Science.gov

Sample records for 5-lipoxygenase-activating protein alox5ap

  1. 5-lipoxygenase and 5-lipoxygenase-activating protein gene polymorphisms, dietary linoleic acid, and risk for breast cancer.

    PubMed

    Wang, Jun; John, Esther M; Ingles, Sue Ann

    2008-10-01

    The n-6 polyunsaturated fatty acid 5-lipoxygenase pathway has been shown to play a role in the carcinogenesis of breast cancer. We conducted a population-based case-control study among Latina, African-American, and White women from the San Francisco Bay area to examine the association of the 5-lipoxygenase gene (ALOX5) and 5-lipoxygenase-activating protein gene (ALOX5AP) with breast cancer risk. Three ALOX5AP polymorphisms [poly(A) microsatellite, -4900 A>G (rs4076128), and -3472 A>G (rs4073259)] and three ALOX5 polymorphisms [Sp1-binding site (-GGGCGG-) variable number of tandem repeat polymorphism, -1279 G>T (rs6593482), and 760 G>A (rs2228065)] were genotyped in 802 cases and 888 controls. We did not find significant main effects of ALOX5 and ALOX5AP genotypes on breast cancer risk that were consistent across race or ethnicity; however, there was a significant interaction between the ALOX5AP -4900 A>G polymorphism and dietary linoleic acid intake (P=0.03). Among women consuming a diet high in linoleic acid (top quartile of intake, >17.4 g/d), carrying the AA genotype was associated with higher breast cancer risk (age- and race-adjusted odds ratio, 1.8; 95% confidence interval, 1.2-2.9) compared with carrying genotypes AG or GG. Among women consuming ALOX5AP -4900 genotype was not associated with breast cancer risk (age- and race-adjusted odds ratio, 0.9; 95% confidence interval, 0.7-1.2). These results support a role for n-6 polyunsaturated fatty acids in breast carcinogenesis and suggest that epidemiologic studies on dietary fat and breast cancer should take into account genetic predisposition related to n-6 polyunsaturated fatty acid metabolism.

  2. Expression, purification and crystallization of human 5-lipoxygenase-activating protein with leukotriene-biosynthesis inhibitors

    SciTech Connect

    Xu, Shihua; McKeever, Brian M.; Wisniewski, Douglas; Miller, Douglas K.; Spencer, Robert H.; Chu, Lin; Ujjainwalla, Feroze; Yamin, Ting-Ting; Evans, Jilly F.; Becker, Joseph W.; Ferguson, Andrew D.

    2007-12-01

    The expression, purification and crystallization of human 5-lipoxygenase-activating protein in complex with two leukotriene-biosynthesis inhibitors is decribed. The processes that were used to generate diffraction quality crystals are presented in detail. The nuclear membrane protein 5-lipoxygenase-activating protein (FLAP) plays an essential role in leukotriene synthesis. Recombinant full-length human FLAP with a C-terminal hexahistidine tag has been expressed and purified from the cytoplasmic membrane of Escherichia coli. Diffraction-quality crystals of FLAP in complex with leukotriene-synthesis inhibitor MK-591 and with an iodinated analogue of MK-591 have been grown using the sitting-drop vapor-diffusion method. The crystals exhibit tetragonal symmetry (P42{sub 1}2) and diffracted to a resolution limit of 4 Å.

  3. Distinct parts of leukotriene C{sub 4} synthase interact with 5-lipoxygenase and 5-lipoxygenase activating protein

    SciTech Connect

    Strid, Tobias; Svartz, Jesper; Franck, Niclas; Hallin, Elisabeth; Ingelsson, Bjoern; Soederstroem, Mats; Hammarstroem, Sven

    2009-04-17

    Leukotriene C{sub 4} is a potent inflammatory mediator formed from arachidonic acid and glutathione. 5-Lipoxygenase (5-LO), 5-lipoxygenase activating protein (FLAP) and leukotriene C{sub 4} synthase (LTC{sub 4}S) participate in its biosynthesis. We report evidence that LTC{sub 4}S interacts in vitro with both FLAP and 5-LO and that these interactions involve distinct parts of LTC{sub 4}S. FLAP bound to the N-terminal part/first hydrophobic region of LTC{sub 4}S. This part did not bind 5-LO which bound to the second hydrophilic loop of LTC{sub 4}S. Fluorescent FLAP- and LTC{sub 4}S-fusion proteins co-localized at the nuclear envelope. Furthermore, GFP-FLAP and GFP-LTC{sub 4}S co-localized with a fluorescent ER marker. In resting HEK293/T or COS-7 cells GFP-5-LO was found mainly in the nuclear matrix. Upon stimulation with calcium ionophore, GFP-5-LO translocated to the nuclear envelope allowing it to interact with FLAP and LTC{sub 4}S. Direct interaction of 5-LO and LTC{sub 4}S in ionophore-stimulated (but not un-stimulated) cells was demonstrated by BRET using GFP-5-LO and Rluc-LTC{sub 4}S.

  4. MK-886, an inhibitor of the 5-lipoxygenase-activating protein, inhibits cyclooxygenase-1 activity and suppresses platelet aggregation.

    PubMed

    Koeberle, Andreas; Siemoneit, Ulf; Northoff, Hinnak; Hofmann, Bettina; Schneider, Gisbert; Werz, Oliver

    2009-04-17

    MK-886, an inhibitor of the 5-lipoxygenase-activating protein (FLAP), potently suppresses leukotriene biosynthesis in intact cells and is frequently used to define a role of the 5-lipoxygenase (EC 1.13.11.34) pathway in cellular or animal models of inflammation, allergy, cancer, and cardiovascular disease. Here we show that MK-886 also interferes with the activities of cyclooxygenases (COX, EC 1.14.99.1). MK-886 inhibited isolated COX-1 (IC(50)=8 microM) and blocked the formation of the COX-1-derived products 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid (12-HHT) and thromboxane B(2) in washed human platelets in response to collagen as well as from exogenous arachidonic acid (IC(50)=13-15 microM). Isolated COX-2 was less affected (IC(50)=58 microM), and in A549 cells, MK-886 (33 microM) failed to suppress COX-2-dependent 6-keto-prostaglandin (PG)F(1alpha) formation. The distinct susceptibility of MK-886 towards COX-1 and -2 is apparent in automated molecular docking studies that indicate a preferred binding of MK-886 to COX-1 into the active site. MK-886 (10 microM) inhibited COX-1-mediated platelet aggregation induced by collagen or arachidonic acid whereas thrombin- or U-46619-induced (COX-independent) aggregation was not affected. Since leukotrienes and prostaglandins share (patho)physiological properties in the development and regulation of carcinogenesis, inflammation, and vascular functions, caution should be used when interpreting data where MK-886 is used as tool to determine the involvement of FLAP and/or the 5-lipoxygenase pathway in respective experimental models.

  5. 4,5-Diarylisoxazol-3-carboxylic acids: A new class of leukotriene biosynthesis inhibitors potentially targeting 5-lipoxygenase-activating protein (FLAP).

    PubMed

    Banoglu, Erden; Çelikoğlu, Erşan; Völker, Susanna; Olgaç, Abdurrahman; Gerstmeier, Jana; Garscha, Ulrike; Çalışkan, Burcu; Schubert, Ulrich S; Carotti, Andrea; Macchiarulo, Antonio; Werz, Oliver

    2016-05-01

    In this article, we report novel leukotriene (LT) biosynthesis inhibitors that may target 5-lipoxygenase-activating protein (FLAP) based on the previously identified isoxazole derivative (8). The design and synthesis was directed towards a subset of 4,5-diaryl-isoxazole-3-carboxylic acid derivatives as LT biosynthesis inhibitors. Biological evaluation disclosed a new skeleton of potential anti-inflammatory agents, exemplified by 39 and 40, which potently inhibit cellular 5-LO product synthesis (IC50 = 0.24 μM, each) seemingly by targeting FLAP with weak inhibition on 5-LO (IC50 ≥ 8 μM). Docking studies and molecular dynamic simulations with 5-LO and FLAP provide valuable insights into potential binding modes of the inhibitors. Together, these diaryl-isoxazol-3-carboxylic acids may possess potential as leads for development of effective anti-inflammatory drugs through inhibition of LT biosynthesis. PMID:26922224

  6. 5-Lipoxygenase Activating Protein Reduction Ameliorates Cognitive Deficit, Synaptic Dysfunction, and Neuropathology in a Mouse Model of Alzheimer’s Disease

    PubMed Central

    Giannopoulos, Phillip F.; Chu, Jin; Joshi, Yash B.; Sperow, Margaret; Li, Jin-Guo; Kirby, Lynn G.; Praticò, Domenico

    2013-01-01

    Background 5-lipoxygenase activating protein (FLAP) is abundantly present in the central nervous system. Although its function has been extensively interrogated in the context of peripheral inflammation, novel roles for this protein are emerging in the central nervous system. The objective of our study was to investigate the functional role that FLAP plays in a mouse model of Alzheimer’s disease (AD) with plaques and tangles (i.e., 3×Tg mice). Methods By implementing a genetic knockout of FLAP and pharmacologic inhibition with a FLAP inhibitor (MK-591), we evaluated the effect on the AD-like neuropathology, cognition, and synaptic plasticity in the 3×Tg mice. Results We show that reduction of FLAP leads to amelioration of cognition and memory along with the rescuing of synaptic dysfunction at an early age before the development of overt neuropathology. Genetic knockout and pharmacologic inhibition of FLAP also yielded an improvement in AD pathology through a reduction in Aβ via the γ-secretase pathway and a decrease in tau phosphorylation through the cdk5 pathway. Conclusions Our studies identify a novel functional role for FLAP in regulating memory and synaptic plasticity. They establish this protein at the crossroad of multiple pathways that ultimately contribute to the development of the entire AD-like phenotype, making it a viable therapeutic target with disease-modifying capacity for the treatment of this disease. PMID:23683389

  7. A Single Amino Acid Difference between Mouse and Human 5-Lipoxygenase Activating Protein (FLAP) Explains the Speciation and Differential Pharmacology of Novel FLAP Inhibitors.

    PubMed

    Blevitt, Jonathan M; Hack, Michael D; Herman, Krystal; Chang, Leon; Keith, John M; Mirzadegan, Tara; Rao, Navin L; Lebsack, Alec D; Milla, Marcos E

    2016-06-10

    5-Lipoxygenase activating protein (FLAP) plays a critical role in the metabolism of arachidonic acid to leukotriene A4, the precursor to the potent pro-inflammatory mediators leukotriene B4 and leukotriene C4 Studies with small molecule inhibitors of FLAP have led to the discovery of a drug binding pocket on the protein surface, and several pharmaceutical companies have developed compounds and performed clinical trials. Crystallographic studies and mutational analyses have contributed to a general understanding of compound binding modes. During our own efforts, we identified two unique chemical series. One series demonstrated strong inhibition of human FLAP but differential pharmacology across species and was completely inactive in assays with mouse or rat FLAP. The other series was active across rodent FLAP, as well as human and dog FLAP. Comparison of rodent and human FLAP amino acid sequences together with an analysis of a published crystal structure led to the identification of amino acid residue 24 in the floor of the putative binding pocket as a likely candidate for the observed speciation. On that basis, we tested compounds for binding to human G24A and mouse A24G FLAP mutant variants and compared the data to that generated for wild type human and mouse FLAP. These studies confirmed that a single amino acid mutation was sufficient to reverse the speciation observed in wild type FLAP. In addition, a PK/PD method was established in canines to enable preclinical profiling of mouse-inactive compounds. PMID:27129215

  8. A Single Amino Acid Difference between Mouse and Human 5-Lipoxygenase Activating Protein (FLAP) Explains the Speciation and Differential Pharmacology of Novel FLAP Inhibitors.

    PubMed

    Blevitt, Jonathan M; Hack, Michael D; Herman, Krystal; Chang, Leon; Keith, John M; Mirzadegan, Tara; Rao, Navin L; Lebsack, Alec D; Milla, Marcos E

    2016-06-10

    5-Lipoxygenase activating protein (FLAP) plays a critical role in the metabolism of arachidonic acid to leukotriene A4, the precursor to the potent pro-inflammatory mediators leukotriene B4 and leukotriene C4 Studies with small molecule inhibitors of FLAP have led to the discovery of a drug binding pocket on the protein surface, and several pharmaceutical companies have developed compounds and performed clinical trials. Crystallographic studies and mutational analyses have contributed to a general understanding of compound binding modes. During our own efforts, we identified two unique chemical series. One series demonstrated strong inhibition of human FLAP but differential pharmacology across species and was completely inactive in assays with mouse or rat FLAP. The other series was active across rodent FLAP, as well as human and dog FLAP. Comparison of rodent and human FLAP amino acid sequences together with an analysis of a published crystal structure led to the identification of amino acid residue 24 in the floor of the putative binding pocket as a likely candidate for the observed speciation. On that basis, we tested compounds for binding to human G24A and mouse A24G FLAP mutant variants and compared the data to that generated for wild type human and mouse FLAP. These studies confirmed that a single amino acid mutation was sufficient to reverse the speciation observed in wild type FLAP. In addition, a PK/PD method was established in canines to enable preclinical profiling of mouse-inactive compounds.

  9. Exploring the roles of UGT1A1 and UGT1A3 in oral clearance of GSK2190915, a 5-lipoxygenase-activating protein inhibitor.

    PubMed

    Mosteller, Michael; Condreay, Lynn D; Harris, Elizabeth C; Ambery, Claire; Beerahee, Misba; Ghosh, Soumitra

    2014-12-01

    Pharmacokinetic variability in drug exposure is a concern for all compounds in development including those for the treatment of asthma and other respiratory disorders. Substantial variability in the oral clearance of GSK2190915, a 5-lipoxygenase-activating protein inhibitor that attenuates the production of leukotriene B4 and cysteinyl leukotrienes, is largely unaccounted for by clinical variables. A study of 41 patients, 78% (32/41) of whom were non-Hispanic whites, with mild to moderate asthma identified an association of UGT1A1*28 and UGT1A3*2 with the oral clearance of GSK2190915 (P=3.8×10⁻⁴ and 1.2×10⁻⁵, respectively). However, in a subsequent replication study of 403 non-Hispanic white patients with asthma, we failed to observe a statistically significant association between oral clearance of GSK2190915 and either UGT1A1*28 or UGT1A3*2 (P>0.05). Therefore, genetic effects that could explain the systemic exposure level variability of GSK2190915 were not identified. PMID:25192553

  10. Inhibition of soluble epoxide hydrolase enhances the anti-inflammatory effects of aspirin and 5-lipoxygenase activation protein inhibitor in a murine model.

    PubMed

    Liu, Jun-Yan; Yang, Jun; Inceoglu, Bora; Qiu, Hong; Ulu, Arzu; Hwang, Sung-Hee; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2010-03-15

    Inflammation is a multi-staged process whose expansive phase is thought to be driven by acutely released arachidonic acid (AA) and its metabolites. Inhibition of cyclooxygenase (COX), lipoxygenase (LOX), or soluble epoxide hydrolase (sEH) is known to be anti-inflammatory. Inhibition of sEH stabilizes the cytochrome P450 (CYP450) products epoxyeicosatrienoic acids (EETs). Here we used a non-selective COX inhibitor aspirin, a 5-lipoxygenase activation protein (FLAP) inhibitor MK886, and a sEH inhibitor t-AUCB to selectively modulate the branches of AA metabolism in a lipopolysaccharide (LPS)-challenged murine model. We used metabolomic profiling to simultaneously monitor representative AA metabolites of each branch. In addition to the significant crosstalk among branches of the AA cascade during selective modulation of COX, LOX, or sEH, we demonstrated that co-administration of t-AUCB enhanced the anti-inflammatory effects of aspirin or MK886, which was evidenced by the observations that co-administration resulted in favorable eicosanoid profiles and better control of LPS-mediated hypotension as well as hepatic protein expression of COX-2 and 5-LOX. Targeted disruption of the sEH gene displayed a parallel profile to that produced by t-AUCB. These observations demonstrate a significant level of crosstalk among the three major branches of the AA cascade and that they are not simply parallel pathways. These data illustrate that inhibition of sEH by both pharmacological intervention and gene knockout enhances the anti-inflammatory effects of aspirin and MK886, suggesting the possibility of modulating multiple branches to achieve better therapeutic effects. PMID:19896470

  11. Targeted deep resequencing of ALOX5 and ALOX5AP in patients with diabetes and association of rare variants with leukotriene pathways

    PubMed Central

    POSTULA, MAREK; JANICKI, PIOTR KAZIMIERZ; ROSIAK, MAREK; EYILETEN, CEREN; ZAREMBA, MAŁGORZATA; KAPLON-CIESLICKA, AGNIESZKA; SUGINO, SHIGEKAZU; KOSIOR, DARIUSZ ARTUR; OPOLSKI, GRZEGORZ; FILIPIAK, KRZYSZTOF JERZY; MIROWSKA-GUZEL, DAGMARA

    2016-01-01

    The aim of the present study was to investigate a possible association between the accumulation of rare coding variants in the genes for arachidonate 5-lipoxygenase (ALOX5) and ALOX5-activating protein (ALOX5AP), and corresponding production of leukotrienes (LTs) in patients with type 2 diabetes mellitus (T2DM) receiving acetylsalicylic therapy. Twenty exons and corresponding introns of the selected genes were resequenced in 303 DNA samples from patients with T2DM using pooled polymerase chain reaction amplification and next-generation sequencing, using an Illumina HiSeq 2000 sequencing system. The observed non-synonymous variants were further confirmed by individual genotyping of DNA samples comprising of all individuals from the original discovery pools. The association between the investigated phenotypes was based on LTB4 and LTE4 concentrations, and the accumulation of rare missense variants (genetic burden) in investigated genes was evaluated using statistical collapsing tests. A total of 10 exonic variants were identified for each resequenced gene, including 5 missense and 5 synonymous variants. The rare missense variants did not exhibit statistically significant differences in the accumulation pattern between the patients with low and high LTs concentrations. As the present study only included patients with T2DM, it is unclear whether the absence of observed association between the accumulation of rare missense variants in investigated genes and LT production is associated with diabetic populations only or may also be applied to other populations. PMID:27347071

  12. Disruption of the alox5ap gene ameliorates focal ischemic stroke: possible consequence of impaired leukotriene biosynthesis

    PubMed Central

    2012-01-01

    Background Leukotrienes are potent inflammatory mediators, which in a number of studies have been found to be associated with ischemic stroke pathology: gene variants affecting leukotriene synthesis, including the FLAP (ALOX5AP) gene, have in human studies shown correlation to stroke incidence, and animal studies have demonstrated protective properties of various leukotriene-disrupting drugs. However, no study has hitherto described a significant effect of a genetic manipulation of the leukotriene system on ischemic stroke. Therefore, we decided to compare the damage from focal cerebral ischemia between wild type and FLAP knockout mice. Damage was evaluated by infarct staining and a functional test after middle cerebral artery occlusion in 20 wild type and 20 knockout male mice. Results Mortality-adjusted median infarct size was 18.4 (3.2-76.7) mm3 in the knockout group, compared to 72.0 (16.7-174.0) mm3 in the wild type group (p < 0.0005). There was also a tendency of improved functional score in the knockout group (p = 0.068). Analysis of bone marrow cells confirmed that knockout animals had lost their ability to form leukotrienes. Conclusions Since the local inflammatory reaction after ischemic stroke is known to contribute to the brain tissue damage, the group difference seen in the current study could be a consequence of a milder inflammatory reaction in the knockout group. Our results add evidence to the notion that leukotrienes are important in ischemic stroke, and that blocked leukotriene production ameliorates cerebral damage. PMID:23194405

  13. Granulocyte/macrophage colony-stimulating factor stimulates the expression of the 5-lipoxygenase-activating protein (FLAP) in human neutrophils

    PubMed Central

    1994-01-01

    The synthesis of leukotrienes in human blood neutrophils chiefly relies on the activity of two enzymes, phospholipase A2 and 5-lipoxygenase (5- LO). In turn, the activation of the 5-LO requires the participation of a recently characterized membrane-bound protein, the 5-LO-activating protein (FLAP). In this study, we have investigated conditions under which FLAP expression in neutrophils may be modulated. Of several cytokines tested, only granulocyte/macrophage colony-stimulating factor (GM-CSF) (and to a lesser extent tumor necrosis factor alpha) significantly increased expression of FLAP. GM-CSF increased FLAP mRNA steady-state levels in a time- and dose-dependent manner. The stimulatory effect of GM-CSF on FLAP mRNA was inhibited by prior treatment of the cells with the transcription inhibitor, actinomycin D, and pretreatment of the cells with the protein synthesis inhibitor, cycloheximide, failed to prevent the increase in FLAP mRNA induced by GM-CSF. The accumulation of newly synthesized FLAP, as determined by immunoprecipitation after incorporation of 35S-labeled amino acids, was also increased after incubation of neutrophils with GM-CSF. In addition, the total level of FLAP protein was increased in GM-CSF- treated neutrophils, as determined by two-dimensional gel electrophoresis, followed by Western blot. GM-CSF did not alter the stability of the FLAP protein, indicating that the effect of GM-CSF on FLAP accumulation was the consequence of increased de novo synthesis as opposed to decreased degradation of FLAP. Finally, incubation of neutrophils with the synthetic glucocorticoid dexamethasone directly stimulated the upregulation of FLAP mRNA and protein, and enhanced the effect of GM-CSF. Taken together, these data demonstrate that FLAP expression may be upmodulated after appropriate stimulation of neutrophils. The increase in FLAP expression induced by GM-CSF in inflammatory conditions could confer upon neutrophils a prolonged capacity to synthesize

  14. Synthesis, SAR, and series evolution of novel oxadiazole-containing 5-lipoxygenase activating protein inhibitors: discovery of 2-[4-(3-{(r)-1-[4-(2-amino-pyrimidin-5-yl)-phenyl]-1-cyclopropyl-ethyl}-[1,2,4]oxadiazol-5-yl)-pyrazol-1-yl]-N,N-dimethyl-acetamide (BI 665915).

    PubMed

    Takahashi, Hidenori; Riether, Doris; Bartolozzi, Alessandra; Bosanac, Todd; Berger, Valentina; Binetti, Ralph; Broadwater, John; Chen, Zhidong; Crux, Rebecca; De Lombaert, Stéphane; Dave, Rajvee; Dines, Jonathon A; Fadra-Khan, Tazmeen; Flegg, Adam; Garrigou, Michael; Hao, Ming-Hong; Huber, John; Hutzler, J Matthew; Kerr, Steven; Kotey, Adrian; Liu, Weimin; Lo, Ho Yin; Loke, Pui Leng; Mahaney, Paige E; Morwick, Tina M; Napier, Spencer; Olague, Alan; Pack, Edward; Padyana, Anil K; Thomson, David S; Tye, Heather; Wu, Lifen; Zindell, Renee M; Abeywardane, Asitha; Simpson, Thomas

    2015-02-26

    The synthesis, structure-activity relationship (SAR), and evolution of a novel series of oxadiazole-containing 5-lipoxygenase-activating protein (FLAP) inhibitors are described. The use of structure-guided drug design techniques provided compounds that demonstrated excellent FLAP binding potency (IC50 < 10 nM) and potent inhibition of LTB4 synthesis in human whole blood (IC50 < 100 nM). Optimization of binding and functional potencies, as well as physicochemical properties resulted in the identification of compound 69 (BI 665915) that demonstrated an excellent cross-species drug metabolism and pharmacokinetics (DMPK) profile and was predicted to have low human clearance. In addition, 69 was predicted to have a low risk for potential drug-drug interactions due to its cytochrome P450 3A4 profile. In a murine ex vivo whole blood study, 69 demonstrated a linear dose-exposure relationship and a dose-dependent inhibition of LTB4 production. PMID:25671290

  15. Preliminary assessment of differential expression of candidate genes associated with atherosclerosis.

    PubMed

    Blin, Joan; Ahmad, Zalinah; Rampal, Lekhraj Rampal S O Gyanchand; Mohtarrudin, Norhafizah; Tajudin, Abdul Karim Haji; Adnan, Rohayu Shahar

    2013-01-01

    Identifying susceptible genes associated with the pathogenesis of atherosclerosis (ATH) may contribute toward better management of this condition. This preliminary study was aimed at assessing the expression levels of 11 candidate genes, namely tumor protein (TP53), transforming growth factor, beta receptor II (TGFBR2), cysthathionenine-beta-synthase (CBS), insulin receptor substrate 1 (IRS1), lipoprotein lipase (LPL), methylenetetrahydrofolate reductase (MTHFR), thrombomodulin (THBD), lecithin-cholesterol acyltransferase (LCAT), matrix metallopeptidase 9 (MMP9), low density lipoprotein receptor (LDLR), and arachidonate 5-lipoxygenase-activating protein (ALOX5AP) genes associated with ATH. Twelve human coronary artery tissues (HCATs) were obtained from deceased subjects who underwent post-mortem procedures. Six atherosclerotic coronary artery tissue (ACAT) samples representing the cases and non-atherosclerotic coronary artery tissue (NCAT) samples as controls were gathered based on predetermined inclusion and exclusion criteria. Gene expression levels were assessed using the GenomeLab Genetic Analysis System (GeXP). The results showed that LDLR, TP53, and MMP9 expression levels were significantly increased in ACAT compared to NCAT samples (p < 0.05). Thus, LDLR, TP53, and MMP9 genes may play important roles in the development of ATH in a Malaysian study population. PMID:24025248

  16. Suppression of oxidative stress and 5-lipoxygenase activation by edaravone improves depressive-like behavior after concussion.

    PubMed

    Higashi, Youichirou; Hoshijima, Michihiro; Yawata, Toshio; Nobumoto, Atsuya; Tsuda, Masayuki; Shimizu, Takahiro; Saito, Motoaki; Ueba, Tetuya

    2014-10-15

    Brain concussions are a serious public concern and are associated with neuropsychiatric disorders, such as depression. Patients with concussion who suffer from depression often experience distress. Nevertheless, few pre-clinical studies have examined concussion-induced depression, and there is little information regarding its pharmacological management. Edaravone, a free radical scavenger, can exert neuroprotective effects in several animal models of neurological disorders. However, the effectiveness of edaravone in animal models of concussion-induced depression remains unclear. In this study, we examined whether edaravone could prevent concussion-induced depression. Mice were subjected to a weight-drop injury and intravenously administered edaravone (3.0 mg/kg) or vehicle immediately after impact. Serial magnetic resonance imaging showed no abnormalities of the cerebrum on diffusion T1- and T2-weighted images. We found that edaravone suppressed concussion-induced depressive-like behavior in the forced swim test, which was accompanied by inhibition of increased hippocampal and cortical oxidative stress (OS) and suppression of 5-lipoxygenase (5-LOX) translocation to the nuclear envelope in hippocampal astrocytes. Hippocampal OS in concussed mice was also prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor, apocynin, and administration of BWB70C, a 5-LOX inhibitor, immediately and 24 h after injury prevented depressive-like behaviors in concussed mice. Further, antidepressant effects of edaravone were observed in mice receiving 1.0 or 3.0 mg/kg of edaravone immediately after impact, but not at a lower dose of 0.1 mg/kg. This antidepressant effect persisted up to 1 h after impact, whereas edaravone treatment at 3 h after impact had no effect on concussion-induced depressive-like behavior. These results suggest that edaravone protects against concussion-induced depression, and this protection is mediated by suppression of OS and 5-LOX translocation.

  17. Eugenol--the active principle from cloves inhibits 5-lipoxygenase activity and leukotriene-C4 in human PMNL cells.

    PubMed

    Raghavenra, H; Diwakr, B T; Lokesh, B R; Naidu, K A

    2006-01-01

    Polymorphonuclear leukocytes (PMNL) play an important role in the modulation of inflammatory conditions in humans. PMNL cells recruited at the site of inflammation, release inflammatory mediators such as leukotrienes, proteolytic enzymes and reactive oxygen species. Among these, leukotrienes are implicated in pathophysiology of allergic and inflammatory disorders like asthma, allergic rhinitis, arthritis, inflammatory bowel disease and psoriasis. 5-lipoxygenase (5-LO) is the key enzyme in biosynthetic pathway of leukotrienes. Our earlier studies showed that spice phenolic active principles significantly inhibit 5-LO enzyme in human PMNLs. In this study we have further characterized the inhibitory mechanism of eugenol, the active principle of spice-clove on 5-LO enzyme and also its effect on leukotriene C((4)) (LTC(4)). Substrate dependent enzyme kinetics showed that the inhibitory effect of eugenol on 5-LO was of a non-competitive nature. Further, eugenol was found to significantly inhibit the formation of LTC(4) in calcium ionophore A23187 and arachidonic acid (AA) stimulated PMNL cells. These data clearly suggest that eugenol inhibits 5-LO by non-competitive mechanism and also inhibits formation of LTC(4) in human PMNL cells and thus may have beneficial role in modulating 5-LO pathway in human PMNL cells. PMID:16216483

  18. Eugenol--the active principle from cloves inhibits 5-lipoxygenase activity and leukotriene-C4 in human PMNL cells.

    PubMed

    Raghavenra, H; Diwakr, B T; Lokesh, B R; Naidu, K A

    2006-01-01

    Polymorphonuclear leukocytes (PMNL) play an important role in the modulation of inflammatory conditions in humans. PMNL cells recruited at the site of inflammation, release inflammatory mediators such as leukotrienes, proteolytic enzymes and reactive oxygen species. Among these, leukotrienes are implicated in pathophysiology of allergic and inflammatory disorders like asthma, allergic rhinitis, arthritis, inflammatory bowel disease and psoriasis. 5-lipoxygenase (5-LO) is the key enzyme in biosynthetic pathway of leukotrienes. Our earlier studies showed that spice phenolic active principles significantly inhibit 5-LO enzyme in human PMNLs. In this study we have further characterized the inhibitory mechanism of eugenol, the active principle of spice-clove on 5-LO enzyme and also its effect on leukotriene C((4)) (LTC(4)). Substrate dependent enzyme kinetics showed that the inhibitory effect of eugenol on 5-LO was of a non-competitive nature. Further, eugenol was found to significantly inhibit the formation of LTC(4) in calcium ionophore A23187 and arachidonic acid (AA) stimulated PMNL cells. These data clearly suggest that eugenol inhibits 5-LO by non-competitive mechanism and also inhibits formation of LTC(4) in human PMNL cells and thus may have beneficial role in modulating 5-LO pathway in human PMNL cells.

  19. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  20. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  1. Proteins

    NASA Astrophysics Data System (ADS)

    Regnier, Fred E.; Gooding, Karen M.

    Because of the complexity of cellular material and body fluids, it is seldom possible to analyze a natural product directly. Qualitative and quantitative analyses must often be preceded by some purification step that separates the molecular species being examined from interfering materials. In the case of proteins, column liquid chromatography has been used extensively for these fractionations. With the advent of gel permeation, cation exchange, anion exchange, hydrophobic, and affinity chromatography, it became possible to resolve proteins through their fundamental properties of size, charge, hydrophobicity, and biological affinity. The chromatographic separations used in the early isolation and characterization of many proteins later became analytical tools in their routine analysis. Unfortunately, these inherently simple and versatile column chromatographic techniques introduced in the 50s and 60s have a severe limitation in routine analysis-separation time. It is common to encounter 1-24 h separation times with the classical gel-type supports.

  2. Genetic effects in the leukotriene biosynthesis pathway and association with atherosclerosis

    PubMed Central

    Crosslin, David R.; Shah, Svati H.; Nelson, Sarah C.; Haynes, Carol S.; Connelly, Jessica J.; Gadson, Shera; Goldschmidt-Clermont, Pascal J.; Vance, Jeffery M.; Rose, Jason; Granger, Chris B.; Seo, David; Gregory, Simon G.; Kraus, William E.

    2009-01-01

    Leukotrienes are arachidonic acid derivatives long known for their inflammatory properties and their involvement with a number of human diseases, most particularly asthma. Recently, leukotriene-based inflammation has also been shown to play an important role in atherosclerosis: ALOX5AP and LTA4H, both genes in the leukotriene biosynthesis pathway, have individually been shown to be associated with various cardiovascular disease (CVD) phenotypes. To assess the role of the leukotriene pathway in CVD pathogenesis, we performed genetic association studies of ALOX5AP and LTA4H in a family based study of early onset coronary artery disease (EOCAD) (GENECARD, 1,101 families) and in a non-familial dataset of EOCAD (CATHGEN, 656 cases and 405 controls). We found weak to moderate association between single nucleotide polymorphisms (SNPs) in ALOX5AP and LTA4H with EOCAD. The previously reported four-SNP haplotype (HapA) in ALOX5AP showed association with EOCAD in CATHGEN (P = 0.02), while controlling for age, race and CVD risk factors. HapK, the previously reported ten-SNP haplotype in LTA4H was associated with EOCAD in CATHGEN (P = 0.04). Another previously reported four-SNP haplotype in ALOX5AP (HapB) was not significant in our sample (P = 0.39). The overall lack of (or weak) association of single SNPs as compared with the haplotype results demonstrates the need for analyzing multiple SNPs within each gene in such studies. Interestingly, we detected an association of SNPs in ALOX5 (P < 0.05), the target of ALOX5AP, with CVD. Using a pathway-based approach, we also detected statistical evidence for interactions among ALOX5, ALOX5AP and LTA4H using RNA expression data from a collection of freshly harvested human aortas with varying degrees of atherosclerosis. The GENECARD families did not demonstrate evidence for linkage or association with ALOX5, ALOX5AP or LTA4H. Our results support a modest role for the leukotriene pathway in atherosclerosis pathogenesis, reveal important

  3. Leukotriene signaling in the extinct human subspecies Homo denisovan and Homo neanderthalensis. Structural and functional comparison with Homo sapiens.

    PubMed

    Adel, Susan; Kakularam, Kumar Reddy; Horn, Thomas; Reddanna, Pallu; Kuhn, Hartmut; Heydeck, Dagmar

    2015-01-01

    Mammalian lipoxygenases (LOXs) have been implicated in cell differentiation and in the biosynthesis of pro- and anti-inflammatory lipid mediators. The initial draft sequence of the Homo neanderthalensis genome (coverage of 1.3-fold) suggested defective leukotriene signaling in this archaic human subspecies since expression of essential proteins appeared to be corrupted. Meanwhile high quality genomic sequence data became available for two extinct human subspecies (H. neanderthalensis, Homo denisovan) and completion of the human 1000 genome project provided a comprehensive database characterizing the genetic variability of the human genome. For this study we extracted the nucleotide sequences of selected eicosanoid relevant genes (ALOX5, ALOX15, ALOX12, ALOX15B, ALOX12B, ALOXE3, COX1, COX2, LTA4H, LTC4S, ALOX5AP, CYSLTR1, CYSLTR2, BLTR1, BLTR2) from the corresponding databases. Comparison of the deduced amino acid sequences in connection with site-directed mutagenesis studies and structural modeling suggested that the major enzymes and receptors of leukotriene signaling as well as the two cyclooxygenase isoforms were fully functional in these two extinct human subspecies.

  4. Exome sequencing in Thai patients with familial obesity.

    PubMed

    Kaewsutthi, S; Santiprabhob, J; Phonrat, B; Tungtrongchitr, A; Lertrit, P; Tungtrongchitr, R

    2016-01-01

    Obesity is a major worldwide health issue, with increasing prevalence in adults and children from developed and developing countries. Obesity causes several chronic diseases, including cardiovascular and respiratory diseases, osteoarthritis, hypertension, stroke, type II diabetes, obstructive sleep apnea, and several types of cancer. Previous genome-wide association studies have identified several genes associated with obesity, including LEP, LEPR, POMC, PCSK1, FTO, MC3R, MC4R, GNPDA2, TMEM18, QPCTL/GIPR, BDNF, ETV5, MAP2K5/SKOR1, SEC16B, SIM1, and TNKS/MSRA. However, most of these variants are found in the intronic or intergenic regions, making it difficult to elucidate the underlying mechanisms. Therefore, in this study, we performed a whole exome sequencing of the protein-coding regions in the total genome (exome) of two obese and one normal subject belonging to the same Thai family to identify the genes responsible for obesity. We identified 709 functional variants that were differentially expressed between obese and normal subjects; of these, 65 were predicted to be deleterious to protein structure or function. The minor allele frequency of 14 of these genes (ALOX5AP, COL9A2, DEFB126, GDPD4, HCRTR1, MLL3, OPLAH, OR4C45, PRIM2, RXFP2, TIGD6, TRPM8, USP49, and ZNF596) was low, indicating causal variants that could be associated with complex traits or diseases. Genotyping revealed HCRTR1, COL9A2, and TRPM8 to be associated with the regulation of feeding behavior and energy expenditure. These genes constituted a network of pathways, including lipid metabolism, signaling transduction, immune, membrane transport, and gene regulation pathways, and seemed to play important roles in obesity. PMID:27421018

  5. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2007-09-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  6. Protein Condensation

    NASA Astrophysics Data System (ADS)

    Gunton, James D.; Shiryayev, Andrey; Pagan, Daniel L.

    2014-07-01

    Preface; 1. Introduction; 2. Globular protein structure; 3. Experimental methods; 4. Thermodynamics and statistical mechanics; 5. Protein-protein interactions; 6. Theoretical studies of equilibrium; 7. Nucleation theory; 8. Experimental studies of nucleation; 9. Lysozyme; 10. Some other globular proteins; 11. Membrane proteins; 12. Crystallins and cataracts; 13. Sickle hemoglobin and sickle cell anemia; 14, Alzheimer's disease; Index.

  7. Total protein

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  8. Protein Microarrays

    NASA Astrophysics Data System (ADS)

    Ricard-Blum, S.

    Proteins are key actors in the life of the cell, involved in many physiological and pathological processes. Since variations in the expression of messenger RNA are not systematically correlated with variations in the protein levels, the latter better reflect the way a cell functions. Protein microarrays thus supply complementary information to DNA chips. They are used in particular to analyse protein expression profiles, to detect proteins within complex biological media, and to study protein-protein interactions, which give information about the functions of those proteins [3-9]. They have the same advantages as DNA microarrays for high-throughput analysis, miniaturisation, and the possibility of automation. Section 18.1 gives a brief overview of proteins. Following this, Sect. 18.2 describes how protein microarrays can be made on flat supports, explaining how proteins can be produced and immobilised on a solid support, and discussing the different kinds of substrate and detection method. Section 18.3 discusses the particular format of protein microarrays in suspension. The diversity of protein microarrays and their applications are then reported in Sect. 18.4, with applications to therapeutics (protein-drug interactions) and diagnostics. The prospects for future developments of protein microarrays are then outlined in the conclusion. The bibliography provides an extensive list of reviews and detailed references for those readers who wish to go further in this area. Indeed, the aim of the present chapter is not to give an exhaustive or detailed analysis of the state of the art, but rather to provide the reader with the basic elements needed to understand how proteins are designed and used.

  9. Dietary Proteins

    MedlinePlus

    ... meat, dairy products, nuts, and certain grains and beans. Proteins from meat and other animal products are complete proteins. This means they supply all of the amino acids the body can't make on its own. Most plant proteins are incomplete. You should eat different types ...

  10. Protein Structure

    ERIC Educational Resources Information Center

    Asmus, Elaine Garbarino

    2007-01-01

    Individual students model specific amino acids and then, through dehydration synthesis, a class of students models a protein. The students clearly learn amino acid structure, primary, secondary, tertiary, and quaternary structure in proteins and the nature of the bonds maintaining a protein's shape. This activity is fun, concrete, inexpensive and…

  11. Treatment heterogeneity in asthma: genetics of response to leukotriene modifiers.

    PubMed

    Lima, John J

    2007-01-01

    Despite advances in treatment, asthma continues to be a significant health and economic burden. Although asthma cannot be cured, several drugs, including beta2 agonists, corticosteroids, and leukotriene (LT) modifiers, are well tolerated and effective in minimizing symptoms, improving lung function, and preventing exacerbations. However, inter-patient variability in response to asthma drugs limits their effectiveness. It has been estimated that 60-80% of this inter-patient variability may be attributable to genetic variation. LT modifiers, in particular, have been associated with heterogeneity in response. These drugs exert their action by inhibiting the activity of cysteinyl leukotrienes (CysLTs), which are potent bronchoconstrictors and pro-inflammatory agents. Two classes of LT modifiers are 5-lipoxygenase (ALOX5) inhibitors (zileuton) and leukotriene receptor antagonists (LTRAs) [montelukast, pranlukast, and zarfirlukast]. LT modifiers can be used as alternatives to low-dose inhaled corticosteroids (ICS) in mild persistent asthma, as add-on therapy to low- to medium-dose ICS in moderate persistent asthma, and as add-on to high-dose ICS and a long-acting ss2 agonist in severe persistent asthma. At least six genes encode key proteins in the LT pathway: arachidonate 5-lipoxygenase (ALOX5), ALOX5 activating protein (ALOX5AP [FLAP]), leukotriene A4 hydrolase (LTA4H), LTC4 synthase (LTC4S), the ATP-binding cassette family member ABCC1 (multidrug resistance protein 1 [MRP1]), and cysteinyl leukotriene receptor 1 (CYSLTR1). Studies have reported that genetic variation in ALOX5, LTA4H, LTC4S, and ABCC1 influences response to LT modifiers. Plasma concentrations of LTRAs vary considerably among patients. Physio-chemical characteristics make it likely that membrane efflux and uptake transporters mediate the absorption of LTRAs into the systemic circulation following oral administration. Genes that encode efflux and uptake transport proteins harbor many variants that could

  12. Transport proteins.

    PubMed

    Thatcher, Jack D

    2013-04-16

    This Teaching Resource provides and describes two animated lessons that illustrate general properties of transport proteins. The lesson called "transport protein classes" depicts major classes and subclasses of transport proteins. The "transporters, mechanism of action" lesson explains how transporters and P class ATPase (adenosine triphosphatase) pumps function. These animations serve as valuable resources for any collegiate-level course that describes these important factors. Courses that might use them include introductory biology, biochemistry, cell biology, physiology, and biophysics.

  13. Proteins wriggle.

    PubMed Central

    Cahill, Michael; Cahill, Sean; Cahill, Kevin

    2002-01-01

    We propose an algorithmic strategy for improving the efficiency of Monte Carlo searches for the low-energy states of proteins. Our strategy is motivated by a model of how proteins alter their shapes. In our model, when proteins fold under physiological conditions, their backbone dihedral angles change synchronously in groups of four or more to avoid steric clashes and respect the kinematic conservation laws. They wriggle; they do not thrash. We describe a simple algorithm that can be used to incorporate wriggling in Monte Carlo simulations of protein folding. We have tested this wriggling algorithm against a code in which the dihedral angles are varied independently (thrashing). Our standard of success is the average root-mean-square distance (rmsd) between the alpha-carbons of the folding protein and those of its native structure. After 100,000 Monte Carlo sweeps, the relative decrease in the mean rmsd, as one switches from thrashing to wriggling, rises from 11% for the protein 3LZM with 164 amino acids (aa) to 40% for the protein 1A1S with 313 aa and 47% for the protein 16PK with 415 aa. These results suggest that wriggling is useful and that its utility increases with the size of the protein. One may implement wriggling on a parallel computer or a computer farm. PMID:11964253

  14. The nuclear membrane organization of leukotriene synthesis.

    PubMed

    Mandal, Asim K; Jones, Phillip B; Bair, Angela M; Christmas, Peter; Miller, Douglas; Yamin, Ting-ting D; Wisniewski, Douglas; Menke, John; Evans, Jilly F; Hyman, Bradley T; Bacskai, Brian; Chen, Mei; Lee, David M; Nikolic, Boris; Soberman, Roy J

    2008-12-23

    Leukotrienes (LTs) are signaling molecules derived from arachidonic acid that initiate and amplify innate and adaptive immunity. In turn, how their synthesis is organized on the nuclear envelope of myeloid cells in response to extracellular signals is not understood. We define the supramolecular architecture of LT synthesis by identifying the activation-dependent assembly of novel multiprotein complexes on the outer and inner nuclear membranes of mast cells. These complexes are centered on the integral membrane protein 5-Lipoxygenase-Activating Protein, which we identify as a scaffold protein for 5-Lipoxygenase, the initial enzyme of LT synthesis. We also identify these complexes in mouse neutrophils isolated from inflamed joints. Our studies reveal the macromolecular organization of LT synthesis.

  15. Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  16. The membrane organization of leukotriene synthesis.

    PubMed

    Mandal, Asim K; Skoch, Jesse; Bacskai, Brian J; Hyman, Bradley T; Christmas, Peter; Miller, Douglas; Yamin, Ting-ting D; Xu, Shihua; Wisniewski, Douglas; Evans, Jilly F; Soberman, Roy J

    2004-04-27

    Cell signaling leading to the formation of leukotriene (LT)C(4) requires the localization of the four key biosynthetic enzymes on the outer nuclear membrane and endoplasmic reticulum. Whether any macromolecular organization of these proteins exists is unknown. By using fluorescence lifetime imaging microscopy and biochemical analysis, we demonstrate the presence of two distinct multimeric complexes that regulate the formation of LTs in RBL-2H3 cells. One complex consists of multimers of LTC(4) synthase and the 5-lipoxygenase activating protein (FLAP). The second complex consists of multimers of FLAP. Surprisingly, all LTC(4) synthase was found to be in association with FLAP. The results indicate that the formation of LTC(4) and LTB(4) may be determined by the compartmentalization of biosynthetic enzymes in discrete molecular complexes.

  17. Bacteriophage protein-protein interactions.

    PubMed

    Häuser, Roman; Blasche, Sonja; Dokland, Terje; Haggård-Ljungquist, Elisabeth; von Brunn, Albrecht; Salas, Margarita; Casjens, Sherwood; Molineux, Ian; Uetz, Peter

    2012-01-01

    Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology. PMID:22748812

  18. Recombinant protein production technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  19. Protein electrophoresis - serum

    MedlinePlus

    ... of protein and fat, called lipoproteins (such as LDL cholesterol). ... globulin proteins may indicate: Abnormally low level of LDL cholesterol Malnutrition Increased gamma globulin proteins may indicate: Bone ...

  20. Protein sulfhydration.

    PubMed

    Paul, Bindu D; Snyder, Solomon H

    2015-01-01

    Hydrogen sulfide (H2S) is one of the gasotransmitters that modulates various biological processes and participates in multiple signaling pathways. H2S signals by a process termed sulfhydration. Sulfhydration has recently been recognized as a posttranslational modification similar to nitrosylation. Sulfhydration occurs at reactive cysteine residues in proteins and results in the conversion of an -SH group of cysteine to an -SSH or a persulfide group. Sulfhydration is highly prevalent in vivo, and aberrant sulfhydration patterns have been observed under several pathological conditions ranging from heart disease to neurodegenerative diseases such as Parkinson's disease. The biotin switch assay, originally developed to detect nitrosylation, has been modified to detect sulfhydration. In this chapter, we discuss the physiological roles of sulfhydration and the methodologies used to detect this modification.

  1. Fusion-protein-assisted protein crystallization.

    PubMed

    Kobe, Bostjan; Ve, Thomas; Williams, Simon J

    2015-07-01

    Fusion proteins can be used directly in protein crystallization to assist crystallization in at least two different ways. In one approach, the `heterologous fusion-protein approach', the fusion partner can provide additional surface area to promote crystal contact formation. In another approach, the `fusion of interacting proteins approach', protein assemblies can be stabilized by covalently linking the interacting partners. The linker connecting the proteins plays different roles in the two applications: in the first approach a rigid linker is required to reduce conformational heterogeneity; in the second, conversely, a flexible linker is required that allows the native interaction between the fused proteins. The two approaches can also be combined. The recent applications of fusion-protein technology in protein crystallization from the work of our own and other laboratories are briefly reviewed.

  2. EDITORIAL: Precision proteins Precision proteins

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  3. EDITORIAL: Precision proteins Precision proteins

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-06-01

    Since the birth of modern day medicine, during the times of Hippocrates in ancient Greece, the profession has developed from the rudimentary classification of disease into a rigorous science with an inspiring capability to treat and cure. Scientific methodology has distilled clinical diagnostic tools from the early arts of prognosis, which used to rely as much on revelation and prophecy, as intuition and judgement [1]. Over the past decade, research into the interactions between proteins and nanosystems has provided some ingenious and apt techniques for delving into the intricacies of anatomical systems. In vivo biosensing has emerged as a vibrant field of research, as much of medical diagnosis relies on the detection of substances or an imbalance in the chemicals in the body. The inherent properties of nanoscale structures, such as cantilevers, make them well suited to biosensing applications that demand the detection of molecules at very low concentrations. Measurable deflections in cantilevers functionalised with antibodies provide quantitative indicators of the presence of specific antigens when the two react. Such developments have roused mounting interest in the interactions of proteins with nanostructures, such as carbon nanotubes [3], which have demonstrated great potential as generic biomarkers. Plasmonic properties are also being exploited in sensing applications, such as the molecular sentinel recently devised by researchers in the US. The device uses the plasmonic properties of a silver nanoparticle linked to a Raman labelled hairpin DNA probe to signal changes in the probe geometry resulting from interactions with substances in the environment. Success stories so far include the detection of two specific genes associated with breast cancer [4]. A greater understanding of how RNA interference regulates gene expression has highlighted the potential of using this natural process as another agent for combating disease in personalized medicine. However, the

  4. Protein Crystal Based Nanomaterials

    NASA Technical Reports Server (NTRS)

    Bell, Jeffrey A.; VanRoey, Patrick

    2001-01-01

    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  5. Shotgun protein sequencing.

    SciTech Connect

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  6. Protein immobilization strategies for protein biochips.

    PubMed

    Rusmini, Federica; Zhong, Zhiyuan; Feijen, Jan

    2007-06-01

    In the past few years, protein biochips have emerged as promising proteomic and diagnostic tools for obtaining information about protein functions and interactions. Important technological innovations have been made. However, considerable development is still required, especially regarding protein immobilization, in order to fully realize the potential of protein biochips. In fact, protein immobilization is the key to the success of microarray technology. Proteins need to be immobilized onto surfaces with high density in order to allow the usage of small amount of sample solution. Nonspecific protein adsorption needs to be avoided or at least minimized in order to improve detection performances. Moreover, full retention of protein conformation and activity is a challenging task to be accomplished. Although a large number of review papers on protein biochips have been published in recent years, few have focused on protein immobilization technology. In this review, current protein immobilization strategies, including physical, covalent, and bioaffinity immobilization for the fabrication of protein biochips, are described. Particular consideration has been given to oriented immobilization, also referred to as site-specific immobilization, which is believed will improve homogeneous surface covering and accessibility of the active site.

  7. Protein-losing enteropathy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007338.htm Protein-losing enteropathy To use the sharing features on this page, please enable JavaScript. Protein-losing enteropathy is an abnormal loss of protein ...

  8. Protein in diet

    MedlinePlus

    ... basic structure of protein is a chain of amino acids. You need protein in your diet to help ... Protein foods are broken down into parts called amino acids during digestion. The human body needs a number ...

  9. Nanotechnologies in protein microarrays.

    PubMed

    Krizkova, Sona; Heger, Zbynek; Zalewska, Marta; Moulick, Amitava; Adam, Vojtech; Kizek, Rene

    2015-01-01

    Protein microarray technology became an important research tool for study and detection of proteins, protein-protein interactions and a number of other applications. The utilization of nanoparticle-based materials and nanotechnology-based techniques for immobilization allows us not only to extend the surface for biomolecule immobilization resulting in enhanced substrate binding properties, decreased background signals and enhanced reporter systems for more sensitive assays. Generally in contemporarily developed microarray systems, multiple nanotechnology-based techniques are combined. In this review, applications of nanoparticles and nanotechnologies in creating protein microarrays, proteins immobilization and detection are summarized. We anticipate that advanced nanotechnologies can be exploited to expand promising fields of proteins identification, monitoring of protein-protein or drug-protein interactions, or proteins structures. PMID:26039143

  10. Protein domain architectures.

    PubMed

    Mulder, Nicola J

    2010-01-01

    Proteins are composed of functional units, or domains, that can be found alone or in combination with other domains. Analysis of protein domain architectures and the movement of protein domains within and across different genomes provide clues about the evolution of protein function. The classification of proteins into families and domains is provided through publicly available tools and databases that use known protein domains to predict other members in new proteins sequences. Currently at least 80% of the main protein sequence databases can be classified using these tools, thus providing a large data set to work from for analyzing protein domain architectures. Each of the protein domain databases provide intuitive web interfaces for viewing and analyzing their domain classifications and provide their data freely for downloading. Some of the main protein family and domain databases are described here, along with their Web-based tools for analyzing domain architectures.

  11. PREFACE: Protein protein interactions: principles and predictions

    NASA Astrophysics Data System (ADS)

    Nussinov, Ruth; Tsai, Chung-Jung

    2005-06-01

    Proteins are the `workhorses' of the cell. Their roles span functions as diverse as being molecular machines and signalling. They carry out catalytic reactions, transport, form viral capsids, traverse membranes and form regulated channels, transmit information from DNA to RNA, making possible the synthesis of new proteins, and they are responsible for the degradation of unnecessary proteins and nucleic acids. They are the vehicles of the immune response and are responsible for viral entry into the cell. Given their importance, considerable effort has been centered on the prediction of protein function. A prime way to do this is through identification of binding partners. If the function of at least one of the components with which the protein interacts is known, that should let us assign its function(s) and the pathway(s) in which it plays a role. This holds since the vast majority of their chores in the living cell involve protein-protein interactions. Hence, through the intricate network of these interactions we can map cellular pathways, their interconnectivities and their dynamic regulation. Their identification is at the heart of functional genomics; their prediction is crucial for drug discovery. Knowledge of the pathway, its topology, length, and dynamics may provide useful information for forecasting side effects. The goal of predicting protein-protein interactions is daunting. Some associations are obligatory, others are continuously forming and dissociating. In principle, from the physical standpoint, any two proteins can interact, but under what conditions and at which strength? The principles of protein-protein interactions are general: the non-covalent interactions of two proteins are largely the outcome of the hydrophobic effect, which drives the interactions. In addition, hydrogen bonds and electrostatic interactions play important roles. Thus, many of the interactions observed in vitro are the outcome of experimental overexpression. Protein disorder

  12. Protein sequence comparison and protein evolution

    SciTech Connect

    Pearson, W.R.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  13. Inferring Protein Associations Using Protein Pulldown Assays

    SciTech Connect

    Sharp, Julia L.; Anderson, Kevin K.; Daly, Don S.; Auberry, Deanna L.; Borkowski, John J.; Cannon, William R.

    2007-02-01

    Background: One method to infer protein-protein associations is through a “bait-prey pulldown” assay using a protein affinity agent and an LC-MS (liquid chromatography-mass spectrometry)-based protein identification method. False positive and negative protein identifications are not uncommon, however, leading to incorrect inferences. Methods: A pulldown experiment generates a protein association matrix wherein each column represents a sample from one bait protein, each row represents one prey protein and each cell contains a presence/absence association indicator. Our method evaluates the presence/absence pattern across a prey protein (row) with a Likelihood Ratio Test (LRT), computing its p-value with simulated LRT test statistic distributions after a check with simulated binomial random variates disqualified the large sample 2 test. A pulldown experiment often involves hundreds of tests so we apply the false discovery rate method to control the false positive rate. Based on the p-value, each prey protein is assigned a category (specific association, non-specific association, or not associated) and appraised with respect to the pulldown experiment’s goal and design. The method is illustrated using a pulldown experiment investigating the protein complexes of Shewanella oneidensis MR-1. Results: The Monte Carlo simulated LRT p-values objectively reveal specific and ubiquitous prey, as well as potential systematic errors. The example analysis shows the results to be biologically sensible and more realistic than the ad hoc screening methods previously utilized. Conclusions: The method presented appears to be informative for screening for protein-protein associations.

  14. Mirror image proteins.

    PubMed

    Zhao, Le; Lu, Wuyuan

    2014-10-01

    Proteins composed entirely of unnatural d-amino acids and the achiral amino acid glycine are mirror image forms of their native l-protein counterparts. Recent advances in chemical protein synthesis afford unique and facile synthetic access to domain-sized mirror image d-proteins, enabling protein research to be conducted through 'the looking glass' and in a way previously unattainable. d-Proteins can facilitate structure determination of their native l-forms that are difficult to crystallize (racemic X-ray crystallography); d-proteins can serve as the bait for library screening to ultimately yield pharmacologically superior d-peptide/d-protein therapeutics (mirror-image phage display); d-proteins can also be used as a powerful mechanistic tool for probing molecular events in biology. This review examines recent progress in the application of mirror image proteins to structural biology, drug discovery, and immunology.

  15. High-throughput and multiplexed protein array technology: protein-DNA and protein-protein interactions.

    PubMed

    Sakanyan, Vehary

    2005-02-01

    Miniaturized protein arrays address protein interactions with various types of molecules in a high-throughput and multiplexed fashion. This review focuses on achievements in the analysis of protein-DNA and protein-protein interactions. The technological feasibility of protein arrays depends on the different factors that enable the arrayed proteins to recognize molecular partners and on the specificity of the interactions involved. Proteome-scale studies of molecular interactions require high-throughput approaches for both the production and purification of functionally active proteins. Various solutions have been proposed to avoid non-specific protein interactions on array supports and to monitor low-abundance molecules. The data accumulated indicate that this emerging technology is perfectly suited to resolve networks of protein interactions involved in complex physiological and pathological phenomena in different organisms and to develop sensitive tools for biomedical applications.

  16. Protein- protein interaction detection system using fluorescent protein microdomains

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  17. [Protein expression and purification].

    PubMed

    Růčková, E; Müller, P; Vojtěšek, B

    2014-01-01

    Production of recombinant proteins is essential for many applications in both basic research and also in medicine, where recombinant proteins are used as pharmaceuticals. This review summarizes procedures involved in recombinant protein expression and purification, including molecular cloning of target genes into expression vectors, selection of the appropriate expression system, and protein purification techniques. Recombinant DNA technology allows protein engineering to modify protein stability, activity and function or to facilitate protein purification by affinity tag fusions. A wide range of cloning systems enabling fast and effective design of expression vectors is currently available. A first choice of protein expression system is usually the bacteria Escherichia coli. The main advantages of this prokaryotic expression system are low cost and simplicity; on the other hand this system is often unsuitable for production of complex mammalian proteins. Protein expression mediated by eukaryotic cells (yeast, insect and mammalian cells) usually produces properly folded and posttranslationally modified proteins. How-ever, cultivation of insect and, especially, mammalian cells is time consuming and expensive. Affinity tagged recombinant proteins are purified efficiently using affinity chromatography. An affinity tag is a protein or peptide that mediates specific binding to a chromatography column, unbound proteins are removed during a washing step and pure protein is subsequently eluted. PMID:24945544

  18. Urine Protein and Urine Protein to Creatinine Ratio

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Urine Protein and Urine Protein to Creatinine Ratio Share this page: Was this page helpful? Also known as: 24-Hour Urine Protein; Urine Total Protein; Urine Protein to Creatinine Ratio; ...

  19. Designing Fluorinated Proteins.

    PubMed

    Marsh, E N G

    2016-01-01

    As methods to incorporate noncanonical amino acid residues into proteins have become more powerful, interest in their use to modify the physical and biological properties of proteins and enzymes has increased. This chapter discusses the use of highly fluorinated analogs of hydrophobic amino acids, for example, hexafluoroleucine, in protein design. In particular, fluorinated residues have proven to be generally effective in increasing the thermodynamic stability of proteins. The chapter provides an overview of the different fluorinated amino acids that have been used in protein design and the various methods available for producing fluorinated proteins. It discusses model proteins systems into which highly fluorinated amino acids have been introduced and the reasons why fluorinated residues are generally stabilizing, with particular reference to thermodynamic and structural studies from our laboratory. Lastly, details of the methodology we have developed to measure the thermodynamic stability of oligomeric fluorinated proteins are presented, as this may be generally applicable to many proteins. PMID:27586337

  20. DNA mimicry by proteins.

    PubMed

    Dryden, D T F; Tock, M R

    2006-04-01

    It has been discovered recently, via structural and biophysical analyses, that proteins can mimic DNA structures in order to inhibit proteins that would normally bind to DNA. Mimicry of the phosphate backbone of DNA, the hydrogen-bonding properties of the nucleotide bases and the bending and twisting of the DNA double helix are all present in the mimics discovered to date. These mimics target a range of proteins and enzymes such as DNA restriction enzymes, DNA repair enzymes, DNA gyrase and nucleosomal and nucleoid-associated proteins. The unusual properties of these protein DNA mimics may provide a foundation for the design of targeted inhibitors of DNA-binding proteins. PMID:16545103

  1. Physics of protein motility and motor proteins

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Anatoly B.

    2013-09-01

    Motor proteins are enzymatic molecules that transform chemical energy into mechanical motion and work. They are critically important for supporting various cellular activities and functions. In the last 15 years significant progress in understanding the functioning of motor proteins has been achieved due to revolutionary breakthroughs in single-molecule experimental techniques and strong advances in theoretical modelling. However, microscopic mechanisms of protein motility are still not well explained, and the collective efforts of many scientists are needed in order to solve these complex problems. In this special section the reader will find the latest advances on the difficult road to mapping motor proteins dynamics in various systems. Recent experimental developments have allowed researchers to monitor and to influence the activity of single motor proteins with a high spatial and temporal resolution. It has stimulated significant theoretical efforts to understand the non-equilibrium nature of protein motility phenomena. The latest results from all these advances are presented and discussed in this special section. We would like to thank the scientists from all over the world who have reported their latest research results for this special section. We are also grateful to the staff and editors of Journal of Physics: Condensed Matter for their invaluable help in handling all the administrative and refereeing activities. The field of motor proteins and protein motility is fast moving, and we hope that this collection of articles will be a useful source of information in this highly interdisciplinary area. Physics of protein motility and motor proteins contents Physics of protein motility and motor proteinsAnatoly B Kolomeisky Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116 Yuan Zhang, Mirkó Palla, Andrew Sun and Jung-Chi Liao The load dependence of the physical properties of a molecular motor

  2. Protein and protein hydrolysates in sports nutrition.

    PubMed

    van Loon, Luc J C; Kies, Arie K; Saris, Wim H M

    2007-08-01

    With the increasing knowledge about the role of nutrition in increasing exercise performance, it has become clear over the last 2 decades that amino acids, protein, and protein hydrolysates can play an important role. Most of the attention has been focused on their effects at a muscular level. As these nutrients are ingested, however, it also means that gastrointestinal digestibility and absorption can modulate their efficacy significantly. Therefore, discussing the role of amino acids, protein, and protein hydrolysates in sports nutrition entails holding a discussion on all levels of the metabolic route. On May 28-29, 2007, a small group of researchers active in the field of exercise science and protein metabolism presented an overview of the different aspects of the application of protein and protein hydrolysates in sports nutrition. In addition, they were asked to share their opinions on the future progress in their fields of research. In this overview, an introduction to the workshop and a short summary of its outcome is provided.

  3. Engineering fluorescent proteins.

    PubMed

    Miyawaki, Atsushi; Nagai, Takeharu; Mizuno, Hideaki

    2005-01-01

    Green fluorescent protein from the jellyfish Aequorea victora (GFP) and GFP-like proteins from Anthozoa species encode light-absorbing chromophores intrinsically within their respective protein sequences. Recent studies have made progress in obtaining bright variants of these proteins which develop chromophores quickly and efficiently, as well as novel fluorescent proteins that photoactivate or photoconvert, i.e., become fluorescent or change colors upon illumination at specific wavelengths. Also, monomeric versions of these proteins have been engineered for fusion protein applications. Simple GFP variants and circularly permuted GFP variants have been used to develop fluorescent probes that sense physiological signals such as membrane potential and concentrations of free calcium. Further molecular characterization of the structure and maturation of these proteins is in progress, aimed at providing information for rational design of variants with desired fluorescence properties.

  4. Learning about Proteins

    MedlinePlus

    ... body, and protecting you from disease. All About Amino Acids When you eat foods that contain protein, the ... called amino (say: uh-MEE-no) acids. The amino acids then can be reused to make the proteins ...

  5. Protein S blood test

    MedlinePlus

    ... a normal substance in your body that prevents blood clotting. A blood test can be done to see ... family history of blood clots. Protein S helps control blood clotting. A lack of this protein or problem with ...

  6. Protein C blood test

    MedlinePlus

    ... a normal substance in the body that prevents blood clotting. A blood test can be done to see ... history of blood clots. Protein C helps control blood clotting. A lack of this protein or problem with ...

  7. [Protein-losing enteropathy].

    PubMed

    Amiot, A

    2015-07-01

    Protein-losing enteropathy is a rare syndrome of gastrointestinal protein loss. The primary causes can be classified into lymphatic leakage due to increased interstitial pressure and increased leakage of protein-rich fluids due to erosive or non-erosive gastrointestinal disorders. The diagnosis of protein-losing enteropathy should be considered in patients with chronic diarrhea and peripheral oedema. The diagnosis of protein-losing enteropathy is most commonly based on the determination of fecal alpha-1 antitrypsin clearance. Most protein-losing enteropathy cases are the result of either lymphatic obstruction or a variety of gastrointestinal disorders and cardiac diseases, while primary intestinal lymphangiectasia (Waldmann's disease) is less common. Treatment of protein-losing enteropathy targets the underlying disease but also includes dietary modification, such as high-protein and low-fat diet along with medium-chain triglyceride supplementation. PMID:25618488

  8. Protein and older adults.

    PubMed

    Chernoff, Ronni

    2004-12-01

    Body composition changes as people get older. One of the noteworthy alterations is the reduction in total body protein. A decrease in skeletal muscle is the most noticeable manifestation of this change but there is also a reduction in other physiologic proteins such as organ tissue, blood components, and immune bodies as well as declines in total body potassium and water. This contributes to impaired wound healing, loss of skin elasticity, and an inability to fight infection. The recommended dietary allowance (RDA) for adults for protein is 0.8 grams of protein per kilogram of body weight. Protein tissue accounts for 30% of whole-body protein turnover but that rate declines to 20% or less by age 70. The result of this phenomenon is that older adults require more protein/kilogram body weight than do younger adults. Recently, it has become clear that the requirement for exogenous protein is at least 1.0 gram/kilogram body weight. Adequate dietary intake of protein may be more difficult for older adults to obtain. Dietary animal protein is the primary source of high biological value protein, iron, vitamin B(12), folic acid, biotin and other essential nutrients. In fact, egg protein is the standard against which all other proteins are compared. Compared to other high-quality protein sources like meat, poultry and seafood, eggs are the least expensive. The importance of dietary protein cannot be underestimated in the diets of older adults; inadequate protein intake contributes to a decrease in reserve capacity, increased skin fragility, decreased immune function, poorer healing, and longer recuperation from illness.

  9. Texturized dairy proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy proteins are amenable to structural modifications induced by high temperature, shear and moisture; in particular, whey proteins can change conformation to new unfolded states. The change in protein state is a basis for creating new foods. The dairy products, nonfat dried milk (NDM), whey prote...

  10. Modeling Protein Self Assembly

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton Buck; Hull, Elizabeth

    2004-01-01

    Understanding the structure and function of proteins is an important part of the standards-based science curriculum. Proteins serve vital roles within the cell and malfunctions in protein self assembly are implicated in degenerative diseases. Experience indicates that this topic is a difficult one for many students. We have found that the concept…

  11. Destabilized bioluminescent proteins

    DOEpatents

    Allen, Michael S.; Rakesh, Gupta; Gary, Sayler S.

    2007-07-31

    Purified nucleic acids, vectors and cells containing a gene cassette encoding at least one modified bioluminescent protein, wherein the modification includes the addition of a peptide sequence. The duration of bioluminescence emitted by the modified bioluminescent protein is shorter than the duration of bioluminescence emitted by an unmodified form of the bioluminescent protein.

  12. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  13. CSF total protein

    MedlinePlus

    CSF total protein is a test to determine the amount of protein in your spinal fluid, also called cerebrospinal fluid (CSF). ... The normal protein range varies from lab to lab, but is typically about 15 to 60 mg/dL. Note: mg/dL = ...

  14. Protopia: a protein-protein interaction tool

    PubMed Central

    Real-Chicharro, Alejandro; Ruiz-Mostazo, Iván; Navas-Delgado, Ismael; Kerzazi, Amine; Chniber, Othmane; Sánchez-Jiménez, Francisca; Medina, Miguel Ángel; Aldana-Montes, José F

    2009-01-01

    Background Protein-protein interactions can be considered the basic skeleton for living organism self-organization and homeostasis. Impressive quantities of experimental data are being obtained and computational tools are essential to integrate and to organize this information. This paper presents Protopia, a biological tool that offers a way of searching for proteins and their interactions in different Protein Interaction Web Databases, as a part of a multidisciplinary initiative of our institution for the integration of biological data . Results The tool accesses the different Databases (at present, the free version of Transfac, DIP, Hprd, Int-Act and iHop), and results are expressed with biological protein names or databases codes and can be depicted as a vector or a matrix. They can be represented and handled interactively as an organic graph. Comparison among databases is carried out using the Uniprot codes annotated for each protein. Conclusion The tool locates and integrates the current information stored in the aforementioned databases, and redundancies among them are detected. Results are compatible with the most important network analysers, so that they can be compared and analysed by other world-wide known tools and platforms. The visualization possibilities help to attain this goal and they are especially interesting for handling multiple-step or complex networks. PMID:19828077

  15. Viral complement regulatory proteins.

    PubMed

    Rosengard, A M; Ahearn, J M

    1999-05-01

    The inactivation of complement provides cells and tissues critical protection from complement-mediated attack and decreases the associated recruitment of other inflammatory mediators. In an attempt to evade the host immune response, viruses have evolved two mechanisms to acquire complement regulatory proteins. They can directly seize the host cell complement regulators onto their outer envelope and/or they can produce their own proteins which are either secreted into the neighboring intercellular space or expressed as membrane-bound proteins on the infected host cell. The following review will concentrate on the viral homologues of the mammalian complement regulatory proteins, specifically those containing complement control protein (CCP) repeats. PMID:10408371

  16. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-03-22

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  17. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2012-05-01

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  18. Highly thermostable fluorescent proteins

    DOEpatents

    Bradbury, Andrew M.; Waldo, Geoffrey S.; Kiss, Csaba

    2011-11-29

    Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

  19. Selective Precipitation of Proteins.

    PubMed

    Matulis, Daumantas

    2016-01-01

    Selective precipitation of proteins can be used as a bulk method to recover the majority of proteins from a crude lysate, as a selective method to fractionate a subset of proteins from a protein solution, or as a very specific method to recover a single protein of interest from a purification step. This unit describes a number of methods suitable for selective precipitation. In each of the protocols that are outlined, the physical or chemical basis of the precipitation process, the parameters that can be varied for optimization, and the basic steps for developing an optimized precipitation are described.

  20. Protein crystallization with paper

    NASA Astrophysics Data System (ADS)

    Matsuoka, Miki; Kakinouchi, Keisuke; Adachi, Hiroaki; Maruyama, Mihoko; Sugiyama, Shigeru; Sano, Satoshi; Yoshikawa, Hiroshi Y.; Takahashi, Yoshinori; Yoshimura, Masashi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Takano, Kazufumi

    2016-05-01

    We developed a new protein crystallization method that incorporates paper. A small piece of paper, such as facial tissue or KimWipes, was added to a drop of protein solution in the traditional sitting drop vapor diffusion technique, and protein crystals grew by incorporating paper. By this method, we achieved the growth of protein crystals with reducing osmotic shock. Because the technique is very simple and the materials are easy to obtain, this method will come into wide use for protein crystallization. In the future, it could be applied to nanoliter-scale crystallization screening on a paper sheet such as in inkjet printing.

  1. Forces stabilizing proteins.

    PubMed

    Nick Pace, C; Scholtz, J Martin; Grimsley, Gerald R

    2014-06-27

    The goal of this article is to summarize what has been learned about the major forces stabilizing proteins since the late 1980s when site-directed mutagenesis became possible. The following conclusions are derived from experimental studies of hydrophobic and hydrogen bonding variants. (1) Based on studies of 138 hydrophobic interaction variants in 11 proteins, burying a -CH2- group on folding contributes 1.1±0.5 kcal/mol to protein stability. (2) The burial of non-polar side chains contributes to protein stability in two ways: first, a term that depends on the removal of the side chains from water and, more importantly, the enhanced London dispersion forces that result from the tight packing in the protein interior. (3) Based on studies of 151 hydrogen bonding variants in 15 proteins, forming a hydrogen bond on folding contributes 1.1±0.8 kcal/mol to protein stability. (4) The contribution of hydrogen bonds to protein stability is strongly context dependent. (5) Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. (6) Polar group burial can make a favorable contribution to protein stability even if the polar group is not hydrogen bonded. (7) Hydrophobic interactions and hydrogen bonds both make large contributions to protein stability.

  2. Clinical protein mass spectrometry.

    PubMed

    Scherl, Alexander

    2015-06-15

    Quantitative protein analysis is routinely performed in clinical chemistry laboratories for diagnosis, therapeutic monitoring, and prognosis. Today, protein assays are mostly performed either with non-specific detection methods or immunoassays. Mass spectrometry (MS) is a very specific analytical method potentially very well suited for clinical laboratories. Its unique advantage relies in the high specificity of the detection. Any protein sequence variant, the presence of a post-translational modification or degradation will differ in mass and structure, and these differences will appear in the mass spectrum of the protein. On the other hand, protein MS is a relatively young technique, demanding specialized personnel and expensive instrumentation. Many scientists and opinion leaders predict MS to replace immunoassays for routine protein analysis, but there are only few protein MS applications routinely used in clinical chemistry laboratories today. The present review consists of a didactical introduction summarizing the pros and cons of MS assays compared to immunoassays, the different instrumentations, and various MS protein assays that have been proposed and/or are used in clinical laboratories. An important distinction is made between full length protein analysis (top-down method) and peptide analysis after enzymatic digestion of the proteins (bottom-up method) and its implication for the protein assay. The document ends with an outlook on what type of analyses could be used in the future, and for what type of applications MS has a clear advantage compared to immunoassays.

  3. Forces Stabilizing Proteins

    PubMed Central

    Pace, C. Nick; Scholtz, J. Martin; Grimsley, Gerald R.

    2014-01-01

    The goal of this article is to summarize what has been learned about the major forces stabilizing proteins since the late 1980s when site-directed mutagenesis became possible. The following conclusions are derived from experimental studies of hydrophobic and hydrogen bonding variants. 1. Based on studies of 138 hydrophobic interaction variants in 11 proteins, burying a –CH2– group on folding contributes 1.1 ± 0.5 kcal/mol to protein stability. 2. The burial of nonpolar side chains contributes to protein stability in two ways: first, a term that depends on the removal of the side chains from water and, more importantly, the enhanced London dispersion forces that result from the tight packing in the protein interior. 3. Based on studies of 151 hydrogen bonding variants in 15 proteins, forming a hydrogen bond on folding contributes 1.1 ± 0.8 kcal/mol to protein stability. 4. The contribution of hydrogen bonds to protein stability is strongly context dependent. 5. Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. 6. Polar group burial can make a favorable contribution to protein stability even if the polar group is not hydrogen bonded. 7. Hydrophobic interactions and hydrogen bonds both make large contributions to protein stability. PMID:24846139

  4. Protein Complexes in Bacteria

    PubMed Central

    Caufield, J. Harry; Abreu, Marco; Wimble, Christopher; Uetz, Peter

    2015-01-01

    Large-scale analyses of protein complexes have recently become available for Escherichia coli and Mycoplasma pneumoniae, yielding 443 and 116 heteromultimeric soluble protein complexes, respectively. We have coupled the results of these mass spectrometry-characterized protein complexes with the 285 “gold standard” protein complexes identified by EcoCyc. A comparison with databases of gene orthology, conservation, and essentiality identified proteins conserved or lost in complexes of other species. For instance, of 285 “gold standard” protein complexes in E. coli, less than 10% are fully conserved among a set of 7 distantly-related bacterial “model” species. Complex conservation follows one of three models: well-conserved complexes, complexes with a conserved core, and complexes with partial conservation but no conserved core. Expanding the comparison to 894 distinct bacterial genomes illustrates fractional conservation and the limits of co-conservation among components of protein complexes: just 14 out of 285 model protein complexes are perfectly conserved across 95% of the genomes used, yet we predict more than 180 may be partially conserved across at least half of the genomes. No clear relationship between gene essentiality and protein complex conservation is observed, as even poorly conserved complexes contain a significant number of essential proteins. Finally, we identify 183 complexes containing well-conserved components and uncharacterized proteins which will be interesting targets for future experimental studies. PMID:25723151

  5. Protein solubility modeling

    NASA Technical Reports Server (NTRS)

    Agena, S. M.; Pusey, M. L.; Bogle, I. D.

    1999-01-01

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.

  6. Protein and vegetarian diets.

    PubMed

    Marsh, Kate A; Munn, Elizabeth A; Baines, Surinder K

    2013-08-19

    A vegetarian diet can easily meet human dietary protein requirements as long as energy needs are met and a variety of foods are eaten. Vegetarians should obtain protein from a variety of plant sources, including legumes, soy products, grains, nuts and seeds. Eggs and dairy products also provide protein for those following a lacto-ovo-vegetarian diet. There is no need to consciously combine different plant proteins at each meal as long as a variety of foods are eaten from day to day, because the human body maintains a pool of amino acids which can be used to complement dietary protein. The consumption of plant proteins rather than animal proteins by vegetarians may contribute to their reduced risk of chronic diseases such as diabetes and heart disease.

  7. Racemic protein crystallography.

    PubMed

    Yeates, Todd O; Kent, Stephen B H

    2012-01-01

    Although natural proteins are chiral and are all of one "handedness," their mirror image forms can be prepared by chemical synthesis. This opens up new opportunities for protein crystallography. A racemic mixture of the enantiomeric forms of a protein molecule can crystallize in ways that natural proteins cannot. Recent experimental data support a theoretical prediction that this should make racemic protein mixtures highly amenable to crystallization. Crystals obtained from racemic mixtures also offer advantages in structure determination strategies. The relevance of these potential advantages is heightened by advances in synthetic methods, which are extending the size limit for proteins that can be prepared by chemical synthesis. Recent ideas and results in the area of racemic protein crystallography are reviewed.

  8. Pigment-protein complexes

    SciTech Connect

    Siegelman, H W

    1980-01-01

    The photosynthetically-active pigment protein complexes of procaryotes and eucaryotes include chlorophyll proteins, carotenochlorophyll proteins, and biliproteins. They are either integral components or attached to photosynthetic membranes. Detergents are frequently required to solubilize the pigment-protein complexes. The membrane localization and detergent solubilization strongly suggest that the pigment-protein complexes are bound to the membranes by hydrophobic interactions. Hydrophobic interactions of proteins are characterized by an increase in entropy. Their bonding energy is directly related to temperature and ionic strength. Hydrophobic-interaction chromatography, a relatively new separation procedure, can furnish an important method for the purification of pigment-protein complexes. Phycobilisome purification and properties provide an example of the need to maintain hydrophobic interactions to preserve structure and function.

  9. Protein kinesis: The dynamics of protein trafficking and stability

    SciTech Connect

    1995-12-31

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  10. Toxic proteins in plants.

    PubMed

    Dang, Liuyi; Van Damme, Els J M

    2015-09-01

    Plants have evolved to synthesize a variety of noxious compounds to cope with unfavorable circumstances, among which a large group of toxic proteins that play a critical role in plant defense against predators and microbes. Up to now, a wide range of harmful proteins have been discovered in different plants, including lectins, ribosome-inactivating proteins, protease inhibitors, ureases, arcelins, antimicrobial peptides and pore-forming toxins. To fulfill their role in plant defense, these proteins exhibit various degrees of toxicity towards animals, insects, bacteria or fungi. Numerous studies have been carried out to investigate the toxic effects and mode of action of these plant proteins in order to explore their possible applications. Indeed, because of their biological activities, toxic plant proteins are also considered as potentially useful tools in crop protection and in biomedical applications, such as cancer treatment. Genes encoding toxic plant proteins have been introduced into crop genomes using genetic engineering technology in order to increase the plant's resistance against pathogens and diseases. Despite the availability of ample information on toxic plant proteins, very few publications have attempted to summarize the research progress made during the last decades. This review focuses on the diversity of toxic plant proteins in view of their toxicity as well as their mode of action. Furthermore, an outlook towards the biological role(s) of these proteins and their potential applications is discussed.

  11. Modeling Protein Expression and Protein Signaling Pathways

    PubMed Central

    Telesca, Donatello; Müller, Peter; Kornblau, Steven M.; Suchard, Marc A.; Ji, Yuan

    2015-01-01

    High-throughput functional proteomic technologies provide a way to quantify the expression of proteins of interest. Statistical inference centers on identifying the activation state of proteins and their patterns of molecular interaction formalized as dependence structure. Inference on dependence structure is particularly important when proteins are selected because they are part of a common molecular pathway. In that case, inference on dependence structure reveals properties of the underlying pathway. We propose a probability model that represents molecular interactions at the level of hidden binary latent variables that can be interpreted as indicators for active versus inactive states of the proteins. The proposed approach exploits available expert knowledge about the target pathway to define an informative prior on the hidden conditional dependence structure. An important feature of this prior is that it provides an instrument to explicitly anchor the model space to a set of interactions of interest, favoring a local search approach to model determination. We apply our model to reverse-phase protein array data from a study on acute myeloid leukemia. Our inference identifies relevant subpathways in relation to the unfolding of the biological process under study. PMID:26246646

  12. Energy design for protein-protein interactions

    PubMed Central

    Ravikant, D. V. S.; Elber, Ron

    2011-01-01

    Proteins bind to other proteins efficiently and specifically to carry on many cell functions such as signaling, activation, transport, enzymatic reactions, and more. To determine the geometry and strength of binding of a protein pair, an energy function is required. An algorithm to design an optimal energy function, based on empirical data of protein complexes, is proposed and applied. Emphasis is made on negative design in which incorrect geometries are presented to the algorithm that learns to avoid them. For the docking problem the search for plausible geometries can be performed exhaustively. The possible geometries of the complex are generated on a grid with the help of a fast Fourier transform algorithm. A novel formulation of negative design makes it possible to investigate iteratively hundreds of millions of negative examples while monotonically improving the quality of the potential. Experimental structures for 640 protein complexes are used to generate positive and negative examples for learning parameters. The algorithm designed in this work finds the correct binding structure as the lowest energy minimum in 318 cases of the 640 examples. Further benchmarks on independent sets confirm the significant capacity of the scoring function to recognize correct modes of interactions. PMID:21842951

  13. Principles of Flexible Protein-Protein Docking

    PubMed Central

    Andrusier, Nelly; Mashiach, Efrat; Nussinov, Ruth; Wolfson, Haim J.

    2008-01-01

    Treating flexibility in molecular docking is a major challenge in cell biology research. Here we describe the background and the principles of existing flexible protein-protein docking methods, focusing on the algorithms and their rational. We describe how protein flexibility is treated in different stages of the docking process: in the preprocessing stage, rigid and flexible parts are identified and their possible conformations are modeled. This preprocessing provides information for the subsequent docking and refinement stages. In the docking stage, an ensemble of pre-generated conformations or the identified rigid domains may be docked separately. In the refinement stage, small-scale movements of the backbone and side-chains are modeled and the binding orientation is improved by rigid-body adjustments. For clarity of presentation, we divide the different methods into categories. This should allow the reader to focus on the most suitable method for a particular docking problem. PMID:18655061

  14. Antimicrobial proteins: From old proteins, new tricks.

    PubMed

    Smith, Valerie J; Dyrynda, Elisabeth A

    2015-12-01

    This review describes the main types of antimicrobial peptides (AMPs) synthesised by crustaceans, primarily those identified in shrimp, crayfish, crab and lobster. It includes an overview of their range of microbicidal activities and the current landscape of our understanding of their gene expression patterns in different body tissues. It further summarises how their expression might change following various types of immune challenges. The review further considers proteins or protein fragments from crustaceans that have antimicrobial properties but are more usually associated with other biological functions, or are derived from such proteins. It discusses how these unconventional AMPs might be generated at, or delivered to, sites of infection and how they might contribute to crustacean host defence in vivo. It also highlights recent work that is starting to reveal the extent of multi-functionality displayed by some decapod AMPs, particularly their participation in other aspects of host protection. Examples of such activities include proteinase inhibition, phagocytosis, antiviral activity and haematopoiesis. PMID:26320628

  15. Electrophoretic separation of proteins.

    PubMed

    Chakavarti, Bulbul; Chakavarti, Deb

    2008-01-01

    Electrophoresis is used to separate complex mixtures of proteins (e.g., from cells, subcellular fractions, column fractions, or immunoprecipitates), to investigate subunit compositions, and to verify homogeneity of protein samples. It can also serve to purify proteins for use in further applications. In polyacrylamide gel electrophoresis, proteins migrate in response to an electrical field through pores in a polyacrylamide gel matrix; pore size decreases with increasing acrylamide concentration. The combination of pore size and protein charge, size, and shape determines the migration rate of the protein. In this unit, the standard Laemmli method is described for discontinuous gel electrophoresis under denaturing conditions, i.e., in the presence of sodium dodecyl sulfate (SDS). PMID:19066548

  16. Functional Protein Microarray Technology

    PubMed Central

    Hu, Shaohui; Xie, Zhi; Qian, Jiang; Blackshaw, Seth; Zhu, Heng

    2010-01-01

    Functional protein microarrays are emerging as a promising new tool for large-scale and high-throughput studies. In this article, we will review their applications in basic proteomics research, where various types of assays have been developed to probe binding activities to other biomolecules, such as proteins, DNA, RNA, small molecules, and glycans. We will also report recent progress of using functional protein microarrays in profiling protein posttranslational modifications, including phosphorylation, ubiquitylation, acetylation, and nitrosylation. Finally, we will discuss potential of functional protein microarrays in biomarker identification and clinical diagnostics. We strongly believe that functional protein microarrays will soon become an indispensible and invaluable tool in proteomics research and systems biology. PMID:20872749

  17. Biofilm Matrix Proteins

    PubMed Central

    Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2015-01-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this chapter, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation. PMID:26104709

  18. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell, Post-Doctoral Fellow the National Research Council (NRC) uses a reciprocal space mapping diffractometer for macromolecular crystal quality studies. The diffractometer is used in mapping the structure of macromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystallized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  19. Computer Models of Proteins

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Dr. Marc Pusey (seated) and Dr. Craig Kundrot use computers to analyze x-ray maps and generate three-dimensional models of protein structures. With this information, scientists at Marshall Space Flight Center can learn how proteins are made and how they work. The computer screen depicts a proten structure as a ball-and-stick model. Other models depict the actual volume occupied by the atoms, or the ribbon-like structures that are crucial to a protein's function.

  20. Protein oxidation and peroxidation.

    PubMed

    Davies, Michael J

    2016-04-01

    Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established.

  1. Protein oxidation and peroxidation

    PubMed Central

    Davies, Michael J.

    2016-01-01

    Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established. PMID:27026395

  2. Pressure cryocooling protein crystals

    DOEpatents

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  3. Protein-Losing Gastroenteropathy

    PubMed Central

    Pops, Martin A.

    1966-01-01

    In the past 10 years with the development of improved methods, particularly radioisotope techniques, it has been demonstrated that a number of patients with gastrointestinal disease and depletion of plasma proteins become hypoproteinemic because of actual leakage of albumin and other plasma proteins into the lumen of the gastrointestinal tract. The site of protein leakage is variable depending on the underlying pathological state but the loss of protein-containing lymph through the gastrointestinal lymphatic channels seems to be the major mechanism for hypoproteinemia. It has become apparent that there exists a normal mechanism for secretion of plasma proteins into the gastrointestinal tract as part of the overall metabolism of the plasma proteins. When the process is exaggerated so that resynthesis of plasma protein cannot keep pace with its degradation, sometimes severe hypoproteinemia is the result. Such a pathological process has now been described in approximately 40 disease states. A review of all the techniques which can demonstrate gastroenteric protein loss reveals that there are no widely available quantitative tests but that accurate quantitation is not necessary for the diagnosis of protein losing gastroenteropathy. PMID:18730025

  4. Human Mitochondrial Protein Database

    National Institute of Standards and Technology Data Gateway

    SRD 131 Human Mitochondrial Protein Database (Web, free access)   The Human Mitochondrial Protein Database (HMPDb) provides comprehensive data on mitochondrial and human nuclear encoded proteins involved in mitochondrial biogenesis and function. This database consolidates information from SwissProt, LocusLink, Protein Data Bank (PDB), GenBank, Genome Database (GDB), Online Mendelian Inheritance in Man (OMIM), Human Mitochondrial Genome Database (mtDB), MITOMAP, Neuromuscular Disease Center and Human 2-D PAGE Databases. This database is intended as a tool not only to aid in studying the mitochondrion but in studying the associated diseases.

  5. Acanthamoeba castellanii STAT protein.

    PubMed

    Kicinska, Anna; Leluk, Jacek; Jarmuszkiewicz, Wieslawa

    2014-01-01

    STAT (signal transducers and activators of transcription) proteins are one of the important mediators of phosphotyrosine-regulated signaling in metazoan cells. We described the presence of STAT protein in a unicellular, free-living amoebae with a simple life cycle, Acanthamoeba castellanii. A. castellanii is the only, studied to date, Amoebozoan that does not belong to Mycetozoa but possesses STATs. A sequence of the A. castellanii STAT protein includes domains similar to those of the Dictyostelium STAT proteins: a coiled coil (characteristic for Dictyostelium STAT coiled coil), a STAT DNA-binding domain and a Src-homology domain. The search for protein sequences homologous to A. castellanii STAT revealed 17 additional sequences from lower eukaryotes. Interestingly, all of these sequences come from Amoebozoa organisms that belong to either Mycetozoa (slime molds) or Centramoebida. We showed that there are four separated clades within the slime mold STAT proteins. The A. castellanii STAT protein branches next to a group of STATc proteins from Mycetozoa. We also demonstrate that Amoebozoa form a distinct monophyletic lineage within the STAT protein world that is well separated from the other groups. PMID:25338074

  6. The Halophile protein database.

    PubMed

    Sharma, Naveen; Farooqi, Mohammad Samir; Chaturvedi, Krishna Kumar; Lal, Shashi Bhushan; Grover, Monendra; Rai, Anil; Pandey, Pankaj

    2014-01-01

    Halophilic archaea/bacteria adapt to different salt concentration, namely extreme, moderate and low. These type of adaptations may occur as a result of modification of protein structure and other changes in different cell organelles. Thus proteins may play an important role in the adaptation of halophilic archaea/bacteria to saline conditions. The Halophile protein database (HProtDB) is a systematic attempt to document the biochemical and biophysical properties of proteins from halophilic archaea/bacteria which may be involved in adaptation of these organisms to saline conditions. In this database, various physicochemical properties such as molecular weight, theoretical pI, amino acid composition, atomic composition, estimated half-life, instability index, aliphatic index and grand average of hydropathicity (Gravy) have been listed. These physicochemical properties play an important role in identifying the protein structure, bonding pattern and function of the specific proteins. This database is comprehensive, manually curated, non-redundant catalogue of proteins. The database currently contains 59 897 proteins properties extracted from 21 different strains of halophilic archaea/bacteria. The database can be accessed through link. Database URL: http://webapp.cabgrid.res.in/protein/

  7. Moonlighting proteins in cancer.

    PubMed

    Min, Kyung-Won; Lee, Seong-Ho; Baek, Seung Joon

    2016-01-01

    Since the 1980s, growing evidence suggested that the cellular localization of proteins determined their activity and biological functions. In a classical view, a protein is characterized by the single cellular compartment where it primarily resides and functions. It is now believed that when proteins appear in different subcellular locations, the cells surpass the expected activity of proteins given the same genomic information to fulfill complex biological behavior. Many proteins are recognized for having the potential to exist in multiple locations in cells. Dysregulation of translocation may cause cancer or contribute to poorer cancer prognosis. Thus, quantitative and comprehensive assessment of dynamic proteins and associated protein movements could be a promising indicator in determining cancer prognosis and efficiency of cancer treatment and therapy. This review will summarize these so-called moonlighting proteins, in terms of a coupled intracellular cancer signaling pathway. Determination of the detailed biological intracellular and extracellular transit and regulatory activity of moonlighting proteins permits a better understanding of cancer and identification of potential means of molecular intervention.

  8. Biomolecular membrane protein crystallization

    NASA Astrophysics Data System (ADS)

    Reddy Bolla, Jani; Su, Chih-Chia; Yu, Edward W.

    2012-07-01

    Integral membrane proteins comprise approximately 30% of the sequenced genomes, and there is an immediate need for their high-resolution structural information. Currently, the most reliable approach to obtain these structures is X-ray crystallography. However, obtaining crystals of membrane proteins that diffract to high resolution appears to be quite challenging, and remains a major obstacle in structural determination. This brief review summarizes a variety of methodologies for use in crystallizing these membrane proteins. Hopefully, by introducing the available methods, techniques, and providing a general understanding of membrane proteins, a rational decision can be made about now to crystallize these complex materials.

  9. Glycolipid transfer proteins

    PubMed Central

    Brown, Rhoderick E.; Mattjus, Peter

    2007-01-01

    Glycolipid transfer proteins (GLTPs) are small (24 kD), soluble, ubiquitous proteins characterized by their ability to accelerate the intermembrane transfer of glycolipids in vitro. GLTP specificity encompasses both sphingoid- and glycerol-based glycolipids, but with a strict requirement that the initial sugar residue be beta-linked to the hydrophobic lipid backbone. The 3D protein structures of GLTP reveal liganded structures with unique lipid binding modes. The biochemical properties of GLTP action at the membrane surface have been studied rather comprehensively, but the biological role of GLTP remains enigmatic. What is clear is that GLTP differs distinctly from other known glycolipid-binding proteins, such as nonspecific lipid transfer proteins, lysosomal sphingolipid activator proteins, lectins, lung surfactant proteins as well as other lipid binding/transfer proteins. Based on the unique conformational architecture that targets GLTP to membranes and enables glycolipid binding, GLTP is now considered the prototypical and founding member of a new protein superfamily in eukaryotes. PMID:17320476

  10. Consensus protein design

    PubMed Central

    Porebski, Benjamin T.; Buckle, Ashley M.

    2016-01-01

    A popular and successful strategy in semi-rational design of protein stability is the use of evolutionary information encapsulated in homologous protein sequences. Consensus design is based on the hypothesis that at a given position, the respective consensus amino acid contributes more than average to the stability of the protein than non-conserved amino acids. Here, we review the consensus design approach, its theoretical underpinnings, successes, limitations and challenges, as well as providing a detailed guide to its application in protein engineering. PMID:27274091

  11. Chemical Synthesis of Proteins

    PubMed Central

    Nilsson, Bradley L.; Soellner, Matthew B.; Raines, Ronald T.

    2010-01-01

    Proteins have become accessible targets for chemical synthesis. The basic strategy is to use native chemical ligation, Staudinger ligation, or other orthogonal chemical reactions to couple synthetic peptides. The ligation reactions are compatible with a variety of solvents and proceed in solution or on a solid support. Chemical synthesis enables a level of control on protein composition that greatly exceeds that attainable with ribosome-mediated biosynthesis. Accordingly, the chemical synthesis of proteins is providing previously unattainable insight into the structure and function of proteins. PMID:15869385

  12. Self assembling proteins

    DOEpatents

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  13. Protein metabolism and requirements.

    PubMed

    Biolo, Gianni

    2013-01-01

    Skeletal muscle adaptation to critical illness includes insulin resistance, accelerated proteolysis, and increased release of glutamine and the other amino acids. Such amino acid efflux from skeletal muscle provides precursors for protein synthesis and energy fuel to the liver and to the rapidly dividing cells of the intestinal mucosa and the immune system. From these adaptation mechanisms, severe muscle wasting, glutamine depletion, and hyperglycemia, with increased patient morbidity and mortality, may ensue. Protein/amino acid nutrition, through either enteral or parenteral routes, plays a pivotal role in treatment of metabolic abnormalities in critical illness. In contrast to energy requirement, which can be accurately assessed by indirect calorimetry, methods to determine individual protein/amino acid needs are not currently available. In critical illness, a decreased ability of protein/amino acid intake to promote body protein synthesis is defined as anabolic resistance. This abnormality leads to increased protein/amino acid requirement and relative inefficiency of nutritional interventions. In addition to stress mediators, immobility and physical inactivity are key determinants of anabolic resistance. The development of mobility protocols in the intensive care unit should be encouraged to enhance the efficacy of nutrition. In critical illness, protein/amino acid requirement has been defined as the intake level associated with the lowest rate of catabolism. The optimal protein-sparing effects in patients receiving adequate energy are achieved when protein/amino acids are administered at rates between 1.3 and 1.5 g/kg/day. Extra glutamine supplementation is required in conditions of severe systemic inflammatory response. Protein requirement increases during hypocaloric feeding and in patients with acute renal failure on continuous renal replacement therapy. Evidence suggests that receiving adequate protein/amino acid intake may be more important than achieving

  14. Human Plasma Protein C

    PubMed Central

    Kisiel, Walter

    1979-01-01

    Protein C is a vitamin K-dependent protein, which exists in bovine plasma as a precursor of a serine protease. In this study, protein C was isolated to homogeneity from human plasma by barium citrate adsorption and elution, ammonium sulfate fractionation, DEAE-Sephadex chromatography, dextran sulfate agarose chromatography, and preparative polyacrylamide gel electrophoresis. Human protein C (Mr = 62,000) contains 23% carbohydrate and is composed of a light chain (Mr = 21,000) and a heavy chain (Mr = 41,000) held together by a disulfide bond(s). The light chain has an amino-terminal sequence of Ala-Asn-Ser-Phe-Leu- and the heavy chain has an aminoterminal sequence of Asp-Pro-Glu-Asp-Gln. The residues that are identical to bovine protein C are underlined. Incubation of human protein C with human α-thrombin at an enzyme to substrate weight ratio of 1:50 resulted in the formation of activated protein C, an enzyme with serine amidase activity. In the activation reaction, the apparent molecular weight of the heavy chain decreased from 41,000 to 40,000 as determined by gel electrophoresis in the presence of sodium dodecyl sulfate. No apparent change in the molecular weight of the light chain was observed in the activation process. The heavy chain of human activated protein C also contains the active-site serine residue as evidenced by its ability to react with radiolabeled diisopropyl fluorophosphate. Human activated protein C markedly prolongs the kaolin-cephalin clotting time of human plasma, but not that of bovine plasma. The amidolytic and anticoagulant activities of human activated protein C were completely obviated by prior incubation of the enzyme with diisopropyl fluorophosphate. These results indicate that human protein C, like its bovine counterpart, exists in plasma as a zymogen and is converted to a serine protease by limited proteolysis with attendant anticoagulant activity. Images PMID:468991

  15. Interolog interfaces in protein-protein docking.

    PubMed

    Alsop, James D; Mitchell, Julie C

    2015-11-01

    Proteins are essential elements of biological systems, and their function typically relies on their ability to successfully bind to specific partners. Recently, an emphasis of study into protein interactions has been on hot spots, or residues in the binding interface that make a significant contribution to the binding energetics. In this study, we investigate how conservation of hot spots can be used to guide docking prediction. We show that the use of evolutionary data combined with hot spot prediction highlights near-native structures across a range of benchmark examples. Our approach explores various strategies for using hot spots and evolutionary data to score protein complexes, using both absolute and chemical definitions of conservation along with refinements to these strategies that look at windowed conservation and filtering to ensure a minimum number of hot spots in each binding partner. Finally, structure-based models of orthologs were generated for comparison with sequence-based scoring. Using two data sets of 22 and 85 examples, a high rate of top 10 and top 1 predictions are observed, with up to 82% of examples returning a top 10 hit and 35% returning top 1 hit depending on the data set and strategy applied; upon inclusion of the native structure among the decoys, up to 55% of examples yielded a top 1 hit. The 20 common examples between data sets show that more carefully curated interolog data yields better predictions, particularly in achieving top 1 hits. Proteins 2015; 83:1940-1946. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

  16. The folate binding proteins.

    PubMed

    Corrocher, R; Olivieri, O; Pacor, M L

    1991-01-01

    Folates are essential molecules for cell life and, not surprisingly, their transport in biological fluids and their transfer to cells are finely regulated. Folate binding proteins play a major role in this regulation. This paper will review our knowledge on these proteins and examine the most recent advances in this field. PMID:1820987

  17. Poxviral Ankyrin Proteins

    PubMed Central

    Herbert, Michael H.; Squire, Christopher J.; Mercer, Andrew A

    2015-01-01

    Multiple repeats of the ankyrin motif (ANK) are ubiquitous throughout the kingdoms of life but are absent from most viruses. The main exception to this is the poxvirus family, and specifically the chordopoxviruses, with ANK repeat proteins present in all but three species from separate genera. The poxviral ANK repeat proteins belong to distinct orthologue groups spread over different species, and align well with the phylogeny of their genera. This distribution throughout the chordopoxviruses indicates these proteins were present in an ancestral vertebrate poxvirus, and have since undergone numerous duplication events. Most poxviral ANK repeat proteins contain an unusual topology of multiple ANK motifs starting at the N-terminus with a C-terminal poxviral homologue of the cellular F-box enabling interaction with the cellular SCF ubiquitin ligase complex. The subtle variations between ANK repeat proteins of individual poxviruses suggest an array of different substrates may be bound by these protein-protein interaction domains and, via the F-box, potentially directed to cellular ubiquitination pathways and possible degradation. Known interaction partners of several of these proteins indicate that the NF-κB coordinated anti-viral response is a key target, whilst some poxviral ANK repeat domains also have an F-box independent affect on viral host-range. PMID:25690795

  18. Protein Unfolding and Alzheimer's

    NASA Astrophysics Data System (ADS)

    Cheng, Kelvin

    2012-10-01

    Early interaction events of beta-amyloid (Aβ) proteins with neurons have been associated with the pathogenesis of Alzheimer's disease. Knowledge pertaining to the role of lipid molecules, particularly cholesterol, in modulating the single Aβ interactions with neurons at the atomic length and picosecond time resolutions, remains unclear. In our research, we have used atomistic molecular dynamics simulations to explore early molecular events including protein insertion kinetics, protein unfolding, and protein-induced membrane disruption of Aβ in lipid domains that mimic the nanoscopic raft and non-raft regions of the neural membrane. In this talk, I will summarize our current work on investigating the role of cholesterol in regulating the Aβ interaction events with membranes at the molecular level. I will also explain how our results will provide new insights into understanding the pathogenesis of Alzheimer's disease associated with the Aβ proteins.

  19. Structures of membrane proteins

    PubMed Central

    Vinothkumar, Kutti R.; Henderson, Richard

    2010-01-01

    In reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of naturally abundant proteins with limited conformational variability, and each membrane protein structure determined was a major landmark. With the advent of complete genome sequences and efficient expression systems, there has been an explosion in the rate of membrane protein structure determination, with many classes represented. New structures are published every month and more than 150 unique membrane protein structures have been determined. This review analyses the reasons for this success, discusses the challenges that still lie ahead, and presents a concise summary of the key achievements with illustrated examples selected from each class. PMID:20667175

  20. Protein disulfide engineering.

    PubMed

    Dombkowski, Alan A; Sultana, Kazi Zakia; Craig, Douglas B

    2014-01-21

    Improving the stability of proteins is an important goal in many biomedical and industrial applications. A logical approach is to emulate stabilizing molecular interactions found in nature. Disulfide bonds are covalent interactions that provide substantial stability to many proteins and conform to well-defined geometric conformations, thus making them appealing candidates in protein engineering efforts. Disulfide engineering is the directed design of novel disulfide bonds into target proteins. This important biotechnological tool has achieved considerable success in a wide range of applications, yet the rules that govern the stabilizing effects of disulfide bonds are not fully characterized. Contrary to expectations, many designed disulfide bonds have resulted in decreased stability of the modified protein. We review progress in disulfide engineering, with an emphasis on the issue of stability and computational methods that facilitate engineering efforts.

  1. Proteins, fluctuations and complexity

    SciTech Connect

    Frauenfelder, Hans; Chen, Guo; Fenimore, Paul W

    2008-01-01

    Glasses, supercooled liquids, and proteins share common properties, in particular the existence of two different types of fluctuations, {alpha} and {beta}. While the effect of the {alpha} fluctuations on proteins has been known for a few years, the effect of {beta} fluctuations has not been understood. By comparing neutron scattering data on the protein myoglobin with the {beta} fluctuations in the hydration shell measured by dielectric spectroscopy we show that the internal protein motions are slaved to these fluctuations. We also show that there is no 'dynamic transition' in proteins near 200 K. The rapid increase in the mean square displacement with temperature in many neutron scattering experiments is quantitatively predicted by the {beta} fluctuations in the hydration shell.

  2. Junin virus structural proteins.

    PubMed Central

    De Martínez Segovia, Z M; De Mitri, M I

    1977-01-01

    Polyacrylamide gel electrophoresis of purified Junin virus revealed six distinct structural polypeptides, two major and four minor ones. Four of these polypeptides appeared to be covalently linked with carbohydrate. The molecular weights of the six proteins, estimated by coelectrophoresis with marker proteins, ranged from 25,000 to 91,000. One of the two major components (number 3) was identified as a nucleoprotein and had a molecular weight of 64,000. It was the most prominent protein and was nonglycosylated. The other major protein (number 5), with a molecular weight of 38,000, was a glucoprotein and a component of the viral envelope. The location on the virion of three additional glycopeptides with molecular weights of 91,000, 72,000, and 52,000, together with a protein with a molecular weight of 25,000, was not well defined. PMID:189088

  3. Drugging Membrane Protein Interactions

    PubMed Central

    Yin, Hang; Flynn, Aaron D.

    2016-01-01

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind the cell to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally “undruggable” regions of membrane proteins, enabling modulation of protein–protein, protein–lipid, and protein–nucleic acid interactions. In this review, we survey the state of the art in high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  4. Proteins in unexpected locations.

    PubMed Central

    Smalheiser, N R

    1996-01-01

    Members of all classes of proteins--cytoskeletal components, secreted growth factors, glycolytic enzymes, kinases, transcription factors, chaperones, transmembrane proteins, and extracellular matrix proteins--have been identified in cellular compartments other than their conventional sites of action. Some of these proteins are expressed as distinct compartment-specific isoforms, have novel mechanisms for intercompartmental translocation, have distinct endogenous biological actions within each compartment, and are regulated in a compartment-specific manner as a function of physiologic state. The possibility that many, if not most, proteins have distinct roles in more than one cellular compartment has implications for the evolution of cell organization and may be important for understanding pathological conditions such as Alzheimer's disease and cancer. PMID:8862516

  5. Protein crystallization in microgravity.

    PubMed

    Aibara, S; Shibata, K; Morita, Y

    1997-12-01

    A space experiment involving protein crystallization was conducted in a microgravity environment using the space shuttle "Endeavour" of STS-47, on a 9-day mission from September 12th to 20th in 1992. The crystallization was carried out according to a batch method, and 5 proteins were selected as flight samples for crystallization. Two of these proteins: hen egg-white lysozyme and co-amino acid: pyruvate aminotransferase from Pseudomonas sp. F-126, were obtained as single crystals of good diffraction quality. Since 1992 we have carried out several space experiments for protein crystallization aboard space shuttles and the space station MIR. Our experimental results obtained mainly from hen egg-white lysozyme are described below, focusing on the effects of microgravity on protein crystal growth.

  6. Manipulating and Visualizing Proteins

    SciTech Connect

    Simon, Horst D.

    2003-12-05

    ProteinShop Gives Researchers a Hands-On Tool for Manipulating, Visualizing Protein Structures. The Human Genome Project and other biological research efforts are creating an avalanche of new data about the chemical makeup and genetic codes of living organisms. But in order to make sense of this raw data, researchers need software tools which let them explore and model data in a more intuitive fashion. With this in mind, researchers at Lawrence Berkeley National Laboratory and the University of California, Davis, have developed ProteinShop, a visualization and modeling program which allows researchers to manipulate protein structures with pinpoint control, guided in large part by their own biological and experimental instincts. Biologists have spent the last half century trying to unravel the ''protein folding problem,'' which refers to the way chains of amino acids physically fold themselves into three-dimensional proteins. This final shape, which resembles a crumpled ribbon or piece of origami, is what determines how the protein functions and translates genetic information. Understanding and modeling this geometrically complex formation is no easy matter. ProteinShop takes a given sequence of amino acids and uses visualization guides to help generate predictions about the secondary structures, identifying alpha helices and flat beta strands, and the coil regions that bind them. Once secondary structures are in place, researchers can twist and turn these pre-configurations until they come up with a number of possible tertiary structure conformations. In turn, these are fed into a computationally intensive optimization procedure that tries to find the final, three-dimensional protein structure. Most importantly, ProteinShop allows users to add human knowledge and intuition to the protein structure prediction process, thus bypassing bad configurations that would otherwise be fruitless for optimization. This saves compute cycles and accelerates the entire process, so

  7. Regulation of protein turnover by heat shock proteins.

    PubMed

    Bozaykut, Perinur; Ozer, Nesrin Kartal; Karademir, Betul

    2014-12-01

    Protein turnover reflects the balance between synthesis and degradation of proteins, and it is a crucial process for the maintenance of the cellular protein pool. The folding of proteins, refolding of misfolded proteins, and also degradation of misfolded and damaged proteins are involved in the protein quality control (PQC) system. Correct protein folding and degradation are controlled by many different factors, one of the most important of which is the heat shock protein family. Heat shock proteins (HSPs) are in the class of molecular chaperones, which may prevent the inappropriate interaction of proteins and induce correct folding. On the other hand, these proteins play significant roles in the degradation pathways, including endoplasmic reticulum-associated degradation (ERAD), the ubiquitin-proteasome system, and autophagy. This review focuses on the emerging role of HSPs in the regulation of protein turnover; the effects of HSPs on the degradation machineries ERAD, autophagy, and proteasome; as well as the role of posttranslational modifications in the PQC system.

  8. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1993-01-01

    Proteins account for 50% or more of the dry weight of most living systems and play a crucial role in virtually all biological processes. Since the specific functions of essentially all biological molecules are determined by their three-dimensional structures, it is obvious that a detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. At the present time, protein crystallography has no substitute, it is the only technique available for elucidating the atomic arrangements within complicated biological molecules. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting and promising projects have terminated at the crystal growth stage. There is a pressing need to better understand protein crystal growth, and to develop new techniques that can be used to enhance the size and quality of protein crystals. There are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor that might be expected to alter crystal growth processes in space is the elimination of density-driven convective flow. Another factor that can be readily controlled in the absence of gravity is the sedimentation of growing crystal in a gravitational field. Another potential advantage of microgravity for protein crystal growth is the option of doing containerless crystal growth. One can readily understand why the microgravity environment established by Earth-orbiting vehicles is perceived to offer unique opportunities for the protein crystallographer. The near term objectives of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.

  9. Protein Binding Pocket Dynamics.

    PubMed

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  10. Protein Binding Pocket Dynamics.

    PubMed

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  11. Fullerene sorting proteins.

    PubMed

    Calvaresi, Matteo; Zerbetto, Francesco

    2011-07-01

    Proteins bind fullerenes. Hydrophobic pockets can accommodate a carbon cage either in full or in part. However, the identification of proteins able to discriminate between different cages is an open issue. Prediction of candidates able to perform this function is desirable and is achieved with an inverse docking procedure that accurately accounts for (i) van der Waals interactions between the cage and the protein surface, (ii) desolvation free energy, (iii) shape complementarity, and (iv) minimization of the number of steric clashes through conformational variations. A set of more than 1000 protein structures is divided into four categories that either select C(60) or C(70) (p-C(60) or p-C(70)) and either accommodate the cages in the same pocket (homosaccic proteins, from σακκoζ meaning pocket) or in different pockets (heterosaccic proteins). In agreement with the experiments, the KcsA Potassium Channel is predicted to have one of the best performances for both cages. Possible ways to exploit the results and efficiently separate the two cages with proteins are also discussed.

  12. NMCP/LINC proteins

    PubMed Central

    Ciska, Malgorzata; Moreno Díaz de la Espina, Susana

    2013-01-01

    Lamins are the main components of the metazoan lamina, and while the organization of the nuclear lamina of metazoans and plants is similar, there are apparently no genes encoding lamins or most lamin-binding proteins in plants. Thus, the plant lamina is not lamin-based and the proteins that form this structure are still to be characterized. Members of the plant NMCP/LINC/CRWN protein family share the typical tripartite structure of lamins, although the 2 exhibit no sequence similarity. However, given the many similarities between NMCP/LINC/CRWN proteins and lamins (structural organization, position of conserved regions, sub-nuclear distribution, solubility, and pattern of expression), these proteins are good candidates to carry out the functions of lamins in plants. Moreover, functional analysis of NMCP/LINC mutants has revealed their involvement in maintaining nuclear size and shape, another activity fulfilled by lamins. This review summarizes the current understanding of NMCP/LINC proteins and discusses future studies that will be required to demonstrate definitively that these proteins are plant analogs of lamins. PMID:24128696

  13. PSC: protein surface classification.

    PubMed

    Tseng, Yan Yuan; Li, Wen-Hsiung

    2012-07-01

    We recently proposed to classify proteins by their functional surfaces. Using the structural attributes of functional surfaces, we inferred the pairwise relationships of proteins and constructed an expandable database of protein surface classification (PSC). As the functional surface(s) of a protein is the local region where the protein performs its function, our classification may reflect the functional relationships among proteins. Currently, PSC contains a library of 1974 surface types that include 25,857 functional surfaces identified from 24,170 bound structures. The search tool in PSC empowers users to explore related surfaces that share similar local structures and core functions. Each functional surface is characterized by structural attributes, which are geometric, physicochemical or evolutionary features. The attributes have been normalized as descriptors and integrated to produce a profile for each functional surface in PSC. In addition, binding ligands are recorded for comparisons among homologs. PSC allows users to exploit related binding surfaces to reveal the changes in functionally important residues on homologs that have led to functional divergence during evolution. The substitutions at the key residues of a spatial pattern may determine the functional evolution of a protein. In PSC (http://pocket.uchicago.edu/psc/), a pool of changes in residues on similar functional surfaces is provided.

  14. Bacterial Ice Crystal Controlling Proteins

    PubMed Central

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  15. Bacterial ice crystal controlling proteins.

    PubMed

    Lorv, Janet S H; Rose, David R; Glick, Bernard R

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  16. Protein microarrays: prospects and problems.

    PubMed

    Kodadek, T

    2001-02-01

    Protein microarrays are potentially powerful tools in biochemistry and molecular biology. Two types of protein microarrays are defined. One, termed a protein function array, will consist of thousands of native proteins immobilized in a defined pattern. Such arrays can be utilized for massively parallel testing of protein function, hence the name. The other type is termed a protein-detecting array. This will consist of large numbers of arrayed protein-binding agents. These arrays will allow for expression profiling to be done at the protein level. In this article, some of the major technological challenges to the development of protein arrays are discussed, along with potential solutions.

  17. Phospholipid transfer proteins revisited.

    PubMed Central

    Wirtz, K W

    1997-01-01

    Phosphatidylinositol transfer protein (PI-TP) and the non-specific lipid transfer protein (nsL-TP) (identical with sterol carrier protein 2) belong to the large and diverse family of intracellular lipid-binding proteins. Although these two proteins may express a comparable phospholipid transfer activity in vitro, recent studies in yeast and mammalian cells have indicated that they serve completely different functions. PI-TP (identical with yeast SEC14p) plays an important role in vesicle flow both in the budding reaction from the trans-Golgi network and in the fusion reaction with the plasma membrane. In yeast, vesicle budding is linked to PI-TP regulating Golgi phosphatidylcholine (PC) biosynthesis with the apparent purpose of maintaining an optimal PI/PC ratio of the Golgi complex. In mammalian cells, vesicle flow appears to be dependent on PI-TP stimulating phosphatidylinositol 4,5-bisphosphate (PIP2) synthesis. This latter process may also be linked to the ability of PI-TP to reconstitute the receptor-controlled PIP2-specific phospholipase C activity. The nsL-TP is a peroxisomal protein which, by its ability to bind fatty acyl-CoAs, is most likely involved in the beta-oxidation of fatty acids in this organelle. This protein constitutes the N-terminus of the 58 kDa protein which is one of the peroxisomal 3-oxo-acyl-CoA thiolases. Further studies on these and other known phospholipid transfer proteins are bound to reveal new insights in their important role as mediators between lipid metabolism and cell functions. PMID:9182690

  18. (PCG) Protein Crystal Growth Canavalin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Canavalin. The major storage protein of leguminous plants and a major source of dietary protein for humans and domestic animals. It is studied in efforts to enhance nutritional value of proteins through protein engineerings. It is isolated from Jack Bean because of it's potential as a nutritional substance. Principal Investigator on STS-26 was Alex McPherson.

  19. Structure Prediction of Protein Complexes

    NASA Astrophysics Data System (ADS)

    Pierce, Brian; Weng, Zhiping

    Protein-protein interactions are critical for biological function. They directly and indirectly influence the biological systems of which they are a part. Antibodies bind with antigens to detect and stop viruses and other infectious agents. Cell signaling is performed in many cases through the interactions between proteins. Many diseases involve protein-protein interactions on some level, including cancer and prion diseases.

  20. Piezoelectric allostery of protein.

    PubMed

    Ohnuki, Jun; Sato, Takato; Takano, Mitsunori

    2016-07-01

    Allostery is indispensable for a protein to work, where a locally applied stimulus is transmitted to a distant part of the molecule. While the allostery due to chemical stimuli such as ligand binding has long been studied, the growing interest in mechanobiology prompts the study of the mechanically stimulated allostery, the physical mechanism of which has not been established. By molecular dynamics simulation of a motor protein myosin, we found that a locally applied mechanical stimulus induces electrostatic potential change at distant regions, just like the piezoelectricity. This novel allosteric mechanism, "piezoelectric allostery", should be of particularly high value for mechanosensor/transducer proteins. PMID:27575163

  1. Protein crystallography prescreen kit

    DOEpatents

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2007-10-02

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  2. Protein crystallography prescreen kit

    DOEpatents

    Segelke, Brent W.; Krupka, Heike I.; Rupp, Bernhard

    2005-07-12

    A kit for prescreening protein concentration for crystallization includes a multiplicity of vials, a multiplicity of pre-selected reagents, and a multiplicity of sample plates. The reagents and a corresponding multiplicity of samples of the protein in solutions of varying concentrations are placed on sample plates. The sample plates containing the reagents and samples are incubated. After incubation the sample plates are examined to determine which of the sample concentrations are too low and which the sample concentrations are too high. The sample concentrations that are optimal for protein crystallization are selected and used.

  3. Protein Crystal Malic Enzyme

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Malic Enzyme is a target protein for drug design because it is a key protein in the life cycle of intestinal parasites. After 2 years of effort on Earth, investigators were unable to produce any crystals that were of high enough quality and for this reason the structure of this important protein could not be determined. Crystals obtained from one STS-50 were of superior quality allowing the structure to be determined. This is just one example why access to space is so vital for these studies. Principal Investigator is Larry DeLucas.

  4. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell (standing), Post-Doctoral Fellow the National Research Council (NRC),and Marc Pusey of Marshall Space Flight Center (MSFC) use a reciprocal space mapping diffractometer for marcromolecular crystal quality studies. The diffractometer is used in mapping the structure of marcromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystalized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  5. Protein based Block Copolymers

    PubMed Central

    Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251

  6. Amino acids and proteins.

    PubMed

    van Goudoever, Johannes B; Vlaardingerbroek, Hester; van den Akker, Chris H; de Groof, Femke; van der Schoor, Sophie R D

    2014-01-01

    Amino acids and protein are key factors for growth. The neonatal period requires the highest intake in life to meet the demands. Those demands include amino acids for growth, but proteins and amino acids also function as signalling molecules and function as neurotransmitters. Often the nutritional requirements are not met, resulting in a postnatal growth restriction. However, current knowledge on adequate levels of both amino acid as well as protein intake can avoid under nutrition in the direct postnatal phase, avoid the need for subsequent catch-up growth and improve later outcome.

  7. Piezoelectric allostery of protein

    NASA Astrophysics Data System (ADS)

    Ohnuki, Jun; Sato, Takato; Takano, Mitsunori

    2016-07-01

    Allostery is indispensable for a protein to work, where a locally applied stimulus is transmitted to a distant part of the molecule. While the allostery due to chemical stimuli such as ligand binding has long been studied, the growing interest in mechanobiology prompts the study of the mechanically stimulated allostery, the physical mechanism of which has not been established. By molecular dynamics simulation of a motor protein myosin, we found that a locally applied mechanical stimulus induces electrostatic potential change at distant regions, just like the piezoelectricity. This novel allosteric mechanism, "piezoelectric allostery", should be of particularly high value for mechanosensor/transducer proteins.

  8. The protein-protein interaction map of Helicobacter pylori.

    PubMed

    Rain, J C; Selig, L; De Reuse, H; Battaglia, V; Reverdy, C; Simon, S; Lenzen, G; Petel, F; Wojcik, J; Schächter, V; Chemama, Y; Labigne, A; Legrain, P

    2001-01-11

    With the availability of complete DNA sequences for many prokaryotic and eukaryotic genomes, and soon for the human genome itself, it is important to develop reliable proteome-wide approaches for a better understanding of protein function. As elementary constituents of cellular protein complexes and pathways, protein-protein interactions are key determinants of protein function. Here we have built a large-scale protein-protein interaction map of the human gastric pathogen Helicobacter pylori. We have used a high-throughput strategy of the yeast two-hybrid assay to screen 261 H. pylori proteins against a highly complex library of genome-encoded polypeptides. Over 1,200 interactions were identified between H. pylori proteins, connecting 46.6% of the proteome. The determination of a reliability score for every single protein-protein interaction and the identification of the actual interacting domains permitted the assignment of unannotated proteins to biological pathways.

  9. Dietary Proteins and Angiogenesis

    PubMed Central

    Medina, Miguel Ángel; Quesada, Ana R.

    2014-01-01

    Both defective and persistent angiogenesis are linked to pathological situations in the adult. Compounds able to modulate angiogenesis have a potential value for the treatment of such pathologies. Several small molecules present in the diet have been shown to have modulatory effects on angiogenesis. This review presents the current state of knowledge on the potential modulatory roles of dietary proteins on angiogenesis. There is currently limited available information on the topic. Milk contains at least three proteins for which modulatory effects on angiogenesis have been previously demonstrated. On the other hand, there is some scarce information on the potential of dietary lectins, edible plant proteins and high protein diets to modulate angiogenesis. PMID:24445377

  10. Plant protein glycosylation

    PubMed Central

    Strasser, Richard

    2016-01-01

    Protein glycosylation is an essential co- and post-translational modification of secretory and membrane proteins in all eukaryotes. The initial steps of N-glycosylation and N-glycan processing are highly conserved between plants, mammals and yeast. In contrast, late N-glycan maturation steps in the Golgi differ significantly in plants giving rise to complex N-glycans with β1,2-linked xylose, core α1,3-linked fucose and Lewis A-type structures. While the essential role of N-glycan modifications on distinct mammalian glycoproteins is already well documented, we have only begun to decipher the biological function of this ubiquitous protein modification in different plant species. In this review, I focus on the biosynthesis and function of different protein N-linked glycans in plants. Special emphasis is given on glycan-mediated quality control processes in the ER and on the biological role of characteristic complex N-glycan structures. PMID:26911286

  11. Densonucleosis virus structural proteins.

    PubMed

    Kelly, D C; Moore, N F; Spilling, C R; Barwise, A H; Walker, I O

    1980-10-01

    The protein coats of two densonucleosis viruses (types 1 and 2) were examined by a variety of biophysical, biochemical, and serological techniques. The viruses were 24 nm in diameter, contained at least four polypeptides, were remarkably stable to extremes of pH and denaturing agents, and were serologically closely related. The two viruses could, however, be distinguished serologically and by differences in migration of their structural polypeptides. For each virus the "top component" (i.e., the protein coat minus DNA, found occurring naturally in infections) appeared to have a composition identical to that of the coat of the virus and was a more stable structure. Electrometric titration curves of the virus particles and top components demonstrated that the DNA phosphate in densonucleosis virus particles was neutralized by cations other than basic amino acid side chains of the protein coat. Circular dichroism studies showed that there was a conformational difference between the protein coats of top components and virus particles.

  12. Protein fabrication automation

    PubMed Central

    Cox, J. Colin; Lape, Janel; Sayed, Mahmood A.; Hellinga, Homme W.

    2007-01-01

    Facile “writing” of DNA fragments that encode entire gene sequences potentially has widespread applications in biological analysis and engineering. Rapid writing of open reading frames (ORFs) for expressed proteins could transform protein engineering and production for protein design, synthetic biology, and structural analysis. Here we present a process, protein fabrication automation (PFA), which facilitates the rapid de novo construction of any desired ORF from oligonucleotides with low effort, high speed, and little human interaction. PFA comprises software for sequence design, data management, and the generation of instruction sets for liquid-handling robotics, a liquid-handling robot, a robust PCR scheme for gene assembly from synthetic oligonucleotides, and a genetic selection system to enrich correctly assembled full-length synthetic ORFs. The process is robust and scalable. PMID:17242375

  13. Protein Colloidal Aggregation Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  14. C-reactive protein

    MedlinePlus

    ... body. It is one of a group of proteins called "acute phase reactants" that go up in response to inflammation. This article discusses the blood test done to measure the amount of CRP in your blood.

  15. Protein fabrication automation.

    PubMed

    Cox, J Colin; Lape, Janel; Sayed, Mahmood A; Hellinga, Homme W

    2007-03-01

    Facile "writing" of DNA fragments that encode entire gene sequences potentially has widespread applications in biological analysis and engineering. Rapid writing of open reading frames (ORFs) for expressed proteins could transform protein engineering and production for protein design, synthetic biology, and structural analysis. Here we present a process, protein fabrication automation (PFA), which facilitates the rapid de novo construction of any desired ORF from oligonucleotides with low effort, high speed, and little human interaction. PFA comprises software for sequence design, data management, and the generation of instruction sets for liquid-handling robotics, a liquid-handling robot, a robust PCR scheme for gene assembly from synthetic oligonucleotides, and a genetic selection system to enrich correctly assembled full-length synthetic ORFs. The process is robust and scalable.

  16. Protein conducting nanopores

    NASA Astrophysics Data System (ADS)

    Harsman, Anke; Krüger, Vivien; Bartsch, Philipp; Honigmann, Alf; Schmidt, Oliver; Rao, Sanjana; Meisinger, Christof; Wagner, Richard

    2010-11-01

    About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40SC as well as a mutant Tom40SC (\\mathrm {S}_{54} \\to E ) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40SC corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40SC S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with \\bar {t}_{\\mathrm {off}} \\cong 1.1 ms for the wildtype, whereas the mutant Tom40SC S54E displayed a biphasic dwelltime distribution (\\bar {t}_{\\mathrm {off}}^1 \\cong 0.4 ms \\bar {t}_{\\mathrm {off}}^2 \\cong 4.6 ms).

  17. Recombinant Collagenlike Proteins

    NASA Technical Reports Server (NTRS)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  18. Protein tyrosine nitration

    PubMed Central

    Chaki, Mounira; Leterrier, Marina; Barroso, Juan B

    2009-01-01

    Nitric oxide metabolism in plant cells has a relative short history. Nitration is a chemical process which consists of introducing a nitro group (-NO2) into a chemical compound. in biological systems, this process has been found in different molecules such as proteins, lipids and nucleic acids that can affect its function. This mini-review offers an overview of this process with special emphasis on protein tyrosine nitration in plants and its involvement in the process of nitrosative stress. PMID:19826215

  19. The Malignant Protein Puzzle.

    PubMed

    Walker, Lary C; Jucker, Mathias

    2016-01-01

    When most people hear the words malignant and brain, cancer immediately comes to mind. But our authors argue that proteins can be malignant too, and can spread harmfully through the brain in neurodegenerative diseases that include Alzheimer's, Parkinson's, CTE, and ALS. Studying how proteins such as PrP, amyloid beta, tau, and others aggregate and spread, and kill brain cells, represents a crucial new frontier in neuroscience. PMID:27408676

  20. Bence-Jones protein - quantitative

    MedlinePlus

    Immunoglobulin light chains - urine; Urine Bence-Jones protein ... Bence-Jones proteins are a part of regular antibodies called light chains. These proteins are not normally in urine. Sometimes, when ...

  1. Disease specific protein corona

    NASA Astrophysics Data System (ADS)

    Rahman, M.; Mahmoudi, M.

    2015-03-01

    It is now well accepted that upon their entrance into the biological environments, the surface of nanomaterials would be covered by various biomacromolecules (e.g., proteins and lipids). The absorption of these biomolecules, so called `protein corona', onto the surface of (nano)biomaterials confers them a new `biological identity'. Although the formation of protein coronas on the surface of nanoparticles has been widely investigated, there are few reports on the effect of various diseases on the biological identity of nanoparticles. As the type of diseases may tremendously changes the composition of the protein source (e.g., human plasma/serum), one can expect that amount and composition of associated proteins in the corona composition may be varied, in disease type manner. Here, we show that corona coated silica and polystyrene nanoparticles (after interaction with in the plasma of the healthy individuals) could induce unfolding of fibrinogen, which promotes release of the inflammatory cytokines. However, no considerable releases of inflammatory cytokines were observed for corona coated graphene sheets. In contrast, the obtained corona coated silica and polystyrene nanoparticles from the hypofibrinogenemia patients could not induce inflammatory cytokine release where graphene sheets do. Therefore, one can expect that disease-specific protein coronas can provide a novel approach for applying nanomedicine to personalized medicine, improving diagnosis and treatment of different diseases tailored to the specific conditions and circumstances.

  2. Cardiolipin Interactions with Proteins.

    PubMed

    Planas-Iglesias, Joan; Dwarakanath, Himal; Mohammadyani, Dariush; Yanamala, Naveena; Kagan, Valerian E; Klein-Seetharaman, Judith

    2015-09-15

    Cardiolipins (CL) represent unique phospholipids of bacteria and eukaryotic mitochondria with four acyl chains and two phosphate groups that have been implicated in numerous functions from energy metabolism to apoptosis. Many proteins are known to interact with CL, and several cocrystal structures of protein-CL complexes exist. In this work, we describe the collection of the first systematic and, to the best of our knowledge, the comprehensive gold standard data set of all known CL-binding proteins. There are 62 proteins in this data set, 21 of which have nonredundant crystal structures with bound CL molecules available. Using binding patch analysis of amino acid frequencies, secondary structures and loop supersecondary structures considering phosphate and acyl chain binding regions together and separately, we gained a detailed understanding of the general structural and dynamic features involved in CL binding to proteins. Exhaustive docking of CL to all known structures of proteins experimentally shown to interact with CL demonstrated the validity of the docking approach, and provides a rich source of information for experimentalists who may wish to validate predictions.

  3. Cotton and Protein Interactions

    SciTech Connect

    Goheen, Steven C.; Edwards, J. V.; Rayburn, Alfred R.; Gaither, Kari A.; Castro, Nathan J.

    2006-06-30

    The adsorbent properties of important wound fluid proteins and cotton cellulose are reviewed. This review focuses on the adsorption of albumin to cotton-based wound dressings and some chemically modified derivatives targeted for chronic wounds. Adsorption of elastase in the presence of albumin was examined as a model to understand the interactive properties of these wound fluid components with cotton fibers. In the chronic non-healing wound, elastase appears to be over-expressed, and it digests tissue and growth factors, interfering with the normal healing process. Albumin is the most prevalent protein in wound fluid, and in highly to moderately exudative wounds, it may bind significantly to the fibers of wound dressings. Thus, the relative binding properties of both elastase and albumin to wound dressing fibers are of interest in the design of more effective wound dressings. The present work examines the binding of albumin to two different derivatives of cotton, and quantifies the elastase binding to the same derivatives following exposure of albumin to the fiber surface. An HPLC adsorption technique was employed coupled with a colorimetric enzyme assay to quantify the relative binding properties of albumin and elastase to cotton. The results of wound protein binding are discussed in relation to the porosity and surface chemistry interactions of cotton and wound proteins. Studies are directed to understanding the implications of protein adsorption phenomena in terms of fiber-protein models that have implications for rationally designing dressings for chronic wounds.

  4. Fast protein folding kinetics

    PubMed Central

    Gelman, Hannah; Gruebele, Martin

    2014-01-01

    Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816

  5. Membrane protein secretases.

    PubMed Central

    Hooper, N M; Karran, E H; Turner, A J

    1997-01-01

    A diverse range of membrane proteins of Type 1 or Type II topology also occur as a circulating, soluble form. These soluble forms are often derived from the membrane form by proteolysis by a group of enzymes referred to collectively as 'secretases' or 'sheddases'. The cleavage generally occurs close to the extracellular face of the membrane, releasing physiologically active protein. This secretion process also provides a mechanism for down-regulating the protein at the cell surface. Examples of such post-translational proteolysis are seen in the Alzheimer's amyloid precursor protein, the vasoregulatory enzyme angiotensin converting enzyme, transforming growth factor-alpha, the tumour necrosis factor ligand and receptor superfamilies, certain cytokine receptors, and others. Since the proteins concerned are involved in pathophysiological processes such as neurodegeneration, apoptosis, oncogenesis and inflammation, the secretases could provide novel therapeutic targets. Recent characterization of these individual secretases has revealed common features, particularly sensitivity to certain metalloprotease inhibitors and upregulation of activity by phorbol esters. It is therefore likely that a closely related family of metallosecretases controls the surface expression of multiple integral membrane proteins. Current knowledge of the various secretases are compared in this Review, and strategies for cell-free assays of such proteases are outlined as a prelude to their ultimate purification and cloning. PMID:9020855

  6. Cardiolipin Interactions with Proteins

    PubMed Central

    Planas-Iglesias, Joan; Dwarakanath, Himal; Mohammadyani, Dariush; Yanamala, Naveena; Kagan, Valerian E.; Klein-Seetharaman, Judith

    2015-01-01

    Cardiolipins (CL) represent unique phospholipids of bacteria and eukaryotic mitochondria with four acyl chains and two phosphate groups that have been implicated in numerous functions from energy metabolism to apoptosis. Many proteins are known to interact with CL, and several cocrystal structures of protein-CL complexes exist. In this work, we describe the collection of the first systematic and, to the best of our knowledge, the comprehensive gold standard data set of all known CL-binding proteins. There are 62 proteins in this data set, 21 of which have nonredundant crystal structures with bound CL molecules available. Using binding patch analysis of amino acid frequencies, secondary structures and loop supersecondary structures considering phosphate and acyl chain binding regions together and separately, we gained a detailed understanding of the general structural and dynamic features involved in CL binding to proteins. Exhaustive docking of CL to all known structures of proteins experimentally shown to interact with CL demonstrated the validity of the docking approach, and provides a rich source of information for experimentalists who may wish to validate predictions. PMID:26300339

  7. Multifunctional protein: cardiac ankyrin repeat protein*

    PubMed Central

    Zhang, Na; Xie, Xiao-jie; Wang, Jian-an

    2016-01-01

    Cardiac ankyrin repeat protein (CARP) not only serves as an important component of muscle sarcomere in the cytoplasm, but also acts as a transcription co-factor in the nucleus. Previous studies have demonstrated that CARP is up-regulated in some cardiovascular disorders and muscle diseases; however, its role in these diseases remains controversial now. In this review, we will discuss the continued progress in the research related to CARP, including its discovery, structure, and the role it plays in cardiac development and heart diseases. PMID:27143260

  8. Use of protein-protein interactions in affinity chromatography.

    PubMed

    Muronetz, V I; Sholukh, M; Korpela, T

    2001-10-30

    Biospecific recognition between proteins is a phenomenon that can be exploited for designing affinity-chromatographic purification systems for proteins. In principle, the approach is straightforward, and there are usually many alternative ways, since a protein can be always found which binds specifically enough to the desired protein. Routine immunoaffinity chromatography utilizes the recognition of antigenic epitopes by antibodies. However, forces involved in protein-protein interactions as well the forces keeping the three-dimensional structures of proteins intact are complicated, and proteins are easily unfolded by various factors with unpredictable results. Because of this and because of the generally high association strength between proteins, the correct adjustment of binding forces between an immobilized protein and the protein to be purified as well as the release of bound proteins in biologically active form from affinity complexes are the main problem. Affinity systems involving interactions like enzyme-enzyme, subunit-oligomer, protein-antibody, protein-chaperone and the specific features involved in each case are presented as examples. This article also aims to sketch prospects for further development of the use of protein-protein interactions for the purification of proteins. PMID:11694271

  9. Protein crystal growth in space

    NASA Technical Reports Server (NTRS)

    Bugg, C. E.; Clifford, D. W.

    1987-01-01

    The advantages of protein crystallization in space, and the applications of protein crystallography to drug design, protein engineering, and the design of synthetic vaccines are examined. The steps involved in using protein crystallography to determine the three-dimensional structure of a protein are discussed. The growth chamber design and the hand-held apparatus developed for protein crystal growth by vapor diffusion techniques (hanging-drop method) are described; the experimental data from the four Shuttle missions are utilized to develop hardware for protein crystal growth in space and to evaluate the effects of gravity on protein crystal growth.

  10. Modeling Mercury in Proteins

    SciTech Connect

    Smith, Jeremy C; Parks, Jerry M

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  11. Bioinformatics and Moonlighting Proteins.

    PubMed

    Hernández, Sergio; Franco, Luís; Calvo, Alejandra; Ferragut, Gabriela; Hermoso, Antoni; Amela, Isaac; Gómez, Antonio; Querol, Enrique; Cedano, Juan

    2015-01-01

    Multitasking or moonlighting is the capability of some proteins to execute two or more biochemical functions. Usually, moonlighting proteins are experimentally revealed by serendipity. For this reason, it would be helpful that Bioinformatics could predict this multifunctionality, especially because of the large amounts of sequences from genome projects. In the present work, we analyze and describe several approaches that use sequences, structures, interactomics, and current bioinformatics algorithms and programs to try to overcome this problem. Among these approaches are (a) remote homology searches using Psi-Blast, (b) detection of functional motifs and domains, (c) analysis of data from protein-protein interaction databases (PPIs), (d) match the query protein sequence to 3D databases (i.e., algorithms as PISITE), and (e) mutation correlation analysis between amino acids by algorithms as MISTIC. Programs designed to identify functional motif/domains detect mainly the canonical function but usually fail in the detection of the moonlighting one, Pfam and ProDom being the best methods. Remote homology search by Psi-Blast combined with data from interactomics databases (PPIs) has the best performance. Structural information and mutation correlation analysis can help us to map the functional sites. Mutation correlation analysis can only be used in very specific situations - it requires the existence of multialigned family protein sequences - but can suggest how the evolutionary process of second function acquisition took place. The multitasking protein database MultitaskProtDB (http://wallace.uab.es/multitask/), previously published by our group, has been used as a benchmark for the all of the analyses. PMID:26157797

  12. The Hedgehog protein family.

    PubMed

    Bürglin, Thomas R

    2008-01-01

    The Hedgehog (Hh) pathway is one of the fundamental signal transduction pathways in animal development and is also involved in stem-cell maintenance and carcinogenesis. The hedgehog (hh) gene was first discovered in Drosophila, and members of the family have since been found in most metazoa. Hh proteins are composed of two domains, an amino-terminal domain HhN, which has the biological signal activity, and a carboxy-terminal autocatalytic domain HhC, which cleaves Hh into two parts in an intramolecular reaction and adds a cholesterol moiety to HhN. HhC has sequence similarity to the self-splicing inteins, and the shared region is termed Hint. New classes of proteins containing the Hint domain have been discovered recently in bacteria and eukaryotes, and the Hog class, of which Hh proteins comprise one family, is widespread throughout eukaryotes. The non-Hh Hog proteins have carboxy-terminal domains (the Hog domain) highly similar to HhC, although they lack the HhN domain, and instead have other amino-terminal domains. Hog proteins are found in many protists, but the Hh family emerged only in early metazoan evolution. HhN is modified by cholesterol at its carboxyl terminus and by palmitate at its amino terminus in both flies and mammals. The modified HhN is released from the cell and travels through the extracellular space. On binding its receptor Patched, it relieves the inhibition that Patched exerts on Smoothened, a G-protein-coupled receptor. The resulting signaling cascade converges on the transcription factor Cubitus interruptus (Ci), or its mammalian counterparts, the Gli proteins, which activate or repress target genes.

  13. Self-Assembling Protein Microarrays

    NASA Astrophysics Data System (ADS)

    Ramachandran, Niroshan; Hainsworth, Eugenie; Bhullar, Bhupinder; Eisenstein, Samuel; Rosen, Benjamin; Lau, Albert Y.; C. Walter, Johannes; LaBaer, Joshua

    2004-07-01

    Protein microarrays provide a powerful tool for the study of protein function. However, they are not widely used, in part because of the challenges in producing proteins to spot on the arrays. We generated protein microarrays by printing complementary DNAs onto glass slides and then translating target proteins with mammalian reticulocyte lysate. Epitope tags fused to the proteins allowed them to be immobilized in situ. This obviated the need to purify proteins, avoided protein stability problems during storage, and captured sufficient protein for functional studies. We used the technology to map pairwise interactions among 29 human DNA replication initiation proteins, recapitulate the regulation of Cdt1 binding to select replication proteins, and map its geminin-binding domain.

  14. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  15. Benchtop Detection of Proteins

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Varaljay, Vanessa

    2007-01-01

    A process, and a benchtop-scale apparatus for implementing the process, have been developed to detect proteins associated with specific microbes in water. The process and apparatus may also be useful for detection of proteins in other, more complex liquids. There may be numerous potential applications, including monitoring lakes and streams for contamination, testing of blood and other bodily fluids in medical laboratories, and testing for microbial contamination of liquids in restaurants and industrial food-processing facilities. A sample can be prepared and analyzed by use of this process and apparatus within minutes, whereas an equivalent analysis performed by use of other processes and equipment can often take hours to days. The process begins with the conjugation of near-infrared-fluorescent dyes to antibodies that are specific to a particular protein. Initially, the research has focused on using near-infrared dyes to detect antigens or associated proteins in solution, which has proven successful vs. microbial cells, and streamlining the technique in use for surface protein detection on microbes would theoretically render similar results. However, it is noted that additional work is needed to transition protein-based techniques to microbial cell detection. Consequently, multiple such dye/antibody pairs could be prepared to enable detection of multiple selected microbial species, using a different dye for each species. When excited by near-infrared light of a suitable wavelength, each dye fluoresces at a unique longer wavelength that differs from those of the other dyes, enabling discrimination among the various species. In initial tests, the dye/antibody pairs are mixed into a solution suspected of containing the selected proteins, causing the binding of the dye/antibody pairs to such suspect proteins that may be present. The solution is then run through a microcentrifuge that includes a membrane that acts as a filter in that it retains the dye/antibody/protein

  16. Heat Capacity in Proteins

    NASA Astrophysics Data System (ADS)

    Prabhu, Ninad V.; Sharp, Kim A.

    2005-05-01

    Heat capacity (Cp) is one of several major thermodynamic quantities commonly measured in proteins. With more than half a dozen definitions, it is the hardest of these quantities to understand in physical terms, but the richest in insight. There are many ramifications of observed Cp changes: The sign distinguishes apolar from polar solvation. It imparts a temperature (T) dependence to entropy and enthalpy that may change their signs and which of them dominate. Protein unfolding usually has a positive ΔCp, producing a maximum in stability and sometimes cold denaturation. There are two heat capacity contributions, from hydration and protein-protein interactions; which dominates in folding and binding is an open question. Theoretical work to date has dealt mostly with the hydration term and can account, at least semiquantitatively, for the major Cp-related features: the positive and negative Cp of hydration for apolar and polar groups, respectively; the convergence of apolar group hydration entropy at T ≈ 112°C; the decrease in apolar hydration Cp with increasing T; and the T-maximum in protein stability and cold denaturation.

  17. Electrochemical nanomoulding through proteins

    NASA Astrophysics Data System (ADS)

    Allred, Daniel B.

    The continued improvements in performance of modern electronic devices are directly related to the manufacturing of smaller, denser features on surfaces. Electrochemical fabrication has played a large role in continuing this trend due to its low cost and ease of scaleability toward ever smaller dimensions. This work introduces the concept of using proteins, essentially monodisperse complex polymers whose three-dimensional structures are fixed by their encoded amino acid sequences, as "moulds" around which nanostructures can be built by electrochemical fabrication. Bacterial cell-surface layer proteins, or "S-layer" proteins, from two organisms---Deinococcus radiodurans and Sporosarcina ureae---were used as the "moulds" for electrochemical fabrication. The proteins are easily purified as micron-sized sheets of periodic molecular complexes with 18-nm hexagonal and 13-nm square unit cell lattices, respectively. Direct imaging by transmission electron microscopy on ultrathin noble metal films without sample preparation eliminates potential artifacts to the high surface energy substrates necessary for high nucleation densities. Characterization involved imaging, electron diffraction, spectroscopy, and three-dimensional reconstruction. The S-layer protein of D. radiodurans was further subjected to an atomic force microscope based assay to determine the integrity of its structure and long-range order and was found to be useful for fabrication from around pH 3 to 12.

  18. Nanophotonics of protein amyloids

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Mily; Mukhopadhyay, Samrat

    2014-04-01

    Technological breakthroughs in the super-resolution optical imaging techniques have enriched our current understanding of a range of biological systems and biomolecular processes at the nanoscopic spatial resolution. Protein amyloids are an important class of ordered protein assemblies consisting of misfolded proteins that are implicated in a wide range of devastating human diseases. In order to decipher the structural basis of the supramolecular protein assembly in amyloids and their detrimental interactions with the cell membranes, it is important to employ high-resolution optical imaging techniques. Additionally, amyloids could serve as novel biological nanomaterials for a variety of potential applications. In this review, we summarize a few examples of the utility of near-field scanning optical imaging methodologies to obtain a wealth of structural information into the nanoscale amyloid assembly. Although the near-field technologies were developed several decades ago, it is only recently that these methodologies are being applied and adapted for amyloid research to yield novel information pertaining to the exciting nanoscopic world of protein aggregates. We believe that the account on the nanophotonics of amyloids described in this review will be useful for the future studies on the biophysics of amyloids.

  19. Protein Crowding Is a Determinant of Lipid Droplet Protein Composition.

    PubMed

    Kory, Nora; Thiam, Abdou-Rachid; Farese, Robert V; Walther, Tobias C

    2015-08-10

    Lipid droplets (LDs) are lipid storage organelles that grow or shrink, depending on the availability of metabolic energy. Proteins recruited to LDs mediate many metabolic functions, including phosphatidylcholine and triglyceride synthesis. How the LD protein composition is tuned to the supply and demand for lipids remains unclear. We show that LDs, in contrast to other organelles, have limited capacity for protein binding. Consequently, macromolecular crowding plays a major role in determining LD protein composition. During lipolysis, when LDs and their surfaces shrink, some, but not all, proteins become displaced. In vitro studies show that macromolecular crowding, rather than changes in monolayer lipid composition, causes proteins to fall off the LD surface. As predicted by a crowding model, proteins compete for binding to the surfaces of LDs. Moreover, the LD binding affinity determines protein localization during lipolysis. Our findings identify protein crowding as an important principle in determining LD protein composition. PMID:26212136

  20. The detection of DNA-binding proteins by protein blotting.

    PubMed Central

    Bowen, B; Steinberg, J; Laemmli, U K; Weintraub, H

    1980-01-01

    A method, called "protein blotting," for the detection of DNA-binding proteins is described. Proteins are separated on an SDA-polyacrylamide gel. The gel is sandwiched between 2 nitrocellulose filters and the proteins allowed to diffuse out of the gel and onto the filters. The proteins are tightly bound to each filter, producing a replica of the original gel pattern. The replica is used to detect DNA-binding proteins, RNA-binding proteins or histone-binding proteins by incubation of the filter with [32P]DNA, [125I]RNA, or [125I] histone. Evidence is also presented that specific protein-DNA interactions may be detected by this technique; under appropriate conditions, the lac repressor binds only to DNA containing the lac operator. Strategies for the detection of specific protein-DNA interactions are discussed. Images PMID:6243775

  1. Plant protein kinase substrates identification using protein microarrays.

    PubMed

    Ma, Shisong; Dinesh-Kumar, Savithramma P

    2015-01-01

    Protein kinases regulate signaling pathways by phosphorylating their targets. They play critical roles in plant signaling networks. Although many important protein kinases have been identified in plants, their substrates are largely unknown. We have developed and produced plant protein microarrays with more than 15,000 purified plant proteins. Here, we describe a detailed protocol to use these microarrays to identify plant protein kinase substrates via in vitro phosphorylation assays on these arrays. PMID:25930701

  2. Advanced protein formulations.

    PubMed

    Wang, Wei

    2015-07-01

    It is well recognized that protein product development is far more challenging than that for small-molecule drugs. The major challenges include inherent sensitivity to different types of stresses during the drug product manufacturing process, high rate of physical and chemical degradation during long-term storage, and enhanced aggregation and/or viscosity at high protein concentrations. In the past decade, many novel formulation concepts and technologies have been or are being developed to address these product development challenges for proteins. These concepts and technologies include use of uncommon/combination of formulation stabilizers, conjugation or fusion with potential stabilizers, site-specific mutagenesis, and preparation of nontraditional types of dosage forms-semiaqueous solutions, nonfreeze-dried solid formulations, suspensions, and other emerging concepts. No one technology appears to be mature, ideal, and/or adequate to address all the challenges. These gaps will likely remain in the foreseeable future and need significant efforts for ultimate resolution.

  3. Protein Crystal Serum Albumin

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As the most abundant protein in the circulatory system albumin contributes 80% to colloid osmotic blood pressure. Albumin is also chiefly responsible for the maintenance of blood pH. It is located in every tissue and bodily secretion, with extracellular protein comprising 60% of total albumin. Perhaps the most outstanding property of albumin is its ability to bind reversibly to an incredible variety of ligands. It is widely accepted in the pharmaceutical industry that the overall distribution, metabolism, and efficiency of many drugs are rendered ineffective because of their unusually high affinity for this abundant protein. An understanding of the chemistry of the various classes of pharmaceutical interactions with albumin can suggest new approaches to drug therapy and design. Principal Investigator: Dan Carter/New Century Pharmaceuticals

  4. Targeted antithrombotic protein micelles.

    PubMed

    Kim, Wookhyun; Haller, Carolyn; Dai, Erbin; Wang, Xiowei; Hagemeyer, Christoph E; Liu, David R; Peter, Karlheinz; Chaikof, Elliot L

    2015-01-26

    Activated platelets provide a promising target for imaging inflammatory and thrombotic events along with site-specific delivery of a variety of therapeutic agents. Multifunctional protein micelles bearing targeting and therapeutic proteins were now obtained by one-pot transpeptidation using an evolved sortase A. Conjugation to the corona of a single-chain antibody (scFv), which binds to the ligand-induced binding site (LIBS) of activated GPIIb/IIIa receptors, enabled the efficient detection of thrombi. The inhibition of thrombus formation was subsequently accomplished by incorporating the catalytically active domain of thrombomodulin (TM) onto the micelle corona for the local generation of activated protein C, which inhibits the formation of thrombin. An effective strategy has been developed for the preparation of protein micelles that can be targeted to sites of activated platelets with broad potential for treatment of acute thrombotic events. PMID:25504546

  5. Protein crystallization studies

    NASA Technical Reports Server (NTRS)

    Lyne, James Evans

    1996-01-01

    The Structural Biology laboratory at NASA Marshall Spaceflight Center uses x-ray crystallographic techniques to conduct research into the three-dimensional structure of a wide variety of proteins. A major effort in the laboratory involves an ongoing study of human serum albumin (the principal protein in human plasma) and its interaction with various endogenous substances and pharmaceutical agents. Another focus is on antigenic and functional proteins from several pathogenic organisms including the human immunodeficiency virus (HIV) and the widespread parasitic genus, Schistosoma. My efforts this summer have been twofold: first, to identify clinically significant drug interactions involving albumin binding displacement and to initiate studies of the three-dimensional structure of albumin complexed with these agents, and secondly, to establish collaborative efforts to extend the lab's work on human pathogens.

  6. Advanced protein formulations

    PubMed Central

    Wang, Wei

    2015-01-01

    It is well recognized that protein product development is far more challenging than that for small-molecule drugs. The major challenges include inherent sensitivity to different types of stresses during the drug product manufacturing process, high rate of physical and chemical degradation during long-term storage, and enhanced aggregation and/or viscosity at high protein concentrations. In the past decade, many novel formulation concepts and technologies have been or are being developed to address these product development challenges for proteins. These concepts and technologies include use of uncommon/combination of formulation stabilizers, conjugation or fusion with potential stabilizers, site-specific mutagenesis, and preparation of nontraditional types of dosage forms—semiaqueous solutions, nonfreeze-dried solid formulations, suspensions, and other emerging concepts. No one technology appears to be mature, ideal, and/or adequate to address all the challenges. These gaps will likely remain in the foreseeable future and need significant efforts for ultimate resolution. PMID:25858529

  7. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  8. Matricellular proteins and biomaterials

    PubMed Central

    Morris, Aaron H.; Kyriakides, Themis R.

    2014-01-01

    Biomaterials are essential to modern medicine as components of reconstructive implants, implantable sensors, and vehicles for localized drug delivery. Advances in biomaterials have led to progression from simply making implants that are nontoxic to making implants that are specifically designed to elicit particular functions within the host. The interaction of implants and the extracellular matrix during the foreign body response is a growing area of concern for the field of biomaterials, because it can lead to implant failure. Expression of matricellular proteins is modulated during the foreign body response and these proteins interact with biomaterials. The design of biomaterials to specifically alter the levels of matricellular proteins surrounding implants provides a new avenue for the design and fabrication of biomimetic biomaterials. PMID:24657843

  9. Matricellular proteins and biomaterials.

    PubMed

    Morris, Aaron H; Kyriakides, Themis R

    2014-07-01

    Biomaterials are essential to modern medicine as components of reconstructive implants, implantable sensors, and vehicles for localized drug delivery. Advances in biomaterials have led to progression from simply making implants that are nontoxic to making implants that are specifically designed to elicit particular functions within the host. The interaction of implants and the extracellular matrix during the foreign body response is a growing area of concern for the field of biomaterials, because it can lead to implant failure. Expression of matricellular proteins is modulated during the foreign body response and these proteins interact with biomaterials. The design of biomaterials to specifically alter the levels of matricellular proteins surrounding implants provides a new avenue for the design and fabrication of biomimetic biomaterials.

  10. How to Study Protein-protein Interactions.

    PubMed

    Podobnik, Marjetka; Kraševec, Nada; Bedina Zavec, Apolonija; Naneh, Omar; Flašker, Ajda; Caserman, Simon; Hodnik, Vesna; Anderluh, Gregor

    2016-01-01

    Physical and functional interactions between molecules in living systems are central to all biological processes. Identification of protein complexes therefore is becoming increasingly important to gain a molecular understanding of cells and organisms. Several powerful methodologies and techniques have been developed to study molecular interactions and thus help elucidate their nature and role in biology as well as potential ways how to interfere with them. All different techniques used in these studies have their strengths and weaknesses and since they are mostly employed in in vitro conditions, a single approach can hardly accurately reproduce interactions that happen under physiological conditions. However, complementary usage of as many as possible available techniques can lead to relatively realistic picture of the biological process. Here we describe several proteomic, biophysical and structural tools that help us understand the nature and mechanism of these interactions. PMID:27640371

  11. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    PubMed

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets.

  12. Modeling Mercury in Proteins.

    PubMed

    Parks, J M; Smith, J C

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively nontoxic, other forms such as Hg(2+) and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg(2+) can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg(2+) to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed molecular picture and circumvent issues associated with toxicity. Here, we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intraprotein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand-binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confer mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multiscale model of environmental mercury cycling.

  13. Modeling Mercury in Proteins.

    PubMed

    Parks, J M; Smith, J C

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively nontoxic, other forms such as Hg(2+) and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg(2+) can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg(2+) to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed molecular picture and circumvent issues associated with toxicity. Here, we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intraprotein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand-binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confer mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multiscale model of environmental mercury cycling. PMID:27497164

  14. FLOW BEHAVIOR OF PROTEIN BLENDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blending proteins can increase textural strength or enhance taste or mouth feel, such as blending soy with whey to improve taste. In this study, we measured the viscosity of various combinations of six proteins (whey protein isolates, calcium caseinate, soy protein isolates, wheat gluten, egg album...

  15. DELIVERY OF THERAPEUTIC PROTEINS

    PubMed Central

    Pisal, Dipak S.; Kosloski, Matthew P.; Balu-Iyer, Sathy V.

    2009-01-01

    The safety and efficacy of protein therapeutics are limited by three interrelated pharmaceutical issues, in vitro and in vivo instability, immunogenicity and shorter half-lives. Novel drug modifications for overcoming these issues are under investigation and include covalent attachment of poly(ethylene glycol) (PEG), polysialic acid, or glycolic acid, as well as developing new formulations containing nanoparticulate or colloidal systems (e.g. liposomes, polymeric microspheres, polymeric nanoparticles). Such strategies have the potential to develop as next generation protein therapeutics. This review includes a general discussion on these delivery approaches. PMID:20049941

  16. Kinetics of protein aggregation

    NASA Astrophysics Data System (ADS)

    Knowles, Tuomas

    2015-03-01

    Aggregation into linear nanostructures, notably amyloid and amyloid-like fibrils, is a common form of behaviour exhibited by a range of peptides and proteins. This process was initially discovered in the context of the aetiology of a range of neurodegenerative diseases, but has recently been recognised to of general significance and has been found at the origin of a number of beneficial functional roles in nature, including as catalytic scaffolds and functional components in biofilms. This talk discusses our ongoing efforts to study the kinetics of linear protein self-assembly by using master equation approaches combined with global analysis of experimental data.

  17. Lipid-transfer proteins.

    PubMed

    Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Ye, Xiujuan

    2012-01-01

    Lipid-transfer proteins (LTPs) are basic proteins found in abundance in higher plants. LTPs play lots of roles in plants such as participation in cutin formation, embryogenesis, defense reactions against phytopathogens, symbiosis, and the adaptation of plants to various environmental conditions. In addition, LTPs from field mustard and Chinese daffodil exhibit antiproliferative activity against human cancer cells. LTPs from chili pepper and coffee manifest inhibitory activity against fungi pathogenic to humans such as Candida species. The intent of this article is to review LTPs in the plant kingdom. PMID:23193591

  18. Coupled transport protein systems.

    PubMed

    Thatcher, Jack D

    2013-04-16

    This set of animated lessons provides examples of how transport proteins interact in coupled systems to produce physiologic effects. The gastric pumps animation depicts the secretion of hydrochloric acid into the gastric lumen. The animation called glucose absorption depicts glucose absorption by intestinal epithelial cells. The CFTR animation explains how the cystic fibrosis conductance transmembrane regulator (CFTR) functions as a key component of a coupled system of transport proteins that clears the pulmonary system of mucus and inhaled particulates. These animations serve as valuable resources for any collegiate-level course that describes these processes. Courses that might use them include introductory biology, biochemistry, biophysics, cell biology, pharmacology, and physiology.

  19. Protein production and purification

    PubMed Central

    2010-01-01

    In selecting a method to produce a recombinant protein, a researcher is faced with a bewildering array of choices as to where to start. To facilitate decision-making, we describe a consensus ‘what to try first’ strategy based on our collective analysis of the expression and purification of over 10,000 different proteins. This review presents methods that could be applied at the outset of any project, a prioritized list of alternate strategies and a list of pitfalls that trip many new investigators. PMID:18235434

  20. Protein energy malnutrition.

    PubMed

    Grover, Zubin; Ee, Looi C

    2009-10-01

    Protein energy malnutrition (PEM) is a common problem worldwide and occurs in both developing and industrialized nations. In the developing world, it is frequently a result of socioeconomic, political, or environmental factors. In contrast, protein energy malnutrition in the developed world usually occurs in the context of chronic disease. There remains much variation in the criteria used to define malnutrition, with each method having its own limitations. Early recognition, prompt management, and robust follow up are critical for best outcomes in preventing and treating PEM.

  1. Late embryogenesis abundant proteins

    PubMed Central

    Olvera-Carrillo, Yadira; Reyes, José Luis

    2011-01-01

    Late Embryogenesis Abundant (LEA) proteins accumulate at the onset of seed desiccation and in response to water deficit in vegetative plant tissues. The typical LEA proteins are highly hydrophilic and intrinsically unstructured. They have been classified in different families, each one showing distinctive conserved motifs. In this manuscript we present and discuss some of the recent findings regarding their role in plant adaptation to water deficit, as well as those concerning to their possible function, and how it can be related to their intrinsic structural flexibility. PMID:21447997

  2. Protein Bodies of the Soybean

    PubMed Central

    Tombs, M. P.

    1967-01-01

    Some microscope observations of the protein bodies of the cotyledon cells of the soybean (Glycine max) are described, together with changes in their appearance which occur on germination. Density gradient centrifugation permits the isolation of protein bodies from soymeal. They contain about 70% of the protein of the bean. Only 1 protein could be detected in them: glycinin, the major soybean protein. The protein bodies were fractionated to light and heavy fractions. The former contained 97.5% protein, the latter 78.5%. RNA, phytic acid and lipids were also present. The 2 fractions probably differ only in the extent of contamination by other cell fragments. Images PMID:16656574

  3. NextGen protein design

    PubMed Central

    Regan, Lynne

    2014-01-01

    Protein engineering is at an exciting stage because designed protein–protein interactions are being used in many applications. For instance, three designed proteins are now in clinical trials. Although there have been many successes over the last decade, protein engineering still faces numerous challenges. Often, designs do not work as anticipated and they still require substantial redesign. The present review focuses on the successes, the challenges and the limitations of rational protein design today. PMID:24059497

  4. Accessory proteins for heterotrimeric G-proteins in the kidney

    PubMed Central

    Park, Frank

    2015-01-01

    Heterotrimeric G-proteins play a fundamentally important role in regulating signal transduction pathways in the kidney. Accessory proteins are being identified as direct binding partners for heterotrimeric G-protein α or βγ subunits to promote more diverse mechanisms by which G-protein signaling is controlled. In some instances, accessory proteins can modulate the signaling magnitude, localization, and duration following the activation of cell membrane-associated receptors. Alternatively, accessory proteins complexed with their G-protein α or βγ subunits can promote non-canonical models of signaling activity within the cell. In this review, we will highlight the expression profile, localization and functional importance of these newly identified accessory proteins to control the function of select G-protein subunits under normal and various disease conditions observed in the kidney. PMID:26300785

  5. Protein-protein interactions: methods for detection and analysis.

    PubMed Central

    Phizicky, E M; Fields, S

    1995-01-01

    The function and activity of a protein are often modulated by other proteins with which it interacts. This review is intended as a practical guide to the analysis of such protein-protein interactions. We discuss biochemical methods such as protein affinity chromatography, affinity blotting, coimmunoprecipitation, and cross-linking; molecular biological methods such as protein probing, the two-hybrid system, and phage display: and genetic methods such as the isolation of extragenic suppressors, synthetic mutants, and unlinked noncomplementing mutants. We next describe how binding affinities can be evaluated by techniques including protein affinity chromatography, sedimentation, gel filtration, fluorescence methods, solid-phase sampling of equilibrium solutions, and surface plasmon resonance. Finally, three examples of well-characterized domains involved in multiple protein-protein interactions are examined. The emphasis of the discussion is on variations in the approaches, concerns in evaluating the results, and advantages and disadvantages of the techniques. PMID:7708014

  6. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    SciTech Connect

    Yu,P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  7. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling.

    PubMed

    Woodard, Geoffrey E; Jardín, Isaac; Berna-Erro, A; Salido, Gines M; Rosado, Juan A

    2015-01-01

    Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.

  8. Protein Crystal Bovine Insulin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The comparison of protein crystal, Bovine Insulin space-grown (left) and earth-grown (right). Facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  9. Protein nano-crystallogenesis.

    PubMed

    Kuil, Maxim E; Bodenstaff, E Rene; Hoedemaeker, Flip J; Abrahams, Jan Pieter

    2002-03-13

    We demonstrate the feasibility of growing crystals of protein in volumes as small as 1 nanoliter. Advances in the handling of very small volumes (i.e. through inkjet and other technologies) open the way towards fully automated systems. The rationale for these experiments is the desire to develop a system that speeds up the structure determination of proteins by crystallographic techniques, where most of the precious protein sample is wasted for the identification of the ideal crystallisation conditions. An additional potential benefit of crystallisation in very small volumes is the potential improvement of the crystal quality through reduced convection during crystal growth. Furthermore, in such small volumes even very highly supersaturated conditions can be stable for prolonged periods, allowing additional regions of phase-space to be prospected for elusive crystallisation conditions. A massive improvement in the efficiency of protein crystallogenesis will cause a paradigm shift in the biomolecular sciences and will have a major impact in product development in (for example) the pharmaceutical industry.

  10. Preparing Protein Samples

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Cindy Barnes of University Space Research Association (USRA) at NASA's Marshall Space Flight Center pipettes a protein solution in preparation to grow crystals as part of NASA's structural biology program. Research on Earth helps scientists define conditions and specimens they will use in space experiments.

  11. The Protein Ensemble Database.

    PubMed

    Varadi, Mihaly; Tompa, Peter

    2015-01-01

    The scientific community's major conceptual notion of structural biology has recently shifted in emphasis from the classical structure-function paradigm due to the emergence of intrinsically disordered proteins (IDPs). As opposed to their folded cousins, these proteins are defined by the lack of a stable 3D fold and a high degree of inherent structural heterogeneity that is closely tied to their function. Due to their flexible nature, solution techniques such as small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR) spectroscopy and fluorescence resonance energy transfer (FRET) are particularly well-suited for characterizing their biophysical properties. Computationally derived structural ensembles based on such experimental measurements provide models of the conformational sampling displayed by these proteins, and they may offer valuable insights into the functional consequences of inherent flexibility. The Protein Ensemble Database (http://pedb.vib.be) is the first openly accessible, manually curated online resource storing the ensemble models, protocols used during the calculation procedure, and underlying primary experimental data derived from SAXS and/or NMR measurements. By making this previously inaccessible data freely available to researchers, this novel resource is expected to promote the development of more advanced modelling methodologies, facilitate the design of standardized calculation protocols, and consequently lead to a better understanding of how function arises from the disordered state.

  12. Protein specific polymeric immunomicrospheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1980-01-01

    Small, round, bio-compatible microspheres capable of covalently bonding proteins and having a uniform diameter below about 3500 A are prepared by substantially instantaneously initiating polymerization of an aqueous emulsion containing no more than 35% total monomer including an acrylic monomer substituted with a covalently bondable group such as hydroxyl, amino or carboxyl and a minor amount of a cross-linking agent.

  13. Tuber Storage Proteins

    PubMed Central

    SHEWRY, PETER R.

    2003-01-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits activity as an acylhydrolase and esterase, sporamin from sweet potato is an inhibitor of trypsin, and dioscorin from yam is a carbonic anhydrase. Both sporamin and dioscorin also exhibit antioxidant and radical scavenging activity. Taro differs from the other three crops in that it contains two major types of storage protein: a trypsin inhibitor related to sporamin and a mannose‐binding lectin. These characteristics indicate that tuber storage proteins have evolved independently in different species, which contrasts with the highly conserved families of storage proteins present in seeds. Furthermore, all exhibit biological activities which could contribute to resistance to pests, pathogens or abiotic stresses, indicating that they may have dual roles in the tubers. PMID:12730067

  14. Protein states and proteinquakes.

    PubMed Central

    Ansari, A; Berendzen, J; Bowne, S F; Frauenfelder, H; Iben, I E; Sauke, T B; Shyamsunder, E; Young, R D

    1985-01-01

    After photodissociation of carbon monoxide bound to myoglobin, the protein relaxes to the deoxy equilibrium structure in a quake-like motion. Investigation of the proteinquake and of related intramolecular equilibrium motions shows that states and motions have a hierarchical glass-like structure. PMID:3860839

  15. Protein Requirements during Aging.

    PubMed

    Courtney-Martin, Glenda; Ball, Ronald O; Pencharz, Paul B; Elango, Rajavel

    2016-01-01

    Protein recommendations for elderly, both men and women, are based on nitrogen balance studies. They are set at 0.66 and 0.8 g/kg/day as the estimated average requirement (EAR) and recommended dietary allowance (RDA), respectively, similar to young adults. This recommendation is based on single linear regression of available nitrogen balance data obtained at test protein intakes close to or below zero balance. Using the indicator amino acid oxidation (IAAO) method, we estimated the protein requirement in young adults and in both elderly men and women to be 0.9 and 1.2 g/kg/day as the EAR and RDA, respectively. This suggests that there is no difference in requirement on a gender basis or on a per kg body weight basis between younger and older adults. The requirement estimates however are ~40% higher than the current protein recommendations on a body weight basis. They are also 40% higher than our estimates in young men when calculated on the basis of fat free mass. Thus, current recommendations may need to be re-assessed. Potential rationale for this difference includes a decreased sensitivity to dietary amino acids and increased insulin resistance in the elderly compared with younger individuals. PMID:27529275

  16. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Atomic force microscopy uses laser technology to reveal a defect, a double-screw dislocation, on the surface of this crystal of canavalin, a major source of dietary protein for humans and domestic animals. When a crystal grows, attachment kinetics and transport kinetics are competing for control of the molecules. As a molecule gets close to the crystal surface, it has to attach properly for the crystal to be usable. NASA has funded investigators to look at those attachment kinetics from a theoretical standpoint and an experimental standpoint. Dr. Alex McPherson of the University of California, Irvine, is one of those investigators. He uses X-ray diffraction and atomic force microscopy in his laboratory to answer some of the many questions about how protein crystals grow. Atomic force microscopy provides a means of looking at how individual molecules are added to the surface of growing protein crystals. This helps McPherson understand the kinetics of protein crystal growth. McPherson asks, How fast do crystals grow? What are the forces involved? Investigators funded by NASA have clearly shown that such factors as the level of supersaturation and the rate of growth all affect the habit [characteristic arrangement of facets] of the crystal and the defects that occur in the crystal.

  17. Ribosome-inactivating proteins

    PubMed Central

    Walsh, Matthew J; Dodd, Jennifer E; Hautbergue, Guillaume M

    2013-01-01

    Ribosome-inactivating proteins (RIPs) were first isolated over a century ago and have been shown to be catalytic toxins that irreversibly inactivate protein synthesis. Elucidation of atomic structures and molecular mechanism has revealed these proteins to be a diverse group subdivided into two classes. RIPs have been shown to exhibit RNA N-glycosidase activity and depurinate the 28S rRNA of the eukaryotic 60S ribosomal subunit. In this review, we compare archetypal RIP family members with other potent toxins that abolish protein synthesis: the fungal ribotoxins which directly cleave the 28S rRNA and the newly discovered Burkholderia lethal factor 1 (BLF1). BLF1 presents additional challenges to the current classification system since, like the ribotoxins, it does not possess RNA N-glycosidase activity but does irreversibly inactivate ribosomes. We further discuss whether the RIP classification should be broadened to include toxins achieving irreversible ribosome inactivation with similar turnovers to RIPs, but through different enzymatic mechanisms. PMID:24071927

  18. Tuber storage proteins.

    PubMed

    Shewry, Peter R

    2003-06-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits activity as an acylhydrolase and esterase, sporamin from sweet potato is an inhibitor of trypsin, and dioscorin from yam is a carbonic anhydrase. Both sporamin and dioscorin also exhibit antioxidant and radical scavenging activity. Taro differs from the other three crops in that it contains two major types of storage protein: a trypsin inhibitor related to sporamin and a mannose-binding lectin. These characteristics indicate that tuber storage proteins have evolved independently in different species, which contrasts with the highly conserved families of storage proteins present in seeds. Furthermore, all exhibit biological activities which could contribute to resistance to pests, pathogens or abiotic stresses, indicating that they may have dual roles in the tubers.

  19. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  20. Protein Requirements during Aging

    PubMed Central

    Courtney-Martin, Glenda; Ball, Ronald O.; Pencharz, Paul B.; Elango, Rajavel

    2016-01-01

    Protein recommendations for elderly, both men and women, are based on nitrogen balance studies. They are set at 0.66 and 0.8 g/kg/day as the estimated average requirement (EAR) and recommended dietary allowance (RDA), respectively, similar to young adults. This recommendation is based on single linear regression of available nitrogen balance data obtained at test protein intakes close to or below zero balance. Using the indicator amino acid oxidation (IAAO) method, we estimated the protein requirement in young adults and in both elderly men and women to be 0.9 and 1.2 g/kg/day as the EAR and RDA, respectively. This suggests that there is no difference in requirement on a gender basis or on a per kg body weight basis between younger and older adults. The requirement estimates however are ~40% higher than the current protein recommendations on a body weight basis. They are also 40% higher than our estimates in young men when calculated on the basis of fat free mass. Thus, current recommendations may need to be re-assessed. Potential rationale for this difference includes a decreased sensitivity to dietary amino acids and increased insulin resistance in the elderly compared with younger individuals. PMID:27529275

  1. Dynamics of protein conformations

    NASA Astrophysics Data System (ADS)

    Stepanova, Maria

    2010-10-01

    A novel theoretical methodology is introduced to identify dynamic structural domains and analyze local flexibility in proteins. The methodology employs a multiscale approach combining identification of essential collective coordinates based on the covariance analysis of molecular dynamics trajectories, construction of the Mori projection operator with these essential coordinates, and analysis of the corresponding generalized Langevin equations [M.Stepanova, Phys.Rev.E 76(2007)051918]. Because the approach employs a rigorous theory, the outcomes are physically transparent: the dynamic domains are associated with regions of relative rigidity in the protein, whereas off-domain regions are relatively soft. This also allows scoring the flexibility in the macromolecule with atomic-level resolution [N.Blinov, M.Berjanskii, D.S.Wishart, and M.Stepanova, Biochemistry, 48(2009)1488]. The applications include the domain coarse-graining and characterization of conformational stability in protein G and prion proteins. The results are compared with published NMR experiments. Potential applications for structural biology, bioinformatics, and drug design are discussed.

  2. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  3. [ALR, the multifunctional protein].

    PubMed

    Balogh, Tibor; Szarka, András

    2015-03-29

    ALR is a mystic protein. It has a so called "long" 22 kDa and a "short" 15 kDa forms. It has been described after partial hepatectomy and it has just been considered as a key protein of liver regeneration. At the beginning of the 21st century it has been revealed that the "long" form is localized in the mitochondrial intermembrane space and it is an element of the mitochondrial protein import and disulphide relay system. Several proteins of the substrates of the mitochondrial disulphide relay system are necessary for the proper function of the mitochondria, thus any mutation of the ALR gene leads to mitochondrial diseases. The "short" form of ALR functions as a secreted extracellular growth factor and it promotes the protection, regeneration and proliferation of hepatocytes. The results gained on the recently generated conditional ALR mutant mice suggest that ALR can play an important role in the pathogenesis of alcoholic and non-alcoholic steatosis. Since the serum level of ALR is modified in several liver diseases it can be a promising marker molecule in laboratory diagnostics. PMID:25796277

  4. Chaos in protein dynamics.

    PubMed

    Braxenthaler, M; Unger, R; Auerbach, D; Given, J A; Moult, J

    1997-12-01

    MD simulations, currently the most detailed description of the dynamic evolution of proteins, are based on the repeated solution of a set of differential equations implementing Newton's second law. Many such systems are known to exhibit chaotic behavior, i.e., very small changes in initial conditions are amplified exponentially and lead to vastly different, inherently unpredictable behavior. We have investigated the response of a protein fragment in an explicit solvent environment to very small perturbations of the atomic positions (10(-3)-10(-9) A). Independent of the starting conformation (native-like, compact, extended), perturbed dynamics trajectories deviated rapidly, leading to conformations that differ by approximately 1 A RMSD within 1-2 ps. Furthermore, introducing the perturbation more than 1-2 ps before a significant conformational transition leads to a loss of the transition in the perturbed trajectories. We present evidence that the observed chaotic behavior reflects physical properties of the system rather than numerical instabilities of the calculation and discuss the implications for models of protein folding and the use of MD as a tool to analyze protein folding pathways.

  5. Protein stability in ice.

    PubMed

    Strambini, Giovanni B; Gonnelli, Margherita

    2007-03-15

    This study presents an experimental approach, based on the change of Trp fluorescence between native and denatured states of proteins, which permits to monitor unfolding equilibria and the thermodynamic stability (DeltaG degrees ) of these macromolecules in frozen aqueous solutions. The results obtained by guanidinium chloride denaturation of the azurin mutant C112S from Pseudomonas aeruginosa, in the temperature range from -8 to -16 degrees C, demonstrate that the stability of the native fold may be significantly perturbed in ice depending mainly on the size of the liquid water pool (V(L)) in equilibrium with the solid phase. The data establish a threshold, around V(L)=1.5%, below which in ice DeltaG degrees decreases progressively relative to liquid state, up to 3 kcal/mole for V(L)=0.285%. The sharp dependence of DeltaG degrees on V(L) is consistent with a mechanism based on adsorption of the protein to the ice surface. The reduction in DeltaG degrees is accompanied by a corresponding decrease in m-value indicating that protein-ice interactions increase the solvent accessible surface area of the native fold or reduce that of the denatured state, or both. The method opens the possibility for examining in a more quantitative fashion the influence of various experimental conditions on the ice perturbation and in particular to test the effectiveness of numerous additives used in formulations to preserve labile pharmaco proteins.

  6. Weakly Stable Regions and Protein-Protein Interactions in Beta-Barrel Membrane Proteins

    PubMed Central

    Naveed, Hammad; Liang, Jie

    2014-01-01

    We briefly discuss recent progress in computational characterization of the sequence and structural properties of β-barrel membrane properties. We discuss the emerging concept of weakly stable regions in β-barrel membrane proteins, computational methods to identify these regions and mechanisms adopted by β-barrel membrane proteins in nature to stabilize them. We further discuss computational methods to identify protein-protein interactions in β-barrel membrane proteins and recent experimental studies that aim at altering the biophysical properties including oligomerization state and stability of β-barrel membrane proteins based on the emerging organization principles of these proteins from recent computational studies. PMID:23713778

  7. Protein farnesyltransferase inhibitors.

    PubMed

    Ayral-Kaloustian, Semiramis; Salaski, Edward J

    2002-05-01

    Specific mutations in the ras gene impair the guanosine triphophatase (GTPase) activity of Ras proteins, which play a fundamental role in the signaling cascade, leading to uninterrupted growth signals and to the transformation of normal cells into malignant phenotypes. It has been shown that normal cells transfected with mutant ras gene become cancerous and that unfarnesylated, cytosolic mutant Ras protein does not anchor onto cell membranes and cannot induce this transformation. Posttranslational modification and plasma membrane association of mutant Ras is necessary for this transforming activity. Since its identification, the enzyme protein farnesyltransferase (FTase) that catalyzes the first and essential step of the three Ras-processing steps has emerged as the most promising target for therapeutic intervention. FTase has been implicated as a potential target in inhibiting the prenylation of a variety of proteins, thus in controlling varied disease states (e.g. cancer, neurofibromatosis, restenosis, viral hepatitis, bone resorption, parasitic infections, corneal inflammations, and diabetes) associated with prenyl modifications of Ras and other proteins. Furthermore, it has been suggested that FTase inhibitors indirectly help in inhibiting tumors via suppression of angiogenesis and induction of apoptosis. Major milestones have been achieved with small-molecule FTase inhibitors that show efficacy without toxicity in vitro, as well as in mouse models bearing ras-dependent tumors. With the determination of the crystal structure of mammalian FTase, existent leads have been fine-tuned and new potent molecules of diverse structural classes have been designed. A few of these molecules are currently in the clinic, with at least three drug candidates in Phase II studies and one in Phase III. This article will review the progress that has been reported with FTase inhibitors in drug discovery and in the clinic. PMID:12733981

  8. Bayesian Estimator of Protein-Protein Association Probabilities

    2008-05-28

    The Bayesian Estimator of Protein-Protein Association Probabilities (BEPro3) is a software tool for estimating probabilities of protein-protein association between bait and prey protein pairs using data from multiple-bait, multiple-replicate, protein LC-MS/MS affinity isolation experiments. BEPro3 is public domain software, has been tested on Windows XP and version 10.4 or newer of the Mac OS 10.4, and is freely available. A user guide, example dataset with analysis and additional documentation are included with the BEPro3 download.

  9. Direct Probing of Protein-Protein Interactions

    SciTech Connect

    Noy, A; Sulchek, T A; Friddle, R W

    2005-03-10

    This project aimed to establish feasibility of using experimental techniques based on direct measurements of interaction forces on the single molecule scale to characterize equilibrium interaction potentials between individual biological molecules. Such capability will impact several research areas, ranging from rapid interaction screening capabilities to providing verifiable inputs for computational models. It should be one of the enabling technologies for modern proteomics research. This study used a combination of Monte-Carlo simulations, theoretical considerations, and direct experimental measurements to investigate two model systems that represented typical experimental situations: force-induced melting of DNA rigidly attached to the tip, and force-induced unbinding of a protein-antibody pair connected to flexible tethers. Our results establish that for both systems researchers can use force spectroscopy measurements to extract reliable information about equilibrium interaction potentials. However, the approaches necessary to extract these potentials in each case--Jarzynski reconstruction and Dynamic Force Spectroscopy--are very different. We also show how the thermodynamics and kinetics of unbinding process dictates the choice between in each case.

  10. Protein-protein interaction databases: keeping up with growing interactomes

    PubMed Central

    2009-01-01

    Over the past few years, the number of known protein-protein interactions has increased substantially. To make this information more readily available, a number of publicly available databases have set out to collect and store protein-protein interaction data. Protein-protein interactions have been retrieved from six major databases, integrated and the results compared. The six databases (the Biological General Repository for Interaction Datasets [BioGRID], the Molecular INTeraction database [MINT], the Biomolecular Interaction Network Database [BIND], the Database of Interacting Proteins [DIP], the IntAct molecular interaction database [IntAct] and the Human Protein Reference Database [HPRD]) differ in scope and content; integration of all datasets is non-trivial owing to differences in data annotation. With respect to human protein-protein interaction data, HPRD seems to be the most comprehensive. To obtain a complete dataset, however, interactions from all six databases have to be combined. To overcome this limitation, meta-databases such as the Agile Protein Interaction Database (APID) offer access to integrated protein-protein interaction datasets, although these also currently have certain restrictions. PMID:19403463

  11. Identifying the hub proteins from complicated membrane protein network systems.

    PubMed

    Shen, Yi-Zhen; Ding, Yong-Sheng; Gu, Quan; Chou, Kuo-Chen

    2010-05-01

    The so-called "hub proteins" are those proteins in a protein-protein interaction network system that have remarkably higher interaction relations (or degrees) than the others. Therefore, the information of hub proteins can provide very useful insights for selecting or prioritizing targets during drug development. In this paper, by combining the multi-agent-based method with the graphical spectrum analysis and immune-genetic algorithm, a novel simulator for identifying the hub proteins from membrane protein interaction networks is proposed. As a demonstration of using the simulator, two hub membrane proteins, YPL227C and YIL147C, were identified from a complicated network system consisting of 1500 membrane proteins. Meanwhile, along with the two identified hub proteins, their molecular functions, biological processes, and cellular components were also revealed. It is anticipated that the hub-protein-simulator may become a very useful tool for system biology and drug development, particularly in deciphering unknown protein functions, determining protein complexes, and in identifying the key targets from a complicated disease system. PMID:20507268

  12. Molecular simulations of lipid-mediated protein-protein interactions.

    PubMed

    de Meyer, Frédérick Jean-Marie; Venturoli, Maddalena; Smit, Berend

    2008-08-01

    Recent experimental results revealed that lipid-mediated interactions due to hydrophobic forces may be important in determining the protein topology after insertion in the membrane, in regulating the protein activity, in protein aggregation and in signal transduction. To gain insight into the lipid-mediated interactions between two intrinsic membrane proteins, we developed a mesoscopic model of a lipid bilayer with embedded proteins, which we studied with dissipative particle dynamics. Our calculations of the potential of mean force between transmembrane proteins show that hydrophobic forces drive long-range protein-protein interactions and that the nature of these interactions depends on the length of the protein hydrophobic segment, on the three-dimensional structure of the protein and on the properties of the lipid bilayer. To understand the nature of the computed potentials of mean force, the concept of hydrophilic shielding is introduced. The observed protein interactions are interpreted as resulting from the dynamic reorganization of the system to maintain an optimal hydrophilic shielding of the protein and lipid hydrophobic parts, within the constraint of the flexibility of the components. Our results could lead to a better understanding of several membrane processes in which protein interactions are involved. PMID:18487292

  13. Redox control of protein degradation

    PubMed Central

    Pajares, Marta; Jiménez-Moreno, Natalia; Dias, Irundika H.K.; Debelec, Bilge; Vucetic, Milica; Fladmark, Kari E.; Basaga, Huveyda; Ribaric, Samo; Milisav, Irina; Cuadrado, Antonio

    2015-01-01

    Intracellular proteolysis is critical to maintain timely degradation of altered proteins including oxidized proteins. This review attempts to summarize the most relevant findings about oxidant protein modification, as well as the impact of reactive oxygen species on the proteolytic systems that regulate cell response to an oxidant environment: the ubiquitin-proteasome system (UPS), autophagy and the unfolded protein response (UPR). In the presence of an oxidant environment, these systems are critical to ensure proteostasis and cell survival. An example of altered degradation of oxidized proteins in pathology is provided for neurodegenerative diseases. Future work will determine if protein oxidation is a valid target to combat proteinopathies. PMID:26381917

  14. Hydrogels Constructed from Engineered Proteins.

    PubMed

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed. PMID:26707834

  15. Hydrogels Constructed from Engineered Proteins.

    PubMed

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed.

  16. Motif-Driven Design of Protein-Protein Interfaces.

    PubMed

    Silva, Daniel-Adriano; Correia, Bruno E; Procko, Erik

    2016-01-01

    Protein-protein interfaces regulate many critical processes for cellular function. The ability to accurately control and regulate these molecular interactions is of major interest for biomedical and synthetic biology applications, as well as to address fundamental biological questions. In recent years, computational protein design has emerged as a tool for designing novel protein-protein interactions with functional relevance. Although attractive, these computational tools carry a steep learning curve. In order to make some of these methods more accessible, we present detailed descriptions and examples of ROSETTA computational protocols for the design of functional protein binders using seeded protein interface design. In these protocols, a motif of known structure that interacts with the target site is grafted into a scaffold protein, followed by design of the surrounding interaction surface. PMID:27094298

  17. How do oncoprotein mutations rewire protein-protein interaction networks?

    PubMed

    Bowler, Emily H; Wang, Zhenghe; Ewing, Rob M

    2015-01-01

    The acquisition of mutations that activate oncogenes or inactivate tumor suppressors is a primary feature of most cancers. Mutations that directly alter protein sequence and structure drive the development of tumors through aberrant expression and modification of proteins, in many cases directly impacting components of signal transduction pathways and cellular architecture. Cancer-associated mutations may have direct or indirect effects on proteins and their interactions and while the effects of mutations on signaling pathways have been widely studied, how mutations alter underlying protein-protein interaction networks is much less well understood. Systematic mapping of oncoprotein protein interactions using proteomics techniques as well as computational network analyses is revealing how oncoprotein mutations perturb protein-protein interaction networks and drive the cancer phenotype. PMID:26325016

  18. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion

    NASA Astrophysics Data System (ADS)

    Dong, Jinlan; Bruening, Merlin L.

    2015-07-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO2 nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  19. Electron flow through proteins

    NASA Astrophysics Data System (ADS)

    Gray, Harry B.; Winkler, Jay R.

    2009-11-01

    Electron transfers in photosynthesis and respiration commonly occur between metal-containing cofactors that are separated by large molecular distances. Employing laser flash-quench triggering methods, we have shown that 20-Å, coupling-limited Fe II-Ru III and Cu I-Ru III electron tunneling in Ru-modified cytochromes and blue copper proteins can occur on the microsecond timescale both in solutions and crystals. Redox equivalents can be transferred even longer distances by multistep tunneling, often called hopping, through intervening amino acid side chains. Our work has established that 20-Å hole hopping through an intervening tryptophan is two orders of magnitude faster than single-step electron tunneling in a Re-modified blue copper protein.

  20. A magnetic protein biocompass

    NASA Astrophysics Data System (ADS)

    Qin, Siying; Yin, Hang; Yang, Celi; Dou, Yunfeng; Liu, Zhongmin; Zhang, Peng; Yu, He; Huang, Yulong; Feng, Jing; Hao, Junfeng; Hao, Jia; Deng, Lizong; Yan, Xiyun; Dong, Xiaoli; Zhao, Zhongxian; Jiang, Taijiao; Wang, Hong-Wei; Luo, Shu-Jin; Xie, Can

    2016-02-01

    The notion that animals can detect the Earth’s magnetic field was once ridiculed, but is now well established. Yet the biological nature of such magnetosensing phenomenon remains unknown. Here, we report a putative magnetic receptor (Drosophila CG8198, here named MagR) and a multimeric magnetosensing rod-like protein complex, identified by theoretical postulation and genome-wide screening, and validated with cellular, biochemical, structural and biophysical methods. The magnetosensing complex consists of the identified putative magnetoreceptor and known magnetoreception-related photoreceptor cryptochromes (Cry), has the attributes of both Cry- and iron-based systems, and exhibits spontaneous alignment in magnetic fields, including that of the Earth. Such a protein complex may form the basis of magnetoreception in animals, and may lead to applications across multiple fields.

  1. Protein Structure Databases.

    PubMed

    Laskowski, Roman A

    2016-01-01

    Web-based protein structure databases come in a wide variety of types and levels of information content. Those having the most general interest are the various atlases that describe each experimentally determined protein structure and provide useful links, analyses, and schematic diagrams relating to its 3D structure and biological function. Also of great interest are the databases that classify 3D structures by their folds as these can reveal evolutionary relationships which may be hard to detect from sequence comparison alone. Related to these are the numerous servers that compare folds-particularly useful for newly solved structures, and especially those of unknown function. Beyond these are a vast number of databases for the more specialized user, dealing with specific families, diseases, structural features, and so on. PMID:27115626

  2. Cow's Milk Protein Allergy.

    PubMed

    Mousan, Grace; Kamat, Deepak

    2016-10-01

    Cow's milk protein allergy (CMPA) is a common condition encountered in children with incidence estimated as 2% to 7.5% in the first year of life. Formula and breast-fed babies can present with symptoms of CMPA. It is important to accurately diagnose CMPA to avoid the consequences of either under- or overdiagnosis. CMPA is classically categorized into immunoglobulin E (IgE)- or non-IgE-mediated reaction that vary in clinical manifestations, diagnostic evaluation, and prognosis. The most commonly involved systems in patients with CMPA are gastrointestinal, skin, and respiratory. Evaluation of CMPA starts with good data gathering followed by testing if indicated. Treatment is simply by avoidance of cow's milk protein (CMP) in the child's or mother's diet, if exclusively breast-feeding. This article reviews the definition, epidemiology, risk factors, pathogenesis, clinical presentation, evaluation, management, and prognosis of CMPA and provides an overview of different options for formulas and their indication in the treatment of CMPA.

  3. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2004-10-12

    The present invention relates to 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  4. Protein-protein fusion catalyzed by sortase A.

    PubMed

    Levary, David A; Parthasarathy, Ranganath; Boder, Eric T; Ackerman, Margaret E

    2011-04-06

    Chimeric proteins boast widespread use in areas ranging from cell biology to drug delivery. Post-translational protein fusion using the bacterial transpeptidase sortase A provides an attractive alternative when traditional gene fusion fails. We describe use of this enzyme for in vitro protein ligation and report the successful fusion of 10 pairs of protein domains with preserved functionality--demonstrating the robust and facile nature of this reaction.

  5. Protein-Protein Fusion Catalyzed by Sortase A

    PubMed Central

    Levary, David A.; Parthasarathy, Ranganath; Boder, Eric T.; Ackerman, Margaret E.

    2011-01-01

    Chimeric proteins boast widespread use in areas ranging from cell biology to drug delivery. Post-translational protein fusion using the bacterial transpeptidase sortase A provides an attractive alternative when traditional gene fusion fails. We describe use of this enzyme for in vitro protein ligation and report the successful fusion of 10 pairs of protein domains with preserved functionality — demonstrating the robust and facile nature of this reaction. PMID:21494692

  6. Predicting disease-related proteins based on clique backbone in protein-protein interaction network.

    PubMed

    Yang, Lei; Zhao, Xudong; Tang, Xianglong

    2014-01-01

    Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases.

  7. Path to protein crystallization

    SciTech Connect

    2010-01-01

    Growth of two-dimensional S-layer crystals on supported lipid bilayers observed in solution using in situ atomic force microscopy. This movie shows proteins sticking onto the supported lipid bilayer, forming a mobile phase that condenses into amorphous clusters, and undergoing a phase transition to crystalline clusters composed of 2 to 15 tetramers. These initial clusters then enter a growth phase in which new tetramers form exclusively at unoccupied lattice sites along the cluster edges.

  8. Microdosing of protein drugs.

    PubMed

    Rowland, M

    2016-02-01

    Poor pharmacokinetics (PK) can seriously limit clinical utility. Knowing early whether a new compound is likely to have the desired PK profile at therapeutic doses is therefore important. One approach, microdosing, has shown high success with small molecular weight compounds, despite early skepticism. Vlaming et al. report the first, and successful, clinical application of a microdose of a humanized recombinant protein. But what is the likely success for this class of drugs more generally?

  9. Myosin V motor proteins

    PubMed Central

    Vale, Ronald D.

    2003-01-01

    Mammalian myosin V motors transport cargo processively along actin filaments. Recent biophysical and structural studies have led to a detailed understanding of the mechanism of myosin V, making it perhaps the best understood cytoskeletal motor. In addition to describing the mechanism, this review will illustrate how “dynamic” single molecule measurements can synergize with “static” protein structural studies to produce amazingly clear information on the workings of a nanometer-scale machine. PMID:14610051

  10. Protein Crystal Isocitrate Lyase

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The comparison of protein crystal, Isocitrate Lyase earth-grown (left) and space-grown (right). This is a target enzyme for fungicides. A better understanding of this enzyme should lead to the discovery of more potent fungicides to treat serious crop diseases such as rice blast; it regulates the flow of metabolic intermediates required for cell growth. Principal Investigator is Larry DeLucas.

  11. HRTEM in protein crystallography

    NASA Astrophysics Data System (ADS)

    Dyson, P. W.; Spargo, A. E. C.; Tulloch, P. A.; Johnson, A. W. S.

    Electron microscopy/diffraction (ED/D) using spot-scan and low-dose imaging has been successfully applied to investigate microcrystals of an alpha-helical coiled-coil protein extracted from ootheca of the praying mantis. Fourier transforms of the images show resolution out to 4 A and can be used to phase the corresponding ED data which shows reflections out to 2 A.

  12. Bone morphogenetic protein

    SciTech Connect

    Xiao Yongtao; Xiang Lixin; Shao Jianzhong

    2007-10-26

    Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor-beta superfamily. It has been demonstrated that BMPs had been involved in the regulation of cell proliferation, survival, differentiation and apoptosis. However, their hallmark ability is that play a pivotal role in inducing bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. In this review, we mainly concentrate on BMP structure, function, molecular signaling and potential medical application.

  13. Understanding Protein Non-Folding

    PubMed Central

    Uversky, Vladimir N.; Dunker, A. Keith

    2010-01-01

    This review describes the family of intrinsically disordered proteins, members of which fail to form rigid 3-D structures under physiological conditions, either along their entire lengths or only in localized regions. Instead, these intriguing proteins/regions exist as dynamic ensembles within which atom positions and backbone Ramachandran angles exhibit extreme temporal fluctuations without specific equilibrium values. Many of these intrinsically disordered proteins are known to carry out important biological functions which, in fact, depend on the absence of specific 3-D structure. The existence of such proteins does not fit the prevailing structure-function paradigm, which states that unique 3-D structure is a prerequisite to function. Thus, the protein structure-function paradigm has to be expanded to include intrinsically disordered proteins and alternative relationships among protein sequence, structure, and function. This shift in the paradigm represents a major breakthrough for biochemistry, biophysics and molecular biology, as it opens new levels of understanding with regard to the complex life of proteins. This review will try to answer the following questions: How were intrinsically disordered proteins discovered? Why don't these proteins fold? What is so special about intrinsic disorder? What are the functional advantages of disordered proteins/regions? What is the functional repertoire of these proteins? What are the relationships between intrinsically disordered proteins and human diseases? PMID:20117254

  14. Food allergy to proteins.

    PubMed

    Nowak-Wegrzyn, Anna

    2007-01-01

    Food allergy is defined as an immune system-mediated adverse reaction to food proteins. Class 1 food allergens are represented by peanut, egg white, and cow's milk; they are heat- and acid-stable glycoproteins that induce allergic sensitization via gastrointestinal tract and cause systemic reactions. Class 2 food allergens are homologous to proteins in birch tree pollen and class 2 food allergy develops as a consequence of respiratory sensitization to the cross-reactive pollen. Class 2 food allergens are very heat-labile and tend to induce reactions limited to oral allergy symptoms. In contrast, plant nonspecific lipid transfer proteins are resistant to heating and tend to induce systemic reactions. Analysis of IgE-binding epitopes with SPOT membranes revealed that cow's milk-, egg- and peanut-allergic subjects without IgE antibodies against certain sequential epitopes of the major allergens were more likely to achieve tolerance than subjects whose IgE antibodies were directed against those epitopes. Subsequently, peptide microarray showed a correlation between reaction severity and the intensity of IgE binding and the number of epitopes recognized of patients' immune responses against peanut allergens. Taken together, these data suggest that the epitope recognition pattern and intensity of IgE binding are important determinants of severity and duration of food allergy.

  15. Hydrolyzed Proteins in Allergy.

    PubMed

    Salvatore, Silvia; Vandenplas, Yvan

    2016-01-01

    Hydrolyzed proteins are used worldwide in the therapeutic management of infants with allergic manifestations and have long been proposed as a dietetic measure to prevent allergy in at risk infants. The degree and method of hydrolysis, protein source and non-nitrogen components characterize different hydrolyzed formulas (HFs) and may determine clinical efficacy, tolerance and nutritional effects. Cow's milk (CM)-based HFs are classified as extensively (eHF) or partially HF (pHF) based on the percentage of small peptides. One whey pHF has been shown to reduce atopic dermatitis in high-risk infants who are not exclusively breastfed. More studies are needed to determine the benefit of these formulas in the prevention of CM allergy (CMA) and in the general population. eHFs represent up to now the treatment of choice for most infants with CMA. However, new developments, such as an extensively hydrolyzed rice protein-based formula, could become alternative options if safety and nutritional and therapeutic efficacy are confirmed as this type of formula is less expensive. In some countries, an extensive soy hydrolysate is available. PMID:27336625

  16. Proteins Among the Polysaccharides

    PubMed Central

    Wen, Fushi; Curlango-Rivera, Gilberto

    2007-01-01

    Charles Darwin recognized the power of the root cap as a model for plant signalling and behavior, and used it to explore the ways plants sense and respond to diverse stimuli. Over ensuing decades, various groups have reported tantalizing clues regarding the role of a complex extracellular matrix that ensheaths the tip region housing the apical and root cap meristems. In the course of characterizing root tip resistance to infection and injury and the role border cells play in this phenomenon, we confirmed and extended early- and mid-20th century studies reporting enzyme activities secreted from the root cap. Multidimensional protein analysis revealed, in fact, that >100 proteins are actively synthesized and secreted from the root cap and border cells. This ‘root cap secretome’ appears to be a critical component of root tip resistance to infection. We have developed a microscopic assay to quantify the protein-based extracellular response to dynamic changes in environmental conditions including hydroponic culture, and present the results here. This tool provides a simple, direct measure that can be used to explore the ways border cells may function in the manner of white blood cells to trap, immobilize and neutralize threats to the growing root tip. PMID:19704617

  17. Process for protein PEGylation.

    PubMed

    Pfister, David; Morbidelli, Massimo

    2014-04-28

    PEGylation is a versatile drug delivery technique that presents a particularly wide range of conjugation chemistry and polymer structure. The conjugated protein can be tuned to specifically meet the needs of the desired application. In the area of drug delivery this typically means to increase the persistency in the human body without affecting the activity profile of the original protein. On the other hand, because of the high costs associated with the production of therapeutic proteins, subsequent operations imposed by PEGylation must be optimized to minimize the costs inherent to the additional steps. The closest attention has to be given to the PEGylation reaction engineering and to the subsequent purification processes. This review article focuses on these two aspects and critically reviews the current state of the art with a clear focus on the development of industrial scale processes which can meet the market requirements in terms of quality and costs. The possibility of using continuous processes, with integration between the reaction and the separation steps is also illustrated.

  18. Infrared Protein Crystallography

    SciTech Connect

    J Sage; Y Zhang; J McGeehan; R Ravelli; M Weik; J van Thor

    2011-12-31

    We consider the application of infrared spectroscopy to protein crystals, with particular emphasis on exploiting molecular orientation through polarization measurements on oriented single crystals. Infrared microscopes enable transmission measurements on individual crystals using either thermal or nonthermal sources, and can accommodate flow cells, used to measure spectral changes induced by exposure to soluble ligands, and cryostreams, used for measurements of flash-cooled crystals. Comparison of unpolarized infrared measurements on crystals and solutions probes the effects of crystallization and can enhance the value of the structural models refined from X-ray diffraction data by establishing solution conditions under which they are most relevant. Results on several proteins are consistent with similar equilibrium conformational distributions in crystal and solutions. However, the rates of conformational change are often perturbed. Infrared measurements also detect products generated by X-ray exposure, including CO{sub 2}. Crystals with favorable symmetry exhibit infrared dichroism that enhances the synergy with X-ray crystallography. Polarized infrared measurements on crystals can distinguish spectral contributions from chemically similar sites, identify hydrogen bonding partners, and, in opportune situations, determine three-dimensional orientations of molecular groups. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.

  19. A polymetamorphic protein

    PubMed Central

    Stewart, Katie L; Dodds, Eric D; Wysocki, Vicki H; Cordes, Matthew H J

    2013-01-01

    Arc repressor is a homodimeric protein with a ribbon-helix–helix fold. A single polar-to-hydrophobic substitution (N11L) at a solvent-exposed position leads to population of an alternate dimeric fold in which 310 helices replace a β-sheet. Here we find that the variant Q9V/N11L/R13V (S-VLV), with two additional polar-to-hydrophobic surface mutations in the same β-sheet, forms a highly stable, reversibly folded octamer with approximately half the✠α-helical content of wild-type Arc. At low protein concentration and low ionic strength, S-VLV also populates both dimeric topologies previously observed for N11L, as judged by NMR chemical shift comparisons. Thus, accumulation of simple hydrophobic mutations in Arc progressively reduces fold specificity, leading first to a sequence with two folds and then to a manifold bridge sequence with at least three different topologies. Residues 9–14 of S-VLV form a highly hydrophobic stretch that is predicted to be amyloidogenic, but we do not observe aggregates of higher order than octamer. Increases in sequence hydrophobicity can promote amyloid aggregation but also exert broader and more complex effects on fold specificity. Altered native folds, changes in fold coupled to oligomerization, toxic pre-amyloid oligomers, and amyloid fibrils may represent a near continuum of accessible alternatives in protein structure space. PMID:23471712

  20. Papillomavirus E6 proteins

    SciTech Connect

    Howie, Heather L.; Katzenellenbogen, Rachel A.; Galloway, Denise A.

    2009-02-20

    The papillomaviruses are small DNA viruses that encode approximately eight genes, and require the host cell DNA replication machinery for their viral DNA replication. Thus papillomaviruses have evolved strategies to induce host cell DNA synthesis balanced with strategies to protect the cell from unscheduled replication. While the papillomavirus E1 and E2 genes are directly involved in viral replication by binding to and unwinding the origin of replication, the E6 and E7 proteins have auxillary functions that promote proliferation. As a consequence of disrupting the normal checkpoints that regulate cell cycle entry and progression, the E6 and E7 proteins play a key role in the oncogenic properties of human papillomaviruses with a high risk of causing anogenital cancers (HR HPVs). As a consequence, E6 and E7 of HR HPVs are invariably expressed in cervical cancers. This article will focus on the E6 protein and its numerous activities including inactivating p53, blocking apoptosis, activating telomerase, disrupting cell adhesion, polarity and epithelial differentiation, altering transcription and reducing immune recognition.

  1. Protein-protein interactions in the synaptonemal complex.

    PubMed Central

    Tarsounas, M; Pearlman, R E; Gasser, P J; Park, M S; Moens, P B

    1997-01-01

    In mammalian systems, an approximately M(r) 30,000 Cor1 protein has been identified as a major component of the meiotic prophase chromosome cores, and a M(r) 125,000 Syn1 protein is present between homologue cores where they are synapsed and form the synaptonemal complex (SC). Immunolocalization of these proteins during meiosis suggests possible homo- and heterotypic interactions between the two as well as possible interactions with yet unrecognized proteins. We used the two-hybrid system in the yeast Saccharomyces cerevisiae to detect possible protein-protein associations. Segments of hamsters Cor1 and Syn1 proteins were tested in various combinations for homo- and heterotypic interactions. In the cause of Cor1, homotypic interactions involve regions capable of coiled-coil formation, observation confirmed by in vitro affinity coprecipitation experiments. The two-hybrid assay detects no interaction of Cor1 protein with central and C-terminal fragments of Syn1 protein and no homotypic interactions involving these fragments of Syn1. Hamster Cor1 and Syn1 proteins both associate with the human ubiquitin-conjugation enzyme Hsubc9 as well as with the hamster Ubc9 homologue. The interactions between SC proteins and the Ubc9 protein may be significant for SC disassembly, which coincides with the repulsion of homologs by late prophase I, and also for the termination of sister centromere cohesiveness at anaphase II. Images PMID:9285814

  2. Small molecules that target phosphorylation dependent protein-protein interaction.

    PubMed

    Watanabe, Nobumoto; Osada, Hiroyuki

    2016-08-01

    Protein-protein interaction is one of the key events in the signal transduction pathway. The interaction changes the conformations, activities, localization and stabilities of the proteins, and transduces the signal to the next step. Frequently, this interaction occurs upon the protein phosphorylation. When upstream signals are stimulated, protein kinase(s) is/are activated and phosphorylate(s) their substrates, and induce the phosphorylation dependent protein-protein interaction. For this interaction, several domains in proteins are known to specifically recognize the phosphorylated residues of target proteins. These specific domains for interaction are important in the progression of the diseases caused by disordered signal transduction such as cancer. Thus small molecules that modulate this interaction are attractive lead compounds for the treatment of such diseases. In this review, we focused on three examples of phosphorylation dependent protein-protein interaction modules (14-3-3, polo box domain of Plk1 and F-box proteins in SCF ubiquitin ligases) and summarize small molecules that modulate their interaction. We also introduce our original screening system to identify such small molecules.

  3. Ontology integration to identify protein complex in protein interaction networks

    PubMed Central

    2011-01-01

    Background Protein complexes can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of protein complexes detection algorithms. Methods We have developed novel semantic similarity method, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. Following the approach of that of the previously proposed clustering algorithm IPCA which expands clusters starting from seeded vertices, we present a clustering algorithm OIIP based on the new weighted Protein-Protein interaction networks for identifying protein complexes. Results The algorithm OIIP is applied to the protein interaction network of Sacchromyces cerevisiae and identifies many well known complexes. Experimental results show that the algorithm OIIP has higher F-measure and accuracy compared to other competing approaches. PMID:22165991

  4. [Study on effective substance basis and molecular mechanism of Qigui Tongfeng tablet using network pharmacology method].

    PubMed

    Ke, Zhi-peng; Zhang, Xin-zhuang; Ding, Yue; Cao, Liang; Li, Na; Ding, Gang; Wang, Zhen-zhong; Xiao, Wei

    2015-07-01

    Qigui Tongfeng tablet (QLTFT) is a traditional Chinese medicine with good effect for treating gout. Here, network pharmacology method and molecular similarity analysis were utilized to study the effective substance basis and molecular mechanism of the QLTFT on the gout. The similarity to the medicinal compounds is reflected in the Tanimoto coefficient that gives the structural similarity of two compounds. Operationally, similar modifiers were described as pairs of concepts with a similarity score of 0. 500. The results of the molecular similarity analysis suggested that the flavonoids in QLTFT could be new leads for gout. Furthermore, complex biological systems may be represented and analyzed as computable networks. Two important properties of a network were degree and betweenness. Nodes with high degree or high betweenness may play important roles in the overall composition of a network. And the results of network analysis showed that dongbeinine, verticinone-N-oxide, verticine N-oxide, peimine, peiminine, isobaimonidine, dongbeirine, peimisine and simi-arenol which with high degree acted on xanthine dehydrogenase/oxidase, matrix metalloproteinase-9, an arachidonate 5-lipoxygenase-activating protein, tyrosine-protein kinase and etc. Inhibition of these targets can prevent the formation of uric acid, reduce inflammation by uric acid and regulate the body's immune response. Thus, these compounds may be the main effective substance basis. The research results not only reveals its molecular mechanism, but also provide a theoretical basis for the quality control of drugs and clinical application.

  5. Stabilized polyacrylic saccharide protein conjugates

    DOEpatents

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1996-02-20

    This invention is directed to water soluble protein polymer conjugates which are stable in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups. 16 figs.

  6. Sorting sweet sorting. Protein secretion.

    PubMed

    Ponnambalam, S; Banting, G

    1996-09-01

    Membrane-spanning, lectin-like proteins in the eukaryotic secretory pathway seem to operate quality-control checkpoints by fine tuning protein exit or retention within each subcompartment. PMID:8805362

  7. Controlling allosteric networks in proteins

    NASA Astrophysics Data System (ADS)

    Dokholyan, Nikolay

    2013-03-01

    We present a novel methodology based on graph theory and discrete molecular dynamics simulations for delineating allosteric pathways in proteins. We use this methodology to uncover the structural mechanisms responsible for coupling of distal sites on proteins and utilize it for allosteric modulation of proteins. We will present examples where inference of allosteric networks and its rewiring allows us to ``rescue'' cystic fibrosis transmembrane conductance regulator (CFTR), a protein associated with fatal genetic disease cystic fibrosis. We also use our methodology to control protein function allosterically. We design a novel protein domain that can be inserted into identified allosteric site of target protein. Using a drug that binds to our domain, we alter the function of the target protein. We successfully tested this methodology in vitro, in living cells and in zebrafish. We further demonstrate transferability of our allosteric modulation methodology to other systems and extend it to become ligh-activatable.

  8. Leptospira Protein Expression During Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are characterizing protein expression in vivo during experimental leptospirosis using immunofluorescence microscopy. Coding regions for several proteins were identified through analysis of Leptospira interrogans serovar Copenhageni and L. borgpetersenii serovar Hardjo genomes. In addition, codi...

  9. Stabilized polyacrylic saccharide protein conjugates

    DOEpatents

    Callstrom, Matthew R.; Bednarski, Mark D.; Gruber, Patrick R.

    1996-01-01

    This invention is directed to water soluble protein polymer conjugates which are stabile in hostile environments. The conjugate comprises a protein which is linked to an acrylic polymer at multiple points through saccharide linker groups.

  10. Microtubules, Tubulins and Associated Proteins.

    ERIC Educational Resources Information Center

    Raxworthy, Michael J.

    1988-01-01

    Reviews much of what is known about microtubules, which are biopolymers consisting predominantly of subunits of the globular protein, tubulin. Describes the functions of microtubules, their structure and assembly, microtube associated proteins, and microtubule-disrupting agents. (TW)

  11. Nanobiotechnology: protein-nanomaterial interactions.

    PubMed

    Kane, Ravi S; Stroock, Abraham D

    2007-01-01

    We review recent research that involves the interaction of nanomaterials such as nanoparticles, nanowires, and carbon nanotubes with proteins. We begin with a focus on the fundamentals of the structure and function of proteins on nanomaterials. We then review work in three areas that exploit these interactions: (1) sensing, (2) assembly of nanomaterials by proteins and proteins by nanomaterials, and (3) interactions with cells. We conclude with the identification of challenges and opportunities for the future. PMID:17335286

  12. The Papillomavirus E2 Proteins

    PubMed Central

    McBride, Alison A.

    2013-01-01

    The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein. PMID:23849793

  13. Tyrosine phosphorylation of WW proteins

    PubMed Central

    Reuven, Nina; Shanzer, Matan

    2015-01-01

    A number of key regulatory proteins contain one or two copies of the WW domain known to mediate protein–protein interaction via proline-rich motifs, such as PPxY. The Hippo pathway components take advantage of this module to transduce tumor suppressor signaling. It is becoming evident that tyrosine phosphorylation is a critical regulator of the WW proteins. Here, we review the current knowledge on the involved tyrosine kinases and their roles in regulating the WW proteins. PMID:25627656

  14. Endogenous protein phosphorylation and protein kinase activity in winged bean.

    PubMed

    Mukhopadhyay, K; Singh, M

    1997-10-01

    In winged bean (Psophocarpus tetragonolobus) protein kinases (E.C. 2.7.1.37) were found in all tissues studied. There was a significant increase in kinase activity during seed development, with a concomitant enhancement in the phosphorylation of a number of polypeptides; this was reversed in germinating seed cotyledons. Protein phosphorylation was apparently correlated with the increase in the protein content of the developing seed and the growing axis. At least three distinct autophosphorylating proteins could be distinguished in the developing seeds after SDS-PAGE, indicating the presence of different types of protein kinases in winged bean.

  15. Protein Adsorption in Three Dimensions

    PubMed Central

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  16. Implication of Terminal Residues at Protein-Protein and Protein-DNA Interfaces.

    PubMed

    Martin, Olivier M F; Etheve, Loïc; Launay, Guillaume; Martin, Juliette

    2016-01-01

    Terminal residues of protein chains are charged and more flexible than other residues since they are constrained only on one side. Do they play a particular role in protein-protein and protein-DNA interfaces? To answer this question, we considered large sets of non-redundant protein-protein and protein-DNA complexes and analyzed the status of terminal residues and their involvement in interfaces. In protein-protein complexes, we found that more than half of terminal residues (62%) are either modified by attachment of a tag peptide (10%) or have missing coordinates in the analyzed structures (52%). Terminal residues are almost exclusively located at the surface of proteins (94%). Contrary to charged residues, they are not over or under-represented in protein-protein interfaces, but strongly prefer the peripheral region of interfaces when present at the interface (83% of terminal residues). The almost exclusive location of terminal residues at the surface of the proteins or in the rim regions of interfaces explains that experimental methods relying on tail hybridization can be successfully applied without disrupting the complexes under study. Concerning conformational rearrangement in protein-protein complexes, despite their expected flexibility, terminal residues adopt similar locations between the free and bound forms of the docking benchmark. In protein-DNA complexes, N-terminal residues are twice more frequent than C-terminal residues at interfaces. Both N-terminal and C-terminal residues are under-represented in interfaces, in contrast to positively charged residues, which are strongly favored. When located in protein-DNA interfaces, terminal residues prefer the periphery. N-terminal and C-terminal residues thus have particular properties with regard to interfaces, which cannot be reduced to their charged nature. PMID:27611671

  17. Implication of Terminal Residues at Protein-Protein and Protein-DNA Interfaces

    PubMed Central

    Martin, Olivier M. F.; Etheve, Loïc; Launay, Guillaume

    2016-01-01

    Terminal residues of protein chains are charged and more flexible than other residues since they are constrained only on one side. Do they play a particular role in protein-protein and protein-DNA interfaces? To answer this question, we considered large sets of non-redundant protein-protein and protein-DNA complexes and analyzed the status of terminal residues and their involvement in interfaces. In protein-protein complexes, we found that more than half of terminal residues (62%) are either modified by attachment of a tag peptide (10%) or have missing coordinates in the analyzed structures (52%). Terminal residues are almost exclusively located at the surface of proteins (94%). Contrary to charged residues, they are not over or under-represented in protein-protein interfaces, but strongly prefer the peripheral region of interfaces when present at the interface (83% of terminal residues). The almost exclusive location of terminal residues at the surface of the proteins or in the rim regions of interfaces explains that experimental methods relying on tail hybridization can be successfully applied without disrupting the complexes under study. Concerning conformational rearrangement in protein-protein complexes, despite their expected flexibility, terminal residues adopt similar locations between the free and bound forms of the docking benchmark. In protein-DNA complexes, N-terminal residues are twice more frequent than C-terminal residues at interfaces. Both N-terminal and C-terminal residues are under-represented in interfaces, in contrast to positively charged residues, which are strongly favored. When located in protein-DNA interfaces, terminal residues prefer the periphery. N-terminal and C-terminal residues thus have particular properties with regard to interfaces, which cannot be reduced to their charged nature. PMID:27611671

  18. Aeolotopic interactions of globular proteins

    PubMed Central

    Lomakin, Aleksey; Asherie, Neer; Benedek, George B.

    1999-01-01

    Protein crystallization, aggregation, liquid–liquid phase separation, and self-assembly are important in protein structure determination in the industrial processing of proteins and in the inhibition of protein condensation diseases. To fully describe such phase transformations in globular protein solutions, it is necessary to account for the strong spatial variation of the interactions on the protein surface. One difficulty is that each globular protein has its own unique surface, which is crucial for its biological function. However, the similarities amongst the macroscopic properties of different protein solutions suggest that there may exist a generic model that is capable of describing the nonuniform interactions between globular proteins. In this paper we present such a model, which includes the short-range interactions that vary from place to place on the surface of the protein. We show that this aeolotopic model [from the Greek aiolos (“variable”) and topos (“place”)] describes the phase diagram of globular proteins and provides insight into protein aggregation and crystallization. PMID:10449715

  19. Role of regulator of G protein signaling proteins in bone

    PubMed Central

    Keinan, David; Yang, Shuying; Cohen, Robert E.; Yuan, Xue; Liu, Tongjun; Li, Yi-Ping

    2014-01-01

    Regulators of G protein signaling (RGS) proteins are a family with more than 30 proteins that all contain an RGS domain. In the past decade, increasing evidence has indicated that RGS proteins play crucial roles in the regulation of G protein coupling receptors (GPCR), G proteins, and calcium signaling during cell proliferation, migration, and differentiation in a variety of tissues. In bone, those proteins modulate bone development and remodeling by influencing various signaling pathways such as GPCR-G protein signaling, Wnt, calcium oscillations and PTH. This review summarizes the recent advances in the understanding of the regulation of RGS genes expression, as well as the functions and mechanisms of RGS proteins, especially in regulating GPCR-G protein signaling, Wnt signaling, calcium oscillations signaling and PTH signaling during bone development and remodeling. This review also highlights the regulation of different RGS proteins in osteoblasts, chondrocytes and osteoclasts. The knowledge from the recent advances of RGS study summarized in the review would provide the insights into new therapies for bone diseases. PMID:24389209

  20. Highly specific protein-protein interactions, evolution and negative design.

    PubMed

    Sear, Richard P

    2004-12-01

    We consider highly specific protein-protein interactions in proteomes of simple model proteins. We are inspired by the work of Zarrinpar et al (2003 Nature 426 676). They took a binding domain in a signalling pathway in yeast and replaced it with domains of the same class but from different organisms. They found that the probability of a protein binding to a protein from the proteome of a different organism is rather high, around one half. We calculate the probability of a model protein from one proteome binding to the protein of a different proteome. These proteomes are obtained by sampling the space of functional proteomes uniformly. In agreement with Zarrinpar et al we find that the probability of a protein binding a protein from another proteome is rather high, of order one tenth. Our results, together with those of Zarrinpar et al, suggest that designing, say, a peptide to block or reconstitute a single signalling pathway, without affecting any other pathways, requires knowledge of all the partners of the class of binding domains the peptide is designed to mimic. This knowledge is required to use negative design to explicitly design out interactions of the peptide with proteins other than its target. We also found that patches that are required to bind with high specificity evolve more slowly than those that are required only to not bind to any other patch. This is consistent with some analysis of sequence data for proteins engaged in highly specific interactions.

  1. Biophysics of protein evolution and evolutionary protein biophysics

    PubMed Central

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  2. Protein adsorption to hydrocephalus shunt catheters: CSF protein adsorption

    PubMed Central

    Brydon, H.; Keir, G.; Thompson, E.; Bayston, R.; Hayward, R.; Harkness, W.

    1998-01-01

    OBJECTIVE—To assess the quantity and nature of the proteins that adsorb to hydrocephalus shunt catheters after implantation, and to determine whether sufficient could accumulate to obstruct the catheter.
DESIGN—Elution of proteins from 102 explanted shunt catheters, with protein assay and electrophoresis of the eluate, and scanning electron microscopy (SEM) of the catheters.
RESULTS—The amount of protein elutable was extremely low, and significant protein, apart from a thin film, was not found on SEM. Qualitative analysis disclosed that most of the adsorbed protein was albumin.
CONCLUSIONS—Protein deposition on hydrocephalus catheters does not occur in sufficient quantities to cause catheter obstruction.

 PMID:9598681

  3. Flowering Buds of Globular Proteins: Transpiring Simplicity of Protein Organization

    PubMed Central

    Berezovsky, Igor N.

    2002-01-01

    Structural and functional complexity of proteins is dramatically reduced to a simple linear picture when the laws of polymer physics are considered. A basic unit of the protein structure is a nearly standard closed loop of 25–35 amino acid residues, and every globular protein is built of consecutively connected closed loops. The physical necessity of the closed loops had been apparently imposed on the early stages of protein evolution. Indeed, the most frequent prototype sequence motifs in prokaryotic proteins have the same sequence size, and their high match representatives are found as closed loops in crystallized proteins. Thus, the linear organization of the closed loop elements is a quintessence of protein evolution, structure and folding. PMID:18629251

  4. Commercial Protein Crystal Growth: Protein Crystallization Facility (CPCG-H)

    NASA Astrophysics Data System (ADS)

    DeLucas, Lawrence J.

    2002-12-01

    Within the human body, there are thousands of different proteins that serve a variety of different functions, such as making it possible for red blood cells to carry oxygen in our bodies. Yet proteins can also be involved in diseases. Each protein has a particular chemical structure, which means it has a unique shape. It is this three-dimensional shape that allows each protein to do its job by interacting with chemicals or binding with other proteins. If researchers can determine the shape, or shapes, of a protein, they can learn how it works. This information can then be used by the pharmaceutical industry to develop new drugs or improve the way medications work. The NASA Commercial Space Center sponsoring this experiment - the Center for Biophysical Sciences and Engineering at the University of Alabama at Birmingham - has more than 60 industry and academic partners who grow protein crystals and use the information in drug design projects.

  5. Protein subcellular localization assays using split fluorescent proteins

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  6. Yeast protein-protein interaction assays and screens.

    PubMed

    de Folter, Stefan; Immink, Richard G H

    2011-01-01

    Most transcription factors fulfill their role in protein complexes. As a consequence, information about their interaction capacity sheds light on a protein's function and the molecular mechanism underlying this activity. The yeast two-hybrid GAL4 (Y2H) assay is a powerful method to unravel and identify the composition of protein complexes. This in vivo based system makes use of two functional protein domains of the GAL4 transcription factor, each fused to a protein of interest. Upon interaction between the two proteins under study, a transcriptional activator gets reconstituted and reporter genes get activated, allowing the yeast to grow on selective medium. In this chapter protocols are given for Y2H library screening, directed Y2H screening, Y2H matrix screening, and YnH screening involving more than two proteins. PMID:21720951

  7. Protein enriched pasta: structure and digestibility of its protein network.

    PubMed

    Laleg, Karima; Barron, Cécile; Santé-Lhoutellier, Véronique; Walrand, Stéphane; Micard, Valérie

    2016-02-01

    Wheat (W) pasta was enriched in 6% gluten (G), 35% faba (F) or 5% egg (E) to increase its protein content (13% to 17%). The impact of the enrichment on the multiscale structure of the pasta and on in vitro protein digestibility was studied. Increasing the protein content (W- vs. G-pasta) strengthened pasta structure at molecular and macroscopic scales but reduced its protein digestibility by 3% by forming a higher covalently linked protein network. Greater changes in the macroscopic and molecular structure of the pasta were obtained by varying the nature of protein used for enrichment. Proteins in G- and E-pasta were highly covalently linked (28-32%) resulting in a strong pasta structure. Conversely, F-protein (98% SDS-soluble) altered the pasta structure by diluting gluten and formed a weak protein network (18% covalent link). As a result, protein digestibility in F-pasta was significantly higher (46%) than in E- (44%) and G-pasta (39%). The effect of low (55 °C, LT) vs. very high temperature (90 °C, VHT) drying on the protein network structure and digestibility was shown to cause greater molecular changes than pasta formulation. Whatever the pasta, a general strengthening of its structure, a 33% to 47% increase in covalently linked proteins and a higher β-sheet structure were observed. However, these structural differences were evened out after the pasta was cooked, resulting in identical protein digestibility in LT and VHT pasta. Even after VHT drying, F-pasta had the best amino acid profile with the highest protein digestibility, proof of its nutritional interest.

  8. Protein enriched pasta: structure and digestibility of its protein network.

    PubMed

    Laleg, Karima; Barron, Cécile; Santé-Lhoutellier, Véronique; Walrand, Stéphane; Micard, Valérie

    2016-02-01

    Wheat (W) pasta was enriched in 6% gluten (G), 35% faba (F) or 5% egg (E) to increase its protein content (13% to 17%). The impact of the enrichment on the multiscale structure of the pasta and on in vitro protein digestibility was studied. Increasing the protein content (W- vs. G-pasta) strengthened pasta structure at molecular and macroscopic scales but reduced its protein digestibility by 3% by forming a higher covalently linked protein network. Greater changes in the macroscopic and molecular structure of the pasta were obtained by varying the nature of protein used for enrichment. Proteins in G- and E-pasta were highly covalently linked (28-32%) resulting in a strong pasta structure. Conversely, F-protein (98% SDS-soluble) altered the pasta structure by diluting gluten and formed a weak protein network (18% covalent link). As a result, protein digestibility in F-pasta was significantly higher (46%) than in E- (44%) and G-pasta (39%). The effect of low (55 °C, LT) vs. very high temperature (90 °C, VHT) drying on the protein network structure and digestibility was shown to cause greater molecular changes than pasta formulation. Whatever the pasta, a general strengthening of its structure, a 33% to 47% increase in covalently linked proteins and a higher β-sheet structure were observed. However, these structural differences were evened out after the pasta was cooked, resulting in identical protein digestibility in LT and VHT pasta. Even after VHT drying, F-pasta had the best amino acid profile with the highest protein digestibility, proof of its nutritional interest. PMID:26829164

  9. Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network

    PubMed Central

    2014-01-01

    Background MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate transcription of target genes. Whether the formation of functional tetramers is a widespread property of plant MADS domain proteins, or it is specific to few of these transcriptional regulators remains unclear. Results We analyzed the structure of the network of physical interactions among MADS domain proteins in Arabidopsis thaliana. We determined the abundance of subgraphs that represent the connection pattern expected for a MADS domain protein heterotetramer. These subgraphs were significantly more abundant in the MADS domain protein interaction network than in randomized analogous networks. Importantly, these subgraphs are not significantly frequent in a protein interaction network of TCP plant transcription factors, when compared to expectation by chance. In addition, we found that MADS domain proteins in tetramer-like subgraphs are more likely to be expressed jointly than proteins in other subgraphs. This effect is mainly due to proteins in the monophyletic MIKC clade, as there is no association between tetramer-like subgraphs and co-expression for proteins outside this clade. Conclusions Our results support that the tendency to form functional tetramers is widespread in the MADS domain protein-protein interaction network. Our observations also suggest that this trend is prevalent, or perhaps exclusive, for proteins in the MIKC clade. Because it is possible to retrodict several experimental results from our analyses, our work can be an important aid to make new predictions and facilitates experimental research on plant MADS domain proteins. PMID:24468197

  10. Viruses and viral proteins

    PubMed Central

    Verdaguer, Nuria; Ferrero, Diego; Murthy, Mathur R. N.

    2014-01-01

    For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes. PMID:25485129

  11. SERUM PROTEIN PROFILES IN COCCIDIOIDOMYCOSIS

    PubMed Central

    Reed, William B.; Heiskell, Charles L.; Holeman, Charles W.; Carpenter, Charles

    1962-01-01

    Serum protein analysis is a valuable addition to the present methods for evaluating the status of the individual patient with coccidioidomycosis. The albumin protein and albumin glycoprotein decrease and gamma protein increases in relation to severity of infection. In 40 patients with coccidioidomycosis, changes in individual protein fractions could be significantly correlated with conventional laboratory tests, such as the complement fixation test, erythrocyte sedimentation rate and hematocrit. Changes in the alpha, glycoprotein concentration, the erythrocyte sedimentation rate and the hematocrit value appear to be related to the degree of inflammation, while the changes in the gamma protein and the beta, glycoprotein appear to be related to the specific antibody response. PMID:13973566

  12. Serum protein profiles in coccidioidomycosis.

    PubMed

    REED, W B; HEISKELL, C L; HOLEMAN, C W; CARPENTER, C

    1962-12-01

    Serum protein analysis is a valuable addition to the present methods for evaluating the status of the individual patient with coccidioidomycosis. The albumin protein and albumin glycoprotein decrease and gamma protein increases in relation to severity of infection. In 40 patients with coccidioidomycosis, changes in individual protein fractions could be significantly correlated with conventional laboratory tests, such as the complement fixation test, erythrocyte sedimentation rate and hematocrit. Changes in the alpha, glycoprotein concentration, the erythrocyte sedimentation rate and the hematocrit value appear to be related to the degree of inflammation, while the changes in the gamma protein and the beta, glycoprotein appear to be related to the specific antibody response.

  13. Probing High-density Functional Protein Microarrays to Detect Protein-protein Interactions.

    PubMed

    Fasolo, Joseph; Im, Hogune; Snyder, Michael P

    2015-01-01

    High-density functional protein microarrays containing ~4,200 recombinant yeast proteins are examined for kinase protein-protein interactions using an affinity purified yeast kinase fusion protein containing a V5-epitope tag for read-out. Purified kinase is obtained through culture of a yeast strain optimized for high copy protein production harboring a plasmid containing a Kinase-V5 fusion construct under a GAL inducible promoter. The yeast is grown in restrictive media with a neutral carbon source for 6 hr followed by induction with 2% galactose. Next, the culture is harvested and kinase is purified using standard affinity chromatographic techniques to obtain a highly purified protein kinase for use in the assay. The purified kinase is diluted with kinase buffer to an appropriate range for the assay and the protein microarrays are blocked prior to hybridization with the protein microarray. After the hybridization, the arrays are probed with monoclonal V5 antibody to identify proteins bound by the kinase-V5 protein. Finally, the arrays are scanned using a standard microarray scanner, and data is extracted for downstream informatics analysis to determine a high confidence set of protein interactions for downstream validation in vivo. PMID:26274875

  14. Protein-protein interaction network-based detection of functionally similar proteins within species.

    PubMed

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent.

  15. Intrinsic Localized Modes in Proteins

    PubMed Central

    Nicolaï, Adrien; Delarue, Patrice; Senet, Patrick

    2015-01-01

    Protein dynamics is essential for proteins to function. Here we predicted the existence of rare, large nonlinear excitations, termed intrinsic localized modes (ILMs), of the main chain of proteins based on all-atom molecular dynamics simulations of two fast-folder proteins and of a rigid α/β protein at 300 K and at 380 K in solution. These nonlinear excitations arise from the anharmonicity of the protein dynamics. The ILMs were detected by computing the Shannon entropy of the protein main-chain fluctuations. In the non-native state (significantly explored at 380 K), the probability of their excitation was increased by a factor between 9 and 28 for the fast-folder proteins and by a factor 2 for the rigid protein. This enhancement in the non-native state was due to glycine, as demonstrated by simulations in which glycine was mutated to alanine. These ILMs might play a functional role in the flexible regions of proteins and in proteins in a non-native state (i.e. misfolded or unfolded states). PMID:26658321

  16. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenblum, William M.; Delucas, Lawrence J.; Wilson, William W.

    1989-01-01

    Major advances have been made in several of the experimental aspects of protein crystallography, leaving protein crystallization as one of the few remaining bottlenecks. As a result, it has become important that the science of protein crystal growth is better understood and that improved methods for protein crystallization are developed. Preliminary experiments with both small molecules and proteins indicate that microgravity may beneficially affect crystal growth. For this reason, a series of protein crystal growth experiments using the Space Shuttle was initiated. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth. Various optical techniques are being utilized to monitor the crystal growth process from the incipient or nucleation stage and throughout the growth phase. The eventual goal of these studies is to develop a system which utilizes optical monitoring for dynamic control of the crystallization process.

  17. Protein Adsorption in Three Dimensions

    PubMed Central

    Vogler, Erwin A.

    2011-01-01

    Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the “protein-adsorption problem” to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly-formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations CB. This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume VI by expulsion of either-or-both interphase water and

  18. Protein Repeats from First Principles.

    PubMed

    Turjanski, Pablo; Parra, R Gonzalo; Espada, Rocío; Becher, Verónica; Ferreiro, Diego U

    2016-01-01

    Some natural proteins display recurrent structural patterns. Despite being highly similar at the tertiary structure level, repeating patterns within a single repeat protein can be extremely variable at the sequence level. We use a mathematical definition of a repetition and investigate the occurrences of these in sequences of different protein families. We found that long stretches of perfect repetitions are infrequent in individual natural proteins, even for those which are known to fold into structures of recurrent structural motifs. We found that natural repeat proteins are indeed repetitive in their families, exhibiting abundant stretches of 6 amino acids or longer that are perfect repetitions in the reference family. We provide a systematic quantification for this repetitiveness. We show that this form of repetitiveness is not exclusive of repeat proteins, but also occurs in globular domains. A by-product of this work is a fast quantification of the likelihood of a protein to belong to a family. PMID:27044676

  19. Mathematical methods for protein science

    SciTech Connect

    Hart, W.; Istrail, S.; Atkins, J.

    1997-12-31

    Understanding the structure and function of proteins is a fundamental endeavor in molecular biology. Currently, over 100,000 protein sequences have been determined by experimental methods. The three dimensional structure of the protein determines its function, but there are currently less than 4,000 structures known to atomic resolution. Accordingly, techniques to predict protein structure from sequence have an important role in aiding the understanding of the Genome and the effects of mutations in genetic disease. The authors describe current efforts at Sandia to better understand the structure of proteins through rigorous mathematical analyses of simple lattice models. The efforts have focused on two aspects of protein science: mathematical structure prediction, and inverse protein folding.

  20. The Papillomavirus E2 proteins

    SciTech Connect

    McBride, Alison A.

    2013-10-15

    The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein. - Highlights: • Overview of E2 protein functions. • Structural domains of the papillomavirus E2 proteins. • Analysis of E2 binding sites in different genera of papillomaviruses. • Compilation of E2 associated proteins. • Comparison of key mutations in distinct E2 functions.

  1. Dietary protein and blood pressure.

    PubMed

    Bursztyn, P G; Vas Dias, F W

    1985-01-01

    Vegetarians have lower blood pressures than omnivores. Dietary protein may be partly responsible. Human volunteers, whose normal diet contained little soya protein, were given soya based foods to replace some of the meat in their diet. During this period over 20% of the total protein intake was derived from soya, however blood pressures remained unchanged. Rabbits were given diets based on either soya, casein, or fish protein. The animals' diets were then changed to one of the other protein sources. During the subsequent 3 weeks, small increases in blood pressure were seen in the casein and soya groups. When rabbits were given fat enriched diets, blood pressures rose but the increase was independent of the type of protein in the diet. It is concluded that the type of protein consumed is unlikely to account for the blood pressure differences between vegetarians and omnivores. Arguments are presented suggesting that other dietary components, such as fat or fibre may be responsible.

  2. Protein Repeats from First Principles.

    PubMed

    Turjanski, Pablo; Parra, R Gonzalo; Espada, Rocío; Becher, Verónica; Ferreiro, Diego U

    2016-04-05

    Some natural proteins display recurrent structural patterns. Despite being highly similar at the tertiary structure level, repeating patterns within a single repeat protein can be extremely variable at the sequence level. We use a mathematical definition of a repetition and investigate the occurrences of these in sequences of different protein families. We found that long stretches of perfect repetitions are infrequent in individual natural proteins, even for those which are known to fold into structures of recurrent structural motifs. We found that natural repeat proteins are indeed repetitive in their families, exhibiting abundant stretches of 6 amino acids or longer that are perfect repetitions in the reference family. We provide a systematic quantification for this repetitiveness. We show that this form of repetitiveness is not exclusive of repeat proteins, but also occurs in globular domains. A by-product of this work is a fast quantification of the likelihood of a protein to belong to a family.

  3. Protein Repeats from First Principles

    PubMed Central

    Turjanski, Pablo; Parra, R. Gonzalo; Espada, Rocío; Becher, Verónica; Ferreiro, Diego U.

    2016-01-01

    Some natural proteins display recurrent structural patterns. Despite being highly similar at the tertiary structure level, repeating patterns within a single repeat protein can be extremely variable at the sequence level. We use a mathematical definition of a repetition and investigate the occurrences of these in sequences of different protein families. We found that long stretches of perfect repetitions are infrequent in individual natural proteins, even for those which are known to fold into structures of recurrent structural motifs. We found that natural repeat proteins are indeed repetitive in their families, exhibiting abundant stretches of 6 amino acids or longer that are perfect repetitions in the reference family. We provide a systematic quantification for this repetitiveness. We show that this form of repetitiveness is not exclusive of repeat proteins, but also occurs in globular domains. A by-product of this work is a fast quantification of the likelihood of a protein to belong to a family. PMID:27044676

  4. Protein-protein interaction network analysis of cirrhosis liver disease

    PubMed Central

    Safaei, Akram; Rezaei Tavirani, Mostafa; Arefi Oskouei, Afsaneh; Zamanian Azodi, Mona; Mohebbi, Seyed Reza; Nikzamir, Abdol Rahim

    2016-01-01

    Aim: Evaluation of biological characteristics of 13 identified proteins of patients with cirrhotic liver disease is the main aim of this research. Background: In clinical usage, liver biopsy remains the gold standard for diagnosis of hepatic fibrosis. Evaluation and confirmation of liver fibrosis stages and severity of chronic diseases require a precise and noninvasive biomarkers. Since the early detection of cirrhosis is a clinical problem, achieving a sensitive, specific and predictive novel method based on biomarkers is an important task. Methods: Essential analysis, such as gene ontology (GO) enrichment and protein-protein interactions (PPI) was undergone EXPASy, STRING Database and DAVID Bioinformatics Resources query. Results: Based on GO analysis, most of proteins are located in the endoplasmic reticulum lumen, intracellular organelle lumen, membrane-enclosed lumen, and extracellular region. The relevant molecular functions are actin binding, metal ion binding, cation binding and ion binding. Cell adhesion, biological adhesion, cellular amino acid derivative, metabolic process and homeostatic process are the related processes. Protein-protein interaction network analysis introduced five proteins (fibroblast growth factor receptor 4, tropomyosin 4, tropomyosin 2 (beta), lectin, Lectin galactoside-binding soluble 3 binding protein and apolipoprotein A-I) as hub and bottleneck proteins. Conclusion: Our result indicates that regulation of lipid metabolism and cell survival are important biological processes involved in cirrhosis disease. More investigation of above mentioned proteins will provide a better understanding of cirrhosis disease. PMID:27099671

  5. A new protein structure representation for efficient protein function prediction.

    PubMed

    Maghawry, Huda A; Mostafa, Mostafa G M; Gharib, Tarek F

    2014-12-01

    One of the challenging problems in bioinformatics is the prediction of protein function. Protein function is the main key that can be used to classify different proteins. Protein function can be inferred experimentally with very small throughput or computationally with very high throughput. Computational methods are sequence based or structure based. Structure-based methods produce more accurate protein function prediction. In this article, we propose a new protein structure representation for efficient protein function prediction. The representation is based on three-dimensional patterns of protein residues. In the analysis, we used protein function based on enzyme activity through six mechanistically diverse enzyme superfamilies: amidohydrolase, crotonase, haloacid dehalogenase, isoprenoid synthase type I, and vicinal oxygen chelate. We applied three different classification methods, naïve Bayes, k-nearest neighbors, and random forest, to predict the enzyme superfamily of a given protein. The prediction accuracy using the proposed representation outperforms a recently introduced representation method that is based only on the distance patterns. The results show that the proposed representation achieved prediction accuracy up to 98%, with improvement of about 10% on average.

  6. Converting a marginally hydrophobic soluble protein into a membrane protein.

    PubMed

    Nørholm, Morten H H; Cunningham, Fiona; Deber, Charles M; von Heijne, Gunnar

    2011-03-18

    δ-Helices are marginally hydrophobic α-helical segments in soluble proteins that exhibit certain sequence characteristics of transmembrane (TM) helices [Cunningham, F., Rath, A., Johnson, R. M. & Deber, C. M. (2009). Distinctions between hydrophobic helices in globular proteins and TM segments as factors in protein sorting. J. Biol. Chem., 284, 5395-402]. In order to better understand the difference between δ-helices and TM helices, we have studied the insertion of five TM-like δ-helices into dog pancreas microsomal membranes. Using model constructs in which an isolated δ-helix is engineered into a bona fide membrane protein, we find that, for two δ-helices originating from secreted proteins, at least three single-nucleotide mutations are necessary to obtain efficient membrane insertion, whereas one mutation is sufficient in a δ-helix from the cytosolic protein P450BM-3. We further find that only when the entire upstream region of the mutated δ-helix in the intact cytochrome P450BM-3 is deleted does a small fraction of the truncated protein insert into microsomes. Our results suggest that upstream portions of the polypeptide, as well as embedded charged residues, protect δ-helices in globular proteins from being recognized by the signal recognition particle-Sec61 endoplasmic-reticulum-targeting machinery and that δ-helices in secreted proteins are mutationally more distant from TM helices than δ-helices in cytosolic proteins.

  7. Optimization of the electrostatic interactions in protein-protein complexes

    NASA Astrophysics Data System (ADS)

    Alexov, Emil; Brock, Kelly; Kundrotas, Petras

    2007-03-01

    Electrostatic energy is one of the driving forces of protein-protein association. Understanding the role of the energy components on the energetics of protein-protein association will help us in engineering protein-protein interactions and could lead to development of scoring functions that can rank alternative models and decoys. Here we investigate whether the components of the electrostatic energy of protein-protein complexes is optimized in respect to random distribution of the charged residues. We report a clear tendency that coulombic electrostatic interactions are optimized, while the reaction field energy is inversely optimized. It was found that the maximum of the coulombic energy Z-score is shifted 3 units away from the origin and the maximum of the reaction field energy by 2 units. Such a large shift of the Z-score of both coulombic and reaction field energies indicates that wild-type protein-protein interactions are in most cases optimized in terms of coulombic interactions while compromising reaction field energy. Based on these finding a scoring function was developed as a linear combination of the Z-score of the coulombic interactions minus Z-score of the reaction field energy. The scoring function was tested against the decoy sets and it was shown that in majority of the cases we can identify the wild-type complex among hundreds of decoys.

  8. Protein farnesyltransferase and protein prenylation in Plasmodium falciparum.

    PubMed

    Chakrabarti, Debopam; Da Silva, Thiago; Barger, Jennifer; Paquette, Steve; Patel, Hetal; Patterson, Shelley; Allen, Charles M

    2002-11-01

    Comparison of the malaria parasite and mammalian protein prenyltransferases and their cellular substrates is important for establishing this enzyme as a target for developing antimalarial agents. Nineteen heptapeptides differing only in their carboxyl-terminal amino acid were tested as alternative substrates of partially purified Plasmodium falciparum protein farnesyltransferase. Only NRSCAIM and NRSCAIQ serve as substrates, with NRSCAIM being the best. Peptidomimetics, FTI-276 and GGTI-287, inhibit the transferase with IC(50) values of 1 and 32 nm, respectively. Incubation of P. falciparum-infected erythrocytes with [(3)H]farnesol labels 50- and 22-28-kDa proteins, whereas [(3)H]geranylgeraniol labels only 22-28-kDa proteins. The 50-kDa protein is shown to be farnesylated, whereas the 22-28-kDa proteins are geranylgeranylated, irrespective of the labeling prenol. Protein labeling is inhibited more than 50% by either 5 microm FTI-277 or GGTI-298. The same concentration of inhibitors also inhibits parasite growth from the ring stage by 50%, decreases expression of prenylated proteins as measured with prenyl-specific antibody, and inhibits parasite differentiation beyond the trophozoite stage. Furthermore, differentiation specific prenylation of P. falciparum proteins is demonstrated. Protein labeling is detected predominantly during the trophozoite to schizont and schizont to ring transitions. These results demonstrate unique properties of protein prenylation in P. falciparum: a limited specificity of the farnesyltransferase for peptide substrates compared with mammalian enzymes, the ability to use farnesol to label both farnesyl and geranylgeranyl moieties on proteins, differentiation specific protein prenylation, and the ability of peptidomimetic prenyltransferase inhibitors to block parasite differentiation.

  9. Introduction to protein crystallization.

    PubMed

    McPherson, Alexander; Gavira, Jose A

    2014-01-01

    Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid-liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies.

  10. Cow's Milk Protein Allergy.

    PubMed

    Mousan, Grace; Kamat, Deepak

    2016-10-01

    Cow's milk protein allergy (CMPA) is a common condition encountered in children with incidence estimated as 2% to 7.5% in the first year of life. Formula and breast-fed babies can present with symptoms of CMPA. It is important to accurately diagnose CMPA to avoid the consequences of either under- or overdiagnosis. CMPA is classically categorized into immunoglobulin E (IgE)- or non-IgE-mediated reaction that vary in clinical manifestations, diagnostic evaluation, and prognosis. The most commonly involved systems in patients with CMPA are gastrointestinal, skin, and respiratory. Evaluation of CMPA starts with good data gathering followed by testing if indicated. Treatment is simply by avoidance of cow's milk protein (CMP) in the child's or mother's diet, if exclusively breast-feeding. This article reviews the definition, epidemiology, risk factors, pathogenesis, clinical presentation, evaluation, management, and prognosis of CMPA and provides an overview of different options for formulas and their indication in the treatment of CMPA. PMID:27582492

  11. Rat myocardial protein degradation.

    PubMed

    Steer, J H; Hopkins, B E

    1981-07-01

    1. Myocardial protein degradation rates were determined by following tyrosine release from rat isolated left hemi-atria in vitro. 2. After two 20 min preincubations the rate of tyrosine release from hemi-atria was constant for 4 h. 3. Skeletal muscle protein degradation was determined by following tyrosine release from rat isolated hemi-diaphragm (Fulks, Li & Goldberg, 1975). 4. Insulin (10(-7) M) inhibited tyrosine release from hemi-atria and hemi-diaphragm to a similar extent. A 48 h fast increased tyrosine release rate from hemi-diaphragm and decreased tyrosine release rate from hemi-atria. Hemi-diaphragm tyrosine release was inhibited by 15 mmol/l D-glucose but a variety of concentrations of D-glucose (0, 5, 15 mmol/l) had no effect on tyrosine release from hemi-atria. Five times the normal plasma levels of the branched-chain amino acids leucine, isoleucine and valine had no effect on tyrosine release from either hemi-atria or hemi-diaphragm.

  12. Introduction to protein crystallization

    PubMed Central

    McPherson, Alexander; Gavira, Jose A.

    2014-01-01

    Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid–liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies. PMID:24419610

  13. Peptides and proteins

    SciTech Connect

    Bachovchin, W.W.; Unkefer, C.J.

    1994-12-01

    Advances in magnetic resonance and vibrational spectroscopy make it possible to derive detailed structural information about biomolecular structures in solution. These techniques are critically dependent on the availability of labeled compounds. For example, NMR techniques used today to derive peptide and protein structures require uniformity {sup 13}C-and {sup 15}N-labeled samples that are derived biosynthetically from (U-6-{sup 13}C) glucose. These experiments are possible now because, during the 1970s, the National Stable Isotope Resource developed algal methods for producing (U-6-{sup 13}C) glucose. If NMR techniques are to be used to study larger proteins, we will need sophisticated labelling patterns in amino acids that employ a combination of {sup 2}H, {sup 13}C, and {sup 15}N labeling. The availability of these specifically labeled amino acids requires a renewed investment in new methods for chemical synthesis of labeled amino acids. The development of new magnetic resonance or vibrational techniques to elucidate biomolecular structure will be seriously impeded if we do not see rapid progress in labeling technology. Investment in labeling chemistry is as important as investment in the development of advanced spectroscopic tools.

  14. Protein secretion in Pichia pastoris and advances in protein production.

    PubMed

    Damasceno, Leonardo M; Huang, Chung-Jr; Batt, Carl A

    2012-01-01

    Yeast expression systems have been successfully used for over 20 years for the production of recombinant proteins. With the growing interest in recombinant protein expression for various uses, yeast expression systems, such as the popular Pichia pastoris, are becoming increasingly important. Although P. pastoris has been successfully used in the production of many secreted and intracellular recombinant proteins, there is still room for improvement of this expression system. In particular, secretion of recombinant proteins is still one of the main reasons for using P. pastoris. Therefore, endoplasmic reticulum protein folding, correct glycosylation, vesicular transport to the plasma membrane, gene dosage, secretion signal sequences, and secretome studies are important considerations for improved recombinant protein production. PMID:22057543

  15. Neurocognitive derivation of protein surface property from protein aggregate parameters

    PubMed Central

    Mishra, Hrishikesh; Lahiri, Tapobrata

    2011-01-01

    Current work targeted to predicate parametric relationship between aggregate and individual property of a protein. In this approach, we considered individual property of a protein as its Surface Roughness Index (SRI) which was shown to have potential to classify SCOP protein families. The bulk property was however considered as Intensity Level based Multi-fractal Dimension (ILMFD) of ordinary microscopic images of heat denatured protein aggregates which was known to have potential to serve as protein marker. The protocol used multiple ILMFD inputs obtained for a protein to produce a set of mapped outputs as possible SRI candidates. The outputs were further clustered and largest cluster centre after normalization was found to be a close approximation of expected SRI that was calculated from known PDB structure. The outcome showed that faster derivation of individual protein’s surface property might be possible using its bulk form, heat denatured aggregates. PMID:21572883

  16. Side-Chain Conformational Preferences Govern Protein-Protein Interactions.

    PubMed

    Watkins, Andrew M; Bonneau, Richard; Arora, Paramjit S

    2016-08-24

    Protein secondary structures serve as geometrically constrained scaffolds for the display of key interacting residues at protein interfaces. Given the critical role of secondary structures in protein folding and the dependence of folding propensities on backbone dihedrals, secondary structure is expected to influence the identity of residues that are important for complex formation. Counter to this expectation, we find that a narrow set of residues dominates the binding energy in protein-protein complexes independent of backbone conformation. This finding suggests that the binding epitope may instead be substantially influenced by the side-chain conformations adopted. We analyzed side-chain conformational preferences in residues that contribute significantly to binding. This analysis suggests that preferred rotamers contribute directly to specificity in protein complex formation and provides guidelines for peptidomimetic inhibitor design.

  17. Signature Product Code for Predicting Protein-Protein Interactions

    SciTech Connect

    Martin, Shawn B.; Brown, William M.

    2004-09-25

    The SigProdV1.0 software consists of four programs which together allow the prediction of protein-protein interactions using only amino acid sequences and experimental data. The software is based on the use of tensor products of amino acid trimers coupled with classifiers known as support vector machines. Essentially the program looks for amino acid trimer pairs which occur more frequently in protein pairs which are known to interact. These trimer pairs are then used to make predictions about unknown protein pairs. A detailed description of the method can be found in the paper: S. Martin, D. Roe, J.L. Faulon. "Predicting protein-protein interactions using signature products," Bioinformatics, available online from Advance Access, Aug. 19, 2004.

  18. Protein-water dynamics in antifreeze protein III activity

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Bäumer, Alexander; Meister, Konrad; Bischak, Connor G.; DeVries, Arthur L.; Leitner, David M.; Havenith, Martina

    2016-03-01

    We combine Terahertz absorption spectroscopy (THz) and molecular dynamics (MD) simulations to investigate the underlying molecular mechanism for the antifreeze activity of one class of antifreeze protein, antifreeze protein type III (AFP-III) with a focus on the collective water hydrogen bond dynamics near the protein. After summarizing our previous work on AFPs, we present a new investigation of the effects of cosolutes on protein antifreeze activity by adding sodium citrate to the protein solution of AFP-III. Our results reveal that for AFP-III, unlike some other AFPs, the addition of the osmolyte sodium citrate does not affect the hydrogen bond dynamics at the protein surface significantly, as indicated by concentration dependent THz measurements. The present data, in combination with our previous THz measurements and molecular simulations, confirm that while long-range solvent perturbation is a necessary condition for the antifreeze activity of AFP-III, the local binding affinity determines the size of the hysteresis.

  19. Expanding coordination chemistry from protein to protein assembly.

    PubMed

    Sanghamitra, Nusrat J M; Ueno, Takafumi

    2013-05-14

    Bioinorganic chemistry is of growing importance in the fields of nanomaterial science and biotechnology. Coordination of metals by biological systems is a crucial step in intricate enzymatic reactions such as photosynthesis, nitrogen fixation and biomineralization. Although such systems employ protein assemblies as molecular scaffolds, the important roles of protein assemblies in coordination chemistry have not been systematically investigated and characterized. Many researchers are joining the field of bioinorganic chemistry to investigate the inorganic chemistry of protein assemblies. This area is emerging as an important next-generation research field in bioinorganic chemistry. This article reviews recent progress in rational design of protein assemblies in coordination chemistry for integration of catalytic reactions using metal complexes, preparation of mineral biomimetics, and mechanistic investigations of biomineralization processes with protein assemblies. The unique chemical properties of protein assemblies in the form of cages, tubes, and crystals are described in this review.

  20. Signature Product Code for Predicting Protein-Protein Interactions

    2004-09-25

    The SigProdV1.0 software consists of four programs which together allow the prediction of protein-protein interactions using only amino acid sequences and experimental data. The software is based on the use of tensor products of amino acid trimers coupled with classifiers known as support vector machines. Essentially the program looks for amino acid trimer pairs which occur more frequently in protein pairs which are known to interact. These trimer pairs are then used to make predictionsmore » about unknown protein pairs. A detailed description of the method can be found in the paper: S. Martin, D. Roe, J.L. Faulon. "Predicting protein-protein interactions using signature products," Bioinformatics, available online from Advance Access, Aug. 19, 2004.« less

  1. Protein efficiency ratios and net protein ratios of selected protein foods.

    PubMed

    Mitchell, G V; Jenkins, M Y; Grundel, E

    1989-01-01

    As a part of a cooperative study initiated to assess both in vitro and in vivo protein quality methods, the protein efficiency ratio (PER) and net protein ratios (NPR) of 15 different protein sources were determined. Male weanling Sprague-Dawley rats were fed a 10% protein diet. Fourteen-day NPR and relative NPR (RNPR) values and 14- and 28-day PER and relative PER (RPER) values were calculated for each protein source. When protein quality values were expressed relative to ANRC casein, the 14- and 28-day PER data ranked the protein sources essentially in the same order. RPER values of nonfat dried skim milk (unheated) and tuna were more than 100% that of casein; nonfat dried skim milk (heated), chickpeas, and breakfast sausage were between 50 and 70% of that of casein; and pinto beans and rice-wheat gluten cereal did not support substantial growth of the rat. The NPR method did not always rank the protein sources in the same order as the PER method. For the poor quality proteins, RNPR values were much higher than the RPER values; however, the RNPR and RPER values agreed closely for high quality protein sources. PMID:2710752

  2. Proteins interacting with cloning scars: a source of false positive protein-protein interactions.

    PubMed

    Banks, Charles A S; Boanca, Gina; Lee, Zachary T; Florens, Laurence; Washburn, Michael P

    2015-02-23

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.

  3. Prediction of thermodynamic instabilities of protein solutions from simple protein-protein interactions

    NASA Astrophysics Data System (ADS)

    D'Agostino, Tommaso; Solana, José Ramón; Emanuele, Antonio

    2013-10-01

    Statistical thermodynamics of protein solutions is often studied in terms of simple, microscopic models of particles interacting via pairwise potentials. Such modelling can reproduce the short range structure of protein solutions at equilibrium and predict thermodynamics instabilities of these systems. We introduce a square well model of effective protein-protein interaction that embeds the solvent’s action. We modify an existing model [45] by considering a well depth having an explicit dependence on temperature, i.e. an explicit free energy character, thus encompassing the statistically relevant configurations of solvent molecules around proteins. We choose protein solutions exhibiting demixing upon temperature decrease (lysozyme, enthalpy driven) and upon temperature increase (haemoglobin, entropy driven). We obtain satisfactory fits of spinodal curves for both the two proteins without adding any mean field term, thus extending the validity of the original model. Our results underline the solvent role in modulating or stretching the interaction potential.

  4. Geminivirus C3 Protein: Replication Enhancement and Protein Interactions

    PubMed Central

    Settlage, Sharon B.; See, Renee G.; Hanley-Bowdoin, Linda

    2005-01-01

    Most dicot-infecting geminiviruses encode a replication enhancer protein (C3, AL3, or REn) that is required for optimal replication of their small, single-stranded DNA genomes. C3 interacts with C1, the essential viral replication protein that initiates rolling circle replication. C3 also homo-oligomerizes and interacts with at least two host-encoded proteins, proliferating cell nuclear antigen (PCNA) and the retinoblastoma-related protein (pRBR). It has been proposed that protein interactions contribute to C3 function. Using the C3 protein of Tomato yellow leaf curl virus, we examined the impact of mutations to amino acids that are conserved across the C3 protein family on replication enhancement and protein interactions. Surprisingly, many of the mutations did not affect replication enhancement activity of C3 in tobacco protoplasts. Other mutations either enhanced or were detrimental to C3 replication activity. Analysis of mutated proteins in yeast two-hybrid assays indicated that mutations that inactivate C3 replication enhancement activity also reduce or inactivate C3 oligomerization and interaction with C1 and PCNA. In contrast, mutated C3 proteins impaired for pRBR binding are fully functional in replication assays. Hydrophobic residues in the middle of the C3 protein were implicated in C3 interaction with itself, C1, and PCNA, while polar resides at both the N and C termini of the protein are important for C3-pRBR interaction. These experiments established the importance of C3-C3, C3-C1, and C3-PCNA interactions in geminivirus replication. While C3-pRBR interaction is not required for viral replication in cycling cells, it may play a role during infection of differentiated cells in intact plants. PMID:16014949

  5. Protein adaptations in archaeal extremophiles.

    PubMed

    Reed, Christopher J; Lewis, Hunter; Trejo, Eric; Winston, Vern; Evilia, Caryn

    2013-01-01

    Extremophiles, especially those in Archaea, have a myriad of adaptations that keep their cellular proteins stable and active under the extreme conditions in which they live. Rather than having one basic set of adaptations that works for all environments, Archaea have evolved separate protein features that are customized for each environment. We categorized the Archaea into three general groups to describe what is known about their protein adaptations: thermophilic, psychrophilic, and halophilic. Thermophilic proteins tend to have a prominent hydrophobic core and increased electrostatic interactions to maintain activity at high temperatures. Psychrophilic proteins have a reduced hydrophobic core and a less charged protein surface to maintain flexibility and activity under cold temperatures. Halophilic proteins are characterized by increased negative surface charge due to increased acidic amino acid content and peptide insertions, which compensates for the extreme ionic conditions. While acidophiles, alkaliphiles, and piezophiles are their own class of Archaea, their protein adaptations toward pH and pressure are less discernible. By understanding the protein adaptations used by archaeal extremophiles, we hope to be able to engineer and utilize proteins for industrial, environmental, and biotechnological applications where function in extreme conditions is required for activity.

  6. Proteins aggregation and human diseases

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  7. Phylogenomics of Prokaryotic Ribosomal Proteins

    PubMed Central

    Yutin, Natalya; Puigbò, Pere; Koonin, Eugene V.; Wolf, Yuri I.

    2012-01-01

    Archaeal and bacterial ribosomes contain more than 50 proteins, including 34 that are universally conserved in the three domains of cellular life (bacteria, archaea, and eukaryotes). Despite the high sequence conservation, annotation of ribosomal (r-) protein genes is often difficult because of their short lengths and biased sequence composition. We developed an automated computational pipeline for identification of r-protein genes and applied it to 995 completely sequenced bacterial and 87 archaeal genomes available in the RefSeq database. The pipeline employs curated seed alignments of r-proteins to run position-specific scoring matrix (PSSM)-based BLAST searches against six-frame genome translations, mitigating possible gene annotation errors. As a result of this analysis, we performed a census of prokaryotic r-protein complements, enumerated missing and paralogous r-proteins, and analyzed the distributions of ribosomal protein genes among chromosomal partitions. Phyletic patterns of bacterial and archaeal r-protein genes were mapped to phylogenetic trees reconstructed from concatenated alignments of r-proteins to reveal the history of likely multiple independent gains and losses. These alignments, available for download, can be used as search profiles to improve genome annotation of r-proteins and for further comparative genomics studies. PMID:22615861

  8. Young proteins experience more variable selection pressures than old proteins.

    PubMed

    Vishnoi, Anchal; Kryazhimskiy, Sergey; Bazykin, Georgii A; Hannenhalli, Sridhar; Plotkin, Joshua B

    2010-11-01

    It is well known that young proteins tend to experience weaker purifying selection and evolve more quickly than old proteins. Here, we show that, in addition, young proteins tend to experience more variable selection pressures over time than old proteins. We demonstrate this pattern in three independent taxonomic groups: yeast, Drosophila, and mammals. The increased variability of selection pressures on young proteins is highly significant even after controlling for the fact that young proteins are typically shorter and experience weaker purifying selection than old proteins. The majority of our results are consistent with the hypothesis that the function of a young gene tends to change over time more readily than that of an old gene. At the same time, our results may be caused in part by young genes that serve constant functions over time, but nevertheless appear to evolve under changing selection pressures due to depletion of adaptive mutations. In either case, our results imply that the evolution of a protein-coding sequence is partly determined by its age and origin, and not only by the phenotypic properties of the encoded protein. We discuss, via specific examples, the consequences of these findings for understanding of the sources of evolutionary novelty.

  9. Novel computational methods to design protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Zhou, Alice Qinhua; O'Hern, Corey; Regan, Lynne

    2014-03-01

    Despite the abundance of structural data, we still cannot accurately predict the structural and energetic changes resulting from mutations at protein interfaces. The inadequacy of current computational approaches to the analysis and design of protein-protein interactions has hampered the development of novel therapeutic and diagnostic agents. In this work, we apply a simple physical model that includes only a minimal set of geometrical constraints, excluded volume, and attractive van der Waals interactions to 1) rank the binding affinity of mutants of tetratricopeptide repeat proteins with their cognate peptides, 2) rank the energetics of binding of small designed proteins to the hydrophobic stem region of the influenza hemagglutinin protein, and 3) predict the stability of T4 lysozyme and staphylococcal nuclease mutants. This work will not only lead to a fundamental understanding of protein-protein interactions, but also to the development of efficient computational methods to rationally design protein interfaces with tunable specificity and affinity, and numerous applications in biomedicine. NSF DMR-1006537, PHY-1019147, Raymond and Beverly Sackler Institute for Biological, Physical and Engineering Sciences, and Howard Hughes Medical Institute.

  10. Membrane Protein Solubilization and Composition of Protein Detergent Complexes.

    PubMed

    Duquesne, Katia; Prima, Valérie; Sturgis, James N

    2016-01-01

    Membrane proteins are typically expressed in heterologous systems with a view to in vitro characterization. A critical step in the preparation of membrane proteins after expression in any system is the solubilization of the protein in aqueous solution, typically using detergents and lipids, to obtain the protein in a form suitable for purification, structural or functional analysis. This process is particularly difficult as the objective is to prepare the protein in an unnatural environment, a protein detergent complex, separating it from its natural lipid partners while causing the minimum destabilization or modification of the structure. Although the process is difficult, and relatively hard to master, an increasing number of membrane proteins have been successfully isolated after expression in a wide variety of systems. In this chapter we give a general protocol for preparing protein detergent complexes that is aimed at guiding the reader through the different critical steps. In the second part of the chapter we illustrate how to analyze the composition of protein detergent complexes; this analysis is important as it has been found that compositional variation often causes irreproducible results. PMID:27485340

  11. Exploring the repeat protein universe through computational protein design.

    PubMed

    Brunette, T J; Parmeggiani, Fabio; Huang, Po-Ssu; Bhabha, Gira; Ekiert, Damian C; Tsutakawa, Susan E; Hura, Greg L; Tainer, John A; Baker, David

    2015-12-24

    A central question in protein evolution is the extent to which naturally occurring proteins sample the space of folded structures accessible to the polypeptide chain. Repeat proteins composed of multiple tandem copies of a modular structure unit are widespread in nature and have critical roles in molecular recognition, signalling, and other essential biological processes. Naturally occurring repeat proteins have been re-engineered for molecular recognition and modular scaffolding applications. Here we use computational protein design to investigate the space of folded structures that can be generated by tandem repeating a simple helix-loop-helix-loop structural motif. Eighty-three designs with sequences unrelated to known repeat proteins were experimentally characterized. Of these, 53 are monomeric and stable at 95 °C, and 43 have solution X-ray scattering spectra consistent with the design models. Crystal structures of 15 designs spanning a broad range of curvatures are in close agreement with the design models with root mean square deviations ranging from 0.7 to 2.5 Å. Our results show that existing repeat proteins occupy only a small fraction of the possible repeat protein sequence and structure space and that it is possible to design novel repeat proteins with precisely specified geometries, opening up a wide array of new possibilities for biomolecular engineering.

  12. Protein expression strategies for identification of novel target proteins.

    PubMed

    Schuster, M; Wasserbauer, E; Einhauer, A; Ortner, C; Jungbauer, A; Hammerschmid, F; Werner, G

    2000-04-01

    Identification of new target proteins is a novel paradigm in drug discovery. A major bottleneck of this strategy is the rapid and simultaneous expression of proteins from differential gene expression to identify eligible candidates. By searching for a generic system enabling high throughput expression analysis and purification of unknown cDNAs, we evaluated the YEpFLAG-1 yeast expression system. We have selected cDNAs encoding model proteins (eukaryotic initiation factor-5A [eIF-5A] and Homo sapiens differentiation-dependent protein-A4) and cDNA encoding an unknown protein (UP-1) for overexpression in Saccharomyces cerevisiae using fusions with a peptide that changes its conformation in the presence of Ca2+ ions, the FLAG tag (Eastman Kodak, Rochester, NY). The cDNAs encoding unknown proteins originating from a directionally cloned cDNA library were expressed in all three possible reading frames. The expressed proteins were detected by an antibody directed against the FLAG tag and/or by antibodies against the model proteins. The alpha-leader sequence, encoding a yeast mating pheromone, upstream of the gene fusion site facilitates secretion into the culture supernatant. EIF-5A could be highly overexpressed and was secreted into the culture supernatant. In contrast, the Homo sapiens differentiation-dependent protein-A4 as well as the protein UP-1, whose cDNA did not match to any known gene, could not be detected in the culture supernatant. The expression product of the correct frame remained in the cells, whereas the FLAG-tagged proteins secreted into the supernatant were short, out-of-frame products. The presence of transmembrane domains or patches of hydrophobic amino acids may preclude secretion of these proteins into the culture supernatant. Subsequently, isolation and purification of the various proteins was accomplished by affinity chromatography or affinity extraction using magnetizable beads coated with the anti-FLAG monoclonal antibody. The purity of

  13. Cry Protein Crystals: A Novel Platform for Protein Delivery

    PubMed Central

    Bonnegarde-Bernard, Astrid; Wallace, Julie A.; Dean, Donald H.; Ostrowski, Michael C.; Burry, Richard W.; Boyaka, Prosper N.; Chan, Michael K.

    2015-01-01

    Protein delivery platforms are important tools in the development of novel protein therapeutics and biotechnologies. We have developed a new class of protein delivery agent based on sub-micrometer-sized Cry3Aa protein crystals that naturally form within the bacterium Bacillus thuringiensis. We demonstrate that fusion of the cry3Aa gene to that of various reporter proteins allows for the facile production of Cry3Aa fusion protein crystals for use in subsequent applications. These Cry3Aa fusion protein crystals are efficiently taken up and retained by macrophages and other cell lines in vitro, and can be delivered to mice in vivo via multiple modes of administration. Oral delivery of Cry3Aa fusion protein crystals to C57BL/6 mice leads to their uptake by MHC class II cells, including macrophages in the Peyer’s patches, supporting the notion that the Cry3Aa framework can be used to stabilize cargo protein against degradation for delivery to gastrointestinal lymphoid tissues. PMID:26030844

  14. Nanosecond Relaxation Dynamics of Hydrated Proteins: Water versus protein contributions

    SciTech Connect

    Khodadadi, S; Curtis, J. E.; Sokolov, Alexei P

    2011-01-01

    We have studied picosecond to nanosecond dynamics of hydrated protein powders using dielectric spectroscopy and molecular dynamics (MD) simulations. Our analysis of hydrogen-atom single particle dynamics from MD simulations focused on main ( main tens of picoseconds) and slow ( slow nanosecond) relaxation processes that were observed in dielectric spectra of similar hydrated protein samples. Traditionally, the interpretation of these processes observed in dielectric spectra has been ascribed to the relaxation behavior of hydration water tightly bounded to a protein and not to protein atoms. Detailed analysis of the MD simulations and comparison to dielectric data indicate that the observed relaxation process in the nanosecond time range of hydrated protein spectra is mainly due to protein atoms. The relaxation processes involve the entire structure of protein including atoms in the protein backbone, side chains, and turns. Both surface and buried protein atoms contribute to the slow processes; however, surface atoms demonstrate slightly faster relaxation dynamics. Analysis of the water molecule residence and dipolar relaxation correlation behavior indicates that the hydration water relaxes at much shorter time scales.

  15. Water-protein interactions from high-resolution protein crystallography.

    PubMed Central

    Nakasako, Masayoshi

    2004-01-01

    To understand the role of water in life at molecular and atomic levels, structures and interactions at the protein-water interface have been investigated by cryogenic X-ray crystallography. The method enabled a much clearer visualization of definite hydration sites on the protein surface than at ambient temperature. Using the structural models of proteins, including several hydration water molecules, the characteristics in hydration structures were systematically analysed for the amount, the interaction geometries between water molecules and proteins, and the local and global distribution of water molecules on the surface of proteins. The tetrahedral hydrogen-bond geometry of water molecules in bulk solvent was retained at the interface and enabled the extension of a three-dimensional chain connection of a hydrogen-bond network among hydration water molecules and polar protein atoms over the entire surface of proteins. Networks of hydrogen bonds were quite flexible to accommodate and/or to regulate the conformational changes of proteins such as domain motions. The present experimental results may have profound implications in the understanding of the physico-chemical principles governing the dynamics of proteins in an aqueous environment and a discussion of why water is essential to life at a molecular level. PMID:15306376

  16. Cry protein crystals: a novel platform for protein delivery.

    PubMed

    Nair, Manoj S; Lee, Marianne M; Bonnegarde-Bernard, Astrid; Wallace, Julie A; Dean, Donald H; Ostrowski, Michael C; Burry, Richard W; Boyaka, Prosper N; Chan, Michael K

    2015-01-01

    Protein delivery platforms are important tools in the development of novel protein therapeutics and biotechnologies. We have developed a new class of protein delivery agent based on sub-micrometer-sized Cry3Aa protein crystals that naturally form within the bacterium Bacillus thuringiensis. We demonstrate that fusion of the cry3Aa gene to that of various reporter proteins allows for the facile production of Cry3Aa fusion protein crystals for use in subsequent applications. These Cry3Aa fusion protein crystals are efficiently taken up and retained by macrophages and other cell lines in vitro, and can be delivered to mice in vivo via multiple modes of administration. Oral delivery of Cry3Aa fusion protein crystals to C57BL/6 mice leads to their uptake by MHC class II cells, including macrophages in the Peyer's patches, supporting the notion that the Cry3Aa framework can be used to stabilize cargo protein against degradation for delivery to gastrointestinal lymphoid tissues. PMID:26030844

  17. The Protein Naming Utility: a rules database for protein nomenclature.

    PubMed

    Goll, Johannes; Montgomery, Robert; Brinkac, Lauren M; Schobel, Seth; Harkins, Derek M; Sebastian, Yinong; Shrivastava, Susmita; Durkin, Scott; Sutton, Granger

    2010-01-01

    Generation of syntactically correct and unambiguous names for proteins is a challenging, yet vital task for functional annotation processes. Proteins are often named based on homology to known proteins, many of which have problematic names. To address the need to generate high-quality protein names, and capture our significant experience correcting protein names manually, we have developed the Protein Naming Utility (PNU, http://www.jcvi.org/pn-utility). The PNU is a web-based database for storing and applying naming rules to identify and correct syntactically incorrect protein names, or to replace synonyms with their preferred name. The PNU allows users to generate and manage collections of naming rules, optionally building upon the growing body of rules generated at the J. Craig Venter Institute (JCVI). Since communities often enforce disparate conventions for naming proteins, the PNU supports grouping rules into user-managed collections. Users can check their protein names against a selected PNU rule collection, generating both statistics and corrected names. The PNU can also be used to correct GenBank table files prior to submission to GenBank. Currently, the database features 3080 manual rules that have been entered by JCVI Bioinformatics Analysts as well as 7458 automatically imported names.

  18. Modular protein switches derived from antibody mimetic proteins.

    PubMed

    Nicholes, N; Date, A; Beaujean, P; Hauk, P; Kanwar, M; Ostermeier, M

    2016-02-01

    Protein switches have potential applications as biosensors and selective protein therapeutics. Protein switches built by fusion of proteins with the prerequisite input and output functions are currently developed using an ad hoc process. A modular switch platform in which existing switches could be readily adapted to respond to any ligand would be advantageous. We investigated the feasibility of a modular protein switch platform based on fusions of the enzyme TEM-1 β-lactamase (BLA) with two different antibody mimetic proteins: designed ankyrin repeat proteins (DARPins) and monobodies. We created libraries of random insertions of the gene encoding BLA into genes encoding a DARPin or a monobody designed to bind maltose-binding protein (MBP). From these libraries, we used a genetic selection system for β-lactamase activity to identify genes that conferred MBP-dependent ampicillin resistance to Escherichia coli. Some of these selected genes encoded switch proteins whose enzymatic activity increased up to 14-fold in the presence of MBP. We next introduced mutations into the antibody mimetic domain of these switches that were known to cause binding to different ligands. To different degrees, introduction of the mutations resulted in switches with the desired specificity, illustrating the potential modularity of these platforms.

  19. Noninvasive imaging of protein-protein interactions in living animals

    NASA Astrophysics Data System (ADS)

    Luker, Gary D.; Sharma, Vijay; Pica, Christina M.; Dahlheimer, Julie L.; Li, Wei; Ochesky, Joseph; Ryan, Christine E.; Piwnica-Worms, Helen; Piwnica-Worms, David

    2002-05-01

    Protein-protein interactions control transcription, cell division, and cell proliferation as well as mediate signal transduction, oncogenic transformation, and regulation of cell death. Although a variety of methods have been used to investigate protein interactions in vitro and in cultured cells, none can analyze these interactions in intact, living animals. To enable noninvasive molecular imaging of protein-protein interactions in vivo by positron-emission tomography and fluorescence imaging, we engineered a fusion reporter gene comprising a mutant herpes simplex virus 1 thymidine kinase and green fluorescent protein for readout of a tetracycline-inducible, two-hybrid system in vivo. By using micro-positron-emission tomography, interactions between p53 tumor suppressor and the large T antigen of simian virus 40 were visualized in tumor xenografts of HeLa cells stably transfected with the imaging constructs. Imaging protein-binding partners in vivo will enable functional proteomics in whole animals and provide a tool for screening compounds targeted to specific protein-protein interactions in living animals.

  20. Amelioration of inflammation by phenolic rich methanolic extract of Ocimum sanctum Linn. leaves in isoproterenol induced myocardial infarction.

    PubMed

    Kavitha, S; John, Febi; Indira, M

    2015-10-01

    Myocardial infarction (MI) is one of the leading causes of death worldwide. Oxidative stress and inflammation play vital role in the development of MI. The Indian basil or Tulsi (Ocimum sanctum Linn.), owing to its antioxidant potential, is used in the traditional system of Indian medicine to treat various disorders. We evaluated methanolic extract of O. sanctum (Tulsi) leaves on inflammation in isoproterenol (ISP) induced MI in rats. ISP-induced MI increased the levels of cardiac markers, phospholipases and phospholipid content. However, the same were reduced on pre-treatment with methanolic extract of O. sanctum leaves. The activities of 5-lipoxygenase and cycloxygenase-2 and levels of leukotriene B4 and thromboxane B2 were also elevated in ISP-treated rats, which were significantly decreased (P < 0.001) in extract pre-treated rats. The enhanced mRNA expressions of nuclear factor kappa-B, 5-lipoxygenase activating protein and receptor for leukotriene B4 on MI induction, were considerably reduced (P < 0.001) on extract pre-treatment. Histopathological analysis also confirmed the findings. The results also revealed the high phenolic content of methanolic extract of O. sanctum leaves. The study demonstrated that methanolic extract of Tulsi leaves can decrease inflammation in the cardiac tissue of ISP-induced MI in rats and its effect may be through downregulation of oxidative stress and arachidonic acid pathway. This cardioprotective effect may be due to the high phenolic content of methanolic extract of O. sanctum leaves. PMID:26665293

  1. Protein- mediated enamel mineralization

    PubMed Central

    Moradian-Oldak, Janet

    2012-01-01

    Enamel is a hard nanocomposite bioceramic with significant resilience that protects the mammalian tooth from external physical and chemical damages. The remarkable mechanical properties of enamel are associated with its hierarchical structural organization and its thorough connection with underlying dentin. This dynamic mineralizing system offers scientists a wealth of information that allows the study of basic principals of organic matrix-mediated biomineralization and can potentially be utilized in the fields of material science and engineering for development and design of biomimetic materials. This chapter will provide a brief overview of enamel hierarchical structure and properties as well as the process and stages of amelogenesis. Particular emphasis is given to current knowledge of extracellular matrix protein and proteinases, and the structural chemistry of the matrix components and their putative functions. The chapter will conclude by discussing the potential of enamel for regrowth. PMID:22652761

  2. Electron hopping through proteins

    PubMed Central

    Warren, Jeffrey J.; Ener, Maraia E.; Vlček, Antonín; Winkler, Jay R.; Gray, Harry B.

    2012-01-01

    Biological redox machines require efficient transfer of electrons and holes for function. Reactions involving multiple tunneling steps, termed “hopping,” often promote charge separation within and between proteins that is essential for energy storage and conversion. Here we show how semiclassical electron transfer theory can be extended to include hopping reactions: graphical representations (called hopping maps) of the dependence of calculated two-step reaction rate constants on driving force are employed to account for flow in a rhenium-labeled azurin mutant as well as in two structurally characterized redox enzymes, DNA photolyase and MauG. Analysis of the 35 Å radical propagation in ribonucleotide reductases using hopping maps shows that all tyrosines and tryptophans on the radical pathway likely are involved in function. We suggest that hopping maps can facilitate the design and construction of artificial photosynthetic systems for the production of fuels and other chemicals. PMID:23420049

  3. Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.

  4. Protein detection system

    DOEpatents

    Fruetel, Julie A.; Fiechtner, Gregory J.; Kliner, Dahv A. V.; McIlroy, Andrew

    2009-05-05

    The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.

  5. Synthetic Peptides as Protein Mimics

    PubMed Central

    Groß, Andrea; Hashimoto, Chie; Sticht, Heinrich; Eichler, Jutta

    2016-01-01

    The design and generation of molecules capable of mimicking the binding and/or functional sites of proteins represents a promising strategy for the exploration and modulation of protein function through controlled interference with the underlying molecular interactions. Synthetic peptides have proven an excellent type of molecule for the mimicry of protein sites because such peptides can be generated as exact copies of protein fragments, as well as in diverse chemical modifications, which includes the incorporation of a large range of non-proteinogenic amino acids as well as the modification of the peptide backbone. Apart from extending the chemical and structural diversity presented by peptides, such modifications also increase the proteolytic stability of the molecules, enhancing their utility for biological applications. This article reviews recent advances by this and other laboratories in the use of synthetic protein mimics to modulate protein function, as well as to provide building blocks for synthetic biology. PMID:26835447

  6. Advantages of proteins being disordered

    PubMed Central

    Liu, Zhirong; Huang, Yongqi

    2014-01-01

    The past decade has witnessed great advances in our understanding of protein structure-function relationships in terms of the ubiquitous existence of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs). The structural disorder of IDPs/IDRs enables them to play essential functions that are complementary to those of ordered proteins. In addition, IDPs/IDRs are persistent in evolution. Therefore, they are expected to possess some advantages over ordered proteins. In this review, we summarize and survey nine possible advantages of IDPs/IDRs: economizing genome/protein resources, overcoming steric restrictions in binding, achieving high specificity with low affinity, increasing binding rate, facilitating posttranslational modifications, enabling flexible linkers, preventing aggregation, providing resistance to non-native conditions, and allowing compatibility with more available sequences. Some potential advantages of IDPs/IDRs are not well understood and require both experimental and theoretical approaches to decipher. The connection with protein design is also briefly discussed. PMID:24532081

  7. Biofoams and natural protein surfactants

    PubMed Central

    Cooper, Alan; Kennedy, Malcolm W.

    2010-01-01

    Naturally occurring foam constituent and surfactant proteins with intriguing structures and functions are now being identified from a variety of biological sources. The ranaspumins from tropical frog foam nests comprise a range of proteins with a mixture of surfactant, carbohydrate binding and antimicrobial activities that together provide a stable, biocompatible, protective foam environment for developing eggs and embryos. Ranasmurfin, a blue protein from a different species of frog, displays a novel structure with a unique chromophoric crosslink. Latherin, primarily from horse sweat, but with similarities to salivary, oral and upper respiratory tract proteins, illustrates several potential roles for surfactant proteins in mammalian systems. These proteins, together with the previously discovered hydrophobins of fungi, throw new light on biomolecular processes at air–water and other interfaces. This review provides a perspective on these recent findings, focussing on structure and biophysical properties. PMID:20615601

  8. Recombinant protein polymers in biomaterials.

    PubMed

    Kim, Wookhyun

    2013-01-01

    Naturally occurring protein-based materials have been found that function as critical components in biomechanical response, fibers and adhesives. A relatively small but growing number of recombinant protein-based materials that mimic the desired features of their natural sources, such as collagens, elastins and silks, are considered as an alternative to conventional synthetic polymers. Advances in genetic engineering have facilitated the synthesis of repetitive protein polymers with precise control of molecular weights which are designed by using synthetic genes encoding tandem repeats of oligopeptide originating from a modular domain of natural proteins. Many repeat sequences as protein polymer building blocks adopt a well-defined secondary structure and undergo self-assembly to result in physically cross-linked networks or with chemical cross-linking so that further form three-dimensional architectures similar to natural counterparts. In this review, recombinant protein polymers currently developed will be presented that have emerged as promising class of next generation biomaterials. PMID:23276922

  9. Protein aggregation in salt solutions.

    PubMed

    Kastelic, Miha; Kalyuzhnyi, Yurij V; Hribar-Lee, Barbara; Dill, Ken A; Vlachy, Vojko

    2015-05-26

    Protein aggregation is broadly important in diseases and in formulations of biological drugs. Here, we develop a theoretical model for reversible protein-protein aggregation in salt solutions. We treat proteins as hard spheres having square-well-energy binding sites, using Wertheim's thermodynamic perturbation theory. The necessary condition required for such modeling to be realistic is that proteins in solution during the experiment remain in their compact form. Within this limitation our model gives accurate liquid-liquid coexistence curves for lysozyme and γ IIIa-crystallin solutions in respective buffers. It provides good fits to the cloud-point curves of lysozyme in buffer-salt mixtures as a function of the type and concentration of salt. It than predicts full coexistence curves, osmotic compressibilities, and second virial coefficients under such conditions. This treatment may also be relevant to protein crystallization.

  10. Principles of protein labeling techniques.

    PubMed

    Obermaier, Christian; Griebel, Anja; Westermeier, Reiner

    2015-01-01

    Protein labeling methods prior to separation and analysis have become indispensable approaches for proteomic profiling. Basically, three different types of tags are employed: stable isotopes, mass tags, and fluorophores. While proteins labeled with stable isotopes and mass tags are measured and differentiated by mass spectrometry, fluorescent labels are detected with fluorescence imagers. The major purposes for protein labeling are monitoring of biological processes, reliable quantification of compounds and specific detection of protein modifications and isoforms in multiplexed samples, enhancement of detection sensitivity, and simplification of detection workflows. Proteins can be labeled during cell growth by incorporation of amino acids containing different isotopes, or in biological fluids, cells or tissue samples by attaching specific groups to the ε-amino group of lysine, the N-terminus, or the cysteine residues. The principles and the modifications of the different labeling approaches on the protein level are described; benefits and shortcomings of the methods are discussed.

  11. Quantum dots and prion proteins

    PubMed Central

    Sobrova, Pavlina; Blazkova, Iva; Chomoucka, Jana; Drbohlavova, Jana; Vaculovicova, Marketa; Kopel, Pavel; Hubalek, Jaromir; Kizek, Rene; Adam, Vojtech

    2013-01-01

    A diagnostics of infectious diseases can be done by the immunologic methods or by the amplification of nucleic acid specific to contagious agent using polymerase chain reaction. However, in transmissible spongiform encephalopathies, the infectious agent, prion protein (PrPSc), has the same sequence of nucleic acids as a naturally occurring protein. The other issue with the diagnosing based on the PrPSc detection is that the pathological form of prion protein is abundant only at late stages of the disease in a brain. Therefore, the diagnostics of prion protein caused diseases represent a sort of challenges as that hosts can incubate infectious prion proteins for many months or even years. Therefore, new in vivo assays for detection of prion proteins and for diagnosis of their relation to neurodegenerative diseases are summarized. Their applicability and future prospects in this field are discussed with particular aim at using quantum dots as fluorescent labels. PMID:24055838

  12. Protein targeting to yeast peroxisomes.

    PubMed

    van der Klei, Ida; Veenhuis, Marten

    2007-01-01

    Peroxisomes are important organelles of eukaryote cells. Although these structures are of relatively small size, they display an unprecedented functional versatility. The principles of their biogenesis and function are strongly conserved from very simple eukaryotes to humans. Peroxisome-borne proteins are synthesized in the cytosol and posttranslationally incorporated into the organelle. The protein-sorting signal for matrix proteins, peroxisomal targeting signal (PTS), and for membrane proteins (mPTS), are also conserved. Several genes involved in peroxisomal matrix protein import have been identified (PEX genes), but the details of the molecular mechanisms of this translocation process are still unclear. Here we describe procedures to study the subcellular location of peroxisomal matrix and membrane proteins in yeast and fungi. Emphasis is placed on protocols developed for the methylotrophic yeast Hansenula polymorpha, but very similar protocols can be applied for other yeast species and filamentous fungi. The described methods include cell fractionation procedures and subcellular localization studies using fluorescence microscopy and immunolabeling techniques.

  13. TGF-beta signaling proteins and the Protein Ontology

    PubMed Central

    Arighi, Cecilia N; Liu, Hongfang; Natale, Darren A; Barker, Winona C; Drabkin, Harold; Blake, Judith A; Smith, Barry; Wu, Cathy H

    2009-01-01

    Background The Protein Ontology (PRO) is designed as a formal and principled Open Biomedical Ontologies (OBO) Foundry ontology for proteins. The components of PRO extend from a classification of proteins on the basis of evolutionary relationships at the homeomorphic level to the representation of the multiple protein forms of a gene, including those resulting from alternative splicing, cleavage and/or post-translational modifications. Focusing specifically on the TGF-beta signaling proteins, we describe the building, curation, usage and dissemination of PRO. Results PRO is manually curated on the basis of PrePRO, an automatically generated file with content derived from standard protein data sources. Manual curation ensures that the treatment of the protein classes and the internal and external relationships conform to the PRO framework. The current release of PRO is based upon experimental data from mouse and human proteins wherein equivalent protein forms are represented by single terms. In addition to the PRO ontology, the annotation of PRO terms is released as a separate PRO association file, which contains, for each given PRO term, an annotation from the experimentally characterized sub-types as well as the corresponding database identifiers and sequence coordinates. The annotations are added in the form of relationship to other ontologies. Whenever possible, equivalent forms in other species are listed to facilitate cross-species comparison. Splice and allelic variants, gene fusion products and modified protein forms are all represented as entities in the ontology. Therefore, PRO provides for the representation of protein entities and a resource for describing the associated data. This makes PRO useful both for proteomics studies where isoforms and modified forms must be differentiated, and for studies of biological pathways, where representations need to take account of the different ways in which the cascade of events may depend on specific protein

  14. Simultaneous Site-Specific Dual Protein Labeling Using Protein Prenyltransferases.

    PubMed

    Zhang, Yi; Blanden, Melanie J; Sudheer, Ch; Gangopadhyay, Soumyashree A; Rashidian, Mohammad; Hougland, James L; Distefano, Mark D

    2015-12-16

    Site-specific protein labeling is an important technique in protein chemistry and is used for diverse applications ranging from creating protein conjugates to protein immobilization. Enzymatic reactions, including protein prenylation, have been widely exploited as methods to accomplish site-specific labeling. Enzymatic prenylation is catalyzed by prenyltransferases, including protein farnesyltransferase (PFTase) and geranylgeranyltransferase type I (GGTase-I), both of which recognize C-terminal CaaX motifs with different specificities and transfer prenyl groups from isoprenoid diphosphates to their respective target proteins. A number of isoprenoid analogues containing bioorthogonal functional groups have been used to label proteins of interest via PFTase-catalyzed reaction. In this study, we sought to expand the scope of prenyltransferase-mediated protein labeling by exploring the utility of rat GGTase-I (rGGTase-I). First, the isoprenoid specificity of rGGTase-I was evaluated by screening eight different analogues and it was found that those with bulky moieties and longer backbone length were recognized by rGGTase-I more efficiently. Taking advantage of the different substrate specificities of rat PFTase (rPFTase) and rGGTase-I, we then developed a simultaneous dual labeling method to selectively label two different proteins by using isoprenoid analogue and CaaX substrate pairs that were specific to only one of the prenyltransferases. Using two model proteins, green fluorescent protein with a C-terminal CVLL sequence (GFP-CVLL) and red fluorescent protein with a C-terminal CVIA sequence (RFP-CVIA), we demonstrated that when incubated together with both prenyltransferases and the selected isoprenoid analogues, GFP-CVLL was specifically modified with a ketone-functionalized analogue by rGGTase-I and RFP-CVIA was selectively labeled with an alkyne-containing analogue by rPFTase. By switching the ketone-containing analogue to an azide-containing analogue, it was

  15. Evolution of Robustness to Protein Mistranslation by Accelerated Protein Turnover

    PubMed Central

    Farkas, Zoltán; Horvath, Peter; Bódi, Zoltán; Daraba, Andreea; Szamecz, Béla; Gut, Ivo; Bayes, Mónica; Santos, Manuel A. S.; Pál, Csaba

    2015-01-01

    Translational errors occur at high rates, and they influence organism viability and the onset of genetic diseases. To investigate how organisms mitigate the deleterious effects of protein synthesis errors during evolution, a mutant yeast strain was engineered to translate a codon ambiguously (mistranslation). It thereby overloads the protein quality-control pathways and disrupts cellular protein homeostasis. This strain was used to study the capacity of the yeast genome to compensate the deleterious effects of protein mistranslation. Laboratory evolutionary experiments revealed that fitness loss due to mistranslation can rapidly be mitigated. Genomic analysis demonstrated that adaptation was primarily mediated by large-scale chromosomal duplication and deletion events, suggesting that errors during protein synthesis promote the evolution of genome architecture. By altering the dosages of numerous, functionally related proteins simultaneously, these genetic changes introduced large phenotypic leaps that enabled rapid adaptation to mistranslation. Evolution increased the level of tolerance to mistranslation through acceleration of ubiquitin-proteasome–mediated protein degradation and protein synthesis. As a consequence of rapid elimination of erroneous protein products, evolution reduced the extent of toxic protein aggregation in mistranslating cells. However, there was a strong evolutionary trade-off between adaptation to mistranslation and survival upon starvation: the evolved lines showed fitness defects and impaired capacity to degrade mature ribosomes upon nutrient limitation. Moreover, as a response to an enhanced energy demand of accelerated protein turnover, the evolved lines exhibited increased glucose uptake by selective duplication of hexose transporter genes. We conclude that adjustment of proteome homeostasis to mistranslation evolves rapidly, but this adaptation has several side effects on cellular physiology. Our work also indicates that

  16. Phosphorylation of protein phosphatase inhibitor-1 by protein kinase C.

    PubMed

    Sahin, Bogachan; Shu, Hongjun; Fernandez, Joseph; El-Armouche, Ali; Molkentin, Jeffery D; Nairn, Angus C; Bibb, James A

    2006-08-25

    Inhibitor-1 becomes a potent inhibitor of protein phosphatase 1 when phosphorylated by cAMP-dependent protein kinase at Thr(35). Moreover, Ser(67) of inhibitor-1 serves as a substrate for cyclin-dependent kinase 5 in the brain. Here, we report that dephosphoinhibitor-1 but not phospho-Ser(67) inhibitor-1 was efficiently phosphorylated by protein kinase C at Ser(65) in vitro. In contrast, Ser(67) phosphorylation by cyclin-dependent kinase 5 was unaffected by phospho-Ser(65). Protein kinase C activation in striatal tissue resulted in the concomitant phosphorylation of inhibitor-1 at Ser(65) and Ser(67), but not Ser(65) alone. Selective pharmacological inhibition of protein phosphatase activity suggested that phospho-Ser(65) inhibitor-1 is dephosphorylated by protein phosphatase 1 in the striatum. In vitro studies confirmed these findings and suggested that phospho-Ser(67) protects phospho-Ser(65) inhibitor-1 from dephosphorylation by protein phosphatase 1 in vivo. Activation of group I metabotropic glutamate receptors resulted in the up-regulation of diphospho-Ser(65)/Ser(67) inhibitor-1 in this tissue. In contrast, the activation of N-methyl-d-aspartate-type ionotropic glutamate receptors opposed increases in striatal diphospho-Ser(65)/Ser(67) inhibitor-1 levels. Phosphomimetic mutation of Ser(65) and/or Ser(67) did not convert inhibitor-1 into a protein phosphatase 1 inhibitor. On the other hand, in vitro and in vivo studies suggested that diphospho-Ser(65)/Ser(67) inhibitor-1 is a poor substrate for cAMP-dependent protein kinase. These observations extend earlier studies regarding the function of phospho-Ser(67) and underscore the possibility that phosphorylation in this region of inhibitor-1 by multiple protein kinases may serve as an integrative signaling mechanism that governs the responsiveness of inhibitor-1 to cAMP-dependent protein kinase activation.

  17. Mathematics of protein pathological misfolding.

    PubMed

    Armah, Ebenezer O

    2007-07-01

    "Protein folding is defined as a process by which a polypeptide chain performs a search in conformational space with the objective of achieving the so-called native conformation to global free-energy minimum under a given set of physiochemical conditions of the medium." Misfolding then, is the process by which this objective is not achieved. Protein Folding Quality Assessment (PFQA), is characterized by a three-parameter distribution function Phi(T) referred to as the PFQA function. It uses results of protein folding processes to assess the output quality of protein folding. Protein misfolding is implicated in the initial cause of many conformational diseases. Folding of cytosolic protein can be regarded as the performance of the protein after it is produced or manufactured by the synthesis processes. Protein folding through different mechanisms and pathways has been extensively covered in [J.D. Bryngelson, P.G. Wolynes, Spin glass and statistical mechanics of protein folding, Proc. Natl. Acad. Sci. USA 84 (1987) 7524; J. Wang, Statistics, pathways and dynamics of single molecule folding, J. Chem. Phys. 118 (2) (2003) 953; N.D. Socci, J.N. Onuchic, P.G. Wolynes, Diffusive dynamics of the reaction coordinates for protein folding funnels, J. Chem. Phys. 104 (14) (1996); D. Thirumalai, From minimal models to real proteins, time scales for protein folding kinetics, J. Phys. I France 5 (1995) 1457]. The model is based on growth models of Ratkowsky, Richards, etc. [D.A. Ratkowski, T.J. Reeds, Choosing near-linear parameters logistic model for radio-ligand and related assays, Biometrics 42 (1986) 575] for a three-parameters model to handle the quality assessment of the folding process. Thus a complete distribution can be found, thanks to the scale, location and shape parameters.

  18. Acetylcholine Receptor: An Allosteric Protein

    NASA Astrophysics Data System (ADS)

    Changeux, Jean-Pierre; Devillers-Thiery, Anne; Chemouilli, Phillippe

    1984-09-01

    The nicotine receptor for the neurotransmitter acetylcholine is an allosteric protein composed of four different subunits assembled in a transmembrane pentamer α 2β γ δ . The protein carries two acetylcholine sites at the level of the α subunits and contains the ion channel. The complete sequence of the four subunits is known. The membrane-bound protein undergoes conformational transitions that regulate the opening of the ion channel and are affected by various categories of pharmacologically active ligands.

  19. Intracellular targeting with engineered proteins.

    PubMed

    Miersch, Shane; Sidhu, Sachdev S

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action.

  20. Intracellular targeting with engineered proteins

    PubMed Central

    Miersch, Shane; Sidhu, Sachdev S.

    2016-01-01

    If the isolation, production, and clinical use of insulin marked the inception of the age of biologics as therapeutics, the convergence of molecular biology and combinatorial engineering techniques marked its coming of age. The first wave of recombinant protein-based drugs in the 1980s demonstrated emphatically that proteins could be engineered, formulated, and employed for clinical advantage. Yet despite the successes of protein-based drugs such as antibodies, enzymes, and cytokines, the druggable target space for biologics is currently restricted to targets outside the cell. Insofar as estimates place the number of proteins either secreted or with extracellular domains in the range of 8000 to 9000, this represents only one-third of the proteome and circumscribes the pathways that can be targeted for therapeutic intervention. Clearly, a major objective for this field to reach maturity is to access, interrogate, and modulate the majority of proteins found inside the cell. However, owing to the large size, complex architecture, and general cellular impermeability of existing protein-based drugs, this poses a daunting challenge. In recent years, though, advances on the two related fronts of protein engineering and drug delivery are beginning to bring this goal within reach. First, prompted by the restrictions that limit the applicability of antibodies, intense efforts have been applied to identifying and engineering smaller alternative protein scaffolds for the modulation of intracellular targets. In parallel, innovative solutions for delivering proteins to the intracellular space while maintaining their stability and functional activity have begun to yield successes. This review provides an overview of bioactive intrabodies and alternative protein scaffolds amenable to engineering for intracellular targeting and also outlines advances in protein engineering and formulation for delivery of functional proteins to the interior of the cell to achieve therapeutic action

  1. Scientist prepare Lysozyme Protein Crystal

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dan Carter and Charles Sisk center a Lysozyme Protein crystal grown aboard the USML-2 shuttle mission. Protein isolated from hen egg-white and functions as a bacteriostatic enzyme by degrading bacterial cell walls. First enzyme ever characterized by protein crystallography. It is used as an excellent model system for better understanding parameters involved in microgravity crystal growth experiments. The goal is to compare kinetic data from microgravity experiments with data from laboratory experiments to study the equilibrium.

  2. Developing algorithms for predicting protein-protein interactions of homology modeled proteins.

    SciTech Connect

    Martin, Shawn Bryan; Sale, Kenneth L.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2006-01-01

    The goal of this project was to examine the protein-protein docking problem, especially as it relates to homology-based structures, identify the key bottlenecks in current software tools, and evaluate and prototype new algorithms that may be developed to improve these bottlenecks. This report describes the current challenges in the protein-protein docking problem: correctly predicting the binding site for the protein-protein interaction and correctly placing the sidechains. Two different and complementary approaches are taken that can help with the protein-protein docking problem. The first approach is to predict interaction sites prior to docking, and uses bioinformatics studies of protein-protein interactions to predict theses interaction site. The second approach is to improve validation of predicted complexes after docking, and uses an improved scoring function for evaluating proposed docked poses, incorporating a solvation term. This scoring function demonstrates significant improvement over current state-of-the art functions. Initial studies on both these approaches are promising, and argue for full development of these algorithms.

  3. Protein function prediction using neighbor relativity in protein-protein interaction network.

    PubMed

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network.

  4. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown.

  5. Copper Delivery by Metallochaperone Proteins

    SciTech Connect

    Rosenzweig, A.C.

    2010-03-08

    Copper is an essential element in all living organisms, serving as a cofactor for many important proteins and enzymes. Metallochaperone proteins deliver copper ions to specific physiological partners by direct protein-protein interactions. The Atx1-like chaperones transfer copper to intracellular copper transporters, and the CCS chaperones shuttle copper to copper,zinc superoxide dismutase. Crystallographic studies of these two copper chaperone families have provided insights into metal binding and target recognition by metallochaperones and have led to detailed molecular models for the copper transfer mechanism.

  6. [Protein toxins of Staphylococcus aureus].

    PubMed

    Shamsutdinov, A F; Tiurin, Iu A

    2014-01-01

    Main scientific-research studies regarding protein bacterial toxins of the most widespread bacteria that belong to Staphylococcus spp. genus and in particular the most pathogenic species for humans--Staphylococcus aureus, are analyzed. Structural and biological properties of protein toxins that have received the name of staphylococcus pyrogenic toxins (PTSAg) are presented. Data regarding genetic regulation of secretion and synthesis of these toxins and 3 main regulatory genetic systems (agr--accessory gene regulator, xpr--extracellular protein regulator, sar--staphylococcal accessory regulator) that coordinate synthesis of the most important protein toxins and enzymes for virulence of S. aureus, are presented.

  7. Protein leverage and energy intake.

    PubMed

    Gosby, A K; Conigrave, A D; Raubenheimer, D; Simpson, S J

    2014-03-01

    Increased energy intakes are contributing to overweight and obesity. Growing evidence supports the role of protein appetite in driving excess intake when dietary protein is diluted (the protein leverage hypothesis). Understanding the interactions between dietary macronutrient balance and nutrient-specific appetite systems will be required for designing dietary interventions that work with, rather than against, basic regulatory physiology. Data were collected from 38 published experimental trials measuring ad libitum intake in subjects confined to menus differing in macronutrient composition. Collectively, these trials encompassed considerable variation in percent protein (spanning 8-54% of total energy), carbohydrate (1.6-72%) and fat (11-66%). The data provide an opportunity to describe the individual and interactive effects of dietary protein, carbohydrate and fat on the control of total energy intake. Percent dietary protein was negatively associated with total energy intake (F = 6.9, P < 0.0001) irrespective of whether carbohydrate (F = 0, P = 0.7) or fat (F = 0, P = 0.5) were the diluents of protein. The analysis strongly supports a role for protein leverage in lean, overweight and obese humans. A better appreciation of the targets and regulatory priorities for protein, carbohydrate and fat intake will inform the design of effective and health-promoting weight loss diets, food labelling policies, food production systems and regulatory frameworks.

  8. High throughput protein production screening

    DOEpatents

    Beernink, Peter T.; Coleman, Matthew A.; Segelke, Brent W.

    2009-09-08

    Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.

  9. Protein structure modeling with MODELLER.

    PubMed

    Webb, Benjamin; Sali, Andrej

    2014-01-01

    Genome sequencing projects have resulted in a rapid increase in the number of known protein sequences. In contrast, only about one-hundredth of these sequences have been characterized at atomic resolution using experimental structure determination methods. Computational protein structure modeling techniques have the potential to bridge this sequence-structure gap. In this chapter, we present an example that illustrates the use of MODELLER to construct a comparative model for a protein with unknown structure. Automation of a similar protocol has resulted in models of useful accuracy for domains in more than half of all known protein sequences.

  10. Airborne concentrations of peanut protein.

    PubMed

    Johnson, Rodney M; Barnes, Charles S

    2013-01-01

    Food allergy to peanut is a significant health problem, and there are reported allergic reactions to peanuts despite not eating or having physical contact with peanuts. It is presumed that an allergic reaction may have occurred from inhalation of airborne peanut allergens. The purpose of this study was to detect the possible concentrations of airborne peanut proteins for various preparations and during specific activities. Separate Ara h 1 and Ara h 2 monoclonal enzyme-linked immunosorbent assays and a polyclonal sandwich enzyme immunoassay for peanuts were used to detect the amount of airborne peanut protein collected using a Spincon Omni 3000 air collector (Sceptor Industries, Inc., Kansas City, MO) under different peanut preparation methods and situations. Air samples were measured for multiple peanut preparations and scenarios. Detectable amounts of airborne peanut protein were measured using a whole peanut immunoassay when removing the shells of roasted peanut. No airborne peanut allergen (Ara h 1 or Ara h 2) or whole peanut protein above the LLD was measured in any of the other peanut preparation collections. Ara h 1, Ara h 2, and polyclonal peanut proteins were detected from water used to boil peanuts. Small amounts of airborne peanut protein were detected in the scenario of removing shells from roasted peanuts; however, Ara h 1 and Ara h 2 proteins were unable to be consistently detected. Although airborne peanut proteins were detected, the concentration of airborne peanut protein that is necessary to elicit a clinical allergic reaction is unknown. PMID:23406937

  11. Amyloidogenesis of Natively Unfolded Proteins

    PubMed Central

    Uversky, Vladimir N.

    2009-01-01

    Aggregation and subsequent development of protein deposition diseases originate from conformational changes in corresponding amyloidogenic proteins. The accumulated data support the model where protein fibrillogenesis proceeds via the formation of a relatively unfolded amyloidogenic conformation, which shares many structural properties with the pre-molten globule state, a partially folded intermediate first found during the equilibrium and kinetic (un)folding studies of several globular proteins and later described as one of the structural forms of natively unfolded proteins. The flexibility of this structural form is essential for the conformational rearrangements driving the formation of the core cross-beta structure of the amyloid fibril. Obviously, molecular mechanisms describing amyloidogenesis of ordered and natively unfolded proteins are different. For ordered protein to fibrillate, its unique and rigid structure has to be destabilized and partially unfolded. On the other hand, fibrillogenesis of a natively unfolded protein involves the formation of partially folded conformation; i.e., partial folding rather than unfolding. In this review recent findings are surveyed to illustrate some unique features of the natively unfolded proteins amyloidogenesis. PMID:18537543

  12. Nanotube-assisted protein deactivation

    NASA Astrophysics Data System (ADS)

    Joshi, Amit; Punyani, Supriya; Bale, Shyam Sundhar; Yang, Hoichang; Borca-Tasciuc, Theodorian; Kane, Ravi S.

    2008-01-01

    Conjugating proteins onto carbon nanotubes has numerous applications in biosensing, imaging and cellular delivery. However, remotely controlling the activity of proteins in these conjugates has never been demonstrated. Here we show that upon near-infrared irradiation, carbon nanotubes mediate the selective deactivation of proteins in situ by photochemical effects. We designed nanotube-peptide conjugates to selectively destroy the anthrax toxin, and also optically transparent coatings that can self-clean following either visible or near-infrared irradiation. Nanotube-assisted protein deactivation may be broadly applicable to the selective destruction of pathogens and cells, and will have applications ranging from antifouling coatings to functional proteomics.

  13. Molecular dynamics of membrane proteins.

    SciTech Connect

    Woolf, Thomas B.; Crozier, Paul Stewart; Stevens, Mark Jackson

    2004-10-01

    Understanding the dynamics of the membrane protein rhodopsin will have broad implications for other membrane proteins and cellular signaling processes. Rhodopsin (Rho) is a light activated G-protein coupled receptor (GPCR). When activated by ligands, GPCRs bind and activate G-proteins residing within the cell and begin a signaling cascade that results in the cell's response to external stimuli. More than 50% of all current drugs are targeted toward G-proteins. Rho is the prototypical member of the class A GPCR superfamily. Understanding the activation of Rho and its interaction with its Gprotein can therefore lead to a wider understanding of the mechanisms of GPCR activation and G-protein activation. Understanding the dark to light transition of Rho is fully analogous to the general ligand binding and activation problem for GPCRs. This transition is dependent on the lipid environment. The effect of lipids on membrane protein activity in general has had little attention, but evidence is beginning to show a significant role for lipids in membrane protein activity. Using the LAMMPS program and simulation methods benchmarked under the IBIG program, we perform a variety of allatom molecular dynamics simulations of membrane proteins.

  14. Protein phosphorylation in stomatal movement

    PubMed Central

    Zhang, Tong; Chen, Sixue; Harmon, Alice C

    2014-01-01

    As research progresses on how guard cells perceive and transduce environmental cues to regulate stomatal movement, plant biologists are discovering key roles of protein phosphorylation. Early research efforts focused on characterization of ion channels and transporters in guard cell hormonal signaling. Subsequent genetic studies identified mutants of kinases and phosphatases that are defective in regulating guard cell ion channel activities, and recently proteins regulated by phosphorylation have been identified. Here we review the essential role of protein phosphorylation in ABA-induced stomatal closure and in blue light-induced stomatal opening. We also highlight evidence for the cross-talk between different pathways, which is mediated by protein phosphorylation. PMID:25482764

  15. Website Review: Protein-Protein Interactions on the Web

    PubMed Central

    Wixon, Jo

    2001-01-01

    We present a brief guide to resources on the Internet relating to Protein-Protein Interactions. These include databases containing experimentally verified and computationally inferred physical and functional interactions. There are also tools for predicting interactions and for extracting information on interactions from the literature, and organism specific databases. PMID:18629244

  16. Heat shock proteins: essential proteins for apoptosis regulation

    PubMed Central

    Lanneau, D; Brunet, M; Frisan, E; Solary, E; Fontenay, M; Garrido, C

    2008-01-01

    Abstract Many different external and intrinsic apoptotic stimuli induce the accumulation in the cells of a set of proteins known as stress or heat shock proteins (HSPs). HSPs are conserved proteins present in both prokaryotes and eukaryotes. These proteins play an essential role as molecular chaperones by assisting the correct folding of nascent and stress-accumulated misfolded proteins, and by preventing their aggregation. HSPs have a protective function, that is they allow the cells to survive to otherwise lethal conditions. Various mechanisms have been proposed to account for the cytoprotective functions of HSPs. Several of these proteins have demonstrated to directly interact with components of the cell signalling pathways, for example those of the tightly regulated caspasedependent programmed cell death machinery, upstream, downstream and at the mitochondrial level. HSPs can also affect caspase-independent apoptosis-like process by interacting with apoptogenic factors such as apoptosis-inducing factor (AIF) or by acting at the lysosome level. This review will describe the different key apoptotic proteins interacting with HSPs and the consequences of these interactions in cell survival, proliferation and apoptotic processes. Our purpose will be illustrated by emerging strategies in targeting these protective proteins to treat haematological malignancies. PMID:18266962

  17. NOXclass: prediction of protein-protein interaction types

    PubMed Central

    Zhu, Hongbo; Domingues, Francisco S; Sommer, lngolf; Lengauer, Thomas

    2006-01-01

    Background Structural models determined by X-ray crystallography play a central role in understanding protein-protein interactions at the molecular level. Interpretation of these models requires the distinction between non-specific crystal packing contacts and biologically relevant interactions. This has been investigated previously and classification approaches have been proposed. However, less attention has been devoted to distinguishing different types of biological interactions. These interactions are classified as obligate and non-obligate according to the effect of the complex formation on the stability of the protomers. So far no automatic classification methods for distinguishing obligate, non-obligate and crystal packing interactions have been made available. Results Six interface properties have been investigated on a dataset of 243 protein interactions. The six properties have been combined using a support vector machine algorithm, resulting in NOXclass, a classifier for distinguishing obligate, non-obligate and crystal packing interactions. We achieve an accuracy of 91.8% for the classification of these three types of interactions using a leave-one-out cross-validation procedure. Conclusion NOXclass allows the interpretation and analysis of protein quaternary structures. In particular, it generates testable hypotheses regarding the nature of protein-protein interactions, when experimental results are not available. We expect this server will benefit the users of protein structural models, as well as protein crystallographers and NMR spectroscopists. A web server based on the method and the datasets used in this study are available at . PMID:16423290

  18. Protein linguistics - a grammar for modular protein assembly?

    PubMed

    Gimona, Mario

    2006-01-01

    The correspondence between biology and linguistics at the level of sequence and lexical inventories, and of structure and syntax, has fuelled attempts to describe genome structure by the rules of formal linguistics. But how can we define protein linguistic rules? And how could compositional semantics improve our understanding of protein organization and functional plasticity?

  19. Characterization of protein-protein interactions by isothermal titration calorimetry.

    PubMed

    Velazquez-Campoy, Adrian; Leavitt, Stephanie A; Freire, Ernesto

    2015-01-01

    The analysis of protein-protein interactions has attracted the attention of many researchers from both a fundamental point of view and a practical point of view. From a fundamental point of view, the development of an understanding of the signaling events triggered by the interaction of two or more proteins provides key information to elucidate the functioning of many cell processes. From a practical point of view, understanding protein-protein interactions at a quantitative level provides the foundation for the development of antagonists or agonists of those interactions. Isothermal Titration Calorimetry (ITC) is the only technique with the capability of measuring not only binding affinity but the enthalpic and entropic components that define affinity. Over the years, isothermal titration calorimeters have evolved in sensitivity and accuracy. Today, TA Instruments and MicroCal market instruments with the performance required to evaluate protein-protein interactions. In this methods paper, we describe general procedures to analyze heterodimeric (porcine pancreatic trypsin binding to soybean trypsin inhibitor) and homodimeric (bovine pancreatic α-chymotrypsin) protein associations by ITC.

  20. Proteins interacting with Membranes: Protein Sorting and Membrane Shaping

    NASA Astrophysics Data System (ADS)

    Callan-Jones, Andrew

    2015-03-01

    Membrane-bound transport in cells requires generating membrane curvature. In addition, transport is selective, in order to establish spatial gradients of membrane components in the cell. The mechanisms underlying cell membrane shaping by proteins and the influence of curvature on membrane composition are active areas of study in cell biophysics. In vitro approaches using Giant Unilamellar Vesicles (GUVs) are a useful tool to identify the physical mechanisms that drive sorting of membrane components and membrane shape change by proteins. I will present recent work on the curvature sensing and generation of IRSp53, a protein belonging to the BAR family, whose members, sharing a banana-shaped backbone, are involved in endocytosis. Pulling membrane tubes with 10-100 nm radii from GUVs containing encapsulated IRSp53 have, unexpectedly, revealed a non-monotonic dependence of the protein concentration on the tube as a function of curvature. Experiments also show that bound proteins alter the tube mechanics and that protein phase separation along the tube occurs at low tensions. I will present accompanying theoretical work that can explain these findings based on the competition between the protein's intrinsic curvature and the effective rigidity of a membrane-protein patch.

  1. Website on Protein Interaction and Protein Structure Related Work

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj; Liang, Shoudan; Biegel, Bryan (Technical Monitor)

    2003-01-01

    In today's world, three seemingly diverse fields - computer information technology, nanotechnology and biotechnology are joining forces to enlarge our scientific knowledge and solve complex technological problems. Our group is dedicated to conduct theoretical research exploring the challenges in this area. The major areas of research include: 1) Yeast Protein Interactions; 2) Protein Structures; and 3) Current Transport through Small Molecules.

  2. Analysis of Stable and Transient Protein-Protein Interactions

    PubMed Central

    Byrum, Stephanie; Smart, Sherri K.; Larson, Signe; Tackett, Alan J.

    2012-01-01

    The assembly of proteins into defined complexes drives a plethora of cellular activities. These protein complexes often have a set of more stably interacting proteins as well as more unstable or transient interactions. Studying the in vivo components of these protein complexes is challenging as many of the techniques used for isolation result in the purification of only the most stable components and the transient interactions are lost. A technology called transient isotopic differentiation of interactions as random or targeted (transient I-DIRT) has been developed to identify these transiently interacting proteins as well as the stable interactions. Described here are the detailed methodological approaches used for a transient I-DIRT analysis of a multi-subunit complex, NuA3, that acetylates histone H3 and functions to activate gene transcription. Transcription is known to involve a concert of protein assemblies performing different activities on the chromatin/gene template, thus understanding the less stable or transient protein interactions with NuA3 will shed light onto the protein complexes that function synergistically, or antagonistically, to regulate gene transcription and chromatin remodeling. PMID:22183593

  3. Pathogen mimicry of host protein-protein interfaces modulates immunity.

    PubMed

    Guven-Maiorov, Emine; Tsai, Chung-Jung; Nussinov, Ruth

    2016-10-01

    Signaling pathways shape and transmit the cell's reaction to its changing environment; however, pathogens can circumvent this response by manipulating host signaling. To subvert host defense, they beat it at its own game: they hijack host pathways by mimicking the binding surfaces of host-encoded proteins. For this, it is not necessary to achieve global protein homology; imitating merely the interaction surface is sufficient. Different protein folds often interact via similar protein-protein interface architectures. This similarity in binding surfaces permits the pathogenic protein to compete with a host target protein. Thus, rather than binding a host-encoded partner, the host protein hub binds the pathogenic surrogate. The outcome can be dire: rewiring or repurposing the host pathways, shifting the cell signaling landscape and consequently the immune response. They can also cause persistent infections as well as cancer by modulating key signaling pathways, such as those involving Ras. Mapping the rewired host-pathogen 'superorganism' interaction network - along with its structural details - is critical for in-depth understanding of pathogenic mechanisms and developing efficient therapeutics. Here, we overview the role of molecular mimicry in pathogen host evasion as well as types of molecular mimicry mechanisms that emerged during evolution.

  4. Modularity in protein structures: study on all-alpha proteins.

    PubMed

    Khan, Taushif; Ghosh, Indira

    2015-01-01

    Modularity is known as one of the most important features of protein's robust and efficient design. The architecture and topology of proteins play a vital role by providing necessary robust scaffolds to support organism's growth and survival in constant evolutionary pressure. These complex biomolecules can be represented by several layers of modular architecture, but it is pivotal to understand and explore the smallest biologically relevant structural component. In the present study, we have developed a component-based method, using protein's secondary structures and their arrangements (i.e. patterns) in order to investigate its structural space. Our result on all-alpha protein shows that the known structural space is highly populated with limited set of structural patterns. We have also noticed that these frequently observed structural patterns are present as modules or "building blocks" in large proteins (i.e. higher secondary structure content). From structural descriptor analysis, observed patterns are found to be within similar deviation; however, frequent patterns are found to be distinctly occurring in diverse functions e.g. in enzymatic classes and reactions. In this study, we are introducing a simple approach to explore protein structural space using combinatorial- and graph-based geometry methods, which can be used to describe modularity in protein structures. Moreover, analysis indicates that protein function seems to be the driving force that shapes the known structure space.

  5. Composition of Overlapping Protein-Protein and Protein-Ligand Interfaces

    PubMed Central

    Mohamed, Ruzianisra; Degac, Jennifer; Helms, Volkhard

    2015-01-01

    Protein-protein interactions (PPIs) play a major role in many biological processes and they represent an important class of targets for therapeutic intervention. However, targeting PPIs is challenging because often no convenient natural substrates are available as starting point for small-molecule design. Here, we explored the characteristics of protein interfaces in five non-redundant datasets of 174 protein-protein (PP) complexes, and 161 protein-ligand (PL) complexes from the ABC database, 436 PP complexes, and 196 PL complexes from the PIBASE database and a dataset of 89 PL complexes from the Timbal database. In all cases, the small molecule ligands must bind at the respective PP interface. We observed similar amino acid frequencies in all three datasets. Remarkably, also the characteristics of PP contacts and overlapping PL contacts are highly similar. PMID:26517868

  6. Information-driven structural modelling of protein-protein interactions.

    PubMed

    Rodrigues, João P G L M; Karaca, Ezgi; Bonvin, Alexandre M J J

    2015-01-01

    Protein-protein docking aims at predicting the three-dimensional structure of a protein complex starting from the free forms of the individual partners. As assessed in the CAPRI community-wide experiment, the most successful docking algorithms combine pure laws of physics with information derived from various experimental or bioinformatics sources. Of these so-called "information-driven" approaches, HADDOCK stands out as one of the most successful representatives. In this chapter, we briefly summarize which experimental information can be used to drive the docking prediction in HADDOCK, and then focus on the docking protocol itself. We discuss and illustrate with a tutorial example a "classical" protein-protein docking prediction, as well as more recent developments for modelling multi-body systems and large conformational changes. PMID:25330973

  7. Protein-protein interaction networks (PPI) and complex diseases

    PubMed Central

    Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Rezaei-Tavirani, Mostafa; Goliaei, Bahram

    2014-01-01

    The physical interaction of proteins which lead to compiling them into large densely connected networks is a noticeable subject to investigation. Protein interaction networks are useful because of making basic scientific abstraction and improving biological and biomedical applications. Based on principle roles of proteins in biological function, their interactions determine molecular and cellular mechanisms, which control healthy and diseased states in organisms. Therefore, such networks facilitate the understanding of pathogenic (and physiologic) mechanisms that trigger the onset and progression of diseases. Consequently, this knowledge can be translated into effective diagnostic and therapeutic strategies. Furthermore, the results of several studies have proved that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer and autoimmune disorders. Based on such relationship, a novel paradigm is suggested in order to confirm that the protein interaction networks can be the target of therapy for treatment of complex multi-genic diseases rather than individual molecules with disrespect the network. PMID:25436094

  8. Control of repeat protein curvature by computational protein design

    PubMed Central

    Park, Keunwan; Shen, Betty W.; Parmeggiani, Fabio; Huang, Po-Ssu; Stoddard, Barry L.; Baker, David

    2014-01-01

    Shape complementarity is an important component of molecular recognition, and the ability to precisely adjust the shape of a binding scaffold to match a target of interest would greatly facilitate the creation of high affinity protein reagents and therapeutics. Here we describe a general approach to control the shape of the binding surface on repeat protein scaffolds, and apply it to leucine rich repeat proteins. First, a set of self-compatible building block modules are designed that when polymerized each generate surfaces with unique but constant curvatures. Second, a set of junction modules that connect the different building blocks are designed. Finally, new proteins with custom designed shapes are generated by appropriately combining building block and junction modules. Crystal structures of the designs illustrate the power of the approach in controlling repeat protein curvature. PMID:25580576

  9. Understanding protein evolution: from protein physics to Darwinian selection.

    PubMed

    Zeldovich, Konstantin B; Shakhnovich, Eugene I

    2008-01-01

    Efforts in whole-genome sequencing and structural proteomics start to provide a global view of the protein universe, the set of existing protein structures and sequences. However, approaches based on the selection of individual sequences have not been entirely successful at the quantitative description of the distribution of structures and sequences in the protein universe because evolutionary pressure acts on the entire organism, rather than on a particular molecule. In parallel to this line of study, studies in population genetics and phenomenological molecular evolution established a mathematical framework to describe the changes in genome sequences in populations of organisms over time. Here, we review both microscopic (physics-based) and macroscopic (organism-level) models of protein-sequence evolution and demonstrate that bridging the two scales provides the most complete description of the protein universe starting from clearly defined, testable, and physiologically relevant assumptions.

  10. Text Mining for Protein Docking

    PubMed Central

    Badal, Varsha D.; Kundrotas, Petras J.; Vakser, Ilya A.

    2015-01-01

    The rapidly growing amount of publicly available information from biomedical research is readily accessible on the Internet, providing a powerful resource for predictive biomolecular modeling. The accumulated data on experimentally determined structures transformed structure prediction of proteins and protein complexes. Instead of exploring the enormous search space, predictive tools can simply proceed to the solution based on similarity to the existing, previously determined structures. A similar major paradigm shift is emerging due to the rapidly expanding amount of information, other than experimentally determined structures, which still can be used as constraints in biomolecular structure prediction. Automated text mining has been widely used in recreating protein interaction networks, as well as in detecting small ligand binding sites on protein structures. Combining and expanding these two well-developed areas of research, we applied the text mining to structural modeling of protein-protein complexes (protein docking). Protein docking can be significantly improved when constraints on the docking mode are available. We developed a procedure that retrieves published abstracts on a specific protein-protein interaction and extracts information relevant to docking. The procedure was assessed on protein complexes from Dockground (http://dockground.compbio.ku.edu). The results show that correct information on binding residues can be extracted for about half of the complexes. The amount of irrelevant information was reduced by conceptual analysis of a subset of the retrieved abstracts, based on the bag-of-words (features) approach. Support Vector Machine models were trained and validated on the subset. The remaining abstracts were filtered by the best-performing models, which decreased the irrelevant information for ~ 25% complexes in the dataset. The extracted constraints were incorporated in the docking protocol and tested on the Dockground unbound benchmark set

  11. Variola virus immune evasion proteins.

    PubMed

    Dunlop, Lance R; Oehlberg, Katherine A; Reid, Jeremy J; Avci, Dilek; Rosengard, Ariella M

    2003-09-01

    Variola virus, the causative agent of smallpox, encodes approximately 200 proteins. Over 80 of these proteins are located in the terminal regions of the genome, where proteins associated with host immune evasion are encoded. To date, only two variola proteins have been characterized. Both are located in the terminal regions and demonstrate immunoregulatory functions. One protein, the smallpox inhibitor of complement enzymes (SPICE), is homologous to a vaccinia virus virulence factor, the vaccinia virus complement-control protein (VCP), which has been found experimentally to be expressed early in the course of vaccinia infection. Both SPICE and VCP are similar in structure and function to the family of mammalian complement regulatory proteins, which function to prevent inadvertent injury to adjacent cells and tissues during complement activation. The second variola protein is the variola virus high-affinity secreted chemokine-binding protein type II (CKBP-II, CBP-II, vCCI), which binds CC-chemokine receptors. The vaccinia homologue of CKBP-II is secreted both early and late in infection. CKBP-II proteins are highly conserved among orthopoxviruses, sharing approximately 85% homology, but are absent in eukaryotes. This characteristic sets it apart from other known virulence factors in orthopoxviruses, which share sequence homology with known mammalian immune regulatory gene products. Future studies of additional variola proteins may help illuminate factors associated with its virulence, pathogenesis and strict human tropism. In addition, these studies may also assist in the development of targeted therapies for the treatment of both smallpox and human immune-related diseases.

  12. Engineering Protein Farnesyltransferase for Enzymatic Protein Labeling Applications

    PubMed Central

    2015-01-01

    Creating covalent protein conjugates is an active area of research due to the wide range of uses for protein conjugates spanning everything from biological studies to protein therapeutics. Protein Farnesyltransferase (PFTase) has been used for the creation of site-specific protein conjugates, and a number of PFTase substrates have been developed to facilitate that work. PFTase is an effective catalyst for protein modification because it transfers Farnesyl diphosphate (FPP) analogues to protein substrates on a cysteine four residues from the C-terminus. While much work has been done to synthesize various FPP analogues, there are few reports investigating how mutations in PFTase alter the kinetics with these unnatural analogues. Herein we examined how different mutations within the PFTase active site alter the kinetics of the PFTase reaction with a series of large FPP analogues. We found that mutating either a single tryptophan or tyrosine residue to alanine results in greatly improved catalytic parameters, particularly in kcat. Mutation of tryptophan 102β to alanine caused a 4-fold increase in kcat and a 10-fold decrease in KM for a benzaldehyde-containing FPP analogue resulting in an overall 40-fold increase in catalytic efficiency. Similarly, mutation of tyrosine 205β to alanine caused a 25-fold increase in kcat and a 10-fold decrease in KM for a coumarin-containing analogue leading to a 300-fold increase in catalytic efficiency. Smaller but significant changes in catalytic parameters were also obtained for cyclo-octene- and NBD-containing FPP analogues. The latter compound was used to create a fluorescently labeled form of Ciliary Neurotrophic Factor (CNTF), a protein of therapeutic importance. Additionally, computational modeling was performed to study how the large non-natural isoprenoid analogues can fit into the active sites enlarged via mutagenesis. Overall, these results demonstrate that PFTase can be improved via mutagenesis in ways that will be useful

  13. Are protein-protein interfaces special regions on a protein's surface?

    NASA Astrophysics Data System (ADS)

    Tonddast-Navaei, Sam; Skolnick, Jeffrey

    2015-12-01

    Protein-protein interactions (PPIs) are involved in many cellular processes. Experimentally obtained protein quaternary structures provide the location of protein-protein interfaces, the surface region of a given protein that interacts with another. These regions are termed half-interfaces (HIs). Canonical HIs cover roughly one third of a protein's surface and were found to have more hydrophobic residues than the non-interface surface region. In addition, the classical view of protein HIs was that there are a few (if not one) HIs per protein that are structurally and chemically unique. However, on average, a given protein interacts with at least a dozen others. This raises the question of whether they use the same or other HIs. By copying HIs from monomers with the same folds in solved quaternary structures, we introduce the concept of geometric HIs (HIs whose geometry has a significant match to other known interfaces) and show that on average they cover three quarters of a protein's surface. We then demonstrate that in some cases, these geometric HI could result in real physical interactions (which may or may not be biologically relevant). The composition of the new HIs is on average more charged compared to most known ones, suggesting that the current protein interface database is biased towards more hydrophobic, possibly more obligate, complexes. Finally, our results provide evidence for interface fuzziness and PPI promiscuity. Thus, the classical view of unique, well defined HIs needs to be revisited as HIs are another example of coarse-graining that is used by nature.

  14. Protein Cross-Linking Capillary Electrophoresis for Protein-Protein Interaction Analysis.

    PubMed

    Ouimet, Claire M; Shao, Hao; Rauch, Jennifer N; Dawod, Mohamed; Nordhues, Bryce; Dickey, Chad A; Gestwicki, Jason E; Kennedy, Robert T

    2016-08-16

    Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs. PMID:27434096

  15. Genome-wide protein-protein interactions and protein function exploration in cyanobacteria.

    PubMed

    Lv, Qi; Ma, Weimin; Liu, Hui; Li, Jiang; Wang, Huan; Lu, Fang; Zhao, Chen; Shi, Tieliu

    2015-10-22

    Genome-wide network analysis is well implemented to study proteins of unknown function. Here, we effectively explored protein functions and the biological mechanism based on inferred high confident protein-protein interaction (PPI) network in cyanobacteria. We integrated data from seven different sources and predicted 1,997 PPIs, which were evaluated by experiments in molecular mechanism, text mining of literatures in proved direct/indirect evidences, and "interologs" in conservation. Combined the predicted PPIs with known PPIs, we obtained 4,715 no-redundant PPIs (involving 3,231 proteins covering over 90% of genome) to generate the PPI network. Based on the PPI network, terms in Gene ontology (GO) were assigned to function-unknown proteins. Functional modules were identified by dissecting the PPI network into sub-networks and analyzing pathway enrichment, with which we investigated novel function of underlying proteins in protein complexes and pathways. Examples of photosynthesis and DNA repair indicate that the network approach is a powerful tool in protein function analysis. Overall, this systems biology approach provides a new insight into posterior functional analysis of PPIs in cyanobacteria.

  16. Genome-wide protein-protein interactions and protein function exploration in cyanobacteria

    PubMed Central

    Lv, Qi; Ma, Weimin; Liu, Hui; Li, Jiang; Wang, Huan; Lu, Fang; Zhao, Chen; Shi, Tieliu

    2015-01-01

    Genome-wide network analysis is well implemented to study proteins of unknown function. Here, we effectively explored protein functions and the biological mechanism based on inferred high confident protein-protein interaction (PPI) network in cyanobacteria. We integrated data from seven different sources and predicted 1,997 PPIs, which were evaluated by experiments in molecular mechanism, text mining of literatures in proved direct/indirect evidences, and “interologs” in conservation. Combined the predicted PPIs with known PPIs, we obtained 4,715 no-redundant PPIs (involving 3,231 proteins covering over 90% of genome) to generate the PPI network. Based on the PPI network, terms in Gene ontology (GO) were assigned to function-unknown proteins. Functional modules were identified by dissecting the PPI network into sub-networks and analyzing pathway enrichment, with which we investigated novel function of underlying proteins in protein complexes and pathways. Examples of photosynthesis and DNA repair indicate that the network approach is a powerful tool in protein function analysis. Overall, this systems biology approach provides a new insight into posterior functional analysis of PPIs in cyanobacteria. PMID:26490033

  17. Porcine prion protein amyloid.

    PubMed

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions. PMID:26218890

  18. Porcine prion protein amyloid

    PubMed Central

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    ABSTRACT Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions. PMID:26218890

  19. Soliton dynamics in proteins

    SciTech Connect

    Foerner, W.

    1996-12-31

    The mechanism for energy and signal transport in proteins is suggested by Davydov is discussed. This mechanism is based on a coupling of amide-I oscillators to acoustic phonons in a hydrogen bonded chain. Results as obtained with the usually used ansaetze are discussed. The quality of these states for an approximate solution of the time-dependent Schroedinger equation is investigated. It is found that the semiclassical ansatz is a poor approximation, while the more sophisticated {vert_bar}D{sub 1}> state seems to represent the exact dynamics quite well. Calculations at a temperature of 300K for one chain, as well as for three coupled ones (as they are present in an {alpha}-helix) are presented and discussed. From the calculations it is evident, that Davydov solitons are stable for reasonable parameter values at 300K only for special initial excitation at one terminal site of the chain, which has to be the one having a C=O group not directly coupled to the lattice. Since the model for temperature effects used was critisized from the theoretical point of view, we suggest an improved theory for temperature effects. Recent experimental findings, that also normal modes describing mainly N-H stretching vibrations are their coupling to the hydrogen bonds, instead of amide-I, should be considered are discussed.

  20. Porcine prion protein amyloid.

    PubMed

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions.

  1. Dual targeting of peroxisomal proteins

    PubMed Central

    Ast, Julia; Stiebler, Alina C.; Freitag, Johannes; Bölker, Michael

    2013-01-01

    Cellular compartmentalization into organelles serves to separate biological processes within the environment of a single cell. While some metabolic reactions are specific to a single organelle, others occur in more than one cellular compartment. Specific targeting of proteins to compartments inside of eukaryotic cells is mediated by defined sequence motifs. To achieve multiple targeting to different compartments cells use a variety of strategies. Here, we focus on mechanisms leading to dual targeting of peroxisomal proteins. In many instances, isoforms of peroxisomal proteins with distinct intracellular localization are encoded by separate genes. But also single genes can give rise to differentially localized proteins. Different isoforms can be generated by use of alternative transcriptional start sites, by differential splicing or ribosomal read-through of stop codons. In all these cases different peptide variants are produced, of which only one carries a peroxisomal targeting signal. Alternatively, peroxisomal proteins contain additional signals that compete for intracellular targeting. Dual localization of proteins residing in both the cytoplasm and in peroxisomes may also result from use of inefficient targeting signals. The recent observation that some bona fide cytoplasmic enzymes were also found in peroxisomes indicates that dual targeting of proteins to both the cytoplasm and the peroxisome might be more widespread. Although current knowledge of proteins exhibiting only partial peroxisomal targeting is far from being complete, we speculate that the metabolic capacity of peroxisomes might be larger than previously assumed. PMID:24151469

  2. Nanobiomechanics of proteins and biomembrane.

    PubMed

    Ikai, Atsushi

    2008-06-27

    A review of the work done in the Laboratory of Biodynamics of Tokyo Institute of Technology in the last decade has been summarized in this article in relation to the results reported from other laboratories. The emphasis here is the application of nanomechanics based on the force mode of atomic force microscopy (AFM) to proteins and protein-based biological structures. Globular proteins were stretched in various ways to detect the localized rigidity inside of the molecule. When studied by this method, bovine carbonic anhydrase II (BCA II), calmodulin and OspA protein all showed the presence of localized rigid structures inside the molecules. Protein compression experiments were done on BCA II to obtain an estimate of the Young modulus and its change in the process of denaturation. Then, the AFM probe method was turned on to cell membranes and cytoplasmic components. Force curves accompanying the extraction process of membrane proteins from intact cells were analysed in relation to their interaction with the cytoskeletal components. By pushing the AFM probe further into the cytoplasm, mRNAs were recovered from a live cell with minimal damage, and multiplied using PCR technology for their identification. Altogether, the work introduced here forms the basis of nanomechanics of protein and protein-based biostructures and application of the nanomechanical technology to cell biology.

  3. Separating proteins with activated carbon.

    PubMed

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon. PMID:24898563

  4. Illustrating Chromatography with Colorful Proteins

    ERIC Educational Resources Information Center

    Lefebvre, Brian G.; Farrell, Stephanie; Dominiak, Richard S.

    2007-01-01

    Advances in biology are prompting new discoveries in the biotechnology, pharmaceutical, medical technology, and chemical industries. This paper presents a detailed description of an anion exchange chromatography experiment using a pair of colorful proteins and summarizes the effect of operating parameters on protein separation. This experiment…

  5. Increasing Alfalfa Rumen Bypass Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alfalfa has one of the highest crude protein contents among forage crops, but is is rapidly and extensively degraded by rumen microorganisms. To examine differential protein digestion, three distinct varieties of alfalfa, grown from single plants, were subjected to fermentation in the rumen of a ca...

  6. NMR of fd coat protein.

    PubMed

    Cross, T A; Opella, S J

    1979-01-01

    The conformations of the major coat protein of a filamentous bacteriophage can be described by nuclear magnetic resonance spectroscopy of the protein and the virus. The NMR experiments involve detection of the 13C and 1H nuclei of the coat protein. Both the 13C and 1H nuclear magnetic resonance (NMR) spectra show that regions of the polypeptide chain have substantially more motion than a typical globular protein. The fd coat protein was purified by gel chromatography of the SDA solubilized virus. Natural abundance 13C NMR spectra at 38 MHz resolve all of the nonprotonated aromatic carbons from the three phenylalanines, two tyrosines, and one tryptophan of the coat protein. The alpha carbons of the coat protein show at least two different classes of relaxation behavior, indicative of substantial variation in the motion of the backbone carbons in contrast to the rigidity of the alpha carbons of globular proteins. The 1H spectrum at 360 MHz shows all of the aromatic carbons and many of the amide protons. Titration of a 1H spectra gives the pKas for the tyrosines.

  7. Microtechnologies for membrane protein studies

    PubMed Central

    Suzuki, Hiroaki

    2008-01-01

    Despite the rapid and enormous progress in biotechnologies, the biochemical analysis of membrane proteins is still a difficult task. The presence of the large hydrophobic region buried in the lipid bilayer membrane (transmembrane domain) makes it difficult to analyze membrane proteins in standard assays developed for water-soluble proteins. To handle membrane proteins, the lipid bilayer membrane may be used as a platform to sustain their functionalities. Relatively slow progress in developing micro total analysis systems (μTAS) for membrane protein analysis directly reflects the difficulty of handling lipid membranes, which is a common problem in bulk measurement technologies. Nonetheless, researchers are continuing to develop efficient and sensitive analytical microsystems for the study of membrane proteins. Here, we review the latest developments, which enable detection of events caused by membrane proteins, such as ion channel current, membrane transport, and receptor/ligand interaction, by utilizing microfabricated structures. High-throughput and highly sensitive detection systems for membrane proteins are now becoming a realistic goal. Although most of these systems are still in the early stages of development, we believe this field will become one of the most important applications of μTAS for pharmaceutical and clinical screenings as well as for basic biochemical research. PMID:18335213

  8. [Protein microarrays and personalized medicine].

    PubMed

    Yu, Xiabo; Schneiderhan-Marra, Nicole; Joos, Thomas O

    2011-01-01

    Over the last 10 years, DNA microarrays have achieved a robust analytical performance, enabling their use for analyzing the whole transcriptome or for screening thousands of single-nucleotide polymorphisms in a single experiment. DNA microarrays allow scientists to correlate gene expression signatures with disease progression, to screen for disease-specific mutations, and to treat patients according to their individual genetic profiles; however, the real key is proteins and their manifold functions. It is necessary to achieve a greater understanding of not only protein function and abundance but also their role in the development of diseases. Protein concentrations have been shown to reflect the physiological and pathologic state of an organ, tissue, or cells far more directly than DNA, and proteins can be profiled effectively with protein microarrays, which require only a small amount of sample material. Protein microarrays have become wellestablished tools in basic and applied research, and the first products have already entered the in vitro diagnostics market. This review focuses on protein microarray applications for biomarker discovery and validation, disease diagnosis, and use within the area of personalized medicine. Protein microarrays have proved to be reliable research tools in screening for a multitude of parameters with only a minimal quantity of sample and have enormous potential in applications for diagnostic and personalized medicine.

  9. Simple rheology of mixed proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mixing different proteins to form strong gel networks for food applications may create synergistic increases in viscoelasticity that cannot be achieved with a single protein. In this study, small amplitude oscillatory shear analyses were used to investigate the rheology of calcium caseinate (CC), e...

  10. Dual targeting of peroxisomal proteins.

    PubMed

    Ast, Julia; Stiebler, Alina C; Freitag, Johannes; Bölker, Michael

    2013-10-18

    Cellular compartmentalization into organelles serves to separate biological processes within the environment of a single cell. While some metabolic reactions are specific to a single organelle, others occur in more than one cellular compartment. Specific targeting of proteins to compartments inside of eukaryotic cells is mediated by defined sequence motifs. To achieve multiple targeting to different compartments cells use a variety of strategies. Here, we focus on mechanisms leading to dual targeting of peroxisomal proteins. In many instances, isoforms of peroxisomal proteins with distinct intracellular localization are encoded by separate genes. But also single genes can give rise to differentially localized proteins. Different isoforms can be generated by use of alternative transcriptional start sites, by differential splicing or ribosomal read-through of stop codons. In all these cases different peptide variants are produced, of which only one carries a peroxisomal targeting signal. Alternatively, peroxisomal proteins contain additional signals that compete for intracellular targeting. Dual localization of proteins residing in both the cytoplasm and in peroxisomes may also result from use of inefficient targeting signals. The recent observation that some bona fide cytoplasmic enzymes were also found in peroxisomes indicates that dual targeting of proteins to both the cytoplasm and the peroxisome might be more widespread. Although current knowledge of proteins exhibiting only partial peroxisomal targeting is far from being complete, we speculate that the metabolic capacity of peroxisomes might be larger than previously assumed.

  11. Are proteins well-packed?

    PubMed

    Liang, J; Dill, K A

    2001-08-01

    The average packing density inside proteins is as high as in crystalline solids. Does this mean proteins are well-packed? We go beyond average densities, and look at the full distribution functions of free volumes inside proteins. Using a new and rigorous Delaunay triangulation method for parsing space into empty and filled regions, we introduce formal definitions of interior and surface packing densities. Although proteins look like organic crystals by the criterion of average density, they look more like liquids and glasses by the criterion of their free volume distributions. The distributions are broad, and the scalings of volume-to-surface, volume-to-cluster-radius, and numbers of void versus volume show that the interiors of proteins are more like randomly packed spheres near their percolation threshold than like jigsaw puzzles. We find that larger proteins are packed more loosely than smaller proteins. And we find that the enthalpies of folding (per amino acid) are independent of the packing density of a protein, indicating that van der Waals interactions are not a dominant component of the folding forces. PMID:11463623

  12. Hydrolyzed Proteins in Preterm Infants.

    PubMed

    Senterre, Thibault; Rigo, Jacques

    2016-01-01

    Milk proteins are an essential component of the diet of preterm infants who have high requirements. Hydrolyzed proteins (HPs) have been introduced in infants' formulas (HPFs) to treat gastrointestinal disorders and to prevent allergic diseases. Several studies have evaluated the adequacy of HPs in preterm infants. Protein source significantly influences plasma amino acid concentrations. Protein utilization and efficiency are usually lower with HPFs compared to formulas with intact proteins. When protein intake is similar, a lower weight gain is generally observed with HPFs and a 10% increase in protein content is usually necessary to compensate for this reduction in protein utilization. Mineral absorption may also be reduced and no data exist for trace elements and vitamins. Most HPFs are associated with accelerated gastrointestinal transit time and softer stools but without clear benefit on feeding tolerance. Preterm infants seem to be at similar risk of allergic diseases than term infants, but the preventive effect of HPFs has not been sufficiently explored in preterm infants. Most modern HPFs designed for preterm infants are well tolerated and have adapted their nutrient content to improve nutrient absorption and retention. However, their benefits and safety have not been demonstrated and, therefore, further high-quality studies are needed. PMID:27336633

  13. Molecular bases of protein halotolerance.

    PubMed

    Graziano, Giuseppe; Merlino, Antonello

    2014-04-01

    Halophilic proteins are stable and function at high salt concentration. Understanding how these molecules maintain their fold stable and avoid aggregation under harsh conditions is of great interest for biotechnological applications. This mini-review describes what is known about the molecular determinants of protein halotolerance. Comparisons between the sequences of halophilic/non-halophilic homologous protein pairs indicated that Asp and Glu are significantly more frequent, while Lys, Ile and Leu are less frequent in halophilic proteins. Homologous halophilic and non-halophilic proteins have similar overall structure, secondary structure content, and number of residues involved in the formation of H-bonds. On the other hand, on the halophilic protein surface, a decrease of nonpolar residues and an increase of charged residues are observed. Particularly, halophilic adaptation correlates with an increase of Asp and Glu, compensated by a decrease of basic residues, mainly Lys, on protein surface. A thermodynamic model, that provides a reliable explanation of the salt effect on the conformational stability of globular proteins, is presented.

  14. Protein bioinformatics applied to virology.

    PubMed

    Mohabatkar, Hassan; Keyhanfar, Mehrnaz; Behbahani, Mandana

    2012-09-01

    Scientists have united in a common search to sequence, store and analyze genes and proteins. In this regard, rapidly evolving bioinformatics methods are providing valuable information on these newly-discovered molecules. Understanding what has been done and what we can do in silico is essential in designing new experiments. The unbalanced situation between sequence-known proteins and attribute-known proteins, has called for developing computational methods or high-throughput automated tools for fast and reliably predicting or identifying various characteristics of uncharacterized proteins. Taking into consideration the role of viruses in causing diseases and their use in biotechnology, the present review describes the application of protein bioinformatics in virology. Therefore, a number of important features of viral proteins like epitope prediction, protein docking, subcellular localization, viral protease cleavage sites and computer based comparison of their aspects have been discussed. This paper also describes several tools, principally developed for viral bioinformatics. Prediction of viral protein features and learning the advances in this field can help basic understanding of the relationship between a virus and its host.

  15. Protein, weight management, and satiety.

    PubMed

    Paddon-Jones, Douglas; Westman, Eric; Mattes, Richard D; Wolfe, Robert R; Astrup, Arne; Westerterp-Plantenga, Margriet

    2008-05-01

    Obesity, with its comorbidities such as metabolic syndrome and cardiovascular diseases, is a major public health concern. To address this problem, it is imperative to identify treatment interventions that target a variety of short- and long-term mechanisms. Although any dietary or lifestyle change must be personalized, controlled energy intake in association with a moderately elevated protein intake may represent an effective and practical weight-loss strategy. Potential beneficial outcomes associated with protein ingestion include the following: 1) increased satiety--protein generally increases satiety to a greater extent than carbohydrate or fat and may facilitate a reduction in energy consumption under ad libitum dietary conditions; 2) increased thermogenesis--higher-protein diets are associated with increased thermogenesis, which also influences satiety and augments energy expenditure (in the longer term, increased thermogenesis contributes to the relatively low-energy efficiency of protein); and 3) maintenance or accretion of fat-free mass--in some individuals, a moderately higher protein diet may provide a stimulatory effect on muscle protein anabolism, favoring the retention of lean muscle mass while improving metabolic profile. Nevertheless, any potential benefits associated with a moderately elevated protein intake must be evaluated in the light of customary dietary practices and individual variability. PMID:18469287

  16. Protein intake and bone health.

    PubMed

    Bonjour, Jean-Philippe

    2011-03-01

    Adequate nutrition plays an important role in the development and maintenance of bone structures resistant to usual mechanical stresses. In addition to calcium in the presence of an adequate supply of vitamin D, dietary proteins represent key nutrients for bone health and thereby function in the prevention of osteoporosis. Several studies point to a positive effect of high protein intake on bone mineral density or content. This fact is associated with a significant reduction in hip fracture incidence, as recorded in a large prospective study carried out in a homogeneous cohort of postmenopausal women. Low protein intake (< 0.8 g/kg body weight/day) is often observed in patients with hip fractures and an intervention study indicates that following orthopedic management, protein supplementation attenuates post-fracture bone loss, tends to increase muscle strength, and reduces medical complications and rehabilitation hospital stay. There is no evidence that high protein intake per se would be detrimental for bone mass and strength. Nevertheless, it appears reasonable to avoid very high protein diets (i. e. more than 2.0 g/kg body weight/day) when associated with low calcium intake (i. e. less than 600 mg/day). In the elderly, taking into account the attenuated anabolic response to dietary protein with ageing, there is concern that the current dietary protein recommended allowance (RDA), as set at 0.8 g/kg body weight/day, might be too low for the primary and secondary prevention of fragility fractures. PMID:22139564

  17. Protein fragment bimolecular fluorescence complementation analyses for the in vivo study of protein-protein interactions and cellular protein complex localizations

    PubMed Central

    Waadt, Rainer; Schlücking, Kathrin; Schroeder, Julian I.; Kudla, Jörg

    2014-01-01

    Summary The analyses of protein-protein interactions is crucial for understanding cellular processes including signal transduction, protein trafficking and movement. Protein fragment complementation assays are based on the reconstitution of protein function when non-active protein fragments are brought together by interacting proteins that were genetically fused to these protein fragments. Bimolecular fluorescence complementation (BiFC) relies on the reconstitution of fluorescent proteins and enables both the analysis of protein-protein interactions and the visualization of protein complex formations in vivo. Transient expression of proteins is a convenient approach to study protein functions in planta or in other organisms, and minimizes the need for time-consuming generation of stably expressing transgenic organisms. Here we describe protocols for BiFC analyses in Nicotiana benthamiana and Arabidopsis thaliana leaves transiently transformed by Agrobacterium infiltration. Further we discuss different BiFC applications and provide examples for proper BiFC analyses in planta. PMID:24057390

  18. The Geobiochemistry of Methanogen Proteins

    NASA Astrophysics Data System (ADS)

    Prasad, A.; Shock, E.

    2013-12-01

    A principle of geobiochemistry is that adaptation over evolutionary time includes a thermodynamic drive to minimize costs of making biomolecules like proteins and lipids. If so, then biomolecule abundances will reflect, at least in part, their relative stabilities at the conditions imposed by external environments. We tested this hypothesis by comparing relative stabilities of 138 orthologous proteins between a representative lake-sediment methanogen (Methanoculleus marisnigri) and a representative rumen methanogen (Methanospirillum hungatei) at the compositional constraints of their respective environments. Chemical affinities of the proteins were calculated based on pH, temperature, and concentrations of dissolved hydrogen, bicarbonate, ammonia, and hydrogen sulfide, together with standard Gibbs energies of formation of proteins from the elements predicted with a group additivity algorithm for unfolded proteins [1]. Methanogens were chosen as they are chemoautotrophs and their metabolism proceeds at relatively small affinities. Also, they are found in a variety of compositionally varying habitats like rumen, sediments, hydrothermal systems and sewage. The methanogens selected belong to the same order of taxonomy and are closely related. Preliminary results show that a majority of the proteins belonging to the rumen methanogen (66%) are more stable in the rumen environment, while a majority of the proteins belonging to the lake-sediment methanogen (58%) are more stable at sediment conditions. In a separate observation, it was noted that while the complete protein ';proteasome subunit alpha' of another rumen methanogen (Methanobrevibacter smithii) was less stable in its more reducing habitat as compared to a sewage methanogen (Methanothermobacter thermoautotophicus), its first 26 amino acid residues (N terminal) were in fact more stable in its own environment. These 26 residues are reported to be unique as compared to other proteasome proteins and are suggested to

  19. Protein aggregation in salt solutions

    PubMed Central

    Kastelic, Miha; Kalyuzhnyi, Yurij V.; Hribar-Lee, Barbara; Dill, Ken A.; Vlachy, Vojko

    2015-01-01

    Protein aggregation is broadly important in diseases and in formulations of biological drugs. Here, we develop a theoretical model for reversible protein–protein aggregation in salt solutions. We treat proteins as hard spheres having square-well-energy binding sites, using Wertheim’s thermodynamic perturbation theory. The necessary condition required for such modeling to be realistic is that proteins in solution during the experiment remain in their compact form. Within this limitation our model gives accurate liquid–liquid coexistence curves for lysozyme and γ IIIa-crystallin solutions in respective buffers. It provides good fits to the cloud-point curves of lysozyme in buffer–salt mixtures as a function of the type and concentration of salt. It than predicts full coexistence curves, osmotic compressibilities, and second virial coefficients under such conditions. This treatment may also be relevant to protein crystallization. PMID:25964322

  20. FERM proteins in animal morphogenesis.

    PubMed

    Tepass, Ulrich

    2009-08-01

    Proteins containing a FERM domain are ubiquitous components of the cytocortex of animal cells where they are engaged in structural, transport, and signaling functions. Recent years have seen a wealth of genetic studies in model organisms that explore FERM protein function in development and tissue organization. In addition, mutations in several FERM protein-encoding genes have been associated with human diseases. This review will provide a brief overview of the FERM domain structure and the FERM protein superfamily and then discuss recent advances in our understanding of the mechanism of function and developmental requirement of several FERM proteins including Moesin, Myosin-VIIA, Myosin-XV, Coracle/Band4.1 as well as Yurt and its vertebrate homologs Mosaic Eyes and EPB41L5/YMO1/Limulus. PMID:19596566

  1. Intersurf: dynamic interface between proteins.

    PubMed

    Ray, Nicolas; Cavin, Xavier; Paul, Jean-Claude; Maigret, Bernard

    2005-01-01

    Protein docking is a fundamental biological process that links two proteins. This link is typically defined by an interaction between two large zones of the protein boundaries. Visualizing such an interface is useful to understand the process thanks to 3D protein structures, to estimate the quality of docking simulation results, and to classify interactions in order to predict docking affinity between classes of interacting zones. Since the interface may be defined by a surface that separates the two proteins, it is possible to create a map of interaction that allows comparisons to be performed in 2D. This paper presents a very fast algorithm that extracts an interface surface and creates a valid and low-distorted interaction map. Another benefit of our approach is that a pre-computed part of the algorithm enables the surface to be updated in real-time while residues are moved. PMID:15670955

  2. Holographic characterization of protein aggregates

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Zhong, Xiao; Ruffner, David; Stutt, Alexandra; Philips, Laura; Ward, Michael; Grier, David

    Holographic characterization directly measures the size distribution of subvisible protein aggregates in suspension and offers insights into their morphology. Based on holographic video microscopy, this analytical technique records and interprets holograms of individual aggregates in protein solutions as they flow down a microfluidic channel, without requiring labeling or other exceptional sample preparation. The hologram of an individual protein aggregate is analyzed in real time with the Lorenz-Mie theory of light scattering to measure that aggregate's size and optical properties. Detecting, counting and characterizing subvisible aggregates proceeds fast enough for time-resolved studies, and lends itself to tracking trends in protein aggregation arising from changing environmental factors. No other analytical technique provides such a wealth of particle-resolved characterization data in situ. Holographic characterization promises accelerated development of therapeutic protein formulations, improved process control during manufacturing, and streamlined quality assurance during storage and at the point of use. Mrsec and MRI program of the NSF, Spheryx Inc.

  3. Structural Genomics of Protein Phosphatases

    SciTech Connect

    Almo,S.; Bonanno, J.; Sauder, J.; Emtage, S.; Dilorenzo, T.; Malashkevich, V.; Wasserman, S.; Swaminathan, S.; Eswaramoorthy, S.; et al

    2007-01-01

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

  4. Protein turnover, ureagenesis and gluconeogenesis.

    PubMed

    Schutz, Yves

    2011-03-01

    The major processes discussed below are protein turnover (degradation and synthesis), degradation into urea, or conversion into glucose (gluconeogenesis, Figure 1). Daily protein turnover is a dynamic process characterized by a double flux of amino acids: the amino acids released by endogenous (body) protein breakdown can be reutilized and reconverted to protein synthesis, with very little loss. Daily rates of protein turnover in humans (300 to 400 g per day) are largely in excess of the level of protein intake (50 to 80 g per day). A fast growing rate, as in premature babies or in children recovering from malnutrition, leads to a high protein turnover rate and a high protein and energy requirement. Protein metabolism (synthesis and breakdown) is an energy-requiring process, dependent upon endogenous ATP supply. The contribution made by whole-body protein turnover to the resting metabolic rate is important: it represents about 20 % in adults and more in growing children. Metabolism of proteins cannot be disconnected from that of energy since energy balance influences net protein utilization, and since protein intake has an important effect on postprandial thermogenesis - more important than that of fats or carbohydrates. The metabolic need for amino acids is essentially to maintain stores of endogenous tissue proteins within an appropriate range, allowing protein homeostasis to be maintained. Thanks to a dynamic, free amino acid pool, this demand for amino acids can be continuously supplied. The size of the free amino acid pool remains limited and is regulated within narrow limits. The supply of amino acids to cover physiological needs can be derived from 3 sources: 1. Exogenous proteins that release amino acids after digestion and absorption 2. Tissue protein breakdown during protein turnover 3. De novo synthesis, including amino acids (as well as ammonia) derived from the process of urea salvage, following hydrolysis and microflora metabolism in the hind gut

  5. Multidimensional theory of protein folding

    NASA Astrophysics Data System (ADS)

    Itoh, Kazuhito; Sasai, Masaki

    2009-04-01

    Theory of multidimensional representation of free energy surface of protein folding is developed by adopting structural order parameters of multiple regions in protein as multiple coordinates. Various scenarios of folding are classified in terms of cooperativity within individual regions and interactions among multiple regions and thus obtained classification is used to analyze the folding process of several example proteins. Ribosomal protein S6, src-SH3 domain, CheY, barnase, and BBL domain are analyzed with the two-dimensional representation by using a structure-based Hamiltonian model. The extension to the higher dimensional representation leads to the finer description of the folding process. Barnase, NtrC, and an ankyrin repeat protein are examined with the three-dimensional representation. The multidimensional representation allows us to directly address questions on folding pathways, intermediates, and transition states.

  6. Isolation of proteins and protein complexes by immunoprecipitation.

    PubMed

    Kaboord, Barbara; Perr, Maria

    2008-01-01

    Immunoprecipitation (IP) uses the specificity of antibodies to isolate target proteins (antigens) out of complex sample mixtures. Three different approaches for performing IP will be discussed; traditional (classical) method, oriented affinity method and direct affinity method. The traditional method of incubating the IP antibody with the sample and sequentially binding to Protein A or G agarose beads (resin) facilitates the most efficient target antigen recovery. However, this approach results in the target protein becoming contaminated with the IP antibody that can interfere with downstream analyses. The orientated affinity method uses Protein A or G beads to serve as an anchor to which the IP antibody is crosslinked thereby preventing the antibody from co-eluting with the target protein. Similarly, the direct affinity method also immobilizes the IP antibody except in this case it is directly attached to a chemically activated support. Both methods prevent co-elution of the IP antibody enabling reuse of the immunomatrix. All three approaches have unique advantages and can also be used for co-immunoprecipitation to study protein:protein interactions and investigate the functional proteome.

  7. Protein rethreading: A novel approach to protein design

    PubMed Central

    Agah, Sayeh; Poulos, Sandra; Yu, Austin; Kucharska, Iga; Faham, Salem

    2016-01-01

    Protein engineering is an important tool for the design of proteins with novel and desirable features. Templates from the protein databank (PDB) are often used as initial models that can be modified to introduce new properties. We examine whether it is possible to reconnect a protein in a manner that generates a new topology yet preserves its structural integrity. Here, we describe the rethreading of dihydrofolate reductase (DHFR) from E. coli (wtDHFR). The rethreading process involved the removal of three native loops, and the introduction of three new loops with alternate connections. The structure of the rethreaded DHFR (rDHFR-1) was determined to 1.6 Å, demonstrating the success of the rethreading process. Both wtDHFR and rDHFR-1 exhibited similar affinities towards methotrexate. However, rDHFR-1 showed no reducing activity towards dihydrofolate, and exhibited about ~6-fold lower affinity towards NADPH than wtDHFR. This work demonstrates that protein rethreading can be a powerful tool for the design of a large array of proteins with novel structures and topologies, and that by careful rearrangement of a protein sequence, the sequence to structure relationship can be expanded substantially. PMID:27229326

  8. Discovering interacting domains and motifs in protein-protein interactions.

    PubMed

    Hugo, Willy; Sung, Wing-Kin; Ng, See-Kiong

    2013-01-01

    Many important biological processes, such as the signaling pathways, require protein-protein interactions (PPIs) that are designed for fast response to stimuli. These interactions are usually transient, easily formed, and disrupted, yet specific. Many of these transient interactions involve the binding of a protein domain to a short stretch (3-10) of amino acid residues, which can be characterized by a sequence pattern, i.e., a short linear motif (SLiM). We call these interacting domains and motifs domain-SLiM interactions. Existing methods have focused on discovering SLiMs in the interacting proteins' sequence data. With the recent increase in protein structures, we have a new opportunity to detect SLiMs directly from the proteins' 3D structures instead of their linear sequences. In this chapter, we describe a computational method called SLiMDIet to directly detect SLiMs on domain interfaces extracted from 3D structures of PPIs. SLiMDIet comprises two steps: (1) interaction interfaces belonging to the same domain are extracted and grouped together using structural clustering and (2) the extracted interaction interfaces in each cluster are structurally aligned to extract the corresponding SLiM. Using SLiMDIet, de novo SLiMs interacting with protein domains can be computationally detected from structurally clustered domain-SLiM interactions for PFAM domains which have available 3D structures in the PDB database.

  9. Sequence determinants of protein aggregation: tools to increase protein solubility

    PubMed Central

    Ventura, Salvador

    2005-01-01

    Escherichia coli is one of the most widely used hosts for the production of recombinant proteins. However, very often the target protein accumulates into insoluble aggregates in a misfolded and biologically inactive form. Bacterial inclusion bodies are major bottlenecks in protein production and are hampering the development of top priority research areas such structural genomics. Inclusion body formation was formerly considered to occur via non-specific association of hydrophobic surfaces in folding intermediates. Increasing evidence, however, indicates that protein aggregation in bacteria resembles to the well-studied process of amyloid fibril formation. Both processes appear to rely on the formation of specific, sequence-dependent, intermolecular interactions driving the formation of structured protein aggregates. This similarity in the mechanisms of aggregation will probably allow applying anti-aggregational strategies already tested in the amyloid context to the less explored area of protein aggregation inside bacteria. Specifically, new sequence-based approaches appear as promising tools to tune protein aggregation in biotechnological processes. PMID:15847694

  10. Quantitative study of protein-protein interactions by quartz nanopipettes.

    PubMed

    Tiwari, Purushottam Babu; Astudillo, Luisana; Miksovska, Jaroslava; Wang, Xuewen; Li, Wenzhi; Darici, Yesim; He, Jin

    2014-09-01

    In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the bath solution. Such current change is due to the adsorption of Cyt c to the inner surface of the nanopipette through specific interactions with hNgb. In contrast, a smaller current change with weak concentration dependence was observed when Cyt c was replaced with lysozyme, which does not specifically bind to hNgb. The equilibrium dissociation constant (KD) for the Cyt c-hNgb complex formation was derived and the value matched very well with the result from surface plasmon resonance measurement. This is the first quantitative study of protein-protein interactions by a conical-shaped nanopore based on charge sensing. Our results demonstrate that nanopipettes can potentially be used as a label-free analytical tool to quantitatively characterize protein-protein interactions.

  11. Transduction proteins of olfactory receptor cells: identification of guanine nucleotide binding proteins and protein kinase C

    SciTech Connect

    Anholt, R.R.H.; Mumby, S.M.; Stoffers, D.A.; Girard, P.R.; Kuo, J.F.; Snyder, S.H.

    1987-02-10

    The authors have analyzed guanine nucleotide binding proteins (G-proteins) in the olfactory epithelium of Rana catesbeiana using subunit-specific antisera. The olfactory epithelium contained the ..cap alpha.. subunits of three G-proteins, migrating on polyacrylamide gels in SDS with apparent molecular weights of 45,000, 42,000, and 40,000, corresponding to G/sub s/, G/sub i/, and G/sub o/, respectively. A single ..beta.. subunit with an apparent molecular weight of 36,000 was detected. An antiserum against the ..cap alpha.. subunit of retinal transducin failed to detect immunoreactive proteins in olfactory cilia detached from the epithelium. The olfactory cilia appeared to be enriched in immunoreactive G/sub s..cap alpha../ relative to G/sub ichemically bond/ and G/sub ochemically bond/ when compared to membranes prepared from the olfactory epithelium after detachment of the cilia. Bound antibody was detected by autoradiography after incubation with (/sup 125/I)protein. Immunohistochemical studies using an antiserum against the ..beta.. subunit of G-proteins revealed intense staining of the ciliary surface of the olfactory epithelium and of the axon bundles in the lamina propria. In contrast, an antiserum against a common sequence of the ..cap alpha.. subunits preferentially stained the cell membranes of the olfactory receptor cells and the acinar cells of Bowman's glands and the deep submucosal glands. In addition to G-proteins, they have identified protein kinase C in olfactory cilia via a protein kinase C specific antiserum and via phorbol ester binding. However, in contrast to the G-proteins, protein kinase C occurred also in cilia isolated from respiratory epithelium.

  12. Protein crystallization in hydrogel beads.

    PubMed

    Willaert, Ronnie; Zegers, Ingrid; Wyns, Lode; Sleutel, Mike

    2005-09-01

    The use of hydrogel beads for the crystallization of proteins is explored in this contribution. The dynamic behaviour of the internal precipitant, protein concentration and relative supersaturation in a gel bead upon submerging the bead in a precipitant solution is characterized theoretically using a transient diffusion model. Agarose and calcium alginate beads have been used for the crystallization of a low-molecular-weight (14.4 kDa, hen egg-white lysozyme) and a high-molecular-weight (636.0 kDa, alcohol oxidase) protein. Entrapment of the protein in the agarose-gel matrix was accomplished using two methods. In the first method, a protein solution is mixed with the agarose sol solution. Gel beads are produced by immersing drops of the protein-agarose sol mixture in a cold paraffin solution. In the second method (which was used to produce calcium alginate and agarose beads), empty gel beads are first produced and subsequently filled with protein by diffusion from a bulk solution into the bead. This latter method has the advantage that a supplementary purification step is introduced (for protein aggregates and large impurities) owing to the diffusion process in the gel matrix. Increasing the precipitant, gel concentration and protein loading resulted in a larger number of crystals of smaller size. Consequently, agarose as well as alginate gels act as nucleation promoters. The supersaturation in a gel bead can be dynamically controlled by changing the precipitant and/or the protein concentration in the bulk solution. Manipulation of the supersaturation allowed the nucleation rate to be varied and led to the production of large crystals which were homogeneously distributed in the gel bead.

  13. Protein function from its emergence to diversity in contemporary proteins

    NASA Astrophysics Data System (ADS)

    Goncearenco, Alexander; Berezovsky, Igor N.

    2015-07-01

    The goal of this work is to learn from nature the rules that govern evolution and the design of protein function. The fundamental laws of physics lie in the foundation of the protein structure and all stages of the protein evolution, determining optimal sizes and shapes at different levels of structural hierarchy. We looked back into the very onset of the protein evolution with a goal to find elementary functions (EFs) that came from the prebiotic world and served as building blocks of the first enzymes. We defined the basic structural and functional units of biochemical reactions—elementary functional loops. The diversity of contemporary enzymes can be described via combinations of a limited number of elementary chemical reactions, many of which are performed by the descendants of primitive prebiotic peptides/proteins. By analyzing protein sequences we were able to identify EFs shared by seemingly unrelated protein superfamilies and folds and to unravel evolutionary relations between them. Binding and metabolic processing of the metal- and nucleotide-containing cofactors and ligands are among the most abundant ancient EFs that became indispensable in many natural enzymes. Highly designable folds provide structural scaffolds for many different biochemical reactions. We show that contemporary proteins are built from a limited number of EFs, making their analysis instrumental for establishing the rules for protein design. Evolutionary studies help us to accumulate the library of essential EFs and to establish intricate relations between different folds and functional superfamilies. Generalized sequence-structure descriptors of the EF will become useful in future design and engineering of desired enzymatic functions.

  14. Protein function from its emergence to diversity in contemporary proteins.

    PubMed

    Goncearenco, Alexander; Berezovsky, Igor N

    2015-07-01

    The goal of this work is to learn from nature the rules that govern evolution and the design of protein function. The fundamental laws of physics lie in the foundation of the protein structure and all stages of the protein evolution, determining optimal sizes and shapes at different levels of structural hierarchy. We looked back into the very onset of the protein evolution with a goal to find elementary functions (EFs) that came from the prebiotic world and served as building blocks of the first enzymes. We defined the basic structural and functional units of biochemical reactions-elementary functional loops. The diversity of contemporary enzymes can be described via combinations of a limited number of elementary chemical reactions, many of which are performed by the descendants of primitive prebiotic peptides/proteins. By analyzing protein sequences we were able to identify EFs shared by seemingly unrelated protein superfamilies and folds and to unravel evolutionary relations between them. Binding and metabolic processing of the metal- and nucleotide-containing cofactors and ligands are among the most abundant ancient EFs that became indispensable in many natural enzymes. Highly designable folds provide structural scaffolds for many different biochemical reactions. We show that contemporary proteins are built from a limited number of EFs, making their analysis instrumental for establishing the rules for protein design. Evolutionary studies help us to accumulate the library of essential EFs and to establish intricate relations between different folds and functional superfamilies. Generalized sequence-structure descriptors of the EF will become useful in future design and engineering of desired enzymatic functions.

  15. Targeting Protein-Protein Interactions for Parasite Control

    PubMed Central

    Taylor, Christina M.; Fischer, Kerstin; Abubucker, Sahar; Wang, Zhengyuan; Martin, John; Jiang, Daojun; Magliano, Marc; Rosso, Marie-Noëlle; Li, Ben-Wen; Fischer, Peter U.; Mitreva, Makedonka

    2011-01-01

    Finding new drug targets for pathogenic infections would be of great utility for humanity, as there is a large need to develop new drugs to fight infections due to the developing resistance and side effects of current treatments. Current drug targets for pathogen infections involve only a single protein. However, proteins rarely act in isolation, and the majority of biological processes occur via interactions with other proteins, so protein-protein interactions (PPIs) offer a realm of unexplored potential drug targets and are thought to be the next-generation of drug targets. Parasitic worms were chosen for this study because they have deleterious effects on human health, livestock, and plants, costing society billions of dollars annually and many sequenced genomes are available. In this study, we present a computational approach that utilizes whole genomes of 6 parasitic and 1 free-living worm species and 2 hosts. The species were placed in orthologous groups, then binned in species-specific ortholgous groups. Proteins that are essential and conserved among species that span a phyla are of greatest value, as they provide foundations for developing broad-control strategies. Two PPI databases were used to find PPIs within the species specific bins. PPIs with unique helminth proteins and helminth proteins with unique features relative to the host, such as indels, were prioritized as drug targets. The PPIs were scored based on RNAi phenotype and homology to the PDB (Protein DataBank). EST data for the various life stages, GO annotation, and druggability were also taken into consideration. Several PPIs emerged from this study as potential drug targets. A few interactions were supported by co-localization of expression in M. incognita (plant parasite) and B. malayi (H. sapiens parasite), which have extremely different modes of parasitism. As more genomes of pathogens are sequenced and PPI databases expanded, this methodology will become increasingly applicable. PMID

  16. Predicting protein-ligand and protein-peptide interfaces

    NASA Astrophysics Data System (ADS)

    Bertolazzi, Paola; Guerra, Concettina; Liuzzi, Giampaolo

    2014-06-01

    The paper deals with the identification of binding sites and concentrates on interactions involving small interfaces. In particular we focus our attention on two major interface types, namely protein-ligand and protein-peptide interfaces. As concerns protein-ligand binding site prediction, we classify the most interesting methods and approaches into four main categories: (a) shape-based methods, (b) alignment-based methods, (c) graph-theoretic approaches and (d) machine learning methods. Class (a) encompasses those methods which employ, in some way, geometric information about the protein surface. Methods falling into class (b) address the prediction problem as an alignment problem, i.e. finding protein-ligand atom pairs that occupy spatially equivalent positions. Graph theoretic approaches, class (c), are mainly based on the definition of a particular graph, known as the protein contact graph, and then apply some sophisticated methods from graph theory to discover subgraphs or score similarities for uncovering functional sites. The last class (d) contains those methods that are based on the learn-from-examples paradigm and that are able to take advantage of the large amount of data available on known protein-ligand pairs. As for protein-peptide interfaces, due to the often disordered nature of the regions involved in binding, shape similarity is no longer a determining factor. Then, in geometry-based methods, geometry is accounted for by providing the relative position of the atoms surrounding the peptide residues in known structures. Finally, also for protein-peptide interfaces, we present a classification of some successful machine learning methods. Indeed, they can be categorized in the way adopted to construct the learning examples. In particular, we envisage three main methods: distance functions, structure and potentials and structure alignment.

  17. Characterizing protein crystal nucleation

    NASA Astrophysics Data System (ADS)

    Akella, Sathish V.

    We developed an experimental microfluidic based technique to measure the nucleation rates and successfully applied the technique to measure nucleation rates of lysozyme crystals. The technique involves counting the number of samples which do not have crystals as a function of time. Under the assumption that nucleation is a Poisson process, the fraction of samples with no crystals decays exponentially with the decay constant proportional to nucleation rate and volume of the sample. Since nucleation is a random and rare event, one needs to perform measurements on large number of samples to obtain good statistics. Microfluidics offers the solution of producing large number of samples at minimal material consumption. Hence, we developed a microfluidic method and measured nucleation rates of lysozyme crystals in supersaturated protein drops, each with volume of ˜ 1 nL. Classical Nucleation Theory (CNT) describes the kinetics of nucleation and predicts the functional form of nucleation rate in terms of the thermodynamic quantities involved, such as supersaturation, temperature, etc. We analyzed the measured nucleation rates in the context of CNT and obtained the activation energy and the kinetic pre-factor characterizing the nucleation process. One conclusion is that heterogeneous nucleation dominates crystallization. We report preliminary studies on selective enhancement of nucleation in one of the crystal polymorprhs of lysozyme (spherulite) using amorphous mesoporous bioactive gel-glass te{naomi06, naomi08}, CaO.P 2O5.SiO2 (known as bio-glass) with 2-10 nm pore-size diameter distribution. The pores act as heterogeneous nucleation centers and claimed to enhance the nucleation rates by molecular confinement. The measured kinetic profiles of crystal fraction of spherulites indicate that the crystallization of spherulites may be proceeding via secondary nucleation pathways.

  18. Protein surface-distribution and protein-protein interactions in the binding of peripheral proteins to charged lipid membranes.

    PubMed Central

    Heimburg, T; Marsh, D

    1995-01-01

    The binding of native cytochrome c to negatively charged lipid dispersions of dioleoyl phosphatidylglycerol has been studied over a wide range of ionic strengths. Not only is the strength of protein binding found to decrease rapidly with increasing ionic strength, but also the binding curves reach an apparent saturation level that decreases rapidly with increasing ionic strength. Analysis of the binding isotherms with a general statistical thermodynamic model that takes into account not only the free energy of the electrostatic double layer, but also the free energy of the surface distribution of the protein, demonstrates that the apparent saturation effects could arise from a competition between the out-of-plane binding reaction and the lateral in-plane interactions between proteins at the surface. It is found that association with nonlocalized sites results in binding isotherms that display the apparent saturation effect to a much more pronounced extent than does the Langmuir adsorption isotherm for binding to localized sites. With the model for nonlocalized sites, the binding isotherms of native cytochrome c can be described adequately by taking into account only the entropy of the surface distribution of the protein, without appreciable enthalpic interactions between the bound proteins. The binding of cytochrome c to dioleoyl phosphatidylglycerol dispersions at a temperature at which the bound protein is denatured on the lipid surface, but is nondenatured when free in solution, has also been studied. The binding curves for the surface-denatured protein differ from those for the native protein in that the apparent saturation at high ionic strength is less pronounced. This indicates the tendency of the denatured protein to aggregate on the lipid surface, and can be described by the binding isotherms for nonlocalized sites only if attractive interactions between the surface-bound proteins are included in addition to the distributional entropic terms. Additionally

  19. Protein designs in HP models

    NASA Astrophysics Data System (ADS)

    Gupta, Arvind; Khodabakhshi, Alireza Hadj; Maňuch, Ján; Rafiey, Arash; Stacho, Ladislav

    2009-07-01

    The inverse protein folding problem is that of designing an amino acid sequence which folds into a prescribed shape. This problem arises in drug design where a particular structure is necessary to ensure proper protein-protein interactions and could have applications in nanotechnology. A major challenge in designing proteins with native folds that attain a specific shape is to avoid proteins that have multiple native folds (unstable proteins). In this technical note we present our results on protein designs in the variant of Hydrophobic-Polar (HP) model introduced by Dill [6] on 2D square lattice. The HP model distinguishes only polar and hydrophobic monomers and only counts the number of hydrophobic contacts in the energy function. To achieve better stability of our designs we use the Hydrophobic-Polar-Cysteine (HPC) model which distinguishes the third type of monomers called "cysteines" and incorporates also the disulfid bridges (SS-bridges) into the energy function. We present stable designs in 2D square lattice and 3D hexagonal prism lattice in the HPC model.

  20. Global market for dairy proteins.

    PubMed

    Lagrange, Veronique; Whitsett, Dacia; Burris, Cameron

    2015-03-01

    This review examines the global market for dairy ingredients by assessing the global demand for dairy products in relation to major dairy ingredient categories. Each broad category of dairy ingredients is reviewed including its definition, production and trade status, key applications, and future trends. Ingredient categories examined include whole and skim milk powders (WMPs, SMPs), whey protein concentrates (WPCs) and whey protein isolates (WPIs), milk protein concentrates (MPCs) and milk protein isolates (MPIs), caseins, and caseinates. Increases in world population and improvements in socioeconomic conditions will continue to drive the demand for dairy products and ingredients in the future. Dairy proteins are increasingly recognized to have nutritional and functional advantages compared to many protein sources, and the variety of ingredients with different protein concentrations, functionality, and flavor can meet the needs of the increasingly global dairy consumption. A thorough understanding of the variety of ingredients, how the ingredients are derived from milk, and how the demand from particular markets affects the supply situation are critical elements in understanding the current ingredient marketplace.

  1. Chloroplast ribosomes and protein synthesis.

    PubMed Central

    Harris, E H; Boynton, J E; Gillham, N W

    1994-01-01

    Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival. PMID:7854253

  2. Protein intake and ovulatory infertility

    PubMed Central

    Chavarro, Jorge E.; Rich-Edwards, Janet W.; Rosner, Bernard A.; Willett, Walter C.

    2011-01-01

    Objective To evaluate whether intake of protein from animal and vegetable origin is associated with ovulatory infertility. Study Design 18,555 married women without a history of infertility were followed as they attempted a pregnancy or became pregnant during an eight year period. Dietary assessments were related to the incidence of ovulatory infertility. Results During follow-up, 438 women reported ovulatory infertility. The multivariate-adjusted relative risk [RR] (95% CI; P, trend) of ovulatory infertility comparing the highest to the lowest quintile of animal protein intake was 1.39 (1.01 – 1.90; 0.03). The corresponding RR (95% CI; P, trend) for vegetable protein intake was 0.78 (0.54 – 1.12; 0.07). Further, consuming 5% of total energy intake as vegetable protein rather than as animal protein was associated with a more than 50% lower risk of ovulatory infertility (P = 0.007). Conclusions Replacing animal sources of protein with vegetable sources of protein may reduce ovulatory infertility risk. PMID:18226626

  3. Succination of proteins in diabetes.

    PubMed

    Frizzell, Norma; Lima, Maria; Baynes, John W

    2011-01-01

    Cysteine is arguably the most reactive amino acid in protein. A wide range of cysteine derivatives is formed in vivo, resulting from oxidation, nitrosation, alkylation and acylation reactions. This review describes succination of proteins, an irreversible chemical modification of cysteine by the Krebs cycle intermediate, fumarate, yielding S-(2-succinyl)cysteine (2SC). Intracellular fumarate concentration and succination of proteins are increased by hyperpolarization of the inner mitochondrial membrane and develop in concert with mitochondrial and oxidative stress in diabetes. Increased succination of glyceraldehyde-3-phosphate dehydrogenase explains the loss in specific activity of this enzyme in muscle of streptozotocin-diabetic rats and increased succination of adiponectin may explain the decreased secretion of adiponectin from adipose tissue in type 2 diabetes. In addition to GAPDH and adiponectin, other succinated proteins identified in adipocytes include cytoskeletal proteins (tubulin, actin) and chaperone proteins in the endoplasmic reticulum. Succination of adipocyte protein in vitro is inhibited by uncouplers of oxidative phosphorylation and by inhibitors of ER stress. 2SC serves as a biomarker of mitochondrial stress and recent studies suggest that succination is the mechanistic link between mitochondrial and ER stress in diabetes.

  4. Evolutionary optimization of protein folding.

    PubMed

    Debès, Cédric; Wang, Minglei; Caetano-Anollés, Gustavo; Gräter, Frauke

    2013-01-01

    Nature has shaped the make up of proteins since their appearance, [Formula: see text]3.8 billion years ago. However, the fundamental drivers of structural change responsible for the extraordinary diversity of proteins have yet to be elucidated. Here we explore if protein evolution affects folding speed. We estimated folding times for the present-day catalog of protein domains directly from their size-modified contact order. These values were mapped onto an evolutionary timeline of domain appearance derived from a phylogenomic analysis of protein domains in 989 fully-sequenced genomes. Our results show a clear overall increase of folding speed during evolution, with known ultra-fast downhill folders appearing rather late in the timeline. Remarkably, folding optimization depends on secondary structure. While alpha-folds showed a tendency to fold faster throughout evolution, beta-folds exhibited a trend of folding time increase during the last [Formula: see text]1.5 billion years that began during the "big bang" of domain combinations. As a consequence, these domain structures are on average slow folders today. Our results suggest that fast and efficient folding of domains shaped the universe of protein structure. This finding supports the hypothesis that optimization of the kinetic and thermodynamic accessibility of the native fold reduces protein aggregation propensities that hamper cellular functions. PMID:23341762

  5. Protein Neighbors and Proximity Proteomics*

    PubMed Central

    Rees, Johanna S.; Li, Xue-Wen; Perrett, Sarah; Lilley, Kathryn S.; Jackson, Antony P.

    2015-01-01

    Within cells, proteins can co-assemble into functionally integrated and spatially restricted multicomponent complexes. Often, the affinities between individual proteins are relatively weak, and proteins within such clusters may interact only indirectly with many of their other protein neighbors. This makes proteomic characterization difficult using methods such as immunoprecipitation or cross-linking. Recently, several groups have described the use of enzyme-catalyzed proximity labeling reagents that covalently tag the neighbors of a targeted protein with a small molecule such as fluorescein or biotin. The modified proteins can then be isolated by standard pulldown methods and identified by mass spectrometry. Here we will describe the techniques as well as their similarities and differences. We discuss their applications both to study protein assemblies and to provide a new way for characterizing organelle proteomes. We stress the importance of proteomic quantitation and independent target validation in such experiments. Furthermore, we suggest that there are biophysical and cell-biological principles that dictate the appropriateness of enzyme-catalyzed proximity labeling methods to address particular biological questions of interest. PMID:26355100

  6. Disordered regions in transmembrane proteins.

    PubMed

    Tusnády, Gábor E; Dobson, László; Tompa, Peter

    2015-11-01

    The functions of transmembrane proteins in living cells are widespread; they range from various transport processes to energy production, from cell-cell adhesion to communication. Structurally, they are highly ordered in their membrane-spanning regions, but may contain disordered regions in the cytosolic and extra-cytosolic parts. In this study, we have investigated the disordered regions in transmembrane proteins by a stringent definition of disordered residues on the currently available largest experimental dataset, and show a significant correlation between the spatial distributions of positively charged residues and disordered regions. This finding suggests a new role of disordered regions in transmembrane proteins by providing structural flexibility for stabilizing interactions with negatively charged head groups of the lipid molecules. We also find a preference of structural disorder in the terminal--as opposed to loop--regions in transmembrane proteins, and survey the respective functions involved in recruiting other proteins or mediating allosteric signaling effects. Finally, we critically compare disorder prediction methods on our transmembrane protein set. While there are no major differences between these methods using the usual statistics, such as per residue accuracies, Matthew's correlation coefficients, etc.; substantial differences can be found regarding the spatial distribution of the predicted disordered regions. We conclude that a predictor optimized for transmembrane proteins would be of high value to the field of structural disorder. PMID:26275590

  7. Expression of multiple proteins in transgenic plants

    DOEpatents

    Vierstra, Richard D.; Walker, Joseph M.

    2002-01-01

    A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

  8. Nucleosome assembly proteins and their interacting proteins in neuronal differentiation.

    PubMed

    Attia, Mikaël; Rachez, Christophe; Avner, Philip; Rogner, Ute Christine

    2013-06-01

    Neuronal differentiation from neural stem cells into mature neurons is guided by the concerted action of specific transcription factors that stepwise exercise their role in the context of defined chromatin states. Amongst the classes of proteins that influence chromatin compaction and modification are nucleosome assembly proteins (NAPs). Mammals possess several nucleosome assembly protein 1 like proteins (NAP1L) that show either ubiquitous or neuron-restricted expression. The latter group is presumably involved in the process of neuronal differentiation. Mammalian NAP1Ls can potentially form both homo- and hetero-dimers and octamers, in theory allowing thousands of different combinations to be formed. Detailed studies have been performed on several of the NAP1Ls that point to a range of molecular roles, including transcriptional regulation, nuclear import, and control of cell division. This article aims at summarizing current knowledge of the mammalian NAP1L family and its interactions.

  9. Deciphering peculiar protein-protein interacting modules in Deinococcus radiodurans

    PubMed Central

    Mezhoud, Karim; Sghaier, Haïtham; Barkallah, Insaf

    2009-01-01

    Interactomes of proteins under positive selection from ionizing-radiation-resistant bacteria (IRRB) might be a part of the answer to the question as to how IRRB, particularly Deinococcus radiodurans R1 (Deira), resist ionizing radiation. Here, using the Database of Interacting Proteins (DIP) and the Protein Structural Interactome (PSI)-base server for PSI map, we have predicted novel interactions of orthologs of the 58 proteins under positive selection in Deira and other IRRB, but which are absent in IRSB. Among these, 18 domains and their interactomes have been identified in DNA checkpoint and repair; kinases pathways; energy and nucleotide metabolisms were the important biological processes that were found to be involved. This finding provides new clues to the cellular pathways that can to be important for ionizing-radiation resistance in Deira. PMID:19356244

  10. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    DOEpatents

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  11. [Chemical libraries dedicated to protein-protein interactions].

    PubMed

    Sperandio, Olivier; Villoutreix, Bruno O; Morelli, Xavier; Roche, Philippe

    2015-03-01

    The identification of complete networks of protein-protein interactions (PPI) within a cell has contributed to major breakthroughs in understanding biological pathways, host-pathogen interactions and cancer development. As a consequence, PPI have emerged as a new class of promising therapeutic targets. However, they are still considered as a challenging class of targets for drug discovery programs. Recent successes have allowed the characterization of structural and physicochemical properties of protein-protein interfaces leading to a better understanding of how they can be disrupted with small molecule compounds. In addition, characterization of the profiles of PPI inhibitors has allowed the development of PPI-focused libraries. In this review, we present the current efforts at developing chemical libraries dedicated to these innovative targets.

  12. Protein knot server: detection of knots in protein structures.

    PubMed

    Kolesov, Grigory; Virnau, Peter; Kardar, Mehran; Mirny, Leonid A

    2007-07-01

    KNOTS (http://knots.mit.edu) is a web server that detects knots in protein structures. Several protein structures have been reported to contain intricate knots. The physiological role of knots and their effect on folding and evolution is an area of active research. The user submits a PDB id or uploads a 3D protein structure in PDB or mmCIF format. The current implementation of the server uses the Alexander polynomial to detect knots. The results of the analysis that are presented to the user are the location of the knot in the structure, the type of the knot and an interactive visualization of the knot. The results can also be downloaded and viewed offline. The server also maintains a regularly updated list of known knots in protein structures.

  13. Accelerated protein crystal growth by protein thin film template

    NASA Astrophysics Data System (ADS)

    Pechkova, Eugenia; Nicolini, Claudio

    2001-11-01

    A new method based on Langmuir-Blodgett (LB) technology is presented for the template stimulation of protein crystal growth. The new approach allows the acceleration of the hen egg white lysozyme (HEWL) crystal growth rate in comparison with such a classical vapour diffusion method as hanging drop. Protein thin films were coated on the cover slide of the common crystallization plates. Lysozyme crystal growth was observed on the LB thin films of HEWL.

  14. A New Protein Superfamily: TPPP-Like Proteins

    PubMed Central

    Orosz, Ferenc

    2012-01-01

    The introduction of the term ‘Tubulin Polymerization Promoting Protein (TPPP)-like proteins’ is suggested. They constitute a eukaryotic protein superfamily, characterized by the presence of the p25alpha domain (Pfam05517, IPR008907), and named after the first identified member, TPPP/p25, exhibiting microtubule stabilizing function. TPPP-like proteins can be grouped on the basis of two characteristics: the length of their p25alpha domain, which can be long, short, truncated or partial, and the presence or absence of additional domain(s). TPPPs, in the strict sense, contain no other domains but one long or short p25alpha one (long- and short-type TPPPs, respectively). Proteins possessing truncated p25alpha domain are first described in this paper. They evolved from the long-type TPPPs and can be considered as arthropod-specific paralogs of long-type TPPPs. Phylogenetic analysis shows that the two groups (long-type and truncated TPPPs) split in the common ancestor of arthropods. Incomplete p25alpha domains can be found in multidomain TPPP-like proteins as well. The various subfamilies occur with a characteristic phyletic distribution: e. g., animal genomes/proteomes contain almost without exception long-type TPPPs; the multidomain apicortins occur almost exclusively in apicomplexan parasites. There are no data about the physiological function of these proteins except two human long-type TPPP paralogs which are involved in developmental processes of the brain and the musculoskeletal system, respectively. I predict that the superfamily members containing long or partial p25alpha domain are often intrinsically disordered proteins, while those with short or truncated domain(s) are structurally ordered. Interestingly, members of this superfamily connected or maybe connected to diseases are intrinsically disordered proteins. PMID:23166627

  15. Geometry and physics of proteins.

    PubMed

    Banavar, Jayanth R; Maritan, Amos; Micheletti, Cristian; Trovato, Antonio

    2002-05-15

    A conceptual framework for understanding the protein folding problem has remained elusive in spite of many significant advances. We show that geometrical constraints imposed by chain connectivity, compactness, and the avoidance of steric clashes can be encompassed in a natural way using a three-body potential and lead to a selection in structure space, independent of chemical details. Strikingly, secondary motifs such as hairpins, sheets, and helices, which are the building blocks of protein folds, emerge as the chosen structures for segments of the protein backbone based just on elementary geometrical considerations.

  16. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Smith, Craig D.; Smith, H. Wilson; Vijay-Kumar, Senadhi; Senadhi, Shobha E.; Ealick, Steven E.; Carter, Daniel C.; Snyder, Robert S.

    1989-01-01

    The crystals of most proteins or other biological macromolecules are poorly ordered and diffract to lower resolutions than those observed for most crystals of simple organic and inorganic compounds. Crystallization in the microgravity environment of space may improve crystal quality by eliminating convection effects near growing crystal surfaces. A series of 11 different protein crystal growth experiments was performed on U.S. Space Shuttle flight STS-26 in September 1988. The microgravity-grown crystals of gamma-interferon D1, porcine elastase, and isocitrate lyase are larger, display more uniform morphologies, and yield diffraction data to significantly higher resolutions than the best crystals of these proteins grown on earth.

  17. Disentangling protein-silica interactions.

    PubMed

    Giussani, Lara; Tabacchi, Gloria; Gianotti, Enrica; Coluccia, Salvatore; Fois, Ettore

    2012-03-28

    We present the results of modelling studies aimed at the understanding of the interaction of a 7 nm sized water droplet containing a negatively charged globular protein with flat silica surfaces. We show how the droplet interaction with the surface depends on the electrostatic surface charge, and that adhesion of the droplet occurs when the surface is negatively charged as well. The key role of water and of the charge-balancing counter ions in mediating the surface-protein adhesion is highlighted. The relevance of the present results with respect to the production of bioinorganic hybrids via encapsulation of proteins inside mesoporous silica materials is discussed.

  18. Adhesives from modified soy protein

    DOEpatents

    Sun, Susan; Wang, Donghai; Zhong, Zhikai; Yang, Guang

    2008-08-26

    The, present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  19. Protein families in multicellular organisms.

    PubMed

    Copley, R R; Schultz, J; Ponting, C P; Bork, P

    1999-06-01

    The complete sequence of the nematode worm Caenorhabditis elegans contains the genetic machinery that is required to undertake the core biological processes of single cells. However, the genome also encodes proteins that are associated with multicellularity, as well as others that are lineage-specific expansions of phylogenetically widespread families and yet more that are absent in non-nematodes. Ongoing analysis is beginning to illuminate the similarities and differences among human proteins and proteins that are encoded by the genomes of the multicellular worm and the unicellular yeast, and will be essential in determining the reliability of transferring experimental data among phylogenetically distant species. PMID:10361098

  20. Protein Crystals Grown in Space

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A collage of protein and virus crystals, many of which were grown on the U.S. Space Shuttle or Russian Space Station, Mir. The crystals include the proteins canavalin; mouse monoclonal antibody; a sweet protein, thaumatin; and a fungal protease. Viruses are represented here by crystals of turnip yellow mosaic virus and satellite tobacco mosaic virus. The crystals are photographed under polarized light (thus causing the colors) and range in size from a few hundred microns in edge length up to more than a millimeter. All the crystals are grown from aqueous solutions and are useful for X-ray diffraction analysis. Credit: Dr. Alex McPherson, University of California, Irvine.

  1. Nonlinear dynamics of globular proteins

    SciTech Connect

    Lomdahl, P.S.

    1983-01-01

    Some ongoing work aimed at generalizing DAVYDOV's ideas to a real globular protein is described. So far, a computer code, GLOP, which calculates amide-I bond energy evolution on a globular protein has been developed and tested. The code is quite versatile and takes as input the coordinates of a protein. The full geometry of the molecule is then taken into account when the dipole-dipole interaction between peptide groups is calculated. The amide-I energy is coupled to one intramolecular excitation, but can without difficulty be extended to more or to include intermolecular excitations.

  2. Microfluidic Tools for Protein Crystallography

    NASA Astrophysics Data System (ADS)

    Abdallah, Bahige G.

    X-ray crystallography is the most widely used method to determine the structure of proteins, providing an understanding of their functions in all aspects of life to advance applications in fields such as drug development and renewable energy. New techniques, namely serial femtosecond crystallography (SFX), have unlocked the ability to unravel the structures of complex proteins with vital biological functions. A key step and major bottleneck of structure determination is protein crystallization, which is very arduous due to the complexity of proteins and their natural environments. Furthermore, crystal characteristics govern data quality, thus need to be optimized to attain the most accurate reconstruction of the protein structure. Crystal size is one such characteristic in which narrowed distributions with a small modal size can significantly reduce the amount of protein needed for SFX. A novel microfluidic sorting platform was developed to isolate viable ~200 nm -- ~600 nm photosystem I (PSI) membrane protein crystals from ~200 nm -- ~20 ?m crystal samples using dielectrophoresis, as confirmed by fluorescence microscopy, second-order nonlinear imaging of chiral crystals (SONICC), and dynamic light scattering. The platform was scaled-up to rapidly provide 100s of microliters of sorted crystals necessary for SFX, in which similar crystal size distributions were attained. Transmission electron microscopy was used to view the PSI crystal lattice, which remained well-ordered postsorting, and SFX diffraction data was obtained, confirming a high-quality, viable crystal sample. Simulations indicated sorted samples provided accurate, complete SFX datasets with 3500-fold less protein than unsorted samples. Microfluidic devices were also developed for versatile, rapid protein crystallization screening using nanovolumes of sample. Concentration gradients of protein and precipitant were generated to crystallize PSI, phycocyanin, and lysozyme using modified counterdiffusion

  3. Direct Calculation of Protein Fitness Landscapes through Computational Protein Design.

    PubMed

    Au, Loretta; Green, David F

    2016-01-01

    Naturally selected amino-acid sequences or experimentally derived ones are often the basis for understanding how protein three-dimensional conformation and function are determined by primary structure. Such sequences for a protein family comprise only a small fraction of all possible variants, however, representing the fitness landscape with limited scope. Explicitly sampling and characterizing alternative, unexplored protein sequences would directly identify fundamental reasons for sequence robustness (or variability), and we demonstrate that computational methods offer an efficient mechanism toward this end, on a large scale. The dead-end elimination and A(∗) search algorithms were used here to find all low-energy single mutant variants, and corresponding structures of a G-protein heterotrimer, to measure changes in structural stability and binding interactions to define a protein fitness landscape. We established consistency between these algorithms with known biophysical and evolutionary trends for amino-acid substitutions, and could thus recapitulate known protein side-chain interactions and predict novel ones.

  4. Identification of intracellular receptor proteins for activated protein kinase C.

    PubMed Central

    Mochly-Rosen, D; Khaner, H; Lopez, J

    1991-01-01

    Protein kinase C (PKC) translocates from the cytosol to the particulate fraction on activation. This activation-induced translocation of PKC is thought to reflect PKC binding to the membrane lipids. However, immunological and biochemical data suggest that PKC may bind to proteins in the cytoskeletal elements in the particulate fraction and in the nuclei. Here we describe evidence for the presence of intracellular receptor proteins that bind activated PKC. Several proteins from the detergent-insoluble material of the particulate fraction bound PKC in the presence of phosphatidylserine and calcium; binding was further increased with the addition of diacylglycerol. Binding of PKC to two of these proteins was concentration-dependent, saturable, and specific, suggesting that these binding proteins are receptors for activated C-kinase, termed here "RACKs." PKC binds to RACKs via a site on PKC distinct from the substrate binding site. We suggest that binding to RACKs may play a role in activation-induced translocation of PKC. Images PMID:1850844

  5. Protein-protein binding site identification by enumerating the configurations

    PubMed Central

    2012-01-01

    Background The ability to predict protein-protein binding sites has a wide range of applications, including signal transduction studies, de novo drug design, structure identification and comparison of functional sites. The interface in a complex involves two structurally matched protein subunits, and the binding sites can be predicted by identifying structural matches at protein surfaces. Results We propose a method which enumerates “all” the configurations (or poses) between two proteins (3D coordinates of the two subunits in a complex) and evaluates each configuration by the interaction between its components using the Atomic Contact Energy function. The enumeration is achieved efficiently by exploring a set of rigid transformations. Our approach incorporates a surface identification technique and a method for avoiding clashes of two subunits when computing rigid transformations. When the optimal transformations according to the Atomic Contact Energy function are identified, the corresponding binding sites are given as predictions. Our results show that this approach consistently performs better than other methods in binding site identification. Conclusions Our method achieved a success rate higher than other methods, with the prediction quality improved in terms of both accuracy and coverage. Moreover, our method is being able to predict the configurations of two binding proteins, where most of other methods predict only the binding sites. The software package is available at http://sites.google.com/site/guofeics/dobi for non-commercial use. PMID:22768846

  6. Defining the Protein-Protein Interaction Network of the Human Protein Tyrosine Phosphatase Family.

    PubMed

    Li, Xu; Tran, Kim My; Aziz, Kathryn E; Sorokin, Alexey V; Chen, Junjie; Wang, Wenqi

    2016-09-01

    Protein tyrosine phosphorylation, which plays a vital role in a variety of human cellular processes, is coordinated by protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Genomic studies provide compelling evidence that PTPs are frequently mutated in various human cancers, suggesting that they have important roles in tumor suppression. However, the cellular functions and regulatory machineries of most PTPs are still largely unknown. To gain a comprehensive understanding of the protein-protein interaction network of the human PTP family, we performed a global proteomic study. Using a Minkowski distance-based unified scoring environment (MUSE) for the data analysis, we identified 940 high confidence candidate-interacting proteins that comprise the interaction landscape of the human PTP family. Through a gene ontology analysis and functional validations, we connected the PTP family with several key signaling pathways or cellular functions whose associations were previously unclear, such as the RAS-RAF-MEK pathway, the Hippo-YAP pathway, and cytokinesis. Our study provides the first glimpse of a protein interaction network for the human PTP family, linking it to a number of crucial signaling events, and generating a useful resource for future studies of PTPs.

  7. Characterization of Protein-Protein Interfaces through a Protein Contact Network Approach.

    PubMed

    Di Paola, Luisa; Platania, Chiara Bianca Maria; Oliva, Gabriele; Setola, Roberto; Pascucci, Federica; Giuliani, Alessandro

    2015-01-01

    Anthrax toxin comprises three different proteins, jointly acting to exert toxic activity: a non-toxic protective agent (PA), toxic edema factor (EF), and lethal factor (LF). Binding of PA to anthrax receptors promotes oligomerization of PA, binding of EF and LF, and then endocytosis of the complex. Homomeric forms of PA, complexes of PA bound to LF and to the endogenous receptor capillary morphogenesis gene 2 (CMG2) were analyzed. In this work, we characterized protein-protein interfaces (PPIs) and identified key residues at PPIs of complexes, by means of a protein contact network (PCN) approach. Flexibility and global and local topological properties of each PCN were computed. The vulnerability of each PCN was calculated using different node removal strategies, with reference to specific PCN topological descriptors, such as participation coefficient, contact order, and degree. The participation coefficient P, the topological descriptor of the node's ability to intervene in protein inter-module communication, was the key descriptor of PCN vulnerability of all structures. High P residues were localized both at PPIs and other regions of complexes, so that we argued an allosteric mechanism in protein-protein interactions. The identification of residues, with key role in the stability of PPIs, has a huge potential in the development of new drugs, which would be designed to target not only PPIs but also residues localized in allosteric regions of supramolecular complexes.

  8. When is protein binding important?

    PubMed

    Heuberger, Jules; Schmidt, Stephan; Derendorf, Hartmut

    2013-09-01

    The present paper is an ode to a classic citation by Benet and Hoener (2002. Clin Pharm Ther 71(3):115-121). The now classic paper had a huge impact on drug development and the way the issue of protein binding is perceived and interpreted. Although the authors very clearly pointed out the limitations and underlying assumptions for their delineations, these are too often overlooked and the classic paper's message is misinterpreted by broadening to cases that were not intended. Some members of the scientific community concluded from the paper that protein binding is not important. This was clearly not intended by the authors, as they finished their paper with a paragraph entitled: "When is protein binding important?" Misinterpretation of the underlying assumptions in the classic work can result in major pitfalls in drug development. Therefore, we revisit the topic of protein binding with the intention of clarifying when clinically relevant changes should be considered during drug development.

  9. [Proteins influencing the blood coagulation].

    PubMed

    Alberio, Lorenzo

    2011-11-01

    This review describes some natural proteins, which can be employed, either as factor concentrates derived from human plasma or as recombinant drug, to modulate the coagulation system. I will address some biochemical characteristics and the physiological role of von Willebrand factor, the coagulation factors of the extrinsic and intrinsic pathways, and the physiological anticoagulant protein C. In addition, I will detail the pharmacological compounds, which are available for influencing or substituting the coagulation proteins: desmopressin (DDAVP), single coagulation factor concentrates, prothrombin complex concentrates, and protein C concentrate. In particular, I will address some treatment topics of general medical interest, such as the treatment of massive bleeding, the correction of the coagulopathy induced by vitamin K-antagonists in patients with cerebral haemorrhage, and of the coagulopathy of meningococcemia. Finally, I will describe some properties and practical clinical applications of the recombinant anticoagulans lepirudin and bivalirudin, which are derived from hirudin, the natural anticoagulant of the medical leech.

  10. Biochemical Analysis of Protein SUMOylation

    PubMed Central

    Alontaga, Aileen Y.; Bobkova, Ekaterina; Chen, Yuan

    2012-01-01

    SUMOylation, the covalent attachment of Small Ubiquitin-like MOdifier (SUMO) polypeptides to other proteins, is among the most important post-translational modifications that regulate the functional properties of a large number of proteins. SUMOylation is broadly involved in cellular processes such as gene transcription, hormone response, signal transduction, DNA repair and nuclear transport. SUMO modification has also been implicated in the pathogenesis of human diseases, such as cancer, neurodegenerative disorders and viral infection. Attachment of a SUMO protein to another protein is carried out in multiple steps catalyzed by three enzymes. This unit describes and discusses the in vitro biochemical methods used for investigating each step of the SUMOylation process. In addition, a high throughput screening protocol is included for the identification of inhibitors of SUMOylation. PMID:22870855

  11. Structure of giant muscle proteins

    PubMed Central

    Meyer, Logan C.; Wright, Nathan T.

    2013-01-01

    Giant muscle proteins (e.g., titin, nebulin, and obscurin) play a seminal role in muscle elasticity, stretch response, and sarcomeric organization. Each giant protein consists of multiple tandem structural domains, usually arranged in a modular fashion spanning 500 kDa to 4 MDa. Although many of the domains are similar in structure, subtle differences create a unique function of each domain. Recent high and low resolution structural and dynamic studies now suggest more nuanced overall protein structures than previously realized. These findings show that atomic structure, interactions between tandem domains, and intrasarcomeric environment all influence the shape, motion, and therefore function of giant proteins. In this article we will review the current understanding of titin, obscurin, and nebulin structure, from the atomic level through the molecular level. PMID:24376425

  12. Selective Inhibitors of Protein Methyltransferases

    PubMed Central

    2015-01-01

    Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore discovery of PMT inhibitors has also been pursued increasingly over the past decade. Here, we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs’ physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery. PMID:25406853

  13. Superantigenicity of streptococcal M protein

    PubMed Central

    1990-01-01

    M proteins that define the serotypes of group A streptococci are powerful blastogens for human T lymphocytes. The mechanism by which they activate T cells was investigated and compared with the conventional T cell mitogen phytohemagglutinin, and the known superantigen staphylococcal enterotoxin B. Although major histocompatibility complex (MHC) class II molecules are required for presentation, there is no MHC restriction, since allogeneic class II molecules presented the bacterial protein to human T cells. Type 5 M protein appears to bind class II molecules on the antigen-presenting cells and stimulate T cells bearing V beta 8 sequences. Our results indicate that this streptococcal M protein is a superantigen and suggest a possible mechanism of its role in the pathogenesis of the postinfectious autoimmune sequelae. PMID:2358781

  14. Protein-inorganic hybrid nanoflowers

    NASA Astrophysics Data System (ADS)

    Ge, Jun; Lei, Jiandu; Zare, Richard N.

    2012-07-01

    Flower-shaped inorganic nanocrystals have been used for applications in catalysis and analytical science, but so far there have been no reports of `nanoflowers' made of organic components. Here, we report a method for creating hybrid organic-inorganic nanoflowers using copper (II) ions as the inorganic component and various proteins as the organic component. The protein molecules form complexes with the copper ions, and these complexes become nucleation sites for primary crystals of copper phosphate. Interaction between the protein and copper ions then leads to the growth of micrometre-sized particles that have nanoscale features and that are shaped like flower petals. When an enzyme is used as the protein component of the hybrid nanoflower, it exhibits enhanced enzymatic activity and stability compared with the free enzyme. This is attributed to the high surface area and confinement of the enzymes in the nanoflowers.

  15. Protein Crystals of Raf Kinase

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This image shows crystals of the protein raf kinase grown on Earth (photo a) and on USML-2 (photo b). The space-grown crystals are an order of magnitude larger. Principal Investigator: Dan Carter of New Century Pharmaceuticals

  16. Protein Linked to Atopic Dermatitis

    MedlinePlus

    ... is elevated in mice with atopic dermatitis. The factors involved in this regulation, however, aren’t well understood. Past work led by Dr. Arup Indra at Oregon State University showed that COUP-TF interacting protein 2 (Ctip2) ...

  17. The coronin family of proteins.

    PubMed

    Clemen, Christoph S; Rybakin, Vasily; Eichinger, Ludwig

    2008-01-01

    The coronins, first described in Dictyostelium discoideum in 1991, have meanwhile been detected in all eukaryotes except plants. They belong to the superfamily of WD40-repeat proteins and represent a large family of proteins, which are often involved in cytoskeletal functions. Phylogenetic studies clearly distinguish 12 subfamilies of which six exclusively occur in vertebrates. In the present book we have made a sincere attempt to provide a comprehensive overview on all aspects of coronin proteins including history, structure, subcellular localization and function in different organisms. In addition, we also included a general overview on the WD40 family of proteins and the structurally related Kelch family. The book should be of interest for scientists outside the field, but is more importantly intended as a fast and competent guide for newcomers as well as doctoral and postdoctoral scientists to coronin research in all its facets.

  18. Protein evolution on rugged landscapes

    SciTech Connect

    Macken, C.A. ); Perelson, A.S. Sante Fe Institute, NM )

    1989-08-01

    The authors analyze a mathematical model of protein evolution in which the evolutionary process is viewed as hill-climbing on a random fitness landscape. In studying the structure of such landscapes, they note that a large number of local optima exist, and they calculate the time and number of mutational changes until a protein gets trapped at a local optimum. Such a hill-climbing process may underlie the evolution of antibody molecules by somatic hypermutation.

  19. The RNA–Protein World

    PubMed Central

    Altman, Sidney

    2013-01-01

    Following the naming of the RNA World for the hypothetical biochemical world during very early life forms, the current world was named the Protein World. However, the astonishing high level of transcripts from virtually all chromosomes in an organism now found in eucaryotes, as well as their extensive roles in regulating gene expression, suggests that today’s world should be labeled as the RNA–Protein World. PMID:23592800

  20. Meningococcal protein antigens and vaccines.

    PubMed

    Feavers, Ian M; Pizza, Mariagrazia

    2009-06-24

    The development of a comprehensive vaccine against meningococcal disease has been challenging. Recent developments in molecular genetics have provided both explanations for these challenges and possible solutions. Since genome sequence data became available there has been a marked increase in number of protein antigens that have been suggested as prospective vaccine components. This review catalogues the proposed vaccine candidates and examines the evidence for their inclusion in potential protein vaccine formulations.

  1. Functions of S100 Proteins

    PubMed Central

    Donato, R.; Cannon, B.R.; Sorci, G.; Riuzzi, F.; Hsu, K.; Weber, D.J.; Geczy, C.L.

    2013-01-01

    The S100 protein family consists of 24 members functionally distributed into three main subgroups: those that only exert intracellular regulatory effects, those with intracellular and extracellular functions and those which mainly exert extracellular regulatory effects. S100 proteins are only expressed in vertebrates and show cell-specific expression patterns. In some instances, a particular S100 protein can be induced in pathological circumstances in a cell type that does not express it in normal physiological conditions. Within cells, S100 proteins are involved in aspects of regulation of proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation and migration/invasion through interactions with a variety of target proteins including enzymes, cytoskeletal subunits, receptors, transcription factors and nucleic acids. Some S100 proteins are secreted or released and regulate cell functions in an autocrine and paracrine manner via activation of surface receptors (e.g. the receptor for advanced glycation end-products and toll-like receptor 4), G-protein-coupled receptors, scavenger receptors, or heparan sulfate proteoglycans and N-glycans. Extracellular S100A4 and S100B also interact with epidermal growth factor and basic fibroblast growth factor, respectively, thereby enhancing the activity of the corresponding receptors. Thus, extracellular S100 proteins exert regulatory activities on monocytes/macrophages/microglia, neutrophils, lymphocytes, mast cells, articular chondrocytes, endothelial and vascular smooth muscle cells, neurons, astrocytes, Schwann cells, epithelial cells, myoblasts and cardiomyocytes, thereby participating in innate and adaptive immune responses, cell migration and chemotaxis, tissue development and repair, and leukocyte and tumor cell invasion. PMID:22834835

  2. Genetics Home Reference: protein C deficiency

    MedlinePlus

    ... Understand Genetics Home Health Conditions protein C deficiency protein C deficiency Enable Javascript to view the expand/ ... boxes. Download PDF Open All Close All Description Protein C deficiency is a disorder that increases the ...

  3. Genetics Home Reference: protein S deficiency

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions protein S deficiency protein S deficiency Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Protein S deficiency is a disorder of blood clotting. People ...

  4. Chemical Methods for the Production of Proteins

    SciTech Connect

    Kent, Stephen B.H.

    2008-09-15

    The goal of this research program was to develop improved methods for chemical peptide and protein synthesis, and to apply these methods to the total synthesis of small proteins (<80 amino acids) & integral membrane proteins.

  5. Protein nutrition in fish: protein/energy ratio and alternative protein sources to fish meal.

    PubMed

    Sanz, A; García Gallego, M; De la Higuera, M

    2000-09-01

    Those interested in the design and manufacture of feeds for intensive fish farming face the basic concern of formulating mixtures for the best yield at the lowest costs. Of the macronutrients in the feed, protein has and continues to receive special consideration because fish present high and specific needs for this constituent. Traditionally, protein has been supplied primarily by fish meals. This paper presents a synthesis of the efforts made and the lines explored to achieve an effective reduction of the amount of fish meal in the feeds for fish, following two strategies: reduction of the protein in the feeds and the use of new raw materials to replace fish meal.

  6. Detection and identification of protein interactions of S100 proteins by ProteinChip technology.

    PubMed

    Lehmann, Roland; Melle, Christian; Escher, Niko; von Eggeling, Ferdinand

    2005-01-01

    The aim of this work was to establish an approach for identification of protein interactions. This assay used an anti-S100A8 antibody coupled on beads and incubated with cell extract. The bead eluates were analyzed using ProteinChip technology and subsequently subjected to an appropriate digestion. Molecular masses of digestion fragments were determined by SELDI-MS, and database analysis revealed S100A10 as interacting protein. This result was confirmed by co-immunoprecipitation and immunocapturing. Using S100A10 as new bait, a specific interaction with S100A7 was detectable. PMID:16212425

  7. Detergent-mediated protein aggregation.

    PubMed

    Neale, Chris; Ghanei, Hamed; Holyoake, John; Bishop, Russell E; Privé, Gilbert G; Pomès, Régis

    2013-04-01

    Because detergents are commonly used to solvate membrane proteins for structural evaluation, much attention has been devoted to assessing the conformational bias imparted by detergent micelles in comparison to the native environment of the lipid bilayer. Here, we conduct six 500-ns simulations of a system with >600,000 atoms to investigate the spontaneous self assembly of dodecylphosphocholine detergent around multiple molecules of the integral membrane protein PagP. This detergent formed equatorial micelles in which acyl chains surround the protein's hydrophobic belt, confirming existing models of the detergent solvation of membrane proteins. In addition, unexpectedly, the extracellular and periplasmic apical surfaces of PagP interacted with the headgroups of detergents in other micelles 85 and 60% of the time, respectively, forming complexes that were stable for hundreds of nanoseconds. In some cases, an apical surface of one molecule of PagP interacted with an equatorial micelle surrounding another molecule of PagP. In other cases, the apical surfaces of two molecules of PagP simultaneously bound a neat detergent micelle. In these ways, detergents mediated the non-specific aggregation of folded PagP. These simulation results are consistent with dynamic light scattering experiments, which show that, at detergent concentrations ≥600 mM, PagP induces the formation of large scattering species that are likely to contain many copies of the PagP protein. Together, these simulation and experimental results point to a potentially generic mechanism of detergent-mediated protein aggregation.

  8. Strep-Tagged Protein Purification.

    PubMed

    Maertens, Barbara; Spriestersbach, Anne; Kubicek, Jan; Schäfer, Frank

    2015-01-01

    The Strep-tag system can be used to purify recombinant proteins from any expression system. Here, protocols for lysis and affinity purification of Strep-tagged proteins from E. coli, baculovirus-infected insect cells, and transfected mammalian cells are given. Depending on the amount of Strep-tagged protein in the lysate, a protocol for batch binding and subsequent washing and eluting by gravity flow can be used. Agarose-based matrices with the coupled Strep-Tactin ligand are the resins of choice, with a binding capacity of up to 9 mg ml(-1). For purification of lower amounts of Strep-tagged proteins, the use of Strep-Tactin magnetic beads is suitable. In addition, Strep-tagged protein purification can also be automated using prepacked columns for FPLC or other liquid-handling chromatography instrumentation, but automated purification is not discussed in this protocol. The protocols described here can be regarded as an update of the Strep-Tag Protein Handbook (Qiagen, 2009).

  9. Protein adsorption onto ceramic surfaces.

    PubMed

    Takami, Y; Yamane, S; Makinouchi, K; Otsuka, G; Glueck, J; Benkowski, R; Nosé, Y

    1998-04-01

    Ceramics seldom have been used as blood-contacting materials. However, alumina ceramic (Al2O3) and polyethylene are incorporated into the pivot bearings of the Gyro centrifugal blood pump. This material combination was chosen based on the high durability of the materials. Due to the stagnant flow that often occurs in a continuous flow condition inside a centrifugal pump, pivot bearing system is extremely critical. To evaluate the thombogenicity of pivot bearings in the Gyro pump, this study sought to investigate protein adsorption, particularly albumin, IgG, fibrinogen, and fibronectin onto ceramic surfaces. Al2O3 and silicon carbide ceramic (SiC) were compared with polyethylene (PE) and polyvinylchloride (PVC). Bicinchoninic acid (BCA) protein assay revealed that the amount of adsorbed proteins onto Al2O3 and SiC was significantly less than that on PVC. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that numerous proteins adsorbed onto PVC compared to PE, Al2O3, and SiC. Identification of adsorbed proteins by Western immunoblotting revealed that the adsorption of albumin was similar on all four materials tested. Western immunoblotting also indicated lesser amounts of IgG, fibrinogen, and fibronectin on Al2O3 and SiC than on PE and PVC. In conclusion, ceramics (Al2O3 and SiC) are expected to be thromboresistant from the viewpoint of protein adsorption. PMID:9511095

  10. Strep-Tagged Protein Purification.

    PubMed

    Maertens, Barbara; Spriestersbach, Anne; Kubicek, Jan; Schäfer, Frank

    2015-01-01

    The Strep-tag system can be used to purify recombinant proteins from any expression system. Here, protocols for lysis and affinity purification of Strep-tagged proteins from E. coli, baculovirus-infected insect cells, and transfected mammalian cells are given. Depending on the amount of Strep-tagged protein in the lysate, a protocol for batch binding and subsequent washing and eluting by gravity flow can be used. Agarose-based matrices with the coupled Strep-Tactin ligand are the resins of choice, with a binding capacity of up to 9 mg ml(-1). For purification of lower amounts of Strep-tagged proteins, the use of Strep-Tactin magnetic beads is suitable. In addition, Strep-tagged protein purification can also be automated using prepacked columns for FPLC or other liquid-handling chromatography instrumentation, but automated purification is not discussed in this protocol. The protocols described here can be regarded as an update of the Strep-Tag Protein Handbook (Qiagen, 2009). PMID:26096503

  11. How anchoring proteins shape pain.

    PubMed

    Fischer, Michael J M; McNaughton, Peter A

    2014-09-01

    Cellular responsiveness to external stimuli can be altered by extracellular mediators which activate membrane receptors, in turn signalling to the intracellular space via calcium, cyclic nucleotides, membrane lipids or enzyme activity. These signalling events trigger a cascade leading to an effector which can be a channel, an enzyme or a transcription factor. The effectiveness of these intracellular events is enhanced when they are maintained in close proximity by anchoring proteins, which assemble complexes of signalling molecules such as kinases together with their targets, and in this way enhance both the speed and the precision of intracellular signalling. The A kinase anchoring protein (AKAP) family are adaptor proteins originally named for their ability to associate Protein Kinase A and its targets, but several other enzymes bound by AKAPs have now been found and a wide variety of target structures has been described. This review provides an overview of anchoring proteins involved in pain signalling. The key anchoring proteins and their ion channel targets in primary sensory neurons responding to painful stimuli (nociceptors) are discussed.

  12. Computational tools for protein modeling.

    PubMed

    Xu, D; Xu, Y; Uberbacher, E C

    2000-07-01

    Protein modeling is playing a more and more important role in protein and peptide sciences due to improvements in modeling methods, advances in computer technology, and the huge amount of biological data becoming available. Modeling tools can often predict the structure and shed some light on the function and its underlying mechanism. They can also provide insight to design experiments and suggest possible leads for drug design. This review attempts to provide a comprehensive introduction to major computer programs, especially on-line servers, for protein modeling. The review covers the following aspects: (1) protein sequence comparison, including sequence alignment/search, sequence-based protein family classification, domain parsing, and phylogenetic classification; (2) sequence annotation, including annotation/prediction of hydrophobic profiles, transmembrane regions, active sites, signaling sites, and secondary structures; (3) protein structure analysis, including visualization, geometry analysis, structure comparison/classification, dynamics, and electrostatics; (4) three-dimensional structure prediction, including homology modeling, fold recognition using threading, ab initio prediction, and docking. We will address what a user can expect from the computer tools in terms of their strengths and limitations. We will also discuss the major challenges and the future trends in the field. A collection of the links of tools can be found at http://compbio.ornl.gov/structure/resource/.

  13. Protein interfacial structure and nanotoxicology

    NASA Astrophysics Data System (ADS)

    White, John W.; Perriman, Adam W.; McGillivray, Duncan J.; Lin, Jhih-Min

    2009-02-01

    Here we briefly recapitulate the use of X-ray and neutron reflectometry at the air-water interface to find protein structures and thermodynamics at interfaces and test a possibility for understanding those interactions between nanoparticles and proteins which lead to nanoparticle toxicology through entry into living cells. Stable monomolecular protein films have been made at the air-water interface and, with a specially designed vessel, the substrate changed from that which the air-water interfacial film was deposited. This procedure allows interactions, both chemical and physical, between introduced species and the monomolecular film to be studied by reflectometry. The method is briefly illustrated here with some new results on protein-protein interaction between β-casein and κ-casein at the air-water interface using X-rays. These two proteins are an essential component of the structure of milk. In the experiments reported, specific and directional interactions appear to cause different interfacial structures if first, a β-casein monolayer is attacked by a κ-casein solution compared to the reverse. The additional contrast associated with neutrons will be an advantage here. We then show the first results of experiments on the interaction of a β-casein monolayer with a nanoparticle titanium oxide sol, foreshadowing the study of the nanoparticle "corona" thought to be important for nanoparticle-cell wall penetration.

  14. Protein phosphatases in pancreatic islets

    PubMed Central

    Ortsäter, Henrik; Grankvist, Nina; Honkanen, Richard E.; Sjöholm1, Åke

    2014-01-01

    The prevalence of diabetes is increasing rapidly world-wide. A cardinal feature of most forms of diabetes is the lack of insulin-producing capability, due to the loss of insulin-producing β-cells, impaired glucose-sensitive insulin secretion from the β-cell, or a combination thereof, the reasons for which largely remain elusive. Reversible phosphorylation is an important and versatile mechanism for regulating the biological activity of many intracellular proteins, which, in turn, controls a variety of cellular functions. For instance, significant changes in protein kinase activities and in protein phosphorylation patterns occur subsequent to stimulation of insulin release by glucose. Therefore, the molecular mechanisms regulating phosphorylation of proteins involved in the insulin secretory process by the β-cell have been extensively investigated. However, far less is known about the role and regulation of protein dephosphorylation by various protein phosphatases. Herein we review extant data implicating serine/threonine and tyrosine phosphatases in various aspects of healthy and diabetic islet biology, ranging from control of hormonal stimulus-secretion coupling to mitogenesis and apoptosis. PMID:24681827

  15. Blue protein with red fluorescence

    PubMed Central

    Ghosh, Swagatha; Yu, Chi-Li; Ferraro, Daniel J.; Sudha, Sai; Pal, Samir Kumar; Schaefer, Wayne F.; Gibson, David T.; Ramaswamy, S.

    2016-01-01

    The walleye (Sander vitreus) is a golden yellow fish that inhabits the Northern American lakes. The recent sightings of the blue walleye and the correlation of its sighting to possible increased UV radiation have been proposed earlier. The underlying molecular basis of its adaptation to increased UV radiation is the presence of a protein (Sandercyanin)–ligand complex in the mucus of walleyes. Degradation of heme by UV radiation results in the formation of Biliverdin IXα (BLA), the chromophore bound to Sandercyanin. We show that Sandercyanin is a monomeric protein that forms stable homotetramers on addition of BLA to the protein. A structure of the Sandercyanin–BLA complex, purified from the fish mucus, reveals a glycosylated protein with a lipocalin fold. This protein–ligand complex absorbs light in the UV region (λmax of 375 nm) and upon excitation at this wavelength emits in the red region (λmax of 675 nm). Unlike all other known biliverdin-bound fluorescent proteins, the chromophore is noncovalently bound to the protein. We provide here a molecular rationale for the observed spectral properties of Sandercyanin. PMID:27688756

  16. Water Stress and Protein Synthesis

    PubMed Central

    Dhindsa, R. S.; Cleland, R. E.

    1975-01-01

    Water stress causes a reduction in hydrostatic pressure and can cause an increase in abscisic acid in plant tissues. To assess the possible role of abscisic acid and hydrostatic pressure in water stress effects, we have compared the effects of water stress, abscisic acid, and an imposed hydrostatic pressure on the rate and pattern of protein synthesis in Avena coleoptiles. Water stress reduces the rate and changes the pattern of protein synthesis as judged by a double labeling ratio technique, Abscisic acid reduces the rate but does not alter the pattern of protein synthesis. Gibberellic acid reverses the abscisic acid-induced but not the stress-induced inhibition of protein synthesis. The effect of hydrostatic pressure depends on the gas used. With a 19: 1 N2-air mixture, the rate of protein synthesis is increased in stressed but not in turgid tissues. An imposed hydrostatic pressure alters the pattern of synthesis in stressed tissues, but does not restore the pattern to that found in turgid tissues. Because of the differences in response, we conclude that water stress does not affect protein synthesis via abscisic acid or reduced hydrostatic pressure. PMID:16659167

  17. Cosolvent Effects on Protein Stability

    NASA Astrophysics Data System (ADS)

    Canchi, Deepak R.; García, Angel E.

    2013-04-01

    Proteins are marginally stable, and the folding/unfolding equilibrium of proteins in aqueous solution can easily be altered by the addition of small organic molecules known as cosolvents. Cosolvents that shift the equilibrium toward the unfolded ensemble are termed denaturants, whereas those that favor the folded ensemble are known as protecting osmolytes. Urea is a widely used denaturant in protein folding studies, and the molecular mechanism of its action has been vigorously debated in the literature. Here we review recent experimental as well as computational studies that show an emerging consensus in this problem. Urea has been shown to denature proteins through a direct mechanism, by interacting favorably with the peptide backbone as well as the amino acid side chains. In contrast, the molecular mechanism by which the naturally occurring protecting osmolyte trimethylamine N-oxide (TMAO) stabilizes proteins is not clear. Recent studies have established the strong interaction of TMAO with water. Detailed molecular simulations, when used with force fields that incorporate these interactions, can provide insight into this problem. We present the development of a model for TMAO that is consistent with experimental observations and that provides physical insight into the role of cosolvent-cosolvent interaction in determining its preferential interaction with proteins.

  18. Plant Plasma Membrane Proteins 1

    PubMed Central

    Grimes, Howard D.; Breidenbach, R. William

    1987-01-01

    A major 75 kD protein group from the tomato plasma membrane was semipurified on polyacrylamide gels and used to raise a rabbit antiserum. The resulting antiserum recognized a single 75 kilodalton band from phase partitioned tomato plasma membrane (from both suspension cells and mature, green fruit) after resolution on one-dimensional polyacrylamide gels. Two-dimensional polyacrylamide gel analysis of proteins from tomato plasma membrane showed that the 75 kilodalton antiserum recognized a group of proteins ranging from 63.1 to 88.2 kilodaltons (mean = 75.6 kilodaltons) and with isoelectric point values ranging from 5.7 to 6.3. No other spots were visible on the two-dimensional blots. This antiserum was shown to bind protoplast surface epitopes by indirect immunofluorescence. The presence of this protein group in both monocotyledonous and dicotyledonous plants was established by immunoblotting the tomato 75 kilodalton antiserum against proteins obtained from plasma membrane-enriched fractions from corn roots and soybean roots. The data suggest that this 75 kilodalton protein group is a major proteinaceous component of the plant plasma membrane. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:16665801

  19. Microbial Protein-tyrosine Kinases*

    PubMed Central

    Chao, Joseph D.; Wong, Dennis; Av-Gay, Yossef

    2014-01-01

    Microbial ester kinases identified in the past 3 decades came as a surprise, as protein phosphorylation on Ser, Thr, and Tyr amino acids was thought to be unique to eukaryotes. Current analysis of available microbial genomes reveals that “eukaryote-like” protein kinases are prevalent in prokaryotes and can converge in the same signaling pathway with the classical microbial “two-component” systems. Most microbial tyrosine kinases lack the “eukaryotic” Hanks domain signature and are designated tyrosine kinases based upon their biochemical activity. These include the tyrosine kinases termed bacterial tyrosine kinases (BY-kinases), which are responsible for the majority of known bacterial tyrosine phosphorylation events. Although termed generally as bacterial tyrosine kinases, BY-kinases can be considered as one family belonging to the superfamily of prokaryotic protein-tyrosine kinases in bacteria. Other members of this superfamily include atypical “odd” tyrosine kinases with diverse mechanisms of protein phosphorylation and the “eukaryote-like” Hanks-type tyrosine kinases. Here, we discuss the distribution, phylogeny, and function of the various prokaryotic protein-tyrosine kinases, focusing on the recently discovered Mycobacterium tuberculosis PtkA and its relationship with other members of this diverse family of proteins. PMID:24554699

  20. Allosteric proteins as logarithmic sensors

    PubMed Central

    Olsman, Noah; Goentoro, Lea

    2016-01-01

    Many sensory systems, from vision and hearing in animals to signal transduction in cells, respond to fold changes in signal relative to background. Responding to fold change requires that the system senses signal on a logarithmic scale, responding identically to a change in signal level from 1 to 3, or from 10 to 30. It is an ongoing search in the field to understand the ways in which a logarithmic sensor can be implemented at the molecular level. In this work, we present evidence that logarithmic sensing can be implemented with a single protein, by means of allosteric regulation. Specifically, we find that mathematical models show that allosteric proteins can respond to stimuli on a logarithmic scale. Next, we present evidence from measurements in the literature that some allosteric proteins do operate in a parameter regime that permits logarithmic sensing. Finally, we present examples suggesting that allosteric proteins are indeed used in this capacity: allosteric proteins play a prominent role in systems where fold-change detection has been proposed. This finding suggests a role as logarithmic sensors for the many allosteric proteins across diverse biological processes. PMID:27410043