Science.gov

Sample records for 5-lipoxygenase 5-lo pathway

  1. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    SciTech Connect

    Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Bae, Jin U.; Bae, Sun S.; Kim, Chi D.

    2010-05-15

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B{sub 4} (LTB{sub 4}) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB{sub 4} production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB{sub 4}. Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB{sub 4}, subsequent MMP-9 production and plaque rupture.

  2. 5-lipoxygenase pathway is essential for the control of granuloma extension induced by Schistosoma mansoni eggs in lung.

    PubMed

    Toffoli da Silva, Gabriel; Espíndola, Milena Sobral; Fontanari, Caroline; Rosada, Rogerio Silva; Faccioli, Lúcia Helena; Ramos, Simone Gusmão; Rodrigues, Vanderlei; Frantz, Fabiani Gai

    2016-08-01

    According to WHO, it is estimated that approximately 2 billion people are infected with intestinal helminths worldwide and the number of people who are cured of these diseases is relatively low, resulting in a large percentage of chronically infected individuals. Schistosomiasis is one of the most important parasitic diseases present in developing countries configuring it as a serious public health problem, directly related to poverty and social disadvantage. Once the parasite infection is established, Schistosoma mansoni eggs fall into the bloodstream and are trapped in the liver microcirculation where a strong granulomatous response and fibrosis formation occurs. In the experimental model, granulomas develop in the mouse lung after intravenous injection of purified eggs. Here we aim to understand how leukotrienes are involved in the granuloma formation. Leukotrienes are lipid mediators derived from arachidonic acid metabolites via 5-lipoxygenase (5LO) enzyme. They are potent proinflammatory agents and induce recruitment, cell activation, regulation of microbicidal activity of polymorphonuclear and mononuclear cells. In this study, 5LO deficient mice (5LO(-/-)) were inoculated with S. mansoni eggs for evaluation of immunopathological parameters involved in the induction of type 2 granulomas. We showed that in the absence of leukotrienes, the size of granulomas were decreased comparing to the wild type mice and the inflammatory compromised areas had a lower extension. In 5LO(-/-) mice granulomas presented extensive areas of fibrosis, detected by α-SMA expression along the lesions, indicating remodeling in attempt to reestablish the normal tissue. Also, comparing to WT mice we detected decrease of IL-4 and IL-13 and increase of TGF-β in the lung of 5LO(-/-), but these mice failed to produce protective IFN-γ and IL-12. These results evidenced 5-Lipoxygenase as an important pathway during lung injury due to Schistosoma-eggs injection.

  3. Cross-Talk between Cancer Cells and the Tumour Microenvironment: The Role of the 5-Lipoxygenase Pathway

    PubMed Central

    Moore, Gillian Y.; Pidgeon, Graham P.

    2017-01-01

    5-lipoxygenase is an enzyme responsible for the synthesis of a range of bioactive lipids signalling molecules known collectively as eicosanoids. 5-lipoxygenase metabolites such as 5-hydroxyeicosatetraenoic acid (5-HETE) and a number of leukotrienes are mostly derived from arachidonic acid and have been shown to be lipid mediators of inflammation in different pathological states including cancer. Upregulated 5-lipoxygenase expression and metabolite production is found in a number of cancer types and has been shown to be associated with increased tumorigenesis. 5-lipoxygenase activity is present in a number of diverse cell types of the immune system and connective tissue. In this review, we discuss potential routes through which cancer cells may utilise the 5-lipoxygenase pathway to interact with the tumour microenvironment during the development and progression of a tumour. Furthermore, immune-derived 5-lipoxygenase signalling can drive both pro- and anti-tumour effects depending on the immune cell subtype and an overview of evidence for these opposing effects is presented. PMID:28125014

  4. Stress-induced nuclear export of 5-lipoxygenase

    SciTech Connect

    Hanaka, Hiromi; Shimizu, Takao; Izumi, Takashi . E-mail: takizumi@med.gunma-u.ac.jp

    2005-12-09

    A key enzyme for leukotriene biosynthesis is 5-lipoxygenase (5-LO), which we found is exported from the nucleus when p38 MAPK is activated. CHO-K1 cells stably express green fluorescent protein-5-lipoxygenase fusion protein (GFP-5LO), which is located predominantly in the nucleus, and is exported by anisomycin, hydrogen peroxide, and sorbitol, with activation of p38 MAPK. SB203580, an inhibitor of p38 MAPK, and Leptomycin B, an inhibitor of the nuclear export, blocked the anisomycin-induced export of GFP-5LO. When HEK293 cells were transformed with plasmids for wild-type GFP-5LO, GFP-5LO-S271A or GFP-5LO-S271E mutants, most wild-type GFP-5LO and GFP-5LO-S271A localized in the nucleus, but GFP-5LO-S271E localized in the cytosol. Thus, phosphorylation at Ser-271 of 5-LO is important for its export. Endogenous 5-LO in RBL cells stimulated with anisomycin was also exported from the nucleus. These results suggest that the nuclear export of 5-LO depends on the stress-induced activation of the p38 MAPK pathway.

  5. Levels of prostaglandin E metabolite and leukotriene E(4) are increased in the urine of smokers: evidence that celecoxib shunts arachidonic acid into the 5-lipoxygenase pathway.

    PubMed

    Duffield-Lillico, Anna J; Boyle, Jay O; Zhou, Xi Kathy; Ghosh, Aradhana; Butala, Geera S; Subbaramaiah, Kotha; Newman, Robert A; Morrow, Jason D; Milne, Ginger L; Dannenberg, Andrew J

    2009-04-01

    Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO) play a role in inflammation and carcinogenesis. Biomarkers that reflect tobacco smoke-induced tissue injury are needed. In this study, levels of urinary prostaglandin E metabolite (PGE-M) and leukotriene E(4) (LTE(4)), biomarkers of the COX and 5-LO pathways, were compared in never smokers, former smokers, and current smokers. The effects of celecoxib, a selective COX-2 inhibitor, on levels of PGE-M and LTE(4) were determined. Baseline levels of PGE-M and LTE(4) were positively associated with smoking status; levels of PGE-M and LTE(4) were higher in current versus never smokers. Treatment with 200 mg celecoxib twice daily for 6 +/- 1 days led to a reduction in urinary PGE-M levels in all groups but exhibited the greatest effect among subjects with high baseline PGE-M levels. Thus, high baseline PGE-M levels in smokers reflected increased COX-2 activity. In individuals with high baseline PGE-M levels, treatment with celecoxib led to a significant increase in levels of urinary LTE(4), an effect that was not found in individuals with low baseline PGE-M levels. In conclusion, increased levels of urinary PGE-M and LTE(4) were found in human smokers, a result that may reflect subclinical lung inflammation. In individuals with high baseline levels of PGE-M (elevated COX-2 activity), celecoxib administration shunted arachidonic acid into the proinflammatory 5-LO pathway. Because 5-LO activity and LTE(4) have been suggested to play a role in cardiovascular disease, these results may help to explain the link between use of COX-2 inhibitors and cardiovascular complications.

  6. Common Polymorphisms in the 5-Lipoxygenase Pathway and Risk of Incident Myocardial Infarction: A Danish Case-Cohort Study

    PubMed Central

    Gammelmark, Anders; Nielsen, Michael S.; Lundbye-Christensen, Søren; Tjønneland, Anne; Schmidt, Erik B.; Overvad, Kim

    2016-01-01

    Background The 5-lipoxygenase pathway (5-LOX) has been implicated in the development of cardiovascular disease and studies have suggested that genetic polymorphisms related to key enzymes in this pathway may confer risk of myocardial infarction (MI). This study investigated the association of pre-selected genetic polymorphisms in four candidate genes of 5-LOX (arachidonate 5-lipoxygenase and its activating protein (ALOX-5 and FLAP), leukotriene A4 hydroxylase (LTA4-H) and leukotriene C4 synthase (LTC4-S)) with incident MI. Methods In a Danish cohort including 57,053 participants, aged 50–64 at enrolment and recruited from 1993–97, we conducted a case-cohort study including cases with incident MI and a randomly selected sub cohort of 3,000 participants. Cases were identified from national registries through July 2013. A total of 22 SNPs were selected and genotyped using the commercially available KASP™ assay. A tandem-repeat polymorphism, located in the ALOX-5 gene, was genotyped by multi-titre plate sequencing. Haplotypes were inferred using PHASE 2.1. Results During a median follow-up of 17.0 years we identified 3,089 cases of incident MI. In FLAP, two SNPs were negatively associated with incident MI (rs9551963 & rs17222842) while one SNP (rs2247570) located in LTA4-H, was associated with higher risk of MI when comparing subjects with two copies of the variant allele to homozygotes for the wild type. However, only rs17222842 remained significantly associated with MI after correcting for multiple testing. Furthermore, the promoter polymorphism rs59439148 was associated with risk of MI in men. For male carriers of two variant alleles we found a hazard ratio of 1.63 (95% CI: 1.06;2.52) compared to homozygotes for the wild type. Previously described haplotypes (Hap-A -B, -E and -K) were not associated with MI in our population. Conclusion In conclusion, some common polymorphisms in the 5-lipoxygenase pathway were modestly associated with incident MI, suggesting

  7. Role of 5-lipoxygenase pathway in the regulation of RAW 264.7 macrophage proliferation.

    PubMed

    Nieves, Diana; Moreno, Juan José

    2006-10-16

    Arachidonic acid (AA) metabolites control cell proliferation, among other physiologic functions. RAW 264.7 macrophages can metabolise AA through the cyclooxygenase and lipoxygenase (LOX) pathways. We aimed to study the role of AA-metabolites derived from 5-LOX in the control of RAW 264.7 macrophage growth. Our results show that zileuton, a specific 5-LOX inhibitor, and nordihydroguaiaretic acid (NDGA), a non-specific LOX inhibitor, inhibit cell proliferation and [(3)H]-thymidine incorporation in a concentration-dependent fashion. Growth inhibition induced by NDGA can be explained by an apoptotic process, while zileuton does not seem to induce apoptosis. Moreover, these treatments delay the cell cycle, as analysed by flow cytometry. On the other hand, the leukotriene (LT) B(4) receptor antagonist U-75302, the LTD(4) receptor antagonists LY-171883 and MK-571, and the cysteinyl-LT receptor antagonist REV-5901 also inhibit cell proliferation and [(3)H]-thymidine incorporation in a concentration-dependent manner, and delay the RAW 264.7 cell cycle. However, these antagonists did not induce annexin V staining, caspase activation or DNA fragmentation. Furthermore, we demonstrated that exogenous addition of LTB(4) or LTD(4) revert the cell growth inhibition induced by zileuton or the leukotriene receptor antagonists mentioned above. Finally, we observed that LTB(4) and LTD(4), in the absence of growth factors, have pro-proliferative effects on macrophages, and we obtained preliminary evidences that this effect could be through mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways. In conclusion, our results show that the interaction between LTB(4) and LTD(4) with its respective receptor is involved in the control of RAW 264.7 macrophage growth.

  8. Ethanol Promotes Chemically Induced Oral Cancer in Mice through Activation of the 5-Lipoxygenase Pathway of Arachidonic Acid Metabolism

    PubMed Central

    Guo, Yizhu; Wang, Xin; Zhang, Xinyan; Sun, Zheng; Chen, Xiaoxin

    2011-01-01

    Alcohol drinking is a known risk factor for oral cancer in humans. However, previous animal studies on the promoting effect of ethanol on oral carcinogenesis were inconclusive. It is necessary to develop an animal model with which the molecular mechanism of ethanol-related oral carcinogenesis may be elucidated in order to develop effective prevention strategies. In this study, mice were first treated with 4-nitroquinoline-1-oxide (4NQO, 100μg/ml in drinking water) for 8 weeks, and then given water or ethanol (8%) as the sole drink for another 16 weeks. During the experiment, 8% ethanol was well tolerated by mice. The incidence of squamous cell carcinoma (SCC) increased from 20% (8/41) to 43% (17/40; p<0.05). Expression of 5-lipoxygenase (5-Lox) and cyclooxygenase 2 (Cox-2) was increased in dysplasia and SCC of 4NQO-treated tongues, and further enhanced by ethanol. Using this mouse model, we further demonstrated that fewer cancers were induced in Alox5−/− mice, as were cell proliferation, inflammation, and angiogenesis in the tongue, as compared with Alox5+/+ mice. Interestingly, Cox-2 expression was induced by ethanol in knockout mice, while 5-Lox and leukotriene A4 hydrolase (LTA4H) expression and leukotriene B4 (LTB4) biosynthesis were dramatically reduced. Moreover, ethanol enhanced expression and nuclear localization of 5-Lox and stimulated LTB4 biosynthesis in human tongue SCC cells (SCC-15 and SCC-4) in vitro. In conclusion, this study clearly demonstrated that ethanol promoted 4NQO-induced oral carcinogenesis, at least in part, through further activation of the 5-Lox pathway of arachidonic acid metabolism. PMID:21881027

  9. Accelerated fracture healing in mice lacking the 5-lipoxygenase gene

    PubMed Central

    2010-01-01

    Background and purpose Cyclooxygenase-2 (COX-2) promotes inflammation by synthesizing pro-inflammatory prostaglandins from arachidonic acid. Inflammation is an early response to bone fracture, and ablation of COX-2 activity impairs fracture healing. Arachidonic acid is also converted into leukotrienes by 5-lipoxygenase (5-LO). We hypothesized that 5-LO is a negative regulator of fracture healing and that in the absence of COX-2, excess leukotrienes synthesized by 5-LO will impair fracture healing. Methods Fracture healing was assessed in mice with a targeted 5-LO mutation (5-LOKO mice) and control mice by radiographic and histological observations, and measured by histomorphometry and torsional mechanical testing. To assess effects on arachidonic acid metabolism, prostaglandin E2, F2α, and leukotriene B4 levels were measured in the fracture calluses of control, 5-LOKO COX-1KO, and COX-2KO mice by enzyme linked immunoassays. Results Femur fractures in 5-LOKO mice rapidly developed a cartilaginous callus that was replaced with bone to heal fractures faster than in control mice. Femurs from 5-LOKO mice had substantially better mechanical properties after 1 month of healing than did control mice. Callus leukotriene levels were 4-fold higher in mice homozygous for a targeted mutation in the COX-2 gene (COX-2KO), which indicated that arachidonic acid was shunted into the 5-LO pathway in the absence of COX-2. Interpretation These experiments show that 5-LO negatively regulates fracture healing and that shunting of arachidonic acid into the 5-LO pathway may account, at least in part, for the impaired fracture healing response observed in COX-2KO mice. PMID:21067431

  10. A23187-induced translocation of 5-lipoxygenase in osteosarcoma cells

    PubMed Central

    1992-01-01

    In a previous study, osteosarcoma cells expressing both 5-lipoxygenase (5-LO) and 5 lipoxygenase-activating protein (FLAP) synthesized leukotrienes upon A23187 stimulation (Dixon, R. A. F., R. E. Diehl, E. Opas, E. Rands, P. J. Vickers, J. F. Evans, J. W. Gillard, and D. K. Miller. 1990. Nature (Lond.). 343:282-284). Osteosarcoma cells expressing 5-LO but not expressing FLAP were unable to synthesize leukotrienes. Thus, it was determined that FLAP was required for the cellular synthesis of leukotrienes. To examine the role of FLAP in A23187-induced translocation of 5-LO to a membrane fraction, we have studied the A23187-stimulated translocation of 5-LO in osteosarcoma cells expressing both 5-LO and FLAP, and in osteosarcoma cells expressing 5-LO only. We demonstrate that in cells expressing both 5-LO and FLAP, 5-LO translocates to membranes in response to A23187 stimulation. This 5-LO translocation is inhibited when cells are stimulated in the presence of MK-886. In osteosarcoma cells expressing 5-LO but not expressing FLAP, 5-LO is able to associate with membranes following A23187 stimulation. In contrast to the cells containing both 5-LO and FLAP, MK-886 is unable to prevent 5-LO membrane association in cells transfected with 5-LO alone. Therefore, we have demonstrated that in this cell system, 5-LO membrane association and activation can be separated into at least two distinct steps: (1) calcium-dependent movement of 5-LO to membranes without product formation, which can occur in the absence of FLAP (membrane association), and (2) activation of 5-LO with product formation, which is FLAP dependent and inhibited by MK-886 (enzyme activation). PMID:1469057

  11. 5-lipoxygenase mRNA and protein isoforms.

    PubMed

    Ochs, Meike J; Suess, Beatrix; Steinhilber, Dieter

    2014-01-01

    5-Lipoxygenase (5-LO) catalyses the two initial steps in the biosynthesis of leukotrienes, a group of inflammatory lipid mediators derived from arachidonic acid. An increased level of leukotrienes is associated with chronic inflammatory diseases such as asthma or atherosclerosis. In this MiniReview, we focus on recent findings regarding alternative splice variants of 5-LO with a special emphasis on two potential protein isoforms expressed in human B-lymphocytes which might be of interest as new drug targets.

  12. Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-activated kinase pathway

    PubMed Central

    Fredman, Gabrielle; Ozcan, Lale; Spolitu, Stefano; Hellmann, Jason; Spite, Matthew; Backs, Johannes; Tabas, Ira

    2014-01-01

    Imbalances between proinflammatory and proresolving mediators can lead to chronic inflammatory diseases. The balance of arachidonic acid-derived mediators in leukocytes is thought to be achieved through intracellular localization of 5-lipoxygenase (5-LOX): nuclear 5-LOX favors the biosynthesis of proinflammatory leukotriene B4 (LTB4), whereas, in theory, cytoplasmic 5-LOX could favor the biosynthesis of proresolving lipoxin A4 (LXA4). This balance is shifted in favor of LXA4 by resolvin D1 (RvD1), a specialized proresolving mediator derived from docosahexaenoic acid, but the mechanism is not known. Here we report a new pathway through which RvD1 promotes nuclear exclusion of 5-LOX and thereby suppresses LTB4 and enhances LXA4 in macrophages. RvD1, by activating its receptor formyl peptide receptor2/lipoxin A4 receptor, suppresses cytosolic calcium and decreases activation of the calcium-sensitive kinase calcium-calmodulin-dependent protein kinase II (CaMKII). CaMKII inhibition suppresses activation P38 and mitogen-activated protein kinase-activated protein kinase 2 kinases, which reduces Ser271 phosphorylation of 5-LOX and shifts 5-LOX from the nucleus to the cytoplasm. As such, RvD1’s ability to decrease nuclear 5-LOX and the LTB4:LXA4 ratio in vitro and in vivo was mimicked by macrophages lacking CaMKII or expressing S271A-5-LOX. These findings provide mechanistic insight into how a specialized proresolving mediator from the docosahexaenoic acid pathway shifts the balance toward resolution in the arachidonic acid pathway. Knowledge of this mechanism may provide new strategies for promoting inflammation resolution in chronic inflammatory diseases. PMID:25246560

  13. Gene expression of 5-lipoxygenase and LTA4 hydrolase in renal tissue of nephrotic syndrome patients

    PubMed Central

    Menegatti, E; Roccatello, D; Fadden, K; Piccoli, G; De Rosa, G; Sena, L M; Rifai, A

    1999-01-01

    Leukotrienes (LT) of the 5-lipoxygenase pathway constitute a class of potent biological lipid mediators of inflammation implicated in the pathogenesis of different models of experimental glomerulonephritis. The key enzyme, 5-lipoxygenase (5-LO), catalyses oxygenation of arachidonic acid to generate the primary leukotriene LTA4. This LT, in turn, serves as a substrate for either LTA4 hydrolase, to form the potent chemoattractant LTB4, or LTC4 synthase, to produce the powerful vasoconstrictor LTC4. To investigate the potential role of LT in the pathogenesis of human glomerulonephritis with nephrotic syndrome, we examined the gene expression of 5-LO and LTA4 hydrolase in renal tissue of 21 adult patients with nephrotic syndrome and 11 controls. The patients consisted of 11 cases of membranous nephropathy (MN), seven focal and segmental glomerulosclerosis (FSGS), two non-IgA mesangial glomerulonephritis and one minimal change disease. Total RNA purified from renal tissue was reverse transcribed into cDNA and amplified with specific primers in a polymerase chain reaction (RT-PCR). Eight patients' renal tissue, four MN and four FSGS, co-expressed 5-LO and LTA4 hydrolase. In situ hybridization analysis revealed 5-LO expression and distribution limited to the interstitial cells surrounding the peritubular capillaries. Comparative clinical and immunohistological data showed that these eight patients had impaired renal function and interstitial changes that significantly correlated with 5-LO expression. These findings suggest that leukotrienes may play an important role in the pathogenesis of MN and FSGS. These results are also relevant to elucidating the pathophysiologic mechanisms which underlie progression to renal failure in these diseases. PMID:10337029

  14. Design, synthesis and evaluation of semi-synthetic triazole-containing caffeic acid analogues as 5-lipoxygenase inhibitors.

    PubMed

    De Lucia, Daniela; Lucio, Oscar Méndez; Musio, Biagia; Bender, Andreas; Listing, Monika; Dennhardt, Sophie; Koeberle, Andreas; Garscha, Ulrike; Rizzo, Roberta; Manfredini, Stefano; Werz, Oliver; Ley, Steven V

    2015-08-28

    In this work the synthesis, structure-activity relationship (SAR) and biological evaluation of a novel series of triazole-containing 5-lipoxygenase (5-LO) inhibitors are described. The use of structure-guided drug design techniques provided compounds that demonstrated excellent 5-LO inhibition with IC50 of 0.2 and 3.2 μm in cell-based and cell-free assays, respectively. Optimization of binding and functional potencies resulted in the identification of compound 13d, which showed an enhanced activity compared to the parent bioactive compound caffeic acid 5 and the clinically approved zileuton 3. Compounds 15 and 16 were identified as lead compounds in inhibiting 5-LO products formation in neutrophils. Their interference with other targets on the arachidonic acid pathway was also assessed. Cytotoxicity tests were performed to exclude a relationship between cytotoxicity and the increased activity observed after structure optimization.

  15. Deletion of 5-Lipoxygenase in the Tumor Microenvironment Promotes Lung Cancer Progression and Metastasis through Regulating T Cell Recruitment

    PubMed Central

    Poczobutt, Joanna M.; Nguyen, Teresa T.; Hanson, Dwight; Li, Howard; Sippel, Trisha R.; Weiser-Evans, Mary C. M.; Gijon, Miguel; Murphy, Robert C.

    2016-01-01

    Eicosanoids, including PGs, produced by cyclooxygenases (COX), and leukotrienes, produced by 5-lipoxygenase (5-LO) have been implicated in cancer progression. These molecules are produced by both cancer cells and the tumor microenvironment (TME). We previously reported that both COX and 5-LO metabolites increase during progression in an orthotopic immunocompetent model of lung cancer. Although PGs in the TME have been well studied, less is known regarding 5-LO products produced by the TME. We examined the role of 5-LO in the TME using a model in which Lewis lung carcinoma cells are directly implanted into the lungs of syngeneic WT mice or mice globally deficient in 5-LO (5-LO-KO). Unexpectedly, primary tumor volume and liver metastases were increased in 5-LO-KO mice. This was associated with an ablation of leukotriene (LT) production, consistent with production mainly mediated by the microenvironment. Increased tumor progression was partially reproduced in global LTC4 synthase KO or mice transplanted with LTA4 hydrolase-deficient bone marrow. Tumor-bearing lungs of 5-LO-KO had decreased numbers of CD4 and CD8 T cells compared with WT controls, as well as fewer dendritic cells. This was associated with lower levels of CCL20 and CXL9, which have been implicated in dendritic and T cell recruitment. Depletion of CD8 cells increased tumor growth and eliminated the differences between WT and 5-LO mice. These data reveal an antitumorigenic role for 5-LO products in the microenvironment during lung cancer progression through regulation of T cells and suggest that caution should be used in targeting this pathway in lung cancer. PMID:26663781

  16. Ablation of 5-lipoxygenase mitigates pancreatic lesion development

    PubMed Central

    Knab, Lawrence M.; Schultz, Michelle; Principe, Daniel R.; Mascarinas, Windel E.; Gounaris, Elias; Munshi, Hidayatullah G.; Grippo, Paul J.; Bentrem, David J.

    2016-01-01

    Background Pancreatic ductal adenocarcinoma (PDAC), which continues to have a dismal prognosis, is associated with a pronounced fibro-inflammatory response. Inflammation in vivo can be mediated by 5-lipoxygenase (5LO), an enzyme that converts omega-6 fatty acids to eicosanoids, including leukotriene B4 (LTB4). We have previously shown that diets rich in omega-6 fatty acids (FA) increase pancreatic lesions and mast cell infiltration in EL-Kras mice. In this study, we evaluated the role of 5LO in generating higher levels of LTB4 from human cells and in mediating lesion development and mast cell infiltration in EL-Kras mice. Materials and Methods Human pancreatic ductal epithelial (HPDE) and cancer cells were treated with omega-6 FA in vitro. EL-Kras mice lacking 5LO (EL-Kras/5LO−/−) mice were generated and fed standard chow or omega-6 FA diets. Pancreatic lesion frequency and mast cell infiltration were compared to EL-Kras/5LO+/+ mice. Human PDAC tumors were evaluated for 5LO expression and mast cells. Results HPDE and cancer cells treated with omega-6 FA generated increased LTB4 levels in vitro. EL-Kras/5LO−/− developed fewer pancreatic lesions and had decreased mast cell infiltration when compared to EL-Kras/5LO+/+ mice. Human PDAC tumors with increased 5LO expression demonstrate increased mast cell infiltration. Additionally, diets rich in omega-6 FA failed to increase pancreatic lesion development and mast cell infiltration in EL-Kras/5LO−/− mice. Conclusions The expansion of mutant Kras-induced lesions via omega-6 FA is dependent on 5LO, and 5LO functions downstream of mutant Kras to mediate inflammation, suggesting that 5LO may be a potential chemo-preventive and therapeutic target in pancreatic cancer. PMID:25454978

  17. 5-Lipoxygenase deficiency impairs innate and adaptive immune responses during fungal infection.

    PubMed

    Secatto, Adriana; Rodrigues, Lilian Cataldi; Serezani, Carlos Henrique; Ramos, Simone Gusmão; Dias-Baruffi, Marcelo; Faccioli, Lúcia Helena; Medeiros, Alexandra I

    2012-01-01

    5-Lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO(-/-) mice showed an intense influx of neutrophils and an impaired ability to generate and recruit effector T cells to the lung. The fungal susceptibility of 5-LO(-/-) mice correlated with a lower rate of macrophage ingestion of IgG-H. capsulatum relative to WT macrophages. Conversely, exogenous LTB4 and LTC4 restored macrophage phagocytosis in 5-LO deficient mice. Our results demonstrate that leukotrienes are required to control chronic fungal infection by amplifying both the innate and adaptive immune response during histoplasmosis.

  18. 4-Hydroxynonenal enhances MMP-9 production in murine macrophages via 5-lipoxygenase-mediated activation of ERK and p38 MAPK

    SciTech Connect

    Lee, Seung J.; Kim, Chae E.; Yun, Mi R.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Shin, Hwa K.; Bae, Sun S.; Kim, Chi D.

    2010-01-15

    Exaggerated levels of 4-hydroxynonenal (HNE) and 5-lipoxygenase (5-LO) co-exist in macrophages in atherosclerotic lesions, and activated macrophages produce MMP-9 that degrades atherosclerotic plaque constituents. This study investigated the effects of HNE on MMP-9 production, and the potential role for 5-LO derivatives in MMP-9 production in murine macrophages. Stimulation of J774A.1 cells with HNE led to activation of 5-LO, as measured by leukotriene B{sub 4} (LTB{sub 4}) production. This was associated with an increased production of MMP-9, which was blunted by inhibition of 5-LO with MK886, a 5-LO inhibitor or with 5-LO siRNA. A cysteinyl-LT{sub 1} (cysLT{sub 1}) receptor antagonist, REV-5901 as well as a BLT{sub 1} receptor antagonist, U-75302, also attenuated MMP-9 production induced by HNE. Furthermore, LTB{sub 4} and cysLT (LTC{sub 4} and LTD{sub 4}) enhanced MMP-9 production in macrophages, suggesting a pivotal role for 5-LO in HNE-mediated production of MMP-9. Among the MAPK pathways, LTB{sub 4} and cysLT enhanced phosphorylation of ERK and p38 MAPK, but not JNK. Linked to these results, a p38 MAPK inhibitor as well as an ERK inhibitor blunted MMP-9 production induced by LT. Collectively, these data suggest that 5-LO-derived LT mediates HNE-induced MMP-9 production via activation of ERK and p38 MAPK pathways, consequently leading to plaque instability in atherosclerosis.

  19. Increased PUFA Content and 5-Lipoxygenase Pathway Expression Are Associated with Subcutaneous Adipose Tissue Inflammation in Obese Women with Type 2 Diabetes.

    PubMed

    Heemskerk, Mattijs M; Giera, Martin; Bouazzaoui, Fatiha El; Lips, Mirjam A; Pijl, Hanno; van Dijk, Ko Willems; van Harmelen, Vanessa

    2015-09-11

    Obese women with type 2 diabetes mellitus (T2DM) have more inflammation in their subcutaneous white adipose tissue (sWAT) than age-and-BMI similar obese women with normal glucose tolerance (NGT). We aimed to investigate whether WAT fatty acids and/or oxylipins are associated with the enhanced inflammatory state in WAT of the T2DM women. Fatty acid profiles were measured in both subcutaneous and visceral adipose tissue (vWAT) of 19 obese women with NGT and 16 age-and-BMI similar women with T2DM. Oxylipin levels were measured in sWAT of all women. Arachidonic acid (AA) and docosahexaenoic acid (DHA) percentages were higher in sWAT, but not vWAT of the T2DM women, and AA correlated positively to the gene expression of macrophage marker CD68. We found tendencies for higher oxylipin concentrations of the 5-LOX leukotrienes in sWAT of T2DM women. Gene expression of the 5-LOX leukotriene biosynthesis pathway was significantly higher in sWAT of T2DM women. In conclusion, AA and DHA content were higher in sWAT of T2DM women and AA correlated to the increased inflammatory state in sWAT. Increased AA content was accompanied by an upregulation of the 5-LOX pathway and seems to have led to an increase in the conversion of AA into proinflammatory leukotrienes in sWAT.

  20. 5-lipoxygenase and 5-lipoxygenase-activating protein gene polymorphisms, dietary linoleic acid, and risk for breast cancer.

    PubMed

    Wang, Jun; John, Esther M; Ingles, Sue Ann

    2008-10-01

    The n-6 polyunsaturated fatty acid 5-lipoxygenase pathway has been shown to play a role in the carcinogenesis of breast cancer. We conducted a population-based case-control study among Latina, African-American, and White women from the San Francisco Bay area to examine the association of the 5-lipoxygenase gene (ALOX5) and 5-lipoxygenase-activating protein gene (ALOX5AP) with breast cancer risk. Three ALOX5AP polymorphisms [poly(A) microsatellite, -4900 A>G (rs4076128), and -3472 A>G (rs4073259)] and three ALOX5 polymorphisms [Sp1-binding site (-GGGCGG-) variable number of tandem repeat polymorphism, -1279 G>T (rs6593482), and 760 G>A (rs2228065)] were genotyped in 802 cases and 888 controls. We did not find significant main effects of ALOX5 and ALOX5AP genotypes on breast cancer risk that were consistent across race or ethnicity; however, there was a significant interaction between the ALOX5AP -4900 A>G polymorphism and dietary linoleic acid intake (P=0.03). Among women consuming a diet high in linoleic acid (top quartile of intake, >17.4 g/d), carrying the AA genotype was associated with higher breast cancer risk (age- and race-adjusted odds ratio, 1.8; 95% confidence interval, 1.2-2.9) compared with carrying genotypes AG or GG. Among women consuming

  1. A fluorescence-based assay for measuring the redox potential of 5-lipoxygenase inhibitors.

    PubMed

    Lee, Sangchul; Park, Youngsam; Kim, Junghwan; Han, Sung-Jun

    2014-01-01

    The activities and side effects of 5-lipoxygenase (5-LO) inhibitors can be predicted by identifying their redox mechanisms. In this study, we developed a fluorescence-based method to measure the redox potential of 5-LO inhibitors and compared it to the conventional, absorbance-based method. After the pseudo-peroxidase reaction, the amount of remaining lipid peroxide was quantified using the H2DCFDA (2',7'-dichlorodihydrofluorescein diacetate) fluorescence dye. Our method showed large signal windows and provided comparable redox potential values. Importantly, the redox mechanisms of known inhibitors were accurately measured with the fluorescence assay, whereas the conventional, absorbance-based method showed contradictory results. Our findings suggest that our developed method is a better alternative for classifying the redox potential of 5-LO inhibitors, and the fluorescence assay can be effectively used to study the mechanisms of action that are related to redox cycling.

  2. 5-lipoxygenase-dependent recruitment of neutrophils and macrophages by eotaxin-stimulated murine eosinophils.

    PubMed

    Luz, Ricardo Alves; Xavier-Elsas, Pedro; de Luca, Bianca; Masid-de-Brito, Daniela; Cauduro, Priscila Soares; Arcanjo, Luiz Carlos Gondar; dos Santos, Ana Carolina Cordeiro Faria; de Oliveira, Ivi Cristina Maria; Gaspar-Elsas, Maria Ignez Capella

    2014-01-01

    The roles of eosinophils in antimicrobial defense remain incompletely understood. In ovalbumin-sensitized mice, eosinophils are selectively recruited to the peritoneal cavity by antigen, eotaxin, or leukotriene(LT)B4, a 5-lipoxygenase (5-LO) metabolite. 5-LO blockade prevents responses to both antigen and eotaxin. We examined responses to eotaxin in the absence of sensitization and their dependence on 5-LO. BALB/c or PAS mice and their mutants (5-LO-deficient ALOX; eosinophil-deficient GATA-1) were injected i.p. with eotaxin, eosinophils, or both, and leukocyte accumulation was quantified up to 24 h. Significant recruitment of eosinophils by eotaxin in BALB/c, up to 24 h, was accompanied by much larger numbers of recruited neutrophils and monocytes/macrophages. These effects were abolished by eotaxin neutralization and 5-LO-activating protein inhibitor MK886. In ALOX (but not PAS) mice, eotaxin recruitment was abolished for eosinophils and halved for neutrophils. In GATA-1 mutants, eotaxin recruited neither neutrophils nor macrophages. Transfer of eosinophils cultured from bone-marrow of BALB/c donors, or from ALOX donors, into GATA-1 mutant recipients, i.p., restored eotaxin recruitment of neutrophils and showed that the critical step dependent on 5-LO is the initial recruitment of eosinophils by eotaxin, not the secondary neutrophil accumulation. Eosinophil-dependent recruitment of neutrophils in naive BALB/c mice was associated with increased binding of bacteria.

  3. Structural and Functional Analysis of Calcium Ion Mediated Binding of 5-Lipoxygenase to Nanodiscs

    PubMed Central

    Kumar, Ramakrishnan B.; Zhu, Lin; Idborg, Helena; Rådmark, Olof; Jakobsson, Per-Johan; Rinaldo-Matthis, Agnes; Hebert, Hans; Jegerschöld, Caroline

    2016-01-01

    An important step in the production of inflammatory mediators of the leukotriene family is the Ca2+ mediated recruitment of 5 Lipoxygenase (5LO) to nuclear membranes. To study this reaction in vitro, the natural membrane mimicking environment of nanodiscs was used. Nanodiscs with 10.5 nm inner diameter were made with the lipid POPC and membrane scaffolding protein MSP1E3D1. Monomeric and dimeric 5LO were investigated. Monomeric 5LO mixed with Ca2+ and nanodiscs are shown to form stable complexes that 1) produce the expected leukotriene products from arachidonic acid and 2) can be, for the first time, visualised by native gel electrophoresis and negative stain transmission electron microscopy and 3) show a highest ratio of two 5LO per nanodisc. We interpret this as one 5LO on each side of the disc. The dimer of 5LO is visualised by negative stain transmission electron microscopy and is shown to not bind to nanodiscs. This study shows the advantages of nanodiscs to obtain basic structural information as well as functional information of a complex between a monotopic membrane protein and the membrane. PMID:27010627

  4. Manassantin A isolated from Saururus chinensis inhibits 5-lipoxygenase-dependent leukotriene C4 generation by blocking mitogen-activated protein kinase activation in mast cells.

    PubMed

    Kim, Su Jeong; Lu, Yue; Kwon, Okyun; Hwangbo, Kyoung; Seo, Chang-Seob; Lee, Seung Ho; Kim, Cheorl-Ho; Chang, Young-Chae; Son, Jong Keun; Chang, Hyeun Wook

    2011-01-01

    In this study, manassantin A (Man A), an herbal medicine isolated from Saururus chinensis (S. chinensis), markedly inhibited 5-lipoxygenase (5-LO)-dependent leukotriene C(4) (LTC(4)) generation in bone marrow-derived mast cells (BMMCs) in a concentration-dependent manner. To investigate the molecular mechanisms underlying the inhibition of LTC(4) generation by Man A, we assessed the effects of Man A on phosphorylation of cytosolic phospholipase A(2) (cPLA(2)) and mitogen-activated protein kinases (MAPKs). Inhibition of LTC(4) generation by Man A was accompanied by a decrease in cPLA(2) phosphorylation, which occurred via the MAPKs including extracellular signal-regulated protein kinase-1/2 (ERK1/2) as well as p38 and c-Jun N-terminal kinase (JNK) pathways. Taken together, the present study suggests the Man A represents a potential therapeutic approach for the treatment of airway allergic-inflammatory diseases.

  5. Clicked cinnamic/caffeic esters and amides as radical scavengers and 5-lipoxygenase inhibitors.

    PubMed

    Doiron, Jérémie A; Métayer, Benoît; Richard, Ryan R; Desjardins, Dany; Boudreau, Luc H; Levesque, Natalie A; Jean-François, Jacques; Poirier, Samuel J; Surette, Marc E; Touaibia, Mohamed

    2014-01-01

    5-Lipoxygenase (5-LO) is the key enzyme responsible for the conversion of arachidonic acid to leukotrienes, a class of lipid mediators implicated in inflammatory disorders. In this paper, we describe the design, synthesis, and preliminary activity studies of novel clicked caffeic esters and amides as radical scavengers and 5-LO inhibitors. From known 5-LO inhibitor 3 as a lead, cinnamic esters 8a-h and amides 9a-h as well as caffeic esters 15a-h and amides 16a-h were synthesized by Cu(I)-catalyzed [1,3]-dipolar cycloaddition with the appropriate azide precursors and terminal alkynes. All caffeic analogs are proved to be good radical scavengers (IC50: 10-20 μM). Esters 15g and 15f possessed excellent 5-LO inhibition activity in HEK293 cells and were equipotent with the known 5-LO inhibitor CAPE and more potent than Zileuton. Several synthesized esters possess activities rivaling Zileuton in stimulated human polymorphonuclear leukocytes.

  6. Clicked Cinnamic/Caffeic Esters and Amides as Radical Scavengers and 5-Lipoxygenase Inhibitors

    PubMed Central

    Doiron, Jérémie A.; Métayer, Benoît; Richard, Ryan R.; Desjardins, Dany; Boudreau, Luc H.; Levesque, Natalie A.; Jean-François, Jacques; Poirier, Samuel J.; Surette, Marc E.; Touaibia, Mohamed

    2014-01-01

    5-Lipoxygenase (5-LO) is the key enzyme responsible for the conversion of arachidonic acid to leukotrienes, a class of lipid mediators implicated in inflammatory disorders. In this paper, we describe the design, synthesis, and preliminary activity studies of novel clicked caffeic esters and amides as radical scavengers and 5-LO inhibitors. From known 5-LO inhibitor 3 as a lead, cinnamic esters 8a–h and amides 9a–h as well as caffeic esters 15a–h and amides 16a–h were synthesized by Cu(I)-catalyzed [1,3]-dipolar cycloaddition with the appropriate azide precursors and terminal alkynes. All caffeic analogs are proved to be good radical scavengers (IC50: 10–20 μM). Esters 15g and 15f possessed excellent 5-LO inhibition activity in HEK293 cells and were equipotent with the known 5-LO inhibitor CAPE and more potent than Zileuton. Several synthesized esters possess activities rivaling Zileuton in stimulated human polymorphonuclear leukocytes. PMID:25383225

  7. Effect of the 5-lipoxygenase inhibitor ZD2138 on aspirin-induced asthma.

    PubMed Central

    Nasser, S. M.; Bell, G. S.; Foster, S.; Spruce, K. E.; MacMillan, R.; Williams, A. J.; Lee, T. H.; Arm, J. P.

    1994-01-01

    BACKGROUND--The cysteinyl leukotrienes may play a central part in the mechanisms of aspirin-sensitive asthma. Previous work has shown that individuals with aspirin-sensitive asthma have high basal urinary LTE4 levels which increase further upon aspirin ingestion, and that sulphidopeptide leukotriene receptor antagonists attenuate aspirin-induced airflow obstruction. If the cysteinyl leukotrienes cause aspirin-induced asthmatic reactions, inhibition of the 5-lipoxygenase pathway should prevent aspirin-induced bronchospasm. This hypothesis has been tested with ZD2138, a specific non-redox 5-lipoxygenase inhibitor. METHODS--Seven subjects (four men) with aspirin-sensitive asthma with baseline FEV1 values > 67% were studied. ZD2138 (350 mg) or placebo was given on two separate occasions two weeks apart in a randomised double blind fashion. A single dose of aspirin was administered four hours after dosing and FEV1 was measured for six hours. Inhibition of the 5-lipoxygenase pathway by ZD2138 was assessed by measurements of urinary LTE4 levels and ex vivo calcium ionophore stimulated LTB4 generation in whole blood, before administration of drug or placebo and at regular time intervals after dosing and aspirin administration. RESULTS--ZD2138 protected against the aspirin-induced reduction in FEV1 with a 20.3 (4.9)% fall in FEV1 following placebo compared with 4.9 (2.9)% following ZD2138. This was associated with 72% inhibition of ex vivo LTB4 generation in whole blood at 12 hours and a 74% inhibition of the rise in urinary LTE4 excretion at six hours after aspirin ingestion. CONCLUSIONS--In aspirin-sensitive asthma the 5-lipoxygenase inhibitor ZD2138 inhibits the fall in FEV1 induced by aspirin and this is associated with substantial inhibition of 5-lipoxygenase. PMID:8091318

  8. Identification and Characterization of a New Protein Isoform of Human 5-Lipoxygenase

    PubMed Central

    Häfner, Ann-Kathrin; Beilstein, Kim; Graab, Philipp; Ball, Ann-Katrin; Saul, Meike J.; Hofmann, Bettina; Steinhilber, Dieter

    2016-01-01

    Leukotrienes (LTs) are inflammatory mediators that play a pivotal role in many diseases like asthma bronchiale, atherosclerosis and in various types of cancer. The key enzyme for generation of LTs is the 5-lipoxygenase (5-LO). Here, we present a novel putative protein isoform of human 5-LO that lacks exon 4, termed 5-LOΔ4, identified in cells of lymphoid origin, namely the Burkitt lymphoma cell lines Raji and BL41 as well as primary B and T cells. Deletion of exon 4 does not shift the reading frame and therefore the mRNA is not subjected to non-mediated mRNA decay (NMD). By eliminating exon 4, the amino acids Trp144 until Ala184 are omitted in the corresponding protein. Transfection of HEK293T cells with a 5-LOΔ4 expression plasmid led to expression of the corresponding protein which suggests that the 5-LOΔ4 isoform is a stable protein in eukaryotic cells. We were also able to obtain soluble protein after expression in E. coli and purification. The isoform itself lacks canonical enzymatic activity as it misses the non-heme iron but it still retains ATP-binding affinity. Differential scanning fluorimetric analysis shows two transitions, corresponding to the two domains of 5-LO. Whilst the catalytic domain of 5-LO WT is destabilized by calcium, addition of calcium has no influence on the catalytic domain of 5-LOΔ4. Furthermore, we investigated the influence of 5-LOΔ4 on the activity of 5-LO WT and proved that it stimulates 5-LO product formation at low protein concentrations. Therefore regulation of 5-LO by its isoform 5-LOΔ4 might represent a novel mechanism of controlling the biosynthesis of lipid mediators. PMID:27855198

  9. Structure-activity relationship of caffeic acid phenethyl ester analogs as new 5-lipoxygenase inhibitors.

    PubMed

    Doiron, Jérémie A; Leblanc, Luc M; Hébert, Martin J G; Levesque, Natalie A; Paré, Aurélie F; Jean-François, Jacques; Cormier, Marc; Surette, Marc E; Touaibia, Mohamed

    2016-09-26

    Leukotrienes (LTs) are a class of lipid mediators implicated in numerous inflammatory disorders. Caffeic acid phenethyl ester (CAPE) possesses potent anti-LTs activity through the inhibition of 5-lipoxygenase (5-LO), the key enzyme in the biosynthesis of LTs. In this study, we describe the design and synthesis of CAPE analogs as radical scavengers and 5-LO inhibitors. Caffeic esters bearing propargyl and allyl linkers between the caffeoyl and aryl moieties (4a-i and 5a-i, respectively) were synthesized by Sonogashira and Heck cross-coupling reactions to probe the effects of flexibility and aryl substitution on 5-LO inhibition. Caffeoyl alcohol and ethers (6, 7a-b) as well as caffeoyl aldehyde and ketones (8a-e) were synthesized to elucidate the importance of the ester linkage for inhibitory activity. All tested compounds proved to be good radical scavengers (IC50 of 10-30 μm). After preliminary anti-LTs activity screening in HEK293 cell models, 5-LO inhibition potential of selected compounds was determined in human polymorphonuclear leukocytes (PMNL). Most screened compounds outperformed CAPE 3 in concentration-dependent assays on PMNL, with ester dimers 4i and 5i along with caffeoyl ethers 7a-b being roughly eight-, seven-, and 16-fold more potent than Zileuton, with IC50 values of 0.36, 0.43, and 0.18 μm, respectively.

  10. A Novel 5-Lipoxygenase-Activating Protein Inhibitor, AM679, Reduces Inflammation in the Respiratory Syncytial Virus-Infected Mouse Eye▿

    PubMed Central

    Musiyenko, Alla; Correa, Lucia; Stock, Nicholas; Hutchinson, John H.; Lorrain, Daniel S.; Bain, Gretchen; Evans, Jilly F.; Barik, Sailen

    2009-01-01

    Respiratory syncytial virus (RSV) is an important cause of viral respiratory disease in children, and RSV bronchiolitis has been associated with the development of asthma in childhood. RSV spreads from the eye and nose to the human respiratory tract. Correlative studies of humans and direct infection studies of BALB/c mice have established the eye as a significant pathway of entry of RSV to the lung. At the same time, RSV infection of the eye produces symptoms resembling allergic conjunctivitis. Cysteinyl leukotrienes (CysLTs) are known promoters of allergy and inflammation, and the first step in their biogenesis from arachidonic acid is catalyzed by 5-lipoxygenase (5-LO) in concert with the 5-LO-activating protein (FLAP). We have recently developed a novel compound, AM679, which is a topically applied and potent inhibitor of FLAP. Here we show with the BALB/c mouse eye RSV infection model that AM679 markedly reduced the RSV-driven ocular pathology as well as the synthesis of CysLTs in the eye. In addition, AM679 decreased the production of the Th2 cell cytokine interleukin-4 but did not increase the viral load in the eye or the lung. These results suggest that FLAP inhibitors may be therapeutic for RSV-driven eye disease and possibly other inflammatory eye indications. PMID:19759251

  11. The Protective Effect of Eupatilin against Hydrogen Peroxide-Induced Injury Involving 5-Lipoxygenase in Feline Esophageal Epithelial Cells

    PubMed Central

    Lim, Jae Chun; Park, Sun Young; Nam, Yoonjin; Nguyen, Thanh Thao

    2012-01-01

    In this study, we focused to identify whether eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone), an extract from Artemisia argyi folium, prevents H2O2-induced injury of cultured feline esophageal epithelial cells. Cell viability was measured by the conventional MTT reduction assay. Western blot analysis was performed to investigate the expression of 5-lipoxygenase by H2O2 treatment in the absence and presence of inhibitors. When cells were exposed to 600 µM H2O2 for 24 hours, cell viability was decreased to 40%. However, when cells were pretreated with 25~150 µM eupatilin for 12 hours, viability was significantly restored in a concentration-dependent manner. H2O2-treated cells were shown to express 5-lipoxygenase, whereas the cells pretreated with eupatilin exhibited reduction in the expression of 5-lipoxygenase. The H2O2-induced increase of 5-lipoxygenase expression was prevented by SB202190, SP600125, or NAC. We further demonstrated that the level of leukotriene B4 (LTB4) was also reduced by eupatilin, SB202190, SP600125, NAC, or nordihydroguaiaretic acid (a lipoxygenase inhibitor) pretreatment. H2O2 induced the activation of p38MAPK and JNK, this activation was inhibited by eupatilin. These results indicate that eupatilin may reduce H2O2-induced cytotoxicity, and 5-lipoxygenase expression and LTB4 production by controlling the p38 MAPK and JNK signaling pathways through antioxidative action in feline esophageal epithelial cells. PMID:23118554

  12. 5-lipoxygenase knockout mice exhibit a resistance to acute pancreatitis induced by cerulein

    PubMed Central

    Cuzzocrea, Salvatore; Rossi, Antonietta; Serraino, Ivana; Di Paola, Rosanna; Dugo, Laura; Genovese, Tiziana; Britti, Domenico; Sciarra, Giuseppe; De Sarro, Angelina; Caputi, Achille P; Sautebin, Lidia

    2003-01-01

    Here we compare the degree of pancreatitis caused by cerulein in mice lacking 5-lipoxygenase (5-LO) and in the corresponding wild-type mice. Intraperitoneal injection of cerulein in mice resulted in severe, acute pancreatitis characterized by oedema, neutrophil infiltration and necrosis and elevated serum levels of amylase and lipase. Infiltration of pancreatic and lung tissue with neutrophils (measured as increase in myeloperoxidase activity) was associated with enhanced lipid peroxidation (increased tissue levels of malondialdehyde). Immunohistochemical examination demonstrated a marked increase in immunoreactivity for intracellular adhesion molecule-1 (ICAM-1), P-selectin and E-selectin in the pancreas and lung of cerulein-treated mice. In contrast, the degree of (1) pancreatic inflammation and tissue injury (histological score), (2) up-regulation/expression of P-selectin, E-selectin and ICAM-1, and (3) neutrophil infiltration was markedly reduced in pancreatic and lung tissue obtained from cerulein-treated 5-LO-deficient mice. These findings support the view that 5-LO plays an important, pro-inflammatory role in the acute pancreatitis caused by cerulein in mice. PMID:12941149

  13. Molecular cloning and amino acid sequence of human 5-lipoxygenase

    SciTech Connect

    Matsumoto, T.; Funk, C.D.; Radmark, O.; Hoeoeg, J.O.; Joernvall, H.; Samuelsson, B.

    1988-01-01

    5-Lipoxygenase (EC 1.13.11.34), a Ca/sup 2 +/- and ATP-requiring enzyme, catalyzes the first two steps in the biosynthesis of the peptidoleukotrienes and the chemotactic factor leukotriene B/sub 4/. A cDNA clone corresponding to 5-lipoxygenase was isolated from a human lung lambda gt11 expression library by immunoscreening with a polyclonal antibody. Additional clones from a human placenta lambda gt11 cDNA library were obtained by plaque hybridization with the /sup 32/P-labeled lung cDNA clone. Sequence data obtained from several overlapping clones indicate that the composite DNAs contain the complete coding region for the enzyme. From the deduced primary structure, 5-lipoxygenase encodes a 673 amino acid protein with a calculated molecular weight of 77,839. Direct analysis of the native protein and its proteolytic fragments confirmed the deduced composition, the amino-terminal amino acid sequence, and the structure of many internal segments. 5-Lipoxygenase has no apparent sequence homology with leukotriene A/sub 4/ hydrolase or Ca/sup 2 +/-binding proteins. RNA blot analysis indicated substantial amounts of an mRNA species of approx. = 2700 nucleotides in leukocytes, lung, and placenta.

  14. Regulation of leukotriene and 5oxoETE synthesis and the effect of 5-lipoxygenase inhibitors: a mathematical modeling approach

    PubMed Central

    2012-01-01

    Background 5-lipoxygenase (5-LO) is a key enzyme in the synthesis of leukotrienes and 5-Oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (oxoETE). These inflammatory signaling molecules play a role in the pathology of asthma and so 5-LO inhibition is a promising target for asthma therapy. The 5-LO redox inhibitor zileuton (Zyflo IR/CR®) is currently marketed for the treatment of asthma in adults and children, but widespread use of zileuton is limited by its efficacy/safety profile, potentially related to its redox characteristics. Thus, a quantitative, mechanistic description of its functioning may be useful for development of improved anti-inflammatory targeting this mechanism. Results A mathematical model describing the operation of 5-LO, phospholipase A2, glutathione peroxidase and 5-hydroxyeicosanoid dehydrogenase was developed. The catalytic cycles of the enzymes were reconstructed and kinetic parameters estimated on the basis of available experimental data. The final model describes each stage of cys-leukotriene biosynthesis and the reactions involved in oxoETE production. Regulation of these processes by substrates (phospholipid concentration) and intracellular redox state (concentrations of reduced glutathione, glutathione (GSH), and lipid peroxide) were taken into account. The model enabled us to reveal differences between redox and non-redox 5-LO inhibitors under conditions of oxidative stress. Despite both redox and non-redox inhibitors suppressing leukotriene A4 (LTA4) synthesis, redox inhibitors are predicted to increase oxoETE production, thus compromising efficacy. This phenomena can be explained in terms of the pseudo-peroxidase activity of 5-LO and the ability of lipid peroxides to transform 5-LO into its active form even in the presence of redox inhibitors. Conclusions The mathematical model developed described quantitatively different mechanisms of 5-LO inhibition and simulations revealed differences between the potential therapeutic outcomes for these

  15. Synthesis and 5-lipoxygenase inhibitory activity of new cinnamoyl and caffeoyl clusters.

    PubMed

    Doiron, Jérémie; Boudreau, Luc H; Picot, Nadia; Villebonet, Benoît; Surette, Marc E; Touaibia, Mohamed

    2009-02-15

    Novel cinnamoyl and caffeoyl clusters were synthesized by multiple Cu(I)-catalyzed [1,3]-dipolar cycloadditions and their anti-5-lipoxygenase inhibitory activity was tested. Caffeoyl cluster showed an improved 5-lipoxygenase inhibitory activity compared to caffeic acid, with caffeoyl trimer 16 and tetramer 19 showing the best 5-lipoxygenase inhibitory activity.

  16. Co-expression of COX-2 and 5-LO in primary glioblastoma is associated with poor prognosis.

    PubMed

    Wang, Xingfu; Chen, Yupeng; Zhang, Sheng; Zhang, Lifeng; Liu, Xueyong; Zhang, Li; Li, Xiaoling; Chen, Dayang

    2015-11-01

    Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO) are important factors in tumorigenesis and malignant progression; however, studies of their roles in glioblastoma have produced conflicting results. To define the frequencies of COX-2 and 5-LO expression and their correlation with clinicopathological features and prognosis, tumor tissues from 76 cases of newly diagnosed primary ordinary glioblastoma were examined for COX-2 and 5-LO expression by immunohistochemistry. The expression levels of COX-2 and 5-LO and the relationships between the co-expression of COX-2/5-LO and patient age and gender, edema index (EI), Karnofsky Performance Scale and overall survival (OS) were analyzed. COX-2 and 5-LO were expressed in 73.7 % (56/76) and 92.1 % (70/76) of the samples, respectively. Among the clinicopathological characteristics, only age (>60 years) exhibited a significant association with the high expression of COX-2. No statistically significant correlations were found in the 5-LO cohort. A significant positive correlation was revealed between the COX-2 and 5-LO scores (r = 0.374; p = 0.001). The elevated co-expression of COX-2 and 5-LO was observed primarily in the patients over the age of 60 years. Patients with a high expression of COX-2 had a significantly shorter OS (p < 0.01), whereas the immunoexpression of 5-LO was not associated with the OS of patients with glioblastoma. Survival analysis indicated that simultaneous high levels of COX-2 and 5-LO expression were significantly correlated with poor OS and, conversely, that a low/low expression pattern of these two proteins was significantly associated with better OS (p < 0.05). Moreover, the Cox multivariable proportional hazard model showed that a high expression of COX-2, high co-expression of COX-2 and 5-LO, and a high Ki-67 index were significant predictors of shorter OS in primary glioblastoma, independent of age, gender, EI, 5-LO expression and p53 status. The hazard ratios for OS were 2.347 (95 % CI 1

  17. Expression of 5-lipoxygenase and 5-lipoxygenase-activating protein in human fetal membranes throughout pregnancy and at term.

    PubMed

    Brown, N L; Slater, D M; Alvi, S A; Elder, M G; Sullivan, M H; Bennett, P R

    1999-07-01

    Lipoxygenase metabolites may be involved in human parturition. 5-lipoxygenase (5-LOX) catalyses the first steps in the synthesis of leukotrienes from arachidonic acid, and its activity is dependent on 5-LOX activating protein (FLAP). The expression of 5-LOX and FLAP were investigated in fetal membranes to determine whether there are changes with gestational age or at term with the onset of labour. No significant differences were found in the expression of 5-LOX or FLAP mRNA in the amnion at different gestational ages or at term. In the chorion-decidua, 5-LOX mRNA expression was significantly higher in the first trimester of pregnancy than in the second and third trimesters. At term, there was a significant increase in both 5-LOX mRNA and protein expression in the chorion-decidua in the time after labour, compared with the time before labour. The expression of FLAP mRNA was also significantly higher in the chorion-decidua in the first trimester of pregnancy compared with the third trimester, and at term in the time after labour compared with the time before labour. Expression of FLAP protein was not studied, as an antibody is not currently available. These results are consistent with a role for 5-LOX and FLAP in the control of parturition at term, and also suggest an involvement earlier in pregnancy.

  18. 5-Lipoxygenase as a putative link between cardiovascular and psychiatric disorders.

    PubMed

    Manev, Radmila; Manev, Hari

    2004-01-01

    There is evidence of an association between depression and anxiety and cardio- cerebro-vascular conditions, but the mechanisms of this association are unknown. Here we review a possible role for the 5-lipoxygenase (5-LOX) pathway. 5-LOX is an enzyme that, in association with 5-LOX-activating protein (FLAP), leads to the synthesis of leukotrienes from omega-6 arachidonic acid. Production of active leukotrienes can be reduced by dietary omega-3 fatty acids, which also are beneficial in cardiac and psychiatric (e.g., depression) pathologies. Human 5-LOX and FLAP gene polymorphisms are a risk factor in atherosclerosis and cardio-cerebro-vascular pathologies; an overactive 5-LOX pathway is found in these diseases. Studies with 5-LOX-deficient transgenic mice suggest that 5-LOX activity may contribute to anxiety- and depression-like behaviors. Future research should characterize the role of the 5-LOX pathway in comorbid cardio-cerebro-vascular and psychiatric disorders and in the therapeutic actions of dietary omega-3 fatty acids.

  19. 5-Lipoxygenase-activating protein: a potential link between innate and adaptive immunity in atherosclerosis and adipose tissue inflammation.

    PubMed

    Bäck, Magnus; Sultan, Ariane; Ovchinnikova, Olga; Hansson, Göran K

    2007-04-13

    Transforming growth factor-beta (TGF-beta) is a major antiinflammatory mediator in atherosclerosis. Transgenic ApoE(-/-) mice with a dominant-negative TGFbeta type II receptor (dnTGFbetaRII) on CD4(+) and CD8(+) T cells display aggravated atherosclerosis. The aim of the present study was to elucidate the mechanisms involved in this enhanced inflammatory response. Gene array analyses identified the 5-lipoxygenase-activating protein (FLAP) among the most upregulated genes in both the aorta and adipose tissue of dnTGFbetaRII transgenic ApoE(-/-) mice compared with their ApoE(-/-) littermates, a finding that was confirmed by real-time quantitative RT-PCR. Aortas from the former mice in addition produced increased amounts of the lipoxygenase product leukotriene B(4) after ex vivo stimulation. FLAP protein expression in both the aorta and adipose tissue was detected in macrophages, but not in T cells. Four weeks of treatment with the FLAP inhibitor MK-886 (10 mg/kg in 1% tylose delivered by osmotic pumps) significantly reduced atherosclerotic lesion size and T-cell content. Finally, FLAP mRNA levels were upregulated approximately 8-fold in adipose tissue derived from obese ob/ob mice. In conclusion, the results of the present study suggest a key role for mediators of the 5-lipoxygenase pathway in inflammatory reactions of atherosclerosis and metabolic disease.

  20. Discovery of the first dual inhibitor of the 5-lipoxygenase-activating protein and soluble epoxide hydrolase using pharmacophore-based virtual screening

    PubMed Central

    Temml, Veronika; Garscha, Ulrike; Romp, Erik; Schubert, Gregor; Gerstmeier, Jana; Kutil, Zsofia; Matuszczak, Barbara; Waltenberger, Birgit; Stuppner, Hermann; Werz, Oliver; Schuster, Daniela

    2017-01-01

    Leukotrienes (LTs) are pro-inflammatory lipid mediators derived from arachidonic acid (AA) with roles in inflammatory and allergic diseases. The biosynthesis of LTs is initiated by transfer of AA via the 5-lipoxygenase-activating protein (FLAP) to 5-lipoxygenase (5-LO). FLAP inhibition abolishes LT formation exerting anti-inflammatory effects. The soluble epoxide hydrolase (sEH) converts AA-derived anti-inflammatory epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatetraenoic acids (di-HETEs). Its inhibition consequently also counteracts inflammation. Targeting both LT biosynthesis and the conversion of EETs with a dual inhibitor of FLAP and sEH may represent a novel, powerful anti-inflammatory strategy. We present a pharmacophore-based virtual screening campaign that led to 20 hit compounds of which 4 targeted FLAP and 4 were sEH inhibitors. Among them, the first dual inhibitor for sEH and FLAP was identified, N-[4-(benzothiazol-2-ylmethoxy)-2-methylphenyl]-N’-(3,4-dichlorophenyl)urea with IC50 values of 200 nM in a cell-based FLAP test system and 20 nM for sEH activity in a cell-free assay. PMID:28218273

  1. Discovery of the first dual inhibitor of the 5-lipoxygenase-activating protein and soluble epoxide hydrolase using pharmacophore-based virtual screening

    NASA Astrophysics Data System (ADS)

    Temml, Veronika; Garscha, Ulrike; Romp, Erik; Schubert, Gregor; Gerstmeier, Jana; Kutil, Zsofia; Matuszczak, Barbara; Waltenberger, Birgit; Stuppner, Hermann; Werz, Oliver; Schuster, Daniela

    2017-02-01

    Leukotrienes (LTs) are pro-inflammatory lipid mediators derived from arachidonic acid (AA) with roles in inflammatory and allergic diseases. The biosynthesis of LTs is initiated by transfer of AA via the 5-lipoxygenase-activating protein (FLAP) to 5-lipoxygenase (5-LO). FLAP inhibition abolishes LT formation exerting anti-inflammatory effects. The soluble epoxide hydrolase (sEH) converts AA-derived anti-inflammatory epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatetraenoic acids (di-HETEs). Its inhibition consequently also counteracts inflammation. Targeting both LT biosynthesis and the conversion of EETs with a dual inhibitor of FLAP and sEH may represent a novel, powerful anti-inflammatory strategy. We present a pharmacophore-based virtual screening campaign that led to 20 hit compounds of which 4 targeted FLAP and 4 were sEH inhibitors. Among them, the first dual inhibitor for sEH and FLAP was identified, N-[4-(benzothiazol-2-ylmethoxy)-2-methylphenyl]-N’-(3,4-dichlorophenyl)urea with IC50 values of 200 nM in a cell-based FLAP test system and 20 nM for sEH activity in a cell-free assay.

  2. Augmentation of 5-lipoxygenase activity and expression during dengue serotype-2 infection

    PubMed Central

    2013-01-01

    Background Leukotriene B4, a 5-lipoxygenase product of arachidonic acid with potent chemotactic effects on neutrophils, has not been assessed in dengue patients. In this study, plasma leukotriene B4 and serum high-sensitivity C-reactive protein levels were determined in adult patients during the febrile, convalescent and defervescent stages of dengue serotype-2 (DENV-2) infection, and compared with those of age--matched healthy and non-dengue febrile subjects. In vitro studies were performed to examine the effects of live and heat-inactivated DENV-2 on the activities and expression of 5-lipoxygenase in human neutrophils. Results Plasma leukotriene B4 was elevated during the febrile stages of dengue infection compared to levels during convalescence and in study controls. Plasma leukotriene B4 also correlated with serum high-sensitivity C-reactive protein in dengue patients (febrile, r = 0.91, p < 0.001; defervescence, r = 0.87, p < 0.001; convalescence, r = 0.87, p < 0.001). Exposure of human neutrophils to DENV-2 resulted in a significant rise in leukotriene B4; the extent of increase, however, did not differ between exposure to live and heat-inactivated DENV-2. Pre-incubation of either live or heat-inactivated DENV-2 resulted in reduced leukotriene B4 release by neutrophils, indicating that contact with dengue antigens (and not replication) triggers the neutrophil response. Production of leukotriene B4 was associated with an increase in 5-lipoxygenase expression in human neutrophils; addition of MK886 (a 5-lipoxygenase activating protein inhibitor) attenuated further increase in leukotriene B4 production. Conclusion These findings provide important clinical and mechanistic data on the involvement of 5-lipoxygenase and its metabolites in dengue infection. Further studies are needed to elucidate the therapeutic implications of these findings. PMID:24168271

  3. Roles of 5-lipoxygenase and cysteinyl-leukotriene type 1 receptors in the hematological response to allergen challenge and its prevention by diethylcarbamazine in a murine model of asthma.

    PubMed

    Masid-de-Brito, Daniela; Queto, Túlio; Gaspar-Elsas, Maria Ignez C; Xavier-Elsas, Pedro

    2014-01-01

    Diethylcarbamazine (DEC), which blocks leukotriene production, abolishes the challenge-induced increase in eosinopoiesis in bone-marrow from ovalbumin- (OVA-) sensitized mice, suggesting that 5-lipoxygenase (5-LO) products contribute to the hematological responses in experimental asthma models. We explored the relationship between 5-LO, central and peripheral eosinophilia, and effectiveness of DEC, using PAS or BALB/c mice and 5-LO-deficient mutants. We quantified eosinophil numbers in freshly harvested or cultured bone-marrow, peritoneal lavage fluid, and spleen, with or without administration of leukotriene generation inhibitors (DEC and MK886) and cisteinyl-leukotriene type I receptor antagonist (montelukast). The increase in eosinophil numbers in bone-marrow, observed in sensitized/challenged wild-type mice, was abolished by MK886 and DEC pretreatment. In ALOX mutants, by contrast, there was no increase in bone-marrow eosinophil counts, nor in eosinophil production in culture, in response to sensitization/challenge. In sensitized/challenged ALOX mice, challenge-induced migration of eosinophils to the peritoneal cavity was significantly reduced relative to the wild-type PAS controls. DEC was ineffective in ALOX mice, as expected from a mechanism of action dependent on 5-LO. In BALB/c mice, challenge significantly increased spleen eosinophil numbers and DEC treatment prevented this increase. Overall, 5-LO appears as indispensable to the systemic hematological response to allergen challenge, as well as to the effectiveness of DEC.

  4. Screening of some rare endemic Italian plants for inhibitory activity on 5-lipoxygenase.

    PubMed

    Prieto, José-María; Bader, Ammar; Martini, Francesca; Ríos, José-Luis; Morelli, Ivano

    2005-12-01

    The extracts of four rare plants found on the islands of Sicily, Vulcano and Marettimo, Southern Italy, were screened for their inhibitory effect on the production of leukotriene B4 by 5-lipoxygenase in intact cells. The methanol extracts of pods of Cytisus aeolicus and aerial parts of Thymus richardii were the most active extracts, inhibiting almost completely the leukotriene B4 production at 200 and 50 microg/ml, respectively.

  5. Effects of novel 5-lipoxygenase inhibitors on the incidence of pulmonary adenomas in the A/J murine model when administered via nose-only inhalation.

    PubMed

    Myrdal, P B; Karlage, K; Kuehl, P J; Angersbach, B S; Merrill, B A; Wightman, P D

    2007-05-01

    The objective of this study was to determine the effects of 5-lipoxygenase (5-LO) inhibitors on the incidence of benzo(a)pyrene-induced pulmonary adenomas in female A/J mice. Two novel compounds, S-29606 and S-30621, and the Food and Drug Administration-approved Zileuton were investigated. S-29606 and S-30621 were selected from a group of similar active structures on the basis of local versus systemic 5-LO inhibitory activity. Preliminary studies found them to lack oral bioavailability, in direct contrast to Zileuton. Treatment was initiated 1 week following exposure to the carcinogen benzo(a)pyrene. Both S-29606 and S-30621 were dosed via nose-only inhalation 5 days a week, for 16 weeks, whereas Zileuton was administered orally. Dose levels for S-29606 and S-30621 were determined to be 220 and 430 microg/kg for the low- and high-dose groups, respectively, whereas the dose of Zileuton was 245 mg/kg. Both test compounds exhibited a significant reduction of pulmonary adenomas, compared with a positive control for high and low doses, P < 0.05. Additionally, a dose response for both S-29606 and S-30621 was observed when compared with placebo. Despite a dose 575 times greater than that of the novel test compounds, orally administered Zileuton did not produce a reduction in adenoma occurrence. The findings of this study offer compelling preliminary data for the use of S-29606 and S-30621 in further investigations of the treatment of pulmonary adenomas and support the use of inhalation drug delivery as an alternate to oral delivery for these compounds.

  6. Effect of a 5-lipoxygenase inhibitor on nerve growth factor-induced thermal hyperalgesia in the rat.

    PubMed

    Amann, R; Schuligoi, R; Lanz, I; Peskar, B A

    1996-06-13

    Intraplantar injection of mouse beta (2.5S) nerve growth factor (NGF) caused thermal hyperalgesia and stimulated release of immunoreactive leukotriene B4 from the rat paw skin. Both effects of NGF were prevented by the 5-lipoxygenase inhibitor, (R)-2-[4-quinolin-2-yl-methoxy)phenyl]-2-cyclopentyl acetic acid (BAY X1005). BAY X1005 did not affect bradykinin-induced thermal hyperalgesia. These results suggest the participation of 5-lipoxygenase products of arachidonate in NGF-induced local thermal hyperalgesia.

  7. Cylindol A, a novel biphenyl ether with 5-lipoxygenase inhibitory activity, and a related compound from Imperata Cylindrica.

    PubMed

    Matsunaga, K; Ikeda, M; Shibuya, M; Ohizumi, Y

    1994-09-01

    Cylindol A [1] and B [2], two novel substances, have been isolated from Imperata cylindrica, and their structures have been elucidated on the basis of their spectral data coupled with chemical evidence and total synthesis. Cylindol A [1] showed 5-lipoxygenase inhibitory activity.

  8. The 5-Lipoxygenase Inhibitor Zileuton Confers Neuroprotection against Glutamate Oxidative Damage by Inhibiting Ferroptosis.

    PubMed

    Liu, Yang; Wang, Wei; Li, Yuyao; Xiao, Yunqi; Cheng, Jian; Jia, Jia

    2015-01-01

    5-Lipoxygenase (5-LOX) inhibitors have been shown to be protective in several neurodegenerative disease models; however, the underlying mechanisms remain unclear. We investigated whether 5-LOX inhibitor zileuton conferred direct neuroprotection against glutamate oxidative toxicity by inhibiting ferroptosis, a newly identified iron-dependent programmed cell death. Treatment of HT22 mouse neuronal cell line with glutamate resulted in significant cell death, which was inhibited by zileuton in a dose-dependent manner. Consistently, zileuton decreased glutamate-induced production of reactive oxygen species but did not restore glutamate-induced depletion of glutathione. Moreover, the pan-caspase inhibitor Z-Val-Ala-Asp(OMe)-fluoromethyl ketone (ZVAD-fmk) neither prevented HT22 cell death induced by glutamate nor affected zileuton protection against glutamate oxidative toxicity, suggesting that zileuton did not confer neuroprotection by inhibiting caspase-dependent apoptosis. Interestingly, glutamate-induced HT22 cell death was significantly inhibited by the ferroptosis inhibitor ferrostatin-1. Moreover, zileuton protected HT22 neuronal cells from erastin-induced ferroptosis. However, we did not observe synergic protective effects of zileuton and ferrostatin-1 on glutamate-induced cell death. These results suggested that both the 5-LOX inhibitor zileuton and the ferropotosis inhibitor ferrostatin-1 acted through the same cascade to protect against glutamate oxidative toxicity. In conclusion, our results suggested that zileuton protected neurons from glutamate-induced oxidative stress at least in part by inhibiting ferroptosis.

  9. Phosphodiesterase 4D and 5-Lipoxygenase Activating Protein in Ischemic Stroke

    PubMed Central

    Meschia, James F.; Brott, Thomas G.; Brown, Robert D.; Crook, Richard; Worrall, Bradford B.; Kissela, Brett; Brown, W. Mark; Rich, Stephen S.; Case, L. Douglas; Evans, E. Whitney; Hague, Stephen; Singleton, Andrew; Hardy, John

    2006-01-01

    Risk for ischemic stroke is mediated by both environmental and genetic factors. Although several environmental exposures have been implicated, relatively little is known about the genetic basis of predisposition to this disease. Recent studies in Iceland identified risk polymorphisms in two putative candidate genes for ischemic stroke: phosphodiesterase 4D (PDE4D) and 5-lipoxygenase activating protein (ALOX5AP). A collection of North American sibling pairs concordant for ischemic stroke and two cohorts of prospectively ascertained North American ischemic stroke cases and control subjects were used for evaluation of PDE4D and ALOX5AP. Although no evidence supported linkage of ischemic stroke with either of the two candidate genes, single-nucleotide polymorphisms and haplotypic associations were observed between PDE4D and ischemic stroke. There was no evidence of association between variants of ALOX5AP and ischemic stroke. These data suggest that common variants in PDE4D may contribute to the genetic risk for ischemic stroke in multiple populations. PMID:16130105

  10. The 5-lipoxygenase inhibitor, zileuton, suppresses prostaglandin biosynthesis by inhibition of arachidonic acid release in macrophages

    PubMed Central

    Rossi, A; Pergola, C; Koeberle, A; Hoffmann, M; Dehm, F; Bramanti, P; Cuzzocrea, S; Werz, O; Sautebin, L

    2010-01-01

    BACKGROUND AND PURPOSE Zileuton is the only 5-lipoxygenase (5-LOX) inhibitor marketed as a treatment for asthma, and is often utilized as a selective tool to evaluate the role of 5-LOX and leukotrienes. The aim of this study was to investigate the effect of zileuton on prostaglandin (PG) production in vitro and in vivo. EXPERIMENTAL APPROACH Peritoneal macrophages activated with lipopolysaccharide (LPS)/interferon γ (LPS/IFNγ), J774 macrophages and human whole blood stimulated with LPS were used as in vitro models and rat carrageenan-induced pleurisy as an in vivo model. KEY RESULTS Zileuton suppressed PG biosynthesis by interference with arachidonic acid (AA) release in macrophages. We found that zileuton significantly reduced PGE2 and 6-keto prostaglandin F1α (PGF1α) levels in activated mouse peritoneal macrophages and in J774 macrophages. This effect was not related to 5-LOX inhibition, because it was also observed in macrophages from 5-LOX knockout mice. Notably, zileuton inhibited PGE2 production in LPS-stimulated human whole blood and suppressed PGE2 and 6-keto PGF1α pleural levels in rat carrageenan-induced pleurisy. Interestingly, zileuton failed to inhibit the activity of microsomal PGE2 synthase1 and of cyclooxygenase (COX)-2 and did not affect COX-2 expression. However, zileuton significantly decreased AA release in macrophages accompanied by inhibition of phospholipase A2 translocation to cellular membranes. CONCLUSIONS AND IMPLICATION Zileuton inhibited PG production by interfering at the level of AA release. Its mechanism of action, as well as its use as a pharmacological tool, in experimental models of inflammation should be reassessed. PMID:20880396

  11. Homology modeling of 5-lipoxygenase and hints for better inhibitor design

    NASA Astrophysics Data System (ADS)

    Aparoy, P.; Reddy, R. N.; Guruprasad, Lalitha; Reddy, M. R.; Reddanna, P.

    2008-09-01

    Lipoxygenases (LOXs) are a group of enzymes involved in the oxygenation of polyunsaturated fatty acids. Among these 5-lipoxygenase (5-LOX) is the key enzyme leading to the formation of pharmacologically important leukotrienes and lipoxins, the mediators of inflammatory and allergic disorders. In view of close functional similarity to mammalian lipoxygenase, potato 5-LOX is used extensively. In this study, the homology modeling technique has been used to construct the structure of potato 5-LOX. The amino acid sequence identity between the target protein and sequence of template protein 1NO3 (soybean LOX-3) searched from NCBI protein BLAST was 63%. Based on the template structure, the protein model was constructed by using the Homology program in InsightII. The protein model was briefly refined by energy minimization steps and validated using Profile-3D, ERRAT and PROCHECK. The results showed that 99.3% of the amino acids were in allowed regions of Ramachandran plot, suggesting that the model is accurate and its stereochemical quality good. Like all LOXs, 5-LOX also has a two-domain structure, the small N-terminal β-barrel domain and a larger catalytic domain containing a single atom of non-heme iron coordinating with His525, His530, His716 and Ile864. Asn720 is present in the fifth coordination position of iron. The sixth coordination position faces the open cavity occupied here by the ligands which are docked. Our model of the enzyme is further validated by examining the interactions of earlier reported inhibitors and by energy minimization studies which were carried out using molecular mechanics calculations. Four ligands, nordihydroguaiaretic acid (NDGA) having IC50 of 1.5 μM and analogs of benzyl propargyl ethers having IC50 values of 760 μM, 45 μM, and no inhibition respectively were selected for our docking and energy minimization studies. Our results correlated well with the experimental data reported earlier, which proved the quality of the model. This

  12. A Novel Inhibitor of 5-Lipoxygenase (5-LOX) Prevents Oxidative Stress–Induced Cell Death of Retinal Pigment Epithelium (RPE) Cells

    PubMed Central

    Subramanian, Preeti; Mendez, Emily F.; Becerra, S. Patricia

    2016-01-01

    Purpose 5-Lipoxygenase (5-LOX) oxygenates arachidonic acid to form 5-hydroperoxyeicosatetraenoic acid, which is further converted into biologically detrimental leukotrienes, such as leukotriene B4 (LTB4). The RPE and retina express the PNPLA2 gene for pigment epithelium–derived factor receptor (PEDF-R), a lipase involved in cell survival. The purpose here was to investigate the role of PEDF-R on the 5-LOX pathway in oxidative stress of RPE. Methods Lipoxygenase activity assays were performed with soybean and potato lipoxygenase. Binding was evaluated by peptide-affinity chromatography and pull-down assays with PEDF-R–derived synthetic peptides or recombinant protein. Oxidative stress was induced in human ARPE-19 and primary pig RPE cells with indicated concentrations of H2O2/TNF-α. Reverse transcription–PCR of ALOX5 and PNPLA2 genes was performed. Cell viability and death rates were determined using respective biomarkers. Leukotriene B4 levels were measured by ELISA. Results Among five peptides spanning between positions Leu159 and Met325 of human PEDF-R polypeptide, only two overlapping peptides, E5b and P1, bound and inhibited lipoxygenase activity. Human recombinant 5-LOX bound specifically to peptide P1 and to His6/Xpress-tagged PEDF-R via ionic interactions. The two inhibitor peptides E5b and P1 promoted cell viability and decreased cell death of RPE cells undergoing oxidative stress. Oxidative stress decreased the levels of PNPLA2 transcripts with no effect on ALOX5 expression. Exogenous additions of P1 peptide or overexpression of the PNPLA2 gene decreased both LTB4 levels and death of RPE cells undergoing oxidative stress. Conclusions A novel peptide region of PEDF-R inhibits 5-LOX, which intersects with RPE cell death pathways induced by oxidative stress. PMID:27635633

  13. 5-Lipoxygenase-dependent apoptosis of human lymphocytes in the International Space Station: data from the ROALD experiment.

    PubMed

    Battista, Natalia; Meloni, Maria A; Bari, Monica; Mastrangelo, Nicolina; Galleri, Grazia; Rapino, Cinzia; Dainese, Enrico; Agrò, Alessandro Finazzi; Pippia, Proto; Maccarrone, Mauro

    2012-05-01

    The functional adaptation of the immune system to the surrounding environment is also a fundamental issue in space. It has been suggested that a decreased number of lymphocytes might be a cause of immunosuppression, possibly due to the induction of apoptosis. Early activation of 5-lipoxygenase (5-LOX) might play a central role in the initiation of the apoptotic program. The goal of the role of apoptosis in lymphocyte depression (ROALD) experiment, flown on the International Space Station as part of the BIO-4 mission of the European Space Agency, was to ascertain the induction of apoptosis in human lymphocytes under authentic microgravity, and to elucidate the possible involvement of 5-LOX. Our results demonstrate that exposure of human lymphocytes to microgravity for 48 h onboard the ISS remarkably increased apoptotic hallmarks such as DNA fragmentation (∼3-fold compared to ground-based controls) and cleaved-poly (ADP-ribose) polymerase (PARP) protein expression (∼3-fold), as well as mRNA levels of apoptosis-related markers such as p53 (∼3-fold) and calpain (∼4-fold); these changes were paralleled by an early increase of 5-LOX activity (∼2-fold). Our findings provide a molecular background for the immune dysfunction observed in astronauts during space missions, and reveal potential new markers to monitor health status of ISS crew members.

  14. Conversion of human 5-lipoxygenase to a 15-lipoxygenase by a point mutation to mimic phosphorylation at Serine-663

    SciTech Connect

    Gilbert, Nathaniel C.; Rui, Zhe; Neau, David B.; Waight, Maria T.; Bartlett, Sue G.; Boeglin, William E.; Brash, Alan R.; Newcomer, Marcia E.

    2012-08-31

    The enzyme 5-lipoxygenase (5-LOX) initiates biosynthesis of the proinflammatory leukotriene lipid mediators and, together with 15-LOX, is also required for synthesis of the anti-inflammatory lipoxins. The catalytic activity of 5-LOX is regulated through multiple mechanisms, including Ca{sup 2+}-targeted membrane binding and phosphorylation at specific serine residues. To investigate the consequences of phosphorylation at S663, we mutated the residue to the phosphorylation mimic Asp, providing a homogenous preparation suitable for catalytic and structural studies. The S663D enzyme exhibits robust 15-LOX activity, as determined by spectrophotometric and HPLC analyses, with only traces of 5-LOX activity remaining; synthesis of the anti-inflammatory lipoxin A4 from arachidonic acid is also detected. The crystal structure of the S663D mutant in the absence and presence of arachidonic acid (in the context of the previously reported Stable-5-LOX) reveals substantial remodeling of helices that define the active site so that the once fully encapsulated catalytic machinery is solvent accessible. Our results suggest that phosphorylation of 5-LOX at S663 could not only down-regulate leukotriene synthesis but also stimulate lipoxin production in inflammatory cells that do not express 15-LOX, thus redirecting lipid mediator biosynthesis to the production of proresolving mediators of inflammation.

  15. Structural optimization and biological evaluation of 1,5-disubstituted pyrazole-3-carboxamines as potent inhibitors of human 5-lipoxygenase

    PubMed Central

    Zhou, Yu; Liu, Jun; Zheng, Mingyue; Zheng, Shuli; Jiang, Chunyi; Zhou, Xiaomei; Zhang, Dong; Zhao, Jihui; Ye, Deju; Zheng, Mingfang; Jiang, Hualiang; Liu, Dongxiang; Cheng, Jian; Liu, Hong

    2016-01-01

    Human 5-lipoxygenase (5-LOX) is a well-validated drug target and its inhibitors are potential drugs for treating leukotriene-related disorders. Our previous work on structural optimization of the hit compound 2 from our in-house collection identified two lead compounds, 3a and 3b, exhibiting a potent inhibitory profile against 5-LOX with IC50 values less than 1 µmol/L in cell-based assays. Here, we further optimized these compounds to prepare a class of novel pyrazole derivatives by opening the fused-ring system. Several new compounds exhibited more potent inhibitory activity than the lead compounds against 5-LOX. In particular, compound 4e not only suppressed lipopolysaccharide-induced inflammation in brain inflammatory cells and protected neurons from oxidative toxicity, but also significantly decreased infarct damage in a mouse model of cerebral ischemia. Molecular docking analysis further confirmed the consistency of our theoretical results and experimental data. In conclusion, the excellent in vitro and in vivo inhibitory activities of these compounds against 5-LOX suggested that these novel chemical structures have a promising therapeutic potential to treat leukotriene-related disorders. PMID:26904397

  16. Involvement of eicosanoids in the pathogenesis of pancreatic cancer: the roles of cyclooxygenase-2 and 5-lipoxygenase.

    PubMed

    Knab, Lawrence M; Grippo, Paul J; Bentrem, David J

    2014-08-21

    The interplay between inflammation and cancer progression is a growing area of research. A combination of clinical, epidemiological, and basic science investigations indicate that there is a relationship between inflammatory changes in the pancreas and neoplastic progression. Diets high in ω-6 polyunsaturated fatty acids provide increased substrate for arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) to form eicosanoids. These eicosanoids directly contribute to pancreatic cancer cell proliferation. Both COX-2 and 5-LOX are upregulated in multiple cancer types, including pancreatic cancer. In vitro studies using pancreatic cancer cell lines have demonstrated upregulation of COX-2 and 5-LOX at both the mRNA and protein levels. When COX-2 and 5-LOX are blocked via a variety of mechanisms, cancer cell proliferation is abrogated both in vitro and in vivo. The mechanism of COX-2 has been shown to include effects on apoptosis as well as angiogenesis. 5-LOX has been implicated in apoptosis. The use of COX-2 and 5-LOX inhibitors in clinical studies in patients with pancreatic cancer has been limited. Patient enrollment has been restricted to those with advanced disease which makes evaluation of these drugs as chemopreventive agents difficult. COX-2 and 5-LOX expression have been shown to be present during the early neoplastic changes of pancreatic cancer, well before progression to invasive disease. This indicates that the ideal role for these interventions is early in the disease process as preventive agents, perhaps in patients with chronic pancreatitis or hereditary pancreatitis.

  17. Suppression of Oxidative Stress and 5-Lipoxygenase Activation by Edaravone Improves Depressive-Like Behavior after Concussion

    PubMed Central

    Hoshijima, Michihiro; Yawata, Toshio; Nobumoto, Atsuya; Tsuda, Masayuki; Shimizu, Takahiro; Saito, Motoaki; Ueba, Tetuya

    2014-01-01

    Abstract Brain concussions are a serious public concern and are associated with neuropsychiatric disorders, such as depression. Patients with concussion who suffer from depression often experience distress. Nevertheless, few pre-clinical studies have examined concussion-induced depression, and there is little information regarding its pharmacological management. Edaravone, a free radical scavenger, can exert neuroprotective effects in several animal models of neurological disorders. However, the effectiveness of edaravone in animal models of concussion-induced depression remains unclear. In this study, we examined whether edaravone could prevent concussion-induced depression. Mice were subjected to a weight-drop injury and intravenously administered edaravone (3.0 mg/kg) or vehicle immediately after impact. Serial magnetic resonance imaging showed no abnormalities of the cerebrum on diffusion T1- and T2-weighted images. We found that edaravone suppressed concussion-induced depressive-like behavior in the forced swim test, which was accompanied by inhibition of increased hippocampal and cortical oxidative stress (OS) and suppression of 5-lipoxygenase (5-LOX) translocation to the nuclear envelope in hippocampal astrocytes. Hippocampal OS in concussed mice was also prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor, apocynin, and administration of BWB70C, a 5-LOX inhibitor, immediately and 24 h after injury prevented depressive-like behaviors in concussed mice. Further, antidepressant effects of edaravone were observed in mice receiving 1.0 or 3.0 mg/kg of edaravone immediately after impact, but not at a lower dose of 0.1 mg/kg. This antidepressant effect persisted up to 1 h after impact, whereas edaravone treatment at 3 h after impact had no effect on concussion-induced depressive-like behavior. These results suggest that edaravone protects against concussion-induced depression, and this protection is mediated by suppression of

  18. Suppression of oxidative stress and 5-lipoxygenase activation by edaravone improves depressive-like behavior after concussion.

    PubMed

    Higashi, Youichirou; Hoshijima, Michihiro; Yawata, Toshio; Nobumoto, Atsuya; Tsuda, Masayuki; Shimizu, Takahiro; Saito, Motoaki; Ueba, Tetuya

    2014-10-15

    Brain concussions are a serious public concern and are associated with neuropsychiatric disorders, such as depression. Patients with concussion who suffer from depression often experience distress. Nevertheless, few pre-clinical studies have examined concussion-induced depression, and there is little information regarding its pharmacological management. Edaravone, a free radical scavenger, can exert neuroprotective effects in several animal models of neurological disorders. However, the effectiveness of edaravone in animal models of concussion-induced depression remains unclear. In this study, we examined whether edaravone could prevent concussion-induced depression. Mice were subjected to a weight-drop injury and intravenously administered edaravone (3.0 mg/kg) or vehicle immediately after impact. Serial magnetic resonance imaging showed no abnormalities of the cerebrum on diffusion T1- and T2-weighted images. We found that edaravone suppressed concussion-induced depressive-like behavior in the forced swim test, which was accompanied by inhibition of increased hippocampal and cortical oxidative stress (OS) and suppression of 5-lipoxygenase (5-LOX) translocation to the nuclear envelope in hippocampal astrocytes. Hippocampal OS in concussed mice was also prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor, apocynin, and administration of BWB70C, a 5-LOX inhibitor, immediately and 24 h after injury prevented depressive-like behaviors in concussed mice. Further, antidepressant effects of edaravone were observed in mice receiving 1.0 or 3.0 mg/kg of edaravone immediately after impact, but not at a lower dose of 0.1 mg/kg. This antidepressant effect persisted up to 1 h after impact, whereas edaravone treatment at 3 h after impact had no effect on concussion-induced depressive-like behavior. These results suggest that edaravone protects against concussion-induced depression, and this protection is mediated by suppression of OS and 5

  19. Flavocoxid, a dual inhibitor of cyclooxygenase and 5-lipoxygenase, blunts pro-inflammatory phenotype activation in endotoxin-stimulated macrophages

    PubMed Central

    Altavilla, D; Squadrito, F; Bitto, A; Polito, F; Burnett, BP; Di Stefano, V; Minutoli, L

    2009-01-01

    Background and purpose: The flavonoids, baicalin and catechin, from Scutellaria baicalensis and Acacia catechu, respectively, have been used for various clinical applications. Flavocoxid is a mixed extract containing baicalin and catechin, and acts as a dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (LOX) enzymes. The anti-inflammatory activity, measured by protein and gene expression of inflammatory markers, of flavocoxid in rat peritoneal macrophages stimulated with Salmonella enteritidis lipopolysaccharide (LPS) was investigated. Experimental approach: LPS-stimulated (1 µg·mL−1) peritoneal rat macrophages were co-incubated with different concentrations of flavocoxid (32–128 µg·mL−1) or RPMI medium for different incubation times. Inducible COX-2, 5-LOX, inducible nitric oxide synthase (iNOS) and inhibitory protein κB-α (IκB-α) levels were evaluated by Western blot analysis. Nuclear factor κB (NF-κB) binding activity was investigated by electrophoretic mobility shift assay. Tumour necrosis factor-α (TNF-α) gene and protein expression were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. Finally, malondialdehyde (MDA) and nitrite levels in macrophage supernatants were evaluated. Key results: LPS stimulation induced a pro-inflammatory phenotype in rat peritoneal macrophages. Flavocoxid (128 µg·mL−1) significantly inhibited COX-2 (LPS = 18 ± 2.1; flavocoxid = 3.8 ± 0.9 integrated intensity), 5-LOX (LPS = 20 ± 3.8; flavocoxid = 3.1 ± 0.8 integrated intensity) and iNOS expression (LPS = 15 ± 1.1; flavocoxid = 4.1 ± 0.4 integrated intensity), but did not modify COX-1 expression. PGE2 and LTB4 levels in culture supernatants were consequently decreased. Flavocoxid also prevented the loss of IκB-α protein (LPS = 1.9 ± 0.2; flavocoxid = 7.2 ± 1.6 integrated intensity), blunted increased NF-κB binding activity (LPS = 9.2 ± 2; flavocoxid = 2.4 ± 0.7 integrated intensity) and the

  20. In vitro metabolism of 2-[6-(4-chlorophenyl)-2,2-dimethyl-7-phenyl-2,3-dihydro-1H-pyrrolizin-5-yl] acetic acid (licofelone, ML3000), an inhibitor of cyclooxygenase-1 and -2 and 5-lipoxygenase.

    PubMed

    Albrecht, Wolfgang; Unger, Anke; Nussler, Andreas K; Laufer, Stefan

    2008-05-01

    2-[6-(4-Chlorophenyl)-2,2-dimethyl-7-phenyl-2,3-dihydro-1H-pyrrolizin-5-yl] acetic acid (licofelone) is a dual inhibitor of both cyclooxygenase isoforms and 5-lipoxygenase and under development for treatment of osteoarthritis. In conventional in vitro assays using liver microsomes and NADPH as cosubstrate, a high metabolic stability of licofelone was observed. In the presence of UDP-glucuronic acid, licofelone is rapidly converted into the corresponding acyl glucuronide, M1. These results are in conflict with data from clinical studies. After administration of licofelone to humans, M1 plasma concentrations were negligibly low, whereas the exposure of the hydroxy-metabolite M2 achieved values of approximately 20% compared with that of the parent drug. Metabolism studies with human hepatocytes and dual-activity assays with microsomes, which allowed the simultaneous monitoring of hydroxylation and glucuronidation reactions, were performed, and the metabolic pathway of licofelone was elucidated. After glucuronidation, predominantly catalyzed by UDP glucuronosyltransferase (UGT) isoforms UGT2B7, UGT1A9, and UGT1A3, M1 is converted into the hydroxy-glucuronide M3 in a CYP2C8-dependent reaction. The enzyme specificities were investigated using recombinant human cytochrome P450 and UGT isoforms as test systems. In vitro drug-interaction studies using the 6alpha-hydroxylation of paclitaxel as control reaction confirmed that neither licofelone nor M1 is a relevant inhibitor of CYP2C8. The formation of M3 was also observed with liver microsomes from cynomolgus monkeys, but in incubations with mouse and rat liver microsomes, M1 remained unchanged. The clinical relevance of these findings is discussed.

  1. Synthesis and biological evaluation of 1-(benzenesulfonamido)-2-[5-(N-hydroxypyridin-2(1H)-one)]acetylene regioisomers: a novel class of 5-lipoxygenase inhibitors.

    PubMed

    Chowdhury, Morshed Alam; Chen, Hua; Abdellatif, Khaled R A; Dong, Ying; Petruk, Kenneth C; Knaus, Edward E

    2008-07-15

    A hitherto unknown class of linear acetylene regioisomers were designed such that a SO(2)NH(2) group was located at the ortho-, meta-, or para-position of the acetylene C-1 phenyl ring, and a N-hydroxypyridin-2(1H)-one moiety was attached via its C-5 position to the C-2 position on an acetylene template (scaffold). All three regioisomers inhibited 5-lipoxygenase (5-LOX), where the relative potency order was 2-SO(2)NH(2) (IC(50)=10 microM) >3-SO(2)NH(2) (IC(50)=15 microM) >4-SO(2)NH(2) (IC(50)=68 microM) relative to the reference drug nordihydroguaiaretic acid (NDGA; IC(50)=35 microM). The 2-SO(2)NH(2) regioisomer (ED(50)=86.0mg/kg po) exhibited excellent oral anti-inflammatory (AI) activity that was more potent than aspirin (ED(50)=128.9 mg/kg) and marginally less potent than ibuprofen (ED(50)=67.4 mg/kg). The N-hydroxypyridin-2(1H)one moiety provides a novel pharmacophore for the design of cyclic hydroxamic mimetics capable of chelating 5-LOX iron for exploitation in the design of 5-LOX inhibitory AI drugs.

  2. Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase.

    PubMed

    Hong, Jungil; Bose, Mousumi; Ju, Jihyeung; Ryu, Jae-Ha; Chen, Xiaoxin; Sang, Shengmin; Lee, Mao-Jung; Yang, Chung S

    2004-09-01

    Aberrant arachidonic acid metabolism is involved in the inflammatory and carcinogenic processes. In this study, we investigated the effects of curcumin, a naturally occurring chemopreventive agent, and related beta-diketone derivatives on the release of arachidonic acid and its metabolites in the murine macrophage RAW264.7 cells and in HT-29 human colon cancer cells. We also examined their effects on the catalytic activities and protein levels of related enzymes: cytosolic phospholipase A(2) (cPLA(2)), cyclooxygenases (COX) as well as 5-lipoxygenase (5-LOX). At 10 micro M, dibenzoylmethane (DBM), trimethoxydibenzoylmethane (TDM), tetrahydrocurcumin (THC) and curcumin effectively inhibited the release of arachidonic acid and its metabolites in lipopolysaccharide (LPS)-stimulated RAW cells and A23187-stimulated HT-29 cells. Inhibition of phosphorylation of cPLA(2), the activation process of this enzyme, rather than direct inhibition of cPLA(2) activity appears to be involved in the effect of curcumin. All the curcuminoids (10 micro M) potently inhibited the formation of prostaglandin E(2) (PGE(2)) in LPS-stimulated RAW cells. Curcumin (20 micro M) significantly inhibited LPS-induced COX-2 expression; this effect, rather than the catalytic inhibition of COX, may contribute to the decreased PGE(2) formation. Without LPS-stimulation, however, curcumin increased the COX-2 level in the macrophage cells. Studies with isolated ovine COX-1 and COX-2 enzymes showed that the curcuminoids had significantly higher inhibitory effects on the peroxidase activity of COX-1 than that of COX-2. Curcumin and THC potently inhibited the activity of human recombinant 5-LOX, showing estimated IC(50) values of 0.7 and 3 micro M, respectively. The results suggest that curcumin affects arachidonic acid metabolism by blocking the phosphorylation of cPLA(2), decreasing the expression of COX-2 and inhibiting the catalytic activities of 5-LOX. These activities may contribute to the anti

  3. Differences in the modulation of reactive species, lipid bodies, cyclooxygenase-2, 5-lipoxygenase and PPAR-γ in cerebral malaria-susceptible and resistant mice.

    PubMed

    Borges, Tatiana K S; Alves, Érica A R; Vasconcelos, Henda A R; Carneiro, Fabiana P; Nicola, André M; Magalhães, Kelly G; Muniz-Junqueira, Maria Imaculada

    2017-04-01

    Proinflammatory responses are associated with the severity of cerebral malaria. NO, H2O2, eicosanoid and PPAR-γ are involved in proinflammatory responses, but regulation of these factors is unclear in malaria. This work aimed to compare the expression of eicosanoid-forming-enzymes in cerebral malaria-susceptible CBA and C57BL/6 and -resistant BALB/c mice. Mice were infected with Plasmodium berghei ANKA, and the survival rates and parasitemia curves were assessed. On the sixth day post-infection, cyclooxygenase-2 and 5-lipoxygenase in brain sections were assessed by immunohistochemistry, and, NO, H2O2, lipid bodies, and PPAR-γ expression were assessed in peritoneal macrophages. The C57BL/6 had more severe disease with a lower survival time, higher parasitemia and lower production of plasmodicidal NO and H2O2 molecules than BALB/c. Enhanced COX-2 and 5-LOX expression were observed in brain tissue cells and vessels from C57BL/6 mice, and these mice expressed higher constitutive PPAR-γ levels. There was no translocation of PPAR-γ from cytoplasm to nucleus in macrophages from these mice. CBA mice had enhanced COX-2 expression in brain tissue cells and vessels and also lacked PPAR-γ cytoplasm-to-nucleus translocation. The resistant BALB/c mice presented higher survival time, lower parasitemia and higher NO and H2O2 production on the sixth day post-infection. These mice did not express either COX-2 or 5-LOX in brain tissue cells and vessels. Our data showed that besides the high parasite burden and lack of microbicidal molecules, an imbalance with high COX-2 and 5-LOX eicosanoid expression and a lack of regulatory PPAR-γ cytoplasm-to-nucleus translocation in macrophages were observed in mice that develop cerebral malaria.

  4. Prediction of comparative inhibition efficiency for a novel natural ligand, galangin against human brain acetylcholinesterase, butyrylcholinesterase and 5-lipoxygenase: a neuroinformatics study.

    PubMed

    Shaikh, Sibhghatulla; Ahmad, Syed S; Ansari, Mohammad A; Shakil, Shazi; Rizvi, Syed M D; Shakil, Shahnawaz; Tabrez, Shams; Akhtar, Salman; Kamal, Mohammad A

    2014-04-01

    The present study elucidates molecular interactions of human acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and 5-lipoxygenase (5-LPO) with a novel natural ligand Galangin (GAL); and also with the well-known ligands Bisnorcymserine (BNC) and Cymserine for comparison. Docking between these ligands and enzymes were performed using 'Autodock4.2'. It was found that hydrophobic interactions play an important role in the correct positioning of BNC within the 'catalytic site' of AChE, BuChE and 5-LPO to permit docking while hydrogen bonds are significant in case of cymserine for the same. However, only polar interactions are significant in the correct positioning of GAL within the 'catalytic site' of AChE, BuChE and 5-LPO to permit docking. Such information may aid in the design of versatile AChE, BuChE and 5 LPO-inhibitors, and is expected to aid in safe clinical use of above ligands. Scope still remains in the determination of the three-dimensional structure of AChE-GAL, BuChE-GAL and 5-LPO-GAL complex by X-ray crystallography to certify the described data. Moreover, the present study confirms that GAL is a more efficient inhibitor of human brain AChE compared to BNC and cymserine, while in case of 5-LPO and human brain BuChE, BNC is a more efficient inhibitor compared to GAL and cymserine with reference to ΔG and Ki values.

  5. Inhibition of the 5-lipoxygenase pathway with piriprost (U-60,257) protects normal primates from ozone-induced methacholine hyperresponsive small airways

    SciTech Connect

    Johnson, H.G.; Stout, B.K.; Ruppel, P.L.

    1988-03-01

    Weekly exposure to ozone in seven normal Rhesus monkeys led to induction of methacholine hypersensitive airways (RL increases 242 +/- 60% and Cdyn decreases 68 +/- 13% of baseline methacholine responses). It took 19 weeks to establish this hyperresponse that persisted for greater than 15 weeks once ozone was stopped. A second exposure led to similar response peaks in 6 weeks. At the peak of the second response, weekly 1% piriprost exposure before ozone led to a return to baseline that was not different between placebo and piriprost treated animals (9.4 +/- 1.0 and 4.3 +/- 2.9 weeks, placebo and treated, respectively P = 0.09 NS). A statistical difference in the mecholyl response in placebo and piriprost treated groups while on ozone was shown only in the Cdyn measurement (Cdyn% change 68 +/- 13 vs 24 +/- 14, placebo and piriprost, respectively P = 0.03). Off ozone (or return to baseline), a statistical difference could be detected both in RL and Cdyn (RL% changed 151 +/- 41 vs 31.1 +/- 49, P = 0.03, and for Cdyn 62.7 +/- 8 vs 9 +/- 10, P = 0.0006, placebo and piriprost, respectively). We conclude tha the primate provides a chronic model of airways reactivity in which the role of lipoxygenase is implicated because of the beneficial role of piriprost, and further that the ozone lesion is primarily in the smaller airways (possibly and alveolitis).

  6. Western blot expression of 5-lipoxygenase in the brain from striped dolphins (stenella coeruleoalba) and bottlenose dolphins (tursiops truncatus) with or without encephalitis/meningo-encephalitis of infectious nature.

    PubMed

    Di Guardo, G; Falconi, A; Di Francesco, A; Mazzariol, S; Centelleghe, C; Casalone, C; Pautasso, A; Cocumelli, C; Eleni, C; Petrella, A; Di Francesco, C E; Sabatucci, A; Leonardi, L; Serroni, A; Marsili, L; Storelli, M M; Giacominelli-Stuffler, R

    2015-01-01

    Dolphin Morbillivirus (DMV), Toxoplasma gondii and Brucella ceti are pathogens of major concern for wild cetaceans. Although a more or less severe encephalitis/meningo-encephalitis may occur in striped dolphins (Stenella coeruleoalba) and bottlenose dolphins (Tursiops truncatus) infected by the aforementioned agents, almost no information is available on the neuropathogenesis of brain lesions, including the neuronal and non-neuronal cells targeted during infection, along with the mechanisms underlying neurodegeneration. We analyzed 5-lipoxygenase (5-LOX) expression in the brain of 11 striped dolphins and 5 bottlenose dolphins, affected or not by encephalitic lesions of various degrees associated with DMV, T. gondii and B. ceti. All the 8 striped dolphins with encephalitis showed a more consistent 5-LOX expression than that observed in the 3 striped dolphins showing no morphologic evidence of brain lesions, with the most prominent band intensity being detected in a B. ceti-infected animal. Similar results were not obtained in T. gondii-infected vs T. gondii-uninfected bottlenose dolphins. Overall, the higher 5-LOX expression found in the brain of the 8 striped dolphins with infectious neuroinflammation is of interest, given that 5-LOX is a putative marker for neurodegeneration in human patients and in experimental animal models. Therefore, further investigation on this challenging issue is also needed in stranded cetaceans affected by central neuropathies.

  7. 5-Lipoxygenase and cyclooxygenase inhibitory dammarane triterpenoid 1 from Borassus flabellifer seed coat inhibits tumor necrosis factor-α secretion in LPSInduced THP-1 human monocytes and induces apoptosis in MIA PaCa-2 pancreatic cancer cells.

    PubMed

    Yarla, Nagendra Sastry; Azad, Rajaram; Basha, Mahaboob; Rajack, Abdul; Kaladhar, D S V G K; Allam, Bharat Kumar; Pragada, Rajeswara Rao; Singh, Krishna Nand; K, Sunanda Kumari; Pallu, Reddanna; Parimi, Umadevi; Bishayee, Anupam; Duddukuri, Govinda Rao

    2015-01-01

    Phospholipase A2 (PLA2), Cyclooxygenase (COX) and 5-Lipoxygenase (5-LOX) are arachidonic acid metabolizing enzymes and their inhibitors have been developed as therapeutic molecules for cancer and inflammation related disorders. In the present study, PLA2, COX 1&2 and 5-LOX inhibitory studies of Borassus flabellifer seed coat extract were carried out and substantial 5-LOX inhibitory activity was found. Dammarane triterpenoid 1 (Dammara-20,23-diene-3,25-diol) was isolated according to 5-LOX activity guided isolation, and screened for COX (1 & 2) inhibitory activities. Dammarane triterpenoid 1 inhibited carrageenan-induced rat paw edema and TNF-α secretion levels in lipopolysaccharide (LPS)-induced THP-1 human monocytes. Anticancer activity studies demonstrated the antiproliferative effect of dammarane triterpenoid 1 on various cancer cell lines including MIA PaCa-2 pancreatic, DU145 prostate, HL-60 leukemia and Caco-2 colon cancers. Dammarane triterpenoid 1 showed good antiproliferative activity on MIA PaCa-2 pancreatic cancer cell line with IC50 of 12.36±0.33 µM, among other tested cell lines. Apoptosis inducing activity of dammarane triterpenoid 1 was confirmed based on increased sub-G0 phase cell population in cell cycle analysis, loss of mitochondrian membrane potential, elevated levels of cytochrome c, nuclear morphological changes and DNA fragmentation in MIA PaCa-2 pancreatic cancer cells. Therefore, dammarane triterpenoid skeleton may raise the hope of developing novel anti-inflammatory and anticancer drugs in the future.

  8. Design and synthesis of ten biphenyl-neolignan derivatives and their in vitro inhibitory potency against cyclooxygenase-1/2 activity and 5-lipoxygenase-mediated LTB4-formation.

    PubMed

    Schühly, Wolfgang; Hüfner, Antje; Pferschy-Wenzig, Eva M; Prettner, Elke; Adams, Michael; Bodensieck, Antje; Kunert, Olaf; Oluwemimo, Asije; Haslinger, Ernst; Bauer, Rudolf

    2009-07-01

    A set of ten derivatives of methylhonokiol, an anti-inflammatory active biphenyl-type neolignan from Magnolia grandiflora, has been evaluated for their in vitro cyclooxygenase-1/2 (COX-1/2) inhibitory activity using assays with purified prostaglandin H synthase (PGHS)-1 and PGHS-2 enzymes as well as for their 5-lipoxygenase (5-LOX) mediated LTB(4) formation inhibitory activity using an assay with activated human polymorphonuclear leukocytes. The derivatization reactions included methylation, acetylation, hydrogenation, epoxydation and isomerization. Five of the derivatives are new to science. The most active compound against COX-1 and COX-2 was methylhonokiol with IC(50) values of 0.1 microM, whereas the most active compound against LTB(4) formation was (E)-3'-propenyl-5-(2-propenyl)-biphenyl-2,4'-diol with an IC(50) value of 1.0 microM. Structure-activity relationship studies showed that the polarity of the derivatives plays a crucial role in their activity towards COX-1/2 enzyme and 5-LOX mediated LTB(4) formation.

  9. Investigation for the amorphous state of ER-34122, a dual 5-lipoxygenase/cyclooxygenase inhibitor with poor aqueous solubility, in HPMC solid dispersion prepared by the solvent evaporation method.

    PubMed

    Kushida, Ikuo; Gotoda, Masaharu

    2013-10-01

    ER-34122, a poorly water-soluble dual 5-lipoxygenase/cyclooxygenase inhibitor, exists as a crystalline form. According to an Oak Ridge thermal ellipsoid plot drawing, carbonyl oxygen O (5) makes an intermolecular hydrogen bond with the hydrogen bonded to N (3) in the crystal structure. The FTIR and the solid-state ¹³C NMR spectra suggest that the network is spread out in the amorphous state and the hydrogen bonding gets weaker than that in the crystalline phase, because the carbonyl signals significantly shift in both spectra. When amorphous ER-34122 was heated, crystallization occurred at around 140°C. Similar crystallization happened in the solid dispersion; however, the degree of crystallization was much lower than that observed in the pure amorphous material. Also, the DSC thermogram of the solid dispersion did not show any exothermic peaks implying crystallization. The heat of fusion (ΔHf) determined in the pure amorphous material was nearly equal to that for the crystalline form, whereas the ΔHf value obtained in the solid dispersion was less than a third of them. These data prove that crystallization of the amorphous form is dramatically restrained in the solid dispersion system. The carbonyl wavenumber shifts in the FTIR spectra indicate that the average hydrogen bond in the solid dispersion is lower than that in the pure amorphous material. Therefore, HPMC will suppress formation of the intermolecular network observed in ER-34122 crystal and preserve the amorphous state, which is thermodynamically less stable, in the solid dispersed system.

  10. Molecular cloning and functional characterization of arachidonate 5-lipoxygenase (Alox5), and its expression in response to the ratio of linolenic acid to linoleic acid in diets of large yellow croaker (Larmichthys crocea).

    PubMed

    Wang, Tianjiao; Zuo, Rantao; Mai, Kangsen; Xu, Wei; Ai, Qinghui

    2016-11-01

    This study was conducted to clone and functionally characterize a full-length cDNA encoding arachidonate 5-lipoxygenase (Alox5) from large yellow croaker (Larmichthys crocea) and investigate its gene expression in response to graded dietary ratio of linolenic acid (ALA) to linoleic acid (LNA) (0.03, 0.06, 0.45, 0.90 and 1.51). An isolated 2372bp cDNA clone of Alox5 contained an open reading frame spanning 2025bp encoding a protein with the ability to modify arachidonate acid (AA) to 5-hydroxyeicosatetraenoic (5-HETE). In the liver, the Alox5 mRNA expression levels significantly increased to the maximum when the dietary ALA/LNA increased from 0.03 to 0.06, and then significantly decreased with dietary ALA/LNA increased to 1.51 (P<0.05). In the kidney, the expression levels of Alox5 of fish fed diets with low dietary ALA/LNA (0.03-0.06) were significantly higher than those of fish fed diets with high dietary ALA/LNA (0.45-1.51) (P<0.05). The dual-luciferase reporter assays showed that the nuclear factor kappa B (NF-κB) could act on cognate cis-acting elements in the promoter of Alox5 and increased the transcription of Alox5. Results of the present study suggested that the expression of Alox5 is higher in croakers fed high concentrations of LNA compared to those fed high concentrations of ALA, which might be regulated by NF-κB and contribute to the inflammation process by catalyzing the dioxygenation of AA.

  11. Zileuton prevents the activation of the leukotriene pathway and reduces sebaceous lipogenesis.

    PubMed

    Zouboulis, Christos C; Seltmann, Holger; Alestas, Theodosios

    2010-02-01

    Arachidonic acid (AA) activates the 5-lipoxygenase, induces leukotriene-B(4) (LTB(4)) synthesis, enhances interleukin-6 (IL-6) release and increases intracellular neutral lipids in human sebocytes. Moreover, the enzymes of LTB(4) biosynthesis are activated in acne-involved sebaceous glands. Zileuton a 5-lipoxygenase inhibitor, reduces the number of inflammatory acne lesions and lipogenesis in patients with acne. In this study, we investigated the activity of zileuton on LTB(4) generation, lipid content and IL-6 and -8 release from human SZ95 sebocytes in vitro. Pretreatment with zileuton partially prevented the AA-induced LTB(4) and IL-6 release and increased neutral lipid content. IL-6 release and neutral lipid content were also reduced under long-term zileuton treatment. In conclusion, zileuton prevents the activation of the leukotriene pathway and enhancement of lipogenesis by AA in human sebocytes in vitro.

  12. Improved Antitumor Activity of a Therapeutic Melanoma Vaccine through the Use of the Dual COX-2/5-LO Inhibitor Licofelone

    PubMed Central

    Neumann, Silke; Shirley, Simon A.; Kemp, Roslyn A.; Hook, Sarah M.

    2016-01-01

    Immune-suppressive cell populations impair antitumor immunity and can contribute to the failure of immune therapeutic approaches. We hypothesized that the non-steroidal anti-inflammatory drug licofelone, a dual cyclooxygenase-2/5-LO inhibitor, would improve therapeutic melanoma vaccination by reducing immune-suppressive cell populations. Therefore, licofelone was administered after tumor implantation, either alone or in combination with a peptide vaccine containing a long tyrosinase-related protein 2-peptide and the adjuvant α-galactosylceramide, all formulated into cationic liposomes. Mice immunized with the long-peptide vaccine and licofelone showed delayed tumor growth compared to mice given the vaccine alone. This protection was associated with a lower frequency of immature myeloid cells (IMCs) in the bone marrow (BM) and spleen of tumor-inoculated mice. When investigating the effect of licofelone on IMCs in vitro, we found that the prostaglandin E2-induced generation of IMCs was decreased in the presence of licofelone. Furthermore, pre-incubation of BM cells differentiated under IMC-inducing conditions with licofelone reduced the secretion of cytokines interleukin (IL)-10 and -6 upon lipopolysaccharides (LPS) stimulation as compared to untreated cells. Interestingly, licofelone increased IL-6 and IL-10 secretion when administered after the LPS stimulus, demonstrating an environment-dependent effect of licofelone. Our findings support the use of licofelone to reduce tumor-promoting cell populations. PMID:27994586

  13. Synthesis, SAR, and series evolution of novel oxadiazole-containing 5-lipoxygenase activating protein inhibitors: discovery of 2-[4-(3-{(r)-1-[4-(2-amino-pyrimidin-5-yl)-phenyl]-1-cyclopropyl-ethyl}-[1,2,4]oxadiazol-5-yl)-pyrazol-1-yl]-N,N-dimethyl-acetamide (BI 665915).

    PubMed

    Takahashi, Hidenori; Riether, Doris; Bartolozzi, Alessandra; Bosanac, Todd; Berger, Valentina; Binetti, Ralph; Broadwater, John; Chen, Zhidong; Crux, Rebecca; De Lombaert, Stéphane; Dave, Rajvee; Dines, Jonathon A; Fadra-Khan, Tazmeen; Flegg, Adam; Garrigou, Michael; Hao, Ming-Hong; Huber, John; Hutzler, J Matthew; Kerr, Steven; Kotey, Adrian; Liu, Weimin; Lo, Ho Yin; Loke, Pui Leng; Mahaney, Paige E; Morwick, Tina M; Napier, Spencer; Olague, Alan; Pack, Edward; Padyana, Anil K; Thomson, David S; Tye, Heather; Wu, Lifen; Zindell, Renee M; Abeywardane, Asitha; Simpson, Thomas

    2015-02-26

    The synthesis, structure-activity relationship (SAR), and evolution of a novel series of oxadiazole-containing 5-lipoxygenase-activating protein (FLAP) inhibitors are described. The use of structure-guided drug design techniques provided compounds that demonstrated excellent FLAP binding potency (IC50 < 10 nM) and potent inhibition of LTB4 synthesis in human whole blood (IC50 < 100 nM). Optimization of binding and functional potencies, as well as physicochemical properties resulted in the identification of compound 69 (BI 665915) that demonstrated an excellent cross-species drug metabolism and pharmacokinetics (DMPK) profile and was predicted to have low human clearance. In addition, 69 was predicted to have a low risk for potential drug-drug interactions due to its cytochrome P450 3A4 profile. In a murine ex vivo whole blood study, 69 demonstrated a linear dose-exposure relationship and a dose-dependent inhibition of LTB4 production.

  14. 5-Lipoxygenase-activating protein (FLAP) inhibitors. Part 4: development of 3-[3-tert-butylsulfanyl-1-[4-(6-ethoxypyridin-3-yl)benzyl]-5-(5-methylpyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethylpropionic acid (AM803), a potent, oral, once daily FLAP inhibitor.

    PubMed

    Stock, Nicholas S; Bain, Gretchen; Zunic, Jasmine; Li, Yiwei; Ziff, Jeannie; Roppe, Jeffrey; Santini, Angelina; Darlington, Janice; Prodanovich, Pat; King, Christopher D; Baccei, Christopher; Lee, Catherine; Rong, Haojing; Chapman, Charles; Broadhead, Alex; Lorrain, Dan; Correa, Lucia; Hutchinson, John H; Evans, Jilly F; Prasit, Peppi

    2011-12-08

    The potent 5-lipoxygenase-activating protein (FLAP) inhibitor 3-[3-tert-butylsulfanyl-1-[4-(6-ethoxypyridin-3-yl)benzyl]-5-(5-methylpyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethylpropionic acid 11cc is described (AM803, now GSK2190915). Building upon AM103 (1) (Hutchinson et al. J. Med Chem.2009, 52, 5803-5815; Stock et al. Bioorg. Med. Chem. Lett. 2010, 20, 213-217; Stock et al. Bioorg. Med. Chem. Lett.2010, 20, 4598-4601), SAR studies centering around the pyridine moiety led to the discovery of compounds that exhibit significantly increased potency in a human whole blood assay measuring LTB(4) inhibition with longer drug preincubation times (15 min vs 5 h). Further studies identified 11cc with a potency of 2.9 nM in FLAP binding, an IC(50) of 76 nM for inhibition of LTB(4) in human blood (5 h incubation) and excellent preclinical toxicology and pharmacokinetics in rat and dog. 11cc also demonstrated an extended pharmacodynamic effect in a rodent bronchoalveolar lavage (BAL) model. This compound has successfully completed phase 1 clinical studies in healthy volunteers and is currently undergoing phase 2 trials in asthmatic patients.

  15. Altered gravity modulates 5-lipoxygenase in human erythroleukemia K562 cells.

    PubMed

    Maccarrone, M; Putti, S; Finazzi Agro, A

    1998-07-01

    Mammalian lipoxygenases catalyse the first committed step in the so-called "arachidonate cascade", leading to the production of potent bioactive molecules, such as leukotrienes, lipoxins and hepoxilins. Leukotrienes interact with G protein-couple receptors involved in neuronal plasticity and T lymphocyte activation, lipoxins activate leukocytes, hepoxilines control the insulin release and stimulate the phospholipase C. Lipoxygenase (linoleate:oxygen oxidoreductase; E.C. 1.13.11.34; 5-LOX) are responsible for lymphocyte maturation and programmed death (apoptosis) of neuronal cells. Therefore, 5-LOX might be Space relevant, because among the most striking effects of Space enviroment are indeed those on T lymphocyte activation, neuronal cell growth and suspectedly apoptosis. In this study, the possible effects of the force of gravity on the activity and expression of 5-LOX have been investigated by subjecting human erythroleukemia K562 cells to simulated hypogravity or hypergravity.

  16. Discovery of a novel activator of 5-lipoxygenase from an anacardic acid derived compound collection

    PubMed Central

    Wisastra, Rosalina; Kok, Petra A.M; Eleftheriadis, Nikolaos; Baumgartner, Matthew P.; Camacho, Carlos J.; Haisma, Hidde J.; Dekker, Frank J.

    2013-01-01

    Lipoxygenases (LOXs) and cyclooxygenases (COXs) metabolize poly-unsaturated fatty acids into inflammatory signaling molecules. Modulation of the activity of these enzymes may provide new approaches for therapy of inflammatory diseases. In this study, we screened novel anacardic acid derivatives as modulators of human 5-LOX and COX-2 activity. Interestingly, a novel salicylate derivative 23a was identified as a surprisingly potent activator of human 5-LOX. This compound showed both non-competitive activation towards the human 5-LOX activator adenosine triphosphate (ATP) and non-essential mixed type activation against the substrate linoleic acid, while having no effect on the conversion of the substrate arachidonic acid. The kinetic analysis demonstrated a non-essential activation of the linoleic acid conversion with a KA of 8.65 μM, αKA of 0.38 μM and a β value of 1.76. It is also of interest that a comparable derivative 23d showed a mixed type inhibition for linoleic acid conversion. These observations indicate the presence of an allosteric binding site in human 5-LOX distinct from the ATP binding site. The activatory and inhibitory behavior of 23a and 23d on the conversion of linoleic compared to arachidonic acid are rationalized by docking studies, which suggest that the activator 23a stabilizes linoleic acid, whereas the larger inhibitor 23d blocks the enzyme active site. PMID:24231650

  17. Pathway Markers for Pro-resolving Lipid Mediators in Maternal and Umbilical Cord Blood: A Secondary Analysis of the Mothers, Omega-3, and Mental Health Study

    PubMed Central

    Mozurkewich, Ellen L.; Greenwood, Matthew; Clinton, Chelsea; Berman, Deborah; Romero, Vivian; Djuric, Zora; Qualls, Clifford; Gronert, Karsten

    2016-01-01

    The omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are precursors to immune regulatory and specialized pro-resolving mediators (SPM) of inflammation termed resolvins, maresins, and protectins. Evidence for lipid mediator formation in vivo can be gained through evaluation of their 5-lipoxygenase (LOX) and 15-LOX metabolic pathway precursors and downstream metabolites. We performed a secondary blood sample analysis from 60 participants in the Mothers, Omega-3, and Mental Health study to determine whether SPM and SPM precursors are augmented by dietary EPA- and DHA-rich fish oil supplementation compared to soy oil placebo. We also aimed to study whether SPM and their precursors differ in early and late pregnancy or between maternal and umbilical cord blood. We found that compared to placebo supplementation, EPA- and DHA-rich fish oil supplementation increased SPM precursor 17-hydroxy docosahexaenoic acid (17-HDHA) concentrations in maternal and umbilical cord blood (P = 0.02). We found that the D-series resolvin pathway marker 17-HDHA increased significantly between enrollment and late pregnancy (P = 0.049). Levels of both 14-HDHA, a maresin pathway marker, and 17-HDHA were significantly greater in umbilical cord blood than in maternal blood (P < 0.001, both). PMID:27656142

  18. Novel anti-inflammatory therapies for the treatment of atherosclerosis.

    PubMed

    Khan, Razi; Spagnoli, Vincent; Tardif, Jean-Claude; L'Allier, Philippe L

    2015-06-01

    The underlying role of inflammation in atherosclerosis has been characterized. However, current treatment of coronary artery disease (CAD) predominantly consists of targeted reductions in serum lipoprotein levels rather than combating the deleterious effects of acute and chronic inflammation. Vascular inflammation acts by a number of different molecular and cellular pathways to contribute to atherogenesis. Over the last decades, both basic studies and clinical trials have provided evidence for the potential benefits of treatment of inflammation in CAD. During this period, development of pharmacotherapies directed towards inflammation in atherosclerosis has accelerated quickly. This review will highlight specific therapies targeting interleukin-1β (IL-1β), P-selectin and 5-lipoxygenase (5-LO). It will also aim to examine the anti-inflammatory effects of serpin administration, colchicine and intravenous HDL-directed treatment of CAD. We summarize the mechanistic rationale and evidence for these novel anti-inflammatory treatments at both the experimental and clinical levels.

  19. Diethylcarbamazine activity against Brugia malayi microfilariae is dependent on inducible nitric-oxide synthase and the cyclooxygenase pathway

    PubMed Central

    McGarry, Helen F; Plant, Leigh D; Taylor, Mark J

    2005-01-01

    Background Diethylcarbamazine (DEC) has been used for many years in the treatment of human lymphatic filariasis. Its mode of action is not well understood, but it is known to interact with the arachidonic acid pathway. Here we have investigated the contribution of the nitric oxide and cyclooxygenase (COX) pathways to the activity of DEC against B. malayi microfilariae in mice. Methods B. malayi microfilariae were injected intravenously into mice and parasitaemia was measured 24 hours later. DEC was then administered to BALB/c mice with and without pre-treatment with indomethacin or dexamethasone and the parasitaemia monitored. To investigate a role for inducible nitric oxide in DEC's activity, DEC and ivermectin were administered to microfilaraemic iNOS-/- mice and their background strain (129/SV). Western blot analysis was used to determine any effect of DEC on the production of COX and inducible nitric-oxide synthase (iNOS) proteins. Results DEC administered alone to BALB/c mice resulted in a rapid and profound reduction in circulating microfilariae within five minutes of treatment. Microfilarial levels began to recover after 24 hours and returned to near pre-treatment levels two weeks later, suggesting that the sequestration of microfilariae occurs independently of parasite killing. Pre-treatment of animals with dexamethasone or indomethacin reduced DEC's efficacy by almost 90% or 56%, respectively, supporting a role for the arachidonic acid and cyclooxygenase pathways in vivo. Furthermore, experiments showed that treatment with DEC results in a reduction in the amount of COX-1 protein in peritoneal exudate cells. Additionally, in iNOS-/- mice infected with B. malayi microfilariae, DEC showed no activity, whereas the efficacy of another antifilarial drug, ivermectin, was unaffected. Conclusion These results confirm the important role of the arachidonic acid metabolic pathway in DEC's mechanism of action in vivo and show that in addition to its effects on the 5

  20. Clerkship pathway

    PubMed Central

    MacLellan, Anne-Marie; Brailovsky, Carlos; Miller, François; Leboeuf, Sylvie

    2012-01-01

    Abstract Objective To identify factors that help predict success for international medical graduates (IMGs) who train in Canadian residency programs and pass the Canadian certification examinations. Design A retrospective analysis of 58 variables in the files of IMGs who applied to the Collège des médecins du Québec between 2000 and 2008. Setting Quebec. Participants Eight hundred ten IMGs who applied to the Collège des médecins du Québec through either the “equivalency pathway” (ie, starting training at a residency level) or the “clerkship pathway” (ie, relearning at the level of a medical student in the last 2 years of the MD diploma). Main outcome measures Success factors in achieving certification. Data were analyzed using descriptive statistics and ANOVA (analysis of variance). Results International medical graduates who chose the “clerkship pathway” had greater success on certification examinations than those who started at the residency level did. Conclusion There are several factors that influence IMGs’ success on certification examinations, including integration issues, the acquisition of clinical decision-making skills, and the varied educational backgrounds. These factors perhaps can be better addressed by a regular clerkship pathway, in which IMGs benefit from learner-centred teaching and have more time for reflection on and understanding of the North American approach to medical education. The clerkship pathway is a useful strategy for assuring the integration of IMGs in the North American health care system. A 2-year relearning period in medical school at a clinical clerkship level deserves careful consideration. PMID:22859630

  1. [Blood monocytic L-arginine metabolic changes in diabetic foot syndrome].

    PubMed

    Barinov, E F; Sulaeva, O N; Barinova, M E

    2010-05-01

    An inhibition test was used to study mechanisms responsible for L-arginine metabolic disturbances in the blood monocytes of patients with diabetic foot syndrome (DFS). It showed enhanced baseline iNOS activity and inhibition of the arginase pathway with lower nitrite production in response to the administration of lipopolysaccharide in the monocytes of patients with DFS. Impaired L-arginine metabolism was related to the higher activities of protein kinase C (PKC), phosphodiesterase (PDE), and 5-lipoxygenase (5-LO) along with decreased cyclooxygenase activity and drastic protein kinase A (PKA) inhibition. Within the first week, no changes in the wound process were associated with persistent metabolic disturbances of arachidonic acid and serine-threonine kinases with the higher sensitivity of AT1 receptors. In patients with DFS, the condition for wound process termination was decreased baseline iNOS activity and enhanced arginase-1 activity during PKA stimulation with the lower activity of 5-LO, PDE, and PKS. However, impaired mechanisms in the regulation of monocytic L-arginine metabolism persisted even a month later, which predetermines skin remodeling disturbance and the likelihood of recurrent DFS

  2. Time-selective chemoprevention of vitamin E and selenium on esophageal carcinogenesis in rats: the possible role of nuclear factor kappaB signaling pathway.

    PubMed

    Yang, Hui; Jia, Xudong; Chen, Xiaoxin; Yang, Chung S; Li, Ning

    2012-10-01

    Previous human intervention trial demonstrated that vitamin E (Ve) and selenium (Se) supplementation decreased esophageal cancer deaths among younger participants, but may have no effect or produce an opposite effect among older ones. In our study, we intended to mimic this human nutritional trial to determine the chemopreventive effects of Ve/Se supplementation at the early or late stage of esophageal carcinogenesis in rats. Esophageal squamous cell carcinoma (ESCC) was induced in Fischer 344 rats with N-nitrosomethylbenzylamine (NMBzA, 0.35 mg/kg BW, s.c., three times per week for 5 weeks). The rats were maintained on a modified AIN-93M diet with low levels of Ve/Se or supplemented with high levels of Ve/Se at different stages. At Week 25, the number and volume of visible tumors, the numbers of dysplasia and ESCC were significantly lower in rats of supplementation during the early stage (Group C) or during the entire experimental period (Group E), but not during the late stage (Group D). Ve/Se supplementation at the early stage also significantly decreased cell proliferation, nuclear factor kappaB (NFκB) activation, protein and mRNA expression of cyclooxygenase 2 and 5-lipoxygenase and biosynthesis of prostaglandin E2 and leukotriene B4 during the carcinogenesis of rat esophagus. Our results demonstrated that the chemopreventive efficacy of Ve/Se supplementation on NMBzA-induced esophageal cancer is time selective and that supplementation during the early stage is clearly effective but probably ineffective during the late stage of carcinogenesis. NFκB signaling pathway activation and aberrant arachidonic acid metabolism might be the underlying mechanism.

  3. Cysteinyl Leukotrienes Pathway Genes, Atopic Asthma and Drug Response: From Population Isolates to Large Genome-Wide Association Studies

    PubMed Central

    Thompson, Miles D.; Capra, Valerie; Clunes, Mark T.; Rovati, G. E.; Stankova, Jana; Maj, Mary C.; Duffy, David L.

    2016-01-01

    Genetic variants associated with asthma pathogenesis and altered response to drug therapy are discussed. Many studies implicate polymorphisms in genes encoding the enzymes responsible for leukotriene synthesis and intracellular signaling through activation of seven transmembrane domain receptors, such as the cysteinyl leukotriene 1 (CYSLTR1) and 2 (CYSLTR2) receptors. The leukotrienes are polyunsaturated lipoxygenated eicosatetraenoic acids that exhibit a wide range of pharmacological and physiological actions. Of the three enzymes involved in the formation of the leukotrienes, arachidonate 5 lipoxygenase 5 (ALOX5), leukotriene C4 synthase (LTC4S), and leukotriene hydrolase (LTA4H) are all polymorphic. These polymorphisms often result in variable production of the CysLTs (LTC4, LTD4, and LTE4) and LTB4. Variable number tandem repeat sequences located in the Sp1-binding motif within the promotor region of the ALOX5 gene are associated with leukotriene burden and bronchoconstriction independent of asthma risk. A 444A > C SNP polymorphism in the LTC4S gene, encoding an enzyme required for the formation of a glutathione adduct at the C-6 position of the arachidonic acid backbone, is associated with severe asthma and altered response to the CYSLTR1 receptor antagonist zafirlukast. Genetic variability in the CysLT pathway may contribute additively or synergistically to altered drug responses. The 601 A > G variant of the CYSLTR2 gene, encoding the Met201Val CYSLTR2 receptor variant, is associated with atopic asthma in the general European population, where it is present at a frequency of ∼2.6%. The variant was originally found in the founder population of Tristan da Cunha, a remote island in the South Atlantic, in which the prevalence of atopy is approximately 45% and the prevalence of asthma is 36%. In vitro work showed that the atopy-associated Met201Val variant was inactivating with respect to ligand binding, Ca2+ flux and inositol phosphate generation. In addition

  4. Respective role of lipoxygenase and nitric oxide-synthase pathways in plasma histamine-induced macromolecular leakage inconscious hamsters

    PubMed Central

    Gimeno, G; Carpentier, P H; Desquand-Billiald, S; Finet, M; Hanf, R

    1999-01-01

    Intravital microscopy technique was used to determine the distribution of a fluorescent plasma marker (fluorescein-isothiocyanate-dextran, 150 kD; FD-150) into venular and interstitial compartments of dorsal skin fold preparations in conscious hamsters.One mg kg−1 histamine (i.v.) caused a biphasic decrease in venular fluorescence due to FD-150 extravasation in all organs (general extravasation). Immediately after injection, the venular fluorescence decreased and plateaued in 60 min. Ninety minutes after histamine injection, venular fluorescence further decreased until 180 min. Prior treatment with indomethacin (0.1 mg kg−1, i.v.) did not modify the time-course of general extravasation but prevented histamine-induced venule dilatation.Prior treatment with the 5-lipoxygenase activating protein (FLAP) inhibitor, 3-[1-(p-chlorobenzyl)-5-(isopropyl)-3-t-butylthioindol-2-yl]-2,2-dimethyl-propanoic acid sodium (MK-886)(10 μg kg−1, i.v.), the leukotriene receptor antagonist, benzenemethanol a-pentyl-3-(2-quinolinylmethoxy) (REV-5901)(1 mg kg−1, i.v.), or the glutathione-S-transferase inhibitor, ethacrynic acid (1 mg kg−1, i.v.), delayed by 60 min the onset of general extravasation caused by 1 mg kg−1 histamine.Prior treatment with lipoxygenase pathway inhibitors and NG-nitro-L-arginine-methylester (L-NAME)(100 mg kg−1, i.v.) abolished the general extravasation and venule dilatation induced by 1 mg kg−1 histamine.Injection of 1 μg kg−1 (i.v.), of leukotriene-C4 (LTC4) or -D4 (LTD4) induced immediate and sustained general extravasation and reduction in venule diameter, these effects being blocked by REV-5901.Histamine (1 mg kg−1, i.v.) induced biphasic decline in mean arterial blood pressure (MAP). An initial phase (from 0 to 60 min) was followed by a late phase beginning 90 min after histamine injection. L-NAME (100 mg kg−1, i.v.) and aminoguanidine (1 mg kg−1, i.v.) prevented the late

  5. PATHWAYS - ELECTRON TUNNELING PATHWAYS IN PROTEINS

    NASA Technical Reports Server (NTRS)

    Beratan, D. N.

    1994-01-01

    The key to understanding the mechanisms of many important biological processes such as photosynthesis and respiration is a better understanding of the electron transfer processes which take place between metal atoms (and other groups) fixed within large protein molecules. Research is currently focused on the rate of electron transfer and the factors that influence it, such as protein composition and the distance between metal atoms. Current models explain the swift transfer of electrons over considerable distances by postulating bridge-mediated tunneling, or physical tunneling pathways, made up of interacting bonds in the medium around and between donor and acceptor sites. The program PATHWAYS is designed to predict the route along which electrons travel in the transfer processes. The basic strategy of PATHWAYS is to begin by recording each possible path element on a connectivity list, including in each entry which two atoms are connected and what contribution the connection would make to the overall rate if it were included in a pathway. The list begins with the bonded molecular structure (including the backbone sequence and side chain connectivity), and then adds probable hydrogen bond links and through-space contacts. Once this list is completed, the program runs a tree search from the donor to the acceptor site to find the dominant pathways. The speed and efficiency of the computer search offers an improvement over manual techniques. PATHWAYS is written in FORTRAN 77 for execution on DEC VAX series computers running VMS. The program inputs data from four data sets and one structure file. The software was written to input BIOGRAF (old format) structure files based on x-ray crystal structures and outputs ASCII files listing the best pathways and BIOGRAF vector files containing the paths. Relatively minor changes could be made in the input format statements for compatibility with other graphics software. The executable and source code are included with the

  6. Pathways from Poverty.

    ERIC Educational Resources Information Center

    Baldwin, Barbara, Ed.

    1995-01-01

    Articles in this theme issue are based on presentations at the Pathways from Poverty Workshop held in Albuquerque, New Mexico, on May 18-25, 1995. The event aimed to foster development of a network to address rural poverty issues in the Western Rural Development Center (WRDC) region. Articles report on outcomes from the Pathways from Poverty…

  7. Crystallization Pathways in Biomineralization

    NASA Astrophysics Data System (ADS)

    Weiner, Steve; Addadi, Lia

    2011-08-01

    A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.

  8. Effect of structure on potency and selectivity in 2,6-disubstituted 4-(2-arylethenyl)phenol lipoxygenase inhibitors.

    PubMed

    Lazer, E S; Wong, H C; Wegner, C D; Graham, A G; Farina, P R

    1990-07-01

    A series of 2,6-disubstituted 4-(2-arylethenyl)phenols with potent human neutrophil 5-lipoxygenase (5-LO) inhibiting activity (IC50S in the 10(-7) M range) and weaker human platelet cyclooxygenase (CO) inhibiting activity (IC50S in the 10(-6) M range) is described. This series evolved from the chemical modification of an antiinflammatory dual CO/5-LO inhibitor, 2,6-di-tert-butyl-4-[2-(3-pyridyl)ethenyl]phenol (BI-L-93 BS). The potency and selectivity for 5-LO inhibition is greatly influenced by the nature of the substituents in the 2- and 6-positions. Other structure-activity relationships that determine relative 5-LO and CO potency are discussed. In vivo activity against antigen-induced leukotriene-mediated bronchoconstriction and cell influx in guinea pigs is presented. Representatives of the series are active when administered at 30 mg/kg ip.

  9. Natural Product Total Synthesis in the Organic Laboratory: Total Synthesis of Caffeic Acid Phenethyl Ester (CAPE), a Potent 5-Lipoxygenase Inhibitor from Honeybee Hives

    ERIC Educational Resources Information Center

    Touaibia, Mohamed; Guay, Michel

    2011-01-01

    Natural products play a critical role in modern organic synthesis and learning synthetic techniques is an important component of the organic laboratory experience. In addition to traditional one-step organic synthesis laboratories, a multistep natural product synthesis is an interesting experiment to challenge students. The proposed three-step…

  10. Novel N-substituted indole Schiff bases as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase enzymes: Synthesis, biological activities in vitro and docking study.

    PubMed

    Lamie, Phoebe F; Ali, Waleed A M; Bazgier, Vaclav; Rárová, Lucie

    2016-11-10

    Two new series of N-substituted indole derivatives 4a-l and 5a-h were synthesized. Their chemical structures were confirmed using spectroscopic tools including IR, (1)H NMR, (13)C NMR mass spectroscopy and elemental analyses. The results showed no significant cytotoxic activity on either cancer or normal human cells. Anti-inflammatory activity for all target compounds was evaluated in vitro. Compounds 5a-h were found to have better anti-inflammatory activity than 4a-l. The inhibitory activity of COX-2 and 5-LOX were tested for 5a-h. Three compounds, 5c, 5d and 5f showed excellent COX-2 inhibitory activity with IC50 ranging from 0.98 to 1.23 μM compared to the reference celecoxib (1.54 μM). These compounds had a reasonable selectivity index between 7.03 and 8.05. Additionally, p-methylbenzoyl derivative 5g (IC50 = 5.78 μM) had superior 5-LOX inhibitory activity, higher than quercetin. 5e was close to quercetin in its LOX inhibitory activity. Compounds 5a-h were docked inside the active site of COX-2 and 5-LOX enzymes.

  11. Updating the Wnt pathways

    PubMed Central

    Yu, Jia; Virshup, David M.

    2014-01-01

    In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases. PMID:25208913

  12. Pathways for Advective Transport

    DTIC Science & Technology

    2001-01-19

    the approach is given and an application to the Gulf of Mexico is described where the analysis precisely identifies the boundaries of coherent vortical structures as well as pathways for advective transport.

  13. Stability of open pathways

    PubMed Central

    Flach, Edward H.; Schnell, Santiago

    2010-01-01

    We consider the steady state of an open biochemical pathway, with controlled flow. Previously we have shown that the steady state of open enzyme catalysed reactions may be unstable, which discourages the application of the quasi-steady-state approximation (QSSA) (IEE Proc. Syst. Biol. 153 (2006) 187). Here we examine basic open biochemical pathway structures, to see the stability of their steady states. Following De Leenheer et al. (J. Math. Chem. 41 (2007) 295), we employ the Gershgorin circle theorem, which elegantly assesses stability. This is the key tool for our analysis. Once we have the linear stability matrix laid out in a suitable form, the application of the method is straightforward. We find that in open biochemical pathways, simple chains, branches and loops always have stable steady states. We conclude that simple open pathways are stable. PMID:20875827

  14. Probing pathways periodically.

    PubMed

    Elston, Timothy C

    2008-10-21

    Signal transduction pathways are used by cells to process and transmit information about their external surroundings. These systems are dynamic, interconnected molecular networks. Therefore, full characterization of their behavior requires a systems-level analysis. Investigations with temporally oscillating input signals probed the dynamic properties of the high-osmolarity glycerol (HOG) pathway of the budding yeast Saccharomyces cerevisiae. These studies shed light on how the network functions as a whole to respond to changing environmental conditions.

  15. Identifying Branched Metabolic Pathways by Merging Linear Metabolic Pathways

    NASA Astrophysics Data System (ADS)

    Heath, Allison P.; Bennett, George N.; Kavraki, Lydia E.

    This paper presents a graph-based algorithm for identifying complex metabolic pathways in multi-genome scale metabolic data. These complex pathways are called branched pathways because they can arrive at a target compound through combinations of pathways that split compounds into smaller ones, work in parallel with many compounds, and join compounds into larger ones. While most previous work has focused on identifying linear metabolic pathways, branched metabolic pathways predominate in metabolic networks. Automatic identification of branched pathways has a number of important applications in areas that require deeper understanding of metabolism, such as metabolic engineering and drug target identification. Our algorithm utilizes explicit atom tracking to identify linear metabolic pathways and then merges them together into branched metabolic pathways. We provide results on two well-characterized metabolic pathways that demonstrate that this new merging approach can efficiently find biologically relevant branched metabolic pathways with complex structures.

  16. [Growth hormone signaling pathways].

    PubMed

    Zych, Sławomir; Szatkowska, Iwona; Czerniawska-Piatkowska, Ewa

    2006-01-01

    The substantial improvement in the studies on a very complicated mechanism-- growth hormone signaling in a cell, has been noted in last decade. GH-induced signaling is characterized by activation of several pathways, including extracellular signal-regulated kinase (ERK), the signal transducer and activator of transcription and phosphatidylinositol-3 kinase (PI3) pathways. This review shows a current model of the growth hormone receptor dimerization, rotation of subunits and JAK2 kinase activation as the initial steps in the cascade of events. In the next stages of the signaling process, the GH-(GHR)2-(JAK2)2 complex may activate signaling molecules such as Stat, IRS-1 and IRS-2, and particularly all cascade proteins that activate MAP kinase. These pathways regulate basal cellular functions including target gene transcription, enzymatic activity and metabolite transport. Therefore growth hormone is considered as a major regulator of postnatal growth and metabolism, probably for mammary gland growth and development too.

  17. Dexter energy transfer pathways

    PubMed Central

    Skourtis, Spiros S.; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M.; Beratan, David N.

    2016-01-01

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor–acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways. PMID:27382185

  18. Tolerogenic response: allorecognition pathways.

    PubMed

    Caballero, A; Fernandez, N; Lavado, R; Bravo, M J; Miranda, J M; Alonso, A

    2006-12-01

    The induction of immune tolerance in transplant recipients has been sought for many years but only a fundamental understanding of the immunological mechanisms underlying graft rejection will allow manipulation of the anti-graft immune response. In general, acute rejection is better understood and treated than chronic rejection, as they occur through partially different mechanisms. It is now generally accepted that recognition of same-species, non-self antigens (allorecognition) occurs through at least two different mechanisms, the direct and indirect pathways. In the direct pathway, donor MHC molecules on the surface of donor antigen-presenting cells (APCs) are recognised directly by the recipient's T cells. This mechanism is so immediate that it seems to be primarily involved in acute graft rejection. Since APCs of donor origin are depleted with time a second mechanism, the indirect pathway, takes over to cause chronic rejection, in which foreign MHC molecules are internalised, partially digested and presented as peptides to recipient T cells. Nonetheless, a number of studies are only fully understood when a third proposed allorecognition mechanism is taken into account. This is the semi-indirect pathway, as discussed in this short report.

  19. Pathways to School Success

    ERIC Educational Resources Information Center

    University of Pittsburgh Office of Child Development, 2012

    2012-01-01

    In 2006, the University of Pittsburgh Office of Child Development began implementing a multi-year school readiness project in several area schools. Evidence from both research and the field point to several key elements that foster school readiness and create pathways to school success for all children. This paper presents components of a…

  20. Dexter energy transfer pathways.

    PubMed

    Skourtis, Spiros S; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M; Beratan, David N

    2016-07-19

    Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways.

  1. Mining biological pathways using WikiPathways web services.

    PubMed

    Kelder, Thomas; Pico, Alexander R; Hanspers, Kristina; van Iersel, Martijn P; Evelo, Chris; Conklin, Bruce R

    2009-07-30

    WikiPathways is a platform for creating, updating, and sharing biological pathways [1]. Pathways can be edited and downloaded using the wiki-style website. Here we present a SOAP web service that provides programmatic access to WikiPathways that is complementary to the website. We describe the functionality that this web service offers and discuss several use cases in detail. Exposing WikiPathways through a web service opens up new ways of utilizing pathway information and assisting the community curation process.

  2. Optic pathway tumors.

    PubMed

    Cohen, M E; Duffner, P K

    1991-05-01

    Overall, the majority of patients with optic pathway tumors will have stable disease regardless if they are radiated or receive chemotherapy. This is a very indolent tumor system and, for the most part, not a threat to life. Because of this, issues regarding appropriate therapeutic approaches have yet to be resolved. Most agree that in patients with progressive visual loss and tumor limited to the orbit, surgery can be associated with a cure. The downside is the loss of vision associated with surgical extirpation. Radiation rather than surgery has been the mainstay of treatment for intracranial tumors of the optic pathway. To eliminate side effects associated with radiotherapy in the young child, chemotherapy may be the more considered choice. However, on escape of control, i.e., conversion of stable disease to progressive disease, radiotherapy should be considered.

  3. Sulfation pathways in plants.

    PubMed

    Koprivova, Anna; Kopriva, Stanislav

    2016-11-25

    Plants take up sulfur in the form of sulfate. Sulfate is activated to adenosine 5'-phosphosulfate (APS) and reduced to sulfite and then to sulfide when it is assimilated into amino acid cysteine. Alternatively, APS is phosphorylated to 3'-phosphoadenosine 5'-phosphosulfate (PAPS), and sulfate from PAPS is transferred onto diverse metabolites in its oxidized form. Traditionally, these pathways are referred to as primary and secondary sulfate metabolism, respectively. However, the synthesis of PAPS is essential for plants and even its reduced provision leads to dwarfism. Here the current knowledge of enzymes involved in sulfation pathways of plants will be summarized, the similarities and differences between different kingdoms will be highlighted, and major open questions in the research of plant sulfation will be formulated.

  4. AIP Career Pathways

    NASA Astrophysics Data System (ADS)

    Palchak, Amanda

    2012-02-01

    American Institute of Physics (AIP) Career Pathways is a new project funded by the National Science Foundation. One of the goals of AIP Career Pathways is to prepare students to compete for Science, Technology, Engineering, and Mathematics (STEM) careers with a bachelor's degree in physics. In order to do so, I reviewed and compiled useful resources on finding a STEM career with a bachelor's degree in physics. These resources not only supply the job seeker with job postings in STEM careers but also provide them with information on resumes, interviewing skills, and networking. Recently at the 2011 Industrial Physics Forum, I interviewed companies in the private sector to obtain a unique perspective on what types of skills potential employers expect an applicant to posses with a bachelor's degree in physics. Ultimately, these components will be used as supplements at student career workshops held at annual Society of Physics Students Zone Meetings.

  5. Growth hormone signaling pathways.

    PubMed

    Carter-Su, Christin; Schwartz, Jessica; Argetsinger, Lawrence S

    2016-06-01

    Over 20years ago, our laboratory showed that growth hormone (GH) signals through the GH receptor-associated tyrosine kinase JAK2. We showed that GH binding to its membrane-bound receptor enhances binding of JAK2 to the GHR, activates JAK2, and stimulates tyrosyl phosphorylation of both JAK2 and GHR. The activated JAK2/GHR complex recruits a variety of signaling proteins, thereby initiating multiple signaling pathways and cellular responses. These proteins and pathways include: 1) Stat transcription factors implicated in the expression of multiple genes, including the gene encoding insulin-like growth factor 1; 2) Shc adapter proteins that lead to activation of the grb2-SOS-Ras-Raf-MEK-ERK1,2 pathway; 3) insulin receptor substrate proteins implicated in the phosphatidylinositol-3-kinase and Akt pathway; 4) signal regulatory protein α, a transmembrane scaffold protein that recruits proteins including the tyrosine phosphatase SHP2; and 5) SH2B1, a scaffold protein that can activate JAK2 and enhance GH regulation of the actin cytoskeleton. Our recent work has focused on the function of SH2B1. We have shown that SH2B1β is recruited to and phosphorylated by JAK2 in response to GH. SH2B1 localizes to the plasma membrane, cytoplasm and focal adhesions; it also cycles through the nucleus. SH2B1 regulates the actin cytoskeleton and promotes GH-dependent motility of RAW264.7 macrophages. Mutations in SH2B1 have been found in humans exhibiting severe early-onset childhood obesity and insulin resistance. These mutations impair SH2B1 enhancement of GH-induced macrophage motility. As SH2B1 is expressed ubiquitously and is also recruited to a variety of receptor tyrosine kinases, our results raise the possibility that effects of SH2B1 on the actin cytoskeleton in various cell types, including neurons, may play a role in regulating body weight.

  6. Pathway and Resource Overview (Presentation)

    SciTech Connect

    Ruth, M. F.

    2009-11-16

    This presentation provides information about hydrogen pathway analysis, which is analysis of the total levelized cost (including return on investment). Well-to-wheels (WTW) energy use, and WTW emissions for hydrogen production, delivery, and distribution pathways.

  7. Improving Carbon Fixation Pathways

    PubMed Central

    Ducat, Daniel C.

    2012-01-01

    A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing and enhancing photosynthetic reactions in a species independent manner. Furthermore, the elucidation of alternative carbon-fixation routes distinct from the Calvin cycle raises possibilities that alternative pathways and organisms can be utilized to fix atmospheric carbon dioxide into useful materials. PMID:22647231

  8. Developmental pathways in colon cancer

    PubMed Central

    Bertrand, Fred E.; Angus, C. William; Partis, William J.; Sigounas, George

    2012-01-01

    A hallmark of cancer is reactivation/alteration of pathways that control cellular differentiation during developmental processes. Evidence indicates that WNT, Notch, BMP and Hedgehog pathways have a role in normal epithelial cell differentiation, and that alterations in these pathways accompany establishment of the tumorigenic state. Interestingly, there is recent evidence that these pathways are intertwined at the molecular level, and these nodes of intersection may provide opportunities for effective targeted therapies. This review will highlight the role of the WNT, Notch, BMP and Hedgehog pathways in colon cancer. PMID:23032367

  9. WikiPathways: capturing the full diversity of pathway knowledge.

    PubMed

    Kutmon, Martina; Riutta, Anders; Nunes, Nuno; Hanspers, Kristina; Willighagen, Egon L; Bohler, Anwesha; Mélius, Jonathan; Waagmeester, Andra; Sinha, Sravanthi R; Miller, Ryan; Coort, Susan L; Cirillo, Elisa; Smeets, Bart; Evelo, Chris T; Pico, Alexander R

    2016-01-04

    WikiPathways (http://www.wikipathways.org) is an open, collaborative platform for capturing and disseminating models of biological pathways for data visualization and analysis. Since our last NAR update, 4 years ago, WikiPathways has experienced massive growth in content, which continues to be contributed by hundreds of individuals each year. New aspects of the diversity and depth of the collected pathways are described from the perspective of researchers interested in using pathway information in their studies. We provide updates on extensions and services to support pathway analysis and visualization via popular standalone tools, i.e. PathVisio and Cytoscape, web applications and common programming environments. We introduce the Quick Edit feature for pathway authors and curators, in addition to new means of publishing pathways and maintaining custom pathway collections to serve specific research topics and communities. In addition to the latest milestones in our pathway collection and curation effort, we also highlight the latest means to access the content as publishable figures, as standard data files, and as linked data, including bulk and programmatic access.

  10. WikiPathways: capturing the full diversity of pathway knowledge

    PubMed Central

    Kutmon, Martina; Riutta, Anders; Nunes, Nuno; Hanspers, Kristina; Willighagen, Egon L.; Bohler, Anwesha; Mélius, Jonathan; Waagmeester, Andra; Sinha, Sravanthi R.; Miller, Ryan; Coort, Susan L.; Cirillo, Elisa; Smeets, Bart; Evelo, Chris T.; Pico, Alexander R.

    2016-01-01

    WikiPathways (http://www.wikipathways.org) is an open, collaborative platform for capturing and disseminating models of biological pathways for data visualization and analysis. Since our last NAR update, 4 years ago, WikiPathways has experienced massive growth in content, which continues to be contributed by hundreds of individuals each year. New aspects of the diversity and depth of the collected pathways are described from the perspective of researchers interested in using pathway information in their studies. We provide updates on extensions and services to support pathway analysis and visualization via popular standalone tools, i.e. PathVisio and Cytoscape, web applications and common programming environments. We introduce the Quick Edit feature for pathway authors and curators, in addition to new means of publishing pathways and maintaining custom pathway collections to serve specific research topics and communities. In addition to the latest milestones in our pathway collection and curation effort, we also highlight the latest means to access the content as publishable figures, as standard data files, and as linked data, including bulk and programmatic access. PMID:26481357

  11. Signaling Pathways in Melanogenesis

    PubMed Central

    D’Mello, Stacey A. N.; Finlay, Graeme J.; Baguley, Bruce C.; Askarian-Amiri, Marjan E.

    2016-01-01

    Melanocytes are melanin-producing cells found in skin, hair follicles, eyes, inner ear, bones, heart and brain of humans. They arise from pluripotent neural crest cells and differentiate in response to a complex network of interacting regulatory pathways. Melanins are pigment molecules that are endogenously synthesized by melanocytes. The light absorption of melanin in skin and hair leads to photoreceptor shielding, thermoregulation, photoprotection, camouflage and display coloring. Melanins are also powerful cation chelators and may act as free radical sinks. Melanin formation is a product of complex biochemical events that starts from amino acid tyrosine and its metabolite, dopa. The types and amounts of melanin produced by melanocytes are determined genetically and are influenced by a variety of extrinsic and intrinsic factors such as hormonal changes, inflammation, age and exposure to UV light. These stimuli affect the different pathways in melanogenesis. In this review we will discuss the regulatory mechanisms involved in melanogenesis and explain how intrinsic and extrinsic factors regulate melanin production. We will also explain the regulatory roles of different proteins involved in melanogenesis. PMID:27428965

  12. AIP's Career Pathways Project

    NASA Astrophysics Data System (ADS)

    Avila, Jose

    2014-03-01

    The American Institute of Physics (AIP) Career Pathways Project, funded by the National Science Foundation, aims to increase the number of undergraduates going into STEM careers. The main purposes of this project are to show students the professional opportunities for a STEM career, understand what departments can do to better prepare physics bachelor's degree recipients to enter the workforce, understand what students can do to better prepare themselves, and develop resources based on these findings. I was chosen by the Society of Physics Students (SPS) to be the 2013 summer intern of the AIP's Career Pathways Project. In this talk I will discuss several resources I worked on with the Statistical Research Center of the American Institute of Physics and SPS. These resources include how to write a resume and cover letter, how to perform an informational interview, common job titles for physics bachelors, how to find career information in physics and STEM, how to search and use job postings, and how to network.

  13. The Reactome pathway Knowledgebase

    PubMed Central

    Fabregat, Antonio; Sidiropoulos, Konstantinos; Garapati, Phani; Gillespie, Marc; Hausmann, Kerstin; Haw, Robin; Jassal, Bijay; Jupe, Steven; Korninger, Florian; McKay, Sheldon; Matthews, Lisa; May, Bruce; Milacic, Marija; Rothfels, Karen; Shamovsky, Veronica; Webber, Marissa; Weiser, Joel; Williams, Mark; Wu, Guanming; Stein, Lincoln; Hermjakob, Henning; D'Eustachio, Peter

    2016-01-01

    The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations—an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently. PMID:26656494

  14. Summer 2014 Pathways Report

    NASA Technical Reports Server (NTRS)

    Hand, Zachary

    2014-01-01

    Over the summer I had the exciting opportunity to work for NASA at the Kennedy Space Center as a Mission Assurance Engineering intern. When I was offered a position in mission assurance for the Safety and Mission Assurance directorate's Launch Services Division, I didn't really know what I would be doing, but I knew it would be an excellent opportunity to learn and grow professionally. In this report I will provide some background information on the Launch Services Division, as well as detail my duties and accomplishments during my time as an intern. Additionally, I will relate the significance of my work experience to my current academic work and future career goals. This report contains background information on Mission Assurance Engineering, a description of my duties and accomplishments over the summer of 2014, and relates the significance of my work experience to my school work and future career goals. It is a required document for the Pathways program.

  15. Biophysical cancer transformation pathway.

    PubMed

    Pokorný, J

    2009-01-01

    Coherent vibration states in biological systems excited in nonlinear electrically polar structures by metabolic energy supply were postulated by H. Fröhlich. Fröhlich's requirements for coherent vibrations and generation of electromagnetic field are satisfied by microtubules whose subunits are electric dipoles. Static electric field around mitochondria and "wasted energy" efflux from them provide nonlinear conditions and coherent excitation. Numerical models are used for analysis of coherent vibration states. A hypothesis is presented that dysfunction of mitochondria (i.e., extinction of the zones of the static electric field and of the efflux of "wasted energy") and disintegration of the cytoskeleton on the pathway of cancer transformation result in disturbances of coherence of the cellular electrically polar oscillations and of the generated electromagnetic field with consequences in cellular organization and interactions between cells. Local invasion, detachment, and metastasis of cancer cells are subsequent events of disturbed electromagnetic interactions.

  16. The Peroxide Pathway

    NASA Technical Reports Server (NTRS)

    McNeal, Curtis I., Jr.; Anderson, William

    1999-01-01

    NASA's current focus on technology roadmaps as a tool for guiding investment decisions leads naturally to a discussion of NASA's roadmap for peroxide propulsion system development. NASA's new Second Generation Space Transportation System roadmap calls for an integrated Reusable Upper-Stage (RUS) engine technology demonstration in the FY03/FY04 time period. Preceding this integrated demonstration are several years of component developments and subsystem technology demonstrations. NASA and the Air Force took the first steps at developing focused upper stage technologies with the initiation of the Upper Stage Flight Experiment with Orbital Sciences in December 1997. A review of this program's peroxide propulsion development is a useful first step in establishing the peroxide propulsion pathway that could lead to a RUS demonstration in 2004.

  17. Differential Expression Analysis for Pathways

    PubMed Central

    Haynes, Winston A.; Higdon, Roger; Stanberry, Larissa; Collins, Dwayne; Kolker, Eugene

    2013-01-01

    Life science technologies generate a deluge of data that hold the keys to unlocking the secrets of important biological functions and disease mechanisms. We present DEAP, Differential Expression Analysis for Pathways, which capitalizes on information about biological pathways to identify important regulatory patterns from differential expression data. DEAP makes significant improvements over existing approaches by including information about pathway structure and discovering the most differentially expressed portion of the pathway. On simulated data, DEAP significantly outperformed traditional methods: with high differential expression, DEAP increased power by two orders of magnitude; with very low differential expression, DEAP doubled the power. DEAP performance was illustrated on two different gene and protein expression studies. DEAP discovered fourteen important pathways related to chronic obstructive pulmonary disease and interferon treatment that existing approaches omitted. On the interferon study, DEAP guided focus towards a four protein path within the 26 protein Notch signalling pathway. PMID:23516350

  18. Neuromodulation in Chemosensory Pathways.

    PubMed

    McIntyre, Jeremy C; Thiebaud, Nicolas; McGann, John P; Komiyama, Takaki; Rothermel, Markus

    2017-04-04

    Interactions with the environment depend not only on sensory perception of external stimuli but also on processes of neuromodulation regulated by the internal state of an organism. These processes allow regulation of stimulus detection to match the demands of an organism influenced by its general brain state (satiety, wakefulness/sleep state, attentiveness, arousal, learning etc.). The sense of smell is initiated by sensory neurons located in the nasal cavity that recognize environmental odorants and project axons into the olfactory bulb (OB), where they form synapses with several types of neurons. Modulations of early synaptic circuits are particularly important since these can affect all subsequent processing steps. While the precise mechanisms have not been fully elucidated, work from many labs has demonstrated that the activity of neurons in the OB and cortex can be modulated by different factors inducing specific changes to olfactory information processing. The symposium "Neuromodulation in Chemosensory Pathways" at the International Symposium on Olfaction and Taste (ISOT 2016) highlighted some of the most recent advances in state-dependent network modulations of the mouse olfactory system including modulation mediated by specific neurotransmitters and neuroendocrine molecules, involving pharmacological, electrophysiological, learning, and behavioral approaches.

  19. Pathways to legal immigration

    PubMed Central

    MASSEY, DOUGLAS S.; MALONE, NOLAN

    2010-01-01

    In this paper we use the New Immigrant Survey Pilot Study (NISP) to describe the amount and kind of experience that immigrants accumulate in the United States before they become permanent resident aliens. The NISP surveyed a representative sample of legal immigrants who acquired residence papers during July and August of 1996, yielding a completed sample of 1,135 adults. Our analysis revealed that roughly two-thirds of these newly arrived immigrants had prior experience in the United States within one of six basic categories: illegal border-crossers, visa abusers, non-resident visitors, non-resident workers, students or exchange visitors, and refugees/asylees. Each of these pathways to legal immigration was associated with a different profile with respect to nationality, social background, and economic status. Using simple earnings regressions we demonstrate how these differences can yield misleading conclusions about the process of immigrant adaptation and assimilation, even if measured effects are reasonably accurate. We suggest that social scientists should change the way they think and ask about immigrants’ arrival in the United States. PMID:20830313

  20. A pathway to spirituality.

    PubMed

    Shaw, Jon A

    2005-01-01

    The phenomenology of mystical experiences has been described throughout all the ages and in all religions. All mystical traditions identify some sense of union with the absolute as the ultimate spiritual goal. I assume that the pathway to both theistic and secular spirituality and our readiness to seek a solution in a psychological merger with something beyond the self evolves out of our human experience. Spirituality is one of man's strategies for dealing with the limitations of the life cycle, separation and loss, biological fragility, transience, and non-existence. Spirituality may serve as the affective component to a belief system or myth that is not rooted in scientific evidence but is lived as if it is true. Spirituality may take many forms, but I will suggest that in some instances it may serve as a reparative process in which one creates in the external world, through symbolic form, a nuance or facet of an internalized mental representation which has become lost or is no longer available to the self; or it may represent the continuity of the self-representation after death through a self-object merger. Lastly I will illustrate from the writings of two of our greatest poets, Dante Alighieri and William Wordsworth, how their poetry became interwoven with a profound spirituality. In Dante we will see the elaboration of a religious spirituality, while in the writings of Wordsworth a secular spirituality emerges interwoven with nature and belatedly his identification with "tragic man" as his mythos.

  1. Pathways from Poverty Educational Network.

    ERIC Educational Resources Information Center

    Northeast Regional Center for Rural Development, University Park, PA.

    Pathways from Poverty is a public policy education and research initiative organized by the Rural Sociological Society's Task Force on Persistent Rural Poverty and the four regional rural development centers. This publication focuses on project efforts in the Northeast and includes three sections. The first section describes the Pathways from…

  2. Representations of metabolic knowledge: Pathways

    SciTech Connect

    Karp, P.D.; Paley, S.M.

    1994-12-31

    The automatic generation of drawings of metabolic pathways is a challenging problem that depends intimately on exactly what information has been recorded for each pathway, and on how that information is encoded. The chief contributions of the paper are a minimized representation for biochemical pathways called the predecessor list, and inference procedures for converting the predecessor list into a pathway-graph representation that can serve as input to a pathway-drawing algorithm. The predecessor list has several advantages over the pathway graph, including its compactness and its lack of redundancy. The conversion between the two representations can be formulated as both a constraint-satisfaction problem and a logical inference problem, whose goal is to assign directions to reactions, and to determine which are the main chemical compounds in the reaction. We describe a set of production rules that solves this inference problem. We also present heuristics for inferring whether the exterior compounds that are substrates of reactions at the periphery of a pathway are side or main compounds. These techniques were evaluated on 18 metabolic pathways from the EcoCyc knowledge base.

  3. MPW : the metabolic pathways database.

    SciTech Connect

    Selkov, E., Jr.; Grechkin, Y.; Mikhailova, N.; Selkov, E.; Mathematics and Computer Science; Russian Academy of Sciences

    1998-01-01

    The Metabolic Pathways Database (MPW) (www.biobase.com/emphome.html/homepage. html.pags/pathways.html) a derivative of EMP (www.biobase.com/EMP) plays a fundamental role in the technology of metabolic reconstructions from sequenced genomes under the PUMA (www.mcs.anl.gov/home/compbio/PUMA/Production/ ReconstructedMetabolism/reconstruction.html), WIT (www.mcs.anl.gov/home/compbio/WIT/wit.html ) and WIT2 (beauty.isdn.msc.anl.gov/WIT2.pub/CGI/user.cgi) systems. In October 1997, it included some 2800 pathway diagrams covering primary and secondary metabolism, membrane transport, signal transduction pathways, intracellular traffic, translation and transcription. In the current public release of MPW (beauty.isdn.mcs.anl.gov/MPW), the encoding is based on the logical structure of the pathways and is represented by the objects commonly used in electronic circuit design. This facilitates drawing and editing the diagrams and makes possible automation of the basic simulation operations such as deriving stoichiometric matrices, rate laws, and, ultimately, dynamic models of metabolic pathways. Individual pathway diagrams, automatically derived from the original ASCII records, are stored as SGML instances supplemented by relational indices. An auxiliary database of compound names and structures, encoded in the SMILES format, is maintained to unambiguously connect the pathways to the chemical structures of their intermediates.

  4. Autism: many genes, common pathways?

    PubMed

    Geschwind, Daniel H

    2008-10-31

    Autism is a heterogeneous neurodevelopmental syndrome with a complex genetic etiology. It is still not clear whether autism comprises a vast collection of different disorders akin to intellectual disability or a few disorders sharing common aberrant pathways. Unifying principles among cases of autism are likely to be at the level of brain circuitry in addition to molecular pathways.

  5. Signaling pathways affecting skeletal health.

    PubMed

    Marie, Pierre J

    2012-09-01

    Skeletal health is dependent on the balance between bone resorption and formation during bone remodeling. Multiple signaling pathways play essential roles in the maintenance of skeletal integrity by positively or negatively regulating bone cells. During the last years, significant advances have been made in our understanding of the essential signaling pathways that regulate bone cell commitment, differentiation and survival. New signaling anabolic pathways triggered by parathyroid hormone, local growth factors, Wnt signaling, and calcium sensing receptor have been identified. Novel signals induced by interactions between bone cells-matrix (integrins), osteoblasts/osteocytes (cadherins, connexins), and osteoblasts/osteoclast (ephrins, Wnt-RhoA, semaphorins) have been discovered. Recent studies revealed the key pathways (MAPK, PI3K/Akt) that critically control bone cells and skeletal mass. This review summarizes the most recent knowledge on the major signaling pathways that control bone cells, and their potential impact on the development of therapeutic strategies to improve human bone health.

  6. Nematode endogenous small RNA pathways

    PubMed Central

    Hoogstrate, Suzanne W; Volkers, Rita JM; Sterken, Mark G; Kammenga, Jan E; Snoek, L Basten

    2014-01-01

    The discovery of small RNA silencing pathways has greatly extended our knowledge of gene regulation. Small RNAs have been presumed to play a role in every field of biology because they affect many biological processes via regulation of gene expression and chromatin remodeling. Most well-known examples of affected processes are development, fertility, and maintenance of genome stability. Here we review the role of the three main endogenous small RNA silencing pathways in Caenorhabditis elegans: microRNAs, endogenous small interfering RNAs, and PIWI-interacting RNAs. After providing an entry-level overview on how these pathways function, we discuss research on other nematode species providing insight into the evolution of these small RNA pathways. In understanding the differences between the endogenous small RNA pathways and their evolution, a more comprehensive picture is formed of the functions and effects of small RNAs. PMID:25340013

  7. Refining the quantitative pathway of the Pathways to Mathematics model.

    PubMed

    Sowinski, Carla; LeFevre, Jo-Anne; Skwarchuk, Sheri-Lynn; Kamawar, Deepthi; Bisanz, Jeffrey; Smith-Chant, Brenda

    2015-03-01

    In the current study, we adopted the Pathways to Mathematics model of LeFevre et al. (2010). In this model, there are three cognitive domains--labeled as the quantitative, linguistic, and working memory pathways--that make unique contributions to children's mathematical development. We attempted to refine the quantitative pathway by combining children's (N=141 in Grades 2 and 3) subitizing, counting, and symbolic magnitude comparison skills using principal components analysis. The quantitative pathway was examined in relation to dependent numerical measures (backward counting, arithmetic fluency, calculation, and number system knowledge) and a dependent reading measure, while simultaneously accounting for linguistic and working memory skills. Analyses controlled for processing speed, parental education, and gender. We hypothesized that the quantitative, linguistic, and working memory pathways would account for unique variance in the numerical outcomes; this was the case for backward counting and arithmetic fluency. However, only the quantitative and linguistic pathways (not working memory) accounted for unique variance in calculation and number system knowledge. Not surprisingly, only the linguistic pathway accounted for unique variance in the reading measure. These findings suggest that the relative contributions of quantitative, linguistic, and working memory skills vary depending on the specific cognitive task.

  8. Pathways Intern Report

    NASA Technical Reports Server (NTRS)

    Bell, Evan A.

    2015-01-01

    During my time at NASA, I worked with the Granular Mechanics and Regolith Organization (GMRO), better known as Swamp Works. The goal of the lab is to find ways to utilize resources found after the astronaut or robot has landed on another planet or asteroid. This concept is known as in-situ resource utilization and it is critical to long term missions such as those to Mars. During my time here I worked on the Asteroid and Lava Tube Free Flyer project (ALTFF). A lava tube, such as the one shown in figure 1, is a long tear drop shaped cavern that is produced when molten lava tunnels through the surrounding rock creating large unground pathways. Before mining for resources on Mars or on asteroids, a sampling mission must be done to scout out useful resource deposits. ALTFF's goal is to provide a low cost, autonomous scout robot that can sample the surface and return to the mother ship or lander for further processing of the samples. The vehicle will be looking for water ice in the regolith that can be processed into either potable water, hydrogen and oxygen fuel, or a binder material for 3D printing. By using a low cost craft to sample, there is much less risk to the more expensive mother ship or lander. While my main task was the construction of a simulation environment to test control code in and the construction of the asteroid free flyer prototype, there were other tasks that I performed relating to the ALTFF project.

  9. Dynamical pathway analysis

    PubMed Central

    Xiong, Hao; Choe, Yoonsuck

    2008-01-01

    Background Although a great deal is known about one gene or protein and its functions under different environmental conditions, little information is available about the complex behaviour of biological networks subject to different environmental perturbations. Observing differential expressions of one or more genes between normal and abnormal cells has been a mainstream method of discovering pertinent genes in diseases and therefore valuable drug targets. However, to date, no such method exists for elucidating and quantifying the differential dynamical behaviour of genetic regulatory networks, which can have greater impact on phenotypes than individual genes. Results We propose to redress the deficiency by formulating the functional study of biological networks as a control problem of dynamical systems. We developed mathematical methods to study the stability, the controllability, and the steady-state behaviour, as well as the transient responses of biological networks under different environmental perturbations. We applied our framework to three real-world datasets: the SOS DNA repair network in E. coli under different dosages of radiation, the GSH redox cycle in mice lung exposed to either poisonous air or normal air, and the MAPK pathway in mammalian cell lines exposed to three types of HIV type I Vpr, a wild type and two mutant types; and we found that the three genetic networks exhibited fundamentally different dynamical properties in normal and abnormal cells. Conclusion Difference in stability, relative stability, degrees of controllability, and transient responses between normal and abnormal cells means considerable difference in dynamical behaviours and different functioning of cells. Therefore differential dynamical properties can be a valuable tool in biomedical research. PMID:18221557

  10. Protein design for pathway engineering

    SciTech Connect

    Eriksen, DT; Lian, JZ; Zhao, HM

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. (C) 2013 Elsevier Inc. All rights reserved.

  11. Protein Design for Pathway Engineering

    PubMed Central

    Eriksen, Dawn T.; Lian, Jiazhang; Zhao, Huimin

    2013-01-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. PMID:23558037

  12. Protein design for pathway engineering.

    PubMed

    Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds.

  13. PATHWAYS OF MEDICAL PROGRESS.

    PubMed

    Wiggers, C J

    1940-01-12

    During the three decades that have passed, medical science has ascended to a high plateau of achievement. The climb has involved several pathways; among them: (1) the physiological approach toward disease as experiments which nature performs on organisms, (2) the more intelligent interpretation of the functional reactions of the body in disease in accordance with latest discoveries in physiology, (3) the supplementation of observable phenomena through use of laboratory instruments, (4) the assumption of active investigation both on patients and experimental animals by clinicians themselves, (5) the shuttling of problems between clinical and experimental laboratories and (6) correlated research in clinical and physiological departments. As we look down from the heights we have reached, we have reason to be pleased with our progress; but when we look ahead we become aware that there are still high mountain ranges to be climbed. We realize that their ascent can not be accomplished by employing merely the methods, equipment and strategy that have proved successful so far; we must improve the application of principles that are old and well established, and evolve others that are new. Above all, we from laboratories and clinics must join hands to help each other climb; and through correlated team-work overcome the great obstacles that jealous nature places in our way. I have ventured to suggest a few directions which such mutual help may take. They include (1) means by which new fundamental discoveries can be utilized more quickly by clinicians and practitioners of medicine; (2) plans by which younger clinical investigators can be given approximately the same opportunity for training in research technique as their colleagues entering experimental sciences; (3) pleas that the shuttling of problems between hospitals and laboratories of fundamental science may continue in order that the ultimate significance of clinical results may be better understood and that the

  14. The phosphoinositide 3-kinase pathway.

    PubMed

    Cantley, Lewis C

    2002-05-31

    Phosphorylated lipids are produced at cellular membranes during signaling events and contribute to the recruitment and activation of various signaling components. The role of phosphoinositide 3-kinase (PI3K), which catalyzes the production of phosphatidylinositol-3,4,5-trisphosphate, in cell survival pathways; the regulation of gene expression and cell metabolism; and cytoskeletal rearrangements are highlighted. The PI3K pathway is implicated in human diseases including diabetes and cancer, and understanding the intricacies of this pathway may provide new avenues for therapuetic intervention.

  15. Nutrient Sensing Mechanisms and Pathways

    PubMed Central

    Efeyan, Alejo; Comb, William C.; Sabatini, David M.

    2015-01-01

    PREFACE The ability to sense and respond to fluctuations in environmental nutrient levels is a requisite for life. Nutrient scarcity is a selective pressure that has shaped the evolution of most cellular processes. Different pathways that detect intracellular and extracellular levels of sugars, amino acids and lipids, and surrogate metabolites, are then integrated and coordinated at the organismal level via hormonal signals. During food abundance, nutrient sensing pathways engage anabolism and storage, and scarcity triggers homeostatic mechanisms, like the mobilization of internal stores through mechanisms such as autophagy. Nutrient sensing pathways are commonly deregulated in human metabolic diseases. PMID:25592535

  16. THE PATHWAY OF ARSENIC METABLISM

    EPA Science Inventory

    The Pathway of Arsenic Methylation

    David J. Thomas, Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC

    Understanding ...

  17. Pathway Design, Engineering, and Optimization.

    PubMed

    Garcia-Ruiz, Eva; HamediRad, Mohammad; Zhao, Huimin

    2016-09-16

    The microbial metabolic versatility found in nature has inspired scientists to create microorganisms capable of producing value-added compounds. Many endeavors have been made to transfer and/or combine pathways, existing or even engineered enzymes with new function to tractable microorganisms to generate new metabolic routes for drug, biofuel, and specialty chemical production. However, the success of these pathways can be impeded by different complications from an inherent failure of the pathway to cell perturbations. Pursuing ways to overcome these shortcomings, a wide variety of strategies have been developed. This chapter will review the computational algorithms and experimental tools used to design efficient metabolic routes, and construct and optimize biochemical pathways to produce chemicals of high interest.

  18. Session on computation in biological pathways

    SciTech Connect

    Karp, P.D.; Riley, M.

    1996-12-31

    The papers in this session focus on the development of pathway databases and computational tools for pathway analysis. The discussion involves existing databases of sequenced genomes, as well as techniques for studying regulatory pathways.

  19. SRNL ALL-PATHWAYS APPLICATION

    SciTech Connect

    Koffman, L; Elmer Wilhite, E; Leonard Collard, L

    2007-05-29

    The Environmental Analysis and Performance Modeling group of Savannah River National Laboratory (SRNL) performs performance assessments of the Savannah River Site (SRS) low-level waste facilities to meet the requirements of DOE Order 435.1. One of the performance objectives in the DOE Order is that the radiological dose to representative members of the public shall not exceed 25 mrem in a year total effective dose equivalent from all exposure pathways, excluding radon. Analysis to meet this performance objective is generally referred to as all-pathways analysis. SRNL performs detailed transient groundwater transport analysis for the waste disposal units, which has been used as input for the groundwater part of all-pathways analysis. The desire to better integrate all-pathways analysis with the groundwater transport analysis lead to the development of a software application named the SRNL All-Pathways Application. Another requirement of DOE Order 435.1 is to assess the impact of nuclear waste disposal on water resources, which SRS has interpreted for groundwater protection as meeting the EPA regulations for radionuclides in drinking water. EPA specifies four separate criteria as part of their implementation guidance for radionuclides, which are specified as maximum contaminant levels (MCL). (1) Beta/gamma emitters have a combined dose limit of 4 mrem/year. (2) Alpha emitters have a combined concentration limit of 15 pCi/L (called gross alpha), excluding uranium and radon, but including radium-226. (3) Combined radium-226 and radium-228 have a concentration limit of 5 pCi/L. (4) Isotopes of uranium have a combined concentration limit of 30 {micro}g/L. The All-Pathways Application was designed to be an easy-to-use software application that utilizes transient concentration results from groundwater transport analysis to (1) calculate the groundwater part of all-pathways dose and to (2) evaluate the four EPA criteria for groundwater protection.

  20. A biosynthetic pathway for anandamide

    PubMed Central

    Liu, Jie; Wang, Lei; Harvey-White, Judith; Osei-Hyiaman, Douglas; Razdan, Raj; Gong, Qian; Chan, Andrew C.; Zhou, Zhifeng; Huang, Bill X.; Kim, Hee-Yong; Kunos, George

    2006-01-01

    The endocannabinoid arachidonoyl ethanolamine (anandamide) is a lipid transmitter synthesized and released “on demand” by neurons in the brain. Anandamide is also generated by macrophages where its endotoxin (LPS)-induced synthesis has been implicated in the hypotension of septic shock and advanced liver cirrhosis. Anandamide can be generated from its membrane precursor, N-arachidonoyl phosphatidylethanolamine (NAPE) through cleavage by a phospholipase D (NAPE–PLD). Here we document a biosynthetic pathway for anandamide in mouse brain and RAW264.7 macrophages that involves the phospholipase C (PLC)-catalyzed cleavage of NAPE to generate a lipid, phosphoanandamide, which is subsequently dephosphorylated by phosphatases, including PTPN22, previously described as a protein tyrosine phosphatase. Bacterial endotoxin (LPS)-induced synthesis of anandamide in macrophages is mediated exclusively by the PLC/phosphatase pathway, which is up-regulated by LPS, whereas NAPE–PLD is down-regulated by LPS and functions as a salvage pathway of anandamide synthesis when the PLC/phosphatase pathway is compromised. Both PTPN22 and endocannabinoids have been implicated in autoimmune diseases, suggesting that the PLC/phosphatase pathway of anandamide synthesis may be a pharmacotherapeutic target. PMID:16938887

  1. LXR signaling pathways and atherosclerosis

    PubMed Central

    Calkin, Anna; Tontonoz, Peter

    2010-01-01

    First discovered as orphan receptors, liver X receptors (LXRs) were subsequently identified as the nuclear receptor target of the cholesterol metabolites, oxysterols.1 There are 2 LXR receptors encoded by distinct genes: LXRα is most highly expressed in the liver, adipose, kidney, adrenal tissues and macrophages, and LXRβ is ubiquitously expressed. Despite differential tissue distribution, these isoforms have 78% homology in their ligand-binding domain and appear to respond to the same endogenous ligands. Work over the past 10 years has shown that the LXR pathway regulates lipid metabolism and inflammation via both the induction and repression of target genes. Given the importance of cholesterol regulation and inflammation in the development of cardiovascular disease, it is not surprising that activation of the LXR pathway attenuates various mechanisms underlying atherosclerotic plaque development.2 In this minireview we will discuss the impact of the LXR pathway on both cholesterol metabolism and atherosclerosis. PMID:20631351

  2. Molecular pathways of angiogenesis inhibition

    SciTech Connect

    Tabruyn, Sebastien P.; Griffioen, Arjan W. . E-mail: aw.griffioen@path.unimaas.nl

    2007-03-30

    A large body of evidence now demonstrates that angiostatic therapy represents a promising way to fight cancer. This research recently resulted in the approval of First angiostatic agent for clinical treatment of cancer. Progress has been achieved in decrypting the cellular signaling in endothelial cells induced by angiostatic agents. These agents predominantly interfere with the molecular pathways involved in migration, proliferation and endothelial cell survival. In the current review, these pathways are discussed. A thorough understanding of the mechanism of action of angiostatic agents is required to develop efficient anti-tumor therapies.

  3. [Pathways of flowering regulation in plants].

    PubMed

    Liu, Yongping; Yang, Jing; Yang, Mingfeng

    2015-11-01

    Flowering, the floral transition from vegetative growth to reproductive growth, is induced by diverse endogenous and exogenous cues, such as photoperiod, temperature, hormones and age. Precise flowering time is critical to plant growth and evolution of species. The numerous renewal molecular and genetic results have revealed five flowering time pathways, including classical photoperiod pathway, vernalization pathway, autonomous pathway, gibberellins (GA) pathway and newly identified age pathway. These pathways take on relatively independent role, and involve extensive crosstalks and feedback loops. This review describes the complicated regulatory network of this floral transition to understand the molecular mechanism of flowering and provide references for further research in more plants.

  4. Multiple Pathways for All Students

    ERIC Educational Resources Information Center

    Stirling, Lee Anna

    2012-01-01

    Maine has been focusing on the importance of postsecondary training. Maine's Skowhegan Area High School (SAHS) and Somerset Career and Technical Center (SCTC) have partnered in a Multiple Pathways initiative (funded by the Nellie Mae Education Foundation) to increase students' high school completion rate and to increase enrollment in postsecondary…

  5. Rapid prototype extruded conductive pathways

    SciTech Connect

    Bobbitt, III, John T.

    2016-06-21

    A process of producing electrically conductive pathways within additively manufactured parts and similar parts made by plastic extrusion nozzles. The process allows for a three-dimensional part having both conductive and non-conductive portions and allows for such parts to be manufactured in a single production step.

  6. Loco signaling pathway in longevity.

    PubMed

    Lin, Yuh-Ru; Parikh, Hardik; Park, Yongkyu

    2011-05-01

    Despite the various roles of regulator of G protein signaling (RGS) protein in the G protein signaling pathway that have been defined, the function of RGS has not been characterized in longevity signaling pathways. We found that reduced expression of Loco, a Drosophila RGS protein, resulted in a longer lifespan of flies with stronger resistance to stress, higher MnSOD activity and increased fat content. In contrast, overexpression of the loco gene shortened the fly lifespan significantly, lowered stress resistance and reduced fat content, also indicating that the RGS domain containing GTPase-activating protein (GAP) activity is related to the regulation of longevity. Interestingly, expressional changes of yeast RGS2 and rat RGS14, homologs to the fly Loco, also affected oxidative stress resistance and longevity in the respective species. It is known that Loco inactivates inhibitory Gαi•GTP protein to reduce activity of adenylate cyclase (AC) and RGS14 interacts with activated H-Ras and Raf-1 kinases, which subsequently inhibits ERK phosphorylation. We propose that Loco/RGS14 protein may regulate stress resistance and longevity as an activator in AC-cAMP-PKA pathway and/or as a molecular scaffold that sequesters active Ras and Raf from Ras•GTP-Raf-MEK-ERK signaling pathway. Consistently, our data showed that downregulation of Loco significantly diminishes cAMP amounts and increases p-ERK levels with higher resistance to the oxidative stress.

  7. Career Technical Education Pathways Initiative

    ERIC Educational Resources Information Center

    California Community Colleges, Chancellor's Office, 2013

    2013-01-01

    California's education system--the largest in the United States--is an essential resource for ensuring strong economic growth in the state. The Career Technical Education Pathways Initiative (referred to as the Initiative in this report), which became law in 2005, brings together community colleges, K-12 school districts, employers, organized…

  8. Solvents and vapor intrusion pathways.

    PubMed

    Phillips, Scott D; Krieger, Gary R; Palmer, Robert B; Waksman, Javier C

    2004-08-01

    Vapor intrusion must be recognized appropriately as a separate pathway of contamination. Although many issues resemble those of other forms of contamination (particularly its entryway, which is similar to that of radon seepage), vapor intrusion stands apart as a unique risk requiring case-specific action. This article addresses these issues and the current understanding of the most appropriate and successful remedial actions.

  9. Overskilling Dynamics and Education Pathways

    ERIC Educational Resources Information Center

    Mavromaras, Kostas; McGuinness, Seamus

    2012-01-01

    This paper uses panel data and econometric methods to estimate the incidence and the dynamic properties of overskilling among employed individuals. The paper begins by asking whether there is extensive overskilling in the labour market, and whether overskilling differs by education pathway. The answer to both questions is yes. The paper continues…

  10. The Oxylipin Pathway in Arabidopsis

    PubMed Central

    Creelman, Robert A.; Mulpuri, Rao

    2002-01-01

    Oxylipins are acyclic or cyclic oxidation products derived from the catabolism of fatty acids which regulate many defense and developmental pathways in plants. The dramatic increase in the volume of publications and reviews on these compounds since 1997 documents the increasing interest in this compound and its role in plants. Research on this topic has solidified our understanding of the chemistry and biosynthetic pathways for oxylipin production. However, more information is still needed on how free fatty acids are produced and the role of beta-oxidation in the biosynthetic pathway for oxylipins. It is also becoming apparent that oxylipin content and composition changes during growth and development and during pathogen or insect attack. Oxylipins such as jasmonic acid (JA) or 12-oxo-phytodienoic acid modulate the expression of numerous genes and influence specific aspects of plant growth, development and responses to abiotic and biotic stresses. Although oxylipins are believed to act alone, several examples were presented to illustrate that JA-induced responses are modulated by the type and the nature of crosstalk with other signaling molecules such as ethylene and salicylic acid. How oxylipins cause changes in gene expression and instigate a physiological response is becoming understood with the isolation of mutations in both positive and negative regulators in the jasmonate signaling pathway and the use of cDNA microarrays. PMID:22303193

  11. Auditory pathways: anatomy and physiology.

    PubMed

    Pickles, James O

    2015-01-01

    This chapter outlines the anatomy and physiology of the auditory pathways. After a brief analysis of the external, middle ears, and cochlea, the responses of auditory nerve fibers are described. The central nervous system is analyzed in more detail. A scheme is provided to help understand the complex and multiple auditory pathways running through the brainstem. The multiple pathways are based on the need to preserve accurate timing while extracting complex spectral patterns in the auditory input. The auditory nerve fibers branch to give two pathways, a ventral sound-localizing stream, and a dorsal mainly pattern recognition stream, which innervate the different divisions of the cochlear nucleus. The outputs of the two streams, with their two types of analysis, are progressively combined in the inferior colliculus and onwards, to produce the representation of what can be called the "auditory objects" in the external world. The progressive extraction of critical features in the auditory stimulus in the different levels of the central auditory system, from cochlear nucleus to auditory cortex, is described. In addition, the auditory centrifugal system, running from cortex in multiple stages to the organ of Corti of the cochlea, is described.

  12. Capstone Design Project Course Pathways

    ERIC Educational Resources Information Center

    Eppes, Tom A.; Milanovic, Ivana

    2011-01-01

    Capstones are open-ended undertakings where students are expected to creatively analyze, synthesize, and apply a wide-variety of learning outcomes from prior coursework. This paper discusses the structure, approach and evolution of the capstone project pathways within our College. Specifically two programs, MET and EET, have adopted different…

  13. Multiple pathways regulate shoot branching

    PubMed Central

    Rameau, Catherine; Bertheloot, Jessica; Leduc, Nathalie; Andrieu, Bruno; Foucher, Fabrice; Sakr, Soulaiman

    2015-01-01

    Shoot branching patterns result from the spatio-temporal regulation of axillary bud outgrowth. Numerous endogenous, developmental and environmental factors are integrated at the bud and plant levels to determine numbers of growing shoots. Multiple pathways that converge to common integrators are most probably involved. We propose several pathways involving not only the classical hormones auxin, cytokinins and strigolactones, but also other signals with a strong influence on shoot branching such as gibberellins, sugars or molecular actors of plant phase transition. We also deal with recent findings about the molecular mechanisms and the pathway involved in the response to shade as an example of an environmental signal controlling branching. We propose the TEOSINTE BRANCHED1, CYCLOIDEA, PCF transcription factor TB1/BRC1 and the polar auxin transport stream in the stem as possible integrators of these pathways. We finally discuss how modeling can help to represent this highly dynamic system by articulating knowledges and hypothesis and calculating the phenotype properties they imply. PMID:25628627

  14. The oxylipin pathway in Arabidopsis.

    PubMed

    Creelman, Robert A; Mulpuri, Rao

    2002-01-01

    Oxylipins are acyclic or cyclic oxidation products derived from the catabolism of fatty acids which regulate many defense and developmental pathways in plants. The dramatic increase in the volume of publications and reviews on these compounds since 1997 documents the increasing interest in this compound and its role in plants. Research on this topic has solidified our understanding of the chemistry and biosynthetic pathways for oxylipin production. However, more information is still needed on how free fatty acids are produced and the role of beta-oxidation in the biosynthetic pathway for oxylipins. It is also becoming apparent that oxylipin content and composition changes during growth and development and during pathogen or insect attack. Oxylipins such as jasmonic acid (JA) or 12-oxo-phytodienoic acid modulate the expression of numerous genes and influence specific aspects of plant growth, development and responses to abiotic and biotic stresses. Although oxylipins are believed to act alone, several examples were presented to illustrate that JA-induced responses are modulated by the type and the nature of crosstalk with other signaling molecules such as ethylene and salicylic acid. How oxylipins cause changes in gene expression and instigate a physiological response is becoming understood with the isolation of mutations in both positive and negative regulators in the jasmonate signaling pathway and the use of cDNA microarrays.

  15. Reverse Engineering Adverse Outcome Pathways

    SciTech Connect

    Perkins, Edward; Chipman, J.K.; Edwards, Stephen; Habib, Tanwir; Falciani, Francesco; Taylor, Ronald C.; Van Aggelen, Graham; Vulpe, Chris; Antczak, Philipp; Loguinov, Alexandre

    2011-01-30

    The toxicological effects of many stressors are mediated through unknown, or poorly characterized, mechanisms of action. We describe the application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, metabolic, signaling) to characterize adverse outcome pathways (AOPs) for chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis in fathead minnows. Gene expression changes in fathead minnow ovaries in response to 7 different chemicals, over different times, doses, and in vivo versus in vitro conditions were captured in a large data set of 868 arrays. We examined potential AOPs of the antiandrogen flutamide using two mutual information theory methods, ARACNE and CLR to infer gene regulatory networks and potential adverse outcome pathways. Representative networks from these studies were used to predict a network path from stressor to adverse outcome as a candidate AOP. The relationship of individual chemicals to an adverse outcome can be determined by following perturbations through the network in response to chemical treatment leading to the nodes associated with the adverse outcome. Identification of candidate pathways allows for formation of testable hypotheses about key biologic processes, biomarkers or alternative endpoints, which could be used to monitor an adverse outcome pathway. Finally, we identify the unique challenges facing the application of this approach in ecotoxicology, and attempt to provide a road map for the utilization of these tools. Key Words: mechanism of action, toxicology, microarray, network inference

  16. Two-Electron Transfer Pathways.

    PubMed

    Lin, Jiaxing; Balamurugan, D; Zhang, Peng; Skourtis, Spiros S; Beratan, David N

    2015-06-18

    The frontiers of electron-transfer chemistry demand that we develop theoretical frameworks to describe the delivery of multiple electrons, atoms, and ions in molecular systems. When electrons move over long distances through high barriers, where the probability for thermal population of oxidized or reduced bridge-localized states is very small, the electrons will tunnel from the donor (D) to acceptor (A), facilitated by bridge-mediated superexchange interactions. If the stable donor and acceptor redox states on D and A differ by two electrons, it is possible that the electrons will propagate coherently from D to A. While structure-function relations for single-electron superexchange in molecules are well established, strategies to manipulate the coherent flow of multiple electrons are largely unknown. In contrast to one-electron superexchange, two-electron superexchange involves both one- and two-electron virtual intermediate states, the number of virtual intermediates increases very rapidly with system size, and multiple classes of pathways interfere with one another. In the study described here, we developed simple superexchange models for two-electron transfer. We explored how the bridge structure and energetics influence multielectron superexchange, and we compared two-electron superexchange interactions to single-electron superexchange. Multielectron superexchange introduces interference between singly and doubly oxidized (or reduced) bridge virtual states, so that even simple linear donor-bridge-acceptor systems have pathway topologies that resemble those seen for one-electron superexchange through bridges with multiple parallel pathways. The simple model systems studied here exhibit a richness that is amenable to experimental exploration by manipulating the multiple pathways, pathway crosstalk, and changes in the number of donor and acceptor species. The features that emerge from these studies may assist in developing new strategies to deliver multiple

  17. Comparative pharmacological investigations of Allium ursinum and Allium sativum.

    PubMed

    Sendl, A; Elbl, G; Steinke, B; Redl, K; Breu, W; Wagner, H

    1992-02-01

    Extracts of wild garlic (Allium ursinum) and garlic (A. sativum) with defined chemical compositions were investigated for their in vitro inhibitory potential on 5-lipoxygenase (LO), cyclooxygenase (CO), thrombocyte aggregation (TA), and angiotensin I-converting enzyme (ACE). The inhibition rates as IC50 values of both extracts for 5-LO, CO, and TA showed a good correlation with the %-content of the major S-containing compounds (thiosulfinates and ajoenes) of the various extracts. In the 5-LO and CO test the garlic extracts are slightly superior to the wild garlic extracts whereas, in the TA test, no differences could be found. In the ACE test the water extract of the leaves of wild garlic containing glutamyl-peptides showed the highest inhibitory activity followed by that of the garlic leaf and the bulbs of both drugs. The comparative studies underline the usefulness of wild garlic as a substitute of garlic.

  18. Caffeic Acid Phenethyl Ester and Its Amide Analogue Are Potent Inhibitors of Leukotriene Biosynthesis in Human Polymorphonuclear Leukocytes

    PubMed Central

    Boudreau, Luc H.; Maillet, Jacques; LeBlanc, Luc M.; Jean-François, Jacques; Touaibia, Mohamed; Flamand, Nicolas; Surette, Marc E.

    2012-01-01

    Background 5-lipoxygenase (5-LO) catalyses the transformation of arachidonic acid (AA) into leukotrienes (LTs), which are important lipid mediators of inflammation. LTs have been directly implicated in inflammatory diseases like asthma, atherosclerosis and rheumatoid arthritis; therefore inhibition of LT biosynthesis is a strategy for the treatment of these chronic diseases. Methodology/Principal Findings Analogues of caffeic acid, including the naturally-occurring caffeic acid phenethyl ester (CAPE), were synthesized and evaluated for their capacity to inhibit 5-LO and LTs biosynthesis in human polymorphonuclear leukocytes (PMNL) and whole blood. Anti-free radical and anti-oxidant activities of the compounds were also measured. Caffeic acid did not inhibit 5-LO activity or LT biosynthesis at concentrations up to 10 µM. CAPE inhibited 5-LO activity (IC50 0.13 µM, 95% CI 0.08–0.23 µM) more effectively than the clinically-approved 5-LO inhibitor zileuton (IC50 3.5 µM, 95% CI 2.3–5.4 µM). CAPE was also more effective than zileuton for the inhibition of LT biosynthesis in PMNL but the compounds were equipotent in whole blood. The activity of the amide analogue of CAPE was similar to that of zileuton. Inhibition of LT biosynthesis by CAPE was the result of the inhibition of 5-LO and of AA release. Caffeic acid, CAPE and its amide analog were free radical scavengers and antioxidants with IC50 values in the low µM range; however, the phenethyl moiety of CAPE was required for effective inhibition of 5-LO and LT biosynthesis. Conclusions CAPE is a potent LT biosynthesis inhibitor that blocks 5-LO activity and AA release. The CAPE structure can be used as a framework for the rational design of stable and potent inhibitors of LT biosynthesis. PMID:22347509

  19. Hydrogen sulfide in signaling pathways.

    PubMed

    Olas, Beata

    2015-01-15

    For a long time hydrogen sulfide (H₂S) was considered a toxic compound, but recently H₂S (at low concentrations) has been found to play an important function in physiological processes. Hydrogen sulfide, like other well-known compounds - nitric oxide (NO) and carbon monoxide (CO) is a gaseous intracellular signal transducer. It regulates the cell cycle, apoptosis and the oxidative stress. Moreover, its functions include neuromodulation, regulation of cardiovascular system and inflammation. In this review, I focus on the metabolism of hydrogen sulfide (including enzymatic pathways of H₂S synthesis from l- and d-cysteine) and its signaling pathways in the cardiovascular system and the nervous system. I also describe how hydrogen sulfide may be used as therapeutic agent, i.e. in the cardiovascular diseases.

  20. Signaling Pathways in Cartilage Repair

    PubMed Central

    Mariani, Erminia; Pulsatelli, Lia; Facchini, Andrea

    2014-01-01

    In adult healthy cartilage, chondrocytes are in a quiescent phase characterized by a fine balance between anabolic and catabolic activities. In ageing, degenerative joint diseases and traumatic injuries of cartilage, a loss of homeostatic conditions and an up-regulation of catabolic pathways occur. Since cartilage differentiation and maintenance of homeostasis are finely tuned by a complex network of signaling molecules and biophysical factors, shedding light on these mechanisms appears to be extremely relevant for both the identification of pathogenic key factors, as specific therapeutic targets, and the development of biological approaches for cartilage regeneration. This review will focus on the main signaling pathways that can activate cellular and molecular processes, regulating the functional behavior of cartilage in both physiological and pathological conditions. These networks may be relevant in the crosstalk among joint compartments and increased knowledge in this field may lead to the development of more effective strategies for inducing cartilage repair. PMID:24837833

  1. Signaling on the endocytic pathway.

    PubMed

    McPherson, P S; Kay, B K; Hussain, N K

    2001-06-01

    Ligand binding to receptor tyrosine kinases and G-protein-coupled receptors initiates signal transduction events and induces receptor endocytosis via clathrin-coated pits and vesicles. While receptor-mediated endocytosis has been traditionally considered an effective mechanism to attenuate ligand-activated responses, more recent studies demonstrate that signaling continues on the endocytic pathway. In fact, certain signaling events, such as the activation of the extracellular signal-regulated kinases, appear to require endocytosis. Protein components of signal transduction cascades can assemble at clathrin coated pits and remain associated with endocytic vesicles following their dynamin-dependent release from the plasma membrane. Thus, endocytic vesicles can function as a signaling compartment distinct from the plasma membrane. These observations demonstrate that endocytosis plays an important role in the activation and propagation of signaling pathways.

  2. Fundamental reaction pathways during coprocessing

    SciTech Connect

    Stock, L.M.; Gatsis, J.G. . Dept. of Chemistry)

    1992-12-01

    The objective of this research was to investigate the fundamental reaction pathways in coal petroleum residuum coprocessing. Once the reaction pathways are defined, further efforts can be directed at improving those aspects of the chemistry of coprocessing that are responsible for the desired results such as high oil yields, low dihydrogen consumption, and mild reaction conditions. We decided to carry out this investigation by looking at four basic aspects of coprocessing: (1) the effect of fossil fuel materials on promoting reactions essential to coprocessing such as hydrogen atom transfer, carbon-carbon bond scission, and hydrodemethylation; (2) the effect of varied mild conditions on the coprocessing reactions; (3) determination of dihydrogen uptake and utilization under severe conditions as a function of the coal or petroleum residuum employed; and (4) the effect of varied dihydrogen pressure, temperature, and residence time on the uptake and utilization of dihydrogen and on the distribution of the coprocessed products. Accomplishments are described.

  3. Acylcarnitines activate proinflammatory signaling pathways.

    PubMed

    Rutkowsky, Jennifer M; Knotts, Trina A; Ono-Moore, Kikumi D; McCoin, Colin S; Huang, Shurong; Schneider, Dina; Singh, Shamsher; Adams, Sean H; Hwang, Daniel H

    2014-06-15

    Incomplete β-oxidation of fatty acids in mitochondria is a feature of insulin resistance and type 2 diabetes mellitus (T2DM). Previous studies revealed that plasma concentrations of medium- and long-chain acylcarnitines (by-products of incomplete β-oxidation) are elevated in T2DM and insulin resistance. In a previous study, we reported that mixed D,L isomers of C12- or C14-carnitine induced an NF-κB-luciferase reporter gene in RAW 264.7 cells, suggesting potential activation of proinflammatory pathways. Here, we determined whether the physiologically relevant L-acylcarnitines activate classical proinflammatory signaling pathways and if these outcomes involve pattern recognition receptor (PRR)-associated pathways. Acylcarnitines induced the expression of cyclooxygenase-2 in a chain length-dependent manner in RAW 264.7 cells. L-C14 carnitine (5-25 μM), used as a representative acylcarnitine, stimulated the expression and secretion of proinflammatory cytokines in a dose-dependent manner. Furthermore, L-C14 carnitine induced phosphorylation of JNK and ERK, common downstream components of many proinflammatory signaling pathways including PRRs. Knockdown of MyD88, a key cofactor in PRR signaling and inflammation, blunted the proinflammatory effects of acylcarnitine. While these results point to potential involvement of PRRs, L-C14 carnitine promoted IL-8 secretion from human epithelial cells (HCT-116) lacking Toll-like receptors (TLR)2 and -4, and did not activate reporter constructs in TLR overexpression cell models. Thus, acylcarnitines have the potential to activate inflammation, but the specific molecular and tissue target(s) involved remain to be identified.

  4. Acylcarnitines activate proinflammatory signaling pathways

    PubMed Central

    Rutkowsky, Jennifer M.; Knotts, Trina A.; Ono-Moore, Kikumi D.; McCoin, Colin S.; Huang, Shurong; Schneider, Dina; Singh, Shamsher; Hwang, Daniel H.

    2014-01-01

    Incomplete β-oxidation of fatty acids in mitochondria is a feature of insulin resistance and type 2 diabetes mellitus (T2DM). Previous studies revealed that plasma concentrations of medium- and long-chain acylcarnitines (by-products of incomplete β-oxidation) are elevated in T2DM and insulin resistance. In a previous study, we reported that mixed d,l isomers of C12- or C14-carnitine induced an NF-κB-luciferase reporter gene in RAW 264.7 cells, suggesting potential activation of proinflammatory pathways. Here, we determined whether the physiologically relevant l-acylcarnitines activate classical proinflammatory signaling pathways and if these outcomes involve pattern recognition receptor (PRR)-associated pathways. Acylcarnitines induced the expression of cyclooxygenase-2 in a chain length-dependent manner in RAW 264.7 cells. l-C14 carnitine (5–25 μM), used as a representative acylcarnitine, stimulated the expression and secretion of proinflammatory cytokines in a dose-dependent manner. Furthermore, l-C14 carnitine induced phosphorylation of JNK and ERK, common downstream components of many proinflammatory signaling pathways including PRRs. Knockdown of MyD88, a key cofactor in PRR signaling and inflammation, blunted the proinflammatory effects of acylcarnitine. While these results point to potential involvement of PRRs, l-C14 carnitine promoted IL-8 secretion from human epithelial cells (HCT-116) lacking Toll-like receptors (TLR)2 and -4, and did not activate reporter constructs in TLR overexpression cell models. Thus, acylcarnitines have the potential to activate inflammation, but the specific molecular and tissue target(s) involved remain to be identified. PMID:24760988

  5. Imbalanced kynurenine pathway in schizophrenia.

    PubMed

    Kegel, Magdalena E; Bhat, Maria; Skogh, Elisabeth; Samuelsson, Martin; Lundberg, Kristina; Dahl, Marja-Liisa; Sellgren, Carl; Schwieler, Lilly; Engberg, Göran; Schuppe-Koistinen, Ina; Erhardt, Sophie

    2014-01-01

    Several studies suggest a role for kynurenic acid (KYNA) in the pathophysiology of schizophrenia. It has been proposed that increased brain KYNA levels in schizophrenia result from a pathological shift in the kynurenine pathway toward enhanced KYNA formation, away from the other branch of the pathway leading to quinolinic acid (QUIN). Here we investigate the levels of QUIN in cerebrospinal fluid (CSF) of patients with schizophrenia and healthy controls, and relate those to CSF levels of KYNA and other kynurenine metabolites from the same individuals. CSF QUIN levels from stable outpatients treated with olanzapine (n = 22) and those of controls (n = 26) were analyzed using liquid chromatography-mass spectrometry. No difference in CSF QUIN levels between patients and controls was observed (20.6 ± 1.5 nM vs. 18.2 ± 1.1 nM, P = 0.36). CSF QUIN was positively correlated to CSF kynurenine and CSF KYNA in patients but not in controls. The CSF QUIN/KYNA ratio was lower in patients than in controls (P = 0.027). In summary, the present study offers support for an over-activated and imbalanced kynurenine pathway, favoring the production of KYNA over QUIN in patients with schizophrenia.

  6. Identification of Metabolic Pathway Systems

    PubMed Central

    Dolatshahi, Sepideh; Voit, Eberhard O.

    2016-01-01

    The estimation of parameters in even moderately large biological systems is a significant challenge. This challenge is greatly exacerbated if the mathematical formats of appropriate process descriptions are unknown. To address this challenge, the method of dynamic flux estimation (DFE) was proposed for the analysis of metabolic time series data. Under ideal conditions, the first phase of DFE yields numerical representations of all fluxes within a metabolic pathway system, either as values at each time point or as plots against their substrates and modulators. However, this numerical result does not reveal the mathematical format of each flux. Thus, the second phase of DFE selects functional formats that are consistent with the numerical trends obtained from the first phase. While greatly facilitating metabolic data analysis, DFE is only directly applicable if the pathway system contains as many dependent variables as fluxes. Because most actual systems contain more fluxes than metabolite pools, this requirement is seldom satisfied. Auxiliary methods have been proposed to alleviate this issue, but they are not general. Here we propose strategies that extend DFE toward general, slightly underdetermined pathway systems. PMID:26904095

  7. Differential pathway network analysis used to identify key pathways associated with pediatric pneumonia.

    PubMed

    Yang, Jun-Bo; Luo, Rong; Yan, Yan; Chen, Yan

    2016-12-01

    We aimed to identify key pathways to further explore the molecular mechanism underlying pediatric pneumonia using differential pathway network which integrated protein-protein interactions (PPI) data and pathway information. PPI data and pathway information were obtained from STRING and Reactome database, respectively. Next, pathway interactions were identified on the basis of constructing gene-gene interactions randomly, and a weight value computed using Spearman correlation coefficient was assigned to each pathway-pathway interaction, thereby to further detect differential pathway interactions. Subsequently, construction of differential pathway network was implemented using Cytoscope, following by network clustering analysis using ClusterONE. Finally, topological analysis for differential pathway network was performed to identify hub pathway which had top 5% degree distribution. Significantly, 901 pathways were identified to construct pathway interactions. After discarding the pathway interactions with weight value < 1.2, a differential pathway network was constructed, which contained 499 interactions and 347 pathways. Topological analysis showed 17 hub pathways (FGFR1 fusion mutants, molecules associated with elastic fibres, FGFR1 mutant receptor activation, and so on) were identified. Significantly, signaling by FGFR1 fusion mutants and FGFR1 mutant receptor activation simultaneously appeared in two clusters. Molecules associated with elastic fibres existed in one cluster. Accordingly, differential pathway network method might serve as a predictive tool to help us to further understand the development of pediatric pneumonia. FGFR1 fusion mutants, FGFR1 mutant receptor activation, and molecules associated with elastic fibres might play important roles in the progression of pediatric pneumonia.

  8. Certification Criteria for Linked Learning Pathways

    ERIC Educational Resources Information Center

    ConnectEd: The California Center for College and Career, 2010

    2010-01-01

    Pathways offer a promising strategy for transforming high schools and improving student outcomes. However, to achieve these desired results, pathways must be of high quality. To guide sites in planning and implementing such pathways, a design team of experts developed the criteria outlined in this document. Sites can choose to go through a…

  9. Pharmacology of intracellular signalling pathways

    PubMed Central

    Nahorski, Stefan R

    2006-01-01

    This article provides a brief and somewhat personalized review of the dramatic developments that have occurred over the last 45 years in our understanding of intracellular signalling pathways associated with G-protein-coupled receptor activation. Signalling via cyclic AMP, the phosphoinositides and Ca2+ is emphasized and these systems have already been revealed as new pharmacological targets. The therapeutic benefits of most of such targets are, however, yet to be realized, but it is certain that the discipline of pharmacology needs to widen its boundaries to meet these challenges in the future. PMID:16402119

  10. WikiPathways App for Cytoscape: Making biological pathways amenable to network analysis and visualization.

    PubMed

    Kutmon, Martina; Lotia, Samad; Evelo, Chris T; Pico, Alexander R

    2014-01-01

    In this paper we present the open-source WikiPathways app for Cytoscape ( http://apps.cytoscape.org/apps/wikipathways) that can be used to import biological pathways for data visualization and network analysis. WikiPathways is an open, collaborative biological pathway database that provides fully annotated pathway diagrams for manual download or through web services. The WikiPathways app allows users to load pathways in two different views: as an annotated pathway ideal for data visualization and as a simple network to perform computational analysis. An example pathway and dataset are used to demonstrate the functionality of the WikiPathways app and how they can be combined and used together with other apps. More than 3000 downloads in the first 12 months following its release in August 2013 highlight the importance and adoption of the app in the network biology field.

  11. Combustion kinetics and reaction pathways

    SciTech Connect

    Klemm, R.B.; Sutherland, J.W.

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  12. Pathway parameter and thermonuclear functions

    NASA Astrophysics Data System (ADS)

    Mathai, A. M.; Haubold, H. J.

    2008-04-01

    In the theory of thermonuclear reaction rates, analytical evaluation of thermonuclear functions for non-resonant reactions, including cases with cut-off and depletion of the tail of the Maxwell-Boltzmann distribution function were considered in a series of papers by Mathai and Haubold [A.M. Mathai, H.J. Haubold, Modern Problems in Nuclear and Neutrino Astrophysics, Akademie-Verlag, Berlin, 1988]. In the present paper we study more general classes of thermonuclear functions by introducing a pathway parameter α, so that when α→1 the thermonuclear functions in the Maxwell-Boltzmannian case are recovered. We will also give interpretations for the pathway parameter α in the case of cut-off and in terms of moments. Non-extensive statistical mechanics, as developed by Tsallis [C. Tsallis, What should a statistical mechanics satisfy to reflect nature? Physica D 193 (2004) 3-34], provides the physical basis for the generalized thermonuclear functions considered in this paper.

  13. Reverse engineering adverse outcome pathways.

    PubMed

    Perkins, Edward J; Chipman, J Kevin; Edwards, Stephen; Habib, Tanwir; Falciani, Francesco; Taylor, Ronald; Van Aggelen, Graham; Vulpe, Chris; Antczak, Philipp; Loguinov, Alexandre

    2011-01-01

    The toxicological effects of many stressors are mediated through unknown, or incompletely characterized, mechanisms of action. The application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, metabolic, signaling) can be used to overcome these limitations. This approach was used to characterize adverse outcome pathways (AOPs) for chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis in fathead minnows (FHM, Pimephales promelas). Gene expression changes in FHM ovaries in response to seven different chemicals, over different times, doses, and in vivo versus in vitro conditions, were captured in a large data set of 868 arrays. Potential AOPs of the antiandrogen flutamide were examined using two mutual information-based methods to infer gene regulatory networks and potential AOPs. Representative networks from these studies were used to predict network paths from stressor to adverse outcome as candidate AOPs. The relationship of individual chemicals to an adverse outcome can be determined by following perturbations through the network in response to chemical treatment, thus leading to the nodes associated with the adverse outcome. Identification of candidate pathways allows for formation of testable hypotheses about key biological processes, biomarkers, or alternative endpoints that can be used to monitor an AOP. Finally, the unique challenges facing the application of this approach in ecotoxicology were identified and a road map for the utilization of these tools presented.

  14. Central neural pathways for thermoregulation

    PubMed Central

    Morrison, Shaun F.; Nakamura, Kazuhiro

    2010-01-01

    Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction. PMID:21196160

  15. Exploring Biological Electron Transfer Pathway Dynamics with the Pathways Plugin for VMD

    PubMed Central

    Balabin, Ilya A.; Hu, Xiangqian; Beratan, David N.

    2012-01-01

    We describe the new Pathways plugin for the molecular visualization program VMD. The plugin identifies and visualizes tunneling pathways and pathway families in biomolecules and calculates relative electronic couplings. The plugin includes unique features to estimate the importance of individual atoms for mediating the coupling, to analyze the coupling sensitivity to thermal motion, and to visualize pathway fluctuations. The Pathways plugin is open source software distributed under the terms of the GNU public license. PMID:22298319

  16. Fluid pathways in subduction zones

    NASA Astrophysics Data System (ADS)

    Spiegelman, M. W.; van Keken, P. E.; Hacker, B. R.

    2009-12-01

    A large amount of water captured in the oceanic crust and mantle is recycled in subduction zones. Upon compaction and heating most fluids are expelled, but a significant amount of water can be carried in hydrated mineral phases and point defects. While the qualitative role of volatiles and dehydration reactions is well appreciated in the mechanisms for intermediate depth seismicity, mantle wedge melting and arc volcanism, the quantitative details of the metamorphic reactions and the pathways of fluids and melts in the slab are poorly understood. We provide finite element models, combined with thermodynamic and mineralogical constraints, to estimate the water release and migration from the subducting slab to overlying arc. We use models from a selection of warm (e.g., Cascadia), cold (Central Honshu) and intermediate (Nicaragua) subduction zones, using slab geometries constrained from seismological observations. The fluid release is predicted from the breakdown of hydrated phases in sediments, oceanic crust and slab mantle. We use newly developed high resolution models for the flow of these released fluids that take into account permeability and compaction pressures. While the detailed structure depends on the chosen rheology and permeability, we find that for reasonable assumptions of permeability, a significant amount of fluids can travel through the wedge along nearly vertical pathways at rates and paths, consistent with geochronological and geochemical constraints. For models considered to date, we find that the principal source of fluids that feed the wedge come from the hydrated oceanic crust and particularly the hydrated slab mantle. Fluids released from the sediments and shallow crust, tend to travel along high permeability zones in the subducting slab before being released to hydrate the cold corner of subduction zones, suggesting that the cold and hydrated forearc region that is imaged in many subduction zones is maintained by an active hydrological cycle

  17. Transneuronal pathways to the vestibulocerebellum

    NASA Technical Reports Server (NTRS)

    Kaufman, G. D.; Mustari, M. J.; Miselis, R. R.; Perachio, A. A.

    1996-01-01

    The alpha-herpes virus (pseudorabies, PRV) was used to observe central nervous system (CNS) pathways associated with the vestibulocerebellar system. Retrograde transneuronal migration of alpha-herpes virions from specific lobules of the gerbil and rat vestibulo-cerebellar cortex was detected immunohistochemically. Using a time series analysis, progression of infection along polyneuronal cerebellar afferent pathways was examined. Pressure injections of > 20 nanoliters of a 10(8) plaque forming units (pfu) per ml solution of virus were sufficient to initiate an infectious locus which resulted in labeled neurons in the inferior olivary subnuclei, vestibular nuclei, and their afferent cell groups in a progressive temporal fashion and in growing complexity with increasing incubation time. We show that climbing fibers and some other cerebellar afferent fibers transported the virus retrogradely from the cerebellum within 24 hours. One to three days after cerebellar infection discrete cell groups were labeled and appropriate laterality within crossed projections was preserved. Subsequent nuclei labeled with PRV after infection of the flocculus/paraflocculus, or nodulus/uvula, included the following: vestibular (e.g., z) and inferior olivary nuclei (e.g., dorsal cap), accessory oculomotor (e.g., Darkschewitsch n.) and accessory optic related nuclei, (e.g., the nucleus of the optic tract, and the medial terminal nucleus); noradrenergic, raphe, and reticular cell groups (e.g., locus coeruleus, dorsal raphe, raphe pontis, and the lateral reticular tract); other vestibulocerebellum sites, the periaqueductal gray, substantia nigra, hippocampus, thalamus and hypothalamus, amygdala, septal nuclei, and the frontal, cingulate, entorhinal, perirhinal, and insular cortices. However, there were differences in the resulting labeling between infection in either region. Double-labeling experiments revealed that vestibular efferent neurons are located adjacent to, but are not included

  18. Biosynthetic Pathways of Ergot Alkaloids

    PubMed Central

    Gerhards, Nina; Neubauer, Lisa; Tudzynski, Paul; Li, Shu-Ming

    2014-01-01

    Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines). All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine). Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes. PMID:25513893

  19. Pathways towards ferroelectricity in hafnia

    NASA Astrophysics Data System (ADS)

    Huan, Tran Doan; Sharma, Vinit; Rossetti, George A.; Ramprasad, Rampi

    2014-08-01

    The question of whether one can systematically identify (previously unknown) ferroelectric phases of a given material is addressed, taking hafnia (HfO2) as an example. Low free energy phases at various pressures and temperatures are identified using a first-principles based structure search algorithm. Ferroelectric phases are then recognized by exploiting group theoretical principles for the symmetry-allowed displacive transitions between nonpolar and polar phases. Two orthorhombic polar phases occurring in space groups Pca21 and Pmn21 are singled out as the most viable ferroelectric phases of hafnia, as they display low free energies (relative to known nonpolar phases), and substantial switchable spontaneous electric polarization. These results provide an explanation for the recently observed surprising ferroelectric behavior of hafnia, and reveal pathways for stabilizing ferroelectric phases of hafnia as well as other compounds.

  20. Pathways in dental public health.

    PubMed

    Silverstein, Steven J

    2005-07-01

    Dental public health is one of the nine specialties of dentistry recognized by the American Dental Association Commission on Dental Accreditation. Dental public health has been defined as the "science and art of preventing and controlling dental diseases and promoting dental health through organized community efforts. It is that form of dental practice which serves the community as a patient rather than as an individual. It is concerned with the dental health education of the public, with applied dental research, and with the administration of group dental care programs as well as the prevention and control of dental diseases on a community basis." This article will describe the many career and educational pathways dentists may follow to become irvolved in the practice of dental public health.

  1. Signalling pathways in pemphigus vulgaris.

    PubMed

    Li, Xiaoguang; Ishii, Norito; Ohata, Chika; Furumura, Minao; Hashimoto, Takashi

    2014-03-01

    Acantholysis in pemphigus vulgaris is induced by binding of autoantibodies to desmoglein 3 (Dsg3). The roles of signalling pathways on development of acantholysis have recently been extensively studied. In the study by Sayar et al., recently published in Exp Dermatol, epidermal growth factor receptor (EGFR) signalling was activated in both in vivo and in vitro pemphigus vulgaris experimental models. However, while EGFR inhibitors suppressed activity of p38 mitogen-activated protein kinase (p38MAPK) linearly, they suppressed activity of c-Myc and acantholysis in a non-linear, V-shaped relationship. These findings indicated complicated interactions among EGFR, p38MAPK and c-Myc in pemphigus vulgaris pathology.

  2. Pathways to Breast Cancer Recurrence

    PubMed Central

    2013-01-01

    Breast cancer remains a deadly disease, even with all the recent technological advancements. Early intervention has made an impact, but an overwhelmingly large number of breast cancer patients still live under the fear of “recurrent” disease. Breast cancer recurrence is clinically a huge problem and one that is largely not well understood. Over the years, a number of factors have been studied with an overarching aim of being able to prognose recurrent disease. This paper attempts to provide an overview of our current knowledge of breast cancer recurrence and its associated challenges. Through a survey of the literature on cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), various signaling pathways such as Notch/Wnt/hedgehog, and microRNAs (miRNAs), we also examine the hypotheses that are currently under investigation for the prevention of breast cancer recurrence. PMID:23533807

  3. Asparagine Metabolic Pathways in Arabidopsis.

    PubMed

    Gaufichon, Laure; Rothstein, Steven J; Suzuki, Akira

    2016-04-01

    Inorganic nitrogen in the form of ammonium is assimilated into asparagine via multiple steps involving glutamine synthetase (GS), glutamate synthase (GOGAT), aspartate aminotransferase (AspAT) and asparagine synthetase (AS) in Arabidopsis. The asparagine amide group is liberated by the reaction catalyzed by asparaginase (ASPG) and also the amino group of asparagine is released by asparagine aminotransferase (AsnAT) for use in the biosynthesis of amino acids. Asparagine plays a primary role in nitrogen recycling, storage and transport in developing and germinating seeds, as well as in vegetative and senescence organs. A small multigene family encodes isoenzymes of each step of asparagine metabolism in Arabidopsis, except for asparagine aminotransferase encoded by a single gene. The aim of this study is to highlight the structure of the genes and encoded enzyme proteins involved in asparagine metabolic pathways; the regulation and role of different isogenes; and kinetic and physiological properties of encoded enzymes in different tissues and developmental stages.

  4. Fuel Dependence of Benzene Pathways

    SciTech Connect

    Zhang, H; Eddings, E; Sarofim, A; Westbrook, C

    2008-07-14

    The relative importance of formation pathways for benzene, an important precursor to soot formation, was determined from the simulation of 22 premixed flames for a wide range of equivalence ratios (1.0 to 3.06), fuels (C{sub 1}-C{sub 12}), and pressures (20 to 760 torr). The maximum benzene concentrations in 15 out of these flames were well reproduced within 30% of the experimental data. Fuel structural properties were found to be critical for benzene production. Cyclohexanes and C{sub 3} and C{sub 4} fuels were found to be among the most productive in benzene formation; and long-chain normal paraffins produce the least amount of benzene. Other properties, such as equivalence ratio and combustion temperatures, were also found to be important in determining the amount of benzene produced in flames. Reaction pathways for benzene formation were examined critically in four premixed flames of structurally different fuels of acetylene, n-decane, butadiene, and cyclohexane. Reactions involving precursors, such as C{sub 3} and C{sub 4} species, were examined. Combination reactions of C{sub 3} species were identified to be the major benzene formation routes with the exception of the cyclohexane flame, in which benzene is formed exclusively from cascading fuel dehydrogenation via cyclohexene and cyclohexadiene intermediates. Acetylene addition makes a minor contribution to benzene formation, except in the butadiene flame where C{sub 4}H{sub 5} radicals are produced directly from the fuel, and in the n-decane flame where C{sub 4}H{sub 5} radicals are produced from large alkyl radical decomposition and H atom abstraction from the resulting large olefins.

  5. Changing Arctic Ocean freshwater pathways.

    PubMed

    Morison, James; Kwok, Ron; Peralta-Ferriz, Cecilia; Alkire, Matt; Rigor, Ignatius; Andersen, Roger; Steele, Mike

    2012-01-04

    Freshening in the Canada basin of the Arctic Ocean began in the 1990s and continued to at least the end of 2008. By then, the Arctic Ocean might have gained four times as much fresh water as comprised the Great Salinity Anomaly of the 1970s, raising the spectre of slowing global ocean circulation. Freshening has been attributed to increased sea ice melting and contributions from runoff, but a leading explanation has been a strengthening of the Beaufort High--a characteristic peak in sea level atmospheric pressure--which tends to accelerate an anticyclonic (clockwise) wind pattern causing convergence of fresh surface water. Limited observations have made this explanation difficult to verify, and observations of increasing freshwater content under a weakened Beaufort High suggest that other factors must be affecting freshwater content. Here we use observations to show that during a time of record reductions in ice extent from 2005 to 2008, the dominant freshwater content changes were an increase in the Canada basin balanced by a decrease in the Eurasian basin. Observations are drawn from satellite data (sea surface height and ocean-bottom pressure) and in situ data. The freshwater changes were due to a cyclonic (anticlockwise) shift in the ocean pathway of Eurasian runoff forced by strengthening of the west-to-east Northern Hemisphere atmospheric circulation characterized by an increased Arctic Oscillation index. Our results confirm that runoff is an important influence on the Arctic Ocean and establish that the spatial and temporal manifestations of the runoff pathways are modulated by the Arctic Oscillation, rather than the strength of the wind-driven Beaufort Gyre circulation.

  6. Folate metabolic pathways in Leishmania.

    PubMed

    Vickers, Tim J; Beverley, Stephen M

    2011-01-01

    Trypanosomatid parasitic protozoans of the genus Leishmania are autotrophic for both folate and unconjugated pteridines. Leishmania salvage these metabolites from their mammalian hosts and insect vectors through multiple transporters. Within the parasite, folates are reduced by a bifunctional DHFR (dihydrofolate reductase)-TS (thymidylate synthase) and by a novel PTR1 (pteridine reductase 1), which reduces both folates and unconjugated pteridines. PTR1 can act as a metabolic bypass of DHFR inhibition, reducing the effectiveness of existing antifolate drugs. Leishmania possess a reduced set of folate-dependent metabolic reactions and can salvage many of the key products of folate metabolism from their hosts. For example, they lack purine synthesis, which normally requires 10-formyltetrahydrofolate, and instead rely on a network of purine salvage enzymes. Leishmania elaborate at least three pathways for the synthesis of the key metabolite 5,10-methylene-tetrahydrofolate, required for the synthesis of thymidylate, and for 10-formyltetrahydrofolate, whose presumptive function is for methionyl-tRNAMet formylation required for mitochondrial protein synthesis. Genetic studies have shown that the synthesis of methionine using 5-methyltetrahydrofolate is dispensable, as is the activity of the glycine cleavage complex, probably due to redundancy with serine hydroxymethyltransferase. Although not always essential, the loss of several folate metabolic enzymes results in attenuation or loss of virulence in animal models, and a null DHFR-TS mutant has been used to induce protective immunity. The folate metabolic pathway provides numerous opportunities for targeted chemotherapy, with strong potential for 'repurposing' of compounds developed originally for treatment of human cancers or other infectious agents.

  7. A pathway to academic accreditation

    SciTech Connect

    Seitz, M.R.

    1994-09-01

    The pathways to successfully accrediting programs through a partnership with a local college can be convoluted and offer many dead ends. Those pathways can be made straighter and have fewer false starts by following a plan that has worked. Accreditation of courses and programs can add credibility and prestige to a program. The process can be facilitated by following a basic plan such as the one outlined. The discussion will track the preliminary activities that form the ground work for the beginning of the accreditation process through final approval by a college`s State Board of trustees or regents. On the road to approval, the packaging of courses for presentation, the formulation and composition of an advisory committee, the subsequent use of the advisors, presentation to the faculty committees, the presentation to the college`s governing board of trustees or regents, and final approval by the State Board are covered. An important benefit of accreditation is the formation of a partnership with the local college. Teaming with a local college to provide an accredited certificate in a field of employee training is an excellent opportunity to establish an educational partnership within the local community that will be of benefit to the participating entities. It also represents a training/retraining opportunity in direct support of the US Department of Energy`s current missions of partnership and localization. The accredited modules can be taught where appropriate by college personnel or loaned instructors from the work site. By using the company employees who are working with the topics covered in the modules, the courses are kept up-to-date.

  8. PathwayMatrix: visualizing binary relationships between proteins in biological pathways

    PubMed Central

    2015-01-01

    Background Molecular activation pathways are inherently complex, and understanding relations across many biochemical reactions and reaction types is difficult. Visualizing and analyzing a pathway is a challenge due to the network size and the diversity of relations between proteins and molecules. Results In this paper, we introduce PathwayMatrix, a visualization tool that presents the binary relations between proteins in the pathway via the use of an interactive adjacency matrix. We provide filtering, lensing, clustering, and brushing and linking capabilities in order to present relevant details about proteins within a pathway. Conclusions We evaluated PathwayMatrix by conducting a series of in-depth interviews with domain experts who provided positive feedback, leading us to believe that our visualization technique could be helpful for the larger community of researchers utilizing pathway visualizations. PathwayMatrix is freely available at https://github.com/CreativeCodingLab/PathwayMatrix. PMID:26361499

  9. Clathrin-Independent Pathways of Endocytosis

    PubMed Central

    Mayor, Satyajit; Parton, Robert G.; Donaldson, Julie G.

    2014-01-01

    There are many pathways of endocytosis at the cell surface that apparently operate at the same time. With the advent of new molecular genetic and imaging tools, an understanding of the different ways by which a cell may endocytose cargo is increasing by leaps and bounds. In this review we explore pathways of endocytosis that occur in the absence of clathrin. These are referred to as clathrin-independent endocytosis (CIE). Here we primarily focus on those pathways that function at the small scale in which some have distinct coats (caveolae) and others function in the absence of specific coated intermediates. We follow the trafficking itineraries of the material endocytosed by these pathways and finally discuss the functional roles that these pathways play in cell and tissue physiology. It is likely that these pathways will play key roles in the regulation of plasma membrane area and tension and also control the availability of membrane during cell migration. PMID:24890511

  10. Informatics approaches to understanding TGFβ pathway regulation

    PubMed Central

    Kahlem, Pascal; Newfeld, Stuart J.

    2009-01-01

    Summary In recent years, informatics studies have predicted several new ways in which the transforming growth factor β (TGFβ) signaling pathway can be post-translationally regulated. Subsequently, many of these predictions were experimentally validated. These approaches include phylogenetic predictions for the phosphorylation, sumoylation and ubiquitylation of pathway components, as well as kinetic models of endocytosis, phosphorylation and nucleo-cytoplasmic shuttling. We review these studies and provide a brief `how to' guide for phylogenetics. Our hope is to stimulate experimental tests of informatics-based predictions for TGFβ signaling, as well as for other signaling pathways, and to expand the number of developmental pathways that are being analyzed computationally. PMID:19855015

  11. Effects of PDT on the endocytic pathway

    NASA Astrophysics Data System (ADS)

    Kessel, David

    2010-02-01

    Two lines of evidence point to an early effect of photodamage on membrane trafficking. [1] Internalization of a fluorescent probe for hydrophobic membrane loci was impaired by prior photodamage. [2] Interference with the endocytic pathway by the PI-3 kinase antagonist wortmannin led to accumulation of cytoplasmic vacuoles suggesting a block in the recycling of plasma membrane components. Prior photodamage blocked this pathway so that no vacuoles were formed upon exposure of cells to wortmannin. In a murine hepatoma line, the endocytic pathway was preferentially sensitive to lysosomal photodamage. The role of photodamage to the endocytic pathway as a factor in PDT efficacy remains to be assessed.

  12. Pathway Cross-Talk Analysis in Detecting Significant Pathways in Barrett’s Esophagus Patients

    PubMed Central

    Xu, Zhengyuan; Yan, Yan; He, Jian; Shan, Xinfang; Wu, Weiguo

    2017-01-01

    Background The pathological mechanism of Barrett’s esophagus (BE) is still unclear. In the present study, pathway cross-talks were analyzed to identify hub pathways for BE, with the purpose of finding an efficient and cost-effective detection method to discover BE at its early stage and take steps to prevent its progression. Material/Methods We collected and preprocessed gene expression profile data, original pathway data, and protein-protein interaction (PPI) data. Then, we constructed a background pathway cross-talk network (BPCN) based on the original pathway data and PPI data, and a disease pathway cross-talk network (DPCN) based on the differential pathways between the PPI data and the BE and normal control. Finally, a comprehensive analysis was conducted on these 2 networks to identify hub pathway cross-talks for BE, so as to better understand the pathological mechanism of BE from the pathway level. Results A total of 12 411 genes, 300 pathways (6919 genes), and 787 896 PPI interactions (16 730 genes) were separately obtained from their own databases. Then, we constructed a BPCN with 300 nodes (42 293 interactions) and a DPCN with 296 nodes (15 073 interactions). We identified 4 hub pathways: AMP signaling pathway, cGMP-PKG signaling pathway, natural killer cell-mediated cytotoxicity, and osteoclast differentiation. We found that these pathways might play important roles during the occurrence and development of BE. Conclusions We predicted that these pathways (such as AMP signaling pathway and cAMP signaling pathway) could be used as potential biomarkers for early diagnosis and therapy of BE. PMID:28263955

  13. Photodegradation Pathways in Arid Ecosystems

    NASA Astrophysics Data System (ADS)

    King, J. Y.; Lin, Y.; Adair, E. C.; Brandt, L.; Carbone, M. S.

    2013-12-01

    Recent interest in improving our understanding of decomposition patterns in arid and semi-arid ecosystems and under potentially drier future conditions has led to a flurry of research related to abiotic degradation processes. Oxidation of organic matter by solar radiation (photodegradation) is one abiotic degradation process that contributes significantly to litter decomposition rates. Our meta-analysis results show that increasing solar radiation exposure corresponds to an average increase of 23% in litter mass loss rate with large variation among studies associated primarily with environmental and litter chemistry characteristics. Laboratory studies demonstrate that photodegradation results in CO2 emissions. Indirect estimates suggest that photodegradation could account for as much as 60% of ecosystem CO2 emissions from dry ecosystems, but these CO2 fluxes have not been measured in intact ecosystems. The current data suggest that photodegradation is important, not only for understanding decomposition patterns, but also for modeling organic matter turnover and ecosystem C cycling. However, the mechanisms by which photodegradation operates, along with their environmental and litter chemistry controls, are still poorly understood. Photodegradation can directly influence decomposition rates and ecosystem CO2 flux via photochemical mineralization. It can also indirectly influence biotic decomposition rates by facilitating microbial degradation through breakdown of more recalcitrant compounds into simpler substrates or by suppressing microbial activity directly. All of these pathways influence the decomposition process, but the relative importance of each is uncertain. Furthermore, a specific suite of controls regulates each of these pathways (e.g., environmental conditions such as temperature and relative humidity; physical environment such as canopy architecture and contact with soil; and litter chemistry characteristics such as lignin and cellulose content), and

  14. Two pathways ensuring social harmony

    NASA Astrophysics Data System (ADS)

    Konrad, Matthias; Pamminger, Tobias; Foitzik, Susanne

    2012-08-01

    Reproductive division of labour is a characteristic trait of social insects. The dominant reproductive individual, often the queen, uses chemical communication and/or behaviour to maintain her social status. Queens of many social insects communicate their fertility status via cuticle-bound substances. As these substances usually possess a low volatility, their range in queen-worker communication is potentially limited. Here, we investigate the range and impact of behavioural and chemical queen signals on workers of the ant Temnothorax longispinosus. We compared the behaviour and ovary development of workers subjected to three different treatments: workers with direct chemical and physical contact to the queen, those solely under the influence of volatile queen substances and those entirely separated from the queen. In addition to short-ranged queen signals preventing ovary development in workers, we discovered a novel secondary pathway influencing worker behaviour. Workers with no physical contact to the queen, but exposed to volatile substances, started to develop their ovaries, but did not change their behaviour compared to workers in direct contact to the queen. In contrast, workers in queen-separated groups showed both increased ovary development and aggressive dominance interactions. We conclude that T. longispinosus queens influence worker ovary development and behaviour via two independent signals, both ensuring social harmony within the colony.

  15. Inconsistent pathways of household waste

    SciTech Connect

    Dahlen, Lisa Aberg, Helena; Lagerkvist, Anders; Berg, Per E.O.

    2009-06-15

    The aim of this study was to provide policy-makers and waste management planners with information about how recycling programs affect the quantities of specific materials recycled and disposed of. Two questions were addressed: which factors influence household waste generation and pathways? and how reliable are official waste data? Household waste flows were studied in 35 Swedish municipalities, and a wide variation in the amount of waste per capita was observed. When evaluating the effect of different waste collection policies, it was found to be important to identify site-specific factors influencing waste generation. Eleven municipal variables were investigated in an attempt to explain the variation. The amount of household waste per resident was higher in populous municipalities and when net commuting was positive. Property-close collection of dry recyclables led to increased delivery of sorted metal, plastic and paper packaging. No difference was seen in the amount of separated recyclables per capita when weight-based billing for the collection of residual waste was applied, but the amount of residual waste was lower. Sixteen sources of error in official waste statistics were identified and the results of the study emphasize the importance of reliable waste generation and composition data to underpin waste management policies.

  16. Mass spectrometry-based proteomics identifies UPF1 as a critical gene expression regulator in MonoMac 6 cells.

    PubMed

    Ochs, Meike J; Ossipova, Elena; Oliynyk, Ganna; Steinhilber, Dieter; Suess, Beatrix; Jakobsson, Per-Johan

    2013-06-07

    5-Lipoxygenase (5-LO) catalyzes the two initial steps in the biosynthesis of leukotrienes, a group of inflammatory lipid mediators derived from arachidonic acid. Recently, we have demonstrated that 5-LO mRNA expression is regulated by alternative splicing and nonsense-mediated mRNA decay (NMD). In addition to this, 5-LO protein expression was reduced on translational level in UPF1 knockdown cells, suggesting that UPF1 has a positive influence on 5-LO translation. Therefore, a mass spectrometry-based proteomics study was performed to identify compartment-specific protein expression changes upon UPF1 knockdown in differentiated and undifferentiated MM6 cells. The proteomics analysis revealed that the knockdown of UPF1 results in numerous protein changes in the microsomal fraction (~21%) but not in the cytosolic fraction (<1%). The results suggest that UPF1 is a critical gene expression regulator in a compartment-specific way. During differentiation by TGFβ and calcitriol, the majority of UPF1 regulated proteins were adjusted to normal level. This indicates that the translational regulation by UPF1 can potentially be cell differentiation-dependent.

  17. Optic pathway degeneration in Japanese black cattle.

    PubMed

    Chiba, Shiori; Funato, Shingo; Horiuchi, Noriyuki; Matsumoto, Kotaro; Inokuma, Hisashi; Furuoka, Hidefumi; Kobayashi, Yoshiyasu

    2015-02-01

    Degeneration of the optic pathway has been reported in various animal species including cattle. We experienced a case of bilateral optic tract degeneration characterized by severe gliosis in a Japanese black cattle without any obvious visual defects. To evaluate the significance, pathological nature and pathogenesis of the lesions, we examined the optic pathway in 60 cattle (41 Japanese black, 13 Holstein and 6 crossbreed) with or without ocular abnormalities. None of these animals had optic canal stenosis. Degenerative changes with severe gliosis in the optic pathway, which includes the optic nerve, optic chiasm and optic tract, were only observed in 8 Japanese black cattle with or without ocular abnormalities. Furthermore, strong immunoreactivity of glial fibrillary acidic protein was observed in the retinal stratum opticum and ganglion cell layer in all 5 cattle in which the optic pathway lesions could be examined. As etiological research, we also examined whether the concentrations of vitamin A and vitamin B12 or bovine viral diarrhea virus (BVDV) infection was associated with optic pathway degeneration. However, our results suggested that the observed optic pathway degeneration was probably not caused by these factors. These facts indicate the presence of optic pathway degeneration characterized by severe gliosis that has never been reported in cattle without bilateral compressive lesions in the optic pathway or bilateral severe retinal atrophy.

  18. MP-Align: alignment of metabolic pathways

    PubMed Central

    2014-01-01

    Background Comparing the metabolic pathways of different species is useful for understanding metabolic functions and can help in studying diseases and engineering drugs. Several comparison techniques for metabolic pathways have been introduced in the literature as a first attempt in this direction. The approaches are based on some simplified representation of metabolic pathways and on a related definition of a similarity score (or distance measure) between two pathways. More recent comparative research focuses on alignment techniques that can identify similar parts between pathways. Results We propose a methodology for the pairwise comparison and alignment of metabolic pathways that aims at providing the largest conserved substructure of the pathways under consideration. The proposed methodology has been implemented in a tool called MP-Align, which has been used to perform several validation tests. The results showed that our similarity score makes it possible to discriminate between different domains and to reconstruct a meaningful phylogeny from metabolic data. The results further demonstrate that our alignment algorithm correctly identifies subpathways sharing a common biological function. Conclusion The results of the validation tests performed with MP-Align are encouraging. A comparison with another proposal in the literature showed that our alignment algorithm is particularly well-suited to finding the largest conserved subpathway of the pathways under examination. PMID:24886436

  19. Optic pathway degeneration in Japanese black cattle

    PubMed Central

    CHIBA, Shiori; FUNATO, Shingo; HORIUCHI, Noriyuki; MATSUMOTO, Kotaro; INOKUMA, Hisashi; FURUOKA, Hidefumi; KOBAYASHI, Yoshiyasu

    2014-01-01

    Degeneration of the optic pathway has been reported in various animal species including cattle. We experienced a case of bilateral optic tract degeneration characterized by severe gliosis in a Japanese black cattle without any obvious visual defects. To evaluate the significance, pathological nature and pathogenesis of the lesions, we examined the optic pathway in 60 cattle (41 Japanese black, 13 Holstein and 6 crossbreed) with or without ocular abnormalities. None of these animals had optic canal stenosis. Degenerative changes with severe gliosis in the optic pathway, which includes the optic nerve, optic chiasm and optic tract, were only observed in 8 Japanese black cattle with or without ocular abnormalities. Furthermore, strong immunoreactivity of glial fibrillary acidic protein was observed in the retinal stratum opticum and ganglion cell layer in all 5 cattle in which the optic pathway lesions could be examined. As etiological research, we also examined whether the concentrations of vitamin A and vitamin B12 or bovine viral diarrhea virus (BVDV) infection was associated with optic pathway degeneration. However, our results suggested that the observed optic pathway degeneration was probably not caused by these factors. These facts indicate the presence of optic pathway degeneration characterized by severe gliosis that has never been reported in cattle without bilateral compressive lesions in the optic pathway or bilateral severe retinal atrophy. PMID:25421501

  20. Fuel Pathway Integration Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The Fuel Pathway Integration Technical Team (FPITT) supports the U.S. DRIVE Partnership (the Partnership) in the identification and evaluation of implementation scenarios for fuel cell technology pathways, including hydrogen and fuel cell electric vehicles in the transportation sector, both during a transition period and in the long term.

  1. Modeling biochemical pathways in the gene ontology

    PubMed Central

    Hill, David P.; D’Eustachio, Peter; Berardini, Tanya Z.; Mungall, Christopher J.; Renedo, Nikolai; Blake, Judith A.

    2016-01-01

    The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis. The Gene Ontology (GO), representing Molecular Functions, Biological Processes and Cellular Components, incorporates many aspects of biological pathways within its ontological representations. Here we present a methodology for extending and refining the classes in the GO for more comprehensive, consistent and integrated representation of pathways, leveraging knowledge embedded in current pathway representations such as those in the Reactome Knowledgebase and MetaCyc. With carbohydrate metabolic pathways as a use case, we discuss how our representation supports the integration of variant pathway classes into a unified ontological structure that can be used for data comparison and analysis. PMID:27589964

  2. Women's Work Pathways Across the Life Course.

    PubMed

    Damaske, Sarah; Frech, Adrianne

    2016-04-01

    Despite numerous changes in women's employment in the latter half of the twentieth century, women's employment continues to be uneven and stalled. Drawing from data on women's weekly work hours in the National Longitudinal Survey of Youth (NLSY79), we identify significant inequality in women's labor force experiences across adulthood. We find two pathways of stable full-time work for women, three pathways of part-time employment, and a pathway of unpaid labor. A majority of women follow one of the two full-time work pathways, while fewer than 10% follow a pathway of unpaid labor. Our findings provide evidence of the lasting influence of work-family conflict and early socioeconomic advantages and disadvantages on women's work pathways. Indeed, race, poverty, educational attainment, and early family characteristics significantly shaped women's work careers. Work-family opportunities and constraints also were related to women's work hours, as were a woman's gendered beliefs and expectations. We conclude that women's employment pathways are a product of both their resources and changing social environment as well as individual agency. Significantly, we point to social stratification, gender ideologies, and work-family constraints, all working in concert, as key explanations for how women are "tracked" onto work pathways from an early age.

  3. Diversifying Carotenoid Biosynthetic Pathways by Directed Evolution

    PubMed Central

    Umeno, Daisuke; Tobias, Alexander V.; Arnold, Frances H.

    2005-01-01

    Microorganisms and plants synthesize a diverse array of natural products, many of which have proven indispensable to human health and well-being. Although many thousands of these have been characterized, the space of possible natural products—those that could be made biosynthetically—remains largely unexplored. For decades, this space has largely been the domain of chemists, who have synthesized scores of natural product analogs and have found many with improved or novel functions. New natural products have also been made in recombinant organisms, via engineered biosynthetic pathways. Recently, methods inspired by natural evolution have begun to be applied to the search for new natural products. These methods force pathways to evolve in convenient laboratory organisms, where the products of new pathways can be identified and characterized in high-throughput screening programs. Carotenoid biosynthetic pathways have served as a convenient experimental system with which to demonstrate these ideas. Researchers have mixed, matched, and mutated carotenoid biosynthetic enzymes and screened libraries of these “evolved” pathways for the emergence of new carotenoid products. This has led to dozens of new pathway products not previously known to be made by the assembled enzymes. These new products include whole families of carotenoids built from backbones not found in nature. This review details the strategies and specific methods that have been employed to generate new carotenoid biosynthetic pathways in the laboratory. The potential application of laboratory evolution to other biosynthetic pathways is also discussed. PMID:15755953

  4. Implementing Guided Pathways: Tips and Tools

    ERIC Educational Resources Information Center

    Bailey, Thomas; Jaggars, Shanna Smith; Jenkins, Davis

    2015-01-01

    A growing number of community colleges and four-year universities are seeking to improve student outcomes by redesigning academic programs and student support services following the guided pathways approach. These institutions are mapping out highly structured, educationally coherent program pathways for students to follow by starting with the end…

  5. "Which Pathway Am I?" Using a Game Approach to Teach Students about Biochemical Pathways

    ERIC Educational Resources Information Center

    Ooi, Beng Guat; Sanger, Michael J.

    2009-01-01

    This game was designed to provide students with an alternative way to learn biochemical pathways through an interactive approach. In this game, students worked in pairs to help each other identify pathways taped to each other's backs by asking simple "yes or no" questions related to these pathways. This exercise was conducted after the traditional…

  6. New developments in engineering plant metabolic pathways.

    PubMed

    Tatsis, Evangelos C; O'Connor, Sarah E

    2016-12-01

    Plants contain countless metabolic pathways that are responsible for the biosynthesis of complex metabolites. Armed with new tools in sequencing and bioinformatics, the genes that encode these plant biosynthetic pathways have become easier to discover, putting us in an excellent position to fully harness the wealth of compounds and biocatalysts (enzymes) that plants provide. For overproduction and isolation of high-value plant-derived chemicals, plant pathways can be reconstituted in heterologous hosts. Alternatively, plant pathways can be modified in the native producer to confer new properties to the plant, such as better biofuel production or enhanced nutritional value. This perspective highlights a range of examples that demonstrate how the metabolic pathways of plants can be successfully harnessed with a variety of metabolic engineering approaches.

  7. A thermosensory pathway that controls body temperature.

    PubMed

    Nakamura, Kazuhiro; Morrison, Shaun F

    2008-01-01

    Defending body temperature against environmental thermal challenges is one of the most fundamental homeostatic functions that are governed by the nervous system. Here we describe a somatosensory pathway that essentially constitutes the afferent arm of the thermoregulatory reflex that is triggered by cutaneous sensation of environmental temperature changes. Using in vivo electrophysiological and anatomical approaches in the rat, we found that lateral parabrachial neurons are pivotal in this pathway by glutamatergically transmitting cutaneous thermosensory signals received from spinal somatosensory neurons directly to the thermoregulatory command center, the preoptic area. This feedforward pathway mediates not only sympathetic and shivering thermogenic responses but also metabolic and cardiac responses to skin cooling challenges. Notably, this 'thermoregulatory afferent' pathway exists in parallel with the spinothalamocortical somatosensory pathway that mediates temperature perception. These findings make an important contribution to our understanding of both the somatosensory system and thermal homeostasis -- two mechanisms that are fundamental to the nervous system and to our survival.

  8. Methylerythritol Phosphate Pathway of Isoprenoid Biosynthesis

    PubMed Central

    Zhao, Lishan; Chang, Wei-chen; Xiao, Youli; Liu, Hung-wen; Liu, Pinghua

    2016-01-01

    Isoprenoids are a class of natural products with more than 50,000 members. All isoprenoids are constructed from two precursors, isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). Two of the most important discoveries in isoprenoid biosynthetic studies in recent years are the elucidation of a second isoprenoid biosynthetic pathway (the methylerythritol phosphate (MEP) pathway) and a modified mevalonate (MVA) pathway. In this review, mechanistic insights on the MEP pathway enzymes are summarized. Since many isoprenoids have important biological activities, the need to produce them in sufficient quantities for downstream research efforts or commercial application is apparent. Recent advances in both the MVA and MEP pathway-based synthetic biology efforts are also illustrated by reviewing the landmark work of artemisinic acid and taxadien-5α-ol production through microbial fermentations. PMID:23746261

  9. Pathways for virus assembly around nucleic acids

    PubMed Central

    Perlmutter, Jason D; Perkett, Matthew R

    2014-01-01

    Understanding the pathways by which viral capsid proteins assemble around their genomes could identify key intermediates as potential drug targets. In this work we use computer simulations to characterize assembly over a wide range of capsid protein-protein interaction strengths and solution ionic strengths. We find that assembly pathways can be categorized into two classes, in which intermediates are either predominantly ordered or disordered. Our results suggest that estimating the protein-protein and the protein-genome binding affinities may be sufficient to predict which pathway occurs. Furthermore, the calculated phase diagrams suggest that knowledge of the dominant assembly pathway and its relationship to control parameters could identify optimal strategies to thwart or redirect assembly to block infection. Finally, analysis of simulation trajectories suggests that the two classes of assembly pathways can be distinguished in single molecule fluorescence correlation spectroscopy or bulk time resolved small angle x-ray scattering experiments. PMID:25036288

  10. Pathway Analysis Incorporating Protein-Protein Interaction Networks Identified Candidate Pathways for the Seven Common Diseases

    PubMed Central

    Lin, Peng-Lin; Yu, Ya-Wen

    2016-01-01

    Pathway analysis has become popular as a secondary analysis strategy for genome-wide association studies (GWAS). Most of the current pathway analysis methods aggregate signals from the main effects of single nucleotide polymorphisms (SNPs) in genes within a pathway without considering the effects of gene-gene interactions. However, gene-gene interactions can also have critical effects on complex diseases. Protein-protein interaction (PPI) networks have been used to define gene pairs for the gene-gene interaction tests. Incorporating the PPI information to define gene pairs for interaction tests within pathways can increase the power for pathway-based association tests. We propose a pathway association test, which aggregates the interaction signals in PPI networks within a pathway, for GWAS with case-control samples. Gene size is properly considered in the test so that genes do not contribute more to the test statistic simply due to their size. Simulation studies were performed to verify that the method is a valid test and can have more power than other pathway association tests in the presence of gene-gene interactions within a pathway under different scenarios. We applied the test to the Wellcome Trust Case Control Consortium GWAS datasets for seven common diseases. The most significant pathway is the chaperones modulate interferon signaling pathway for Crohn’s disease (p-value = 0.0003). The pathway modulates interferon gamma, which induces the JAK/STAT pathway that is involved in Crohn’s disease. Several other pathways that have functional implications for the seven diseases were also identified. The proposed test based on gene-gene interaction signals in PPI networks can be used as a complementary tool to the current existing pathway analysis methods focusing on main effects of genes. An efficient software implementing the method is freely available at http://puppi.sourceforge.net. PMID:27622767

  11. AlzPathway: a comprehensive map of signaling pathways of Alzheimer’s disease

    PubMed Central

    2012-01-01

    Background Alzheimer’s disease (AD) is the most common cause of dementia among the elderly. To clarify pathogenesis of AD, thousands of reports have been accumulating. However, knowledge of signaling pathways in the field of AD has not been compiled as a database before. Description Here, we have constructed a publicly available pathway map called “AlzPathway” that comprehensively catalogs signaling pathways in the field of AD. We have collected and manually curated over 100 review articles related to AD, and have built an AD pathway map using CellDesigner. AlzPathway is currently composed of 1347 molecules and 1070 reactions in neuron, brain blood barrier, presynaptic, postsynaptic, astrocyte, and microglial cells and their cellular localizations. AlzPathway is available as both the SBML (Systems Biology Markup Language) map for CellDesigner and the high resolution image map. AlzPathway is also available as a web service (online map) based on Payao system, a community-based, collaborative web service platform for pathway model curation, enabling continuous updates by AD researchers. Conclusions AlzPathway is the first comprehensive map of intra, inter and extra cellular AD signaling pathways which can enable mechanistic deciphering of AD pathogenesis. The AlzPathway map is accessible at http://alzpathway.org/. PMID:22647208

  12. Targeting the TGFβ pathway for cancer therapy.

    PubMed

    Neuzillet, Cindy; Tijeras-Raballand, Annemilaï; Cohen, Romain; Cros, Jérôme; Faivre, Sandrine; Raymond, Eric; de Gramont, Armand

    2015-03-01

    The TGFβ signaling pathway has pleiotropic functions regulating cell growth, differentiation, apoptosis, motility and invasion, extracellular matrix production, angiogenesis, and immune response. TGFβ signaling deregulation is frequent in tumors and has crucial roles in tumor initiation, development and metastasis. TGFβ signaling inhibition is an emerging strategy for cancer therapy. The role of the TGFβ pathway as a tumor-promoter or suppressor at the cancer cell level is still a matter of debate, due to its differential effects at the early and late stages of carcinogenesis. In contrast, at the microenvironment level, the TGFβ pathway contributes to generate a favorable microenvironment for tumor growth and metastasis throughout all the steps of carcinogenesis. Then, targeting the TGFβ pathway in cancer may be considered primarily as a microenvironment-targeted strategy. In this review, we focus on the TGFβ pathway as a target for cancer therapy. In the first part, we provide a comprehensive overview of the roles played by this pathway and its deregulation in cancer, at the cancer cell and microenvironment levels. We go on to describe the preclinical and clinical results of pharmacological strategies to target the TGFβ pathway, with a highlight on the effects on tumor microenvironment. We then explore the perspectives to optimize TGFβ inhibition therapy in different tumor settings.

  13. Bioretrosynthetic construction of a didanosine biosynthetic pathway

    PubMed Central

    Birmingham, William R.; Starbird, Chrystal A.; Panosian, Timothy D.; Nannemann, David P.; Iverson, T. M.; Bachmann, Brian O.

    2014-01-01

    Concatenation of engineered biocatalysts into multistep pathways dramatically increases their utility, but development of generalizable assembly methods remains a significant challenge. Herein we evaluate ‘bioretrosynthesis’, which is an application of the retrograde evolution hypothesis, for biosynthetic pathway construction. To test bioretrosynthesis, we engineered a pathway for synthesis of the antiretroviral nucleoside analog didanosine (2,3-dideoxyinosine). Applying both directed evolution and structure-based approaches, we began pathway construction with a retro-extension from an engineered purine nucleoside phosphorylase and evolved 1,5-phosphopentomutase to accept the substrate 2,3-dideoxyribose 5-phosphate with a 700-fold change in substrate selectivity and 3-fold increased turnover in cell lysate. A subsequent retrograde pathway extension, via ribokinase engineering, resulted in a didanosine pathway with a 9,500-fold change in nucleoside production selectivity and 50-fold increase in didanosine production. Unexpectedly, the result of this bioretrosynthetic step was not a retro-extension from phosphopentomutase, but rather the discovery of a fortuitous pathway-shortening bypass via the engineered ribokinase. PMID:24657930

  14. Brain evolution by brain pathway duplication

    PubMed Central

    Chakraborty, Mukta; Jarvis, Erich D.

    2015-01-01

    Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits. PMID:26554045

  15. Driving and dementia: a clinical decision pathway

    PubMed Central

    Carter, Kirsty; Monaghan, Sophie; O'Brien, John; Teodorczuk, Andrew; Mosimann, Urs; Taylor, John-Paul

    2015-01-01

    Objective This study aimed to develop a pathway to bring together current UK legislation, good clinical practice and appropriate management strategies that could be applied across a range of healthcare settings. Methods The pathway was constructed by a multidisciplinary clinical team based in a busy Memory Assessment Service. A process of successive iteration was used to develop the pathway, with input and refinement provided via survey and small group meetings with individuals from a wide range of regional clinical networks and diverse clinical backgrounds as well as discussion with mobility centres and Forum of Mobility Centres, UK. Results We present a succinct clinical pathway for patients with dementia, which provides a decision-making framework for how health professionals across a range of disciplines deal with patients with dementia who drive. Conclusions By integrating the latest guidance from diverse roles within older people's health services and key experts in the field, the resulting pathway reflects up-to-date policy and encompasses differing perspectives and good practice. It is potentially a generalisable pathway that can be easily adaptable for use internationally, by replacing UK legislation for local regulations. A limitation of this pathway is that it does not address the concern of mild cognitive impairment and how this condition relates to driving safety. © 2014 The Authors. International Journal of Geriatric Psychiatry published by John Wiley & Sons, Ltd. PMID:24865643

  16. Glycolate Pathway in Algae 1

    PubMed Central

    Hess, J. L.; Tolbert, N. E.

    1967-01-01

    rather than from glycolate are consistent with the concept of an incomplete glycolate pathway in algae. PMID:6045296

  17. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect

    Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

  18. Role of care pathways in interprofessional teamwork.

    PubMed

    Scaria, Minimol Kulakkottu

    2016-08-24

    Cohesive interprofessional teamwork is essential to successful healthcare services. Interprofessional teamwork is the means by which different healthcare professionals - with diverse knowledge, skills and talents - collaborate to achieve a common goal. Several interventions are available to improve teamwork in the healthcare setting. This article explores the role of care pathways in improving interprofessional teamwork. Care pathways enhance teamwork by promoting coordination, collaboration, communication and decision making to achieve optimal healthcare outcomes. They result in improved staff knowledge, communication, documentation and interprofessional relations. Care pathways also contribute to patient-centred care and increase patient satisfaction.

  19. The Evolution of the Wnt Pathway

    PubMed Central

    Holstein, Thomas W.

    2012-01-01

    Wnt genes are important regulators of embryogenesis and cell differentiation in vertebrates and insects. New data revealed by comparative genomics have now shown that members of the Wnt signaling pathway can be found in all clades of metazoans, but not in fungi, plants, or unicellular eukaryotes. This article focuses on new data from recent genomic analyses of several basal metazoan organisms, providing evidence that the Wnt pathway was a primordial signaling pathway during evolution. The formation of a Wnt signaling center at the site of gastrulation was instrumental for the formation of a primary, anterior–posterior body axis, which can be traced throughout animal evolution. PMID:22751150

  20. The Notch pathway in colorectal cancer.

    PubMed

    Vinson, Kaitlyn E; George, Dennis C; Fender, Alexander W; Bertrand, Fred E; Sigounas, George

    2016-04-15

    Colorectal cancer (CRC) is the third leading cause of cancer death worldwide. It is also the third most common cancer diagnosis among men, and the second most common cancer diagnosis among women. Globally, CRC can account for nearly 694,000 annual deaths. It is widely appreciated that CRC is the result of dysregulated cellular pathways that promote an inappropriate stem-cell-like phenotype, apoptotic resistance, unchecked proliferation and metastatic spread. While no single pathway is responsible for all of these attributes, an array of recent studies suggests a pivotal role for abnormal Notch-1 signaling in CRC, in part due to interconnectivity of Notch with other pathways. This review will summarize recent evidence for a role of Notch signaling in CRC, will consider interconnectivity between Notch and other pathways involved in CRC and will discuss the possible utility of targeting Notch as a CRC therapeutic.

  1. Integrating motion and depth via parallel pathways

    PubMed Central

    Ponce, Carlos R; Lomber, Stephen G; Born, Richard T

    2008-01-01

    Processing of visual information is both parallel and hierarchical, with each visual area richly interconnected with other visual areas. An example of the parallel architecture of the primate visual system is the existence of two principal pathways providing input to the middle temporal visual area (MT): namely, a direct projection from striate cortex (V1), and a set of indirect projections that also originate in V1 but then relay through V2 and V3. Here we have reversibly inactivated the indirect pathways while recording from MT neurons and measuring eye movements in alert monkeys, a procedure that has enabled us to assess whether the two different input pathways are redundant or whether they carry different kinds of information. We find that this inactivation causes a disproportionate degradation of binocular disparity tuning relative to direction tuning in MT neurons, suggesting that the indirect pathways are important in the recovery of depth in three-dimensional scenes. PMID:18193039

  2. Modularized TGFbeta-Smad Signaling Pathway

    NASA Technical Reports Server (NTRS)

    Li, Yongfeng; Wang, M.; Carra, C.; Cucinotta, F. A.

    2011-01-01

    The Transforming Growth Factor beta (TGFbeta) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. It can be induced by several factors, including ionizing radiation. It is regulated by Smads in a negative feedback loop through promoting increases in the regulatory Smads in the cell nucleus, and subsequent expression of inhibitory Smad, Smad7 to form a ubiquitin ligase with Smurf targeting active TGF receptors for degradation. In this work, we proposed a mathematical model to study the radiation-induced Smad-regulated TGF signaling pathway. By modularization, we are able to analyze each module (subsystem) and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, along the TGF signaling pathway is discussed by mathematical analysis and numerical simulation.

  3. The TOR pathway comes of age.

    PubMed

    Stanfel, Monique N; Shamieh, Lara S; Kaeberlein, Matt; Kennedy, Brian K

    2009-10-01

    Studies in a variety of model organisms indicate that nutrient signaling is tightly coupled to longevity. In nutrient replete conditions, organisms develop, grow, and age quickly. When nutrients become sparse as with dietary restriction, growth and development decline, stress response pathways become induced and organisms live longer. Considerable effort has been devoted to understanding the molecular events mediating lifespan extension by dietary restriction. One central focus has been on nutrient-responsive signal transduction pathways including insulin/IGF-1, AMP kinase, protein kinase A and the TOR pathway. Here we describe the increasingly prominent links between TOR signaling and aging in invertebrates. Longevity studies in mammals are not published to date. Instead, we highlight studies in mouse models, which indicate that dampening the TOR pathway leads to widespread protection from an array of age-related diseases.

  4. The Wnt signaling pathway in cancer.

    PubMed

    Duchartre, Yann; Kim, Yong-Mi; Kahn, Michael

    2016-03-01

    The Wnt signaling pathway is critically involved in both the development and homeostasis of tissues via regulation of their endogenous stem cells. Aberrant Wnt signaling has been described as a key player in the initiation of and/or maintenance and development of many cancers, via affecting the behavior of Cancer Stem Cells (CSCs). CSCs are considered by most to be responsible for establishment of the tumor and also for disease relapse, as they possess inherent drug-resistance properties. The development of new therapeutic compounds targeting the Wnt signaling pathway promises new hope to eliminate CSCs and achieve cancer eradication. However, a major challenge resides in developing a strategy efficient enough to target the dysregulated Wnt pathway in CSCs, while being safe enough to not damage the normal somatic stem cell population required for tissue homeostasis and repair. Here we review recent therapeutic approaches to target the Wnt pathway and their clinical applications.

  5. Genetic dissection of cardiac growth control pathways

    NASA Technical Reports Server (NTRS)

    MacLellan, W. R.; Schneider, M. D.

    2000-01-01

    Cardiac muscle cells exhibit two related but distinct modes of growth that are highly regulated during development and disease. Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle irreversibly soon after birth, following which the predominant form of growth shifts from hyperplastic to hypertrophic. Much research has focused on identifying the candidate mitogens, hypertrophic agonists, and signaling pathways that mediate these processes in isolated cells. What drives the proliferative growth of embryonic myocardium in vivo and the mechanisms by which adult cardiac myocytes hypertrophy in vivo are less clear. Efforts to answer these questions have benefited from rapid progress made in techniques to manipulate the murine genome. Complementary technologies for gain- and loss-of-function now permit a mutational analysis of these growth control pathways in vivo in the intact heart. These studies have confirmed the importance of suspected pathways, have implicated unexpected pathways as well, and have led to new paradigms for the control of cardiac growth.

  6. Targeting RTK Signaling Pathways in Cancer

    PubMed Central

    Regad, Tarik

    2015-01-01

    The RAS/MAP kinase and the RAS/PI3K/AKT pathways play a key role in the regulation of proliferation, differentiation and survival. The induction of these pathways depends on Receptor Tyrosine Kinases (RTKs) that are activated upon ligand binding. In cancer, constitutive and aberrant activations of components of those pathways result in increased proliferation, survival and metastasis. For instance, mutations affecting RTKs, Ras, B-Raf, PI3K and AKT are common in perpetuating the malignancy of several types of cancers and from different tissue origins. Therefore, these signaling pathways became prime targets for cancer therapy. This review aims to provide an overview about the most frequently encountered mutations, the pathogenesis that results from such mutations and the known therapeutic strategies developed to counteract their aberrant functions. PMID:26404379

  7. Unique sugar metabolic pathways of bifidobacteria.

    PubMed

    Fushinobu, Shinya

    2010-01-01

    Bifidobacteria have many beneficial effects for human health. The gastrointestinal tract, where natural colonization of bifidobacteria occurs, is an environment poor in nutrition and oxygen. Therefore, bifidobacteria have many unique glycosidases, transporters, and metabolic enzymes for sugar fermentation to utilize diverse carbohydrates that are not absorbed by host humans and animals. They have a unique, effective central fermentative pathway called bifid shunt. Recently, a novel metabolic pathway that utilizes both human milk oligosaccharides and host glycoconjugates was found. The galacto-N-biose/lacto-N-biose I metabolic pathway plays a key role in colonization in the infant gastrointestinal tract. These pathways involve many unique enzymes and proteins. This review focuses on their molecular mechanisms, as revealed by biochemical and crystallographic studies.

  8. Cholangiocarcinoma: Molecular Pathways and Therapeutic Opportunities

    PubMed Central

    Rizvi, Sumera; Borad, Mitesh J.; Patel, Tushar; Gores, Gregory J.

    2015-01-01

    Cholangiocarcinoma (CCA) is an aggressive biliary tract malignancy with limited treatment options and low survival rates. Currently, there are no curative medical therapies for CCA. Recent advances have enhanced our understanding of the genetic basis of this disease, and elucidated therapeutically relevant targets. Therapeutic efforts in development are directed at several key pathways due to genetic aberrations including receptor tyrosine kinase pathways, mutant IDH enzymes, the PI3K-AKT-mTOR pathway, and chromatin remodeling networks. A highly desmoplastic, hypovascular stroma is characteristic of CCAs and recent work has highlighted the importance of targeting this pathway via stromal myofibroblast depletion. Future efforts should concentrate on combination therapies with action against the cancer cell and the surrounding tumor stroma. As the mutational landscape of CCA is being illuminated, molecular profiling of patient tumors will enable identification of specific mutations and the opportunity to offer directed, personalized treatment options. PMID:25369307

  9. Amygdalar vocalization pathways in the squirrel monkey.

    PubMed

    Jürgens, U

    1982-06-10

    In 22 squirrel monkeys (Saimiri sciureus) vocalization-eliciting electrodes were implanted into the amygdala and along the trajectory of the stria terminalis. Then, lesions were placed in the stria terminalis, its bed nucleus, the ventral amygdalofugal pathway and several di- and mesencephalic structures in order to find out the pathways along which the amygdala exerts its vocalization-controlling influence. It was found that different call types are controlled by different pathways. Purring and chattering calls, which express a self-confident, challenging attitude and an attempt to recruit fellow-combatants in intra-specific mobbing, respectively, are controlled via the stria terminalis; alarm peep and groaning calls, in contrast, which indicate flight motivation and resentment, respectively, are triggered via the ventral amygdalofugal fibre bundle. Both pathways traverse the dorsolateral and dorsomedial hypothalamus, respectively, and unite in the periaqueductal grey of the midbrain.

  10. Metabolic pathways in the apicoplast of apicomplexa.

    PubMed

    Seeber, Frank; Soldati-Favre, Dominique

    2010-01-01

    Intracellular parasites of the phylum Apicomplexa harbor a plastid-like organelle called apicoplast that is the most reduced organelle of this type known. Due to the medical importance of some members of Apicomplexa, a number of fully sequenced genomes are available that have allowed to assemble metabolic pathways also from the apicoplast and have revealed initial clues to its essential nature for parasite survival in the host. We provide a compilation of Internet resources useful to access, reconstruct, verify, or annotate metabolic pathways. Then we show detailed and updated metabolic maps and discuss the three major biosynthetic pathways leading to the generation of isoprenoids, fatty acids, and heme, and compare these routes in the different species. Moreover, several auxiliary pathways, like iron-sulfur cluster assembly, are covered and put into context with the major metabolic routes. Finally, we highlight some aspects that emerged from recent publications and were not discussed previously with regard to Apicomplexa.

  11. Molecular signalling pathways in canine gliomas.

    PubMed

    Boudreau, C E; York, D; Higgins, R J; LeCouteur, R A; Dickinson, P J

    2017-03-01

    In this study, we determined the expression of key signalling pathway proteins TP53, MDM2, P21, AKT, PTEN, RB1, P16, MTOR and MAPK in canine gliomas using western blotting. Protein expression was defined in three canine astrocytic glioma cell lines treated with CCNU, temozolamide or CPT-11 and was further evaluated in 22 spontaneous gliomas including high and low grade astrocytomas, high grade oligodendrogliomas and mixed oligoastrocytomas. Response to chemotherapeutic agents and cell survival were similar to that reported in human glioma cell lines. Alterations in expression of key human gliomagenesis pathway proteins were common in canine glioma tumour samples and segregated between oligodendroglial and astrocytic tumour types for some pathways. Both similarities and differences in protein expression were defined for canine gliomas compared to those reported in human tumour counterparts. The findings may inform more defined assessment of specific signalling pathways for targeted therapy of canine gliomas.

  12. Adverse Outcome Pathways: From Definition to Application

    EPA Science Inventory

    A challenge for both human health and ecological toxicologists is the transparent application of mechanistic (e.g., molecular, biochemical, histological) data to risk assessments. The adverse outcome pathway (AOP) is a conceptual framework designed to meet this need. Specifical...

  13. Pathway Model and Nonextensive Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Mathai, A. M.; Haubold, H. J.; Tsallis, C.

    2015-12-01

    The established technique of eliminating upper or lower parameters in a general hypergeometric series is profitably exploited to create pathways among confluent hypergeometric functions, binomial functions, Bessel functions, and exponential series. One such pathway, from the mathematical statistics point of view, results in distributions which naturally emerge within nonextensive statistical mechanics and Beck-Cohen superstatistics, as pursued in generalizations of Boltzmann-Gibbs statistics.

  14. A More Flexible Lipoprotein Sorting Pathway

    PubMed Central

    Chahales, Peter

    2015-01-01

    Lipoprotein biogenesis in Gram-negative bacteria occurs by a conserved pathway, each step of which is considered essential. In contrast to this model, LoVullo and colleagues demonstrate that the N-acyl transferase Lnt is not required in Francisella tularensis or Neisseria gonorrhoeae. This suggests the existence of a more flexible lipoprotein pathway, likely due to a modified Lol transporter complex, and raises the possibility that pathogens may regulate lipoprotein processing to modulate interactions with the host. PMID:25755190

  15. Pathway-based analysis of microarray and RNAseq data using Pathway Processor 2.0.

    PubMed

    Beltrame, Luca; Bianco, Luca; Fontana, Paolo; Cavalieri, Duccio

    2013-03-01

    The constant improvement of high-throughput technologies has led to a great increase in generated data per single experiment. Pathway analysis is a widespread method to understand experimental results at the system level. Pathway Processor 2.0 is an upgrade over the original Pathway Processor program developed in 2002, extended to support more species, analysis methods, and RNAseq data in addition to microarrays through a simple Web-based interface. The tool can perform two different types of analysis: the first covers the traditional Fisher's Test used by Pathway Processor and topology-aware analyses, which take into account the propagation of changes over the whole structure of a pathway, and the second is a new pathway-based method to investigate differences between phenotypes of interest. Common problems and troubleshooting are also discussed.

  16. Neural pathways for visual speech perception

    PubMed Central

    Bernstein, Lynne E.; Liebenthal, Einat

    2014-01-01

    This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody) can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns of activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1) The visual perception of speech relies on visual pathway representations of speech qua speech. (2) A proposed site of these representations, the temporal visual speech area (TVSA) has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS). (3) Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA. PMID:25520611

  17. Secondary Metabolic Pathway-Targeted Metabolomics

    PubMed Central

    Vizcaino, Maria I.; Crawford, Jason M.

    2016-01-01

    This chapter provides step-by-step methods for building secondary metabolic pathway-targeted molecular networks to assess microbial natural product biosynthesis at a systems level and to aid in downstream natural product discovery efforts. Methods described include high-resolution mass spectrometry (HRMS)-based comparative metabolomics, pathway-targeted tandem MS (MS/MS) molecular networking, and isotopic labeling for the elucidation of natural products encoded by orphan biosynthetic pathways. The metabolomics network workflow covers the following six points: (1) method development, (2) bacterial culture growth and organic extraction, (3) HRMS data acquisition and analysis, (4) pathway-targeted MS/MS data acquisition, (5) mass spectral network building, and (6) network enhancement. This chapter opens with a discussion on the practical considerations of natural product extraction, chromatographic processing, and enhanced detection of the analytes of interest within complex organic mixtures using liquid chromatography (LC)-HRMS. Next, we discuss the utilization of a chemometric platform, focusing on Agilent Mass Profiler Professional software, to run MS-based differential analysis between sample groups and controls to acquire a unique set of molecular features that are dependent on the presence of a secondary metabolic pathway. Using this unique list of molecular features, the chapter then details targeted MS/MS acquisition for subsequent pathway-dependent network clustering through the online Global Natural Products Social Molecular Networking (GnPS) platform. Genetic information, ionization intensities, isotopic labeling, and additional experimental data can be mapped onto the pathway-dependent network, facilitating systems biosynthesis analyses. The finished product will provide a working molecular network to assess experimental perturbations and guide novel natural product discoveries. PMID:26831709

  18. Signaling Pathways in Cardiac Myocyte Apoptosis

    PubMed Central

    Xia, Peng; Liu, Yuening

    2016-01-01

    Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation. PMID:28101515

  19. t4 workshop report: Pathways of Toxicity.

    PubMed

    Kleensang, Andre; Maertens, Alexandra; Rosenberg, Michael; Fitzpatrick, Suzanne; Lamb, Justin; Auerbach, Scott; Brennan, Richard; Crofton, Kevin M; Gordon, Ben; Fornace, Albert J; Gaido, Kevin; Gerhold, David; Haw, Robin; Henney, Adriano; Ma'ayan, Avi; McBride, Mary; Monti, Stefano; Ochs, Michael F; Pandey, Akhilesh; Sharan, Roded; Stierum, Rob; Tugendreich, Stuart; Willett, Catherine; Wittwehr, Clemens; Xia, Jianguo; Patton, Geoffrey W; Arvidson, Kirk; Bouhifd, Mounir; Hogberg, Helena T; Luechtefeld, Thomas; Smirnova, Lena; Zhao, Liang; Adeleye, Yeyejide; Kanehisa, Minoru; Carmichael, Paul; Andersen, Melvin E; Hartung, Thomas

    2014-01-01

    Despite wide-spread consensus on the need to transform toxicology and risk assessment in order to keep pace with technological and computational changes that have revolutionized the life sciences, there remains much work to be done to achieve the vision of toxicology based on a mechanistic foundation. To this end, a workshop was organized to explore one key aspect of this transformation - the development of Pathways of Toxicity as a key tool for hazard identification based on systems biology. Several issues were discussed in depth in the workshop: The first was the challenge of formally defining the concept of a Pathway of Toxicity (PoT), as distinct from, but complementary to, other toxicological pathway concepts such as mode of action (MoA). The workshop came up with a preliminary definition of PoT as "A molecular definition of cellular processes shown to mediate adverse outcomes of toxicants". It is further recognized that normal physiological pathways exist that maintain homeostasis and these, sufficiently perturbed, can become PoT. Second, the workshop sought to define the adequate public and commercial resources for PoT information, including data, visualization, analyses, tools, and use-cases, as well as the kinds of efforts that will be necessary to enable the creation of such a resource. Third, the workshop explored ways in which systems biology approaches could inform pathway annotation, and which resources are needed and available that can provide relevant PoT information to the diverse user communities.

  20. Leptin signalling pathways in hypothalamic neurons.

    PubMed

    Kwon, Obin; Kim, Ki Woo; Kim, Min-Seon

    2016-04-01

    Leptin is the most critical hormone in the homeostatic regulation of energy balance among those so far discovered. Leptin primarily acts on the neurons of the mediobasal part of hypothalamus to regulate food intake, thermogenesis, and the blood glucose level. In the hypothalamic neurons, leptin binding to the long form leptin receptors on the plasma membrane initiates multiple signaling cascades. The signaling pathways known to mediate the actions of leptin include JAK-STAT signaling, PI3K-Akt-FoxO1 signaling, SHP2-ERK signaling, AMPK signaling, and mTOR-S6K signaling. Recent evidence suggests that leptin signaling in hypothalamic neurons is also linked to primary cilia function. On the other hand, signaling molecules/pathways mitigating leptin actions in hypothalamic neurons have been extensively investigated in an effort to treat leptin resistance observed in obesity. These include SOCS3, tyrosine phosphatase PTP1B, and inflammatory signaling pathways such as IKK-NFκB and JNK signaling, and ER stress-mitochondrial signaling. In this review, we discuss leptin signaling pathways in the hypothalamus, with a particular focus on the most recently discovered pathways.

  1. Visual association pathways in human brain.

    PubMed

    Iwata, M

    1990-08-01

    Visual information processing are realized by the posterior association cortex spreading in front of the striate and parastriate areas from which two major visual association pathways arise. The dorsal or the occipito-parietal pathway which transmits the inputs from the peripheral as well as the central visual field to the parietal association cortex is responsible for the visuospatial analysis of the visual informations. The occipito-temporal or the ventral pathway originates only from the foveal vision area, and sends the visual inputs to the inferior temporal lobe which engages in visual pattern or whole gestalt recognition of the visual informations. In addition to this dichotomous disposition of the dorsal and the ventral visual association pathways in each cerebral hemisphere, there is another type of functional specialization which is hierarchical rather than dichotomous. In the left cerebral hemisphere, the collateral pathways arise from both dorsal and ventral main streams and engage in the process of reading, or the verbal mode of visual information processing.

  2. Reactome: a knowledgebase of biological pathways

    PubMed Central

    Joshi-Tope, G.; Gillespie, M.; Vastrik, I.; D'Eustachio, P.; Schmidt, E.; de Bono, B.; Jassal, B.; Gopinath, G.R.; Wu, G.R.; Matthews, L.; Lewis, S.; Birney, E.; Stein, L.

    2005-01-01

    Reactome, located at http://www.reactome.org is a curated, peer-reviewed resource of human biological processes. Given the genetic makeup of an organism, the complete set of possible reactions constitutes its reactome. The basic unit of the Reactome database is a reaction; reactions are then grouped into causal chains to form pathways. The Reactome data model allows us to represent many diverse processes in the human system, including the pathways of intermediary metabolism, regulatory pathways, and signal transduction, and high-level processes, such as the cell cycle. Reactome provides a qualitative framework, on which quantitative data can be superimposed. Tools have been developed to facilitate custom data entry and annotation by expert biologists, and to allow visualization and exploration of the finished dataset as an interactive process map. Although our primary curational domain is pathways from Homo sapiens, we regularly create electronic projections of human pathways onto other organisms via putative orthologs, thus making Reactome relevant to model organism research communities. The database is publicly available under open source terms, which allows both its content and its software infrastructure to be freely used and redistributed. PMID:15608231

  3. Developing a critical pathway for orientation.

    PubMed

    Evers, C; Odom, S; Latulip-Gardner, J; Paul, S

    1994-05-01

    A direct correlation exists between job satisfaction and employee retention with an organized and compassionate orientation process for new employees on a nursing unit. It is generally recognized that preceptorship/mentoring is the most desirable orientation modality; however, situations occasionally require orientees to work with several preceptors with varying levels of proficiency. A program based upon a framework designated "critical pathway" was established in a coronary care unit and a cardiac progressive care unit to organize orientation information into weekly segments, with each week's content building upon the previous week's information. Because the critical pathway clearly delineates the orientation content, all necessary information is imparted to the orientee in an organized fashion without omitting pertinent details. Problems with orientation are documented as variances on the critical pathway, and are discussed between the preceptor and orientee during weekly evaluation sessions. This article reports the procedure for developing a critical pathway for orientation using the critical pathway concept, which is adapted from the nursing case management practice model.

  4. Pathways to hydrogen as an energy carrier.

    PubMed

    Sigfusson, Thorsteinn I

    2007-04-15

    When hydrogen is used as an alternative energy carrier, it is very important to understand the pathway from the primary energy source to the final use of the carrier. This involves, for example, the understanding of greenhouse gas emissions associated with the production of hydrogen and throughout the lifecycle of a given utilization pathway as well as various energy or exergy efficiencies and aspects involved. This paper which is based on a talk given at the Royal Society in London assesses and reviews the various production pathways for hydrogen with emphasis on emissions, energy use and energy efficiency. The paper also views some aspects of the breaking of the water molecule and examines some new emerging physical evidence which could pave the way to a new and more feasible pathway. A special attention will be given to the use of the renewable energy pathway. As an example of a hydrogen society that could be based on renewable primary energy, the paper describes the hydrogen society experiments in Iceland as well as unconventional hydrogen obtained from geothermal gases. In the light of our experience, attempts will be made to shed light upon drivers as well as obstacles in the development of a hydrogen society.

  5. Molecular pathways: translational and therapeutic implications of the Notch signaling pathway in cancer.

    PubMed

    Previs, Rebecca A; Coleman, Robert L; Harris, Adrian L; Sood, Anil K

    2015-03-01

    Over 100 years have passed since the first observation of the notched wing phenotype in Drosophila melanogaster, and significant progress has been made to characterize the role of the Notch receptor, its ligands, downstream targets, and cross-talk with other signaling pathways. The canonical Notch pathway with four Notch receptors (Notch1-4) and five ligands (DLL1, 3-4, Jagged 1-2) is an evolutionarily conserved cell signaling pathway that plays critical roles in cell-fate determination, differentiation, development, tissue patterning, cell proliferation, and death. In cancer, these roles have a critical impact on tumor behavior and response to therapy. Because the role of Notch remains tissue and context dependent, alterations within this pathway may lead to tumor suppressive or oncogenic phenotypes. Although no FDA-approved therapies currently exist for the Notch pathway, multiple therapeutics (e.g., demcizumab, tarextumab, GSI MK-0752, R04929097, and PF63084014) have been developed to target different aspects of this pathway for both hematologic and solid malignancies. Understanding the context-specific effects of the Notch pathway will be important for individualized therapies targeting this pathway.

  6. Kynurenine pathway and disease: an overview.

    PubMed

    Pérez-De La Cruz, Verónica; Königsberg, Mina; Santamaría, Abel

    2007-12-01

    Kynurenine pathway is gaining more and more attention every day in biomedical research since this catabolic route for tryptophan decomposition is not only implicated in different neurological disorders, but also possesses neuroactive metabolites with different biological properties, such as pro-oxidant and antioxidant regulators. Thus, the intensive research on this metabolic pathway is helping us to understand those mechanisms underlying neurodegenerative events during the occurrence of pathological process in the central nervous system (CNS), thereby allowing the design of potential therapies for those disorders involving excitotoxic, oxidative and inflammatory components. Here we intend to provide a brief overview on the relevance of this route for several CNS disorders, and discuss recent information on the different biological properties of the neuroactive metabolites of this pathway and their significance for further research.

  7. Coinhibitory Pathways in Immunotherapy for Cancer.

    PubMed

    Baumeister, Susanne H; Freeman, Gordon J; Dranoff, Glenn; Sharpe, Arlene H

    2016-05-20

    The immune system is capable of recognizing tumors and eliminates many early malignant cells. However, tumors evolve to evade immune attack, and the tumor microenvironment is immunosuppressive. Immune responses are regulated by a number of immunological checkpoints that promote protective immunity and maintain tolerance. T cell coinhibitory pathways restrict the strength and duration of immune responses, thereby limiting immune-mediated tissue damage, controlling resolution of inflammation, and maintaining tolerance to prevent autoimmunity. Tumors exploit these coinhibitory pathways to evade immune eradication. Blockade of the PD-1 and CTLA-4 checkpoints is proving to be an effective and durable cancer immunotherapy in a subset of patients with a variety of tumor types, and additional combinations are further improving response rates. In this review we discuss the immunoregulatory functions of coinhibitory pathways and their translation to effective immunotherapies for cancer.

  8. Amino Acid Biosynthesis Pathways in Diatoms

    PubMed Central

    Bromke, Mariusz A.

    2013-01-01

    Amino acids are not only building blocks for proteins but serve as precursors for the synthesis of many metabolites with multiple functions in growth and other biological processes of a living organism. The biosynthesis of amino acids is tightly connected with central carbon, nitrogen and sulfur metabolism. Recent publication of genome sequences for two diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum created an opportunity for extensive studies on the structure of these metabolic pathways. Based on sequence homology found in the analyzed diatomal genes, the biosynthesis of amino acids in diatoms seems to be similar to higher plants. However, one of the most striking differences between the pathways in plants and in diatomas is that the latter possess and utilize the urea cycle. It serves as an important anaplerotic pathway for carbon fixation into amino acids and other N-containing compounds, which are essential for diatom growth and contribute to their high productivity. PMID:24957993

  9. Evolutionary algorithm for metabolic pathways synthesis.

    PubMed

    Gerard, Matias F; Stegmayer, Georgina; Milone, Diego H

    2016-06-01

    Metabolic pathway building is an active field of research, necessary to understand and manipulate the metabolism of organisms. There are different approaches, mainly based on classical search methods, to find linear sequences of reactions linking two compounds. However, an important limitation of these methods is the exponential increase of search trees when a large number of compounds and reactions is considered. Besides, such models do not take into account all substrates for each reaction during the search, leading to solutions that lack biological feasibility in many cases. This work proposes a new evolutionary algorithm that allows searching not only linear, but also branched metabolic pathways, formed by feasible reactions that relate multiple compounds simultaneously. Tests performed using several sets of reactions show that this algorithm is able to find feasible linear and branched metabolic pathways.

  10. [Wnt signalling pathway and cervical cancer].

    PubMed

    Ramos-Solano, Moisés; Álvarez-Zavala, Monserrat; García-Castro, Beatriz; Jave-Suárez, Luis Felipe; Aguilar-Lemarroy, Adriana

    2015-01-01

    Cervical cancer (CC) is a pathology that arises in the cervical epithelium, whose major cause of risk is human papillomavirus (HPV) infection. Due to the fact that HPV infection per se is not enough to generate a carcinogenic process, it has been proposed that alterations in the Wnt signaling pathway are involved in cervical carcinogenesis. The Wnt family consists of 13 receptors and 19 ligands, and it is highly conserved phylogenetically due to its contribution in different biological processes, such as embryogenesis and tissue regeneration. Additionally, this signaling pathway modulates various cellular functions, for instance: cell proliferation, differentiation, migration and cell polarity. This paper describes the Wnt signaling pathways and alterations that have been found in members of this family in different cancer types and, especially, in CC.

  11. Epigenetics and Signaling Pathways in Glaucoma

    PubMed Central

    2017-01-01

    Glaucoma is the most common cause of irreversible blindness worldwide. This neurodegenerative disease becomes more prevalent with aging, but predisposing genetic and environmental factors also contribute to increased risk. Emerging evidence now suggests that epigenetics may also be involved, which provides potential new therapeutic targets. These three factors work through several pathways, including TGF-β, MAP kinase, Rho kinase, BDNF, JNK, PI-3/Akt, PTEN, Bcl-2, Caspase, and Calcium-Calpain signaling. Together, these pathways result in the upregulation of proapoptotic gene expression, the downregulation of neuroprotective and prosurvival factors, and the generation of fibrosis at the trabecular meshwork, which may block aqueous humor drainage. Novel therapeutic agents targeting these pathway members have shown preliminary success in animal models and even human trials, demonstrating that they may eventually be used to preserve retinal neurons and vision. PMID:28210622

  12. Remodeling of Calcium Entry Pathways in Cancer.

    PubMed

    Villalobos, Carlos; Sobradillo, Diego; Hernández-Morales, Miriam; Núñez, Lucía

    2016-01-01

    Ca(2+) entry pathways play important roles in control of many cellular functions, including long-term proliferation, migration and cell death. In recent years, it is becoming increasingly clear that, in some types of tumors, remodeling of Ca(2+) entry pathways could contribute to cancer hallmarks such as excessive proliferation, cell migration and invasion as well as resistance to cell death or survival. In this chapter we briefly review findings related to remodeling of Ca(2+) entry pathways in cancer with emphasis on the mechanisms that contribute to increased store-operated Ca(2+) entry (SOCE) and store-operated currents (SOCs) in colorectal cancer cells. Finally, since SOCE appears critically involved in colon tumorogenesis, the inhibition of SOCE by aspirin and other NSAIDs and its possible contribution to colon cancer chemoprevention is reviewed.

  13. Crosstalk of the Wnt/β-catenin pathway with other pathways in cancer cells

    PubMed Central

    Morris, Saint-Aaron L.; Huang, Suyun

    2016-01-01

    Many cancers have similar aberrations in various signaling cascades with crucial roles in cellular proliferation, differentiation, and morphogenesis. Dysregulation of signal cascades that play integral roles during early cellular development is well known to be a central feature of many malignancies. One such signaling cascade is the Wnt/β-catenin pathway, which has a profound effect on stem cell proliferation, migration, and differentiation. This pathway is dysregulated in numerous cell types, underscoring its global oncogenetic potential. This review highlights regulators and downstream effectors of this receptor cascade and addresses the increasingly apparent crosstalk of Wnt with other tumorigenic signaling pathways. As understanding of the genetic and epigenetic changes unique to these malignancies increases, identifying the regulatory mechanisms unique to the Wnt/β-catenin pathway and similarly aberrant receptor pathways will be imperative. PMID:27081668

  14. Developmental pathways to antisocial behavior: the delayed-onset pathway in girls.

    PubMed

    Silverthorn, P; Frick, P J

    1999-01-01

    Recent research has suggested that there are two distinct trajectories for the development of antisocial behavior in boys: a childhood-onset pathway and an adolescent-onset pathway. After reviewing the limited available research on antisocial girls, we propose that this influential method of conceptualizing the development of severe antisocial behavior may not apply to girls without some important modifications. Antisocial girls appear to show many of the correlates that have been associated with the childhood-onset pathway in boys, and they tend to show impaired adult adjustment, which is also similar to boys in the childhood-onset pathway. However, antisocial girls typically show an adolescent-onset to their antisocial behavior. We have proposed that these girls show a third developmental pathway which we have labeled the "delayed-onset" pathway. This model rests on the assumption that many of the putative pathogenic mechanisms that contribute to the development of antisocial behavior in girls, such as cognitive and neuropsychological deficits, a dysfunctional family environment, and/or the presence of a callous and unemotional interpersonal style, may be present in childhood, but they do not lead to severe and overt antisocial behavior until adolescence. Therefore, we propose that the delayed-onset pathway for girls is analogous to the childhood-onset pathway in boys and that there is no analogous pathway in girls to the adolescent-onset pathway in boys. Although this model clearly needs to be tested in future research, it highlights the need to test the applicability of current theoretical models for explaining the development of antisocial behavior in girls.

  15. Geoscience Academic Provenance: A Comparison of Undergraduate Students' Pathways to Faculty Pathways

    NASA Astrophysics Data System (ADS)

    Houlton, H. R.; Keane, C. M.; Wilson, C. E.

    2012-12-01

    Most Science, Technology, Engineering and Mathematics (STEM) disciplines have a direct recruiting method of high school science courses to supply their undergraduate majors. However, recruitment and retention of students into geoscience academic programs, who will be the future workforce, remains an important issue. The geoscience community is reaching a critical point in its ability to supply enough geoscientists to meet the current and near-future demand. Previous work done by Houlton (2010) determined that undergraduate geoscience majors follow distinct pathways when pursuing their degree and career. These pathways are comprised of students' interests, experiences, goals and career aspirations, which are depicted in six pathway steps. Three population groups were determined from the original 17 participants, which exhibited differences in pathway trajectories. Continued data collection efforts developed and refined the pathway framework. As part of an informal workshop activity, data were collected from 27 participants who are underrepresented minority early-career and future faculty in the geosciences. In addition, 20 geoscience departments' Heads and Chairs participated in an online survey about their pathway trajectories. Pathways were determined from each of these new sample populations and compared against the original geoscience undergraduate student participants. Several pathway components consistently spanned across sample populations. Identification of these themes have illuminated broad geoscience-related interests, experiences and aspirations that can be used to broadly impact recruitment and retention initiatives for our discipline. Furthermore, fundamental differences between participants' ages, stages in career and racial/ethnic backgrounds have exhibited subtle nuances in their geoscience pathway trajectories. In particular, those who've had research experiences, who think "creativity" is an important aspect of a geoscience career and those who

  16. Understanding protein glycosylation pathways in bacteria.

    PubMed

    Li, Hong; Debowski, Aleksandra W; Liao, Tingting; Tang, Hong; Nilsson, Hans-Olof; Marshall, Barry J; Stubbs, Keith A; Benghezal, Mohammed

    2017-01-01

    Through advances in analytical methods to detect glycoproteins and to determine glycan structures, there have been increasing reports of protein glycosylation in bacteria. In this review, we summarize the known pathways for bacterial protein glycosylation: lipid carrier-mediated 'en bloc' glycosylation; and cytoplasmic stepwise protein glycosylation. The exploitation of bacterial protein glycosylation systems, especially the 'mix and match' of three independent but similar pathways (oligosaccharyltransferase-mediated protein glycosylation, lipopolysaccharide and peptidoglycan biosynthesis) in Gram-negative bacteria for glycoengineering recombinant glycoproteins is also discussed.

  17. Visual pathway abnormalities in tuberculous meningitis.

    PubMed

    Maurya, Pradeep Kumar; Singh, Ajai Kumar; Sharma, Lalit; Kulshreshtha, Dinkar; Thacker, Anup Kumar

    2016-11-01

    Ophthalmological complications are common and disabling in patients with tuberculous meningitis. We aimed to study the visual pathway abnormalities in patients with tuberculous meningitis. Forty-three patients with tuberculous meningitis were subjected to visual evoked responses (VER) and neuroophthalmologic assessment. Neuroophthalmologic assessment revealed abnormalities in 22 (51.3%) patients. VER were found to be abnormal in 27 (62.8%) patients. The VER abnormalities included prolonged P100 latencies with relatively normal amplitude and significant interocular latency differences. Visual pathways abnormalities are common in patients with tuberculous meningitis and are often subclinical. Pathophysiologic explanations for electrophysiological abnormalities on VER in these patients are incompletely understood and needs further exploration.

  18. Towards imaging metabolic pathways in tissues.

    PubMed

    Dekker, Tim J A; Jones, Emrys A; Corver, Willem E; van Zeijl, René J M; Deelder, André M; Tollenaar, Rob A E M; Mesker, Wilma E; Morreau, Hans; McDonnell, Liam A

    2015-03-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging using 9-aminoacridine as the matrix leads to the detection of low mass metabolites and lipids directly from cancer tissues. These included lactate and pyruvate for studying the Warburg effect, as well as succinate and fumarate, metabolites whose accumulation is associated with specific syndromes. By using the pathway information present in the human metabolome database, it was possible to identify regions within tumor tissue samples with distinct metabolic signatures that were consistent with known tumor biology. We present a data analysis workflow for assessing metabolic pathways in their histopathological context.

  19. TNF and MAP kinase signaling pathways

    PubMed Central

    Sabio, Guadalupe; Davis, Roger J.

    2014-01-01

    The binding of tumor necrosis factor α (TNFα) to cell surface receptors engages multiple signal transduction pathways, including three groups of mitogen-activated protein (MAP) kinases: extracellular-signal-regulated kinases (ERKs); the cJun NH2-terminal kinases (JNKs); and the p38 MAP kinases. These MAP kinase signalling pathways induce a secondary response by increasing the expression of several inflammatory cytokines (including TNFα) that contribute to the biological activity of TNFα. MAP kinases therefore function both upstream and down-stream of signalling by TNFα receptors. Here we review mechanisms that mediate these actions of MAP kinases during the response to TNFα. PMID:24647229

  20. Can we safely target the WNT pathway?

    PubMed Central

    Kahn, Michael

    2015-01-01

    WNT–β-catenin signalling is involved in a multitude of developmental processes and the maintenance of adult tissue homeostasis by regulating cell proliferation, differentiation, migration, genetic stability and apoptosis, as well as by maintaining adult stem cells in a pluripotent state. Not surprisingly, aberrant regulation of this pathway is therefore associated with a variety of diseases, including cancer, fibrosis and neurodegeneration. Despite this knowledge, therapeutic agents specifically targeting the WNT pathway have only recently entered clinical trials and none has yet been approved. This Review examines the problems and potential solutions to this vexing situation and attempts to bring them into perspective. PMID:24981364

  1. Supporting liver transplantation by clinical pathway intelligence.

    PubMed

    Kirchner, K; Malessa, Ch; Herzberg, N; Krumnow, S; Habrecht, O; Scheuerlein, H; Bauschke, A; Settmacher, U

    2013-06-01

    A reproducible and transparent quality of clinical treatments plays an important role in the performance of a hospital. In liver transplantation (LT), this is particularly important for patient safety, resource planning, documentation, and quality management. Thus, the clinical pathway for LT was documented in an electronic format within our research project PIGE. Data from clinical information systems were linked to this pathway, which allows for process monitoring (the assessment of the current state for every patient in the LT process) and a retrospective analysis of all treatments in addition to all data pertaining to the treatment, for example, cost, time, number of personnel, etc.

  2. Hippo pathway in mammary gland development and breast cancer.

    PubMed

    Shi, Peiguo; Feng, Jing; Chen, Ceshi

    2015-01-01

    Accumulated evidence suggests that the Hippo signaling pathway plays crucial roles in mammary gland development and breast cancer. Key components of the Hippo pathway regulate breast epithelial cell proliferation, migration, invasion, and stemness. Additionally, the Hippo pathway regulates breast tumor growth, metastasis, and drug resistance. It is expected that the Hippo pathway will provide novel therapeutic targets for breast cancer. This review will discuss and summarize the roles of several core components of the Hippo pathway in mammary gland development and breast cancer.

  3. 17β Estradiol Modulates Perfusion Pressure and Expression of 5-LOX and CYP450 4A in the Isolated Kidney of Metabolic Syndrome Female Rats.

    PubMed

    Zúñiga-Muñoz, A M; Guarner Lans, V; Soria-Castro, E; Diaz-Diaz, E; Torrico-Lavayen, R; Tena-Betancourt, E; Pérez-Torres, I

    2015-01-01

    Prevalence of metabolic syndrome and progression of nephropathy depend on sex. We examined a protective effect of estradiol against nephropathy in metabolic syndrome through the modulation of the arachidonic acid metabolism by activating the 5-lipoxygenase and cytochrome p450 4A pathways. 28 female Wistar rats were divided into four groups of seven animals each: control, intact metabolic syndrome, ovariectomized metabolic syndrome, and metabolic syndrome ovariectomized plus estradiol. Blood pressure, body weight, body fat, triglycerides, insulin, HOMA-index, albuminuria, and TNF-α were increased in ovariectomized metabolic syndrome rats (p < 0.001). The perfusion pressure in isolated kidneys of ovariectomized metabolic syndrome rats in presence of 4 μg of arachidonic acid was increased. The inhibitors of the arachidonic acid metabolism Baicalein, Miconazole, and Indomethacin in these rats decreased the perfusion pressure by 57.62%, 99.83%, and 108.5%, respectively and they decreased creatinine clearance and the arachidonic acid percentage. Phospholipase A2 expression in the kidney of ovariectomized metabolic syndrome rats was not modified. 5-lipoxygenase was increased in metabolic syndrome ovariectomized rats while cytochrome p450 4A was decreased. In conclusion, the loss of estradiol increases renal damage while the treatment with estradiol benefits renal function by modulating arachidonic acid metabolism through the 5-lipoxygenase and cytochrome p450 4A pathways.

  4. Targeting stem cell signaling pathways for drug discovery: advances in the Notch and Wnt pathways.

    PubMed

    An, Songzhu Michael; Ding, Qiang; Zhang, Jie; Xie, JingYi; Li, LingSong

    2014-06-01

    Signaling pathways transduce extracellular stimuli into cells through molecular cascades to regulate cellular functions. In stem cells, a small number of pathways, notably those of TGF-β/BMP, Hedgehog, Notch, and Wnt, are responsible for the regulation of pluripotency and differentiation. During embryonic development, these pathways govern cell fate specifications as well as the formation of tissues and organs. In adulthood, their normal functions are important for tissue homeostasis and regeneration, whereas aberrations result in diseases, such as cancer and degenerative disorders. In complex biological systems, stem cell signaling pathways work in concert as a network and exhibit crosstalk, such as the negative crosstalk between Wnt and Notch. Over the past decade, genetic and genomic studies have identified a number of potential drug targets that are involved in stem cell signaling pathways. Indeed, discovery of new targets and drugs for these pathways has become one of the most active areas in both the research community and pharmaceutical industry. Remarkable progress has been made and several promising drug candidates have entered into clinical trials. This review focuses on recent advances in the discovery of novel drugs which target the Notch and Wnt pathways.

  5. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology.

    PubMed

    Karp, Peter D; Latendresse, Mario; Paley, Suzanne M; Krummenacker, Markus; Ong, Quang D; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M; Caspi, Ron

    2016-09-01

    Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms.

  6. Multiple oxygen entry pathways in globin proteins revealed by intrinsic pathway identification method

    NASA Astrophysics Data System (ADS)

    Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka

    2015-12-01

    Each subunit of human hemoglobin (HbA) stores an oxygen molecule (O2) in the binding site (BS) cavity near the heme group. The BS is buried in the interior of the subunit so that there is a debate over the O2 entry pathways from solvent to the BS; histidine gate or multiple pathways. To elucidate the O2 entry pathways, we executed ensemble molecular dynamics (MD) simulations of T-state tetramer HbA in high concentration O2 solvent to simulate spontaneous O2 entry from solvent into the BS. By analyzing 128 independent 8 ns MD trajectories by intrinsic pathway identification by clustering (IPIC) method, we found 141 and 425 O2 entry events into the BS of the α and β subunits, respectively. In both subunits, we found that multiple O2 entry pathways through inside cavities play a significant role for O2 entry process of HbA. The rate constants of O2 entry estimated from the MD trajectories correspond to the experimentally observed values. In addition, by analyzing monomer myoglobin, we verified that the high O2 concentration condition can reproduce the ratios of each multiple pathway in the one-tenth lower O2 concentration condition. These indicate the validity of the multiple pathways obtained in our MD simulations.

  7. Seychelles Fisheries Connectivity and Transport Pathways

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Seychelles Fisheries Connectivity and Transport Pathways...Plateau. • Identification of physical oceanographic controls on mass and momentum transport on scales that are relevant to local ecology and fisheries and...Development of basic regional modeling capacity that Seychelles managers and fisheries can use to guide decisions and improve community outreach and

  8. Response Ability Pathways: A Curriculum for Connecting

    ERIC Educational Resources Information Center

    Koehler, Nancy; Seger, Vikki

    2005-01-01

    This article describes a new training curriculum for educators, youth workers, and mentors which draws from research and best practices in positive youth development and positive behavior support. Response Ability Pathways or RAP focuses on three practical interventions: connect to others for support, clarify challenging problems, and restore…

  9. Career Pathways: Education with a Purpose

    ERIC Educational Resources Information Center

    Hull, Dan M.

    2004-01-01

    Hot off the press comes the guide to the next generation of education reform. Dan Hull and some of the nation's leading practitioners and educational leaders show how to remake high schools to improve academic outcomes, prepare students for today's high-skills workplace, and motivate them to learn because they see a pathway to their future.…

  10. Adverse Outcome Pathway (AOP) Network Development for ...

    EPA Pesticide Factsheets

    Adverse outcome pathways (AOPs) are descriptive biological sequences that start from a molecular initiating event (MIE) and end with an adverse health outcome. AOPs provide biological context for high throughput chemical testing and further prioritize environmental health risk research. According to the Organization for Economic Co-operation and Development guidelines, AOPs are pathways with one MIE anchored to an adverse outcome (AO) by key events (KEs) and key event relationships (KERs). However, this approach does not always capture the cumulative impacts of multiple MIEs on the AO. For example, hepatic lipid flux due to chemical-induced toxicity initiates from multiple ligand-activated receptors and signaling pathways that cascade across biology to converge upon a common fatty liver (FL, also known as steatosis) outcome. To capture this complexity, a top-down strategy was used to develop a FL AOP network (AOPnet). Literature was queried based on the terms steatosis, fatty liver, cirrhosis, and hepatocellular carcinoma. Search results were analyzed for physiological and pathophysiological organ level, cellular and molecular processes, as well as pathway intermediates, to identify potential KEs and MIEs that are key for hepatic lipid metabolism, maintenance, and dysregulation. The analysis identified four apical KE nodes (hepatic fatty acid uptake, de novo fatty acid and lipid synthesis, fatty acid oxidation, and lipid efflux) juxtaposed to the FL AO. The apic

  11. Evolution-guided optimization of biosynthetic pathways.

    PubMed

    Raman, Srivatsan; Rogers, Jameson K; Taylor, Noah D; Church, George M

    2014-12-16

    Engineering biosynthetic pathways for chemical production requires extensive optimization of the host cellular metabolic machinery. Because it is challenging to specify a priori an optimal design, metabolic engineers often need to construct and evaluate a large number of variants of the pathway. We report a general strategy that combines targeted genome-wide mutagenesis to generate pathway variants with evolution to enrich for rare high producers. We convert the intracellular presence of the target chemical into a fitness advantage for the cell by using a sensor domain responsive to the chemical to control a reporter gene necessary for survival under selective conditions. Because artificial selection tends to amplify unproductive cheaters, we devised a negative selection scheme to eliminate cheaters while preserving library diversity. This scheme allows us to perform multiple rounds of evolution (addressing ∼10(9) cells per round) with minimal carryover of cheaters after each round. Based on candidate genes identified by flux balance analysis, we used targeted genome-wide mutagenesis to vary the expression of pathway genes involved in the production of naringenin and glucaric acid. Through up to four rounds of evolution, we increased production of naringenin and glucaric acid by 36- and 22-fold, respectively. Naringenin production (61 mg/L) from glucose was more than double the previous highest titer reported. Whole-genome sequencing of evolved strains revealed additional untargeted mutations that likely benefit production, suggesting new routes for optimization.

  12. Oxidative stress: Biomarkers and novel therapeutic pathways.

    PubMed

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2010-03-01

    Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.

  13. Vitamins and aging: pathways to NAD+ synthesis.

    PubMed

    Denu, John M

    2007-05-04

    Recent genetic evidence reveals additional salvage pathways for NAD(+) synthesis. In this issue, Belenky et al. (2007) report that nicotinamide riboside, a new NAD(+) precursor, regulates Sir2 deacetylase activity and life span in yeast. The ability of nicotinamide riboside to enhance life span does not depend on calorie restriction.

  14. Alternative Certification Pathways: Filling a Gap?

    ERIC Educational Resources Information Center

    Ludlow, Carlyn

    2013-01-01

    The purpose of this article is to examine the proliferation of alternative certification pathways through an analysis of the role and history of teacher certification and supply followed by a synthesis of national, regional, and state research studies on alternative routes to certification programs and a review of studies conducted on well-known…

  15. An evolutionarily conserved pathway controls proteasome homeostasis

    PubMed Central

    Rousseau, Adrien; Bertolotti, Anne

    2016-01-01

    The proteasome is essential for the selective degradation of most cellular proteins but how cells maintain adequate amounts of proteasome is unclear. Here we found an evolutionarily conserved signalling pathway controlling proteasome homeostasis. Central to this pathway is TORC1 whose inhibition induced all known yeast 19S regulatory particle assembly-chaperones (RACs) as well as proteasome subunits. Downstream of TORC1 inhibition, the yeast mitogen-activated protein kinase, Mpk1, ensured that the supply of RACs and proteasome subunits increased under challenging conditions to maintain proteasomal degradation and cell viability. This adaptive pathway was evolutionarily conserved, with mTOR and Erk5 controlling the levels of the four mammalian RACs and proteasome abundance. Thus, the central growth and stress controllers, TORC1 and Mpk1/Erk5, endow cells with a rapid and vital adaptive response to adjust proteasome abundance to the rising needs. Enhancing this pathway may be a useful therapeutic approach for diseases resulting from impaired proteasomal degradation. PMID:27462806

  16. An evolutionarily conserved pathway controls proteasome homeostasis.

    PubMed

    Rousseau, Adrien; Bertolotti, Anne

    2016-08-11

    The proteasome is essential for the selective degradation of most cellular proteins, but how cells maintain adequate amounts of proteasome is unclear. Here we show that there is an evolutionarily conserved signalling pathway controlling proteasome homeostasis. Central to this pathway is TORC1, the inhibition of which induced all known yeast 19S regulatory particle assembly-chaperones (RACs), as well as proteasome subunits. Downstream of TORC1 inhibition, the yeast mitogen-activated protein kinase, Mpk1, acts to increase the supply of RACs and proteasome subunits under challenging conditions in order to maintain proteasomal degradation and cell viability. This adaptive pathway was evolutionarily conserved, with mTOR and ERK5 controlling the levels of the four mammalian RACs and proteasome abundance. Thus, the central growth and stress controllers, TORC1 and Mpk1/ERK5, endow cells with a rapid and vital adaptive response to adjust proteasome abundance in response to the rising needs of cells. Enhancing this pathway may be a useful therapeutic approach for diseases resulting from impaired proteasomal degradation.

  17. The adverse outcome pathway knowledge base

    EPA Science Inventory

    The rapid advancement of the Adverse Outcome Pathway (AOP) framework has been paralleled by the development of tools to store, analyse, and explore AOPs. The AOP Knowledge Base (AOP-KB) project has brought three independently developed platforms (Effectopedia, AOP-Wiki, and AOP-X...

  18. Rubric for Linked Learning Pathway Certification

    ERIC Educational Resources Information Center

    LaPlante, Arlene; Stearns, Roman

    2010-01-01

    This rubric was created to help pathway teams as they work together to develop and improve a comprehensive program of study. Specifically, the rubric can serve as a tool for: (1) Visioning; (2) Self-assessment; (3) Planning; and (4) Quality review. ConnectEd designed this rubric to be used in coordination with the Certification Criteria for Linked…

  19. MDRC Research on Career Pathways. Issue Brief

    ERIC Educational Resources Information Center

    Kazis, Richard

    2016-01-01

    As postsecondary credentials have become increasingly important to accessing higher-quality employment, a growing number of education and workforce programs are implementing "career pathways" approaches to help both youth and adults prepare for further education and better jobs. In recent years, the Manpower Demonstration Research…

  20. Integrating Alternative Educational Pathways: Challenges and Issues

    ERIC Educational Resources Information Center

    Brewer, Ann M.

    2008-01-01

    The paper examines the issue of educational pathways, including a brief overview of the higher education regulatory framework and market forces in Australia, particularly as recent policy reforms and political aspirations affect them. It highlights the key challenges and outlines a potential model for integrating vocational and higher educational…

  1. Career Technical Education Pathways Initiative Annual Report

    ERIC Educational Resources Information Center

    California Community Colleges, Chancellor's Office, 2014

    2014-01-01

    California's education system--the largest in the United States--is an essential resource for ensuring strong economic growth in the state. The Career Technical Education Pathways Initiative (the Initiative) became law in 2005 with Senate Bills 70 and 1133 and provided more than $380 million over eight years to improve career technical education…

  2. Pathways to Relationship Aggression between Adult Partners

    ERIC Educational Resources Information Center

    Busby, Dean M.; Holman, Thomas B.; Walker, Eric

    2008-01-01

    In this study, the pathways to adult aggression beginning in the family of origin (FOO) and continuing through adult relationships were investigated. With a sample of 30,600 individuals, a comprehensive model was evaluated that included the unique influences of violent victimization in the family, witnessing parental violence, perpetrating…

  3. Identifying Pathways of Teachers' PCK Development

    ERIC Educational Resources Information Center

    Wongsopawiro, Dirk S.; Zwart, Rosanne C.; van Driel, Jan H.

    2017-01-01

    This paper describes a method of analysing teacher growth in the context of science education. It focuses on the identification of pathways in the development of secondary school teachers' pedagogical content knowledge (PCK) by the use of the interconnected model of teachers' professional growth (IMTPG).The teachers (n = 12) participated in a…

  4. ELUCIDATING THE PATHWAY FOR ARSENIC METHYLATION

    EPA Science Inventory

    Enzymatically-catalyzed methylation of arsenic is part of a metabolic pathway that converts inorganic arsenic into methylated products. Hence, in humans chronically exposed to inorganic arsenic, methyl and dimethyl arsenic account for most of the arsenic that is excreted in the ...

  5. Regulatory pathways in the European Union.

    PubMed

    Kohler, Manuela

    2011-01-01

    In principle, there are three defined procedures to obtain approval for a medicinal product in the European Union. As discussed in this overview of the procedures, the decision on which regulatory pathway to use will depend on the nature of the active substance, the target indication(s), the history of product and/or the marketing strategy.

  6. Disentangling Adolescent Pathways of Sexual Risk Taking

    ERIC Educational Resources Information Center

    Brookmeyer, Kathryn A.; Henrich, Christopher C.

    2009-01-01

    Using data from the National Longitudinal Survey of Youth, the authors aimed to describe the pathways of risk within sexual risk taking, alcohol use, and delinquency, and then identify how the trajectory of sexual risk is linked to alcohol use and delinquency. Risk trajectories were measured with adolescents aged 15-24 years (N = 1,778). Using…

  7. Properties of the SIRS suppressor pathway.

    PubMed

    Aune, T M; Pierce, C W

    1983-01-01

    The SIRS suppressor pathway is initiated by activation of Ly 2+ T lymphocytes by either con A or IFN beta. SIRS is a protein which has been purified and exists as two species with mol. wts. of 14,000 and 21,500. The target of SIRS is the macrophage and macrophages appear to oxidize or activate SIRS in a peroxide dependent process. Catalase blocks SIRS or IFN beta action by consuming H2O2 and levamisole blocks SIRS or IFN beta by preventing activation or oxidation of SIRS by H2O2. Other agents which block SIRS or IFN beta action include electron donors which can inactivate SIRSox. SIRSox is a potent inhibitor of immune responses and proliferation of normal and neoplastic cells. The mechanism of SIRSox-mediated inhibition of proliferation appears to involve oxidation or modification of protein sulfhydryls. Although the applicability of this pathway to the regulation of immune responses and cellular proliferation remains to be determined, both IFN beta and levamisole have been found to affect a wide variety of cellular processes. The involvement of both IFN beta and levamisole in the SIRS pathway suggests that this pathway may be an important host mechanism for regulating both immune responses and cellular proliferation in general.

  8. Instructional Partnerships: A Pathway to Leadership

    ERIC Educational Resources Information Center

    Moreillon, Judi, Ed.; Ballard, Susan, Ed.

    2013-01-01

    In this Best of "Knowledge Quest" monograph, the editors have collected seminal articles to support pre-service and in-service school librarians in developing and strengthening the instructional partner role. "Instructional Partnerships: A Pathway to Leadership" provides readers with background knowledge, research-based…

  9. Basic anatomy and physiology of pain pathways.

    PubMed

    Bourne, Sarah; Machado, Andre G; Nagel, Sean J

    2014-10-01

    This article provides an integrated review of the basic anatomy and physiology of the pain processing pathways. The transmission and parcellation of noxious stimuli from the peripheral nervous system to the central nervous system is discussed. In addition, the inhibitory and excitatory systems that regulate pain along with the consequences of dysfunction are considered.

  10. OXIDATIVE STRESS: BIOMARKERS AND NOVEL THERAPEUTIC PATHWAYS

    PubMed Central

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2010-01-01

    Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation. PMID:20064603

  11. Connecticut Postsecondary Pathways for Opportunity Youth

    ERIC Educational Resources Information Center

    American Youth Policy Forum, 2015

    2015-01-01

    Pathways to Postsecondary Opportunities are the range of options created across education institutions, training providers, and community-­based organizations so that each and every young person can access the necessary and personally relevant credentials, skills, and training beyond the completion of a secondary credential that will propel…

  12. Pathways to Mathematics College Readiness in Maine

    ERIC Educational Resources Information Center

    Silvernail, David L; Batista, Ida A.; Sloan, James E.; Stump, Erika K.; Johnson, Amy F.

    2014-01-01

    The goal of this study was to examine the pathways to being college ready in mathematics. Students who enter high school already having demonstrated mathematics proficiency on a standardized test in the 8th grade have already taken a significant step towards being college ready. The best scenario is to enter high school proficient in mathematics…

  13. Whole Algae Hydrothermal Liquefaction Technology Pathway

    SciTech Connect

    Biddy, M.; Davis, R.; Jones, S.

    2013-03-01

    This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  14. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect

    Talmadge, M.; Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the upgrading of biomass derived synthesis gas (‘syngas’) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and risk adverse conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas to hydrocarbon pathway to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  15. The Ran Pathway in Drosophila melanogaster Mitosis

    PubMed Central

    Chen, Jack W. C.; Barker, Amy R.; Wakefield, James G.

    2015-01-01

    Over the last two decades, the small GTPase Ran has emerged as a central regulator of both mitosis and meiosis, particularly in the generation, maintenance, and regulation of the microtubule (MT)-based bipolar spindle. Ran-regulated pathways in mitosis bear many similarities to the well-characterized functions of Ran in nuclear transport and, as with transport, the majority of these mitotic effects are mediated through affecting the physical interaction between karyopherins and Spindle Assembly Factors (SAFs)—a loose term describing proteins or protein complexes involved in spindle assembly through promoting nucleation, stabilization, and/or depolymerization of MTs, through anchoring MTs to specific structures such as centrosomes, chromatin or kinetochores, or through sliding MTs along each other to generate the force required to achieve bipolarity. As such, the Ran-mediated pathway represents a crucial functional module within the wider spindle assembly landscape. Research into mitosis using the model organism Drosophila melanogaster has contributed substantially to our understanding of centrosome and spindle function. However, in comparison to mammalian systems, very little is known about the contribution of Ran-mediated pathways in Drosophila mitosis. This article sets out to summarize our understanding of the roles of the Ran pathway components in Drosophila mitosis, focusing on the syncytial blastoderm embryo, arguing that it can provide important insights into the conserved functions on Ran during spindle formation. PMID:26636083

  16. Pathway Analysis: State of the Art.

    PubMed

    García-Campos, Miguel A; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2015-01-01

    Pathway analysis is a set of widely used tools for research in life sciences intended to give meaning to high-throughput biological data. The methodology of these tools settles in the gathering and usage of knowledge that comprise biomolecular functioning, coupled with statistical testing and other algorithms. Despite their wide employment, pathway analysis foundations and overall background may not be fully understood, leading to misinterpretation of analysis results. This review attempts to comprise the fundamental knowledge to take into consideration when using pathway analysis as a hypothesis generation tool. We discuss the key elements that are part of these methodologies, their capabilities and current deficiencies. We also present an overview of current and all-time popular methods, highlighting different classes across them. In doing so, we show the exploding diversity of methods that pathway analysis encompasses, point out commonly overlooked caveats, and direct attention to a potential new class of methods that attempt to zoom the analysis scope to the sample scale.

  17. Pathways to Aggression in Children and Adolescents

    ERIC Educational Resources Information Center

    Watson, Malcolm W.; Fischer, Kurt W.; Andreas, Jasmina Burdzovic; Smith, Kevin W.

    2004-01-01

    In this article, Malcolm Watson, Kurt Fischer, Jasmina Burdzovic Andreas, and Kevin Smith describe and compare two approaches to assessing risk factors that lead to aggression in children. The first, the severe risks approach, focuses on how risk factors form a pathway that leads to aggressive behavior. Within this approach, an inhibited…

  18. Strategic approaches to adverse outcome pathway development

    EPA Science Inventory

    Adverse outcome pathways (AOPs) are conceptual frameworks for organizing biological and toxicological knowledge in a manner that supports extrapolation of data pertaining to the initiation or early progression of toxicity to an apical adverse outcome that occurs at a level of org...

  19. Teaching Courage: Service Learning at Pathway School.

    ERIC Educational Resources Information Center

    Ioele, Michelle D.; Dolan, Anne L.

    1992-01-01

    Describes successful service club program serving adolescent boys with social, emotional, and learning problems who reside at Philadelphia's Pathway School. Considers strengths and weaknesses; power and helplessness; worthiness and worthlessness; and giving and dependency. Provides examples from programs and their participants. (NB)

  20. Final report on the Pathway Analysis Task

    SciTech Connect

    Whicker, F.W.; Kirchner, T.B.

    1993-04-01

    The Pathway Analysis Task constituted one of several multi-laboratory efforts to estimate radiation doses to people, considering all important pathways of exposure, from the testing of nuclear devices at the Nevada Test Site (NTS). The primary goal of the Pathway Analysis Task was to predict radionuclide ingestion by residents of Utah, Nevada, and portions of seven other adjoining western states following radioactive fallout deposition from individual events at the NTS. This report provides comprehensive documentation of the activities and accomplishments of Colorado State University`s Pathway Analysis Task during the entire period of support (1979--91). The history of the project will be summarized, indicating the principal dates and milestones, personnel involved, subcontractors, and budget information. Accomplishments, both primary and auxiliary, will be summarized with general results rather than technical details being emphasized. This will also serve as a guide to the reports and open literature publications produced, where the methodological details and specific results are documented. Selected examples of results on internal dose estimates are provided in this report because the data have not been published elsewhere.

  1. Macropinocytosis: a pathway to protozoan infection

    PubMed Central

    de Carvalho, Tecia M. U.; Barrias, Emile S.; de Souza, Wanderley

    2015-01-01

    Among the various endocytic mechanisms in mammalian cells, macropinocytosis involves internalization of large amounts of plasma membrane together with extracellular medium, leading to macropinosome formation. These structures are formed when plasma membrane ruffles are assembled after actin filament rearrangement. In dendritic cells, macropinocytosis has been reported to play a role in antigen presentation. Several intracellular pathogens are internalized by host cells via multiple endocytic pathways and macropinocytosis has been described as an important entry site for various organisms. Some bacteria, such as Legionella pneumophila, as well as various viruses, use this pathway to penetrate and subvert host cells. Some protozoa, which are larger than bacteria and virus, can also use this pathway to invade host cells. As macropinocytosis is characterized by the formation of large uncoated vacuoles and is triggered by various signaling pathways, which is similar to what occurs during the formation of the majority of parasitophorous vacuoles, it is believed that this phenomenon may be more widely used by parasites than is currently appreciated. Here we review protozoa host cell invasion via macropinocytosis. PMID:25914647

  2. Pathways to Childlessness: A Life Course Perspective

    ERIC Educational Resources Information Center

    Hagestad, Gunhild O.; Call, Vaughn R. A.

    2007-01-01

    In this article life history data from the U.S. National Survey of Families and Households (NSFH), and the Dutch survey on Older Adults' Living Arrangements and Social Networks (NESTOR-LSN) are used to shed light on the various pathways leading to and associated with childlessness, and the proportions of men and women who have followed a…

  3. Alternative Pathways to Apprenticeships. Good Practice Guide

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2015

    2015-01-01

    Apprenticeships are changing. The increasing proportions of people entering apprenticeships at various levels of ability and backgrounds are stimulating demand for alternative pathways to completions. This good practice guide assembles the key findings for education practitioners and workplace supervisors from three related research reports on…

  4. Pathway Analysis: State of the Art

    PubMed Central

    García-Campos, Miguel A.; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2015-01-01

    Pathway analysis is a set of widely used tools for research in life sciences intended to give meaning to high-throughput biological data. The methodology of these tools settles in the gathering and usage of knowledge that comprise biomolecular functioning, coupled with statistical testing and other algorithms. Despite their wide employment, pathway analysis foundations and overall background may not be fully understood, leading to misinterpretation of analysis results. This review attempts to comprise the fundamental knowledge to take into consideration when using pathway analysis as a hypothesis generation tool. We discuss the key elements that are part of these methodologies, their capabilities and current deficiencies. We also present an overview of current and all-time popular methods, highlighting different classes across them. In doing so, we show the exploding diversity of methods that pathway analysis encompasses, point out commonly overlooked caveats, and direct attention to a potential new class of methods that attempt to zoom the analysis scope to the sample scale. PMID:26733877

  5. Pathways to Mathematics: Longitudinal Predictors of Performance

    ERIC Educational Resources Information Center

    LeFevre, Jo-Anne; Fast, Lisa; Skwarchuk, Sheri-Lynn; Smith-Chant, Brenda L.; Bisanz, Jeffrey; Kamawar, Deepthi; Penner-Wilger, Marcie

    2010-01-01

    A model of the relations among cognitive precursors, early numeracy skill, and mathematical outcomes was tested for 182 children from 4.5 to 7.5 years of age. The model integrates research from neuroimaging, clinical populations, and normal development in children and adults. It includes 3 precursor pathways: quantitative, linguistic, and spatial…

  6. Pathways to Postsecondary: Indiana Career Majors

    ERIC Educational Resources Information Center

    Schulz, Terri

    2007-01-01

    Education today for the work of tomorrow must take on an entirely new look if the United States is to remain competitive in the global economy. Today, students need to be critical thinkers and problem solvers, have excellent communication and digital literacy skills and master challenging core content. This paper presents "Pathways to…

  7. Using biological pathway data with paxtools.

    PubMed

    Demir, Emek; Babur, Ozgün; Rodchenkov, Igor; Aksoy, Bülent Arman; Fukuda, Ken I; Gross, Benjamin; Sümer, Onur Selçuk; Bader, Gary D; Sander, Chris

    2013-01-01

    A rapidly growing corpus of formal, computable pathway information can be used to answer important biological questions including finding non-trivial connections between cellular processes, identifying significantly altered portions of the cellular network in a disease state and building predictive models that can be used for precision medicine. Due to its complexity and fragmented nature, however, working with pathway data is still difficult. We present Paxtools, a Java library that contains algorithms, software components and converters for biological pathways represented in the standard BioPAX language. Paxtools allows scientists to focus on their scientific problem by removing technical barriers to access and analyse pathway information. Paxtools can run on any platform that has a Java Runtime Environment and was tested on most modern operating systems. Paxtools is open source and is available under the Lesser GNU public license (LGPL), which allows users to freely use the code in their software systems with a requirement for attribution. Source code for the current release (4.2.0) can be found in Software S1. A detailed manual for obtaining and using Paxtools can be found in Protocol S1. The latest sources and release bundles can be obtained from biopax.org/paxtools.

  8. On the origin of metabolic pathways

    NASA Technical Reports Server (NTRS)

    Lazcano, A.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1999-01-01

    The heterotrophic theory of the origin of life is the only proposal available with experimental support. This comes from the ease of prebiotic synthesis under strongly reducing conditions. The prebiotic synthesis of organic compounds by reduction of CO(2) to monomers used by the first organisms would also be considered an heterotrophic origin. Autotrophy means that the first organisms biosynthesized their cell constituents as well as assembling them. Prebiotic synthetic pathways are all different from the biosynthetic pathways of the last common ancestor (LCA). The steps leading to the origin of the metabolic pathways are closer to prebiotic chemistry than to those in the LCA. There may have been different biosynthetic routes between the prebiotic and the LCAs that played an early role in metabolism but have disappeared from extant organisms. The semienzymatic theory of the origin of metabolism proposed here is similar to the Horowitz hypothesis but includes the use of compounds leaking from preexisting pathways as well as prebiotic compounds from the environment.

  9. Natural products - modifying metabolite pathways in plants.

    PubMed

    Staniek, Agata; Bouwmeester, Harro; Fraser, Paul D; Kayser, Oliver; Martens, Stefan; Tissier, Alain; van der Krol, Sander; Wessjohann, Ludger; Warzecha, Heribert

    2013-10-01

    The diversity of plant natural product (PNP) molecular structures is reflected in the variety of biochemical and genetic pathways that lead to their formation and accumulation. Plant secondary metabolites are important commodities, and include fragrances, colorants, and medicines. Increasing the extractable amount of PNP through plant breeding, or more recently by means of metabolic engineering, is a priority. The prerequisite for any attempt at metabolic engineering is a detailed knowledge of the underlying biosynthetic and regulatory pathways in plants. Over the past few decades, an enormous body of information about the biochemistry and genetics of biosynthetic pathways involved in PNPs production has been generated. In this review, we focus on the three large classes of plant secondary metabolites: terpenoids (or isoprenoids), phenylpropanoids, and alkaloids. All three provide excellent examples of the tremendous efforts undertaken to boost our understanding of biosynthetic pathways, resulting in the first successes in plant metabolic engineering. We further consider what essential information is still missing, and how future research directions could help achieve the rational design of plants as chemical factories for high-value products.

  10. Multi-pathway sequences for MR thermometry

    PubMed Central

    Madore, Bruno; Panych, Lawrence P.; Mei, Chang-Sheng; Yuan, Jing; Chu, Renxin

    2011-01-01

    MR-based thermometry is a valuable adjunct to thermal ablation therapies as it helps to determine when lethal doses are reached at the target and whether surrounding tissues are safe from damage. When the targeted lesion is mobile, MR data can further be used for motion-tracking purposes. The present work introduces pulse sequence modifications that enable significant improvements both in terms of temperature-to-noise-ratio (TNR) properties and target-tracking abilities. Instead of sampling a single magnetization pathway as in typical MR thermometry sequences, the pulse-sequence design introduced here involves sampling at least one additional pathway. Image reconstruction changes associated with the proposed sampling scheme are also described. The method was implemented on two commonly used MR thermometry sequences: the gradient-echo and the interleaved echo-planar imaging (EPI) sequences. Data from the extra pathway enabled TNR improvements by up to 35%, without increasing scan time. Potentially of greater significance is that the sampled pathways featured very different contrast for blood vessels, facilitating their detection and use as internal landmarks for tracking purposes. Through improved TNR and lesion-tracking abilities, the proposed pulse-sequence design may facilitate the use of MR-monitored thermal ablations as an effective treatment option even in mobile organs such as the liver and kidneys. PMID:21394774

  11. Notch pathway is dispensable for adipocyte specification.

    PubMed

    Nichols, Amy M; Pan, Yonghua; Herreman, An; Hadland, Brandon K; De Strooper, Bart; Kopan, Raphael; Huppert, Stacey S

    2004-09-01

    In the past decade we have witnessed an epidemic of obesity in developed countries. Therefore, understanding the mechanisms involved in regulation of body weight is becoming an increasingly important goal shared by the public and the scientific community. The key to fat deposition is the adipocyte, a specialized cell that plays a critical role in energy balance and appetite regulation. Much of our knowledge of adipogenesis comes from studies using preadipocytic cell lines that have provided important information regarding molecular control of adipocyte differentiation. However, they fall short of revealing how naive cells acquire competence for adipogenesis. Studies in preadipocytes indicate that the Notch pathway plays a role in regulating adipogenesis (Garces et al.: J Biol Chem 272:29729-29734, 1997). Given the known biological functions of Notch in mediating cell fate decisions (Artavanis-Tsakonas et al.: Science 284:770-776, 1999), we wished to test the hypothesis that the Notch pathway is required for this cellular program by examining adipogenesis in several genetic loss-of-function models that encompass the entire pathway. We conclude that the "canonical" Notch signaling pathway is dispensable for adipocyte specification and differentiation from either mesenchymal or epithelial progenitors.

  12. Adverse outcome pathway (AOP) development and evaluation

    EPA Science Inventory

    The Adverse Outcome Pathway provides a construct for assembling mechanistic information at different levels of biological organization in a form designed to support regulatory decision making. In particular, it frames the link between molecular and cellular events that can be mea...

  13. Pathways for Learning from 3D Technology

    ERIC Educational Resources Information Center

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2012-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion"…

  14. Ventral and dorsal pathways for language

    PubMed Central

    Saur, Dorothee; Kreher, Björn W.; Schnell, Susanne; Kümmerer, Dorothee; Kellmeyer, Philipp; Vry, Magnus-Sebastian; Umarova, Roza; Musso, Mariacristina; Glauche, Volkmar; Abel, Stefanie; Huber, Walter; Rijntjes, Michel; Hennig, Jürgen; Weiller, Cornelius

    2008-01-01

    Built on an analogy between the visual and auditory systems, the following dual stream model for language processing was suggested recently: a dorsal stream is involved in mapping sound to articulation, and a ventral stream in mapping sound to meaning. The goal of the study presented here was to test the neuroanatomical basis of this model. Combining functional magnetic resonance imaging (fMRI) with a novel diffusion tensor imaging (DTI)-based tractography method we were able to identify the most probable anatomical pathways connecting brain regions activated during two prototypical language tasks. Sublexical repetition of speech is subserved by a dorsal pathway, connecting the superior temporal lobe and premotor cortices in the frontal lobe via the arcuate and superior longitudinal fascicle. In contrast, higher-level language comprehension is mediated by a ventral pathway connecting the middle temporal lobe and the ventrolateral prefrontal cortex via the extreme capsule. Thus, according to our findings, the function of the dorsal route, traditionally considered to be the major language pathway, is mainly restricted to sensory-motor mapping of sound to articulation, whereas linguistic processing of sound to meaning requires temporofrontal interaction transmitted via the ventral route. PMID:19004769

  15. Cleanup standards and pathways analysis methods

    SciTech Connect

    Devgun, J.S.

    1993-09-01

    Remediation of a radioactively contaminated site requires that certain regulatory criteria be met before the site can be released for unrestricted future use. Since the ultimate objective of remediation is to protect the public health and safety, residual radioactivity levels remaining at a site after cleanup must be below certain preset limits or meet acceptable dose or risk criteria. Release of a decontaminated site requires proof that the radiological data obtained from the site meet the regulatory criteria for such a release. Typically release criteria consist of a composite of acceptance limits that depend on the radionuclides, the media in which they are present, and federal and local regulations. In recent years, the US Department of Energy (DOE) has developed a pathways analysis model to determine site-specific soil activity concentration guidelines for radionuclides that do not have established generic acceptance limits. The DOE pathways analysis computer code (developed by Argonne National Laboratory for the DOE) is called RESRAD (Gilbert et al. 1989). Similar efforts have been initiated by the US Nuclear Regulatory Commission (NRC) to develop and use dose-related criteria based on genetic pathways analyses rather than simplistic numerical limits on residual radioactivity. The focus of this paper is radionuclide contaminated soil. Cleanup standards are reviewed, pathways analysis methods are described, and an example is presented in which RESRAD was used to derive cleanup guidelines.

  16. Signaling pathways involved in MDSC regulation.

    PubMed

    Trikha, Prashant; Carson, William E

    2014-08-01

    The immune system has evolved mechanisms to protect the host from the deleterious effects of inflammation. The generation of immune suppressive cells like myeloid derived suppressor cells (MDSCs) that can counteract T cell responses represents one such strategy. There is an accumulation of immature myeloid cells or MDSCs in bone marrow (BM) and lymphoid organs under pathological conditions such as cancer. MDSCs represent a population of heterogeneous myeloid cells comprising of macrophages, granulocytes and dendritic cells that are at early stages of development. Although, the precise signaling pathways and molecular mechanisms that lead to MDSC generation and expansion in cancer remains to be elucidated. It is widely believed that perturbation of signaling pathways involved during normal hematopoietic and myeloid development under pathological conditions such as tumorogenesis contributes to the development of suppressive myeloid cells. In this review we discuss the role played by key signaling pathways such as PI3K, Ras, Jak/Stat and TGFb during myeloid development and how their deregulation under pathological conditions can lead to the generation of suppressive myeloid cells or MDSCs. Targeting these pathways should help in elucidating mechanisms that lead to the expansion of MDSCs in cancer and point to methods for eliminating these cells from the tumor microenvironment.

  17. Precursors of Young Women's Family Formation Pathways

    ERIC Educational Resources Information Center

    Amato, Paul R.; Landale, Nancy S.; Havasevich-Brooks, Tara C.; Booth, Alan; Eggebeen, David J.; Schoen, Robert; McHale, Susan M.

    2008-01-01

    We used latent class analysis to create family formation pathways for women between the ages of 18 and 23. Input variables included cohabitation, marriage, parenthood, full-time employment, and attending school. Data (n = 2,290) came from Waves I and III of the National Longitudinal Study of Adolescent Health (Add Health). The analysis revealed…

  18. Science Learning Pathways for Young Children

    ERIC Educational Resources Information Center

    Gelman, Rochel; Brenneman, Kimberly

    2004-01-01

    Preschool Pathways to Science (PrePS[C]) is a science and math program for pre-K children that has been developed by a team of developmental psychologists in full collaboration with preschool directors, teachers and other staff. The PrePS[C] approach is rooted in domain-specific theories of development, theories that assume that different areas of…

  19. Origin and evolution of metabolic pathways

    NASA Astrophysics Data System (ADS)

    Fani, Renato; Fondi, Marco

    2009-03-01

    The emergence and evolution of metabolic pathways represented a crucial step in molecular and cellular evolution. In fact, the exhaustion of the prebiotic supply of amino acids and other compounds that were likely present in the ancestral environment, imposed an important selective pressure, favoring those primordial heterotrophic cells which became capable of synthesizing those molecules. Thus, the emergence of metabolic pathways allowed primitive organisms to become increasingly less-dependent on exogenous sources of organic compounds. Comparative analyses of genes and genomes from organisms belonging to Archaea, Bacteria and Eukarya revealed that, during evolution, different forces and molecular mechanisms might have driven the shaping of genomes and the arisal of new metabolic abilities. Among these gene elongations, gene and operon duplications undoubtedly played a major role since they can lead to the (immediate) appearance of new genetic material that, in turn, might undergo evolutionary divergence giving rise to new genes coding for new metabolic abilities. Gene duplication has been invoked in the different schemes proposed to explain why and how the extant metabolic pathways have arisen and shaped. Both the analysis of completely sequenced genomes and directed evolution experiments strongly support one of them, i.e. the patchwork hypothesis, according to which metabolic pathways have been assembled through the recruitment of primitive enzymes that could react with a wide range of chemically related substrates. However, the analysis of the structure and organization of genes belonging to ancient metabolic pathways, such as histidine biosynthesis and nitrogen fixation, suggested that other different hypothesis, i.e. the retrograde hypothesis or the semi-enzymatic theory, may account for the arisal of some metabolic routes.

  20. The BioPAX community standard for pathway data sharing.

    PubMed

    Demir, Emek; Cary, Michael P; Paley, Suzanne; Fukuda, Ken; Lemer, Christian; Vastrik, Imre; Wu, Guanming; D'Eustachio, Peter; Schaefer, Carl; Luciano, Joanne; Schacherer, Frank; Martinez-Flores, Irma; Hu, Zhenjun; Jimenez-Jacinto, Veronica; Joshi-Tope, Geeta; Kandasamy, Kumaran; Lopez-Fuentes, Alejandra C; Mi, Huaiyu; Pichler, Elgar; Rodchenkov, Igor; Splendiani, Andrea; Tkachev, Sasha; Zucker, Jeremy; Gopinath, Gopal; Rajasimha, Harsha; Ramakrishnan, Ranjani; Shah, Imran; Syed, Mustafa; Anwar, Nadia; Babur, Ozgün; Blinov, Michael; Brauner, Erik; Corwin, Dan; Donaldson, Sylva; Gibbons, Frank; Goldberg, Robert; Hornbeck, Peter; Luna, Augustin; Murray-Rust, Peter; Neumann, Eric; Ruebenacker, Oliver; Reubenacker, Oliver; Samwald, Matthias; van Iersel, Martijn; Wimalaratne, Sarala; Allen, Keith; Braun, Burk; Whirl-Carrillo, Michelle; Cheung, Kei-Hoi; Dahlquist, Kam; Finney, Andrew; Gillespie, Marc; Glass, Elizabeth; Gong, Li; Haw, Robin; Honig, Michael; Hubaut, Olivier; Kane, David; Krupa, Shiva; Kutmon, Martina; Leonard, Julie; Marks, Debbie; Merberg, David; Petri, Victoria; Pico, Alex; Ravenscroft, Dean; Ren, Liya; Shah, Nigam; Sunshine, Margot; Tang, Rebecca; Whaley, Ryan; Letovksy, Stan; Buetow, Kenneth H; Rzhetsky, Andrey; Schachter, Vincent; Sobral, Bruno S; Dogrusoz, Ugur; McWeeney, Shannon; Aladjem, Mirit; Birney, Ewan; Collado-Vides, Julio; Goto, Susumu; Hucka, Michael; Le Novère, Nicolas; Maltsev, Natalia; Pandey, Akhilesh; Thomas, Paul; Wingender, Edgar; Karp, Peter D; Sander, Chris; Bader, Gary D

    2010-09-01

    Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.

  1. The BioPAX community standard for pathway

    SciTech Connect

    Syed, Mustafa H

    2010-01-01

    Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.

  2. Humudifucol and Bioactive Prenylated Polyphenols from Hops (Humulus lupulus cv. "Cascade").

    PubMed

    Forino, Martino; Pace, Simona; Chianese, Giuseppina; Santagostini, Laura; Werner, Markus; Weinigel, Christina; Rummler, Silke; Fico, Gelsomina; Werz, Oliver; Taglialatela-Scafati, Orazio

    2016-03-25

    Humulus lupulus (hop plant) has long been used in traditional medicine as a sedative and antimicrobial agent. More recently, attention has been devoted to the phytoestrogenic activity of the plant extracts as well as to the anti-inflammatory and chemopreventive properties of the prenylated chalcones present. In this study, an Italian sample of H. lupulus cv. "Cascade" has been investigated and three new compounds [4-hydroxycolupulone (6), humudifucol (7) and cascadone (8)] have been purified and identified by means of NMR spectroscopy along with four known metabolites. Notably, humudifucol (7) is the first prenylated dimeric phlorotannin discovered in nature. Because structurally related phloroglucinols from natural sources were found previously to inhibit microsomal prostaglandin E2 synthase (mPGES)-1 and 5-lipoxygenase (5-LO), the isolated compounds were evaluated for their bioactivity against these pro-inflammatory target proteins. The prenylated chalcone xanthohumol inhibited both enzymes at low μM concentrations.

  3. The effect of inhibition of leukotriene synthesis on the activity of interleukin-8 and granulocyte-macrophage colony-stimulating factor

    PubMed Central

    Pizzey, A. R.; Linch, D. C.

    1993-01-01

    The cytokines interleukin-8 (IL-8) and granulocyte-macrophage colony-stimulating factor (GM-CSF) enhanced the extracellular release of arachidonate metabolites from ionophore-stimulated neutrophils by 145 ± 10% (mean ± S.E.M., n = 13) and 182 ± 11% (n = 16), respectively. To determine whether enhanced leukotriene production mediates the effects of these cytokines on neutrophil activity, two different specific arachidonate 5-lipoxygenase (5-LO) inhibitors, piriprost and MK-886, were used to inhibit leukotriene synthesis. Neither inhibitor affected the upregulation of CD11b β2-integrin expression or priming of superoxide generation stimulated by IL-8 and GM-CSF. It is concluded that leukotrienes do not mediate either the direct or priming effects of these cytokines and that these classes of anti-inflammatory drugs are therefore unlikely to inhibit the effects of IL-8 and GM-CSF on neutrophil activation. PMID:18475524

  4. Genome-Wide Pathway Analysis Identifies Genetic Pathways Associated with Psoriasis.

    PubMed

    Aterido, Adrià; Julià, Antonio; Ferrándiz, Carlos; Puig, Lluís; Fonseca, Eduardo; Fernández-López, Emilia; Dauden, Esteban; Sánchez-Carazo, José Luís; López-Estebaranz, José Luís; Moreno-Ramírez, David; Vanaclocha, Francisco; Herrera, Enrique; de la Cueva, Pablo; Dand, Nick; Palau, Núria; Alonso, Arnald; López-Lasanta, María; Tortosa, Raül; García-Montero, Andrés; Codó, Laia; Gelpí, Josep Lluís; Bertranpetit, Jaume; Absher, Devin; Capon, Francesca; Myers, Richard M; Barker, Jonathan N; Marsal, Sara

    2016-03-01

    Psoriasis is a chronic inflammatory disease with a complex genetic architecture. To date, the psoriasis heritability is only partially explained. However, there is increasing evidence that the missing heritability in psoriasis could be explained by multiple genetic variants of low effect size from common genetic pathways. The objective of this study was to identify new genetic variation associated with psoriasis risk at the pathway level. We genotyped 598,258 single nucleotide polymorphisms in a discovery cohort of 2,281 case-control individuals from Spain. We performed a genome-wide pathway analysis using 1,053 reference biological pathways. A total of 14 genetic pathways (PFDR ≤ 2.55 × 10(-2)) were found to be significantly associated with psoriasis risk. Using an independent validation cohort of 7,353 individuals from the UK, a total of 6 genetic pathways were significantly replicated (PFDR ≤ 3.46 × 10(-2)). We found genetic pathways that had not been previously associated with psoriasis risk such as retinol metabolism (Pcombined = 1.84 × 10(-4)), the transport of inorganic ions and amino acids (Pcombined = 1.57 × 10(-7)), and post-translational protein modification (Pcombined = 1.57 × 10(-7)). In the latter pathway, MGAT5 showed a strong network centrality, and its association with psoriasis risk was further validated in an additional case-control cohort of 3,429 individuals (P < 0.05). These findings provide insights into the biological mechanisms associated with psoriasis susceptibility.

  5. Chemical Shifts to Metabolic Pathways: Identifying Metabolic Pathways Directly from a Single 2D NMR Spectrum.

    PubMed

    Dubey, Abhinav; Rangarajan, Annapoorni; Pal, Debnath; Atreya, Hanudatta S

    2015-12-15

    Identifying cellular processes in terms of metabolic pathways is one of the avowed goals of metabolomics studies. Currently, this is done after relevant metabolites are identified to allow their mapping onto specific pathways. This task is daunting due to the complex nature of cellular processes and the difficulty in establishing the identity of individual metabolites. We propose here a new method: ChemSMP (Chemical Shifts to Metabolic Pathways), which facilitates rapid analysis by identifying the active metabolic pathways directly from chemical shifts obtained from a single two-dimensional (2D) [(13)C-(1)H] correlation NMR spectrum without the need for identification and assignment of individual metabolites. ChemSMP uses a novel indexing and scoring system comprised of a "uniqueness score" and a "coverage score". Our method is demonstrated on metabolic pathways data from the Small Molecule Pathway Database (SMPDB) and chemical shifts from the Human Metabolome Database (HMDB). Benchmarks show that ChemSMP has a positive prediction rate of >90% in the presence of decluttered data and can sustain the same at 60-70% even in the presence of noise, such as deletions of peaks and chemical shift deviations. The method tested on NMR data acquired for a mixture of 20 amino acids shows a success rate of 93% in correct recovery of pathways. When used on data obtained from the cell lysate of an unexplored oncogenic cell line, it revealed active metabolic pathways responsible for regulating energy homeostasis of cancer cells. Our unique tool is thus expected to significantly enhance analysis of NMR-based metabolomics data by reducing existing impediments.

  6. A pathway approach to evaluating the association between the CHIEF pathway and risk of colorectal cancer

    PubMed Central

    Slattery, Martha L.; Wolff, Roger K.; Lundgreen, Abbie

    2015-01-01

    Inflammation, hormones and energy-related factors have been associated with colorectal cancer (CRC) and it has been proposed that convergence and interactions of these factors importantly influence CRC risk. We have previously hypothesized that genetic variation in the CHIEF (convergence of hormones, inflammation and energy-related factors) pathway would influence risk of CRC. In this paper, we utilize an Adaptive Rank Truncation Product (ARTP) statistical method to determine the overall pathway significance and then use that method to identify the key elements within the pathway associated with disease risk. Data from two population-based case–control studies of colon (n = 1555 cases and 1956 controls) and rectal (n = 754 cases and 959 controls) cancer were used. We use ARTP to estimate pathway and gene significance and polygenic scores based on ARTP findings to further estimate the risk associated with the pathway. Associations were further assessed based on tumor molecular phenotype. The CHIEF pathway was statistically significant for colon cancer (P ARTP = 0.03) with the most significant interferons (P ARTP = 0.0253), JAK/STAT/SOCS (P ARTP = 0.0111), telomere (P ARTP = 0.0399) and transforming growth factor β (P ARTP = 0.0043) being the most significant subpathways for colon cancer. For rectal cancer, interleukins (P ARTP = 0.0235) and selenoproteins (P ARTP = 0.0047) were statistically significant although the pathway overall was of borderline significance (P ARTP = 0.06). Interleukins (P ARTP = 0.0456) and mitogen-activated protein kinase (P ARTP = 0.0392) subpathways were uniquely significant for CpG island methylator phenotype-positive colon tumors. Increasing number of at-risk alleles was significantly associated with both colon [odds ratio (OR) = 6.21, 95% confidence interval (CI): 4.72, 8.16] and rectal (OR = 7.82, 95% CI: 5.26, 11.62) cancer. We conclude that elements of the CHIEF pathway are important for CRC risk. PMID:25330801

  7. WholePathwayScope: a comprehensive pathway-based analysis tool for high-throughput data

    PubMed Central

    Yi, Ming; Horton, Jay D; Cohen, Jonathan C; Hobbs, Helen H; Stephens, Robert M

    2006-01-01

    Background Analysis of High Throughput (HTP) Data such as microarray and proteomics data has provided a powerful methodology to study patterns of gene regulation at genome scale. A major unresolved problem in the post-genomic era is to assemble the large amounts of data generated into a meaningful biological context. We have developed a comprehensive software tool, WholePathwayScope (WPS), for deriving biological insights from analysis of HTP data. Result WPS extracts gene lists with shared biological themes through color cue templates. WPS statistically evaluates global functional category enrichment of gene lists and pathway-level pattern enrichment of data. WPS incorporates well-known biological pathways from KEGG (Kyoto Encyclopedia of Genes and Genomes) and Biocarta, GO (Gene Ontology) terms as well as user-defined pathways or relevant gene clusters or groups, and explores gene-term relationships within the derived gene-term association networks (GTANs). WPS simultaneously compares multiple datasets within biological contexts either as pathways or as association networks. WPS also integrates Genetic Association Database and Partial MedGene Database for disease-association information. We have used this program to analyze and compare microarray and proteomics datasets derived from a variety of biological systems. Application examples demonstrated the capacity of WPS to significantly facilitate the analysis of HTP data for integrative discovery. Conclusion This tool represents a pathway-based platform for discovery integration to maximize analysis power. The tool is freely available at . PMID:16423281

  8. Yeast Pathway Kit: A Method for Metabolic Pathway Assembly with Automatically Simulated Executable Documentation.

    PubMed

    Pereira, Filipa; Azevedo, Flávio; Parachin, Nadia Skorupa; Hahn-Hägerdal, Bärbel; Gorwa-Grauslund, Marie F; Johansson, Björn

    2016-05-20

    We have developed the Yeast Pathway Kit (YPK) for rational and random metabolic pathway assembly in Saccharomyces cerevisiae using reusable and redistributable genetic elements. Genetic elements are cloned in a suicide vector in a rapid process that omits PCR product purification. Single-gene expression cassettes are assembled in vivo using genetic elements that are both promoters and terminators (TP). Cassettes sharing genetic elements are assembled by recombination into multigene pathways. A wide selection of prefabricated TP elements makes assembly both rapid and inexpensive. An innovative software tool automatically produces detailed self-contained executable documentation in the form of pydna code in the narrative Jupyter notebook format to facilitate planning and sharing YPK projects. A d-xylose catabolic pathway was created using YPK with four or eight genes that resulted in one of the highest growth rates reported on d-xylose (0.18 h(-1)) for recombinant S. cerevisiae without adaptation. The two-step assembly of single-gene expression cassettes into multigene pathways may improve the yield of correct pathways at the cost of adding overall complexity, which is offset by the supplied software tool.

  9. Customized optimization of metabolic pathways by combinatorial transcriptional engineering.

    PubMed

    Yuan, Yongbo; Du, Jing; Zhao, Huimin

    2013-01-01

    Introduction of a heterologous metabolic pathway into a platform microorganism for applications in metabolic engineering and synthetic biology is often technically straightforward. However, the major challenge is to balance the flux in the pathway to obtain high yield and productivity in a target microorganism. To address this limitation, we recently developed a simple, efficient, and programmable approach named "customized optimization of metabolic pathways by combinatorial transcriptional engineering" (COMPACTER) for balancing the flux in a pathway under distinct metabolic backgrounds. Here we use two examples including a cellobiose-utilizing pathway and a xylose-utilizing pathway to illustrate the key steps in the COMPACTER method.

  10. Targeting Signaling Pathways in Cancer Stem Cells for Cancer Treatment

    PubMed Central

    Zhong, Li

    2017-01-01

    The Wnt, Hedgehog, and Notch pathways are inherent signaling pathways in normal embryogenesis, development, and hemostasis. However, dysfunctions of these pathways are evident in multiple tumor types and malignancies. Specifically, aberrant activation of these pathways is implicated in modulation of cancer stem cells (CSCs), a small subset of cancer cells capable of self-renewal and differentiation into heterogeneous tumor cells. The CSCs are accountable for tumor initiation, growth, and recurrence. In this review, we focus on roles of Wnt, Hedgehog, and Notch pathways in CSCs' stemness and functions and summarize therapeutic studies targeting these pathways to eliminate CSCs and improve overall cancer treatment outcomes. PMID:28356914

  11. Construction and engineering of large biochemical pathways via DNA assembler

    PubMed Central

    Shao, Zengyi; Zhao, Huimin

    2015-01-01

    Summary DNA assembler enables rapid construction and engineering of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use two examples including the zeaxanthin biosynthetic pathway and the aureothin biosynthetic gene cluster to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for construct design, pathway assembly, pathway confirmation, and functional analysis are shown. The protocol for fine genetic modifications such as site-directed mutagenesis for engineering the aureothin gene cluster is also illustrated. PMID:23996442

  12. Conservation of small RNA pathways in platypus.

    PubMed

    Murchison, Elizabeth P; Kheradpour, Pouya; Sachidanandam, Ravi; Smith, Carly; Hodges, Emily; Xuan, Zhenyu; Kellis, Manolis; Grützner, Frank; Stark, Alexander; Hannon, Gregory J

    2008-06-01

    Small RNA pathways play evolutionarily conserved roles in gene regulation and defense from parasitic nucleic acids. The character and expression patterns of small RNAs show conservation throughout animal lineages, but specific animal clades also show variations on these recurring themes, including species-specific small RNAs. The monotremes, with only platypus and four species of echidna as extant members, represent the basal branch of the mammalian lineage. Here, we examine the small RNA pathways of monotremes by deep sequencing of six platypus and echidna tissues. We find that highly conserved microRNA species display their signature tissue-specific expression patterns. In addition, we find a large rapidly evolving cluster of microRNAs on platypus chromosome X1, which is unique to monotremes. Platypus and echidna testes contain a robust Piwi-interacting (piRNA) system, which appears to be participating in ongoing transposon defense.

  13. Whole Algae Hydrothermal Liquefaction Technology Pathway

    SciTech Connect

    Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  14. Signaling pathways controlling skeletal muscle mass.

    PubMed

    Egerman, Marc A; Glass, David J

    2014-01-01

    The molecular mechanisms underlying skeletal muscle maintenance involve interplay between multiple signaling pathways. Under normal physiological conditions, a network of interconnected signals serves to control and coordinate hypertrophic and atrophic messages, culminating in a delicate balance between muscle protein synthesis and proteolysis. Loss of skeletal muscle mass, termed "atrophy", is a diagnostic feature of cachexia seen in settings of cancer, heart disease, chronic obstructive pulmonary disease, kidney disease, and burns. Cachexia increases the likelihood of death from these already serious diseases. Recent studies have further defined the pathways leading to gain and loss of skeletal muscle as well as the signaling events that induce differentiation and post-injury regeneration, which are also essential for the maintenance of skeletal muscle mass. In this review, we summarize and discuss the relevant recent literature demonstrating these previously undiscovered mediators governing anabolism and catabolism of skeletal muscle.

  15. The kynurenine pathway in stem cell biology.

    PubMed

    Jones, Simon P; Guillemin, Gilles J; Brew, Bruce J

    2013-09-15

    The kynurenine pathway (KP) is the main catabolic pathway of the essential amino acid tryptophan. The KP has been identified to play a critical role in regulating immune responses in a variety of experimental settings. It is also known to be involved in several neuroinflammatory diseases including Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. This review considers the current understanding of the role of the KP in stem cell biology. Both of these fundamental areas of cell biology have independently been the focus of a burgeoning research interest in recent years. A systematic review of how the two interact has not yet been conducted. Several inflammatory and infectious diseases in which the KP has been implicated include those for which stem cell therapies are being actively explored at a clinical level. Therefore, it is highly relevant to consider the evidence showing that the KP influences stem cell biology and impacts the functional behavior of progenitor cells.

  16. Cancer therapeutics: Targeting the apoptotic pathway.

    PubMed

    Khan, Khurum H; Blanco-Codesido, Montserrat; Molife, L Rhoda

    2014-06-01

    Apoptosis, a physiological process of programmed cell death, is disrupted in various malignancies. It has been exploited as an anti-cancer strategy traditionally by inducing DNA damage with chemotherapy and radiotherapy. With an increased understanding of the intrinsic and extrinsic pathways of apoptosis in recent years, novel approaches of targeting the apoptotic pathways have been tested in pre-clinical and clinical models. There are several early phase clinical trials investigating the therapeutic role of pro-apoptotic agents, both as single agents and in combination. In this review, we examine such treatment strategies, detailing the various compounds currently under clinical investigation, their potential roles in cancer therapeutics, and discussing approaches to their optimal use in the clinic.

  17. Metabolism pathways in chronic lymphocytic leukemia.

    PubMed

    Rozovski, Uri; Hazan-Halevy, Inbal; Barzilai, Merav; Keating, Michael J; Estrov, Zeev

    2016-01-01

    Alterations in chronic lymphocytic leukemia (CLL) cell metabolism have been studied by several investigators. Unlike normal B lymphocytes or other leukemia cells, CLL cells, like adipocytes, store lipids and utilize free fatty acids (FFA) to produce chemical energy. None of the recently identified mutations in CLL directly affects metabolic pathways, suggesting that genetic alterations do not directly contribute to CLL cells' metabolic reprogramming. Conversely, recent data suggest that activation of STAT3 or downregulation of microRNA-125 levels plays a crucial role in the utilization of FFA to meet the CLL cells' metabolic needs. STAT3, known to be constitutively activated in CLL, increases the levels of lipoprotein lipase (LPL) that mediates lipoprotein uptake and shifts the CLL cells' metabolism towards utilization of FFA. Herein, we review the evidence for altered lipid metabolism, increased mitochondrial activity and formation of reactive oxygen species (ROS) in CLL cells, and discuss the possible therapeutic strategies to inhibit lipid metabolism pathways in patient with CLL.

  18. Conservation of small RNA pathways in platypus

    PubMed Central

    Murchison, Elizabeth P.; Kheradpour, Pouya; Sachidanandam, Ravi; Smith, Carly; Hodges, Emily; Xuan, Zhenyu; Kellis, Manolis; Grützner, Frank; Stark, Alexander; Hannon, Gregory J.

    2008-01-01

    Small RNA pathways play evolutionarily conserved roles in gene regulation and defense from parasitic nucleic acids. The character and expression patterns of small RNAs show conservation throughout animal lineages, but specific animal clades also show variations on these recurring themes, including species-specific small RNAs. The monotremes, with only platypus and four species of echidna as extant members, represent the basal branch of the mammalian lineage. Here, we examine the small RNA pathways of monotremes by deep sequencing of six platypus and echidna tissues. We find that highly conserved microRNA species display their signature tissue-specific expression patterns. In addition, we find a large rapidly evolving cluster of microRNAs on platypus chromosome X1, which is unique to monotremes. Platypus and echidna testes contain a robust Piwi-interacting (piRNA) system, which appears to be participating in ongoing transposon defense. PMID:18463306

  19. A Pathway Idea for Model Building.

    PubMed

    Mathai, A M; Moschopoulos, Panagis

    2012-01-01

    Models, mathematical or stochastic, which move from one functional form to another through pathway parameters, so that in between stages can be captured, are examined in this article. Models which move from generalized type-1 beta family to type-2 beta family, to generalized gamma family to generalized Mittag-Leffler family to Lévy distributions are examined here. It is known that one can likely find an approximate model for the data at hand whether the data are coming from biological, physical, engineering, social sciences or other areas. Different families of functions are connected through the pathway parameters and hence one will find a suitable member from within one of the families or in between stages of two families. Graphs are provided to show the movement of the different models showing thicker tails, thinner tails, right tail cut off etc.

  20. How expectation works: psychologic and physiologic pathways.

    PubMed

    Brown, Walter A

    2015-05-01

    Although expectation has been the most widely studied of the mechanisms that drive the placebo effect, we still don't know how it works. We don't know how the thought that one will respond to a substance in a certain way is converted to symptom relief, intoxication, or airway resistance; the pathway between expectation of a response and the response itself remains uncharted. Nonetheless, in the last decade, brain-imaging studies have begun to uncover this pathway. This paper reviews both long-standing psychologic concepts about the underpinnings of expectation and some of the contemporary brain imaging research, which shows that when expectation alleviates depression, produces pain relief or improves parkinsonian symptoms, these effects come with relevant changes in brain activity and chemistry. These findings oblige us to reevaluate some of the traditional common sense notions of how expectation brings about its effects and how placebos work.

  1. Signalling Pathways Controlling Cellular Actin Organization.

    PubMed

    Steffen, Anika; Stradal, Theresia E B; Rottner, Klemens

    2017-01-01

    The actin cytoskeleton is essential for morphogenesis and virtually all types of cell shape changes. Reorganization is per definition driven by continuous disassembly and re-assembly of actin filaments, controlled by major, ubiquitously operating machines. These are specifically employed by the cell to tune its activities in accordance with respective environmental conditions or to satisfy specific needs.Here we sketch some fundamental signalling pathways established to contribute to the reorganization of specific actin structures at the plasma membrane. Rho-family GTPases are at the core of these pathways, and dissection of their precise contributions to actin reorganization in different cell types and tissues will thus continue to improve our understanding of these important signalling nodes. Furthermore, we will draw your attention to the emerging theme of actin reorganization on intracellular membranes, its functional relation to Rho-GTPase signalling, and its relevance for the exciting phenomenon autophagy.

  2. Development of the Retina and Optic Pathway

    PubMed Central

    Reese, Benjamin E.

    2010-01-01

    Our understanding of the development of the retina and visual pathways has seen enormous advances during the past twenty-five years. New imaging technologies, coupled with advances in molecular biology, have permitted a fuller appreciation of the histotypical events associated with proliferation, fate determination, migration, differentiation, pathway navigation, target innervation, synaptogenesis and cell death, and in many instances, in understanding the genetic, molecular, cellular and activity-dependent mechanisms underlying those developmental changes. The present review considers those advances associated with the lineal relationships between retinal nerve cells, the production of retinal nerve cell diversity, the migration, patterning and differentiation of different types of retinal nerve cells, the determinants of the decussation pattern at the optic chiasm, the formation of the retinotopic map, and the establishment of ocular domains within the thalamus. PMID:20647017

  3. Molecular neurodegeneration: basic biology and disease pathways.

    PubMed

    Vassar, Robert; Zheng, Hui

    2014-09-23

    The field of neurodegeneration research has been advancing rapidly over the past few years, and has provided intriguing new insights into the normal physiological functions and pathogenic roles of a wide range of molecules associated with several devastating neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease, and Down syndrome. Recent developments have also facilitated initial efforts to translate preclinical discoveries toward novel therapeutic approaches and clinical trials in humans. These recent developments are reviewed in the current Review Series on "Molecular Neurodegeneration: Basic Biology and Disease Pathways" in a number of state-of-the-art manuscripts that cover themes presented at the Third International Conference on Molecular Neurodegeneration: "Basic biology and disease pathways" held in Cannes, France, September, 2013.

  4. Endocytic uptake pathways utilized by CPMV nanoparticles

    PubMed Central

    Plummer, Emily M.; Manchester, Marianne

    2013-01-01

    Cowpea mosaic virus (CPMV) has been used as a nanoparticle platform for biomedical applications including vaccine development, in-vivo vascular imaging, and tissue-targeted delivery. A better understanding of the mechanisms of CPMV targeting and cell internalization would enable enhanced targeting and more effective delivery. Previous studies showed that, following binding and internalization by mammalian cells, CPMV localizes in a perinuclear late-endosome compartment where it remains for as long as several days. To further investigate endocytic trafficking of CPMV within the cell, we used multiple approaches including pharmacologic inhibition of pathways, and co-localization with endocytic vesicle compartments. CPMV internalization was clathrin-independent, and utilized a combination of caveolar endocytosis and macropinocytosis pathways for entry. CPMV particles co-localized with Rab5+ early endosomes to traffic ultimately to a lysosomal compartment. These studies facilitate the further development of effective intracellular drug-delivery strategies using CPMV. PMID:22905759

  5. Hippo/YAP pathway for targeted therapy

    PubMed Central

    Stahel, Rolf

    2014-01-01

    Malignant pleural mesothelioma (MPM) is molecularly characterized by loss of function or mutations in the neurofibromin 2 (NF2) and the cyclin-dependent kinase inhibitor 2 genes. NF2 activates a cascade of kinases, called Hippo pathway, which downregulates Yes associated protein (YAP) function as transcription co-activator for TEA domain transcription factors (TEAD). In the absence of functional NF2, the expression of genes essential for cell cycling such as survivin is increased. New therapeutic strategies aimed at interfering with YAP activity include inhibition of hedgehog pathway, which downregulates the YAP protein, verteporfin, which inhibits the assembly of a functional YAP-TEAD transcription factor, and interference with thrombin and lysophosphatidic acid (LPA) receptors downstream signalling, since upon agonist binding they activate YAP. PMID:25806284

  6. The JAK-STAT Pathway at Twenty

    PubMed Central

    Stark, George R.; Darnell, James E.

    2014-01-01

    We look back on the discoveries that the tyrosine kinases TYK2 and JAK1 and the transcription factors STAT1, STAT2, and IRF9 are required for the cellular response to type I interferons. This initial description of the JAK-STAT pathway led quickly to additional discoveries that type II interferons and many other cytokines signal through similar mechanisms. This well-understood pathway now serves as a paradigm showing how information from protein-protein contacts at the cell surface can be conveyed directly to genes in the nucleus. We also review recent work on the STAT proteins showing the importance of several different posttranslational modifications, including serine phosphorylation, acetylation, methylation, and sumoylation. These remarkably proficient proteins also provide noncanonical functions in transcriptional regulation and they also function in mitochondrial respiration and chromatin organization in ways that may not involve transcription at all. PMID:22520844

  7. Model of the haem biosynthetic pathway

    NASA Astrophysics Data System (ADS)

    Greaves-Brown, Jeanette; Williams, Tim J.; Parish, J. H.

    1995-03-01

    (delta) -Aminolaevulinic acid (ALA) is a photodynamic therapy (PDT) agent that utilizes the haem biosynthetic pathway to create therapeutic levels of photoactive agents within tissues. Photosensitizer dosimetry and drug concentrations in target tissues are areas of uncertainty within PDT research. A program is described that uses numerical methods to model mathematically the haem biosynthetic pathway from ALA to haem as a set of partial differential rate equations. The data generated allow analysis and correlation with functions describing the kinetic behavior governing the reactions. This analysis provides insight into the production of protoporphyrin IX and other photoactive agents from exogenous ALA and provides a method for optimizing parameters, and for highlighting metabolic steps to which the product formation is most sensitive.

  8. Subcortical amygdala pathways enable rapid face processing.

    PubMed

    Garvert, Mona M; Friston, Karl J; Dolan, Raymond J; Garrido, Marta I

    2014-11-15

    Human faces may signal relevant information and are therefore analysed rapidly and effectively by the brain. However, the precise mechanisms and pathways involved in rapid face processing are unclear. One view posits a role for a subcortical connection between early visual sensory regions and the amygdala, while an alternative account emphasises cortical mediation. To adjudicate between these functional architectures, we recorded magnetoencephalographic (MEG) evoked fields in human subjects to presentation of faces with varying emotional valence. Early brain activity was better explained by dynamic causal models containing a direct subcortical connection to the amygdala irrespective of emotional modulation. At longer latencies, models without a subcortical connection had comparable evidence. Hence, our results support the hypothesis that a subcortical pathway to the amygdala plays a role in rapid sensory processing of faces, in particular during early stimulus processing. This finding contributes to an understanding of the amygdala as a behavioural relevance detector.

  9. Signaling pathways controlling skeletal muscle mass

    PubMed Central

    Egerman, Marc A.

    2014-01-01

    The molecular mechanisms underlying skeletal muscle maintenance involve interplay between multiple signaling pathways. Under normal physiological conditions, a network of interconnected signals serves to control and coordinate hypertrophic and atrophic messages, culminating in a delicate balance between muscle protein synthesis and proteolysis. Loss of skeletal muscle mass, termed “atrophy”, is a diagnostic feature of cachexia seen in settings of cancer, heart disease, chronic obstructive pulmonary disease, kidney disease, and burns. Cachexia increases the likelihood of death from these already serious diseases. Recent studies have further defined the pathways leading to gain and loss of skeletal muscle as well as the signaling events that induce differentiation and post-injury regeneration, which are also essential for the maintenance of skeletal muscle mass. In this review, we summarize and discuss the relevant recent literature demonstrating these previously undiscovered mediators governing anabolism and catabolism of skeletal muscle. PMID:24237131

  10. Neurobiological Pathways Linking Socioeconomic Position and Health

    PubMed Central

    Gianaros, Peter J.; Manuck, Stephen B.

    2010-01-01

    Across individuals, risk for poor health varies inversely with socioeconomic position (SEP). The pathways by which SEP affects health have been viewed from many epidemiological perspectives. Central to these perspectives is the notion that socioeconomic health disparities arise from an interplay between nested, recursive, and cumulative environmental, social, familial, psychological, behavioral, and physiological processes that unfold over the life span. Epidemiological perspectives on socioeconomic health disparities, however, have not yet formally integrated emerging findings from neuropharmacological, molecular genetic, and neuroimaging studies demonstrating that indicators of SEP relate to patterns of brain neurotransmission, brain morphology, and brain functionality implicated in the etiology of chronic medical conditions and psychological disorders. Here, we survey these emerging findings and consider how future neurobiological studies in this area can enhance our understanding of the pathways by which different dimensions of SEP become embodied by the brain to influence health throughout life. PMID:20498294

  11. Arctic contaminants: sources, occurrence and pathways.

    PubMed

    Barrie, L A; Gregor, D; Hargrave, B; Lake, R; Muir, D; Shearer, R; Tracey, B; Bidleman, T

    1992-07-15

    Potentially toxic organic compounds, acids, metals and radionuclides in the northern polar region are a matter of concern as it becomes evident that long-range transport of pollution on hemispheric to global scales is damaging this part of the world. In this review and assessment of sources, occurrence, history and pathways of these substances in the north, the state of knowledge of the transport media--the ocean and atmospheric circulation--is also examined. A five-compartment model of the northern region is developed with the intent of assessing the pathways of northern contaminants. It shows that we know most about pathways of acids, metals and radionuclides and least about those of complex synthetic organic compounds. Of the total annual inputs of anthropogenic acidic sulphur and the metals lead and cadmium to the Arctic via the atmosphere, an estimated 10-14% are deposited. A water mass budget for the surface layer of the Arctic Ocean, the most biologically active part of that sea, is constructed to examine the mass budget for one of the major persistent organochlorine compound groups found in remote regions, hexachlorocyclohexanes (HCH), one isomer of which is lindane. It is concluded that both the atmosphere and the ocean are important transport media. Even for the HCH substances which are relatively easily measured and simple in composition compared to other synthetic organics, we know little about the occurrence and environmental physical/chemical characteristics that determine pathways into the food chain. More environmental measurements, chemical characterization studies and environmental chemical transport modelling are needed, as is better knowledge of the circulation of the Arctic Ocean and the marine food web.

  12. Modulation of neurotrophic signaling pathways by polyphenols

    PubMed Central

    Moosavi, Fatemeh; Hosseini, Razieh; Saso, Luciano; Firuzi, Omidreza

    2016-01-01

    Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk) receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation. Finally, the antioxidant activity of polyphenols reflected in the activation of Nrf2 pathway and the consequent upregulation of detoxification enzymes such as heme oxygenase-1 as well as the contribution of these effects to the neurotrophic activity have also been discussed. In conclusion, a better understanding of the neurotrophic effects of polyphenols and

  13. Pathways of mammalian replication fork restart.

    PubMed

    Petermann, Eva; Helleday, Thomas

    2010-10-01

    Single-molecule analyses of DNA replication have greatly advanced our understanding of mammalian replication restart. Several proteins that are not part of the core replication machinery promote the efficient restart of replication forks that have been stalled by replication inhibitors, suggesting that bona fide fork restart pathways exist in mammalian cells. Different models of replication fork restart can be envisaged, based on the involvement of DNA helicases, nucleases, homologous recombination factors and the importance of DNA double-strand break formation.

  14. Pathway network inference from gene expression data

    PubMed Central

    2014-01-01

    Background The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. Results We present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example. Conclusions PANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the network's topology obtained for the yeast cell cycle data. PMID:25032889

  15. Modulation of neurotrophic signaling pathways by polyphenols.

    PubMed

    Moosavi, Fatemeh; Hosseini, Razieh; Saso, Luciano; Firuzi, Omidreza

    2016-01-01

    Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer's and Parkinson's disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk) receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation. Finally, the antioxidant activity of polyphenols reflected in the activation of Nrf2 pathway and the consequent upregulation of detoxification enzymes such as heme oxygenase-1 as well as the contribution of these effects to the neurotrophic activity have also been discussed. In conclusion, a better understanding of the neurotrophic effects of polyphenols and the

  16. Biochemical-Pathway Diversity in Archaebacteria

    DTIC Science & Technology

    1990-08-30

    characteristic of much or all of the Gram-positive lineage of eubacteria . We have extended the enzymological base of information to include organisms...to compare the biochemical diversitv within the archaebacteria to the biochemical diversity already known or now emerging within the eubacteria . RAI...INALL: In eubacteria aromatic-pathway character states are exceedingly diverse. A given feature will cluster at a hierarchical level ot phylogeny that

  17. Enzymology of the carnitine biosynthesis pathway.

    PubMed

    Strijbis, Karin; Vaz, Frédéric M; Distel, Ben

    2010-05-01

    The water-soluble zwitterion carnitine is an essential metabolite in eukaryotes required for fatty acid oxidation as it functions as a carrier during transfer of activated acyl and acetyl groups across intracellular membranes. Most eukaryotes are able to synthesize carnitine endogenously, besides their capacity to take up carnitine from the diet or extracellular medium through plasma membrane transporters. This review discusses the current knowledge on carnitine homeostasis with special emphasis on the enzymology of the four steps of the carnitine biosynthesis pathway.

  18. Folding pathways of the Tetrahymena ribozyme

    PubMed Central

    Mitchell, David; Russell, Rick

    2014-01-01

    Like many structured RNAs, the Tetrahymena group I intron ribozyme folds through multiple pathways and intermediates. Under standard conditions in vitro, a small fraction reaches the native state (N) with kobs ≈ 0.6 min–1, while the remainder forms a long-lived misfolded conformation (M) thought to differ in topology. These alternative outcomes reflect a pathway that branches late in folding, after disruption of a trapped intermediate (Itrap). Here, we use catalytic activity to probe the folding transitions from Itrap to the native and misfolded states. We show that mutations predicted to weaken the core helix P3 do not increase the rate of folding from Itrap but they increase the fraction that reaches the native state rather than forming the misfolded state. Thus, P3 is disrupted during folding to the native state but not to the misfolded state, and P3 disruption occurs after the rate-limiting step. Interestingly, P3-strengthening mutants also increase native folding. Additional experiments show that these mutants are rapidly committed to folding to the native state, although they reach the native state with approximately the same rate constant as the wild-type ribozyme (~1 min–1). Thus, the P3-strengthening mutants populate a distinct pathway that includes at least one intermediate but avoids the M state, most likely because P3 and the correct topology are formed early. Our results highlight multiple pathways in RNA folding and illustrate how kinetic competitions between rapid events can have long-lasting effects because the ‘choice’ is enforced by energy barriers that grow larger as folding progresses. PMID:24747051

  19. Calcium in plant defence-signalling pathways.

    PubMed

    Lecourieux, David; Ranjeva, Raoul; Pugin, Alain

    2006-01-01

    In plant cells, the calcium ion is a ubiquitous intracellular second messenger involved in numerous signalling pathways. Variations in the cytosolic concentration of Ca2+ ([Ca2+]cyt) couple a large array of signals and responses. Here we concentrate on calcium signalling in plant defence responses, particularly on the generation of the calcium signal and downstream calcium-dependent events participating in the establishment of defence responses with special reference to calcium-binding proteins.

  20. Cortical pathways to the mammalian amygdala.

    PubMed

    McDonald, A J

    1998-06-01

    The amygdaloid nuclear complex is critical for producing appropriate emotional and behavioral responses to biologically relevant sensory stimuli. It constitutes an essential link between sensory and limbic areas of the cerebral cortex and subcortical brain regions, such as the hypothalamus, brainstem, and striatum, that are responsible for eliciting emotional and motivational responses. This review summarizes the anatomy and physiology of the cortical pathways to the amygdala in the rat, cat and monkey. Although the basic anatomy of these systems in the cat and monkey was largely delineated in studies conducted during the 1970s and 1980s, detailed information regarding the cortico-amygdalar pathways in the rat was only obtained in the past several years. The purpose of this review is to describe the results of recent studies in the rat and to compare the organization of cortico-amygdalar projections in this species with that seen in the cat and monkey. In all three species visual, auditory, and somatosensory information is transmitted to the amygdala by a series of modality-specific cortico-cortical pathways ("cascades") that originate in the primary sensory cortices and flow toward higher order association areas. The cortical areas in the more distal portions of these cascades have stronger and more extensive projections to the amygdala than the more proximal areas. In all three species olfactory and gustatory/visceral information has access to the amygdala at an earlier stage of cortical processing than visual, auditory and somatosensory information. There are also important polysensory cortical inputs to the mammalian amygdala from the prefrontal and hippocampal regions. Whereas the overall organization of cortical pathways is basically similar in all mammalian species, there is anatomical evidence which suggests that there are important differences in the extent of convergence of cortical projections in the primate versus the nonprimate amygdala.

  1. The sensory transduction pathways in bacterial chemotaxis

    NASA Technical Reports Server (NTRS)

    Taylor, Barry L.

    1989-01-01

    Bacterial chemotaxis is a useful model for investigating in molecular detail the behavioral response of cells to changes in their environment. Peritrichously flagellated bacteria such as coli and typhimurium swim by rotating helical flagella in a counterclockwise direction. If flagellar rotation is briefly reversed, the bacteria tumble and change the direction of swimming. The bacteria continuously sample the environment and use a temporal sensing mechanism to compare the present and immediate past environments. Bacteria respond to a broad range of stimuli including changes in temperature, oxygen concentration, pH and osmotic strength. Bacteria are attracted to potential sources of nutrition such as sugars and amino acids and are repelled by other chemicals. In the methylation-dependent pathways for sensory transduction and adaptation in E. coli and S. typhimurium, chemoeffectors bind to transducing proteins that span the plasma membrane. The transducing proteins are postulated to control the rate of autophosphorylation of the CheA protein, which in turn phosphorylates the CheY protein. The phospho-CheY protein binds to the switch on the flagellar motor and is the signal for clockwise rotation of the motor. Adaptation to an attractant is achieved by increasing methylation of the transducing protein until the attractant stimulus is cancelled. Responses to oxygen and certain sugars involve methylation-independent pathways in which adaption occurs without methylation of a transducing protein. Taxis toward oxygen is mediated by the electron transport system and changes in the proton motive force. Recent studies have shown that the methylation-independent pathway converges with the methylation-dependent pathway at or before the CheA protein.

  2. Algae: America’s Pathway to Independence

    DTIC Science & Technology

    2007-03-30

    Bioenergy, Biofuel, Energy Policy CLASSIFICATION: Unclassified The United States is dependent on foreign oil to meet 63% of its petroleum demand...source of bioenergy. ALGAE: AMERICA’S PATHWAY TO INDEPENDENCE Ensuring a secure supply of energy is a strategic challenge for...150 years,6 the U.S. will be competing with other nations to procure the 2 finite commodity. The Department of Energy (DOE) estimates that by the

  3. The glyoxalase pathway in protozoan parasites.

    PubMed

    Sousa Silva, Marta; Ferreira, António E N; Gomes, Ricardo; Tomás, Ana M; Ponces Freire, Ana; Cordeiro, Carlos

    2012-10-01

    The glyoxalase system is the main catabolic route for methylglyoxal, a non-enzymatic glycolytic byproduct with toxic and mutagenic effects. This pathway includes two enzymes, glyoxalase I and glyoxalase II, which convert methylglyoxal to d-lactate by using glutathione as a catalytic cofactor. In protozoan parasites the glyoxalase system shows marked deviations from this model. For example, the functional replacement of glutathione by trypanothione (a spermidine-glutathione conjugate) is a characteristic of trypanosomatids. Also interesting are the lack of glyoxalase I and the presence of two glyoxalase II enzymes in Trypanosoma brucei. In Plasmodium falciparum the glyoxalase pathway is glutathione-dependent, and glyoxalase I is an atypical monomeric enzyme with two active sites. Although it is tempting to exploit these differences for their potential therapeutic value, they provide invaluable clues regarding methylglyoxal metabolism and the evolution of protozoan parasites. Glyoxalase enzymes have been characterized in only a few protozoan parasites, namely Plasmodium falciparum and the trypanosomatids Leishmania and Trypanosoma. In this review, we will focus on the key features of the glyoxalase pathway in major human protozoan parasites, with particular emphasis on the characterized systems in Plasmodium falciparum, Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. We will also search for genes encoding glyoxalase I and II in Toxoplasma gondii, Entamoeba histolytica, and Giardia lamblia.

  4. The N-End Rule Pathway

    PubMed Central

    Tasaki, Takafumi; Sriram, Shashikanth M.; Park, Kyong Soo; Kwon, Yong Tae

    2013-01-01

    The N-end rule pathway is a proteolytic system in which N-terminal residues of short-lived proteins are recognized by recognition components (N-recognins) as essential components of degrons, called N-degrons. Known N-recognins in eukaryotes mediate protein ubiquitylation and selective proteolysis by the 26S proteasome. Substrates of N-recognins can be generated when normally embedded destabilizing residues are exposed at the N terminus by proteolytic cleavage. N-degrons can also be generated through modifications of posttranslationally exposed pro-N-degrons of otherwise stable proteins; such modifications include oxidation, arginylation, leucylation, phenylalanylation, and acetylation. Although there are variations in components, degrons, and hierarchical structures, the proteolytic systems based on generation and recognition of N-degrons have been observed in all eukaryotes and prokaryotes examined thus far. The N-end rule pathway regulates homeostasis of various physiological processes, in part, through interaction with small molecules. Here, we review the biochemical mechanisms, structures, physiological functions, and small-molecule-mediated regulation of the N-end rule pathway. PMID:22524314

  5. Purinergic Signaling Pathways in Endocrine System

    PubMed Central

    Bjelobaba, Ivana; Janjic, Marija M.; Stojilkovic, Stanko S.

    2015-01-01

    Adenosine-5′-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5′-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5′-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5′-triphosphate hydrolysis to adenosine-5′-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. PMID:25960051

  6. Exploring the folate pathway in Plasmodium falciparum.

    PubMed

    Hyde, John E

    2005-06-01

    As in centuries past, the main weapon against human malaria infections continues to be intervention with drugs, despite the widespread and increasing frequency of parasite populations that are resistant to one or more of the available compounds. This is a particular problem with the lethal species of parasite, Plasmodium falciparum, which claims some two million lives per year as well as causing enormous social and economic problems. Amongst the antimalarial drugs currently in clinical use, the antifolates have the best defined molecular targets, namely the enzymes dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS), which function in the folate metabolic pathway. The products of this pathway, reduced folate cofactors, are essential for DNA synthesis and the metabolism of certain amino acids. Moreover, their formation and interconversions involve a number of other enzymes that have not as yet been exploited as drug targets. Antifolates are of major importance as they currently represent the only inexpensive regime for combating chloroquine-resistant malaria, and are now first-line drugs in a number of African countries. Aspects of our understanding of this pathway and antifolate drug resistance are reviewed here, with a particular emphasis on approaches to analysing the details of, and balance between, folate biosynthesis by the parasite and salvage of pre-formed folate from exogenous sources.

  7. Histaminergic neurons in the hypothalamic thermoregulatory pathways

    SciTech Connect

    Lomax, P.; Green, M.D.

    1981-11-01

    Based on neurochemical and neurophysiological research, especially over the past decade, considerable evidence exists for accepting histamine as a central neurotransmitter alongside the other neuroamines. The data supporting a functional role are not complete, but they do exhibit a consistent pattern in the case of the central thermoregulatory pathways. Thus, the region of the thermoregulatory centers in the rostral hypothalamus contains relatively high concentrations of histamine and the enzyme systems for its synthesis and degradation: degeneration studies indicate histaminergic pathways in the hypothalamus; thermoregulatory changes can be induced by activation of either H/sub 1/ or H/sub 2/ receptors; behavioral studies reveal different functional roles for H/sub 1/ and H/sub 2/ receptors; and the thermoregulatory responses to histamine are detectable across different species, even in nonhomeothermic animals. This evidence supports assigning a transmitter function to histamine in the central thermoregulatory pathways that would appear to be as well-founded as the comparable data amassed for other neuroamines.

  8. Putative adverse outcome pathways relevant to neurotoxicity

    PubMed Central

    Bal-Price, Anna; Crofton, Kevin M.; Sachana, Magdalini; Shafer, Timothy J.; Behl, Mamta; Forsby, Anna; Hargreaves, Alan; Landesmann, Brigitte; Lein, Pamela J.; Louisse, Jochem; Monnet-Tschudi, Florianne; Paini, Alicia; Rolaki, Alexandra; Schrattenholz, André; Suñol, Cristina; van Thriel, Christoph; Whelan, Maurice; Fritsche, Ellen

    2016-01-01

    The Adverse Outcome Pathway (AOP) framework provides a template that facilitates understanding of complex biological systems and the pathways of toxicity that result in adverse outcomes (AOs). The AOP starts with an molecular initiating event (MIE) in which a chemical interacts with a biological target(s), followed by a sequential series of KEs, which are cellular, anatomical, and/or functional changes in biological processes, that ultimately result in an AO manifest in individual organisms and populations. It has been developed as a tool for a knowledge-based safety assessment that relies on understanding mechanisms of toxicity, rather than simply observing its adverse outcome. A large number of cellular and molecular processes are known to be crucial to proper development and function of the central (CNS) and peripheral nervous systems (PNS). However, there are relatively few examples of well-documented pathways that include causally linked MIEs and KEs that result in adverse outcomes in the CNS or PNS. As a first step in applying the AOP framework to adverse health outcomes associated with exposure to exogenous neurotoxic substances, the EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM) organized a workshop (March 2013, Ispra, Italy) to identify potential AOPs relevant to neurotoxic and developmental neurotoxic outcomes. Although the AOPs outlined during the workshop are not fully described, they could serve as a basis for further, more detailed AOP development and evaluation that could be useful to support human health risk assessment in a variety of ways. PMID:25605028

  9. Sonic Hedgehog pathway activity in prostate cancer

    PubMed Central

    BRAGINA, OLGA; NJUNKOVA, NATALJA; SERGEJEVA, SVETLANA; JÄRVEKÜLG, LILIAN; KOGERMAN, PRIIT

    2010-01-01

    Abnormal activation of the Sonic hedgehog (Shh) signaling pathway has been demonstrated in a number of human tumors, including prostate cancer. The study aimed to assess the activity of Shh pathway components (Shh, Gli1, Gli2 and Gli3), as well as the proliferation markers FoxA1 and Notch1 during cancer progression in the transgenic adenocarcinoma of the mouse prostate (TRAMP). We evaluated changes in respective proteins by immunohistochemistry at three time points (12, 17 and 21 weeks of age) in the tissue of TRAMP and C57Bl/6 mice. Moreover, the expression of mRNA of these proteins was assessed. The present study shows a significant age-dependent increase in the number of Shh, Gli1, Gli3 and FoxA1-positive prostate cells and a decrease in Gli2-positive cells in TRAMP. The study also supports the hypothesis that the development of prostate cancer and its metastasis is associated with activation of the Shh signaling pathway. PMID:22966302

  10. Purinergic signaling pathways in endocrine system.

    PubMed

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling.

  11. Signaling pathway cross talk in Alzheimer's disease.

    PubMed

    Godoy, Juan A; Rios, Juvenal A; Zolezzi, Juan M; Braidy, Nady; Inestrosa, Nibaldo C

    2014-03-28

    Numerous studies suggest energy failure and accumulative intracellular waste play a causal role in the pathogenesis of several neurodegenerative disorders and Alzheimer's disease (AD) in particular. AD is characterized by extracellular amyloid deposits, intracellular neurofibrillary tangles, cholinergic deficits, synaptic loss, inflammation and extensive oxidative stress. These pathobiological changes are accompanied by significant behavioral, motor, and cognitive impairment leading to accelerated mortality. Currently, the potential role of several metabolic pathways associated with AD, including Wnt signaling, 5' adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), Sirtuin 1 (Sirt1, silent mating-type information regulator 2 homolog 1), and peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) have widened, with recent discoveries that they are able to modulate several pathological events in AD. These include reduction of amyloid-β aggregation and inflammation, regulation of mitochondrial dynamics, and increased availability of neuronal energy. This review aims to highlight the involvement of these new set of signaling pathways, which we have collectively termed "anti-ageing pathways", for their potentiality in multi-target therapies against AD where cellular metabolic processes are severely impaired.

  12. The Fibroblast Growth Factor signaling pathway

    PubMed Central

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc. PMID:25772309

  13. Modeling Protein Expression and Protein Signaling Pathways

    PubMed Central

    Telesca, Donatello; Müller, Peter; Kornblau, Steven M.; Suchard, Marc A.; Ji, Yuan

    2015-01-01

    High-throughput functional proteomic technologies provide a way to quantify the expression of proteins of interest. Statistical inference centers on identifying the activation state of proteins and their patterns of molecular interaction formalized as dependence structure. Inference on dependence structure is particularly important when proteins are selected because they are part of a common molecular pathway. In that case, inference on dependence structure reveals properties of the underlying pathway. We propose a probability model that represents molecular interactions at the level of hidden binary latent variables that can be interpreted as indicators for active versus inactive states of the proteins. The proposed approach exploits available expert knowledge about the target pathway to define an informative prior on the hidden conditional dependence structure. An important feature of this prior is that it provides an instrument to explicitly anchor the model space to a set of interactions of interest, favoring a local search approach to model determination. We apply our model to reverse-phase protein array data from a study on acute myeloid leukemia. Our inference identifies relevant subpathways in relation to the unfolding of the biological process under study. PMID:26246646

  14. Protein export through the bacterial Sec pathway.

    PubMed

    Tsirigotaki, Alexandra; De Geyter, Jozefien; Šoštaric, Nikolina; Economou, Anastassios; Karamanou, Spyridoula

    2017-01-01

    The general secretory (Sec) pathway comprises an essential, ubiquitous and universal export machinery for most proteins that integrate into, or translocate through, the plasma membrane. Sec exportome polypeptides are synthesized as pre-proteins that have cleavable signal peptides fused to the exported mature domains. Recent advances have re-evaluated the interaction networks of pre-proteins with chaperones that are involved in pre-protein targeting from the ribosome to the SecYEG channel and have identified conformational signals as checkpoints for high-fidelity targeting and translocation. The recent structural and mechanistic insights into the channel and its ATPase motor SecA are important steps towards the elucidation of the allosteric crosstalk that mediates secretion. In this Review, we discuss recent biochemical, structural and mechanistic insights into the consecutive steps of the Sec pathway - sorting and targeting, translocation and release - in both co-translational and post-translational modes of export. The architecture and conformational dynamics of the SecYEG channel and its regulation by ribosomes, SecA and pre-proteins are highlighted. Moreover, we present conceptual models of the mechanisms and energetics of the Sec-pathway dependent secretion process in bacteria.

  15. Pathways, Networks and Systems Medicine Conferences

    SciTech Connect

    Nadeau, Joseph H.

    2013-11-25

    The 6th Pathways, Networks and Systems Medicine Conference was held at the Minoa Palace Conference Center, Chania, Crete, Greece (16-21 June 2008). The Organizing Committee was composed of Joe Nadeau (CWRU, Cleveland), Rudi Balling (German Research Centre, Brauschweig), David Galas (Institute for Systems Biology, Seattle), Lee Hood (Institute for Systems Biology, Seattle), Diane Isonaka (Seattle), Fotis Kafatos (Imperial College, London), John Lambris (Univ. Pennsylvania, Philadelphia),Harris Lewin (Univ. of Indiana, Urbana-Champaign), Edison Liu (Genome Institute of Singapore, Singapore), and Shankar Subramaniam (Univ. California, San Diego). A total of 101 individuals from 21 countries participated in the conference: USA (48), Canada (5), France (5), Austria (4), Germany (3), Italy (3), UK (3), Greece (2), New Zealand (2), Singapore (2), Argentina (1), Australia (1), Cuba (1), Denmark (1), Japan (1), Mexico (1), Netherlands (1), Spain (1), Sweden (1), Switzerland (1). With respect to speakers, 29 were established faculty members and 13 were graduate students or postdoctoral fellows. With respect to gender representation, among speakers, 13 were female and 28 were male, and among all participants 43 were female and 58 were male. Program these included the following topics: Cancer Pathways and Networks (Day 1), Metabolic Disease Networks (Day 2), Day 3 ? Organs, Pathways and Stem Cells (Day 3), and Day 4 ? Inflammation, Immunity, Microbes and the Environment (Day 4). Proceedings of the Conference were not published.

  16. Illuminating the Reaction Pathways of Viromimetic Assembly

    PubMed Central

    2017-01-01

    The coassembly of well-defined biological nanostructures relies on a delicate balance between attractive and repulsive interactions between biomolecular building blocks. Viral capsids are a prototypical example, where coat proteins exhibit not only self-interactions but also interact with the cargo they encapsulate. In nature, the balance between antagonistic and synergistic interactions has evolved to avoid kinetic trapping and polymorphism. To date, it has remained a major challenge to experimentally disentangle the complex kinetic reaction pathways that underlie successful coassembly of biomolecular building blocks in a noninvasive approach with high temporal resolution. Here we show how macromolecular force sensors, acting as a genome proxy, allow us to probe the pathways through which a viromimetic protein forms capsids. We uncover the complex multistage process of capsid assembly, which involves recruitment and complexation, followed by allosteric growth of the proteinaceous coat. Under certain conditions, the single-genome particles condense into capsids containing multiple copies of the template. Finally, we derive a theoretical model that quantitatively describes the kinetics of recruitment and growth. These results shed new light on the origins of the pathway complexity in biomolecular coassembly.

  17. Role of Hedgehog Signaling Pathway in NASH

    PubMed Central

    Verdelho Machado, Mariana; Diehl, Anna Mae

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease in the Western world. Although only a minority of patients will ultimately develop end-stage liver disease, it is not yet possible to efficiently predict who will progress and, most importantly, effective treatments are still unavailable. Better understanding of the pathophysiology of this disease is necessary to improve the clinical management of NAFLD patients. Epidemiological data indicate that NAFLD prognosis is determined by an individual’s response to lipotoxic injury, rather than either the severity of exposure to lipotoxins, or the intensity of liver injury. The liver responds to injury with a synchronized wound-healing response. When this response is abnormal, it leads to pathological scarring, resulting in progressive fibrosis and cirrhosis, rather than repair. The hedgehog pathway is a crucial player in the wound-healing response. In this review, we summarize the pre-clinical and clinical evidence, which demonstrate the role of hedgehog pathway dysregulation in NAFLD pathogenesis, and the preliminary data that place the hedgehog pathway as a potential target for the treatment of this disease. PMID:27258259

  18. Light regulation of metabolic pathways in fungi.

    PubMed

    Tisch, Doris; Schmoll, Monika

    2010-02-01

    Light represents a major carrier of information in nature. The molecular machineries translating its electromagnetic energy (photons) into the chemical language of cells transmit vital signals for adjustment of virtually every living organism to its habitat. Fungi react to illumination in various ways, and we found that they initiate considerable adaptations in their metabolic pathways upon growth in light or after perception of a light pulse. Alterations in response to light have predominantly been observed in carotenoid metabolism, polysaccharide and carbohydrate metabolism, fatty acid metabolism, nucleotide and nucleoside metabolism, and in regulation of production of secondary metabolites. Transcription of genes is initiated within minutes, abundance and activity of metabolic enzymes are adjusted, and subsequently, levels of metabolites are altered to cope with the harmful effects of light or to prepare for reproduction, which is dependent on light in many cases. This review aims to give an overview on metabolic pathways impacted by light and to illustrate the physiological significance of light for fungi. We provide a basis for assessment whether a given metabolic pathway might be subject to regulation by light and how these properties can be exploited for improvement of biotechnological processes.

  19. Cytoplasmic permeation pathway of neurotransmitter transporters.

    PubMed

    Rudnick, Gary

    2011-09-06

    Ion-coupled solute transporters are responsible for transporting nutrients, ions, and signaling molecules across a variety of biological membranes. Recent high-resolution crystal structures of several transporters from protein families that were previously thought to be unrelated show common structural features indicating a large structural family representing transporters from all kingdoms of life. This review describes studies that led to an understanding of the conformational changes required for solute transport in this family. The first structure in this family showed the bacterial amino acid transporter LeuT, which is homologous to neurotransmitter transporters, in an extracellularly oriented conformation with a molecule of leucine occluded at the substrate site. Studies with the mammalian serotonin transporter identified positions, buried in the LeuT structure, that defined a potential pathway leading from the cytoplasm to the substrate binding site. Modeling studies utilized an inverted structural repeat within the LeuT crystal structure to predict the conformation of LeuT in which the cytoplasmic permeation pathway, consisting of positions identified in SERT, was open for diffusion of the substrate to the cytoplasm. From the difference between the model and the crystal structures, a simple "rocking bundle" mechanism was proposed, in which a four-helix bundle changed its orientation with respect to the rest of the protein to close the extracellular pathway and open the cytoplasmic one. Subsequent crystal structures from structurally related proteins provide evidence supporting this model for transport.

  20. Quantitative Assays for RAS Pathway Proteins and Phosphorylation States

    Cancer.gov

    The NCI CPTAC program is applying its expertise in quantitative proteomics to develop assays for RAS pathway proteins. Targets include key phosphopeptides that should increase our understanding of how the RAS pathway is regulated.

  1. Informatics approaches in the Biological Characterization of Adverse Outcome Pathways

    EPA Science Inventory

    Adverse Outcome Pathways (AOPs) are a conceptual framework to characterize toxicity pathways by a series of mechanistic steps from a molecular initiating event to population outcomes. This framework helps to direct risk assessment research, for example by aiding in computational ...

  2. Duality of conduction in an atriofascicular pathway during antidromic tachycardia.

    PubMed

    Namboodiri, Narayanan; Sharma, Gautam; Sanders, Prashanthan

    2009-10-01

    Cycle length alternation in atrioventricular reentrant tachycardia due to alternating conduction time over the dual atrioventricular (AV) nodal pathways has been well described. Atriofascicular pathways with decremental conduction characteristics (Mahaim fibers) are known to contain accessory AV nodal tissue. We describe a case of cycle-length alternans in antidromic tachycardia through an atriofascicular pathway because of alternation in conduction time in the antegrade limb. The possible mechanisms of this phenomenon, rarely described in atriofascicular pathways, are discussed.

  3. Variations in metabolic pathways create challenges for automated metabolic reconstructions: Examples from the tetrahydrofolate synthesis pathway

    PubMed Central

    de Crécy-Lagard, Valérie

    2014-01-01

    The availability of thousands of sequenced genomes has revealed the diversity of biochemical solutions to similar chemical problems. Even for molecules at the heart of metabolism, such as cofactors, the pathway enzymes first discovered in model organisms like Escherichia coli or Saccharomyces cerevisiae are often not universally conserved. Tetrahydrofolate (THF) (or its close relative tetrahydromethanopterin) is a universal and essential C1-carrier that most microbes and plants synthesize de novo. The THF biosynthesis pathway and enzymes are, however, not universal and alternate solutions are found for most steps, making this pathway a challenge to annotate automatically in many genomes. Comparing THF pathway reconstructions and functional annotations of a chosen set of folate synthesis genes in specific prokaryotes revealed the strengths and weaknesses of different microbial annotation platforms. This analysis revealed that most current platforms fail in metabolic reconstruction of variant pathways. However, all the pieces are in place to quickly correct these deficiencies if the different databases were built on each other's strengths. PMID:25210598

  4. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway?

    PubMed

    Kumar, Hemant; Choi, Dong-Kug

    2015-01-01

    Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1-1% O2), physioxia or physoxia (∼1-13%), and normoxia (∼20%) are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia) or excess oxygen (hyperoxia) could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude) and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction). Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s) (HIFs) are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise.

  5. An algorithm for efficient identification of branched metabolic pathways.

    PubMed

    Heath, Allison P; Bennett, George N; Kavraki, Lydia E

    2011-11-01

    This article presents a new graph-based algorithm for identifying branched metabolic pathways in multi-genome scale metabolic data. The term branched is used to refer to metabolic pathways between compounds that consist of multiple pathways that interact biochemically. A branched pathway may produce a target compound through a combination of linear pathways that split compounds into smaller ones, work in parallel with many compounds, and join compounds into larger ones. While branched metabolic pathways predominate in metabolic networks, most previous work has focused on identifying linear metabolic pathways. The ability to automatically identify branched pathways is important in applications that require a deeper understanding of metabolism, such as metabolic engineering and drug target identification. The algorithm presented in this article utilizes explicit atom tracking to identify linear metabolic pathways and then merges them together into branched metabolic pathways. We provide results on several well-characterized metabolic pathways that demonstrate that the new merging approach can efficiently find biologically relevant branched metabolic pathways.

  6. Men's and Women's Pathways to Adulthood and Their Adolescent Precursors

    ERIC Educational Resources Information Center

    Oesterle, Sabrina; Hawkins, J. David; Hill, Karl G.; Bailey, Jennifer A.

    2010-01-01

    This study compared men's and women's pathways to adulthood by examining how role transitions in education, work, marriage, and parenthood intersect and form developmental pathways from ages 18-30. The study investigated how sociodemographic factors and adolescent experiences were associated with these pathways. We used latent class analysis to…

  7. Businesses Partner with Schools, Community to Create Alternative Career Pathways

    ERIC Educational Resources Information Center

    Overman, Stephenie

    2012-01-01

    Business, education and community leaders are working together to create alternative career pathways for young people who are not profiting from the four-year college track. The new Pathways to Prosperity Network brings together the Pathways to Prosperity Project at Harvard Graduate School of Education (HGSE), Jobs for the Future (JFF) and six…

  8. Yeast pheromone pathway modeling using Petri nets

    PubMed Central

    2014-01-01

    Background Our environment is composed of biological components of varying magnitude. The relationships between the different biological elements can be represented as a biological network. The process of mating in S. cerevisiae is initiated by secretion of pheromone by one of the cells. Our interest lies in one particular question: how does a cell dynamically adapt the pathway to continue mating under severe environmental changes or under mutation (which might result in the loss of functionality of some proteins known to participate in the pheromone pathway). Our work attempts to answer this question. To achieve this, we first propose a model to simulate the pheromone pathway using Petri nets. Petri nets are directed graphs that can be used for describing and modeling systems characterized as concurrent, asynchronous, distributed, parallel, non-deterministic, and/or stochastic. We then analyze our Petri net-based model of the pathway to investigate the following: 1) Given the model of the pheromone response pathway, under what conditions does the cell respond positively, i.e., mate? 2) What kinds of perturbations in the cell would result in changing a negative response to a positive one? Method In our model, we classify proteins into two categories: core component proteins (set ψ) and additional proteins (set λ). We randomly generate our model's parameters in repeated simulations. To simulate the pathway, we carry out three different experiments. In the experiments, we simply change the concentration of the additional proteins (λ) available to the cell. The concentration of proteins in ψ is varied consistently from 300 to 400. In Experiment 1, the range of values for λ is set to be 100 to 150. In Experiment 2, it is set to be 151 to 200. In Experiment 3, the set λ is further split into σ and ς, with the idea that proteins in σ are more important than those in ς. The range of values for σ is set to be between 151 to 200 while that of ς is 100 to 150

  9. Notch, Wnt, and Hedgehog Pathways in Rhabdomyosarcoma: From Single Pathways to an Integrated Network

    PubMed Central

    Roma, Josep; Almazán-Moga, Anna; Sánchez de Toledo, Josep; Gallego, Soledad

    2012-01-01

    Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children. Regarding histopathological criteria, RMS can be divided into 2 main subtypes: embryonal and alveolar. These subtypes differ considerably in their clinical phenotype and molecular features. Abnormal regulation or mutation of signalling pathways that regulate normal embryonic development such as Notch, Hedgehog, and Wnt is a recurrent feature in tumorigenesis. Herein, the general features of each of the three pathways, their implication in cancer and particularly in RMS are reviewed. Finally, the cross-talking among these three pathways and the possibility of better understanding of the horizontal communication among them, leading to the development of more potent therapeutic approaches, are discussed. PMID:22550422

  10. The Evolution of Fungal Metabolic Pathways

    PubMed Central

    Rokas, Antonis

    2014-01-01

    Fungi contain a remarkable range of metabolic pathways, sometimes encoded by gene clusters, enabling them to digest most organic matter and synthesize an array of potent small molecules. Although metabolism is fundamental to the fungal lifestyle, we still know little about how major evolutionary processes, such as gene duplication (GD) and horizontal gene transfer (HGT), have interacted with clustered and non-clustered fungal metabolic pathways to give rise to this metabolic versatility. We examined the synteny and evolutionary history of 247,202 fungal genes encoding enzymes that catalyze 875 distinct metabolic reactions from 130 pathways in 208 diverse genomes. We found that gene clustering varied greatly with respect to metabolic category and lineage; for example, clustered genes in Saccharomycotina yeasts were overrepresented in nucleotide metabolism, whereas clustered genes in Pezizomycotina were more common in lipid and amino acid metabolism. The effects of both GD and HGT were more pronounced in clustered genes than in their non-clustered counterparts and were differentially distributed across fungal lineages; specifically, GD, which was an order of magnitude more abundant than HGT, was most frequently observed in Agaricomycetes, whereas HGT was much more prevalent in Pezizomycotina. The effect of HGT in some Pezizomycotina was particularly strong; for example, we identified 111 HGT events associated with the 15 Aspergillus genomes, which sharply contrasts with the 60 HGT events detected for the 48 genomes from the entire Saccharomycotina subphylum. Finally, the impact of GD within a metabolic category was typically consistent across all fungal lineages, whereas the impact of HGT was variable. These results indicate that GD is the dominant process underlying fungal metabolic diversity, whereas HGT is episodic and acts in a category- or lineage-specific manner. Both processes have a greater impact on clustered genes, suggesting that metabolic gene clusters

  11. Targeting the Opioid Pathway for Uremic Pruritus

    PubMed Central

    Jaiswal, Deep; Uzans, Drea; Hayden, Jill; Kiberd, Bryce A.; Tennankore, Karthik K.

    2016-01-01

    Background: Patients undergoing hemodialysis or peritoneal dialysis often experience pruritus which is associated with morbidity and mortality. One proposed treatment approach is to target the opioid pathway using either µ-opioid antagonists or κ-opioid agonists. Objective: To review the efficacy of targeting the opioid pathway for pruritus among dialysis patients (uremic pruritus). Design: Systematic review and meta-analysis. Setting/Methods: The systematic review included randomized controlled and randomized crossover trials identified in the MEDLINE, EMBASE, and Cochrane databases (1990 to June 2014) evaluating the efficacy of µ-opioid antagonists or κ-opioid agonists in the treatment of uremic pruritus. Patients: Adult (≥18 years) chronic dialysis patients. Measurements: The primary outcome being evaluated was reduction in itch severity measured on a patient-reported visual analog scale (VAS). Results: Five studies out of 3587 screened articles met the inclusion criteria. Three studies evaluated the efficacy of naltrexone, a µ-opioid antagonist, and 2 studies evaluated the efficacy of nalfurafine, a κ-opioid agonist. Duration of included studies was short, ranging from 2 to 9 weeks. Limitations: Due to the heterogeneity in reporting of outcomes, data from the studies evaluating naltrexone could not be pooled. Pooled analysis, using a random effects model, found that use of nalfurafine resulted in a 9.50 mm (95% confidence interval [CI], 6.27-12.74, P < .001) greater reduction of itch severity (measured on a 100-mm VAS) than placebo in the treatment of uremic pruritus. Conclusions: Nalfurafine holds some promise with respect to the treatment of uremic pruritus among dialysis patients. However, more long-term randomized controlled trials evaluating the efficacy of therapies targeting the opioid pathway for uremic pruritus are required. PMID:28270926

  12. [Analysis of dissemination pathways for poliovirus].

    PubMed

    Ohka, Seii

    2009-06-01

    Poliomyelitis is an acute disease of the central nervous system (CNS) caused by poliovirus (PV). In humans, an infection is initiated by oral ingestion of the virus, followed by multiplication in the alimentary mucosa, from which the virus spreads through the bloodstream. Paralytic poliomyelitis initiates from the invasion of the central nervous system by circulating poliovirus, probably via the blood-brain barrier. After the virus enters the central nervous system, it replicates in neurons, especially in motor neurons, inducing the cell death that causes paralytic poliomyelitis. Along with this route of dissemination, a neuron-specific pathway has been reported in humans, monkeys, and PV-sensitive transgenic (Tg) mice carrying the PV receptor (hPVR/CD155) gene. It is important for the efficient virus dissemination to overcome the barriers as follows; i) to access the target tissue, ii) to enter the cells, iii) to reach the place for the replication, iv) to replicate efficiently. PV is easily transferred to humans orally; however, no rodent model for oral infections has been developed. We analyzed the each barrier above, and showed that PV is inactivated by the low pH of the gastric contents in mice. We also demonstrated that type 1 interferon signaling plays an important role in determining permissivity in the alimentary tract. As for the neural pathway, we demonstrated that direct efficient interaction between the cytoplasmic domain and cytoplasmic dynein is essential for the efficient retrograde transport of PV-containing vesicles along microtubules for the hPVR-dependent PV transport. On the other hand, we found that hPVR-independent axonal transport of PV was also observed in hPVR-Tg and non-Tg mice, indicating that several different pathways for PV axonal transport exist.

  13. Parameter estimate of signal transduction pathways

    PubMed Central

    Arisi, Ivan; Cattaneo, Antonino; Rosato, Vittorio

    2006-01-01

    Background The "inverse" problem is related to the determination of unknown causes on the bases of the observation of their effects. This is the opposite of the corresponding "direct" problem, which relates to the prediction of the effects generated by a complete description of some agencies. The solution of an inverse problem entails the construction of a mathematical model and takes the moves from a number of experimental data. In this respect, inverse problems are often ill-conditioned as the amount of experimental conditions available are often insufficient to unambiguously solve the mathematical model. Several approaches to solving inverse problems are possible, both computational and experimental, some of which are mentioned in this article. In this work, we will describe in details the attempt to solve an inverse problem which arose in the study of an intracellular signaling pathway. Results Using the Genetic Algorithm to find the sub-optimal solution to the optimization problem, we have estimated a set of unknown parameters describing a kinetic model of a signaling pathway in the neuronal cell. The model is composed of mass action ordinary differential equations, where the kinetic parameters describe protein-protein interactions, protein synthesis and degradation. The algorithm has been implemented on a parallel platform. Several potential solutions of the problem have been computed, each solution being a set of model parameters. A sub-set of parameters has been selected on the basis on their small coefficient of variation across the ensemble of solutions. Conclusion Despite the lack of sufficiently reliable and homogeneous experimental data, the genetic algorithm approach has allowed to estimate the approximate value of a number of model parameters in a kinetic model of a signaling pathway: these parameters have been assessed to be relevant for the reproduction of the available experimental data. PMID:17118160

  14. The evolution of fungal metabolic pathways.

    PubMed

    Wisecaver, Jennifer H; Slot, Jason C; Rokas, Antonis

    2014-12-01

    Fungi contain a remarkable range of metabolic pathways, sometimes encoded by gene clusters, enabling them to digest most organic matter and synthesize an array of potent small molecules. Although metabolism is fundamental to the fungal lifestyle, we still know little about how major evolutionary processes, such as gene duplication (GD) and horizontal gene transfer (HGT), have interacted with clustered and non-clustered fungal metabolic pathways to give rise to this metabolic versatility. We examined the synteny and evolutionary history of 247,202 fungal genes encoding enzymes that catalyze 875 distinct metabolic reactions from 130 pathways in 208 diverse genomes. We found that gene clustering varied greatly with respect to metabolic category and lineage; for example, clustered genes in Saccharomycotina yeasts were overrepresented in nucleotide metabolism, whereas clustered genes in Pezizomycotina were more common in lipid and amino acid metabolism. The effects of both GD and HGT were more pronounced in clustered genes than in their non-clustered counterparts and were differentially distributed across fungal lineages; specifically, GD, which was an order of magnitude more abundant than HGT, was most frequently observed in Agaricomycetes, whereas HGT was much more prevalent in Pezizomycotina. The effect of HGT in some Pezizomycotina was particularly strong; for example, we identified 111 HGT events associated with the 15 Aspergillus genomes, which sharply contrasts with the 60 HGT events detected for the 48 genomes from the entire Saccharomycotina subphylum. Finally, the impact of GD within a metabolic category was typically consistent across all fungal lineages, whereas the impact of HGT was variable. These results indicate that GD is the dominant process underlying fungal metabolic diversity, whereas HGT is episodic and acts in a category- or lineage-specific manner. Both processes have a greater impact on clustered genes, suggesting that metabolic gene clusters

  15. The nature of protein folding pathways

    PubMed Central

    Englander, S. Walter; Mayne, Leland

    2014-01-01

    How do proteins fold, and why do they fold in that way? This Perspective integrates earlier and more recent advances over the 50-y history of the protein folding problem, emphasizing unambiguously clear structural information. Experimental results show that, contrary to prior belief, proteins are multistate rather than two-state objects. They are composed of separately cooperative foldon building blocks that can be seen to repeatedly unfold and refold as units even under native conditions. Similarly, foldons are lost as units when proteins are destabilized to produce partially unfolded equilibrium molten globules. In kinetic folding, the inherently cooperative nature of foldons predisposes the thermally driven amino acid-level search to form an initial foldon and subsequent foldons in later assisted searches. The small size of foldon units, ∼20 residues, resolves the Levinthal time-scale search problem. These microscopic-level search processes can be identified with the disordered multitrack search envisioned in the “new view” model for protein folding. Emergent macroscopic foldon–foldon interactions then collectively provide the structural guidance and free energy bias for the ordered addition of foldons in a stepwise pathway that sequentially builds the native protein. These conclusions reconcile the seemingly opposed new view and defined pathway models; the two models account for different stages of the protein folding process. Additionally, these observations answer the “how” and the “why” questions. The protein folding pathway depends on the same foldon units and foldon–foldon interactions that construct the native structure. PMID:25326421

  16. Sensorimotor modulation of human cortical swallowing pathways

    PubMed Central

    Hamdy, Shaheen; Aziz, Qasim; Rothwell, John C; Hobson, Anthony; Thompson, David G

    1998-01-01

    Transcranial magnetic stimulation over motor areas of cerebral cortex in man can activate short latency bilateral cortical projections to the pharynx and oesophagus. In the present paper we investigate the interaction between pathways from each hemisphere and explore how activity in these pathways is modulated by afferent feedback from the face, pharynx and oesophagus.Comparison of unilateral and bilateral stimulation (using interstimulus intervals (ISIs) of 1, 5 or 10 ms between shocks) showed spatial summation of responses from each hemisphere at an ISI of 1 ms, indicating that cortical efferents project onto a shared population of target neurones. Such summation was not evident at ISIs of 5 or 10 ms. There was little evidence for transcallosal inhibition of responses from each hemisphere, as described for limb muscles.Single stimuli applied to the vagus nerve in the neck or the supraorbital nerve, which alone produce intermediate (onset 20-30 ms) and long (50-70 ms) latency reflex responses in the pharynx and oesophagus, were used to condition the cortical responses. Compared with rest, responses evoked by cortical stimulation were facilitated when they were timed to coincide with the late part of the reflex. The onset latency was reduced during both parts of the reflex response. No facilitation was observed with subthreshold reflex stimuli.Single electrical stimuli applied to the pharynx or oesophagus had no effect on the response to cortical stimulation. However, trains of stimuli at frequencies varying from 0.2 to 10 Hz decreased the latency of the cortically evoked responses without consistently influencing their amplitudes. The effect was site specific: pharyngeal stimulation shortened both pharyngeal and oesophageal response latencies, whereas oesophageal stimulation shortened only the oesophageal response latencies.Cortical swallowing motor pathways from each hemisphere interact and their excitability is modulated in a site-specific manner by sensory

  17. Guiding the folding pathway of DNA origami

    NASA Astrophysics Data System (ADS)

    Dunn, Katherine E.; Dannenberg, Frits; Ouldridge, Thomas E.; Kwiatkowska, Marta; Turberfield, Andrew J.; Bath, Jonathan

    2015-09-01

    DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short `staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its

  18. Cell death pathways associated with PDT

    NASA Astrophysics Data System (ADS)

    Kessel, David; Reiners, John J., Jr.

    2006-02-01

    Photodynamic therapy leads to both direct and indirect tumor cell death. The latter also involves the consequences of vascular shut-down and immunologic effects. While these factors are a major factor in tumor eradication, there is usually an element of direct cell killing that can reduce the cell population by as much as 2-3 logs. Necrosis was initially believed to represent the predominant PDT death mechanism. An apoptotic response to PDT was first reported by Oleinick in 1991, using a sensitizer that targets the anti-apoptotic protein Bcl-2. Apoptosis leads to fragmentation of DNA and of cells into apoptotic bodies that are removed by phagocytosis. Inflammatory effects are minimized, and the auto- catalytic elements of the process can amplify the death signal. In this study, we examined consequences of Bcl-2 photodamage by a porphycene sensitizer that targets the ER and causes photodamage to the anti-apoptotic protein Bcl-2. Death patterns after Bcl-2 inactivation by a small-molecular antagonist were also assessed. In addition to apoptosis, we also characterized a hitherto undescribed PDT effect, the initiation of autophagy. Autophagy was initially identified as a cell survival pathway, allowing the recycling of components as nutrients become scarce. We propose that autophagy can also represent both a potential survival pathway after PDT damage to cellular organelles, as well as a cell-death pathway. Recent literature reports indicate that autophagy, as well as apoptosis, can be evoked after down-regulation of Bcl-2, a result consistent with results reported here.

  19. An integrated pathway system modeling of Saccharomyces cerevisiae HOG pathway: a Petri net based approach.

    PubMed

    Tomar, Namrata; Choudhury, Olivia; Chakrabarty, Ankush; De, Rajat K

    2013-02-01

    Biochemical networks comprise many diverse components and interactions between them. It has intracellular signaling, metabolic and gene regulatory pathways which are highly integrated and whose responses are elicited by extracellular actions. Previous modeling techniques mostly consider each pathway independently without focusing on the interrelation of these which actually functions as a single system. In this paper, we propose an approach of modeling an integrated pathway using an event-driven modeling tool, i.e., Petri nets (PNs). PNs have the ability to simulate the dynamics of the system with high levels of accuracy. The integrated set of signaling, regulatory and metabolic reactions involved in Saccharomyces cerevisiae's HOG pathway has been collected from the literature. The kinetic parameter values have been used for transition firings. The dynamics of the system has been simulated and the concentrations of major biological species over time have been observed. The phenotypic characteristics of the integrated system have been investigated under two conditions, viz., under the absence and presence of osmotic pressure. The results have been validated favorably with the existing experimental results. We have also compared our study with the study of idFBA (Lee et al., PLoS Comput Biol 4:e1000-e1086, 2008) and pointed out the differences between both studies. We have simulated and monitored concentrations of multiple biological entities over time and also incorporated feedback inhibition by Ptp2 which has not been included in the idFBA study. We have concluded that our study is the first to the best of our knowledge to model signaling, metabolic and regulatory events in an integrated form through PN model framework. This study is useful in computational simulation of system dynamics for integrated pathways as there are growing evidences that the malfunctioning of the interplay among these pathways is associated with disease.

  20. Mechanisms of Ovarian Cancer Metastasis: Biochemical Pathways

    PubMed Central

    Nakayama, Kentaro; Nakayama, Naomi; Katagiri, Hiroshi; Miyazaki, Kohji

    2012-01-01

    Ovarian cancer is the most lethal gynecologic malignancy. Despite advances in chemotherapy, the five-year survival rate of advanced ovarian cancer patients with peritoneal metastasis remains around 30%. The most significant prognostic factor is stage, and most patients present at an advanced stage with peritoneal dissemination. There is often no clearly identifiable precursor lesion; therefore, the events leading to metastatic disease are poorly understood. This article reviews metastatic suppressor genes, the epithelial-mesenchymal transition (EMT), and the tumor microenvironment as they relate to ovarian cancer metastasis. Additionally, novel chemotherapeutic agents targeting the metastasis-related biochemical pathways are discussed. PMID:23109879

  1. Fragmentation Pathways in the Uracil Radical Cation

    SciTech Connect

    Zhou, Congyi; Matsika, Spiridoula; Kotur, Marija; Weinacht, Thomas C.

    2012-08-24

    We investigate pathways for fragmentation in the uracil radical cation using ab initio electronic structure calculations. We focus on the main fragments produced in pump–probe dissociative ionization experiments. These are fragments with mass to charge ratios (m/z) of 69, 28, 41, and 42. Barriers to dissociation along the ground ionic surface are reported, which provide an estimate of the energetic requirements for the production of the main fragments. Finally, direct and sequential fragmentation mechanisms have been analyzed, and it is concluded that sequential fragmentation after production of fragment with m/z 69 is the dominant mechanism for the production of the smaller fragments.

  2. MicroRNA biogenesis pathways in cancer

    PubMed Central

    Lin, Shuibin; Gregory, Richard I.

    2016-01-01

    MicroRNAs (miRNAs) are critical regulators of gene expression. Amplification and overexpression of individual ‘oncomiRs’ or genetic loss of tumour suppressor miRNAs are associated with human cancer and are sufficient to drive tumorigenesis in mouse models. Furthermore, global miRNA depletion caused by genetic and epigenetic alterations in components of the miRNA biogenesis machinery is oncogenic. This, together with the recent identification of novel miRNA regulatory factors and pathways, highlights the importance of miRNA dysregulation in cancer. PMID:25998712

  3. Unconventional Pathways of Secretion Contribute to Inflammation

    PubMed Central

    Daniels, Michael J. D.; Brough, David

    2017-01-01

    In the conventional pathway of protein secretion, leader sequence-containing proteins leave the cell following processing through the endoplasmic reticulum (ER) and Golgi body. However, leaderless proteins also enter the extracellular space through mechanisms collectively known as unconventional secretion. Unconventionally secreted proteins often have vital roles in cell and organism function such as inflammation. Amongst the best-studied inflammatory unconventionally secreted proteins are interleukin (IL)-1β, IL-1α, IL-33 and high-mobility group box 1 (HMGB1). In this review we discuss the current understanding of the unconventional secretion of these proteins and highlight future areas of research such as the role of nuclear localisation. PMID:28067797

  4. Serpentinization reaction pathways: implications for modeling approach

    SciTech Connect

    Janecky, D.R.

    1986-01-01

    Experimental seawater-peridotite reaction pathways to form serpentinites at 300/sup 0/C, 500 bars, can be accurately modeled using the EQ3/6 codes in conjunction with thermodynamic and kinetic data from the literature and unpublished compilations. These models provide both confirmation of experimental interpretations and more detailed insight into hydrothermal reaction processes within the oceanic crust. The accuracy of these models depends on careful evaluation of the aqueous speciation model, use of mineral compositions that closely reproduce compositions in the experiments, and definition of realistic reactive components in terms of composition, thermodynamic data, and reaction rates.

  5. An evolving paradigm for the secretory pathway?

    PubMed Central

    Lippincott-Schwartz, Jennifer

    2011-01-01

    The paradigm that the secretory pathway consists of a stable endoplasmic reticulum and Golgi apparatus, using discrete transport vesicles to exchange their contents, gained important support from groundbreaking biochemical and genetic studies during the 1980s. However, the subsequent development of new imaging technologies with green fluorescent protein introduced data on dynamic processes not fully accounted for by the paradigm. As a result, we may be seeing an example of how a paradigm is evolving to account for the results of new technologies and their new ways of describing cellular processes. PMID:22039065

  6. Minimum Energy Pathways for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Walch, S. P.; Langhoff, S. R. (Technical Monitor)

    1995-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives useful results for a number of chemically important systems. The talk will focus on a number of applications to reactions leading to NOx and soot formation in hydrocarbon combustion.

  7. Cancer cachexia: mediators, signaling, and metabolic pathways.

    PubMed

    Fearon, Kenneth C H; Glass, David J; Guttridge, Denis C

    2012-08-08

    Cancer cachexia is characterized by a significant reduction in body weight resulting predominantly from loss of adipose tissue and skeletal muscle. Cachexia causes reduced cancer treatment tolerance and reduced quality and length of life, and remains an unmet medical need. Therapeutic progress has been impeded, in part, by the marked heterogeneity of mediators, signaling, and metabolic pathways both within and between model systems and the clinical syndrome. Recent progress in understanding conserved, molecular mechanisms of skeletal muscle atrophy/hypertrophy has provided a downstream platform for circumventing the variations and redundancy in upstream mediators and may ultimately translate into new targeted therapies.

  8. Carotenoid Biosynthesis in Arabidopsis: A Colorful Pathway

    PubMed Central

    Ruiz-Sola, M. Águila; Rodríguez-Concepción, Manuel

    2012-01-01

    Plant carotenoids are a family of pigments that participate in light harvesting and are essential for photoprotection against excess light. Furthermore, they act as precursors for the production of apocarotenoid hormones such as abscisic acid and strigolactones. In this review, we summarize the current knowledge on the genes and enzymes of the carotenoid biosynthetic pathway (which is now almost completely elucidated) and on the regulation of carotenoid biosynthesis at both transcriptional and post-transcriptional levels. We also discuss the relevance of Arabidopsis as a model system for the study of carotenogenesis and how metabolic engineering approaches in this plant have taught important lessons for carotenoid biotechnology. PMID:22582030

  9. A common pathway in periodic fever syndromes.

    PubMed

    McDermott, Michael F

    2004-09-01

    Familial Mediterranean fever (FMF) is an autosomal recessive disease due to mutations in pyrin, which normally inhibits pro-interleukin-1beta (IL-1beta) cytokine processing to the active form. A novel role for pyrin has been proposed by Shoham et al., who studied patients with an autosomal dominant disease called pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome. They demonstrated an interaction between pyrin and proline serine threonine phosphatase-interacting protein 1 (PSTPIP1), the protein involved in PAPA, and thus revealed a biochemical pathway common to both FMF and PAPA.

  10. Canonical RTK-Ras-ERK signaling and related alternative pathways

    PubMed Central

    Sundaram, Meera V.

    2013-01-01

    Receptor Tyrosine Kinase (RTK)-Ras-Extracellular signal-regulated kinase (ERK) signaling pathways control many aspects of C. elegans development and behavior. Studies in C. elegans helped elucidate the basic framework of the RTK-Ras-ERK pathway and continue to provide insights into its complex regulation, its biological roles, how it elicits cell-type appropriate responses, and how it interacts with other signaling pathways to do so. C. elegans studies have also revealed biological contexts in which alternative RTK- or Ras-dependent pathways are used instead of the canonical pathway. PMID:23908058

  11. Curation and Computational Design of Bioenergy-Related Metabolic Pathways

    SciTech Connect

    Karp, Peter D.

    2014-09-12

    Pathway Tools is a systems-biology software package written by SRI International (SRI) that produces Pathway/Genome Databases (PGDBs) for organisms with a sequenced genome. Pathway Tools also provides a wide range of capabilities for analyzing predicted metabolic networks and user-generated omics data. More than 5,000 academic, industrial, and government groups have licensed Pathway Tools. This user community includes researchers at all three DOE bioenergy centers, as well as academic and industrial metabolic engineering (ME) groups. An integral part of the Pathway Tools software is MetaCyc, a large, multiorganism database of metabolic pathways and enzymes that SRI and its academic collaborators manually curate. This project included two main goals: I. Enhance the MetaCyc content of bioenergy-related enzymes and pathways. II. Develop computational tools for engineering metabolic pathways that satisfy specified design goals, in particular for bioenergy-related pathways. In part I, SRI proposed to significantly expand the coverage of bioenergy-related metabolic information in MetaCyc, followed by the generation of organism-specific PGDBs for all energy-relevant organisms sequenced at the DOE Joint Genome Institute (JGI). Part I objectives included: 1: Expand the content of MetaCyc to include bioenergy-related enzymes and pathways. 2: Enhance the Pathway Tools software to enable display of complex polymer degradation processes. 3: Create new PGDBs for the energy-related organisms sequenced by JGI, update existing PGDBs with new MetaCyc content, and make these data available to JBEI via the BioCyc website. In part II, SRI proposed to develop an efficient computational tool for the engineering of metabolic pathways. Part II objectives included: 4: Develop computational tools for generating metabolic pathways that satisfy specified design goals, enabling users to specify parameters such as starting and ending compounds, and preferred or disallowed intermediate compounds

  12. A pathway approach to evaluating the association between the CHIEF pathway and risk of colorectal cancer.

    PubMed

    Slattery, Martha L; Wolff, Roger K; Lundgreen, Abbie

    2015-01-01

    Inflammation, hormones and energy-related factors have been associated with colorectal cancer (CRC) and it has been proposed that convergence and interactions of these factors importantly influence CRC risk. We have previously hypothesized that genetic variation in the CHIEF (convergence of hormones, inflammation and energy-related factors) pathway would influence risk of CRC. In this paper, we utilize an Adaptive Rank Truncation Product (ARTP) statistical method to determine the overall pathway significance and then use that method to identify the key elements within the pathway associated with disease risk. Data from two population-based case-control studies of colon (n = 1555 cases and 1956 controls) and rectal (n = 754 cases and 959 controls) cancer were used. We use ARTP to estimate pathway and gene significance and polygenic scores based on ARTP findings to further estimate the risk associated with the pathway. Associations were further assessed based on tumor molecular phenotype. The CHIEF pathway was statistically significant for colon cancer (P(ARTP)= 0.03) with the most significant interferons (P(ARTP) = 0.0253), JAK/STAT/SOCS (P(ARTP) = 0.0111), telomere (P(ARTP) = 0.0399) and transforming growth factor β (P(ARTP) = 0.0043) being the most significant subpathways for colon cancer. For rectal cancer, interleukins (P(ARTP) = 0.0235) and selenoproteins (P ARTP = 0.0047) were statistically significant although the pathway overall was of borderline significance (P(ARTP) = 0.06). Interleukins (P(ARTP) = 0.0456) and mitogen-activated protein kinase (P(ARTP) = 0.0392) subpathways were uniquely significant for CpG island methylator phenotype-positive colon tumors. Increasing number of at-risk alleles was significantly associated with both colon [odds ratio (OR) = 6.21, 95% confidence interval (CI): 4.72, 8.16] and rectal (OR = 7.82, 95% CI: 5.26, 11.62) cancer. We conclude that elements of the CHIEF pathway are important for CRC risk.

  13. Detection of driver pathways using mutated gene network in cancer.

    PubMed

    Li, Feng; Gao, Lin; Ma, Xiaoke; Yang, Xiaofei

    2016-06-21

    Distinguishing driver pathways has been extensively studied because they are critical for understanding the development and molecular mechanisms of cancers. Most existing methods for driver pathways are based on high coverage as well as high mutual exclusivity, with the underlying assumption that mutations are exclusive. However, in many cases, mutated driver genes in the same pathways are not strictly mutually exclusive. Based on this observation, we propose an index for quantifying mutual exclusivity between gene pairs. Then, we construct a mutated gene network for detecting driver pathways by integrating the proposed index and coverage. The detection of driver pathways on the mutated gene network consists of two steps: raw pathways are obtained using a CPM method, and the final driver pathways are selected using a strict testing strategy. We apply this method to glioblastoma and breast cancers and find that our method is more accurate than state-of-the-art methods in terms of enrichment of KEGG pathways. Furthermore, the detected driver pathways intersect with well-known pathways with moderate exclusivity, which cannot be discovered using the existing algorithms. In conclusion, the proposed method provides an effective way to investigate driver pathways in cancers.

  14. A Method for Finding Metabolic Pathways Using Atomic Group Tracking

    PubMed Central

    Zhong, Cheng; Lin, Hai Xiang; Wang, Jianyi

    2017-01-01

    A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways. PMID:28068354

  15. MAPKs in development: insights from Dictyostelium signaling pathways

    PubMed Central

    Hadwiger, Jeffrey A.; Nguyen, Hoai-Nghia

    2011-01-01

    Mitogen activated protein kinases (MAPKs) play important roles in the development of eukaryotic organisms through the regulation of signal transduction pathways stimulated by external signals. MAPK signaling pathways have been associated with the regulation of cell growth, differentiation, and chemotaxis, indicating MAPKs contribute to a diverse set of developmental processes. In most eukaryotes, the diversity of external signals is likely to far exceed the diversity of MAPKs, suggesting that multiple signaling pathways might share MAPKs. Do different signaling pathways converge before MAPK function or can MAPKs maintain signaling specificity through interactions with specific proteins? The genetic and biochemical analysis of MAPK pathways in simple eukaryotes such as Dictyostelium offers opportunities to investigate functional specificity of MAPKs in G protein-mediated signal transduction pathways. This review considers the regulation and specificity of MAPK function in pathways that control Dictyostelium growth and development. PMID:21666837

  16. Dynamic optimization identifies optimal programmes for pathway regulation in prokaryotes.

    PubMed

    Bartl, Martin; Kötzing, Martin; Schuster, Stefan; Li, Pu; Kaleta, Christoph

    2013-01-01

    To survive in fluctuating environmental conditions, microorganisms must be able to quickly react to environmental challenges by upregulating the expression of genes encoding metabolic pathways. Here we show that protein abundance and protein synthesis capacity are key factors that determine the optimal strategy for the activation of a metabolic pathway. If protein abundance relative to protein synthesis capacity increases, the strategies shift from the simultaneous activation of all enzymes to the sequential activation of groups of enzymes and finally to a sequential activation of individual enzymes along the pathway. In the case of pathways with large differences in protein abundance, even more complex pathway activation strategies with a delayed activation of low abundance enzymes and an accelerated activation of high abundance enzymes are optimal. We confirm the existence of these pathway activation strategies as well as their dependence on our proposed constraints for a large number of metabolic pathways in several hundred prokaryotes.

  17. Molecular pathways and targets in prostate cancer

    PubMed Central

    Shtivelman, Emma; Beer, Tomasz M.; Evans, Christopher P.

    2014-01-01

    Prostate cancer co-opts a unique set of cellular pathways in its initiation and progression. The heterogeneity of prostate cancers is evident at earlier stages, and has led to rigorous efforts to stratify the localized prostate cancers, so that progression to advanced stages could be predicted based upon salient features of the early disease. The deregulated androgen receptor signaling is undeniably most important in the progression of the majority of prostate tumors. It is perhaps because of the primacy of the androgen receptor governed transcriptional program in prostate epithelium cells that once this program is corrupted, the consequences of the ensuing changes in activity are pleotropic and could contribute to malignancy in multiple ways. Following localized surgical and radiation therapies, 20-40% of patients will relapse and progress, and will be treated with androgen deprivation therapies. The successful development of the new agents that inhibit androgen signaling has changed the progression free survival in hormone resistant disease, but this has not changed the almost ubiquitous development of truly resistant phenotypes in advanced prostate cancer. This review summarizes the current understanding of the molecular pathways involved in localized and metastatic prostate cancer, with an emphasis on the clinical implications of the new knowledge. PMID:25277175

  18. Targeting the Ubiquitin Pathway for Cancer Treatment

    PubMed Central

    Liu, Jia; Shaik, Shavali; Dai, Xiangpeng; Wu, Qiong; Zhou, Xiuxia; Wang, Zhiwei; Wei, Wenyi

    2015-01-01

    Proteasome-mediated degradation is a common mechanism by which cells renew their intracellular proteins and maintain protein homeostasis. In this process, the E3 ubiquitin ligases are responsible for targeting specific substrates (proteins) for ubiquitin-mediated degradation. However, in cancer cells, the stability and the balance between oncoproteins and tumor suppressor proteins are disturbed in part due to deregulated proteasome-mediated degradation. This ultimately leads to either stabilization of oncoprotein(s) or increased degradation of tumor suppressor(s), contributing to tumorigenesis and cancer progression. Therefore, E3 ubiquitin ligases including the SCF types of ubiquitin ligases have recently evolved as promising therapeutic targets for the development of novel anti-cancer drugs. In this review, we highlighted the critical components along the ubiquitin pathway including E1, E2, various E3 enzymes and DUBs that could serve as potential drug targets and also described the available bioactive compounds that target the ubiquitin pathway to control various cancers. PMID:25481052

  19. Eicosanoid pathway in colorectal cancer: Recent updates

    PubMed Central

    Tuncer, Sinem; Banerjee, Sreeparna

    2015-01-01

    Enzymatic metabolism of the 20C polyunsaturated fatty acid (PUFA) arachidonic acid (AA) occurs via the cyclooxygenase (COX) and lipoxygenase (LOX) pathways, and leads to the production of various bioactive lipids termed eicosanoids. These eicosanoids have a variety of functions, including stimulation of homeostatic responses in the cardiovascular system, induction and resolution of inflammation, and modulation of immune responses against diseases associated with chronic inflammation, such as cancer. Because chronic inflammation is essential for the development of colorectal cancer (CRC), it is not surprising that many eicosanoids are implicated in CRC. Oftentimes, these autacoids work in an antagonistic and highly temporal manner in inflammation; therefore, inhibition of the pro-inflammatory COX-2 or 5-LOX enzymes may subsequently inhibit the formation of their essential products, or shunt substrates from one pathway to another, leading to undesirable side-effects. A better understanding of these different enzymes and their products is essential not only for understanding the importance of eicosanoids, but also for designing more effective drugs that solely target the inflammatory molecules found in both chronic inflammation and cancer. In this review, we have evaluated the cancer promoting and anti-cancer roles of different eicosanoids in CRC, and highlighted the most recent literature which describes how those molecules affect not only tumor tissue, but also the tumor microenvironment. Additionally, we have attempted to delineate the roles that eicosanoids with opposing functions play in neoplastic transformation in CRC through their effects on proliferation, apoptosis, motility, metastasis, and angiogenesis. PMID:26557000

  20. The Modulation of Apoptotic Pathways by Gammaherpesviruses

    PubMed Central

    Banerjee, Shuvomoy; Uppal, Timsy; Strahan, Roxanne; Dabral, Prerna; Verma, Subhash C.

    2016-01-01

    Apoptosis or programmed cell death is a tightly regulated process fundamental for cellular development and elimination of damaged or infected cells during the maintenance of cellular homeostasis. It is also an important cellular defense mechanism against viral invasion. In many instances, abnormal regulation of apoptosis has been associated with a number of diseases, including cancer development. Following infection of host cells, persistent and oncogenic viruses such as the members of the Gammaherpesvirus family employ a number of different mechanisms to avoid the host cell’s “burglar” alarm and to alter the extrinsic and intrinsic apoptotic pathways by either deregulating the expressions of cellular signaling genes or by encoding the viral homologs of cellular genes. In this review, we summarize the recent findings on how gammaherpesviruses inhibit cellular apoptosis via virus-encoded proteins by mediating modification of numerous signal transduction pathways. We also list the key viral anti-apoptotic proteins that could be exploited as effective targets for novel antiviral therapies in order to stimulate apoptosis in different types of cancer cells. PMID:27199919

  1. Adverse outcome pathway (AOP) development and evaluation ...

    EPA Pesticide Factsheets

    The Adverse Outcome Pathway provides a construct for assembling mechanistic information at different levels of biological organization in a form designed to support regulatory decision making. In particular, it frames the link between molecular and cellular events that can be measured in high throughput toxicity testing and the organism or population-level events that are commonly relevant in defining risk. Recognizing the importance of this emerging framework, the Organisation for Economic Co-operation and Development (OECD) launched a program to support the development, documentation and consideration of AOPs by the international community in 2012 (http://www.oecd.org/chemicalsafety/testing/adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm). In 2014, a handbook (https://aopkb.org/common/AOP_Handbook.pdf) was developed to guide users in the documentation and evaluation of AOPs and their entry into an official knowledgebase. The handbook draws on longstanding experience in consideration of mechanistic data (e.g., mode of action analysis) to inform risk assessment. To further assist users, a training program was developed by members of the OECD Extended Advisory Group to teach users the basic principles of AOP development and the best practices as outlined in the OECD AOP handbook. Training sessions began in early 2015, and this course will provide training for interested SOT scientists. Following this course, all participants will be familiar w

  2. Optogenetic stimulation of the auditory pathway

    PubMed Central

    Hernandez, Victor H.; Gehrt, Anna; Reuter, Kirsten; Jing, Zhizi; Jeschke, Marcus; Mendoza Schulz, Alejandro; Hoch, Gerhard; Bartels, Matthias; Vogt, Gerhard; Garnham, Carolyn W.; Yawo, Hiromu; Fukazawa, Yugo; Augustine, George J.; Bamberg, Ernst; Kügler, Sebastian; Salditt, Tim; de Hoz, Livia; Strenzke, Nicola; Moser, Tobias

    2014-01-01

    Auditory prostheses can partially restore speech comprehension when hearing fails. Sound coding with current prostheses is based on electrical stimulation of auditory neurons and has limited frequency resolution due to broad current spread within the cochlea. In contrast, optical stimulation can be spatially confined, which may improve frequency resolution. Here, we used animal models to characterize optogenetic stimulation, which is the optical stimulation of neurons genetically engineered to express the light-gated ion channel channelrhodopsin-2 (ChR2). Optogenetic stimulation of spiral ganglion neurons (SGNs) activated the auditory pathway, as demonstrated by recordings of single neuron and neuronal population responses. Furthermore, optogenetic stimulation of SGNs restored auditory activity in deaf mice. Approximation of the spatial spread of cochlear excitation by recording local field potentials (LFPs) in the inferior colliculus in response to suprathreshold optical, acoustic, and electrical stimuli indicated that optogenetic stimulation achieves better frequency resolution than monopolar electrical stimulation. Virus-mediated expression of a ChR2 variant with greater light sensitivity in SGNs reduced the amount of light required for responses and allowed neuronal spiking following stimulation up to 60 Hz. Our study demonstrates a strategy for optogenetic stimulation of the auditory pathway in rodents and lays the groundwork for future applications of cochlear optogenetics in auditory research and prosthetics. PMID:24509078

  3. Genetic and environmental pathways to complex diseases

    PubMed Central

    Gohlke, Julia M; Thomas, Reuben; Zhang, Yonqing; Rosenstein, Michael C; Davis, Allan P; Murphy, Cynthia; Becker, Kevin G; Mattingly, Carolyn J; Portier, Christopher J

    2009-01-01

    Background Pathogenesis of complex diseases involves the integration of genetic and environmental factors over time, making it particularly difficult to tease apart relationships between phenotype, genotype, and environmental factors using traditional experimental approaches. Results Using gene-centered databases, we have developed a network of complex diseases and environmental factors through the identification of key molecular pathways associated with both genetic and environmental contributions. Comparison with known chemical disease relationships and analysis of transcriptional regulation from gene expression datasets for several environmental factors and phenotypes clustered in a metabolic syndrome and neuropsychiatric subnetwork supports our network hypotheses. This analysis identifies natural and synthetic retinoids, antipsychotic medications, Omega 3 fatty acids, and pyrethroid pesticides as potential environmental modulators of metabolic syndrome phenotypes through PPAR and adipocytokine signaling and organophosphate pesticides as potential environmental modulators of neuropsychiatric phenotypes. Conclusion Identification of key regulatory pathways that integrate genetic and environmental modulators define disease associated targets that will allow for efficient screening of large numbers of environmental factors, screening that could set priorities for further research and guide public health decisions. PMID:19416532

  4. Functional Organization of the Ventral Auditory Pathway.

    PubMed

    Cohen, Yale E; Bennur, Sharath; Christison-Lagay, Kate; Gifford, Adam M; Tsunada, Joji

    2016-01-01

    The fundamental problem in audition is determining the mechanisms required by the brain to transform an unlabelled mixture of auditory stimuli into coherent perceptual representations. This process is called auditory-scene analysis. The perceptual representations that result from auditory-scene analysis are formed through a complex interaction of perceptual grouping, attention, categorization and decision-making. Despite a great deal of scientific energy devoted to understanding these aspects of hearing, we still do not understand (1) how sound perception arises from neural activity and (2) the causal relationship between neural activity and sound perception. Here, we review the role of the "ventral" auditory pathway in sound perception. We hypothesize that, in the early parts of the auditory cortex, neural activity reflects the auditory properties of a stimulus. However, in latter parts of the auditory cortex, neurons encode the sensory evidence that forms an auditory decision and are causally involved in the decision process. Finally, in the prefrontal cortex, which receives input from the auditory cortex, neural activity reflects the actual perceptual decision. Together, these studies indicate that the ventral pathway contains hierarchical circuits that are specialized for auditory perception and scene analysis.

  5. Cellular arsenic transport pathways in mammals.

    PubMed

    Roggenbeck, Barbara A; Banerjee, Mayukh; Leslie, Elaine M

    2016-11-01

    Natural contamination of drinking water with arsenic results in the exposure of millions of people world-wide to unacceptable levels of this metalloid. This is a serious global health problem because arsenic is a Group 1 (proven) human carcinogen and chronic exposure is known to cause skin, lung, and bladder tumors. Furthermore, arsenic exposure can result in a myriad of other adverse health effects including diseases of the cardiovascular, respiratory, neurological, reproductive, and endocrine systems. In addition to chronic environmental exposure to arsenic, arsenic trioxide is approved for the clinical treatment of acute promyelocytic leukemia, and is in clinical trials for other hematological malignancies as well as solid tumors. Considerable inter-individual variability in susceptibility to arsenic-induced disease and toxicity exists, and the reasons for such differences are incompletely understood. Transport pathways that influence the cellular uptake and export of arsenic contribute to regulating its cellular, tissue, and ultimately body levels. In the current review, membrane proteins (including phosphate transporters, aquaglyceroporin channels, solute carrier proteins, and ATP-binding cassette transporters) shown experimentally to contribute to the passage of inorganic, methylated, and/or glutathionylated arsenic species across cellular membranes are discussed. Furthermore, what is known about arsenic transporters in organs involved in absorption, distribution, and metabolism and how transport pathways contribute to arsenic elimination are described.

  6. Developing integrated patient pathways using hybrid simulation

    NASA Astrophysics Data System (ADS)

    Zulkepli, Jafri; Eldabi, Tillal

    2016-10-01

    Integrated patient pathways includes several departments, i.e. healthcare which includes emergency care and inpatient ward; intermediate care which patient(s) will stay for a maximum of two weeks and at the same time be assessed by assessment team to find the most suitable care; and social care. The reason behind introducing the intermediate care in western countries was to reduce the rate of patients that stays in the hospital especially for elderly patients. This type of care setting has been considered to be set up in some other countries including Malaysia. Therefore, to assess the advantages of introducing this type of integrated healthcare setting, we suggest develop the model using simulation technique. We argue that single simulation technique is not viable enough to represent this type of patient pathways. Therefore, we suggest develop this model using hybrid techniques, i.e. System Dynamics (SD) and Discrete Event Simulation (DES). Based on hybrid model result, we argued that the result is viable to be as references for decision making process.

  7. Biotransformation of cobicistat: metabolic pathways and enzymes

    PubMed Central

    Wang, Pengcheng; Shehu, Amina I.; Liu, Ke; Lu, Jie; Ma, Xiaochao

    2017-01-01

    Background Cobicistat (COBI) is a pharmacoenhancer for antiretroviral therapy. Objective The current study was designed to profile the metabolic pathways of COBI and to determine the enzymes that contribute to COBI metabolism. Method We screened COBI metabolites in mice and human liver microsomes. We also used cDNA-expressed human cytochromes P450 (CYPs) to explore the role of human enzymes in COBI metabolism. Results Twenty new and three known metabolites of COBI were identified in mouse urine and feces. These new metabolic pathways of COBI include glycine conjugation, N-acetyl cysteine conjugation, morpholine ring-opening, and thiazole ring-opening. Twelve of COBI metabolites were further confirmed in mouse and human liver microsomes, including nine new metabolites. Consistent with the previous report, CYP3A4 and CYP2D6 were determined as the major enzymes that contribute to COBI metabolism. Conclusion This study provided a full map of COBI metabolism. These results can be used to manage CYP-mediated drug-drug interactions and adverse drug reactions that are associated with COBI-containing regimens in human. PMID:26935921

  8. West Florida shelf upwelling: Origins and pathways

    NASA Astrophysics Data System (ADS)

    Weisberg, Robert H.; Zheng, Lianyuan; Liu, Yonggang

    2016-08-01

    Often described as oligotrophic, the west Florida continental shelf supports abundant fisheries, experiences blooms of the harmful alga, Karenia brevis, and exhibits subsurface chlorophyll maxima evident in shipboard and glider surveys. Renewal of inorganic nutrients by the upwelling of deeper ocean water onto the shelf may account for this, but what are the origins and pathways by which such new water may broach the shelf break and advance toward the shoreline? We address these questions via numerical model simulations of pseudo-Lagrangian, isopycnic water parcel trajectories. Focus is on 2010, when the west Florida shelf was subjected to an anomalously protracted period of upwelling caused by Gulf of Mexico Loop Current interactions with the shelf slope. Origins and pathways are determined by integrating trajectories over successive 45 day intervals, beginning from different locations along the shelf break and at various locations and depths along the shelf slope. Waters upwelling across the shelf break are found to originate from relatively shallow depths along the shelf slope. Even for the anomalous 2010 year, much of this upwelling occurs from about 150 m and above, although waters may broach the shelf break from 300 m depth, particularly in the Florida Panhandle. Such interannual renewal of west Florida shelf waters appears to have profound effects on west Florida shelf ecology.

  9. Optimum folding pathways for growing protein chains.

    PubMed

    Senturk, Serife; Baday, Sefer; Arkun, Yaman; Erman, Burak

    2007-11-26

    The folding of a protein is studied as it grows residue by residue from the N-terminus and enters an environment that stabilizes the folded state. This mode of folding of a growing chain is different from refolding where the full chain folds from a disordered initial configuration to the native state. We propose a sequential dynamic optimization method that computes the evolution of optimum folding pathways as amino acid residues are added to the peptide chain one by one. The dynamic optimization formulation is deterministic and uses Newton's equations of motion and a Go-type potential that establishes the native contacts and excluded volume effects. The method predicts the optimal energy-minimizing path among all the alternative feasible pathways. As two examples, the folding of the chicken villin headpiece, a 36-residue protein, and chymotrypsin inhibitor 2 (CI2), a 64-residue protein, are studied. Results on the villin headpiece show significant differences from the refolding of the same chain studied previously. Results on CI2 mostly agree with the results of refolding experiments and computational work.

  10. Retroactive Signaling in Short Signaling Pathways

    PubMed Central

    Sepulchre, Jacques-Alexandre; Merajver, Sofía D.; Ventura, Alejandra C.

    2012-01-01

    In biochemical signaling pathways without explicit feedback connections, the core signal transduction is usually described as a one-way communication, going from upstream to downstream in a feedforward chain or network of covalent modification cycles. In this paper we explore the possibility of a new type of signaling called retroactive signaling, offered by the recently demonstrated property of retroactivity in signaling cascades. The possibility of retroactive signaling is analysed in the simplest case of the stationary states of a bicyclic cascade of signaling cycles. In this case, we work out the conditions for which variables of the upstream cycle are affected by a change of the total amount of protein in the downstream cycle, or by a variation of the phosphatase deactivating the same protein. Particularly, we predict the characteristic ranges of the downstream protein, or of the downstream phosphatase, for which a retroactive effect can be observed on the upstream cycle variables. Next, we extend the possibility of retroactive signaling in short but nonlinear signaling pathways involving a few covalent modification cycles. PMID:22848403

  11. Bacterial phenylalanine and phenylacetate catabolic pathway revealed

    PubMed Central

    Teufel, R.; Mascaraque, V.; Ismail, W.; Voss, M.; Perera, J.; Eisenreich, W.; Haehnel, W.; Fuchs, G.

    2010-01-01

    Aromatic compounds constitute the second most abundant class of organic substrates and environmental pollutants, a substantial part of which (e.g., phenylalanine or styrene) is metabolized by bacteria via phenylacetate. Surprisingly, the bacterial catabolism of phenylalanine and phenylacetate remained an unsolved problem. Although a phenylacetate metabolic gene cluster had been identified, the underlying biochemistry remained largely unknown. Here we elucidate the catabolic pathway functioning in 16% of all bacteria whose genome has been sequenced, including Escherichia coli and Pseudomonas putida. This strategy is exceptional in several aspects. Intermediates are processed as CoA thioesters, and the aromatic ring of phenylacetyl-CoA becomes activated to a ring 1,2-epoxide by a distinct multicomponent oxygenase. The reactive nonaromatic epoxide is isomerized to a seven-member O-heterocyclic enol ether, an oxepin. This isomerization is followed by hydrolytic ring cleavage and β-oxidation steps, leading to acetyl-CoA and succinyl-CoA. This widespread paradigm differs significantly from the established chemistry of aerobic aromatic catabolism, thus widening our view of how organisms exploit such inert substrates. It provides insight into the natural remediation of man-made environmental contaminants such as styrene. Furthermore, this pathway occurs in various pathogens, where its reactive early intermediates may contribute to virulence. PMID:20660314

  12. Metabolic Pathways in Anopheles stephensi mitochondria

    PubMed Central

    Giulivi, Cecilia; Ross-Inta, Catherine; Horton, Ashley A.; Luckhart, Shirley

    2017-01-01

    No studies have been performed on mitochondria of malaria vector mosquitoes. This information would be valuable in understanding mosquito aging and detoxification of insecticides, two parameters that significantly impact malaria parasite transmission in endemic regions. Here, we report the analyses of respiration and oxidative phosphorylation in mitochondria of cultured cells (ASE line) from Anopheles stephensi, a major vector of malaria in India, Southeast Asia and parts of the Middle East. ASE cell mitochondria shared many features in common with mammalian muscle mitochondria, despite the fact that these cells have a larval origin. However, two major differences with mammalian mitochondria were apparent. One, the glycerol-phosphate shuttle plays a major role in NADH oxidation in ASE cell mitochondria as it does in insect muscle mitochondria. In contrast, mammalian white muscle mitochondria depend primarily on lactate dehydrogenase, whereas red muscle mitochondria depend on the malate-oxaloacetate shuttle. Two, ASE mitochondria were able to oxidize Pro at a rate comparable with that of α-glycerophosphate. However, the Pro pathway appeared to differ from the currently accepted pathway, in that ketoglutarate could be catabolyzed completely by the Krebs cycle or via transamination depending on the ATP need. PMID:18588503

  13. Exercise for the heart: signaling pathways.

    PubMed

    Tao, Lichan; Bei, Yihua; Zhang, Haifeng; Xiao, Junjie; Li, Xinli

    2015-08-28

    Physical exercise, a potent functional intervention in protecting against cardiovascular diseases, is a hot topic in recent years. Exercise has been shown to reduce cardiac risk factors, protect against myocardial damage, and increase cardiac function. This improves quality of life and decreases mortality and morbidity in a variety of cardiovascular diseases, including myocardial infarction, cardiac ischemia/reperfusion injury, diabetic cardiomyopathy, cardiac aging, and pulmonary hypertension. The cellular adaptation to exercise can be associated with both endogenous and exogenous factors: (1) exercise induces cardiac growth via hypertrophy and renewal of cardiomyocytes, and (2) exercise induces endothelial progenitor cells to proliferate, migrate and differentiate into mature endothelial cells, giving rise to endothelial regeneration and angiogenesis. The cellular adaptations associated with exercise are due to the activation of several signaling pathways, in particular, the growth factor neuregulin1 (NRG1)-ErbB4-C/EBPβ and insulin-like growth factor (IGF)-1-PI3k-Akt signaling pathways. Of interest, microRNAs (miRNAs, miRs) such as miR-222 also play a major role in the beneficial effects of exercise. Thus, exploring the mechanisms mediating exercise-induced benefits will be instrumental for devising new effective therapies against cardiovascular diseases.

  14. The immune signaling pathways of Manduca sexta

    PubMed Central

    Cao, Xiaolong; He, Yan; Hu, Yingxia; Wang, Yang; Chen, Yun-Ru; Bryant, Bart; Clem, Rollie J.; Schwartz, Lawrence M.; Blissard, Gary; Jiang, Haobo

    2015-01-01

    Signal transduction pathways and their coordination are critically important for proper functioning of animal immune systems. Our knowledge of the constituents of the intracellular signaling network in insects mainly comes from genetic analyses in Drosophila melanogaster. To facilitate future studies of similar systems in the tobacco hornworm and other lepidopteran insects, we have identified and examined the homologous genes in the genome of Manduca sexta. Based on 1:1 orthologous relationships in most cases, we hypothesize that the Toll, Imd, MAPK-JNK-p38 and JAK-STAT pathways are intact and operative in this species, as are most of the regulatory mechanisms. Similarly, cellular processes such as autophagy, apoptosis and RNA interference probably function in similar ways, because their mediators and modulators are mostly conserved in this lepidopteran species. We have annotated a total of 186 genes encoding 199 proteins, studied their domain structures and evolution, and examined their mRNA levels in tissues at different life stages. Such information provides a genomic perspective of the intricate signaling system in a non-drosophiline insect. PMID:25858029

  15. Light-sensitive brain pathways and aging.

    PubMed

    Daneault, V; Dumont, M; Massé, É; Vandewalle, G; Carrier, J

    2016-03-15

    Notwithstanding its effects on the classical visual system allowing image formation, light acts upon several non-image-forming (NIF) functions including body temperature, hormonal secretions, sleep-wake cycle, alertness, and cognitive performance. Studies have shown that NIF functions are maximally sensitive to blue wavelengths (460-480 nm), in comparison to longer light wavelengths. Higher blue light sensitivity has been reported for melatonin suppression, pupillary constriction, vigilance, and performance improvement but also for modulation of cognitive brain functions. Studies investigating acute stimulating effects of light on brain activity during the execution of cognitive tasks have suggested that brain activations progress from subcortical regions involved in alertness, such as the thalamus, the hypothalamus, and the brainstem, before reaching cortical regions associated with the ongoing task. In the course of aging, lower blue light sensitivity of some NIF functions has been reported. Here, we first describe neural pathways underlying effects of light on NIF functions and we discuss eye and cerebral mechanisms associated with aging which may affect NIF light sensitivity. Thereafter, we report results of investigations on pupillary constriction and cognitive brain sensitivity to light in the course of aging. Whereas the impact of light on cognitive brain responses appears to decrease substantially, pupillary constriction seems to remain more intact over the lifespan. Altogether, these results demonstrate that aging research should take into account the diversity of the pathways underlying the effects of light on specific NIF functions which may explain their differences in light sensitivity.

  16. An alternative eukaryotic DNA excision repair pathway.

    PubMed Central

    Freyer, G A; Davey, S; Ferrer, J V; Martin, A M; Beach, D; Doetsch, P W

    1995-01-01

    DNA lesions induced by UV light, cyclobutane pyrimidine dimers, and (6-4)pyrimidine pyrimidones are known to be repaired by the process of nucleotide excision repair (NER). However, in the fission yeast Schizosaccharomyces pombe, studies have demonstrated that at least two mechanisms for excising UV photo-products exist; NER and a second, previously unidentified process. Recently we reported that S. pombe contains a DNA endonuclease, SPDE, which recognizes and cleaves at a position immediately adjacent to cyclobutane pyrimidine dimers and (6-4)pyrimidine pyrimidones. Here we report that the UV-sensitive S. pombe rad12-502 mutant lacks SPDE activity. In addition, extracts prepared from the rad12-502 mutant are deficient in DNA excision repair, as demonstrated in an in vitro excision repair assay. DNA repair activity was restored to wild-type levels in extracts prepared from rad12-502 cells by the addition of partially purified SPDE to in vitro repair reaction mixtures. When the rad12-502 mutant was crossed with the NER rad13-A mutant, the resulting double mutant was much more sensitive to UV radiation than either single mutant, demonstrating that the rad12 gene product functions in a DNA repair pathway distinct from NER. These data directly link SPDE to this alternative excision repair process. We propose that the SPDE-dependent DNA repair pathway is the second DNA excision repair process present in S. pombe. PMID:7623848

  17. Nutrition pathways to the symphysis pubis

    PubMed Central

    Gonçalves da Rocha, Rodrigo Carvalho; Chopard, Renato Paulo

    2004-01-01

    The blood supply of the symphysis pubis is still the subject of some debate. Classic anatomy books state that this joint is avascular, whereas some published works have shown blood vessels in young specimens. As several articular discs such as the knee menisci are known to have blood vessels in their peripheries, we decided to investigate the possible nutrition pathways to the interpubic disc and ligaments. We used 60 Wistar rats, male and female, aged between 28 and 32 days, or between 90 and 100 days. Samples were processed using a variety of techniques: regular histology, immunohistochemestry, India ink injection and corrosion casting. The interpubic disc consisted of an inner bearing portion and an outer fibrous rim. The interpubic ligaments and the fibrous rim were well vascularized in all groups. Marrow contacts between the interpubic disc and the subchondral bone were also observed. Blood vessels formed an authentic arterial circle embracing the joint, from which blood vessels branched into capillary loops facing the avascular inner bearing portion of the disc. These results confirm the need for future studies on the human symphysis pubis, to provide more details on its structure, which would enable clinicians such as physiotherapists to improve prognosis and treatment design. Future studies may also explain the pathways down which the hormone relaxin reaches its targets within this joint. PMID:15032910

  18. Signaling pathway and molecular subgroups of medulloblastoma

    PubMed Central

    Li, Kay Ka-Wai; Lau, Kin-Mang; Ng, Ho-Keung

    2013-01-01

    Medulloblastoma (MB) is the most common malignant brain tumor in children. Although multimodality treatment regimens including surgery, radiotherapy and chemotherapy have greatly improved disease outcome, about one-third of MB patient remains incurable, and many long-term survivors are suffered from deleterious effects due to aggressive treatment. Understanding the signaling pathways and the genetic mechanisms contributed to MB development would be the key to develop novel therapeutic treatment strategies for improving survival and outcome of MB. In this review, we discuss the biological signaling pathways involved in MB pathogenesis. We also go through the current international consensus of four core MB subgroups namely, SHH, WNT, Group 3, and Group 4. This is adopted based on the knowledge of genomic complexity of MB as analyzed by recent high-throughput genomic technology. We talk about immunohistochemistry assays established to determine molecular subgroup affiliation. In the last part of review, we discuss how identification of molecular subgroups is going to change our routine disease diagnosis and clinical management. PMID:23826403

  19. Nutrition pathways to the symphysis pubis.

    PubMed

    da Rocha, Rodrigo Carvalho Gonçalves; Chopard, Renato Paulo

    2004-03-01

    The blood supply of the symphysis pubis is still the subject of some debate. Classic anatomy books state that this joint is avascular, whereas some published works have shown blood vessels in young specimens. As several articular discs such as the knee menisci are known to have blood vessels in their peripheries, we decided to investigate the possible nutrition pathways to the interpubic disc and ligaments. We used 60 Wistar rats, male and female, aged between 28 and 32 days, or between 90 and 100 days. Samples were processed using a variety of techniques: regular histology, immunohistochemestry, India ink injection and corrosion casting. The interpubic disc consisted of an inner bearing portion and an outer fibrous rim. The interpubic ligaments and the fibrous rim were well vascularized in all groups. Marrow contacts between the interpubic disc and the subchondral bone were also observed. Blood vessels formed an authentic arterial circle embracing the joint, from which blood vessels branched into capillary loops facing the avascular inner bearing portion of the disc. These results confirm the need for future studies on the human symphysis pubis, to provide more details on its structure, which would enable clinicians such as physiotherapists to improve prognosis and treatment design. Future studies may also explain the pathways down which the hormone relaxin reaches its targets within this joint.

  20. The evolution of plant virus transmission pathways.

    PubMed

    Hamelin, Frédéric M; Allen, Linda J S; Prendeville, Holly R; Hajimorad, M Reza; Jeger, Michael J

    2016-05-07

    The evolution of plant virus transmission pathways is studied through transmission via seed, pollen, or a vector. We address the questions: under what circumstances does vector transmission make pollen transmission redundant? Can evolution lead to the coexistence of multiple virus transmission pathways? We restrict the analysis to an annual plant population in which reproduction through seed is obligatory. A semi-discrete model with pollen, seed, and vector transmission is formulated to investigate these questions. We assume vector and pollen transmission rates are frequency-dependent and density-dependent, respectively. An ecological stability analysis is performed for the semi-discrete model and used to inform an evolutionary study of trade-offs between pollen and seed versus vector transmission. Evolutionary dynamics critically depend on the shape of the trade-off functions. Assuming a trade-off between pollen and vector transmission, evolution either leads to an evolutionarily stable mix of pollen and vector transmission (concave trade-off) or there is evolutionary bi-stability (convex trade-off); the presence of pollen transmission may prevent evolution of vector transmission. Considering a trade-off between seed and vector transmission, evolutionary branching and the subsequent coexistence of pollen-borne and vector-borne strains is possible. This study contributes to the theory behind the diversity of plant-virus transmission patterns observed in nature.

  1. Structural Biology of the Purine Biosynthetic Pathway

    PubMed Central

    Zhang, Yang; Morar, Mariya; Ealick, Steven E.

    2008-01-01

    Purine biosynthesis requires ten enzymatic transformations to generate inosine monophosphate. PurF, PurD, PurL, PurM, PurC, and PurB are common to all pathways, while PurN or PurT, PurK/PurE-I or PurE-II, PurH or PurP, and PurJ or PurO catalyze the same steps in different organisms. X-ray crystal structures are available for all 15 purine biosynthetic enzymes, including seven ATP-dependent enzymes, two amidotransferases and two tetrahydrofolate-dependent enzymes. Here we summarize the structures of the purine biosynthetic enzymes, discuss similarities and differences, and present arguments for pathway evolution. Four of the ATP-dependent enzymes belong to the ATP-grasp superfamily and two to the PurM superfamily. The amidotransferases are unrelated with one utilizing an NTN-glutaminase and the other utilizing a triad glutaminase. Likewise the tetrahydrofolate-dependent enzymes are unrelated. Ancestral proteins may have included a broad specificity enzyme instead of PurD, PurT, PurK, PurC, and PurP, and a separate enzyme instead of PurM and PurL. PMID:18712276

  2. The Representative Concentration Pathways: An Overview

    SciTech Connect

    Van Vuuren, Detlef; Edmonds, James A.; Kainuma, M.; Riahi, Keywan; Thomson, Allison M.; Hibbard, Kathleen A.; Hurtt, George; Kram, Tom; Krey, Volker; Lamarque, Jean-Francois; Masui, Toshihiko; Meinhausen, Malte; Nakicenovic, Nebojsa; Smith, Steven J.; Rose, Steven K.

    2011-08-05

    This paper summarizes the development process and main characteristics of the Representative Concentration Pathways (RCPs), a set of four new scenarios developed for the climate modeling community as a basis for long-term and near-term modeling experiments. The four RCPs together span the range of year 2100 radiative forcing values found in the open literature, i.e. from 2.6 to 8.5 W/m2. The RCPs are the product of an innovative collaboration between integrated assessment modelers, climate modelers, terrestrial ecosystem modelers and emission inventory experts. The resulting product forms a comprehensive data set with high spatial and sectoral resolutions for the period extending to 2100. Land use and emissions of air pollutants and greenhouse gases are reported mostly at a 0.5 x 0.5 degree spatial resolution, with air pollutants also provided per sector (for well-mixed gases, a coarser resolution is used). The underlying integrated assessment model outputs for land use, atmospheric emissions and concentration data were harmonized across models and scenarios to ensure consistency with historical observations while preserving individual scenario trends. For most variables, the RCPs cover a wide range of the existing literature. The RCPs are supplemented with extensions (Extended Concentration Pathways, ECPs), which allow climate modeling experiments through the year 2300. The RCPs are an important development in climate research and provide a potential foundation for further research and assessment, including emissions mitigation and impact analysis.

  3. Accelerating Adverse Outcome Pathway (AOP) development ...

    EPA Pesticide Factsheets

    The Adverse Outcome Pathway (AOP) framework is increasingly being adopted as a tool for organizing and summarizing the mechanistic information connecting molecular perturbations by environmental stressors with adverse outcomes relevant for ecological and human health outcomes. However, the conventional process for assembly of these AOPs is time and resource intensive, and has been a rate limiting step for AOP use and development. Therefore computational approaches to accelerate the process need to be developed. We previously developed a method for generating computationally predicted AOPs (cpAOPs) by association mining and integration of data from publicly available databases. In this work, a cpAOP network of ~21,000 associations was established between 105 phenotypes from TG-GATEs rat liver data from different time points (including microarray, pathological effects and clinical chemistry data), 994 REACTOME pathways, 688 High-throughput assays from ToxCast and 194 chemicals. A second network of 128,536 associations was generated by connecting 255 biological target genes from ToxCast to 4,980 diseases from CTD using either HT screening activity from ToxCast for 286 chemicals or CTD gene expression changes in response to 2,330 chemicals. Both networks were separately evaluated through manual extraction of disease-specific cpAOPs and comparison with expert curation of the relevant literature. By employing data integration strategies that involve the weighting of n

  4. Explorations into Chemical Reactions and Biochemical Pathways.

    PubMed

    Gasteiger, Johann

    2016-12-01

    A brief overview of the work in the research group of the present author on extracting knowledge from chemical reaction data is presented. Methods have been developed to calculate physicochemical effects at the reaction site. It is shown that these physicochemical effects can quite favourably be used to derive equations for the calculation of data on gas phase reactions and on reactions in solution such as aqueous acidity of alcohols or carboxylic acids or the hydrolysis of amides. Furthermore, it is shown that these physicochemical effects are quite effective for assigning reactions into reaction classes that correspond to chemical knowledge. Biochemical reactions constitute a particularly interesting and challenging task for increasing our understanding of living species. The BioPath.Database is a rich source of information on biochemical reactions and has been used for a variety of applications of chemical, biological, or medicinal interests. Thus, it was shown that biochemical reactions can be assigned by the physicochemical effects into classes that correspond to the classification of enzymes by the EC numbers. Furthermore, 3D models of reaction intermediates can be used for searching for novel enzyme inhibitors. It was shown in a combined application of chemoinformatics and bioinformatics that essential pathways of diseases can be uncovered. Furthermore, a study showed that bacterial flavor-forming pathways can be discovered.

  5. Interleukin 4 signals through two related pathways.

    PubMed

    Pernis, A; Witthuhn, B; Keegan, A D; Nelms, K; Garfein, E; Ihle, J N; Paul, W E; Pierce, J H; Rothman, P

    1995-08-15

    The interleukin 4 (IL-4) signaling pathway involves activation, by tyrosine phosphorylation, of two distinct substrates, a signal-transducing factor (STF-IL4) and the IL-4-induced phosphotyrosine substrate (4PS). It is not known whether the IL-4-mediated activation of these substrates occurs via related or distinct signaling pathways. We report that 32D cells, an IL-3-dependent myeloid progenitor cell line in which no phosphorylated 4PS is found, activate high levels of STF-IL4 in response to IL-4. Consistent with the known requirement for 4PS or insulin receptor substrate 1 (IRS-1) in IL-4-mediated mitogenesis, activation of STF-IL4 in 32D cells is not sufficient for IL-4-inducible c-myc expression. In addition, we have examined the ability of 32D cells transfected with different truncation mutants of the human IL-4 receptor to activate Jak-3 kinase and STF-IL4 in response to human IL-4. As in the case of 4PS/IRS-1, we have found that activation of both Jak-3 and STF-IL4 requires the presence of the IL-4 receptor region comprising aa 437-557. The finding that the same region of the IL-4 receptor is required for the induction of both 4PS/IRS-1 and STF-IL4 suggests that the IL-4-stimulated activation of these two substrates might involve common factors.

  6. kpath: integration of metabolic pathway linked data

    PubMed Central

    Navas-Delgado, Ismael; García-Godoy, María Jesús; López-Camacho, Esteban; Rybinski, Maciej; Reyes-Palomares, Armando; Medina, Miguel Ángel; Aldana-Montes, José F.

    2015-01-01

    In the last few years, the Life Sciences domain has experienced a rapid growth in the amount of available biological databases. The heterogeneity of these databases makes data integration a challenging issue. Some integration challenges are locating resources, relationships, data formats, synonyms or ambiguity. The Linked Data approach partially solves the heterogeneity problems by introducing a uniform data representation model. Linked Data refers to a set of best practices for publishing and connecting structured data on the Web. This article introduces kpath, a database that integrates information related to metabolic pathways. kpath also provides a navigational interface that enables not only the browsing, but also the deep use of the integrated data to build metabolic networks based on existing disperse knowledge. This user interface has been used to showcase relationships that can be inferred from the information available in several public databases. Database URL: The public Linked Data repository can be queried at http://sparql.kpath.khaos.uma.es using the graph URI “www.khaos.uma.es/metabolic-pathways-app”. The GUI providing navigational access to kpath database is available at http://browser.kpath.khaos.uma.es. PMID:26055101

  7. Analysis on relationship between extreme pathways and correlated reaction sets

    PubMed Central

    Xi, Yanping; Chen, Yi-Ping Phoebe; Cao, Ming; Wang, Weirong; Wang, Fei

    2009-01-01

    Background Constraint-based modeling of reconstructed genome-scale metabolic networks has been successfully applied on several microorganisms. In constraint-based modeling, in order to characterize all allowable phenotypes, network-based pathways, such as extreme pathways and elementary flux modes, are defined. However, as the scale of metabolic network rises, the number of extreme pathways and elementary flux modes increases exponentially. Uniform random sampling solves this problem to some extent to study the contents of the available phenotypes. After uniform random sampling, correlated reaction sets can be identified by the dependencies between reactions derived from sample phenotypes. In this paper, we study the relationship between extreme pathways and correlated reaction sets. Results Correlated reaction sets are identified for E. coli core, red blood cell and Saccharomyces cerevisiae metabolic networks respectively. All extreme pathways are enumerated for the former two metabolic networks. As for Saccharomyces cerevisiae metabolic network, because of the large scale, we get a set of extreme pathways by sampling the whole extreme pathway space. In most cases, an extreme pathway covers a correlated reaction set in an 'all or none' manner, which means either all reactions in a correlated reaction set or none is used by some extreme pathway. In rare cases, besides the 'all or none' manner, a correlated reaction set may be fully covered by combination of a few extreme pathways with related function, which may bring redundancy and flexibility to improve the survivability of a cell. In a word, extreme pathways show strong complementary relationship on usage of reactions in the same correlated reaction set. Conclusion Both extreme pathways and correlated reaction sets are derived from the topology information of metabolic networks. The strong relationship between correlated reaction sets and extreme pathways suggests a possible mechanism: as a controllable unit, an

  8. Pathways-Driven Sparse Regression Identifies Pathways and Genes Associated with High-Density Lipoprotein Cholesterol in Two Asian Cohorts

    PubMed Central

    Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni

    2013-01-01

    Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune

  9. Stereotactic radiotherapy of meningiomas compressing optical pathways

    SciTech Connect

    Hamm, Klaus-Detlef . E-mail: khamm@erfurt.helios-kliniken.de; Henzel, Martin; Gross, Markus W.; Surber, Gunnar; Kleinert, Gabriele; Engenhart-Cabillic, Rita

    2006-11-15

    Purpose: Microsurgical resection is usually the treatment of choice for meningiomas, especially for those that compress the optical pathways. However, in many cases of skull-base meningiomas a high risk of neurological deficits and recurrences exist in cases where the complete tumor removal was not possible. In such cases (fractionated) stereotactic radiotherapy (SRT) can offer an alternative treatment option. We evaluated the local control rate, symptomatology, and toxicity. Patients and Methods: Between 1997 and 2003, 183 patients with skull-base meningiomas were treated with SRT, among them were 65 patients with meningiomas that compressed optical pathways (64 benign, 1 atypical). Of these 65 cases, 20 were treated with SRT only, 27 were subtotally resected before SRT, and 18 underwent multiple tumor resections before SRT. We investigated the results until 2005, with a median follow-up of 45 months (range, 22-83 months). The tumor volume (TV = gross tumor volume) ranged from 0.61 to 90.20 cc (mean, 18.9 cc). Because of the risk of new visual disturbances, the dose per fraction was either 2 or 1.8 Gy for all patients, to a total dose of 50 to 60 Gy. Results: The overall survival and the progression-free survival rates for 5 years were assessed to 100% in this patient group. To date, no progression for these meningiomas have been observed. Quantitatively, tumor shrinkage of more than 20%, or more than 2 mm in diameter, was proved in 35 of the 65 cases after SRT. In 29 of the 65 patients, at least 1 of the symptoms improved. On application of the Common Toxicity Criteria (CTC), acute toxicity (Grade 3) was seen in 1 case (worsening of conjunctivitis). Another 2 patients developed late toxicity by LENT-SOMA score, 1 x Grade 1 and 1 x Grade 3 (field of vision loss). Conclusion: As a low-risk and effective treatment option for tumor control, SRT with 1.8 to 2.0 Gy per fraction can also be recommended in case of meningiomas that compress optical pathways. An

  10. A Trigeminoreticular Pathway: Implications in Pain

    PubMed Central

    Panneton, W. Michael; Gan, Qi; Livergood, Robert S.

    2011-01-01

    Neurons in the caudalmost ventrolateral medulla (cmVLM) respond to noxious stimulation. We previously have shown most efferent projections from this locus project to areas implicated either in the processing or modulation of pain. Here we show the cmVLM of the rat receives projections from superficial laminae of the medullary dorsal horn (MDH) and has neurons activated with capsaicin injections into the temporalis muscle. Injections of either biotinylated dextran amine (BDA) into the MDH or fluorogold (FG)/fluorescent microbeads into the cmVLM showed projections from lamina I and II of the MDH to the cmVLM. Morphometric analysis showed the retrogradely-labeled neurons were small (area 88.7 µm2±3.4) and mostly fusiform in shape. Injections (20–50 µl) of 0.5% capsaicin into the temporalis muscle and subsequent immunohistochemistry for c-Fos showed nuclei labeled in the dorsomedial trigeminocervical complex (TCC), the cmVLM, the lateral medulla, and the internal lateral subnucleus of the parabrachial complex (PBil). Additional labeling with c-Fos was seen in the subnucleus interpolaris of the spinal trigeminal nucleus, the rostral ventrolateral medulla, the superior salivatory nucleus, the rostral ventromedial medulla, and the A1, A5, A7 and subcoeruleus catecholamine areas. Injections of FG into the PBil produced robust label in the lateral medulla and cmVLM while injections of BDA into the lateral medulla showed projections to the PBil. Immunohistochemical experiments to antibodies against substance P, the substance P receptor (NK1), calcitonin gene regulating peptide, leucine enkephalin, VRL1 (TPRV2) receptors and neuropeptide Y showed that these peptides/receptors densely stained the cmVLM. We suggest the MDH- cmVLM projection is important for pain from head and neck areas. We offer a potential new pathway for regulating deep pain via the neurons of the TCC, the cmVLM, the lateral medulla, and the PBil and propose these areas compose a trigeminoreticular

  11. Valles Marineris dune sediment provenance and pathways

    NASA Astrophysics Data System (ADS)

    Chojnacki, Matthew; Burr, Devon M.; Moersch, Jeffrey E.; Wray, James J.

    2014-04-01

    Although low-albedo sand is a prevalent component of the martian surface, sources and pathways of the sands are uncertain. As one of the principal present-day martian sediment sinks, the Valles Marineris (VM) rift system hosts a diversity of dune field populations associated with a variety of landforms that serve as potential sediment sources, including spur-and-gully walls, interior layered deposits (ILDs), and landslides. Here, we test the hypothesis that VM dune fields are largely derived from a variety of local and regional (intra-rift) sediment sources. Results show several dune fields are superposed on ancient wall massifs and ILDs that are topographically isolated from extra-rift sand sources. Spectral analysis of dune sand reveals compositional heterogeneity at the basinal-, dune field-, and dune-scales, arguing for discrete, relatively unmixed sediment sources. In Coprates and Melas chasmata, mapping is consistent with the principle sand source for dunes being Noachian-aged upper and lower wall materials composed of primary (igneous) minerals and glasses, some of which show evidence for alteration. In contrast, dune fields in Capri, Juventae, and Ganges chasmata show evidence for partial sediment derivation from adjacent Early Hesperian-aged hydrated sulfate-bearing ILD units. This finding indicates that these ILDs act as secondary sand sources. Dunes containing “soft” secondary minerals (e.g., monohydrated sulfate) are unlikely to have been derived from distant sources due to the physical weathering of sand grains during transport. Isolated extra-rift dune fields, sand sheets, and sand patches are located on the plateaus surrounding VM and the adjoining areas, but do not form interconnected networks of sand pathways into the rift. If past wind regimes (with respect to directionality and seasonality) were consistent with more recent regimes inferred from morphological analysis (i.e., dune slip faces, wind streaks), and were sufficient in strength and

  12. Reactome Pathway Analysis to Enrich Biological Discovery in Proteomics Datasets

    PubMed Central

    Haw, Robin; Hermjakob, Henning; D’Eustachio, Peter; Stein, Lincoln

    2012-01-01

    Reactome (http://www.reactome.org) is an open source, expert-authored, peer-reviewed, manually curated database of reactions, pathways and biological processes. We provide an intuitive web-based user interface to pathway knowledge and a suite of data analysis tools. The Pathway Browser is a Systems Biology Graphical Notation (SBGN)-like visualization system that supports manual navigation of pathways by zooming, scrolling and event highlighting, and that exploits PSI Common Query Interface (PSIQUIC) web services to overlay pathways with molecular interaction data from the Reactome Functional Interaction (FI) Network and interaction databases such as IntAct, ChEMBL, and BioGRID. Pathway and Expression Analysis tools employ web services to provide ID mapping, pathway assignment and over-representation analysis of user-supplied datasets. By applying Ensembl Compara to curated human proteins and reactions, Reactome generates pathway inferences for 20 other species. The Species Comparison tool provides a summary of results for each of these species as a table showing numbers of orthologous proteins found by pathway from which users can navigate to inferred details for specific proteins and reactions. Reactome’s diverse pathway knowledge and suite of data analysis tools provide a platform for data mining, modeling and the analysis of large-scale proteomics datasets. PMID:21751369

  13. Customized optimization of metabolic pathways by combinatorial transcriptional engineering

    PubMed Central

    Du, Jing; Yuan, Yongbo; Si, Tong; Lian, Jiazhang; Zhao, Huimin

    2012-01-01

    A major challenge in metabolic engineering and synthetic biology is to balance the flux of an engineered heterologous metabolic pathway to achieve high yield and productivity in a target organism. Here, we report a simple, efficient and programmable approach named ‘customized optimization of metabolic pathways by combinatorial transcriptional engineering (COMPACTER)’ for rapid tuning of gene expression in a heterologous pathway under distinct metabolic backgrounds. Specifically, a library of mutant pathways is created by de novo assembly of promoter mutants of varying strengths for each pathway gene in a target organism followed by high-throughput screening/selection. To demonstrate this approach, a single round of COMPACTER was used to generate both a xylose utilizing pathway with near-highest efficiency and a cellobiose utilizing pathway with highest efficiency that were ever reported in literature for both laboratory and industrial yeast strains. Interestingly, these engineered xylose and cellobiose utilizing pathways were all host-specific. Therefore, COMPACTER represents a powerful approach to tailor-make metabolic pathways for different strain backgrounds, which is difficult if not impossible to achieve by existing pathway engineering methods. PMID:22718979

  14. Customized optimization of metabolic pathways by combinatorial transcriptional engineering.

    PubMed

    Du, Jing; Yuan, Yongbo; Si, Tong; Lian, Jiazhang; Zhao, Huimin

    2012-10-01

    A major challenge in metabolic engineering and synthetic biology is to balance the flux of an engineered heterologous metabolic pathway to achieve high yield and productivity in a target organism. Here, we report a simple, efficient and programmable approach named 'customized optimization of metabolic pathways by combinatorial transcriptional engineering (COMPACTER)' for rapid tuning of gene expression in a heterologous pathway under distinct metabolic backgrounds. Specifically, a library of mutant pathways is created by de novo assembly of promoter mutants of varying strengths for each pathway gene in a target organism followed by high-throughput screening/selection. To demonstrate this approach, a single round of COMPACTER was used to generate both a xylose utilizing pathway with near-highest efficiency and a cellobiose utilizing pathway with highest efficiency that were ever reported in literature for both laboratory and industrial yeast strains. Interestingly, these engineered xylose and cellobiose utilizing pathways were all host-specific. Therefore, COMPACTER represents a powerful approach to tailor-make metabolic pathways for different strain backgrounds, which is difficult if not impossible to achieve by existing pathway engineering methods.

  15. Differentially Expressed Genes and Signature Pathways of Human Prostate Cancer

    PubMed Central

    Myers, Jennifer S.; von Lersner, Ariana K.; Robbins, Charles J.; Sang, Qing-Xiang Amy

    2015-01-01

    Genomic technologies including microarrays and next-generation sequencing have enabled the generation of molecular signatures of prostate cancer. Lists of differentially expressed genes between malignant and non-malignant states are thought to be fertile sources of putative prostate cancer biomarkers. However such lists of differentially expressed genes can be highly variable for multiple reasons. As such, looking at differential expression in the context of gene sets and pathways has been more robust. Using next-generation genome sequencing data from The Cancer Genome Atlas, differential gene expression between age- and stage- matched human prostate tumors and non-malignant samples was assessed and used to craft a pathway signature of prostate cancer. Up- and down-regulated genes were assigned to pathways composed of curated groups of related genes from multiple databases. The significance of these pathways was then evaluated according to the number of differentially expressed genes found in the pathway and their position within the pathway using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis. The “transforming growth factor-beta signaling” and “Ran regulation of mitotic spindle formation” pathways were strongly associated with prostate cancer. Several other significant pathways confirm reported findings from microarray data that suggest actin cytoskeleton regulation, cell cycle, mitogen-activated protein kinase signaling, and calcium signaling are also altered in prostate cancer. Thus we have demonstrated feasibility of pathway analysis and identified an underexplored area (Ran) for investigation in prostate cancer pathogenesis. PMID:26683658

  16. The challenge of constructing, classifying, and representing metabolic pathways.

    PubMed

    Caspi, Ron; Dreher, Kate; Karp, Peter D

    2013-08-01

    Scientists, educators, and students benefit from having free and centralized access to the wealth of metabolic information that has been gathered over the decades. Curators of the MetaCyc database work to present this information in an easily understandable pathway-based framework. MetaCyc is used not only as an encyclopedic resource for metabolic information but also as a template for the pathway prediction software that generates pathway/genome databases for thousands of organisms with sequenced genomes (available at www.biocyc.org). Curators need to define pathway boundaries and classify pathways within a broader pathway ontology to maximize the utility of the pathways to both users and the pathway prediction software. These seemingly simple tasks pose several challenges. This review describes these challenges as well as the criteria that need to be considered, and the rules that have been developed by MetaCyc curators as they make decisions regarding the representation and classification of metabolic pathway information in MetaCyc. The functional consequences of these decisions in regard to pathway prediction in new species are also discussed.

  17. Entourage: Visualizing Relationships between Biological Pathways using Contextual Subsets

    PubMed Central

    Lex, Alexander; Partl, Christian; Kalkofen, Denis; Streit, Marc; Gratzl, Samuel; Wassermann, Anne Mai; Schmalstieg, Dieter; Pfister, Hanspeter

    2014-01-01

    Biological pathway maps are highly relevant tools for many tasks in molecular biology. They reduce the complexity of the overall biological network by partitioning it into smaller manageable parts. While this reduction of complexity is their biggest strength, it is, at the same time, their biggest weakness. By removing what is deemed not important for the primary function of the pathway, biologists lose the ability to follow and understand cross-talks between pathways. Considering these cross-talks is, however, critical in many analysis scenarios, such as judging effects of drugs. In this paper we introduce Entourage, a novel visualization technique that provides contextual information lost due to the artificial partitioning of the biological network, but at the same time limits the presented information to what is relevant to the analyst’s task. We use one pathway map as the focus of an analysis and allow a larger set of contextual pathways. For these context pathways we only show the contextual subsets, i.e., the parts of the graph that are relevant to a selection. Entourage suggests related pathways based on similarities and highlights parts of a pathway that are interesting in terms of mapped experimental data. We visualize interdependencies between pathways using stubs of visual links, which we found effective yet not obtrusive. By combining this approach with visualization of experimental data, we can provide domain experts with a highly valuable tool. We demonstrate the utility of Entourage with case studies conducted with a biochemist who researches the effects of drugs on pathways. We show that the technique is well suited to investigate interdependencies between pathways and to analyze, understand, and predict the effect that drugs have on different cell types. Fig. 1Entourage showing the Glioma pathway in detail and contextual information of multiple related pathways. PMID:24051820

  18. Water pathways in the bacteriorhodopsin proton pump.

    PubMed

    Bondar, Ana-Nicoleta; Fischer, Stefan; Smith, Jeremy C

    2011-01-01

    Internal water molecules play key roles in the functioning of the light-driven bacteriorhodopsin proton pump. Of particular importance is whether during the proton-pumping cycle the critical water molecule w402 can relocate from the extracellular to the cytoplasmic side of the retinal Schiff base. Here, classical mechanical and combined quantum mechanical/molecular mechanical reaction path computations are performed to investigate pathways and energetic factors influencing w402 relocation. Hydrogen bonding between w402 and the negatively charged Asp85 and Asp212 largely opposes repositioning of the water molecule. In contrast, favorable contributions from hydrogen bonding of w402 with the Schiff base and Thr89 and from the untwisting of the retinal polyene chain lower the energetic cost for water relocation. The delicate balance between the competing contributions underlies the need for highly accurate calculations and structural information.

  19. Epigenetics and Suicidal Behavior Research Pathways

    PubMed Central

    Turecki, Gustavo

    2017-01-01

    Suicide and suicidal behaviors are complex, heterogeneous phenomena that are thought to result from the interactions among distal factors increasing predisposition and proximal factors acting as precipitants. Epigenetic factors are likely to act both distally and proximally. Aspirational Goal 1 aims to find clear targets for suicide and suicidal behavior intervention through greater understanding of the interplay among the biological, psychological, and social risk and protective factors associated with suicide. This paper discusses Aspirational Goal 1, focusing on the research pathway related to epigenetics, suicide, and suicidal behaviors. Current knowledge on epigenetics factors associated with suicide and suicidal behaviors is reviewed and avenues for future research are discussed. Epigenetic factors are a promising area of further investigation in the understanding of suicide and suicidal behaviors and may hold clues to identifying targets or avenues for intervention. PMID:25145732

  20. [Methodological aspects of integrated care pathways].

    PubMed

    Gomis, R; Mata Cases, M; Mauricio Puente, D; Artola Menéndez, S; Ena Muñoz, J; Mediavilla Bravo, J J; Miranda Fernández-Santos, C; Orozco Beltrán, D; Rodríguez Mañas, L; Sánchez Villalba, C; Martínez, J A

    2017-03-07

    An Integrated Healthcare Pathway (PAI) is a tool which has as its aim to increase the effectiveness of clinical performance through greater coordination and to ensure continuity of care. PAI places the patient as the central focus of the organisation of health services. It is defined as the set of activities carried out by the health care providers in order to increase the level of health and satisfaction of the population receiving services. The development of a PAI requires the analysis of the flow of activities, the inter-relationships between professionals and care teams, and patient expectations. The methodology for the development of a PAI is presented and discussed in this article, as well as the success factors for its definition and its effective implementation. It also explains, as an example, the recent PAI for Hypoglycaemia in patients with Type 2 Diabetes Mellitus developed by a multidisciplinary team and supported by several scientific societies.

  1. SGF29 and Sry pathway in hepatocarcinogenesis.

    PubMed

    Kurabe, Nobuya; Murakami, Shigekazu; Tashiro, Fumio

    2015-08-26

    Deregulated c-Myc expression is a hallmark of many human cancers. We have recently identified a role of mammalian homolog of yeast SPT-ADA-GCN5-acetyltransferas (SAGA) complex component, SAGA-associated factor 29 (SGF29), in regulating the c-Myc overexpression. Here, we discuss the molecular nature of SFG29 in SPT3-TAF9-GCN5-acetyltransferase complex, a counterpart of yeast SAGA complex, and the mechanism through which the elevated SGF29 expression contribute to oncogenic potential of c-Myc in hepatocellularcarcinoma (HCC). We propose that the upstream regulation of SGF29 elicited by sex-determining region Y (Sry) is also augmented in HCC. We hypothesize that c-Myc elevation driven by the deregulated Sry and SGF29 pathway is implicated in the male specific acquisition of human HCCs.

  2. The ethylene signal transduction pathway in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The gaseous hormone ethylene is an important regulator of plant growth and development. Using a simple response of etiolated seedlings to ethylene as a genetic screen, genes involved in ethylene signal transduction have been identified in Arabidopsis. Analysis of two of these genes that have been cloned reveals that ethylene signalling involves a combination of a protein (ETR1) with similarity to bacterial histidine kinases and a protein (CTR1) with similarity to Raf-1, a protein kinase involved in multiple signalling cascades in eukaryotic cells. Several lines of investigation provide compelling evidence that ETR1 encodes an ethylene receptor. For the first time there is a glimpse of the molecular circuitry underlying the signal transduction pathway for a plant hormone.

  3. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies

    PubMed Central

    Schmid, Jochen; Sieber, Volker; Rehm, Bernd

    2015-01-01

    Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is critical toward genetic, metabolic and protein-engineering approaches to produce tailor-made polymers. These designer polymers will exhibit superior material properties targeting medical and industrial applications. Exploiting the natural design space for production of a variety of biopolymer will open up a range of new applications. Here, we summarize the key aspects of microbial exopolysaccharide biosynthesis and highlight the latest engineering approaches toward the production of tailor-made variants with the potential to be used as valuable renewable and high-performance products for medical and industrial applications. PMID:26074894

  4. Multiple pathways process stalled replication forks.

    PubMed

    Michel, Bénédicte; Grompone, Gianfranco; Florès, Maria-Jose; Bidnenko, Vladimir

    2004-08-31

    Impairment of replication fork progression is a serious threat to living organisms and a potential source of genome instability. Studies in prokaryotes have provided evidence that inactivated replication forks can restart by the reassembly of the replication machinery. Several strategies for the processing of inactivated replication forks before replisome reassembly have been described. Most of these require the action of recombination proteins, with different proteins being implicated, depending on the cause of fork arrest. The action of recombination proteins at blocked forks is not necessarily accompanied by a strand-exchange reaction and may prevent rather than repair fork breakage. These various restart pathways may reflect different structures at stalled forks. We review here the different strategies of fork processing elicited by different kinds of replication impairments in prokaryotes and the variety of roles played by recombination proteins in these processes.

  5. Alternative Cell Death Pathways and Cell Metabolism

    PubMed Central

    Fulda, Simone

    2013-01-01

    While necroptosis has for long been viewed as an accidental mode of cell death triggered by physical or chemical damage, it has become clear over the last years that necroptosis can also represent a programmed form of cell death in mammalian cells. Key discoveries in the field of cell death research, including the identification of critical components of the necroptotic machinery, led to a revised concept of cell death signaling programs. Several regulatory check and balances are in place in order to ensure that necroptosis is tightly controlled according to environmental cues and cellular needs. This network of regulatory mechanisms includes metabolic pathways, especially those linked to mitochondrial signaling events. A better understanding of these signal transduction mechanisms will likely contribute to open new avenues to exploit our knowledge on the regulation of necroptosis signaling for therapeutic application in the treatment of human diseases. PMID:23401689

  6. Pathways to psychosis in cannabis abuse.

    PubMed

    Shrivastava, Amresh; Johnston, Megan; Terpstra, Kristen; Bureau, Yves

    2015-04-01

    Cannabis has been implicated as a risk factor for the development of schizophrenia, but the exact biological mechanisms remain unclear. In this review, we attempt to understand the neurobiological pathways that link cannabis use to schizophrenia. This has been an area of great debate; despite similarities between cannabis users and schizophrenia patients, the evidence is not sufficient to establish cause-and-effect. There have been advances in the understanding of the mechanisms of cannabis dependence as well as the role of the cannabinoid system in the development of psychosis and schizophrenia. The neurobiological mechanisms associated with the development of psychosis and effects from cannabis use may be similar but remain elusive. In order to better understand these associations, this paper will show common neurobiological and neuroanatomical changes as well as common cognitive dysfunction in cannabis users and patients of schizophrenia. We conclude that epidemiologic evidence highlights potential causal links; however, neurobiological evidence for causality remains weak.

  7. Flavoenzymes: Versatile Catalysts in Biosynthetic Pathways

    PubMed Central

    Walsh, Christopher T.; Wencewicz, Timothy A.

    2012-01-01

    Riboflavin-based coenzymes, tightly bound to enzymes catalyzing substrate oxidations and reductions, enable an enormous range of chemical transformations in biosynthetic pathways. Flavoenzymes catalyze substrate oxidations involving amine and alcohol oxidations and desaturations to olefins, the latter setting up Diels-Alder cyclizations in lovastatin and solanapyrone biosyntheses. Both C4a and N5 of the flavin coenzymes are sites for covalent adduct formation. For example, the reactivity of dihydroflavins with molecular oxygen leads to flavin-4a-OOH adducts which then carry out a diverse range of oxygen transfers, including Baeyer-Villiger type ring expansions, olefin epoxidations, halogenations via transient HOCl generation, and an oxidative Favorskii rerrangement during enterocin assembly. PMID:23051833

  8. Myometrial oxytocin receptor expression and intracellular pathways.

    PubMed

    Yulia, A; Johnson, M R

    2014-06-01

    Oxytocin (OT) signalling plays a fundamental role in the mechanisms of parturition. OT is one of the most frequently used drugs in obstetrics, promoting uterine contractions for labor induction and augmentation and to prevent postpartum hemorrhage (PPH). Expression of the oxytocin receptor (OTR) in the human myometrium is tightly regulated during pregnancy and its levels have been shown to peak upon labour onset and to fall sharply in advanced labour and the postpartum period, when the uterus become refractive to OT. However, uterine sensitivity to OT varies between pregnant women, probably reflecting differences in their myometrial OTR expression. Control of OTR expression is mediated by a combination of steroid hormone stimulation, stretch, and inflammation. This review summarises current knowledge regarding the complex regulation of myometrial OTR expression and its associated intracellular signaling pathways.

  9. Kynurenine pathway metabolism and neuroinflammatory disease

    PubMed Central

    Braidy, Nady; Grant, Ross

    2017-01-01

    Immune-mediated activation of tryptophan (TRYP) catabolism via the kynurenine pathway (KP) is a consistent finding in all inflammatory disorders. Several studies by our group and others have examined the neurotoxic potential of neuroreactive TRYP metabolites, including quinolinic acid (QUIN) in neuroinflammatory neurological disorders, including Alzheimer's disease (AD), multiple sclerosis, amylotropic lateral sclerosis (ALS), and AIDS related dementia complex (ADC). Our current work aims to determine whether there is any benefit to the affected individuals in enhancing the catabolism of TRYP via the KP during an immune response. Under physiological conditions, QUIN is metabolized to the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD+), which represents an important metabolic cofactor and electron transporter. NAD+ also serves as a substrate for the DNA ‘nick sensor’ and putative nuclear repair enzyme, poly(ADP-ribose) polymerase (PARP). Free radical initiated DNA damage, PARP activation and NAD+ depletion may contribute to brain dysfunction and cell death in neuroinflammatory disease. PMID:28250737

  10. Brain pathways to recovery from alcohol dependence.

    PubMed

    Cui, Changhai; Noronha, Antonio; Warren, Kenneth R; Koob, George F; Sinha, Rajita; Thakkar, Mahesh; Matochik, John; Crews, Fulton T; Chandler, L Judson; Pfefferbaum, Adolf; Becker, Howard C; Lovinger, David; Everitt, Barry J; Egli, Mark; Mandyam, Chitra D; Fein, George; Potenza, Marc N; Harris, R Adron; Grant, Kathleen A; Roberto, Marisa; Meyerhoff, Dieter J; Sullivan, Edith V

    2015-08-01

    This article highlights the research presentations at the satellite symposium on "Brain Pathways to Recovery from Alcohol Dependence" held at the 2013 Society for Neuroscience Annual Meeting. The purpose of this symposium was to provide an up to date overview of research efforts focusing on understanding brain mechanisms that contribute to recovery from alcohol dependence. A panel of scientists from the alcohol and addiction research field presented their insights and perspectives on brain mechanisms that may underlie both recovery and lack of recovery from alcohol dependence. The four sessions of the symposium encompassed multilevel studies exploring mechanisms underlying relapse and craving associated with sustained alcohol abstinence, cognitive function deficit and recovery, and translational studies on preventing relapse and promoting recovery. Gaps in our knowledge and research opportunities were also discussed.

  11. Multistage reaction pathways in detonating RDX

    NASA Astrophysics Data System (ADS)

    Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2017-01-01

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine cystal. Rapid production of N2 and H2O within ˜10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen- rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N2 and H2O productions.

  12. Multistage reaction pathways in detonating high explosives

    SciTech Connect

    Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya

    2014-11-17

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N{sub 2} and H{sub 2}O within ∼10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N{sub 2} and H{sub 2}O productions.

  13. kpath: integration of metabolic pathway linked data.

    PubMed

    Navas-Delgado, Ismael; García-Godoy, María Jesús; López-Camacho, Esteban; Rybinski, Maciej; Reyes-Palomares, Armando; Medina, Miguel Ángel; Aldana-Montes, José F

    2015-01-01

    In the last few years, the Life Sciences domain has experienced a rapid growth in the amount of available biological databases. The heterogeneity of these databases makes data integration a challenging issue. Some integration challenges are locating resources, relationships, data formats, synonyms or ambiguity. The Linked Data approach partially solves the heterogeneity problems by introducing a uniform data representation model. Linked Data refers to a set of best practices for publishing and connecting structured data on the Web. This article introduces kpath, a database that integrates information related to metabolic pathways. kpath also provides a navigational interface that enables not only the browsing, but also the deep use of the integrated data to build metabolic networks based on existing disperse knowledge. This user interface has been used to showcase relationships that can be inferred from the information available in several public databases.

  14. Erythrocytosis: the HIF pathway in control.

    PubMed

    Franke, Kristin; Gassmann, Max; Wielockx, Ben

    2013-08-15

    Organisms living under aerobic conditions need oxygen for the metabolic conversion of nutrition into energy. With the appearance of increasingly complex animals, a specialized transport system (erythrocytes) arose during evolution to provide oxygen to virtually every single cell in the body. Moreover, in case of low environmental partial pressure of oxygen, the number of erythrocytes automatically increases to preserve sustained oxygen delivery. This process relies predominantly on the cytokine erythropoietin (Epo) and its transcription factor hypoxia inducible factor (HIF), whereas the von Hippel-Lindau (VHL) ubiquitin ligase as well as the oxygen-sensitive prolyl hydroxylases (PHDs) represent essential regulators of this oxygen-sensing system. Deregulation of particular members of this pathway (eg, PHD2, HIF2α, VHL) lead to disorders in blood homeostasis as a result of insufficient (anemia) or excessive (erythrocytosis) red blood cell production.

  15. Opportunistic exploitation: an overlooked pathway to extinction.

    PubMed

    Branch, Trevor A; Lobo, Aaron S; Purcell, Steven W

    2013-07-01

    How can species be exploited economically to extinction? Past single-species hypotheses examining the economic plausibility of exploiting rare species have argued that the escalating value of rarity allows extinction to be profitable. We describe an alternative pathway toward extinction in multispecies exploitation systems, termed 'opportunistic exploitation'. In this mode, highly valued species that are targeted first by fishing, hunting, and logging become rare, but their populations can decline further through opportunistic exploitation while more common but less desirable species are targeted. Effectively, expanding exploitation to more species subsidizes the eventual extinction of valuable species at low densities. Managers need to recognize conditions that permit opportunistic depletion and pass regulations to protect highly desirable species when exploitation can expand to other species.

  16. IKK connects autophagy to major stress pathways.

    PubMed

    Criollo, Alfredo; Senovilla, Laura; Authier, Hélène; Maiuri, Maria Chiara; Morselli, Eugenia; Vitale, Ilio; Kepp, Oliver; Tasdemir, Ezgi; Galluzzi, Lorenzo; Shen, Shensi; Tailler, Maximilien; Delahaye, Nicolas; Tesniere, Antoine; De Stefano, Daniela; Younes, Aména Ben; Harper, Francis; Pierron, Gérard; Lavandero, Sergio; Zitvogel, Laurence; Israel, Alain; Baud, Véronique; Kroemer, Guido

    2010-01-01

    Cells respond to stress by activating cytoplasmic mechanisms as well as transcriptional programs that can lead to adaptation or death. Autophagy represents an important cytoprotective response that is regulated by both transcriptional and transcription-independent pathways. NFkappaB is perhaps the transcription factor most frequently activated by stress and has been ascribed with either pro- or anti-autophagic functions, depending on the cellular context. Our results demonstrate that activation of the IKK (IkappaB kinase) complex, which is critical for the stress-elicited activation of NFkappaB, is sufficient to promote autophagy independent of NFkappaB, and that IKK is required for the optimal induction of autophagy by both physiological and pharmacological autophagic triggers.

  17. Different Pathways Leading to Integrase Inhibitors Resistance

    PubMed Central

    Thierry, Eloïse; Deprez, Eric; Delelis, Olivier

    2017-01-01

    Integrase strand-transfer inhibitors (INSTIs), such as raltegravir (RAL), elvitegravir, or dolutegravir (DTG), are efficient antiretroviral agents used in HIV treatment in order to inhibit retroviral integration. By contrast to RAL treatments leading to well-identified mutation resistance pathways at the integrase level, recent clinical studies report several cases of patients failing DTG treatment without clearly identified resistance mutation in the integrase gene raising questions for the mechanism behind the resistance. These compounds, by impairing the integration of HIV-1 viral DNA into the host DNA, lead to an accumulation of unintegrated circular viral DNA forms. This viral DNA could be at the origin of the INSTI resistance by two different ways. The first one, sustained by a recent report, involves 2-long terminal repeat circles integration and the second one involves expression of accumulated unintegrated viral DNA leading to a basal production of viral particles maintaining the viral information. PMID:28123383

  18. Sensing via Intestinal Sweet Taste Pathways

    PubMed Central

    Young, Richard L.

    2010-01-01

    The detection of nutrients in the gastrointestinal (GI) tract is of fundamental significance to the control of motility, glycemia and energy intake, and yet we barely know the most fundamental aspects of this process. This is in stark contrast to the mechanisms underlying the detection of lingual taste, which have been increasingly well characterized in recent years, and which provide an excellent starting point for characterizing nutrient detection in the intestine. This review focuses on the form and function of sweet taste transduction mechanisms identified in the intestinal tract; it does not focus on sensors for fatty acids or proteins. It examines the intestinal cell types equipped with sweet taste transduction molecules in animals and humans, their location, and potential signals that transduce the presence of nutrients to neural pathways involved in reflex control of GI motility. PMID:21519398

  19. Molecular Pathways Controlling Autophagy in Pancreatic Cancer

    PubMed Central

    New, Maria; Van Acker, Tim; Long, Jaclyn S.; Sakamaki, Jun-ichi; Ryan, Kevin M.; Tooze, Sharon A.

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the few cancer types where the 5-year survival rate shows no improvement. Despite conflicting evidence, the majority of data points to an essential role for autophagy in PDAC growth and survival, in particular constitutively activated autophagy, can provide crucial fuel to PDAC tumor cells in their nutrient-deprived environment. Autophagy, which is required for cell homeostasis, can both suppress and promote tumorigenesis and tumor survival in a context-dependent manner. Protein by protein, the mystery of how PDAC abuses the cell’s homeostasis system for its malignant growth has recently begun to be unraveled. In this review, we focus on how autophagy is responsible for growth and development of PDAC tumors and where autophagy and the mechanisms controlling it fit into PDAC metabolism. Understanding the range of pathways controlling autophagy and their interplay in PDAC could open the way for new therapeutic avenues. PMID:28316954

  20. Hormone signaling pathways under stress combinations.

    PubMed

    Suzuki, Nobuhiro

    2016-11-01

    As sessile organisms, plants are continuously exposed to various environmental stresses. In contrast to the controlled conditions employed in many researches, more than one or more abiotic and/or biotic stresses simultaneously occur and highly impact growth of plants and crops in the field environments. Therefore, an urgent need to generate crops with enhanced tolerance to stress combinations exists. Researchers, however, focused on the mechanisms underlying acclimation of plants to combined stresses only in recent studies. Plant hormones might be a key regulator of the tailored responses of plants to different stress combinations. Co-ordination between different hormone signaling, or hormone signaling and other pathways such as ROS regulatory mechanisms could be flexible, being altered by timing and types of stresses, and could be different depending on plant species under the stress combinations. In this review, update on recent studies focusing on complex-mode of hormone signaling under stress combinations will be provided.

  1. Transcriptional pathways in second heart field development

    PubMed Central

    Black, Brian L.

    2007-01-01

    The heart is the first organ to form and function during vertebrate development and is absolutely essential for life. The left ventricle is derived from the classical primary or first heart field (FHF), while the right ventricle and outflow tract are derived from a distinct second heart field (SHF). The recent discovery of the SHF has raised several fundamental and important questions about how the two heart fields are integrated into a single organ and whether unique molecular programs control the development of the two heart fields. This review briefly highlights the contributions of the SHF to the developing and mature heart and then focuses primarily on our current understanding of the transcriptional pathways that function in the development of the SHF and its derivatives in transgenic and knockout mice. PMID:17276708

  2. Brain Pathways to Recovery from Alcohol Dependence

    PubMed Central

    Cui, Changhai; Noronha, Antonio; Warren, Kenneth; Koob, George F.; Sinha, Rajita; Thakkar, Mahesh; Matochik, John; Crews, Fulton T.; Chandler, L. Judson; Pfefferbaum, Adolf; Becker, Howard C.; Lovinger, David; Everitt, Barry; Egli, Mark; Mandyam, Chitra; Fein, George; Potenza, Marc N.; Harris, R. Adron; Grant, Kathleen A.; Roberto, Marisa; Meyerhoff, Dieter J.; Sullivan, Edith V.

    2015-01-01

    This article highlights the research presentations at the satellite symposium on “Brain Pathways to Recovery from Alcohol Dependence” held at the 2013 Society for Neuroscience Annual Meeting. The purpose of this symposium was to provide an up to date overview of research efforts focusing on understanding brain mechanisms that contribute to recovery from alcohol dependence. A panel of scientists from the alcohol and addiction research field presented their insights and perspectives on brain mechanisms that may underlie both recovery and lack of recovery from alcohol dependence. The four sessions of the symposium encompassed multilevel studies exploring mechanisms underlying relapse and craving associated with sustained alcohol abstinence, cognitive function deficit and recovery, and translational studies on preventing relapse and promoting recovery. Gaps in our knowledge and research opportunities were also discussed. PMID:26074423

  3. An evolutionary perspective on the necroptotic pathway.

    PubMed

    Dondelinger, Yves; Hulpiau, Paco; Saeys, Yvan; Bertrand, Mathieu J M; Vandenabeele, Peter

    2016-10-01

    Throughout the animal kingdom, innate immune receptors protect the organism from microbial intruders by activating pathways that mediate inflammation and pathogen clearance. Necroptosis contributes to the innate immune response by killing pathogen-infected cells and by alerting the immune system through the release of danger signals. Components of the necroptotic signaling axis - TIR-domain-containing adapter-inducing interferon-β (TRIF), Z-DNA sensor DAI, receptor-interacting kinase (RIPK)1, RIPK3 and mixed-lineage kinase domain-like protein (MLKL) - are therefore expected to be found in all animals. However, a phylogenetic analysis reveals that the necroptotic axis, except for RIPK1, is poorly conserved in the animal kingdom, suggesting that alternative mechanisms regulate necroptosis in these species or that necroptosis would apparently be absent. These findings question the universal role of necroptosis during innate immunity in the animal kingdom.

  4. New immunotherapies targeting the PD-1 pathway

    PubMed Central

    Chinai, Jordan M.; Janakiram, Murali; Chen, Fuxiang; Chen, Wantao; Kaplan, Mark; Zang, Xingxing

    2015-01-01

    Ligands from the B7 family bind to receptors of the CD28 family, which regulate early T cell activation in lymphoid organs and control inflammation and autoimmunity in peripheral tissues. PD-1, a member of the CD28 family, is an inhibitory receptor on T cells and is responsible for their dysfunction in infectious diseases and cancers. The complex mechanisms controlling expression and signaling of PD-1 and PD-L1 are emerging. Recently completed and ongoing clinical trials that target these molecules have shown remarkable success by generating durable clinical responses in some cancer patients. In chronic viral infections, preclinical data reveal that targeting PD-1 and its ligands can improve T cell responses and viral clearance. There is also promise in stimulating this pathway for the treatment of autoimmune and inflammatory disorders. PMID:26162965

  5. Cardiac Lipotoxicity: Molecular Pathways and Therapeutic Implications

    PubMed Central

    Drosatos, Konstantinos; Schulze, P. Christian

    2013-01-01

    Diabetes and obesity are both associated with lipotoxic cardiomyopathy exclusive of coronary artery disease and hypertension. Lipotoxicities have become a public health concern and are responsible for a significant portion of clinical cardiac disease. These abnormalities may be the result of a toxic metabolic shift to more fatty acid and less glucose oxidation with concomitant accumulation of toxic lipids. Lipids can directly alter cellular structures and activate downstream pathways leading to toxicity. Recent data have implicated fatty acids and fatty acyl coenzyme A, diacylglycerol and ceramide in cellular lipotoxicity, which may be caused by apoptosis, defective insulin signaling, endoplasmic reticulum stress, activation of protein kinase C, MAPK activation or modulation of PPARs. PMID:23508767

  6. Targeting the TGFβ signalling pathway in disease

    PubMed Central

    Akhurst, Rosemary J.; Hata, Akiko

    2012-01-01

    Many drugs that target transforming growth factor-β (TGFβ) signalling have disease applications. Preclinical and clinical studies indicate the utility of these agents in fibrosis and oncology, particularly in augmentation of existing cancer therapies, such as radiation and chemotherapy, as well as in tumour vaccines. There are also reports of specialized applications, such as the reduction of vascular symptoms of Marfan syndrome. Here, we consider why the TGFβ signalling pathway is a drug target, the potential clinical applications of TGFβ inhibition, the issues arising with anti-TGFβ therapy and how these might be tackled using personalized approaches to dosing, monitoring of biomarkers as well as brief and/or localized drug-dosing regimens. PMID:23000686

  7. Pathways and therapeutic targets in melanoma

    PubMed Central

    Shtivelman, Emma; Davies, Michael A.; Hwu, Patrick; Yang, James; Lotem, Michal; Oren, Moshe; Flaherty, Keith T.; Fisher, David E.

    2014-01-01

    This review aims to summarize the current knowledge of molecular pathways and their clinical relevance in melanoma. Metastatic melanoma was a grim diagnosis, but in recent years tremendous advances have been made in treatments. Chemotherapy provided little benefit in these patients, but development of targeted and new immune approaches made radical changes in prognosis. This would not have happened without remarkable advances in understanding the biology of disease and tremendous progress in the genomic (and other “omics”) scale analyses of tumors. The big problems facing the field are no longer focused exclusively on the development of new treatment modalities, though this is a very busy area of clinical research. The focus shifted now to understanding and overcoming resistance to targeted therapies, and understanding the underlying causes of the heterogeneous responses to immune therapy. PMID:24743024

  8. The ethylene response pathway in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The simple gas ethylene influences a diverse array of plant growth and developmental processes including germination, senescence, cell elongation, and fruit ripening. This review focuses on recent molecular genetic studies, principally in Arabidopsis, in which components of the ethylene response pathway have been identified. The isolation and characterization of two of these genes has revealed that ethylene sensing involves a protein kinase cascade. One of these genes encodes a protein with similarity to the ubiquitous Raf family of Ser/Thr protein kinases. A second gene shows similarity to the prokaryotic two-component histidine kinases and most likely encodes an ethylene receptor. Additional elements involved in ethylene signaling have only been identified genetically. The characterization of these genes and mutants will be discussed.

  9. Molecular Pathways Controlling Autophagy in Pancreatic Cancer.

    PubMed

    New, Maria; Van Acker, Tim; Long, Jaclyn S; Sakamaki, Jun-Ichi; Ryan, Kevin M; Tooze, Sharon A

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the few cancer types where the 5-year survival rate shows no improvement. Despite conflicting evidence, the majority of data points to an essential role for autophagy in PDAC growth and survival, in particular constitutively activated autophagy, can provide crucial fuel to PDAC tumor cells in their nutrient-deprived environment. Autophagy, which is required for cell homeostasis, can both suppress and promote tumorigenesis and tumor survival in a context-dependent manner. Protein by protein, the mystery of how PDAC abuses the cell's homeostasis system for its malignant growth has recently begun to be unraveled. In this review, we focus on how autophagy is responsible for growth and development of PDAC tumors and where autophagy and the mechanisms controlling it fit into PDAC metabolism. Understanding the range of pathways controlling autophagy and their interplay in PDAC could open the way for new therapeutic avenues.

  10. From connected pathway flow to ganglion dynamics

    NASA Astrophysics Data System (ADS)

    Rücker, M.; Berg, S.; Armstrong, R. T.; Georgiadis, A.; Ott, H.; Schwing, A.; Neiteler, R.; Brussee, N.; Makurat, A.; Leu, L.; Wolf, M.; Khan, F.; Enzmann, F.; Kersten, M.

    2015-05-01

    During imbibition, initially connected oil is displaced until it is trapped as immobile clusters. While initial and final states have been well described before, here we image the dynamic transient process in a sandstone rock using fast synchrotron-based X-ray computed microtomography. Wetting film swelling and subsequent snap off, at unusually high saturation, decreases nonwetting phase connectivity, which leads to nonwetting phase fragmentation into mobile ganglia, i.e., ganglion dynamics regime. We find that in addition to pressure-driven connected pathway flow, mass transfer in the oil phase also occurs by a sequence of correlated breakup and coalescence processes. For example, meniscus oscillations caused by snap-off events trigger coalescence of adjacent clusters. The ganglion dynamics occurs at the length scale of oil clusters and thus represents an intermediate flow regime between pore and Darcy scale that is so far dismissed in most upscaling attempts.

  11. Developmental Programming, a Pathway to Disease

    PubMed Central

    Cardoso, Rodolfo C.; Puttabyatappa, Muraly

    2016-01-01

    Accumulating evidence suggests that insults occurring during the perinatal period alter the developmental trajectory of the fetus/offspring leading to long-term detrimental outcomes that often culminate in adult pathologies. These perinatal insults include maternal/fetal disease states, nutritional deficits/excess, stress, lifestyle choices, exposure to environmental chemicals, and medical interventions. In addition to reviewing the various insults that contribute to developmental programming and the benefits of animal models in addressing underlying mechanisms, this review focuses on the commonalities in disease outcomes stemming from various insults, the convergence of mechanistic pathways via which various insults can lead to common outcomes, and identifies the knowledge gaps in the field and future directions. PMID:26859334

  12. WNK signalling pathways in blood pressure regulation.

    PubMed

    Murthy, Meena; Kurz, Thimo; O'Shaughnessy, Kevin M

    2017-04-01

    Hypertension (high blood pressure) is a major public health problem affecting more than a billion people worldwide with complications, including stroke, heart failure and kidney failure. The regulation of blood pressure is multifactorial reflecting genetic susceptibility, in utero environment and external factors such as obesity and salt intake. In keeping with Arthur Guyton's hypothesis, the kidney plays a key role in blood pressure control and data from clinical studies; physiology and genetics have shown that hypertension is driven a failure of the kidney to excrete excess salt at normal levels of blood pressure. There is a number of rare Mendelian blood pressure syndromes, which have shed light on the molecular mechanisms involved in dysregulated ion transport in the distal kidney. One in particular is Familial hyperkalemic hypertension (FHHt), an autosomal dominant monogenic form of hypertension characterised by high blood pressure, hyperkalemia, hyperchloremic metabolic acidosis, and hypercalciuria. The clinical signs of FHHt are treated by low doses of thiazide diuretic, and it mirrors Gitelman syndrome which features the inverse phenotype of hypotension, hypokalemic metabolic alkalosis, and hypocalciuria. Gitelman syndrome is caused by loss of function mutations in the thiazide-sensitive Na/Cl cotransporter (NCC); however, FHHt patients do not have mutations in the SCL12A3 locus encoding NCC. Instead, mutations have been identified in genes that have revealed a key signalling pathway that regulates NCC and several other key transporters and ion channels in the kidney that are critical for BP regulation. This is the WNK kinase signalling pathway that is the subject of this review.

  13. Socioeconomic disparities and health: impacts and pathways.

    PubMed

    Kondo, Naoki

    2012-01-01

    Growing socioeconomic disparity is a global concern, as it could affect population health. The author and colleagues have investigated the health impacts of socioeconomic disparities as well as the pathways that underlie those disparities. Our meta-analysis found that a large population has risks of mortality and poor self-rated health that are attributable to income inequality. The study results also suggested the existence of threshold effects (ie, a threshold of income inequality over which the adverse impacts on health increase), period effects (ie, the potential for larger impacts in later years, specifically after the 1990s), and lag effects between income inequality and health outcomes. Our other studies using Japanese national representative survey data and a large-scale cohort study of Japanese older adults (AGES cohort) support the relative deprivation hypothesis, namely, that invidious social comparisons arising from relative deprivation in an unequal society adversely affect health. A study with a natural experiment design found that the socioeconomic gradient in self-rated health might actually have become shallower after the 1997-98 economic crisis in Japan, due to smaller health improvements among middle-class white-collar workers and middle/upper-income workers. In conclusion, income inequality might have adverse impacts on individual health, and psychosocial stress due to relative deprivation may partially explain those impacts. Any study of the effects of macroeconomic fluctuations on health disparities should also consider multiple potential pathways, including expanding income inequality, changes in the labor market, and erosion of social capital. Further studies are needed to attain a better understanding of the social determinants of health in a rapidly changing society.

  14. Care pathways for dementia: current perspectives

    PubMed Central

    Samsi, Kritika; Manthorpe, Jill

    2014-01-01

    Uncertainty appears to typify the experience of living with dementia. With an uncertain illness trajectory and unpredictable levels of deterioration and stability in symptoms, people with a diagnosis of dementia may live with uncertainty and anxiety and find it hard to make plans or decisions for their future. People with memory problems and caregivers seeking a diagnosis of dementia may also potentially find themselves navigating a labyrinth-like maze of services, practitioners, assessments, and memory tests, with limited understanding of test scores and little information about what support is available. In this context of uncertainty, the apparent clarity and certainty of a “dementia care pathway” may be attractive. However, the term “dementia care pathway” has multiple and overlapping meanings, which can potentially give rise to further confusion if these are ill-defined or a false consensus is presumed. This review distinguishes four meanings: 1) a mechanism for the management and containment of uncertainty and confusion, useful for the professional as well as the person with dementia; 2) a manual for sequencing care activities; 3) a guide to consumers, indicating eligibility for care activities, or a guide to self-management for dementia dyads, indicating the appropriateness of care activities; and 4) a manual for “walking with” the person. Examples of these approaches are presented from UK dementia services with illustrations of existing care pathways and associated time points, specifically focusing on: 1) early symptom identification and first service encounters, 2) assessment process, 3) diagnostic disclosure, 4) postdiagnostic support, and 5) appropriate interventions. We review the evidence around these themes, as well as discuss service pathways and referral routes used by some services in England and internationally. We conclude that the attraction of the term “care pathway” is seductive, but caution is needed in taking shared

  15. SIGNALING PATHWAYS IN MELANOSOME BIOGENESIS AND PATHOLOGY

    PubMed Central

    Schiaffino, Maria Vittoria

    2010-01-01

    Melanosomes are the specialized intracellular organelles of pigment cells devoted to the synthesis, storage and transport of melanin pigments, which are responsible for most visible pigmentation in mammals and other vertebrates. As a direct consequence, any genetic mutation resulting in alteration of melanosomal function, either because affecting pigment cell survival, migration and differentiation, or because interfering with melanosome biogenesis, transport and transfer to keratinocytes, is immediately translated into color variations of skin, fur, hair or eyes. Thus, over one hundred genes and proteins have been identified as pigmentary determinants in mammals, providing us with a deep understanding of this biological system, which functions by using mechanisms and processes that have parallels in other tissues and organs. In particular, many genes implicated in melanosome biogenesis have been characterized, so that melanosomes represent an incredible source of information and a model for organelles belonging to the secretory pathway. Furthermore, the function of melanosomes can be associated with common physiological phenotypes, such as variation of pigmentation among individuals, and with rare pathological conditions, such as albinism, characterized by severe visual defects. Among the most relevant mechanisms operating in melanosome biogenesis are the signal transduction pathways mediated by two peculiar G protein-coupled receptors: the melanocortin-1 receptor (MC1R), involved in the fair skin/red hair phenotype and skin cancer; and OA1 (GPR143), whose loss-of-function results in X-linked ocular albinism. This review will focus on the most recent novelties regarding the functioning of these two receptors, by highlighting emerging signaling mechanisms and general implications for cell biology and pathology. PMID:20381640

  16. PIKfyve Regulation of Endosome-Linked Pathways

    PubMed Central

    de Lartigue, Jane; Polson, Hannah; Feldman, Morri; Shokat, Kevan; Tooze, Sharon A; Urbé, Sylvie; Clague, Michael J

    2009-01-01

    The phosphoinositide 5-kinase (PIKfyve) is a critical enzyme for the synthesis of PtdIns(3,5)P2, that has been implicated in various trafficking events associated with the endocytic pathway. We have now directly compared the effects of siRNA-mediated knockdown of PIKfyve in HeLa cells with a specific pharmacological inhibitor of enzyme activity. Both approaches induce changes in the distribution of CI-M6PR and trans-Golgi network (TGN)-46 proteins, which cycles between endosomes and TGN, leading to their accumulation in dispersed punctae, whilst the TGN marker golgin-245 retains a perinuclear disposition. Trafficking of CD8-CI-M6PR (retromer-dependent) and CD8-Furin (retromer-independent) chimeras from the cell surface to the TGN is delayed following drug administration, as is the transport of the Shiga toxin B-subunit. siRNA knockdown of PIKfyve produced no defect in epidermal growth factor receptor (EGFR) degradation, unless combined with knockdown of its activator molecule Vac14, suggesting that a low threshold of PtdIns(3,5)P2 is necessary and sufficient for this pathway. Accordingly pharmacological inhibition of PIKfyve results in a profound block to the lysosomal degradation of activated epidermal growth factor (EGF) and Met receptors. Immunofluorescence revealed EGF receptors to be trapped in the interior of a swollen endosomal compartment. In cells starved of amino acids, PIKfyve inhibition leads to the accumulation of the lipidated form of GFP-LC3, a marker of autophagosomal structures, which can be visualized as fluorescent punctae. We suggest that PIKfyve inhibition may render the late endosome/lysosome compartment refractory to fusion with both autophagosomes and with EGFR-containing multivesicular bodies. PMID:19582903

  17. Significance of environmental exposure pathways for technetium

    SciTech Connect

    Hoffman, F.O.; Gardner, R.H.; Bartell, S.M.

    1984-01-01

    Numerical simulation techniques are used to produce a probable range of predicted values from estimates of uncertainty assigned to the parameters of radiological assessment models. This range is used to indicate the uncertainty in the model's prediction. The importance of individual parameters and exposure pathways is determined by their relative contribution to this simulated uncertainty index. The major pathways of exposure to humans resulting from the airborne emissions of /sup 99/Tc involve the consumption of vegetables, vegetable products, and poultry eggs. The most important model parameters are related to the mobility of /sup 99/Tc in soil, the incorporation of /sup 99/Tc into the edible portions of crops, its transfer from vegetation to poultry eggs, and its atmospheric deposition. Uncertainty in the dose for individuals exposed to /sup 99/Tc-contaminated liquid discharges is dominated by the bioaccumulation of this isotope in aquatic food chains and by the possibility that contaminated surface water will be used as a source of drinking water. Results suggest that future reductions in the present estimates of uncertainty will lead to the dismissal of /sup 99/Tc as an environmentally important radionuclide, provided that de minimis dose levels are eventually adopted and releases of /sup 99/Tc from individual nuclear fuel cycle facilities will not be substantially larger than 1 Ci/year to the atmosphere and 100 Ci/year to the aquatic environment. These conclusions do not account for the possibility of a large long-term accumulation and remobilization of /sup 99/Tc in aquatic sediment and/or surface soils. 32 references, 9 tables.

  18. The protein C pathway and sepsis.

    PubMed

    Della Valle, Patrizia; Pavani, Giulia; D'Angelo, Armando

    2012-03-01

    After the discovery of the key components of the protein C (PC) pathway a beneficial effect on survival of the infusion of activated protein C (APC) in animal models of sepsis was demonstrated, leading to the development of recombinant human activated protein C (rh-APC) as a therapeutic agent. It soon became clear that rather than the anticoagulant and profibrinolytic activities of APC, its anti-inflammatory and cytoprotective properties played a major role in the treatment of patients with severe sepsis. Such properties affect the response to inflammation of endothelial cells and leukocytes and are exerted through binding of APC to at least five receptors with intracellular signaling. The main APC protective mechanism involves binding of the Gla-domain to the endothelial protein C receptor (EPCR) and cleavage of protease activated receptor 1 (PAR-1), eliciting suppression of proinflammatory cytokines synthesis and of intracellular proapoptotic pathways and activation of endothelial barrier properties. However, thrombin cleaves PAR-1 with much higher catalytic efficiency, followed by pro-inflammatory, pro-apoptotic and barrier disruptive intracellular signaling, and it is unclear how APC can exert a protective activity through the cleavage of PAR-1 when thrombin is also present in the same environment. Interestingly, in endothelial cell cultures, PAR-1 cleavage by thrombin results in anti-inflammatory and barrier protective signaling provided occupation of EPCR by the PC gla-domain, raising the possibility that the beneficial effects of rh-APC might be recapitulated in vivo by administration of h-PC zymogen to patients with severe sepsis. Recent reports of h-PC infusion in animal models of sepsis support this hypothesis.

  19. Response recovery in the locust auditory pathway

    PubMed Central

    Ronacher, Bernhard

    2015-01-01

    Temporal resolution and the time courses of recovery from acute adaptation of neurons in the auditory pathway of the grasshopper Locusta migratoria were investigated with a response recovery paradigm. We stimulated with a series of single click and click pair stimuli while performing intracellular recordings from neurons at three processing stages: receptors and first and second order interneurons. The response to the second click was expressed relative to the single click response. This allowed the uncovering of the basic temporal resolution in these neurons. The effect of adaptation increased with processing layer. While neurons in the auditory periphery displayed a steady response recovery after a short initial adaptation, many interneurons showed nonlinear effects: most prominent a long-lasting suppression of the response to the second click in a pair, as well as a gain in response if a click was preceded by a click a few milliseconds before. Our results reveal a distributed temporal filtering of input at an early auditory processing stage. This set of specified filters is very likely homologous across grasshopper species and thus forms the neurophysiological basis for extracting relevant information from a variety of different temporal signals. Interestingly, in terms of spike timing precision neurons at all three processing layers recovered very fast, within 20 ms. Spike waveform analysis of several neuron types did not sufficiently explain the response recovery profiles implemented in these neurons, indicating that temporal resolution in neurons located at several processing layers of the auditory pathway is not necessarily limited by the spike duration and refractory period. PMID:26609115

  20. Electrical Activation of Wound-Healing Pathways

    PubMed Central

    Zhao, Min; Penninger, Josef; Isseroff, Roslyn Rivkah

    2011-01-01

    Background Effective wound healing has been a lasting and challenging topic in health care. Various strategies have been used to accelerate and perfect the healing process. One such strategy has involved the application of an exogenous electrical stimulus to chronic wounds with the aim of stimulating healing responses. The Problem The biology of electric stimulation to instigate healing, however, is very poorly understood. How does electric stimulation induce healing responses? Basic/Clinical Science Advances Recent research shows that the electric fields (EFs) activate multiple signaling pathways that are critical for wound healing. Importantly, the EFs provide a powerful, sometimes an overriding, directional signal for cell migration in wound healing. Unlike other stimuli, EFs have the intrinsic property of being directional. The EF-directed cell migration (electrotaxis/galvanotaxis) appears to be a consequence of EF-induced polarized signaling of epidermal growth factor receptors, integrins, and phosphoinositide 3 kinase/Pten, and may be mediated by protein kinase C, intracellular Ca2+, and cyclic adenosine monophosphate (cAMP). Because directional cell migration is a key component in wound healing, galvanotaxis may represent an important mechanism of wound healing. Clinical Care Relevance With the constantly enlarging diabetic and aging population, chronic or nonhealing wounds pose increasing health and economic problems, and currently there is no effective therapy available. Electric stimulation activates important intracellular signaling pathways that are polarized in the EF direction, resulting in enhanced and stimulated directional cell migration. Electric stimulation offers a novel approach to achieve better and accelerated wound healing. Conclusion Experimental evidence suggests a significant role of endogenous EFs in cell migration in wound healing. Most importantly, EFs are a very powerful signal to direct cell migration. Electric stimulation therefore