of cold nuclear fusion. Experiments have demonstrated that over 100 fusions per muon can be catalyzed by formation of the dt{mu} molecule in mixtures of deuterium and tritium. After a brief review of the subject's history, the dt{mu} catalysis cycle and the principal relations used in its analysis are described. Some of the important processes in the {mu}CF cycle are then discussed. Finally, the status of current research is appraised. 52 refs., 7 figs.

  2. Coalification by clay-catalyzed oligomerization of plant monomers

    SciTech Connect

    Orchin, M.; Wilson, R.M.

    1990-01-01

    The main objective of this research program is to devise laboratory methods to mimic the processes by which plants synthesize lignans, lignins and the processes by which these materials are transformed further by geochemical reactions catalyzed by certain clays to coal-like materials. We believe that the radical cation Diels-Alder reaction is one of the principal routes which transforms simple plant materials to coal-like substances and that such reactions may be catalyzed by clays that occur in the environment of the decaying plant materials. Progress is described.

  3. New Palladium-Catalyzed Approaches to Heterocycles and Carbocycles

    SciTech Connect

    Qinhua Huang

    2004-12-19

    The tert-butylimines of o-(1-alkynyl)benzaldehydes and analogous pyridinecarbaldehydes have been cyclized under very mild reaction conditions in the presence of I{sub 2}, ICl, PhSeCl, PhSCl and p-O{sub 2}NC{sub 6}H{sub 4}SCl to give the corresponding halogen-, selenium- and sulfur-containing disubstituted isoquinolines and naphthyridines, respectively. Monosubstituted isoquinolines and naphthyridines have been synthesized by the metal-catalyzed ring closure of these same iminoalkynes. This methodology accommodates a variety of iminoalkynes and affords the anticipated heterocycles in moderate to excellent yields. The Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes provides an efficient way to synthesize a variety of 4-(1-alkenyl)-3-arylisoquinolines in moderate to excellent yields. The introduction of an ortho-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products. Highly substituted naphthalenes have been synthesized by the palladium-catalyzed annulation of a variety of internal alkynes, in which two new carbon-carbon bonds are formed in a single step under relatively mild reaction conditions. This method has also been used to synthesize carbazoles, although a higher reaction temperature is necessary. The process involves arylpalladation of the alkyne, followed by intramolecular Heck olefination and double bond isomerization. This method accommodates a variety of functional groups and affords the anticipated highly substituted naphthalenes and carbazoles in good to excellent yields. Novel palladium migratiodarylation methodology for the synthesis of complex fused polycycles has been developed, in which one or more sequential Pd-catalyzed intramolecular migration processes involving C-H activation are employed. The chemistry works best with electron-rich aromatics, which is in agreement with the idea that

  4. Iron‐ and Cobalt‐Catalyzed Synthesis of Carbene Phosphinidenes

    PubMed Central

    Pal, Kuntal; Hemming, Oliver B.; Day, Benjamin M.; Pugh, Thomas; Evans, David J.

    2015-01-01

    Abstract In the presence of stoichiometric or catalytic amounts of [M{N(SiMe3)2}2] (M=Fe, Co), N‐heterocyclic carbenes (NHCs) react with primary phosphines to give a series of carbene phosphinidenes of the type (NHC)⋅PAr. The formation of (IMe4)⋅PMes (Mes=mesityl) is also catalyzed by the phosphinidene‐bridged complex [(IMe4)2Fe(μ‐PMes)]2, which provides evidence for metal‐catalyzed phosphinidene transfer. PMID:26643712

  5. Copper-Catalyzed Carbonylative Coupling of Cycloalkanes and Amides.

    PubMed

    Li, Yahui; Dong, Kaiwu; Zhu, Fengxiang; Wang, Zechao; Wu, Xiao-Feng

    2016-06-13

    Carbonylation reactions are a most powerful method for the synthesis of carbonyl-containing compounds. However, most known carbonylation procedures still require noble-metal catalysts and the use of activated compounds and good nucleophiles as substrates. Herein, we developed a copper-catalyzed carbonylative transformation of cycloalkanes and amides. Imides were prepared in good yields by carbonylation of a C(sp(3) )-H bond of the cycloalkane with the amides acting as weak nucleophiles. Notably, this is the first report of copper-catalyzed carbonylative C-H activation. PMID:27167881

  6. Microbial-Catalyzed Biotransformation of Multifunctional Triterpenoids Derived from Phytonutrients

    PubMed Central

    Shah, Syed Adnan Ali; Tan, Huey Ling; Sultan, Sadia; Mohd Faridz, Muhammad Afifi Bin; Mohd Shah, Mohamad Azlan Bin; Nurfazilah, Sharifah; Hussain, Munawar

    2014-01-01

    Microbial-catalyzed biotransformations have considerable potential for the generation of an enormous variety of structurally diversified organic compounds, especially natural products with complex structures like triterpenoids. They offer efficient and economical ways to produce semi-synthetic analogues and novel lead molecules. Microorganisms such as bacteria and fungi could catalyze chemo-, regio- and stereospecific hydroxylations of diverse triterpenoid substrates that are extremely difficult to produce by chemical routes. During recent years, considerable research has been performed on the microbial transformation of bioactive triterpenoids, in order to obtain biologically active molecules with diverse structures features. This article reviews the microbial modifications of tetranortriterpenoids, tetracyclic triterpenoids and pentacyclic triterpenoids. PMID:25003642

  7. Recent advances in copper-catalyzed asymmetric coupling reactions.

    PubMed

    Zhou, Fengtao; Cai, Qian

    2015-01-01

    Copper-catalyzed (or -mediated) asymmetric coupling reactions have received significant attention over the past few years. Especially the coupling reactions of aryl or alkyl halides with nucleophiles became a very powerful tool for the formation of C-C, C-N, C-O and other carbon-heteroatom bonds as well as for the construction of heteroatom-containing ring systems. This review summarizes the recent progress in copper-catalyzed asymmetric coupling reactions for the formation of C-C and carbon-heteroatom bonds. PMID:26734106

  8. Heterocycle Formation via Palladium-Catalyzed C–H Functionalization

    PubMed Central

    Mei, Tian-Sheng; Kou, Lei; Ma, Sandy; Engle, Keary M.; Yu, Jin-Quan

    2016-01-01

    Heterocyclic compounds are ubiquitous in natural products, pharmaceuticals, and agrochemicals. Therefore, the design of novel protocols to construct heterocycles more efficiently is a major area of focus in the organic chemistry. In the past several years, cyclization reactions based upon palladium-catalyzed C–H activation have received substantial attention due to their capacity for expediting heterocycle synthesis. This review discusses strategies for heterocycle synthesis via palladium-catalyzed C–H bond activation and highlights recent examples from the literature. PMID:27397938

  9. Molecular Mechanism by which One Enzyme Catalyzes Two Reactions

    NASA Astrophysics Data System (ADS)

    Nishimasu, Hiroshi; Fushinobu, Shinya; Wakagi, Takayoshi

    Unlike ordinary enzymes, fructose-1,6-bisphosphate (FBP) aldolase/phosphatase (FBPA/P) catalyzes two distinct reactions : (1) the aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate to FBP, and (2) the dephosphorylation of FBP to fructose-6-phosphate. We solved the crystal structures of FBPA/P in complex with DHAP (its aldolase form) and FBP (its phosphatase form). The crystal structures revealed that FBPA/P exhibits the dual activities through a dramatic conformational change in the active-site architecture. Our findings expand the conventional concept that one enzyme catalyzes one reaction.

  10. Pharmacophore Modeling and Virtual Screening for Novel Acidic Inhibitors of Microsomal Prostaglandin E2 Synthase-1 (mPGES-1)

    PubMed Central

    2011-01-01

    Microsomal prostaglandin E2 synthase-1 (mPGES-1) catalyzes prostaglandin E2 formation and is considered as a potential anti-inflammatory pharmacological target. To identify novel chemical scaffolds active on this enzyme, two pharmacophore models for acidic mPGES-1 inhibitors were developed and theoretically validated using information on mPGES-1 inhibitors from literature. The models were used to screen chemical databases supplied from the National Cancer Institute (NCI) and the Specs. Out of 29 compounds selected for biological evaluation, nine chemically diverse compounds caused concentration-dependent inhibition of mPGES-1 activity in a cell-free assay with IC50 values between 0.4 and 7.9 μM, respectively. Further pharmacological characterization revealed that also 5-lipoxygenase (5-LO) was inhibited by most of these active compounds in cell-free and cell-based assays with IC50 values in the low micromolar range. Together, nine novel chemical scaffolds inhibiting mPGES-1 are presented that may possess anti-inflammatory properties based on the interference with eicosanoid biosynthesis. PMID:21466167

  11. Pd-catalyzed synthesis of symmetrical and unsymmetrical siloxanes.

    PubMed

    Kurihara, Yu; Yamanoi, Yoshinori; Nishihara, Hiroshi

    2013-12-14

    A palladium-catalyzed arylation of hydrosiloxanes was developed for the synthesis of symmetrical and unsymmetrical siloxanes. Reactive functional moieties such as hydroxy or cyano groups were able to tolerate the reaction conditions and several novel unsymmetrical siloxanes were synthesized in moderate to high yield.

  12. Nickel-Catalyzed Reductive Amidation of Unactivated Alkyl Bromides.

    PubMed

    Serrano, Eloisa; Martin, Ruben

    2016-09-01

    A user-friendly, nickel-catalyzed reductive amidation of unactivated primary, secondary, and tertiary alkyl bromides with isocyanates is described. This catalytic strategy offers an efficient synthesis of a wide range of aliphatic amides under mild conditions and with an excellent chemoselectivity profile while avoiding the use of stoichiometric and sensitive organometallic reagents. PMID:27357076

  13. Metalloradical-catalyzed aliphatic carbon-carbon activation of cyclooctane.

    PubMed

    Chan, Yun Wai; Chan, Kin Shing

    2010-05-26

    The aliphatic carbon-carbon activation of c-octane was achieved via the addition of Rh(ttp)H to give Rh(ttp)(n-octyl) in good yield under mild reaction conditions. The aliphatic carbon-carbon activation was Rh(II)(ttp)-catalyzed and was very sensitive to porphyrin sterics.

  14. Nickel, Manganese, Cobalt, and Iron-Catalyzed Deprotonative Arene Dimerization

    PubMed Central

    Truong, Thanh; Alvarado, Joseph; Tran, Ly Dieu; Daugulis, Olafs

    2010-01-01

    A number of first-row transition metal salts catalyze deprotonative dimerization of acidic arenes. Under the atmosphere of oxygen, nickel, manganese, cobalt, and iron chlorides have been shown to dimerize five- and six-membered ring heterocycles as well as electron-poor arenes. Both tetramethylpiperidide and dicyclohexylamide bases can be employed; however, the former afford slightly higher yields. PMID:20192197

  15. Ruthenium-catalyzed C–H activation of thioxanthones

    PubMed Central

    Wagner, Danny

    2015-01-01

    Summary Thioxanthones – being readily available in one step from thiosalicylic acid and arenes – were used in ruthenium-catalyzed C–H-activation reaction to produce 1-mono- or 1,8-disubstituted thioxanthones in good to excellent yields. Scope and limitation of this reaction are presented. PMID:25977717

  16. Boric acid catalyzed chemoselective esterification of alpha-hydroxycarboxylic acids.

    PubMed

    Houston, Todd A; Wilkinson, Brendan L; Blanchfield, Joanne T

    2004-03-01

    Boric acid catalyzes the selective esterification of alpha-hydroxycarboxylic acids without causing significant esterification to occur with other carboxylic acids. The procedure is simple, high-yielding, and applicable to the esterification of alpha-hydroxy carboxylates in the presence of other carboxylic acids including beta-hydroxyacids within the same molecule. [reaction: see text

  17. Transition-Metal-Catalyzed Carbonylation of Methyl Acetate.

    ERIC Educational Resources Information Center

    Polichnowski, S. W.

    1986-01-01

    Presents a study of the rhodium-catalyzed, ioding-promoted carbonylation of methyl acetate. This study provides an interesting contrast between the carbonylation of methyl acetate and the carbonylation of methanol when similar rhodium/iodine catalyst systems are used. (JN)

  18. Rh-Catalyzed arylation of fluorinated ketones with arylboronic acids.

    PubMed

    Dobson, Luca S; Pattison, Graham

    2016-09-25

    The Rh-catalyzed arylation of fluorinated ketones with boronic acids is reported. This efficient process allows access to fluorinated alcohols in high yields under mild conditions. Competition experiments suggest that difluoromethyl ketones are more reactive than trifluoromethyl ketones in this process, despite their decreased electronic activation, an effect we postulate to be steric in origin.

  19. Metal-Catalyzed Cleavage of tRNA[superscript Phe

    ERIC Educational Resources Information Center

    Kirk, Sarah R.; Silverstein, Todd P.; McFarlane Holman, Karen L.

    2008-01-01

    This laboratory project is one component of a semester-long advanced biochemistry laboratory course that uses several complementary techniques to study tRNA[superscript Phe] conformational changes induced by ligand binding. In this article we describe a set of experiments in which students assay metal-catalyzed hydrolysis of tRNA[superscript Phe]…

  20. Ligand-Controlled Regiodivergent Copper-Catalyzed Alkylboration of Alkenes.

    PubMed

    Su, Wei; Gong, Tian-Jun; Lu, Xi; Xu, Meng-Yu; Yu, Chu-Guo; Xu, Zheng-Yang; Yu, Hai-Zhu; Xiao, Bin; Fu, Yao

    2015-10-26

    A novel copper-catalyzed regiodivergent alkylboration of alkenes with bis(pinacolato)diboron and alkyl halides has been developed. The regioselectivity of the alkylboration was controlled by subtle differences in the ligand structure. The reaction thus enables the practical, regiodivergent synthesis of two different alkyl boronic esters with complex structures from a single alkene. PMID:26338141

  1. Palladium-Catalyzed Enantioselective 1,1-Fluoroarylation of Aminoalkenes

    PubMed Central

    2016-01-01

    The development of an enantioselective palladium-catalyzed 1,1-fluoroarylation of unactivated aminoalkenes is described. The reaction uses arylboronic acids as the arene source and Selectfluor as the fluorine source to generate benzylic fluorides in good yields with excellent enantioselectivities. This transformation, likely proceeding through an oxidative Heck mechanism, affords 1,1-difunctionalized alkene products. PMID:26378886

  2. Endo-Selective Pd-Catalyzed Silyl Methyl Heck Reaction

    PubMed Central

    2015-01-01

    A palladium (Pd)-catalyzed endo-selective Heck reaction of iodomethylsilyl ethers of phenols and aliphatic alkenols has been developed. Mechanistic studies reveal that this silyl methyl Heck reaction operates via a hybrid Pd-radical process and that the silicon atom is crucial for the observed endo selectivity. The obtained allylic silyloxycycles were further oxidized into (Z)-alkenyldiols. PMID:25494921

  3. Ruthenium-catalyzed tandem olefin metathesis-oxidations.

    PubMed

    Scholte, Andrew A; An, Mi Hyun; Snapper, Marc L

    2006-10-12

    [reaction: see text] The utility of Grubbs' 2nd generation metathesis catalyst has been expanded by the development of two tandem olefin metathesis/oxidation protocols. These ruthenium-catalyzed processes provide cis-diols or alpha-hydroxy ketones from simple olefinic starting materials.

  4. Development of a Lewis Base Catalyzed Selenocyclization Reaction

    ERIC Educational Resources Information Center

    Collins, William

    2009-01-01

    The concept of Lewis base activation of selenium Lewis acids has been effectively reduced to practice in the Lewis base catalyzed selenofunctionalization of unactivated olefins. In this reaction, the weakly acidic species, "N"-phenylselenyl succinimide, is cooperatively activated by the addition of a "soft" Lewis base donor (phosphine sulfides,…

  5. Solvent-free lipase-catalyzed preparation of diacylglycerols.

    PubMed

    Weber, Nikolaus; Mukherjee, Kumar D

    2004-08-25

    Various methods have been applied for the enzymatic preparation of diacylglycerols that are used as dietary oils for weight reduction in obesity and related disorders. Interesterification of rapeseed oil triacylglycerols with commercial preparations of monoacylglycerols, such as Monomuls 90-O18, Mulgaprime 90, and Nutrisoft 55, catalyzed by immobilized lipase from Rhizomucor miehei (Lipozyme RM IM) in vacuo at 60 degrees C led to extensive (from 60 to 75%) formation of diacylglycerols. Esterification of rapeseed oil fatty acids with Nutrisoft, catalyzed by Lipozyme RM in vacuo at 60 degrees C, also led to extensive (from 60 to 70%) formation of diacylglycerols. Esterification of rapeseed oil fatty acids with glycerol in vacuo at 60 degrees C, catalyzed by Lipozyme RM and lipases from Thermomyces lanuginosus (Lipozyme TL IM) and Candida antarctica (lipase B, Novozym 435), also provided diacylglycerols, however, to a lower extent (40-45%). Glycerolysis of rapeseed oil triacylglycerols with glycerol in vacuo at 60 degrees C, catalyzed by Lipozyme TL and Novozym 435, led to diacylglycerols to the extent of

  6. Acid-catalyzed dehydrogenation of amine-boranes

    DOEpatents

    Stephens, Frances Helen; Baker, Ralph Thomas

    2010-01-12

    A method of dehydrogenating an amine-borane using an acid-catalyzed reaction. The method generates hydrogen and produces a solid polymeric [R.sup.1R.sup.2B--NR.sup.3R.sup.4].sub.n product. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources.

  7. Aluminum Monohydride Catalyzed Selective Hydroboration of Carbonyl Compounds.

    PubMed

    Jakhar, Vineet Kumar; Barman, Milan Kr; Nembenna, Sharanappa

    2016-09-16

    The well-defined aluminum monohydride compound [{(2,4,6-Me3-C6H2)NC(Me)}2(Me)(H)]AlH·(NMe2Et) (1) catalyzes hydroboration of a wide range of aldehydes and ketones under mild reaction conditions. Moreover, compound 1 displayed chemoselective hydroboration of aldehydes over ketones at rt. PMID:27571142

  8. Oxo-rhenium catalyzed reductive coupling and deoxygenation of alcohols.

    PubMed

    Kasner, Gabrielle R; Boucher-Jacobs, Camille; Michael McClain, J; Nicholas, Kenneth M

    2016-06-01

    Representative benzylic, allylic and α-keto alcohols are deoxygenated to alkanes and/or reductively coupled to alkane dimers by reaction with PPh3 catalyzed by (PPh3)2ReIO2 (1). The newly discovered catalytic reductive coupling reaction is a rare C-C bond-forming transformation of alcohols. PMID:27174412

  9. Copper-catalyzed intermolecular asymmetric propargylic dearomatization of indoles.

    PubMed

    Shao, Wen; Li, He; Liu, Chuan; Liu, Chen-Jiang; You, Shu-Li

    2015-06-22

    The first copper-catalyzed intermolecular dearomatization of indoles by an asymmetric propargylic substitution reaction was developed. This method provides a highly efficient synthesis of versatile furoindoline and pyrroloindoline derivatives containing a quaternary carbon stereogenic center and a terminal alkyne moiety with up to 86 % yield and 98 % ee. PMID:25968474

  10. Gold-catalyzed propargylic substitutions: Scope and synthetic developments

    PubMed Central

    Debleds, Olivier; Gayon, Eric; Vrancken, Emmanuel

    2011-01-01

    Summary This personal account summarizes our recent developments in gold-catalyzed direct substitutions on propargylic (allylic, benzylic) alcohols, with various nucleophiles (and bi-nucleophiles) based on the σ- and/or π-acidity of gold(III) complexes. Synthetic developments are also briefly described. PMID:21804883

  11. Palladium-Catalyzed N-Arylation of 2-Aminothiazoles

    PubMed Central

    McGowan, Meredeth A.; Henderson, Jaclyn L.

    2012-01-01

    A method for the Pd-catalyzed coupling of 2-aminothiazole derivatives with aryl bromides and triflates is described. Significantly, for this class of nucleophiles, the coupling exhibits a broad substrate scope and proceeds with a reasonable catalyst loading. Furthermore, an interesting effect of acetic acid as an additive is uncovered that facilitates catalyst activation. PMID:22394197

  12. Computational Studies on Cinchona Alkaloid-Catalyzed Asymmetric Organic Reactions.

    PubMed

    Tanriver, Gamze; Dedeoglu, Burcu; Catak, Saron; Aviyente, Viktorya

    2016-06-21

    Remarkable progress in the area of asymmetric organocatalysis has been achieved in the last decades. Cinchona alkaloids and their derivatives have emerged as powerful organocatalysts owing to their reactivities leading to high enantioselectivities. The widespread usage of cinchona alkaloids has been attributed to their nontoxicity, ease of use, stability, cost effectiveness, recyclability, and practical utilization in industry. The presence of tunable functional groups enables cinchona alkaloids to catalyze a broad range of reactions. Excellent experimental studies have extensively contributed to this field, and highly selective reactions were catalyzed by cinchona alkaloids and their derivatives. Computational modeling has helped elucidate the mechanistic aspects of cinchona alkaloid catalyzed reactions as well as the origins of the selectivity they induce. These studies have complemented experimental work for the design of more efficient catalysts. This Account presents recent computational studies on cinchona alkaloid catalyzed organic reactions and the theoretical rationalizations behind their effectiveness and ability to induce selectivity. Valuable efforts to investigate the mechanisms of reactions catalyzed by cinchona alkaloids and the key aspects of the catalytic activity of cinchona alkaloids in reactions ranging from pharmaceutical to industrial applications are summarized. Quantum mechanics, particularly density functional theory (DFT), and molecular mechanics, including ONIOM, were used to rationalize experimental findings by providing mechanistic insights into reaction mechanisms. B3LYP with modest basis sets has been used in most of the studies; nonetheless, the energetics have been corrected with higher basis sets as well as functionals parametrized to include dispersion M05-2X, M06-2X, and M06-L and functionals with dispersion corrections. Since cinchona alkaloids catalyze reactions by forming complexes with substrates via hydrogen bonds and long

  13. Computational Studies on Cinchona Alkaloid-Catalyzed Asymmetric Organic Reactions.

    PubMed

    Tanriver, Gamze; Dedeoglu, Burcu; Catak, Saron; Aviyente, Viktorya

    2016-06-21

    Remarkable progress in the area of asymmetric organocatalysis has been achieved in the last decades. Cinchona alkaloids and their derivatives have emerged as powerful organocatalysts owing to their reactivities leading to high enantioselectivities. The widespread usage of cinchona alkaloids has been attributed to their nontoxicity, ease of use, stability, cost effectiveness, recyclability, and practical utilization in industry. The presence of tunable functional groups enables cinchona alkaloids to catalyze a broad range of reactions. Excellent experimental studies have extensively contributed to this field, and highly selective reactions were catalyzed by cinchona alkaloids and their derivatives. Computational modeling has helped elucidate the mechanistic aspects of cinchona alkaloid catalyzed reactions as well as the origins of the selectivity they induce. These studies have complemented experimental work for the design of more efficient catalysts. This Account presents recent computational studies on cinchona alkaloid catalyzed organic reactions and the theoretical rationalizations behind their effectiveness and ability to induce selectivity. Valuable efforts to investigate the mechanisms of reactions catalyzed by cinchona alkaloids and the key aspects of the catalytic activity of cinchona alkaloids in reactions ranging from pharmaceutical to industrial applications are summarized. Quantum mechanics, particularly density functional theory (DFT), and molecular mechanics, including ONIOM, were used to rationalize experimental findings by providing mechanistic insights into reaction mechanisms. B3LYP with modest basis sets has been used in most of the studies; nonetheless, the energetics have been corrected with higher basis sets as well as functionals parametrized to include dispersion M05-2X, M06-2X, and M06-L and functionals with dispersion corrections. Since cinchona alkaloids catalyze reactions by forming complexes with substrates via hydrogen bonds and long

  14. Copper-Catalyzed Cascade Substitution/Cyclization of N-Isocyanates: A Synthesis of 1-Aminobenzimidazolones.

    PubMed

    An, Jing; Alper, Howard; Beauchemin, André M

    2016-07-15

    A copper-catalyzed cascade reaction of in situ generated nitrogen-substituted isocyanates (N-isocyanates) and 2-iodoanilines has been developed. The cascade relies on the base-catalyzed substitution of masked N-isocyanates, followed by Cu(I)-catalyzed coupling to afford a variety of 1-aminobenzimidazolones in moderate to excellent yields. This is the first example of a transition-metal-catalyzed cascade reaction involving N-isocyanate intermediates. PMID:27341005

  15. Copper-Catalyzed Cascade Substitution/Cyclization of N-Isocyanates: A Synthesis of 1-Aminobenzimidazolones.

    PubMed

    An, Jing; Alper, Howard; Beauchemin, André M

    2016-07-15

    A copper-catalyzed cascade reaction of in situ generated nitrogen-substituted isocyanates (N-isocyanates) and 2-iodoanilines has been developed. The cascade relies on the base-catalyzed substitution of masked N-isocyanates, followed by Cu(I)-catalyzed coupling to afford a variety of 1-aminobenzimidazolones in moderate to excellent yields. This is the first example of a transition-metal-catalyzed cascade reaction involving N-isocyanate intermediates.

  16. 4-Dimenthylaminopyridine or Acid-Catalyzed Synthesis of Esters: A Comparison

    ERIC Educational Resources Information Center

    van den Berg, Annemieke W. C.; Hanefeld, Ulf

    2006-01-01

    A set of highly atom-economic experiments was developed to highlight the differences between acid- and base-catalyzed ester syntheses and to introduce the principles of atom economy. The hydrochloric acid-catalyzed formation of an ester was compared with the 4-dimethylaminopyradine-catalyzed ester synthesis.

  17. Kinetics of Imidazole Catalyzed Ester Hydrolysis: Use of Buffer Dilutions to Determine Spontaneous Rate, Catalyzed Rate, and Reaction Order.

    ERIC Educational Resources Information Center

    Lombardo, Anthony

    1982-01-01

    Described is an advanced undergraduate kinetics experiment using buffer dilutions to determine spontaneous rate, catalyzed rate, and reaction order. The reaction utilized is hydrolysis of p-nitro-phenyl acetate in presence of imidazole, which has been shown to enhance rate of the reaction. (Author/JN)

  18. Synthesis of hindered biphenyls by sequential non-transition metal-catalyzed reaction/palladium-catalyzed cross-couplings.

    PubMed

    He, Ping; Dong, Cheng-Guo; Hu, Qiao-Sheng

    2008-03-17

    The sequential reaction of 1,2-dihalobenzenes with aryl lithiums followed by palladium-catalyzed cross-coupling reactions with Grignard reagents and arylboronic acids is described. This sequential reaction provides a convenient and expeditious access to tri-ortho substituted biaryl derivatives.

  19. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine.

    PubMed

    McCue, Jeffrey M; Driscoll, William J; Mueller, Gregory P

    2008-01-11

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo.

  20. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    SciTech Connect

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.; Bourne, H.R.

    1981-11-01

    Cholera toxin catalyzes transfer of radiolabel from (/sup 32/P)NAD/sup +/ to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and (/sup 32/P)NAD/sup +/ caused radiolabeling of purified microtubule and intermediate filament proteins.

  1. Transition-metal-catalyzed C-S bond coupling reaction.

    PubMed

    Lee, Chin-Fa; Liu, Yi-Chen; Badsara, Satpal Singh

    2014-03-01

    Sulfur-containing molecules such as thioethers are commonly found in chemical biology, organic synthesis, and materials chemistry. While many reliable methods have been developed for preparing these compounds, harsh reaction conditions are usually required in the traditional methods. The transition metals have been applied in this field, and the palladium-catalyzed coupling of thiols with aryl halides and pseudo halides is one of the most important methods in the synthesis of thioethers. Other metals have also been used for the same purpose. Here, we summarize recent efforts in metal-catalyzed C-S bond cross-coupling reactions, focusing especially on the coupling of thiols with aryl- and vinyl halides based on different metals.

  2. GaCl3-catalyzed allenyne cycloisomerizations to allenenes.

    PubMed

    Lee, Sang Ick; Sim, So Hee; Kim, Soo Min; Kim, Kwang; Chung, Young Keun

    2006-09-01

    Cycloisomerizations of allenynes to allenenes have been studied in the presence of catalytic amounts of [Au(PPh3)]SbF6 in dichloromethane or GaCl3 in toluene. Both catalytic systems are quite effective for terminal 1,6-allenynes. However, they showed different reactivities toward allenynes with di-substituents at the allenic terminal carbon. For the GaCl3-catalyzed reactions, allenenes were obtained in reasonable to high yields. However, for a Au(I)-catalyzed reaction, a triene was obtained in a poor yield. Thus, GaCl3 serves as an effective catalyst for the cycloisomerization of allenynes bearing a terminal alkyne to give cyclic allenenes in reasonable to high yields. PMID:16930081

  3. Palladium-Catalyzed Arylation of Alkyl Sulfenate Anions.

    PubMed

    Jia, Tiezheng; Zhang, Mengnan; Jiang, Hui; Wang, Carol Y; Walsh, Patrick J

    2015-11-01

    A unique palladium-catalyzed arylation of alkyl sulfenate anions is introduced that affords aryl alkyl sulfoxides in high yields. Due to the base sensitivity of the starting sulfoxides, sulfenate anion intermediates, and alkyl aryl sulfoxide products, the use of a mild method to generate alkyl sulfenate anions was crucial to the success of this process. Thus, a fluoride triggered elimination strategy was employed with alkyl 2-(trimethylsilyl)ethyl sulfoxides to liberate the requisite alkyl sulfenate anion intermediates. In the presence of palladium catalysts with bulky monodentate phosphines (SPhos and Cy-CarPhos) and aryl bromides or chlorides, alkyl sulfenate anions were readily arylated. Moreover, the thermal fragmentation and the base promoted elimination of alkyl sulfoxides was overridden. The alkyl sulfenate anion arylation exhibited excellent chemoselectivity in the presence of functional groups, such as anilines and phenols, which are also known to undergo palladium catalyzed arylation reactions.

  4. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    SciTech Connect

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-11

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo.

  5. Stereoselectivity in (Acyloxy)borane-Catalyzed Mukaiyama Aldol Reactions.

    PubMed

    Lee, Joshua M; Zhang, Xin; Norrby, Per-Ola; Helquist, Paul; Wiest, Olaf

    2016-07-01

    The origin of diastereo- and enantioselectivity in a Lewis acid-catalyzed Mukaiyama aldol reaction is investigated using a combination of dispersion corrected DFT calculations and transition state force fields (TSFF) developed using the quantum guided molecular mechanics (Q2MM) method. The reaction proceeds via a closed transition structure involving a nontraditional hydrogen bond that is 3.3 kJ/mol lower in energy than the corresponding open transition structure. The correct prediction of the diastereoselectivity of a Mukaiyama aldol reaction catalyzed by the conformationally flexible Yamamoto chiral (acyloxy) borane (CAB) requires extensive conformational sampling at the transition structure, which is achieved using a Q2MM-derived TSFF, followed by DFT calculations of the low energy conformational clusters. Finally, a conceptual model for the rationalization of the observed diastereo- and enantioselectivity of the reaction using a closed transition state model is proposed. PMID:27247023

  6. Actinide-Catalyzed Intermolecular Addition of Alcohols to Carbodiimides.

    PubMed

    Batrice, Rami J; Kefalidis, Christos E; Maron, Laurent; Eisen, Moris S

    2016-02-24

    The unprecedented actinide-catalyzed addition of alcohols to carbodiimides is presented. This represents a rare example of thorium-catalyzed transformations of an alcoholic substrate and the first example of uranium complexes showing catalytic reactivity with alcohols. Using the uranium and thorium amides U[N(SiMe3)2]3 and [(Me3Si)2N]2An[κ(2)-(N,C)-CH2Si(CH3)2N(SiMe3)] (An = Th or U), alcohol additions to unsaturated carbon-nitrogen bonds are achieved in short reaction times with excellent selectivities and high to excellent yields. Computational studies, supported by experimental thermodynamic data, suggest plausible models of the profile of the reaction which allow the system to overcome the high barrier of scission of the actinide-oxygen bond. Accompanied by experimentally determined kinetic parameters, a plausible mechanism is proposed for the catalytic cycle. PMID:26844823

  7. Effect of urate on the lactoperoxidase catalyzed oxidation of adrenaline.

    PubMed

    Løvstad, Rolf A

    2004-12-01

    Lactoperoxidase is an iron containing enzyme, which is an essential component of the defense system of mammalian secretary fluids. The enzyme readily oxidizes adrenaline and other catecholamines to coloured aminochrome products. A Km-value of 1.21 mM and a catalytic constant (k = Vmax/[Enz]) of 15.5 x 10(3) min(-1) characterized the reaction between lactoperoxidase and adrenaline at pH 7.4. Urate was found to activate the enzyme catalyzed oxidation of adrenaline in a competitive manner, the effect decreasing with increasing adrenaline concentration. Lactoperoxidase was able to catalyze the oxidation of urate. However, urate was a much poorer substrate than adrenaline, and it seems unlikely that urate activates by functioning as a free, redox cycling intermediate between enzyme and adrenaline. The activation mechanism probably involves an urate-lactoperoxidase complex.

  8. Copper-Catalyzed Intramolecular Oxidative Amination of Unactivated Internal Alkenes.

    PubMed

    Xiong, Peng; Xu, Fan; Qian, Xiang-Yang; Yohannes, Yared; Song, Jinshuai; Lu, Xin; Xu, Hai-Chao

    2016-03-18

    A copper-catalyzed oxidative amination of unactivated internal alkenes has been developed. The Wacker-type oxidative alkene amination reaction is traditionally catalyzed by a palladium through a mechanism involving aminopalladation and β-hydride elimination. Replacing the precious and scarce palladium with a cheap and abundant copper for this transformation has been challenging because of the difficulty associated with the aminocupration of internal alkenes. The combination of a simple copper salt, without additional ligand, as the catalyst and Dess-Martin periodinane as the oxidant, promotes efficiently the oxidative amination of allylic carbamates and ureas bearing di- and trisubstituted alkenes leading to oxazolidinones and imidazolidinones. Preliminary mechanistic studies suggested a hybrid radical-organometallic mechanism involving an amidyl radical cyclization to form the key C-N bond.

  9. The catalyzing role of PPDK in Giardia lamblia.

    PubMed

    Feng, Xian-Min; Cao, Li-Jing; Adam, Rodney D; Zhang, Xi-Chen; Lu, Si-Qi

    2008-03-01

    Giardia lamblia is an early branching eukaryotic microorganism that derives its metabolic energy primarily from anaerobic glycolysis. In most organisms, glycolysis is catalyzed by pyruvate kinase (PK), allowing the generation of two ATP molecules from one molecule of pyruvate. Giardia has both PK and pyrophosphate-dependent pyruvate phosphate dikinase (PPDK), which catalyzes the generation of five ATP molecules from pyruvate by pyrophosphate-dependent glycolysis and offers a potential selective advantage. In order to evaluate the importance of pyrophosphate-dependent glycolysis, we used ribozyme-mediated cleavage of the PPDK transcript to decrease PPDK transcript levels to 20% of normal. The accompanying decrease in PPDK enzyme activity decreased ATP levels to 3% of normal and increased glycogen deposition, confirming the importance pyrophosphate-mediated glycolysis that was previously suggested by cell lysate studies. PPDK is not found in vertebrates, so specific inhibitors may be useful for treatment of infections caused by anaerobic protists that depend on pyrophosphate-dependent glycolysis.

  10. Cross-ligation and exchange reactions catalyzed by hairpin ribozymes.

    PubMed Central

    Komatsu, Y; Koizumi, M; Sekiguchi, A; Ohtsuka, E

    1993-01-01

    The negative strand of the satellite RNA of tobacco ringspot virus (sTobRV(-)) contains a hairpin catalytic domain that shows self-cleavage and self-ligation activities in the presence of magnesium ions. We describe here that the minimal catalytic domain can catalyze a cross-ligation reaction between two kinds of substrates in trans. The cross-ligated product increased when the reaction temperature was decreased during the reaction from 37 degrees C to 4 degrees C. A two-stranded hairpin ribozyme, divided into two fragments between G45 and U46 in a hairpin loop, showed higher ligation activity than the nondivided ribozyme. The two stranded ribozyme also catalyzed an exchange reaction of the 3'-portion of the cleavage site. Images PMID:8441626

  11. Copper-catalyzed divergent kinetic resolution of racemic allylic substrates.

    PubMed

    Pineschi, Mauro; Di Bussolo, Valeria; Crotti, Paolo

    2011-10-01

    When a racemic mixture is fully consumed the products may still be enantiomerically enriched. In particular, the regiodivergent kinetic resolution is a process in which a single chiral catalyst or reagent reacts with a racemic substrate to form regioisomers possessing an opposite configuration on the newly-formed stereogenic centers. This review reports the major advances in the field of the copper-catalyzed regiodivergent and stereodivergent kinetic resolution of allylic substrates with organometallic reagents. The chiral recognition matching phenomena found with particular allylic substrates with the absolute configuration of the chiral catalyst allows in some cases an excellent control of the regio- and stereoselectivity, sheding some light on the so-called "black-box" mechanism of a copper-catalyzed asymmetric allylic alkylation. PMID:21837639

  12. Iron-catalyzed diboration and carboboration of alkynes.

    PubMed

    Nakagawa, Naohisa; Hatakeyama, Takuji; Nakamura, Masaharu

    2015-03-01

    An iron-catalyzed diboration reaction of alkynes with bis(pinacolato)diboron (B2pin2) and external borating agents (MeOB(OR)2) affords diverse symmetrical or unsymmetrical cis-1,2-diborylalkenes. The simple protocol for the diboration reaction can be extended to the iron-catalyzed carboboration of alkynes with primary and, unprecedentedly, secondary alkyl halides, affording various tetrasubstituted monoborylalkenes in a highly stereoselective manner. DFT calculations indicate that a boryliron intermediate adds across the triple bond of an alkyne to afford an alkenyliron intermediate, which can react with the external trapping agents, borates and alkyl halides. In situ trapping experiments support the intermediacy of the alkenyl iron species using radical probe stubstrates.

  13. Scandium(III)-catalyzed enantioselective allylation of isatins using allylsilanes.

    PubMed

    Hanhan, Nadine V; Tang, Yng C; Tran, Ngon T; Franz, Annaliese K

    2012-05-01

    The scandium(III)-catalyzed enantioselective Hosomi-Sakurai allylation of isatins with various substituted allylic silanes is described. A catalyst loading as low as 0.05 mol % is utilized at room temperature to afford the 3-allyl-3-hydroxy-2-oxindoles in excellent yields and enantioselectivity up to 99% ee, including a demonstration of a gram-scale reaction. The effects of additives and varying silyl groups were explored to demonstrate the scope and application.

  14. Gold-catalyzed homogeneous oxidative cross-coupling reactions.

    PubMed

    Zhang, Guozhu; Peng, Yu; Cui, Li; Zhang, Liming

    2009-01-01

    Oxidizing gold? A gold(I)/gold(III) catalytic cycle is essential for the first oxidative cross-coupling reaction in gold catalysis. By using Selectfluor for gold(I) oxidation, this chemistry reveals the synthetic potential of incorporating gold(I)/gold(III) catalytic cycles into contemporary gold chemistry and promises a new area of gold research by merging powerful gold catalysis and oxidative metal-catalyzed cross-coupling reactions.

  15. Metal-catalyzed annulation reactions for π-conjugated polycycles.

    PubMed

    Jin, Tienan; Zhao, Jian; Asao, Naoki; Yamamoto, Yoshinori

    2014-03-24

    The progress of the metal-catalyzed annulation reactions toward construction of various π-conjugated polycyclic cores with high conjugation extension is described. This article gives a brief overview of various annulation reactions promoted by metal catalysts including C-H bond functionalization, [2+2+2] cycloaddition, cascade processes, ring closing metathesis, electrophilic aromatization, and various cross-coupling reactions. A variety of conjugated polycycles with planar, bowl-shaped, and helical structures have been constructed in high efficiency and selectivity.

  16. Gold-catalyzed oxidative cycloadditions to activate a quinoline framework.

    PubMed

    Huple, Deepak B; Ghorpade, Satish; Liu, Rai-Shung

    2013-09-23

    Going for gold! Gold-catalyzed reactions of 3,5- and 3,6-dienynes with 8-alkylquinoline oxides results in an oxidative cycloaddition with high stereospecificity (see scheme; EWG = electron-withdrawing group); this process involves a catalytic activation of a quinoline framework. The reaction mechanism involves the intermediacy of α-carbonyl pyridinium ylides (I) in a concerted [3+2]-cycloaddition with a tethered alkene.

  17. Tandem Difluoroalkylation-Arylation of Enamides Catalyzed by Nickel.

    PubMed

    Gu, Ji-Wei; Min, Qiao-Qiao; Yu, Ling-Chao; Zhang, Xingang

    2016-09-26

    A nickel-catalyzed three-component reaction for the synthesis of difluoroalkylated compounds through tandem difluoroalkylation-arylation of enamides has been developed. The reaction tolerates a variety of arylboronic acids and widely available difluoroalkyl bromides, and even the relatively inert substrate chlorodifluoroacetate. The significant advantages of this protocol are the low-cost nickel catalyst, synthetic convenience, excellent functional-group compatibility and high reaction efficiency. PMID:27605485

  18. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents

    PubMed Central

    Shrestha, Bijay

    2015-01-01

    Summary We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N’,N’-tetramethyl-o-phenylenediamine (NN-1) as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields. PMID:26734088

  19. Palladium Catalyzed Intramolecular Acylcyanation of Alkenes Using α-Iminonitriles

    PubMed Central

    Rondla, Naveen R.; Ogilvie, Jodi M.; Pan, Zhongda

    2014-01-01

    Reported here is a palladium catalyzed intramolecular acylcyanation of alkenes using α-iminonitriles. Through this method, highly functionalized indanones are synthesized in moderate to high yields using Pd(PPh3)4, without need for any additional ligands, and a common Lewis acid (ZnCl2). Additionally, the reaction tolerates substitution at various positions on the aromatic ring including electron donating, and electron withdrawing groups. PMID:24980625

  20. Synthesis of Optically Active Polystyrene Catalyzed by Monophosphine Pd Complexes.

    PubMed

    Jouffroy, Matthieu; Armspach, Dominique; Matt, Dominique; Osakada, Kohtaro; Takeuchi, Daisuke

    2016-07-11

    Cationic Pd(II) monophosphine complexes derived from α- and β-cyclodextrins (CDs) promote the homopolymerization of styrene under carbon monoxide pressure. Although reversible CO coordination takes place under catalytic conditions according to (13) C NMR studies with (13) C-enriched CO, both complexes catalyze the formation of CO-free styrene polymers. These macromolecules display optical activity as a result of the presence of stereoregular sequences within the overall atactic polymer.

  1. Copper-catalyzed trifluoromethylation of trisubstituted allylic and homoallylic alcohols.

    PubMed

    Lei, Jian; Liu, Xiaowu; Zhang, Shaolin; Jiang, Shuang; Huang, Minhao; Wu, Xiaoxing; Zhu, Qiang

    2015-04-27

    An efficient copper-catalyzed trifluoromethylation of trisubstituted allylic and homoallylic alcohols with Togni's reagent has been developed. This strategy, accompanied by a double-bond migration, leads to various branched CF3-substituted alcohols by using readily available trisubstituted cyclic/acyclic alcohols as substrates. Moreover, for alcohols in which β-H elimination is prohibited, CF3-containing oxetanes are isolated as the sole product. PMID:25810003

  2. Copper-Catalyzed Divergent Addition Reactions of Enoldiazoacetamides with Nitrones.

    PubMed

    Cheng, Qing-Qing; Yedoyan, Julietta; Arman, Hadi; Doyle, Michael P

    2016-01-13

    Catalyst-controlled divergent addition reactions of enoldiazoacetamides with nitrones have been developed. By using copper(I) tetrafluoroborate/bisoxazoline complex as the catalyst, a [3+3]-cycloaddition reaction was achieved with excellent yield and enantioselectivity under exceptionally mild conditions, which represents the first highly enantioselective base-metal-catalyzed vinylcarbene transformation. When the catalyst was changed to copper(I) triflate, Mannich addition products were formed in high yields with near exclusivity under otherwise identical conditions.

  3. Biaryl Phosphine Ligands in Palladium-Catalyzed Amination

    PubMed Central

    Surry, David S.

    2012-01-01

    Palladium-catalyzed amination of aryl halides has undergone rapid development in the last 12 years. This has been largely driven by implementation of new classes of ligands. Biaryl phosphines have proven to provide especially active catalysts in this context. This review discusses the applications that these catalysts have found in C-N cross-coupling in heterocycle synthesis, pharmaceuticals, materials science and natural product synthesis. PMID:18663711

  4. Lactoperoxidase-catalyzed activation of carcinogenic aromatic and heterocyclic amines.

    PubMed

    Gorlewska-Roberts, Katarzyna M; Teitel, Candee H; Lay, Jackson O; Roberts, Dean W; Kadlubar, Fred F

    2004-12-01

    Lactoperoxidase, an enzyme secreted from the human mammary gland, plays a host defensive role through antimicrobial activity. It has been implicated in mutagenic and carcinogenic activation in the human mammary gland. The potential role of heterocyclic and aromatic amines in the etiology of breast cancer led us to examination of the lactoperoxidase-catalyzed activation of the most commonly studied arylamine carcinogens: 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP), benzidine, 4-aminobiphenyl (ABP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx). In vitro activation was performed with lactoperoxidase (partially purified from bovine milk or human milk) in the presence of hydrogen peroxide and calf thymus DNA. Products formed during enzymatic activation were monitored by HPLC with ultraviolet and radiometric detection. Two of these products were characterized as hydrazo and azo derivatives by means of mass spectrometry. The DNA binding level of 3H- and 14C-radiolabeled amines after peroxidase-catalyzed activation was dependent on the hydrogen peroxide concentration, and the highest levels of carcinogen binding to DNA were observed at 100 microM H2O2. Carcinogen activation and the level of binding to DNA were in the order of benzidine > ABP > IQ > MeIQx > PhIP. One of the ABP adducts was identified, and the level at which it is formed was estimated to be six adducts/10(5) nucleotides. The susceptibility of aromatic and heterocyclic amines for lactoperoxidase-catalyzed activation and the binding levels of activated products to DNA suggest a potential role of lactoperoxidase-catalyzed activation of carcinogens in the etiology of breast cancer.

  5. The gravitino-stau scenario after catalyzed big bang nucleosynthesis

    SciTech Connect

    Kersten, Joern; Schmidt-Hoberg, Kai E-mail: kai.schmidt-hoberg@ph.tum.de

    2008-01-15

    We consider the impact of catalyzed big bang nucleosynthesis on theories with a gravitino lightest superparticle and a charged slepton next-to-lightest superparticle. In models where the gravitino to gaugino mass ratio is bounded from below, such as gaugino-mediated supersymmetry breaking, we derive a lower bound on the gaugino mass parameter m{sub 1/2}. As a concrete example, we determine the parameter space of gaugino mediation that is compatible with all cosmological constraints.

  6. Synthesis of Aryldifluoroamides by Copper-Catalyzed Cross-Coupling.

    PubMed

    Arlow, Sophie I; Hartwig, John F

    2016-03-24

    A copper-catalyzed coupling of aryl, heteroaryl, and vinyl iodides with α-silyldifluoroamides is reported. The reaction forms α,α-difluoro-α-aryl amides from electron-rich, electron-poor, and sterically hindered aryl iodides in high yield and tolerates a variety of functional groups. The aryldifluoroamide products can be transformed further to provide access to a diverse array of difluoroalkylarenes, including compounds of potential biological interest. PMID:26929068

  7. Copper bronze catalyzed Heck reaction in ionic liquids.

    PubMed

    Calò, Vincenzo; Nacci, Angelo; Monopoli, Antonio; Ieva, Eliana; Cioffi, Nicola

    2005-02-17

    Heck reaction of aryl iodides and activated aryl bromides catalyzed by copper bronze in tetrabutylammonium bromide as solvent and tetrabutylammonium acetate as base was developed. The effective catalysts are Cu nanoparticles deriving from the reaction of iodobenzene with copper bronze. These nanoparticles are very stable in tetraalkylammonium salts, are easily recycled, and can be stored for months without a loss of catalytic efficiency. [reaction: see text

  8. Rh catalyzed olefination and vinylation of unactivated acetanilides.

    PubMed

    Patureau, Frederic W; Glorius, Frank

    2010-07-28

    In the catalyzed oxidative olefination of acetanilides (oxidative-Heck coupling), Rh offers great advantages over more common Pd catalysts. Lower catalyst loadings, large functional group tolerance (in particular to halides), and higher reactivity of electron-neutral olefins (styrenes) are some of the attractive features. Most interestingly, even ethylene reacts to yield the corresponding acetanilido-styrene. Moreover, the Cu(II) oxidant can also be utilized in catalytic amounts with air serving as the terminal oxidant. PMID:20593901

  9. Comparing Ru and Fe-catalyzed olefin metathesis.

    PubMed

    Poater, Albert; Chaitanya Vummaleti, Sai Vikrama; Pump, Eva; Cavallo, Luigi

    2014-08-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol(-1)) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts.

  10. Gold-catalyzed cyclization of allenyl acetal derivatives

    PubMed Central

    Vasu, Dhananjayan; Pawar, Samir Kundlik

    2013-01-01

    Summary The gold-catalyzed transformation of allenyl acetals into 5-alkylidenecyclopent-2-en-1-ones is described. The outcome of our deuterium labeling experiments supports a 1,4-hydride shift of the resulting allyl cationic intermediates because a complete deuterium transfer is observed. We tested the reaction on various acetal substrates bearing a propargyl acetate, giving 4-methoxy-5-alkylidenecyclopent-2-en-1-ones 4 via a degradation of the acetate group at the allyl cation intermediate. PMID:24062838

  11. Bi(OTf)3-Catalyzed Multicomponent α-Amidoalkylation Reactions.

    PubMed

    Schneider, Angelika E; Manolikakes, Georg

    2015-06-19

    A bismuth(III) triflate catalyzed three-component synthesis of α-substituted amides starting from amides, aldehydes, and (hetero)arenes is reported. The reaction has a broad substrate scope, encompassing formaldehyde as well as aryl and alkyl aldehydes. Low catalyst loadings are required, and water is formed as the only side product. The scope and limitation of this method will be discussed. PMID:25996906

  12. Synthesis of Graphite Encapsulated Metal Nanoparticles and Metal Catalyzed Nanotubes

    NASA Technical Reports Server (NTRS)

    vanderWal, R. L.; Dravid, V. P.

    1999-01-01

    This work focuses on the growth and inception of graphite encapsulated metal nanoparticles and metal catalyzed nanotubes using combustion chemistry. Deciphering the inception and growth mechanism(s) for these unique nanostructures is essential for purposeful synthesis. Detailed knowledge of these mechanism(s) may yield insights into alternative synthesis pathways or provide data on unfavorable conditions. Production of these materials is highly desirable given many promising technological applications.

  13. Copper-Catalyzed Perfluoroalkylthiolation of Alkynes with Perfluoroalkanesulfenamides.

    PubMed

    Tlili, Anis; Alazet, Sébastien; Glenadel, Quentin; Billard, Thierry

    2016-07-11

    Copper-catalyzed direct perfluoroalkylthiolation of alkynes by using the corresponding perfluoroalkanesulfenamide reagent is reported. The selective mono- and bis-perfluoroalkylthiolation of alkynes can be conducted under very mild conditions (no base, room temperature) in very good to excellent yields. This approach, which uses a low toxicity, inexpensive copper catalyst that incorporates a commercially available ligand, is applied in the absence of any additional base. Preliminary mechanistic investigations shed some light on the nature of the unprecedented reactivity observed. PMID:27334703

  14. Copper-Catalyzed Divergent Addition Reactions of Enoldiazoacetamides with Nitrones.

    PubMed

    Cheng, Qing-Qing; Yedoyan, Julietta; Arman, Hadi; Doyle, Michael P

    2016-01-13

    Catalyst-controlled divergent addition reactions of enoldiazoacetamides with nitrones have been developed. By using copper(I) tetrafluoroborate/bisoxazoline complex as the catalyst, a [3+3]-cycloaddition reaction was achieved with excellent yield and enantioselectivity under exceptionally mild conditions, which represents the first highly enantioselective base-metal-catalyzed vinylcarbene transformation. When the catalyst was changed to copper(I) triflate, Mannich addition products were formed in high yields with near exclusivity under otherwise identical conditions. PMID:26699516

  15. Copper-catalyzed arylation of alkyl halides with arylaluminum reagents.

    PubMed

    Shrestha, Bijay; Giri, Ramesh

    2015-01-01

    We report a Cu-catalyzed coupling between triarylaluminum reagents and alkyl halides to form arylalkanes. The reaction proceeds in the presence of N,N,N',N'-tetramethyl-o-phenylenediamine (NN-1) as a ligand in combination with CuI as a catalyst. This catalyst system enables the coupling of primary alkyl iodides and bromides with electron-neutral and electron-rich triarylaluminum reagents and affords the cross-coupled products in good to excellent yields. PMID:26734088

  16. Iron-catalyzed aromatic amination for nonsymmetrical triarylamine synthesis.

    PubMed

    Hatakeyama, Takuji; Imayoshi, Ryuji; Yoshimoto, Yuya; Ghorai, Sujit K; Jin, Masayoshi; Takaya, Hikaru; Norisuye, Kazuhiro; Sohrin, Yoshiki; Nakamura, Masaharu

    2012-12-19

    Novel iron-catalyzed amination reactions of various aryl bromides have been developed for the synthesis of diaryl- and triarylamines. The key to the success of this protocol is the use of in situ generated magnesium amides in the presence of a lithium halide, which dramatically increases the product yield. The present method is simple and free of precious and expensive metals and ligands, thus providing a facile route to triarylamines, a recurrent core unit in organic electronic materials as well as pharmaceuticals.

  17. Synthesis of Optically Active Polystyrene Catalyzed by Monophosphine Pd Complexes.

    PubMed

    Jouffroy, Matthieu; Armspach, Dominique; Matt, Dominique; Osakada, Kohtaro; Takeuchi, Daisuke

    2016-07-11

    Cationic Pd(II) monophosphine complexes derived from α- and β-cyclodextrins (CDs) promote the homopolymerization of styrene under carbon monoxide pressure. Although reversible CO coordination takes place under catalytic conditions according to (13) C NMR studies with (13) C-enriched CO, both complexes catalyze the formation of CO-free styrene polymers. These macromolecules display optical activity as a result of the presence of stereoregular sequences within the overall atactic polymer. PMID:27218801

  18. Enzyme-catalyzed biocathode in a photoelectrochemical biofuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Hu, Donghua; Zhang, Xiaohuan; Wang, Kunqi; Wang, Bin; Sun, Bo; Qiu, Zhidong

    2014-12-01

    A novel double-enzyme photoelectrochemical biofuel cell (PEBFC) has been developed by taking glucose dehydrogenase (GDH) and horseradish peroxidase (HRP) as the enzyme of the photoanode and biocathode to catalyze the oxidation of glucose and the reduction of oxygen. A H2-mesoporphyrin IX is used as a dye for a TiO2 film electrode to fabricate a photoanode. The horseradish peroxidase (HRP) is immobilized on a glassy carbon (GC) electrode to construct a biocathode which is used to catalyze the reduction of oxygen in the PEBFC for the first time. The biocathode exhibits excellent electrocatalytic activity in the presence of O2. The performances of the PEBFC are obtained by current-voltage and power-voltage curves. The short-circuit current density (Isc), the open-circuit voltage (Voc), maximum power density (Pmax), fill factor (FF) and energy conversion efficiency (η) are 439 μA cm-2, 678 mV, 79 μW cm-2, 0.39 and 0.016%, respectively, and the incident photon-to-collected electron conversion efficiency (IPCE) is 32% at 350 nm. The Isc is higher than that of the PEBFC with Pt cathode, and the Voc is higher than that of the dye-sensitized solar cell or the enzyme-catalyzed biofuel cell operating individually, which demonstrates that the HRP is an efficient catalyst for the biocathode in the PEBFC.

  19. Carrier gas effects on aluminum-catalyzed nanowire growth

    NASA Astrophysics Data System (ADS)

    Ke, Yue; Hainey, Mel, Jr.; Won, Dongjin; Weng, Xiaojun; Eichfeld, Sarah M.; Redwing, Joan M.

    2016-04-01

    Aluminum-catalyzed silicon nanowire growth under low-pressure chemical vapor deposition conditions requires higher reactor pressures than gold-catalyzed growth, but the reasons for this difference are not well understood. In this study, the effects of reactor pressure and hydrogen partial pressure on silicon nanowire growth using an aluminum catalyst were studied by growing nanowires in hydrogen and hydrogen/nitrogen carrier gas mixtures at different total reactor pressures. Nanowires grown in the nitrogen/hydrogen mixture have faceted catalyst droplet tips, minimal evidence of aluminum diffusion from the tip down the nanowire sidewalls, and significant vapor-solid deposition of silicon on the sidewalls. In comparison, wires grown in pure hydrogen show less well-defined tips, evidence of aluminum diffusion down the nanowire sidewalls at increasing reactor pressures and reduced vapor-solid deposition of silicon on the sidewalls. The results are explained in terms of a model wherein the hydrogen partial pressure plays a critical role in aluminum-catalyzed nanowire growth by controlling hydrogen termination of the silicon nanowire sidewalls. For a given reactor pressure, increased hydrogen partial pressures increase the extent of hydrogen termination of the sidewalls which suppresses SiH4 adsorption thereby reducing vapor-solid deposition of silicon but increases the surface diffusion length of aluminum. Conversely, lower hydrogen partial pressures reduce the hydrogen termination and also increase the extent of SiH4 gas phase decomposition, shifting the nanowire growth window to lower growth temperatures and silane partial pressures.

  20. Anisotropic Morphological Changes in Goethite during Fe(2+)-Catalyzed Recrystallization.

    PubMed

    Joshi, Prachi; Gorski, Christopher A

    2016-07-19

    When goethite is exposed to aqueous Fe(2+), rapid and extensive Fe atom exchange can occur between solid-phase Fe(3+) and aqueous Fe(2+) in a process referred to as Fe(2+)-catalyzed recrystallization. This process can lead to the structural incorporation or release of trace elements, which has important implications for contaminant remediation and nutrient biogeochemical cycling. Prior work found that the process did not cause major changes to the goethite structure or morphology. Here, we further investigated if and how goethite morphology and aggregation behavior changed temporally during Fe(2+)-catalyzed recrystallization. On the basis of existing literature, we hypothesized that Fe(2+)-catalyzed recrystallization of goethite would not result in changes to individual particle morphology or interparticle interactions. To test this, we reacted nanoparticulate goethite with aqueous Fe(2+) at pH 7.5 over 30 days and used transmission electron microscopy (TEM), cryogenic TEM, and (55)Fe as an isotope tracer to observe changes in particle dimensions, aggregation, and isotopic composition over time. Over the course of 30 days, the goethite particles substantially recrystallized, and the particle dimensions changed anisotropically, resulting in a preferential increase in the mean particle width. The temporal changes in goethite morphology could not be completely explained by a single mineral-transformation mechanism but rather indicated that multiple transformation mechanisms occurred concurrently. Collectively, these results demonstrate that the morphology of goethite nanoparticles does change during recrystallization, which is an important step toward identifying the driving force(s) of recrystallization.

  1. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    PubMed

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  2. Protection of Wood from Microorganisms by Laccase-Catalyzed Iodination

    PubMed Central

    Engel, J.; Thöny-Meyer, L.; Schwarze, F. W. M. R.; Ihssen, J.

    2012-01-01

    In the present work, Norway spruce wood (Picea abies L.) was reacted with a commercial Trametes versicolor laccase in the presence of potassium iodide salt or the phenolic compounds thymol and isoeugenol to impart an antimicrobial property to the wood surface. In order to assess the efficacy of the wood treatment, a leaching of the iodinated and polymerized wood and two biotests including bacteria, a yeast, blue stain fungi, and wood decay fungi were performed. After laccase-catalyzed oxidation of the phenols, the antimicrobial effect was significantly reduced. In contrast, the enzymatic oxidation of iodide (I−) to iodine (I2) in the presence of wood led to an enhanced resistance of the wood surface against all microorganisms, even after exposure to leaching. The efficiency of the enzymatic wood iodination was comparable to that of a chemical wood preservative, VP 7/260a. The modification of the lignocellulose by the laccase-catalyzed iodination was assessed by the Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) technique. The intensities of the selected lignin-associated bands and carbohydrate reference bands were analyzed, and the results indicated a structural change in the lignin matrix. The results suggest that the laccase-catalyzed iodination of the wood surface presents an efficient and ecofriendly method for wood protection. PMID:22865075

  3. Stau-catalyzed big-bang nucleosynthesis reactions

    SciTech Connect

    Kamimura, Masayasu; Kino, Yasushi; Hiyama, Emiko

    2010-06-01

    We study the new type of big-bang nucleosynthesis (BBN) reactions that are catalyzed by a hypothetical long-lived negatively charged, massive leptonic particle (called X{sup -}) such as the supersymmetric (SUSY) particle stau, the scalar partner of the tau lepton. It is known that if the X{sup -} particle has a lifetime of tau{sub X} > or approx. 10{sup 3} s, it can capture a light element previously synthesized in standard BBN and form a Coulombic bound state and induces various types of reactions in which X{sup -} acts as a catalyst. Some of these X{sup -} catalyzed reactions have significantly large cross sections so that the inclusion of the reactions into the BBN network calculation can markedly change the abundances of some elements. We use a high-accuracy three-body calculation method developed by the authors and provide precise cross sections and rates of these catalyzed BBN reactions for use in the BBN network calculation.

  4. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    NASA Astrophysics Data System (ADS)

    Hainey, Mel F.; Redwing, Joan M.

    2016-12-01

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  5. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  6. Synthesis and biological evaluation of C(5)-substituted derivatives of leukotriene biosynthesis inhibitor BRP-7.

    PubMed

    Levent, Serkan; Gerstmeier, Jana; Olgaç, Abdurrahman; Nikels, Felix; Garscha, Ulrike; Carotti, Andrea; Macchiarulo, Antonio; Werz, Oliver; Banoglu, Erden; Çalışkan, Burcu

    2016-10-21

    Pharmacological intervention with 5-lipoxygenase (5-LO) pathway leading to suppression of leukotriene (LT) biosynthesis is a clinically validated strategy for treatment of respiratory and cardiovascular diseases such as asthma and atherosclerosis. Here we describe the synthesis of a series of C(5)-substituted analogues of the previously described 5-LO-activating protein (FLAP) inhibitor BRP-7 (IC50 = 0.31 μM) to explore the effects of substitution at the C(5)-benzimidazole (BI) ring as a strategy to increase the potency against FLAP-mediated 5-LO product formation. Incorporation of polar substituents on the C(5) position of the BI core, exemplified by compound 11 with a C(5)-nitrile substituent, significantly enhances the potency for suppression of 5-LO product synthesis in human neutrophils (IC50 = 0.07 μM) and monocytes (IC50 = 0.026 μM). PMID:27423639

  7. Hydrophobic properties of polytetrafluoroethylene thin films fabricated at various catalyzer temperatures through catalytic chemical vapor deposition using a tungsten catalyzer.

    PubMed

    Cha, Jeong Ok; Yeo, Seung Jun; Pode, Ramchandra; Ahn, Jeung Sun

    2011-07-01

    Using the catalytic chemical vapor deposition (Cat-CVD) method, polytetrafluoroethylene (PTFE) thin films were fabricated on Si(100) substrates at various catalyzer temperatures, using a tungsten catalyzer, and Fourier transform infrared (FTIR) spectroscopy and X-ray photoemission spectroscopy (XPS) were used to confirm the fabrication of the films. An atomic-force microscope (AFM) and a scanning electron microscope (SEM) were employed to study the correlation between the wettability and surface morphology of the samples. It was found that the wettability of the PTFE thin films fabricated via Cat-CVD is strongly correlated with the sizes of the film surfaces' nanoprotrusions, and that superhydrophobic PTFE thin-film surfaces can be easily achieved by controlling the sizes of the nanoprotrusions through the catalyzer temperature. The comparison of the wettability values and surface morphologies of the films confirmed that nanoscale surface roughness enhances the hydrophobic properties of PTFE thin films. Further, the detailed analysis of the films' surface morphologies from their AFM images with the use of the Wenzel and Cassie models confirmed that the nanoscale surface roughness enhanced the hydrophobic property of the PTFE films. Further, the variations of the wettability of the PTFE thin films prepared via Cat-CVD are well explained by the Cassie model. It seems that the increase in the trapping air and the reduction of the liquid-solid contact area are responsible for the superhydrophobicity of the PTFE thin films prepared via Cat-CVD. PMID:22121615

  8. Gold-catalyzed cyclization reactions of allenol and alkynol derivatives.

    PubMed

    Alcaide, Benito; Almendros, Pedro

    2014-03-18

    Although gold is chemically inert as a bulk metal, the landmark discovery that gold nanoparticles can be effective catalysts has opened up new and exciting research opportunities in the field. In recent years, there has been growth in the number of reactions catalyzed by gold complexes [gold(I) and gold(III)], usually as homogeneous catalysts, because they are soft Lewis acids. In addition, alkynes and allenes have interesting reactivities and selectivities, notably their ability to produce complex structures in very few steps. In this Account, we describe our work in gold catalysis with a focus on the formation of C-C and C-O bonds using allenes and alkynes as starting materials. Of these, oxa- and carbo-cyclizations are perhaps the best known and most frequently studied. We have divided those contributions into sections arranged according to the nature of the starting material (allene versus alkyne). Gold-catalyzed carbocyclizations in allenyl C2-linked indoles, allenyl-β-lactams, and allenyl sugars follow different mechanistic pathways. The cyclization of indole-tethered allenols results in the efficient synthesis of carbazole derivatives, for example. However, the compound produced from gold-catalyzed 9-endo carbocyclization of (aryloxy)allenyl-tethered 2-azetidinones is in noticeable contrast to the 5-exo hydroalkylation product that results from allenyl sugars. We have illustrated the unusual preference for the 4-exo-dig cyclization in allene chemistry, as well as the rare β-hydride elimination reaction, in gold catalysis from readily available α-allenols. We have also observed in γ-allenols that a (methoxymethyl)oxy protecting group not only masks a hydroxyl functionality but also exerts directing effects as a controlling unit in a gold-catalyzed regioselectivity reversal. Our recent work has also led to a combined experimental and computational study on regioselective gold-catalyzed synthetic routes to 1,3-oxazinan-2-ones (kinetically controlled

  9. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    SciTech Connect

    Bertrand, Guy

    2012-06-29

    high temperatures and long reaction times. To address this issue, we have developed several new families of carbon- and boron-based ligands, which are even better donors. The corresponding metal complexes (particularly gold, rhodium, iridium, and ruthenium) of all these species will be tested in the Markovnikov and anti-Markovnikov hydroamination of alkynes, allenes, and also alkenes with ammonia and hydrazine. We will also develop metal-free catalytic processes for the functionalization of ammonia and hydrazine. By possessing both a lone pair of electrons and an accessible vacant orbital, singlet carbenes resemble and can mimic the chemical behavior of transition metals. Our preliminary results demonstrate that specially designed carbenes can split the N–H bond of ammonia by an initial nucleophilic activation that prevents the formation of Lewis acid-base adducts, which is the major hurdle for the transition metal catalyzed functionalization of NH3. The use of purely organic compounds as catalysts will eliminate the major drawbacks of transition-metal-catalysis technology, which are the excessive cost of metal complexes (metal + ligands) and in many cases the toxicity of the metal.

  10. A Link between Protein Structure and Enzyme Catalyzed Hydrogen Tunneling

    NASA Astrophysics Data System (ADS)

    Bahnson, Brian J.; Colby, Thomas D.; Chin, Jodie K.; Goldstein, Barry M.; Klinman, Judith P.

    1997-11-01

    We present evidence that the size of an active site side chain may modulate the degree of hydrogen tunneling in an enzyme-catalyzed reaction. Primary and secondary kH/kT and kD/kT kinetic isotope effects have been measured for the oxidation of benzyl alcohol catalyzed by horse liver alcohol dehydrogenase at 25 degrees C. As reported in earlier studies, the relationship between secondary kH/kT and kD/kT isotope effects provides a sensitive probe for deviations from classical behavior. In the present work, catalytic efficiency and the extent of hydrogen tunneling have been correlated for the alcohol dehydrogenase-catalyzed hydride transfer among a group of site-directed mutants at position 203. Val-203 interacts with the opposite face of the cofactor NAD+ from the alcohol substrate. The reduction in size of this residue is correlated with diminished tunneling and a two orders of magnitude decrease in catalytic efficiency. Comparison of the x-ray crystal structures of a ternary complex of a high-tunneling (Phe-93 --> Trp) and a low-tunneling (Val-203 --> Ala) mutant provides a structural basis for the observed effects, demonstrating an increase in the hydrogen transfer distance for the low-tunneling mutant. The Val-203 --> Ala ternary complex crystal structure also shows a hyperclosed interdomain geometry relative to the wild-type and the Phe-93 --> Trp mutant ternary complex structures. This demonstrates a flexibility in interdomain movement that could potentially narrow the distance between the donor and acceptor carbons in the native enzyme and may enhance the role of tunneling in the hydride transfer reaction.

  11. Energy harvesting by implantable abiotically catalyzed glucose fuel cells

    NASA Astrophysics Data System (ADS)

    Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.

    Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.

  12. A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes

    SciTech Connect

    Zhao, Nan; Ferrer, Jean-Luc; Moon, Hong S; Kapteyn, Jeremy; Zhuang, Xiaofeng; Hasebe, Mitsuyasu; Stewart, Neal C.; Gang, David R.; Chen, Feng

    2012-01-01

    Known SABATH methyltransferases, all of which were identified from seed plants, catalyze methylation of either the carboxyl group of a variety of low molecular weight metabolites or the nitrogen moiety of precursors of caffeine. In this study, the SABATH family from the bryophyte Physcomitrella patens was identified and characterized. Four SABATH-like sequences (PpSABATH1, PpSABATH2, PpSABATH3, and PpSABATH4) were identified from the P. patens genome. Only PpSABATH1 and PpSABATH2 showed expression in the leafy gametophyte of P. patens. Full-length cDNAs of PpSABATH1 and PpSABATH2 were cloned and expressed in soluble form in Escherichia coli. Recombinant PpSABATH1 and PpSABATH2 were tested for methyltransferase activity with a total of 75 compounds. While showing no activity with carboxylic acids or nitrogen-containing compounds, PpSABATH1 displayed methyltransferase activity with a number of thiols. PpSABATH2 did not show activity with any of the compounds tested. Among the thiols analyzed, PpSABATH1 showed the highest level of activity with thiobenzoic acid with an apparent Km value of 95.5 lM, which is comparable to those of known SABATHs. Using thiobenzoic acid as substrate, GC MS analysis indicated that the methylation catalyzed by PpSABATH1 is on the sulfur atom. The mechanism for S-methylation of thiols catalyzed by PpSABATH1 was partially revealed by homology-based structural modeling. The expression of PpSABATH1 was induced by the treatment of thiobenzoic acid. Further transgenic studies showed that tobacco plants overexpressing PpSABATH1 exhibited enhanced tolerance to thiobenzoic acid, suggesting that PpSABATH1 have a role in the detoxification of xenobiotic thiols.

  13. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    PubMed

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems. PMID:26881922

  14. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    PubMed

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  15. Iodine-catalyzed oxidative coupling reactions utilizing C - H and X - H as nucleophiles.

    PubMed

    Liu, Dong; Lei, Aiwen

    2015-04-01

    In recent decades, iodine-catalyzed oxidative coupling reactions utilizing C - H and X - H as nucleophiles have received considerable attention because they represent more efficient, greener, more atom-economical, and milder bond-formation strategies over transition-metal-catalyzed oxidative coupling reactions. This Focus Review gives a brief summary of recent development on iodine-catalyzed oxidative coupling reactions utilizing C - H and X - H as nucleophiles.

  16. Pt-Catalyzed Synthesis of Functionalized Symmetrical and Unsymmetrical Disilazanes.

    PubMed

    Kuciński, Krzysztof; Szudkowska-Frątczak, Justyna; Hreczycho, Grzegorz

    2016-09-01

    In nearly every total synthesis, silylating agents are employed in synthetic steps to protect sensitive functional groups. A Pt-catalyzed hydrosilylation of various unsaturated substrates to prepare novel symmetrical and unsymmetrical disilazanes is described. The developed synthetic methodology is widely applicable and tolerates all manner of functional groups (e.g., amines, ethers, esters, halogens, silanes, etc.). To demonstrate the value of the described method, mono-substituted 1,1,3,3-tetramethyldisilazanes were further selectively converted to completely new unsymmetrical derivatives. PMID:27414042

  17. Ruthenium-Catalyzed meta-Selective C—H Bromination

    PubMed Central

    Teskey, Christopher J; Lui, Andrew Y W; Greaney, Michael F

    2015-01-01

    The first example of a transition-metal-catalyzed, meta-selective C–H bromination procedure is reported. In the presence of catalytic [{Ru(p-cymene)Cl2}2], tetrabutylammonium tribromide can be used to functionalize the meta C–H bond of 2-phenylpyridine derivatives, thus affording difficult to access products which are highly predisposed to further derivatization. We demonstrate this utility with one-pot bromination/arylation and bromination/alkenylation procedures to deliver meta-arylated and meta-alkenylated products, respectively, in a single step. PMID:26288217

  18. Urea- and Thiourea-Catalyzed Aminolysis of Carbonates.

    PubMed

    Blain, Marine; Yau, Honman; Jean-Gérard, Ludivine; Auvergne, Rémi; Benazet, Dominique; Schreiner, Peter R; Caillol, Sylvain; Andrioletti, Bruno

    2016-08-23

    The aminolysis of (poly)carbonates by (poly)amines provides access to non-isocyanate polyurethanes (NIPUs) that are toxic-reagent-free analogues of polyurethanes (PUs). Owing to their low reactivity, the ring opening of cyclic carbonates requires the use of a catalyst. Herein, we report that the more available and cheaper ureas could advantageously be used for catalyzing the formation of NIPUs at the expense of the thiourea analogues. In addition, we demonstrate a medium-range pKa of the (thio)urea and an unqeual substitution pattern is critical for controlling the efficiency of the carbonate opening. PMID:27467779

  19. Asymmetric Propargylation of Ketones using Allenylboronates Catalyzed by Chiral Biphenols

    PubMed Central

    Barnett, David S.; Schaus, Scott E.

    2011-01-01

    Chiral biphenols catalyze the enantioselective asymmetric propargylation of ketones using allenylboronates. The reaction uses 10 mol % of 3,3′-Br2-BINOL as the catalyst and allenyldioxoborolane as the nucleophile, in the absence of solvent, and under microwave irradiation to afford the homopropargylic alcohol. The reaction products are obtained in good yields (60 – 98%) and high enantiomeric ratios (3:1 – 99:1). Diastereoselective propargylations using chiral racemic allenylboronates result in good diastereoselectivities (dr > 86:14) and enantioselectivities (er > 92:8) under the catalytic conditions. PMID:21732609

  20. Asymmetric propargylation of ketones using allenylboronates catalyzed by chiral biphenols.

    PubMed

    Barnett, David S; Schaus, Scott E

    2011-08-01

    Chiral biphenols catalyze the enantioselective asymmetric propargylation of ketones using allenylboronates. The reaction uses 10 mol % of 3,3'-Br(2)-BINOL as the catalyst and allenyldioxoborolane as the nucleophile, in the absence of solvent, and under microwave irradiation to afford the homopropargylic alcohol. The reaction products are obtained in good yields (60-98%) and high enantiomeric ratios (3:1-99:1). Diastereoselective propargylations using chiral racemic allenylboronates result in good diastereoselectivities (dr >86:14) and enantioselectivities (er >92:8) under the catalytic conditions. PMID:21732609

  1. Palladium-Catalyzed Oxidative Domino Carbocyclization–Arylation of Bisallenes

    PubMed Central

    2016-01-01

    Herein we report a highly efficient and site-selective palladium-catalyzed oxidative carbocyclization–arylation reaction of bisallenes and arylboronic acids under operationally simple conditions for the selective synthesis of cyclohexadiene derivatives. The palladium source and the solvent proved to be crucial for the selectivity and the reactivity displayed. Interestingly, in the absence of the nucleophile, an oxidative carbocyclization-β-elimination pathway predominates. The reaction conditions are compatible with a wide range of functional groups, and the reaction exhibits broad substrate scope. Furthermore, key information regarding the mechanism was obtained using control experiments and kinetic studies. PMID:27761298

  2. Base-Catalyzed Depolymerization of Lignin: Separation of Monomers

    SciTech Connect

    Vigneault, A.; Johnson, D. K.; Chornet, E.

    2007-12-01

    In our quest for fractionating lignocellulosic biomass and valorizing specific constitutive fractions, we have developed a strategy for the separation of 12 added value monomers generated during the hydrolytic based-catalyzed depolymerization of a Steam Exploded Aspen Lignin. The separation strategy combines liquid-liquid-extraction (LLE), followed by vacuum distillation, liquid chromatography (LC) and crystallization. LLE, vacuum distillation and flash LC were tested experimentally. Batch vacuum distillation produced up to 4 fractions. Process simulation confirmed that a series of 4 vacuum distillation columns could produce 5 distinct monomer streams, 3 of which require further chromatography and crystallization for purification.

  3. Copper(I)-Catalyzed Allylic Substitutions with a Hydride Nucleophile.

    PubMed

    Nguyen, T N Thanh; Thiel, Niklas O; Pape, Felix; Teichert, Johannes F

    2016-05-20

    An easily accessible copper(I)/N-heterocyclic carbene (NHC) complex enables a regioselective hydride transfer to allylic bromides, an allylic reduction. The resulting aryl- and alkyl-substituted branched α-olefins, which are valuable building blocks for synthesis, are obtained in good yields and regioselectivity. A commercially available silane, (TMSO)2Si(Me)H, is employed as hydride source. This protocol offers a unified alternative to the established metal-catalyzed allylic substitutions with carbon nucleophiles, as no adaption of the catalyst to the nature of the nucleophile is required. PMID:27151495

  4. Complex Biotransformations Catalyzed by Radical S-Adenosylmethionine Enzymes*

    PubMed Central

    Zhang, Qi; Liu, Wen

    2011-01-01

    The radical S-adenosylmethionine (AdoMet) superfamily currently comprises thousands of proteins that participate in numerous biochemical processes across all kingdoms of life. These proteins share a common mechanism to generate a powerful 5′-deoxyadenosyl radical, which initiates a highly diverse array of biotransformations. Recent studies are beginning to reveal the role of radical AdoMet proteins in the catalysis of highly complex and chemically unusual transformations, e.g. the ThiC-catalyzed complex rearrangement reaction. The unique features and intriguing chemistries of these proteins thus demonstrate the remarkable versatility and sophistication of radical enzymology. PMID:21771780

  5. Copper-catalyzed selective arylations of benzoxazoles with aryl iodides.

    PubMed

    Kim, Donghae; Yoo, Kwangho; Kim, Se Eun; Cho, Hee Jin; Lee, Junseong; Kim, Youngjo; Kim, Min

    2015-04-01

    A copper-catalyzed direct ring-opening double N-arylation of benzoxazoles with aryl iodides has been developed. The present system exhibits high selectivity despite competition from C-arylation. The selectivity between ring-opening N-arylation and C-arylation was controlled by the choice of reaction vessel. The nitrile bound bis(triphenylphosphine)copper cyanide was identified as the active catalytic species for both reactions, and when combined with a nitrile-containing solvent, enhanced the reaction efficiency.

  6. Comparing Ru and Fe-catalyzed olefin metathesis.

    PubMed

    Poater, Albert; Chaitanya Vummaleti, Sai Vikrama; Pump, Eva; Cavallo, Luigi

    2014-08-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol(-1)) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts. PMID:24821502

  7. Synthesis of Dihydrobenzofurans via Palladium-Catalyzed Heteroannulations

    SciTech Connect

    Roman Vladimirovich Rozhkov

    2004-12-19

    Palladium-catalyzed heteroannulation of 1,3-dienes with 3-iodo-2-alkenols, and 2-iodo-2-alkenols, as well as their amino analogs, affords the corresponding cyclic ethers and amines respectively. The presence of a {beta}-hydrogen in the vinylic halide results in {beta}-hydride elimination giving the corresponding alkyne. The presence of a bulky group in the {alpha}-position of the vinylic halide results in failure or reduced amounts of annulation products. A chloride source, pyridine base and electron-rich phosphine are essential for this reaction.

  8. Aerobic Copper-Catalyzed O-Methylation with Methylboronic Acid.

    PubMed

    Jacobson, Clare E; Martinez-Muñoz, Noelia; Gorin, David J

    2015-07-17

    The oxidative coupling of alkylboronic acids with oxygen nucleophiles offers a strategy for replacing toxic, electrophilic alkylating reagents. Although the Chan-Lam reaction has been widely applied in the arylation of heteroatom nucleophiles, O-alkylation with boronic acids is rare. We report a Cu-catalyzed nondecarboxylative methylation of carboxylic acids with methylboronic acid that proceeds in air with no additional oxidant. An isotope-labeling study supports an oxidative cross-coupling mechanism, in analogy to that proposed for Chan-Lam arylation. PMID:26111825

  9. Exploring Transition Metal Catalyzed Reactions via AB Initio Reaction Pathways

    NASA Astrophysics Data System (ADS)

    Hratchian, Hrant P.

    2011-06-01

    The study and prediction of chemical reactivity is one of the most influential contributions of quantum chemistry. A central concept in the theoretical treatment of chemical reactions is the reaction pathway, which can be quite difficult to integrate accurately and efficiently. This talk will outline our developments in the integration of these pathways on ab initio potential energy surfaces. We will also describe results from recent studies on the kinetics of transition metal catalyzed reactions, including the importance of vibrational coupling to the reaction coordinate and the role of this coupling in catalytic rate enhancement.

  10. Can Chlorine Anion Catalyze the Reaction fo HOCl with HCl?

    NASA Technical Reports Server (NTRS)

    Richardson, S. L.; Francisco, J. S.; Mebel, A. M.; Morokuma, K.

    1997-01-01

    The reaction of HOCl + HCl -> Cl2 + H20 in the presence of Cl has been studied using ab initio methods. This reaction has been shown to have a high activation barrier of 46.5 kcal/mol. The chlorine anion, Cl- is found to catalyze the reaction, viz. two mechanisms. The first involves Cl- interacting through the concerted four-center transition state of the neutral reaction. The other mechanism involves the formation of a HCl-HOCl-Cl- intermediate which dissociates into Cl2 + Cl- + H20. The steps are found to have no barriers. The overall exothermicity is 15.5 kcal/mol.

  11. New modes for the osmium-catalyzed oxidative cyclization.

    PubMed

    Donohoe, Timothy J; Lindsay-Scott, Peter J; Parker, Jeremy S; Callens, Cedric K A

    2010-03-01

    The osmium-catalyzed oxidative cyclization of amino alcohol initiators formally derived from 1,4-dienes is an effective method for the construction of pyrrolidines, utilizing a novel reoxidant (4-nitropyridine N-oxide = NPNO). The cyclization of enantiopure syn- and anti-amino alcohols gives rise to enantiopure cis- and trans-2,5-disubstituted pyrrolidines, respectively. Moreover, the cyclization of bis-homoallylic amines bearing an exocyclic chelating group is shown to be a complementary method for trans-pyrrolidine formation.

  12. Copper-catalyzed stereoselective aminoboration of bicyclic alkenes.

    PubMed

    Sakae, Ryosuke; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2015-01-01

    A copper-catalyzed aminoboration of bicyclic alkenes, including oxa- and azabenzonorbornadienes, has been developed. With this method, amine and boron moieties are simultaneously introduced at an olefin with exo selectivity. Subsequent stereospecific transformations of the boryl group can provide oxygen- and nitrogen-rich cyclic molecules with motifs that may be found in natural products or pharmaceutically active compounds. Moreover, a catalytic asymmetric variant of this transformation was realized by using a copper complex with a chiral bisphosphine ligand, namely (R,R)-Ph-BPE. PMID:25404258

  13. Iron-Catalyzed Cross-Coupling of Alkenyl Acetates.

    PubMed

    Gärtner, Dominik; Stein, André Luiz; Grupe, Sabine; Arp, Johannes; Jacobi von Wangelin, Axel

    2015-09-01

    Stable C-O linkages are generally unreactive in cross-coupling reactions which mostly employ more electrophilic halides or activated esters (triflates, tosylates). Acetates are cheap and easily accessible electrophiles but have not been used in cross-couplings because the strong C-O bond and high propensity to engage in unwanted acetylation and deprotonation. Reported herein is a selective iron-catalyzed cross-coupling of diverse alkenyl acetates, and it operates under mild reaction conditions (0 °C, 2 h) with a ligand-free catalyst (1-2 mol%). PMID:26184455

  14. Photoredox Catalysis in Nickel-Catalyzed Cross-Coupling.

    PubMed

    Cavalcanti, Livia N; Molander, Gary A

    2016-08-01

    The traditional transition metal-catalyzed cross-coupling reaction, although well suited for C(sp2)-C(sp2) cross-coupling, has proven less amenable toward coupling of C(sp3)-hybridized centers, particularly using functional group tolerant reagents and reaction conditions. The development of photoredox/Ni dual catalytic methods for cross-coupling has opened new vistas for the construction of carbon-carbon bonds at C(sp3)-hybridized centers. In this chapter, a general outline of the features of such processes is detailed. PMID:27573391

  15. Nickel-Catalyzed Negishi Cross-Coupling of Bromodifluoroacetamides.

    PubMed

    Tarui, Atsushi; Shinohara, Saori; Sato, Kazuyuki; Omote, Masaaki; Ando, Akira

    2016-03-01

    A nickel-catalyzed Negishi coupling of bromodifluoroacetamides with arylzinc reagents has been developed. This reaction allows access to difluoromethylated aromatic compounds containing a variety of aryl groups and amide moieties. Furthermore, highly effective transformation of the functionalized difluoromethyl group (-CF2CONR(1)R(2)) was realized via microwave-assisted reduction under mild conditions. The notable features of this strategy are its generality and its use of a low-cost nickel catalyst and ligand; thus, this reaction provides a facile method for applications in drug discovery and development. PMID:26910536

  16. Palladium-Catalyzed Regioselective Difluoroalkylation and Carbonylation of Alkynes.

    PubMed

    Wang, Qiang; He, Yu-Tao; Zhao, Jia-Hui; Qiu, Yi-Feng; Zheng, Lan; Hu, Jing-Yuan; Yang, Yu-Chen; Liu, Xue-Yuan; Liang, Yong-Min

    2016-06-01

    A novel, four-component synthetic strategy to synthesize a series of β-difluoroalkyl unsaturated esters/amides with high regioslectivity is described. This Pd-catalyzed difluoroalkylation and carbonylation reaction can be carried out with simple starting materials. Through this protocol, two new C-C bonds (including one C-CF2 bond) and one C-O(N) bond are constructed simultaneously in a single step. The synthetic utility of this reaction system has been certified by the applicability to a wide scope of alkynes and nucleophiles. Preliminary mechanistic studies suggest that the difluoroalkyl radical pathway is involved in this reaction. PMID:27191858

  17. Iron-Catalyzed C-H Functionalization Processes.

    PubMed

    Cera, Gianpiero; Ackermann, Lutz

    2016-10-01

    Iron-catalyzed C-H activation has recently emerged as an increasingly powerful tool for the step-economical transformation of unreactive C-H bonds. Particularly, the recent development of low-valent iron catalysis has set the stage for novel C-H activation strategies via chelation assistance. The low-cost, natural abundance, and low toxicity of iron prompted its very recent application in organometallic C-H activation catalysis. An overview of the use of iron catalysis in C-H activation processes is summarized herein up to May 2016. PMID:27573499

  18. Copper-catalyzed stereoselective aminoboration of bicyclic alkenes.

    PubMed

    Sakae, Ryosuke; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2015-01-01

    A copper-catalyzed aminoboration of bicyclic alkenes, including oxa- and azabenzonorbornadienes, has been developed. With this method, amine and boron moieties are simultaneously introduced at an olefin with exo selectivity. Subsequent stereospecific transformations of the boryl group can provide oxygen- and nitrogen-rich cyclic molecules with motifs that may be found in natural products or pharmaceutically active compounds. Moreover, a catalytic asymmetric variant of this transformation was realized by using a copper complex with a chiral bisphosphine ligand, namely (R,R)-Ph-BPE.

  19. Copper-Catalyzed Azide–Alkyne Click Chemistry for Bioconjugation

    PubMed Central

    Presolski, Stanislav I.; Hong, Vu Phong; Finn, M.G.

    2012-01-01

    The copper-catalyzed azide-alkyne cycloaddition reaction is widely used for the connection of molecular entities of all sizes. A protocol is provided here for the process with biomolecules. Ascorbate is used as reducing agent to maintain the required cuprous oxidation state. Since these convenient conditions produce reactive oxygen species, five equivalents of a copper-binding ligand is used with respect to metal. The ligand both accelerates the reaction and serves as a sacrificial reductant, protecting the biomolecules from oxidation. A procedure is also described for testing the efficiency of the reaction under desired conditions for purposes of optimization, before expensive biological reagents are used. PMID:22844652

  20. Lipase-catalyzed synthesis of monoacylglycerol in a homogeneous system.

    PubMed

    Monteiro, Julieta B; Nascimento, Maria G; Ninow, Jorge L

    2003-04-01

    The 1,3-regiospecifique lipase, Lipozyme IM, catalyzed the esterification of lauric acid and glycerol in a homogeneous system. To overcome the drawback of the insolubility of glycerol in hexane, which is extensively used in enzymatic synthesis, a mixture of n-hexane/tert-butanol (1:1, v/v) was used leading to a monophasic system. The conversion of lauric acid into monolaurin was 65% in 8 h, when a molar ratio of glycerol to fatty acid (5:1) was used with the fatty acid at 0.1 M, and the phenomenon of acyl migration was minimized.

  1. The Palladium-Catalyzed Trifluoromethylation of Vinyl Sulfonates

    PubMed Central

    Cho, Eun Jin; Buchwald, Stephen L.

    2011-01-01

    A method for the palladium-catalyzed trifluoromethylation of cyclohexenyl sulfonates has been developed. Various cyclohexenyl triflates and nonaflates underwent trifluoromethylation under mild reaction conditions using a catalyst system composed of Pd(dba)2 or [(allyl)PdCl]2 and the monodentate biaryl phosphine ligand tBuXPhos. The trifluoromethyl anion (CF3−) or its equivalent for the process was generated in situ from TMSCF3 in combination with KF or TESCF3 in combintion with RbF. PMID:22111687

  2. Rhenium-catalyzed deoxydehydration of diols and polyols.

    PubMed

    Dethlefsen, Johannes R; Fristrup, Peter

    2015-03-01

    The substitution of platform chemicals of fossil origin by biomass-derived analogues requires the development of chemical transformations capable of reducing the very high oxygen content of biomass. One such reaction, which has received increasing attention within the past five years, is the rhenium-catalyzed deoxydehydration (DODH) of a vicinal diol into an alkene; this is a model system for abundant polyols like glycerol and sugar alcohols. The present contribution includes a review of early investigations of stoichiometric reactions involving rhenium, diols, and alkenes followed by a discussion of the various catalytic systems that have been developed with emphasis on the nature of the reductant, the substrate scope, and mechanistic investigations.

  3. Lipase-catalyzed aza-Michael reaction on acrylate derivatives.

    PubMed

    Steunenberg, Peter; Sijm, Maarten; Zuilhof, Han; Sanders, Johan P M; Scott, Elinor L; Franssen, Maurice C R

    2013-04-19

    A methodology has been developed for an efficient and selective lipase-catalyzed aza-Michael reaction of various amines (primary and secondary) with a series of acrylates and alkylacrylates. Reaction parameters were tuned, and under the optimal conditions it was found that Pseudomonas stutzeri lipase and Chromobacterium viscosum lipase showed the highest selectivity for the aza-Michael addition to substituted alkyl acrylates. For the first time also, some CLEAs were examined that showed a comparable or higher selectivity and yield than the free enzymes and other formulations.

  4. The prosegment catalyzes native folding of Plasmodium falciparum plasmepsin II.

    PubMed

    Jaafar, Ahmad Haniff; Xiao, Huogen; Dee, Derek R; Bryksa, Brian C; Bhaumik, Prasenjit; Yada, Rickey Y

    2016-10-01

    Plasmepsin II is a malarial pepsin-like aspartic protease produced as a zymogen containing an N-terminal prosegment domain that is removed during activation. Despite structural similarities between active plasmepsin II and pepsin, their prosegments adopt different conformations in the respective zymogens. In contrast to pepsinogen, the proplasmepsin II prosegment is 80 residues longer, contains a transmembrane region and is non-essential for recombinant expression in an active form, thus calling into question the prosegment's precise function. The present study examines the role of the prosegment in the folding mechanism of plasmepsin II. Both a shorter (residues 77-124) and a longer (residues 65-124) prosegment catalyze plasmepsin II folding at rates more than four orders of magnitude faster compared to folding without prosegment. Native plasmepsin II is kinetically trapped and requires the prosegment both to catalyze folding and to shift the folding equilibrium towards the native conformation. Thus, despite low sequence identity and distinct zymogen conformations, the folding landscapes of plasmepsin II and pepsin, both with and without prosegment, are qualitatively identical. These results imply a conserved and unusual feature of the pepsin-like protease topology that necessitates prosegment-assisted folding. PMID:27378574

  5. Lanthanide cofactors accelerate DNA-catalyzed synthesis of branched RNA.

    PubMed

    Javadi-Zarnaghi, Fatemeh; Höbartner, Claudia

    2013-08-28

    Most deoxyribozymes (DNA catalysts) require metal ions as cofactors for catalytic activity, with Mg(2+), Mn(2+), and Zn(2+) being the most represented activators. Trivalent transition-metal ions have been less frequently considered. Rare earth ions offer attractive properties for studying metal ion binding by biochemical and spectroscopic methods. Here we report the effect of lanthanide cofactors, in particular terbium (Tb(3+)), for DNA-catalyzed synthesis of 2',5'-branched RNA. We found up to 10(4)-fold increased ligation rates for the 9F7 deoxribozyme using 100 μM Tb(3+) and 7 mM Mg(2+), compared to performing the reaction with 7 mM Mg(2+) alone. Combinatorial mutation interference analysis (CoMA) was used to identify nucleotides in the catalytic region of 9F7 that are essential for ligation activity with different metal ion combinations. A minimized version of the DNA enzyme sustained high levels of Tb(3+)-assisted activity. Sensitized luminescence of Tb(3+) bound to DNA in combination with DMS probing and DNase I footprinting results supported the CoMA data. The accelerating effect of Tb(3+) was confirmed for related RNA-ligating deoxyribozymes, pointing toward favorable activation of internal 2'-OH nucleophiles. The results of this study offer fundamental insights into nucleotide requirements for DNA-catalyzed RNA ligation and will be beneficial for practical applications that utilize 2',5'-branched RNA.

  6. Pd-catalyzed cross-coupling reactions of alkyl halides.

    PubMed

    Kambe, Nobuaki; Iwasaki, Takanori; Terao, Jun

    2011-10-01

    Cross-coupling reactions have become indispensable tools for creating carbon-carbon (or heteroatom) bonds in organic synthesis. Like in other important transition metal catalyzed reactions, such as metathesis, addition, and polymerization, unsaturated compounds are usually employed as substrates for cross-coupling reactions. However during the past decade, a great deal of effort has been devoted to the use of alkyl halides as saturated compounds in cross-coupling reactions, which has resulted in significant progress in this undeveloped area by introducing new effective ligands. Many useful catalytic systems are now available for synthetic transformations based on C(sp(3))-C(sp(3)), C(sp(3))-C(sp(2)) and C(sp(3))-C(sp) bond formation as complementary methods to conventional C(sp(2))-C(sp(2)), C(sp(2))-C(sp) and C(sp)-C(sp) coupling. This tutorial review summarizes recent advances in cross-coupling reactions of alkyl halides and pseudohalides catalyzed by a palladium complex.

  7. Metal-Catalyzed Oxidation and Photo-oxidation of Glucagon.

    PubMed

    Zhang, Jian

    2016-08-01

    The oxidation of glucagon by the H2O2/Cu(2+) system and by simulated sunlight was studied using HPLC-MS methodologies. It was found that copper ion-catalyzed oxidation is much faster in the residue 1-12 region than in photo-oxidation, but it is slower than photo-oxidation in the residue 18-29 region. This difference is due to the unique feature of the primary sequence of glucagon. The residue 1-12 region contains His-1 and Asp-9 that can bind to Cu(2+) ions and catalyze the oxidation of His-1 and Tyr-10, while the residue 18-29 region lacks these charged residues near the liable Met-27 and Trp-25 and hence no catalysis by the neighboring groups occurs. Fragment (residue 13-17) was more stable than the other regions of the peptide toward photo-oxidation because it contains only one oxidizable residue, Tyr-13. These findings may help explain the mechanism of action of glucagon and provide some hints for the development of effective anti-diabetic drug molecules and stable glucagon formulations.

  8. Triethylenetetramine prevents insulin aggregation and fragmentation during copper catalyzed oxidation.

    PubMed

    Torosantucci, Riccardo; Weinbuch, Daniel; Klem, Robin; Jiskoot, Wim

    2013-08-01

    Metal catalyzed oxidation via the oxidative system Cu(2+)/ascorbate is known to induce aggregation of therapeutic proteins, resulting in enhanced immunogenicity. Hence, inclusion of antioxidants in protein formulations is of great interest. In this study, using recombinant human insulin (insulin) as a model, we investigated the ability of several excipients, in particular triethylenetetramine (TETA), reduced glutathione(GSH) and ethylenediamine tetraacetic acid (EDTA), for their ability to prevent protein oxidation, aggregation, and fragmentation. Insulin (1mg/ml) was oxidized with 40 μM Cu(2+) and 4mM ascorbic acid in absence or presence of excipients. Among the excipients studied, 1mM of TETA, EDTA, or GSH prevented insulin aggregation upon metal catalyzed oxidation (MCO) for 3h at room temperature, based on size exclusion chromatography (SEC). At lower concentration (100 μM), for 72 h at +4 °C, TETA was the only one to inhibit almost completely oxidation-induced insulin aggregation, fragmentation, and structural changes, as indicated by SEC, nanoparticle tracking analysis, light obscuration particle counting, intrinsic/extrinsic fluorescence, circular dichroism, and chemical derivatization. In contrast, GSH had a slight pro-oxidant effect, as demonstrated by the higher percentage of aggregates and a more severe structural damage, whereas EDTA offered substantially less protection. TETA also protected a monoclonal IgG1 against MCO-induced aggregation, suggesting its general applicability. In conclusion, TETA is a potential candidate excipient for inclusion in formulations of oxidation-sensitive proteins.

  9. Chloride-catalyzed corrosion of plutonium in glovebox atmospheres

    SciTech Connect

    Burgess, M.; Haschke, J.M.; Allen, T.H.; Morales, L.A.; Jarboe, D.M.; Puglisi, C.V.

    1998-04-01

    Characterization of glovebox atmospheres and the black reaction product formed on plutonium surfaces shows that the abnormally rapid corrosion of components in the fabrication line is consistent with a complex salt-catalyzed reaction involving gaseous hydrogen chloride (HCl) and water. Analytical data verify that chlorocarbon and HCl vapors are presented in stagnant glovebox atmospheres. Hydrogen chloride concentrations approach 7 ppm at some locations in the glovebox line. The black corrosion product is identified as plutonium monoxide monohydride (PuOH), a product formed by hydrolysis of plutonium in liquid water and salt solutions at room temperature. Plutonium trichloride (PuCl{sub 3}) produced by reaction of HCl at the metal surface is deliquescent and apparently forms a highly concentrated salt solution by absorbing moisture from the glovebox atmosphere. Rapid corrosion is attributed to the ensuing salt-catalyzed reaction between plutonium and water. Experimental results are discussed, possible involvement of hydrogen fluoride (HF) is examined, and methods of corrective action are presented in this report.

  10. Can proteins and crystals self-catalyze methyl rotations?

    SciTech Connect

    Smith, Jeremy C; Baudry, Jerome

    2005-10-01

    The {chi} (C{sub {alpha}}-C{sub {beta}}) torsional barrier in the dipeptide alanine (N-methyl-l-alanyl-N-methylamide) crystal was investigated using ab initio calculations at various levels of theory, molecular mechanics, and molecular dynamics. For one of the two molecules in the asymmetric unit the calculations suggest that rotation around the ? dihedral angle is catalyzed by the crystal environment, reducing by up to 2kT the torsional barrier in the crystal with respect to that in the gas phase. This catalytic effect is present at both low and room temperature and originates from a van der Waals destabilization of the minima in the methyl dihedral potential coming from the nonbonded environment of the side chain. Screening of a subset of the Protein Data Bank with a pharmacophore model reproducing the crystal environment around this side chain methyl identified a protein containing an alanine residue with an environment similar to that in the crystal. Calculations indicate that this ? torsional barrier is also reduced in the protein at low temperature but not at room temperature. This suggests that environment-catalyzed rotation of methyl groups can occur both in the solid phase and in native biological structures, though this effect might be temperature-dependent. The relevance of this catalytic effect is discussed in terms of its natural occurrence and its possible contribution to the low-frequency vibrational modes of molecules.

  11. Porous silicon formation during Au-catalyzed etching

    SciTech Connect

    Algasinger, Michael; Bernt, Maximilian; Koynov, Svetoslav; Stutzmann, Martin

    2014-04-28

    The formation of “black” nano-textured Si during the Au-catalyzed wet-chemical etch process was investigated with respect to photovoltaic applications. Cross-sectional scanning electron microscopy (SEM) images recorded at different stages of the etch process exhibit an evolution of a two-layer structure, consisting of cone-like Si hillocks covered with a nano-porous Si (np-Si) layer. Optical measurements confirm the presence of a np-Si phase which appears after the first ∼10 s of the etch process and continuously increases with the etch time. Furthermore, the etch process was investigated on Si substrates with different doping levels (∼0.01–100 Ω cm). SEM images show a transition from the two-layer morphology to a structure consisting entirely of np-Si for higher doping levels (<0.1 Ω cm). The experimental results are discussed on the basis of the model of a local electrochemical etch process. A better understanding of the metal-catalyzed etch process facilitates the fabrication of “black” Si on various Si substrates, which is of significant interest for photovoltaic applications.

  12. Study of microwave effects on the lipase-catalyzed hydrolysis.

    PubMed

    Chen, Chia-Chen; Reddy, P Muralidhar; Devi, C Shobha; Chang, Po-Chi; Ho, Yen-Peng

    2016-01-01

    The effect of microwave heating on lipase-catalyzed reaction remains controversial. It is not clear whether the reaction rate enhancements are purely due to thermal/heating effects or to non-thermal effects. Therefore, quantitative mass spectrometry was used to conduct accurate kinetic analysis of lipase-catalyzed hydrolysis of triolein by microwave and conventional heating. Commercial lipases from Candida rugosa (CRL), Porcine Pancreas (PPL), and Burkholderia cepacia (BCL) were used. Hydrolysis reactions were performed at various temperatures and pH levels, along with various amounts of buffer and enzymes. Hydrolysis product yields at each time point using an internal-standard method showed no significant difference between microwave and conventional heating conditions when the reaction was carried out at the same temperature. CRL showed optimum catalytic activity at 37 °C, while PPL and BCL had better activities at 50 °C. The phosphate buffer was found to give a better hydrolysis yield than the Tris-HCl buffer. Overall results prove that a non-thermal effect does not exist in microwave-assisted lipase hydrolysis of triolein. Therefore, conventional heating at high temperatures (e.g., 50 °C) can be also used to accelerate hydrolysis reactions.

  13. Metalloporphyrin solubility: a trigger for catalyzing reductive dechlorination of tetrachloroethylene.

    PubMed

    Dror, Ishai; Schlautman, Mark A

    2004-02-01

    Metalloporphyrins are well known for their electron-transfer roles in many natural redox systems. In addition, several metalloporphyrins and related tetrapyrrole macrocycles complexed with various core metals have been shown to catalyze the reductive dechlorination of certain organic compounds, thus demonstrating the potential for using naturally occurring metalloporphyrins to attenuate toxic and persistent chlorinated organic pollutants in the environment. However, despite the great interest in reductive dechlorination reactions and the wide variety of natural and synthetic porphyrins currently available, only soluble porphyrins, which comprise a small fraction of this particular family of organic macrocycles, have been used as electron-transfer shuttles in these reactions. Results from the present study clearly demonstrate that metalloporphyrin solubility is a key factor in their ability to catalyze the reductive dechlorination of tetrachloroethylene and its daughter compounds. Additionally, we show that certain insoluble and nonreactive metalloporphyrins can be activated as catalysts merely by changing solution conditions to bring about their dissolution. Furthermore, once a metalloporphyrin is fully dissolved and activated, tetrachloroethylene transformation proceeds rapidly, giving nonchlorinated and less toxic alkenes as the major reaction products. Results from the present study suggest that if the right environmental conditions exist or can be created, specific metalloporphyrins may provide a solution for cleaning up sites that are contaminated with chlorinated organic pollutants.

  14. Lipase-catalyzed polyester synthesis – A green polymer chemistry

    PubMed Central

    Kobayashi, Shiro

    2010-01-01

    This article is a short comprehensive review describing in vitro polyester synthesis catalyzed by a hydrolysis enzyme of lipase, most of which has been developed for these two decades. Polyesters are prepared by repeated ester bond-formation reactions; they include two major modes, ring-opening polymerization (ROP) of cyclic monomers such as cyclic esters (lactones) and condensation polymerization via the reaction between a carboxylic acid or its ester group and an alcohol group. Polyester synthesis is, therefore, a reaction in reverse way of in vivo lipase catalysis of ester bond-cleavage with hydrolysis. The lipase-catalyzed polymerizations show very high chemo-, regio-, and enantio-selectivities and involve various advantageous characteristics. Lipase is robust and compatible with other chemical catalysts, which allows novel chemo-enzymatic processes. New syntheses of a variety of functional polyesters and a plausible reaction mechanism of lipase catalysis are mentioned. The polymerization characteristics are of green nature currently demanded for sustainable society, and hence, desirable for conducting ‘green polymer chemistry’. PMID:20431260

  15. Enzyme catalyzed electricity-driven water softening system.

    PubMed

    Arugula, Mary A; Brastad, Kristen S; Minteer, Shelley D; He, Zhen

    2012-12-10

    Hardness in water, which is caused by divalent cations such as calcium and magnesium ions, presents a major water quality problem. Because hard water must be softened before use in residential applications, there is great interest in the saltless water softening process because, unlike ion exchange softeners, it does not introduce additional ions into water. In this study, a saltless hardness removal driven by bioelectrochemical energy produced through enzymatic oxidation of glucose was proposed and investigated. Glucose dehydrogenase was coated on a carbon electrode to catalyze glucose oxidation in the presence of NAD⁺ as a cofactor/mediator and methylene green as an electrocatalyst. The results showed that electricity generation stimulated hardness removal compared with non-electricity conditions. The enzymatic water softener worked upon a 6h batch operation per day for eight days, and achieved an average hardness removal of 46% at a high initial concentration of 800 mg/L as CaCO₃. More hardness was removed at a lower initial concentration. For instance, at 200mg/L as CaCO₃ the enzymatic water softener removed 76.4±4.6% of total hardness. The presence of magnesium ions decreased hardness removal because of its larger hydrated radius than calcium ions. The enzymatic water softener removed 70-80% of total hardness from three actual hard water samples. These results demonstrated a proof-of-concept that enzyme catalyzed electricity generation can be used to soften hard water. PMID:23040397

  16. Study of microwave effects on the lipase-catalyzed hydrolysis.

    PubMed

    Chen, Chia-Chen; Reddy, P Muralidhar; Devi, C Shobha; Chang, Po-Chi; Ho, Yen-Peng

    2016-01-01

    The effect of microwave heating on lipase-catalyzed reaction remains controversial. It is not clear whether the reaction rate enhancements are purely due to thermal/heating effects or to non-thermal effects. Therefore, quantitative mass spectrometry was used to conduct accurate kinetic analysis of lipase-catalyzed hydrolysis of triolein by microwave and conventional heating. Commercial lipases from Candida rugosa (CRL), Porcine Pancreas (PPL), and Burkholderia cepacia (BCL) were used. Hydrolysis reactions were performed at various temperatures and pH levels, along with various amounts of buffer and enzymes. Hydrolysis product yields at each time point using an internal-standard method showed no significant difference between microwave and conventional heating conditions when the reaction was carried out at the same temperature. CRL showed optimum catalytic activity at 37 °C, while PPL and BCL had better activities at 50 °C. The phosphate buffer was found to give a better hydrolysis yield than the Tris-HCl buffer. Overall results prove that a non-thermal effect does not exist in microwave-assisted lipase hydrolysis of triolein. Therefore, conventional heating at high temperatures (e.g., 50 °C) can be also used to accelerate hydrolysis reactions. PMID:26672464

  17. Solution-solid-solid mechanism: superionic conductors catalyze nanowire growth.

    PubMed

    Wang, Junli; Chen, Kangmin; Gong, Ming; Xu, Bin; Yang, Qing

    2013-09-11

    The catalytic mechanism offers an efficient tool to produce crystalline semiconductor nanowires, in which the choice, state, and structure of catalysts are active research issues of much interest. Here we report a novel solution-solid-solid (SSS) mechanism for nanowire growth catalyzed by solid-phase superionic conductor nanocrystals in low-temperature solution. The preparation of Ag2Se-catalyzed ZnSe nanowires at 100-210 °C is exampled to elucidate the SSS model, which can be extendable to grow other II-VI semiconductor (e.g., CdSe, ZnS, and CdS) nanowires by the catalysis of nanoscale superionic-phase silver or copper(I) chalcogenides (Ag2Se, Ag2S, and Cu2S). The exceptional catalytic ability of these superionic conductors originates from their structure characteristics, known for high-density vacancies and fast mobility of silver or copper(I) cations in the rigid sublattice of Se(2-) or S(2-) ions. Insights into the SSS mechanism are provided based on the formation of solid solution and the solid-state ion diffusion/transport at solid-solid interface between catalyst and nanowire. PMID:23919513

  18. Small molecule screening in context: Lipid-catalyzed amyloid formation

    PubMed Central

    Hebda, James A; Magzoub, Mazin; Miranker, Andrew D

    2014-01-01

    Islet Amyloid Polypeptide (IAPP) is a 37-residue hormone cosecreted with insulin by the β-cells of the pancreas. Amyloid fiber aggregation of IAPP has been correlated with the dysfunction and death of these cells in type II diabetics. The likely mechanisms by which IAPP gains toxic function include energy independent cell membrane penetration and induction of membrane depolarization. These processes have been correlated with solution biophysical observations of lipid bilayer catalyzed acceleration of amyloid formation. Although the relationship between amyloid formation and toxicity is poorly understood, the fact that conditions promoting one also favor the other suggests related membrane active structural states. Here, a novel high throughput screening protocol is described that capitalizes on this correlation to identify compounds that target membrane active species. Applied to a small library of 960 known bioactive compounds, we are able to report identification of 37 compounds of which 36 were not previously reported as active toward IAPP fiber formation. Several compounds tested in secondary cell viability assays also demonstrate cytoprotective effects. It is a general observation that peptide induced toxicity in several amyloid diseases (such as Alzhiemer’s and Parkinson’s) involves a membrane bound, preamyloid oligomeric species. Our data here suggest that a screening protocol based on lipid-catalyzed assembly will find mechanistically informative small molecule hits in this subclass of amyloid diseases. PMID:25043951

  19. Metal-Catalyzed Oxidation and Photo-oxidation of Glucagon.

    PubMed

    Zhang, Jian

    2016-08-01

    The oxidation of glucagon by the H2O2/Cu(2+) system and by simulated sunlight was studied using HPLC-MS methodologies. It was found that copper ion-catalyzed oxidation is much faster in the residue 1-12 region than in photo-oxidation, but it is slower than photo-oxidation in the residue 18-29 region. This difference is due to the unique feature of the primary sequence of glucagon. The residue 1-12 region contains His-1 and Asp-9 that can bind to Cu(2+) ions and catalyze the oxidation of His-1 and Tyr-10, while the residue 18-29 region lacks these charged residues near the liable Met-27 and Trp-25 and hence no catalysis by the neighboring groups occurs. Fragment (residue 13-17) was more stable than the other regions of the peptide toward photo-oxidation because it contains only one oxidizable residue, Tyr-13. These findings may help explain the mechanism of action of glucagon and provide some hints for the development of effective anti-diabetic drug molecules and stable glucagon formulations. PMID:27435200

  20. Montmorillonite Clay-Catalyzed Synthesis of RNA Oligomers

    NASA Astrophysics Data System (ADS)

    Ferris, J. P.; Miyakawa, S.; Huang, W.; Joshi, P.

    2005-12-01

    It is proposed that catalysis had a central role in the origins of life. This will be illustrated using the montmorillonite clay-catalyzed synthesis of oligomers of RNA from activated monomers, (Ferris and Ertem, 1993) a possible step in the origin of the RNA world (Ferris, 2005). Structural analysis of oligomers formed in the reaction of the activated monomer of 5'-AMP with that of 5'-CMP demonstrated that the oligomers formed were not produced by random synthesis but rather the sequences observed were directed by the montmorillonite catalyst (Miyakawa and Ferris, 2003). RNA oligomers containing up to 40 mers have been synthesized in reactions performed in water at 25 oC in the presence of montmorillonite (Huang and Ferris, 2003). Analysis of the structure elements in these oligomers from the 7 to 39 mers showed that they did not vary. Reaction of D, L-mixtures of the activated monomers of A and U resulted in the formation of greater amounts of the homochiral amounts of dimers and trimers of A than would be expected if there was no selectivity in the reaction. A limited number of the dimers and trimers of U were also formed but here the selectivity was for the formation of an excess of heterochiral products (Joshi et al., 2000). A postulate that explains why homochiral trimers of U are not formed and the significance of catalysis in prebiotic synthesis will be discussed. Ferris, J.P. (2005) Origins of life, molecular basis of. In R.A. Meyers, Ed. Encyclopedia of Molecular Cell Biology and Molecular Medicine, 10. Wiley-VCH Verlag, Weinheim, Germany. Ferris, J.P., and Ertem, G. (1993) Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA. J. Am. Chem. Soc., 115, 12270-12275. Huang, W., and Ferris, J.P. (2003) Synthesis of 35-40 mers of RNA oligomers from unblocked monomers. A simple approach to the RNA world. Chem. Commun., 1458-1459. Joshi, P.C., Pitsch, S., and Ferris, J.P. (2000) Homochiral selection

  1. Palladium-catalyzed synthesis of indoles via ammonia cross-coupling-alkyne cyclization.

    PubMed

    Alsabeh, Pamela G; Lundgren, Rylan J; Longobardi, Lauren E; Stradiotto, Mark

    2011-06-28

    The synthesis of indoles via the metal-catalyzed cross-coupling of ammonia is reported for the first time; the developed protocol also allows for the unprecedented use of methylamine or hydrazine as coupling partners. These Pd/Josiphos-catalyzed reactions proceed under relatively mild conditions for a range of 2-alkynylbromoarenes.

  2. ROLE OF COPPER,ZINC-SUPEROXIDE DISMUTASE IN CATALYZING NITROTYROSINE FORMATION IN MURINE LIVER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The solely known function of Cu,Zn-superoxide dismutase (SOD1) is to catalyze the dismutation of superoxide anion into hydrogen peroxide. Our objective was to determine if SOD1 catalyzed murine liver protein nitration induced by acetaminophen (APAP) and lipopolysaccharide (LPS). Liver and plasma ...

  3. Nickel-catalyzed decarboxylative cross-coupling of perfluorobenzoates with aryl halides and sulfonates.

    PubMed

    Sardzinski, Logan W; Wertjes, William C; Schnaith, Abigail M; Kalyani, Dipannita

    2015-03-01

    A Ni-catalyzed method for the coupling of perfluorobenzoates with aryl halides and pseudohalides is described. Aryl iodides, bromides, chlorides, triflates, and tosylates participate in these transformations to afford the products in good yields. Penta-, tetra-, and trifluorinated biaryl compounds are obtained using these newly developed Ni-catalyzed decarboxylative cross-coupling reactions.

  4. Cu(OAc)2-catalyzed coupling of aromatic C-H bonds with arylboron reagents.

    PubMed

    Shang, Ming; Sun, Shang-Zheng; Dai, Hui-Xiong; Yu, Jin-Quan

    2014-11-01

    Cu-catalyzed coupling of aryl C-H bonds with arylboron reagents was accomplished using a readily removable directing group, which provides a useful method for the synthesis of biaryl compounds. The distinct transmetalation step in this Cu-catalyzed C-H coupling with aryl borons provides unique evidence for the formation of an aryl cupperate intermediate. PMID:25325402

  5. Enantioselective Total Synthesis of (−)-Nardoaristolone B via a Gold(I)-Catalyzed Oxidative Cyclization

    PubMed Central

    2015-01-01

    The first enantioselective total synthesis of (−)-nardoaristolone B is accomplished by the implementation of an enantio- and diastereoselective copper(I)-catalyzed conjugate addition/enolate trapping sequence and a gold(I)-catalyzed oxidative cyclization (intermolecular oxidant), employed for the first time in total synthesis. PMID:25563976

  6. Epoxide ring-opening and Meinwald rearrangement reactions of epoxides catalyzed by mesoporous aluminosilicates.

    PubMed

    Robinson, Mathew W C; Davies, A Matthew; Buckle, Richard; Mabbett, Ian; Taylor, Stuart H; Graham, Andrew E

    2009-06-21

    Mesoporous aluminosilicates efficiently catalyze the ring-opening of epoxides to produce beta-alkoxyalcohols in high yields under extremely mild reaction conditions. These materials also catalyze the corresponding Meinwald rearrangement in non-nucleophilic solvents to give aldehydes which can be trapped in situ to provide the corresponding acetals in an efficient tandem process.

  7. Synthesis of Functionalized Cyclohexenone Core of Welwitindolinones via Rhodium- Catalyzed [5+1] Cycloaddition

    PubMed Central

    Zhang, Min

    2012-01-01

    The cyclohexenone core of welwitindolinones was synthesized by a Rh(I)-catalyzed [5+1]-cycloaddition of an allenylcyclopropane with CO. A penta-substituted cyclopropane was prepared successfully by a Rh(II)-catalyzed intramolecular cyclopropanation of alkenes with chlorodiazoacetates. PMID:22783971

  8. Tepoxalin: a dual cyclooxygenase/5-lipoxygenase inhibitor of arachidonic acid metabolism with potent anti-inflammatory activity and a favorable gastrointestinal profile.

    PubMed

    Argentieri, D C; Ritchie, D M; Ferro, M P; Kirchner, T; Wachter, M P; Anderson, D W; Rosenthale, M E; Capetola, R J

    1994-12-01

    Tepoxalin [5-(4-chlorophenyl)-N-hydroxy-(4-methoxyphenyl)-N-methyl-1H- pyrazole-3-propanamide] is a potent inhibitor of sheep seminal vesicle cyclooxygenase (CO) (IC50 = 4.6 microM), rat basophilic leukemia cell (RBL-1) lysate CO (IC50 = 2.85 microM) and CO from intact RBL-1 cells (IC50 = 4.2 microM). The compound inhibits the production of thromboxane B2 (TxB2) in Ca++ ionophore A-23187-stimulated human peripheral blood leukocytes (HPBL; IC50 = 0.01 microM) and human whole blood (IC50 = 0.08 microM) and is a potent inhibitor of epinephrine-induced human platelet aggregation (IC50 = 0.045 microM). Tepoxalin inhibits lipoxygenase (LO) in RBL-1 lysates (IC50 = 0.15 microM) and intact RBL-1 cells (IC50 = 1.7 microM) and inhibits the generation of leukotriene B4 (LTB4) in calcium ionophore A-23187-stimulated HPBL (IC50 = 0.07 microM) and human whole blood (IC50 = 1.57 microM). Human platelet 12-LO (IC50 = 3.0 microM) is inhibited, but 15-LO is only weakly so (IC50 = 157 microM). In vivo, tepoxalin, administered orally, demonstrated potent anti-inflammatory activity in the established adjuvant arthritic rat (ED50 = 3.5 mg/kg) and potent analgesic activity in the acetic acid abdominal construction assay in mice (ED50 = 0.45 mg/kg). In an ex vivo whole blood eicosanoid production assay, tepoxalin produces a dose-related inhibition of prostaglandin (PG) and LT production in dogs (PGF2 alpha - ED50 = 0.015 mg/kg; LTB4 - ED50 = 2.37 mg/kg) and adjuvant arthritic rats following oral administration. In adjuvant arthritic rats, tepoxalin is devoid of ulcerogenic activity within its anti-inflammatory therapeutic range (1-33 mg/kg p.o.) and does not exhibit ulcerogenic activity in normal rats at doses lower than 100 mg/kg (UD50 = 173 mg/kg p.o.). Tepoxalin represents a new class of anti-inflammatory drugs which may exhibit less gastrointestinal toxicity and may be efficacious in immunoinflammatory disease states where excessive PG and LT production has been implicated and may offer a significant alternative to nonsteroidal and corticosteroidal anti-inflammatory therapy. PMID:7996452

  9. Fuscoside: an anti-inflammatory marine natural product which selectively inhibits 5-lipoxygenase. Part I: Physiological and biochemical studies in murine inflammatory models.

    PubMed

    Jacobson, P B; Jacobs, R S

    1992-08-01

    The biological and biochemical pharmacology of fuscoside, a novel anti-inflammatory marine natural product isolated from the Caribbean gorgonian Eunicea fusca, has recently been characterized using murine (part I) and human (part II) models of inflammation. Topically applied fuscoside (FSD) effectively inhibits phorbol myristate acetate (PMA)-induced edema in mouse ears at levels comparable with indomethacin over a 3.3-hr exposure period, and is significantly more efficacious than indomethacin over 24 hr in the PMA model. Histological preparations and quantification of the neutrophil-specific marker, myeloperoxidase, demonstrate that FSD inhibits neutrophil infiltration into PMA-induced regions of edema and inflammation. In systemic studies, where FSD is injected i.p. before the topical application of PMA, negligible effects on ear inflammation are observed. FSD does not inhibit bee venom or human synovial fluid phospholipase A2 up to concentrations of 500 microM. In calcium ionophore-activated cultures of mouse peritoneal macrophages, FSD selectively and irreversibly inhibits leukotriene C4 biosynthesis (IC50 = 8 microM), yet has negligible effects on prostaglandin E2 production. FSD is also without effect on the conversion of arachidonic acid to prostaglandin E2 by ram seminal vesicle cyclooxygenase. Chromatographic and spectroscopic studies suggest that FSD is not metabolized, and that drug uptake/binding by macrophages is time dependent, saturable and independent of active transport mechanisms. These studies represent the first report of an anti-inflammatory marine natural product that selectively inhibits leukotriene biosynthesis.

  10. Inhibition of the 5-lipoxygenase pathway with piriprost (U-60,257) protects normal primates from ozone-induced methacholine hyperresponsive small airways

    SciTech Connect

    Johnson, H.G.; Stout, B.K.; Ruppel, P.L.

    1988-03-01

    Weekly exposure to ozone in seven normal Rhesus monkeys led to induction of methacholine hypersensitive airways (RL increases 242 +/- 60% and Cdyn decreases 68 +/- 13% of baseline methacholine responses). It took 19 weeks to establish this hyperresponse that persisted for greater than 15 weeks once ozone was stopped. A second exposure led to similar response peaks in 6 weeks. At the peak of the second response, weekly 1% piriprost exposure before ozone led to a return to baseline that was not different between placebo and piriprost treated animals (9.4 +/- 1.0 and 4.3 +/- 2.9 weeks, placebo and treated, respectively P = 0.09 NS). A statistical difference in the mecholyl response in placebo and piriprost treated groups while on ozone was shown only in the Cdyn measurement (Cdyn% change 68 +/- 13 vs 24 +/- 14, placebo and piriprost, respectively P = 0.03). Off ozone (or return to baseline), a statistical difference could be detected both in RL and Cdyn (RL% changed 151 +/- 41 vs 31.1 +/- 49, P = 0.03, and for Cdyn 62.7 +/- 8 vs 9 +/- 10, P = 0.0006, placebo and piriprost, respectively). We conclude tha the primate provides a chronic model of airways reactivity in which the role of lipoxygenase is implicated because of the beneficial role of piriprost, and further that the ozone lesion is primarily in the smaller airways (possibly and alveolitis).

  11. Increased PUFA Content and 5-Lipoxygenase Pathway Expression Are Associated with Subcutaneous Adipose Tissue Inflammation in Obese Women with Type 2 Diabetes

    PubMed Central

    Heemskerk, Mattijs M.; Giera, Martin; el Bouazzaoui, Fatiha; Lips, Mirjam A.; Pijl, Hanno; Willems van Dijk, Ko; van Harmelen, Vanessa

    2015-01-01

    Obese women with type 2 diabetes mellitus (T2DM) have more inflammation in their subcutaneous white adipose tissue (sWAT) than age-and-BMI similar obese women with normal glucose tolerance (NGT). We aimed to investigate whether WAT fatty acids and/or oxylipins are associated with the enhanced inflammatory state in WAT of the T2DM women. Fatty acid profiles were measured in both subcutaneous and visceral adipose tissue (vWAT) of 19 obese women with NGT and 16 age-and-BMI similar women with T2DM. Oxylipin levels were measured in sWAT of all women. Arachidonic acid (AA) and docosahexaenoic acid (DHA) percentages were higher in sWAT, but not vWAT of the T2DM women, and AA correlated positively to the gene expression of macrophage marker CD68. We found tendencies for higher oxylipin concentrations of the 5-LOX leukotrienes in sWAT of T2DM women. Gene expression of the 5-LOX leukotriene biosynthesis pathway was significantly higher in sWAT of T2DM women. In conclusion, AA and DHA content were higher in sWAT of T2DM women and AA correlated to the increased inflammatory state in sWAT. Increased AA content was accompanied by an upregulation of the 5-LOX pathway and seems to have led to an increase in the conversion of AA into proinflammatory leukotrienes in sWAT. PMID:26378572

  12. Natural Product Total Synthesis in the Organic Laboratory: Total Synthesis of Caffeic Acid Phenethyl Ester (CAPE), a Potent 5-Lipoxygenase Inhibitor from Honeybee Hives

    ERIC Educational Resources Information Center

    Touaibia, Mohamed; Guay, Michel

    2011-01-01

    Natural products play a critical role in modern organic synthesis and learning synthetic techniques is an important component of the organic laboratory experience. In addition to traditional one-step organic synthesis laboratories, a multistep natural product synthesis is an interesting experiment to challenge students. The proposed three-step…

  13. Degradation and transformation of atrazine under catalyzed ozonation process with TiO2 as catalyst.

    PubMed

    Yang, Yixin; Cao, Hongbin; Peng, Pai; Bo, Hongmiao

    2014-08-30

    Degradation of atrazine by heterogeneously catalyzed ozonation was carried out with TiO2 in the form of rutile as the catalyst. Some experimental factors such as catalyst dose, ozone dose and initial concentration of atrazine were investigated for their influence on catalyzed ozonation process. Although atrazine was effectively removed from aqueous solution by catalyzed ozonation process, the mineralization degree only reached 56% at the experimental conditions. Five transformation products were identified by GC/MS analysis. The degradation of atrazine involved de-alkylation, de-chlorination and de-amination. Diaminotriazine and 5-azauracil were the de-chlorinated and de-aminated products, respectively. The evolution of concentration of transformation products during catalyzed ozonation process was compared with uncatalyzed ozonation to show the degradation pathway. Toxicity tests based on the inhibition of the luminescence emitted by Vibrio fisheri indicated the detoxification of atrazine by catalyzed ozonation. PMID:25106044

  14. Degradation and transformation of atrazine under catalyzed ozonation process with TiO2 as catalyst.

    PubMed

    Yang, Yixin; Cao, Hongbin; Peng, Pai; Bo, Hongmiao

    2014-08-30

    Degradation of atrazine by heterogeneously catalyzed ozonation was carried out with TiO2 in the form of rutile as the catalyst. Some experimental factors such as catalyst dose, ozone dose and initial concentration of atrazine were investigated for their influence on catalyzed ozonation process. Although atrazine was effectively removed from aqueous solution by catalyzed ozonation process, the mineralization degree only reached 56% at the experimental conditions. Five transformation products were identified by GC/MS analysis. The degradation of atrazine involved de-alkylation, de-chlorination and de-amination. Diaminotriazine and 5-azauracil were the de-chlorinated and de-aminated products, respectively. The evolution of concentration of transformation products during catalyzed ozonation process was compared with uncatalyzed ozonation to show the degradation pathway. Toxicity tests based on the inhibition of the luminescence emitted by Vibrio fisheri indicated the detoxification of atrazine by catalyzed ozonation.

  15. Dirhodium-catalyzed C-H arene amination using hydroxylamines.

    PubMed

    Paudyal, Mahesh P; Adebesin, Adeniyi Michael; Burt, Scott R; Ess, Daniel H; Ma, Zhiwei; Kürti, László; Falck, John R

    2016-09-01

    Primary and N-alkyl arylamine motifs are key functional groups in pharmaceuticals, agrochemicals, and functional materials, as well as in bioactive natural products. However, there is a dearth of generally applicable methods for the direct replacement of aryl hydrogens with NH2/NH(alkyl) moieties. Here, we present a mild dirhodium-catalyzed C-H amination for conversion of structurally diverse monocyclic and fused aromatics to the corresponding primary and N-alkyl arylamines using NH2/NH(alkyl)-O-(sulfonyl)hydroxylamines as aminating agents; the relatively weak RSO2O-N bond functions as an internal oxidant. The methodology is operationally simple, scalable, and fast at or below ambient temperature, furnishing arylamines in moderate-to-good yields and with good regioselectivity. It can be readily extended to the synthesis of fused N-heterocycles. PMID:27609890

  16. Synthesis of rosin acid starch catalyzed by lipase.

    PubMed

    Lin, Rihui; Li, He; Long, Han; Su, Jiating; Huang, Wenqin

    2014-01-01

    Rosin, an abundant raw material from pine trees, was used as a starting material directly for the synthesis of rosin acid starch. The esterification reaction was catalyzed by lipase (Novozym 435) under mild conditions. Based on single factor experimentation, the optimal esterification conditions were obtained as follows: rosin acid/anhydrous glucose unit in the molar ratio 2:1, reaction time 4 h at 45°C, and 15% of lipase dosage. The degree of substitution (DS) reaches 0.098. Product from esterification of cassava starch with rosin acid was confirmed by FTIR spectroscopy and iodine coloration analysis. Scanning electron microscopy and X-ray diffraction analysis showed that the morphology and crystallinity of the cassava starch were largely destroyed. Thermogravimetric analysis indicated that thermal stability of rosin acid starch decreased compared with native starch.

  17. Ni-Catalyzed C-C Couplings Using Alkyl Electrophiles.

    PubMed

    Iwasaki, Takanori; Kambe, Nobuaki

    2016-10-01

    Much effort has been devoted to developing new methods using Ni catalysts for the cross-coupling reaction of alkyl electrophiles with organometallic reagents, and significant achievements in this area have emerged during the past two decades. Nickel catalysts have enabled the coupling reaction of not only primary alkyl electrophiles, but also sterically hindered secondary and tertiary alkyl electrophiles possessing β-hydrogens with various organometallic reagents to construct carbon skeletons. In addition, Ni catalysts opened a new era of asymmetric cross-coupling reaction using alkyl halides. Recent progress in nickel-catalyzed cross-coupling reaction of alkyl electrophiles with sp(3)-, sp(2)-, and sp-hybridized organometallic reagents including asymmetric variants as well as mechanistic insights of nickel catalysis are reviewed in this chapter. PMID:27580894

  18. Trypsin-catalyzed oxygen-18 labeling for quantitative proteomics

    SciTech Connect

    Qian, Weijun; Petritis, Brianne O.; Nicora, Carrie D.; Smith, Richard D.

    2011-07-01

    Stable isotope labeling based on relative peptide/protein abundance measurements is commonly applied for quantitative proteomics. Recently, trypsin-catalyzed oxygen-18 labeling has grown in popularity due to its simplicity, cost-effectiveness, and its ability to universally label peptides with high sample recovery. In (18)O labeling, both C-terminal carboxyl group atoms of tryptic peptides can be enzymatically exchanged with (18)O, thus providing the labeled peptide with a 4 Da mass shift from the (16)O-labeled sample. Peptide (18)O labeling is ideally suited for generating a labeled "universal" reference sample used for obtaining accurate and reproducible quantitative measurements across large number of samples in quantitative discovery proteomics.

  19. Site-specific DNA transesterification catalyzed by a restriction enzyme

    PubMed Central

    Sasnauskas, Giedrius; Connolly, Bernard A.; Halford, Stephen E.; Siksnys, Virginijus

    2007-01-01

    Most restriction endonucleases use Mg2+ to hydrolyze phosphodiester bonds at specific DNA sites. We show here that BfiI, a metal-independent restriction enzyme from the phospholipase D superfamily, catalyzes both DNA hydrolysis and transesterification reactions at its recognition site. In the presence of alcohols such as ethanol or glycerol, it attaches the alcohol covalently to the 5′ terminus of the cleaved DNA. Under certain conditions, the terminal 3′-OH of one DNA strand can attack the target phosphodiester bond in the other strand to create a DNA hairpin. Transesterification reactions on DNA with phosphorothioate linkages at the target bond proceed with retention of stereoconfiguration at the phosphorus, indicating, uniquely for a restriction enzyme, a two-step mechanism. We propose that BfiI first makes a covalent enzyme–DNA intermediate, and then it resolves it by a nucleophilic attack of water or an alcohol, to yield hydrolysis or transesterification products, respectively. PMID:17267608

  20. Quinone-Catalyzed Selective Oxidation of Organic Molecules.

    PubMed

    Wendlandt, Alison E; Stahl, Shannon S

    2015-12-01

    Quinones are common stoichiometric reagents in organic chemistry. Para-quinones with high reduction potentials, such as DDQ and chloranil, are widely used and typically promote hydride abstraction. In recent years, many catalytic applications of these methods have been achieved by using transition metals, electrochemistry, or O2 to regenerate the oxidized quinone in situ. Complementary studies have led to the development of a different class of quinones that resemble the ortho-quinone cofactors in copper amine oxidases and mediate the efficient and selective aerobic and/or electrochemical dehydrogenation of amines. The latter reactions typically proceed by electrophilic transamination and/or addition-elimination reaction mechanisms, rather than hydride abstraction pathways. The collective observations show that the quinone structure has a significant influence on the reaction mechanism and has important implications for the development of new quinone reagents and quinone-catalyzed transformations. PMID:26530485

  1. Lipase-catalyzed ethanolysis of borage oil: a kinetic study.

    PubMed

    Torres, Carlos F; Hill, Charles G; Otero, Cristina

    2004-01-01

    Ethanolysis of borage oil catalyzed by two commercial lipases (from Pseudomonas cepacia and Candida antarctica) was studied using two different methodologies. Multiresponse models derived from a generalized Michaelis-Menten mechanism were utilized to describe the rates of formation of ethyl esters of the primary fatty acids present in the precursor oil. The relative rate constants determined for each of the fatty acid residues indicated that both lipases discriminate against release of gamma-linolenic acid residues under the reaction conditions studied. However, both lipases also released some of the residues located at the sn-2 position, indicating that for the experimental conditions studied, both lipases are nonspecific. Moreover, inactivation of Novozym 435 was rapid. Because the half-life of this enzyme (ca. 2.2 h) is comparable to the half-life of the reaction, the intrinsic reaction rate and enzyme deactivation must both be considered in modeling the kinetics. PMID:15176879

  2. Ni-Catalyzed C-C Couplings Using Alkyl Electrophiles.

    PubMed

    Iwasaki, Takanori; Kambe, Nobuaki

    2016-10-01

    Much effort has been devoted to developing new methods using Ni catalysts for the cross-coupling reaction of alkyl electrophiles with organometallic reagents, and significant achievements in this area have emerged during the past two decades. Nickel catalysts have enabled the coupling reaction of not only primary alkyl electrophiles, but also sterically hindered secondary and tertiary alkyl electrophiles possessing β-hydrogens with various organometallic reagents to construct carbon skeletons. In addition, Ni catalysts opened a new era of asymmetric cross-coupling reaction using alkyl halides. Recent progress in nickel-catalyzed cross-coupling reaction of alkyl electrophiles with sp(3)-, sp(2)-, and sp-hybridized organometallic reagents including asymmetric variants as well as mechanistic insights of nickel catalysis are reviewed in this chapter.

  3. Pd-Catalyzed Heterocycle Synthesis in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Li, Jianxiao; Jiang, Huanfeng

    Heterocyclic and fused heterocyclic compounds are ubiquitously found in natural products and biologically interesting molecules, and many currently marketed drugs hold heterocycles as their core structure. In this chapter, recent advances on Pd-catalyzed synthesis of heterocycles in ionic liquids (ILs) are reviewed. In palladium catalysis, ILs with different cations and anions are investigated as an alternative recyclable and environmentally benign reaction medium, and a variety of heterocyclic compounds including cyclic ketals, quinolones, quinolinones, isoindolinones, and lactones are conveniently constructed. Compared to the traditional methods, these new approaches have many advantages, such as environmentally friendly synthetic procedure, easy product and catalyst separation, recyclable medium, which make them have the potential applications in industry.

  4. Olefin hydroaryloxylation catalyzed by pincer-iridium complexes.

    PubMed

    Haibach, Michael C; Guan, Changjian; Wang, David Y; Li, Bo; Lease, Nicholas; Steffens, Andrew M; Krogh-Jespersen, Karsten; Goldman, Alan S

    2013-10-01

    Aryl alkyl ethers, which are widely used throughout the chemical industry, are typically produced via the Williamson ether synthesis. Olefin hydroaryloxylation potentially offers a much more atom-economical alternative. Known acidic catalysts for hydroaryloxylation, however, afford very poor selectivity. We report the organometallic-catalyzed intermolecular hydroaryloxylation of unactivated olefins by iridium "pincer" complexes. These catalysts do not operate via the hidden Brønsted acid pathway common to previously developed transition-metal-based catalysts. The reaction is proposed to proceed via olefin insertion into an iridium-alkoxide bond, followed by rate-determining C-H reductive elimination to yield the ether product. The reaction is highly chemo- and regioselective and offers a new approach to the atom-economical synthesis of industrially important ethers and, potentially, a wide range of other oxygenates. PMID:24028199

  5. Solvent effects in acid-catalyzed biomass conversion reactions.

    PubMed

    Mellmer, Max A; Sener, Canan; Gallo, Jean Marcel R; Luterbacher, Jeremy S; Alonso, David Martin; Dumesic, James A

    2014-10-27

    Reaction kinetics were studied to quantify the effects of polar aprotic organic solvents on the acid-catalyzed conversion of xylose into furfural. A solvent of particular importance is γ-valerolactone (GVL), which leads to significant increases in reaction rates compared to water in addition to increased product selectivity. GVL has similar effects on the kinetics for the dehydration of 1,2-propanediol to propanal and for the hydrolysis of cellobiose to glucose. Based on results obtained for homogeneous Brønsted acid catalysts that span a range of pKa values, we suggest that an aprotic organic solvent affects the reaction kinetics by changing the stabilization of the acidic proton relative to the protonated transition state. This same behavior is displayed by strong solid Brønsted acid catalysts, such as H-mordenite and H-beta. PMID:25214063

  6. WILDCAT: a catalyzed D-D tokamak reactor

    SciTech Connect

    Evans, K. Jr.; Baker, C.C.; Brooks, J.N.

    1981-11-01

    WILDCAT is a conceptual design of a catalyzed D-D, tokamak, commercial, fusion reactor. WILDCAT utilizes the beneficial features of no tritium breeding, while not extrapolating unnecessarily from existing D-T designs. The reactor is larger and has higher magnetic fields and plasma pressures than typical D-T devices. It is more costly, but eliminates problems associated with tritium breeding and has tritium inventories and throughputs approximately two orders of magnitude less than typical D-T reactors. There are both a steady-state version with Alfven-wave current drive and a pulsed version. Extensive comparison with D-T devices has been made, and cost and safety analyses have been included. All of the major reactor systems have been worked out to a level of detail appropriate to a complete, conceptual design.

  7. Dirhodium Catalyzed C-H Arene Amination using Hydroxylamines

    PubMed Central

    Paudyal, Mahesh P.; Adebesin, Adeniyi Michael; Burt, Scott R.; Ess, Daniel H.; Ma, Zhiwei; Kürti, László; Falck, John R.

    2016-01-01

    Primary and N-alkyl arylamine motifs are key functional groups in pharmaceuticals, agrochemicals and functional materials as well as in bioactive natural products. However, there is a dearth of generally applicable methods for the direct replacement of aryl hydrogens with –NH2/-NH-alkyl moieties. Here, we present a mild dirhodium-catalyzed C-H amination for conversion of structurally diverse monocyclic and fused aromatics to the corresponding primary and N-alkyl arylamines using either NH2/NHalkyl-O-(sulfonyl)hydroxylamines as aminating agents; the relatively weak RSO2O-N bond functions as an internal oxidant. The methodology is operationally simple, scalable, and fast at or below ambient temperature, furnishing arylamines in moderate-to-good yields and with good regioselectivity. It can be readily extended to the synthesis of fused N-heterocycles. PMID:27609890

  8. Oligonucleotide synthesis catalyzed by the Zn/2+/ ion

    NASA Technical Reports Server (NTRS)

    Sawai, H.; Orgel, L. E.

    1975-01-01

    Results of experiments are reported in which Zn(2+) ion catalyzed the formation of oligonucleotides from nucleoside phosphorimidazolides in aqueous solution, even in the absence of a template. Specifically, the imidazolides (ImpU or ImpA) polymerized to form ImpApA, and pApA, pApApA, and pApApApA, or the analogous uracil compounds. In addition, the expected hydrolysis products of the hydrolysis of ImpA were formed (pA, imidazole). Judging from the ratio of pA(n) over pA (with and without zinc ion), this ion increased the efficiency of phosphodiester-bond formation by up to 10 times. Possible mechanisms for the reaction are tentatively proposed.

  9. Chemical and genomic evolution of enzyme-catalyzed reaction networks.

    PubMed

    Kanehisa, Minoru

    2013-09-01

    There is a tendency that a unit of enzyme genes in an operon-like structure in the prokaryotic genome encodes enzymes that catalyze a series of consecutive reactions in a metabolic pathway. Our recent analysis shows that this and other genomic units correspond to chemical units reflecting chemical logic of organic reactions. From all known metabolic pathways in the KEGG database we identified chemical units, called reaction modules, as the conserved sequences of chemical structure transformation patterns of small molecules. The extracted patterns suggest co-evolution of genomic units and chemical units. While the core of the metabolic network may have evolved with mechanisms involving individual enzymes and reactions, its extension may have been driven by modular units of enzymes and reactions.

  10. Dissecting Anion Effects in Gold(I)-Catalyzed Intermolecular Cycloadditions

    PubMed Central

    Homs, Anna; Obradors, Carla; Lebœuf, David; Echavarren, Antonio M

    2014-01-01

    From a series of gold complexes of the type [t-BuXPhosAu(MeCN)]X (X=anion), the best results in intermolecular gold(I)-catalyzed reactions are obtained with the complex with the bulky and soft anion BAr4F− [BAr4F−=3,5-bis(trifluoromethyl)phenylborate] improving the original protocols by 10–30% yield. A kinetic study on the [2+2] cycloaddition reaction of alkynes with alkenes is consistent with an scenario in which the rate-determining step is the ligand exchange to generate the (η2-phenylacetylene)gold(I) complex. We have studied in detail the subtle differences that can be attributed to the anion in this formation, which result in a substantial decrease in the formation of unproductive σ,π-(alkyne)digold(I) complexes by destabilizing the conjugated acid formed. PMID:26190958

  11. Borinic Acid Catalyzed Stereo- and Regioselective Couplings of Glycosyl Methanesulfonates.

    PubMed

    D'Angelo, Kyan A; Taylor, Mark S

    2016-08-31

    In the presence of a diarylborinic acid catalyst, glycosyl methanesulfonates engage in regio- and stereoselective couplings with partially protected pyranoside and furanoside acceptors. The methanesulfonate donors are prepared in situ from glycosyl hemiacetals, and are coupled under mild, operationally simple conditions (amine base, organoboron catalyst, room temperature). The borinic acid catalyst not only influences site-selectivity via activation of 1,2- or 1,3-diol motifs, but also has a pronounced effect on the stereochemical outcome: 1,2-trans-linked disaccharides are obtained selectively in the absence of neighboring group participation. Reaction progress kinetic analysis was used to obtain insight into the mechanism of glycosylation, both in the presence of catalyst and in its absence, while rates of interconversion of methanesulfonate anomers were determined by NMR exchange spectroscopy (EXSY). Together, the results suggest that although the uncatalyzed and catalyzed reactions give rise to opposite stereochemical outcomes, both proceed by associative mechanisms. PMID:27533523

  12. Homogeneously catalyzed oxidation for the destruction of aqueous organic wastes

    SciTech Connect

    Leavitt, D.D.; Horbath, J.S.; Abraham, M.A. )

    1990-11-01

    Several organic species, specifically atrazine, 2,4-dichlorophenozyacetic acid, and biphenyl, were converted to CO{sub 2} and other non-harmful gases through oxidation catalyzed by inorganic acid. Nearly complete conversion was obtained through homogeneous liquid-phase oxidation with ammonium nitrate. The kinetics of reaction have been investigated and indicate parallel oxidation and thermal degradation of the oxidant. This results in a maximum conversion at an intermediate temperature. Increasing oxidant concentration accelerates the rate of conversion and shifts the location of the optimum temperature. Reaction at varying acid concentration revealed that conversion increased with an approximately linear relationship as the pH of the solution was increased. Conversion was increased to greater than 99% through the addition of small amounts of transition metal salts demonstrating the suitability of a treatment process based on this technology for wastestreams containing small quantities of heavy metals.

  13. Transition Metals Catalyzed Element-Cyano Bonds Activations

    PubMed Central

    Wang, Rui; Falck, John R.

    2014-01-01

    Cyano group as a versatile functionalized intermediate has been explored for several decades, as it readily transfers to many useful functionalization groups such as amine, amide, acid, etc., which make it possess high popularization and use value in organic synthesis. Reactions involved with element-cyano bond cleavage can provide not only a new cyano group but also a freshly functionalized skeleton in one-pot, consequently making it of high importance. The highlights reviewed herein include H-CN, Si-CN, C-CN, B-CN, Sn-CN, Ge-CN, S-CN, Halo-CN, N-CN, and O-CN bonds cleavages and will summarize progress in such an important research area. This review article will focus on transition metal catalyzed reactions involving element-cyano bond activation. PMID:25558119

  14. Calcium-catalyzed formal [2+2+2] cycloaddition.

    PubMed

    Meyer, Vera J; Ascheberg, Christoph; Niggemann, Meike

    2015-04-20

    A formal intermolecular [2+2+2] cycloaddition reaction of enynes to aldehydes is presented, which can be realized in the presence of a simple and benign calcium catalyst. The reaction proceeds with excellent chemo, regio- and diastereoselectivity and leads to a one-step assembly of highly interesting bicyclic building blocks containing up to three stereocenters from simple precursors via a new type of skeletal rearrangement of enynes. The observed diastereoselectivity is accounted for by two different mechanistic proposals. The first one engages mechanistic prospects arising from a gold catalyzed reaction in the absence of the stabilizing gold substituent. The second proposal involves an unprecedented cyclization-carbonyl allene ene reaction-hydroalkoxylation cascade.

  15. Lipase-catalyzed ethanolysis of borage oil: a kinetic study.

    PubMed

    Torres, Carlos F; Hill, Charles G; Otero, Cristina

    2004-01-01

    Ethanolysis of borage oil catalyzed by two commercial lipases (from Pseudomonas cepacia and Candida antarctica) was studied using two different methodologies. Multiresponse models derived from a generalized Michaelis-Menten mechanism were utilized to describe the rates of formation of ethyl esters of the primary fatty acids present in the precursor oil. The relative rate constants determined for each of the fatty acid residues indicated that both lipases discriminate against release of gamma-linolenic acid residues under the reaction conditions studied. However, both lipases also released some of the residues located at the sn-2 position, indicating that for the experimental conditions studied, both lipases are nonspecific. Moreover, inactivation of Novozym 435 was rapid. Because the half-life of this enzyme (ca. 2.2 h) is comparable to the half-life of the reaction, the intrinsic reaction rate and enzyme deactivation must both be considered in modeling the kinetics.

  16. Guide to Enantioselective Dirhodium(II)-Catalyzed Cyclopropanation with Aryldiazoacetates

    PubMed Central

    Chepiga, Kathryn M.; Qin, Changming; Alford, Joshua S.; Chennamadhavuni, Spandan; Gregg, Timothy M.; Olson, Jeremy P.

    2013-01-01

    Catalytic enantioselective methods for the generation of cyclopropanes has been of longstanding pharmaceutical interest. Chiral dirhodium(II) catalysts prove to be an effective means for the generation of diverse cyclopropane libraries. Rh2(R-DOSP)4 is generaally the most effective catalyst for asymmetric intermolecular cyclopropanation of methyl aryldiazoacetates with styrene. Rh2(S-PTAD)4 provides high levels of enantioinduction with ortho-substituted aryldiazoacetates. The less-established Rh2(R-BNP)4 plays a complementary role to Rh2(R-DOSP)4 and Rh2(S-PTAD)4 in catalyzing highly enantioselective cyclopropanation of 3- methoxy-substituted aryldiazoacetates. Substitution on the styrene has only moderate influence on the asymmetric induction of the cyclopropanation. PMID:24273349

  17. Decomposition of peracetic acid catalyzed by vanadium complexes

    SciTech Connect

    Makarov, A.P.; Gekhman, A.E.; Moiseev, I.I.; Polotryuk, O.Y.

    1986-02-01

    This paper studies the decomposition of peracetic acid (AcOOH) in acetic acid (AcOH) catalyzed by vanadium complexes. It is shown that peractic acid in acetic acid solutions of ammonium anadate decomposes with the predominant formation of 0/sub 2/ and small amounts of CO/sub 2/, the yield of which increases with increasing temperature and peracetic acid concentration. Both reactions proceed without the formation of free radicals in amounts detectable by ESR spectroscopy. The rate of oxygen release under conditions in which the formation of CO/sub 2/ is insignificant obeys a kinetic equation indicating the intermediate formation of a complex between V/sup 5 +/ ions and peracetic acid and the slow conversion of this complex into the observed products.

  18. Protease-catalyzed synthesis of oligopeptides in heterogenous substrate mixtures.

    PubMed

    López-Fandiño, R; Gill, I; Vulfson, E N

    1994-05-01

    A systematic study of enzymatic peptide synthesis in heterogeneous substrate mixtures was carried out, with the aim of establishing the preparative scope of this methodology. Semiliquid eutectics were obtained with various combinations of neutral, acidic, and basic amino acid derivatives, in the presence or absence of adjuvants. A range of serine cysteine, and metalloproteases readily catalyzed the formation of the required dipeptides under these conditions. The synthetic usefulness of the approach was demonstrated by the sequential and convergent synthesis of derivatives of a number of bioactive di-, tri-, and pentapeptides, including aspartame, sweet lysine peptide, kyotorphin amide, ACE-inhibiting and -immunoactive tripeptides, and Leu-enkephalin amide, with overallyields of 21% to 84% and productivities of 0.13 to 0.75 g/g being obtained. (c) 1994 John Wiley & Sons, Inc.

  19. Rhodium-Catalyzed Regiodivergent Hydrothiolation of Allyl Amines and Imines.

    PubMed

    Kennemur, Jennifer L; Kortman, Gregory D; Hull, Kami L

    2016-09-14

    The regiodivergent Rh-catalyzed hydrothiolation of allyl amines and imines is presented. Bidentate phosphine ligands with larger natural bite angles (βn ≥ 99°), for example, DPEphos, dpph, or L1, promote a Markovnikov-selective hydrothiolation in up to 88% yield and >20:1 regioselectivity. Conversely, when smaller bite angle ligands (βn ≤ 86°), for example, dppbz or dppp, are employed, the anti-Markovnikov product is formed in up to 74% yield and >20:1 regioselectivity. Initial mechanistic investigations are performed and are consistent with an oxidative addition/olefin insertion/reductive elimination mechanism for each regioisomeric pathway. We hypothesize that the change in regioselectivity is an effect of diverging coordination spheres to favor either Rh-S or Rh-H insertion to form the branched or linear isomer, respectively. PMID:27547858

  20. The promise and challenge of iron-catalyzed cross coupling.

    PubMed

    Sherry, Benjamin D; Fürstner, Alois

    2008-11-18

    Transition metal catalysts, particularly those derived from the group VIII-X metals, display remarkable efficiency for the formation of carbon-carbon and carbon-heteroatom bonds through the reactions of suitable nucleophiles with organic electrophilic partners. Within this subset of the periodic table, palladium and nickel complexes offer the broadest utility, while additionally providing the deepest mechanistic insight into thus-termed "cross-coupling reactions". The mammoth effort devoted to palladium and nickel catalysts over the past 30 years has somewhat obscured reports of alternative metal complexes in this arena. As cross-coupling reactions have evolved into a critical support for modern synthetic chemistry, the search for alternative catalysts has been taken up with renewed vigor.When the current generation of synthetic chemists reflects back to the origins of cross coupling for inspiration, the well-documented effect of iron salts on the reactivity of Grignard reagents with organic electrophiles surfaces as a fertile ground for alternative catalyst development. Iron possesses the practical benefits more befitting an alkali or alkaline earth metal, while displaying the unique reactivity of a d-block element. Therefore the search for broadly applicable iron catalysts for cross coupling is an increasingly important goal in modern synthetic organic chemistry.This Account describes the evolution of iron-catalyzed cross coupling from its inception in the work of Kochi to the present. Specific emphasis is placed on reactivity and synthetic applications, with selected examples from acyl-, alkenyl-, aryl-, and alkyl halide/pseudohalide cross coupling included. The typical reaction partners are Grignard reagents, though organomanganese, -copper, and -zinc derivatives have also been used in certain cases. Such iron-catalyzed processes occur very rapidly even at low temperature and therefore are distinguished by broad functional group compatibility. Furthermore

  1. Mechanistic proposal for the zeolite catalyzed methylation of aromatic compounds.

    PubMed

    Svelle, Stian; Bjørgen, Morten

    2010-12-01

    Alkylation and methylation reactions are important reactions in petrochemical production and form part of the reaction mechanism of many hydrocarbon transformation processes. Here, a new reaction mechanism is explored for the zeolite catalyzed methylation of arenes using quantum chemical calculations. It is proposed that the most substituted methylbenzenes, which will reside predominantly on the protonated form when adsorbed in a zeolite, can react directly with a neutral methanol molecule in the vicinity, thereby initiating the methylation reaction without having to return a proton to the zeolite surface. The calculated barriers are quite low, indicating that the suggested mechanism is plausible. This route might explain how the most substituted methylbenzenes can function as efficient reaction intermediates in the methanol to hydrocarbons reaction without themselves acting as catalyst poisons as a consequence of their high proton affinities. PMID:21049891

  2. Activity of formylphosphate in the reaction catalyzed by formyltetrahydrofolate synthetase

    SciTech Connect

    Jahansouz, H.; Kofron, J.L.; Smithers, G.W.; Himes, R.H.; Reed, G.H.

    1986-05-01

    Formylphosphate (FP), a putative enzyme-bound intermediate in the reaction catalyzed by N/sup 10/-formylH/sub 4/folate synthetase, was synthesized from formylfluoride and Pi. Measurement of hydrolysis rates by /sup 31/P NMR showed that FP is very unstable with a half-life of 48 min at 20/sup 0/C and pH 7. At pH 7 hydrolysis occurs with O-P bond cleavage as shown by /sup 18/O incorporation from /sup 18/O-H/sub 2/O into Pi. The substrate activity of FP was tested in the reaction catalyzed by N/sup 10/-formylH/sub 4/folate synthetase isolated from Clostridium cylindrosporum. MgATP + H/sub 4/folate + HCOO/sup -/ in equilibrium MgADP + Pi +N/sup 10/-formylH/sub 4/folate FP supports the reaction in both the forward and reverse directions. Thus, N/sup 10/-formylH/sub 4/folate is produced from H/sub 4/-folate and FP but only if ADP is present, and ATP is produced from FP and ADP but only if H/sub 4/folate is present. The requirements for H/sub 4/folate in the synthesis of ATP from ADP and FP and for ADP in the synthesis of N/sup 10/-formylH/sub 4/folate from FP and H/sub 4/folate, are consistent with past kinetic and isotope exchange studies which showed that the reaction proceeds by a sequential mechanism and that all three substrates must be present for any reaction to occur.

  3. The general base in the thymidylate synthase catalyzed proton abstraction.

    PubMed

    Ghosh, Ananda K; Islam, Zahidul; Krueger, Jonathan; Abeysinghe, Thelma; Kohen, Amnon

    2015-12-14

    The enzyme thymidylate synthase (TSase), an important chemotherapeutic drug target, catalyzes the formation of 2'-deoxythymidine-5'-monophosphate (dTMP), a precursor of one of the DNA building blocks. TSase catalyzes a multi-step mechanism that includes the abstraction of a proton from the C5 of the substrate 2'-deoxyuridine-5'-monophosphate (dUMP). Previous studies on ecTSase proposed that an active-site residue, Y94 serves the role of the general base abstracting this proton. However, since Y94 is neither very basic, nor connected to basic residues, nor located close enough to the pyrimidine proton to be abstracted, the actual identity of this base remains enigmatic. Based on crystal structures, an alternative hypothesis is that the nearest potential proton-acceptor of C5 of dUMP is a water molecule that is part of a hydrogen bond (H-bond) network comprised of several water molecules and several protein residues including H147, E58, N177, and Y94. Here, we examine the role of the residue Y94 in the proton abstraction step by removing its hydroxyl group (Y94F mutant). We investigated the effect of the mutation on the temperature dependence of intrinsic kinetic isotope effects (KIEs) and found that these KIEs are more temperature dependent than those of the wild-type enzyme (WT). These results suggest that the phenolic -OH of Y94 is a component of the transition state for the proton abstraction step. The findings further support the hypothesis that no single functional group is the general base, but a network of bases and hydroxyls (from water molecules and tyrosine) sharing H-bonds across the active site can serve the role of the general base to remove the pyrimidine proton.

  4. Metal-catalyzed protein tyrosine nitration in biological systems.

    PubMed

    Campolo, Nicolás; Bartesaghi, Silvina; Radi, Rafael

    2014-11-01

    Protein tyrosine nitration is an oxidative postranslational modification that can affect protein structure and function. It is mediated in vivo by the production of nitric oxide-derived reactive nitrogen species (RNS), including peroxynitrite (ONOO(-)) and nitrogen dioxide ((•)NO₂). Redox-active transition metals such as iron (Fe), copper (Cu), and manganese (Mn) can actively participate in the processes of tyrosine nitration in biological systems, as they catalyze the production of both reactive oxygen species and RNS, enhance nitration yields and provide site-specificity to this process. Early after the discovery that protein tyrosine nitration can occur under biologically relevant conditions, it was shown that some low molecular weight transition-metal centers and metalloproteins could promote peroxynitrite-dependent nitration. Later studies showed that nitration could be achieved by peroxynitrite-independent routes as well, depending on the transition metal-catalyzed oxidation of nitrite (NO₂(-)) to (•)NO₂ in the presence of hydrogen peroxide. Processes like these can be achieved either by hemeperoxidase-dependent reactions or by ferrous and cuprous ions through Fenton-type chemistry. Besides the in vitro evidence, there are now several in vivo studies that support the close relationship between transition metal levels and protein tyrosine nitration. So, the contribution of transition metals to the levels of tyrosine nitrated proteins observed under basal conditions and, specially, in disease states related with high levels of these metal ions, seems to be quite clear. Altogether, current evidence unambiguously supports a central role of transition metals in determining the extent and selectivity of protein tyrosine nitration mediated both by peroxynitrite-dependent and independent mechanisms.

  5. Modern Transition-Metal-Catalyzed Carbon-Halogen Bond Formation.

    PubMed

    Petrone, David A; Ye, Juntao; Lautens, Mark

    2016-07-27

    The high utility of halogenated organic compounds has prompted the development of a vast number of transformations which install the carbon-halogen motif. Traditional routes to these building blocks have commonly involved multiple steps, harsh reaction conditions, and the use of stoichiometric and/or toxic reagents. In this regard, using transition metals to catalyze the synthesis of organohalides has become a mature field in itself, and applying these technologies has allowed for a decrease in the production of waste, higher levels of regio- and stereoselectivity, and the ability to produce enantioenriched target compounds. Furthermore, transition metals offer the distinct advantage of possessing a diverse spectrum of mechanistic possibilities which translate to the capability to apply new substrate classes and afford novel and difficult-to-access structures. This Review provides comprehensive coverage of modern transition metal-catalyzed syntheses of organohalides via a diverse array of mechanisms. Attention is given to the seminal stoichiometric organometallic studies which led to the corresponding catalytic processes being realized. By breaking this field down into the synthesis of aryl, vinyl, and alkyl halides, it becomes clear which methods have surfaced as most favored for each individual class. In general, a pronounced shift toward the use of C-H bonds as key functional groups, in addition to methods which proceed by catalytic, radical-based mechanisms has occurred. Although always evolving, this field appears to be heading in the direction of using starting materials with a significantly lower degree of prefunctionalization in addition to less expensive and abundant metal catalysts. PMID:27341176

  6. Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells.

    PubMed

    Rabaey, Korneel; Read, Suzanne T; Clauwaert, Peter; Freguia, Stefano; Bond, Philip L; Blackall, Linda L; Keller, Jurg

    2008-05-01

    Microbial fuel cells (MFCs) have the potential to combine wastewater treatment efficiency with energetic efficiency. One of the major impediments to MFC implementation is the operation of the cathode compartment, as it employs environmentally unfriendly catalysts such as platinum. As recently shown, bacteria can facilitate sustainable and cost-effective cathode catalysis for nitrate and also oxygen. Here we describe a carbon cathode open to the air, on which attached bacteria catalyzed oxygen reduction. The bacteria present were able to reduce oxygen as the ultimate electron acceptor using electrons provided by the solid-phase cathode. Current densities of up to 2.2 A m(-2) cathode projected surface were obtained (0.303+/-0.017 W m(-2), 15 W m(-3) total reactor volume). The cathodic microbial community was dominated by Sphingobacterium, Acinetobacter and Acidovorax sp., according to 16S rRNA gene clone library analysis. Isolates of Sphingobacterium sp. and Acinetobacter sp. were obtained using H(2)/O(2) mixtures. Some of the pure culture isolates obtained from the cathode showed an increase in the power output of up to three-fold compared to a non-inoculated control, that is, from 0.015+/-0.001 to 0.049+/-0.025 W m(-2) cathode projected surface. The strong decrease in activation losses indicates that bacteria function as true catalysts for oxygen reduction. Owing to the high overpotential for non-catalyzed reduction, oxygen is only to a limited extent competitive toward the electron donor, that is, the cathode. Further research to refine the operational parameters and increase the current density by modifying the electrode surface and elucidating the bacterial metabolism is warranted. PMID:18288216

  7. Comparison of iron-catalyzed DNA and lipid oxidation.

    PubMed

    Djuric, Z; Potter, D W; Taffe, B G; Strasburg, G M

    2001-01-01

    Lipid and DNA oxidation catalyzed by iron(II) were compared in HEPES and phosphate buffers. Lipid peroxidation was examined in a sensitive liposome system constructed with a fluorescent probe that allowed us to examine the effects of both low and high iron concentrations. With liposomes made from synthetic 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine or from rat liver microsomal lipid, lipid peroxidation increased with iron concentration up to the range of 10--20 microM iron(II), but then rates decreased with further increases in iron concentration. This may be due to the limited amount of lipid peroxides available in liposomes for oxidation of iron(II) to generate equimolar iron(III), which is thought to be important for the initation of lipid peroxidation. Addition of hydrogen peroxide to incubations with 1--10 microM iron(II) decreased rates of lipid peroxidation, whereas addition of hydrogen peroxide to incubations with higher iron concentrations increased rates of lipid peroxidation. Thus, in this liposome system, sufficient peroxide from either within the lipid or from exogenous sources must be present to generate equimolar iron(II) and iron(III). With iron-catalyzed DNA oxidation, hydrogen peroxide always stimulated product formation. Phosphate buffer, which chelates iron but still allows for generation of hydroxyl radicals, inhibited lipid peroxidation but not DNA oxidation. HEPES buffer, which scavenges hydroxyl radicals, inhibited DNA oxidation, whereas lipid peroxidation was unaffected since presumably iron(II) and iron(III) were still available for reaction with liposomes in HEPES buffer. PMID:11284053

  8. Multimethylation of Rickettsia OmpB Catalyzed by Lysine Methyltransferases*

    PubMed Central

    Abeykoon, Amila; Wang, Guanghui; Chao, Chien-Chung; Chock, P. Boon; Gucek, Marjan; Ching, Wei-Mei; Yang, David C. H.

    2014-01-01

    Methylation of rickettsial OmpB (outer membrane protein B) has been implicated in bacterial virulence. Rickettsial methyltransferases RP789 and RP027-028 are the first biochemically characterized methyltransferases to catalyze methylation of outer membrane protein (OMP). Methylation in OMP remains poorly understood. Using semiquantitative integrated liquid chromatography-tandem mass spectroscopy, we characterize methylation of (i) recombinantly expressed fragments of Rickettsia typhi OmpB exposed in vitro to trimethyltransferases of Rickettsia prowazekii RP027-028 and of R. typhi RT0101 and to monomethyltransferases of R. prowazekii RP789 and of R. typhi RT0776, and (ii) native OmpBs purified from R. typhi and R. prowazekii strains Breinl, RP22, and Madrid E. We found that in vitro trimethylation occurs at relatively specific locations in OmpB with consensus motifs, KX(G/A/V/I)N and KT(I/L/F), whereas monomethylation is pervasive throughout OmpB. Native OmpB from virulent R. typhi contains mono- and trimethyllysines at locations well correlated with methylation in recombinant OmpB catalyzed by methyltransferases in vitro. Native OmpBs from highly virulent R. prowazekii strains Breinl and RP22 contain multiple clusters of trimethyllysine in contrast to a single cluster in OmpB from mildly virulent R. typhi. Furthermore, OmpB from the avirulent strain Madrid E contains mostly monomethyllysine and no trimethyllysine. The native OmpB from Madrid E was minimally trimethylated by RT0101 or RP027-028, consistent with a processive mechanism of trimethylation. This study provides the first in-depth characterization of methylation of an OMP at the molecular level and may lead to uncovering the link between OmpB methylation and rickettsial virulence. PMID:24497633

  9. Metal ion-catalyzed nucleic acid alkylation and fragmentation.

    PubMed

    Browne, Kenneth A

    2002-07-10

    Nucleic acid microarrays are a growing technology in which high densities of known sequences are attached to a substrate in known locations (addressed). Hybridization of complementary sequences leads to a detectable signal such as an electrical impulse or fluorescence. This combination of sequence addressing, hybridization, and detection increases the efficiency of a variety of genomic disciplines including those that profile genetic expression, search for single nucleotide polymorphisms (SNPs), or diagnose infectious diseases by sequencing portions of microbial or viral genomes. Incorporation of reporter molecules into nucleic acids is essential for the sensitive detection of minute amounts of nucleic acids on most types of microarrays. Furthermore, polynucleic acid size reduction increases hybridization because of increased diffusion rates and decreased competing secondary structure of the target nucleic acids. Typically, these reactions would be performed as two separate processes. An improvement to past techniques, termed labeling-during-cleavage (LDC), is presented in which DNA or RNA is alkylated with fluorescent tags and fragmented in the same reaction mixture. In model studies with 26 nucleotide-long RNA and DNA oligomers using ultraviolet/visible and fluorescence spectroscopies as well as high-pressure liquid chromatography and mass spectrometry, addition of both alkylating agents (5-(bromomethyl)fluorescein, 5- or 6-iodoacetamidofluorescein) and select metal ions (of 21 tested) to nucleic acids in aqueous solutions was critical for significant increases in both labeling and fragmentation, with >or=100-fold increases in alkylation possible relative to metal ion-free reactions. Lanthanide series metal ions, Pb(2+), and Zn(2+) were the most reactive ions in terms of catalyzing alkylation and fragmentation. While oligonucleotides were particularly susceptible to fragmentation at sites containing phosphorothioate moieties, labeling and cleavage reactions

  10. Rh(I)-Catalyzed Direct Arylation of Pyridines and Quinolines

    SciTech Connect

    Berman, Ashley; Lewis, Jared; Bergman, Robert; Ellman, Jonathan

    2008-07-29

    The pyridine and quinoline nuclei are privileged scaffolds that occupy a central role in many medicinally relevant compounds. Consequently, methods for their expeditious functionalization are of immediate interest. However, despite the immense importance of transition-metal catalyzed cross-coupling for the functionalization of aromatic scaffolds, general solutions for coupling 2-pyridyl organometallics with aryl halides have only recently been presented. Direct arylation at the ortho position of pyridine would constitute an even more efficient approach because it eliminates the need for the stoichiometric preparation and isolation of 2-pyridyl organometallics. Progress towards this goal has been achieved by activation of the pyridine nucleus for arylation via conversion to the corresponding pyridine N-oxide or N-iminopyridinium ylide. However, this approach necessitates two additional steps: activation of the pyridine or quinoline starting material, and then unmasking the arylated product. The use of pyridines directly would clearly represent the ideal situation both in terms of cost and simplicity. We now wish to document our efforts in this vein, culminating in an operationally simple Rh(I)-catalyzed direct arylation of pyridines and quinolines. We recently developed an electron-rich Rh(I) system for catalytic alkylation at the ortho position of pyridines and quinolines with alkenes. Therefore, we initially focused our attention on the use of similarly electron-rich Rh(I) catalysts for the proposed direct arylation. After screening an array of electron-rich phosphine ligands and Rh(I) salts, only marginal yields (<20%) of the desired product were obtained. Much more efficient was an electron-poor Rh(I) system with [RhCl(CO){sub 2}]{sub 2} as precatalyst (Table 1). For the direct arylation of picoline with 3,5-dimethyl-bromobenzene, addition of P(OiPr){sub 3} afforded a promising 40% yield of the cross coupled product 1a (entry 1). The exclusion of phosphite

  11. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.

    PubMed

    Chelucci, Giorgio; Baldino, Salvatore; Baratta, Walter

    2015-02-17

    CONSPECTUS: A current issue in metal-catalyzed reactions is the search for highly efficient transition-metal complexes affording high productivity and selectivity in a variety of processes. Moreover, there is also a great interest in multitasking catalysts that are able to efficiently promote different organic transformations by careful switching of the reaction parameters, such as temperature, solvent, and cocatalyst. In this context, osmium complexes have shown the ability to catalyze efficiently different types of reactions involving hydrogen, proving at the same time high thermal stability and simple synthesis. In the catalytic reduction of C═X (X = O, N) bonds by both hydrogenation (HY) and transfer hydrogenation (TH) reactions, the most interest has been focused on homogeneous systems based on rhodium, iridium, and in particular ruthenium catalysts, which have proved to catalyze chemo- and stereoselective hydrogenations with remarkable efficiency. By contrast, osmium catalysts have received much less attention because they are considered less active on account of their slower ligand exchange kinetics. Thus, this area remained almost neglected until recent studies refuted these prejudices. The aim of this Account is to highlight the impressive developments achieved over the past few years by our and other groups on the design of new classes of osmium complexes and their applications in homogeneous catalytic reactions involving the hydrogenation of carbon-oxygen and carbon-nitrogen bonds by both HY and TH reactions as well as in alcohol deydrogenation (DHY) reactions. The work described in this Account demonstrates that osmium complexes are emerging as powerful catalysts for asymmetric and non-asymmetric syntheses, showing a remarkably high catalytic activity in HY and TH reactions of ketones, aldehydes, imines, and esters as well in DHY reactions of alcohols. Thus, for instance, the introduction of ligands with an NH function, possibly in combination with a

  12. High power density yeast catalyzed microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  13. Fundamentals of heterogeneously catalyzed reactions of environmental importance

    NASA Astrophysics Data System (ADS)

    Deshmukh, Subodh Shrinivas

    Reaction kinetics and spectroscopic characterization are valuable tools for understanding heterogeneously catalyzed chemical reactions. The objective of this work was to apply the tools of catalysis and reaction kinetics to understand the fundamentals of chemical surface phenomena for environmentally important reactions. This thesis presents our work in two areas of catalytic reactions for pollution abatement---"chlorofluorocarbon (CFC) treatment chemistry" and "sulfur-tolerant auto exhaust catalysts." The ozone depletion potential of CFCs has resulted in a great interest in the academic and industrial communities to find replacements for these chemicals. Hydrofluorocarbons (HFCs) are amongst the best "environmentally benign" candidates for CFC replacement. One selective pathway for the synthesis of HFCs is via the hydrodechlorination of CFCs. This route has the added benefit of destroying harmful CFC stockpiles and converting them into more useful chemicals. The work in Chapter 3 shows that parallel hydrogenation pathways starting from a common CF2 species can explain the formation of the products CH2F2 and CH4 for the hydrodechlorination of CF2Cl2 over Pd/AlF3. Transient kinetics experiments using C2H4 as a trapping agent for surface carbenes have provided evidence for the presence of CH2 species on the catalyst surface during this reaction. The absence of either coupling products or trapped products containing F suggests that the rate of hydrogenation of surface CF2 species is faster than that of surface CH2 species. Another important class of CFC reactions is oxide-catalyzed disproportionations to control the number and position of halogen atoms in the CFC/HFC molecule. Chapter 4 combines the use of reaction kinetics tools and spectroscopic characterization techniques to understand the adsorption and reaction of CF3CFCl 2 over gamma-Al2O3. The CF3CFCl 2 reaction over gamma-Al2O3 lead to a modification of the gamma-Al2O3 surface due to fluorination and the

  14. Mechanistic insights into nickamine-catalyzed alkyl-alkyl cross-coupling reactions.

    PubMed

    Breitenfeld, Jan; Hu, Xile

    2014-01-01

    Within the last decades the transition metal-catalyzed cross-coupling of non-activated alkyl halides has significantly progressed. Within the context of alkyl-alkyl cross-coupling, first row transition metals spanning from iron, over cobalt, nickel, to copper have been successfully applied to catalyze this difficult reaction. The mechanistic understanding of these reactions is still in its infancy. Herein we outline our latest mechanistic studies that explain the efficiency of nickel, in particular nickamine-catalyzed alkyl-alkyl cross-coupling reactions.

  15. Palladium-Catalyzed Intramolecular Carbene Insertion into C(sp(3) )-H Bonds.

    PubMed

    Solé, Daniel; Mariani, Francesco; Bennasar, M-Lluïsa; Fernández, Israel

    2016-05-23

    A palladium-catalyzed carbene insertion into C(sp(3) )-H bonds leading to pyrrolidines was developed. The coupling reaction can be catalyzed by both Pd(0) and Pd(II) , is regioselective, and shows a broad functional group tolerance. This reaction is the first example of palladium-catalyzed C(sp(3) )-C(sp(3) ) bond assembly starting from diazocarbonyl compounds. DFT calculations revealed that this direct C(sp(3) )-H bond functionalization reaction involves an unprecedented concerted metalation-deprotonation step.

  16. Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar

    DOE PAGES

    Bhalla, Aditya; Bansal, Namita; Stoklosa, Ryan J.; Fountain, Mackenzie; Ralph, John; Hodge, David B.; Hegg, Eric L.

    2016-02-09

    Background: Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H2O2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment. Results: Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H2O2 was added batch-wise over the course of 10more » h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H2O2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H2O2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin from untreated poplar. In conclusion: This study demonstrated that the fed

  17. Flame Synthesis Used to Create Metal-Catalyzed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.

    2001-01-01

    Metal-catalyzed carbon nanotubes are highly ordered carbon structures of nanoscale dimensions. They may be thought of as hollow cylinders whose walls are formed by single atomic layers of graphite. Such cylinders may be composed of many nested, concentric atomic layers of carbon or only a single layer, the latter forming a single-walled carbon nanotube. This article reports unique results using a flame for their synthesis. Only recently were carbon nanotubes discovered within an arc discharge and recognized as fullerene derivatives. Today metal-catalyzed carbon nanotubes are of great interest for many reasons. They can be used as supports for the metal catalysts like those found in catalytic converters. Open-ended nanotubes are highly desirable because they can be filled by other elements, metals or gases, for battery and fuel cell applications. Because of their highly crystalline structure, they are significantly stronger than the commercial carbon fibers that are currently available (10 times as strong as steel but possessing one-sixth of the weight). This property makes them highly desirable for strengthening polymer and ceramic composite materials. Current methods of synthesizing carbon nanotubes include thermal pyrolysis of organometallics, laser ablation of metal targets within hydrocarbon atmospheres at high temperatures, and arc discharges. Each of these methods is costly, and it is unclear if they can be scaled for the commercial synthesis of carbon nanotubes. In contrast, flame synthesis is an economical means of bulk synthesis of a variety of aerosol materials such as carbon black. Flame synthesis of carbon nanotubes could potentially realize an economy of scale that would enable their use in common structural materials such as car-body panels. The top figure is a transmission electron micrograph of a multiwalled carbon nanotube. The image shows a cross section of the atomic structure of the nanotube. The dark lines are individual atomic layer planes of

  18. Bonding by Hydroxide-Catalyzed Hydration and Dehydration

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung

    2008-01-01

    A simple, inexpensive method for bonding solid objects exploits hydroxide-catalyzed hydration and dehydration to form silicate-like networks in thin surface and interfacial layers between the objects. The method can be practiced at room temperature or over a wide range of temperatures. The method was developed especially to enable the formation of precise, reliable bonds between precise optical components. The bonds thus formed exhibit the precision and transparency of bonds formed by the conventional optical-contact method and the strength and reliability of high-temperature frit bonds. The method also lends itself to numerous non-optical applications in which there are requirements for precise bonds and/or requirements for bonds, whether precise or imprecise, that can reliably withstand severe environmental conditions. Categories of such non-optical applications include forming composite materials, coating substrates, forming laminate structures, and preparing objects of defined geometry and composition. The method is applicable to materials that either (1) can form silicate-like networks in the sense that they have silicate-like molecular structures that are extensible into silicate-like networks or (2) can be chemically linked to silicate-like networks by means of hydroxide-catalyzed hydration and dehydration. When hydrated, a material of either type features surface hydroxyl (-OH) groups. In this method, a silicate-like network that bonds two substrates can be formed either by a bonding material alone or by the bonding material together with material from either or both of the substrates. Typically, an aqueous hydroxide bonding solution is dispensed and allowed to flow between the mating surfaces by capillary action. If the surface figures of the substrates do not match precisely, bonding could be improved by including a filling material in the bonding solution. Preferably, the filling material should include at least one ingredient that can be hydrated to

  19. Lipase catalyzed esterification of glycidol in organic solvents

    SciTech Connect

    Martins, J.F.; Nunes da Ponte, M.; Barreiros, S. . Centro de Tecnologia Quimica e Biologica)

    1993-08-05

    The authors studied the resolution of racemic glycidol through esterification with butyric acid catalyzed by porcine pancreatic lipase in organic media. A screening of seven solvents (log P values between 0.49 and 3.0, P being the n-octanol-water partition coefficient of the solvent) showed that neither log P nor the logarithm of the molar solubility of water in the solvent provides good correlations between enantioselectivity and the properties of the organic media. Chloroform was one of the best solvents as regards the enantiometic purity (e.p.) of the ester produced. In this solvent, the optimum temperature for the reaction was determined to be 35C. The enzyme exhibited maximum activity at a water content of 13 [plus minus] 2% (w/w). The enantiomeric purity obtained was 83 [plus minus] 2% of (S)-glycidol butyrate and did not depend on the alcohol concentration or the enzyme water content for values of these parameters up to 200 mM and 25% (w/w), respectively. The reaction was found to follow a BiBi mechanism.

  20. Lipase catalyzed esterification of glycidol in organic solvents.

    PubMed

    Martins, J F; Da Ponte, M N; Barreiros, S

    1993-08-01

    We studied the resolution of racemic glycidol through esterification with butyric acid catalyzed by porcine pancreatic lipase in organic media. A screening of seven solvents (log P values between 0.49 and 3.0, P being the n-octanol-water partition coefficient of the solvent) showed that neither log P nor the logarithm of the molar solubility of water in the solvent provides good correlations between enantioselectivity and the properties of the organic media. Chloroform was one of the best solvents as regards the enantiomeric purity (e. p.) of the ester produced. In this solvent, the optimum temperature for the reaction was determined to be 35 degrees C. The enzyme exhibited maximum activity at a water content of 13 +/- 2% (w/w). The enantiomeric purity obtained was 83 +/- 2% of (S)-glycidyl butyrate and did not depend on the alcohol concentration or the enzyme water content for values of these parameters up to 200 mM and 25% (w/w), respectively. The reaction was found to follow a BiBi mechanism.

  1. Optimized butyl butyrate synthesis catalyzed by Thermomyces lanuginosus lipase.

    PubMed

    Martins, Andréa B; Friedrich, John L R; Rodrigues, Rafael C; Garcia-Galan, Cristina; Fernandez-Lafuente, Roberto; Ayub, Marco A Z

    2013-01-01

    Butyl butyrate is an ester present in pineapple flavor, which is very important for the food and beverages industries. In this work, the optimization of the reaction of butyl butyrate synthesis catalyzed by the immobilized lipase Lipozyme TL-IM was performed. n-Hexane was selected as the most appropriate solvent. Other reaction parameters such as temperature, substrate molar ratio, biocatalyst content and added water, and their responses measured as yield, were evaluated using a fractional factorial design, followed by a central composite design (CCD) and response surface methodology. In the fractional design 2(4-1) , the four variables were tested and temperature and biocatalyst content were statistically significant and then used for optimization on CCD. The optimal conditions for butyl butyrate synthesis were found to be 48°C; substrate molar ratio 3:1 (butanol:butyric acid); biocatalyst content of 40% of acid mass. Under these conditions, over 90% of yield was obtained in 2 h. Enzyme reuse was tested by washing the biocatalyst with n-hexane or by direct reuse. The direct reuse produced a rapid decrease on enzyme activity, while washing with n-hexane allowed reusing the enzyme for five reactions cycles keeping approximately 85% of its activity.

  2. A Personal Adventure in Muon-Catalyzed Fusion

    NASA Astrophysics Data System (ADS)

    Jackson, John David

    2010-03-01

    Luis Alvarez and colleagues discovered muon-catalyzed fusion of hydrogen isotopes by chance in late 1956. On sabbatical leave at Princeton University during that year, I read the first public announcement of the discovery at the end of December in that well-known scientific journal, The New York Times. A nuclear theorist by prior training, I was intrigued enough in the phenomenon to begin some calculations. I describe my work here, my interaction with Alvarez, and a summary of the surprising developments, both before and after Alvarez’s discovery. The rare proton-deuteron ( p-d) fusion events in Alvarez’s liquid-hydrogen bubble chamber occurred only because of the natural presence of a tiny amount of deuterium (heavy hydrogen). Additionally, the fusion rate, once the proton-deuteron-muon ( pdμ - ) molecular ion has been formed, is sufficiently slow that only rarely does an additional catalytic act occur. A far different situation occurs for muons stopping in pure deuterium or a deuterium-tritium ( d- t) mixture where the fusion rates are many orders of magnitude larger and the molecular-formation rates are large compared to the muon’s decay rate. The intricate interplay of atomic, molecular, and nuclear science, together with highly fortuitous accidents in the molecular dynamics and the hope of practical application, breathed life into a seeming curiosity. A small but vigorous worldwide community has explored these myriad phenomena in the past 50 years.

  3. Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Vetter, Tiffany A.; Colombo, D. Philip, Jr.

    2003-07-01

    CIBA Vision Corporation markets a contact lens cleaning system that consists of an AOSEPT disinfectant solution and an AOSEPT lens cup. The disinfectant is a buffered 3.0% m/v hydrogen peroxide solution and the cup includes a platinum-coated AOSEPT disc. The hydrogen peroxide disinfects by killing bacteria, fungi, and viruses found on the contact lenses. Because the concentration of hydrogen peroxide needed to disinfect is irritating to eyes, the hydrogen peroxide needs to be neutralized, or decomposed, before the contact lenses can be used again. A general chemistry experiment is described where the kinetics of the catalyzed decomposition of the hydrogen peroxide are studied by measuring the amount of oxygen generated as a function of time. The order of the reaction with respect to the hydrogen peroxide, the rate constant, and the energy of activation are determined. The integrated rate law is used to determine the time required to decompose the hydrogen peroxide to a concentration that is safe for eyes.

  4. Clay-catalyzed reactions of coagulant polymers during water chlorination

    USGS Publications Warehouse

    Lee, J.-F.; Liao, P.-M.; Lee, C.-K.; Chao, H.-P.; Peng, C.-L.; Chiou, C.T.

    2004-01-01

    The influence of suspended clay/solid particles on organic-coagulant reactions during water chlorination was investigated by analyses of total product formation potential (TPFP) and disinfection by-product (DBP) distribution as a function of exchanged clay cation, coagulant organic polymer, and reaction time. Montmorillonite clays appeared to act as a catalytic center where the reaction between adsorbed polymer and disinfectant (chlorine) was mediated closely by the exchanged clay cation. The transition-metal cations in clays catalyzed more effectively than other cations the reactions between a coagulant polymer and chlorine, forming a large number of volatile DBPs. The relative catalytic effects of clays/solids followed the order Ti-Mont > Fe-Mont > Cu-Mont > Mn-Mont > Ca-Mont > Na-Mont > quartz > talc. The effects of coagulant polymers on TPFP follow the order nonionic polymer > anionic polymer > cationic polymer. The catalytic role of the clay cation was further confirmed by the observed inhibition in DBP formation when strong chelating agents (o-phenanthroline and ethylenediamine) were added to the clay suspension. Moreover, in the presence of clays, total DBPs increased appreciably when either the reaction time or the amount of the added clay or coagulant polymer increased. For volatile DBPs, the formation of halogenated methanes was usually time-dependent, with chloroform and dichloromethane showing the greatest dependence. ?? 2003 Elsevier Inc. All rights reserved.

  5. Carbon-catalyzed gasification of organic feedstocks in supercritical water

    SciTech Connect

    Xu, X.; Matsumura, Y.; Stenberg, J.; Antal, M.J. Jr.

    1996-08-01

    Spruce wood charcoal, macadamia shell charcoal, coal activated carbon, and coconut shell activated carbon catalyze the gasification of organic compounds in supercritical water. Feedstocks studied in this paper include glycerol, glucose, cellobiose, whole biomass feedstocks (depithed bagasse liquid extract and sewage sludge), and representative Department of Defense (DoD) wastes (methanol, methyl ethyl ketone, ethylene glycol, acetic acid, and phenol). The effects of temperature, pressure, reactant concentration, weight hourly space velocity, and the type of catalyst on the gasification of glucose are reported. Complete conversion of glucose (22% by weight in water) to a hydrogen-rich synthesis gas was realized at a weight hourly space velocity (WHSV) of 22.2 h{sup {minus}1} in supercritical water at 600 C, 34.5 MPa. Complete conversions of the whole biomass feeds were also achieved at the same temperature and pressure. The destruction efficiencies for the representative DoD wastes were also high. Deactivation of the carbon catalyst was observed after 4 h of operation without swirl in the entrance region of the reactor, but the carbon gasification efficiency remained near 100% for more than 6 h when a swirl generator was employed in the entrance of the reactor.

  6. Dephenolization of industrial wastewaters catalyzed by polyphenol oxidase

    SciTech Connect

    Atlow, S.C.; Bonadonna-Aparo, L.; Klibanov, A.M.

    1984-01-01

    A new enzymatic method for the removal of phenols from industrial aqueous effluents has been developed. The method uses the enzyme polyphenol oxidase which oxidizes phenols to the corresponding o-quinones; the latter then undergo a nonenzymatic polymerization to form water-insoluble aggregates. Therefore, the enzyme in effect precipitates phenols from water. Polyphenol oxidase has been found to nearly completely dephenolize solutions of phenol in the concentration range from 0.01 to 1.0 g/L. The enzymatic treatment is effective over a wide range of pH and temperature; a crude preparation of polyphenol oxidase (mushroom extract) is as effective as a purified, commercially obtained version. In addition to phenol itself, polyphenol oxidase is capable of precipitating from water a number of substituted phenols (cresols, chlorophenols, naphthol, etc.). Also, even pollutants which are unreactive towards polyphenol oxidase can be enzymatically coprecipitated with phenol. The polyphenol oxidase treatment has been successfully used to dephenolize two different real industrial wastewater samples, from a plant producing triarylphosphates and from a coke plant. The advantage of the polyphenol oxidase dephenolization over the peroxidase-catalyzed one previously elaborated by the authors is that the former enzyme uses molecular oxygen instead of costly hydrogen peroxide (used by peroxidase) as an oxidant.

  7. Kinetics of acid base catalyzed transesterification of Jatropha curcas oil.

    PubMed

    Jain, Siddharth; Sharma, M P

    2010-10-01

    Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstock for biodiesel production in India. Limited work is reported on the kinetics of transesterification of high free fatty acids containing oil. The present study reports the results of kinetic study of two-step acid base catalyzed transesterification process carried out at an optimum temperature of 65 °C and 50 °C for esterification and transesterification respectively under the optimum methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H₂SO₄ and NaOH. The yield of methyl ester (ME) has been used to study the effect of different parameters. The results indicate that both esterification and transesterification reaction are of first order with reaction rate constant of 0.0031 min⁻¹ and 0.008 min⁻¹ respectively. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained.

  8. ATP-dependent nucleosome unwrapping catalyzed by human RAD51.

    PubMed

    North, Justin A; Amunugama, Ravindra; Klajner, Marcelina; Bruns, Aaron N; Poirier, Michael G; Fishel, Richard

    2013-08-01

    Double-strand breaks (DSB) occur in chromatin following replication fork collapse and chemical or physical damage [Symington and Gautier (Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 2011;45:247-271.)] and may be repaired by homologous recombination (HR) and non-homologous end-joining. Nucleosomes are the fundamental units of chromatin and must be remodeled during DSB repair by HR [Andrews and Luger (Nucleosome structure(s) and stability: variations on a theme. Annu. Rev. Biophys. 2011;40:99-117.)]. Physical initiation of HR requires RAD51, which forms a nucleoprotein filament (NPF) that catalyzes homologous pairing and strand exchange (recombinase) between DNAs that ultimately bridges the DSB gap [San Filippo, Sung and Klein. (Mechanism of eukaryotic HR. Annu. Rev. Biochem. 2008;77:229-257.)]. RAD51 forms an NPF on single-stranded DNA and double-stranded DNA (dsDNA). Although the single-stranded DNA NPF is essential for recombinase initiation, the role of the dsDNA NPF is less clear. Here, we demonstrate that the human RAD51 (HsRAD51) dsDNA NPF disassembles nucleosomes by unwrapping the DNA from the core histones. HsRAD51 that has been constitutively or biochemically activated for recombinase functions displays significantly reduced nucleosome disassembly activity. These results suggest that HsRAD51 can perform ATP hydrolysis-dependent nucleosome disassembly in addition to its recombinase functions. PMID:23757189

  9. Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer

    PubMed Central

    Dzeja, Petras P.; Bortolon, Ryan; Perez-Terzic, Carmen; Holmuhamedov, Ekshon L.; Terzic, Andre

    2002-01-01

    Exchange of information between the nucleus and cytosol depends on the metabolic state of the cell, yet the energy-supply pathways to the nuclear compartment are unknown. Here, the energetics of nucleocytoplasmic communication was determined by imaging import of a constitutive nuclear protein histone H1. Translocation of H1 through nuclear pores in cardiac cells relied on ATP supplied by mitochondrial oxidative phosphorylation, but not by glycolysis. Although mitochondria clustered around the nucleus, reducing the distance for energy transfer, simple nucleotide diffusion was insufficient to meet the energetic demands of nuclear transport. Rather, the integrated phosphotransfer network was required for delivery of high-energy phosphoryls from mitochondria to the nucleus. In neonatal cardiomyocytes with low creatine kinase activity, inhibition of adenylate kinase-catalyzed phosphotransfer abolished nuclear import. With deficient adenylate kinase, nucleoside diphosphate kinase, which secures phosphoryl exchange between ATP and GTP, was unable to sustain nuclear import. Up-regulation of creatine kinase phosphotransfer, to mimic metabolic conditions of adult cardiac cells, rescued H1 import, suggesting a developmental plasticity of the cellular energetic system. Thus, mitochondrial oxidative phosphorylation coupled with phosphotransfer relays provides an efficient energetic unit in support of nuclear transport. PMID:12119406

  10. Remote catalyzation for direct formation of graphene layers on oxides.

    PubMed

    Teng, Po-Yuan; Lu, Chun-Chieh; Akiyama-Hasegawa, Kotone; Lin, Yung-Chang; Yeh, Chao-Hui; Suenaga, Kazu; Chiu, Po-Wen

    2012-03-14

    Direct deposition of high-quality graphene layers on insulating substrates such as SiO(2) paves the way toward the development of graphene-based high-speed electronics. Here, we describe a novel growth technique that enables the direct deposition of graphene layers on SiO(2) with crystalline quality potentially comparable to graphene grown on Cu foils using chemical vapor deposition (CVD). Rather than using Cu foils as substrates, our approach uses them to provide subliming Cu atoms in the CVD process. The prime feature of the proposed technique is remote catalyzation using floating Cu and H atoms for the decomposition of hydrocarbons. This allows for the direct graphitization of carbon radicals on oxide surfaces, forming isolated low-defect graphene layers without the need for postgrowth etching or evaporation of the metal catalyst. The defect density of the resulting graphene layers can be significantly reduced by tuning growth parameters such as the gas ratios, Cu surface areas, and substrate-to-Cu distance. Under optimized conditions, graphene layers with nondiscernible Raman D peaks can be obtained when predeposited graphite flakes are used as seeds for extended growth. PMID:22332771

  11. Broadening the scope of glycosyltransferase-catalyzed sugar nucleotide synthesis

    PubMed Central

    Gantt, Richard W.; Peltier-Pain, Pauline; Singh, Shanteri; Zhou, Maoquan; Thorson, Jon S.

    2013-01-01

    We described the integration of the general reversibility of glycosyltransferase-catalyzed reactions, artificial glycosyl donors, and a high throughput colorimetric screen to enable the engineering of glycosyltransferases for combinatorial sugar nucleotide synthesis. The best engineered catalyst from this study, the OleD Loki variant, contained the mutations P67T/I112P/T113M/S132F/A242I compared with the OleD wild-type sequence. Evaluated against the parental sequence OleD TDP16 variant used for screening, the OleD Loki variant displayed maximum improvements in kcat/Km of >400-fold and >15-fold for formation of NDP–glucoses and UDP–sugars, respectively. This OleD Loki variant also demonstrated efficient turnover with five variant NDP acceptors and six variant 2-chloro-4-nitrophenyl glycoside donors to produce 30 distinct NDP–sugars. This study highlights a convenient strategy to rapidly optimize glycosyltransferase catalysts for the synthesis of complex sugar nucleotides and the practical synthesis of a unique set of sugar nucleotides. PMID:23610417

  12. MEMS-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition

    NASA Astrophysics Data System (ADS)

    Hitt, Darren L.; Zakrzwski, Charles M.; Thomas, Michael A.

    2001-12-01

    Microelectromechanical systems (MEMS) techniques offer great potential in satisfying the mission requirements for the next generation of miniaturized spacecraft being designed by NASA and Department of Defense agencies. More commonly referred to as `nanosats', these spacecraft feature masses in the range of 10-100 kg and therefore have unique propulsion requirements. The propulsion systems must be capable of providing extremely low levels of thrust and impulse while also satisfying stringent demands on size, mass, power consumption and cost. We begin with an overview of micropropulsion requirements and some current MEMS-based strategies being developed to meet these needs. The remainder of the paper focuses on the progress being made at NASA Goddard Space Flight Center toward the development of a prototype monopropellant MEMS thruster which uses the catalyzed chemical decomposition of high-concentration hydrogen peroxide as a propulsion mechanism. The products of decomposition are delivered to a microscale converging/diverging supersonic nozzle, which produces the thrust vector; the targeted thrust level is approximately 500 µN with a specific impulse of 140-180 s. Macroscale hydrogen peroxide thrusters have been used for satellite propulsion for decades; however, the implementation of traditional thruster designs on the MEMS scale has uncovered new challenges in fabrication, materials compatibility, and combustion and hydrodynamic modeling. A summary of the achievements of the project to date is given, as is a discussion of remaining challenges and future prospects.

  13. Kinetic modeling of Pt-catalyzed glycolaldehyde decomposition to syngas.

    PubMed

    Salciccioli, Michael; Vlachos, Dionisios G

    2012-05-10

    Fundamental knowledge of the elementary reaction mechanisms involved in oxygenate decomposition on transition metal catalysts can facilitate the optimization of future catalyst and reactor systems for biomass upgrade to fuels and chemicals. Pt-catalyzed decomposition of glycolaldehyde, as the smallest oxygenate with alcohol and aldehyde functionality, was studied via a DFT-based microkinetic model. It was found that two decomposition pathways exist. Under conditions of low hydrogen surface coverage, the initial C-H bond breaking reaction to HOCH(2)CO* is prevalent, while under conditions of high hydrogen coverage, the rather unexpected O-H bond forming reaction to HOCH(2)CHOH* is more active (subsequent decomposition is energetically favorable from HOCH(2)CHOH*). Our results indicate the possibility that (de)hydrogenation chemistry is rate-controlling in many small polyoxygenate biomass derivatives, and suitable catalysts are needed. Finally, DFT was used to understand the increased decomposition activity observed on the surface segregated Ni-Pt-Pt bimetallic catalyst. It was found that the initial O-H bond breaking of glycolaldehyde to OCH(2)CHO* has an activation barrier of just 0.21 eV. This barrier is lower than that of any glycolaldehyde consuming reaction on Pt. These computational predictions are in qualitative agreement with experimental results. PMID:22483365

  14. Hydrolysis of cellulose catalyzed by novel acidic ionic liquids.

    PubMed

    Zhuo, Kelei; Du, Quanzhou; Bai, Guangyue; Wang, Congyue; Chen, Yujuan; Wang, Jianji

    2015-01-22

    The conversion of cellulosic biomass directly into valuable chemicals becomes a hot subject. Six novel acidic ionic liquids (ILs) based on 2-phenyl-2-imidazoline were synthesized and characterized by UV-VIS, TGA, and NMR. The novel acidic ionic liquids were investigated as catalysts for the hydrolysis of cellulose in 1-butyl-3-methylimidazolium chloride ([Bmim]Cl). The acidic ionic liquids with anions HSO4(-) and Cl(-) showed better catalytic performance for the hydrolysis of cellulose than those with H2PO4(-). The temperature and dosage of water affect significantly the yield of total reducing sugar (TRS). When the hydrolysis of cellulose was catalyzed by 1-propyl sulfonic acid-2-phenyl imidazoline hydrogensulfate (IL-1) and the dosage of water was 0.2g, the TRS yield was up to 85.1% within 60 min at 100°C. These new acidic ionic liquids catalysts are expected to have a wide application in the conversion of cellulose into valuable chemicals. PMID:25439867

  15. Selective, nickel-catalyzed hydrogenolysis of aryl ethers.

    PubMed

    Sergeev, Alexey G; Hartwig, John F

    2011-04-22

    Selective hydrogenolysis of the aromatic carbon-oxygen (C-O) bonds in aryl ethers is an unsolved synthetic problem important for the generation of fuels and chemical feedstocks from biomass and for the liquefaction of coal. Currently, the hydrogenolysis of aromatic C-O bonds requires heterogeneous catalysts that operate at high temperature and pressure and lead to a mixture of products from competing hydrogenolysis of aliphatic C-O bonds and hydrogenation of the arene. Here, we report hydrogenolyses of aromatic C-O bonds in alkyl aryl and diaryl ethers that form exclusively arenes and alcohols. This process is catalyzed by a soluble nickel carbene complex under just 1 bar of hydrogen at temperatures of 80 to 120°C; the relative reactivity of ether substrates scale as Ar-OAr>Ar-OMe>ArCH(2)-OMe (Ar, Aryl; Me, Methyl). Hydrogenolysis of lignin model compounds highlights the potential of this approach for the conversion of refractory aryl ether biopolymers to hydrocarbons. PMID:21512027

  16. Feasibility of an antiproton catalyzed fission fragment rocket

    SciTech Connect

    Hdinger, D.S.

    1992-03-01

    The purpose of this project was to investigate the feasibility of an antiproton catalyzed fission fragment rocket (FFR). The FFR is characterized by the extraction of fission fragments from the fissile fuel, and the utilization of their kinetic energy for thrust generation. A significant drawback to previous FFR designs was the requirement to maintain a critical nuclear pile as the fission fragment source. The author examined the possibility of replacing the critical pile with a sub-critical pile driven by antiprotons. Recent experiments have revealed that antiprotons stimulate highly energetic fissions in {sup 238}U, with a neutron multiplicity of 13.7 neutrons per fission. This interaction was used as a throttled neutron source. The pile consisted of layers of fissile coated fibers which are designed to allow fission fragments to escape them, where the fragments collide with a fluid. The heated fluid is then ejected from the rocket to provide thrust. The calculations performed indicate that each antiproton injected into the pile can stimulate 8 or more fissions while maintaining a neutron multiplication of less than 0.4. Based on the results seen, the engine design presented is inadequate. Limitations introduced by the reaction fluid far outweigh the simplicity-of-design gained. Despite this, the basic idea of using the antiproton-U interaction as a source of spacecraft propulsion warrants further study.

  17. Peroxidase-catalyzed color removal from bleach plant effluent.

    PubMed

    Paice, M G; Jurasek, L

    1984-05-01

    Effluent from the caustic extraction stage of a bleach plant is highly colored due to the presence of dissolved products from lignin chlorination and oxidation. Color removal from the effluent by hydrogen peroxide at neutral pH was catalyzed by addition of horseradish peroxidase. The catalysis with peroxidase (20 mg/L) was observed over a wide range of peroxide concentrations (0.1mM-500mM), but the largest effect was between 1mM and 100mM. The pH optimum for catalysis was around 5.0, while the basal rate of noncatalyzed peroxide color removal simply increased with pH within the range tested (3-10). Peroxidase catalysis at pH 7.6 reached a maximum at 40 degrees C in 4 h assays with 10mM peroxide, and disappeared above 60 degrees C. Compared with mycelial color removal by Coriolus versicolor, the rate of color removal by peroxide plus peroxidase was initially faster (first 4 h), but the extent of color removal after 48 h was higher with the fungal treatment. Further addition of peroxidase to the enzyme-treated effluent did not produce additional catalysis. Thus, the peroxide/peroxidase system did not fully represent the metabolic route used by the fungus.

  18. Copper-catalyzed enantioselective stereodivergent synthesis of amino alcohols

    PubMed Central

    Shi, Shi-Liang; Wong, Zackary L.; Buchwald, Stephen L.

    2016-01-01

    The chirality, or ‘handedness’, of a biologically active molecule can alter its physiological properties. For this reason, it is routine procedure in the drug discovery and development process to prepare and fully characterize all possible stereoisomers of a drug candidate for biological evaluation1,2. Despite many recent advances in asymmetric synthesis, the development of general and practical strategies to obtain all possible stereoisomers of an organic compound bearing multiple contiguous stereocenters remains a significant challenge3. In this manuscript, we report a stereodivergent copper-based approach for the expeditious construction of amino alcohols with high levels of chemo-, regio-, diastereo- and enantioselectivity. Specifically, these amino alcohol products were synthesized using the sequential copper hydride-catalyzed hydrosilylation and hydroamination of readily available enals and enones. This strategy provides a route to all possible stereoisomers of the amino alcohol products, which contain up to three contiguous stereocenters. Catalyst control and stereospecificity were simultaneously leveraged to attain exceptional control of the product stereochemistry. Beyond the utility of this protocol, the strategy demonstrated here should inspire the development of methods providing complete sets of stereoisomers for other valuable synthetic targets. PMID:27018656

  19. Primordial lithium abundance in catalyzed big bang nucleosynthesis

    SciTech Connect

    Bird, Chris; Koopmans, Kristen; Pospelov, Maxim

    2008-10-15

    There exists a well-known problem with the {sup 7}Li+{sup 7}Be abundance predicted by standard big bang nucleosynthesis being larger than the value observed in population II stars. The catalysis of big bang nucleosynthesis by metastable, {tau}{sub X} > or approx. 10{sup 3} sec, charged particles X{sup -} is capable of suppressing the primordial {sup 7}Li+{sup 7}Be abundance and making it consistent with the observations. We show that to produce the correct abundance, this mechanism of suppression places a requirement on the initial abundance of X{sup -} at temperatures of 4x10{sup 8} K to be on the order of or larger than 0.02 per baryon, which is within the natural range of abundances in models with metastable electroweak-scale particles. The suppression of {sup 7}Li+{sup 7}Be is triggered by the formation of ({sup 7}BeX{sup -}) compound nuclei, with fast depletion of their abundances by catalyzed proton reactions, and in some models by direct capture of X{sup -} on {sup 7}Be. The combination of {sup 7}Li+{sup 7}Be and {sup 6}Li constraints favors the window of lifetimes, 1000 s < or approx. {tau}{sub X}{<=}2000 s.

  20. Enzyme-Catalyzed Regioselective Modification of Starch Nanoparticles

    SciTech Connect

    Chakraborty, Soma; Sahoo, Bishwabhusan; Teraoka, Iwao; Miller, Lisa M.; Gross, Richard A.

    2004-12-13

    The selective esterification of starch nanoparticles was performed using as catalyst Candida antartica Lipase B (CAL-B) in its immobilized (Novozym 435) and free (SP-525) forms. The starch nanoparticles were made accessible for acylation reactions by formation of Aerosol-OT (AOT, bis(2-ethylhexyl)sodium sulfosuccinate) stabilized microemulsions. Starch nanoparticles in microemulsions were reacted with vinyl stearate, ε-caprolactone, and maleic anhydride at 40 °C for 48 h to give starch esters with degrees of substitution (DS) of 0.8, 0.6, and 0.4, respectively. Substitution occurred regioselectively at the C-6 position of the glucose repeat units. Infrared microspectroscopy (IRMS) revealed that AOT-coated starch nanoparticles diffuse into the outer 50 μm shell of catalyst beads. Thus, even though CAL-B is immobilized within a macroporous resin, CAL-B is sufficiently accessible to the starch nanoparticles. When free CAL-B was incorporated along with starch within AOT-coated reversed micelles, CAL-B was also active and catalyzed the acylation with vinyl stearate (24 h, 40 °C) to give DS = 0.5. After removal of surfactant from the modified starch nanoparticles, they were dispersed in DMSO or water and were shown to retain their nanodimensions.

  1. Study of muon catalyzed dd-fusion in HD gas

    NASA Astrophysics Data System (ADS)

    Semenchuk, G. G.; Balin, D. V.; Case, T.; Crowe, K. M.; Ganzha, V. A.; Hartmann, F. J.; Kozlov, S. M.; Lauss, B.; Maev, E. M.; Mühlbauer, M.; Petitjean, C.; Petrov, G. E.; Sadetsky, S. M.; Schapkin, G. N.; Schott, W.; Smirenin, Yu. V.; Soroka, M. A.; Vasiliev, A. A.; Vorobyov, A. A.; Voropaev, N. I.; Zmeskal, J.

    1999-06-01

    The results of an experiment on muon catalyzed dd-fussion in HD gas are presented. The experiment was performed at the muon beam of PSI using a high-pressure ionization chamber filled with pure HD-gas of low D2 concentration on the level 1%, at temperatures 50, 150 and 300 K. The non-resonant character of ddμ-molecule formation on HD molecules was confirmed by measuring the ratio of yields of the two ddμ-fusion channels, R=Y(3He,n)/Y(3H,p), which proved to be close to unity. The ddμ formation rate was found to vary from λddμ-HD=0.05· 106 s-1 at T=50 K to λddμ-HD=0.12· 106 s-1 at T=300 K, in agreement with the theoretical prediction. A prominent peak at t<60 ns was observed in the time spectrum of fusion neutrons indicating a resonant contribution of ddμ formation from epithermal dμ atoms.

  2. Micellar nanoreactors for hematin catalyzed synthesis of electrically conducting polypyrrole.

    PubMed

    Ravichandran, Sethumadhavan; Nagarajan, Subhalakshmi; Kokil, Akshay; Ponrathnam, Timothy; Bouldin, Ryan M; Bruno, Ferdinando F; Samuelson, Lynne; Kumar, Jayant; Nagarajan, Ramaswamy

    2012-09-18

    Enzymatic synthesis of doped polypyrrole (PPy) complexes using oxidoreductases (specifically peroxidases) is very well established "green" methods for producing conducting polypyrrole. The importance of this approach is realized by the numerous potential opportunities of using PPy in biological applications. However, due to very high costs and low acid stability of these enzymes, there is need for more robust alternate biomimetic catalysts. Hematin, a hydroxyferriprotoporphyrin, has a similar iron catalytic active center like the peroxidases and has previously shown to catalyze polymerization of phenol monomers at pH 12. The insolubility of hematin due to extensive self-aggregation at low pH conditions has prevented its use in the synthesis of conjugated polymers. In this study, we have demonstrated the use of a micellar environment with sodium dodecylbenzenesulfonate (DBSA) for biomimetic synthesis of PPy. The micellar environment helps solubilize hematin, generating nanometer size reactors for the polymerization of pyrrole. The resulting PPy is characterized using UV-visible, Fourier transform infrared, and X-ray photoelectron spectroscopy and reveals the formation of an ordered PPy/DBSA complex with conductivities approaching 0.1 S/cm.

  3. MEMS-Based Satellite Micropropulsion Via Catalyzed Hydrogen Peroxide Decomposition

    NASA Technical Reports Server (NTRS)

    Hitt, Darren L.; Zakrzwski, Charles M.; Thomas, Michael A.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    Micro-electromechanical systems (MEMS) techniques offer great potential in satisfying the mission requirements for the next generation of "micro-scale" satellites being designed by NASA and Department of Defense agencies. More commonly referred to as "nanosats", these miniature satellites feature masses in the range of 10-100 kg and therefore have unique propulsion requirements. The propulsion systems must be capable of providing extremely low levels of thrust and impulse while also satisfying stringent demands on size, mass, power consumption and cost. We begin with an overview of micropropulsion requirements and some current MEMS-based strategies being developed to meet these needs. The remainder of the article focuses the progress being made at NASA Goddard Space Flight Center towards the development of a prototype monopropellant MEMS thruster which uses the catalyzed chemical decomposition of high concentration hydrogen peroxide as a propulsion mechanism. The products of decomposition are delivered to a micro-scale converging/diverging supersonic nozzle which produces the thrust vector; the targeted thrust level approximately 500 N with a specific impulse of 140-180 seconds. Macro-scale hydrogen peroxide thrusters have been used for satellite propulsion for decades; however, the implementation of traditional thruster designs on a MEMS scale has uncovered new challenges in fabrication, materials compatibility, and combustion and hydrodynamic modeling. A summary of the achievements of the project to date is given, as is a discussion of remaining challenges and future prospects.

  4. Iodide-catalyzed ozonation of terpenes on aqueous surfaces

    NASA Astrophysics Data System (ADS)

    Enami, S.; Hayase, S.; Kawasaki, M.; Hoffmann, M. R.; Colussi, A. J.

    2011-12-01

    Biogenic terpenes are the dominant global source of volatile organic compounds (VOC) and secondary organic aerosols (SOA). Their atmospheric chemistry has therefore major direct and indirect impacts on global climate change. At the same time, it has become apparent that organic and inorganic iodine species of marine origin are ubiquitous in the troposphere. They are found over the open ocean (even in the absence of biogenic sources), the Antarctic coast, in rain, aerosols, ice, and snow, and participate in HOx/NOx cycles in the troposphere. Here we report that iodide catalyzes the ozonation of alpha-pinene on aqueous surfaces. Nebulizer-assisted online electrospray mass spectrometry of alpha-pinene solutions briefly exposed to gaseous ozone reveals that alpha-pinene, which is unreactive during 10 microsecond contact times, is converted into acids (e.g., pinonic acid) and previously unreported iodine-containing species in the presence of millimolar iodide. These newly found products were characterized by MS/MS in conjunction with isotope and kinetic studies, and may account for unidentified organoiodine species observed in recent field measurements.

  5. Out of the fog: Catalyzing integrative capacity in interdisciplinary research.

    PubMed

    Piso, Zachary; O'Rourke, Michael; Weathers, Kathleen C

    2016-04-01

    Social studies of interdisciplinary science investigate how scientific collaborations approach complex challenges that require multiple disciplinary perspectives. In order for collaborators to meet these complex challenges, interdisciplinary collaborations must develop and maintain integrative capacity, understood as the ability to anticipate and weigh tradeoffs in the employment of different disciplinary approaches. Here we provide an account of how one group of interdisciplinary fog scientists intentionally catalyzed integrative capacity. Through conversation, collaborators negotiated their commitments regarding the ontology of fog systems and the methodologies appropriate to studying fog systems, thereby enhancing capabilities which we take to constitute integrative capacity. On the ontological front, collaborators negotiated their commitments by setting boundaries to and within the system, layering different subsystems, focusing on key intersections of these subsystems, and agreeing on goals that would direct further investigation. On the methodological front, collaborators sequenced various methods, anchored methods at different scales, validated one method with another, standardized the outputs of related methods, and coordinated methods to fit a common model. By observing the process and form of collaborator conversations, this case study demonstrates that social studies of science can bring into critical focus how interdisciplinary collaborators work toward an integrated conceptualization of study systems.

  6. Stable Self-Catalyzed Growth of III-V Nanowires.

    PubMed

    Tersoff, J

    2015-10-14

    Nanowire growth has generally relied on an initial particle of a catalyst such as Au to define the wire diameter and stabilize the growth. Self-catalyzed growth of III-V nanowires avoids the need for a foreign element, with the nanowire growing from the vapor via a droplet of the native group-III liquid. However, as suggested by Gibbs' phase rule, the absence of third element has a destabilizing effect. Here we analyze this system theoretically, finding that growth can be dynamically stable at pressures far above the equilibrium vapor pressure. Steady-state growth occurs via kinetic self-regulation of the droplet volume and wire diameter. In particular, for a given temperature and source-gas pressures there is a unique stable wire diameter and droplet volume, both of which decrease with increasing V/III ratio. We also examine the evolution of the droplet size and wire diameter toward the steady state as the wire grows and discuss implications for structural control. PMID:26389697

  7. Temperature dependences of rate coefficients for electron catalyzed mutual neutralization

    SciTech Connect

    Shuman, Nicholas S.; Miller, Thomas M.; Friedman, Jeffrey F.; Viggiano, Albert A.; Maeda, Satoshi; Morokuma, Keiji

    2011-07-14

    The flowing afterglow technique of variable electron and neutral density attachment mass spectrometry (VENDAMS) has recently yielded evidence for a novel plasma charge loss process, electron catalyzed mutual neutralization (ECMN), i.e., A{sup +}+ B{sup -}+ e{sup -}{yields} A + B + e{sup -}. Here, rate constants for ECMN of two polyatomic species (POCl{sub 3}{sup -} and POCl{sub 2}{sup -}) and one diatomic species (Br{sub 2}{sup -}) each with two monatomic cations (Ar{sup +}and Kr{sup +}) are measured using VENDAMS over the temperature range 300 K-500 K. All rate constants show a steep negative temperature dependence, consistent with that expected for a three body process involving two ions and an electron. No variation in rate constants as a function of the cation type is observed outside of uncertainty; however, rate constants of the polyatomic anions ({approx}1 x 10{sup -18} cm{sup 6} s{sup -1} at 300 K) are measurably higher than that for Br{sub 2}{sup -}[(5.5 {+-} 2) x 10{sup -19} cm{sup 6} s{sup -1} at 300 K].

  8. Heterogeneous catalyzed benzylic acetoxylation of methylated aromatic hydrocarbons

    SciTech Connect

    Benazzi, E.; Mimoun, H.; Cameron, C.J. )

    1993-04-01

    The palladium-catalyzed acetoxylation of toluene to benzyl acetate is highly dependent on particle size. The rate of reaction is highest with 30--35 [Angstrom] particles corresponding to a 0.33 dispersion. Catalysts prepared and reduced by controlled methods before being contacted with the reaction medium, ex situ catalysts, were found to yield lower reaction rates than catalysts prepared in the reaction medium, in situ. Potassium ion-encapsulation in palladium during in situ preparation is a possible explanation for this result. Tin is required to reduce Pd[sup 2+] to Pd[sup 0] in the in situ system, but is not required for the ex situ catalyst. The improvement in activity of the ex situ catalyst in the presence of tin may be due to the reducibility of Sn[sup 4+] to Sn[sup 2+] during oxygen-poor regimes. Results obtained with diverse methylated aromatic hydrocarbons indicate that the aromatic ring interactions with the palladium surface via [pi]-donation before oxidation occurs. 37 refs., 7 figs., 5 tabs.

  9. Recent trends in protease-catalyzed peptide synthesis.

    PubMed

    Lombard, C; Saulnier, J; Wallach, J M

    2005-10-01

    Enzymatic peptide syntheses may be either thermodynamically- or kinetically-controlled. The former may be catalyzed by any proteases; the latter is limited to serine and cysteine proteases. This methodology is quite stereospecific and avoids side chain protection but is suffering of some drawbacks. Thus, only two industrial processes are by now developed: the production of aspartame and the conversion of porcine into human insulin. However, recent improvements have been carried out in different directions: 1-Search for proteases with high and/or new P'1 and P1 specificities. 2-Protease engineering to promote synthesis towards hydrolysis and to enlarge specificity. 3-Development of mimetic or "inverse" substrates to limit further hydrolysis of synthesized peptide. 4-Change of the physical state of reactants. Three axes have mainly be explored: solid-solid conversion, use of cross-linked enzyme crystals (CLEC) and enzyme immobilization. 5-Modification of experimental conditions. The principal and recent developments deal with: heterogeneous catalysis, synthesis in low water-containing organic solvents, in ionic liquids or at subzero temperatures. This review will illustrate these new orientations with examples described in the recent literature.

  10. Existence of efficient divalent metal ion-catalyzed and inefficient divalent metal ion-independent channels in reactions catalyzed by a hammerhead ribozyme

    PubMed Central

    Zhou, Jing-Min; Zhou, De-Min; Takagi, Yasuomi; Kasai, Yasuhiro; Inoue, Atsushi; Baba, Tadashi; Taira, Kazunari

    2002-01-01

    The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ions from 0.3 to 3 mM, addition of the ribozyme to the reaction mixture under single-turnover conditions enhances the reaction with the product reaching a fixed maximum level. Further addition of the ribozyme inhibits the reaction, demonstrating that a certain number of divalent metal ions is required for proper folding and also for catalysis. At extremely high concentrations, monovalent ions, such as Na+ ions, can also serve as cofactors in hammerhead ribozyme-catalyzed reactions. However, the catalytic efficiency of monovalent ions is extremely low and, thus, high concentrations are required. Furthermore, addition of monovalent ions to divalent metal ion-catalyzed hammerhead reactions inhibits the divalent metal ion-catalyzed reactions, suggesting that the more desirable divalent metal ion–ribozyme complexes are converted to less desirable monovalent metal ion–ribozyme complexes via removal of divalent metal ions, which serve as a structural support in the ribozyme complex. Even though two channels appear to exist, namely an efficient divalent metal ion-catalyzed channel and an inefficient monovalent metal ion-catalyzed channel, it is clear that, under physiological conditions, hammerhead ribozymes are metalloenzymes that act via the significantly more efficient divalent metal ion-dependent channel. Moreover, the observed kinetic data are consistent with Lilley’s and DeRose’s two-phase folding model that was based on ground state structure analyses. PMID:12034824

  11. Nickel-Catalyzed Borylation of Halides and Pseudo-Halides with Tetrahydroxydiboron [B2(OH)4

    PubMed Central

    Molander, Gary A.; Cavalcanti, Livia N.; García-García, Carolina

    2013-01-01

    Arylboronic acids are gaining increased importance as reagents and target structures in a variety of useful applications. Recently, the palladium-catalyzed synthesis of arylboronic acids employing the atom economical tetrahydroxydiboron (BBA) reagent has been reported. The high cost associated with palladium, combined with several limitations of both palladium and copper-catalyzed processes, prompted us to develop an alternative method. Thus, the nickel-catalyzed borylation of aryl and heteroaryl halides and pseudo-halides using tetrahydroxydiboron (BBA) has been formulated. The reaction proved to be widely functional group tolerant and applicable to a number of heterocyclic systems. To the best of our knowledge, the examples presented here represent the only effective Ni-catalyzed Miyaura borylations conducted at room temperature. PMID:23777538

  12. Regimes of radial growth for Ga-catalyzed GaAs nanowires

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Berdnikov, Y.; Sibirev, N. V.

    2016-07-01

    We present a non-stationary growth model of Ga-catalyzed GaAs nanowires which is based on the two kinetic equations for the nanowire elongation rate and a time-dependent base radius of the droplet. We show that self-catalyzed nanowire growth is principally different from the Au-catalyzed one because a stationary droplet size cannot be maintained at all times. Close examination of the model enables us to separate different regimes of radial growth in which the droplet shrinks, inflates or converges to a certain stationary size as nanowires grow, depending on the initial droplet radius and the growth conditions. We also discuss some experimental data on the growth modes of Ga-catalyzed GaAs nanowires from the viewpoint of the obtained results.

  13. Transition-metal-catalyzed Chelation-assisted C-H Functionalization of Aromatic Substrates.

    PubMed

    Zhao, Binlin; Shi, Zhuangzhi; Yuan, Yu

    2016-04-01

    In the past decade, transition-metal-catalyzed C-H activations have been very popular in the research field of organometallic chemistry, and have been considered as efficient and convenient strategies to afford complex natural products, functional advanced materials, fluorescent compounds, and pharmaceutical compounds. In this account, we begin with a brief introduction to the development of transition-metal-catalyzed C-H activation, especially the development of transition-metal-catalyzed chelation-assisted C-H activation. Then, a more detailed discussion is directed towards our recent studies on the transition-metal-catalyzed chelation-assisted oxidative C-H/C-H functionalization of aromatic substrates bearing directing functional groups.

  14. Total Synthesis of Enantiopure (+)-γ -Lycorane Using Highly Efficient Pd-Catalyzed Asymmetric Allylic Alkylation

    PubMed Central

    Chapsal, Bruno D.; Ojima, Iwao

    2008-01-01

    Highly efficient short total synthesis of γ -lycorane (>99% ee, 41% overall yield) was achieved by using the asymmetric allylic alkylation in the key step catalyzed by palladium complexes with novel chiral biphenol-based monodentate phosphoramidite ligands. PMID:16562900

  15. Transition-metal-catalyzed Chelation-assisted C-H Functionalization of Aromatic Substrates.

    PubMed

    Zhao, Binlin; Shi, Zhuangzhi; Yuan, Yu

    2016-04-01

    In the past decade, transition-metal-catalyzed C-H activations have been very popular in the research field of organometallic chemistry, and have been considered as efficient and convenient strategies to afford complex natural products, functional advanced materials, fluorescent compounds, and pharmaceutical compounds. In this account, we begin with a brief introduction to the development of transition-metal-catalyzed C-H activation, especially the development of transition-metal-catalyzed chelation-assisted C-H activation. Then, a more detailed discussion is directed towards our recent studies on the transition-metal-catalyzed chelation-assisted oxidative C-H/C-H functionalization of aromatic substrates bearing directing functional groups. PMID:26968749

  16. 53. VIEW LOOKING S.E. AT THE CATALYZER BUILDINGS, COOLING SHEDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. VIEW LOOKING S.E. AT THE CATALYZER BUILDINGS, COOLING SHEDS AND ABSORPTION BUILDINGS IN THE BACKGROUND. MAY 29, 1919. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  17. Conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by ZnCl2 in water.

    PubMed

    Deng, Tiansheng; Cui, Xiaojing; Qi, Yongqin; Wang, Yinxiong; Hou, Xianglin; Zhu, Yulei

    2012-06-01

    The incompletely coordinated zinc ions in the concentrated aqueous ZnCl(2) solution catalyze the direct conversion of carbohydrates into 5-hydroxymethylfurfural, and a moderate HMF yield up to 50% can be achieved. PMID:22534980

  18. PALLADIUM-CATALYZED OXIDATION OF STYRENE AND ALKENES IN PRESENCE OF IONIC LIQUIDS (WACKER REACTION)

    EPA Science Inventory

    The use of ionic liquids in various synthetic transformations is gaining significance due to the enhanced reaction rates, potential for recycling and compatibility with various organic compounds and organometallic catalysts. Palladium-catalyzed oxidation of styrene and other alk...

  19. Origins of the double asymmetric induction on proline-catalyzed aldol reactions.

    PubMed

    Calderón, Félix; Doyagüez, Elisa G; Cheong, Paul Ha-Yeon; Fernández-Mayoralas, Alfonso; Houk, K N

    2008-10-17

    Computational studies to elucidate the origin of the double asymmetric induction on proline-catalyzed aldol reaction have been performed using HF/6-31G(d) calculations. The computed transition structures explain the experimental data obtained. PMID:18811197

  20. The palladium-catalyzed intermolecular C-H chalcogenation of arenes.

    PubMed

    Qiu, Renhua; Reddy, Vutukuri Prakash; Iwasaki, Takanori; Kambe, Nobuaki

    2015-01-01

    Palladium catalyzes the intermolecular chalcogenation of carbazole, 2-phenylpyridine, benzo[h]quinolone, and indole derivatives with disulfides and diselenides via selective C-H bond cleavage, providing a convenient route to thio and selenoethers. PMID:25437148

  1. Rh(III)-Catalyzed C-H Amidation of Indoles with Isocyanates.

    PubMed

    Jeong, Taejoo; Han, Sangil; Mishra, Neeraj Kumar; Sharma, Satyasheel; Lee, Seok-Yong; Oh, Joa Sub; Kwak, Jong Hwan; Jung, Young Hoon; Kim, In Su

    2015-07-17

    The rhodium(III)-catalyzed direct amidation of indoles and pyrroles with aryl and alkyl isocyanates is described. These transformations provide a facile and efficient construction of C2-amidated N-heterocyclic scaffolds.

  2. Lewis Acid-Catalyzed Indole Synthesis via Intramolecular Nucleophilic Attack of Phenyldiazoacetates to Iminium Ions

    PubMed Central

    Zhou, Lei; Doyle, Michael P.

    2009-01-01

    Lewis acids catalyze the cyclization of methyl phenyldiazoacetates with an ortho-imino group, prepared from o-aminophenylacetic acid, to give 2,3-substituted indoles in quantitative yields. PMID:19904905

  3. Nickel-catalyzed borylation of halides and pseudohalides with tetrahydroxydiboron [B2(OH)4].

    PubMed

    Molander, Gary A; Cavalcanti, Livia N; García-García, Carolina

    2013-07-01

    Arylboronic acids are gaining increased importance as reagents and target structures in a variety of useful applications. Recently, the palladium-catalyzed synthesis of arylboronic acids employing the atom-economical tetrahydroxydiboron (BBA) reagent has been reported. The high cost associated with palladium, combined with several limitations of both palladium- and copper-catalyzed processes, prompted us to develop an alternative method. Thus, the nickel-catalyzed borylation of aryl and heteroaryl halides and pseudohalides using tetrahydroxydiboron (BBA) has been formulated. The reaction proved to be widely functional group tolerant and applicable to a number of heterocyclic systems. To the best of our knowledge, the examples presented here represent the only effective Ni-catalyzed Miyaura borylations conducted at room temperature. PMID:23777538

  4. Synthesis of (-)-Cannabimovone and Structural Reassignment of Anhydrocannabimovone through Gold(I)-Catalyzed Cycloisomerization.

    PubMed

    Carreras, Javier; Kirillova, Mariia S; Echavarren, Antonio M

    2016-06-13

    The first total synthesis of cannabimovone from Cannabis sativa and anhydrocannabimovone was achieved by means of a highly stereoselective gold(I)-catalyzed cycloisomerization. The results led to reassignment of the structure of anhydrocannabimovone. PMID:27119910

  5. Microwave-mediated selective monotetrahydropyranylation of symmetrical diols catalyzed by iodine.

    PubMed

    Deka, N; Sarma, J C

    2001-03-23

    Selective protection of one hydroxyl group as its tetrahydropyranyl ether in 1,n-symmetrical diol is achieved by iodine-catalyzed reaction of the diol with dihydropyranyl ether under microwave irradiation. PMID:11300886

  6. GREEN CATALYZED OXIDATION OF HYDROCARBONS IN ALTERNATIVE SOLVENT SYSTEMS GENERATED BY PARIS II

    EPA Science Inventory

    Green Catalyzed Oxidation of Hydrocarbons in Alternative Solvent Systems Generated by PARIS II

    Michael A. Gonzalez*, Thomas M. Becker, and Paul F. Harten; Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26...

  7. Synthesis of Diphenylhexatriene by the Pd-Catalyzed Dimerization of Cinnamyl Acetate

    PubMed Central

    Mesganaw, Tehetena; Im, G.-Yoon J.; Garg, Neil K.

    2013-01-01

    A mild and operationally-simple method to synthesize diphenylhexatriene (DPH) is reported. The method relies on the Pd-catalyzed dimerization of cinnamyl acetate and provides efficient access to DPH in a single step. PMID:23414259

  8. Synthesis of 2-indolylphosphines by palladium-catalyzed annulation of 1-alkynylphosphine sulfides with 2-iodoanilines.

    PubMed

    Kondoh, Azusa; Yorimitsu, Hideki; Oshima, Koichiro

    2010-04-01

    Palladium-catalyzed annulation of 1-alkynylphosphine sulfides with 2-iodoanilines followed by desulfidation affords 3-substituted 2-indolylphosphines. This annulation/desulfidation sequential protocol offers a conceptually new approach to bulky heteroarylphosphines.

  9. Horseradish Peroxidase-Mediated, Iodide-Catalyzed Cascade Reaction for Plasmonic Immunoassays.

    PubMed

    Xianyu, Yunlei; Chen, Yiping; Jiang, Xingyu

    2015-11-01

    This report outlines an enzymatic cascade reaction for signal transduction and amplification for plasmonic immunoassays by using horseradish peroxidase (HRP)-mediated aggregation of gold nanoparticles (AuNPs). HRP-catalyzed oxidation of iodide and iodide-catalyzed oxidation of cysteine is employed to modulate the plasmonic signals of AuNPs. It agrees well with the current immunoassay platforms and allows naked-eye readout with enhanced sensitivity, which holds great promise for applications in resource-constrained settings. PMID:26460152

  10. Copper-catalyzed oxidative homo- and cross-coupling of Grignard reagents using diaziridinone.

    PubMed

    Zhu, Yingguang; Xiong, Tao; Han, Wenyong; Shi, Yian

    2014-12-01

    Transition-metal-catalyzed cross-coupling reactions are among the most powerful synthetic transformations. This paper describes an efficient copper-catalyzed homo- and cross-coupling of Grignard reagents with di-tert-butyldiaziridinone as oxidant under mild conditions, giving the coupling products in good to excellent yields. The reaction process has a broad substrate scope and is also effective for the C(sp)-C(sp(3)) coupling.

  11. Rhodium-Catalyzed Ketone Methylation Using Methanol Under Mild Conditions: Formation of α-Branched Products**

    PubMed Central

    Chan, Louis K M; Poole, Darren L; Shen, Di; Healy, Mark P; Donohoe, Timothy J

    2014-01-01

    The rhodium-catalyzed methylation of ketones has been accomplished using methanol as the methylating agent and the hydrogen-borrowing method. The sequence is notable for the relatively low temperatures that are required and for the ability of the reaction system to form α-branched products with ease. Doubly alkylated ketones can be prepared from methyl ketones and two different alcohols by using a sequential one-pot iridium- and rhodium-catalyzed process. PMID:24288297

  12. Synthesis of new N-analogous corollosporine derivatives with antibacterial activity by laccase-catalyzed amination.

    PubMed

    Mikolasch, Annett; Hessel, Susanne; Salazar, Manuela Gesell; Neumann, Helfried; Manda, Katrin; Gōrdes, Dirk; Schmidt, Enrico; Thurow, Kerstin; Hammer, Elke; Lindequist, Ulrike; Beller, Matthias; Schauer, Frieder

    2008-06-01

    Corollosporine isolated from the marine fungus Corollospora maritima and N-analogous corollosporines are antimicrobial substances. Owing to the basic structure of the N-analogous corollosporines, they have become an attractive target for laccase-catalyzed derivatisation. In this regard we report on the straightforward laccase-catalyzed amination of dihydroxylated arenes with N-analogous corollosporines. In biological assays the obtained amination products are more active than the parent compounds.

  13. Ready Access to the Echinopines Skeleton via Gold(I)-Catalyzed Alkoxycyclizations of Enynes

    PubMed Central

    2016-01-01

    The [3,5,5,7] tetracyclic skeleton of echinopines has been stereoselectively accessed through a gold(I)-catalyzed alkoxycyclization of cyclopropyl-tethered 1,6-enynes. The key bicyclo[4.2.1]nonane core of the enyne precursors was readily assembled by means of a Co-catalyzed [6 + 2] cycloaddition. Furthermore, the attempted alkoxycyclization of 1,5-enyne substrates revealed an uncovered cyclopropyl rearrangement that gives rise to [3,6,5,7] tetracyclic structures. PMID:27529429

  14. Palladium-Catalyzed Dearomative Cyclocarbonylation by C-N Bond Activation.

    PubMed

    Yu, Hui; Zhang, Guoying; Huang, Hanmin

    2015-09-01

    A fundamentally novel approach to bioactive quinolizinones is based on the palladium-catalyzed intramolecular cyclocarbonylation of allylamines. [Pd(Xantphos)I2 ], which features a very large bite angle, has been found to facilitate the rapid carbonylation of azaarene-substituted allylamines into bioactive quinolizinones in good to excellent yields. This transformation represents the first dearomative carbonylation and is proposed to proceed by palladium-catalyzed CN bond activation, dearomatization, CO insertion, and a Heck reaction.

  15. Copper-catalyzed oxidative homo- and cross-coupling of Grignard reagents using diaziridinone.

    PubMed

    Zhu, Yingguang; Xiong, Tao; Han, Wenyong; Shi, Yian

    2014-12-01

    Transition-metal-catalyzed cross-coupling reactions are among the most powerful synthetic transformations. This paper describes an efficient copper-catalyzed homo- and cross-coupling of Grignard reagents with di-tert-butyldiaziridinone as oxidant under mild conditions, giving the coupling products in good to excellent yields. The reaction process has a broad substrate scope and is also effective for the C(sp)-C(sp(3)) coupling. PMID:25420218

  16. Mo-catalyzed asymmetric olefin metathesis in target-oriented synthesis: Enantioselective synthesis of (+)-africanol

    PubMed Central

    Weatherhead, Gabriel S.; Cortez, G. A.; Schrock, Richard R.; Hoveyda, Amir H.

    2004-01-01

    Catalytic asymmetric ring-opening metathesis (AROM) provides an efficient method for the synthesis of a variety of optically enriched small organic molecules that cannot be easily prepared by alternative methods. The development of Mo-catalyzed AROM transformations that occur in tandem with ring-closing metathesis are described. The utility of the Mo-catalyzed AROM/ring-closing metathesis is demonstrated through an enantioselective approach to the synthesis of (+)-africanol. PMID:15056762

  17. Horseradish Peroxidase-Mediated, Iodide-Catalyzed Cascade Reaction for Plasmonic Immunoassays.

    PubMed

    Xianyu, Yunlei; Chen, Yiping; Jiang, Xingyu

    2015-11-01

    This report outlines an enzymatic cascade reaction for signal transduction and amplification for plasmonic immunoassays by using horseradish peroxidase (HRP)-mediated aggregation of gold nanoparticles (AuNPs). HRP-catalyzed oxidation of iodide and iodide-catalyzed oxidation of cysteine is employed to modulate the plasmonic signals of AuNPs. It agrees well with the current immunoassay platforms and allows naked-eye readout with enhanced sensitivity, which holds great promise for applications in resource-constrained settings.

  18. Transition-Metal-Catalyzed Denitrogenative Transannulation: Converting Triazoles into Other Heterocyclic Systems

    PubMed Central

    Chattopadhyay, Buddhadeb

    2012-01-01

    Transition metal catalyzed denitrogenative transannulation of a triazole ring has recently received considerable attention as a new concept for the construction of diverse nitrogen-containing heterocyclic cores. This method allows a single-step synthesis of complex nitrogen heterocycles from easily available and cheap triazole precursors. In this Minireview, recent progress of the transition metal catalyzed denitrogenative transannulation of a triazole ring, which was discovered in 2007, is discussed. PMID:22121072

  19. One-pot gold-catalyzed synthesis of 3-silylethynyl indoles from unprotected o-alkynylanilines

    PubMed Central

    Brand, Jonathan P; Chevalley, Clara

    2011-01-01

    Summary The Au(III)-catalyzed cyclization of 2-alkynylanilines was combined in a one-pot procedure with the Au(I)-catalyzed C3-selective direct alkynylation of indoles using the benziodoxolone reagent TIPS-EBX to give a mild, easy and straightforward entry to 2-substituted-3-alkynylindoles. The reaction can be applied to unprotected anilines, was tolerant to functional groups and easy to carry out (RT, and requires neither an inert atmosphere nor special solvents). PMID:21647264

  20. Use of a palladium(II)-catalyzed oxidative kinetic resolution in synthetic efforts toward bielschowskysin

    PubMed Central

    Meyer, Michael E.; Phillips, John H.; Ferreira, Eric M.; Stoltz, Brian M.

    2013-01-01

    Progress toward the cyclobutane core of bielshowskysin is reported. The core was thought to arise from a cyclopropane intermediate via a furan-mediated cyclopropane fragmentation, followed by a 1,4-Michael addition. The synthesis of the cyclopropane intermediate utilizes a Suzuki coupling reaction, an esterification with 2-diazoacetoacetic acid, and a copper catalyzed cyclopropanation. An alcohol intermediate within the synthetic route was obtained in high enantiopurity via a highly selective palladium(II)-catalyzed oxidative kinetic resolution (OKR). PMID:23913988

  1. Mechanistic insights into the rhenium-catalyzed alcohol-to-olefin dehydration reaction.

    PubMed

    Korstanje, Ties J; Jastrzebski, Johann T B H; Klein Gebbink, Robertus J M

    2013-09-23

    Rhenium-based complexes are powerful catalysts for the dehydration of various alcohols to the corresponding olefins. Here, we report on both experimental and theoretical (DFT) studies into the mechanism of the rhenium-catalyzed dehydration of alcohols to olefins in general, and the methyltrioxorhenium-catalyzed dehydration of 1-phenylethanol to styrene in particular. The experimental and theoretical studies are in good agreement, both showing the involvement of several proton transfers, and of a carbenium ion intermediate in the catalytic cycle.

  2. Mechanism of base-catalyzed Schiff base deprotonation in halorhodopsin

    SciTech Connect

    Lanyi, J.K.

    1986-10-21

    It has been shown earlier that the deprotonation of the Schiff base of illuminated halorhodopsin proceeds with a much lower pK/sub a/ than that of the unilluminated pigment and the reversible protonation change is catalyzed by azide and cyanate. The authors have studied the kinetics of the proton-transfer events with flash spectroscopy and compared a variety of anionic bases with different pK/sub a/ with regard to the apparent binding constants and the catalytic activities. The results suggest a general base catalysis mechanism in which the anionic bases bind with apparently low affinity to halorhodopsin, although with some degree of size- and/or shape-dependent specificity. The locus of the catalysis is accessible from the cytoplasmic side of the membrane and is not at site I, where various anions bind and shift the pK/sub a/ of the deprotonation. Neither is it at site II, where a few specific anions (like chloride) bind to the all-trans pigment. It may be concluded that while the all-trans pigment loses its Schiff base proton very rapidly at its pK/sub a/, there is a kinetic barrier to this deprotonation in the 13-cis photointermediate that can be partially overcome by the reversible protonation of an extrinsic anionic base, which shuttles protons between the interior of the protein and the aqueous medium. The need for an extrinsic proton acceptor for efficient deprotonation of the Schiff base of halorhodopsin is one of the main differences between this pigment and the analogous retinal protein, bacteriorhodopsin.

  3. Ammonia synthesis catalyzed by ruthenium supported on basic zeolites

    SciTech Connect

    Fishel, C.T.; Davis, R.J.; Garces, J.M.

    1996-09-15

    Ammonia synthesis was catalyzed by ruthenium metal clusters, promoted by alkali and alkaline earth elements, supported on zeolite X, magnesia, and pure silica MCM-41. At atmospheric total pressure and temperatures ranging from 623 to 723 K, the turnover frequencies of ammonia synthesis on Ru/KX varied significantly with Fu cluster size, demonstrating the known structure sensitivity of the reaction. Therefore, zeolite and magnesia catalysts were prepared with similar Ru cluster sizes, about 1 nm in diameter, in order to properly evaluate the effect of promoters. The same high degree of metal dispersion could not be obtained with Ru/MCM-41 catalysts. The turnover frequency for ammonia synthesis over Ru/CsX exceeded that over Ru/KX, consistent with the rank of promoter basicity. However, alkaline earth metals were more effective promoters than alkali metals for Ru supported on both zeolite X and MCM-41. Since alkaline earth metals are less basic; this promotional effect was unexpected. In addition, the turnover frequency for ammonia synthesis on Ru/BaX exceeded that of Ru/MgO, a nonzeolitic material. Pore volumes for Ru/BaX and Ru/KX measured by N{sub 2} adsorption were essentially identical, suggesting that pore blockage by ions within the zeolites does not account for the differences in reaction rates. The kinetics of ammonia synthesis over ruthenium differed considerably from what has been reported for industrial iron catalysts. Most significantly, the order of reaction in H{sub 2} was negative over Ru but is positive over Fe. A likely cause of this change in reaction order is that dissociated hydrogen atoms cover a greater fraction of the Ru clusters compared to Fe under reaction conditions. 49 refs., 8 figs., 10 tabs.

  4. Xanthine oxidase-catalyzed crosslinking of cell membrane proteins.

    PubMed

    Girotti, A W; Thomas, J P; Jordan, J E

    1986-12-01

    Isolated erythrocyte membranes exposed to protease-free xanthine oxidase plus xanthine and ferric iron undergo lipid peroxidation and protein crosslinking (appearance of high molecular weight aggregates on sodium dodecyl sulfate (SDS) gel electrophoresis). Spectrin is more susceptible to crosslinking than the other polypeptides. Thiol-reducible bonds (disulfides) as well as nonreducible bonds are generated, the former type relatively rapidly (detected within 10-20 min) and the latter type more slowly (usually detected after 1 h). Reducible crosslinking is inhibited by catalase, but not by superoxide dismutase, desferrioxamine, butylated hydroxyltoluene, and mannitol; whereas nonreducible crosslinking, like free radical lipid peroxidation, is inhibited by all of these agents except mannitol. Zinc(II) also inhibits lipid peroxidation, but stimulates disulfide bond formation to the virtual exclusion of all other crosslinking. Our results indicate that disulfide formation is dependent on H2O2, but not O2- or iron. However, O2-, H2O2, and iron are all required for lipid peroxidation and nondisulfide crosslinking, suggesting the intermediacy of OH generated via the iron-catalyzed Haber-Weiss reaction. The possible role of malonaldehyde (MDA, a by-product of lipid peroxidation) in the latter type of crosslinking was examined. Solubilized samples of xanthine/xanthine oxidase-treated membranes showed a strong visible fluorescence (emission maximum 450 nm; excitation 390 nm). This resembled the fluorescence of membranes treated with authentic MDA, which forms conjugated imine linkages between amino groups. Fluorescence scanning of SDS gels from MDA-treated membranes showed a strong signal coincident with crosslinked proteins and also one in the low molecular weight, nonprotein region, suggestive of aminolipid conjugates. Similar scanning on xanthine/xanthine oxidase-reacted membranes indicated that all fluorescence is associated with the lipid fraction. Thus, nonreducible

  5. The mechanism for iron-catalyzed alkene isomerization in solution

    SciTech Connect

    Sawyer, Karma R.; Glascoe, Elizabeth A.; Cahoon, James F.; Schlegel, Jacob P.; Harris, Charles B.

    2008-05-27

    Here we report nano- through microsecond time-resolved IR experiments of iron-catalyzed alkene isomerization in room-temperature solution. We have monitored the photochemistry of a model system, Fe(CO){sub 4}({eta}{sup 2}-1-hexene), in neat 1-hexene solution. UV-photolysis of the starting material leads to the dissociation of a single CO to form Fe(CO){sub 3}({eta}{sup 2}-1-hexene), in a singlet spin state. This CO loss complex shows a dramatic selectivity to form an allyl hydride, HFe(CO){sub 3}({eta}{sup 3}-C{sub 6}H{sub 11}), via an internal C-H bond-cleavage reaction in 5-25 ns. We find no evidence for the coordination of an alkene molecule from the bath to the CO loss complex, but do observe coordination to the allyl hydride, indicating that it is the key intermediate in the isomerization mechanism. Coordination of the alkene ligand to the allyl hydride leads to the formation of the bis-alkene isomers, Fe(CO){sub 3}({eta}{sup 2}-1-hexene)({eta}{sup 2}-2-hexene) and Fe(CO){sub 3}({eta}{sup 2}-1-hexene){sub 2}. Because of the thermodynamic stability of Fe(CO){sub 3}({eta}{sup 2}-1-hexene)({eta}{sup 2}-2-hexene) over Fe(CO){sub 3}({eta}{sup 2}-1-hexene){sub 2} (ca. 12 kcal/mol), nearly 100% of the alkene population will be 2-alkene. The results presented herein provide the first direct evidence for this mechanism in solution and suggest modifications to the currently accepted mechanism.

  6. A thermodynamic investigation of reactions catalyzed by tryptophan synthase.

    PubMed

    Kishore, N; Tewari, Y B; Akers, D L; Goldberg, R N; Miles, E W

    1998-07-27

    Microcalorimetry and high-performance liquid chromatography have been used to conduct a thermodynamic investigation of the following reactions catalyzed by the tryptophan synthase alpha 2 beta 2 complex (EC 4.2.1.20) and its subunits: indole(aq) + L-serine(aq) = L-tryptophan(aq) + H2O(1); L-serine(aq) = pyruvate(aq) + ammonia(aq); indole(aq) + D-glyceraldehyde 3-phosphate(aq) = 1-(indol-3-yl)glycerol 3-phosphate(aq); L-serine(aq) + 1-(indol-3-yl)glycerol 3-phosphate(aq) = L-tryptophan(aq) + D-glyceraldehyde 3-phosphate(aq) + H2O(1). The calorimetric measurements led to standard molar enthalpy changes for all four of these reactions. Direct measurements yielded an apparent equilibrium constant for the third reaction; equilibrium constants for the remaining three reactions were obtained by using thermochemical cycle calculations. The results of the calorimetric and equilibrium measurements were analyzed in terms of a chemical equilibrium model that accounted for the multiplicity of the ionic states of the reactants and products. Thermodynamic quantities for chemical reference reactions involving specific ionic forms have been obtained. These quantities permit the calculation of the position of equilibrium of the above four reactions as a function of temperature, pH, and ionic strength. Values of the apparent equilibrium constants and standard transformed Gibbs free energy changes delta r G'(m) degree under approximately physiological conditions are given. Le Châtelier's principle provides an explanation as to why, in the metabolic pathway leading to the synthesis of L-tryptophan, the third reaction proceeds in the direction of formation of indole and D-glyceraldehyde 3-phosphate even though the apparent equilibrium constant greatly favors the formation of 1-(indol-3-yl)glycerol 3-phosphate. PMID:9700925

  7. Lipase-catalyzed hydrolysis of TG containing acetylenic FA.

    PubMed

    Jie, Marcel S F Lie Ken; Fua, Xun; Lau, Maureen M L; Chye, M L

    2002-10-01

    Hydrolysis of symmetrical acetylenic TG of type AAA [viz., glycerol tri-(4-decynoate), glycerol tri-(6-octadecynoate), glycerol tri-(9-octadecynoate), glycerol tri-(10-undecynoate), and glycerol tri-(13-docosynoate)] in the presence of eight microbial lipases was studied. Novozyme 435 (Candida antarctica), an efficient enzyme for esterification, showed a significant resistance in the hydrolysis of glycerol tri-(9-octadecynoate) and glycerol tri-(13-docosynoate). Hydrolysis of acetylenic TG with Lipolase 100T (Humicola lanuginosa) was rapidly accomplished. Lipase PS-D (Pseudomonas cepacia) showed a fair resistance toward the hydrolysis of glycerol tri-(6-octadecynoate) only, which reflected its ability to recognize the delta6 positional isomer of 18:1. Lipase CCL (Candida cylindracea, syn. C. rugosa) and AY-30 (C. rugosa) were able to catalyze the release of 10-undecynoic acid and 9-octadecynoic acid from the corresponding TG, but less readily the 13-docosynoic acid in the case of glycerol tri-(13-docosynoate). The two lipases CCL and AY-30 were able to distinguish the small difference in structure of fatty acyl moieties in the TG substrate. To confirm this trend, three regioisomers of mixed acetylenic TG of type ABC (containing one each of delta6, delta9, and delta13 acetylenic FA in various positions) were prepared and hydrolyzed with CCL and AY-40. The results reconfirmed the observation that AY-30 and CCL were able to distinguish the slight differences in the molecular structure (position of the acetylenic bond and chain length) of the acyl groups in the TG during the hydrolysis of such TG substrates.

  8. Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration

    DOE PAGES

    Eedugurala, Naresh; Wang, Zhuoran; Chaudhary, Umesh; Nelson, Nicholas; Kandel, Kapil; Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek; Sadow, Aaron D.

    2015-11-04

    The hydroboration of aldehydes and ketones using a silica-supported zirconium catalyst is reported. Reaction of Zr(NMe2)4 and mesoporous silica nanoparticles (MSN) provides the catalytic material Zr(NMe2)n@MSN. Exhaustive characterization of Zr(NMe2)n@MSN with solid-state (SS)NMR and infrared spectroscopy, as well as through reactivity studies, suggests its surface structure is primarily ≡SiOZr(NMe2)3. The presence of these nitrogen-containing zirconium sites is supported by 15N NMR spectroscopy, including natural abundance 15N NMR measurements using dynamic nuclear polarization (DNP) SSNMR. The Zr(NMe2)n@MSN material reacts with pinacolborane (HBpin) to provide Me2NBpin and the material ZrH/Bpin@MSN that is composed of interacting surface-bonded zirconium hydride and surface-bonded borane ≡SiOBpinmore » moieties in an approximately 1:1 ratio, as well as zirconium sites coordinated by dimethylamine. The ZrH/Bpin@MSN is characterized by 1H/2H and 11B SSNMR and infrared spectroscopy and through its reactivity with D2. The zirconium hydride material or the zirconium amide precursor Zr(NMe2)n@MSN catalyzes the selective hydroboration of aldehydes and ketones with HBpin in the presence of functional groups that are often reduced under hydroboration conditions or are sensitive to metal hydrides, including olefins, alkynes, nitro groups, halides, and ethers. Remarkably, this catalytic material may be recycled without loss of activity at least eight times, and air-exposed materials are catalytically active. These supported zirconium centers are robust catalytic sites for carbonyl reduction and that surface-supported, catalytically reactive zirconium hydride may be generated from zirconium-amide or zirconium alkoxide sites.« less

  9. Copper-catalyzed azide alkyne cycloaddition polymer networks

    NASA Astrophysics Data System (ADS)

    Alzahrani, Abeer Ahmed

    The click reaction concept, introduced in 2001, has since spurred the rapid development and reexamination of efficient, high yield reactions which proceed rapidly under mild conditions. Prior to the discovery of facile copper catalysis in 2002, the thermally activated azide-alkyne or Huisgen cycloaddition reaction was largely ignored following its discovery in large part due to its slow kinetics, requirement for elevated temperature and limited selectivity. Now, arguably, the most prolific and capable of the click reactions, the copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction is extremely efficient and affords exquisite control of the reaction. The orthogonally and chemoselectivity of this reaction enable its wide utility across varied scientific fields. Despite numerous inherent advantages and widespread use for small molecule synthesis and solution-based polymer chemistry, it has only recently and rarely been utilized to form polymer networks. This work focuses on the synthesis, mechanisms, and unique attributes of the CuAAC reaction for the fabrication of functional polymer networks. The photo-reduction of a series of copper(II)/amine complexes via ligand metal charge transfer was examined to determine their relative efficiency and selectivity in catalyzing the CuAAC reaction. The aliphatic amine ligands were used as an electron transfer species to reduce Cu(II) upon irradiation with 365 nm light while also functioning as an accelerating agent and as protecting ligands for the Cu(I) that was formed. Among the aliphatic amines studied, tertiary amines such as triethylamine (TEA), tetramethyldiamine (TMDA), N,N,N',N",N"-pentamethyldiethylenetriamine (PMDTA), and hexamethylenetetramine (HMTETA) were found to be the most effective. The reaction kinetics were accelerated by increasing the PMDETA : Cu(II) ratio with a ratio of ligand to Cu(II) of 4:1 yielding the maximum conversion in the shortest time. The sequential and orthogonal nature of the photo

  10. Growth and characterization of gold catalyzed SiGe nanowires and alternative metal-catalyzed Si nanowires.

    PubMed

    Potié, Alexis; Baron, Thierry; Dhalluin, Florian; Rosaz, Guillaume; Salem, Bassem; Latu-Romain, Laurence; Kogelschatz, Martin; Gentile, Pascal; Oehler, Fabrice; Montès, Laurent; Kreisel, Jens; Roussel, Hervé

    2011-01-01

    The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement.

  11. Investigating the mechanism of the selective hydrogenation reaction of cinnamaldehyde catalyzed by Ptn clusters.

    PubMed

    Li, Laicai; Wang, Wei; Wang, Xiaolan; Zhang, Lin

    2016-08-01

    Cinnamaldehyde (CAL) belongs to the group of aromatic α,β-unsaturated aldehydes; the selective hydrogenation of CAL plays an important role in the fine chemical and pharmaceutical industries. Using Ptn clusters as catalytic models, we studied the selective hydrogenation reaction mechanism for CAL catalyzed by Ptn (n = 6, 10, 14, 18) clusters by means of B3LYP in density functional theory at the 6-31+ G(d) level (the LanL2DZ extra basis set was used for the Pt atom). The rationality of the transition state was proved by vibration frequency analysis and intrinsic reaction coordinate computation. Moreover, atoms in molecules theory and nature bond orbital theory were applied to discuss the interaction among orbitals and the bonding characteristics. The results indicate that three kinds of products, namely 3-phenylpropyl aldehyde, 3-phenyl allyl alcohol and cinnamyl alcohol, are produced in the selective hydrogenation reaction catalyzed by Ptn clusters; each pathway possesses two reaction channels. Ptn clusters are more likely to catalyze the activation and hydrogenation of the C = O bond in CAL molecules, eventually producing cinnamic alcohol, which proves that Ptn clusters have a strong reaction selectivity to catalyze CAL. The reaction selectivity of the catalyzer cluster is closely related to the size of the Ptn cluster, with Pt14 clusters having the greatest reaction selectivity. Graphical Abstract The reaction mechanism for the selective hydrogenation reaction ofcinnamaldehyde catalyzed by Ptn clusters was studied by densityfunctional theory. The reactionselectivity of cluster catalyzer was concluded to be closely related to the size of Ptn clusters, with Pt14 clusters having the greatest reaction selectivity. PMID:27444877

  12. Investigating the mechanism of the selective hydrogenation reaction of cinnamaldehyde catalyzed by Ptn clusters.

    PubMed

    Li, Laicai; Wang, Wei; Wang, Xiaolan; Zhang, Lin

    2016-08-01

    Cinnamaldehyde (CAL) belongs to the group of aromatic α,β-unsaturated aldehydes; the selective hydrogenation of CAL plays an important role in the fine chemical and pharmaceutical industries. Using Ptn clusters as catalytic models, we studied the selective hydrogenation reaction mechanism for CAL catalyzed by Ptn (n = 6, 10, 14, 18) clusters by means of B3LYP in density functional theory at the 6-31+ G(d) level (the LanL2DZ extra basis set was used for the Pt atom). The rationality of the transition state was proved by vibration frequency analysis and intrinsic reaction coordinate computation. Moreover, atoms in molecules theory and nature bond orbital theory were applied to discuss the interaction among orbitals and the bonding characteristics. The results indicate that three kinds of products, namely 3-phenylpropyl aldehyde, 3-phenyl allyl alcohol and cinnamyl alcohol, are produced in the selective hydrogenation reaction catalyzed by Ptn clusters; each pathway possesses two reaction channels. Ptn clusters are more likely to catalyze the activation and hydrogenation of the C = O bond in CAL molecules, eventually producing cinnamic alcohol, which proves that Ptn clusters have a strong reaction selectivity to catalyze CAL. The reaction selectivity of the catalyzer cluster is closely related to the size of the Ptn cluster, with Pt14 clusters having the greatest reaction selectivity. Graphical Abstract The reaction mechanism for the selective hydrogenation reaction ofcinnamaldehyde catalyzed by Ptn clusters was studied by densityfunctional theory. The reactionselectivity of cluster catalyzer was concluded to be closely related to the size of Ptn clusters, with Pt14 clusters having the greatest reaction selectivity.

  13. Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation.

    PubMed

    Zhang, Jing; Sun, Bo; Xiong, Xinmei; Gao, Naiyun; Song, Weihua; Du, Erdeng; Guan, Xiaohong; Zhou, Gongming

    2014-10-15

    TiO2 supported ruthenium nanoparticles, Ru/TiO2 (0.94‰ as Ru), was synthesized to catalyze permanganate oxidation for degrading emerging pollutants (EPs) with diverse organic moieties. The presence of 1.0 g L(-1) Ru/TiO2 increased the second order reaction rate constants of bisphenol A, diclofenac, acetaminophen, sulfamethoxazole, benzotriazole, carbamazepine, butylparaben, diclofenac, ciprofloxacin and aniline at mg L(-1) level (5.0 μM) by permanganate oxidation at pH 7.0 by 0.3-119 times. The second order reaction rate constants of EPs with permanganate or Ru/TiO2-catalyzed permanganate oxidation obtained at EPs concentration of mg L(-1) level (5.0 μM) underestimated those obtained at EPs concentration of μg L(-1) level (0.050 μM). Ru/TiO2-catalyzed permanganate could decompose a mixture of nine EPs at μg L(-1) level efficiently and the second order rate constant for each EP was not decreased due to the competition of other EPs. The toxicity tests revealed that Ru/TiO2-catalyzed permanganate oxidation was effective not only for elimination of EPs but also for detoxification. The removal rates of sulfamethoxazole by Ru/TiO2-catalyzed permanganate oxidation in ten successive cycles remained almost constant in ultrapure water and slightly decreased in Songhua river water since the sixth run, indicating the satisfactory stability of Ru/TiO2. Ru/TiO2-catalyzed permanganate oxidation was selective and could remove selected EPs spiked in real waters more efficiently than chlorination. Therefore, Ru/TiO2-catalyzed permanganate oxidation is promising for removing EPs with electron-rich moieties. PMID:25016299

  14. Captan impairs CYP-catalyzed drug metabolism in the mouse.

    PubMed

    Paolini, M; Barillari, J; Trespidi, S; Valgimigli, L; Pedulli, G F; Cantelli-Forti, G

    1999-11-30

    To investigate whether the fungicide captan impairs CYP-catalyzed drug metabolism in murine liver, kidney and lung, the modulation of the regio- and stereo-selective hydroxylation of testosterone, including 6beta-(CYP3A), 6alpha-(CYP2A1 and CYP2B1) and 16alpha-(CYP2B9) oxidations was studied. Specific substrates as probes for different CYP isoforms such as p-nitrophenol (CYP2E1), pentoxyresorufin (CYP2B1), ethoxyresorufin (CYP1A1), aminopyrine (CYP3A), phenacetin and methoxyresorufin (CYP1A2), and ethoxycoumarin (mixed) were also considered. Daily doses of captan (7.5 or 15 mg/kg b.w., i.p.) were administered to different groups of Swiss Albino CD1 mice of both sexes for 1 or 3 consecutive days. While a single dose of this fungicide did not affect CYP-machinery, repeated treatment significantly impaired the microsomal metabolism; in the liver, for example, a general inactivating effect was observed, with the sole exception of testosterone 2alpha-hydroxylase activity which was induced up to 8.6-fold in males. In vitro studies showed that the mechanism-based inhibition was related to captan metabolites rather than the parental compound. In the kidney, both CYP3A- and CYP1A2-linked monooxygenases were significantly induced (2-fold) by this pesticide. Accelerated phenacetin and methoxyresorufin metabolism (CYP1A2) was also observed in the lung. Data on CYP3A (kidney) and CYP1A2 (kidney and lung) induction were corroborated by Western immunoblotting using rabbit polyclonal anti-CYP3A1/2 and CYP1A1/2 antibodies. By means of electron spin resonance (EPR) spectrometry coupled to a spin-trapping technique, it was found that the recorded induction generates a large amounts of the anion radical superoxide (O*2-) either in kidney or lung microsomes. These findings suggest that alterations in CYP-associated activities by captan exposure may result in impaired (endogenous) metabolism as well as of coadministered drugs with significant implications for their disposition. The

  15. Iridium-Catalyzed Selective Isomerization of Primary Allylic Alcohols.

    PubMed

    Li, Houhua; Mazet, Clément

    2016-06-21

    This Account presents the development of the iridium-catalyzed isomerization of primary allylic alcohols in our laboratory over the past 8 years. Our initial interest was driven by the long-standing challenge associated with the development of a general catalyst even for the nonasymmetric version of this seemingly simple chemical transformation. The added value of the aldehyde products and the possibility to rapidly generate molecular complexity from readily accessible allylic alcohols upon a redox-economical isomerization reaction were additional sources of motivation. Certainly influenced by the success story of the related isomerization of allylic amines, most catalysts developed for the selective isomerization of allylic alcohols were focused on rhodium as a transition metal of choice. Our approach has been based on the commonly accepted precept that hydrogenation and isomerization are often competing processes, with the latter being usually suppressed in favor of the former. The cationic iridium complexes [(Cy3P)(pyridine)Ir(cod)]X developed by Crabtree (X = PF6) and Pfaltz (X = BArF) are usually considered as the most versatile catalysts for the hydrogenation of allylic alcohols. Using molecular hydrogen to generate controlled amounts of the active form of these complexes but performing the reaction in the absence of molecular hydrogen enabled deviation from the typical hydrogenation manifold and favored exclusively the isomerization of allylic alcohols into aldehydes. Isotopic labeling and crossover experiments revealed the intermolecular nature of the process. Systematic variation of the ligand on the iridium center allowed us to identify the structural features beneficial for catalytic activity. Subsequently, three generations of chiral catalysts have been investigated and enabled us to reach excellent levels of enantioselectivity for a wide range of 3,3-disubstituted aryl/alkyl and alkyl/alkyl primary allylic alcohols leading to β-chiral aldehydes. The

  16. Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration

    SciTech Connect

    Eedugurala, Naresh; Wang, Zhuoran; Chaudhary, Umesh; Nelson, Nicholas; Kandel, Kapil; Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek; Sadow, Aaron D.

    2015-11-04

    The hydroboration of aldehydes and ketones using a silica-supported zirconium catalyst is reported. Reaction of Zr(NMe2)4 and mesoporous silica nanoparticles (MSN) provides the catalytic material Zr(NMe2)n@MSN. Exhaustive characterization of Zr(NMe2)n@MSN with solid-state (SS)NMR and infrared spectroscopy, as well as through reactivity studies, suggests its surface structure is primarily ≡SiOZr(NMe2)3. The presence of these nitrogen-containing zirconium sites is supported by 15N NMR spectroscopy, including natural abundance 15N NMR measurements using dynamic nuclear polarization (DNP) SSNMR. The Zr(NMe2)n@MSN material reacts with pinacolborane (HBpin) to provide Me2NBpin and the material ZrH/Bpin@MSN that is composed of interacting surface-bonded zirconium hydride and surface-bonded borane ≡SiOBpin moieties in an approximately 1:1 ratio, as well as zirconium sites coordinated by dimethylamine. The ZrH/Bpin@MSN is characterized by 1H/2H and 11B SSNMR and infrared spectroscopy and through its reactivity with D2. The zirconium hydride material or the zirconium amide precursor Zr(NMe2)n@MSN catalyzes the selective hydroboration of aldehydes and ketones with HBpin in the presence of functional groups that are often reduced under hydroboration conditions or are sensitive to metal hydrides, including olefins, alkynes, nitro groups, halides, and ethers. Remarkably, this catalytic material may be recycled without loss of activity at least eight times, and air-exposed materials are catalytically active. These supported zirconium centers are robust catalytic sites for carbonyl reduction and that surface-supported, catalytically reactive zirconium hydride may be generated from zirconium-amide or zirconium alkoxide sites.

  17. Theoretical study of water cluster catalyzed decomposition of formic acid.

    PubMed

    Inaba, Satoshi

    2014-04-24

    We have performed a number of quantum chemical simulations to examine water cluster catalyzed decomposition of formic acid. The decomposition of formic acid consists of two competing pathways, dehydration, and decarboxylation. We use the Gaussian 4 method of the Gaussian09 software to locate and optimize a transition state of the decomposition reaction and obtain the activation energy. The decomposition starts by transferring a proton of a formic acid to a water molecule. The de Broglie wavelength of a proton is similar to the width of the potential barrier of the decomposition reaction at low temperature. The tunneling, in which a proton penetrates the potential barrier, enhances the decomposition rate. Water molecules serve as the catalyst in the decomposition and reduce the activation energy. The relay of a proton from a water molecule to a neighboring water molecule is accomplished with little change of the geometry of a molecule, resulting in the reduction of the activation energy. Two water molecules are actively involved in the decomposition reaction to reduce the activation energy. We have also examined the effect of water clusters with three, four, and five water molecules on the decomposition reaction. The noncovalent distance between a hydrogen atom of a water molecule and an oxygen atom of a neighboring water molecule decreases in a water cluster due to the cooperative many-body interactions. A water molecule in a water cluster becomes a better proton donor as well as a better proton acceptor. The activation energy of the decomposition is further decreased by the catalytic effect of a water cluster. We calculate the reaction rate using the transition state theory corrected by the tunneling effect of a proton. The calculated reaction rate of the decarboxylation is smaller than that of the dehydration when less than three water molecules are included in the simulation. However, the major product of the decomposition of a formic acid becomes carbon dioxide

  18. Copper-Catalyzed Intermolecular Amidation and Imidation of Unactivated Alkanes

    PubMed Central

    2015-01-01

    We report a set of rare copper-catalyzed reactions of alkanes with simple amides, sulfonamides, and imides (i.e., benzamides, tosylamides, carbamates, and phthalimide) to form the corresponding N-alkyl products. The reactions lead to functionalization at secondary C–H bonds over tertiary C–H bonds and even occur at primary C–H bonds. [(phen)Cu(phth)] (1-phth) and [(phen)Cu(phth)2] (1-phth2), which are potential intermediates in the reaction, have been isolated and fully characterized. The stoichiometric reactions of 1-phth and 1-phth2 with alkanes, alkyl radicals, and radical probes were investigated to elucidate the mechanism of the amidation. The catalytic and stoichiometric reactions require both copper and tBuOOtBu for the generation of N-alkyl product. Neither 1-phth nor 1-phth2 reacted with excess cyclohexane at 100 °C without tBuOOtBu. However, the reactions of 1-phth and 1-phth2 with tBuOOtBu afforded N-cyclohexylphthalimide (Cy-phth), N-methylphthalimide, and tert-butoxycyclohexane (Cy-OtBu) in approximate ratios of 70:20:30, respectively. Reactions with radical traps support the intermediacy of a tert-butoxy radical, which forms an alkyl radical intermediate. The intermediacy of an alkyl radical was evidenced by the catalytic reaction of cyclohexane with benzamide in the presence of CBr4, which formed exclusively bromocyclohexane. Furthermore, stoichiometric reactions of [(phen)Cu(phth)2] with tBuOOtBu and (Ph(Me)2CO)2 at 100 °C without cyclohexane afforded N-methylphthalimide (Me-phth) from β-Me scission of the alkoxy radicals to form a methyl radical. Separate reactions of cyclohexane and d12-cyclohexane with benzamide showed that the turnover-limiting step in the catalytic reaction is the C–H cleavage of cyclohexane by a tert-butoxy radical. These mechanistic data imply that the tert-butoxy radical reacts with the C–H bonds of alkanes, and the subsequent alkyl radical combines with 1-phth2 to form the corresponding N-alkyl imide product

  19. Branching Out: Rhodium-Catalyzed Allylation with Alkynes and Allenes.

    PubMed

    Koschker, Philipp; Breit, Bernhard

    2016-08-16

    We present a new and efficient strategy for the atom-economic transformation of both alkynes and allenes to allylic functionalized structures via a Rh-catalyzed isomerization/addition reaction which has been developed in our working group. Our methodology thus grants access to an important structural class valued in modern organic chemistry for both its versatility for further functionalization and the potential for asymmetric synthesis with the construction of a new stereogenic center. This new methodology, inspired by mechanistic investigations by Werner in the late 1980s and based on preliminary work by Yamamoto and Trost, offers an attractive alternative to other established methods for allylic functionalization such as allylic substitution or allylic oxidation. The main advantage of our methodology consists of the inherent atom economy in comparison to allylic oxidation or substitution, which both produce stoichiometric amounts of waste and, in case of the substitution reaction, require prefunctionalization of the starting material. Starting out with the discovery of a highly branched-selective coupling reaction of carboxylic acids with terminal alkynes using a Rh(I)/DPEphos complex as the catalyst system, over the past 5 years we were able to continuously expand upon this chemistry, introducing various (pro)nucleophiles for the selective C-O, C-S, C-N, and C-C functionalization of both alkynes and the double-bond isomeric allenes by choosing the appropriate rhodium/bidentate phosphine catalyst. Thus, valuable compounds such as branched allylic ethers, sulfones, amines, or γ,δ-unsaturated ketones were successfully synthesized in high yields and with a broad substrate scope. Beyond the branched selectivity inherent to rhodium, many of the presented methodologies display additional degrees of selectivity in regard to regio-, diastereo-, and enantioselective transformations, with one example even proceeding via a dynamic kinetic resolution. Many advances

  20. Development of a second generation palladium-catalyzed cycloalkenylation and its application to bioactive natural product synthesis.

    PubMed

    Toyota, Masahiro

    2013-07-01

    A novel palladium-catalyzed intramolecular oxidative alkylation of unactivated olefins is described. This protocol was devised to solve one of the drawbacks of the original palladium-catalyzed cycloalkenylation that we developed. We call this new procedure the 'second generation palladium-catalyzed cycloalkenylation'. This protocol has been applied to the total syntheses of cis-195A, trans-195A, boonein, scholareins A, C, D, and alpha-skytanthine.

  1. [Degradation of nitrobenzene in aqueous solution by modified ceramic honeycomb-catalyzed ozonation].

    PubMed

    Sun, Zhi-Zhong; Zhao, Lei; Ma, Jun

    2005-11-01

    Comparative experiments of modified ceramic honeycomb, ceramic honeycomb-catalyzed ozonation and ozonation alone were conducted with nitrobenzene as the model organic pollutant. It was found that the processes of modified ceramic honeycomb and ceramic honeycomb-catalyzed ozonation could increase the removal efficiency of nitrobenzene by 38.35% and 15.46%, respectively, compared with that achieved by ozonation alone. Under the conditions of this experiment, the degradation rate of modified ceramic honeycomb-catalyzed ozonation increased by 30.55% with the increase of amount of catalyst to 5 blocks. The degradation rate of three process all increased greatly with the increase of temperature and value of pH in the solution. But when raising the pH value of the solution to 10.00, the advantage of modified ceramic honeycomb-catalyzed ozonation processes lost. The experimental results indicate that in modified ceramic honeycomb-catalyzed ozonation, nitrobenzene is primarily oxidized by *OH free radical in aqueous solution. The adsorption of nitrobenzene is too limited to have any influence on the degradation efficiency of nitrobenzene. With the same total dosage of applied ozone, the multiple steps addition of ozone showed a much higher removal efficiency than that obtained by one step in three processes. Modified ceramic honeycomb had a relative longer lifetime.

  2. Mechanism of Boron-Catalyzed N-Alkylation of Amines with Carboxylic Acids.

    PubMed

    Zhang, Qi; Fu, Ming-Chen; Yu, Hai-Zhu; Fu, Yao

    2016-08-01

    Mechanistic study has been carried out on the B(C6F5)3-catalyzed amine alkylation with carboxylic acid. The reaction includes acid-amine condensation and amide reduction steps. In condensation step, the catalyst-free mechanism is found to be more favorable than the B(C6F5)3-catalyzed mechanism, because the automatic formation of the stable B(C6F5)3-amine complex deactivates the catalyst in the latter case. Meanwhile, the catalyst-free condensation is constituted by nucleophilic attack and the indirect H2O-elimination (with acid acting as proton shuttle) steps. After that, the amide reduction undergoes a Lewis acid (B(C6F5)3)-catalyzed mechanism rather than a Brønsted acid (B(C6F5)3-coordinated HCOOH)-catalyzed one. The B(C6F5)3)-catalyzed reduction includes twice silyl-hydride transfer steps, while the first silyl transfer is the rate-determining step of the overall alkylation catalytic cycle. The above condensation-reduction mechanism is supported by control experiments (on both temperature and substrates). Meanwhile, the predicted chemoselectivity is consistent with the predominant formation of the alkylation product (over disilyl acetal product). PMID:27441997

  3. Cyclohexane oxidation catalyzed by titanium silicalite (TS-1): Overoxidation and comparison with other oxidation systems

    SciTech Connect

    Spinace, E.V.; Pastore, H.O.; Schuchardt, U.

    1995-12-01

    At 1000{degrees}C cyclohexanone and cyclohexanone, obtained in the TS-1 catalyzed oxidation of cyclohexane, are further oxidized in uncatalyzed and TS-1 catalyzed reactions. Cyclohexanol is very selectively oxidized to cyclohexanone inside the porous system of TS-1 and unselectively oxidized to several oxidation products on the external surface. This unselective oxidation can be suppressed by the addition of 2,6-di-tert-butyl-4-methylphenol (BHT), which does not enter the molecular sieve pore system and which efficiently reduces uncatalyzed oxidation. Cyclohexanone oxidation is mostly uncatalyzed, forming pre-dominantly dicarboxylic acids, and is not influenced by BHT. The products of the TS-1 catalyzed cyclohexanone oxidation are partially retained in the porous system, thus explaining the deactivation of the catalyst. Comparison with other systems shows that the turnover frequency of the TS-1 catalyzed cyclohexane oxidation is very similar to that of the radical-chain process, thus suggesting that the rate-determining step of the TS-1 catalyzed reaction is also the homolytic cleavage of a C-H bond. 18 refs., 5 tabs.

  4. Contaminated Groundwater Remediation by Catalyzed Hydrogen Peroxide and Persulfate Oxidants System

    NASA Astrophysics Data System (ADS)

    Yan, N.; Wang, Y.; Brusseau, M. L.

    2014-12-01

    A binary oxidant system, catalyzed hydrogen peroxide (H2O2) coupled with persulfate (S2O82-), was investigated for use in in-situ chemical oxidation (ISCO) applications. Trichloroethene (TCE) and 1,4-dioxane were used as target contaminants. Batch experiments were conducted to investigate the catalytic efficiency between ferrous ion (Fe2+) and base (NaOH), oxidant decomposition rates, and contaminant degradation efficiency. For the base-catalyzed H2O2-S2O82- system, oxidant release was moderate and sustained over the entire test period of 96 hours. Conversely, the oxidants were depleted within 24 hours for the Fe2+-catalyzed system. Solution pH decreased slightly for the Fe2+-catalyzed system, whereas the pH increased for the base-catalyzed system. The rates of degradation for TCE and 1,4-dioxane are compared as a function of system conditions. The results of this study indicate that the binary H2O2-S2O82- oxidant system is effective for oxidation of the tested contaminants.

  5. Tandem reactions initiated by copper-catalyzed cross-coupling: a new strategy towards heterocycle synthesis.

    PubMed

    Liu, Yunyun; Wan, Jie-Ping

    2011-10-21

    Copper-catalyzed cross-coupling reactions which lead to the formation of C-N, C-O, C-S and C-C bonds have been recognized as one of the most useful strategies in synthetic organic chemistry. During past decades, important breakthroughs in the study of Cu-catalyzed coupling processes demonstrated that Cu-catalyzed reactions are broadly applicable to a variety of research fields related to organic synthesis. Representatively, employing these coupling transformations as key steps, a large number of tandem reactions have been developed for the construction of various heterocyclic compounds. These tactics share the advantages of high atom economics of tandem reactions as well as the broad tolerance of Cu-catalyst systems. Therefore, Cu-catalyzed C-X (X = N, O, S, C) coupling transformation-initiated tandem reactions were quickly recognized as a strategy with great potential for synthesizing heterocyclic compounds and gained worldwide attention. In this review, recent research progress in heterocycle syntheses using tandem reactions initiated by copper-catalyzed coupling transformations, including C-N, C-O, C-S as well as C-C coupling processes are summarized. PMID:21879127

  6. Cysteine Oxidation Reactions Catalyzed by a Mononuclear Non-heme Iron Enzyme (OvoA) in Ovothiol Biosynthesis

    PubMed Central

    2015-01-01

    OvoA in ovothiol biosynthesis is a mononuclear non-heme iron enzyme catalyzing the oxidative coupling between histidine and cysteine. It can also catalyze the oxidative coupling between hercynine and cysteine, yet with a different regio-selectivity. Due to the potential application of this reaction for industrial ergothioneine production, in this study, we systematically characterized OvoA by a combination of three different assays. Our studies revealed that OvoA can also catalyze the oxidation of cysteine to either cysteine sulfinic acid or cystine. Remarkably, these OvoA-catalyzed reactions can be systematically modulated by a slight modification of one of its substrates, histidine. PMID:24684381

  7. Palladium-catalyzed picolinamide-directed iodination of remote ortho-C-H bonds of arenes: Synthesis of tetrahydroquinolines.

    PubMed

    Nack, William A; Wang, Xinmou; Wang, Bo; He, Gang; Chen, Gong

    2016-01-01

    A new palladium-catalyzed picolinamide (PA)-directed ortho-iodination reaction of ε-C(sp(2))-H bonds of γ-arylpropylamine substrates is reported. This reaction proceeds selectively with a variety of γ-arylpropylamines bearing strongly electron-donating or withdrawing substituents, complementing our previously reported PA-directed electrophilic aromatic substitution approach to this transformation. As demonstrated herein, a three step sequence of Pd-catalyzed γ-C(sp(3))-H arylation, Pd-catalyzed ε-C(sp(2))-H iodination, and Cu-catalyzed C-N cyclization enables a streamlined synthesis of tetrahydroquinolines bearing diverse substitution patterns. PMID:27559375

  8. Alkene synthesis through transition metal-catalyzed cross-coupling of N-tosylhydrazones.

    PubMed

    Zhang, Yan; Wang, Jianbo

    2012-01-01

    In this chapter, alkene synthesis based on the reaction of N-tosylhydrazones is described. The reactivity of tosylhydrazones is determined by either the acidity of α-proton and hydrazone proton or the electropositivity of the carbon of C=N bond. This leads to diverse reactivities and a series of N-tosylhydrazone-based olefination methodologies. Both non-catalytic and transition metal-catalyzed olefinations from N-tosylhydrazones are introduced in this chapter. Most of the transition metal-catalyzed reactions proceed via metal carbene transformations. The synthesis of alkenes through Pd-catalyzed cross-coupling reactions of N-tosylhydrazones is particularly attractive and will be discussed in detail.

  9. Primary product of the horseradish peroxidase-catalyzed oxidation of pentachlorophenol

    SciTech Connect

    Kazunga, C.; Aitken, M.D.; Gold, A.

    1999-05-01

    Peroxidases are a class of enzymes that catalyze the oxidation of various phenolic substrates by hydrogen peroxide. They are common enzymes in soil and are also available commercially, so that they have been proposed as agents of phenolic pollutant transformation both in the environment and in engineered systems. Previous research on the peroxidase-catalyzed oxidation of pentachlorophenol (PCP) has suggested that tetrachloro-p-benzoquinone (chloranil) is the principal product and that a considerable fraction of the PCP added to reaction mixtures appears to be resistant to oxidation. In experiments employing alternative methods of product separation and analysis, the authors found that both of these observations are artifacts of extraction and analytical methods used in previous studies. The major product of the horseradish peroxidase-catalyzed oxidation of pentachlorophenol from pH 4--7 was 2,3,4,5,6-pentachloro-4-pentachlorophenoxy-2,5-cyclohexadienone (PPCHD), which is formed by the coupling of two pentachlorophenoxyl radicals.

  10. Investigation of parameters critical to muon-catalyzed fusion: Annual performance report, 1986-1987

    SciTech Connect

    Jones, S.E.; Palmer, E.P.; Thorne, J.M.; Mueller, B.; Rafelski, J.; Anderson, A.N.

    1987-05-19

    It has been demonstrated (in conjunction with our colleagues) that muon catalysis cycling rates increase rapidly with increasing deuterium-tritium gas temperatures and densities. Furthermore, muon-capture losses are significantly smaller than predicted before the experiments began, although recent theoretical work narrows the gap between theory and observation. As a result of these effects, it was possible to achieve muon-catalyzed fusion yields of 150 fusions/muon (average). The fusion energy thereby released, nearly 3 GeV/muon, significantly exceeds theoretical expectations, and still higher yields are expected. Therefore, the limits of muon-catalyzed fusion are being explored to provide answers to questions regarding energy applications of muon-catalyzed fusion.

  11. Reactor prospects of muon-catalyzed fusion of deuterium and tritium concentrated in transition metals

    SciTech Connect

    Stacey, W.M. Jr. . Fusion Research Center )

    1989-09-01

    It is conjectured that the number of fusion events catalyzed by a single muon is orders of magnitude greater for deuterium and tritium concentrated in a transition metal than in gaseous form and that the recent observation of 2.5-MeV neutrons from a D/sub 2/O electrolytic cell with palladium and titanium cathodes can thereby be interpreted in terms of cosmic muon-catalyzed deuterium-deuterium fusion. This suggests a new fusion reactor reactor consisting of deuterium and tritium concentrated in transition metal fuel elements in a fusion core that surrounds an accelerator-produced muon source. The feasibility of net energy production in such a reactor is established in terms of requirements on the number of fusion events catalyzed per muon. The technological implications for a power reactor based on this concept are examined. The potential of such a concept as a neutron source for materials testing and tritium and plutonium production is briefly discussed.

  12. Continuous In Vitro Evolution of a Ribozyme that Catalyzes Three Successive Nucleotidyl Addition Reactions

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Wright, Martin C.; Joyce, Gerald F.

    2002-01-01

    Variants of the class I ligase ribozyme, which catalyzes joining of the 3' end of a template bound oligonucleotide to its own 5' end, have been made to evolve in a continuous manner by a simple serial transfer procedure that can be carried out indefinitely. This process was expanded to allow the evolution of ribozymes that catalyze three successive nucleotidyl addition reactions, two template-directed mononucleotide additions followed by RNA ligation. During the development of this behavior, a population of ribozymes was maintained against an overall dilution of more than 10(exp 406). The resulting ribozymes were capable of catalyzing the three-step reaction pathway, with nucleotide addition occurring in either a 5' yieldig 3' or a 3' yielding 5' direction. This purely chemical system provides a functional model of a multi-step reaction pathway that is undergoing Darwinian evolution.

  13. Bulk Gold-Catalyzed Reactions of Isocyanides, Amines, and Amine N-Oxides

    SciTech Connect

    Klobukowski, Erik; Angelici, Robert; Woo, Keith L.

    2012-01-26

    Bulk gold powder (5–50 μm particles) catalyzes the reactions of isocyanides with amines and amine N-oxides to produce ureas. The reaction of n-butyl isocyanide (nBu–N≡C) with di-n-propylamine and N-methylmorpholine N-oxide in acetonitrile, which was studied in the greatest detail, produced 3-butyl-1,1-dipropylurea (O═C(NHnBu)(NnPr2)) in 99% yield at 60 °C within 2 h. Sterically and electronically different isocyanides, amines, and amine N-oxides react successfully under these conditions. Detailed studies support a two-step mechanism that involves a gold-catalyzed reaction of adsorbed isocyanide with the amine N-oxide to form an isocyanate (RN═C═O), which rapidly reacts with the amine to give the urea product. These investigations show that bulk gold, despite its reputation for poor catalytic activity, is capable of catalyzing these reactions.

  14. RNA as an RNA Polymerase: Net Elongation of an RNA Primer Catalyzed by the Tetrahymena Ribozyme

    NASA Astrophysics Data System (ADS)

    Been, Michael D.; Cech, Thomas R.

    1988-03-01

    A catalytic RNA (ribozyme) derived from an intervening sequence (IVS) RNA of Tetrahymena thermophila will catalyze an RNA polymerization reaction in which pentacytidylic acid (C5) is extended by the successive addition of mononucleotides derived from a guanylyl-(3', 5')-nucleotide (GpN). Cytidines or uridines are added to C5 to generate chain lengths of 10 to 11 nucleotides, with longer products being generated at greatly reduced efficiency. The reaction is analogous to that catalyzed by a replicase with C5 acting as the primer, GpNs as the nucleoside triphosphates, and a sequence in the ribozyme providing a template. The demonstration that an RNA enzyme can catalyze net elongation of an RNA primer supports theories of prebiotic RNA self-replication.

  15. Glucosamine condensation catalyzed by 1-ethyl-3-methylimidazolium acetate: mechanistic insight from NMR spectroscopy.

    PubMed

    Jia, Lingyu; Pedersen, Christian Marcus; Qiao, Yan; Deng, Tiansheng; Zuo, Pingping; Ge, Wenzhi; Qin, Zhangfeng; Hou, Xianglin; Wang, Yingxiong

    2015-09-21

    The basic ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) could efficiently catalyze the conversion of 2-amino-2-deoxy-d-glucose (GlcNH2) into deoxyfructosazine (DOF) and fructosazine (FZ). Mechanistic investigation by NMR studies disclosed that [C2C1Im][OAc], exhibiting strong hydrogen bonding basicity, could coordinate with the hydroxyl and amino groups of GlcNH2via the promotion of hydrogen bonding in bifunctional activation of substrates and further catalyzing product formation, based on which a plausible reaction pathway involved in this homogeneous base-catalyzed reaction was proposed. Hydrogen bonding as an activation force, therefore, is responsible for the remarkable selectivity and rate enhancement observed. PMID:26278065

  16. First Novozym 435 lipase-catalyzed Morita-Baylis-Hillman reaction in the presence of amides.

    PubMed

    Tian, Xuemei; Zhang, Suoqin; Zheng, Liangyu

    2016-03-01

    The first Novozym 435 lipase-catalyzed Morita-Baylis-Hillman (MBH) reaction with amides as co-catalyst was realized. Results showed that neither Novozym 435 nor amide can independently catalyze the reaction. This co-catalytic system that used a catalytic amount of Novozym 435 with a corresponding amount of amide was established and optimized. The MBH reaction strongly depended on the structure of aldehyde substrate, amide co-catalyst, and reaction additives. The optimized reaction yield (43.4%) was achieved in the Novozym 435-catalyzed MBH reaction of 2, 4-dinitrobenzaldehyde and cyclohexenone with isonicotinamide as co-catalyst and β-cyclodextrin as additive only in 2 days. Although enantioselectivity of Novozym 435 was not found, the results were still significant because an MBH reaction using lipase as biocatalyst was realized for the first time.

  17. Oxidation of dibenzothiophene catalyzed by hemoglobin and other hemoproteins in various aqueous-organic media

    SciTech Connect

    Klyachko, N.L. Klibanov, A.M. )

    1992-10-01

    Biocatalytic oxidation of dibenzothiophene (a model of organic sulfur in coal) with hydrogen peroxide was investigated. It was found that various hemoproteins, both enzymic (e.g., horseradish peroxidase) and nonenzymic (e.g., bovine blood hemoglobin), readily oxidized dibensothiophene to its S-oxide and, to a minor extent, further to its S-dioxide (sulfone). This process catalyzed by hemoglobin was competent as an oxidation catalyst even in nearly dry organic solvents (with protic, acidic solvents being optimal), the highest conversions were observed in predominantly aqueous media. The hemoglobin-catalyzed oxidation of dibenzothiophene at low concentrations of the protein stopped long before all the substrate was oxidized. This phenomenon was caused by inactivation of hemoglobin by hydrogen peroxide that destroyed the heme moiety. The maximal degree of the hemoglobin-catalyzed dibenzothiophene oxidation was predicted, and found, to be strongly dependent on the reaction medium composition. 24 refs., 7 figs., 3 tabs.

  18. Iron-Catalyzed C-C Cross-Couplings Using Organometallics.

    PubMed

    Guérinot, Amandine; Cossy, Janine

    2016-08-01

    Over the last decades, iron-catalyzed cross-couplings have emerged as an important tool for the formation of C-C bonds. A wide variety of alkenyl, aryl, and alkyl (pseudo)halides have been coupled to organometallic reagents, the most currently used being Grignard reagents. Particular attention has been devoted to the development of iron catalysts for the functionalization of alkyl halides that are generally challenging substrates in classical cross-couplings. The high functional group tolerance of iron-catalyzed cross-couplings has encouraged organic chemists to use them in the synthesis of bioactive compounds. Even if some points remain obscure, numerous studies have been carried out to investigate the mechanism of iron-catalyzed cross-coupling and several hypotheses have been proposed. PMID:27573401

  19. Rhodium-catalyzed acyloxy migration of propargylic esters in cycloadditions, inspiration from the recent "gold rush".

    PubMed

    Shu, Xing-Zhong; Shu, Dongxu; Schienebeck, Casi M; Tang, Weiping

    2012-12-01

    Transition metal-catalyzed acyloxy migration of propargylic esters offers versatile entries to allene and vinyl carbene intermediates for various fascinating subsequent transformations. Most π-acidic metals (e.g. gold and platinum) are capable of facilitating these acyloxy migration events. However, very few of these processes involve redox chemistry, which are well-known for most other transition metals such as rhodium. The coupling of acyloxy migration of propargylic esters with oxidative addition, migratory insertion, and reductive elimination may lead to ample new opportunities for the design of new reactions. This tutorial review summarizes recent developments in Rh-catalyzed 1,3- and 1,2-acyloxy migration of propargylic esters in a number of cycloaddition reactions. Related Au- and Pt-catalyzed cycloadditions involving acyloxy migration are also discussed.

  20. Mutants of 4-oxalocrotonate tautomerase catalyze the decarboxylation of oxaloacetate through an imine mechanism.

    PubMed

    Brik, Ashraf; D'Souza, Lawrence J; Keinan, Ehud; Grynszpan, Flavio; Dawson, Philip E

    2002-09-01

    A designed single amino acid substitution can alter the catalytic activity and mechanism of 4-oxalocrotonate tautomerase (4-OT). While the wild-type enzyme catalyzes only the tautomerization of oxalocrotonate, the Pro1Ala mutant (P1A) catalyzes two reactions--the original tautomerization reaction and the decarboxylation of oxaloacetate. Although the N-terminal amine group of P1A is involved in both reactions, our results support a nucleophilic mechanism for the decarboxylase activity, in contrast to the general acid/base mechanism that has been previously established for the tautomerase activity. These findings demonstrate that a single catalytic group in a 4-OT mutant can catalyze two reactions by two different mechanisms.

  1. The mechanisms of S-nitrosothiol decomposition catalyzed by iron.

    PubMed

    Vanin, Anatoly F; Papina, Alina A; Serezhenkov, Vladimir A; Koppenol, Willem H

    2004-03-01

    The mechanisms of S-nitrosothiol transformation into paramagnetic dinitrosyl iron complexes (DNICs) with thiol- or non-thiol ligands or mononitrosyl iron complex (MNICs) with N-methyl-D-glucamine dithiocarbamate catalyzed by iron(II) ions under anaerobic conditions were studied by monitoring EPR or optical features of the complexes and S-nitrosothiols. The kinetic investigations demonstrated the appearance of short-living paramagnetic mononitrosyl-iron complex with L-cysteine prior to the formation of stable dinitrosyl-iron complex with cysteine in the solution of iron(II)-citrate complex (50-100 microM), S-nitrosocysteine (400 microM), and L-cysteine (20 mM) in 100 mM Hepes buffer (pH 7.4). The addition of deoxyhemoglobin (100 microM) did not influence the process, which points to a direct interaction between S-nitrosocysteine and iron(II) ions to yield DNIC. The reaction of DNIC-cysteine formation is first- and second-order in iron and S-nitrosocysteine, respectively. The third-order rate constant is (1.0 +/- 0.2) x 10(5) M(-2) s(-1) (estimated from EPR results) or (2.0 +/- 0.1) x 10(4) M(-2) s(-1) (estimated by optical method). A similar process of DNIC-cysteine formation was observed in a solution of iron(II)-citrate complex, L-cysteine, and NO-proline (200 microM) as a NO* donor. The appearance of a less stable dinitrosyl-iron complex with phosphate was detected when solutions of iron(II)-citrate containing 100 mM phosphate buffer (pH 7.4) were mixed with S-nitrosocysteine or NO-proline. The rapid formation of DNIC with phosphate was followed by its decay. When the concentration of L-cysteine in solutions was reduced from 20 to 1 mM, the life-time of the DNIC-cysteine diminished notably; this was caused by consumption of L-cysteine in the process of DNIC-cysteine formation from S-nitrosocysteine and iron. Thus, L-cysteine is consumed. Formation of DNIC with glutathione was also observed in a solution of glutathione (20 mM), S-nitrosoglutathione (400 micro

  2. Biofuel-Promoted Polychlorinated Dibenzodioxin/furan Formation in an Iron-Catalyzed Diesel Particle Filter.

    PubMed

    Heeb, Norbert V; Rey, Maria Dolores; Zennegg, Markus; Haag, Regula; Wichser, Adrian; Schmid, Peter; Seiler, Cornelia; Honegger, Peter; Zeyer, Kerstin; Mohn, Joachim; Bürki, Samuel; Zimmerli, Yan; Czerwinski, Jan; Mayer, Andreas

    2015-08-01

    Iron-catalyzed diesel particle filters (DPFs) are widely used for particle abatement. Active catalyst particles, so-called fuel-borne catalysts (FBCs), are formed in situ, in the engine, when combusting precursors, which were premixed with the fuel. The obtained iron oxide particles catalyze soot oxidation in filters. Iron-catalyzed DPFs are considered as safe with respect to their potential to form polychlorinated dibenzodioxins/furans (PCDD/Fs). We reported that a bimetallic potassium/iron FBC supported an intense PCDD/F formation in a DPF. Here, we discuss the impact of fatty acid methyl ester (FAME) biofuel on PCDD/F emissions. The iron-catalyzed DPF indeed supported a PCDD/F formation with biofuel but remained inactive with petroleum-derived diesel fuel. PCDD/F emissions (I-TEQ) increased 23-fold when comparing biofuel and diesel data. Emissions of 2,3,7,8-TCDD, the most toxic congener [toxicity equivalence factor (TEF) = 1.0], increased 90-fold, and those of 2,3,7,8-TCDF (TEF = 0.1) increased 170-fold. Congener patterns also changed, indicating a preferential formation of tetra- and penta-chlorodibenzofurans. Thus, an inactive iron-catalyzed DPF becomes active, supporting a PCDD/F formation, when operated with biofuel containing impurities of potassium. Alkali metals are inherent constituents of biofuels. According to the current European Union (EU) legislation, levels of 5 μg/g are accepted. We conclude that risks for a secondary PCDD/F formation in iron-catalyzed DPFs increase when combusting potassium-containing biofuels.

  3. Advances in nickel-catalyzed cycloaddition reactions to construct carbocycles and heterocycles.

    PubMed

    Thakur, Ashish; Louie, Janis

    2015-08-18

    Transition-metal catalysis has revolutionized the field of organic synthesis by facilitating the construction of complex organic molecules in a highly efficient manner. Although these catalysts are typically based on precious metals, researchers have made great strides in discovering new base metal catalysts over the past decade. This Account describes our efforts in this area and details the development of versatile Ni complexes that catalyze a variety of cycloaddition reactions to afford interesting carbocycles and heterocycles. First, we describe our early work in investigating the efficacy of N-heterocyclic carbene (NHC) ligands in Ni-catalyzed cycloaddition reactions with carbon dioxide and isocyanate. The use of sterically hindered, electron donating NHC ligands in these reactions significantly improved the substrate scope as well as reaction conditions in the syntheses of a variety of pyrones and pyridones. The high reactivity and versatility of these unique Ni(NHC) catalytic systems allowed us to develop unprecedented Ni-catalyzed cycloadditions that were unexplored due to the inefficacy of early Ni catalysts to promote hetero-oxidative coupling steps. We describe the development and mechanistic analysis of Ni/NHC catalysts that couple diynes and nitriles to form pyridines. Kinetic studies and stoichiometric reactions confirmed a hetero-oxidative coupling pathway associated with this Ni-catalyzed cycloaddition. We then describe a series of new substrates for Ni-catalyzed cycloaddition reactions such as vinylcyclopropanes, aldehydes, ketones, tropones, 3-azetidinones, and 3-oxetanones. In reactions with vinycyclopropanes and tropones, DFT calculations reveal noteworthy mechanistic steps such as a C-C σ-bond activation and an 8π-insertion of vinylcyclopropane and tropone, respectively. Similarly, the cycloaddition of 3-azetidinones and 3-oxetanones also requires Ni-catalyzed C-C σ-bond activation to form N- and O-containing heterocycles. PMID:26200651

  4. Biofuel-Promoted Polychlorinated Dibenzodioxin/furan Formation in an Iron-Catalyzed Diesel Particle Filter.

    PubMed

    Heeb, Norbert V; Rey, Maria Dolores; Zennegg, Markus; Haag, Regula; Wichser, Adrian; Schmid, Peter; Seiler, Cornelia; Honegger, Peter; Zeyer, Kerstin; Mohn, Joachim; Bürki, Samuel; Zimmerli, Yan; Czerwinski, Jan; Mayer, Andreas

    2015-08-01

    Iron-catalyzed diesel particle filters (DPFs) are widely used for particle abatement. Active catalyst particles, so-called fuel-borne catalysts (FBCs), are formed in situ, in the engine, when combusting precursors, which were premixed with the fuel. The obtained iron oxide particles catalyze soot oxidation in filters. Iron-catalyzed DPFs are considered as safe with respect to their potential to form polychlorinated dibenzodioxins/furans (PCDD/Fs). We reported that a bimetallic potassium/iron FBC supported an intense PCDD/F formation in a DPF. Here, we discuss the impact of fatty acid methyl ester (FAME) biofuel on PCDD/F emissions. The iron-catalyzed DPF indeed supported a PCDD/F formation with biofuel but remained inactive with petroleum-derived diesel fuel. PCDD/F emissions (I-TEQ) increased 23-fold when comparing biofuel and diesel data. Emissions of 2,3,7,8-TCDD, the most toxic congener [toxicity equivalence factor (TEF) = 1.0], increased 90-fold, and those of 2,3,7,8-TCDF (TEF = 0.1) increased 170-fold. Congener patterns also changed, indicating a preferential formation of tetra- and penta-chlorodibenzofurans. Thus, an inactive iron-catalyzed DPF becomes active, supporting a PCDD/F formation, when operated with biofuel containing impurities of potassium. Alkali metals are inherent constituents of biofuels. According to the current European Union (EU) legislation, levels of 5 μg/g are accepted. We conclude that risks for a secondary PCDD/F formation in iron-catalyzed DPFs increase when combusting potassium-containing biofuels. PMID:26176879

  5. Stereoselective Synthesis of Trisubstituted Alkenes through Sequential Iron-Catalyzed Reductive anti-Carbozincation of Terminal Alkynes and Base-Metal-Catalyzed Negishi Cross-Coupling.

    PubMed

    Cheung, Chi Wai; Hu, Xile

    2015-12-01

    The stereoselective synthesis of trisubstituted alkenes is challenging. Here, we show that an iron-catalyzed anti-selective carbozincation of terminal alkynes can be combined with a base-metal-catalyzed cross-coupling to prepare trisubstituted alkenes in a one-pot reaction and with high regio- and stereocontrol. Cu-, Ni-, and Co-based catalytic systems are developed for the coupling of sp-, sp(2) -, and sp(3) -hybridized carbon electrophiles, respectively. The method encompasses a large substrate scope, as various alkynyl, aryl, alkenyl, acyl, and alkyl halides are suitable coupling partners. Compared with conventional carbometalation reactions of alkynes, the current method avoids pre-made organometallic reagents and has a distinct stereoselectivity.

  6. Nickel-Catalyzed Cross-Coupling of Photoredox-Generated Radicals: Uncovering a General Manifold for Stereoconvergence in Nickel-Catalyzed Cross-Couplings

    PubMed Central

    2016-01-01

    The cross-coupling of sp3-hybridized organoboron reagents via photoredox/nickel dual catalysis represents a new paradigm of reactivity for engaging alkylmetallic reagents in transition-metal-catalyzed processes. Reported here is an investigation into the mechanistic details of this important transformation using density functional theory. Calculations bring to light a new reaction pathway involving an alkylnickel(I) complex generated by addition of an alkyl radical to Ni(0) that is likely to operate simultaneously with the previously proposed mechanism. Analysis of the enantioselective variant of the transformation reveals an unexpected manifold for stereoinduction involving dynamic kinetic resolution (DKR) of a Ni(III) intermediate wherein the stereodetermining step is reductive elimination. Furthermore, calculations suggest that the DKR-based stereoinduction manifold may be responsible for stereoselectivity observed in numerous other stereoconvergent Ni-catalyzed cross-couplings and reductive couplings. PMID:25836634

  7. Mechanism of maltal hydration catalyzed by beta-amylase: role of protein structure in controlling the steric outcome of reactions catalyzed by a glycosylase.

    PubMed

    Kitahata, S; Chiba, S; Brewer, C F; Hehre, E J

    1991-07-01

    Crystalline (monomeric) soybean and (tetrameric) sweet potato beta-amylase were shown to catalyze the cis hydration of maltal (alpha-D-glucopyranosyl-2-deoxy-D-arabino-hex-1-enitol) to form beta-2-deoxymaltose. As reported earlier with the sweet potato enzyme, maltal hydration in D2O by soybean beta-amylase was found to exhibit an unusually large solvent deuterium kinetic isotope effect (VH/VD = 6.5), a reaction rate linearly dependent on the mole fraction of deuterium, and 2-deoxy-[2(a)-2H]maltose as product. These results indicate (for each beta-amylase) that protonation is the rate-limiting step in a reaction involving a nearly symmetric one-proton transition state and that maltal is specifically protonated from above the double bond. This is a different stereochemistry than reported for starch hydrolysis. With the hydration catalyzed in H2O and analyzed by gas-liquid chromatography, both sweet potato and soybean beta-amylase were found to convert maltal to the beta-anomer of 2-deoxymaltose. That maltal undergoes cis hydration provides evidence in support of a general-acid-catalyzed, carbonium ion mediated reaction. Of fundamental significance is that beta-amylase protonates maltal from a direction opposite that assumed for protonating starch, yet creates products of the same anomeric configuration from both. Such stereochemical dichotomy argues for the overriding role of protein structures in dictating the steric outcome of reactions catalyzed by a glycosylase, by limiting the approach and orientation of water or other acceptors to the reaction center. PMID:1829637

  8. Reactivity and Chemoselectivity of Allenes in Rh(I)-Catalyzed Intermolecular (5 + 2) Cycloadditions with Vinylcyclopropanes: Allene-Mediated Rhodacycle Formation Can Poison Rh(I)-Catalyzed Cycloadditions

    PubMed Central

    2015-01-01

    Allenes are important 2π building blocks in organic synthesis and engage as 2-carbon components in many metal-catalyzed reactions. Wender and co-workers discovered that methyl substituents on the terminal allene double bond counterintuitively change the reactivities of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with vinylcyclopropanes (VCPs). More sterically encumbered allenes afford higher cycloadduct yields, and such effects are also observed in other Rh(I)-catalyzed intermolecular cycloadditions. Through density functional theory calculations (B3LYP and M06) and experiment, we explored this enigmatic reactivity and selectivity of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with VCPs. The apparent low reactivity of terminally unsubstituted allenes is associated with a competing allene dimerization that irreversibly sequesters rhodium. With terminally substituted allenes, steric repulsion between the terminal substituents significantly increases the barrier of allene dimerization while the barrier of the (5 + 2) cycloaddition is not affected, and thus the cycloaddition prevails. Computation has also revealed the origin of chemoselectivity in (5 + 2) cycloadditions with allene-ynes. Although simple allene and acetylene have similar reaction barriers, intermolecular (5 + 2) cycloadditions of allene-ynes occur exclusively at the terminal allene double bond. The terminal double bond is more reactive due to the enhanced d−π* backdonation. At the same time, insertion of the internal double bond of an allene-yne has a higher barrier as it would break π conjugation. Substituted alkynes are more difficult to insert compared with acetylene, because of the steric repulsion from the additional substituents. This leads to the greater reactivity of the allene double bond relative to the alkynyl group in allene-ynes. PMID:25379606

  9. Reactivity and chemoselectivity of allenes in Rh(I)-catalyzed intermolecular (5 + 2) cycloadditions with vinylcyclopropanes: allene-mediated rhodacycle formation can poison Rh(I)-catalyzed cycloadditions.

    PubMed

    Hong, Xin; Stevens, Matthew C; Liu, Peng; Wender, Paul A; Houk, K N

    2014-12-10

    Allenes are important 2π building blocks in organic synthesis and engage as 2-carbon components in many metal-catalyzed reactions. Wender and co-workers discovered that methyl substituents on the terminal allene double bond counterintuitively change the reactivities of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with vinylcyclopropanes (VCPs). More sterically encumbered allenes afford higher cycloadduct yields, and such effects are also observed in other Rh(I)-catalyzed intermolecular cycloadditions. Through density functional theory calculations (B3LYP and M06) and experiment, we explored this enigmatic reactivity and selectivity of allenes in [Rh(CO)2Cl]2-catalyzed intermolecular (5 + 2) cycloadditions with VCPs. The apparent low reactivity of terminally unsubstituted allenes is associated with a competing allene dimerization that irreversibly sequesters rhodium. With terminally substituted allenes, steric repulsion between the terminal substituents significantly increases the barrier of allene dimerization while the barrier of the (5 + 2) cycloaddition is not affected, and thus the cycloaddition prevails. Computation has also revealed the origin of chemoselectivity in (5 + 2) cycloadditions with allene-ynes. Although simple allene and acetylene have similar reaction barriers, intermolecular (5 + 2) cycloadditions of allene-ynes occur exclusively at the terminal allene double bond. The terminal double bond is more reactive due to the enhanced d-π* backdonation. At the same time, insertion of the internal double bond of an allene-yne has a higher barrier as it would break π conjugation. Substituted alkynes are more difficult to insert compared with acetylene, because of the steric repulsion from the additional substituents. This leads to the greater reactivity of the allene double bond relative to the alkynyl group in allene-ynes.

  10. Mechanism of maltal hydration catalyzed by beta-amylase: role of protein structure in controlling the steric outcome of reactions catalyzed by a glycosylase.

    PubMed

    Kitahata, S; Chiba, S; Brewer, C F; Hehre, E J

    1991-07-01

    Crystalline (monomeric) soybean and (tetrameric) sweet potato beta-amylase were shown to catalyze the cis hydration of maltal (alpha-D-glucopyranosyl-2-deoxy-D-arabino-hex-1-enitol) to form beta-2-deoxymaltose. As reported earlier with the sweet potato enzyme, maltal hydration in D2O by soybean beta-amylase was found to exhibit an unusually large solvent deuterium kinetic isotope effect (VH/VD = 6.5), a reaction rate linearly dependent on the mole fraction of deuterium, and 2-deoxy-[2(a)-2H]maltose as product. These results indicate (for each beta-amylase) that protonation is the rate-limiting step in a reaction involving a nearly symmetric one-proton transition state and that maltal is specifically protonated from above the double bond. This is a different stereochemistry than reported for starch hydrolysis. With the hydration catalyzed in H2O and analyzed by gas-liquid chromatography, both sweet potato and soybean beta-amylase were found to convert maltal to the beta-anomer of 2-deoxymaltose. That maltal undergoes cis hydration provides evidence in support of a general-acid-catalyzed, carbonium ion mediated reaction. Of fundamental significance is that beta-amylase protonates maltal from a direction opposite that assumed for protonating starch, yet creates products of the same anomeric configuration from both. Such stereochemical dichotomy argues for the overriding role of protein structures in dictating the steric outcome of reactions catalyzed by a glycosylase, by limiting the approach and orientation of water or other acceptors to the reaction center.

  11. Recent Advances in Metal-Catalyzed C-P Bond Formation

    NASA Astrophysics Data System (ADS)

    Glueck, David S.

    This chapter describes recent advances in metal-catalyzed C-P bond formation, which may be classified into two types of reactions. In hydrophosphination and related processes, P-H groups add across unsaturated C-X (X = C, N, O) bonds. Phosphination of electrophiles typically results in substitution at sp2 or sp3 carbon; the P-H group is removed, often by a base. The scope of both nucleophilic and electrophilic partners in these processes is surveyed, and the proposed mechanisms and intermediates in the metal-catalyzed reactions are described.

  12. Molybdenum-Catalyzed Asymmetric Allylic Alkylation of 3-Alkyloxindoles: Reaction Development and Applications

    PubMed Central

    Trost, Barry M.; Zhang, Yong

    2013-01-01

    We report a full account of our work towards the development of Mo-catalyzed asymmetric allylic alkylation reactions with 3-alkyloxindoles as nucleophiles. The reaction is complementary to the Pd-catalyzed reaction with regard to the scope of oxindole nucleophiles. A number of 3-alkyloxindoles were alkylated successfully under mild conditions to give products with excellent yields and good-to-excellent enantioselectivities. Applications of this method to the preparation of indoline alkaloids such as (−)-physostigmine, ent-(−)-debromoflustramine B, and the indolinoquinoline rings of communesin B are reported. PMID:21290436

  13. Gold-Catalyzed Highly Selective Photoredox C(sp(2) )-H Difluoroalkylation and Perfluoroalkylation of Hydrazones.

    PubMed

    Xie, Jin; Zhang, Tuo; Chen, Fei; Mehrkens, Nina; Rominger, Frank; Rudolph, Matthias; Hashmi, A Stephen K

    2016-02-18

    The first gold-catalyzed photoredox C(sp(2) )-H difluoroalkylation and perfluoroalkylation of hydrazones with readily available RF -Br reagents is reported. The resulting gem-difluoromethylated and perfluoroalkylated hydrazones are highly functionalized, versatile molecules. A mild reduction of the coupling products can efficiently produce gem-difluoromethylated β-amino phosphonic acids and β-amino acid derivatives. In mechanistic studies, a difluoroalkyl radical intermediate was detected by an EPR spin-trapping experiment, indicating that a gold-catalyzed radical pathway is operating. PMID:26800002

  14. Formation of C–C bonds via ruthenium-catalyzed transfer hydrogenation*

    PubMed Central

    Moran, Joseph; Krische, Michael J.

    2013-01-01

    Ruthenium-catalyzed transfer hydrogenation of diverse π-unsaturated reactants in the presence of aldehydes provides products of carbonyl addition. Dehydrogenation of primary alcohols in the presence of the same π-unsaturated reactants provides identical products of carbonyl addition. In this way, carbonyl addition is achieved from the alcohol or aldehyde oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. In this account, the discovery of ruthenium-catalyzed C–C bond-forming transfer hydrogenations and the recent development of diastereo- and enantioselective variants are discussed. PMID:23430602

  15. Rhodium(III)-Catalyzed Amidation of Unactivated C(sp(3) )-H Bonds.

    PubMed

    Wang, He; Tang, Guodong; Li, Xingwei

    2015-10-26

    Nitrogenation by direct functionalization of C-H bonds represents an important strategy for constructing C-N bonds. Rhodium(III)-catalyzed direct amidation of unactivated C(sp(3) )-H bonds is rare, especially under mild reaction conditions. Herein, a broad scope of C(sp(3) )-H bonds are amidated under rhodium catalysis in high efficiency using 3-substituted 1,4,2-dioxazol-5-ones as the amide source. The protocol broadens the scope of rhodium(III)-catalyzed C(sp(3) )-H activation chemistry, and is applicable to the late-stage functionalization of natural products.

  16. Formation of C-C bonds via ruthenium-catalyzed transfer hydrogenation().

    PubMed

    Moran, Joseph; Krische, Michael J

    2012-01-01

    Ruthenium-catalyzed transfer hydrogenation of diverse π-unsaturated reactants in the presence of aldehydes provides products of carbonyl addition. Dehydrogenation of primary alcohols in the presence of the same π-unsaturated reactants provides identical products of carbonyl addition. In this way, carbonyl addition is achieved from the alcohol or aldehyde oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. In this account, the discovery of ruthenium-catalyzed C-C bond-forming transfer hydrogenations and the recent development of diastereo- and enantioselective variants are discussed. PMID:23430602

  17. Assessing the regioselectivity of OleD-catalyzed glycosylation with a diverse set of acceptors.

    PubMed

    Zhou, Maoquan; Hamza, Adel; Zhan, Chang-Guo; Thorson, Jon S

    2013-02-22

    To explore the acceptor regioselectivity of OleD-catalyzed glucosylation, the products of OleD-catalyzed reactions with six structurally diverse acceptors flavones- (daidzein), isoflavones (flavopiridol), stilbenes (resveratrol), indole alkaloids (10-hydroxycamptothecin), and steroids (2-methoxyestradiol)-were determined. This study highlights the first synthesis of flavopiridol and 2-methoxyestradiol glucosides and confirms the ability of OleD to glucosylate both aromatic and aliphatic nucleophiles. In all cases, molecular dynamics simulations were consistent with the determined product distribution and suggest the potential to develop a virtual screening model to identify additional OleD substrates.

  18. Palladium-catalyzed intramolecular cyclization of ynamides: synthesis of 4-halo-oxazolones.

    PubMed

    Huang, Hai; He, Guangke; Zhu, Guohao; Zhu, Xiaolin; Qiu, Shineng; Zhu, Hongjun

    2015-04-01

    A mild and efficient methodology involving Pd(PPh3)4-catalyzed intramolecular cyclization of N-alkynyl alkyloxycarbamates with CuCl2 or CuBr2 for the synthesis of 4-halo-oxazolones was developed. This reaction exhibiting good functional tolerance provided a new, efficient, and rapid synthetic process to 4-halo-oxazolones. The resulting 4-halo-oxazolones can serve as great potential precursors for the 3,4,5-trisubstituted oxazolones via a Pd-catalyzed cross-coupling reaction.

  19. Enantioselective TADMAP-Catalyzed Carboxyl Migration Reactions for the Synthesis of Stereogenic Quaternary Carbon

    PubMed Central

    Shaw, Scott A.; Aleman, Pedro; Christy, Justin; Kampf, Jeff W.; Va, Porino

    2008-01-01

    The chiral, nucleophilic catalyst TADMAP (1) has been prepared from 3-lithio-4-dimethylamino-pyridine (5) and triphenylacetaldehyde (3), followed by acylation and resolution. TADMAP catalyzes the carboxyl migration of oxazolyl, furanyl, and benzofuranyl enol carbonates with good to excellent levels of enantioselection. The oxazole reactions are especially efficient, and are used to prepare chiral lactams (23) and lactones (30) containing a quaternary asymmetric carbon. TADMAP-catalyzed carboxyl migrations in the indole series are relatively slow and proceed with inconsistent enantioselectivity. Modeling studies (B3LYP/6-31G*) have been used in qualitative correlations of catalyst conformation, reactivity, and enantioselectivity. PMID:16417383

  20. Growth behaviors of ultrathin ZnSe nanowires by Au-catalyzed molecular-beam epitaxy

    SciTech Connect

    Cai, Y.; Wong, T. L.; Chan, S. K.; Sou, I. K.; Wang, N.; Su, D. S.

    2008-12-08

    Ultrathin ZnSe nanowires grown by Au-catalyzed molecular-beam epitaxy show an interesting growth behavior of diameter dependence of growth rates. The smaller the nanowire diameter, the faster is its growth rate. This growth behavior is totally different from that of the nanowires with diameters greater than 60 nm and cannot be interpreted by the classical theories of the vapor-liquid-solid mechanism. For the Au-catalyzed nanowire growth at low temperatures, we found that the surface and interface incorporation and diffusion of the source atoms at the nanowire tips controlled the growth of ultrathin ZnSe nanowires.