Science.gov

Sample records for 5-m grid network

  1. The Benefits of Grid Networks

    ERIC Educational Resources Information Center

    Tennant, Roy

    2005-01-01

    In the article, the author talks about the benefits of grid networks. In speaking of grid networks the author is referring to both networks of computers and networks of humans connected together in a grid topology. Examples are provided of how grid networks are beneficial today and the ways in which they have been used.

  2. Home Area Networks and the Smart Grid

    SciTech Connect

    Clements, Samuel L.; Carroll, Thomas E.; Hadley, Mark D.

    2011-04-01

    With the wide array of home area network (HAN) options being presented as solutions to smart grid challenges for the home, it is time to compare and contrast their strengths and weaknesses. This white paper examines leading and emerging HAN technologies. The emergence of the smart grid is bringing more networking players into the field. The need for low consistent bandwidth usage differs enough from the traditional information technology world to open the door to new technologies. The predominant players currently consist of a blend of the old and new. Within the wired world Ethernet and HomePlug Green PHY are leading the way with an advantage to HomePlug because it doesn't require installing new wires. In the wireless the realm there are many more competitors but WiFi and ZigBee seem to have the most momentum.

  3. Building new access network using reconfigurable optical grid network and wireless network

    NASA Astrophysics Data System (ADS)

    Qiu, Yinghui; Wu, Runze; Ji, Yuefeng; Xu, Daxiong

    2007-11-01

    Recently wireless mesh network has been gaining increasing attention and early versions are being deployed as municipal access solutions to eliminate the wired drop to every wireless router at customer premise. In this paper, we propose a novel access network using reconfigurable optical burst switching grid network and wireless mesh network. The proposed access network architecture saves network deployment cost because fiber need not penetrate to each end user. We also propose a hierarchical routing protocol to enhance the routing efficiency.

  4. Grid pattern of nanothick microgel network.

    PubMed

    Chen, Guoping; Kawazoe, Naoki; Fan, Yujiang; Ito, Yoshihiro; Tateishi, Tetsuya

    2007-05-22

    A novel grid pattern of two kinds of nanothick microgels was developed by alternate patterning using photolithography. At first, 100-microm-wide nanothick PAAm microgel stripes were grafted on a polystyrene surface by UV irradiation of the photoreactive azidobenzoyl-derivatized polyallylamine-coated surface through a photomask with 100-microm-wide stripes. Then, a second set of 100-microm-wide nanothick PAAc microgel stripes were grafted across the PAAm-grated polystyrene surface by UV irradiation of the photoreactive azidophenyl-derivatized poly(acrylic acid)-coated surface through a photomask placed perpendicularly to the first set of PAAm microgel stripes. The PAAc microgel stripe pattern was formed over the PAAm microgel stripe pattern. The cross angle of the two microgel stripes could be controlled by adjusting the position of the photomask when the second microgel pattern was prepared. Swelling and shrinking of the microgels were investigated by scanning probe microscopy (SPM) in an aqueous solution. SPM observation indicated that the thickness of the gel network was 100 to 500 nm. The regions containing PAAm, PAAc, and the PAAc-PAAm overlapping microgels showed different swelling and shrinking properties when the pH was changed. The PAAm microgel swelled at low pH and shrank at high pH whereas the PAAc microgel swelled at high pH and shrank at low pH. However, the PAAc-PAAm overlapping microgel did not change as significantly as did the two microgels, indicating that the swelling and shrinking of the two gels was partially offset. The pH-induced structural change was repeatedly reversible. The novel grid pattern of nanothick microgels will find applications in various fields such as smart actuators, artificial muscles, sensors, and drug delivery systems as well as in tissue engineering and so forth.

  5. Impact of network topology on synchrony of oscillatory power grids.

    PubMed

    Rohden, Martin; Sorge, Andreas; Witthaut, Dirk; Timme, Marc

    2014-03-01

    Replacing conventional power sources by renewable sources in current power grids drastically alters their structure and functionality. In particular, power generation in the resulting grid will be far more decentralized, with a distinctly different topology. Here, we analyze the impact of grid topologies on spontaneous synchronization, considering regular, random, and small-world topologies and focusing on the influence of decentralization. We model the consumers and sources of the power grid as second order oscillators. First, we analyze the global dynamics of the simplest non-trivial (two-node) network that exhibit a synchronous (normal operation) state, a limit cycle (power outage), and coexistence of both. Second, we estimate stability thresholds for the collective dynamics of small network motifs, in particular, star-like networks and regular grid motifs. For larger networks, we numerically investigate decentralization scenarios finding that decentralization itself may support power grids in exhibiting a stable state for lower transmission line capacities. Decentralization may thus be beneficial for power grids, regardless of the details of their resulting topology. Regular grids show a specific sharper transition not found for random or small-world grids.

  6. Network-theoretical approach to partitioning of real power grids

    NASA Astrophysics Data System (ADS)

    Abou Hamad, Ibrahim; Israels, Brett; Poroseva, Svetlana V.; Rikvold, Per Arne

    2010-03-01

    Modern societies depend critically on their electrical power grids. It is, therefore, essential to understand the grid's large-scale behavior in order to improve its resilience against catastrophic damage. A key factor determining the grid's large-scale behavior is its topology. In particular, an important question is whether a grid topology can be efficiently partitioned into independent communities (``islands'') of densely connected vertices (generators, substations, consumers) that are more loosely connected to other communities. Such partitioning can be utilized either to strengthen the grid by introducing new connections, or to achieve ``Intentional Intelligent Islanding'' by installing control devices in a minimal number of links in order to contain cascading failures to a limited region. Here we report on the performance of several network-partitioning algorithms, both agglomerative and spectral-based divisive, in applications to real power grids, including the high-voltage grids of Florida and Italy.

  7. Evidence for grid cells in a human memory network.

    PubMed

    Doeller, Christian F; Barry, Caswell; Burgess, Neil

    2010-02-01

    Grid cells in the entorhinal cortex of freely moving rats provide a strikingly periodic representation of self-location which is indicative of very specific computational mechanisms. However, the existence of grid cells in humans and their distribution throughout the brain are unknown. Here we show that the preferred firing directions of directionally modulated grid cells in rat entorhinal cortex are aligned with the grids, and that the spatial organization of grid-cell firing is more strongly apparent at faster than slower running speeds. Because the grids are also aligned with each other, we predicted a macroscopic signal visible to functional magnetic resonance imaging (fMRI) in humans. We then looked for this signal as participants explored a virtual reality environment, mimicking the rats' foraging task: fMRI activation and adaptation showing a speed-modulated six-fold rotational symmetry in running direction. The signal was found in a network of entorhinal/subicular, posterior and medial parietal, lateral temporal and medial prefrontal areas. The effect was strongest in right entorhinal cortex, and the coherence of the directional signal across entorhinal cortex correlated with spatial memory performance. Our study illustrates the potential power of combining single-unit electrophysiology with fMRI in systems neuroscience. Our results provide evidence for grid-cell-like representations in humans, and implicate a specific type of neural representation in a network of regions which supports spatial cognition and also autobiographical memory.

  8. JPARSS: A Java Parallel Network Package for Grid Computing

    SciTech Connect

    Chen, Jie; Akers, Walter; Chen, Ying; Watson, William

    2002-03-01

    The emergence of high speed wide area networks makes grid computinga reality. However grid applications that need reliable data transfer still have difficulties to achieve optimal TCP performance due to network tuning of TCP window size to improve bandwidth and to reduce latency on a high speed wide area network. This paper presents a Java package called JPARSS (Java Parallel Secure Stream (Socket)) that divides data into partitions that are sent over several parallel Java streams simultaneously and allows Java or Web applications to achieve optimal TCP performance in a grid environment without the necessity of tuning TCP window size. This package enables single sign-on, certificate delegation and secure or plain-text data transfer using several security components based on X.509 certificate and SSL. Several experiments will be presented to show that using Java parallelstreams is more effective than tuning TCP window size. In addition a simple architecture using Web services

  9. Conceptual Design of the Everglades Depth Estimation Network (EDEN) Grid

    USGS Publications Warehouse

    Jones, John W.; Price, Susan D.

    2007-01-01

    INTRODUCTION The Everglades Depth Estimation Network (EDEN) offers a consistent and documented dataset that can be used to guide large-scale field operations, to integrate hydrologic and ecological responses, and to support biological and ecological assessments that measure ecosystem responses to the Comprehensive Everglades Restoration Plan (Telis, 2006). Ground elevation data for the greater Everglades and the digital ground elevation models derived from them form the foundation for all EDEN water depth and associated ecologic/hydrologic modeling (Jones, 2004, Jones and Price, 2007). To use EDEN water depth and duration information most effectively, it is important to be able to view and manipulate information on elevation data quality and other land cover and habitat characteristics across the Everglades region. These requirements led to the development of the geographic data layer described in this techniques and methods report. Relying on extensive experience in GIS data development, distribution, and analysis, a great deal of forethought went into the design of the geographic data layer used to index elevation and other surface characteristics for the Greater Everglades region. To allow for simplicity of design and use, the EDEN area was broken into a large number of equal-sized rectangles ('Cells') that in total are referred to here as the 'grid'. Some characteristics of this grid, such as the size of its cells, its origin, the area of Florida it is designed to represent, and individual grid cell identifiers, could not be changed once the grid database was developed. Therefore, these characteristics were selected to design as robust a grid as possible and to ensure the grid's long-term utility. It is desirable to include all pertinent information known about elevation and elevation data collection as grid attributes. Also, it is very important to allow for efficient grid post-processing, sub-setting, analysis, and distribution. This document details the

  10. Taming instabilities in power grid networks by decentralized control

    NASA Astrophysics Data System (ADS)

    Schäfer, B.; Grabow, C.; Auer, S.; Kurths, J.; Witthaut, D.; Timme, M.

    2016-05-01

    Renewables will soon dominate energy production in our electric power system. And yet, how to integrate renewable energy into the grid and the market is still a subject of major debate. Decentral Smart Grid Control (DSGC) was recently proposed as a robust and decentralized approach to balance supply and demand and to guarantee a grid operation that is both economically and dynamically feasible. Here, we analyze the impact of network topology by assessing the stability of essential network motifs using both linear stability analysis and basin volume for delay systems. Our results indicate that if frequency measurements are averaged over sufficiently large time intervals, DSGC enhances the stability of extended power grid systems. We further investigate whether DSGC supports centralized and/or decentralized power production and find it to be applicable to both. However, our results on cycle-like systems suggest that DSGC favors systems with decentralized production. Here, lower line capacities and lower averaging times are required compared to those with centralized production.

  11. Synchronization in complex oscillator networks and smart grids.

    PubMed

    Dörfler, Florian; Chertkov, Michael; Bullo, Francesco

    2013-02-01

    The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A widely adopted model of a coupled oscillator network is characterized by a population of heterogeneous phase oscillators, a graph describing the interaction among them, and diffusive and sinusoidal coupling. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here, we present a unique, concise, and closed-form condition for synchronization of the fully nonlinear, nonequilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters; they are statistically correct for almost all networks; and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks, such as electrical power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex network scenarios and in smart grid applications.

  12. Synchronization in complex oscillator networks and smart grids

    PubMed Central

    Dörfler, Florian; Chertkov, Michael; Bullo, Francesco

    2013-01-01

    The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A widely adopted model of a coupled oscillator network is characterized by a population of heterogeneous phase oscillators, a graph describing the interaction among them, and diffusive and sinusoidal coupling. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here, we present a unique, concise, and closed-form condition for synchronization of the fully nonlinear, nonequilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters; they are statistically correct for almost all networks; and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks, such as electrical power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex network scenarios and in smart grid applications. PMID:23319658

  13. Synchronization in Complex Oscillator Networks and Smart Grids

    SciTech Connect

    Dorfler, Florian; Chertkov, Michael; Bullo, Francesco

    2012-07-24

    The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A coupled oscillator network is characterized by a population of heterogeneous oscillators and a graph describing the interaction among them. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here we present a novel, concise, and closed-form condition for synchronization of the fully nonlinear, non-equilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters, or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters, they are statistically correct for almost all networks, and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks such as electric power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex networks scenarios and in smart grid applications.

  14. A peer-to-peer resource scheduling approach for photonic grid network based on OBGP

    NASA Astrophysics Data System (ADS)

    Wu, Runze; Ji, Yuefeng

    2005-11-01

    In this paper we present a resource scheduling mechanism for providing dynamic lightpaths to photonic grid network and point out that grid enabled by optical network has huge potential effect on pushing the next optical network applications. Furthermore we investigate photonic grid architecture and control plane based on peer-to-peer is also provided to control optical network communication resources dynamically. We also certificate the idea of extending BGP towards optical network, which is called Optical Border Gateway Protocol used to provide IP-based protocols to control optical network, and gives a dynamic lightpath scheduling approach over multi-wavelength optical network as a new grid service based on OBGP.

  15. 78 FR 70076 - Large Scale Networking (LSN)-Middleware and Grid Interagency Coordination (MAGIC) Team

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... Large Scale Networking (LSN)--Middleware and Grid Interagency Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD) National Coordination Office (NCO... Networking (LSN) Coordinating Group (CG). Public Comments: The government seeks individual input;...

  16. 77 FR 58416 - Large Scale Networking (LSN); Middleware and Grid Interagency Coordination (MAGIC) Team

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... Large Scale Networking (LSN); Middleware and Grid Interagency Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD) National Coordination Office (NCO... to the Large Scale Networking (LSN) Coordinating Group (CG). Public Comments: The government...

  17. Grid-Observing: Creating a Global Network of Telescopes

    NASA Astrophysics Data System (ADS)

    Hessman, F. V.; Gelderman, R.; Naylor, T.; Pennypacker, C.; Steele, I.

    2004-12-01

    With the increasing switch from classical observing campaigns to service observations, the decreasing pressure on a large number of 1 - 2m telescopes, and the rapid growth in the number of robotic, autonomous telescopes, it has become possible to create a truly global network of telescopes - what we call ``Grid-Observing." Such a network would permit a variety of photometric and spectroscopic monitoring and temporal survey projects which cannot be performed either with current or proposed larger telescopes (e.g. LSST) or with individual telescopes operated by a single institution. Participating observatories can be ``paid" for the services they provide to the network by being able to extract an equivalent amount of time on other telescopes, scaled by aperture, spectral resolution, atmospheric conditions, and the costs of operation or willingness to provide such a service. An XML interface - Remote Telescope Markup Language - insures that communications within the network are simple and relatively easily adapted to existent observatory software and procedures. An eBay-like mechanism for the automatic scheduling of telescopes can provide the necessary flexibility needed to perform time-critical projects as well as insure that the participating institutions retain full control over their telescopes. We are planning on networking several robotic telescope in the near future and expect that many other robotic and non-robotic telescopes will follow.

  18. Scaling the Earth System Grid to 100Gbps Networks

    SciTech Connect

    Balman, Mehmet; Sim, Alex

    2012-03-02

    The SC11 demonstration, titled Scaling the Earth System Grid to 100Gbps Networks, showed the ability to use underlying infrastructure for the movement of climate data over 100Gbps network. Climate change research is one of the critical data intensive sciences, and the amount of data is continuously growing. Climate simulation data is geographically distributed over the world, and it needs to be accessed from many sources for fast and efficient analysis and inter-comparison of simulations. We used a 100Gbps link connecting National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory (LBNL), Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL). In the demo, the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) phase 3 of the Coupled Model Intercomparison Project (CMIP-3) dataset was staged into the memory of computing nodes at ANL and ORNL from NERSC over the 100Gbps network for analysis and visualization. In general, climate simulation data consists of relatively small and large files with irregular file size distribution in each dataset. In this demo, we addressed challenges on data management in terms of high bandwidth networks, usability of existing protocols and middleware tools, and how applications can adapt and benefit from next generation networks.

  19. A reliable data delivery mechanism for grid power quality using neural networks in wireless sensor networks.

    PubMed

    Lim, Yujin; Kim, Hak-Man; Kang, Sanggil

    2010-01-01

    Power grids deal with the business of generation, transmission, and distribution of electric power. Current systems monitor basic electrical quantities such as voltage and current from major pole transformers using their temperature. We improve the current systems in order to gather and deliver the information of power qualities such as harmonics, voltage sags, and voltage swells. In the system, data delivery is not guaranteed for the case that a node is lost or the network is congested, because the system has in-line and multi-hop architecture. In this paper, we propose a reliable data delivery mechanism by modeling an optimal data delivery function by employing the neural network concept.

  20. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    PubMed

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  1. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    PubMed

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming. PMID:25935050

  2. Experimental performance evaluation of software defined networking (SDN) based data communication networks for large scale flexi-grid optical networks.

    PubMed

    Zhao, Yongli; He, Ruiying; Chen, Haoran; Zhang, Jie; Ji, Yuefeng; Zheng, Haomian; Lin, Yi; Wang, Xinbo

    2014-04-21

    Software defined networking (SDN) has become the focus in the current information and communication technology area because of its flexibility and programmability. It has been introduced into various network scenarios, such as datacenter networks, carrier networks, and wireless networks. Optical transport network is also regarded as an important application scenario for SDN, which is adopted as the enabling technology of data communication networks (DCN) instead of general multi-protocol label switching (GMPLS). However, the practical performance of SDN based DCN for large scale optical networks, which is very important for the technology selection in the future optical network deployment, has not been evaluated up to now. In this paper we have built a large scale flexi-grid optical network testbed with 1000 virtual optical transport nodes to evaluate the performance of SDN based DCN, including network scalability, DCN bandwidth limitation, and restoration time. A series of network performance parameters including blocking probability, bandwidth utilization, average lightpath provisioning time, and failure restoration time have been demonstrated under various network environments, such as with different traffic loads and different DCN bandwidths. The demonstration in this work can be taken as a proof for the future network deployment. PMID:24787842

  3. Experimental performance evaluation of software defined networking (SDN) based data communication networks for large scale flexi-grid optical networks.

    PubMed

    Zhao, Yongli; He, Ruiying; Chen, Haoran; Zhang, Jie; Ji, Yuefeng; Zheng, Haomian; Lin, Yi; Wang, Xinbo

    2014-04-21

    Software defined networking (SDN) has become the focus in the current information and communication technology area because of its flexibility and programmability. It has been introduced into various network scenarios, such as datacenter networks, carrier networks, and wireless networks. Optical transport network is also regarded as an important application scenario for SDN, which is adopted as the enabling technology of data communication networks (DCN) instead of general multi-protocol label switching (GMPLS). However, the practical performance of SDN based DCN for large scale optical networks, which is very important for the technology selection in the future optical network deployment, has not been evaluated up to now. In this paper we have built a large scale flexi-grid optical network testbed with 1000 virtual optical transport nodes to evaluate the performance of SDN based DCN, including network scalability, DCN bandwidth limitation, and restoration time. A series of network performance parameters including blocking probability, bandwidth utilization, average lightpath provisioning time, and failure restoration time have been demonstrated under various network environments, such as with different traffic loads and different DCN bandwidths. The demonstration in this work can be taken as a proof for the future network deployment.

  4. Identifying Gaps in Grid Middleware on Fast Networks with the Advanced Networking Initiative

    NASA Astrophysics Data System (ADS)

    Dykstra, Dave; Garzoglio, Gabriele; Kim, Hyunwoo; Mhashilkar, Parag

    2012-12-01

    As of 2012, a number of US Department of Energy (DOE) National Laboratories have access to a 100 Gb/s wide-area network backbone. The ESnet Advanced Networking Initiative (ANI) project is intended to develop a prototype network, based on emerging 100 Gb/s Ethernet technology. The ANI network will support DOE's science research programs. A 100 Gb/s network test bed is a key component of the ANI project. The test bed offers the opportunity for early evaluation of 100Gb/s network infrastructure for supporting the high impact data movement typical of science collaborations and experiments. In order to make effective use of this advanced infrastructure, the applications and middleware currently used by the distributed computing systems of large-scale science need to be adapted and tested within the new environment, with gaps in functionality identified and corrected. As a user of the ANI test bed, Fermilab aims to study the issues related to end-to-end integration and use of 100 Gb/s networks for the event simulation and analysis applications of physics experiments. In this paper we discuss our findings from evaluating existing HEP Physics middleware and application components, including GridFTP, Globus Online, etc. in the high-speed environment. These will include possible recommendations to the system administrators, application and middleware developers on changes that would make production use of the 100 Gb/s networks, including data storage, caching and wide area access.

  5. Distributed Regional Aerosol Gridded Observation Network (DRAGON) - Korea 2012 campaign

    NASA Astrophysics Data System (ADS)

    Kim, J.; Holben, B. N.; Eck, T. F.; Jeong, U.; Kim, W. V.; Choi, M.; Kim, D. S.; Kim, B.; Kim, S.; Ghim, Y.; Kim, Y. J.; Kim, J. H.; Park, R.; Seo, M.; Song, C.; Yum, S.; Woo, J.; Yoon, S.; Lee, K.; Lee, M.; Lim, J.; Chang, I.; Jeong, M. J.; Bae, M.; Sorokin, M.; Giles, D. M.; Schafer, J.; Herman, J. R.

    2013-12-01

    One of the main objectives of Distributed Regional Aerosol Gridded Observation Network (DRAGON) campaign in Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission is to understand the relationship between the column optical properties of the atmosphere and the surface level air quality in terms of aerosols and gases. Recently, with the cooperative efforts with NASA (National Aeronautics and Space Administration) / GSFC (Goddard Space Flight Center), Korean University research groups, and KME (Korea Ministry of Environment) / NIER (National Institute of Environmental Research), DRAGON-Korea 2012 campaign was successfully performed from March to May 2012. The campaign sites were divided into two groups, the National scale sites and Seoul metropolitan sites. Thirteen Cimel sunphotometers were distributed at National scale sites including two metropolitan cities and several remote sites. Nine Cimel sunphotometers were distributed at Seoul Metropolitan sites including several residential sites and traffic source areas. The measured datasets are being analyzed in diverse fields of air quality communities including in-situ measurement groups, satellite remote sensing groups, chemical modeling groups, and airplane measurement groups. We will introduce several preliminary results of the analysis and discuss the future planes and corporations in Korea.

  6. The Study on the Communication Network of Wide Area Measurement System in Electricity Grid

    NASA Astrophysics Data System (ADS)

    Xiaorong, Cheng; Ying, Wang; Yangdan, Ni

    Wide area measurement system(WAMS) is a fundamental part of security defense in Smart Grid, and the communication system of WAMS is an important part of Electric power communication network. For a large regional network is concerned, the real-time data which is transferred in the communication network of WAMS will affect the safe operation of the power grid directly. Therefore, WAMS raised higher requirements for real-time, reliability and security to its communication network. In this paper, the architecture of WASM communication network was studied according to the seven layers model of the open systems interconnection(OSI), and the network architecture was researched from all levels. We explored the media of WAMS communication network, the network communication protocol and network technology. Finally, the delay of the network were analyzed.

  7. Study and Analysis on Technology and Development of Information Network of Rural Power Grid

    NASA Astrophysics Data System (ADS)

    Li, Weiying

    This paper describes the technology and transferring mode of rural power grid’s information network, analyses technology of communication system of electric power grid in rural area, chooses a new develop direction of technique based on the business needs and trend of rural power grids, and gives a route for development.

  8. Micro-grid platform based on NODE.JS architecture, implemented in electrical network instrumentation

    NASA Astrophysics Data System (ADS)

    Duque, M.; Cando, E.; Aguinaga, A.; Llulluna, F.; Jara, N.; Moreno, T.

    2016-05-01

    In this document, I propose a theory about the impact of systems based on microgrids in non-industrialized countries that have the goal to improve energy exploitation through alternatives methods of a clean and renewable energy generation and the creation of the app to manage the behavior of the micro-grids based on the NodeJS, Django and IOJS technologies. The micro-grids allow the optimal way to manage energy flow by electric injection directly in electric network small urban's cells in a low cost and available way. In difference from conventional systems, micro-grids can communicate between them to carry energy to places that have higher demand in accurate moments. This system does not require energy storage, so, costs are lower than conventional systems like fuel cells, solar panels or else; even though micro-grids are independent systems, they are not isolated. The impact that this analysis will generate, is the improvement of the electrical network without having greater control than an intelligent network (SMART-GRID); this leads to move to a 20% increase in energy use in a specified network; that suggest there are others sources of energy generation; but for today's needs, we need to standardize methods and remain in place to support all future technologies and the best option are the Smart Grids and Micro-Grids.

  9. A Reliable Data Delivery Mechanism for Grid Power Quality Using Neural Networks in Wireless Sensor Networks

    PubMed Central

    Lim, Yujin; Kim, Hak-Man; Kang, Sanggil

    2010-01-01

    Power grids deal with the business of generation, transmission, and distribution of electric power. Current systems monitor basic electrical quantities such as voltage and current from major pole transformers using their temperature. We improve the current systems in order to gather and deliver the information of power qualities such as harmonics, voltage sags, and voltage swells. In the system, data delivery is not guaranteed for the case that a node is lost or the network is congested, because the system has in-line and multi-hop architecture. In this paper, we propose a reliable data delivery mechanism by modeling an optimal data delivery function by employing the neural network concept. PMID:22163411

  10. Accurate path integration in continuous attractor network models of grid cells.

    PubMed

    Burak, Yoram; Fiete, Ila R

    2009-02-01

    Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other. PMID:19229307

  11. OBS/GMPLS Interworking Network with Scalable Resource Discovery for Global Grid Computing

    NASA Astrophysics Data System (ADS)

    Wu, J.; Liu, L.; Hong, X. B.; Lin, J. T.

    In recent years, Grid computing is more common in the industry and research community and will open to the consumer market in the future. The final objective is the achievement of global Grid computing, which means that the computing and networks are flexibly integrated across the world and a scalable resource discovery scheme is implemented. In this paper, a promising architecture, i.e., optical burst switching (OBS)/generalized multi-protocol label switching (GMPLS) interworking network with Peer-to-Peer (P2P)-based scheme for resource discovery is investigated to realize a highly scalable and flexible platform for Grids. Experimental results show that this architecture is suitable and efficient for future global Grid computing.

  12. Synchronization Algorithms for Co-Simulation of Power Grid and Communication Networks

    SciTech Connect

    Ciraci, Selim; Daily, Jeffrey A.; Agarwal, Khushbu; Fuller, Jason C.; Marinovici, Laurentiu D.; Fisher, Andrew R.

    2014-09-11

    The ongoing modernization of power grids consists of integrating them with communication networks in order to achieve robust and resilient control of grid operations. To understand the operation of the new smart grid, one approach is to use simulation software. Unfortunately, current power grid simulators at best utilize inadequate approximations to simulate communication networks, if at all. Cooperative simulation of specialized power grid and communication network simulators promises to more accurately reproduce the interactions of real smart grid deployments. However, co-simulation is a challenging problem. A co-simulation must manage the exchange of informa- tion, including the synchronization of simulator clocks, between all simulators while maintaining adequate computational perfor- mance. This paper describes two new conservative algorithms for reducing the overhead of time synchronization, namely Active Set Conservative and Reactive Conservative. We provide a detailed analysis of their performance characteristics with respect to the current state of the art including both conservative and optimistic synchronization algorithms. In addition, we provide guidelines for selecting the appropriate synchronization algorithm based on the requirements of the co-simulation. The newly proposed algorithms are shown to achieve as much as 14% and 63% im- provement, respectively, over the existing conservative algorithm.

  13. a Schema for Extraction of Indoor Pedestrian Navigation Grid Network from Floor Plans

    NASA Astrophysics Data System (ADS)

    Niu, Lei; Song, Yiquan

    2016-06-01

    The requirement of the indoor navigation related tasks such emergency evacuation calls for efficient solutions for handling data sources. Therefore, the navigation grid extraction from existing floor plans draws attentions. To this, we have to thoroughly analyse the source data, such as Autocad dxf files. Then, we could establish a sounding navigation solution, which firstly complements the basic navigation rectangle boundaries, secondly subdivides these rectangles and finally generates accessible networks with these refined rectangles. Test files are introduced to validate the whole workflow and evaluate the solution performance. In conclusion, we have achieved the preliminary step of forming up accessible network from the navigation grids.

  14. GRAPEVINE: Grids about anything by Poisson's equation in a visually interactive networking environment

    NASA Technical Reports Server (NTRS)

    Sorenson, Reese L.; Mccann, Karen

    1992-01-01

    A proven 3-D multiple-block elliptic grid generator, designed to run in 'batch mode' on a supercomputer, is improved by the creation of a modern graphical user interface (GUI) running on a workstation. The two parts are connected in real time by a network. The resultant system offers a significant speedup in the process of preparing and formatting input data and the ability to watch the grid solution converge by replotting the grid at each iteration step. The result is a reduction in user time and CPU time required to generate the grid and an enhanced understanding of the elliptic solution process. This software system, called GRAPEVINE, is described, and certain observations are made concerning the creation of such software.

  15. Detecting and mitigating abnormal events in large scale networks: budget constrained placement on smart grids

    SciTech Connect

    Santhi, Nandakishore; Pan, Feng

    2010-10-19

    Several scenarios exist in the modern interconnected world which call for an efficient network interdiction algorithm. Applications are varied, including various monitoring and load shedding applications on large smart energy grids, computer network security, preventing the spread of Internet worms and malware, policing international smuggling networks, and controlling the spread of diseases. In this paper we consider some natural network optimization questions related to the budget constrained interdiction problem over general graphs, specifically focusing on the sensor/switch placement problem for large-scale energy grids. Many of these questions turn out to be computationally hard to tackle. We present a particular form of the interdiction question which is practically relevant and which we show as computationally tractable. A polynomial-time algorithm will be presented for solving this problem.

  16. The structure of networks that produce the transformation from grid cells to place cells.

    PubMed

    Cheng, S; Frank, L M

    2011-12-01

    Since grid cells were discovered in the medial entorhinal cortex, several models have been proposed for the transformation from periodic grids to the punctate place fields of hippocampal place cells. These prior studies have each focused primarily on a particular model structure. By contrast, the goal of this study is to understand the general nature of the solutions that generate the grids-to-places transformation, and to exploit this insight to solve problems that were previously unsolved. First, we derive a family of feedforward networks that generate the grids-to-places transformations. These networks have in common an inverse relationship between the synaptic weights and a grid property that we call the normalized offset. Second, we analyze the solutions of prior models in terms of this novel measure and found to our surprise that almost all prior models yield solutions that can be described by this family of networks. The one exception is a model that is unrealistically sensitive to noise. Third, with this insight into the structure of the solutions, we then construct explicitly solutions for the grids-to-places transformation with multiple spatial maps, that is, with place fields in arbitrary locations either within the same (multiple place fields) or in different (global remapping) enclosures. These multiple maps are possible because the weights are learned or assigned in such a way that a group of weights contributes to spatial specificity in one context but remains spatially unstructured in another context. Fourth, we find parameters such that global remapping solutions can be found by synaptic learning in spiking neurons, despite previous suggestions that this might not be possible. In conclusion, our results demonstrate the power of understanding the structure of the solutions and suggest that we may have identified the structure that is common to all robust solutions of the grids-to-places transformation. PMID:21963867

  17. Human astrocytic grid networks patterned in parylene-C inlayed SiO2 trenches.

    PubMed

    Jordan, M D; Raos, B J; Bunting, A S; Murray, A F; Graham, E S; Unsworth, C P

    2016-10-01

    Recent literature suggests that glia, and in particular astrocytes, should be studied as organised networks which communicate through gap junctions. Astrocytes, however, adhere to most surfaces and are highly mobile cells. In order to study, such organised networks effectively in vitro it is necessary to influence them to pattern to certain substrates whilst being repelled from others and to immobilise the astrocytes sufficiently such that they do not continue to migrate further whilst under study. In this article, we demonstrate for the first time how it is possible to facilitate the study of organised patterned human astrocytic networks using hNT astrocytes in a SiO2 trench grid network that is inlayed with the biocompatible material, parylene-C. We demonstrate how the immobilisation of astrocytes lies in the depth of the SiO2 trench, determining an optimum trench depth and that the optimum patterning of astrocytes is a consequence of the parylene-C inlay and the grid node spacing. We demonstrate high fidelity of the astrocytic networks and demonstrate that functionality of the hNT astrocytes through ATP evoked calcium signalling is also dependent on the grid node spacing. Finally, we demonstrate that the location of the nuclei on the grid nodes is also a function of the grid node spacing. The significance of this work, is to describe a suitable platform to facilitate the study of hNT astrocytes from the single cell level to the network level to improve knowledge and understanding of how communication links to spatial organisation at these higher order scales and trigger in vitro research further in this area with clinical applications in the area of epilepsy, stroke and focal cerebral ischemia. PMID:27521614

  18. A Framework for Managing Inter-Site Storage Area Networks using Grid Technologies

    NASA Technical Reports Server (NTRS)

    Kobler, Ben; McCall, Fritz; Smorul, Mike

    2006-01-01

    The NASA Goddard Space Flight Center and the University of Maryland Institute for Advanced Computer Studies are studying mechanisms for installing and managing Storage Area Networks (SANs) that span multiple independent collaborating institutions using Storage Area Network Routers (SAN Routers). We present a framework for managing inter-site distributed SANs that uses Grid Technologies to balance the competing needs to control local resources, share information, delegate administrative access, and manage the complex trust relationships between the participating sites.

  19. A simple grid implementation with Berkeley Open Infrastructure for Network Computing using BLAST as a model

    PubMed Central

    Pinthong, Watthanai; Muangruen, Panya

    2016-01-01

    Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC) is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC) as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software. PMID:27547555

  20. A simple grid implementation with Berkeley Open Infrastructure for Network Computing using BLAST as a model.

    PubMed

    Pinthong, Watthanai; Muangruen, Panya; Suriyaphol, Prapat; Mairiang, Dumrong

    2016-01-01

    Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC) is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC) as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software.

  1. A simple grid implementation with Berkeley Open Infrastructure for Network Computing using BLAST as a model.

    PubMed

    Pinthong, Watthanai; Muangruen, Panya; Suriyaphol, Prapat; Mairiang, Dumrong

    2016-01-01

    Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC) is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC) as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software. PMID:27547555

  2. A Stochastic Power Network Calculus for Integrating Renewable Energy Sources into the Power Grid

    SciTech Connect

    Wang, K; Ciucu, F; Lin, C; Low, SH

    2012-07-01

    Renewable energy such as solar and wind generation will constitute an important part of the future grid. As the availability of renewable sources may not match the load, energy storage is essential for grid stability. In this paper we investigate the feasibility of integrating solar photovoltaic (PV) panels and wind turbines into the grid by also accounting for energy storage. To deal with the fluctuation in both the power supply and demand, we extend and apply stochastic network calculus to analyze the power supply reliability with various renewable energy configurations. To illustrate the validity of the model, we conduct a case study for the integration of renewable energy sources into the power system of an island off the coast of Southern California. In particular, we asses the power supply reliability in terms of the average Fraction of Time that energy is Not-Served (FTNS).

  3. Resource parallel provisioning scheme for collaborating service in optical grid network

    NASA Astrophysics Data System (ADS)

    Wu, Runze; Ji, Yuefeng

    2008-11-01

    Divisible loads can be divided into any number independent sub-tasks, and map them on different platform to be processed in parallel jobs. Divisible load theory is introduced into parallel and distributed computing system to obtain available resources distributing on different locations for reaching processing efficiency, which can be extended to distributing multimedia and application system based grid. Light path scheduling algorithm based on DLT is proposed to realize optical resource scheduling on demand in optical grid under the requirement of intensive data applications, especially facing to parallel and distributed system. The proposed algorithm introduces the Divisible Load Theory as load distributing method and is extended for the distributed algorithm of divisible load scheduling to match multichannel application requirement of optical grid network. The proposed method deploys multiple wavelengths for original node, and builds parallel lightpaths to transmit independent divisible loads to collaborating nodes for a big task.

  4. Computing approximate blocking probability of inverse multiplexing and sub-band conversion in the flexible-grid optical networks

    NASA Astrophysics Data System (ADS)

    Gu, Yamei; You, Shanhong

    2016-07-01

    With the rapid growth of data rate, the optical network is evolving from fixed-grid to flexible-grid to provide spectrum-efficient and scalable transport of 100 Gb/s services and beyond. Also, the deployment of wavelength converter in the existing network can increase the flexibility of routing and wavelength allocation (RWA) and improve blocking performance of the optical networks. In this paper, we present a methodology for computing approximate blocking probabilities of the provision of multiclass services in the flexible-grid optical networks with sub-band spectrum conversion and inverse multiplexing respectively. Numerical calculation results based on the model are compared to the simulation results for the different cases. It is shown that the calculation results match well with the simulation results for the flexible-grid optical networks at different scenarios.

  5. About the J-GRID (Japan Initiative for Global Research Network on Infectious Diseases).

    PubMed

    Nagai, Yoshiyuki

    2014-06-01

    Since infectious diseases heed no national borders, international research collaboration across borders must be enhanced. The Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan launched the J-GRID program in the fiscal year (FY) 2005, which consists of the two elements; (1) the construction of collaboration centers in Asian and African countries on a reciprocal basis between a Japanese university/institution and an overseas partner university/institution and (2) the networking of those collaboration centers and setting up its headquarters at RIKEN. J-GRID initiated with 5 collaboration centers in 3 Asian countries has expanded to include 13 centers in 8 countries (6 in Asia and 2 in Africa). The aims of J-GRID include conducting high quality research on infectious diseases of regional and global importance, advancing relevant technologies and developing human resources in the field. In this way, J-GRID is expected to contribute to the public health of the host countries, Japan and the rest of the world. After the completion of the first start-up phase, Term I (2005-2009), J-GRID has stepped up its activity for the second step-up phase, Term II (2010-2014). While the first term was just like an incubation period, the second term should be the exponential growth phase, maximizing its research activities. Indeed, J-GRID is now generating remarkable research outcomes with an increasing number of publications. The mid-term evaluation made by the MEXT in FY2012 commended J-GRID as an ideal model to demonstrate Japan's leadership, in science and technology, and strongly recommended its extension in years to come after Term II terminates in FY 2014.

  6. About the J-GRID (Japan Initiative for Global Research Network on Infectious Diseases).

    PubMed

    Nagai, Yoshiyuki

    2014-06-01

    Since infectious diseases heed no national borders, international research collaboration across borders must be enhanced. The Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan launched the J-GRID program in the fiscal year (FY) 2005, which consists of the two elements; (1) the construction of collaboration centers in Asian and African countries on a reciprocal basis between a Japanese university/institution and an overseas partner university/institution and (2) the networking of those collaboration centers and setting up its headquarters at RIKEN. J-GRID initiated with 5 collaboration centers in 3 Asian countries has expanded to include 13 centers in 8 countries (6 in Asia and 2 in Africa). The aims of J-GRID include conducting high quality research on infectious diseases of regional and global importance, advancing relevant technologies and developing human resources in the field. In this way, J-GRID is expected to contribute to the public health of the host countries, Japan and the rest of the world. After the completion of the first start-up phase, Term I (2005-2009), J-GRID has stepped up its activity for the second step-up phase, Term II (2010-2014). While the first term was just like an incubation period, the second term should be the exponential growth phase, maximizing its research activities. Indeed, J-GRID is now generating remarkable research outcomes with an increasing number of publications. The mid-term evaluation made by the MEXT in FY2012 commended J-GRID as an ideal model to demonstrate Japan's leadership, in science and technology, and strongly recommended its extension in years to come after Term II terminates in FY 2014. PMID:25425950

  7. Spectrum survey for reliable communications of cognitive radio based smart grid network

    NASA Astrophysics Data System (ADS)

    Farah Aqilah, Wan; Jayavalan, Shanjeevan; Mohd Aripin, Norazizah; Mohamad, Hafizal; Ismail, Aiman

    2013-06-01

    The smart grid (SG) system is expected to involve huge amount of data with different levels of priorities to different applications or users. The traditional grid which tend to deploy propriety networks with limited coverage and bandwidth, is not sufficient to support large scale SG network. Cognitive radio (CR) is a promising communication platform for SG network by utilizing potentially all available spectrum resources, subject to interference constraint. In order to develop a reliable communication framework for CR based SG network, thorough investigations on the current radio spectrum are required. This paper presents the spectrum utilization in Malaysia, specifically in the UHF/VHF bands, cellular (GSM 900, GSM 1800 and 3G), WiMAX, ISM and LTE band. The goal is to determine the potential spectrum that can be exploit by the CR users in the SG network. Measurements was conducted for 24 hours to quantify the average spectrum usage and the amount of available bandwidth. The findings in this paper are important to provide insight of actual spectrum utilization prior to developing a reliable communication platform for CR based SG network.

  8. Dynamic traffic grooming with Spectrum Engineering (TG-SE) in flexible grid optical networks

    NASA Astrophysics Data System (ADS)

    Yu, Xiaosong; Zhao, Yongli; Zhang, Jiawei; Wang, Jianping; Zhang, Guoying; Chen, Xue; Zhang, Jie

    2015-12-01

    Flexible grid has emerged as an evolutionary technology to satisfy the ever increasing demand for higher spectrum efficiency and operational flexibility. To optimize the spectrum resource utilization, this paper introduces the concept of Spectrum Engineering in flex-grid optical networks. The sliceable optical transponder has been proposed to offload IP traffic to the optical layer and reduce the number of IP router ports and transponders. We discuss the impact of sliceable transponder in traffic grooming and propose several traffic-grooming schemes with Spectrum Engineering (TG-SE). Our results show that there is a tradeoff among different traffic grooming policies, which should be adopted based on the network operator's objectives. The proposed traffic grooming with Spectrum Engineering schemes can reduce OPEX as well as increase spectrum efficiency by efficiently utilizing the bandwidth variability and capability of sliceable optical transponders.

  9. Performance Evaluation of a SLA Negotiation Control Protocol for Grid Networks

    NASA Astrophysics Data System (ADS)

    Cergol, Igor; Mirchandani, Vinod; Verchere, Dominique

    A framework for an autonomous negotiation control protocol for service delivery is crucial to enable the support of heterogeneous service level agreements (SLAs) that will exist in distributed environments. We have first given a gist of our augmented service negotiation protocol to support distinct service elements. The augmentations also encompass related composition of the services and negotiation with several service providers simultaneously. All the incorporated augmentations will enable to consolidate the service negotiation operations for telecom networks, which are evolving towards Grid networks. Furthermore, our autonomous negotiation protocol is based on a distributed multi-agent framework to create an open market for Grid services. Second, we have concisely presented key simulation results of our work in progress. The results exhibit the usefulness of our negotiation protocol for realistic scenarios that involves different background traffic loading, message sizes and traffic flow asymmetry between background and negotiation traffics.

  10. Power-grid Network Partitioning and Cluster Optimization with Applications to Florida and Texas

    NASA Astrophysics Data System (ADS)

    Rikvold, Per Arne; Abou Hamad, Ibrahim; Israels, Brett; Poroseva, Svetlana V.

    2012-02-01

    Cascading power-grid failures pose serious threats to lives and property, and it is desirable to contain them within a limited geographical area. One method to achieve this is Intelligent Intentional Islanding (I3): the purposeful partitioning of a grid into weakly connected ``islands'' of closely connected generators and loads. If such islands can be quickly isolated, the spread of faults can be limited. An additional constraint is that generating capacity and power demand within each island should be closely balanced to ensure self-sufficiency. I3 thus corresponds to constrained community detection in a network. After a matrix-based initial agglomeration of nearby loads and generators, we implement Monte Carlo simulated annealing to simultaneously optimize load-balance and internal connectivity of the resulting islands. The optimized network of islands is treated as a new network with the first-generation islands as the new nodes (``supergenerators'' and ``superloads''), and the same agglomeration and MC procedures are iteratively applied, reminiscent of real-space renormalization. Applications to the Floridian [1] and Texan high-voltage grids are demonstrated.[4pt] [1] I. Abou Hamad et al., Phys. Proc. 4, 125-129 (2010); Phys. Proc. 15, 2-6 (2011).

  11. Fair Energy Scheduling for Vehicle-to-Grid Networks Using Adaptive Dynamic Programming.

    PubMed

    Xie, Shengli; Zhong, Weifeng; Xie, Kan; Yu, Rong; Zhang, Yan

    2016-08-01

    Research on the smart grid is being given enormous supports worldwide due to its great significance in solving environmental and energy crises. Electric vehicles (EVs), which are powered by clean energy, are adopted increasingly year by year. It is predictable that the huge charge load caused by high EV penetration will have a considerable impact on the reliability of the smart grid. Therefore, fair energy scheduling for EV charge and discharge is proposed in this paper. By using the vehicle-to-grid technology, the scheduler controls the electricity loads of EVs considering fairness in the residential distribution network. We propose contribution-based fairness, in which EVs with high contributions have high priorities to obtain charge energy. The contribution value is defined by both the charge/discharge energy and the timing of the action. EVs can achieve higher contribution values when discharging during the load peak hours. However, charging during this time will decrease the contribution values seriously. We formulate the fair energy scheduling problem as an infinite-horizon Markov decision process. The methodology of adaptive dynamic programming is employed to maximize the long-term fairness by processing online network training. The numerical results illustrate that the proposed EV energy scheduling is able to mitigate and flatten the peak load in the distribution network. Furthermore, contribution-based fairness achieves a fast recovery of EV batteries that have deeply discharged and guarantee fairness in the full charge time of all EVs.

  12. A cross-domain communication resource scheduling method for grid-enabled communication networks

    NASA Astrophysics Data System (ADS)

    Zheng, Xiangquan; Wen, Xiang; Zhang, Yongding

    2011-10-01

    To support a wide range of different grid applications in environments where various heterogeneous communication networks coexist, it is important to enable advanced capabilities in on-demand and dynamical integration and efficient co-share with cross-domain heterogeneous communication resource, thus providing communication services which are impossible for single communication resource to afford. Based on plug-and-play co-share and soft integration with communication resource, Grid-enabled communication network is flexibly built up to provide on-demand communication services for gird applications with various requirements on quality of service. Based on the analysis of joint job and communication resource scheduling in grid-enabled communication networks (GECN), this paper presents a cross multi-domain communication resource cooperatively scheduling method and describes the main processes such as traffic requirement resolution for communication services, cross multi-domain negotiation on communication resource, on-demand communication resource scheduling, and so on. The presented method is to afford communication service capability to cross-domain traffic delivery in GECNs. Further research work towards validation and implement of the presented method is pointed out at last.

  13. Fair Energy Scheduling for Vehicle-to-Grid Networks Using Adaptive Dynamic Programming.

    PubMed

    Xie, Shengli; Zhong, Weifeng; Xie, Kan; Yu, Rong; Zhang, Yan

    2016-08-01

    Research on the smart grid is being given enormous supports worldwide due to its great significance in solving environmental and energy crises. Electric vehicles (EVs), which are powered by clean energy, are adopted increasingly year by year. It is predictable that the huge charge load caused by high EV penetration will have a considerable impact on the reliability of the smart grid. Therefore, fair energy scheduling for EV charge and discharge is proposed in this paper. By using the vehicle-to-grid technology, the scheduler controls the electricity loads of EVs considering fairness in the residential distribution network. We propose contribution-based fairness, in which EVs with high contributions have high priorities to obtain charge energy. The contribution value is defined by both the charge/discharge energy and the timing of the action. EVs can achieve higher contribution values when discharging during the load peak hours. However, charging during this time will decrease the contribution values seriously. We formulate the fair energy scheduling problem as an infinite-horizon Markov decision process. The methodology of adaptive dynamic programming is employed to maximize the long-term fairness by processing online network training. The numerical results illustrate that the proposed EV energy scheduling is able to mitigate and flatten the peak load in the distribution network. Furthermore, contribution-based fairness achieves a fast recovery of EV batteries that have deeply discharged and guarantee fairness in the full charge time of all EVs. PMID:26930694

  14. Noise promotes independent control of gamma oscillations and grid firing within recurrent attractor networks

    PubMed Central

    Solanka, Lukas; van Rossum, Mark CW; Nolan, Matthew F

    2015-01-01

    Neural computations underlying cognitive functions require calibration of the strength of excitatory and inhibitory synaptic connections and are associated with modulation of gamma frequency oscillations in network activity. However, principles relating gamma oscillations, synaptic strength and circuit computations are unclear. We address this in attractor network models that account for grid firing and theta-nested gamma oscillations in the medial entorhinal cortex. We show that moderate intrinsic noise massively increases the range of synaptic strengths supporting gamma oscillations and grid computation. With moderate noise, variation in excitatory or inhibitory synaptic strength tunes the amplitude and frequency of gamma activity without disrupting grid firing. This beneficial role for noise results from disruption of epileptic-like network states. Thus, moderate noise promotes independent control of multiplexed firing rate- and gamma-based computational mechanisms. Our results have implications for tuning of normal circuit function and for disorders associated with changes in gamma oscillations and synaptic strength. DOI: http://dx.doi.org/10.7554/eLife.06444.001 PMID:26146940

  15. High-Quality Ultra-Compact Grid Layout of Grouped Networks.

    PubMed

    Yoghourdjian, Vahan; Dwyer, Tim; Gange, Graeme; Kieffer, Steve; Klein, Karsten; Marriott, Kim

    2016-01-01

    Prior research into network layout has focused on fast heuristic techniques for layout of large networks, or complex multi-stage pipelines for higher quality layout of small graphs. Improvements to these pipeline techniques, especially for orthogonal-style layout, are difficult and practical results have been slight in recent years. Yet, as discussed in this paper, there remain significant issues in the quality of the layouts produced by these techniques, even for quite small networks. This is especially true when layout with additional grouping constraints is required. The first contribution of this paper is to investigate an ultra-compact, grid-like network layout aesthetic that is motivated by the grid arrangements that are used almost universally by designers in typographical layout. Since the time when these heuristic and pipeline-based graph-layout methods were conceived, generic technologies (MIP, CP and SAT) for solving combinatorial and mixed-integer optimization problems have improved massively. The second contribution of this paper is to reassess whether these techniques can be used for high-quality layout of small graphs. While they are fast enough for graphs of up to 50 nodes we found these methods do not scale up. Our third contribution is a large-neighborhood search meta-heuristic approach that is scalable to larger networks.

  16. Decentralized Energy Management System for Networked Microgrids in Grid-connected and Islanded Modes

    SciTech Connect

    Wang, Zhaoyu; Chen, Bokan; Wang, Jianhui; Kim, Jinho

    2015-06-17

    This paper proposes a decentralized energy management system (EMS) for the coordinated operation of networked Microgirds (MGs) in a distribution system. In the grid-connected mode, the distribution network operator (DNO) and each MG are considered as distinct entities with individual objectives to minimize their own operation costs. It is assumed that both dispatchable and renewable energy source (RES)-based distributed generators (DGs) exist in the distribution network and the networked MGs. In order to coordinate the operation of all entities, we apply a decentralized bi-level algorithm to solve the problem with the first level to conduct negotiations among all entities and the second level to update the non-converging penalties. In the islanded mode, the objective of each MG is to maintain a reliable power supply to its customers. In order to take into account the uncertainties of DG outputs and load consumption, we formulate the problems as two-stage stochastic programs. The first stage is to determine base generation setpoints based on the forecasts and the second stage is to adjust the generation outputs based on the realized scenarios. Case studies of a distribution system with networked MGs demonstrate the effectiveness of the proposed methodology in both grid-connected and islanded modes.

  17. High-Quality Ultra-Compact Grid Layout of Grouped Networks.

    PubMed

    Yoghourdjian, Vahan; Dwyer, Tim; Gange, Graeme; Kieffer, Steve; Klein, Karsten; Marriott, Kim

    2016-01-01

    Prior research into network layout has focused on fast heuristic techniques for layout of large networks, or complex multi-stage pipelines for higher quality layout of small graphs. Improvements to these pipeline techniques, especially for orthogonal-style layout, are difficult and practical results have been slight in recent years. Yet, as discussed in this paper, there remain significant issues in the quality of the layouts produced by these techniques, even for quite small networks. This is especially true when layout with additional grouping constraints is required. The first contribution of this paper is to investigate an ultra-compact, grid-like network layout aesthetic that is motivated by the grid arrangements that are used almost universally by designers in typographical layout. Since the time when these heuristic and pipeline-based graph-layout methods were conceived, generic technologies (MIP, CP and SAT) for solving combinatorial and mixed-integer optimization problems have improved massively. The second contribution of this paper is to reassess whether these techniques can be used for high-quality layout of small graphs. While they are fast enough for graphs of up to 50 nodes we found these methods do not scale up. Our third contribution is a large-neighborhood search meta-heuristic approach that is scalable to larger networks. PMID:26390477

  18. Hamiltonian-Based Model to Describe the Nonlinear Physics of Cascading Failures in Power-Grid Networks

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Motter, Adilson

    A local disturbance to the state of a power-grid system can trigger a protective response that disables some grid components, which leads to further responses, and may finally result in large-scale failures. In this talk, I will introduce a Hamiltonian-like model of cascading failures in power grids. This model includes the state variables of generators, which are determined by the nonlinear swing equations and power-flow equations, as well as the on/off status of the network components. This framework allows us to view a cascading failure in the power grid as a phase-space transition from a fixed point with high energy to a fixed point with lower energy. Using real power-grid networks, I will demonstrate that possible cascade outcomes can be predicted by analyzing the stability of the system's equilibria. This work adds an important new dimension to the current understanding of cascading failures.

  19. Lambda Station: On-demand flow based routing for data intensive Grid applications over multitopology networks

    SciTech Connect

    Bobyshev, A.; Crawford, M.; DeMar, P.; Grigaliunas, V.; Grigoriev, M.; Moibenko, A.; Petravick, D.; Rechenmacher, R.; Newman, H.; Bunn, J.; Van Lingen, F.; Nae, D.; Ravot, S.; Steenberg, C.; Su, X.; Thomas, M.; Xia, Y.; /Caltech

    2006-08-01

    Lambda Station is an ongoing project of Fermi National Accelerator Laboratory and the California Institute of Technology. The goal of this project is to design, develop and deploy network services for path selection, admission control and flow based forwarding of traffic among data-intensive Grid applications such as are used in High Energy Physics and other communities. Lambda Station deals with the last-mile problem in local area networks, connecting production clusters through a rich array of wide area networks. Selective forwarding of traffic is controlled dynamically at the demand of applications. This paper introduces the motivation of this project, design principles and current status. Integration of Lambda Station client API with the essential Grid middleware such as the dCache/SRM Storage Resource Manager is also described. Finally, the results of applying Lambda Station services to development and production clusters at Fermilab and Caltech over advanced networks such as DOE's UltraScience Net and NSF's UltraLight is covered.

  20. A High Performance Computing Network and System Simulator for the Power Grid: NGNS^2

    SciTech Connect

    Villa, Oreste; Tumeo, Antonino; Ciraci, Selim; Daily, Jeffrey A.; Fuller, Jason C.

    2012-11-11

    Designing and planing next generation power grid sys- tems composed of large power distribution networks, monitoring and control networks, autonomous generators and consumers of power requires advanced simulation infrastructures. The objective is to predict and analyze in time the behavior of networks of systems for unexpected events such as loss of connectivity, malicious attacks and power loss scenarios. This ultimately allows one to answer questions such as: “What could happen to the power grid if ...”. We want to be able to answer as many questions as possible in the shortest possible time for the largest possible systems. In this paper we present a new High Performance Computing (HPC) oriented simulation infrastructure named Next Generation Network and System Simulator (NGNS2 ). NGNS2 allows for the distribution of a single simulation among multiple computing elements by using MPI and OpenMP threads. NGNS2 provides extensive configuration, fault tolerant and load balancing capabilities needed to simulate large and dynamic systems for long periods of time. We show the preliminary results of the simulator running approximately two million simulated entities both on a 64-node commodity Infiniband cluster and a 48-core SMP workstation.

  1. Grid-based International Network for Flu observation (g-INFO).

    PubMed

    Doan, Trung-Tung; Bernard, Aurélien; Da-Costa, Ana Lucia; Bloch, Vincent; Le, Thanh-Hoa; Legre, Yannick; Maigne, Lydia; Salzemann, Jean; Sarramia, David; Nguyen, Hong-Quang; Breton, Vincent

    2010-01-01

    The 2009 H1N1 outbreak has demonstrated that continuing vigilance, planning, and strong public health research capability are essential defenses against emerging health threats. Molecular epidemiology of influenza virus strains provides scientists with clues about the temporal and geographic evolution of the virus. In the present paper, researchers from France and Vietnam are proposing a global surveillance network based on grid technology: the goal is to federate influenza data servers and deploy automatically molecular epidemiology studies. A first prototype based on AMGA and the WISDOM Production Environment extracts daily from NCBI influenza H1N1 sequence data which are processed through a phylogenetic analysis pipeline deployed on EGEE and AuverGrid e-infrastructures. The analysis results are displayed on a web portal (http://g-info.healthgrid.org) for epidemiologists to monitor H1N1 pandemics.

  2. A computational-grid based system for continental drainage network extraction using SRTM digital elevation models

    NASA Technical Reports Server (NTRS)

    Curkendall, David W.; Fielding, Eric J.; Pohl, Josef M.; Cheng, Tsan-Huei

    2003-01-01

    We describe a new effort for the computation of elevation derivatives using the Shuttle Radar Topography Mission (SRTM) results. Jet Propulsion Laboratory's (JPL) SRTM has produced a near global database of highly accurate elevation data. The scope of this database enables computing precise stream drainage maps and other derivatives on Continental scales. We describe a computing architecture for this computationally very complex task based on NASA's Information Power Grid (IPG), a distributed high performance computing network based on the GLOBUS infrastructure. The SRTM data characteristics and unique problems they present are discussed. A new algorithm for organizing the conventional extraction algorithms [1] into a cooperating parallel grid is presented as an essential component to adapt to the IPG computing structure. Preliminary results are presented for a Southern California test area, established for comparing SRTM and its results against those produced using the USGS National Elevation Data (NED) model.

  3. Optimisation of sensing time and transmission time in cognitive radio-based smart grid networks

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Fu, Yuli; Yang, Junjie

    2016-07-01

    Cognitive radio (CR)-based smart grid (SG) networks have been widely recognised as emerging communication paradigms in power grids. However, a sufficient spectrum resource and reliability are two major challenges for real-time applications in CR-based SG networks. In this article, we study the traffic data collection problem. Based on the two-stage power pricing model, the power price is associated with the efficient received traffic data in a metre data management system (MDMS). In order to minimise the system power price, a wideband hybrid access strategy is proposed and analysed, to share the spectrum between the SG nodes and CR networks. The sensing time and transmission time are jointly optimised, while both the interference to primary users and the spectrum opportunity loss of secondary users are considered. Two algorithms are proposed to solve the joint optimisation problem. Simulation results show that the proposed joint optimisation algorithms outperform the fixed parameters (sensing time and transmission time) algorithms, and the power cost is reduced efficiently.

  4. QoS Differential Scheduling in Cognitive-Radio-Based Smart Grid Networks: An Adaptive Dynamic Programming Approach.

    PubMed

    Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun

    2016-02-01

    As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid.

  5. Optimizing 10-Gigabit Ethernet for Networks of Workstations, Clusters, and Grids: A Case Study

    SciTech Connect

    Feng, Wu-chun

    2003-10-13

    This paper presents a case study of the 10-Gigabit Ethernet (10GbE) adapter from Intel(reg sign). Specifically, with appropriate optimizations to the configurations of the 10GbE adapter and TCP, we demonstrate that the 10GbE adapter can perform well in local-area, storage-area, system-area, and wide-area networks. For local-area, storage-area, and system-area networks in support of networks of workstations, network-attached storage, and clusters, respectively, we can achieve over 7-Gb/s end-to-end throughput and 12-{micro}s end-to-end latency between applications running on Linux-based PCs. For the wide-area network in support of grids, we broke the recently-set Internet2 Land Speed Record by 2.5 times by sustaining an end-to-end TCP/IP throughput of 2.38 Gb/s between Sunnyvale, California and Geneva, Switzerland (i.e., 10,037 kilometers) to move over a terabyte of data in less than an hour. Thus, the above results indicate that 10GbE may be a cost-effective solution across a multitude of computing environments.

  6. MEDUSA - An overset grid flow solver for network-based parallel computer systems

    NASA Technical Reports Server (NTRS)

    Smith, Merritt H.; Pallis, Jani M.

    1993-01-01

    Continuing improvement in processing speed has made it feasible to solve the Reynolds-Averaged Navier-Stokes equations for simple three-dimensional flows on advanced workstations. Combining multiple workstations into a network-based heterogeneous parallel computer allows the application of programming principles learned on MIMD (Multiple Instruction Multiple Data) distributed memory parallel computers to the solution of larger problems. An overset-grid flow solution code has been developed which uses a cluster of workstations as a network-based parallel computer. Inter-process communication is provided by the Parallel Virtual Machine (PVM) software. Solution speed equivalent to one-third of a Cray-YMP processor has been achieved from a cluster of nine commonly used engineering workstation processors. Load imbalance and communication overhead are the principal impediments to parallel efficiency in this application.

  7. Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks

    PubMed Central

    Kim, Kwangsoo; Jin, Seong-il

    2015-01-01

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method. PMID:26007734

  8. Branch-based centralized data collection for smart grids using wireless sensor networks.

    PubMed

    Kim, Kwangsoo; Jin, Seong-il

    2015-05-21

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.

  9. Flowable conducting particle networks in redox-active electrolytes for grid energy storage

    DOE PAGES

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; Gogotsi, Yury G.

    2015-01-09

    This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributionsmore » (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less

  10. Flowable conducting particle networks in redox-active electrolytes for grid energy storage

    SciTech Connect

    Hatzell, K. B.; Boota, M.; Kumbur, E. C.; Gogotsi, Yury G.

    2015-01-09

    This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.

  11. Location-Aware Dynamic Session-Key Management for Grid-Based Wireless Sensor Networks

    PubMed Central

    Chen, Chin-Ling; Lin, I-Hsien

    2010-01-01

    Security is a critical issue for sensor networks used in hostile environments. When wireless sensor nodes in a wireless sensor network are distributed in an insecure hostile environment, the sensor nodes must be protected: a secret key must be used to protect the nodes transmitting messages. If the nodes are not protected and become compromised, many types of attacks against the network may result. Such is the case with existing schemes, which are vulnerable to attacks because they mostly provide a hop-by-hop paradigm, which is insufficient to defend against known attacks. We propose a location-aware dynamic session-key management protocol for grid-based wireless sensor networks. The proposed protocol improves the security of a secret key. The proposed scheme also includes a key that is dynamically updated. This dynamic update can lower the probability of the key being guessed correctly. Thus currently known attacks can be defended. By utilizing the local information, the proposed scheme can also limit the flooding region in order to reduce the energy that is consumed in discovering routing paths. PMID:22163606

  12. Service-aware resources integrated resilience for software defined data center networking based on IP over Flexi-Grid optical networks

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Zhang, Jie; Zhao, Yongli; Cheng, Lei; Wu, Jialin; Ji, Yuefeng; Han, Jianrui; Lin, Yi; Lee, Young

    2015-01-01

    Due to the performance guarantee of low delay, huge bandwidth and high reliability at a low cost, IP over Flexi-Grid optical network is a very promising networking architecture applied to the interconnection of geographically distributed data centers. It can enable efficient resource utilization and support heterogeneous bandwidth demands in cost-effective, highly-available and energy-effective manner. In case of edge Flexi-Grid optical network node failure, to ensure a high-level quality of service (QoS) for user request after the failure becomes a research focus. In this paper, we propose a novel service-aware resources integrated resilience (SA-RIR) scheme for data center services in software defined data center networking architecture based on IP over Flexi-Grid optical networks. Different from previous works which restore the services just exploiting the optical stratum, the proposed scheme provides the resilience using the multiple stratums resources in case of the edge optical node failure. We quantitatively evaluate the feasibility and performances through the simulation under heavy traffic load scenario in terms of path blocking probability, path resilience latency and resource occupation rate with different failure rates. Simulation results show that, the SA-RIR scheme can enable joint optimization of IP network, Flexi-Grid optical network and data center application stratum resources, and enhance the data center service resilience responsiveness to the dynamic end-to-end demands.

  13. pt5m - a 0.5 m robotic telescope on La Palma

    NASA Astrophysics Data System (ADS)

    Hardy, L. K.; Butterley, T.; Dhillon, V. S.; Littlefair, S. P.; Wilson, R. W.

    2015-12-01

    pt5m is a 0.5 m robotic telescope located on the roof of the 4.2 m William Herschel Telescope (WHT) building, at the Roque de los Muchachos Observatory, La Palma. Using a five-position filter wheel and CCD detector, and bespoke control software, pt5m provides a high-quality robotic observing facility. The telescope first began robotic observing in 2012, and is now contributing to transient follow-up and time-resolved astronomical studies. In this paper, we present the scientific motivation behind pt5m, as well as the specifications and unique features of the facility. We also present an example of the science we have performed with pt5m, where we measure the radius of the transiting exoplanet WASP-33b. We find a planetary radius of 1.603 ± 0.014RJ.

  14. An Open Framework for Low-Latency Communications across the Smart Grid Network

    ERIC Educational Resources Information Center

    Sturm, John Andrew

    2011-01-01

    The recent White House (2011) policy paper for the Smart Grid that was released on June 13, 2011, "A Policy Framework for the 21st Century Grid: Enabling Our Secure Energy Future," defines four major problems to be solved and the one that is addressed in this dissertation is Securing the Grid. Securing the Grid is referred to as one of…

  15. On the Probabilistic Deployment of Smart Grid Networks in TV White Space

    PubMed Central

    Cacciapuoti, Angela Sara; Caleffi, Marcello; Paura, Luigi

    2016-01-01

    To accommodate the rapidly increasing demand for wireless broadband communications in Smart Grid (SG) networks, research efforts are currently ongoing to enable the SG networks to utilize the TV spectrum according to the Cognitive Radio paradigm. To this aim, in this letter, we develop an analytical framework for the optimal deployment of multiple closely-located SG Neighborhood Area Networks (NANs) concurrently using the same TV spectrum. The objective is to derive the optimal values for both the number of NANs and their coverage. More specifically, regarding the number of NANs, we derive the optimal closed-form expression, i.e., the closed-form expression that assures the deployment of the maximum number of NANs in the considered region satisfying a given collision constraint on the transmissions of the NANs. Regarding the NAN coverage, we derive the optimal closed-form expression, i.e., the closed-form expression of the NAN transmission range that assures the maximum coverage of each NAN in the considered region satisfying the given collision constraint. All the theoretical results are derived by adopting a stochastic approach. Finally, numerical results validate the theoretical analysis. PMID:27171099

  16. On the Probabilistic Deployment of Smart Grid Networks in TV White Space.

    PubMed

    Cacciapuoti, Angela Sara; Caleffi, Marcello; Paura, Luigi

    2016-01-01

    To accommodate the rapidly increasing demand for wireless broadband communications in Smart Grid (SG) networks, research efforts are currently ongoing to enable the SG networks to utilize the TV spectrum according to the Cognitive Radio paradigm. To this aim, in this letter, we develop an analytical framework for the optimal deployment of multiple closely-located SG Neighborhood Area Networks (NANs) concurrently using the same TV spectrum. The objective is to derive the optimal values for both the number of NANs and their coverage. More specifically, regarding the number of NANs, we derive the optimal closed-form expression, i.e., the closed-form expression that assures the deployment of the maximum number of NANs in the considered region satisfying a given collision constraint on the transmissions of the NANs. Regarding the NAN coverage, we derive the optimal closed-form expression, i.e., the closed-form expression of the NAN transmission range that assures the maximum coverage of each NAN in the considered region satisfying the given collision constraint. All the theoretical results are derived by adopting a stochastic approach. Finally, numerical results validate the theoretical analysis. PMID:27171099

  17. Traffic signal synchronization in the saturated high-density grid road network.

    PubMed

    Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye

    2015-01-01

    Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN.

  18. On the Probabilistic Deployment of Smart Grid Networks in TV White Space.

    PubMed

    Cacciapuoti, Angela Sara; Caleffi, Marcello; Paura, Luigi

    2016-05-10

    To accommodate the rapidly increasing demand for wireless broadband communications in Smart Grid (SG) networks, research efforts are currently ongoing to enable the SG networks to utilize the TV spectrum according to the Cognitive Radio paradigm. To this aim, in this letter, we develop an analytical framework for the optimal deployment of multiple closely-located SG Neighborhood Area Networks (NANs) concurrently using the same TV spectrum. The objective is to derive the optimal values for both the number of NANs and their coverage. More specifically, regarding the number of NANs, we derive the optimal closed-form expression, i.e., the closed-form expression that assures the deployment of the maximum number of NANs in the considered region satisfying a given collision constraint on the transmissions of the NANs. Regarding the NAN coverage, we derive the optimal closed-form expression, i.e., the closed-form expression of the NAN transmission range that assures the maximum coverage of each NAN in the considered region satisfying the given collision constraint. All the theoretical results are derived by adopting a stochastic approach. Finally, numerical results validate the theoretical analysis.

  19. Traffic signal synchronization in the saturated high-density grid road network.

    PubMed

    Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye

    2015-01-01

    Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN. PMID:25663835

  20. Traffic Signal Synchronization in the Saturated High-Density Grid Road Network

    PubMed Central

    Hu, Xiaojian; Lu, Jian; Wang, Wei; Zhirui, Ye

    2015-01-01

    Most existing traffic signal synchronization strategies do not perform well in the saturated high-density grid road network (HGRN). Traffic congestion often occurs in the saturated HGRN, and the mobility of the network is difficult to restore. In order to alleviate traffic congestion and to improve traffic efficiency in the network, the study proposes a regional traffic signal synchronization strategy, named the long green and long red (LGLR) traffic signal synchronization strategy. The essence of the strategy is to control the formation and dissipation of queues and to maximize the efficiency of traffic flows at signalized intersections in the saturated HGRN. With this strategy, the same signal control timing plan is used at all signalized intersections in the HGRN, and the straight phase of the control timing plan has a long green time and a long red time. Therefore, continuous traffic flows can be maintained when vehicles travel, and traffic congestion can be alleviated when vehicles stop. Using the strategy, the LGLR traffic signal synchronization model is developed, with the objective of minimizing the number of stops. Finally, the simulation is executed to analyze the performance of the model by comparing it to other models, and the superiority of the LGLR model is evident in terms of delay, number of stops, queue length, and overall performance in the saturated HGRN. PMID:25663835

  1. SACRB-MAC: A High-Capacity MAC Protocol for Cognitive Radio Sensor Networks in Smart Grid.

    PubMed

    Yang, Zhutian; Shi, Zhenguo; Jin, Chunlin

    2016-01-01

    The Cognitive Radio Sensor Network (CRSN) is considered as a viable solution to enhance various aspects of the electric power grid and to realize a smart grid. However, several challenges for CRSNs are generated due to the harsh wireless environment in a smart grid. As a result, throughput and reliability become critical issues. On the other hand, the spectrum aggregation technique is expected to play an important role in CRSNs in a smart grid. By using spectrum aggregation, the throughput of CRSNs can be improved efficiently, so as to address the unique challenges of CRSNs in a smart grid. In this regard, we proposed Spectrum Aggregation Cognitive Receiver-Based MAC (SACRB-MAC), which employs the spectrum aggregation technique to improve the throughput performance of CRSNs in a smart grid. Moreover, SACRB-MAC is a receiver-based MAC protocol, which can provide a good reliability performance. Analytical and simulation results demonstrate that SACRB-MAC is a promising solution for CRSNs in a smart grid. PMID:27043573

  2. SACRB-MAC: A High-Capacity MAC Protocol for Cognitive Radio Sensor Networks in Smart Grid.

    PubMed

    Yang, Zhutian; Shi, Zhenguo; Jin, Chunlin

    2016-03-31

    The Cognitive Radio Sensor Network (CRSN) is considered as a viable solution to enhance various aspects of the electric power grid and to realize a smart grid. However, several challenges for CRSNs are generated due to the harsh wireless environment in a smart grid. As a result, throughput and reliability become critical issues. On the other hand, the spectrum aggregation technique is expected to play an important role in CRSNs in a smart grid. By using spectrum aggregation, the throughput of CRSNs can be improved efficiently, so as to address the unique challenges of CRSNs in a smart grid. In this regard, we proposed Spectrum Aggregation Cognitive Receiver-Based MAC (SACRB-MAC), which employs the spectrum aggregation technique to improve the throughput performance of CRSNs in a smart grid. Moreover, SACRB-MAC is a receiver-based MAC protocol, which can provide a good reliability performance. Analytical and simulation results demonstrate that SACRB-MAC is a promising solution for CRSNs in a smart grid.

  3. SACRB-MAC: A High-Capacity MAC Protocol for Cognitive Radio Sensor Networks in Smart Grid

    PubMed Central

    Yang, Zhutian; Shi, Zhenguo; Jin, Chunlin

    2016-01-01

    The Cognitive Radio Sensor Network (CRSN) is considered as a viable solution to enhance various aspects of the electric power grid and to realize a smart grid. However, several challenges for CRSNs are generated due to the harsh wireless environment in a smart grid. As a result, throughput and reliability become critical issues. On the other hand, the spectrum aggregation technique is expected to play an important role in CRSNs in a smart grid. By using spectrum aggregation, the throughput of CRSNs can be improved efficiently, so as to address the unique challenges of CRSNs in a smart grid. In this regard, we proposed Spectrum Aggregation Cognitive Receiver-Based MAC (SACRB-MAC), which employs the spectrum aggregation technique to improve the throughput performance of CRSNs in a smart grid. Moreover, SACRB-MAC is a receiver-based MAC protocol, which can provide a good reliability performance. Analytical and simulation results demonstrate that SACRB-MAC is a promising solution for CRSNs in a smart grid. PMID:27043573

  4. Scalability of network facing services used in the Open Science Grid

    NASA Astrophysics Data System (ADS)

    Sfiligoi, I.; Pi, H.; Würthwein, F.; Theissen, C.; Dost, J. M.

    2011-12-01

    The Open Science Grid relies on several network facing services to deliver resources to its users. The major services are the Compute Elements, Storage Elements, Workload Management Systems and Information Systems. All of these services are exposed to traffic coming from all over the world in an unmanaged way, so it is very important to know how they behave at different levels of load. In this paper we present the methodology and the results of scalability and reliability tests performed by OSG on some of the above services. The major services being tested are the Condor batch system, the GT2, GRAM5 and CREAM CEs, and the BeStMan SRM SE.

  5. Short-term load forecasting using neural network for future smart grid application

    NASA Astrophysics Data System (ADS)

    Zennamo, Joseph Anthony, III

    Short-term load forecasting of power system has been a classic problem for a long time. Not merely it has been researched extensively and intensively, but also a variety of forecasting methods has been raised. This thesis outlines some aspects and functions of smart meter. It also presents different policies and current statuses as well as future projects and objectives of SG development in several countries. Then the thesis compares main aspects about latest products of smart meter from different companies. Lastly, three types of prediction models are established in MATLAB to emulate the functions of smart grid in the short-term load forecasting, and then their results are compared and analyzed in terms of accuracy. For this thesis, more variables such as dew point temperature are used in the Neural Network model to achieve more accuracy for better short-term load forecasting results.

  6. QoS Differential Scheduling in Cognitive-Radio-Based Smart Grid Networks: An Adaptive Dynamic Programming Approach.

    PubMed

    Yu, Rong; Zhong, Weifeng; Xie, Shengli; Zhang, Yan; Zhang, Yun

    2016-02-01

    As the next-generation power grid, smart grid will be integrated with a variety of novel communication technologies to support the explosive data traffic and the diverse requirements of quality of service (QoS). Cognitive radio (CR), which has the favorable ability to improve the spectrum utilization, provides an efficient and reliable solution for smart grid communications networks. In this paper, we study the QoS differential scheduling problem in the CR-based smart grid communications networks. The scheduler is responsible for managing the spectrum resources and arranging the data transmissions of smart grid users (SGUs). To guarantee the differential QoS, the SGUs are assigned to have different priorities according to their roles and their current situations in the smart grid. Based on the QoS-aware priority policy, the scheduler adjusts the channels allocation to minimize the transmission delay of SGUs. The entire transmission scheduling problem is formulated as a semi-Markov decision process and solved by the methodology of adaptive dynamic programming. A heuristic dynamic programming (HDP) architecture is established for the scheduling problem. By the online network training, the HDP can learn from the activities of primary users and SGUs, and adjust the scheduling decision to achieve the purpose of transmission delay minimization. Simulation results illustrate that the proposed priority policy ensures the low transmission delay of high priority SGUs. In addition, the emergency data transmission delay is also reduced to a significantly low level, guaranteeing the differential QoS in smart grid. PMID:25910254

  7. Comparison of titanium soaked in 5 M NaOH or 5 M KOH solutions

    PubMed Central

    Kim, Christina; Kendall, Matthew R.; Miller, Matthew A.; Long, Courtney L.; Larson, Preston R.; Humphrey, Mary Beth; Madden, Andrew S.; Tas, A. Cuneyt

    2012-01-01

    Commercially pure titanium plates/coupons and pure titanium powders were soaked for 24 h in 5 M NaOH and 5 M KOH solutions, under identical conditions, over the temperature range of 37° to 90°C. Wettability of the surfaces of alkali-treated cpTi coupons were studied by using contact angle goniometry. cpTi coupons soaked in 5 M NaOH or 5 M KOH solutions were found to have hydrophilic surfaces. Hydrous alkali titanate nanofibers and nanotubes were identified with SEM/EDXS and grazing incidence XRD. Surface areas of Ti powders increased >50–220 times, depending on the treatment, when soaked in the above solutions. A solution was developed to coat amorphous calcium phosphate, instead of hydroxyapatite, on Ti coupon surfaces. In vitro cell culture tests were performed with osteoblast-like cells on the alkali-treated samples. PMID:23565038

  8. Quantifying the Digital Divide: A Scientific Overview of Network Connectivity and Grid Infrastructure in South Asian Countries

    SciTech Connect

    Khan, Shahryar Muhammad; Cottrell, R.Les; Kalim, Umar; Ali, Arshad; /NUST, Rawalpindi

    2007-10-30

    The future of Computing in High Energy Physics (HEP) applications depends on both the Network and Grid infrastructure. South Asian countries such as India and Pakistan are making significant progress by building clusters as well as improving their network infrastructure However to facilitate the use of these resources, they need to manage the issues of network connectivity to be among the leading participants in Computing for HEP experiments. In this paper we classify the connectivity for academic and research institutions of South Asia. The quantitative measurements are carried out using the PingER methodology; an approach that induces minimal ICMP traffic to gather active end-to-end network statistics. The PingER project has been measuring the Internet performance for the last decade. Currently the measurement infrastructure comprises of over 700 hosts in more than 130 countries which collectively represents approximately 99% of the world's Internet-connected population. Thus, we are well positioned to characterize the world's connectivity. Here we present the current state of the National Research and Educational Networks (NRENs) and Grid Infrastructure in the South Asian countries and identify the areas of concern. We also present comparisons between South Asia and other developing as well as developed regions. We show that there is a strong correlation between the Network performance and several Human Development indices.

  9. Quantifying the digital divide: a scientific overview of network connectivity and grid infrastructure in South Asian countries

    NASA Astrophysics Data System (ADS)

    Khan, S. M.; Cottrell, R. L.; Kalim, U.; Ali, A.

    2008-07-01

    The future of Computing in High Energy Physics (HEP) applications depends on both the Network and Grid infrastructure. South Asian countries such as India and Pakistan are making significant progress by building clusters as well as improving their network infrastructure However to facilitate the use of these resources, they need to manage the issues of network connectivity to be among the leading participants in Computing for HEP experiments. In this paper we classify the connectivity for academic and research institutions of South Asia. The quantitative measurements are carried out using the PingER methodology; an approach that induces minimal ICMP traffic to gather active end-to-end network statistics. The PingER project has been measuring the Internet performance for the last decade. Currently the measurement infrastructure comprises of over 700 hosts in more than 130 countries which collectively represents approximately 99% of the world's Internet-connected population. Thus, we are well positioned to characterize the world's connectivity. Here we present the current state of the National Research and Educational Networks (NRENs) and Grid Infrastructure in the South Asian countries and identify the areas of concern. We also present comparisons between South Asia and other developing as well as developed regions. We show that there is a strong correlation between the Network performance and several Human Development indices.

  10. Cyber-Physical Systems for Critical Infrastructure Protection: A Wireless Sensor Network Application for Electric Grid Monitoring

    NASA Astrophysics Data System (ADS)

    Saint, Martin

    Critical infrastructure includes resources which are essential to the function of society. Despite an increased focus on protecting U.S. critical infrastructure, some sectors including the electric grid are more vulnerable than ever. Existing critical infrastructure protection (CIP) regulations and the monitoring and control systems used to achieve them have not met performance expectations. This indicates that the next generation of grid control should explore new architectures. This thesis explores the question of whether a cyber-physical system in the form of wireless sensor networks can be used to improve CIP. We examine efforts by others to design a wireless sensor module for monitoring transmission and distribution lines, and note that this work includes little information about the performance of the communications subsystem. Laboratory testing of throughput and reliability for one example communication network are undertaken here, along with consideration of the short message service as one alternative for backhauling sensor data.

  11. The North American Electric Grid as an Exchange Network: An Approach for Evaluating Energy Resource Composition and Greenhouse Gas Mitigation.

    PubMed

    Kodra, Evan; Sheldon, Seth; Dolen, Ryan; Zik, Ory

    2015-11-17

    Using a complex network framework, the North American electric grid is modeled as a dynamic, equilibrium-based supply chain of more than 100 interconnected power control areas (PCAs) in the contiguous United States, Canada, and Northern Mexico. Monthly generation and yearly inter-PCA exchange data reported by PCAs are used to estimate a directed network topology. Variables including electricity, as well as primary fuels, technologies, and greenhouse gas emissions associated with power generation can be traced through the network, providing energy source composition statistics for power consumers at a given location. Results show opportunities for more precise measurement by consumers of emissions occurring on their behalf at power plants. Specifically, we show a larger range of possible factors (∼0 to 1.3 kgCO2/kWh) as compared to the range provided by the EPA's eGRID analysis (∼0.4 to 1 kgCO2/kWh). We also show that 66-73% of the variance in PCA-level estimated emissions savings is the result of PCA-to-PCA differences that are not captured by the larger eGRID subregions. The increased precision could bolster development of effective greenhouse gas reporting and mitigation policies. This study also highlights the need for improvements in the consistency and spatiotemporal resolution of PCA-level generation and exchange data reporting.

  12. Grid-Search Location Methods for Ground-Truth Collection from Local and Regional Seismic Networks

    SciTech Connect

    Schultz, C A; Rodi, W; Myers, S C

    2003-07-24

    The objective of this project is to develop improved seismic event location techniques that can be used to generate more and better quality reference events using data from local and regional seismic networks. Their approach is to extend existing methods of multiple-event location with more general models of the errors affecting seismic arrival time data, including picking errors and errors in model-based travel-times (path corrections). Toward this end, they are integrating a grid-search based algorithm for multiple-event location (GMEL) with a new parameterization of travel-time corrections and new kriging method for estimating the correction parameters from observed travel-time residuals. Like several other multiple-event location algorithms, GMEL currently assumes event-independent path corrections and is thus restricted to small event clusters. The new parameterization assumes that travel-time corrections are a function of both the event and station location, and builds in source-receiver reciprocity and correlation between the corrections from proximate paths as constraints. The new kriging method simultaneously interpolates travel-time residuals from multiple stations and events to estimate the correction parameters as functions of position. They are currently developing the algorithmic extensions to GMEL needed to combine the new parameterization and kriging method with the simultaneous location of events. The result will be a multiple-event location method which is applicable to non-clustered, spatially well-distributed events. They are applying the existing components of the new multiple-event location method to a data set of regional and local arrival times from Nevada Test Site (NTS) explosions with known origin parameters. Preliminary results show the feasibility and potential benefits of combining the location and kriging techniques. They also show some preliminary work on generalizing of the error model used in GMEL with the use of mixture

  13. Grid-Search Location Methods for Ground-Truth Collection From Local and Regional Seismic Networks

    SciTech Connect

    William Rodi; Craig A. Schultz; Gardar Johannesson; Stephen C. Myers

    2005-05-13

    This project investigated new techniques for improving seismic event locations derived from regional and local networks. The technqiues include a new approach to empirical travel-time calibration that simultaneously fits data from multiple stations and events, using a generalization of the kriging method, and predicts travel-time corrections for arbitrary event-station paths. We combined this calibration approach with grid-search event location to produce a prototype new multiple-event location method that allows the use of spatially well-distributed events and takes into account correlations between the travel-time corrections from proximate event-station paths. Preliminary tests with a high quality data set from Nevada Test Site explosions indicated that our new calibration/location method offers improvement over the conventional multiple-event location methods now in common use, and is applicable to more general event-station geometries than the conventional methods. The tests were limited, however, and further research is needed to fully evaluate, and improve, the approach. Our project also demonstrated the importance of using a realistic model for observational errors in an event location procedure. We took the initial steps in developing a new error model based on mixture-of-Gaussians probability distributions, which possess the properties necessary to characterize the complex arrival time error processes that can occur when picking low signal-to-noise arrivals. We investigated various inference methods for fitting these distributions to observed travel-time residuals, including a Markov Chain Monte Carlo technique for computing Bayesian estimates of the distribution parameters.

  14. Grid Computing

    NASA Astrophysics Data System (ADS)

    Foster, Ian

    2001-08-01

    The term "Grid Computing" refers to the use, for computational purposes, of emerging distributed Grid infrastructures: that is, network and middleware services designed to provide on-demand and high-performance access to all important computational resources within an organization or community. Grid computing promises to enable both evolutionary and revolutionary changes in the practice of computational science and engineering based on new application modalities such as high-speed distributed analysis of large datasets, collaborative engineering and visualization, desktop access to computation via "science portals," rapid parameter studies and Monte Carlo simulations that use all available resources within an organization, and online analysis of data from scientific instruments. In this article, I examine the status of Grid computing circa 2000, briefly reviewing some relevant history, outlining major current Grid research and development activities, and pointing out likely directions for future work. I also present a number of case studies, selected to illustrate the potential of Grid computing in various areas of science.

  15. Prediction and Control of Network Cascade: Example of Power Grid or Networking Adaptability from WMD Disruption and Cascading Failures

    SciTech Connect

    Chertkov, Michael

    2012-07-24

    The goal of the DTRA project is to develop a mathematical framework that will provide the fundamental understanding of network survivability, algorithms for detecting/inferring pre-cursors of abnormal network behaviors, and methods for network adaptability and self-healing from cascading failures.

  16. A novel approach to smart grid technology for electrical power transmission lines by a self-organized optical network node based on optical bistability

    NASA Astrophysics Data System (ADS)

    Nakanishi, Soichiro; Sasaki, Wakao

    2011-01-01

    In this work, we have demonstrated a new smart grid model by our novel green photonics technology based on selforganized optical networks realizing an autonomous peer-to-peer electric power transmissions without centralized control for the power grid. In this optical network, we introduced an adaptive algorithm for concurrent peer-to-peer communications, by utilizing optical nonlinearity depending only on the signal strength passing through the network. This method is applicable for autonomous organization of functions for ad-hoc electric power distribution systems for the power grid. For this purpose, a simple optical- electrical hybrid bistable circuit composed of such as light emitting diode (LED) and photo diode (PD), has been incorporated into the network node. In the experiment, the method uses a simple, local adaptation of transmission weights at each network node, which enables self-organizing functions of the network, such as self-routing, self-optimization, self-recovery and self-protection. Based on this method, we have demonstrated experimentally a new smart grid model applicable for ad-hoc electric power distribution systems mediated by power comsumptions. In this model, electric power flow is controlled autonomously through the self-organized network nodes associated with individual power facilities having photovoltaics and electric storage devices, etc., and the nodes convert the amounts of electric power supply and/or comsumption to the light intensity values using above mentioned transmission weights at each node. As a consequence, we have experimentally demonstrated a simple shorthaul system model for ad-hoc electric power distribution with a self-organized optical network as a novel green photonics technology application for smart grid.

  17. A hybrid oscillatory interference/continuous attractor network model of grid cell firing.

    PubMed

    Bush, Daniel; Burgess, Neil

    2014-04-01

    Grid cells in the rodent medial entorhinal cortex exhibit remarkably regular spatial firing patterns that tessellate all environments visited by the animal. Two theoretical mechanisms that could generate this spatially periodic activity pattern have been proposed: oscillatory interference and continuous attractor dynamics. Although a variety of evidence has been cited in support of each, some aspects of the two mechanisms are complementary, suggesting that a combined model may best account for experimental data. The oscillatory interference model proposes that the grid pattern is formed from linear interference patterns or "periodic bands" in which velocity-controlled oscillators integrate self-motion to code displacement along preferred directions. However, it also allows the use of symmetric recurrent connectivity between grid cells to provide relative stability and continuous attractor dynamics. Here, we present simulations of this type of hybrid model, demonstrate that it generates intracellular membrane potential profiles that closely match those observed in vivo, addresses several criticisms aimed at pure oscillatory interference and continuous attractor models, and provides testable predictions for future empirical studies. PMID:24695724

  18. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    PubMed

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  19. Criticality of forcing directions on the fragmentation and resilience of grid networks.

    PubMed

    Abundo, Cheryl; Monterola, Christopher; Legara, Erika Fille

    2014-01-01

    A general framework for probing the dynamic evolution of spatial networks comprised of nodes applying force amongst each other is presented. Aside from the already reported magnitude of forces and elongation thresholds, we show that preservation of links in a network is also crucially dependent on how nodes are connected and how edges are directed. We demonstrate that the time it takes for the networks to reach its equilibrium network structure follows a robust power law relationship consistent with Basquin's law with an exponent that can be tuned by changing only the force directions. Further, we illustrate that networks with different connection structures, node positions and edge directions have different Basquin's exponent which can be used to distinguish spatial directed networks from each other. Using an extensive waiting time simulation that spans up to over 16 orders of magnitude, we establish that the presence of memory combined with the scale-free bursty dynamics of edge breaking at the micro level leads to the evident macroscopic power law distribution of network lifetime. PMID:25160061

  20. Connecting Renewables Directly to the Grid: Resilient Multi-Terminal HVDC Networks with High-Voltage High-Frequency Electronics

    SciTech Connect

    2012-01-23

    GENI Project: GE is developing electricity transmission hardware that could connect distributed renewable energy sources, like wind farms, directly to the grid—eliminating the need to feed the energy generated through intermediate power conversion stations before they enter the grid. GE is using the advanced semiconductor material silicon carbide (SiC) to conduct electricity through its transmission hardware because SiC can operate at higher voltage levels than semiconductors made out of other materials. This high-voltage capability is important because electricity must be converted to high-voltage levels before it can be sent along the grid’s network of transmission lines. Power companies do this because less electricity is lost along the lines when the voltage is high.

  1. 78 FR 7464 - Large Scale Networking (LSN)-Middleware And Grid Interagency Coordination (MAGIC) Team

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... From the Federal Register Online via the Government Publishing Office NATIONAL SCIENCE FOUNDATION.... Submitted by the National Science Foundation in support of the Networking and Information Technology.... Plimpton, Reports Clearance Officer, National Science Foundation. BILLING CODE 7555-01-P...

  2. Investigation of aerosol optical properties for remote sensing through DRAGON (distributed regional aerosol gridded observation networks) campaign in Korea

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Hyun; Ahn, Joon Young; Park, Jin-Soo; Hong, You-Deok; Han, Jin-Seok; Kim, Jhoon; Kim, Sang-Woo

    2014-11-01

    Aerosols in the atmosphere, including dust and pollutants, scatters/absorbs solar radiation and change the microphysics of clouds, thus influencing the Earth's energy budget, climate, air quality, visibility, agriculture and water circulation. Pollutants have also been reported to threaten the human health. The present research collaborated with the U.S. NASA and the U.S. Aerosol Robotic Network (AERONET) is to study the aerosol characteristics in East Asia and improve the long-distance transportation monitoring technology by analyzing the observations of aerosol characteristics in East Asia during Distributed Regional Aerosol Gridded Observation Networks (DRAGON) Campaign (March 2012-May 2012). The sun photometers that measure the aerosol optical characteristics were placed evenly throughout the Korean Peninsula and concentrated in Seoul and the metropolitan area. Observation data are obtained from the DRAGON campaign and the first year (2012) observation data (aerosol optical depth and aerosol spatial distribution) are analyzed. Sun photometer observations, including aerosol optical depth (AOD), are utilized to validate satellite observations from Geostationary Ocean Color Imager (GOCI) and Moderate Resolution Imaging Spectroradiometer (MODIS). Additional analysis is performed associated with the Northeast Asia, the Korean Peninsula in particular, to determine the spatial distribution of the aerosol.

  3. Random vs. Combinatorial Methods for Discrete Event Simulation of a Grid Computer Network

    NASA Technical Reports Server (NTRS)

    Kuhn, D. Richard; Kacker, Raghu; Lei, Yu

    2010-01-01

    This study compared random and t-way combinatorial inputs of a network simulator, to determine if these two approaches produce significantly different deadlock detection for varying network configurations. Modeling deadlock detection is important for analyzing configuration changes that could inadvertently degrade network operations, or to determine modifications that could be made by attackers to deliberately induce deadlock. Discrete event simulation of a network may be conducted using random generation, of inputs. In this study, we compare random with combinatorial generation of inputs. Combinatorial (or t-way) testing requires every combination of any t parameter values to be covered by at least one test. Combinatorial methods can be highly effective because empirical data suggest that nearly all failures involve the interaction of a small number of parameters (1 to 6). Thus, for example, if all deadlocks involve at most 5-way interactions between n parameters, then exhaustive testing of all n-way interactions adds no additional information that would not be obtained by testing all 5-way interactions. While the maximum degree of interaction between parameters involved in the deadlocks clearly cannot be known in advance, covering all t-way interactions may be more efficient than using random generation of inputs. In this study we tested this hypothesis for t = 2, 3, and 4 for deadlock detection in a network simulation. Achieving the same degree of coverage provided by 4-way tests would have required approximately 3.2 times as many random tests; thus combinatorial methods were more efficient for detecting deadlocks involving a higher degree of interactions. The paper reviews explanations for these results and implications for modeling and simulation.

  4. Wireless Communications in Smart Grid

    NASA Astrophysics Data System (ADS)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  5. Safe Grid

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Stewart, Helen; Korsmeyer, David (Technical Monitor)

    2003-01-01

    The biggest users of GRID technologies came from the science and technology communities. These consist of government, industry and academia (national and international). The NASA GRID is moving into a higher technology readiness level (TRL) today; and as a joint effort among these leaders within government, academia, and industry, the NASA GRID plans to extend availability to enable scientists and engineers across these geographical boundaries collaborate to solve important problems facing the world in the 21 st century. In order to enable NASA programs and missions to use IPG resources for program and mission design, the IPG capabilities needs to be accessible from inside the NASA center networks. However, because different NASA centers maintain different security domains, the GRID penetration across different firewalls is a concern for center security people. This is the reason why some IPG resources are been separated from the NASA center network. Also, because of the center network security and ITAR concerns, the NASA IPG resource owner may not have full control over who can access remotely from outside the NASA center. In order to obtain organizational approval for secured remote access, the IPG infrastructure needs to be adapted to work with the NASA business process. Improvements need to be made before the IPG can be used for NASA program and mission development. The Secured Advanced Federated Environment (SAFE) technology is designed to provide federated security across NASA center and NASA partner's security domains. Instead of one giant center firewall which can be difficult to modify for different GRID applications, the SAFE "micro security domain" provide large number of professionally managed "micro firewalls" that can allow NASA centers to accept remote IPG access without the worry of damaging other center resources. The SAFE policy-driven capability-based federated security mechanism can enable joint organizational and resource owner approved remote

  6. Internet 2 Access Grid.

    ERIC Educational Resources Information Center

    Simco, Greg

    2002-01-01

    Discussion of the Internet 2 Initiative, which is based on collaboration among universities, businesses, and government, focuses on the Access Grid, a Computational Grid that includes interactive multimedia within high-speed networks to provide resources to enable remote collaboration among the research community. (Author/LRW)

  7. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    SciTech Connect

    2012-02-08

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

  8. Training Recurrent Neural Networks With the Levenberg-Marquardt Algorithm for Optimal Control of a Grid-Connected Converter.

    PubMed

    Fu, Xingang; Li, Shuhui; Fairbank, Michael; Wunsch, Donald C; Alonso, Eduardo

    2015-09-01

    This paper investigates how to train a recurrent neural network (RNN) using the Levenberg-Marquardt (LM) algorithm as well as how to implement optimal control of a grid-connected converter (GCC) using an RNN. To successfully and efficiently train an RNN using the LM algorithm, a new forward accumulation through time (FATT) algorithm is proposed to calculate the Jacobian matrix required by the LM algorithm. This paper explores how to incorporate FATT into the LM algorithm. The results show that the combination of the LM and FATT algorithms trains RNNs better than the conventional backpropagation through time algorithm. This paper presents an analytical study on the optimal control of GCCs, including theoretically ideal optimal and suboptimal controllers. To overcome the inapplicability of the optimal GCC controller under practical conditions, a new RNN controller with an improved input structure is proposed to approximate the ideal optimal controller. The performance of an ideal optimal controller and a well-trained RNN controller was compared in close to real-life power converter switching environments, demonstrating that the proposed RNN controller can achieve close to ideal optimal control performance even under low sampling rate conditions. The excellent performance of the proposed RNN controller under challenging and distorted system conditions further indicates the feasibility of using an RNN to approximate optimal control in practical applications.

  9. The NIF 4.5-m nTOF Detectors

    SciTech Connect

    Moran, M J; Bond, E J; Clancy, T J; Eckart, M J; Khater, H Y; Glebov, V Y

    2012-05-07

    The first several campaigns of laser fusion experiments at the National Ignition Facility (NIF) included a family of high-sensitivity scintillator/photodetector neutron-time-of-flight (nTOF) detectors for measuring DD and DT neutron yields. The detectors provided consistent neutron yield benchmarks from below 1E9 (DD) to nearly 1E15 (DT). The detectors demonstrated DT yield measurement precisions better than 5%, but the absolute accuracy relies on cross calibration with independent measurements of absolute neutron yield. The 4.5-m nTOF data have provided a useful testbed for testing improvements in nTOF data processing, especially with respect to improving the accuracies of the detector impulse response functions. The resulting improvements in data analysis methods have produced more accurate results. In summary, results from the NIF 4.5-m nTOF detectors have provided consistent measurements of DD and DT neutron yields from laser-fusion implosions.

  10. Different Starting Distances Affect 5-m Sprint Times.

    PubMed

    Altmann, Stefan; Hoffmann, Marian; Kurz, Gunther; Neumann, Rainer; Woll, Alexander; Haertel, Sascha

    2015-08-01

    The purpose of this study was to quantify the effect of different starting distances on 5-m sprint time and the accuracy of the initial timing gate. A single-beam timing gate system (1 m high) was used to measure 5-m sprint time in 13 male sports students. Each subject performed 3 valid trials for 3 starting distances: 0.3, 0.5, and 1.0 m from the initial timing lights, respectively. A high-speed video camera was used to track a reflective marker placed on the subjects' hip within a field of view around the initial timing gate. Accuracy of the initial timing gate was defined as the time between the initial timing light trigger and passing of the reflective marker by the initial timing gate. Sprint times were significantly faster for the 1.0-m starting distance (0.98 ± 0.06 seconds) than for the 0.5-m (1.05 ± 0.07 seconds) and the 0.3-m (1.09 ± 0.08 seconds) starting distances (p < 0.001). There were no differences in initial timing gate error between starting distances (p = 0.078). Hence, starting distance influenced sprint times but not the accuracy of the initial timing gate. Researchers and coaches should consider the effect of starting distance on 5-m sprint time and ensure consistent testing protocols. Based on the results of this study, we recommend a starting distance of 0.3 m that should be used for all sprint performance tests.

  11. Green Power Grids: How Energy from Renewable Sources Affects Networks and Markets.

    PubMed

    Mureddu, Mario; Caldarelli, Guido; Chessa, Alessandro; Scala, Antonio; Damiano, Alfonso

    2015-01-01

    The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources. This is fundamentally changing the configuration of energy management and is introducing new problems that are only partly understood. In particular, renewable energies introduce fluctuations which cause an increased request for conventional energy sources to balance energy requests at short notice. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and for the forecast of short time fluctuations related to renewable sources in order to estimate their effects on the electricity market. To account for the inter-dependencies in the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations in the power system and an agent based approach for the prediction of the market players' behavior. Our model is data-driven; it builds on one-day-ahead real market transactions in order to train agents' behaviour and allows us to deduce the market share of different energy sources. We benchmarked our approach on the Italian market, finding a good accordance with real data. PMID:26335705

  12. Green Power Grids: How Energy from Renewable Sources Affects Networks and Markets.

    PubMed

    Mureddu, Mario; Caldarelli, Guido; Chessa, Alessandro; Scala, Antonio; Damiano, Alfonso

    2015-01-01

    The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources. This is fundamentally changing the configuration of energy management and is introducing new problems that are only partly understood. In particular, renewable energies introduce fluctuations which cause an increased request for conventional energy sources to balance energy requests at short notice. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and for the forecast of short time fluctuations related to renewable sources in order to estimate their effects on the electricity market. To account for the inter-dependencies in the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations in the power system and an agent based approach for the prediction of the market players' behavior. Our model is data-driven; it builds on one-day-ahead real market transactions in order to train agents' behaviour and allows us to deduce the market share of different energy sources. We benchmarked our approach on the Italian market, finding a good accordance with real data.

  13. Green Power Grids: How Energy from Renewable Sources Affects Networks and Markets

    PubMed Central

    Mureddu, Mario; Caldarelli, Guido; Chessa, Alessandro; Scala, Antonio; Damiano, Alfonso

    2015-01-01

    The increasing attention to environmental issues is forcing the implementation of novel energy models based on renewable sources. This is fundamentally changing the configuration of energy management and is introducing new problems that are only partly understood. In particular, renewable energies introduce fluctuations which cause an increased request for conventional energy sources to balance energy requests at short notice. In order to develop an effective usage of low-carbon sources, such fluctuations must be understood and tamed. In this paper we present a microscopic model for the description and for the forecast of short time fluctuations related to renewable sources in order to estimate their effects on the electricity market. To account for the inter-dependencies in the energy market and the physical power dispatch network, we use a statistical mechanics approach to sample stochastic perturbations in the power system and an agent based approach for the prediction of the market players’ behavior. Our model is data-driven; it builds on one-day-ahead real market transactions in order to train agents’ behaviour and allows us to deduce the market share of different energy sources. We benchmarked our approach on the Italian market, finding a good accordance with real data. PMID:26335705

  14. Securing smart grid technology

    NASA Astrophysics Data System (ADS)

    Chaitanya Krishna, E.; Kosaleswara Reddy, T.; Reddy, M. YogaTeja; Reddy G. M., Sreerama; Madhusudhan, E.; AlMuhteb, Sulaiman

    2013-03-01

    In the developing countries electrical energy is very important for its all-round improvement by saving thousands of dollars and investing them in other sector for development. For Growing needs of power existing hierarchical, centrally controlled grid of the 20th Century is not sufficient. To produce and utilize effective power supply for industries or people we should have Smarter Electrical grids that address the challenges of the existing power grid. The Smart grid can be considered as a modern electric power grid infrastructure for enhanced efficiency and reliability through automated control, high-power converters, modern communications infrastructure along with modern IT services, sensing and metering technologies, and modern energy management techniques based on the optimization of demand, energy and network availability and so on. The main objective of this paper is to provide a contemporary look at the current state of the art in smart grid communications as well as critical issues on smart grid technologies primarily in terms of information and communication technology (ICT) issues like security, efficiency to communications layer field. In this paper we propose new model for security in Smart Grid Technology that contains Security Module(SM) along with DEM which will enhance security in Grid. It is expected that this paper will provide a better understanding of the technologies, potential advantages and research challenges of the smart grid and provoke interest among the research community to further explore this promising research area.

  15. Essential Grid Workflow Monitoring Elements

    SciTech Connect

    Gunter, Daniel K.; Jackson, Keith R.; Konerding, David E.; Lee,Jason R.; Tierney, Brian L.

    2005-07-01

    Troubleshooting Grid workflows is difficult. A typicalworkflow involves a large number of components networks, middleware,hosts, etc. that can fail. Even when monitoring data from all thesecomponents is accessible, it is hard to tell whether failures andanomalies in these components are related toa given workflow. For theGrid to be truly usable, much of this uncertainty must be elim- inated.We propose two new Grid monitoring elements, Grid workflow identifiersand consistent component lifecycle events, that will make Gridtroubleshooting easier, and thus make Grids more usable, by simplifyingthe correlation of Grid monitoring data with a particular Gridworkflow.

  16. Understanding The Smart Grid

    SciTech Connect

    2007-11-15

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology

  17. Guest Editorial Introduction to the Special Issue on 'Advanced Signal Processing Techniques and Telecommunications Network Infrastructures for Smart Grid Analysis, Monitoring, and Management'

    SciTech Connect

    Bracale, Antonio; Barros, Julio; Cacciapuoti, Angela Sara; Chang, Gary; Dall'Anese, Emiliano

    2015-06-10

    Electrical power systems are undergoing a radical change in structure, components, and operational paradigms, and are progressively approaching the new concept of smart grids (SGs). Future power distribution systems will be characterized by the simultaneous presence of various distributed resources, such as renewable energy systems (i.e., photovoltaic power plant and wind farms), storage systems, and controllable/non-controllable loads. Control and optimization architectures will enable network-wide coordination of these grid components in order to improve system efficiency and reliability and to limit greenhouse gas emissions. In this context, the energy flows will be bidirectional from large power plants to end users and vice versa; producers and consumers will continuously interact at different voltage levels to determine in advance the requests of loads and to adapt the production and demand for electricity flexibly and efficiently also taking into account the presence of storage systems.

  18. Information security threats and an easy-to-implement attack detection framework for wireless sensor network-based smart grid applications

    NASA Astrophysics Data System (ADS)

    Tuna, G.; Örenbaş, H.; Daş, R.; Kogias, D.; Baykara, M.; K, K.

    2016-03-01

    Wireless Sensor Networks (WSNs) when combined with various energy harvesting solutions managing to prolong the overall lifetime of the system and enhanced capabilities of the communication protocols used by modern sensor nodes are efficiently used in are efficiently used in Smart Grid (SG), an evolutionary system for the modernization of existing power grids. However, wireless communication technology brings various types of security threats. In this study, firstly the use of WSNs for SG applications is presented. Second, the security related issues and challenges as well as the security threats are presented. In addition, proposed security mechanisms for WSN-based SG applications are discussed. Finally, an easy- to-implement and simple attack detection framework to prevent attacks directed to sink and gateway nodes with web interfaces is proposed and its efficiency is proved using a case study.

  19. Guest Editorial Introduction to the Special Issue on 'Advanced Signal Processing Techniques and Telecommunications Network Infrastructures for Smart Grid Analysis, Monitoring, and Management'

    DOE PAGES

    Bracale, Antonio; Barros, Julio; Cacciapuoti, Angela Sara; Chang, Gary; Dall'Anese, Emiliano

    2015-06-10

    Electrical power systems are undergoing a radical change in structure, components, and operational paradigms, and are progressively approaching the new concept of smart grids (SGs). Future power distribution systems will be characterized by the simultaneous presence of various distributed resources, such as renewable energy systems (i.e., photovoltaic power plant and wind farms), storage systems, and controllable/non-controllable loads. Control and optimization architectures will enable network-wide coordination of these grid components in order to improve system efficiency and reliability and to limit greenhouse gas emissions. In this context, the energy flows will be bidirectional from large power plants to end users andmore » vice versa; producers and consumers will continuously interact at different voltage levels to determine in advance the requests of loads and to adapt the production and demand for electricity flexibly and efficiently also taking into account the presence of storage systems.« less

  20. 5m Main Belt Asteroid Population Estimation Using Vesta Imagery

    NASA Astrophysics Data System (ADS)

    Rynders, Michael; Trilling, David E.

    2016-10-01

    The Main Belt is the largest source of Near-Earth asteroids, but objects <~3 km in diametercannot be reliably detected through conventional means and their number and distribution must be extrapolated. However, craters as small as 50 meters can be seen in the Dawn Framing Camera images from the 2012 mission to Vesta. Since craters of this size are formed by ~5 meter asteroids, counting craters on Vesta allows us to measure the size distribution of asteroids down to sizes that have previously been inaccessible by several orders of magnitude. In the imagery 50m craters were ~2 pixels wide and presented a challenge to reliably count. To validate and calibrate the efficiency and accuracy of counting craters only pixels wide, an experiment was carried out by counting large craters at artificially degraded resolutions. This produced an efficiency curve that was combined with the census of craters >2 pixels in diameter that were counted in a 33km 2 region to give a crater density. By knowing the crater density and making some reasonable assumptions about the orbital distribution of asteroids and the age of Vesta's surface, an estimate of the population of small asteroids in the inner main belt was made. It was found that the inner region of the main asteroid belt contains approximately 20 billion asteroids larger than 5 m. These results agree well with the measured inner Main Belt Size distribution derived by the Wide-field Infrared Survey Explorer, WISE (Masiero et al. 2011).

  1. MAGNETIC GRID

    DOEpatents

    Post, R.F.

    1960-08-01

    An electronic grid is designed employing magnetic forces for controlling the passage of charged particles. The grid is particularly applicable to use in gas-filled tubes such as ignitrons. thyratrons, etc., since the magnetic grid action is impartial to the polarity of the charged particles and, accordingly. the sheath effects encountered with electrostatic grids are not present. The grid comprises a conductor having sections spaced apart and extending in substantially opposite directions in the same plane, the ends of the conductor being adapted for connection to a current source.

  2. Smart Grid Communications System Blueprint

    NASA Astrophysics Data System (ADS)

    Clark, Adrian; Pavlovski, Chris

    2010-10-01

    Telecommunications operators are well versed in deploying 2G and 3G wireless networks. These networks presently support the mobile business user and/or retail consumer wishing to place conventional voice calls and data connections. The electrical power industry has recently commenced transformation of its distribution networks by deploying smart monitoring and control devices throughout their networks. This evolution of the network into a `smart grid' has also motivated the need to deploy wireless technologies that bridge the communication gap between the smart devices and information technology systems. The requirements of these networks differ from traditional wireless networks that communications operators have deployed, which have thus far forced energy companies to consider deploying their own wireless networks. We present our experience in deploying wireless networks to support the smart grid and highlight the key properties of these networks. These characteristics include application awareness, support for large numbers of simultaneous cell connections, high service coverage and prioritized routing of data. We also outline our target blueprint architecture that may be useful to the industry in building wireless and fixed networks to support the smart grid. By observing our experiences, telecommunications operators and equipment manufacturers will be able to augment their current networks and products in a way that accommodates the needs of the emerging industry of smart grids and intelligent electrical networks.

  3. Constructing the ASCI computational grid

    SciTech Connect

    BEIRIGER,JUDY I.; BIVENS,HUGH P.; HUMPHREYS,STEVEN L.; JOHNSON,WILBUR R.; RHEA,RONALD E.

    2000-06-01

    The Accelerated Strategic Computing Initiative (ASCI) computational grid is being constructed to interconnect the high performance computing resources of the nuclear weapons complex. The grid will simplify access to the diverse computing, storage, network, and visualization resources, and will enable the coordinated use of shared resources regardless of location. To match existing hardware platforms, required security services, and current simulation practices, the Globus MetaComputing Toolkit was selected to provide core grid services. The ASCI grid extends Globus functionality by operating as an independent grid, incorporating Kerberos-based security, interfacing to Sandia's Cplant{trademark},and extending job monitoring services. To fully meet ASCI's needs, the architecture layers distributed work management and criteria-driven resource selection services on top of Globus. These services simplify the grid interface by allowing users to simply request ''run code X anywhere''. This paper describes the initial design and prototype of the ASCI grid.

  4. Decentral Smart Grid Control

    NASA Astrophysics Data System (ADS)

    Schäfer, Benjamin; Matthiae, Moritz; Timme, Marc; Witthaut, Dirk

    2015-01-01

    Stable operation of complex flow and transportation networks requires balanced supply and demand. For the operation of electric power grids—due to their increasing fraction of renewable energy sources—a pressing challenge is to fit the fluctuations in decentralized supply to the distributed and temporally varying demands. To achieve this goal, common smart grid concepts suggest to collect consumer demand data, centrally evaluate them given current supply and send price information back to customers for them to decide about usage. Besides restrictions regarding cyber security, privacy protection and large required investments, it remains unclear how such central smart grid options guarantee overall stability. Here we propose a Decentral Smart Grid Control, where the price is directly linked to the local grid frequency at each customer. The grid frequency provides all necessary information about the current power balance such that it is sufficient to match supply and demand without the need for a centralized IT infrastructure. We analyze the performance and the dynamical stability of the power grid with such a control system. Our results suggest that the proposed Decentral Smart Grid Control is feasible independent of effective measurement delays, if frequencies are averaged over sufficiently large time intervals.

  5. Additional Security Considerations for Grid Management

    NASA Technical Reports Server (NTRS)

    Eidson, Thomas M.

    2003-01-01

    The use of Grid computing environments is growing in popularity. A Grid computing environment is primarily a wide area network that encompasses multiple local area networks, where some of the local area networks are managed by different organizations. A Grid computing environment also includes common interfaces for distributed computing software so that the heterogeneous set of machines that make up the Grid can be used more easily. The other key feature of a Grid is that the distributed computing software includes appropriate security technology. The focus of most Grid software is on the security involved with application execution, file transfers, and other remote computing procedures. However, there are other important security issues related to the management of a Grid and the users who use that Grid. This note discusses these additional security issues and makes several suggestions as how they can be managed.

  6. Autonomous, Decentralized Grid Architecture: Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Networks

    SciTech Connect

    2012-01-11

    GENI Project: Georgia Tech is developing a decentralized, autonomous, internet-like control architecture and control software system for the electric power grid. Georgia Tech’s new architecture is based on the emerging concept of electricity prosumers—economically motivated actors that can produce, consume, or store electricity. Under Georgia Tech’s architecture, all of the actors in an energy system are empowered to offer associated energy services based on their capabilities. The actors achieve their sustainability, efficiency, reliability, and economic objectives, while contributing to system-wide reliability and efficiency goals. This is in marked contrast to the current one-way, centralized control paradigm.

  7. Fibonacci Grids

    NASA Technical Reports Server (NTRS)

    Swinbank, Richard; Purser, James

    2006-01-01

    Recent years have seen a resurgence of interest in a variety of non-standard computational grids for global numerical prediction. The motivation has been to reduce problems associated with the converging meridians and the polar singularities of conventional regular latitude-longitude grids. A further impetus has come from the adoption of massively parallel computers, for which it is necessary to distribute work equitably across the processors; this is more practicable for some non-standard grids. Desirable attributes of a grid for high-order spatial finite differencing are: (i) geometrical regularity; (ii) a homogeneous and approximately isotropic spatial resolution; (iii) a low proportion of the grid points where the numerical procedures require special customization (such as near coordinate singularities or grid edges). One family of grid arrangements which, to our knowledge, has never before been applied to numerical weather prediction, but which appears to offer several technical advantages, are what we shall refer to as "Fibonacci grids". They can be thought of as mathematically ideal generalizations of the patterns occurring naturally in the spiral arrangements of seeds and fruit found in sunflower heads and pineapples (to give two of the many botanical examples). These grids possess virtually uniform and highly isotropic resolution, with an equal area for each grid point. There are only two compact singular regions on a sphere that require customized numerics. We demonstrate the practicality of these grids in shallow water simulations, and discuss the prospects for efficiently using these frameworks in three-dimensional semi-implicit and semi-Lagrangian weather prediction or climate models.

  8. Beyond grid security

    NASA Astrophysics Data System (ADS)

    Hoeft, B.; Epting, U.; Koenig, T.

    2008-07-01

    While many fields relevant to Grid security are already covered by existing working groups, their remit rarely goes beyond the scope of the Grid infrastructure itself. However, security issues pertaining to the internal set-up of compute centres have at least as much impact on Grid security. Thus, this talk will present briefly the EU ISSeG project (Integrated Site Security for Grids). In contrast to groups such as OSCT (Operational Security Coordination Team) and JSPG (Joint Security Policy Group), the purpose of ISSeG is to provide a holistic approach to security for Grid computer centres, from strategic considerations to an implementation plan and its deployment. The generalised methodology of Integrated Site Security (ISS) is based on the knowledge gained during its implementation at several sites as well as through security audits, and this will be briefly discussed. Several examples of ISS implementation tasks at the Forschungszentrum Karlsruhe will be presented, including segregation of the network for administration and maintenance and the implementation of Application Gateways. Furthermore, the web-based ISSeG training material will be introduced. This aims to offer ISS implementation guidance to other Grid installations in order to help avoid common pitfalls.

  9. Development of a 5.5 m diameter vertical axis wind turbine, phase 3

    NASA Astrophysics Data System (ADS)

    Dekitsch, A.; Etzler, C. C.; Fritzsche, A.; Lorch, G.; Mueller, W.; Rogalla, K.; Schmelzle, J.; Schuhwerk, W.; Vollan, A.; Welte, D.

    1982-06-01

    In continuation of development of a 5.5 m diameter vertical axis windmill that consists in conception, building, and wind tunnel testing, a Darrieus rotor windpowered generator feeding an isolated network under different wind velocity conditions and with optimal energy conversion efficiency was designed built, and field tested. The three-bladed Darrieus rotor tested in the wind tunnel was equiped with two variable pitch Savonius rotors 2 m in diameter. By means of separate measures of the aerodynamic factors and the energy consumption, effect of revisions and optimizations on different elements was assessed. Pitch adjustement of the Savonius blades, lubrication of speed reducer, rotor speed at cut-in of generator field excitation, time constant of field excitation, stability conditions, switch points of ohmic resistors which combined with a small electric battery simulated a larger isolated network connected with a large storage battery, were investigated. Fundamentals for the economic series production of windpowered generators with Darrieus rotors for the control and the electric conversion system are presented.

  10. Towards Smart Grid Dynamic Ratings

    NASA Astrophysics Data System (ADS)

    Cheema, Jamal; Clark, Adrian; Kilimnik, Justin; Pavlovski, Chris; Redman, David; Vu, Maria

    2011-08-01

    The energy distribution industry is giving greater attention to smart grid solutions as a means for increasing the capabilities, efficiency and reliability of the electrical power network. The smart grid makes use of intelligent monitoring and control devices throughout the distribution network to report on electrical properties such as voltage, current and power, as well as raising network alarms and events. A further aspect of the smart grid embodies the dynamic rating of electrical assets of the network. This fundamentally involves a rating of the load current capacity of electrical assets including feeders, transformers and switches. The mainstream approach to rate assets is to apply the vendor plate rating, which often under utilizes assets, or in some cases over utilizes when environmental conditions reduce the effective rated capacity, potentially reducing lifetime. Using active intelligence we have developed a rating system that rates assets in real time based upon several events. This allows for a far more efficient and reliable electrical grid that is able to extend further the life and reliability of the electrical network. In this paper we describe our architecture, the observations made during development and live deployment of the solution into operation. We also illustrate how this solution blends with the smart grid by proposing a dynamic rating system for the smart grid.

  11. Observations of GEO Debris with the Magellan 6.5-m Telescopes

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Burkhardt, Andrew; Cardonna, Tommaso; Lederer, Susan M.; Cowardin, Heather; Barker, Edwin S.; Abercromby, Kira J.

    2012-01-01

    Optical observations of geosynchronous orbit (GEO) debris are important to address two questions: 1. What is the distribution function of objects at GEO as a function of brightness? With some assumptions, this can be used to infer a size distribution. 2. Can we determine what the likely composition of individual GEO debris pieces is from studies of the spectral reflectance of these objects? In this paper we report on optical observations with the 6.5-m Magellan telescopes at Las Campanas Observatory in Chile that attempt to answer both questions. Imaging observations over a 0.5 degree diameter field-of-view have detected a significant population of optically faint debris candidates with R > 19th magnitude, corresponding to a size smaller than 20 cm assuming an albedo of 0.175. Many of these objects show brightness variations larger than a factor of 2, suggesting either irregular shapes or albedo variations or both. The object detection rate (per square degree per hour) shows an increase over the rate measured in the 0.6-m MODEST observations, implying an increase in the population at optically fainter levels. Assuming that the albedo distribution is the same for both samples, this corresponds to an increase in the population of smaller size debris. To study the second issue, calibrated reflectance spectroscopy has been obtained of a sample of GEO and near GEO objects with orbits in the public U.S. Space Surveillance Network catalog. With a 6.5-m telescope, the exposures times are short (30 seconds or less), and provide simultaneous wavelength coverage from 4500 to 8000 Angstroms. If the observed objects are tumbling, then simultaneous coverage and short exposure times are essential for a realistic assessment of the object fs spectral signature. We will compare the calibrated spectra with lab-based measurements of simple spacecraft surfaces composed of a single material.

  12. From the grid to the smart grid, topologically

    NASA Astrophysics Data System (ADS)

    Pagani, Giuliano Andrea; Aiello, Marco

    2016-05-01

    In its more visionary acceptation, the smart grid is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the smart grid a reality will the distribution grid have to be upgraded? We assume a positive answer to the question and we consider the lower layers of medium and low voltage to be the most affected by the change. In our previous work, we analyzed samples of the Dutch distribution grid (Pagani and Aiello, 2011) and we considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains (Pagani and Aiello, 2014). In this paper, we take an extra important step by defining a methodology for evolving any existing physical power grid to a good smart grid model, thus laying the foundations for a decision support system for utilities and governmental organizations. In doing so, we consider several possible evolution strategies and apply them to the Dutch distribution grid. We show how increasing connectivity is beneficial in realizing more efficient and reliable networks. Our proposal is topological in nature, enhanced with economic considerations of the costs of such evolutions in terms of cabling expenses and economic benefits of evolving the grid.

  13. Information Power Grid Posters

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2003-01-01

    This document is a summary of the accomplishments of the Information Power Grid (IPG). Grids are an emerging technology that provide seamless and uniform access to the geographically dispersed, computational, data storage, networking, instruments, and software resources needed for solving large-scale scientific and engineering problems. The goal of the NASA IPG is to use NASA's remotely located computing and data system resources to build distributed systems that can address problems that are too large or complex for a single site. The accomplishments outlined in this poster presentation are: access to distributed data, IPG heterogeneous computing, integration of large-scale computing node into distributed environment, remote access to high data rate instruments,and exploratory grid environment.

  14. Optimising network transfers to and from Queen Mary University of London, a large WLCG tier-2 grid site

    NASA Astrophysics Data System (ADS)

    Walker, C. J.; Traynor, D. P.; Rand, D. T.; Froy, T. S.; Lloyd, S. L.

    2014-06-01

    Optimising network performance is key to high bandwidth data transfers required for a Tier-2 site. We describe the techniques we have used to obtain good performance. Monitoring plays a key part, as does the elimination of bottlenecks and tuning TCP window sizes. Multiple parallel transfers allowed us to saturate a l Gbit/s link for 24 hours - whilst still achieving acceptable download speeds. Source based routing and multiple data transfer servers allowed us to use an otherwise unused "resilient" link.

  15. Smart Grid Integration Laboratory

    SciTech Connect

    Troxell, Wade

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of

  16. Smart Wire Grid: Resisting Expectations

    ScienceCinema

    Ramsay, Stewart; Lowe, DeJim

    2016-07-12

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  17. Smart Wire Grid: Resisting Expectations

    SciTech Connect

    Ramsay, Stewart; Lowe, DeJim

    2014-03-03

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  18. Grid reliability

    NASA Astrophysics Data System (ADS)

    Saiz, P.; Andreeva, J.; Cirstoiu, C.; Gaidioz, B.; Herrala, J.; Maguire, E. J.; Maier, G.; Rocha, R.

    2008-07-01

    Thanks to the Grid, users have access to computing resources distributed all over the world. The Grid hides the complexity and the differences of its heterogeneous components. In such a distributed system, it is clearly very important that errors are detected as soon as possible, and that the procedure to solve them is well established. We focused on two of its main elements: the workload and the data management systems. We developed an application to investigate the efficiency of the different centres. Furthermore, our system can be used to categorize the most common error messages, and control their time evolution.

  19. NSTAR Smart Grid Pilot

    SciTech Connect

    Rabari, Anil; Fadipe, Oloruntomi

    2014-03-31

    NSTAR Electric & Gas Corporation (“the Company”, or “NSTAR”) developed and implemented a Smart Grid pilot program beginning in 2010 to demonstrate the viability of leveraging existing automated meter reading (“AMR”) deployments to provide much of the Smart Grid functionality of advanced metering infrastructure (“AMI”), but without the large capital investment that AMI rollouts typically entail. In particular, a central objective of the Smart Energy Pilot was to enable residential dynamic pricing (time-of-use “TOU” and critical peak rates and rebates) and two-way direct load control (“DLC”) by continually capturing AMR meter data transmissions and communicating through customer-sited broadband connections in conjunction with a standardsbased home area network (“HAN”). The pilot was supported by the U.S. Department of Energy’s (“DOE”) through the Smart Grid Demonstration program. NSTAR was very pleased to not only receive the funding support from DOE, but the guidance and support of the DOE throughout the pilot. NSTAR is also pleased to report to the DOE that it was able to execute and deliver a successful pilot on time and on budget. NSTAR looks for future opportunities to work with the DOE and others in future smart grid projects.

  20. A Characterization Of The GNAT SciTech STAR Class 0.5m Prototype Telescope

    NASA Astrophysics Data System (ADS)

    Barentine, J. C.; Culver, R. B.

    2002-05-01

    In 1995 the Global Network of Automated Telescopes (GNAT) acquired an option to purchase a 0.5m "STAR" class telescope, manufactured by SciTech Corporation of Forresthill, CA, contingent upon its attainment of performance specifications published by SciTech. In spite of a concerted, and protracted effort, the telescope has not yet approached the manufacturer's specifications, and has proven largely unusable for its intended purpose. In light of the difficult history of commercial development of true automated telescopes (see Sinnott 1996 and Henry 1994) it is important to understand the current state of such commercial systems. We present results of a characterization of this telescope and recommendations for how to proceed in light of its failure to attain specifications. Principle failings of the telescope can be summarized as follows: 1) the mechanical structure was inadequately designed and built, yielding large and unacceptable pointing and tracking errors, 2) the autoguider system was never successfully implemented, limiting the system to very short integrations, 3) the autofocus mechanism was never successfully implemented, resulting in periodic, unacceptable focus drifts during automatic operation, 4) the telescope control system as provided with the telescope did not work and ultimately had to be developed by an independent contractor recommended by GNAT and contracted through SciTech, and 5) the telescope optical system design did not adequately accommodate scattered light issues, yielding significant scattered light contributions to the images under certain conditions. Based on analyses of these issues, we present recommendations for improvements in this system. Support of this work has been provided by Colorado State University and GNAT. REFERENCES Sinnott, R.W. Sky And Telescope vol.91, no.6, p.38 (1996) Henry, G.W. IAPPP Communication No.57, Autumn 1994, p.57

  1. Running medical image analysis on GridFactory desktop grid.

    PubMed

    Orellana, Frederik; Niinimaki, Marko; Zhou, Xin; Rosendahl, Peter; Müller, Henning; Waananen, Anders

    2009-01-01

    At the Geneva University Hospitals work is in progress to establish a computing facility for medical image analysis, potentially using several hundreds of desktop computers. Typically, hospitals do not have a computer infrastructure dedicated to research, nor can the data leave the hospital network for the reasons of privacy. For this purpose, a novel batch system called GridFactory has been tested along-side with the well-known batch system Condor. GridFactory's main benefits, compared to other batch systems, lie in its virtualization support and firewall friendliness. The tests involved running visual feature extraction from 50,000 anonymized medical images on a small local grid of 20 desktop computers. A comparisons with a Condor based batch system in the same computers is then presented. The performance of GridFactory is found satisfactory. PMID:19593040

  2. A Java commodity grid kit.

    SciTech Connect

    von Laszewski, G.; Foster, I.; Gawor, J.; Lane, P.; Mathematics and Computer Science

    2001-07-01

    In this paper we report on the features of the Java Commodity Grid Kit. The Java CoG Kit provides middleware for accessing Grid functionality from the Java framework. Java CoG Kit middleware is general enough to design a variety of advanced Grid applications with quite different user requirements. Access to the Grid is established via Globus protocols, allowing the Java CoG Kit to communicate also with the C Globus reference implementation. Thus, the Java CoG Kit provides Grid developers with the ability to utilize the Grid, as well as numerous additional libraries and frameworks developed by the Java community to enable network, Internet, enterprise, and peer-to peer computing. A variety of projects have successfully used the client libraries of the Java CoG Kit to access Grids driven by the C Globus software. In this paper we also report on the efforts to develop server side Java CoG Kit components. As part of this research we have implemented a prototype pure Java resource management system that enables one to run Globus jobs on platforms on which a Java virtual machine is supported, including Windows NT machines.

  3. Models for the modern power grid

    NASA Astrophysics Data System (ADS)

    Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti

    2014-10-01

    This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.

  4. Long-Term Corrosion Potential Behavior of Alloy 22 in Hot 5 m CaCl2 + 5 m Ca(NO3)2 Brines

    SciTech Connect

    Rodriguez, M A; Carranza, R M; Stuart, M L; Rebak, R B

    2007-02-20

    Alloy 22 is a nickel base alloy highly resistant to all forms of corrosion. In very aggressive conditions (e.g. hot concentrated chloride containing brines) Alloy 22 could suffer localized attack, namely pitting and crevice corrosion. The occurrence of localized corrosion in a given environment is governed by the values of the critical potential (E{sub crit}) for crevice corrosion and the corrosion potential (E{sub corr}) that the alloy may establish in the studied environment. If E{sub corr} is equal or higher than E{sub crit}, localized corrosion may be expected. This paper discusses the evolution of E{sub corr} of Alloy 22 specimens in 5 m CaCl{sub 2} + 5 m Ca(NO{sub 3}){sub 2} brines at 100 C and 120 C. Two types of specimens were used, polished as-welded (ASW) creviced and noncreviced specimens and as-welded plus solution heat-treated (ASW+SHT) creviced specimens. The latter contained the black annealing oxide film on the surface. Results show that, for all types of Alloy 22 specimens the E{sub corr} was higher at 120 C than at 100 C, probably because a more protective film formed at the higher temperature. Specimens with the black oxide film on the surface showed more oscillations in the potential. None of the tested specimens suffered crevice corrosion probably because of the relatively high concentration of nitrate in the electrolyte, R = [NO3]/[Cl] = 1.

  5. Image enhancement with polymer grid triode arrays

    SciTech Connect

    Heeger, A.J.; Heeger, D.J.; Langan, J.

    1995-12-08

    An array of polymer grid triodes connected by a common grid functions as a {open_quotes}plastic retina,{close_quotes} providing local contrast gain control for image enhancement. This simple device, made from layers of conducting polymers, functions as an active resistive network that performs center-surround filtering. The polymer grid triode array with common grid is a continuous analog of the discrete approach of Mead, with a variety of fabrication advantages and significant savings in area within the unit cell of each pixel. 6 refs., 4 figs.

  6. GridMan: A grid manipulation system

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Wang, Zhu

    1992-01-01

    GridMan is an interactive grid manipulation system. It operates on grids to produce new grids which conform to user demands. The input grids are not constrained to come from any particular source. They may be generated by algebraic methods, elliptic methods, hyperbolic methods, parabolic methods, or some combination of methods. The methods are included in the various available structured grid generation codes. These codes perform the basic assembly function for the various elements of the initial grid. For block structured grids, the assembly can be quite complex due to a large number of clock corners, edges, and faces for which various connections and orientations must be properly identified. The grid generation codes are distinguished among themselves by their balance between interactive and automatic actions and by their modest variations in control. The basic form of GridMan provides a much more substantial level of grid control and will take its input from any of the structured grid generation codes. The communication link to the outside codes is a data file which contains the grid or section of grid.

  7. POWER GRID RELIABILITY AND SECURITY

    SciTech Connect

    Bose, Anjan; Venkatasubramanian, Vaithianathan; Hauser, Carl; Bakken, David; Anderson, David; Zhao, Chuanlin; Liu, Dong; Yang, Tao; Meng, Ming; Zhang, Lin; Ning, Jiawei; Tashman, Zaid

    2014-09-30

    This project has led to the development of a real-time simulation platform for electric power grids called Grid Simulator or GridSim for simulating the dynamic and information network interactions of large- scale power systems. The platform consists of physical models of power system components including synchronous generators, loads and control, which are simulated using a modified commercial power simulator namely Transient Stability Analysis Tool (TSAT) [1] together with data cleanup components, as well as an emulated substation level and wide-area power analysis components. The platform also includes realistic representations of communication network middleware that can emulate the real-time information flow back and forth between substations and control centers in wide-area power systems. The platform has been validated on a realistic 6000-bus model of the western American power system. The simulator GridSim developed in this project is the first of its kind in its ability to simulate real-time response of large-scale power grids, and serves as a cost effective real-time stability and control simulation platform for power industry.

  8. The APSU 0.5m Telescope: Helping to Transform Undergraduate Education

    NASA Astrophysics Data System (ADS)

    Buckner, Spencer L.; Allyn Smith, J.; Juelfs, Elizabeth; Gaither, Bryan; Wilson, Tyler; Roberts, Fred

    2016-01-01

    We present details of the newly rebuilt APSU 0.5m telescope and discuss its role in the Physics & Astronomy curriculum at Austin Peay State University. This telescope enables advanced astronomical course work, student projects, a small research capability, and a large public outreach effort for the APSU Physics & Astronomy Department.We discuss the basic capabilities of the telescope, the current instrument suite including potential growth options for the 0.5m, our plans for student led and faculty research efforts, and early EPO work. Initial results from the commissioning data are presented to illustrate the research and imaging capabilities of the system.

  9. GridPACK Toolkit for Developing Power Grid Simulations on High Performance Computing Platforms

    SciTech Connect

    Palmer, Bruce J.; Perkins, William A.; Glass, Kevin A.; Chen, Yousu; Jin, Shuangshuang; Callahan, Charles D.

    2013-11-30

    This paper describes the GridPACK™ framework, which is designed to help power grid engineers develop modeling software capable of running on todays high performance computers. The framework contains modules for setting up distributed power grid networks, assigning buses and branches with arbitrary behaviors to the network, creating distributed matrices and vectors, using parallel linear and non-linear solvers to solve algebraic equations, and mapping functionality to create matrices and vectors based on properties of the network. In addition, the framework contains additional functionality to support IO and to manage errors.

  10. GENI: Grid Hardware and Software

    SciTech Connect

    2012-01-09

    GENI Project: The 15 projects in ARPA-E’s GENI program, short for “Green Electricity Network Integration,” aim to modernize the way electricity is transmitted in the U.S. through advances in hardware and software for the electric grid. These advances will improve the efficiency and reliability of electricity transmission, increase the amount of renewable energy the grid can utilize, and provide energy suppliers and consumers with greater control over their power flows in order to better manage peak power demand and cost.

  11. 5 mW parallel-connected resonant-tunnelling diode oscillator

    NASA Technical Reports Server (NTRS)

    Stephan, K. D.; Wong, S.-C.; Brown, E. R.; Molvar, K. M.; Calawa, A. R.; Manfra, M. J.

    1992-01-01

    A new type of resonant-tunneling diode (RTD) oscillator that generates 5 mW at 1.18 GHz is reported. This result was obtained by connecting in parallel 25 individual diodes designed for such a connection. This experiment demonstrates that RTDs can successfully be used in a chip-level power-combining circuit.

  12. Repeatability and Reproducibility of Noninvasive Keratograph 5M Measurements in Patients with Dry Eye Disease

    PubMed Central

    Tian, Lei; Qu, Jing-hao; zhang, Xiao-yu; Sun, Xu-guang

    2016-01-01

    Purpose. To determine the intraexaminer repeatability and interexaminer reproducibility of tear meniscus height (TMH) and noninvasive Keratograph tear breakup time (NIKBUT) measurements obtained with the Keratograph 5M (K5M) in a sample of healthy and dry eye populations. Methods. Forty-two patients with dry eye disease (DED group) and 42 healthy subjects (healthy group) were recruited in this prospective study. In all subjects, each eye received 3 consecutive measurements using the K5M for the TMH and NIKBUTs (NIKBUT-first and NIKBUT-average). And then a different examiner repeated the measurements. The repeatability and reproducibility of measurements were assessed by the coefficient of variation (CV) and intraclass correlation coefficient (ICC). Results. The repeatability and reproducibility of TMH and NIKBUTs were good in both DED and healthy groups (CV% ≤ 26.1% and ICC ≥ 0.75 for all measurements). Patients with DED showed better intraexaminer repeatability for NIKBUTs, but worse for TMH than healthy subjects. Average TMH, NIKBUT-first, and NIKBUT-average were significantly lower in DED group than in healthy group (all P values < 0.05). Conclusions. Measurements of TMH and NIKBUTs obtained with the K5M may provide a simple, noninvasive screening test for dry eye with acceptable repeatability and reproducibility. The NIKBUTs were more reliable, but TMH was less reliable in patients with DED. PMID:27190639

  13. Gaia16bak transient classified at Cassini 1.5m telescope

    NASA Astrophysics Data System (ADS)

    Altavilla, Giuseppe; Bruni, Ivan; Cusano, Felice; Sabatini, Giovanni

    2016-09-01

    We obtained a spectrum of the Gaia Science Alerts transient Gaia16bak (http://gsaweb.ast.cam.ac.uk/alerts/alert/Gaia16bak/) on 2016 September 4.02 UT at the 1.5m G.D. Cassini Telescope (Loiano) with BFOSC.

  14. Comparison of SERPENT and CASMO-5M for pressurized water reactors models

    SciTech Connect

    Hursin, M.; Vasiliev, A.; Ferroukhi, H.; Pautz, A.

    2013-07-01

    The objective of this work is to perform a preliminary assessment of the capability of SERPENT to generate cross sections for a PWR Beginning-of-Life (BOL) isothermal mini-core by comparing a SERPENT/PARCS solution with the results obtained using a CASMO-5M/PARCS approach. The PARCS code is used instead of the usual SIMULATE-3 to analyze the Swiss Reactors, because interfaces with PARCS already exist to obtain neutronic data from SERPENT. For the PWR configurations, the differences between CASMO-5M and SERPENT solutions are within 200 pcm at the assembly level and thus rather small when considering the deterministic transport method (energy/angular/space discretization) in CASMO-5M versus the stochastic treatment of SERPENT, the statistical uncertainties in the Monte-Carlo approach as well as the eventual differences in nuclear data used by both codes. At the 2D mini-core level, no major difference is observed when comparing PARCS run with CASMO-5M versus SERPENT cross sections. For the generation of kinetic parameters, non trivial differences are observed due both to the methods and the data used. For the relatively limited number of configurations considered, it is hard to make any definitive statement on the benefits of using Monte Carlo codes in terms of nuclear data generation. (authors)

  15. Repeatability and Reproducibility of Noninvasive Keratograph 5M Measurements in Patients with Dry Eye Disease.

    PubMed

    Tian, Lei; Qu, Jing-Hao; Zhang, Xiao-Yu; Sun, Xu-Guang

    2016-01-01

    Purpose. To determine the intraexaminer repeatability and interexaminer reproducibility of tear meniscus height (TMH) and noninvasive Keratograph tear breakup time (NIKBUT) measurements obtained with the Keratograph 5M (K5M) in a sample of healthy and dry eye populations. Methods. Forty-two patients with dry eye disease (DED group) and 42 healthy subjects (healthy group) were recruited in this prospective study. In all subjects, each eye received 3 consecutive measurements using the K5M for the TMH and NIKBUTs (NIKBUT-first and NIKBUT-average). And then a different examiner repeated the measurements. The repeatability and reproducibility of measurements were assessed by the coefficient of variation (CV) and intraclass correlation coefficient (ICC). Results. The repeatability and reproducibility of TMH and NIKBUTs were good in both DED and healthy groups (CV% ≤ 26.1% and ICC ≥ 0.75 for all measurements). Patients with DED showed better intraexaminer repeatability for NIKBUTs, but worse for TMH than healthy subjects. Average TMH, NIKBUT-first, and NIKBUT-average were significantly lower in DED group than in healthy group (all P values < 0.05). Conclusions. Measurements of TMH and NIKBUTs obtained with the K5M may provide a simple, noninvasive screening test for dry eye with acceptable repeatability and reproducibility. The NIKBUTs were more reliable, but TMH was less reliable in patients with DED. PMID:27190639

  16. Voltage collapse in complex power grids

    PubMed Central

    Simpson-Porco, John W.; Dörfler, Florian; Bullo, Francesco

    2016-01-01

    A large-scale power grid's ability to transfer energy from producers to consumers is constrained by both the network structure and the nonlinear physics of power flow. Violations of these constraints have been observed to result in voltage collapse blackouts, where nodal voltages slowly decline before precipitously falling. However, methods to test for voltage collapse are dominantly simulation-based, offering little theoretical insight into how grid structure influences stability margins. For a simplified power flow model, here we derive a closed-form condition under which a power network is safe from voltage collapse. The condition combines the complex structure of the network with the reactive power demands of loads to produce a node-by-node measure of grid stress, a prediction of the largest nodal voltage deviation, and an estimate of the distance to collapse. We extensively test our predictions on large-scale systems, highlighting how our condition can be leveraged to increase grid stability margins. PMID:26887284

  17. Smart Grid Demonstration Project

    SciTech Connect

    Miller, Craig; Carroll, Paul; Bell, Abigail

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and

  18. Data Grid Management Systems

    NASA Technical Reports Server (NTRS)

    Moore, Reagan W.; Jagatheesan, Arun; Rajasekar, Arcot; Wan, Michael; Schroeder, Wayne

    2004-01-01

    The "Grid" is an emerging infrastructure for coordinating access across autonomous organizations to distributed, heterogeneous computation and data resources. Data grids are being built around the world as the next generation data handling systems for sharing, publishing, and preserving data residing on storage systems located in multiple administrative domains. A data grid provides logical namespaces for users, digital entities and storage resources to create persistent identifiers for controlling access, enabling discovery, and managing wide area latencies. This paper introduces data grids and describes data grid use cases. The relevance of data grids to digital libraries and persistent archives is demonstrated, and research issues in data grids and grid dataflow management systems are discussed.

  19. AstroGrid-D: Grid technology for astronomical science

    NASA Astrophysics Data System (ADS)

    Enke, Harry; Steinmetz, Matthias; Adorf, Hans-Martin; Beck-Ratzka, Alexander; Breitling, Frank; Brüsemeister, Thomas; Carlson, Arthur; Ensslin, Torsten; Högqvist, Mikael; Nickelt, Iliya; Radke, Thomas; Reinefeld, Alexander; Reiser, Angelika; Scholl, Tobias; Spurzem, Rainer; Steinacker, Jürgen; Voges, Wolfgang; Wambsganß, Joachim; White, Steve

    2011-02-01

    We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.

  20. The 3.5-m all-SiC telescope for HERSCHEL

    NASA Astrophysics Data System (ADS)

    Toulemont, Yves; Passvogel, Thomas; Pilbratt, Goran L.; de Chambure, Daniel; Pierot, Dominique; Castel, Didier

    2004-10-01

    Placed on the L2 Lagrangian point, Herschel operates in the spectral range between 80 and 670 μm wavelength and is devoted to astronomical investigations in the far-infrared, sub-millimetre and millimetre wavelengths. The Herschel Telescope is an "all Silicon Carbide" Telescope, based on a 3.5-m-diameter Cassegrain design. The driving requirements are the large diameter (3;5m) which represents a manufacturing challenge, the WFE to be kept below 6μrms despite the operational temperature of 70K, and finally the mass to be kept below 300kg. The size of the Telescope has put some challenges in the manufacturing processes and the tests facilities installations. At this stage, the major critical phases which are the brazing and the grinding of the primary mirror have successfully been passed. The development and manufacturing of the Herschel Telescope is part of the Herschel Planck program funded by the European Space Agency (ESA).

  1. The 3.5m all SiC telescope for Herschel

    NASA Astrophysics Data System (ADS)

    Toulemont, Y.; Passvogel, T.; Pillbrat, G.; de Chambure, D.; Pierot, D.; Castel, D.

    2004-06-01

    Placed on the L2 Lagrangian point, Herschel operates in the spectral range between 80 and 670 μm wavelength and is devoted to astronomical investigations in the far-infrared, sub-millimetre and millimetre wavelengths. The Herschel Telescope is an "all Silicon Carbide" Telescope, based on a 3.5-m-diameter Cassegrain design. The driving requirements are the large diameter (3.5 m), the WFE to be kept below 6μrms despite the operational temperature (70K), and finally the mass to be kept below 300kg. The size of the Telescope has put some challenges in the manufacturing and the tests facilities installations. At this stage, the major critical phase which is the brazing of the primary mirror has successfully been passed. The development and manufacturing of the Herschel Telescope is part of the Herschel Planck program funded by the European Space Agency (ESA).

  2. Intragenic MBD5 familial deletion variant does not negatively impact MBD5 mRNA expression.

    PubMed

    Mullegama, Sureni V; Elsea, Sarah H

    2014-01-01

    2q23.1 deletion syndrome is characterized by intellectual disability, speech impairment, seizures, disturbed sleep pattern, behavioral problems, and hypotonia. Core features of this syndrome are due to haploinsufficiency of MBD5. Deletions that include coding and noncoding exons show reduced MBD5 mRNA expression. We report a patient with a neurological and behavioral phenotype similar to 2q23.1 deletion syndrome with an inherited intronic deletion in the 5-prime untranslated region of MBD5. Our data show that this patient has normal MBD5 mRNA expression; therefore, this deletion is likely not causative for 2q23.1 deletion syndrome. Overall, it is important to validate intronic deletions for pathogenicity.

  3. Electrochemical Behavior of Alloy 22 in 5 M CaC12

    SciTech Connect

    Ilevbare, G O

    2002-05-30

    The corrosion resistance of Alloy 22 (UNS No.: N06022) was studied in 5 M CaCl{sub 2} electrolyte at various temperatures. Potentiodynamic polarization was used to examine the electrochemical behavior and measure the key potentials. Alloy 22 was found to be susceptible to localized corrosion in this high chloride [10M Cl{sup -}] environment at temperatures as low as 6O C.

  4. Spatial services grid

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Li, Qi; Cheng, Jicheng

    2005-10-01

    This paper discusses the concept, key technologies and main application of Spatial Services Grid. The technologies of Grid computing and Webservice is playing a revolutionary role in studying the spatial information services. The concept of the SSG (Spatial Services Grid) is put forward based on the SIG (Spatial Information Grid) and OGSA (open grid service architecture). Firstly, the grid computing is reviewed and the key technologies of SIG and their main applications are reviewed. Secondly, the grid computing and three kinds of SIG (in broad sense)--SDG (spatial data grid), SIG (spatial information grid) and SSG (spatial services grid) and their relationships are proposed. Thirdly, the key technologies of the SSG (spatial services grid) is put forward. Finally, three representative applications of SSG (spatial services grid) are discussed. The first application is urban location based services gird, which is a typical spatial services grid and can be constructed on OGSA (Open Grid Services Architecture) and digital city platform. The second application is region sustainable development grid which is the key to the urban development. The third application is Region disaster and emergency management services grid.

  5. Smart Grid Enabled EVSE

    SciTech Connect

    None, None

    2014-10-15

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  6. A new approach to: (a) grid generation for numerical optimization, and (b) interconnect networks for beowulf clusters, leveraging n-dimensional sphere-packings

    NASA Astrophysics Data System (ADS)

    Bewley, Thomas; Cessna, Joseph; Belitz, Paul

    2008-11-01

    The abstract field of n-dimensional sphere packing theory is well developed (for a comprehensive review, see Sphere Packings, Lattices and Groups by Conway and Sloane). This theory forms the theoretical underpinning of the error-correcting codes used in both deep space communications and in computer memory. The present work extends this elegant theory to two important and immensely practical problems in computational fluid dynamics: (a) the generation of efficient grids for the coordination of grid-based derivative-free optimization algorithms in n dimensions, and (b) the effective n-dimensional interconnection of massively-parallel clusters of computational nodes. As we will illustrate and quantify, the first problem benefits tremendously from dense sphere packings with large kissing numbers >> 2n, whereas the latter problem benefits tremendously from rare sphere packings with kissing number = n+1.

  7. An approach for modeling vulnerability of the network of networks

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhua; Song, Bo; Zhang, Zhaojun; Liu, Haikuan

    2014-10-01

    In this paper, a framework is given to model the network of networks and to investigate the vulnerability of the network of networks subjected to failures. Because there are several redundant systems in infrastructure systems, the dependent intensity between two networks is introduced and adopted to discuss the vulnerability of the interdependent infrastructure networks subjected to failures. Shanghai electrified rail transit network is used to illustrate the feasibility and effectiveness of the proposed framework. Because the rail network is dependent on the power grid and communication network, the corresponding power grid and communication network are also included in this system. Meanwhile the failures to the power grid and communication network are utilized to investigate the vulnerability of the rail network. The results show that the rail network strongly depends on the power grid and weakly depends on the communication network, and the transport functionality loss of the rail network increases with the increase of dependent intensity. Meanwhile the highest betweenness node-based attack to the power grid and the largest degree node-based attack to the communication network can result in the most functionality losses to the rail network. Moreover, the functionality loss of the rail network has the smallest value when the tolerance parameter of the power grid equals 0.75 and the critical nodes of the power grid and communication network can be obtained by simulations.

  8. Smart Grid Information Clearinghouse (SGIC)

    SciTech Connect

    Rahman, Saifur

    2014-08-31

    Since the Energy Independence and Security Act of 2007 was enacted, there has been a large number of websites that discusses smart grid and relevant information, including those from government, academia, industry, private sector and regulatory. These websites collect information independently. Therefore, smart grid information was quite scattered and dispersed. The objective of this work was to develop, populate, manage and maintain the public Smart Grid Information Clearinghouse (SGIC) web portal. The information in the SGIC website is comprehensive that includes smart grid information, research & development, demonstration projects, technical standards, costs & benefit analyses, business cases, legislation, policy & regulation, and other information on lesson learned and best practices. The content in the SGIC website is logically grouped to allow easily browse, search and sort. In addition to providing the browse and search feature, the SGIC web portal also allow users to share their smart grid information with others though our online content submission platform. The Clearinghouse web portal, therefore, serves as the first stop shop for smart grid information that collects smart grid information in a non-bias, non-promotional manner and can provide a missing link from information sources to end users and better serve users’ needs. The web portal is available at www.sgiclearinghouse.org. This report summarizes the work performed during the course of the project (September 2009 – August 2014). Section 2.0 lists SGIC Advisory Committee and User Group members. Section 3.0 discusses SGIC information architecture and web-based database application functionalities. Section 4.0 summarizes SGIC features and functionalities, including its search, browse and sort capabilities, web portal social networking, online content submission platform and security measures implemented. Section 5.0 discusses SGIC web portal contents, including smart grid 101, smart grid projects

  9. Design of the Apache Point Observatory 3.5 M telescope. V - Telescope enclosure thermal modeling

    NASA Astrophysics Data System (ADS)

    Siegmund, Walter A.

    1990-07-01

    A 3.5 m telescope is under construction at Apache Point near Alamogordo, New Mexico, at an elevation of 2800 m. A thermal model of a telescope enclosure is described. The model evaluates various strategies for minimizing local sources of image degradation (dome seeing). Direct and diffuse insolation, radiation to the sky, conduction, and the thermal inertia of the walls, interior air, roof, and structural steel are included. It is observed that highly reflective surface coatings reduce heat absorbed during the day, but are not very effective in reducing heat transfer in the telescope chamber at night, assuming that components with large heat capacities or thermal time constants are insulated.

  10. Radiographic detection of defects in friction stir welding on aluminum alloy AMg5M

    SciTech Connect

    Tarasov, Sergei Yu. Kolubaev, Evgeny A.; Rubtsov, Valery E.

    2014-11-14

    In order to reveal weld defects specific to friction stir welding we undertook radiographic inspection of AMg5M aluminum alloy welded joints. Weld defects in the form of voids have been revealed in the weld obtained under the non-optimal rotation and feed rate. Both shape and size of these defects have been confirmed by examining metallographically successive sections prepared in the weld plane as well as in the plane transversal to the tool feed direction. Linear defects have been also found in the sections that are not seen in the radiographic images. Both the preferable localization and origination of the defects have been analyzed.

  11. Parallel grid population

    SciTech Connect

    Wald, Ingo; Ize, Santiago

    2015-07-28

    Parallel population of a grid with a plurality of objects using a plurality of processors. One example embodiment is a method for parallel population of a grid with a plurality of objects using a plurality of processors. The method includes a first act of dividing a grid into n distinct grid portions, where n is the number of processors available for populating the grid. The method also includes acts of dividing a plurality of objects into n distinct sets of objects, assigning a distinct set of objects to each processor such that each processor determines by which distinct grid portion(s) each object in its distinct set of objects is at least partially bounded, and assigning a distinct grid portion to each processor such that each processor populates its distinct grid portion with any objects that were previously determined to be at least partially bounded by its distinct grid portion.

  12. Bus.py: A GridLAB-D Communication Interface for Smart Distribution Grid Simulations

    SciTech Connect

    Hansen, Timothy M.; Palmintier, Bryan; Suryanarayanan, Siddharth; Maciejewski, Anthony A.; Siegel, Howard Jay

    2015-07-03

    As more Smart Grid technologies (e.g., distributed photovoltaic, spatially distributed electric vehicle charging) are integrated into distribution grids, static distribution simulations are no longer sufficient for performing modeling and analysis. GridLAB-D is an agent-based distribution system simulation environment that allows fine-grained end-user models, including geospatial and network topology detail. A problem exists in that, without outside intervention, once the GridLAB-D simulation begins execution, it will run to completion without allowing the real-time interaction of Smart Grid controls, such as home energy management systems and aggregator control. We address this lack of runtime interaction by designing a flexible communication interface, Bus.py (pronounced bus-dot-pie), that uses Python to pass messages between one or more GridLAB-D instances and a Smart Grid simulator. This work describes the design and implementation of Bus.py, discusses its usefulness in terms of some Smart Grid scenarios, and provides an example of an aggregator-based residential demand response system interacting with GridLAB-D through Bus.py. The small scale example demonstrates the validity of the interface and shows that an aggregator using said interface is able to control residential loads in GridLAB-D during runtime to cause a reduction in the peak load on the distribution system in (a) peak reduction and (b) time-of-use pricing cases.

  13. A Unified Overset Grid Generation Graphical Interface and New Concepts on Automatic Gridding Around Surface Discontinuities

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Akien, Edwin (Technical Monitor)

    2002-01-01

    For many years, generation of overset grids for complex configurations has required the use of a number of different independently developed software utilities. Results created by each step were then visualized using a separate visualization tool before moving on to the next. A new software tool called OVERGRID was developed which allows the user to perform all the grid generation steps and visualization under one environment. OVERGRID provides grid diagnostic functions such as surface tangent and normal checks as well as grid manipulation functions such as extraction, extrapolation, concatenation, redistribution, smoothing, and projection. Moreover, it also contains hyperbolic surface and volume grid generation modules that are specifically suited for overset grid generation. It is the first time that such a unified interface existed for the creation of overset grids for complex geometries. New concepts on automatic overset surface grid generation around surface discontinuities will also be briefly presented. Special control curves on the surface such as intersection curves, sharp edges, open boundaries, are called seam curves. The seam curves are first automatically extracted from a multiple panel network description of the surface. Points where three or more seam curves meet are automatically identified and are called seam corners. Seam corner surface grids are automatically generated using a singular axis topology. Hyperbolic surface grids are then grown from the seam curves that are automatically trimmed away from the seam corners.

  14. Scientific Grid computing.

    PubMed

    Coveney, Peter V

    2005-08-15

    We introduce a definition of Grid computing which is adhered to throughout this Theme Issue. We compare the evolution of the World Wide Web with current aspirations for Grid computing and indicate areas that need further research and development before a generally usable Grid infrastructure becomes available. We discuss work that has been done in order to make scientific Grid computing a viable proposition, including the building of Grids, middleware developments, computational steering and visualization. We review science that has been enabled by contemporary computational Grids, and associated progress made through the widening availability of high performance computing.

  15. Two UV-Sensitive Photoreceptor Proteins, Opn5m and Opn5m2 in Ray-Finned Fish with Distinct Molecular Properties and Broad Distribution in the Retina and Brain

    PubMed Central

    Sato, Keita; Yamashita, Takahiro; Haruki, Yoshihiro; Ohuchi, Hideyo; Kinoshita, Masato; Shichida, Yoshinori

    2016-01-01

    Opn5 is a group within the opsin family of proteins that is responsible for visual and non-visual photoreception in animals. It consists of several subgroups, including Opn5m, the only subgroup containing members found in most vertebrates, including mammals. In addition, recent genomic information has revealed that some ray-finned fishes carry paralogous genes of Opn5m while other fishes have no such genes. Here, we report the molecular properties of the opsin now called Opn5m2 and its distributions in both the retina and brain. Like Opn5m, Opn5m2 exhibits UV light-sensitivity when binding to 11-cis-retinal and forms a stable active state that couples with Gi subtype of G protein. However, Opn5m2 does not bind all-trans-retinal and exhibits exclusive binding to 11-cis-retinal, whereas many bistable opsins, including fish Opn5m, can bind directly to all-trans-retinal as well as 11-cis-retinal. Because medaka fish has lost the Opn5m2 gene from its genome, we compared the tissue distribution patterns of Opn5m in medaka fish, zebrafish, and spotted gar, in addition to the distribution patterns of Opn5m2 in zebrafish and spotted gar. Opn5m expression levels showed a gradient along the dorsal–ventral axis of the retina, and preferential expression was observed in the ventral retina in the three fishes. The levels of Opn5m2 showed a similar gradient with preferential expression observed in the dorsal retina. Opn5m expression was relatively abundant in the inner region of the inner nuclear layer, while Opn5m2 was expressed in the outer edge of the inner nuclear layer. Additionally, we could detect Opn5m expression in several brain regions, including the hypothalamus, of these fish species. Opn5m2 expression could not be detected in zebrafish brain, but was clearly observed in limited brain regions of spotted gar. These results suggest that ray-finned fishes can generally utilize UV light information for non-image-forming photoreception in a wide range of cells in the

  16. Genome size, GC percentage and 5mC level in the Indonesian coelacanth Latimeria menadoensis.

    PubMed

    Makapedua, Daisy Monica; Barucca, Marco; Forconi, Mariko; Antonucci, Niki; Bizzaro, Davide; Amici, Adolfo; Carradori, Maria Rita; Olmo, Ettore; Canapa, Adriana

    2011-09-01

    The living fossil Latimeria menadoensis is important to understand sarcopterygian evolution. To gain further insights into this fish species we studied its genome size, GC% and 5mC level. The genome size and the GC% of the Indonesian coelacanth seem to be very similar to those of the African coelacanth. Moreover the GC%, the CpG frequency and the 5mC level of L. menadoensis are more similar to those of fish and amphibians than to those of mammals, birds and reptiles and this is in line with the hypothesis that two different DNA methylation and CpG shortage equilibria arose during vertebrate evolution. Our results suggest that the genome of L. menadoensis has remained unchanged for several million years, maybe since the origin of the lineage which from lobe-finned fish led to tetrapods. These data fit a conservative evolutionary landscape and suggest that the genome of the extant crossopterygians may be a sort of evolutionarily frozen genome.

  17. Oxidation of electrodeposited lead-tin alloys in 5 M H 2SO 4

    NASA Astrophysics Data System (ADS)

    Petersson, I.; Ahlberg, E.

    By electroplating lead-tin alloys on a lightweight substrate material, such as glassy carbon, it is possible to obtain less dense electrodes with good contact between the active material and the substrate. The former is especially important for the lead-acid battery since it has relatively low energy density compared to many other battery systems. In order to obtain higher power densities for applications in, for example, electric or hybrid vehicles, the weight of the battery needs to be minimised. In the present investigation, the oxidation of electrodeposited lead-tin alloys in 5 M H 2SO 4 was studied as a function of tin concentration. The alloys were prepared by electrodeposition and the oxidation behaviour was studied by the means of cyclic voltammetry. Microstructural information on the deposited layer was obtained by scanning electron microscopy (SEM). The experimental results show that electrodeposited lead-tin alloys contain a supersaturated solid solution phase with up to 12 at.% Sn. Oxidation of this phase in 5 M H 2SO 4 leads to the formation of a PbO phase with increased conductivity compared to pure PbO. In addition, the amounts of PbO and PbO 2 decrease with increasing amounts of tin in the alloy and for high tin alloys, where a bulk tin phase is present, no PbO phase is observed.

  18. Current and Future IFU Instrumentation at the Sloan 2.5 m Telescope

    NASA Astrophysics Data System (ADS)

    Drory, Niv; Bershady, Matthew A.; MacDonald, Nick; MaNGA Team

    2016-01-01

    I will discuss the IFU fiber feed system in use for the MaNGA survey in SDSS-IV, which is in the process of obtaining integral field spectroscopy at R~2000 covering 360-1000nm for and unbiased sample of 10k low-redshift galaxies. The bare-fiber IFUs are fabricated using novel hex-ferrule technology which produces very uniform dense hex packaged fiber arrays scalable from 7 fiber up to hundreds or thousands of fibers. MaNGA uses fiber arrays ranging from 19 to 127 fibers. For future projects at the Sloan Foundation 2.5 m telescope as well as other observatories, we are developing large lenslet-coupled hex-ferrule based IFUs of ~1500 fibers (> one arcmin diameter at the 2.5m) as well as scalable fiber array technologies allowing arbitrarily large IFUs made out of smaller abuttable units. I will discuss technologies and plans for such future instrumentation which can be matched to small-aperture telescopes up to ELTs.

  19. Features of the Java commodity grid kit.

    SciTech Connect

    von Laszewski, G.; Gawor, J.; Lane, P.; Rehn, N.; Russell, M.; Mathematics and Computer Science

    2002-11-01

    In this paper we report on the features of the Java Commodity Grid Kit (Java CoG Kit). The Java CoG Kit provides middleware for accessing Grid functionality from the Java framework. Java CoG Kit middleware is general enough to design a variety of advanced Grid applications with quite different user requirements. Access to the Grid is established via Globus Toolkit protocols, allowing the Java CoG Kit to also communicate with the services distributed as part of the C Globus Toolkit reference implementation. Thus, the Java CoG Kit provides Grid developers with the ability to utilize the Grid, as well as numerous additional libraries and frameworks developed by the Java community to enable network, Internet, enterprise and peer-to-peer computing. A variety of projects have successfully used the client libraries of the Java CoG Kit to access Grids driven by the C Globus Toolkit software. In this paper we also report on the efforts to develop serverside Java CoG Kit components. As part of this research we have implemented a prototype pure Java resource management system that enables one to run Grid jobs on platforms on which a Java virtual machine is supported, including Windows NT machines.

  20. Method of grid generation

    DOEpatents

    Barnette, Daniel W.

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  1. Dynamic Power Grid Simulation

    2015-09-14

    GridDyn is a part of power grid simulation toolkit. The code is designed using modern object oriented C++ methods utilizing C++11 and recent Boost libraries to ensure compatibility with multiple operating systems and environments.

  2. Grid for Earth Science Applications

    NASA Astrophysics Data System (ADS)

    Petitdidier, Monique; Schwichtenberg, Horst

    2013-04-01

    The civil society at large has addressed to the Earth Science community many strong requirements related in particular to natural and industrial risks, climate changes, new energies. The main critical point is that on one hand the civil society and all public ask for certainties i.e. precise values with small error range as it concerns prediction at short, medium and long term in all domains; on the other hand Science can mainly answer only in terms of probability of occurrence. To improve the answer or/and decrease the uncertainties, (1) new observational networks have been deployed in order to have a better geographical coverage and more accurate measurements have been carried out in key locations and aboard satellites. Following the OECD recommendations on the openness of research and public sector data, more and more data are available for Academic organisation and SMEs; (2) New algorithms and methodologies have been developed to face the huge data processing and assimilation into simulations using new technologies and compute resources. Finally, our total knowledge about the complex Earth system is contained in models and measurements, how we put them together has to be managed cleverly. The technical challenge is to put together databases and computing resources to answer the ES challenges. However all the applications are very intensive computing. Different compute solutions are available and depend on the characteristics of the applications. One of them is Grid especially efficient for independent or embarrassingly parallel jobs related to statistical and parametric studies. Numerous applications in atmospheric chemistry, meteorology, seismology, hydrology, pollution, climate and biodiversity have been deployed successfully on Grid. In order to fulfill requirements of risk management, several prototype applications have been deployed using OGC (Open geospatial Consortium) components with Grid middleware. The Grid has permitted via a huge number of runs to

  3. IPG Power Grid Overview

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas

    2003-01-01

    This presentation will describe what is meant by grids and then cover the current state of the IPG. This will include an overview of the middleware that is key to the operation of the grid. The presentation will then describe some of the future directions that are planned for the IPG. Finally the presentation will conclude with a brief overview of the Global Grid Forum, which is a key activity that will contribute to the successful availability of grid components.

  4. A New 0.5m Telescope (MAST) for Solar Imaging and Polarimetry

    NASA Astrophysics Data System (ADS)

    Mathew, S. K.

    2009-06-01

    In this article we discuss the design of a new 0.5 m telescope which will be installed at the lake site of Udaipur Solar Observatory (USO), India in the first quarter of 2009. The telescope has an off-axis alt-azimuth design, which will provide a low scattered-light performance. The complete telescope including the control system will be made by AMOS, Belgium. The prototype adaptive-optics system for seeing correction is being developed at USO. The design of two back-end instruments, an echelle-scanning spectrograph capable of observing simultaneously in at least two spectral lines, and an imaging spectrometer based on double Fabry-Pérot etalon, and a polarimeter common for both the instruments is in progress. The scientific objectives, design aspects and the current status of the above instruments is discussed in this paper.

  5. Texas 5-m antenna aperture efficiency doubled from 230-300 GHz with error compensating secondary

    NASA Astrophysics Data System (ADS)

    Mayer, Charles E.; Davis, John H.; Foltz, Heinrich D.

    1991-03-01

    A study to upgrade the high-frequency performance of the University of Texas 5-m millimeter-wave reflector antenna established surface tolerance of the reflector as the limiting factor. The prime focus antenna was converted to a folded Gregorian geometry. The resulting trireflector system was measured holographically at 113 GHz. A machined secondary reflector was fabricated on a highly accurate computer-controlled milling machine. The inverse of the measured surface perturbations of the primary was machined into the secondary reflector. The modification of ray path lengths effectively reduced the surface tolerance of the antenna. Radiometric measurements using a remote transmitter and planets as sources demonstrated an increase in antenna aperture efficiency by more than a factor of two over the frequency range of 230-300 GHz.

  6. Photogrammetry of a 5m Inflatable Space Antenna With Consumer Digital Cameras

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Giersch, Louis R.; Quagliaroli, Jessica M.

    2000-01-01

    This paper discusses photogrammetric measurements of a 5m-diameter inflatable space antenna using four Kodak DC290 (2.1 megapixel) digital cameras. The study had two objectives: 1) Determine the photogrammetric measurement precision obtained using multiple consumer-grade digital cameras and 2) Gain experience with new commercial photogrammetry software packages, specifically PhotoModeler Pro from Eos Systems, Inc. The paper covers the eight steps required using this hardware/software combination. The baseline data set contained four images of the structure taken from various viewing directions. Each image came from a separate camera. This approach simulated the situation of using multiple time-synchronized cameras, which will be required in future tests of vibrating or deploying ultra-lightweight space structures. With four images, the average measurement precision for more than 500 points on the antenna surface was less than 0.020 inches in-plane and approximately 0.050 inches out-of-plane.

  7. Performance of three 4. 5 m dipoles for SSC reference design D

    SciTech Connect

    Dahl, P.; Cottingham, J.; Fernow, R.; Garber, M.; Ghosh, A.; Goodzeit, C.; Greene, A.; Herrera, J.; Kahn, S.; Kelly, E.

    1985-01-01

    Three 4.5 m long dipoles for Reference Design D of the proposed Superconducting Super Collider have been successfully tested. The magnets are cold-iron (and cold bore) 1-in-1 dipoles, wound with current density-graded high homogeneity NbTi cable in a two-layer cos theta coil of 40 mm inner diameter. The coil is prestressed by 15 mm wide stainless steel collars, and mounted in a circular, split iron yoke of 267 mm outer diameter, supported in a cylindrical yoke containment vessel. At 4.5 K the magnets reached a field of about 6.6T with little training, or the short sample limit of the conductor, and in subcooled (2.6 to 2.4 K) liquid, 8T was achieved. The allowed harmonics were close to the predicted values, and the unallowed harmonics small. The sextupole trim coil operated at eight times the required current without training.

  8. Wavefront control of the Large Optics Test and Integration Site (LOTIS) 6.5m Collimator

    SciTech Connect

    West, Steven C.; Bailey, Samuel H.; Burge, James H.; Cuerden, Brian; Hagen, Jeff; Martin, Hubert M.; Tuell, Michael T.

    2010-06-20

    The LOTIS Collimator provides scene projection within a 6.5m diameter collimated beam used for optical testing research in air and vacuum. Diffraction-limited performance (0.4 to 5{mu}m wavelength) requires active wavefront control of the alignment and primary mirror shape. A hexapod corrects secondary mirror alignment using measurements from collimated sources directed into the system with nine scanning pentaprisms. The primary mirror shape is controlled with 104 adjustable force actuators based on figure measurements from a center-of-curvature test. A variation of the Hartmann test measures slopes by monitoring the reflections from 36 small mirrors bonded to the optical surface of the primary mirror. The Hartmann source and detector are located at the f/15 Cassegrain focus. Initial operation has demonstrated a closed-loop 110nmrms wavefront error in ambient air over the 6.5mcollimated beam.

  9. The OVLA 1.5-m primary as a segment for an Extremely Large Telescope?

    NASA Astrophysics Data System (ADS)

    Arnold, L.; Lardière, O.; Dejonghe, J.

    The Optical Very Large Array (OVLA) 1.5 m prototype telescope is under construction at Observatoire de Haute Provence. This telescope features a thin active parabolic f/1.7 mirror, weighting 100 kg/m^2 with the active cell. The meniscus-shaped mirror, made of low-cost ordinary window glass, is 24.1 mm thick and supported by 32 actuators, each ensuring both axial and lateral supporting via a glued triple contact point under the mirror. The active optics system is briefly described, as well as the mirror thermal behaviour and how we plan to correct in situ the related deformations. We discuss the characteristics of this mirror concept (weight, low-cost, thermal behaviour, wind buffeting) of this mirror concept versus its application to ELT primary mirror active segments.

  10. Inhibition of iron corrosion in 0.5 M sulphuric acid by metal cations

    NASA Astrophysics Data System (ADS)

    Sathiyanarayanan, S.; Jeyaprabha, C.; Muralidharan, S.; Venkatachari, G.

    2006-09-01

    Corrosion inhibitors are widely used in acid solutions during pickling and descaling. Mostly organic compounds containing N, O, and S groups are employed as inhibitors. In this study, the inhibition performance of metal cations such as Zn 2+, Mn 2+ and Ce 4+ ions in the concentration range 1-10 × 10 -3 M has been found out. The corrosion behaviour of iron in 0.5 M H 2SO 4 in the presence of metal cations is studied using polarization and impedance methods. It is found that the addition of these metal cations inhibits the corrosion markedly. The inhibition effect is in the following order Ce 4+ ≫ Mn 2+ > Zn 2+.

  11. Construction and testing of the 2.5m mass driver

    NASA Technical Reports Server (NTRS)

    Snow, W. R.; Oneill, G. K.

    1979-01-01

    Presented are the designs used in the construction of the 2.5 m mass driver and the results of the initial testing program. The mass driver consists of equal length sections of acceleration and deceleration each containing 59 drive coils of 13.1 cm caliber. Intermediate energy storage is provided by sector capacitors which are recharged every half cycle by an external power source. The drive coils are individually energized through SCR's with timing supplied by position sensing optical detectors. The drive consists of two phases which operate in quadrature. The initial bucket to be propelled through the mass driver contains two coils of aluminum wire chilled to liquid nitrogen temperatures to momentarily sustain superconducting field intensities. Magnetic flight is generated by eddy current repulsion from six copper guide strips lining the mass driver. Nominal acceleration is 5000 m/sec per sec giving a maximum bucket velocity of 112 m/s.

  12. Enzymatic cyanide degradation by cell-free extract of Rhodococcus UKMP-5M.

    PubMed

    Nallapan Maniyam, Maegala; Sjahrir, Fridelina; Latif Ibrahim, Abdul; Cass, Anthony E G

    2015-01-01

    The cell-free extract of locally isolated Rhodococcus UKMP-5M strain was used as an alternative to develop greener and cost effective cyanide removal technology. The present study aims to assess the viability of the cell-free extract to detoxify high concentrations of cyanide which is measured through the monitoring of protein concentration and specific cyanide-degrading activity. When cyanide-grown cells were subjected to grinding in liquid nitrogen which is relatively an inexpressive and fast cell disruption method, highest cyanide-degrading activity of 0.63 mM min(-1) mg(-1) protein was obtained in comparison to enzymatic lysis and agitation with fine glass beads. The cell-free extracts managed to degrade 80% of 20 mM KCN within 80 min and the rate of cyanide consumption increased linearly as the concentration of protein was raised. In both cases, the addition of co-factor was not required which proved to be advantageous economically. The successful formation of ammonia and formate as endproducts indicated that the degradation of cyanide by Rhodococcus UKMP-5M proceeded via the activity of cyanidase and the resulting non-toxic products are safe for disposal into the environment. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Thus, the utilization of cell-free extracts as an alternative to live microbial in cyanide degradation offers numerous advantageous such as the potential to tolerate and degrade higher concentration of cyanide and total reduction in the overall cost of operation since the requirement for nutrient support is irrelevant. PMID:25723061

  13. Binary Cepheids: Separations and Mass Ratios in 5 M ⊙ Binaries

    NASA Astrophysics Data System (ADS)

    Evans, Nancy Evans; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.; Karovska, Margarita; Tingle, Evan

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ~5 M ⊙—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ⊙. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ⊙ binaries have systematically shorter periods than do 1 M ⊙ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  14. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M {sub ☉} BINARIES

    SciTech Connect

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D. E-mail: heb11@psu.edu

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M {sub ☉}—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M {sub ☉}. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M {sub ☉} binaries have systematically shorter periods than do 1 M {sub ☉} stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple.

  15. Enzymatic cyanide degradation by cell-free extract of Rhodococcus UKMP-5M.

    PubMed

    Nallapan Maniyam, Maegala; Sjahrir, Fridelina; Latif Ibrahim, Abdul; Cass, Anthony E G

    2015-01-01

    The cell-free extract of locally isolated Rhodococcus UKMP-5M strain was used as an alternative to develop greener and cost effective cyanide removal technology. The present study aims to assess the viability of the cell-free extract to detoxify high concentrations of cyanide which is measured through the monitoring of protein concentration and specific cyanide-degrading activity. When cyanide-grown cells were subjected to grinding in liquid nitrogen which is relatively an inexpressive and fast cell disruption method, highest cyanide-degrading activity of 0.63 mM min(-1) mg(-1) protein was obtained in comparison to enzymatic lysis and agitation with fine glass beads. The cell-free extracts managed to degrade 80% of 20 mM KCN within 80 min and the rate of cyanide consumption increased linearly as the concentration of protein was raised. In both cases, the addition of co-factor was not required which proved to be advantageous economically. The successful formation of ammonia and formate as endproducts indicated that the degradation of cyanide by Rhodococcus UKMP-5M proceeded via the activity of cyanidase and the resulting non-toxic products are safe for disposal into the environment. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Thus, the utilization of cell-free extracts as an alternative to live microbial in cyanide degradation offers numerous advantageous such as the potential to tolerate and degrade higher concentration of cyanide and total reduction in the overall cost of operation since the requirement for nutrient support is irrelevant.

  16. Chimera Grid Tools

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  17. Space-based Science Operations Grid Prototype

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Welch, Clara L.; Redman, Sandra

    2004-01-01

    Grid technology is the up and coming technology that is enabling widely disparate services to be offered to users that is very economical, easy to use and not available on a wide basis. Under the Grid concept disparate organizations generally defined as "virtual organizations" can share services i.e. sharing discipline specific computer applications, required to accomplish the specific scientific and engineering organizational goals and objectives. Grids are emerging as the new technology of the future. Grid technology has been enabled by the evolution of increasingly high speed networking. Without the evolution of high speed networking Grid technology would not have emerged. NASA/Marshall Space Flight Center's (MSFC) Flight Projects Directorate, Ground Systems Department is developing a Space-based Science Operations Grid prototype to provide to scientists and engineers the tools necessary to operate space-based science payloads/experiments and for scientists to conduct public and educational outreach. In addition Grid technology can provide new services not currently available to users. These services include mission voice and video, application sharing, telemetry management and display, payload and experiment commanding, data mining, high order data processing, discipline specific application sharing and data storage, all from a single grid portal. The Prototype will provide most of these services in a first step demonstration of integrated Grid and space-based science operations technologies. It will initially be based on the International Space Station science operational services located at the Payload Operations Integration Center at MSFC, but can be applied to many NASA projects including free flying satellites and future projects. The Prototype will use the Internet2 Abilene Research and Education Network that is currently a 10 Gb backbone network to reach the University of Alabama at Huntsville and several other, as yet unidentified, Space Station based

  18. FermiGrid

    SciTech Connect

    Yocum, D.R.; Berman, E.; Canal, P.; Chadwick, K.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; /Fermilab

    2007-05-01

    As one of the founding members of the Open Science Grid Consortium (OSG), Fermilab enables coherent access to its production resources through the Grid infrastructure system called FermiGrid. This system successfully provides for centrally managed grid services, opportunistic resource access, development of OSG Interfaces for Fermilab, and an interface to the Fermilab dCache system. FermiGrid supports virtual organizations (VOs) including high energy physics experiments (USCMS, MINOS, D0, CDF, ILC), astrophysics experiments (SDSS, Auger, DES), biology experiments (GADU, Nanohub) and educational activities.

  19. Grid Architecture 2

    SciTech Connect

    Taft, Jeffrey D.

    2016-01-01

    The report describes work done on Grid Architecture under the auspices of the Department of Electricity Office of Electricity Delivery and Reliability in 2015. As described in the first Grid Architecture report, the primary purpose of this work is to provide stakeholder insight about grid issues so as to enable superior decision making on their part. Doing this requires the creation of various work products, including oft-times complex diagrams, analyses, and explanations. This report provides architectural insights into several important grid topics and also describes work done to advance the science of Grid Architecture as well.

  20. A grid PACS architecture: providing data-centric applications through a grid infrastructure.

    PubMed

    Koutelakis, George V; Lymperopoulos, Dimitrios K

    2007-01-01

    The large growth of medical information and the needs for computing resources for processing of medical images in medical diagnosis procedures demand advanced network solutions in Picture Archiving and Communication Systems (PACS). Grid infrastructure is a new network generation that expands the collaborative environment which is created inside Internet. Grid can meet the above requirements effectively providing PACS with distribution of processing power, storage space and software applications. This paper proposes a new web PACS established in a Grid infrastructure of a Hospital Radiology Department (HRD). A portal platform based on reliable and tried in market products as well as Java-based applications support the implementation of the new Grid PACS architecture. PMID:18003494

  1. Navigation in Grid Space with the NAS Grid Benchmarks

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    We present a navigational tool for computational grids. The navigational process is based on measuring the grid characteristics with the NAS Grid Benchmarks (NGB) and using the measurements to assign tasks of a grid application to the grid machines. The tool allows the user to explore the grid space and to navigate the execution at a grid application to minimize its turnaround time. We introduce the notion of gridscape as a user view of the grid and show how it can be me assured by NGB, Then we demonstrate how the gridscape can be used with two different schedulers to navigate a grid application through a rudimentary grid.

  2. Emerging trends: grid technology in pathology.

    PubMed

    Bueno, Gloria; García-Rojo, Marcial; Déniz, Oscar; Fernández-Carrobles, María del Milagro; Vállez, Noelia; Salido, Jesús; García-González, Jesús

    2012-01-01

    Grid technology has enabled clustering and access to, and interaction among, a wide variety of geographically distributed resources such as supercomputers, storage systems, data sources, instruments as well as special devices and services, realizing network-centric operations. Their main applications include large scale computational and data intensive problems in science and engineering. Grids are likely to have a deep impact on health related applications. Moreover, they seem to be suitable for tissue-based diagnosis. They offer a powerful tool to deal with current challenges in many biomedical domains involving complex anatomical and physiological modeling of structures from images or large image databases assembling and analysis. This chapter analyzes the general structures and functions of a Grid environment implemented for tissue-based diagnosis on digital images. Moreover, it presents a Grid middleware implemented by the authors for diagnostic pathology applications. The chapter is a review of the work done as part of the European COST project EUROTELEPATH. PMID:22925801

  3. metabotropic glutamate receptor 5 (mGluR5) has a critical role in inhibitory learning

    PubMed Central

    Xu, Jian; Zhu, Yongling; Contractor, Anis; Heinemann, Stephen F.

    2009-01-01

    The mechanisms that contribute to the extinction of previously acquired memories are not well understood. These processes, often referred to as inhibitory learning, are thought to be parallel learning mechanisms that require a reacquisition of new information, and suppression of previously acquired experiences in order to adapt to novel situations. Using newly generated metabotropic glutamate receptor 5 (mGluR5) knockout mice we investigated the role of mGluR5 in the acquisition and reversal of an associative conditioned task and a spatial reference task. We found that acquisition of fear conditioning is partially impaired in mice lacking mGluR5. More markedly, we found that extinction of both contextual and auditory fear was completely abolished in mGluR5 knockout mice. In the Morris Water Maze test (MWM), mGluR5 knockout mice exhibited mild deficits in the rate of acquisition of the regular water maze task, but again had significant deficits in the reversal task, despite overall spatial memory being intact. Taken together these results demonstrate that mGluR5 is critical to the function of neural circuits that are required for inhibitory learning mechanisms, and suggest that targeting metabotropic receptors may be useful in treating psychiatric disorders in which aversive memories are inappropriately retained. PMID:19321764

  4. MuSICa image slicer prototype at 1.5-m GREGOR solar telescope

    NASA Astrophysics Data System (ADS)

    Calcines, A.; López, R. L.; Collados, M.; Vega Reyes, N.

    2014-07-01

    Integral Field Spectroscopy is an innovative technique that is being implemented in the state-of-the-art instruments of the largest night-time telescopes, however, it is still a novelty for solar instrumentation. A new concept of image slicer, called MuSICa (Multi-Slit Image slicer based on collimator-Camera), has been designed for the integral field spectrograph of the 4-m European Solar Telescope. This communication presents an image slicer prototype of MuSICa for GRIS, the spectrograph of the 1.5-m GREGOR solar telescope located at the Observatory of El Teide. MuSICa at GRIS reorganizes a 2-D field of view of 24.5 arcsec into a slit of 0.367 arcsec width by 66.76 arcsec length distributed horizontally. It will operate together with the TIP-II polarimeter to offer high resolution integral field spectropolarimetry. It will also have a bidimensional field of view scanning system to cover a field of view up to 1 by 1 arcmin.

  5. In situ aluminization of the MMT 6.5m primary mirror

    NASA Astrophysics Data System (ADS)

    Clark, D.; Kindred, W.; Williams, J. T.

    2006-06-01

    In May, 2000 the MMT Conversion was dedicated. Space limitations on the summit of Mt. Hopkins, AZ and limited financial resources dictated in-situ aluminization of the φ 6.5m primary mirror. Some of the attendant challenges successfully addressed in the course of accomplishing that task are described. For example: a 22 metric ton, φ7m vacuum head had to be lifted 25m before being lowered through the horizon-pointing telescope truss (clearing by 16 mm), then secured to the mirror cell that serves as a vacuum vessel; dirty mirror-support hardware integral to the cell required isolation of the process volume operating at 10 -6mbar; extensive modeling of source geometry was needed to achieve uniformity goals at very short source-substrate distances; and a cost-effective 75kW DC filament voltage source using commercially-available arc welders was developed that allowed simultaneous firing of 200 evaporation sources. Details of design and construction of the evaporation system are given along with techniques and results of the successful coating in November 2001 and September 2005.

  6. A Φ 3.5m diameter Sic telescope for Herschel mission

    NASA Astrophysics Data System (ADS)

    Sein, Emmanuel; Toulemont, Yves; Safa, Frederic; Duran, Michel; Deny, Pierre; de Chambure, Daniel; Passvogel, Thomas; Pilbratt, Goeran L.

    2003-03-01

    Since ten years ASTRIUM has developed sintered Silicon Carbide (SiC) technology for space applications. Its unique thermo-mechanical properties, associated with its polishing capability, make SiC an ideal material for building ultra-stable lightweight space based telescopes or mirrors. SiC is a cost effective alternative to Beryllium and the ultra-lighweighted ULE. In Complememt to the material manufacturing process, ASTRIUM has developed several assembly techniques (bolting, brazing, bonding) for manufacturing large and complex SiC assemblies. This technology is now perfectly mature and mastered. SiC is baselined for most of the telescopes that are developed by ASTRIUM. SiC has been identified as the most suitable material for manufacturing very large crygenic telescopes. In this paper we present the development of Φ 3.5 m telescope for Herschel Mission. Herschel main goal is to study how the first stars and galaxies were formed and evolved. The Herschel Space telescope, using silicon carbide technology will be the largest space imagery telescope ever launched. The Herschel telescope will weight 300 kg rather than the 1.5 tons required with standard technology. The Herschel telescope is to be delivered in 2005 for a launch planned for 2007.

  7. Conceptual design of a 5-m terahertz telescope at Dome A

    NASA Astrophysics Data System (ADS)

    Yang, Dehua; Wang, Hai; Zhang, Yong; Chen, Yi; Zhou, Guohua; Cheng, Jingquan; Li, Guoping

    2012-09-01

    A 5-meter terahertz telescope is proposed by the Chinese Center for Antarctic Astronomy (CCAA) for the East Antarctica site of the Dome A plateau. The Dome A 5-m terahertz telescope (DATE 5) will be operated at sub-millimeter waveband taking the unique advantage of the transparent atmospheric windows between 200 and 350 μm wavelengths at Dome A. A preliminary design has been conducted according to the given technical requirements and the special environmental conditions at Dome A. A symmetric R-C Cassegrain optical system is designed for the telescope, with a primary f-ratio of 0.4 and a wide field of view of 10 arcmin. The magnification of the sub-reflector is 9.4, leading to the final focal ratio of 3.76 and the focus 0.2 m below the vertex of the primary reflector. To ensure surface accuracy of the reflectors precise as small as 10 um RMS, we consider using Carbon Fiber Reinforced Plastics (CFRP) to build the backup structure (BUS) of the primary reflector and the sub-reflector itself. An alt-azimuthal mounting is adopted and a tall base structure beneath the telescope is set up to lift the telescope above the low atmosphere turbulent layer. All the mechanics, as well as control electronics, are strictly designed to fit the lower temperature operation in the Dome A environment. This paper is to generally present the mentioned systematic optical, structural and electronic design of the DATE 5 telescope.

  8. Test results from two 5m two-in-one superconducting magnets for the SSC

    SciTech Connect

    Cottingham, J.G.; Dahl, P.F.; Fernow, R.C.; Garber, M.; Ghosh, A.K.; Goodzeit, C.L.; Greene, A.F.; Herrera, J.C.; Kahn, S.A.; Kelly, E.R.

    1984-01-01

    Two 5m long superconducting dipole magnets with specifications similar to the reference design for the proposed Superconducting Super Collider have been successfully tested. The cos theta coils of the magnets were made from two layers of standard CBA/Tevatron NbTi superconductor, keystoned to an angle of 2.8 degrees. The inner diameter of the inner layer was 3.2 cm. The ends of the coils were flared to increase the minimum bending radius so that future magnets can be wound from prereacted Nb/sub 3/Sn. The windings of the two-aperture magnets were clamped in a two-in-one iron yoke with a tensioned stainless steel shell. The fields of the two apertures were closely coupled, since the flux in one aperture returned through the other. The inner and outer layers of the coil were powered separately so that their short-sample limits would be reached simultaneously. With minimal training the magnets reached a central field of 6 T, the short sample limit of the conductor at the 4.5 K temperature of the liquid helium bath. At 2.6 K, a central field in excess of 7 T was reached, again with minimal training. The measured values of the allowed sextupole and decapole harmonics are within 10% of the calculated values and the non-allowed harmonics are all small or zero, as predicted. 3 references, 6 figures.

  9. Grid enabled Service Support Environment - SSE Grid

    NASA Astrophysics Data System (ADS)

    Goor, Erwin; Paepen, Martine

    2010-05-01

    The SSEGrid project is an ESA/ESRIN project which started in 2009 and is executed by two Belgian companies, Spacebel and VITO, and one Dutch company, Dutch Space. The main project objectives are the introduction of a Grid-based processing on demand infrastructure at the Image Processing Centre for earth observation products at VITO and the inclusion of Grid processing services in the Service Support Environment (SSE) at ESRIN. The Grid-based processing on demand infrastructure is meant to support a Grid processing on demand model for Principal Investigators (PI) and allow the design and execution of multi-sensor applications with geographically spread data while minimising the transfer of huge volumes of data. In the first scenario, 'support a Grid processing on demand model for Principal Investigators', we aim to provide processing power close to the EO-data at the processing and archiving centres. We will allow a PI (non-Grid expert user) to upload his own algorithm, as a process, and his own auxiliary data from the SSE Portal and use them in an earth observation workflow on the SSEGrid Infrastructure. The PI can design and submit workflows using his own processes, processes made available by VITO/ESRIN and possibly processes from other users that are available on the Grid. These activities must be user-friendly and not requiring detailed knowledge about the underlying Grid middleware. In the second scenario we aim to design, implement and demonstrate a methodology to set up an earth observation processing facility, which uses large volumes of data from various geographically spread sensors. The aim is to provide solutions for problems that we face today, like wasting bandwidth by copying large volumes of data to one location. We will avoid this by processing the data where they are. The multi-mission Grid-based processing on demand infrastructure will allow developing and executing complex and massive multi-sensor data (re-)processing applications more

  10. Data processing of high-rate low-voltage distribution grid recordings for smart grid monitoring and analysis

    NASA Astrophysics Data System (ADS)

    Maaß, Heiko; Cakmak, Hüseyin Kemal; Bach, Felix; Mikut, Ralf; Harrabi, Aymen; Süß, Wolfgang; Jakob, Wilfried; Stucky, Karl-Uwe; Kühnapfel, Uwe G.; Hagenmeyer, Veit

    2015-12-01

    Power networks will change from a rigid hierarchic architecture to dynamic interconnected smart grids. In traditional power grids, the frequency is the controlled quantity to maintain supply and load power balance. Thereby, high rotating mass inertia ensures for stability. In the future, system stability will have to rely more on real-time measurements and sophisticated control, especially when integrating fluctuating renewable power sources or high-load consumers like electrical vehicles to the low-voltage distribution grid.

  11. The GridKa Tier-1 Computing Center within the ALICE Grid Framework

    NASA Astrophysics Data System (ADS)

    Park, WooJin J.; Christopher, Jung; Heiss, Andreas; Petzold, Andreas; Schwarz, Kilian

    2014-06-01

    The GridKa computing center, hosted by Steinbuch Centre for Computing at the Karlsruhe Institute for Technology (KIT) in Germany, is serving as the largest Tier-1 center used by the ALICE collaboration at the LHC. In 2013, GridKa provides 30k HEPSPEC06, 2.7 PB of disk space, and 5.25 PB of tape storage to ALICE. The 10Gbit/s network connections from GridKa to CERN, several Tier-1 centers and the general purpose network are used by ALICE intensively. In 2012 a total amount of ~1 PB was transferred to and from GridKa. As Grid framework, AliEn (ALICE Environment) is being used to access the resources, and various monitoring tools including the MonALISA (MONitoring Agent using a Large Integrated Services Architecture) are always running to alert in case of any problem. GridKa on-call engineers provide 24/7 support to guarantee minimal loss of availability of computing and storage resources in case of hardware or software problems. We introduce the GridKa Tier-1 center from the viewpoint of ALICE services.

  12. Grid cells and cortical representation.

    PubMed

    Moser, Edvard I; Roudi, Yasser; Witter, Menno P; Kentros, Clifford; Bonhoeffer, Tobias; Moser, May-Britt

    2014-07-01

    One of the grand challenges in neuroscience is to comprehend neural computation in the association cortices, the parts of the cortex that have shown the largest expansion and differentiation during mammalian evolution and that are thought to contribute profoundly to the emergence of advanced cognition in humans. In this Review, we use grid cells in the medial entorhinal cortex as a gateway to understand network computation at a stage of cortical processing in which firing patterns are shaped not primarily by incoming sensory signals but to a large extent by the intrinsic properties of the local circuit.

  13. Effect of 10.5 M Aqueous Urea on Helicobacter pylori Urease: A Molecular Dynamics Study.

    PubMed

    Minkara, Mona S; Weaver, Michael N; Merz, Kenneth M

    2015-07-01

    The effects of a 10.5 M solution of aqueous urea on Helicobacter pylori urease were investigated over the course of a 500 ns molecular dynamics (MD) simulation. The enzyme was solvated by 25321 water molecules, and additionally, 4788 urea molecules were added to the solution. Although concentrated urea solutions are known laboratory denaturants, the protein secondary structure is retained throughout the simulation largely because of the short simulation time (urea denaturation occurs on the millisecond time scale). The relatively constant solvent accessible surface area over the last 400 ns of the simulation further confirms the overall lack of denaturation. The wide-open flap state observed previously in Klebsiella areogenes urease [Roberts, B. P., et al. (2012) J. Am. Chem. Soc. 134, 9934] and H. pylori [Minkara, M. S., et al. (2014) J. Chem. Theory Comput. 10, 1852-1862] was also identified in this aqueous urea simulation. Over the course of the trajectory, we were able to observe urea molecules entering the active site in proportions related to the extent of opening of the active site-covering flap. Furthermore, urea molecules were observed to approach the pentacoordinate Ni(2+) ion in position to bind in a manner consistent with the proposed initial coordination step of the hydrolysis mechanism. We also observed a specific and unique pattern in the regions of the protein with a high root-mean-square fluctuation (rmsf). The high-rmsf regions in the β-chain form a horseshoelike arrangement surrounding the active site-covering flap on the surface of the protein. We hypothesize that the function of these regions is to both attract and shuttle urea toward the loop of the active site-covering flap before entry into the cavity. Indeed, urea is observed to interact with these regions for extended periods of simulation time before active site ingress.

  14. Conceptual design studies of the 5 m terahertz antenna for Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Yang, Ji; Zuo, Ying-Xi; Lou, Zheng; Cheng, Jing-Quan; Zhang, Qi-Zhou; Shi, Sheng-Cai; Huang, Jia-Sheng; Yao, Qi-Jun; Wang, Zhong

    2013-12-01

    As the highest, coldest and driest place in Antarctica, Dome A provides exceptionally good observing conditions for ground-based observations over terahertz wavebands. The 5 m Dome A Terahertz Explorer (DATE5) has been proposed to explore new terahertz windows, primarily over wavelengths between 350 and 200 μm. DATE5 will be an open-air, fully-steerable telescope that can function by unmanned operation with remote control. The telescope will be able to endure the harsh polar environment, including high altitude, very low temperature and very low air pressure. The unique specifications, including high accuracies for surface shape and pointing and fully automatic year-around remote operation, along with a stringent limit on the periods of on-site assembly, testing and maintenance, bring a number of challenges to the design, construction, assembly and operation of this telescope. This paper introduces general concepts related to the design of the DATE5 antenna. Beginning from an overview of the environmental and operational limitations, the design specifications and requirements of the DATE5 antenna are listed. From these, major aspects on the conceptual design studies, including the antenna optics, the backup structure, the panels, the subreflector, the mounting and the antenna base structure, are explained. Some critical issues of performance are justified through analyses that use computational fluid dynamics, thermal analysis and de-icing studies, and the proposed approaches for test operation and on-site assembly. Based on these studies, we conclude that the specifications of the DATE5 antenna can generally be met by using enhanced technological approaches.

  15. Solar cell grid patterns

    NASA Technical Reports Server (NTRS)

    Yasui, R. K.; Berman, P. A. (Inventor)

    1976-01-01

    A grid pattern is described for a solar cell of the type which includes a semiconductive layer doped to a first polarity and a top counter-doped layer. The grid pattern comprises a plurality of concentric conductive grids of selected geometric shapes which are centered about the center of the exposed active surface of the counter-doped layer. Connected to the grids is one or more conductors which extend to the cell's periphery. For the pattern area, the grids and conductors are arranged in the pattern to minimize the maximum distance which any injected majority carriers have to travel to reach any of the grids or conductors. The pattern has a multiaxes symmetry with respect to the cell center to minimize the maximum temperature differentials between points on the cell surface and to provide a more uniform temperature distribution across the cell face.

  16. Challenges facing production grids

    SciTech Connect

    Pordes, Ruth; /Fermilab

    2007-06-01

    Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

  17. A grid amplifier

    NASA Technical Reports Server (NTRS)

    Kim, Moonil; Weikle, Robert M., II; Hacker, Jonathan B.; Delisio, Michael P.; Rutledge, David B.; Rosenberg, James J.; Smith, R. P.

    1991-01-01

    A 50-MESFET grid amplifier is reported that has a gain of 11 dB at 3.3 GHz. The grid isolates the input from the output by using vertical polarization for the input beam and horizontal polarization for the transmitted output beam. The grid unit cell is a two-MESFET differential amplifier. A simple calibration procedure allows the gain to be calculated from a relative power measurement. This grid is a hybrid circuit, but the structure is suitable for fabrication as a monolithic wafer-scale integrated circuit, particularly at millimeter wavelengths.

  18. Enhanced Elliptic Grid Generation

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2007-01-01

    An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically. "Elliptic grid generation" signifies generation of generalized curvilinear coordinate grids through solution of elliptic partial differential equations (PDEs). Usually, such grids are fitted to bounding bodies and used in numerical solution of other PDEs like those of fluid flow, heat flow, and electromagnetics. Such a grid is smooth and has continuous first and second derivatives (and possibly also continuous higher-order derivatives), grid lines are appropriately stretched or clustered, and grid lines are orthogonal or nearly so over most of the grid domain. The source terms in the grid-generating PDEs (hereafter called "defining" PDEs) make it possible for the grid to satisfy requirements for clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions or in the vicinity of specific lines in two dimensions. The grid parameters in question are decay parameters that appear in the source terms of the inhomogeneous defining PDEs. The decay parameters are characteristic lengths in exponential- decay factors that express how the influences of the boundaries decrease with distance from the boundaries. These terms govern the rates at which distance between adjacent grid lines change with distance from nearby boundaries. Heretofore, users have arbitrarily specified decay parameters. However, the characteristic lengths are coupled with the strengths of the source terms, such that arbitrary specification could lead to conflicts among parameter values. Moreover, the manual insertion of decay parameters is cumbersome for static grids and infeasible for dynamically changing grids. In the present method, manual insertion and user specification of decay parameters are neither required nor allowed. Instead, the decay parameters are

  19. CARMENES: First Results from the CAHA 3.5m Telescope

    NASA Astrophysics Data System (ADS)

    Quirrenbach, Andreas; Consortium, CARMENES

    2015-12-01

    CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs) is a next-generation instrument currently undergoing commissioning at the 3.5m telescope at the Calar Alto Observatory. It has been developed by a consortium of eleven Spanish and German institutions (see also Quirrenbach et al. 2010; 2012; 2014). CARMENES will conduct a 600-night exoplanet survey targeting ~300 M dwarfs. An important and unique feature of the CARMENES instrument is that it consists of two separate échelle spectrographs, which together cover the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000. The spectrographs are fed by fibers from the Cassegrain focus of the telescope.The main scientific objective of the CARMENES project is to carry out a survey of late-type main sequence stars with the goal of detecting low-mass planets in their habitable zones (HZs). In the focus of the project are very cool stars later than spectral type M4 and moderately active stars. We aim at being able to detect a 2M⊕ planet in the HZ of an M5 star. A long-term radial velocity precision of 1ms-1 per measurement will permit to attain such goals. For stars later than M4 (M < 0.25M⊙), such precision will yield detections of super-Earths of 5M⊕ and smaller inside the entire width of the HZ. The CARMENES survey will thus provide a comprehensive overview of planetary systems around nearby Northern M dwarfs. By reaching into the realm of Earth-like planets, it will provide a treasure trove for follow-up studies probing their habitability.Quirrenbach, A., Amado, P.J., Mandel, H., et al. (2010). CARMENES: Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs. In Ground-based and airborne instrumentation for astronomy III. Eds. McLean, I.S., Ramsay, S.K., & Takami, H., SPIE 773513Quirrenbach, A., Amado, P.J., Seifert, W., et al. (2012). CARMENES. I: Instrument

  20. ISOGA: Integrated Services Optical Grid Architecture for Emerging E-Science Collaborative Applications

    SciTech Connect

    Oliver Yu

    2008-11-28

    This final report describes the accomplishments in the ISOGA (Integrated Services Optical Grid Architecture) project. ISOGA enables efficient deployment of existing and emerging collaborative grid applications with increasingly diverse multimedia communication requirements over a wide-area multi-domain optical network grid; and enables collaborative scientists with fast retrieval and seamless browsing of distributed scientific multimedia datasets over a wide-area optical network grid. The project focuses on research and development in the following areas: the polymorphic optical network control planes to enable multiple switching and communication services simultaneously; the intelligent optical grid user-network interface to enable user-centric network control and monitoring; and the seamless optical grid dataset browsing interface to enable fast retrieval of local/remote dataset for visualization and manipulation.

  1. Grids, virtualization, and clouds at Fermilab

    DOE PAGES

    Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.

    2014-06-11

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture andmore » the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.« less

  2. Grids, virtualization, and clouds at Fermilab

    SciTech Connect

    Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.

    2014-06-11

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.

  3. Optimal response to attacks on the open science grids.

    SciTech Connect

    Altunay, M.; Leyffer, S.; Linderoth, J. T.; Xie, Z.

    2011-01-01

    Cybersecurity is a growing concern, especially in open grids, where attack propagation is easy because of prevalent collaborations among thousands of users and hundreds of institutions. The collaboration rules that typically govern large science experiments as well as social networks of scientists span across the institutional security boundaries. A common concern is that the increased openness may allow malicious attackers to spread more readily around the grid. We consider how to optimally respond to attacks in open grid environments. To show how and why attacks spread more readily around the grid, we first discuss how collaborations manifest themselves in the grids and form the collaboration network graph, and how this collaboration network graph affects the security threat levels of grid participants. We present two mixed-integer program (MIP) models to find the optimal response to attacks in open grid environments, and also calculate the threat level associated with each grid participant. Given an attack scenario, our optimal response model aims to minimize the threat levels at unaffected participants while maximizing the uninterrupted scientific production (continuing collaborations). By adopting some of the collaboration rules (e.g., suspending a collaboration or shutting down a site), the model finds optimal response to subvert an attack scenario.

  4. Geometric grid generation

    NASA Technical Reports Server (NTRS)

    Ives, David

    1995-01-01

    This paper presents a highly automated hexahedral grid generator based on extensive geometrical and solid modeling operations developed in response to a vision of a designer-driven one day turnaround CFD process which implies a designer-driven one hour grid generation process.

  5. Security for grids

    SciTech Connect

    Humphrey, Marty; Thompson, Mary R.; Jackson, Keith R.

    2005-08-14

    Securing a Grid environment presents a distinctive set of challenges. This paper groups the activities that need to be secured into four categories: naming and authentication; secure communication; trust, policy, and authorization; and enforcement of access control. It examines the current state of the art in securing these processes and introduces new technologies that promise to meet the security requirements of Grids more completely.

  6. Java Parallel Secure Stream for Grid Computing

    SciTech Connect

    Chen, Jie; Akers, Walter; Chen, Ying; Watson, William

    2001-09-01

    The emergence of high speed wide area networks makes grid computing a reality. However grid applications that need reliable data transfer still have difficulties to achieve optimal TCP performance due to network tuning of TCP window size to improve the bandwidth and to reduce latency on a high speed wide area network. This paper presents a pure Java package called JPARSS (Java Par-allel Secure Stream) that divides data into partitions that are sent over several parallel Java streams simultaneously and allows Java or Web applications to achieve optimal TCP performance in a gird environment without the necessity of tuning the TCP window size. Several experimental results are provided to show that using parallel stream is more effective than tuning TCP window size. In addi-tion X.509 certificate based single sign-on mechanism and SSL based connection establishment are integrated into this package. Finally a few applications using this package will be discussed.

  7. Data Grid Implementations

    SciTech Connect

    Moore, Reagan W.; Studham, Ronald S.; Rajasekar, Arcot; Watson, Chip; Stockinger, Heinz; Kunszt, Peter; Charlie Catlett and Ian Foster

    2002-02-27

    Data grids link distributed, heterogeneous storage resources into a coherent data management system. From a user perspective, the data grid provides a uniform name space across the underlying storage systems, while supporting retrieval and storage of files. In the high energy physics community, at least six data grids have been implemented for the storage and distribution of experimental data. Data grids are also being used to support projects as diverse as digital libraries (National Library of Medicine Visible Embryo project), federation of multiple astronomy sky surveys (NSF National Virtual Observatory project), and integration of distributed data sets (Long Term Ecological Reserve). Data grids also form the core interoperability mechanisms for creating persistent archives, in which data collections are migrated to new technologies over time. The ability to provide a uniform name space across multiple administration domains is becoming a critical component of national-scale, collaborative projects.

  8. Transforming Power Grid Operations

    SciTech Connect

    Huang, Zhenyu; Guttromson, Ross T.; Nieplocha, Jarek; Pratt, Robert G.

    2007-04-15

    While computation is used to plan, monitor, and control power grids, some of the computational technologies now used are more than a hundred years old, and the complex interactions of power grid components impede real-time operations. Thus it is hard to speed up “state estimation,” the procedure used to estimate the status of the power grid from measured input. State estimation is the core of grid operations, including contingency analysis, automatic generation control, and optimal power flow. How fast state estimation and contingency analysis are conducted (currently about every 5 minutes) needs to be increased radically so the analysis of contingencies is comprehensive and is conducted in real time. Further, traditional state estimation is based on a power flow model and only provides a static snapshot—a tiny piece of the state of a large-scale dynamic machine. Bringing dynamic aspects into real-time grid operations poses an even bigger challenge. Working with the latest, most advanced computing techniques and hardware, researchers at Pacific Northwest National Laboratory (PNNL) intend to transform grid operations by increasing computational speed and improving accuracy. Traditional power grid computation is conducted on single PC hardware platforms. This article shows how traditional power grid computation can be reformulated to take advantage of advanced computing techniques and be converted to high-performance computing platforms (e.g., PC clusters, reconfigurable hardware, scalable multicore shared memory computers, or multithreaded architectures). The improved performance is expected to have a huge impact on how power grids are operated and managed and ultimately will lead to more reliability and better asset utilization to the power industry. New computational capabilities will be tested and demonstrated on the comprehensive grid operations platform in the Electricity Infrastructure Operations Center, which is a newly commissioned PNNL facility for

  9. Networks.

    ERIC Educational Resources Information Center

    Cerf, Vinton G.

    1991-01-01

    The demands placed on the networks transporting the information and knowledge generated by the increased diversity and sophistication of computational machinery are described. What is needed to support this increased flow, the structures already in place, and what must be built are topics of discussion. (KR)

  10. The open science grid

    SciTech Connect

    Pordes, R.; /Fermilab

    2004-12-01

    The U.S. LHC Tier-1 and Tier-2 laboratories and universities are developing production Grids to support LHC applications running across a worldwide Grid computing system. Together with partners in computer science, physics grid projects and active experiments, we will build a common national production grid infrastructure which is open in its architecture, implementation and use. The Open Science Grid (OSG) model builds upon the successful approach of last year's joint Grid2003 project. The Grid3 shared infrastructure has for over eight months provided significant computational resources and throughput to a range of applications, including ATLAS and CMS data challenges, SDSS, LIGO, and biology analyses, and computer science demonstrators and experiments. To move towards LHC-scale data management, access and analysis capabilities, we must increase the scale, services, and sustainability of the current infrastructure by an order of magnitude or more. Thus, we must achieve a significant upgrade in its functionalities and technologies. The initial OSG partners will build upon a fully usable, sustainable and robust grid. Initial partners include the US LHC collaborations, DOE & NSF Laboratories and Universities & Trillium Grid projects. The approach is to federate with other application communities in the U.S. to build a shared infrastructure open to other sciences and capable of being modified and improved to respond to needs of other applications, including CDF, D0, BaBar, and RHIC experiments. We describe the application-driven, engineered services of the OSG, short term plans and status, and the roadmap for a consortium, its partnerships and national focus.

  11. Trends in life science grid: from computing grid to knowledge grid

    PubMed Central

    Konagaya, Akihiko

    2006-01-01

    Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community. PMID:17254294

  12. Grid Connected Functionality

    DOE Data Explorer

    Baker, Kyri; Jin, Xin; Vaidynathan, Deepthi; Jones, Wesley; Christensen, Dane; Sparn, Bethany; Woods, Jason; Sorensen, Harry; Lunacek, Monte

    2016-08-04

    Dataset demonstrating the potential benefits that residential buildings can provide for frequency regulation services in the electric power grid. In a hardware-in-the-loop (HIL) implementation, simulated homes along with a physical laboratory home are coordinated via a grid aggregator, and it is shown that their aggregate response has the potential to follow the regulation signal on a timescale of seconds. Connected (communication-enabled), devices in the National Renewable Energy Laboratory's (NREL's) Energy Systems Integration Facility (ESIF) received demand response (DR) requests from a grid aggregator, and the devices responded accordingly to meet the signal while satisfying user comfort bounds and physical hardware limitations.

  13. GridWise Standards Mapping Overview

    SciTech Connect

    Bosquet, Mia L.

    2004-04-01

    ''GridWise'' is a concept of how advanced communications, information and controls technology can transform the nation's energy system--across the spectrum of large scale, central generation to common consumer appliances and equipment--into a collaborative network, rich in the exchange of decision making information and an abundance of market-based opportunities (Widergren and Bosquet 2003) accompanying the electric transmission and distribution system fully into the information and telecommunication age. This report summarizes a broad review of standards efforts which are related to GridWise--those which could ultimately contribute significantly to advancements toward the GridWise vision, or those which represent today's current technological basis upon which this vision must build.

  14. Job Scheduling in a Heterogeneous Grid Environment

    NASA Technical Reports Server (NTRS)

    Shan, Hong-Zhang; Smith, Warren; Oliker, Leonid; Biswas, Rupak

    2004-01-01

    Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.

  15. Job scheduling in a heterogenous grid environment

    SciTech Connect

    Oliker, Leonid; Biswas, Rupak; Shan, Hongzhang; Smith, Warren

    2004-02-11

    Computational grids have the potential for solving large-scale scientific problems using heterogeneous and geographically distributed resources. However, a number of major technical hurdles must be overcome before this potential can be realized. One problem that is critical to effective utilization of computational grids is the efficient scheduling of jobs. This work addresses this problem by describing and evaluating a grid scheduling architecture and three job migration algorithms. The architecture is scalable and does not assume control of local site resources. The job migration policies use the availability and performance of computer systems, the network bandwidth available between systems, and the volume of input and output data associated with each job. An extensive performance comparison is presented using real workloads from leading computational centers. The results, based on several key metrics, demonstrate that the performance of our distributed migration algorithms is significantly greater than that of a local scheduling framework and comparable to a non-scalable global scheduling approach.

  16. Grid Computing Education Support

    SciTech Connect

    Steven Crumb

    2008-01-15

    The GGF Student Scholar program enabled GGF the opportunity to bring over sixty qualified graduate and under-graduate students with interests in grid technologies to its three annual events over the three-year program.

  17. Space Development Grid Portal

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2004-01-01

    This viewgraph presentation provides information on the development of a portal to provide secure and distributed grid computing for Payload Operations Integrated Center and Mission Control Center ground services.

  18. Implementing Production Grids

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Ziobarth, John (Technical Monitor)

    2002-01-01

    We have presented the essence of experience gained in building two production Grids, and provided some of the global context for this work. As the reader might imagine, there were a lot of false starts, refinements to the approaches and to the software, and several substantial integration projects (SRB and Condor integrated with Globus) to get where we are today. However, the point of this paper is to try and make it substantially easier for others to get to the point where Information Power Grids (IPG) and the DOE Science Grids are today. This is what is needed in order to move us toward the vision of a common cyber infrastructure for science. The author would also like to remind the readers that this paper primarily represents the actual experiences that resulted from specific architectural and software choices during the design and implementation of these two Grids. The choices made were dictated by the criteria laid out in section 1. There is a lot more Grid software available today that there was four years ago, and various of these packages are being integrated into IPG and the DOE Grids. However, the foundation choices of Globus, SRB, and Condor would not be significantly different today than they were four years ago. Nonetheless, if the GGF is successful in its work - and we have every reason to believe that it will be - then in a few years we will see that the 28 functions provided by these packages will be defined in terms of protocols and MIS, and there will be several robust implementations available for each of the basic components, especially the Grid Common Services. The impact of the emerging Web Grid Services work is not yet clear. It will likely have a substantial impact on building higher level services, however it is the opinion of the author that this will in no way obviate the need for the Grid Common Services. These are the foundation of Grids, and the focus of almost all of the operational and persistent infrastructure aspects of Grids.

  19. Grid in Geosciences

    NASA Astrophysics Data System (ADS)

    Petitdidier, Monique; Schwichtenberg, Horst

    2010-05-01

    The worldwide Earth science community covers a mosaic of disciplines and players such as academia, industry, national surveys, international organizations, and so forth. It provides a scientific basis for addressing societal issues, which require that the Earth science community utilize massive amounts of data, both in real and remote time. This data is usually distributed among many different organizations and data centers. These facts, the utilization of massive, distributed data amounts, explain the interest of the Earth science community for Grid technology, also noticeable by the variety of applications ported and tools developed. In parallel to the participation in EGEE, other projects involving ES disciplines were or have been carried out as related projects to EGEE (Enabling Grids for E-sciencE) such as CYCLOPS, SEEGrid, EELA2, EUASIA or outside e.g., in the framework of WGISS/CEOS. Numerous applications in atmospheric chemistry, meteorology, seismology, hydrology, pollution, climate and biodiversity were deployed successfully on Grid. In order to fulfill requirements of risk management, several prototype applications have been deployed using OGC (Open geospatial Consortium) components with Grid middleware. Examples are in hydrology for flood or Black Sea Catchment monitoring, and in fire monitoring. Meteorological, pollution and climate applications are based on meteorological models ported on Grid such as MM5 (Mesoscale Model), WRF (Weather Research and Forecasting), RAMS (Regional Atmospheric Modeling System) or CAM (Community Atmosphere Model). Seismological applications on Grid are numerous in locations where their occurrence is important and computer resources too small; then interfaces and gateways have been developed to facilitate the access to data and specific software and avoid work duplication. A portal has been deployed for commercial seismological software, Geocluster, for academic users. In this presentation examples of such applications will

  20. Exploring Hypersonic, Unstructured-Grid Issues through Structured Grids

    NASA Technical Reports Server (NTRS)

    Mazaheri, Ali R.; Kleb, Bill

    2007-01-01

    Pure-tetrahedral unstructured grids have been shown to produce asymmetric heat transfer rates for symmetric problems. Meanwhile, two-dimensional structured grids produce symmetric solutions and as documented here, introducing a spanwise degree of freedom to these structured grids also yields symmetric solutions. The effects of grid skewness and other perturbations of structured-grids are investigated to uncover possible mechanisms behind the unstructured-grid solution asymmetries. By using controlled experiments around a known, good solution, the effects of particular grid pathologies are uncovered. These structured-grid experiments reveal that similar solution degradation occurs as for unstructured grids, especially for heat transfer rates. Non-smooth grids within the boundary layer is also shown to produce large local errors in heat flux but do not affect surface pressures.

  1. Near-Body Grid Adaption for Overset Grids

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Pulliam, Thomas H.

    2016-01-01

    A solution adaption capability for curvilinear near-body grids has been implemented in the OVERFLOW overset grid computational fluid dynamics code. The approach follows closely that used for the Cartesian off-body grids, but inserts refined grids in the computational space of original near-body grids. Refined curvilinear grids are generated using parametric cubic interpolation, with one-sided biasing based on curvature and stretching ratio of the original grid. Sensor functions, grid marking, and solution interpolation tasks are implemented in the same fashion as for off-body grids. A goal-oriented procedure, based on largest error first, is included for controlling growth rate and maximum size of the adapted grid system. The adaption process is almost entirely parallelized using MPI, resulting in a capability suitable for viscous, moving body simulations. Two- and three-dimensional examples are presented.

  2. Using Grid Benchmarks for Dynamic Scheduling of Grid Applications

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Hood, Robert

    2003-01-01

    Navigation or dynamic scheduling of applications on computational grids can be improved through the use of an application-specific characterization of grid resources. Current grid information systems provide a description of the resources, but do not contain any application-specific information. We define a GridScape as dynamic state of the grid resources. We measure the dynamic performance of these resources using the grid benchmarks. Then we use the GridScape for automatic assignment of the tasks of a grid application to grid resources. The scalability of the system is achieved by limiting the navigation overhead to a few percent of the application resource requirements. Our task submission and assignment protocol guarantees that the navigation system does not cause grid congestion. On a synthetic data mining application we demonstrate that Gridscape-based task assignment reduces the application tunaround time.

  3. Vibrational eigen-modes of the 7.5-m thin meniscus mirror with axial and lateral fixed points.

    NASA Astrophysics Data System (ADS)

    Yamashita, Y.; Nishino, Y.

    Eigen-frequencies and modes are calculated for a thin meniscus mirror of diameter 7.5 m and thickness 20 cm, whose six degrees of freedom are confined by three axial and three lateral fixed points. The patterns calculated up to mode 25 are presented.

  4. GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage

    SciTech Connect

    2010-09-01

    GRIDS Project: The 12 projects that comprise ARPA-E’s GRIDS Project, short for “Grid-Scale Rampable Intermittent Dispatchable Storage,” are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.

  5. Crystal structures of [Ln(NO3)3(μ2-bpydo)2], where Ln = Ce, Pr or Nd, and bpydo = 4,4′-bi­pyridine N,N′-dioxide: layered coordination networks containing 44 grids

    PubMed Central

    Stromyer, Michael L.; Lilly, Cassandra P.; Dillner, Adam J.; Knaust, Jacqueline M.

    2016-01-01

    Three isostructural coordination networks of Ce, Pr, and Nd nitrate with 4,4′-bi­pyridine N,N′-dioxide (bpydo) are reported, namely poly[[tris­(nitrato-κ2 O,O′)cerium(III)]-bis­(μ2-4,4′-bi­pyridine N,N′-dioxide-κ2 N:N′)], [Ce(NO3)3(C10H8N2O2)2], poly[[tris­(nitrato-κ2 O,O′)praeseodymium(III)]-bis­(μ2-4,4′-bi­pyridine N,N′-dioxide-κ2 N:N′)], [Pr(NO3)3(C10H8N2O2)2], and poly[[tris(nitrato-κ2 O,O′)neodymium(III)]-bis­(μ2-4,4′-bi­pyridine N,N′-dioxide-κ2 N:N′], [Nd(NO3)3(C10H8N2O2)2]. All three compounds are isostructural to the previously reported La analogue. The asymmetric unit of [Ln(NO3)3(μ2-bpydo)2] contains one lanthanide cation, two bpydo ligands, and three nitrate anions. Both bpydo ligands act as end-to-end μ2-bridges and display nearly ideal cis and gauche conformations, respectively. The bpydo ligands link the ten-coordinate Ln III cations, forming inter­digitating 44 grid-like layers extending parallel to (-101), where inter­digitation of layers is promoted by C—H⋯O inter­actions between nitrate anions and bpydo ligands. The inter­digitated layers are linked to sets of neighboring layers via further C—H⋯O and π–π inter­actions. PMID:26870578

  6. Crystal structures of [Ln(NO3)3(μ2-bpydo)2], where Ln = Ce, Pr or Nd, and bpydo = 4,4'-bi-pyridine N,N'-dioxide: layered coordination networks containing 4(4) grids.

    PubMed

    Stromyer, Michael L; Lilly, Cassandra P; Dillner, Adam J; Knaust, Jacqueline M

    2016-01-01

    Three isostructural coordination networks of Ce, Pr, and Nd nitrate with 4,4'-bi-pyridine N,N'-dioxide (bpydo) are reported, namely poly[[tris-(nitrato-κ(2) O,O')cerium(III)]-bis-(μ2-4,4'-bi-pyridine N,N'-dioxide-κ(2) N:N')], [Ce(NO3)3(C10H8N2O2)2], poly[[tris-(nitrato-κ(2) O,O')praeseodymium(III)]-bis-(μ2-4,4'-bi-pyridine N,N'-dioxide-κ(2) N:N')], [Pr(NO3)3(C10H8N2O2)2], and poly[[tris(nitrato-κ(2) O,O')neodymium(III)]-bis-(μ2-4,4'-bi-pyridine N,N'-dioxide-κ(2) N:N'], [Nd(NO3)3(C10H8N2O2)2]. All three compounds are isostructural to the previously reported La analogue. The asymmetric unit of [Ln(NO3)3(μ2-bpydo)2] contains one lanthanide cation, two bpydo ligands, and three nitrate anions. Both bpydo ligands act as end-to-end μ2-bridges and display nearly ideal cis and gauche conformations, respectively. The bpydo ligands link the ten-coordinate Ln (III) cations, forming inter-digitating 4(4) grid-like layers extending parallel to (-101), where inter-digitation of layers is promoted by C-H⋯O inter-actions between nitrate anions and bpydo ligands. The inter-digitated layers are linked to sets of neighboring layers via further C-H⋯O and π-π inter-actions. PMID:26870578

  7. Visual Analytics for Power Grid Contingency Analysis

    SciTech Connect

    Wong, Pak C.; Huang, Zhenyu; Chen, Yousu; Mackey, Patrick S.; Jin, Shuangshuang

    2014-01-20

    Contingency analysis is the process of employing different measures to model scenarios, analyze them, and then derive the best response to remove the threats. This application paper focuses on a class of contingency analysis problems found in the power grid management system. A power grid is a geographically distributed interconnected transmission network that transmits and delivers electricity from generators to end users. The power grid contingency analysis problem is increasingly important because of both the growing size of the underlying raw data that need to be analyzed and the urgency to deliver working solutions in an aggressive timeframe. Failure to do so may bring significant financial, economic, and security impacts to all parties involved and the society at large. The paper presents a scalable visual analytics pipeline that transforms about 100 million contingency scenarios to a manageable size and form for grid operators to examine different scenarios and come up with preventive or mitigation strategies to address the problems in a predictive and timely manner. Great attention is given to the computational scalability, information scalability, visual scalability, and display scalability issues surrounding the data analytics pipeline. Most of the large-scale computation requirements of our work are conducted on a Cray XMT multi-threaded parallel computer. The paper demonstrates a number of examples using western North American power grid models and data.

  8. Data privacy considerations in Intensive Care Grids.

    PubMed

    Luna, Jesus; Dikaiakos, Marios D; Kyprianou, Theodoros; Bilas, Angelos; Marazakis, Manolis

    2008-01-01

    Novel eHealth systems are being designed to provide a citizen-centered health system, however the even demanding need for computing and data resources has required the adoption of Grid technologies. In most of the cases, this novel Health Grid requires not only conveying patient's personal data through public networks, but also storing it into shared resources out of the hospital premises. These features introduce new security concerns, in particular related with privacy. In this paper we survey current legal and technological approaches that have been taken to protect a patient's personal data into eHealth systems, with a particular focus in Intensive Care Grids. However, thanks to a security analysis applied over the Intensive Care Grid system (ICGrid) we show that these security mechanisms are not enough to provide a comprehensive solution, mainly because the data-at-rest is still vulnerable to attacks coming from untrusted Storage Elements where an attacker may directly access them. To cope with these issues, we propose a new privacy-oriented protocol which uses a combination of encryption and fragmentation to improve data's assurance while keeping compatibility with current legislations and Health Grid security mechanisms.

  9. Agents in grid extended to clouds

    NASA Astrophysics Data System (ADS)

    Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Bǎdicǎ, C.; Ivanovic, M.; Lirkov, I.; Fidanova, S.

    2016-10-01

    The presented work is an attempt to extend considerations from the Agents in Grid (AiG) project to the Clouds. The AiG project is aimed at the development of an agent-semantic infrastructure for efficient resource management in the grid. Decision support within the AIG system helps the user, without in-depth knowledge, to choose optimal algorithm and/or resource to solve a problem from a given domain, and later to choose the best contract defining terms of collaboration with the provider of a resource used to solve the problem. Cloud computing refers to an architecture, in which groups of remote servers are networked, to allow online access to computer services or resources. The general vision is the same as in the case of computational grids, i.e., to reduce cost of computing, as well as to increase flexibility and reliability of the infrastructure. However, there are also important differences. It is relatively easy to notice that solutions considered in the context of the AiG system can be easily extended to computational clouds that evolved from computational grids. As it was shown in the case of grids, integrating software agents, semantics and cloud computing could enable highly efficient, intelligent systems, making clouds even more flexible, autonomic and usable.

  10. Gridded Data in the Arctic; Benefits and Perils of Publicly Available Grids

    NASA Astrophysics Data System (ADS)

    Coakley, B.; Forsberg, R.; Gabbert, R.; Beale, J.; Kenyon, S. C.

    2015-12-01

    Our understanding of the Arctic Ocean has been hugely advanced by release of gridded bathymetry and potential field anomaly grids. The Arctic Gravity Project grid achieves excellent, near-isotropic coverage of the earth north of 64˚N by combining land, satellite, airborne, submarine, surface ship and ice set-out measurements of gravity anomalies. Since the release of the V 2.0 grid in 2008, there has been extensive icebreaker activity across the Amerasia Basin due to mapping of the Arctic coastal nation's Extended Continental Shelves (ECS). While grid resolution has been steadily improving over time, addition of higher resolution and better navigated data highlights some distortions in the grid that may influence interpretation. In addition to the new ECS data sets, gravity anomaly data has been collected from other vessels; notably the Korean Icebreaker Araon, the Japanese icebreaker Mirai and the German icebreaker Polarstern. Also the GRAV-D project of the US National Geodetic Survey has flown airborne surveys over much of Alaska. These data will be Included in the new AGP grid, which will result in a much improved product when version 3.0 is released in 2015. To make use of these measurements, it is necessary to compile them into a continuous spatial representation. Compilation is complicated by differences in survey parameters, gravimeter sensitivity and reduction methods. Cross-over errors are the classic means to assess repeatability of track measurements. Prior to the introduction of near-universal GPS positioning, positional uncertainty was evaluated by cross-over analysis. GPS positions can be treated as more or less true, enabling evaluation of differences due to contrasting sensitivity, reference and reduction techniques. For the most part, cross-over errors for racks of gravity anomaly data collected since 2008 are less than 0.5 mGals, supporting the compilation of these data with only slight adjustments. Given the different platforms used for various

  11. Computer Code Generates Homotopic Grids

    NASA Technical Reports Server (NTRS)

    Moitra, Anutosh

    1992-01-01

    HOMAR is computer code using homotopic procedure to produce two-dimensional grids in cross-sectional planes, which grids then stacked to produce quasi-three-dimensional grid systems for aerospace configurations. Program produces grids for use in both Euler and Navier-Stokes computation of flows. Written in FORTRAN 77.

  12. Abruptness of Cascade Failures in Power Grids

    NASA Astrophysics Data System (ADS)

    Pahwa, Sakshi; Scoglio, Caterina; Scala, Antonio

    2014-01-01

    Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results on real, realistic and synthetic networks indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into ``super-grids''.

  13. Abruptness of cascade failures in power grids.

    PubMed

    Pahwa, Sakshi; Scoglio, Caterina; Scala, Antonio

    2014-01-01

    Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results on real, realistic and synthetic networks indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into "super-grids". PMID:24424239

  14. Abruptness of cascade failures in power grids.

    PubMed

    Pahwa, Sakshi; Scoglio, Caterina; Scala, Antonio

    2014-01-15

    Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results on real, realistic and synthetic networks indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into "super-grids".

  15. GridLAB-D/SG

    SciTech Connect

    2011-08-30

    GridLAB-D is a new power system simulation tool that provides valuable information to users who design and operate electric power transmission and distribution systems, and to utilities that wish to take advantage of the latest smart grid technology. This special release of GridLAB-D was developed to study the proposed Smart Grid technology that is used by Battelle Memorial Institute in the AEP gridSMART demonstration project in Northeast Columbus, Ohio.

  16. Solar cells having integral collector grids

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1978-01-01

    A heterojunction or Schottky barrier photovoltaic device is described, comprising a conductive base metal layer. A back surface field region was formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device. A metal alloy grid network was included. An insulating layer prevented electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer.

  17. Spaceflight Operations Services Grid Prototype

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Mehrotra, Piyush; Lisotta, Anthony

    2004-01-01

    NASA over the years has developed many types of technologies and conducted various types of science resulting in numerous variations of operations, data and applications. For example, operations range from deep space projects managed by JPL, Saturn and Shuttle operations managed from JSC and KSC, ISS science operations managed from MSFC and numerous low earth orbit satellites managed from GSFC that are varied and intrinsically different but require many of the same types of services to fulfill their missions. Also, large data sets (databases) of Shuttle flight data, solar system projects and earth observing data exist which because of their varied and sometimes outdated technologies are not and have not been fully examined for additional information and knowledge. Many of the applications/systems supporting operational services e.g. voice, video, telemetry and commanding, are outdated and obsolete. The vast amounts of data are located in various formats, at various locations and range over many years. The ability to conduct unified space operations, access disparate data sets and to develop systems and services that can provide operational services does not currently exist in any useful form. In addition, adding new services to existing operations is generally expensive and with the current budget constraints not feasible on any broad level of implementation. To understand these services a discussion of each one follows. The Spaceflight User-based Services are those services required to conduct space flight operations. Grid Services are those Grid services that will be used to overcome, through middleware software, some or all the problems that currently exists. In addition, Network Services will be discussed briefly. Network Services are crucial to any type of remedy and are evolving adequately to support any technology currently in development.

  18. Complex Volume Grid Generation Through the Use of Grid Reusability

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1997-01-01

    This paper presents a set of surface and volume grid generation techniques which reuse existing surface and volume grids. These methods use combinations of data manipulations to reduce grid generation time, improve grid characteristics, and increase the capabilities of existing domain discretization software. The manipulation techniques utilize physical and computational domains to produce basis function on which to operate and modify grid character and smooth grids using Trans-Finite Interpolation, a vector interpolation method and parametric re-mapping technique. With these new techniques, inviscid grids can be converted to viscous grids, multiple zone grid adaption can be performed to improve CFD solver efficiency, and topological changes to improve modeling of flow fields can be done simply and quickly. Examples of these capabilities are illustrated as applied to various configurations.

  19. Design of High-Fidelity Testing Framework for Secure Electric Grid Control

    SciTech Connect

    Yoginath, Srikanth B; Perumalla, Kalyan S

    2014-01-01

    A solution methodology and implementation components are presented that can uncover unwanted, unintentional or unanticipated effects on electric grids from changes to actual electric grid control software. A new design is presented to leapfrog over the limitations of current modeling and testing techniques for cyber technologies in electric grids. We design a fully virtualized approach in which actual, unmodified operational software under test is enabled to interact with simulated surrogates of electric grids. It enables the software to influence the (simulated) grid operation and vice versa in a controlled, high fidelity environment. Challenges in achieving such capability include achieving low-overhead time control mechanisms in hypervisor schedulers, network capture and time-stamping, translation of network packets emanating from grid software into discrete events of virtual grid models, translation back from virtual sensors/actuators into data packets to control software, and transplanting the entire system onto an accurately and efficiently maintained virtual-time plane.

  20. An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    1999-01-01

    An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.

  1. NREL Smart Grid Projects

    SciTech Connect

    Hambrick, J.

    2012-01-01

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  2. The PacCAF Grid portal for the CDF experiment

    NASA Astrophysics Data System (ADS)

    Hou, Suen

    Distributed computing for the CDF experiment has been developed and is evolving towards shared resources on the computing Grid. Dedicated CAFs (CDF Analysis Farm) were constructed on Condor pools with a suit of services for user authentication, software distribution, and network connection to worker nodes.With the Condor Glide-in mechanism, the CAFs are extended to using dynamic worker pools collected from the Grid. The PacCAF (Pacific CAF) is the Glide CAF thus built to provide a single point portal to LCG (LHC ComputingGrid) and OSG (Open Science Grid) sites in the Pacific Asia region. We discuss the implementation and service as a late-binding solution towards Grid computing.

  3. Study of a close-grid geodynamic measurement system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Clogeos (Close-Grid Geodynamic Measurement System) concept, a complete range or range-rate measurement terminal installed in a satellite in a near-polar orbit with a network of relatively simple transponders or retro-reflectors on the ground at intervals of 0.1 to 10 km was reviewed. The distortion of the grid was measured in three dimensions to accuracies of + or - 1 cm with important applications to geodynamics, glaciology, and geodesy. User requirements are considered, and a typical grid, designed for earthquake prediction, was laid out along the San Andreas, Hayward, and Calaceras faults in southern California. The sensitivity of both range and range-rate measurements to small grid motions was determined by a simplified model. Variables in the model are satellite altitude and elevation angle plus grid displacements in latitude, and height.

  4. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation.

    PubMed

    Hon, Gary C; Song, Chun-Xiao; Du, Tingting; Jin, Fulai; Selvaraj, Siddarth; Lee, Ah Young; Yen, Chia-An; Ye, Zhen; Mao, Shi-Qing; Wang, Bang-An; Kuan, Samantha; Edsall, Lee E; Zhao, Boxuan Simen; Xu, Guo-Liang; He, Chuan; Ren, Bing

    2014-10-23

    In mammals, cytosine methylation (5mC) is widely distributed throughout the genome but is notably depleted from active promoters and enhancers. While the role of DNA methylation in promoter silencing has been well documented, the function of this epigenetic mark at enhancers remains unclear. Recent experiments have demonstrated that enhancers are enriched for 5-hydroxymethylcytosine (5hmC), an oxidization product of the Tet family of 5mC dioxygenases and an intermediate of DNA demethylation. These results support the involvement of Tet proteins in the regulation of dynamic DNA methylation at enhancers. By mapping DNA methylation and hydroxymethylation at base resolution, we find that deletion of Tet2 causes extensive loss of 5hmC at enhancers, accompanied by enhancer hypermethylation, reduction of enhancer activity, and delayed gene induction in the early steps of differentiation. Our results reveal that DNA demethylation modulates enhancer activity, and its disruption influences the timing of transcriptome reprogramming during cellular differentiation.

  5. Obtaining a proton beam with 5-mA current in a tandem accelerator with vacuum insulation

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Kasatov, D. A.; Koshkarev, A. M.; Makarov, A. N.; Ostreinov, Yu. M.; Sorokin, I. N.; Taskaev, S. Yu.; Shchudlo, I. M.

    2016-06-01

    Suppression of parasitic electron flows and positive ions formed in the beam tract of a tandem accelerator with vacuum insulation allowed a more than threefold increase (from 1.6 to 5 mA) in the current of accelerated 2-MeV protons. Details of the modification are described. Results of experimental investigation of the suppression of secondary charged particles and data on the characteristics of accelerated proton beam with increased current are presented.

  6. Fusion Data Grid Service

    NASA Astrophysics Data System (ADS)

    Shasharina, Svetlana; Wang, Nanbor

    2004-11-01

    Simulations and experiments in the fusion and plasma physics community generate large datasets at remote sites. Visualization and analysis of these datasets are difficult because of the incompatibility among the various data formats adopted by simulation, experiments, and analysis tools, and the large sizes of analyzed data. Grids and Web Services technologies are capable of providing solutions for such heterogeneous settings, but need to be customized to the field-specific needs and merged with distributed technologies currently used by the community. This paper describes how we are addressing these issues in the Fusion Grid Service under development. We also present performance results of relevant data transfer mechanisms including binary SOAP, DIME, GridFTP and MDSplus and CORBA. We will describe the status of data converters (between HDF5 and MDSplus data types), developed in collaboration with MIT (J. Stillerman). Finally, we will analyze bottlenecks of MDSplus data transfer mechanism (work performed in collaboration with General Atomics (D. Schissel and M. Qian).

  7. Modelling noise propagation using Grid Resources. Progress within GDI-Grid

    NASA Astrophysics Data System (ADS)

    Kiehle, Christian; Mayer, Christian; Padberg, Alexander; Stapelfeld, Hartmut

    2010-05-01

    . This immense intensive calculation needs to be performed for a major part of European landscape. A LINUX version of the commercial LimA software for noise mapping analysis has been implemented on a test cluster within the German D-GRID computer network. Results and performance indicators will be presented. The presentation is an extension to last-years presentation "Spatial Data Infrastructures and Grid Computing: the GDI-Grid project" that described the gridification concept developed in the GDI-Grid project and provided an overview of the conceptual gaps between Grid Computing and Spatial Data Infrastructures. Results from the GDI-Grid project are incorporated in the OGC-OGF (Open Grid Forum) collaboration efforts as well as the OGC WPS 2.0 standards working group developing the next major version of the WPS specification.

  8. GridPV Toolbox

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feedermore » on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.« less

  9. GridPV Toolbox

    SciTech Connect

    Broderick, Robert; Quiroz, Jimmy; Grijalva, Santiago; Reno, Matthew; Coogan, Kyle

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.

  10. Role of Smart Grids in Integrating Renewable Energy

    SciTech Connect

    Speer, B.; Miller, M.; Schaffer, W.; Gueran, L.; Reuter, A.; Jang, B.; Widegren, K.

    2015-05-27

    This report was prepared for the International Smart Grid Action Network (ISGAN), which periodically publishes briefs and discussion papers on key topics of smart grid development globally. The topic of this report was selected by a multilateral group of national experts participating in ISGAN Annex 4, a working group that aims to produce synthesis insights for decision makers. This report is an update of a 2012 ISGAN Annex 4 report entitled “Smart Grid Contributions to Variable Renewable Resource Integration.” That report and other past publications of ISGAN Annexes can be found at www.iea-isgan.org and at www.cleanenergysolutions.org.

  11. The Art of Grid Fields: Geometry of Neuronal Time

    PubMed Central

    Shilnikov, Andrey L.; Maurer, Andrew Porter

    2016-01-01

    The discovery of grid cells in the entorhinal cortex has both elucidated our understanding of spatial representations in the brain, and germinated a large number of theoretical models regarding the mechanisms of these cells’ striking spatial firing characteristics. These models cross multiple neurobiological levels that include intrinsic membrane resonance, dendritic integration, after hyperpolarization characteristics and attractor dynamics. Despite the breadth of the models, to our knowledge, parallels can be drawn between grid fields and other temporal dynamics observed in nature, much of which was described by Art Winfree and colleagues long before the initial description of grid fields. Using theoretical and mathematical investigations of oscillators, in a wide array of mediums far from the neurobiology of grid cells, Art Winfree has provided a substantial amount of research with significant and profound similarities. These theories provide specific inferences into the biological mechanisms and extraordinary resemblances across phenomenon. Therefore, this manuscript provides a novel interpretation on the phenomenon of grid fields, from the perspective of coupled oscillators, postulating that grid fields are the spatial representation of phase resetting curves in the brain. In contrast to prior models of gird cells, the current manuscript provides a sketch by which a small network of neurons, each with oscillatory components can operate to form grid cells, perhaps providing a unique hybrid between the competing attractor neural network and oscillatory interference models. The intention of this new interpretation of the data is to encourage novel testable hypotheses. PMID:27013981

  12. Architecture and grid application of cluster computing system

    NASA Astrophysics Data System (ADS)

    Lv, Yi; Yu, Shuiqin; Mao, Youju

    2004-11-01

    Recently, people pay more attention to the grid technology. It can not only connect all kinds of resources in the network, but also put them into a super transparent computing environment for customers to realize mete-computing which can share computing resources. Traditional parallel computing system, such as SMP(Symmetrical multiprocessor) and MPP(massively parallel processor), use multi-processors to raise computing speed in a close coupling way, so the flexible and scalable performance of the system are limited, as a result of it, the system can't meet the requirement of the grid technology. In this paper, the architecture of cluster computing system applied in grid nodes is introduced. It mainly includes the following aspects. First, the network architecture of cluster computing system in grid nodes is analyzed and designed. Second, how to realize distributing computing (including coordinating computing and sharing computing) of cluster computing system in grid nodes to construct virtual node computers is discussed. Last, communication among grid nodes is analyzed. In other words, it discusses how to realize single reflection to let all the service requirements from customers be met through sending to the grid nodes.

  13. AstroGrid: the UK's Virtual Observatory Initiative

    NASA Astrophysics Data System (ADS)

    Mann, Robert G.; Astrogrid Consortium; Lawrence, Andy; Davenhall, Clive; Mann, Bob; McMahon, Richard; Irwin, Mike; Walton, Nic; Rixon, Guy; Watson, Mike; Osborne, Julian; Page, Clive; Allan, Peter; Giaretta, David; Perry, Chris; Pike, Dave; Sherman, John; Murtagh, Fionn; Harra, Louise; Bentley, Bob; Mason, Keith; Garrington, Simon

    AstroGrid is the UK's Virtual Observatory (VO) initiative. It brings together the principal astronomical data centres in the UK, and has been funded to the tune of ˜pounds 5M over the next three years, via PPARC, as part of the UK e--science programme. Its twin goals are the provision of the infrastructure and tools for the federation and exploitation of large astronomical (X-ray to radio), solar and space plasma physics datasets, and the delivery of federations of current datasets for its user communities to exploit using those tools. Whilst AstroGrid's work will be centred on existing and future (e.g. VISTA) UK datasets, it will seek solutions to generic VO problems and will contribute to the developing international virtual observatory framework: AstroGrid is a member of the EU-funded Astrophysical Virtual Observatory project, has close links to a second EU Grid initiative, the European Grid of Solar Observations (EGSO), and will seek an active role in the development of the common standards on which the international virtual observatory will rely. In this paper we shall primarily describe the concrete plans for AstroGrid's one-year Phase A study, which will centre on: (i) the definition of detailed science requirements through community consultation; (ii) the undertaking of a ``functionality market survey" to test the utility of existing technologies for the VO; and (iii) a pilot programme of database federations, each addressing different aspects of the general database federation problem. Further information on AstroGrid can be found at AstroGrid .

  14. Distributed Accounting on the Grid

    NASA Technical Reports Server (NTRS)

    Thigpen, William; Hacker, Thomas J.; McGinnis, Laura F.; Athey, Brian D.

    2001-01-01

    By the late 1990s, the Internet was adequately equipped to move vast amounts of data between HPC (High Performance Computing) systems, and efforts were initiated to link together the national infrastructure of high performance computational and data storage resources together into a general computational utility 'grid', analogous to the national electrical power grid infrastructure. The purpose of the Computational grid is to provide dependable, consistent, pervasive, and inexpensive access to computational resources for the computing community in the form of a computing utility. This paper presents a fully distributed view of Grid usage accounting and a methodology for allocating Grid computational resources for use on a Grid computing system.

  15. Adapting a commercial power system simulator for smart grid based system study and vulnerability assessment

    NASA Astrophysics Data System (ADS)

    Navaratne, Uditha Sudheera

    The smart grid is the future of the power grid. Smart meters and the associated network play a major role in the distributed system of the smart grid. Advance Metering Infrastructure (AMI) can enhance the reliability of the grid, generate efficient energy management opportunities and many innovations around the future smart grid. These innovations involve intense research not only on the AMI network itself but as also on the influence an AMI network can have upon the rest of the power grid. This research describes a smart meter testbed with hardware in loop that can facilitate future research in an AMI network. The smart meters in the testbed were developed such that their functionality can be customized to simulate any given scenario such as integrating new hardware components into a smart meter or developing new encryption algorithms in firmware. These smart meters were integrated into the power system simulator to simulate the power flow variation in the power grid on different AMI activities. Each smart meter in the network also provides a communication interface to the home area network. This research delivers a testbed for emulating the AMI activities and monitoring their effect on the smart grid.

  16. A model of grid cell development through spatial exploration and spike time-dependent plasticity.

    PubMed

    Widloski, John; Fiete, Ila R

    2014-07-16

    Grid cell responses develop gradually after eye opening, but little is known about the rules that govern this process. We present a biologically plausible model for the formation of a grid cell network. An asymmetric spike time-dependent plasticity rule acts upon an initially unstructured network of spiking neurons that receive inputs encoding animal velocity and location. Neurons develop an organized recurrent architecture based on the similarity of their inputs, interacting through inhibitory interneurons. The mature network can convert velocity inputs into estimates of animal location, showing that spatially periodic responses and the capacity of path integration can arise through synaptic plasticity, acting on inputs that display neither. The model provides numerous predictions about the necessity of spatial exploration for grid cell development, network topography, the maturation of velocity tuning and neural correlations, the abrupt transition to stable patterned responses, and possible mechanisms to set grid period across grid modules. PMID:25033187

  17. Enabling Campus Grids with Open Science Grid Technology

    NASA Astrophysics Data System (ADS)

    Weitzel, Derek; Bockelman, Brian; Fraser, Dan; Pordes, Ruth; Swanson, David

    2011-12-01

    The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condor clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.

  18. Unlocking the smart grid

    SciTech Connect

    Rokach, Joshua Z.

    2010-10-15

    The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)

  19. APEC Smart Grid Initiative

    SciTech Connect

    Bloyd, Cary N.

    2012-03-01

    This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

  20. The surveillance error grid.

    PubMed

    Klonoff, David C; Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B; Kirkman, M Sue; Kovatchev, Boris

    2014-07-01

    Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments plotted on the SEG when compared to

  1. Electricity Markets, Smart Grids and Smart Buildings

    NASA Astrophysics Data System (ADS)

    Falcey, Jonathan M.

    A smart grid is an electricity network that accommodates two-way power flows, and utilizes two-way communications and increased measurement, in order to provide more information to customers and aid in the development of a more efficient electricity market. The current electrical network is outdated and has many shortcomings relating to power flows, inefficient electricity markets, generation/supply balance, a lack of information for the consumer and insufficient consumer interaction with electricity markets. Many of these challenges can be addressed with a smart grid, but there remain significant barriers to the implementation of a smart grid. This paper proposes a novel method for the development of a smart grid utilizing a bottom up approach (starting with smart buildings/campuses) with the goal of providing the framework and infrastructure necessary for a smart grid instead of the more traditional approach (installing many smart meters and hoping a smart grid emerges). This novel approach involves combining deterministic and statistical methods in order to accurately estimate building electricity use down to the device level. It provides model users with a cheaper alternative to energy audits and extensive sensor networks (the current methods of quantifying electrical use at this level) which increases their ability to modify energy consumption and respond to price signals The results of this method are promising, but they are still preliminary. As a result, there is still room for improvement. On days when there were no missing or inaccurate data, this approach has R2 of about 0.84, sometimes as high as 0.94 when compared to measured results. However, there were many days where missing data brought overall accuracy down significantly. In addition, the development and implementation of the calibration process is still underway and some functional additions must be made in order to maximize accuracy. The calibration process must be completed before a reliable

  2. Space-based Operations Grid Prototype

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Welch, Clara L.

    2003-01-01

    The Space based Operations Grid is intended to integrate the "high end" network services and compute resources that a remote payload investigator needs. This includes integrating and enhancing existing services such as access to telemetry, payload commanding, payload planning and internet voice distribution as well as the addition of services such as video conferencing, collaborative design, modeling or visualization, text messaging, application sharing, and access to existing compute or data grids. Grid technology addresses some of the greatest challenges and opportunities presented by the current trends in technology, i.e. how to take advantage of ever increasing bandwidth, how to manage virtual organizations and how to deal with the increasing threats to information technology security. We will discuss the pros and cons of using grid technology in space-based operations and share current plans for the prototype. It is hoped that early on the prototype can incorporate many of the existing as well as future services that are discussed in the first paragraph above to cooperating International Space Station Principle Investigators both nationally and internationally.

  3. Composite Cryotank Technologies and Development 2.4 and 5.5M out of Autoclave Tank Test Results

    NASA Technical Reports Server (NTRS)

    Jackson, Justin R.; Vickers, John; Fikes, John

    2015-01-01

    The Composite Cryotank Technologies and Demonstration (CCTD) project substantially matured composite, cryogenic propellant tank technology. The project involved the design, analysis, fabrication, and testing of large-scale (2.4-m-diameter precursor and 5.5-m-diameter) composite cryotanks. Design features included a one-piece wall design that minimized tank weight, a Y-joint that incorporated an engineered material to alleviate stress concentration under combined loading, and a fluted core cylindrical section that inherently allows for venting and purging. The tanks used out-of-autoclave (OoA) cured graphite/epoxy material and processes to enable large (up to 10-m-diameter) cryotank fabrication, and thin-ply prepreg to minimize hydrogen permeation through tank walls. Both tanks were fabricated at Boeing using automated fiber placement on breakdown tooling. A fluted core skirt that efficiently carried axial loads and enabled hydrogen purging was included on the 5.5-m-diameter tank. Ultrasonic inspection was performed, and a structural health monitoring system was installed to identify any impact damage during ground processing. The precursor and 5.5-m-diameter tanks were tested in custom test fixtures at the National Aeronautics and Space Administration Marshall Space Flight Center. The testing, which consisted of a sequence of pressure and thermal cycles using liquid hydrogen, was successfully concluded and obtained valuable structural, thermal, and permeation performance data. This technology can be applied to a variety of aircraft and spacecraft applications that would benefit from 30 to 40% weight savings and substantial cost savings compared to aluminum lithium tanks.

  4. Current Grid operation and future role of the Grid

    NASA Astrophysics Data System (ADS)

    Smirnova, O.

    2012-12-01

    Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place

  5. A gigapixel commercially manufactured cryogenic camera for the J-PAS 2.5m survey telescope

    NASA Astrophysics Data System (ADS)

    Jorden, P. R.; Bastable, M.; Clapp, M.; Darby, S.; Dryer, M.; Eaton, T.; Fenemore-Jones, G.; Jerram, P.; Marin-Franch, A.; Palmer, I.; Pittock, R.; Pool, P.; Rennshaw, R.; Taylor, K.; Waltham, N.; Wheeler, P.

    2012-07-01

    The J-PAS (Javalambre Physics-of-the-Accelerating-Universe Astrophysical Survey) project will perform a five-year survey of the northern sky from a new 2.5m telescope in Teruel, Spain. We describe the design concept of a complete cryogenic camera with a mosaic focal plane and 1.2 gigapixel science array which is to be commercially supplied. The focal plane is contained within a novel liquid-nitrogen-cooled vacuum cryostat, with proximity drive electronics designed to achieve a 4 e- readout noise from the 224-channel CCD system.

  6. The Effect of Temperature on the Breakdown and Repassivation Potentials of Welded Alloy 22 In 5 M CACI2

    SciTech Connect

    G.O. IIevbare

    2006-07-05

    The study of the electrochemical behavior of wrought and welded Alloy 22 was carried out in 5 M CaCl{sub 2} as a function of temperatures between 45 and 120 C with Multiple Crevice Assembly (MCA) specimens. The susceptibility to corrosion was found to increase with increase in electrolyte temperature in both the wrought (in the mill annealed condition) and the welded forms of the alloy. The weld metal was found to be less susceptible to localized corrosion under the conditions tested.

  7. Short telescope design of 1.5-m aperture solar UV visible and IR telescope aboard Solar-C

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.; Katsukawa, Y.; Shimizu, T.; Ichimoto, K.; Horiuchi, T.; Matsumoto, Y.; Takeyama, N.

    2011-10-01

    We present an optical and thermal design of one of major instrumental payload planned for SOLAR-C mission/Plan-B (high resolution spectroscopic option): the telescope assembly of Solar Ultra-violet Visible and near IR observing Telescope (SUVIT). To accommodate a launcher's nosecone size, a wide observing wavelength coverage from UV (down to 280 nm) through near IR (up to 1100 nm), and an 0.1 arcsec resolution in the field of 200 arcsec diameter, a short telescope design was made for a 1.5 m aperture solar Gregorian telescope with the compact design of three-mirror collimator unit.

  8. Recent Developments in Grid Generation and Force Integration Technology for Overset Grids

    NASA Technical Reports Server (NTRS)

    Chan, William M.; VanDalsem, William R. (Technical Monitor)

    1994-01-01

    Recent developments in algorithms and software tools for generating overset grids for complex configurations are described. These include the overset surface grid generation code SURGRD and version 2.0 of the hyperbolic volume grid generation code HYPGEN. The SURGRD code is in beta test mode where the new features include the capability to march over a collection of panel networks, a variety of ways to control the side boundaries and the marching step sizes and distance, a more robust projection scheme and an interpolation option. New features in version 2.0 of HYPGEN include a wider range of boundary condition types. The code also allows the user to specify different marching step sizes and distance for each point on the surface grid. A scheme that takes into account of the overlapped zones on the body surface for the purpose of forces and moments computation is also briefly described, The process involves the following two software modules: MIXSUR - a composite grid generation module to produce a collection of quadrilaterals and triangles on which pressure and viscous stresses are to be integrated, and OVERINT - a forces and moments integration module.

  9. SimpleVisGrid: Grid Services for Visualization of Diverse Biomedical Knowledge and Molecular Systems Data

    PubMed Central

    Stokes, Todd H.; Wang, May D.

    2016-01-01

    Biomedical data visualization is a great challenge due to the scale, complexity, and diversity of systems, system component interactions and experimental data. Standards for interoperable data are a good start to addressing these problems, but standardization of visualization technologies is an emerging topic. SimpleVisGrid builds on Cancer Biomedical Informatics Grid (caBIG) common infrastructure for cancer research, and clearly specifies and extends three standard data formats for inputs and outputs to grid services: comma-separated values (CSV), Portable Network Graphics (PNG), and Scalable Vector Graphics (SVG). Four prototype visualizations are available: 2D array data quality visualization, correlation heatmaps between high-dimensional data and associated meta-data, feature landscapes, and biochemical or semantic network graphs. The services and data model are prepared for submission for caBIG Silver-level compatibility review and for integration into automated research workflows. Making these tools available to caBIG developers and ultimately to biomedical researchers can (1) help with biomedical communication, discovery, and decision-making, (2) encourage more research on standardization of visualization formats, and (3) improve the efficiency of large data transfers across the grid. PMID:19964624

  10. Spectral methods on arbitrary grids

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David

    1995-01-01

    Stable and spectrally accurate numerical methods are constructed on arbitrary grids for partial differential equations. These new methods are equivalent to conventional spectral methods but do not rely on specific grid distributions. Specifically, we show how to implement Legendre Galerkin, Legendre collocation, and Laguerre Galerkin methodology on arbitrary grids.

  11. Grid Interaction Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The mission of the Grid Interaction Technical Team (GITT) is to support a transition scenario to large scale grid-connected vehicle charging with transformational technology, proof of concept and information dissemination. The GITT facilitates technical coordination and collaboration between vehicle-grid connectivity and communication activities among U.S. DRIVE government and industry partners.

  12. Ion Engine Grid Gap Measurements

    NASA Technical Reports Server (NTRS)

    Soulas, Gerge C.; Frandina, Michael M.

    2004-01-01

    A simple technique for measuring the grid gap of an ion engine s ion optics during startup and steady-state operation was demonstrated with beam extraction. The grid gap at the center of the ion optics assembly was measured with a long distance microscope that was focused onto an alumina pin that protruded through the center accelerator grid aperture and was mechanically attached to the screen grid. This measurement technique was successfully applied to a 30 cm titanium ion optics assembly mounted onto an NSTAR engineering model ion engine. The grid gap and each grid s movement during startup from room temperature to both full and low power were measured. The grid gaps with and without beam extraction were found to be significantly different. The grid gaps at the ion optics center were both significantly smaller than the cold grid gap and different at the two power levels examined. To avoid issues associated with a small grid gap during thruster startup with titanium ion optics, a simple method was to operate the thruster initially without beam extraction to heat the ion optics. Another possible method is to apply high voltage to the grids prior to igniting the discharge because power deposition to the grids from the plasma is lower with beam extraction than without. Further testing would be required to confirm this approach.

  13. Deuterium-tritium neutron yield measurements with the 4.5 m neutron-time-of-flight detectors at NIF.

    PubMed

    Moran, M J; Bond, E J; Clancy, T J; Eckart, M J; Khater, H Y; Glebov, V Yu

    2012-10-01

    The first several campaigns of laser fusion experiments at the National Ignition Facility (NIF) included a family of high-sensitivity scintillator∕photodetector neutron-time-of-flight (nTOF) detectors for measuring deuterium-deuterium (DD) and DT neutron yields. The detectors provided consistent neutron yield (Y(n)) measurements from below 10(9) (DD) to nearly 10(15) (DT). The detectors initially demonstrated detector-to-detector Y(n) precisions better than 5%, but lacked in situ absolute calibrations. Recent experiments at NIF now have provided in situ DT yield calibration data that establish the absolute sensitivity of the 4.5 m differential tissue harmonic imaging (DTHI) detector with an accuracy of ± 10% and precision of ± 1%. The 4.5 m nTOF calibration measurements also have helped to establish improved detector impulse response functions and data analysis methods, which have contributed to improving the accuracy of the Y(n) measurements. These advances have also helped to extend the usefulness of nTOF measurements of ion temperature and downscattered neutron ratio (neutron yield 10-12 MeV divided by yield 13-15 MeV) with other nTOF detectors.

  14. Behavioral effects of chronic exposure to 0. 5 mW/cm/sup 2/ of 2450-MHz microwaves

    SciTech Connect

    DeWitt, J.R.; D'Andrea, J.A.; Emmerson, R.Y.; Gandhi, O.P.

    1987-01-01

    Adult male, Long-Evans rats were exposed 7 h a day for 90 days to continuous wave (CW) 2450-MHz microwaves at an average power density of 0.5 mW/cm/sup 2/. Exposures were in a monopole-above-ground radiation chamber with rats in Plexiglas cages. The resulting specific absorption rate (SAR) was 0.14 W/kg (+/- 0.01 SEM). Additional rats served as sham-exposed and home-caged controls. All were evaluated daily for body mass and food and water intakes. Once each 30 days, throughout baseline and exposure phases of the experiment, rats in the sham- and microwave-exposed groups were tested for their sensitivity to footshock. After 90-days of exposure, the rats were evaluated an open field, an active avoidance task and an operant task for food reinforcement. Performance of sham- and microwave-irradiated rats was reliably different on only one measure, the lever-pressing task. The general conclusion reached was that exposure to CW 2450-MHz microwave radiation at 0.5 mW/cm/sup 2/ was below the threshold for behavioral effects over a wide range of variables, but did have an effect on a time-related operant task, although the direction of the effect was unpredictable.

  15. Deuterium-tritium neutron yield measurements with the 4.5 m neutron-time-of-flight detectors at NIF

    SciTech Connect

    Moran, M. J.; Bond, E. J.; Clancy, T. J.; Eckart, M. J.; Khater, H. Y.; Glebov, V. Yu.

    2012-10-15

    The first several campaigns of laser fusion experiments at the National Ignition Facility (NIF) included a family of high-sensitivity scintillator/photodetector neutron-time-of-flight (nTOF) detectors for measuring deuterium-deuterium (DD) and DT neutron yields. The detectors provided consistent neutron yield (Y{sub n}) measurements from below 10{sup 9} (DD) to nearly 10{sup 15} (DT). The detectors initially demonstrated detector-to-detector Y{sub n} precisions better than 5%, but lacked in situ absolute calibrations. Recent experiments at NIF now have provided in situ DT yield calibration data that establish the absolute sensitivity of the 4.5 m differential tissue harmonic imaging (DTHI) detector with an accuracy of {+-}10% and precision of {+-}1%. The 4.5 m nTOF calibration measurements also have helped to establish improved detector impulse response functions and data analysis methods, which have contributed to improving the accuracy of the Y{sub n} measurements. These advances have also helped to extend the usefulness of nTOF measurements of ion temperature and downscattered neutron ratio (neutron yield 10-12 MeV divided by yield 13-15 MeV) with other nTOF detectors.

  16. Integrating Renewable Electricity on the Grid

    NASA Astrophysics Data System (ADS)

    Crabtree, George; Misewich, Jim; Ambrosio, Ron; Clay, Kathryn; DeMartini, Paul; James, Revis; Lauby, Mark; Mohta, Vivek; Moura, John; Sauer, Peter; Slakey, Francis; Lieberman, Jodi; Tai, Humayun

    2011-11-01

    The demand for carbon-free electricity is driving a growing movement of adding renewable energy to the grid. Renewable Portfolio Standards mandated by states and under consideration by the federal government envision a penetration of 20-30% renewable energy in the grid by 2020 or 2030. The renewable energy potential of wind and solar far exceeds these targets, suggesting that renewable energy ultimately could grow well beyond these initial goals. The grid faces two new and fundamental technological challenges in accommodating renewables: location and variability. Renewable resources are concentrated at mid-continent far from population centers, requiring additional long distance, high-capacity transmission to match supply with demand. The variability of renewables due to the characteristics of weather is high, up to 70% for daytime solar due to passing clouds and 100% for wind on calm days, much larger than the relatively predictable uncertainty in load that the grid now accommodates by dispatching conventional resources in response to demand. Solutions to the challenges of remote location and variability of generation are needed. The options for DC transmission lines, favored over AC lines for transmission of more than a few hundred miles, need to be examined. Conventional high voltage DC transmission lines are a mature technology that can solve regional transmission needs covering one- or two-state areas. Conventional high voltage DC has drawbacks, however, of high loss, technically challenging and expensive conversion between AC and DC, and the requirement of a single point of origin and termination. Superconducting DC transmission lines lose little or no energy, produce no heat, and carry higher power density than conventional lines. They operate at moderate voltage, allowing many "on-ramps" and "off-ramps" in a single network and reduce the technical and cost challenges of AC to DC conversion. A network of superconducting DC cables overlaying the existing

  17. Optimizing Resource Utilization in Grid Batch Systems

    NASA Astrophysics Data System (ADS)

    Gellrich, Andreas

    2012-12-01

    On Grid sites, the requirements of the computing tasks (jobs) to computing, storage, and network resources differ widely. For instance Monte Carlo production jobs are almost purely CPU-bound, whereas physics analysis jobs demand high data rates. In order to optimize the utilization of the compute node resources, jobs must be distributed intelligently over the nodes. Although the job resource requirements cannot be deduced directly, jobs are mapped to POSIX UID/GID according to the VO, VOMS group and role information contained in the VOMS proxy. The UID/GID then allows to distinguish jobs, if users are using VOMS proxies as planned by the VO management, e.g. ‘role=production’ for Monte Carlo jobs. It is possible to setup and configure batch systems (queuing system and scheduler) at Grid sites based on these considerations although scaling limits were observed with the scheduler MAUI. In tests these limitations could be overcome with a home-made scheduler.

  18. Gridded electron reversal ionizer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor)

    1993-01-01

    A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

  19. How does the modular organization of entorhinal grid cells develop?

    PubMed Central

    Pilly, Praveen K.; Grossberg, Stephen

    2014-01-01

    The entorhinal-hippocampal system plays a crucial role in spatial cognition and navigation. Since the discovery of grid cells in layer II of medial entorhinal cortex (MEC), several types of models have been proposed to explain their development and operation; namely, continuous attractor network models, oscillatory interference models, and self-organizing map (SOM) models. Recent experiments revealing the in vivo intracellular signatures of grid cells (Domnisoru et al., 2013; Schmidt-Heiber and Hausser, 2013), the primarily inhibitory recurrent connectivity of grid cells (Couey et al., 2013; Pastoll et al., 2013), and the topographic organization of grid cells within anatomically overlapping modules of multiple spatial scales along the dorsoventral axis of MEC (Stensola et al., 2012) provide strong constraints and challenges to existing grid cell models. This article provides a computational explanation for how MEC cells can emerge through learning with grid cell properties in modular structures. Within this SOM model, grid cells with different rates of temporal integration learn modular properties with different spatial scales. Model grid cells learn in response to inputs from multiple scales of directionally-selective stripe cells (Krupic et al., 2012; Mhatre et al., 2012) that perform path integration of the linear velocities that are experienced during navigation. Slower rates of grid cell temporal integration support learned associations with stripe cells of larger scales. The explanatory and predictive capabilities of the three types of grid cell models are comparatively analyzed in light of recent data to illustrate how the SOM model overcomes problems that other types of models have not yet handled. PMID:24917799

  20. TRMM Gridded Text Products

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2007-01-01

    NASA's Tropical Rainfall Measuring Mission (TRMM) has many products that contain instantaneous or gridded rain rates often among many other parameters. However, these products because of their completeness can often seem intimidating to users just desiring surface rain rates. For example one of the gridded monthly products contains well over 200 parameters. It is clear that if only rain rates are desired, this many parameters might prove intimidating. In addition, for many good reasons these products are archived and currently distributed in HDF format. This also can be an inhibiting factor in using TRMM rain rates. To provide a simple format and isolate just the rain rates from the many other parameters, the TRMM product created a series of gridded products in ASCII text format. This paper describes the various text rain rate products produced. It provides detailed information about parameters and how they are calculated. It also gives detailed format information. These products are used in a number of applications with the TRMM processing system. The products are produced from the swath instantaneous rain rates and contain information from the three major TRMM instruments: radar, radiometer, and combined. They are simple to use, human readable, and small for downloading.

  1. 3D Structured Grid Adaptation

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; Hafez, M. M.

    1996-01-01

    Grid adaptation for structured meshes is the art of using information from an existing, but poorly resolved, solution to automatically redistribute the grid points in such a way as to improve the resolution in regions of high error, and thus the quality of the solution. This involves: (1) generate a grid vis some standard algorithm, (2) calculate a solution on this grid, (3) adapt the grid to this solution, (4) recalculate the solution on this adapted grid, and (5) repeat steps 3 and 4 to satisfaction. Steps 3 and 4 can be repeated until some 'optimal' grid is converged to but typically this is not worth the effort and just two or three repeat calculations are necessary. They also may be repeated every 5-10 time steps for unsteady calculations.

  2. Progress in Grid Generation: From Chimera to DRAGON Grids

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Kao, Kai-Hsiung

    1994-01-01

    Hybrid grids, composed of structured and unstructured grids, combines the best features of both. The chimera method is a major stepstone toward a hybrid grid from which the present approach is evolved. The chimera grid composes a set of overlapped structured grids which are independently generated and body-fitted, yielding a high quality grid readily accessible for efficient solution schemes. The chimera method has been shown to be efficient to generate a grid about complex geometries and has been demonstrated to deliver accurate aerodynamic prediction of complex flows. While its geometrical flexibility is attractive, interpolation of data in the overlapped regions - which in today's practice in 3D is done in a nonconservative fashion, is not. In the present paper we propose a hybrid grid scheme that maximizes the advantages of the chimera scheme and adapts the strengths of the unstructured grid while at the same time keeps its weaknesses minimal. Like the chimera method, we first divide up the physical domain by a set of structured body-fitted grids which are separately generated and overlaid throughout a complex configuration. To eliminate any pure data manipulation which does not necessarily follow governing equations, we use non-structured grids only to directly replace the region of the arbitrarily overlapped grids. This new adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured grid region sandwiched between the structured grids is limited in size, resulting in only a small increase in memory and computational effort. The DRAGON method has three important advantages: (1) preserving strengths of the chimera grid; (2) eliminating difficulties sometimes encountered in the chimera scheme, such as the orphan points and bad quality of interpolation stencils; and (3) making grid communication in a fully conservative and consistent manner insofar as the governing equations are concerned. To demonstrate its use, the governing equations are

  3. Enhancing control of grid distribution in algebraic grid generation

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Shih, T. I.-P.; Roelke, R. J.

    1992-01-01

    Three techniques are presented to enhance the control of grid-point distribution for a class of algebraic grid generation methods known as the two-, four- and six-boundary methods. First, multidimensional stretching functions are presented, and a technique is devised to construct them based on the desired distribution of grid points along certain boundaries. Second, a normalization procedure is proposed which allows more effective control over orthogonality of grid lines at boundaries and curvature of grid lines near boundaries. And third, interpolating functions based on tension splines are introduced to control curvature of grid lines in the interior of the spatial domain. In addition to these three techniques, consistency conditions are derived which must be satisfied by all user-specified data employed in the grid generation process to control grid-point distribution. The usefulness of the techniques developed in this study was demonstrated by using them in conjunction with the two- and four-boundary methods to generate several grid systems, including a three-dimensional grid system in the coolant passage of a radial turbine blade with serpentine channels and pin fins.

  4. On a simulation study for reliable and secured smart grid communications

    NASA Astrophysics Data System (ADS)

    Mallapuram, Sriharsha; Moulema, Paul; Yu, Wei

    2015-05-01

    Demand response is one of key smart grid applications that aims to reduce power generation at peak hours and maintain a balance between supply and demand. With the support of communication networks, energy consumers can become active actors in the energy management process by adjusting or rescheduling their electricity usage during peak hours based on utilities pricing incentives. Nonetheless, the integration of communication networks expose the smart grid to cyber-attacks. In this paper, we developed a smart grid simulation test-bed and designed evaluation scenarios. By leveraging the capabilities of Matlab and ns-3 simulation tools, we conducted a simulation study to evaluate the impact of cyber-attacks on demand response application. Our data shows that cyber-attacks could seriously disrupt smart grid operations, thus confirming the need of secure and resilient communication networks for supporting smart grid operations.

  5. GridTool: A surface modeling and grid generation tool

    NASA Technical Reports Server (NTRS)

    Samareh-Abolhassani, Jamshid

    1995-01-01

    GridTool is designed around the concept that the surface grids are generated on a set of bi-linear patches. This type of grid generation is quite easy to implement, and it avoids the problems associated with complex CAD surface representations and associated surface parameterizations. However, the resulting surface grids are close to but not on the original CAD surfaces. This problem can be alleviated by projecting the resulting surface grids onto the original CAD surfaces. GridTool is designed primary for unstructured grid generation systems. Currently, GridTool supports VGRID and FELISA systems, and it can be easily extended to support other unstructured grid generation systems. The data in GridTool is stored parametrically so that once the problem is set up, one can modify the surfaces and the entire set of points, curves and patches will be updated automatically. This is very useful in a multidisciplinary design and optimization process. GridTool is written entirely in ANSI 'C', the interface is based on the FORMS library, and the graphics is based on the GL library. The code has been tested successfully on IRIS workstations running IRIX4.0 and above. The memory is allocated dynamically, therefore, memory size will depend on the complexity of geometry/grid. GridTool data structure is based on a link-list structure which allows the required memory to expand and contract dynamically according to the user's data size and action. Data structure contains several types of objects such as points, curves, patches, sources and surfaces. At any given time, there is always an active object which is drawn in magenta, or in their highlighted colors as defined by the resource file which will be discussed later.

  6. Scalable fault tolerant image communication and storage grid

    NASA Astrophysics Data System (ADS)

    Slik, David; Seiler, Oliver; Altman, Tym; Montour, Mike; Kermani, Mohammad; Proseilo, Walter; Terry, David; Kawahara, Midori; Leckie, Chris; Muir, Dale

    2003-05-01

    Increasing production and use of digital medical imagery are driving new approaches to information storage and management. Traditional, centralized approaches to image communication, storage and archiving are becoming increasingly expensive to scale and operate with high levels of reliability. Multi-site, geographically-distributed deployments connected by limited-bandwidth networks present further scalability, reliability, and availability challenges. A grid storage architecture built from a distributed network of low cost, off-the-shelf servers (nodes) provides scalable data and metadata storage, processing, and communication without single points of failure. Imaging studies are stored, replicated, cached, managed, and retrieved based on defined rules, and nodes within the grid can acquire studies and respond to queries. Grid nodes transparently load-balance queries, storage/retrieval requests, and replicate data for automated backup and disaster recovery. This approach reduces latency, increases availability, provides near-linear scalability and allows the creation of a geographically distributed medical imaging network infrastructure. This paper presents some key concepts in grid storage and discusses the results of a clinical deployment of a multi-site storage grid for cancer care in the province of British Columbia.

  7. Solar thermal energy predictability for the grid (STEP4Grid)

    NASA Astrophysics Data System (ADS)

    Fernández-León, Mercedes; Pacheco, Germán; Bolinaga, Beatriz; Campa, Luis; Lara-Fanego, Vicente; Valenzuela, José M.

    2016-05-01

    There is a growing concern about the importance of the improvement of efficiency, the dispatchability of thermosolar plants and the predictability of the energy production for electrical markets. In the current research, a new developed system denominated STEP4Grid is presented and their products are analyzed. Currently it is on operation in the thermosolar plant of Solúcar in Sanlúcar la Mayor, Seville, Spain. Forecasting Direct Normal Irradiance (DNI) and Forecasting Gross Production (FGP) have been provided by the system. This product generates different time horizon forecasts combining all-sky cameras, satellite and Numerical Weather Prediction Model (NWPM) forecasts. The sensors network installed all over the plant provides continuous meteorological and non-meteorological data, which act as an input for the energy production model. The whole system is viewable by plant operators with the help of a layout system. For the May and June of 2015 database, the FGP based on satellite and Numerical Weather Prediction Models (NWPM) DNI predictions have an rMAE for an hour-ahead horizon of 16 % (May) and 17 % (June) respectively. For all the horizons, the FGP increases their deviations the further it is from the real-time and the profile is similar to the evolution of DNI forecasting rMAE.

  8. Smart Grid Risk Management

    NASA Astrophysics Data System (ADS)

    Abad Lopez, Carlos Adrian

    Current electricity infrastructure is being stressed from several directions -- high demand, unreliable supply, extreme weather conditions, accidents, among others. Infrastructure planners have, traditionally, focused on only the cost of the system; today, resilience and sustainability are increasingly becoming more important. In this dissertation, we develop computational tools for efficiently managing electricity resources to help create a more reliable and sustainable electrical grid. The tools we present in this work will help electric utilities coordinate demand to allow the smooth and large scale integration of renewable sources of energy into traditional grids, as well as provide infrastructure planners and operators in developing countries a framework for making informed planning and control decisions in the presence of uncertainty. Demand-side management is considered as the most viable solution for maintaining grid stability as generation from intermittent renewable sources increases. Demand-side management, particularly demand response (DR) programs that attempt to alter the energy consumption of customers either by using price-based incentives or up-front power interruption contracts, is more cost-effective and sustainable in addressing short-term supply-demand imbalances when compared with the alternative that involves increasing fossil fuel-based fast spinning reserves. An essential step in compensating participating customers and benchmarking the effectiveness of DR programs is to be able to independently detect the load reduction from observed meter data. Electric utilities implementing automated DR programs through direct load control switches are also interested in detecting the reduction in demand to efficiently pinpoint non-functioning devices to reduce maintenance costs. We develop sparse optimization methods for detecting a small change in the demand for electricity of a customer in response to a price change or signal from the utility

  9. The BioGRID interaction database: 2015 update.

    PubMed

    Chatr-Aryamontri, Andrew; Breitkreutz, Bobby-Joe; Oughtred, Rose; Boucher, Lorrie; Heinicke, Sven; Chen, Daici; Stark, Chris; Breitkreutz, Ashton; Kolas, Nadine; O'Donnell, Lara; Reguly, Teresa; Nixon, Julie; Ramage, Lindsay; Winter, Andrew; Sellam, Adnane; Chang, Christie; Hirschman, Jodi; Theesfeld, Chandra; Rust, Jennifer; Livstone, Michael S; Dolinski, Kara; Tyers, Mike

    2015-01-01

    The Biological General Repository for Interaction Datasets (BioGRID: http://thebiogrid.org) is an open access database that houses genetic and protein interactions curated from the primary biomedical literature for all major model organism species and humans. As of September 2014, the BioGRID contains 749,912 interactions as drawn from 43,149 publications that represent 30 model organisms. This interaction count represents a 50% increase compared to our previous 2013 BioGRID update. BioGRID data are freely distributed through partner model organism databases and meta-databases and are directly downloadable in a variety of formats. In addition to general curation of the published literature for the major model species, BioGRID undertakes themed curation projects in areas of particular relevance for biomedical sciences, such as the ubiquitin-proteasome system and various human disease-associated interaction networks. BioGRID curation is coordinated through an Interaction Management System (IMS) that facilitates the compilation interaction records through structured evidence codes, phenotype ontologies, and gene annotation. The BioGRID architecture has been improved in order to support a broader range of interaction and post-translational modification types, to allow the representation of more complex multi-gene/protein interactions, to account for cellular phenotypes through structured ontologies, to expedite curation through semi-automated text-mining approaches, and to enhance curation quality control.

  10. DEM Based Modeling: Grid or TIN? The Answer Depends

    NASA Astrophysics Data System (ADS)

    Ogden, F. L.; Moreno, H. A.

    2015-12-01

    The availability of petascale supercomputing power has enabled process-based hydrological simulations on large watersheds and two-way coupling with mesoscale atmospheric models. Of course with increasing watershed scale come corresponding increases in watershed complexity, including wide ranging water management infrastructure and objectives, and ever increasing demands for forcing data. Simulations of large watersheds using grid-based models apply a fixed resolution over the entire watershed. In large watersheds, this means an enormous number of grids, or coarsening of the grid resolution to reduce memory requirements. One alternative to grid-based methods is the triangular irregular network (TIN) approach. TINs provide the flexibility of variable resolution, which allows optimization of computational resources by providing high resolution where necessary and low resolution elsewhere. TINs also increase required effort in model setup, parameter estimation, and coupling with forcing data which are often gridded. This presentation discusses the costs and benefits of the use of TINs compared to grid-based methods, in the context of large watershed simulations within the traditional gridded WRF-HYDRO framework and the new TIN-based ADHydro high performance computing watershed simulator.

  11. The BioGRID interaction database: 2015 update

    PubMed Central

    Chatr-aryamontri, Andrew; Breitkreutz, Bobby-Joe; Oughtred, Rose; Boucher, Lorrie; Heinicke, Sven; Chen, Daici; Stark, Chris; Breitkreutz, Ashton; Kolas, Nadine; O'Donnell, Lara; Reguly, Teresa; Nixon, Julie; Ramage, Lindsay; Winter, Andrew; Sellam, Adnane; Chang, Christie; Hirschman, Jodi; Theesfeld, Chandra; Rust, Jennifer; Livstone, Michael S.; Dolinski, Kara; Tyers, Mike

    2015-01-01

    The Biological General Repository for Interaction Datasets (BioGRID: http://thebiogrid.org) is an open access database that houses genetic and protein interactions curated from the primary biomedical literature for all major model organism species and humans. As of September 2014, the BioGRID contains 749 912 interactions as drawn from 43 149 publications that represent 30 model organisms. This interaction count represents a 50% increase compared to our previous 2013 BioGRID update. BioGRID data are freely distributed through partner model organism databases and meta-databases and are directly downloadable in a variety of formats. In addition to general curation of the published literature for the major model species, BioGRID undertakes themed curation projects in areas of particular relevance for biomedical sciences, such as the ubiquitin-proteasome system and various human disease-associated interaction networks. BioGRID curation is coordinated through an Interaction Management System (IMS) that facilitates the compilation interaction records through structured evidence codes, phenotype ontologies, and gene annotation. The BioGRID architecture has been improved in order to support a broader range of interaction and post-translational modification types, to allow the representation of more complex multi-gene/protein interactions, to account for cellular phenotypes through structured ontologies, to expedite curation through semi-automated text-mining approaches, and to enhance curation quality control. PMID:25428363

  12. Monitoring and Modeling Performance of Communications in Computational Grids

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael A.; Le, Thuy T.

    2003-01-01

    Computational grids may include many machines located in a number of sites. For efficient use of the grid we need to have an ability to estimate the time it takes to communicate data between the machines. For dynamic distributed grids it is unrealistic to know exact parameters of the communication hardware and the current communication traffic and we should rely on a model of the network performance to estimate the message delivery time. Our approach to a construction of such a model is based on observation of the messages delivery time with various message sizes and time scales. We record these observations in a database and use them to build a model of the message delivery time. Our experiments show presence of multiple bands in the logarithm of the message delivery times. These multiple bands represent multiple paths messages travel between the grid machines and are incorporated in our multiband model.

  13. Effect of silicate-based corrosion inhibitor from rice husk ash on aluminum alloy in 0.5M HCl

    NASA Astrophysics Data System (ADS)

    Othman, N. K.; Mohamad, N.; Zulkafli, R.; Jalar, A.

    2013-05-01

    Silicate-based corrosion inhibitor prepared by treating silica powder extracted from rice husk ash with concentrated alkaline. The electrochemical behavior of the Al 6061 immersed in 0.5 M hydrochloric acid (HCl) has been studied using the measurements of weight loss, potentiodynamic polarization and optical or scanning electron microscopy (SEM). It was found that, the optimum concentration of silicate-based corrosion inhibitor was prominent at 5 ppm. The small addition of silicate-based corrosion inhibitor was exhibited the decreasing of the weight loss of Al 6061 in acidic medium. SEM micrograph proved that the morphology of untreated Al 6061 with silicate-base corrosion inhibitor contributes more corrosion attack on sample compared to that treated Al 6061. The purpose of this research is to understand the effect of silicate-based corrosion inhibitor concentration yielded from rice husk ash on aluminum alloy.

  14. On the origin of the conductance asymmetry in CeMin5(M=Co, Rh, Ir)

    SciTech Connect

    Bauer, Eric D; Sarrao, J L; Thompson, Joe D; Park, W K; Greene, L H

    2008-01-01

    Asymmetric differential conductance has been frequently observed in heavy fermion point-contact junctions. We report such data obtained from the Ce-based 1-1-5 compounds CeMIn5 (M=Co, Rh, Ir). Apart from characteristics due to superconductivity or antiferromagnetism, a striking common feature is an asymmetry in the background conductance, which shows nontrivial temperature and voltage dependencies. These behaviors cannot be explained by the local heating model combined with large Seebeck effect in heavy fermions. We propose that a Fana-like interference may cause the asymmetry. The interference can occur between two conductance channels, one into the conduction b<'lJld and the other into the heavy electron band formed by the hybridization of conduction electrons with localized f-electrons.

  15. 88 W 0.5 mJ femtosecond laser pulses from two coherently combined fiber amplifiers.

    PubMed

    Seise, Enrico; Klenke, Arno; Breitkopf, Sven; Limpert, Jens; Tünnermann, Andreas

    2011-10-01

    The generation of 0.5 mJ femtosecond laser pulses by coherent combining of two high power high energy fiber chirped-pulse amplifiers is reported. The system is running at a repetition frequency of 175 kHz producing 88 W of average power after the compressor unit. Polarizing beam splitters have been used to realize an amplifying Mach-Zehnder interferometer, which has been stabilized with a Hänsch-Couillaud measurement system. The stabilized system possesses a measured residual rms phase difference fluctuation between the two branches as low as λ/70 rad at the maximum power level. The experiment proves that coherent addition of femtosecond fiber lasers can be efficiently and reliably performed at high B-integral and considerable thermal load in the individual amplifiers.

  16. Design of enclosure and support facilities for the University of Tokyo Atacama Observatory 6.5-m Telescope

    NASA Astrophysics Data System (ADS)

    Sako, S.; Yoshii, Y.; Doi, M.; Kohno, K.; Miyata, T.; Motohara, K.; Kawara, K.; Tanaka, M.; Minezaki, Takeo; Morokuma, T.; Tamura, Y.; Tanabe, T.; Takahashi, H.; Konishi, M.; Kamizuka, Takafumi; Koshida, S.; Kato, Natsuko; Aoki, T.; Soyano, T.; Tarusawa, K.; Handa, T.; Bronfman, L.; Ruiz, M. T.; Hamuy, M.; Mendez, R.

    2014-07-01

    A basic design of enclosure and support facilities for the University of Tokyo Atacama observatory (TAO) 6.5-m telescope is described in this paper. The enclosure facility has a carousel shape with an open-space near the ground surface. The upper carousel rotates independently of the telescope. Horizontally opened slit doors, a dozen ventilation windows, wind and moon shields, and an overhead bridge-crane are equipped. For safety reasons, most of maintenance walkways are placed inside of the enclosure facility. An observation floor of the enclosure facility is connected to the support facility via a bridge for maintenance of observation instruments and a primary mirror of the telescope. Air inside of the enclosure and support facilities is exhausted to an underground tunnel.

  17. Science and Instrument Design of 1.5-m Aperture Solar Optical Telescope for the SOLAR-C Mission

    NASA Astrophysics Data System (ADS)

    Suematsu, Y.; Katsukawa, Y.; Ichimoto, K.; Shimizu, T.

    2012-12-01

    We present science cases and a design of one of major instruments for SOLAR-C mission; 1.5-m-class aperture solar ultra-violet visible and near IR observing Telescope (SUVIT). The SOLAR-C mission aims at fully understanding dynamism and magnetic nature of the solar atmosphere by observing small-scale plasma processes and structures. The SUVIT is designed to provide high-angular-resolution investigation of lower atmosphere from the photosphere to the uppermost chromosphere with enhanced spectroscopic and spectro-polarimetric capability covering a wide wavelength region from 280 nm (Mg II h&k) to 1100 nm (He I 1083 nm), using focal plane instruments: wide-band and narrow-band filtergraphs and a spectrograph for high-precision spectro-polarimetry in the solar photospheric and chromospheric lines. We will discuss about instrument design to realize the science cases.

  18. Distributed Energy Resources Customer Adoption Model (DER-CAM), Investment & Planing Version 3.10.5.m

    2014-04-01

    Version 3.10.5 is a multi-year Decision Support tool for Distributed Generation (DG). DER-CAM was initially created as an exclusively economic energy model, able to find the cost minimizing combination and operation profile of a set of DER technologies that meet heat and electric loads of a single building or microgrid for a typical test year. Now, version 3.10.5.m solves for a multiple-year horizon the technology choice question, the appropriate capacity for each selected technology asmore » well as the operational and investment schedule. Optimized investment decisions are based on techno-economic criteria, along with site information such as energy loads, economic forecast, and technology characterization. Version 3.10.5 contains: 1. a PV and battery degradation model and 2. variable performance for technologies. Efficiency, investment costs, etc. can vary over time and model technology breakthroughs and advancements.« less

  19. Dihydrothiazolopyridone Derivatives as a Novel Family of Positive Allosteric Modulators of the Metabotropic Glutamate 5 (mGlu5) Receptor

    PubMed Central

    Bartolomé-Nebreda, José Manuel; Conde-Ceide, Susana; Delgado, Francisca; Iturrino, Laura; Pastor, Joaquín; Pena, Miguel Ángel; Trabanco, Andrés A.; Tresadern, Gary; Wassvik, Carola M.; Stauffer, Shaun R.; Jadhav, Satyawan; Gogi, Kiran; Vinson, Paige N.; Noetzel, Meredith J.; Days, Emily; Weaver, C. David; Lindsley, Craig W.; Niswender, Colleen M.; Jones, Carrie K.; Conn, P. Jeffrey; Rombouts, Frederik; Lavreysen, Hilde; Macdonald, Gregor J.; Mackie, Claire; Steckler, Thomas

    2014-01-01

    Starting from a singleton chromanone high throughput screening (HTS) hit, we describe a focused medicinal chemistry optimization effort leading to the identification of a novel series of phenoxymethyl-dihydrothiazolopyridone derivatives as selective positive allosteric modulators (PAMs) of the metabotropic glutamate 5 (mGlu5) receptor. These dihydrothiazolopyridones potentiate receptor responses in recombinant systems. In vitro and in vivo drug metabolism and pharmacokinetic (DMPK) evaluation allowed us to select compound 16a for its assessment in a preclinical animal screen of possible antipsychotic activity. 16a was able to reverse amphetamine-induced hyperlocomotion in rats in a dose-dependent manner without showing any significant motor impairment or overt neurological side effects at comparable doses. Evolution of our medicinal chemistry program, structure activity, and properties relationships (SAR and SPR) analysis as well as a detailed profile for optimized mGlu5 receptor PAM 16a are described. PMID:23947773

  20. Distributed Energy Resources Customer Adoption Model (DER-CAM), Investment & Planing Version 3.10.5.m

    SciTech Connect

    2014-04-01

    Version 3.10.5 is a multi-year Decision Support tool for Distributed Generation (DG). DER-CAM was initially created as an exclusively economic energy model, able to find the cost minimizing combination and operation profile of a set of DER technologies that meet heat and electric loads of a single building or microgrid for a typical test year. Now, version 3.10.5.m solves for a multiple-year horizon the technology choice question, the appropriate capacity for each selected technology as well as the operational and investment schedule. Optimized investment decisions are based on techno-economic criteria, along with site information such as energy loads, economic forecast, and technology characterization. Version 3.10.5 contains: 1. a PV and battery degradation model and 2. variable performance for technologies. Efficiency, investment costs, etc. can vary over time and model technology breakthroughs and advancements.

  1. Transport of Escherichia coli and F-RNA bacteriophages in a 5 m column of saturated pea gravel

    NASA Astrophysics Data System (ADS)

    Sinton, Lester W.; Mackenzie, Margaret L.; Karki, Naveena; Braithwaite, Robin R.; Hall, Carollyn H.; Flintoft, Mark J.

    2010-09-01

    The relative transport and attenuation of bacteria, bacteriophages, and bromide was determined in a 5 m long × 0.3 m diameter column of saturated pea gravel. The velocity ( V), longitudinal dispersivity ( αx) and total removal rate ( λ) were calculated from the breakthrough curves at 1 m, 3 m, and 5 m, at a flow rate of 32 L h - 1 . Inactivation ( μ) rates were determined in survival chambers. Two pure culture experiments with Escherichia coli J6-2 and F-RNA phage MS2 produced an overall V ranking of E. coli J6-2 > MS2 > bromide, consistent with velocity enhancement, whereby larger particles progressively move into faster, central streamlines of saturated pores. Removal rates were near zero for MS2, but were higher for E. coli J6-2. In two sewage experiments, E. coli and F-RNA phage Vs were similar (but > bromide). This was attributed to phage adsorption to colloids similar in size to E. coli cells. Sewage phage removal rates were higher than for the pure MS2 cultures. The application of filtration theory suggested that, whereas free phage were unaffected by settling, this was the primary removal mechanism for the colloid-associated phage. However, cultured and sewage E. coli removal rates were similar, suggesting the dominance of free E. coli cells in the sewage. When MS2 was attached to kaolin particles, it was transported faster than free MS2, but at similar rates to sewage phage. The μ values indicated little contribution of inactivation to removal of either cultured or sewage microorganisms. The results showed the importance of association with colloids in determining the relative transport of bacteria and viruses in gravels.

  2. THE FAILURE OF TCP IN HIGH-PERFORMANCE COMPUTATIONAL GRIDS

    SciTech Connect

    W. FENG; ET AL

    2000-08-01

    Distributed computational grids depend on TCP to ensure reliable end-to-end communication between nodes across the wide-area network (WAN). Unfortunately, TCP performance can be abysmal even when buffers on the end hosts are manually optimized. Recent studies blame the self-similar nature of aggregate network traffic for TCP's poor performance because such traffic is not readily amenable to statistical multiplexing in the Internet, and hence computational grids. In this paper we identify a source of self-similarity previously ignored, a source that is readily controllable--TCP. Via an experimental study, we examine the effects of the TCP stack on network traffic using different implementations of TCP. We show that even when aggregate application traffic ought to smooth out as more applications' traffic are multiplexed, TCP induces burstiness into the aggregate traffic loud, thus adversely impacting network performance. Furthermore, our results indicate that TCP performance will worsen as WAN speeds continue to increase.

  3. Three-dimensional solution-adaptive grid generation of composite configurations

    NASA Astrophysics Data System (ADS)

    Tu, Yen

    A solution adaptive grid generation procedure is developed and applied to 3-D inviscid transonic fluid flow around complex geometries using a composite block grid structure. The adaptation is based upon control functions in an elliptic grid generation system. The control function is constructed in a manner such that a proper grid network can be generated as a fluid flow solution is evolving. The grid network is boundary conforming for accurate representation of boundary conditions. The procedure implemented allows orthodonality at boundaries for more accurate computations, while smoothness is implicit in the elliptic equations. The approach allows multiple block grid systems to be constructed to treat complex configurations as well. The solution adaptive computational procedure was accomplished by coupling the elliptic grid generation technique with an implicit, finite volume, upwind Euler flow solver. In simulating trasonic fluid flow around finned body of revolution and a multiple store configuration, the grid systems adapt to pressure gradients in the flow field. Results obtained show that the technique is capable of generating grid networks proper for the simulations of complex aerodynamic configurations.

  4. Grid crusher apparatus and method

    SciTech Connect

    McDaniels, J.D. Jr.

    1994-01-11

    A grid crusher apparatus and method are provided for a nuclear fuel rod consolidation system. Spacer grids are crushed within a basket which is then placed in a storage canister. The grid crusher apparatus has a ram assembly and a basket driving mechanism. The ram assembly has a sleeve ram and a central ram. The sleeve ram surrounds the central ram which is longitudinally movable within the sleeve ram. The central ram protrudes from the sleeve ram at a ram contact end and is retractable upon application of a preselected force to the central ram so that the central ram is flush with the sleeve ram at the ram contact end. The basket driving mechanism is configured to move the basket containing a spacer grid towards the ram contact end so that the spacer grid is crushed within the basket. The spacer grid is crushed by the combination of successive forces from the central ram and the sleeve ram, respectively. Essentially, the central portion of the spacer grid is crushed first, and then the remaining outer portion of the spacer grid is crushed to complete the crushing action of the spacer grid. The foregoing process is repeated for other spacer grids until the basket reaches a predetermined allowable capacity, and then the basket is stored in a storage canister. 11 figs.

  5. Evaluating the Information Power Grid using the NAS Grid Benchmarks

    NASA Technical Reports Server (NTRS)

    VanderWijngaartm Rob F.; Frumkin, Michael A.

    2004-01-01

    The NAS Grid Benchmarks (NGB) are a collection of synthetic distributed applications designed to rate the performance and functionality of computational grids. We compare several implementations of the NGB to determine programmability and efficiency of NASA's Information Power Grid (IPG), whose services are mostly based on the Globus Toolkit. We report on the overheads involved in porting existing NGB reference implementations to the IPG. No changes were made to the component tasks of the NGB can still be improved.

  6. The Volume Grid Manipulator (VGM): A Grid Reusability Tool

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1997-01-01

    This document is a manual describing how to use the Volume Grid Manipulation (VGM) software. The code is specifically designed to alter or manipulate existing surface and volume structured grids to improve grid quality through the reduction of grid line skewness, removal of negative volumes, and adaption of surface and volume grids to flow field gradients. The software uses a command language to perform all manipulations thereby offering the capability of executing multiple manipulations on a single grid during an execution of the code. The command language can be input to the VGM code by a UNIX style redirected file, or interactively while the code is executing. The manual consists of 14 sections. The first is an introduction to grid manipulation; where it is most applicable and where the strengths of such software can be utilized. The next two sections describe the memory management and the manipulation command language. The following 8 sections describe simple and complex manipulations that can be used in conjunction with one another to smooth, adapt, and reuse existing grids for various computations. These are accompanied by a tutorial section that describes how to use the commands and manipulations to solve actual grid generation problems. The last two sections are a command reference guide and trouble shooting sections to aid in the use of the code as well as describe problems associated with generated scripts for manipulation control.

  7. GridPP: the UK grid for particle physics.

    PubMed

    Britton, D; Cass, A J; Clarke, P E L; Coles, J; Colling, D J; Doyle, A T; Geddes, N I; Gordon, J C; Jones, R W L; Kelsey, D P; Lloyd, S L; Middleton, R P; Patrick, G N; Sansum, R A; Pearce, S E

    2009-06-28

    The start-up of the Large Hadron Collider (LHC) at CERN, Geneva, presents a huge challenge in processing and analysing the vast amounts of scientific data that will be produced. The architecture of the worldwide grid that will handle 15 PB of particle physics data annually from this machine is based on a hierarchical tiered structure. We describe the development of the UK component (GridPP) of this grid from a prototype system to a full exploitation grid for real data analysis. This includes the physical infrastructure, the deployment of middleware, operational experience and the initial exploitation by the major LHC experiments. PMID:19451101

  8. GridPP: the UK grid for particle physics.

    PubMed

    Britton, D; Cass, A J; Clarke, P E L; Coles, J; Colling, D J; Doyle, A T; Geddes, N I; Gordon, J C; Jones, R W L; Kelsey, D P; Lloyd, S L; Middleton, R P; Patrick, G N; Sansum, R A; Pearce, S E

    2009-06-28

    The start-up of the Large Hadron Collider (LHC) at CERN, Geneva, presents a huge challenge in processing and analysing the vast amounts of scientific data that will be produced. The architecture of the worldwide grid that will handle 15 PB of particle physics data annually from this machine is based on a hierarchical tiered structure. We describe the development of the UK component (GridPP) of this grid from a prototype system to a full exploitation grid for real data analysis. This includes the physical infrastructure, the deployment of middleware, operational experience and the initial exploitation by the major LHC experiments.

  9. Adventures in Computational Grids

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Sometimes one supercomputer is not enough. Or your local supercomputers are busy, or not configured for your job. Or you don't have any supercomputers. You might be trying to simulate worldwide weather changes in real time, requiring more compute power than you could get from any one machine. Or you might be collecting microbiological samples on an island, and need to examine them with a special microscope located on the other side of the continent. These are the times when you need a computational grid.

  10. TASMANIAN Sparse Grids Module

    SciTech Connect

    and Drayton Munster, Miroslav Stoyanov

    2013-09-20

    Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library that provides a command line interface via text files ad a MATLAB interface via the command line tool.

  11. TASMANIAN Sparse Grids Module

    2013-09-20

    Sparse Grids are the family of methods of choice for multidimensional integration and interpolation in low to moderate number of dimensions. The method is to select extend a one dimensional set of abscissas, weights and basis functions by taking a subset of all possible tensor products. The module provides the ability to create global and local approximations based on polynomials and wavelets. The software has three components, a library, a wrapper for the library thatmore » provides a command line interface via text files ad a MATLAB interface via the command line tool.« less

  12. The EUAsiaGrid Project

    NASA Astrophysics Data System (ADS)

    Paganoni, Marco

    The EUAsiaGrid proposal contributes to the aims of the Research Infrastructures part of the EU Seventh Framework Programme (FP7) by promoting interoperation between the European and the Asian-Pacific Grids. The project, with a total number of 15 partners coordinated by INFN, started on April 1st 2008. It will disseminate the knowledge about the EGEE Grid infrastructure, organize specific training events and support applications both within the scientific communities with an already long experience in the Computing Grids (High Energy Physics, Computational Chemistry, Bioinformatics and Biomedics) and in the most recent ones (Social Sciences, Disaster Mitigation, Cultural Heritage). Ultimately the EUAsiaGrid project will pave the way towards a common e-Infrastructure with the European and the Asian Grids.

  13. Prepares Overset Grids for Processing

    1998-04-22

    Many large and complex computational problems require multiple, structured, generically overlapped (overset) grids to obtain numerical solutions in a timely manner. BREAKUP significantly reduces required compute times by preparing overset grids for processing on massively parallel computers. BREAKUP subdivides the original grids for use on a user-specified number of parallel processors. Grid-to-grid and intragrid communications are maintained in the parallel environment via connectivity tables generated by BREAKUP. The subgrids are formed to be statically loadmore » balanced and to incur a minimum of communication between the subgrids. When the output of BREAKUP is submitted to an appropriately modified flow solver, subgrid solutions will be updated simultaneously. This contrasts to the much less efficient solution method of updating each original grid sequentially as done in the past.« less

  14. Prepares Overset Grids for Processing

    SciTech Connect

    Barnette, Daniel W.

    1998-04-22

    Many large and complex computational problems require multiple, structured, generically overlapped (overset) grids to obtain numerical solutions in a timely manner. BREAKUP significantly reduces required compute times by preparing overset grids for processing on massively parallel computers. BREAKUP subdivides the original grids for use on a user-specified number of parallel processors. Grid-to-grid and intragrid communications are maintained in the parallel environment via connectivity tables generated by BREAKUP. The subgrids are formed to be statically load balanced and to incur a minimum of communication between the subgrids. When the output of BREAKUP is submitted to an appropriately modified flow solver, subgrid solutions will be updated simultaneously. This contrasts to the much less efficient solution method of updating each original grid sequentially as done in the past.

  15. On unstructured grids and solvers

    NASA Technical Reports Server (NTRS)

    Barth, T. J.

    1990-01-01

    The fundamentals and the state-of-the-art technology for unstructured grids and solvers are highlighted. Algorithms and techniques pertinent to mesh generation are discussed. It is shown that grid generation and grid manipulation schemes rely on fast multidimensional searching. Flow solution techniques for the Euler equations, which can be derived from the integral form of the equations are discussed. Sample calculations are also provided.

  16. Molecular cloning, characterization and expression analysis of Toll-like receptor 5M gene in Japanese sea perch (Lateolabrax japonicas) after bacterial infection.

    PubMed

    Wang, Chengyang; Zhao, Chao; Fu, Mingjun; Bao, Weiyang; Qiu, Lihua

    2016-09-01

    Toll-like receptor 5M belongs to Toll-like receptors (TLRs) family, which plays a crucial role in innate immunity due to its important role in the recognition of bacteria invasion and in the activation of immune related pathways downstream. In the present study, we firstly cloned the full-length cDNAs of TLR 5M (LjTLR 5M) from Japanese sea perch (Lateolabrax japonicas). The full-length cDNAs of LjTLR 5M include an open reading frame (ORF) of 2676 bp encoding a polypeptide of 891 amino acid residues. The deduced amino acid sequence analysis showed that LiTLR 5M contains LRRs (extracellular leucine rich repeats), transmembrane and TIR (Toll/interleukin-1 receptor) domain. Transcriptional expression analysis indicated that LiTLR 5M mRNAs were ubiquitously expressed in wide array of tissues and the peak level was observed in the head-kidney. The expression patterns of LjTLR 5M after Vibro harveyi and Streptococus agalactiae infection were detected by qRT-PCR, and the results showed that LjTLR 5M was significant up-regulated in spleen, liver and head-kidney. Additionally, the expression patterns of LjTLR 5M in infected spleen and head-kidney were further validated by in situ hybridization (ISH). In summary, these findings indicate that LjTLR 5M is significant induced after different bacterial infection and is involved in immune response. Furthermore, this study will provide foundational information for other TLRs research of L. japonicas against different bacterial pathogens invasion. PMID:27417233

  17. Molecular cloning, characterization and expression analysis of Toll-like receptor 5M gene in Japanese sea perch (Lateolabrax japonicas) after bacterial infection.

    PubMed

    Wang, Chengyang; Zhao, Chao; Fu, Mingjun; Bao, Weiyang; Qiu, Lihua

    2016-09-01

    Toll-like receptor 5M belongs to Toll-like receptors (TLRs) family, which plays a crucial role in innate immunity due to its important role in the recognition of bacteria invasion and in the activation of immune related pathways downstream. In the present study, we firstly cloned the full-length cDNAs of TLR 5M (LjTLR 5M) from Japanese sea perch (Lateolabrax japonicas). The full-length cDNAs of LjTLR 5M include an open reading frame (ORF) of 2676 bp encoding a polypeptide of 891 amino acid residues. The deduced amino acid sequence analysis showed that LiTLR 5M contains LRRs (extracellular leucine rich repeats), transmembrane and TIR (Toll/interleukin-1 receptor) domain. Transcriptional expression analysis indicated that LiTLR 5M mRNAs were ubiquitously expressed in wide array of tissues and the peak level was observed in the head-kidney. The expression patterns of LjTLR 5M after Vibro harveyi and Streptococus agalactiae infection were detected by qRT-PCR, and the results showed that LjTLR 5M was significant up-regulated in spleen, liver and head-kidney. Additionally, the expression patterns of LjTLR 5M in infected spleen and head-kidney were further validated by in situ hybridization (ISH). In summary, these findings indicate that LjTLR 5M is significant induced after different bacterial infection and is involved in immune response. Furthermore, this study will provide foundational information for other TLRs research of L. japonicas against different bacterial pathogens invasion.

  18. Grid Task Execution

    NASA Technical Reports Server (NTRS)

    Hu, Chaumin

    2007-01-01

    IPG Execution Service is a framework that reliably executes complex jobs on a computational grid, and is part of the IPG service architecture designed to support location-independent computing. The new grid service enables users to describe the platform on which they need a job to run, which allows the service to locate the desired platform, configure it for the required application, and execute the job. After a job is submitted, users can monitor it through periodic notifications, or through queries. Each job consists of a set of tasks that performs actions such as executing applications and managing data. Each task is executed based on a starting condition that is an expression of the states of other tasks. This formulation allows tasks to be executed in parallel, and also allows a user to specify tasks to execute when other tasks succeed, fail, or are canceled. The two core components of the Execution Service are the Task Database, which stores tasks that have been submitted for execution, and the Task Manager, which executes tasks in the proper order, based on the user-specified starting conditions, and avoids overloading local and remote resources while executing tasks.

  19. [Research on tumor information grid framework].

    PubMed

    Zhang, Haowei; Qin, Zhu; Liu, Ying; Tan, Jianghao; Cao, Haitao; Chen, Youping; Zhang, Ke; Ding, Yuqing

    2013-10-01

    In order to realize tumor disease information sharing and unified management, we utilized grid technology to make the data and software resources which distributed in various medical institutions for effective integration so that we could make the heterogeneous resources consistent and interoperable in both semantics and syntax aspects. This article describes the tumor grid framework, the type of the service being packaged in Web Service Description Language (WSDL) and extensible markup language schemas definition (XSD), the client use the serialized document to operate the distributed resources. The service objects could be built by Unified Modeling Language (UML) as middle ware to create application programming interface. All of the grid resources are registered in the index and released in the form of Web Services based on Web Services Resource Framework (WSRF). Using the system we can build a multi-center, large sample and networking tumor disease resource sharing framework to improve the level of development in medical scientific research institutions and the patient's quality of life. PMID:24459945

  20. [Research on tumor information grid framework].

    PubMed

    Zhang, Haowei; Qin, Zhu; Liu, Ying; Tan, Jianghao; Cao, Haitao; Chen, Youping; Zhang, Ke; Ding, Yuqing

    2013-10-01

    In order to realize tumor disease information sharing and unified management, we utilized grid technology to make the data and software resources which distributed in various medical institutions for effective integration so that we could make the heterogeneous resources consistent and interoperable in both semantics and syntax aspects. This article describes the tumor grid framework, the type of the service being packaged in Web Service Description Language (WSDL) and extensible markup language schemas definition (XSD), the client use the serialized document to operate the distributed resources. The service objects could be built by Unified Modeling Language (UML) as middle ware to create application programming interface. All of the grid resources are registered in the index and released in the form of Web Services based on Web Services Resource Framework (WSRF). Using the system we can build a multi-center, large sample and networking tumor disease resource sharing framework to improve the level of development in medical scientific research institutions and the patient's quality of life.

  1. OGC and Grid Interoperability in enviroGRIDS Project

    NASA Astrophysics Data System (ADS)

    Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas

    2010-05-01

    EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and

  2. Optimal Wind Energy Integration in Large-Scale Electric Grids

    NASA Astrophysics Data System (ADS)

    Albaijat, Mohammad H.

    The major concern in electric grid operation is operating under the most economical and reliable fashion to ensure affordability and continuity of electricity supply. This dissertation investigates the effects of such challenges, which affect electric grid reliability and economic operations. These challenges are: 1. Congestion of transmission lines, 2. Transmission lines expansion, 3. Large-scale wind energy integration, and 4. Phaser Measurement Units (PMUs) optimal placement for highest electric grid observability. Performing congestion analysis aids in evaluating the required increase of transmission line capacity in electric grids. However, it is necessary to evaluate expansion of transmission line capacity on methods to ensure optimal electric grid operation. Therefore, the expansion of transmission line capacity must enable grid operators to provide low-cost electricity while maintaining reliable operation of the electric grid. Because congestion affects the reliability of delivering power and increases its cost, the congestion analysis in electric grid networks is an important subject. Consequently, next-generation electric grids require novel methodologies for studying and managing congestion in electric grids. We suggest a novel method of long-term congestion management in large-scale electric grids. Owing to the complication and size of transmission line systems and the competitive nature of current grid operation, it is important for electric grid operators to determine how many transmission lines capacity to add. Traditional questions requiring answers are "Where" to add, "How much of transmission line capacity" to add, and "Which voltage level". Because of electric grid deregulation, transmission lines expansion is more complicated as it is now open to investors, whose main interest is to generate revenue, to build new transmission lines. Adding a new transmission capacity will help the system to relieve the transmission system congestion, create

  3. Research on 6R Military Logistics Network

    NASA Astrophysics Data System (ADS)

    Jie, Wan; Wen, Wang

    The building of military logistics network is an important issue for the construction of new forces. This paper has thrown out a concept model of 6R military logistics network model based on JIT. Then we conceive of axis spoke y logistics centers network, flexible 6R organizational network, lean 6R military information network based grid. And then the strategy and proposal for the construction of the three sub networks of 6Rmilitary logistics network are given.

  4. Prototype design, fabrication, and testing of a 5-m large mirror support structure for the TALE experiment

    NASA Astrophysics Data System (ADS)

    Jeong, In Seok; Lee, Jin Ho

    2016-06-01

    To extend the detector measurement range to above 1016 eV so as to encompass for ultra-highenergy cosmic rays (UHECRs), Korean collaborators have contributed to the design, development, and structural evaluation of the telescope array (TA) experimental fluorescence detector (FD).With a 5-m diameter, this is the world's largest interferometer. This new design requires stability; i.e., it must be constructed on a sturdy, reinforced foundation so as to provide reliability, suitability, and serviceability. Thus, fundamental analyses considering all environment-related factors have been conducted to test and evaluate the components of our large detection system. These analyses include a static stress analysis with ~80-kg loads for ~1 day, a static fluid stress analysis under a moderately heavy wind at 16-27 m/s, a thermal stress analysis at high temperatures of 47-58 °C, and an optical reflectivity test. There by, we determined a static pressure of 380 MPa (static fluid pressure: 0.1 MPa) and a thermal pressure of 10 MPa. The optical spot size was 30-40 mm with a very high peak (estimated value: 34.5 mm). Note that a brief description of the design and the production results for the Telescope Array Low-Energy Extension (TALE)-FD Mirror Support Structure prototype were presented at the December 13, 2013, TA collaborative meeting in Japan (ICRR).

  5. Long-Term Corrosion Behavior of Alloy 22 in 5M CaCl2 at 120 C

    SciTech Connect

    J.C. Estill; G.A. Hust; K.J. Evans; M.L. Stuart; R.B. Rebak

    2006-05-08

    In conditions where tight crevices exist in hot chloride containing solutions Alloy 22 may suffer crevice corrosion. The occurrence (or not) of crevice corrosion in a given environment (e.g, salt concentration and temperature), is governed by the values of the critical potential (E{sub crit}) for crevice corrosion and the corrosion potential (E{sub corr}). This paper discusses the evolution of E{sub corr} and corrosion rate (CR) of creviced Alloy 22 specimens in 5 M calcium chloride (CaCl{sub 2}) at 120 C. Tested specimens included non-creviced rods and multiple creviced assemblies (MCA) both non-welded (wrought) and welded. Results show that Alloy 22 suffers crevice corrosion under the open circuit conditions in the aerated hot CaCl{sub 2} brine. However, after more than a year of immersion the propagation of crevice corrosion was not significant. The general corrosion rate decreased or remained unchanged as the immersion time increased. For rods and MCA specimens, the corrosion rate was lower than 100 nm/year after more than a year immersion time.

  6. Long-Term Corrosion Behavior of Alloy 22 in 5 M CaCl2 at 120?C

    SciTech Connect

    Estill, J C; Hust, G A; Evans, K J; Stuart, M L; Rebak, R B

    2006-02-05

    In conditions where tight crevices exist in hot chloride containing solutions Alloy 22 may suffer crevice corrosion. The occurrence (or not) of crevice corrosion in a given environment (e.g. salt concentration and temperature), is governed by the values of the critical potential (E{sub crit}) for crevice corrosion and the corrosion potential (E{sub corr}). This paper discusses the evolution of E{sub corr} and corrosion rate (CR) of creviced Alloy 22 specimens in 5 M calcium chloride (CaCl{sub 2}) at 120 C. Tested specimens included non-creviced rods and multiple creviced assemblies (MCA) both non-welded (wrought) and welded. Results show that Alloy 22 suffers crevice corrosion under the open circuit conditions in the aerated hot CaCl{sub 2} brine. However, after more than a year immersion the propagation of crevice corrosion was not significant. The general corrosion rate decreased or remained unchanged as the immersion time increased. For rods and MCA specimens, the corrosion rate was lower than 100 nm/year after more than a year immersion time.

  7. Tetrahydronaphthyridine and Dihydronaphthyridinone Ethers As Positive Allosteric Modulators of the Metabotropic Glutamate Receptor 5 (mGlu5)

    PubMed Central

    2015-01-01

    Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) represent a promising therapeutic strategy for the treatment of schizophrenia. Starting from an acetylene-based lead from high throughput screening, an evolved bicyclic dihydronaphthyridinone was identified. We describe further refinements leading to both dihydronaphthyridinone and tetrahydronaphthyridine mGlu5 PAMs containing an alkoxy-based linkage as an acetylene replacement. Exploration of several structural features including western pyridine ring isomers, positional amides, linker connectivity/position, and combinations thereof, reveal that these bicyclic modulators generally exhibit steep SAR and within specific subseries display a propensity for pharmacological mode switching at mGlu5 as well as antagonist activity at mGlu3. Structure–activity relationships within a dihydronaphthyridinone subseries uncovered 12c (VU0405372), a selective mGlu5 PAM with good in vitro potency, low glutamate fold-shift, acceptable DMPK properties, and in vivo efficacy in an amphetamine-based model of psychosis. PMID:24914612

  8. Pressure and temperature dependence of the reaction NO2 + NO3 + M yields N2O5 + M

    NASA Technical Reports Server (NTRS)

    Kircher, C. C.; Margitan, J. J.; Sander, S. P.

    1984-01-01

    The pressure and temperature dependences of the reaction NO2 + NO3 + M which yields N2O5 + M are investigated by using the flash photolysis/visible absorption technique in which the pseudo-first-order decay of NO3 is monitored as a function of total pressure (20-700 torr), diluent gas (M = He and N2), and temperature (236-358 K). The reaction is found to be in the falloff region in the 20-700 torr pressure range with collision efficiencies increasing in the order He less than N2. Falloff parameters are obtained by fitting the experimental data to the falloff equation of Troe and co-workers. The expression for k1(N2 concentration, T) is obtained and compared with the evaluations presented in the NASA (DeMore, 1983) and CODATA (Baulch et al., 1982) reviews of kinetic data for atmospheric chemistry. Both evaluations are based on N2O5 thermal decomposition data coupled with estimates of the equilibrium constant. The significance of the reactions for atmospheric chemistry rests not only on their rates but on the extent to which they result in a permanent sink for NOX.

  9. AC loss of a model 5m 2G HTS power cable using wires with NiW substrates

    NASA Astrophysics Data System (ADS)

    Vysotsky, V. S.; Shutov, K. A.; Nosov, A. A.; Polyakova, N. V.; Fetisov, S. S.; Zubko, V. V.; Sytnikov, V. E.; Carter, W. L.; Fleshler, S.; Malozemoff, A. P.; Snitchler, G.

    2010-06-01

    A model 5 m cable prototype was constructed using American Superconductor second generation (2G) high temperature superconductor (HTS) wires - 344 superconductors, produced with the MOD/RABiTSTM process. The model cable consists of two helically counterwound layers of brass-laminated tapes. Twist pitches were calculated to provide uniform current distribution between the two cable layers. The NiW substrates of the tapes were oriented to face radially inward and radially outward for the inner and outer layers of the cable, respectively, to minimize the spacing between the HTS layers and any effects of the weak substrate magnetism. To verify the calculations and design principles, the model cable was instrumented with potential taps and sensors, including Rogowski coils and Hall probes, to measure the current distribution among layers, voltage - current characteristics and other parameters. AC losses in this cable model have been measured and analyzed by use of digital measurements of current and voltage. At low to intermediate currents, they are in the range of a few tenths of a watt per meter, consistent with the ferromagnetic loss of the substrate. Analysis of the individual contributions of the Ni-W substrate and the superconductor hysteresis loss is given.

  10. Status of the Advanced Mirror Technology Development (AMTD) Phase 2, 1.5m ULE(Registered Trademark) Mirror

    NASA Technical Reports Server (NTRS)

    Egerman, Robert; Matthews, Gary W.; Johnson, Matthew; Ferland, Albert; Stahl, H. Philip; Eng, Ron; Effinger, Michael R.

    2015-01-01

    The Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. Under Science and Technology funding, NASA's Marshall Space Flight Center (MSFC) and Exelis have developed a more cost effective process to make up to 4m monolithic spaceflight UV quality, low areal density, thermally and dynamically stable primary mirrors. Under a Phase I program, a proof of concept mirror was completed at Exelis and tested down to 250K at MSFC which would allow imaging out to 2.5 microns. In 2014, Exelis and NASA started a Phase II program to design and build a 1.5m mirror to demonstrate lateral scalability to a 4m monolithic primary mirror. The current status of the Phase II development program will be provided along with a Phase II program summary.

  11. Electronic structure of the Np MT 5 ( M = Fe, Co, Ni; T = Ga, In) series of neptunium compounds

    NASA Astrophysics Data System (ADS)

    Lukoyanov, A. V.; Shorikov, A. O.; Anisimov, V. I.

    2016-03-01

    Evolution of the electronic structure of the Np MGa5 ( M = Fe, Co, Ni) series of neptunium compounds, whose crystal structure is similar to that of the known family of Pu115 superconductors, was studied by the LDA + U + SO method. The calculations took into account both the strong electron correlations and the spin‒orbit coupling in the 5 f shell of neptunium. For the first time, the electronic structure was calculated for a hypothetical series of compounds in which gallium is replaced with indium. Parameters of the crystal structure of the given series were obtained using the relationship between the parameters of the crystal structure of the earlier-studied compounds PuCoGa5 and PuCoIn5. The analysis of the electronic structure and characteristics of neptunium ions calculated in the framework of the LDA + U + SO method showed that the neptunium ions in Np MIn5 with M = Fe, Co, and Ni should have an electron configuration closer to f 4, but a spin and magnetic characteristics close to those in Np MGa5.

  12. Tetrahydronaphthyridine and dihydronaphthyridinone ethers as positive allosteric modulators of the metabotropic glutamate receptor 5 (mGlu₅).

    PubMed

    Turlington, Mark; Malosh, Chrysa; Jacobs, Jon; Manka, Jason T; Noetzel, Meredith J; Vinson, Paige N; Jadhav, Satyawan; Herman, Elizabeth J; Lavreysen, Hilde; Mackie, Claire; Bartolomé-Nebreda, José M; Conde-Ceide, Susana; Martín-Martín, M Luz; Tong, Han Min; López, Silvia; MacDonald, Gregor J; Steckler, Thomas; Daniels, J Scott; Weaver, C David; Niswender, Colleen M; Jones, Carrie K; Conn, P Jeffrey; Lindsley, Craig W; Stauffer, Shaun R

    2014-07-10

    Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) represent a promising therapeutic strategy for the treatment of schizophrenia. Starting from an acetylene-based lead from high throughput screening, an evolved bicyclic dihydronaphthyridinone was identified. We describe further refinements leading to both dihydronaphthyridinone and tetrahydronaphthyridine mGlu5 PAMs containing an alkoxy-based linkage as an acetylene replacement. Exploration of several structural features including western pyridine ring isomers, positional amides, linker connectivity/position, and combinations thereof, reveal that these bicyclic modulators generally exhibit steep SAR and within specific subseries display a propensity for pharmacological mode switching at mGlu5 as well as antagonist activity at mGlu3. Structure-activity relationships within a dihydronaphthyridinone subseries uncovered 12c (VU0405372), a selective mGlu5 PAM with good in vitro potency, low glutamate fold-shift, acceptable DMPK properties, and in vivo efficacy in an amphetamine-based model of psychosis. PMID:24914612

  13. Accretion and evolution of ∼2.5 M {sub ⊕} planets with voluminous H/He envelopes

    SciTech Connect

    Bodenheimer, Peter

    2014-08-20

    Formation of planets in the Neptune size range with low-mass, but voluminous, H{sub 2}/He gaseous envelopes is modeled by detailed numerical simulations according to the core-nucleated accretion scenario. Formation locations ranging from 0.5 to 4 AU from a star of 1 M {sub ☉} are considered. The final planets have heavy-element cores of 2.2-2.5 M {sub ⊕} and envelopes in the range 0.037-0.16 M {sub ⊕}. After the formation process, which lasts 2 Myr or less, the planets evolve at constant mass up to an age of several Gyr. For assumed equilibrium temperatures of 250, 500, and 1000 K, their calculated final radii are compared with those observed by the Kepler spacecraft. For the particular case of Kepler-11 f, we address the question whether it could have formed in situ or whether migration from a formation location farther out in the disk is required.

  14. Investigation on NOx adsorption in [M‧]-MAPO-5 (M = Si, Ti; M‧ = Ag, Cu) by density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Liu, Jiexiang; Zhang, Xiaoguang

    2013-01-01

    NO, N2O and NO2 adsorption in [M‧]-MAPO-5 (M = Si, Ti; M‧ = Ag, Cu) models of the modified aluminophosphate molecular sieves was investigated by density functional theory (DFT) method. The equilibrium structural parameters and adsorption energies were obtained and compared. The structural parameters of NO and NO2 in the adsorbed state had a distinct change than that of N2O compared to their free gas state. [M‧]-MAPO-5 was more effective for the activation of NOx molecule compared to [M‧]-AlMOR (M‧ = Ag, Cu) models of the modified mordenite in our previous studies. The adsorption energies data indicated that adsorption strength of NOx followed the decreasing order of NO2 > NO > N2O. And adsorption complexes in η1-N mode were much stabler than that in η1-O mode, which was similar to that in [M‧]-AlMOR. [Cu]-MAPO-5 had a much stronger adsorption for NOx than [Ag]-MAPO-5. And [M‧]-SiMOR had a little stronger adsorption for NOx than [M‧]-TiMOR. Furthermore, the resistance capabilities of [M‧]-MAPO-5 to SO2, H2O and O2 were studied and analyzed. The interaction mechanism of NOx adsorption in [M‧]-MAPO-5 was also discussed by natural bond orbital (NBO) analysis, which was in reasonable agreement with the adsorption interaction strengths.

  15. Grid Generation Techniques Utilizing the Volume Grid Manipulator

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1998-01-01

    This paper presents grid generation techniques available in the Volume Grid Manipulation (VGM) code. The VGM code is designed to manipulate existing line, surface and volume grids to improve the quality of the data. It embodies an easy to read rich language of commands that enables such alterations as topology changes, grid adaption and smoothing. Additionally, the VGM code can be used to construct simplified straight lines, splines, and conic sections which are common curves used in the generation and manipulation of points, lines, surfaces and volumes (i.e., grid data). These simple geometric curves are essential in the construction of domain discretizations for computational fluid dynamic simulations. By comparison to previously established methods of generating these curves interactively, the VGM code provides control of slope continuity and grid point-to-point stretchings as well as quick changes in the controlling parameters. The VGM code offers the capability to couple the generation of these geometries with an extensive manipulation methodology in a scripting language. The scripting language allows parametric studies of a vehicle geometry to be efficiently performed to evaluate favorable trends in the design process. As examples of the powerful capabilities of the VGM code, a wake flow field domain will be appended to an existing X33 Venturestar volume grid; negative volumes resulting from grid expansions to enable flow field capture on a simple geometry, will be corrected; and geometrical changes to a vehicle component of the X33 Venturestar will be shown.

  16. Abruptness of Cascade Failures in Power Grids

    PubMed Central

    Pahwa, Sakshi; Scoglio, Caterina; Scala, Antonio

    2014-01-01

    Electric power-systems are one of the most important critical infrastructures. In recent years, they have been exposed to extreme stress due to the increasing demand, the introduction of distributed renewable energy sources, and the development of extensive interconnections. We investigate the phenomenon of abrupt breakdown of an electric power-system under two scenarios: load growth (mimicking the ever-increasing customer demand) and power fluctuations (mimicking the effects of renewable sources). Our results on real, realistic and synthetic networks indicate that increasing the system size causes breakdowns to become more abrupt; in fact, mapping the system to a solvable statistical-physics model indicates the occurrence of a first order transition in the large size limit. Such an enhancement for the systemic risk failures (black-outs) with increasing network size is an effect that should be considered in the current projects aiming to integrate national power-grids into “super-grids”. PMID:24424239

  17. NAS Grid Benchmarks: A Tool for Grid Space Exploration

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; VanderWijngaart, Rob F.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We present an approach for benchmarking services provided by computational Grids. It is based on the NAS Parallel Benchmarks (NPB) and is called NAS Grid Benchmark (NGB) in this paper. We present NGB as a data flow graph encapsulating an instance of an NPB code in each graph node, which communicates with other nodes by sending/receiving initialization data. These nodes may be mapped to the same or different Grid machines. Like NPB, NGB will specify several different classes (problem sizes). NGB also specifies the generic Grid services sufficient for running the bench-mark. The implementor has the freedom to choose any specific Grid environment. However, we describe a reference implementation in Java, and present some scenarios for using NGB.

  18. AVQS: Attack Route-Based Vulnerability Quantification Scheme for Smart Grid

    PubMed Central

    Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik

    2014-01-01

    A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification. PMID:25152923

  19. AVQS: attack route-based vulnerability quantification scheme for smart grid.

    PubMed

    Ko, Jongbin; Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik

    2014-01-01

    A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification.

  20. AVQS: attack route-based vulnerability quantification scheme for smart grid.

    PubMed

    Ko, Jongbin; Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik

    2014-01-01

    A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification. PMID:25152923

  1. Effects of the New Aldose Reductase Inhibitor Benzofuroxane Derivative BF-5m on High Glucose Induced Prolongation of Cardiac QT Interval and Increase of Coronary Perfusion Pressure

    PubMed Central

    Di Filippo, C.; Ferraro, B.; Maisto, R.; Trotta, M. C.; Di Carluccio, N.; Sartini, S.; La Motta, C.; Ferraraccio, F.; Rossi, F.; D'Amico, M.

    2016-01-01

    This study investigated the effects of the new aldose reductase inhibitor benzofuroxane derivative 5(6)-(benzo[d]thiazol-2-ylmethoxy)benzofuroxane (BF-5m) on the prolongation of cardiac QT interval and increase of coronary perfusion pressure (CPP) in isolated, high glucose (33.3 mM D-glucose) perfused rat hearts. BF-5m was dissolved in the Krebs solution at a final concentration of 0.01 μM, 0.05 μM, and 0.1 μM. 33.3 mM D-glucose caused a prolongation of the QT interval and increase of CPP up to values of 190 ± 12 ms and 110 ± 8 mmHg with respect to the values of hearts perfused with standard Krebs solution (11.1 mM D-glucose). The QT prolongation was reduced by 10%, 32%, and 41%, respectively, for the concentration of BF-5m 0.01 μM, 0.05 μM, and 0.1 μM. Similarly, the CPP was reduced by 20% for BF-5m 0.05 μM and by 32% for BF-5m 0.1 μM. BF-5m also increased the expression levels of sirtuin 1, MnSOD, eNOS, and FOXO-1, into the heart. The beneficial actions of BF-5m were partly abolished by the pretreatment of the rats with the inhibitor of the sirtuin 1 activity EX527 (10 mg/kg/day/7 days i.p.) prior to perfusion of the hearts with high glucose + BF-5m (0.1 μM). Therefore, BF-5m supplies cardioprotection from the high glucose induced QT prolongation and increase of CPP. PMID:26839893

  2. Enhancing synchronization stability in a multi-area power grid.

    PubMed

    Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki

    2016-01-01

    Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems. PMID:27225708

  3. Enhancing synchronization stability in a multi-area power grid

    PubMed Central

    Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki

    2016-01-01

    Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems. PMID:27225708

  4. Enhancing synchronization stability in a multi-area power grid

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki

    2016-05-01

    Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems.

  5. Skeletal muscle grids for assessing current distributions from defibrillation shocks.

    PubMed

    Schmidt, J; Gatlin, B; Eason, J; Koomullil, G; Pilkington, T

    1992-01-01

    This paper utilizes a structured and an unstructured grid representation of a torso with an anisotropic skeletal muscle to assess current distributions from defibrillation shocks. The results show that a finite-element solution on an unstructured grid of 400,000 elements (60,000 nodes) achieves comparable current distributions with a finite-difference solution on a structured grid that uses approximately the same number of nodes. Moreover, a finite-element solution on a 65,000-element (10,500 nodes) unstructured grid yielded fractional percent current results within 5% of the finer grids. The structured and unstructured grid models are used to investigate recent interpretations of experimental data that concluded that more than 80% of the total defibrillation current is shunted by the anisotropic skeletal muscle thoracic cage. It is concluded that these interpretations, which were based on a one-dimensional resistive network representation of the three-dimensional defibrillation situation, overestimate by 25% the current shunted by the anisotropic thoracic cage. PMID:1424684

  6. Study on data-organization of grid-VGE

    NASA Astrophysics Data System (ADS)

    Wu, Xian; Gong, JianHua; Zhao, DePeng; Zhu, Jun; Zhang, JianQin; Xu, BingLi

    2005-10-01

    Virtual Geography Environment (VGE) is a comprehensive subject concerning remote sensing, geography, information theory and communication etc. There have multi-source, diff-structure, interdiscipline, and inter-organizations data related to VGE. Moreover, the tasks in VGE will cover many aspects inevitably. In order to complete the task proposed by user, it is required to integrate, link and share the distributed data in different organizations or domains. But it is almost impossible to solve many problems by using traditional ways such as changing some kinds of data structures which has formed standard. The advent of the third network technology, Grid, gives VGE new dimension of development. Grid has some hard core functions, such as shielding diff-structure data, harmonizing resource-sharing and cooperating with each other in virtual organization to complete the task. Based on the Grid and VGE, the Grid Virtual Geographical Environment (Grid-VGE) is put forward, which abides by the standard of Open Grid Services Architecture (OGSA), takes Services as core and constructing virtual database. In order to link, integrate and share all required data, we abstract all data into metadata and description to interlink through link based on the standard of OGSA. The proposed data structure method can absorb any data anytime while not modifying the original data and it will enlarge and increase efficiency of the application in VGE.

  7. Grid and Cloud for Developing Countries

    NASA Astrophysics Data System (ADS)

    Petitdidier, Monique

    2014-05-01

    The European Grid e-infrastructure has shown the capacity to connect geographically distributed heterogeneous compute resources in a secure way taking advantages of a robust and fast REN (Research and Education Network). In many countries like in Africa the first step has been to implement a REN and regional organizations like Ubuntunet, WACREN or ASREN to coordinate the development, improvement of the network and its interconnection. The Internet connections are still exploding in those countries. The second step has been to fill up compute needs of the scientists. Even if many of them have their own multi-core or not laptops for more and more applications it is not enough because they have to face intensive computing due to the large amount of data to be processed and/or complex codes. So far one solution has been to go abroad in Europe or in America to run large applications or not to participate to international communities. The Grid is very attractive to connect geographically-distributed heterogeneous resources, aggregate new ones and create new sites on the REN with a secure access. All the users have the same servicers even if they have no resources in their institute. With faster and more robust internet they will be able to take advantage of the European Grid. There are different initiatives to provide resources and training like UNESCO/HP Brain Gain initiative, EUMEDGrid, ..Nowadays Cloud becomes very attractive and they start to be developed in some countries. In this talk challenges for those countries to implement such e-infrastructures, to develop in parallel scientific and technical research and education in the new technologies will be presented illustrated by examples.

  8. The Open Science Grid

    SciTech Connect

    Pordes, Ruth; Kramer, Bill; Olson, Doug; Livny, Miron; Roy, Alain; Avery, Paul; Blackburn, Kent; Wenaus, Torre; Wurthwein, Frank; Gardner, Rob; Wilde, Mike; /Chicago U. /Indiana U.

    2007-06-01

    The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. OSG provides support for and evolution of the infrastructure through activities that cover operations, security, software, troubleshooting, addition of new capabilities, and support for existing and engagement with new communities. The OSG SciDAC-2 project provides specific activities to manage and evolve the distributed infrastructure and support its use. The innovative aspects of the project are the maintenance and performance of a collaborative (shared & common) petascale national facility over tens of autonomous computing sites, for many hundreds of users, transferring terabytes of data a day, executing tens of thousands of jobs a day, and providing robust and usable resources for scientific groups of all types and sizes. More information can be found at the OSG web site: www.opensciencegrid.org.

  9. European Transmission Interconnection; Eurasian power grid

    SciTech Connect

    Posch, J. )

    1991-09-01

    Systems and philosophies perceived on a grand scale, encompassing new ideas, are often characterized as a dream. But in fact, such dreams often lead to the first step to fruitful development. This article is based on a preliminary study of the existing electrical high-tension networks of Western Europe, Eastern Europe and the Soviet Union - which, as explained herein, may be merged into a multinational energy supply system. Such a system would constitute a completely interconnected Eurasian Power Grid. The idea of a Eurasian super grid, spanning from the Atlantic to the Ural and Siberia, is not new. Various studies have been conducted by both western Europe and the Soviet Union on this topic. Our world is currently in an era of extra high voltage (EHV) and ultra high voltage (UHV) electrical systems. This translates into existing UHV lines of 1150 kV which have already been proven in successful operation. Such UHV systems are capable of transmitting thousands of megawatts over a distance of a 1000 miles. Furthermore, national boundaries are not more a hindrance than the challenge of interconnecting complete networks into an overall synchronized working system with load exchange capabilities in all directions.

  10. Extending Grid Computing to Remote Locations

    NASA Technical Reports Server (NTRS)

    Griffin, Robert; Vickerman, Mary; Lopez, Isaac; Siebert, Marc

    2003-01-01

    NASA Glenn Research Center, in cooperation with NASA Ames and geologists from the University of Cincinnati and Bowling Green State University has extended the computational capabilities of the information Power Grid to remote research sites. The combination of satellite (EOS) data acquisition and the IPG processing provides geologists with the ability to identify the key mineralogical features at the research site. The underlying connectivity for this research environment is provided by the Numerical Research and Education Network (NREN) using a combination of terrestrial and mobile satellite-based networking solutions. Our approach not only speeds the process of scientific discovery, but also serves as a simple demonstration of NASA's capacity for geological classification and exploration of remote sites such as the Martian surface. The NASA Glenn Demonstrations combines satellite (EOS) data acquisition and the computational capabilities or the Information Power Grid (IPG) to provide geologists with the ability to identify key mineralogical features in near real-time of an area in study. This capability could someday allow geological classification of rocks and minerals of remote sites such as the Martian surface.

  11. TIGER: Turbomachinery interactive grid generation

    NASA Technical Reports Server (NTRS)

    Soni, Bharat K.; Shih, Ming-Hsin; Janus, J. Mark

    1992-01-01

    A three dimensional, interactive grid generation code, TIGER, is being developed for analysis of flows around ducted or unducted propellers. TIGER is a customized grid generator that combines new technology with methods from general grid generation codes. The code generates multiple block, structured grids around multiple blade rows with a hub and shroud for either C grid or H grid topologies. The code is intended for use with a Euler/Navier-Stokes solver also being developed, but is general enough for use with other flow solvers. TIGER features a silicon graphics interactive graphics environment that displays a pop-up window, graphics window, and text window. The geometry is read as a discrete set of points with options for several industrial standard formats and NASA standard formats. Various splines are available for defining the surface geometries. Grid generation is done either interactively or through a batch mode operation using history files from a previously generated grid. The batch mode operation can be done either with a graphical display of the interactive session or with no graphics so that the code can be run on another computer system. Run time can be significantly reduced by running on a Cray-YMP.

  12. LAPS Grid generation and adaptation

    NASA Astrophysics Data System (ADS)

    Pagliantini, Cecilia; Delzanno, Gia Luca; Guo, Zehua; Srinivasan, Bhuvana; Tang, Xianzhu; Chacon, Luis

    2011-10-01

    LAPS uses a common-data framework in which a general purpose grid generation and adaptation package in toroidal and simply connected domains is implemented. The initial focus is on implementing the Winslow/Laplace-Beltrami method for generating non-overlapping block structured grids. This is to be followed by a grid adaptation scheme based on Monge-Kantorovich optimal transport method [Delzanno et al., J. Comput. Phys,227 (2008), 9841-9864], that equidistributes application-specified error. As an initial set of applications, we will lay out grids for an axisymmetric mirror, a field reversed configuration, and an entire poloidal cross section of a tokamak plasma reconstructed from a CMOD experimental shot. These grids will then be used for computing the plasma equilibrium and transport in accompanying presentations. A key issue for Monge-Kantorovich grid optimization is the choice of error or monitor function for equi-distribution. We will compare the Operator Recovery Error Source Detector (ORESD) [Lapenta, Int. J. Num. Meth. Eng,59 (2004) 2065-2087], the Tau method and a strategy based on the grid coarsening [Zhang et al., AIAA J,39 (2001) 1706-1715] to find an ``optimal'' grid. Work supported by DOE OFES.

  13. Structured and unstructured grid generation.

    PubMed

    Thompson, J F; Weatherill, N P

    1992-01-01

    Current techniques in composite-block-structured grid generation and unstructured grid generation for general 3D geometries are summarized, including both algebraic and elliptic generation procedures for the former and Delaunay tessellations for the latter. Citations of relevant theory are given. Examples of applications for several geometries are included. PMID:1424687

  14. Intelligent automated surface grid generation

    NASA Technical Reports Server (NTRS)

    Yao, Ke-Thia; Gelsey, Andrew

    1995-01-01

    The goal of our research is to produce a flexible, general grid generator for automated use by other programs, such as numerical optimizers. The current trend in the gridding field is toward interactive gridding. Interactive gridding more readily taps into the spatial reasoning abilities of the human user through the use of a graphical interface with a mouse. However, a sometimes fruitful approach to generating new designs is to apply an optimizer with shape modification operators to improve an initial design. In order for this approach to be useful, the optimizer must be able to automatically grid and evaluate the candidate designs. This paper describes and intelligent gridder that is capable of analyzing the topology of the spatial domain and predicting approximate physical behaviors based on the geometry of the spatial domain to automatically generate grids for computational fluid dynamics simulators. Typically gridding programs are given a partitioning of the spatial domain to assist the gridder. Our gridder is capable of performing this partitioning. This enables the gridder to automatically grid spatial domains of wide range of configurations.

  15. Grid generation using classical techniques

    NASA Technical Reports Server (NTRS)

    Moretti, G.

    1980-01-01

    A brief historical review of conformal mapping and its applications to problems in fluid mechanics and electromagnetism is presented. The use of conformal mapping as a grid generator is described. The philosophy of the 'closed form' approach and its application to a Neumann problem is discussed. Karman-Trefftz mappings and grids for ablated, three dimensional bodies are also discussed.

  16. Information Theoretically Secure, Enhanced Johnson Noise Based Key Distribution over the Smart Grid with Switched Filters

    PubMed Central

    2013-01-01

    We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions. PMID:23936164

  17. Information theoretically secure, enhanced Johnson noise based key distribution over the smart grid with switched filters.

    PubMed

    Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad

    2013-01-01

    We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions.

  18. Information theoretically secure, enhanced Johnson noise based key distribution over the smart grid with switched filters.

    PubMed

    Gonzalez, Elias; Kish, Laszlo B; Balog, Robert S; Enjeti, Prasad

    2013-01-01

    We introduce a protocol with a reconfigurable filter system to create non-overlapping single loops in the smart power grid for the realization of the Kirchhoff-Law-Johnson-(like)-Noise secure key distribution system. The protocol is valid for one-dimensional radial networks (chain-like power line) which are typical of the electricity distribution network between the utility and the customer. The speed of the protocol (the number of steps needed) versus grid size is analyzed. When properly generalized, such a system has the potential to achieve unconditionally secure key distribution over the smart power grid of arbitrary geometrical dimensions. PMID:23936164

  19. MicroRNA-511 Binds to FKBP5 mRNA, Which Encodes a Chaperone Protein, and Regulates Neuronal Differentiation.

    PubMed

    Zheng, Dali; Sabbagh, Jonathan J; Blair, Laura J; Darling, April L; Wen, Xiaoqi; Dickey, Chad A

    2016-08-19

    Single nucleotide polymorphisms in the FKBP5 gene increase the expression of the FKBP51 protein and have been associated with increased risk for neuropsychiatric disorders such as major depression and post-traumatic stress disorder. Moreover, levels of FKBP51 are increased with aging and in Alzheimer disease, potentially contributing to disease pathogenesis. However, aside from its glucocorticoid responsiveness, little is known about what regulates FKBP5 In recent years, non-coding RNAs, and in particular microRNAs, have been shown to modulate disease-related genes and processes. The current study sought to investigate which miRNAs could target and functionally regulate FKBP5 Following in silico data mining and initial target expression validation, miR-511 was found to suppress FKBP5 mRNA and protein levels. Using luciferase p-miR-Report constructs and RNA pulldown assays, we confirmed that miR-511 bound directly to the 3'-UTR of FKBP5, validating the predicted gene-microRNA interaction. miR-511 suppressed glucocorticoid-induced up-regulation of FKBP51 in cells and primary neurons, demonstrating functional, disease-relevant control of the protein. Consistent with a regulator of FKBP5, miR-511 expression in the mouse brain decreased with age but increased following chronic glucocorticoid treatment. Analysis of the predicted target genes of miR-511 revealed that neurogenesis, neuronal development, and neuronal differentiation were likely controlled by these genes. Accordingly, miR-511 increased neuronal differentiation in cells and enhanced neuronal development in primary neurons. Collectively, these findings show that miR-511 is a functional regulator of FKBP5 and can contribute to neuronal differentiation. PMID:27334923

  20. On Multigrid for Overlapping Grids

    SciTech Connect

    Henshaw, W

    2004-01-13

    The solution of elliptic partial differential equations on composite overlapping grids using multigrid is discussed. An approach is described that provides a fast and memory efficient scheme for the solution of boundary value problems in complex geometries. The key aspects of the new scheme are an automatic coarse grid generation algorithm, an adaptive smoothing technique for adjusting residuals on different component grids, and the use of local smoothing near interpolation boundaries. Other important features include optimizations for Cartesian component grids, the use of over-relaxed Red-Black smoothers and the generation of coarse grid operators through Galerkin averaging. Numerical results in two and three dimensions show that very good multigrid convergence rates can be obtained for both Dirichlet and Neumann/mixed boundary conditions. A comparison to Krylov based solvers shows that the multigrid solver can be much faster and require significantly less memory.

  1. The biometric-based module of smart grid system

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Ermoshkina, A.

    2015-10-01

    Within Smart Grid concept the flexible biometric-based module base on Principal Component Analysis (PCA) and selective Neural Network is developed. The formation of the selective Neural Network the biometric-based module uses the method which includes three main stages: preliminary processing of the image, face localization and face recognition. Experiments on the Yale face database show that (i) selective Neural Network exhibits promising classification capability for face detection, recognition problems; and (ii) the proposed biometric-based module achieves near real-time face detection, recognition speed and the competitive performance, as compared to some existing subspaces-based methods.

  2. Establishment of key grid-connected performance index system for integrated PV-ES system

    NASA Astrophysics Data System (ADS)

    Li, Q.; Yuan, X. D.; Qi, Q.; Liu, H. M.

    2016-08-01

    In order to further promote integrated optimization operation of distributed new energy/ energy storage/ active load, this paper studies the integrated photovoltaic-energy storage (PV-ES) system which is connected with the distribution network, and analyzes typical structure and configuration selection for integrated PV-ES generation system. By combining practical grid- connected characteristics requirements and technology standard specification of photovoltaic generation system, this paper takes full account of energy storage system, and then proposes several new grid-connected performance indexes such as paralleled current sharing characteristic, parallel response consistency, adjusting characteristic, virtual moment of inertia characteristic, on- grid/off-grid switch characteristic, and so on. A comprehensive and feasible grid-connected performance index system is then established to support grid-connected performance testing on integrated PV-ES system.

  3. OPNET/Simulink Based Testbed for Disturbance Detection in the Smart Grid

    SciTech Connect

    Sadi, Mohammad A. H.; Dasgupta, Dipankar; Ali, Mohammad Hassan; Abercrombie, Robert K

    2015-01-01

    The important backbone of the smart grid is the cyber/information infrastructure, which is primarily used to communicate with different grid components. A smart grid is a complex cyber physical system containing a numerous and variety number of sources, devices, controllers and loads. Therefore, the smart grid is vulnerable to grid related disturbances. For such dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and Opnet based co-simulated platform to carry out a cyber-intrusion in cyber network for modern power systems and the smart grid. The IEEE 30 bus power system model is used to demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack. Different disturbance situations in the considered test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.

  4. Integrating grid-based and topological maps for mobile robot navigation

    SciTech Connect

    Thrun, S.; Buecken, A.

    1996-12-31

    Research on mobile robot navigation has produced two major paradigms for mapping indoor environments: grid-based and topological. While grid-based methods produce accurate metric maps, their complexity often prohibits efficient planning and problem solving in large-scale indoor environments. Topological maps, on the other hand, can be used much more efficiently, yet accurate and consistent topological maps are considerably difficult to learn in large-scale environments. This paper describes an approach that integrates both paradigms: grid-based and topological. Grid-based maps are learned using artificial neural networks and Bayesian integration. Topological maps are generated on top of the grid-based maps, by partitioning the latter into coherent regions. By combining both paradigms-grid-based and topological, the approach presented here gains the best of both worlds: accuracy/consistency and efficiency. The paper gives results for autonomously operating a mobile robot equipped with sonar sensors in populated multi-room environments.

  5. Study on the grid-based distributed virtual geo-environment (DVGE-G)

    NASA Astrophysics Data System (ADS)

    Tang, Lu-liang; Li, Qing-quan

    2005-10-01

    It is publicly considered that the next generational Internet technology is grid computing, which supports the sharing and coordinated use of diverse resources in dynamic virtual organizations from geographically and organizationally distributed components. Grid computing characters strong computing ability and broad width information exchange. After analyzing the characteristic of grid computing, this paper expatiates on current application status of grid computing with middleware technology on DVGE-G and the problems it faces. Cooperating with IBM, Microsoft and HP, Globus Toolkit as a standard for grid computing is widely used to develop application on grid, which can run on Unix and Windows operation systems. On the basis of "the five-tiers sandglass structure" and web services technology, Globus presented Open Grid Services Architecture (OGSA), which centered on grid services. According to the characteristic of DVGE-G and the development of current grid computing, this paper put forward the Grid-Oriented Distributed Network Model for DVGE-G. Virtual group is corresponding with the Virtual Organization in OGSA service, which is easier and more directly for the dynamic virtual groups in GDNM to utilize the grid source and communication each other. The GDNM is not only more advantage to the distributed database consistency management, but also it is more convenient to the virtual group users acquiring the DVGE-G data information, The architecture of DVGE-G designed in this paper is based on OGSA and web services, which is keep to "the five-tiers sandglass structure" of the OGSA. This architecture is more convenient to utilizing grid service and decreasing the conflict with the grid environment. At last, this paper presents the implementation of DVGE-G and the interfaces of Grid Service.

  6. Enhanced INL Power Grid Test Bed Infrastructure – Phase I

    SciTech Connect

    Reid, Carol Ann; West, Grayson Shawn; McBride, Scott Alan

    2014-06-01

    Idaho National Laboratory (INL), a Department of Energy (DOE) laboratory, owns, operates, and maintains transmission and distribution power grid infrastructure to support the INL multi program mission. Sections of this power infrastructure, known as the INL Power Grid Test Bed, have been and are being used by government and industry to develop, demonstrate, and validate technologies for the modern grid, including smart grid, on a full scale utility test bed. INL’s power grid includes 61 miles of 140 MW, 138 kV rated electrical power transmission supplying seven main substations, each feeding a separate facility complex (or ‘city’) within the INL’s 890 square mile Site. This power grid is fed by three commercial utilities into the INL’s main control substation, but is operated independently from the commercial utility through its primary substation and command and control center. Within the INL complex, one of the seven complexes, the Critical Infrastructure Test Range Complex (CITRC), has been designated as the INL complex for supporting critical infrastructure research and testing. This complex includes its own substation and 13.8kV distribution network, all configurable and controlled by the INL research and development programs. Through investment partnership with the DOE Office of Electricity Delivery and Energy Reliability (DOE OE), INL is enhancing its existing distribution infrastructure to expand the types of testing that can be conducted and increase flexibility for testing configurations. The enhancement of the INL Power Grid Test Bed will enable development and full scale testing of smart-grid-related technologies and smart devices including testing interoperability, operational performance, reliability, and resiliency contribution at multiple distribution voltage classes, specifically 15kV, 25kV, and 35kV. The expected time frame for completion of the Phase I portion of the enhancement would be 4th quarter fiscal year (FY) 2015.

  7. Optimizing solar-cell grid geometry

    NASA Technical Reports Server (NTRS)

    Crossley, A. P.

    1969-01-01

    Trade-off analysis and mathematical expressions calculate optimum grid geometry in terms of various cell parameters. Determination of the grid geometry provides proper balance between grid resistance and cell output to optimize the energy conversion process.

  8. Single grid accelerator for an ion thrustor

    NASA Technical Reports Server (NTRS)

    Margosian, P. M.; Nakanishi, S. (Inventor)

    1973-01-01

    A single grid accelerator system for an ion thrustor is discussed. A layer of dielectric material is interposed between this metal grid and the chamber containing an ionized propellant for protecting the grid against sputtering erosion.

  9. Grid Integration Studies: Data Requirements, Greening the Grid

    SciTech Connect

    Katz, Jessica

    2015-06-01

    A grid integration study is an analytical framework used to evaluate a power system with high penetration levels of variable renewable energy (VRE). A grid integration study simulates the operation of the power system under different VRE scenarios, identifying reliability constraints and evaluating the cost of actions to alleviate those constraints. These VRE scenarios establish where, how much, and over what timeframe to build generation and transmission capacity, ideally capturing the spatial diversity benefits of wind and solar resources. The results help build confidence among policymakers, system operators, and investors to move forward with plans to increase the amount of VRE on the grid.

  10. Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5M(g) of Aegilops geniculata.

    PubMed

    Tiwari, Vijay K; Wang, Shichen; Danilova, Tatiana; Koo, Dal Hoe; Vrána, Jan; Kubaláková, Marie; Hribova, Eva; Rawat, Nidhi; Kalia, Bhanu; Singh, Narinder; Friebe, Bernd; Doležel, Jaroslav; Akhunov, Eduard; Poland, Jesse; Sabir, Jamal S M; Gill, Bikram S

    2015-11-01

    Next-generation sequencing (NGS) provides a powerful tool for the discovery of important genes and alleles in crop plants and their wild relatives. Despite great advances in NGS technologies, whole-genome shotgun sequencing is cost-prohibitive for species with complex genomes. An attractive option is to reduce genome complexity to a single chromosome prior to sequencing. This work describes a strategy for studying the genomes of distant wild relatives of wheat by isolating single chromosomes from addition or substitution lines, followed by chromosome sorting using flow cytometry and sequencing of chromosomal DNA by NGS technology. We flow-sorted chromosome 5M(g) from a wheat/Aegilops geniculata disomic substitution line [DS5M(g) (5D)] and sequenced it using an Illumina HiSeq 2000 system at approximately 50 × coverage. Paired-end sequences were assembled and used for structural and functional annotation. A total of 4236 genes were annotated on 5M(g) , in close agreement with the predicted number of genes on wheat chromosome 5D (4286). Single-gene FISH indicated no major chromosomal rearrangements between chromosomes 5M(g) and 5D. Comparing chromosome 5M(g) with model grass genomes identified synteny blocks in Brachypodium distachyon, rice (Oryza sativa), sorghum (Sorghum bicolor) and barley (Hordeum vulgare). Chromosome 5M(g) -specific SNPs and cytogenetic probe-based resources were developed and validated. Deletion bin-mapped and ordered 5M(g) SNP markers will be useful to track 5M-specific introgressions and translocations. This study provides a detailed sequence-based analysis of the composition of a chromosome from a distant wild relative of bread wheat, and opens up opportunities to develop genomic resources for wild germplasm to facilitate crop improvement.

  11. Solving optimization problems on computational grids.

    SciTech Connect

    Wright, S. J.; Mathematics and Computer Science

    2001-05-01

    Multiprocessor computing platforms, which have become more and more widely available since the mid-1980s, are now heavily used by organizations that need to solve very demanding computational problems. Parallel computing is now central to the culture of many research communities. Novel parallel approaches were developed for global optimization, network optimization, and direct-search methods for nonlinear optimization. Activity was particularly widespread in parallel branch-and-bound approaches for various problems in combinatorial and network optimization. As the cost of personal computers and low-end workstations has continued to fall, while the speed and capacity of processors and networks have increased dramatically, 'cluster' platforms have become popular in many settings. A somewhat different type of parallel computing platform know as a computational grid (alternatively, metacomputer) has arisen in comparatively recent times. Broadly speaking, this term refers not to a multiprocessor with identical processing nodes but rather to a heterogeneous collection of devices that are widely distributed, possibly around the globe. The advantage of such platforms is obvious: they have the potential to deliver enormous computing power. Just as obviously, however, the complexity of grids makes them very difficult to use. The Condor team, headed by Miron Livny at the University of Wisconsin, were among the pioneers in providing infrastructure for grid computations. More recently, the Globus project has developed technologies to support computations on geographically distributed platforms consisting of high-end computers, storage and visualization devices, and other scientific instruments. In 1997, we started the metaneos project as a collaborative effort between optimization specialists and the Condor and Globus groups. Our aim was to address complex, difficult optimization problems in several areas, designing and implementing the algorithms and the software

  12. Identifying emerging smart grid impacts to upstream and midstream natural gas operations.

    SciTech Connect

    McIntyre, Annie

    2010-09-01

    The Smart Grid has come to describe a next-generation electrical power system that is typified by the increased use of communications and information technology in the generation, delivery and consumption of electrical energy. Much of the present Smart Grid analysis focuses on utility and consumer interaction. i.e. smart appliances, home automation systems, rate structures, consumer demand response, etc. An identified need is to assess the upstream and midstream operations of natural gas as a result of the smart grid. The nature of Smart Grid, including the demand response and role of information, may require changes in upstream and midstream natural gas operations to ensure availability and efficiency. Utility reliance on natural gas will continue and likely increase, given the backup requirements for intermittent renewable energy sources. Efficient generation and delivery of electricity on Smart Grid could affect how natural gas is utilized. Things that we already know about Smart Grid are: (1) The role of information and data integrity is increasingly important. (2) Smart Grid includes a fully distributed system with two-way communication. (3) Smart Grid, a complex network, may change the way energy is supplied, stored, and in demand. (4) Smart Grid has evolved through consumer driven decisions. (5) Smart Grid and the US critical infrastructure will include many intermittent renewables.

  13. High-Schmidt-number scalar transfer in regular and fractal grid turbulence

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroki; Nagata, Kouji; Sakai, Yasuhiko; Ukai, Ryota

    2010-12-01

    Turbulent mixing of high-Schmidt-number passive scalars in regular and fractal grid turbulence is experimentally investigated using a water channel. A turbulence-generating grid is installed at the entrance of the test section, which is 1.5 m in length and 0.1 m×0.1 m in cross section. Two types of grids are used: one is a regular grid consisting of square-mesh and biplane constructions, and the other is a square-type fractal grid, which was first investigated by Hurst and Vassilicos (2007 Phys. Fluids 19 035103) and Seoud and Vassilicos (2007 Phys. Fluids 19 105108). The two grids have the same solidity of 0.36. The Reynolds number based on the mesh size, ReM=U0Meff/ν, is 2500 in both flows, where U0 is the cross-sectionally averaged mean velocity, Meff is the effective mesh size and ν is the kinematic viscosity. A fluorescent dye (rhodamine B) is homogeneously premixed only in the lower stream and therefore the scalar mixing layers with an initial step profile develop downstream of the grids. The Schmidt number of the dye is O(103). The time-resolved particle image velocimetry and the planar laser-induced fluorescence techniques are used to measure the velocity and concentration fields. The results show that the turbulent mixing in fractal grid turbulence is more strongly enhanced than that in regular grid turbulence for the same mesh Reynolds number ReM. The profile of instantaneous scalar dissipation shows that scalar dissipation takes place locally even in the far downstream region at x/Meff=120 in fractal grid turbulence.

  14. The MaNGA Integral Field Unit Fiber Feed System for the Sloan 2.5 m Telescope

    NASA Astrophysics Data System (ADS)

    Drory, N.; MacDonald, N.; Bershady, M. A.; Bundy, K.; Gunn, J.; Law, D. R.; Smith, M.; Stoll, R.; Tremonti, C. A.; Wake, D. A.; Yan, R.; Weijmans, A. M.; Byler, N.; Cherinka, B.; Cope, F.; Eigenbrot, A.; Harding, P.; Holder, D.; Huehnerhoff, J.; Jaehnig, K.; Jansen, T. C.; Klaene, M.; Paat, A. M.; Percival, J.; Sayres, C.

    2015-02-01

    We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) on the the Sloan 2.5 m telescope at Apache Point Observatory. MaNGA is a luminosity-selected integral-field spectroscopic survey of 104 local galaxies covering 360-1030 nm at R˜ 2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 μm (rms), and throughput of 96 ± 0.5% from 350 nm to 1 μm in the lab. Their sizes range from 19 to 127 fibers (3-7 hexagonal layers) using Polymicro FBP 120:132:150 μm core:clad:buffer fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation (FRD)) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer anti-reflection (AR) coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate plugging (however other losses are present). The IFUs achieve on-sky throughput 5% above the single-fiber feeds used in SDSS-III/BOSS, attributable to equivalent performance compared to single fibers and additional gains from the AR coating. The manufacturing process is geared toward mass-production of high-multiplex systems. The low-stress process involves a precision ferrule with a hexagonal inner shape designed to lead inserted fibers to settle in a dense hexagonal pattern. The ferrule ID is tapered at progressively shallower angles toward its tip and the final 2 mm are straight and only a few microns larger than necessary to hold the desired number of fibers. Our IFU manufacturing process scales easily to accommodate other fiber sizes and can produce IFUs with substantially larger fiber counts. To assure quality, automated testing in a simple and inexpensive system enables complete characterization of throughput and

  15. Automated detection and mapping of crown discolouration caused by jack pine budworm with 2.5 m resolution multispectral imagery

    NASA Astrophysics Data System (ADS)

    Leckie, Donald G.; Cloney, Ed; Joyce, Steve P.

    2005-05-01

    Jack pine budworm ( Choristoneura pinus pinus (Free.)) is a native insect defoliator of mainly jack pine ( Pinus banksiana Lamb.) in North America east of the Rocky Mountains. Periodic outbreaks of this insect, which generally last two to three years, can cause growth loss and mortality and have an important impact ecologically and economically in terms of timber production and harvest. The jack pine budworm prefers to feed on current year needles. Their characteristic feeding habits cause discolouration or reddening of the canopy. This red colouration is used to map the distribution and intensity of defoliation that has taken place that year (current defoliation). An accurate and consistent map of the distribution and intensity of budworm defoliation (as represented by the red discolouration) at the stand and within stand level is desirable. Automated classification of multispectral imagery, such as is available from airborne and new high resolution satellite systems, was explored as a viable tool for objectively classifying current discolouration. Airborne multispectral imagery was acquired at a 2.5 m resolution with the Multispectral Electro-optical Imaging Sensor (MEIS). It recorded imagery in six nadir looking spectral bands specifically designed to detect discolouration caused by budworm and a near-infrared band viewing forward at 35° was also used. A 2200 nm middle infrared image was acquired with a Daedalus scanner. Training and test areas of different levels of discolouration were created based on field observations and a maximum likelihood supervized classification was used to estimate four classes of discolouration (nil-trace, light, moderate and severe). Good discrimination was achieved with an overall accuracy of 84% for the four discolouration levels. The moderate discolouration class was the poorest at 73%, because of confusion with both the severe and light classes. Accuracy on a stand basis was also good, and regional and within stand

  16. The MaNGA integral field unit fiber feed system for the Sloan 2.5 m telescope

    SciTech Connect

    Drory, N.; MacDonald, N.; Byler, N.; Bershady, M. A.; Smith, M.; Tremonti, C. A.; Wake, D. A.; Eigenbrot, A.; Jaehnig, K.; Bundy, K.; Gunn, J.; Law, D. R.; Cherinka, B.; Stoll, R.; Weijmans, A. M.; Cope, F.; Holder, D.; Huehnerhoff, J.; Harding, P.; and others

    2015-02-01

    We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) on the the Sloan 2.5 m telescope at Apache Point Observatory. MaNGA is a luminosity-selected integral-field spectroscopic survey of 10{sup 4} local galaxies covering 360–1030 nm at R∼2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 μm (rms), and throughput of 96 ± 0.5% from 350 nm to 1 μm in the lab. Their sizes range from 19 to 127 fibers (3–7 hexagonal layers) using Polymicro FBP 120:132:150 μm core:clad:buffer fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation (FRD)) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer anti-reflection (AR) coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate plugging (however other losses are present). The IFUs achieve on-sky throughput 5% above the single-fiber feeds used in SDSS-III/BOSS, attributable to equivalent performance compared to single fibers and additional gains from the AR coating. The manufacturing process is geared toward mass-production of high-multiplex systems. The low-stress process involves a precision ferrule with a hexagonal inner shape designed to lead inserted fibers to settle in a dense hexagonal pattern. The ferrule ID is tapered at progressively shallower angles toward its tip and the final 2 mm are straight and only a few microns larger than necessary to hold the desired number of fibers. Our IFU manufacturing process scales easily to accommodate other fiber sizes and can produce IFUs with substantially larger fiber counts. To assure quality, automated testing in a simple and inexpensive system enables complete characterization of

  17. National Smart Water Grid

    SciTech Connect

    Beaulieu, R A

    2009-07-13

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US

  18. An electrostatic analog for generating cascade grids

    NASA Technical Reports Server (NTRS)

    Adamczyk, J. J.

    1980-01-01

    Accurate and efficient numerical simulation of flows through turbomachinery blade rows depends on the topology of the computational grids. These grids must reflect the periodic nature of turbomachinery blade row geometries and conform to the blade shapes. Three types of grids can be generated that meet these minimal requirements: through-flow grids, O-type grids, and C-type grids. A procedure which can be used to generate all three types of grids is presented. The resulting grids are orthogonal and can be stretched to capture the essential physics of the flow. A discussion is also presented detailing the extension of the generation procedure to three dimensional geometries.

  19. GridOPTICS Software System

    2014-02-24

    GridOPTICS Software System (GOSS) is a middleware that facilitates creation of new, modular and flexible operational and planning platforms that can meet the challenges of the next generation power grid. GOSS enables Department of Energy, power system utilities, and vendors to build better tools faster. GOSS makes it possible to integrate Future Power Grid Initiative software products/prototypes into existing power grid software systems, including the PNNL PowerNet and EIOC environments. GOSS is designed to allowmore » power grid applications developed for different underlying software platforms installed in different utilities to communicate with ease. This can be done in compliance with existing security and data sharing policies between the utilities. GOSS not only supports one-to-one data transfer between applications, but also publisher/subscriber scheme. To support interoperability requirements of future EMS, GOSS is designed for CIM compliance. In addition to this, it supports authentication and authorization capabilities to protect the system from cyber threats. In summary, the contributions of the GOSS middleware are as follows: • A platform to support future EMS development. • A middleware that promotes interoperability between power grid applications. • A distributed architecture that separates data sources from power grid applications. • Support for data exchange with either one-to-one or publisher/subscriber interfaces. • An authentication and authorization scheme for limiting the access to data between utilities.« less

  20. GridOPTICS Software System

    SciTech Connect

    Akyol, Bora A; Ciraci, PNNL Selim; Gibson, PNNL Tara; Rice, PNNL Mark; Sharma, PNNL Poorva; Yin, PNNL Jian; Allwardt, PNNL Craig; PNNL,

    2014-02-24

    GridOPTICS Software System (GOSS) is a middleware that facilitates creation of new, modular and flexible operational and planning platforms that can meet the challenges of the next generation power grid. GOSS enables Department of Energy, power system utilities, and vendors to build better tools faster. GOSS makes it possible to integrate Future Power Grid Initiative software products/prototypes into existing power grid software systems, including the PNNL PowerNet and EIOC environments. GOSS is designed to allow power grid applications developed for different underlying software platforms installed in different utilities to communicate with ease. This can be done in compliance with existing security and data sharing policies between the utilities. GOSS not only supports one-to-one data transfer between applications, but also publisher/subscriber scheme. To support interoperability requirements of future EMS, GOSS is designed for CIM compliance. In addition to this, it supports authentication and authorization capabilities to protect the system from cyber threats. In summary, the contributions of the GOSS middleware are as follows: • A platform to support future EMS development. • A middleware that promotes interoperability between power grid applications. • A distributed architecture that separates data sources from power grid applications. • Support for data exchange with either one-to-one or publisher/subscriber interfaces. • An authentication and authorization scheme for limiting the access to data between utilities.

  1. Buildings-to-Grid Technical Opportunities: From the Grid Perspective

    SciTech Connect

    Kropski, Ben; Pratt, Rob

    2014-03-28

    This paper outlines the nature of the power grid, lists challenges and barriers to the implementation of a transactive energy ecosystem, and provides concept solutions to current technological impediments.

  2. Secure Interoperable Open Smart Grid Demonstration Project

    SciTech Connect

    Magee, Thoman

    2014-12-31

    The Consolidated Edison, Inc., of New York (Con Edison) Secure Interoperable Open Smart Grid Demonstration Project (SGDP), sponsored by the United States (US) Department of Energy (DOE), demonstrated that the reliability, efficiency, and flexibility of the grid can be improved through a combination of enhanced monitoring and control capabilities using systems and resources that interoperate within a secure services framework. The project demonstrated the capability to shift, balance, and reduce load where and when needed in response to system contingencies or emergencies by leveraging controllable field assets. The range of field assets includes curtailable customer loads, distributed generation (DG), battery storage, electric vehicle (EV) charging stations, building management systems (BMS), home area networks (HANs), high-voltage monitoring, and advanced metering infrastructure (AMI). The SGDP enables the seamless integration and control of these field assets through a common, cyber-secure, interoperable control platform, which integrates a number of existing legacy control and data systems, as well as new smart grid (SG) systems and applications. By integrating advanced technologies for monitoring and control, the SGDP helps target and reduce peak load growth, improves the reliability and efficiency of Con Edison’s grid, and increases the ability to accommodate the growing use of distributed resources. Con Edison is dedicated to lowering costs, improving reliability and customer service, and reducing its impact on the environment for its customers. These objectives also align with the policy objectives of New York State as a whole. To help meet these objectives, Con Edison’s long-term vision for the distribution grid relies on the successful integration and control of a growing penetration of distributed resources, including demand response (DR) resources, battery storage units, and DG. For example, Con Edison is expecting significant long-term growth of DG

  3. Overset grids in compressible flow

    NASA Technical Reports Server (NTRS)

    Eberhardt, S.; Baganoff, D.

    1985-01-01

    Numerical experiments have been performed to investigate the importance of boundary data handling with overset grids in computational fluid dynamics. Experience in using embedded grid techniques in compressible flow has shown that shock waves which cross grid boundaries become ill defined and convergence is generally degraded. Numerical boundary schemes were studied to investigate the cause of these problems and a viable solution was generated using the method of characteristics to define a boundary scheme. The model test problem investigated consisted of a detached shock wave on a 2-dimensional Mach 2 blunt, cylindrical body.

  4. Grid Visualization Tool

    NASA Technical Reports Server (NTRS)

    Chouinard, Caroline; Fisher, Forest; Estlin, Tara; Gaines, Daniel; Schaffer, Steven

    2005-01-01

    The Grid Visualization Tool (GVT) is a computer program for displaying the path of a mobile robotic explorer (rover) on a terrain map. The GVT reads a map-data file in either portable graymap (PGM) or portable pixmap (PPM) format, representing a gray-scale or color map image, respectively. The GVT also accepts input from path-planning and activity-planning software. From these inputs, the GVT generates a map overlaid with one or more rover path(s), waypoints, locations of targets to be explored, and/or target-status information (indicating success or failure in exploring each target). The display can also indicate different types of paths or path segments, such as the path actually traveled versus a planned path or the path traveled to the present position versus planned future movement along a path. The program provides for updating of the display in real time to facilitate visualization of progress. The size of the display and the map scale can be changed as desired by the user. The GVT was written in the C++ language using the Open Graphics Library (OpenGL) software. It has been compiled for both Sun Solaris and Linux operating systems.

  5. National transmission grid study

    SciTech Connect

    Abraham, Spencer

    2003-05-31

    The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE’s Policy Office Electricity Modeling System (POEMS). DOE’s analysis, presented in Section 2, confirms the central role of the nation’s transmission system in lowering costs to consumers through increased trade. More importantly, DOE’s analysis also confirms the results of previous studies, which show that transmission bottlenecks and related transmission system market practices are adding hundreds of millions of dollars to consumers’ electricity bills each year. A more detailed technical overview of the use of POEMS is provided in Appendix A. DOE led an extensive, open, public input process and heard a wide range of comments and recommendations that have all been considered.1 More than 150 participants registered for three public workshops held in Detroit, MI (September 24, 2001); Atlanta, GA (September 26, 2001); and Phoenix, AZ (September 28, 2001).

  6. Symbolic Constraint Maintenance Grid

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    Version 3.1 of Symbolic Constraint Maintenance Grid (SCMG) is a software system that provides a general conceptual framework for utilizing pre-existing programming techniques to perform symbolic transformations of data. SCMG also provides a language (and an associated communication method and protocol) for representing constraints on the original non-symbolic data. SCMG provides a facility for exchanging information between numeric and symbolic components without knowing the details of the components themselves. In essence, it integrates symbolic software tools (for diagnosis, prognosis, and planning) with non-artificial-intelligence software. SCMG executes a process of symbolic summarization and monitoring of continuous time series data that are being abstractly represented as symbolic templates of information exchange. This summarization process enables such symbolic- reasoning computing systems as artificial- intelligence planning systems to evaluate the significance and effects of channels of data more efficiently than would otherwise be possible. As a result of the increased efficiency in representation, reasoning software can monitor more channels and is thus able to perform monitoring and control functions more effectively.

  7. A Grid Infrastructure for Supporting Space-based Science Operations

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Redman, Sandra H.; McNair, Ann R. (Technical Monitor)

    2002-01-01

    Emerging technologies for computational grid infrastructures have the potential for revolutionizing the way computers are used in all aspects of our lives. Computational grids are currently being implemented to provide a large-scale, dynamic, and secure research and engineering environments based on standards and next-generation reusable software, enabling greater science and engineering productivity through shared resources and distributed computing for less cost than traditional architectures. Combined with the emerging technologies of high-performance networks, grids provide researchers, scientists and engineers the first real opportunity for an effective distributed collaborative environment with access to resources such as computational and storage systems, instruments, and software tools and services for the most computationally challenging applications.

  8. Spatial grid services for adaptive spatial query optimization

    NASA Astrophysics Data System (ADS)

    Gao, Bingbo; Xie, Chuanjie; Sheng, Wentao

    2008-10-01

    Spatial information sharing and integration has now become an important issue of Geographical Information Science (GIS). Web Service technologies provide a easy and standard way to share spatial resources over network, and grid technologies which aim at sharing resources such as data, storage, and computational powers can help the sharing go deeper. However, the dynamic characteristic of grid brings complexity to spatial query optimization which is more stressed in GIS domain because spatial operations are both CPU intensive and data intensive. To address this problem, a new grid framework is employed to provide standard spatial services which can also manage and report their state information to the coordinator which is responsible for distributed spatial query optimization.

  9. Accessing Wind Tunnels From NASA's Information Power Grid

    NASA Technical Reports Server (NTRS)

    Becker, Jeff; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The NASA Ames wind tunnel customers are one of the first users of the Information Power Grid (IPG) storage system at the NASA Advanced Supercomputing Division. We wanted to be able to store their data on the IPG so that it could be accessed remotely in a secure but timely fashion. In addition, incorporation into the IPG allows future use of grid computational resources, e.g., for post-processing of data, or to do side-by-side CFD validation. In this paper, we describe the integration of grid data access mechanisms with the existing DARWIN web-based system that is used to access wind tunnel test data. We also show that the combined system has reasonable performance: wind tunnel data may be retrieved at 50Mbits/s over a 100 base T network connected to the IPG storage server.

  10. Oxygen-participated electrochemistry of new lithium-rich layered oxides Li3MRuO5 (M = Mn, Fe).

    PubMed

    Laha, S; Natarajan, S; Gopalakrishnan, J; Morán, E; Sáez-Puche, R; Alario-Franco, M Á; Dos Santos-Garcia, A J; Pérez-Flores, J C; Kuhn, A; García-Alvarado, F

    2015-02-01

    We describe the synthesis, crystal structure and lithium deinsertion-insertion electrochemistry of two new lithium-rich layered oxides, Li3MRuO5 (M = Mn, Fe), related to rock salt based Li2MnO3 and LiCoO2. The Li3MnRuO5 oxide adopts a structure related to Li2MnO3 (C2/m) where Li and (Li0.2Mn0.4Ru0.4) layers alternate along the c-axis, while the Li3FeRuO5 oxide adopts a near-perfect LiCoO2 (R3[combining macron]m) structure where Li and (Li0.2Fe0.4Ru0.4) layers are stacked alternately. Magnetic measurements indicate for Li3MnRuO5 the presence of Mn(3+) and low spin configuration for Ru(4+) where the itinerant electrons occupy a π*-band. The onset of a net maximum in the χ vs. T plot at 9.5 K and the negative value of the Weiss constant (θ) of -31.4 K indicate the presence of antiferromagnetic superexchange interactions according to different pathways. Lithium electrochemistry shows a similar behaviour for both oxides and related to the typical behaviour of Li-rich layered oxides where participation of oxide ions in the electrochemical processes is usually found. A long first charge process with capacities of 240 mA h g(-1) (2.3 Li per f.u.) and 144 mA h g(-1) (1.38 Li per f.u.) is observed for Li3MnRuO5 and Li3FeRuO5, respectively. An initial sloping region (OCV to ca. 4.1 V) is followed by a long plateau (ca. 4.3 V). Further discharge-charge cycling points to partial reversibility (ca. 160 mA h g(-1) and 45 mA h g(-1) for Mn and Fe, respectively). Nevertheless, just after a few cycles, cell failure is observed. X-ray photoelectron spectroscopy (XPS) characterisation of both pristine and electrochemically oxidized Li3MRuO5 reveals that in the Li3MnRuO5 oxide, Mn(3+) and Ru(4+) are partially oxidized to Mn(4+) and Ru(5+) in the sloping region at low voltage, while in the long plateau, O(2-) is also oxidized. Oxygen release likely occurs which may be the cause for failure of cells upon cycling. Interestingly, some other Li-rich layered oxides have been reported to

  11. Interpretation of 1.5-m resolution AUV bathymetry using ROV observations and samples at Davidson and Rodriguez Seamounts

    NASA Astrophysics Data System (ADS)

    Paduan, J. B.; Clague, D. A.; Caress, D. W.; Thomas, H.; Conlin, D.; Thompson, D.

    2010-12-01

    The summits and upper flanks of Rodriguez and Davidson Seamounts off California were mapped at 1.5-m resolution by the MBARI Mapping AUV. The seamounts were built by episodic eruptions on abandoned spreading ridges 10-12 and 10-15 Ma, respectively. They consist of ridges and elongate cones that parallel the old spreading axes, yet have strikingly different summit morphologies. Video observations and samples from prior ROV Tiburon dives are used to interpret the textures revealed in the AUV data, and are extrapolated to make geologic maps of the seamounts. The summit of Davidson is rugged and studded with cones of three general classes: completely smooth cones with nearly circular bases, mounds elongated into subparallel ridges, and disorganized mounds of rounded shapes. The elongated mound ridge-lines are roughly rectangular in cross-section, and smooth apron-like slopes descend below. They and the smooth cones occupy the highest points on the seamount but also occur deeper, whereas the disorganized mounds occur only deeper. Smooth, flat pockets lie between the cones. The disorganized mounds were identified as pillow lavas during ROV dives. The mounds that form ridges are blocky ’a’a-like flows, probably oriented over eruptive fissures. Lava samples vary from basalt to trachyte, and there is no correlation between the presumed fluidity of the lavas and occurrence of pillows. The smooth aprons below the blocky flows, and presumably the smooth cones, are glass-rich, volcaniclastic debris produced by explosive activity above. The debris has bedding parallel to the steep slopes, and has lithified into pavement. Pelagic sediment has accumulated between the cones. An inflated flow drained at its distal end in a valley between two ridges; collapses in the flow have drainback veneers like bath-tub rings on the inner surfaces. The summit of Rodriguez has no cones, but they dot the flanks. They are smooth with nearly circular bases and mounds elongated into ridges with

  12. isochrones: Stellar model grid package

    NASA Astrophysics Data System (ADS)

    Morton, Timothy D.

    2015-03-01

    Isochrones, written in Python, simplifies common tasks often done with stellar model grids, such as simulating synthetic stellar populations, plotting evolution tracks or isochrones, or estimating the physical properties of a star given photometric and/or spectroscopic observations.

  13. Modal Analysis for Grid Operation

    SciTech Connect

    2011-03-03

    MANGO software is to provide a solution for improving small signal stability of power systems through adjusting operator-controllable variables using PMU measurement. System oscillation problems are one of the major threats to the grid stability and reliability in California and the Western Interconnection. These problems result in power fluctuations, lower grid operation efficiency, and may even lead to large-scale grid breakup and outages. This MANGO software aims to solve this problem by automatically generating recommended operation procedures termed Modal Analysis for Grid Operation (MANGO) to improve damping of inter-area oscillation modes. The MANGO procedure includes three steps: recognizing small signal stability problems, implementing operating point adjustment using modal sensitivity, and evaluating the effectiveness of the adjustment. The MANGO software package is designed to help implement the MANGO procedure.

  14. Assistive Awareness in Smart Grids

    NASA Astrophysics Data System (ADS)

    Bourazeri, Aikaterini; Almajano, Pablo; Rodriguez, Inmaculada; Lopez-Sanchez, Maite

    The following sections are included: * Introduction * Background * The User-Infrastructure Interface * User Engagement through Assistive Awareness * Research Impact * Serious Games for Smart Grids * Serious Game Technology * Game scenario * Game mechanics * Related Work * Summary and Conclusions

  15. Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid

    SciTech Connect

    Chertkov, Michael; Bent, Russell W.; Backhaus, Scott N.

    2012-07-10

    Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

  16. Parallel Power Grid Simulation Toolkit

    SciTech Connect

    Smith, Steve; Kelley, Brian; Banks, Lawrence; Top, Philip; Woodward, Carol

    2015-09-14

    ParGrid is a 'wrapper' that integrates a coupled Power Grid Simulation toolkit consisting of a library to manage the synchronization and communication of independent simulations. The included library code in ParGid, named FSKIT, is intended to support the coupling multiple continuous and discrete even parallel simulations. The code is designed using modern object oriented C++ methods utilizing C++11 and current Boost libraries to ensure compatibility with multiple operating systems and environments.

  17. Reinventing Batteries for Grid Storage

    ScienceCinema

    Banerjee, Sanjoy

    2016-07-12

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  18. Temporal networks

    NASA Astrophysics Data System (ADS)

    Holme, Petter; Saramäki, Jari

    2012-10-01

    A great variety of systems in nature, society and technology-from the web of sexual contacts to the Internet, from the nervous system to power grids-can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via e-mail, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks. The study of temporal networks is very interdisciplinary in nature. Reflecting this, even the object of study has many names-temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This review covers different fields where temporal graphs are considered

  19. Surface Cloud Grid (SfcCldGrid) Value-Added Product. Algorithm Operational Details and Explanations

    SciTech Connect

    Christy, J. E.; Long, C. N.

    2005-06-01

    This document describes the algorithm used for the Surface Cloud Grid Value-Added Product (VAP). This VAP uses as input the 15-min. output from the Shortwave (SW) Flux Analysis VAP (see Long 2001; Long and Ackerman 2000; Long et al. 1999) from the Atmospheric Radiation Measurement (ARM) Climate Reseach Facility (ACRF) Southern Great Plains (SGP) Central Facility and extended facilities. This network of 21 sites is unevenly spaced over northern Oklahoma into southern Kansas, covering an area from 95.5° to 99.5° west longitude and 34.5° to 38.5° north latitude. For research applications such as single-column modeling, an estimate of the cloud and cloud effects distribution over this entire domain is desirable. The Surface Cloud Grid VAP applies a multi-pass weighted sum analytic approximation technique (Caracena 1987), which uses Gaussian weighting and an imposed scale length, to interpolate to a 0.25° by 0.25° lat/long grid over the SGP domain. The output, like the input, includes solar elevation angles of 10° or greater.

  20. FORWARD AND INVERSE BIO-GEOCHEMICAL MODELING OF MICROBIALLY INDUCED PRECIPITATION IN 0.5M COLUMNAR EXPERIMENTS

    NASA Astrophysics Data System (ADS)

    Barkouki, T. H.; Martinez, B.; Mortensen, B.; Dejong, J.; Weathers, T. S.; Spycher, N.; Ginn, T. R.; Fujita, Y.; Smith, R. W.

    2009-12-01

    Subsurface contamination by metals and radionuclides threatens water supplies and ecosystem health at sites worldwide. One potential solution is immobilization in calcite where mineral precipitation is induced in situ by microbially-mediated ureolysis. Specifically, immobile aerobic biophases (cells or enzymes) mediate the conversion of urea to ammonium and carbonate, raising pH and promoting calcite precipitation. Divalent species such as strontium (including 90Sr, a common radionuclide contaminant) can co-precipitate, resulting in in situ immobilization. In waters that are saturated with respect to calcite, this represents a long-term sequestration mechanism. Calcite precipitation also enables control of mechanical properties of the medium through the cementation of particles thus increasing the shear strength and stiffness, while decreasing the permeability and compressibility. Challenges in application include design of the injectate aqueous chemistry (e.g., calcium, carbonate, urea, pH buffer, microbial nutrients) and selection of injection rates in order to control the timing and rate of calcite precipitation to generate the desired spatial distribution. Modeling ultimately requires incorporation of comprehensive reaction networks into transport simulators for non-uniform flow. To develop and validate the reaction network for use in both contaminant co-precipitation and subsurface structural modification applications, multicomponent biogeochemical modeling (TOUGHREACT v2) was applied in analyses of laboratory batch and column investigations of microbially-mediated calcite precipitation using Sporosarcina pasteurii. Column experiments included continuous and repeat pulse-flows, with cumulative flux equal in both cases. Aqueous chemistry and calcite distribution were monitored, as well as seismic shear waves that correlate to the stiffness of the column and thus to precipitation extent. TOUGHREACT was coupled with the inversion code UCODE to invert on observed

  1. CCL5 mRNA is a marker for early fibrosis in chronic hepatitis C and is regulated by interferon-α therapy and toll-like receptor 3 signalling.

    PubMed

    Katsounas, A; Trippler, M; Wang, B; Polis, M; Lempicki, R A; Kottilil, S; Gerken, G; Schlaak, J F

    2012-02-01

    Mechanisms causing liver fibrosis during chronic hepatitis C virus infection (cHCV) are not sufficiently understood. This study was aimed to identify biomarkers for early fibrosis (EF) and to investigate their potential role in cHCV-related fibrogenesis. To this end, peripheral whole blood (PB) samples from 36 patients with cHCV recruited from two independent cohorts were subjected to microarray analysis 12 h before initiation of peginterferon-alpha (Peg-IFN-α) and ribavirin therapy. Liver biopsies were evaluated using the Batts-Ludwig staging (BL-S) classification system for fibrosis. We showed that gene expression profiles (N = 8) distinguished between EF (BL-S: 0,1) and late fibrosis (LF; BL-S: 2,3,4) with 88.9% accuracy. Fibrosis-related functional annotations for chemokine-'C-C-motif'' ligand 5 (CCL5) provided foundation for focused investigation, and qRT-PCR confirmed that CCL5 mRNA levels (PB) reliably discriminate EF from LF (accuracy: 86.7%). Positive correlations (P < 0.05) with CCL5 mRNA levels and EF discovered gene expression profiles (PB) reflecting stable expression of IFN-α receptor 1, negative regulation of the MyD88-dependent toll-like receptor (TLR) pathway and decreased expression of TLR3 in vivo. Remarkably, Peg-IFN-α suppressed CCL5 mRNA levels (PB) in EF in vivo. These findings along with results from parallel in vitro investigation into the effect of IFN-α or poly I:C (TLR3-agonist) on CCL5 gene expression in hepatic stellate cells (HSC) attest to the multi-site involvement of these pathways in regulating fibrogenesis. In conclusion, we identified novel, reliable biomarkers for EF and exposed functional properties of the molecular network regulating CCL5 biosynthesis in peripheral or hepatic cell types with key roles in cHCV-related liver and/or immune pathogenesis. PMID:22239502

  2. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos.

    PubMed

    Nakamura, Toshinobu; Liu, Yu-Jung; Nakashima, Hiroyuki; Umehara, Hiroki; Inoue, Kimiko; Matoba, Shogo; Tachibana, Makoto; Ogura, Atsuo; Shinkai, Yoichi; Nakano, Toru

    2012-06-03

    The modification of DNA by 5-methylcytosine (5mC) has essential roles in cell differentiation and development through epigenetic gene regulation. 5mC can be converted to another modified base, 5-hydroxymethylcytosine (5hmC), by the tet methylcytosine dioxygenase (Tet) family of enzymes. Notably, the balance between 5hmC and 5mC in the genome is linked with cell-differentiation processes such as pluripotency and lineage commitment. We have previously reported that the maternal factor PGC7 (also known as Dppa3, Stella) is required for the maintenance of DNA methylation in early embryogenesis, and protects 5mC from conversion to 5hmC in the maternal genome. Here we show that PGC7 protects 5mC from Tet3-mediated conversion to 5hmC by binding to maternal chromatin containing dimethylated histone H3 lysine 9 (H3K9me2) in mice. In addition, imprinted loci that are marked with H3K9me2 in mature sperm are protected by PGC7 binding in early embryogenesis. This type of regulatory mechanism could be involved in DNA modifications in somatic cells as well as in early embryos.

  3. The International Symposium on Grids and Clouds

    NASA Astrophysics Data System (ADS)

    The International Symposium on Grids and Clouds (ISGC) 2012 will be held at Academia Sinica in Taipei from 26 February to 2 March 2012, with co-located events and workshops. The conference is hosted by the Academia Sinica Grid Computing Centre (ASGC). 2012 is the decennium anniversary of the ISGC which over the last decade has tracked the convergence, collaboration and innovation of individual researchers across the Asia Pacific region to a coherent community. With the continuous support and dedication from the delegates, ISGC has provided the primary international distributed computing platform where distinguished researchers and collaboration partners from around the world share their knowledge and experiences. The last decade has seen the wide-scale emergence of e-Infrastructure as a critical asset for the modern e-Scientist. The emergence of large-scale research infrastructures and instruments that has produced a torrent of electronic data is forcing a generational change in the scientific process and the mechanisms used to analyse the resulting data deluge. No longer can the processing of these vast amounts of data and production of relevant scientific results be undertaken by a single scientist. Virtual Research Communities that span organisations around the world, through an integrated digital infrastructure that connects the trust and administrative domains of multiple resource providers, have become critical in supporting these analyses. Topics covered in ISGC 2012 include: High Energy Physics, Biomedicine & Life Sciences, Earth Science, Environmental Changes and Natural Disaster Mitigation, Humanities & Social Sciences, Operations & Management, Middleware & Interoperability, Security and Networking, Infrastructure Clouds & Virtualisation, Business Models & Sustainability, Data Management, Distributed Volunteer & Desktop Grid Computing, High Throughput Computing, and High Performance, Manycore & GPU Computing.

  4. Globally Gridded Satellite observations for climate studies

    USGS Publications Warehouse

    Knapp, K.R.; Ansari, S.; Bain, C.L.; Bourassa, M.A.; Dickinson, M.J.; Funk, C.; Helms, C.N.; Hennon, C.C.; Holmes, C.D.; Huffman, G.J.; Kossin, J.P.; Lee, H.-T.; Loew, A.; Magnusdottir, G.

    2011-01-01

    Geostationary satellites have provided routine, high temporal resolution Earth observations since the 1970s. Despite the long period of record, use of these data in climate studies has been limited for numerous reasons, among them that no central archive of geostationary data for all international satellites exists, full temporal and spatial resolution data are voluminous, and diverse calibration and navigation formats encumber the uniform processing needed for multisatellite climate studies. The International Satellite Cloud Climatology Project (ISCCP) set the stage for overcoming these issues by archiving a subset of the full-resolution geostationary data at ~10-km resolution at 3-hourly intervals since 1983. Recent efforts at NOAA's National Climatic Data Center to provide convenient access to these data include remapping the data to a standard map projection, recalibrating the data to optimize temporal homogeneity, extending the record of observations back to 1980, and reformatting the data for broad public distribution. The Gridded Satellite (GridSat) dataset includes observations from the visible, infrared window, and infrared water vapor channels. Data are stored in Network Common Data Format (netCDF) using standards that permit a wide variety of tools and libraries to process the data quickly and easily. A novel data layering approach, together with appropriate satellite and file metadata, allows users to access GridSat data at varying levels of complexity based on their needs. The result is a climate data record already in use by the meteorological community. Examples include reanalysis of tropical cyclones, studies of global precipitation, and detection and tracking of the intertropical convergence zone.

  5. Protecting Intelligent Distributed Power Grids against Cyber Attacks

    SciTech Connect

    Dong Wei; Yan Lu; Mohsen Jafari; Paul Skare; Kenneth Rohde

    2010-12-31

    Like other industrial sectors, the electrical power industry is facing challenges involved with the increasing demand for interconnected operations and control. The electrical industry has largely been restructured due to deregulation of the electrical market and the trend of the Smart Grid. This moves new automation systems from being proprietary and closed to the current state of Information Technology (IT) being highly interconnected and open. However, while gaining all of the scale and performance benefits of IT, existing IT security challenges are acquired as well. The power grid automation network has inherent security risks due to the fact that the systems and applications for the power grid were not originally designed for the general IT environment. In this paper, we propose a conceptual layered framework for protecting power grid automation systems against cyber attacks. The following factors are taken into account: (1) integration with existing, legacy systems in a non-intrusive fashion; (2) desirable performance in terms of modularity, scalability, extendibility, and manageability; (3) alignment to the 'Roadmap to Secure Control Systems in the Energy Sector' and the future smart grid. The on-site system test of the developed prototype security system is briefly presented as well.

  6. Intrusion Prevention and Detection in Grid Computing - The ALICE Case

    NASA Astrophysics Data System (ADS)

    Gomez, Andres; Lara, Camilo; Kebschull, Udo

    2015-12-01

    Grids allow users flexible on-demand usage of computing resources through remote communication networks. A remarkable example of a Grid in High Energy Physics (HEP) research is used in the ALICE experiment at European Organization for Nuclear Research CERN. Physicists can submit jobs used to process the huge amount of particle collision data produced by the Large Hadron Collider (LHC). Grids face complex security challenges. They are interesting targets for attackers seeking for huge computational resources. Since users can execute arbitrary code in the worker nodes on the Grid sites, special care should be put in this environment. Automatic tools to harden and monitor this scenario are required. Currently, there is no integrated solution for such requirement. This paper describes a new security framework to allow execution of job payloads in a sandboxed context. It also allows process behavior monitoring to detect intrusions, even when new attack methods or zero day vulnerabilities are exploited, by a Machine Learning approach. We plan to implement the proposed framework as a software prototype that will be tested as a component of the ALICE Grid middleware.

  7. A Scalable proxy cache for Grid Data Access

    NASA Astrophysics Data System (ADS)

    Cristian Cirstea, Traian; Just Keijser, Jan; Koeroo, Oscar Arthur; Starink, Ronald; Templon, Jeffrey Alan

    2012-12-01

    We describe a prototype grid proxy cache system developed at Nikhef, motivated by a desire to construct the first building block of a future https-based Content Delivery Network for grid infrastructures. Two goals drove the project: firstly to provide a “native view” of the grid for desktop-type users, and secondly to improve performance for physics-analysis type use cases, where multiple passes are made over the same set of data (residing on the grid). We further constrained the design by requiring that the system should be made of standard components wherever possible. The prototype that emerged from this exercise is a horizontally-scalable, cooperating system of web server / cache nodes, fronted by a customized webDAV server. The webDAV server is custom only in the sense that it supports http redirects (providing horizontal scaling) and that the authentication module has, as back end, a proxy delegation chain that can be used by the cache nodes to retrieve files from the grid. The prototype was deployed at Nikhef and tested at a scale of several terabytes of data and approximately one hundred fast cores of computing. Both small and large files were tested, in a number of scenarios, and with various numbers of cache nodes, in order to understand the scaling properties of the system. For properly-dimensioned cache-node hardware, the system showed speedup of several integer factors for the analysis-type use cases. These results and others are presented and discussed.

  8. Simulation of demand management and grid balancing with electric vehicles

    NASA Astrophysics Data System (ADS)

    Druitt, James; Früh, Wolf-Gerrit

    2012-10-01

    This study investigates the potential role of electric vehicles in an electricity network with a high contribution from variable generation such as wind power. Electric vehicles are modelled to provide demand management through flexible charging requirements and energy balancing for the network. Balancing applications include both demand balancing and vehicle-to-grid discharging. This study is configured to represent the UK grid with balancing requirements derived from wind generation calculated from weather station wind speeds on the supply side and National Grid data from on the demand side. The simulation models 1000 individual vehicle entities to represent the behaviour of larger numbers of vehicles. A stochastic trip generation profile is used to generate realistic journey characteristics, whilst a market pricing model allows charging and balancing decisions to be based on realistic market price conditions. The simulation has been tested with wind generation capacities representing up to 30% of UK consumption. Results show significant improvements to load following conditions with the introduction of electric vehicles, suggesting that they could substantially facilitate the uptake of intermittent renewable generation. Electric vehicle owners would benefit from flexible charging and selling tariffs, with the majority of revenue derived from vehicle-to-grid participation in balancing markets.

  9. Parallel architectures for iterative methods on adaptive, block structured grids

    NASA Technical Reports Server (NTRS)

    Gannon, D.; Vanrosendale, J.

    1983-01-01

    A parallel computer architecture well suited to the solution of partial differential equations in complicated geometries is proposed. Algorithms for partial differential equations contain a great deal of parallelism. But this parallelism can be difficult to exploit, particularly on complex problems. One approach to extraction of this parallelism is the use of special purpose architectures tuned to a given problem class. The architecture proposed here is tuned to boundary value problems on complex domains. An adaptive elliptic algorithm which maps effectively onto the proposed architecture is considered in detail. Two levels of parallelism are exploited by the proposed architecture. First, by making use of the freedom one has in grid generation, one can construct grids which are locally regular, permitting a one to one mapping of grids to systolic style processor arrays, at least over small regions. All local parallelism can be extracted by this approach. Second, though there may be a regular global structure to the grids constructed, there will be parallelism at this level. One approach to finding and exploiting this parallelism is to use an architecture having a number of processor clusters connected by a switching network. The use of such a network creates a highly flexible architecture which automatically configures to the problem being solved.

  10. Grid-Optimization Program for Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Daniel, R. E.; Lee, T. S.

    1986-01-01

    CELLOPT program developed to assist in designing grid pattern of current-conducting material on photovoltaic cell. Analyzes parasitic resistance losses and shadow loss associated with metallized grid pattern on both round and rectangular solar cells. Though performs sensitivity studies, used primarily to optimize grid design in terms of bus bar and grid lines by minimizing power loss. CELLOPT written in APL.

  11. Colorado Electrical Transmission Grid

    SciTech Connect

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Xcel Energy Publication Date: 2012 Title: Colorado XcelEnergy NonXcel Transmission Network Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains transmission network of Colorado Spatial Domain: Extent: Top: 4540689.017558 m Left: 160606.141934 m Right: 758715.946645 m Bottom: 4098910.893397m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shapefile

  12. Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis

    PubMed Central

    Dordek, Yedidyah; Soudry, Daniel; Meir, Ron; Derdikman, Dori

    2016-01-01

    Many recent models study the downstream projection from grid cells to place cells, while recent data have pointed out the importance of the feedback projection. We thus asked how grid cells are affected by the nature of the input from the place cells. We propose a single-layer neural network with feedforward weights connecting place-like input cells to grid cell outputs. Place-to-grid weights are learned via a generalized Hebbian rule. The architecture of this network highly resembles neural networks used to perform Principal Component Analysis (PCA). Both numerical results and analytic considerations indicate that if the components of the feedforward neural network are non-negative, the output converges to a hexagonal lattice. Without the non-negativity constraint, the output converges to a square lattice. Consistent with experiments, grid spacing ratio between the first two consecutive modules is −1.4. Our results express a possible linkage between place cell to grid cell interactions and PCA. DOI: http://dx.doi.org/10.7554/eLife.10094.001 PMID:26952211

  13. Squid – a simple bioinformatics grid

    PubMed Central

    Carvalho, Paulo C; Glória, Rafael V; de Miranda, Antonio B; Degrave, Wim M

    2005-01-01

    Background BLAST is a widely used genetic research tool for analysis of similarity between nucleotide and protein sequences. This paper presents a software application entitled "Squid" that makes use of grid technology. The current version, as an example, is configured for BLAST applications, but adaptation for other computing intensive repetitive tasks can be easily accomplished in the open source version. This enables the allocation of remote resources to perform distributed computing, making large BLAST queries viable without the need of high-end computers. Results Most distributed computing / grid solutions have complex installation procedures requiring a computer specialist, or have limitations regarding operating systems. Squid is a multi-platform, open-source program designed to "keep things simple" while offering high-end computing power for large scale applications. Squid also has an efficient fault tolerance and crash recovery system against data loss, being able to re-route jobs upon node failure and recover even if the master machine fails. Our results show that a Squid application, working with N nodes and proper network resources, can process BLAST queries almost N times faster than if working with only one computer. Conclusion Squid offers high-end computing, even for the non-specialist, and is freely available at the project web site. Its open-source and binary Windows distributions contain detailed instructions and a "plug-n-play" instalation containing a pre-configured example. PMID:16078998

  14. Grid accounting service: state and future development

    SciTech Connect

    Levshina, T.; Sehgal, C.; Bockelman, B.; Weitzel, D.; Guru, A.

    2014-01-01

    During the last decade, large-scale federated distributed infrastructures have been continually developed and expanded. One of the crucial components of a cyber-infrastructure is an accounting service that collects data related to resource utilization and identity of users using resources. The accounting service is important for verifying pledged resource allocation per particular groups and users, providing reports for funding agencies and resource providers, and understanding hardware provisioning requirements. It can also be used for end-to-end troubleshooting as well as billing purposes. In this work we describe Gratia, a federated accounting service jointly developed at Fermilab and Holland Computing Center at University of Nebraska-Lincoln. The Open Science Grid, Fermilab, HCC, and several other institutions have used Gratia in production for several years. The current development activities include expanding Virtual Machines provisioning information, XSEDE allocation usage accounting, and Campus Grids resource utilization. We also identify the direction of future work: improvement and expansion of Cloud accounting, persistent and elastic storage space allocation, and the incorporation of WAN and LAN network metrics.

  15. Grid accounting service: state and future development

    NASA Astrophysics Data System (ADS)

    Levshina, T.; Sehgal, C.; Bockelman, B.; Weitzel, D.; Guru, A.

    2014-06-01

    During the last decade, large-scale federated distributed infrastructures have been continually developed and expanded. One of the crucial components of a cyber-infrastructure is an accounting service that collects data related to resource utilization and identity of users using resources. The accounting service is important for verifying pledged resource allocation per particular groups and users, providing reports for funding agencies and resource providers, and understanding hardware provisioning requirements. It can also be used for end-to-end troubleshooting as well as billing purposes. In this work we describe Gratia, a federated accounting service jointly developed at Fermilab and Holland Computing Center at University of Nebraska-Lincoln. The Open Science Grid, Fermilab, HCC, and several other institutions have used Gratia in production for several years. The current development activities include expanding Virtual Machines provisioning information, XSEDE allocation usage accounting, and Campus Grids resource utilization. We also identify the direction of future work: improvement and expansion of Cloud accounting, persistent and elastic storage space allocation, and the incorporation of WAN and LAN network metrics.

  16. Geosensor Data Representation Using Layered Slope Grids

    PubMed Central

    Lee, Yongmi; Jung, Young Jin; Nam, Kwang Woo; Nittel, Silvia; Beard, Kate; Ryu, Keun Ho

    2012-01-01

    Environmental monitoring applications are designed for supplying derived and often integrated information by tracking and analyzing phenomena. To determine the condition of a target place, they employ a geosensor network to get the heterogeneous sensor data. To effectively handle a large volume of sensor data, applications need a data abstraction model, which supports the summarized data representation by encapsulating raw data. For faster data processing to answer a user’s queries with representative attributes of an abstracted model, we propose such a data abstraction model, the Layered Slopes in Grid for Sensor Data Abstraction (LSGSA), which is based on the SGSA. In a single grid-based layer for each sensor type, collected data is represented by slope directional vectors in two layered slopes, such as height and surface. To answer a user query in a central monitoring server, LSGSA is used to reduce the time needed to extract event features from raw sensor data as a preprocessing step for interpreting the observed data. The extracted features are used to understand the current data trends and the progress of a detected phenomenon without accessing raw sensor data. PMID:23235448

  17. A paradigm for parallel unstructured grid generation

    SciTech Connect

    Gaither, A.; Marcum, D.; Reese, D.

    1996-12-31

    In this paper, a sequential 2D unstructured grid generator based on iterative point insertion and local reconnection is coupled with a Delauney tessellation domain decomposition scheme to create a scalable parallel unstructured grid generator. The Message Passing Interface (MPI) is used for distributed communication in the parallel grid generator. This work attempts to provide a generic framework to enable the parallelization of fast sequential unstructured grid generators in order to compute grand-challenge scale grids for Computational Field Simulation (CFS). Motivation for moving from sequential to scalable parallel grid generation is presented. Delaunay tessellation and iterative point insertion and local reconnection (advancing front method only) unstructured grid generation techniques are discussed with emphasis on how these techniques can be utilized for parallel unstructured grid generation. Domain decomposition techniques are discussed for both Delauney and advancing front unstructured grid generation with emphasis placed on the differences needed for both grid quality and algorithmic efficiency.

  18. Striped ratio grids for scatter estimation

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Wang, Adam S.; Star-Lack, Josh

    2016-03-01

    Striped ratio grids are a new concept for scatter management in cone-beam CT. These grids are a modification of conventional anti-scatter grids and consist of stripes which alternate between high grid ratio and low grid ratio. Such a grid is related to existing hardware concepts for scatter estimation such as blocker-based methods or primary modulation, but rather than modulating the primary, the striped ratio grid modulates the scatter. The transitions between adjacent stripes can be used to estimate and subtract the remaining scatter. However, these transitions could be contaminated by variation in the primary radiation. We describe a simple nonlinear image processing algorithm to estimate scatter, and proceed to validate the striped ratio grid on experimental data of a pelvic phantom. The striped ratio grid is emulated by combining data from two scans with different grids. Preliminary results are encouraging and show a significant reduction of scatter artifact.

  19. Ion beamlet vectoring by grid translation

    NASA Technical Reports Server (NTRS)

    Homa, J. M.; Wilbur, P. J.

    1982-01-01

    Ion beamlet vectoring is investigated by collecting deflection and divergence angle data for two-grid systems as a function of the relative displacement of these grids. Results show that at large displacements, accelerator grid impingement becomes a limiting factor and this determines the useful range of beamlet deflection. Beamlet deflection was shown to vary linearly with grid offset angle over this range. Values of deflection-to-offset angle ratio and useful range of deflection are presented as functions of grid-hole geometries, perveance levels, and accelerating voltages. It is found that the divergence of the beamlets is unaffected by deflection over the useful range of beamlet deflection. The grids of a typical dished-grid ion thruster are examined to determine where over the grid surface the grid offsets exceed the useful range, which indicates the regions on the surface where high accelerator grid impingment is probably occurring.

  20. Method for fabricating solar cells having integrated collector grids

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1979-01-01

    A heterojunction or Schottky barrier photovoltaic device comprising a conductive base metal layer compatible with and coating predominately the exposed surface of the p-type substrate of the device such that a back surface field region is formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device having a metal alloy grid network of the same metal elements of the oxide constituents of the mixed metal oxide layer embedded in the mixed metal oxide layer, an insulating layer which prevents electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer, and a metal contact means covering the insulating layer and in intimate contact with the metal grid network embedded in the transparent, conductive oxide layer for conducting electrons generated by the photovoltaic process from the device.

  1. e-Human Grid Ecology - understanding and approaching the inverse tragedy of the commons in the e-Grid society.

    PubMed

    Knoch, Tobias A; Baumgärtner, Volkmar; de Zeeuw, Luc V; Grosveld, Frank G; Egger, Kurt

    2009-01-01

    With ever-new technologies emerging also the amount of information to be stored and processed is growing exponentially and is believed to be always at the limit. In contrast, however, huge resources are available in the IT sector alike e.g. the renewable energy sector, which are often even not at all used. This under-usage bares any rational especially in the IT sector where e.g. virtualisation and grid approaches could be fast implemented due to the great technical and fast turnover opportunities. Here, we describe this obvious paradox for the first time as the Inverse Tragedy of the Commons, in contrast to the Classical Tragedy of the Commons where resources are overexploited. From this perspective the grid IT sector attempting to share resources for better efficiency, reveals two challenges leading to the heart of the paradox: i) From a macro perspective all grid infrastructures involve not only mere technical solutions but also dominantly all of the autopoietic social sub-systems ranging from religion to policy. ii) On the micro level the individual players and their psychology and risk behaviour are of major importance for acting within the macro autopoietic framework. Thus, the challenges of grid implementation are similar to those of e.g. climate protection. This is well described by the classic Human Ecology triangle and our extension to a rectangle: invironment-individual-society-environment. Extension of this classical interdisciplinary field of basic and applied research to an e-Human Grid Ecology rational, allows the Inverse Tragedy of the Commons of the grid sector to be understood and approached better and implies obvious guidelines in the day-to-day management for grid and other (networked) resources, which is of importance for many fields with similar paradoxes as in (e-)society.

  2. Scaling Up Renewable Energy Generation: Aligning Targets and Incentives with Grid Integration Considerations, Greening The Grid

    SciTech Connect

    Katz, Jessica; Cochran, Jaquelin

    2015-05-27

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document, part of a Greening the Grid toolkit, provides power system planners with tips to help secure and sustain investment in new renewable energy generation by aligning renewable energy policy targets and incentives with grid integration considerations.

  3. Multiblock grid generation for jet engine configurations

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.

    1992-01-01

    The goal was to create methods for generating grids with minimal human intervention that are applicable to a wide range of problems and compatible with existing numerical methods and with existing and proposed computers. The following topics that are related to multiblock grid generation are briefly covered in viewgraph form: finding a domain decomposition, dimensioning grids, grid smoothing, manipulating grids and decompositions, and some specializations for jet engine configurations.

  4. Grid-based Visualization Framework

    NASA Astrophysics Data System (ADS)

    Thiebaux, M.; Tangmunarunkit, H.; Kesselman, C.

    2003-12-01

    Advances in science and engineering have put high demands on tools for high-performance large-scale visual data exploration and analysis. For example, earthquake scientists can now study earthquake phenomena from first principle physics-based simulations. These simulations can generate large amounts of data, possibly high spatial resolution, and long time series. Single-system visualization software running on commodity machines cannot scale up to the large amounts of data generated by these simulations. To address this problem, we propose a flexible and extensible Grid-based visualization framework for time-critical, interactively controlled visual browsing of spatially and temporally large datasets in a Grid environment. Our framework leverages Grid resources for scalable computation and data storage to maintain performance and interactivity with large visualization jobs. Our framework utilizes Globus Toolkit 2.4 components for security (i.e., GSI), resource allocation and management (i.e., DUROC, GRAM) and communication (i.e., Globus-IO) to couple commodity desktops with remote, scalable storage and computational resources in a Grid for interactive data exploration. There are two major components in this framework---Grid Data Transport (GDT) and the Grid Visualization Utility (GVU). GDT provides libraries for performing parallel data filtering and parallel data exchange among Grid resources. GDT allows arbitrary data filtering to be integrated into the system. It also facilitates multi-tiered pipeline topology construction of compute resources and displays. In addition to scientific visualization applications, GDT can be used to support other applications that require parallel processing and parallel transfer of partial ordered independent files, such as file-set transfer. On top of GDT, we have developed the Grid Visualization Utility (GVU), which is designed to assist visualization dataset management, including file formatting, data transport and automatic

  5. The CrossGrid project

    NASA Astrophysics Data System (ADS)

    Kunze, M.; CrossGrid Collaboration

    2003-04-01

    There are many large-scale problems that require new approaches to computing, such as earth observation, environmental management, biomedicine, industrial and scientific modeling. The CrossGrid project addresses realistic problems in medicine, environmental protection, flood prediction, and physics analysis and is oriented towards specific end-users: Medical doctors, who could obtain new tools to help them to obtain correct diagnoses and to guide them during operations; industries, that could be advised on the best timing for some critical operations involving risk of pollution; flood crisis teams, that could predict the risk of a flood on the basis of historical records and actual hydrological and meteorological data; physicists, who could optimize the analysis of massive volumes of data distributed across countries and continents. Corresponding applications will be based on Grid technology and could be complex and difficult to use: the CrossGrid project aims at developing several tools that will make the Grid more friendly for average users. Portals for specific applications will be designed, that should allow for easy connection to the Grid, create a customized work environment, and provide users with all necessary information to get their job done.

  6. ASCI Grid Services summary report.

    SciTech Connect

    Hiebert-Dodd, Kathie L.

    2004-03-01

    The ASCI Grid Services (initially called Distributed Resource Management) project was started under DisCom{sup 2} when distant and distributed computing was identified as a technology critical to the success of the ASCI Program. The goals of the Grid Services project has and continues to be to provide easy, consistent access to all the ASCI hardware and software resources across the nuclear weapons complex using computational grid technologies, increase the usability of ASCI hardware and software resources by providing interfaces for resource monitoring, job submission, job monitoring, and job control, and enable the effective use of high-end computing capability through complex-wide resource scheduling and brokering. In order to increase acceptance of the new technology, the goal included providing these services in both the unclassified as well as the classified user's environment. This paper summarizes the many accomplishments and lessons learned over approximately five years of the ASCI Grid Services Project. It also provides suggestions on how to renew/restart the effort for grid services capability when the situation is right for that need.

  7. Grid Stiffened Structure Analysis Tool

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Grid Stiffened Analysis Tool contract is contract performed by Boeing under NASA purchase order H30249D. The contract calls for a "best effort" study comprised of two tasks: (1) Create documentation for a composite grid-stiffened structure analysis tool, in the form of a Microsoft EXCEL spread sheet, that was developed by originally at Stanford University and later further developed by the Air Force, and (2) Write a program that functions as a NASTRAN pre-processor to generate an FEM code for grid-stiffened structure. In performing this contract, Task 1 was given higher priority because it enables NASA to make efficient use of a unique tool they already have; Task 2 was proposed by Boeing because it also would be beneficial to the analysis of composite grid-stiffened structures, specifically in generating models for preliminary design studies. The contract is now complete, this package includes copies of the user's documentation for Task 1 and a CD ROM & diskette with an electronic copy of the user's documentation and an updated version of the "GRID 99" spreadsheet.

  8. On the Continuum Representation of Fracture Networks

    NASA Astrophysics Data System (ADS)

    Hassan, A.; Botros, F.; Reeves, D. M.; Pohll, G.

    2006-12-01

    Discrete Fracture Network (DFN) and Stochastic Continuum (SC) are the two dominant modeling approaches used for simulating of fluid flow and solute transport in fractured media. While the SC approach has several variants, we focus on two methods introduced by Svensson [2001] and McKenna and Reeves [2002] where discrete fracture networks are directly mapped onto a finite-difference grid as grid cell conductivities. These methods combine the merits of each approach; a computationally efficient grid is utilized for the solution of fluid flow, and details of the fracture network are preserved by assigning a permeability contrast between the grid cells representing the rock matrix and fracture cells. In this paper, we focus on several outstanding issues that are associated with SC models: enhanced connectivity between fractures that would otherwise not be in connection in a DFN simulation, the formulation of grid cell conductivity for cells containing multiple fractures, and the influence of grid size. To addresses these issues, both DFN and SC models are used to solve for fluid flow through two-dimensional, randomly generated fracture networks. To minimize connectivity between fractures in the SC model, a percolation algorithm is used to define the hydraulic backbone before fractures are mapped onto a model grid. The effect of grid size is studied by using two different regularly-spaced grids with cell lengths of 1m and 10m. The resultant DFN flow solutions are used as a metric to evaluate different approaches used to assign grid cell conductivity. Results from this study are presented as guidelines for representing fracture networks as grid cell conductivities.

  9. Hydroacoustic propagation grids for the CTBT knowledge databaes BBN technical memorandum W1303

    SciTech Connect

    J. Angell

    1998-05-01

    The Hydroacoustic Coverage Assessment Model (HydroCAM) has been used to develop components of the hydroacoustic knowledge database required by operational monitoring systems, particularly the US National Data Center (NDC). The database, which consists of travel time, amplitude correction and travel time standard deviation grids, is planned to support source location, discrimination and estimation functions of the monitoring network. The grids will also be used under the current BBN subcontract to support an analysis of the performance of the International Monitoring System (IMS) and national sensor systems. This report describes the format and contents of the hydroacoustic knowledgebase grids, and the procedures and model parameters used to generate these grids. Comparisons between the knowledge grids, measured data and other modeled results are presented to illustrate the strengths and weaknesses of the current approach. A recommended approach for augmenting the knowledge database with a database of expected spectral/waveform characteristics is provided in the final section of the report.

  10. Reliable multicast for the Grid: a case study in experimental computer science.

    PubMed

    Nekovee, Maziar; Barcellos, Marinho P; Daw, Michael

    2005-08-15

    In its simplest form, multicast communication is the process of sending data packets from a source to multiple destinations in the same logical multicast group. IP multicast allows the efficient transport of data through wide-area networks, and its potentially great value for the Grid has been highlighted recently by a number of research groups. In this paper, we focus on the use of IP multicast in Grid applications, which require high-throughput reliable multicast. These include Grid-enabled computational steering and collaborative visualization applications, and wide-area distributed computing. We describe the results of our extensive evaluation studies of state-of-the-art reliable-multicast protocols, which were performed on the UK's high-speed academic networks. Based on these studies, we examine the ability of current reliable multicast technology to meet the Grid's requirements and discuss future directions.

  11. Stable discontinuous grid implementation for collocated-grid finite-difference seismic wave modelling

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenguo; Zhang, Wei; Li, Hong; Chen, Xiaofei

    2013-03-01

    Simulating seismic waves with uniform grid in heterogeneous high-velocity contrast media requires small-grid spacing determined by the global minimal velocity, which leads to huge number of grid points and small time step. To reduce the computational cost, discontinuous grids that use a finer grid at the shallow low-velocity region and a coarser grid at high-velocity regions are needed. In this paper, we present a discontinuous grid implementation for the collocated-grid finite-difference (FD) methods to increase the efficiency of seismic wave modelling. The grid spacing ratio n could be an arbitrary integer n ≥ 2. To downsample the wavefield from the finer grid to the coarser grid, our implementation can simply take the values on the finer grid without employing a downsampling filter for grid spacing ratio n = 2 to achieve stable results for long-time simulation. For grid spacing ratio n ≥ 3, the Gaussian filter should be used as the downsampling filter to get a stable simulation. To interpolate the wavefield from the coarse grid to the finer grid, the trilinear interpolation is used. Combining the efficiency of discontinuous grid with the flexibility of collocated-grid FD method on curvilinear grids, our method can simulate large-scale high-frequency strong ground motion of real earthquake with consideration of surface topography.

  12. ON JOINT DETERMINISTIC GRID MODELING AND SUB-GRID VARIABILITY CONCEPTUAL FRAMEWORK FOR MODEL EVALUATION

    EPA Science Inventory

    The general situation, (but exemplified in urban areas), where a significant degree of sub-grid variability (SGV) exists in grid models poses problems when comparing gridbased air quality modeling results with observations. Typically, grid models ignore or parameterize processes ...

  13. GRID integration of oceanographic remote instrumentation

    NASA Astrophysics Data System (ADS)

    Salon, S.; Bolzon, G.; Mauri, E.; Poulain, P.-M.

    2009-04-01

    The observations provided by oceanographic remote instruments are essential for the purposes of the operational oceanography, nowadays a constantly growing and powerful tool to monitor, analyze and predict the state of the marine resources as well as the sustainable development of coastal areas [1]. Near real time (NRT) observations at the sea surface and in the water column, e.g., temperature and salinity (T/S) profiles, are of central importance for the operational forecasting system in the Mediterranean Sea. The management of the network of floats deployed in the Mediterranean Sea and handled by the MedArgo Regional Argo Centre at OGS [2][3] is a complex task that may be greatly supported by the fast developing ICT infrastructures. Such workflow includes the communication system, the data downloading and treatment, the post-processing and the visualization of the information gathered by the observations. GRID technology may greatly help in providing a remote control of the entire flow of information associated with the observational instruments, from the raw data measured by the sensor at sea (i.e. temperature, salinity, current velocity) to the data-processing software running on the researcher's laptop. In particular, interactive applications of the GRID technology could support the management of the complex workflow related to the instrument interconnections (i.e. buoys, floats, autonomous vehicles), to the eventual technical problems bound to appear intermittently and the subsequent NRT corrections and/or adjustments of the sensors. Moreover, the communication to operative structures such as the Civil Protection, Coast Guards or local/regional administrations represents a composite multi-task process that involves different actors and that could be successfully integrated in a GRID environment. We will present the activity done so far and planned in the framework of the DORII EU-FP7 project [4] concerning the GRID integration of the MedArgo floats managed by

  14. Wavelet-Based Grid Generation

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1996-01-01

    Wavelets can provide a basis set in which the basis functions are constructed by dilating and translating a fixed function known as the mother wavelet. The mother wavelet can be seen as a high pass filter in the frequency domain. The process of dilating and expanding this high-pass filter can be seen as altering the frequency range that is 'passed' or detected. The process of translation moves this high-pass filter throughout the domain, thereby providing a mechanism to detect the frequencies or scales of information at every location. This is exactly the type of information that is needed for effective grid generation. This paper provides motivation to use wavelets for grid generation in addition to providing the final product: source code for wavelet-based grid generation.

  15. Grids: The Top Ten Questions

    DOE PAGES

    Schopf, Jennifer M.; Nitzberg, Bill

    2002-01-01

    The design and implementation of a national computing system and data grid has become a reachable goal from both the computer science and computational science point of view. A distributed infrastructure capable of sophisticated computational functions can bring many benefits to scientific work, but poses many challenges, both technical and socio-political. Technical challenges include having basic software tools, higher-level services, functioning and pervasive security, and standards, while socio-political issues include building a user community, adding incentives for sites to be part of a user-centric environment, and educating funding sources about the needs of this community. This paper details the areasmore » relating to Grid research that we feel still need to be addressed to fully leverage the advantages of the Grid.« less

  16. Grid-free compressive beamforming.

    PubMed

    Xenaki, Angeliki; Gerstoft, Peter

    2015-04-01

    The direction-of-arrival (DOA) estimation problem involves the localization of a few sources from a limited number of observations on an array of sensors, thus it can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve high-resolution imaging. On a discrete angular grid, the CS reconstruction degrades due to basis mismatch when the DOAs do not coincide with the angular directions on the grid. To overcome this limitation, a continuous formulation of the DOA problem is employed and an optimization procedure is introduced, which promotes sparsity on a continuous optimization variable. The DOA estimation problem with infinitely many unknowns, i.e., source locations and amplitudes, is solved over a few optimization variables with semidefinite programming. The grid-free CS reconstruction provides high-resolution imaging even with non-uniform arrays, single-snapshot data and under noisy conditions as demonstrated on experimental towed array data.

  17. Grid-free compressive beamforming.

    PubMed

    Xenaki, Angeliki; Gerstoft, Peter

    2015-04-01

    The direction-of-arrival (DOA) estimation problem involves the localization of a few sources from a limited number of observations on an array of sensors, thus it can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve high-resolution imaging. On a discrete angular grid, the CS reconstruction degrades due to basis mismatch when the DOAs do not coincide with the angular directions on the grid. To overcome this limitation, a continuous formulation of the DOA problem is employed and an optimization procedure is introduced, which promotes sparsity on a continuous optimization variable. The DOA estimation problem with infinitely many unknowns, i.e., source locations and amplitudes, is solved over a few optimization variables with semidefinite programming. The grid-free CS reconstruction provides high-resolution imaging even with non-uniform arrays, single-snapshot data and under noisy conditions as demonstrated on experimental towed array data. PMID:25920844

  18. The Design of Grids in Web Surveys

    PubMed Central

    Couper, Mick P.; Tourangeau, Roger; Conrad, Frederick G.; Zhang, Chan

    2014-01-01

    Grid or matrix questions are associated with a number of problems in Web surveys. In this paper, we present results from two experiments testing the design of grid questions to reduce breakoffs, missing data, and satisficing. The first examines dynamic elements to help guide respondent through the grid, and on splitting a larger grid into component pieces. The second manipulates the visual complexity of the grid and on simplifying the grid. We find that using dynamic feedback to guide respondents through a multi-question grid helps reduce missing data. Splitting the grids into component questions further reduces missing data and motivated underreporting. The visual complexity of the grid appeared to have little effect on performance. PMID:25258472

  19. The Design of Grids in Web Surveys.

    PubMed

    Couper, Mick P; Tourangeau, Roger; Conrad, Frederick G; Zhang, Chan

    2013-06-01

    Grid or matrix questions are associated with a number of problems in Web surveys. In this paper, we present results from two experiments testing the design of grid questions to reduce breakoffs, missing data, and satisficing. The first examines dynamic elements to help guide respondent through the grid, and on splitting a larger grid into component pieces. The second manipulates the visual complexity of the grid and on simplifying the grid. We find that using dynamic feedback to guide respondents through a multi-question grid helps reduce missing data. Splitting the grids into component questions further reduces missing data and motivated underreporting. The visual complexity of the grid appeared to have little effect on performance.

  20. Interactive solution-adaptive grid generation

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Henderson, Todd L.

    1992-01-01

    TURBO-AD is an interactive solution-adaptive grid generation program under development. The program combines an interactive algebraic grid generation technique and a solution-adaptive grid generation technique into a single interactive solution-adaptive grid generation package. The control point form uses a sparse collection of control points to algebraically generate a field grid. This technique provides local grid control capability and is well suited to interactive work due to its speed and efficiency. A mapping from the physical domain to a parametric domain was used to improve difficulties that had been encountered near outwardly concave boundaries in the control point technique. Therefore, all grid modifications are performed on a unit square in the parametric domain, and the new adapted grid in the parametric domain is then mapped back to the physical domain. The grid adaptation is achieved by first adapting the control points to a numerical solution in the parametric domain using control sources obtained from flow properties. Then a new modified grid is generated from the adapted control net. This solution-adaptive grid generation process is efficient because the number of control points is much less than the number of grid points and the generation of a new grid from the adapted control net is an efficient algebraic process. TURBO-AD provides the user with both local and global grid controls.

  1. TBGG- INTERACTIVE ALGEBRAIC GRID GENERATION

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1994-01-01

    TBGG, Two-Boundary Grid Generation, applies an interactive algebraic grid generation technique in two dimensions. The program incorporates mathematical equations that relate the computational domain to the physical domain. TBGG has application to a variety of problems using finite difference techniques, such as computational fluid dynamics. Examples include the creation of a C-type grid about an airfoil and a nozzle configuration in which no left or right boundaries are specified. The underlying two-boundary technique of grid generation is based on Hermite cubic interpolation between two fixed, nonintersecting boundaries. The boundaries are defined by two ordered sets of points, referred to as the top and bottom. Left and right side boundaries may also be specified, and call upon linear blending functions to conform interior interpolation to the side boundaries. Spacing between physical grid coordinates is determined as a function of boundary data and uniformly spaced computational coordinates. Control functions relating computational coordinates to parametric intermediate variables that affect the distance between grid points are embedded in the interpolation formulas. A versatile control function technique with smooth cubic spline functions is also presented. The TBGG program is written in FORTRAN 77. It works best in an interactive graphics environment where computational displays and user responses are quickly exchanged. The program has been implemented on a CDC Cyber 170 series computer using NOS 2.4 operating system, with a central memory requirement of 151,700 (octal) 60 bit words. TBGG requires a Tektronix 4015 terminal and the DI-3000 Graphics Library of Precision Visuals, Inc. TBGG was developed in 1986.

  2. Development of a serum-free co-culture of human intestinal epithelium cell-lines (Caco-2/HT29-5M21)

    PubMed Central

    Nollevaux, Géraldine; Devillé, Christelle; El Moualij, Benaïssa; Zorzi, Willy; Deloyer, Patricia; Schneider, Yves-Jacques; Peulen, Olivier; Dandrifosse, Guy

    2006-01-01

    Background The absorptive and goblet cells are the main cellular types encountered in the intestine epithelium. The cell lineage Caco-2 is a model commonly used to reproduce the features of the bowel epithelium. However, there is a strong debate regarding the value of Caco-2 cell culture to mimick in vivo situation. Indeed, some authors report in Caco-2 a low paracellular permeability and an ease of access of highly diffusible small molecules to the microvilli, due to an almost complete lack of mucus. The HT29-5M21 intestinal cell lineage is a mucin-secreting cellular population. A co-culture system carried out in a serum-free medium and comprising both Caco-2 and HT29-5M21 cells was developed. The systematic use of a co-culture system requires the characterization of the monolayer under a given experimental procedure. Results In this study, we investigated the activity and localization of the alkaline phosphatase and the expression of IAP and MUC5AC genes to determine a correlation between these markers and the cellular composition of a differentiated monolayer obtained from a mixture of Caco-2 and HT29-5M21 cells. We observed that the culture conditions used (serum-free medium) did not change the phenotype of each cell type, and produced a reproducible model. The alkaline phosphatase expression characterizing Caco-2 cells was influenced by the presence of HT29-5M21 cells. Conclusion The culture formed by 75% Caco-2 and 25% HT29-5M21 produce a monolayer containing the two main cell types of human intestinal epithelium and characterized by a reduced permeability to macromolecules. PMID:16670004

  3. Convectively cooled electrical grid structure

    DOEpatents

    Paterson, James A.; Koehler, Gary W.

    1982-01-01

    Undesirable distortions of electrical grid conductors (12) from thermal cycling are minimized and related problems such as unwanted thermionic emission and structural failure from overheating are avoided by providing for a flow of fluid coolant within each conductor (12). The conductors (12) are secured at each end to separate flexible support elements (16) which accommodate to individual longitudinal expansion and contraction of each conductor (12) while resisting lateral displacements, the coolant flow preferably being directed into and out of each conductor through passages (48) in the flexible support elements (16). The grid (11) may have a modular or divided construction which facilitates manufacture and repairs.

  4. Convectively cooled electrical grid structure

    DOEpatents

    Paterson, J.A.; Koehler, G.W.

    1980-11-10

    Undesirable distortions of electrical grid conductors from thermal cycling are minimized and related problems such as unwanted thermionic emission and structural failure from overheating are avoided by providing for a flow of fluid coolant within each conductor. The conductors are secured at each end to separate flexible support elements which accommodate to individual longitudinal expansion and contraction of each conductor while resisting lateral displacements, the coolant flow preferably being directed into and out of each conductor through passages in the flexible support elements. The grid may have a modular or divided construction which facilitates manufacture and repairs.

  5. Scientific Computing on the Grid

    SciTech Connect

    Allen, Gabrielle; Seidel, Edward; Shalf, John

    2001-12-12

    Computer simulations are becoming increasingly important as the only means for studying and interpreting the complex processes of nature. Yet the scope and accuracy of these simulations are severely limited by available computational power, even using today's most powerful supercomputers. As we endeavor to simulate the true complexity of nature, we will require much larger scale calculations than are possible at present. Such dynamic and large scale applications will require computational grids and grids require development of new latency tolerant algorithms, and sophisticated code frameworks like Cactus to carry out more complex and high fidelity simulations with a massive degree of parallelism.

  6. DARHT Radiographic Grid Scale Correction

    SciTech Connect

    Warthen, Barry J.

    2015-02-13

    Recently it became apparent that the radiographic grid which has been used to calibrate the dimensional scale of DARHT radiographs was not centered at the location where the objects have been centered. This offset produced an error of 0.188% in the dimensional scaling of the radiographic images processed using the assumption that the grid and objects had the same center. This paper will show the derivation of the scaling correction, explain how new radiographs are being processed to account for the difference in location, and provide the details of how to correct radiographic image processed with the erroneous scale factor.

  7. Use of the BioGRID Database for Analysis of Yeast Protein and Genetic Interactions.

    PubMed

    Oughtred, Rose; Chatr-aryamontri, Andrew; Breitkreutz, Bobby-Joe; Chang, Christie S; Rust, Jennifer M; Theesfeld, Chandra L; Heinicke, Sven; Breitkreutz, Ashton; Chen, Daici; Hirschman, Jodi; Kolas, Nadine; Livstone, Michael S; Nixon, Julie; O'Donnell, Lara; Ramage, Lindsay; Winter, Andrew; Reguly, Teresa; Sellam, Adnane; Stark, Chris; Boucher, Lorrie; Dolinski, Kara; Tyers, Mike

    2016-01-01

    The BioGRID database is an extensive repository of curated genetic and protein interactions for the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and the yeast Candida albicans SC5314, as well as for several other model organisms and humans. This protocol describes how to use the BioGRID website to query genetic or protein interactions for any gene of interest, how to visualize the associated interactions using an embedded interactive network viewer, and how to download data files for either selected interactions or the entire BioGRID interaction data set. PMID:26729909

  8. Use of the BioGRID Database for Analysis of Yeast Protein and Genetic Interactions.

    PubMed

    Oughtred, Rose; Chatr-aryamontri, Andrew; Breitkreutz, Bobby-Joe; Chang, Christie S; Rust, Jennifer M; Theesfeld, Chandra L; Heinicke, Sven; Breitkreutz, Ashton; Chen, Daici; Hirschman, Jodi; Kolas, Nadine; Livstone, Michael S; Nixon, Julie; O'Donnell, Lara; Ramage, Lindsay; Winter, Andrew; Reguly, Teresa; Sellam, Adnane; Stark, Chris; Boucher, Lorrie; Dolinski, Kara; Tyers, Mike

    2016-01-04

    The BioGRID database is an extensive repository of curated genetic and protein interactions for the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and the yeast Candida albicans SC5314, as well as for several other model organisms and humans. This protocol describes how to use the BioGRID website to query genetic or protein interactions for any gene of interest, how to visualize the associated interactions using an embedded interactive network viewer, and how to download data files for either selected interactions or the entire BioGRID interaction data set.

  9. Cascading Failures and Recovery in Networks of Networks

    NASA Astrophysics Data System (ADS)

    Havlin, Shlomo

    Network science have been focused on the properties of a single isolated network that does not interact or depends on other networks. In reality, many real-networks, such as power grids, transportation and communication infrastructures interact and depend on other networks. I will present a framework for studying the vulnerability and the recovery of networks of interdependent networks. In interdependent networks, when nodes in one network fail, they cause dependent nodes in other networks to also fail. This is also the case when some nodes like certain locations play a role in two networks -multiplex. This may happen recursively and can lead to a cascade of failures and to a sudden fragmentation of the system. I will present analytical solutions for the critical threshold and the giant component of a network of n interdependent networks. I will show, that the general theory has many novel features that are not present in the classical network theory. When recovery of components is possible global spontaneous recovery of the networks and hysteresis phenomena occur and the theory suggests an optimal repairing strategy of system of systems. I will also show that interdependent networks embedded in space are significantly more vulnerable compared to non embedded networks. In particular, small localized attacks may lead to cascading failures and catastrophic consequences.Thus, analyzing data of real network of networks is highly required to understand the system vulnerability. DTRA, ONR, Israel Science Foundation.

  10. Grid Collector: Facilitating Efficient Selective Access from DataGrids

    SciTech Connect

    Wu, Kesheng; Gu, Junmin; Lauret, Jerome; Poskanzer, Arthur M.; Shoshani, Arie; Sim, Alexander; Zhang, Wei-Ming

    2005-05-17

    The Grid Collector is a system that facilitates the effective analysis and spontaneous exploration of scientific data. It combines an efficient indexing technology with a Grid file management technology to speed up common analysis jobs on high-energy physics data and to enable some previously impractical analysis jobs. To analyze a set of high-energy collision events, one typically specifies the files containing the events of interest, reads all the events in the files, and filters out unwanted ones. Since most analysis jobs filter out significant number of events, a considerable amount of time is wasted by reading the unwanted events. The Grid Collector removes this inefficiency by allowing users to specify more precisely what events are of interest and to read only the selected events. This speeds up most analysis jobs. In existing analysis frameworks, the responsibility of bringing files from tertiary storages or remote sites to local disks falls on the users. This forces most of analysis jobs to be performed at centralized computer facilities where commonly used files are kept on large shared file systems. The Grid Collector automates file management tasks and eliminates the labor-intensive manual file transfers. This makes it much easier to perform analyses that require data files on tertiary storages and remote sites. It also makes more computer resources available for analysis jobs since they are no longer bound to the centralized facilities.

  11. Tuned grid generation with ICEM CFD

    NASA Technical Reports Server (NTRS)

    Wulf, Armin; Akdag, Vedat

    1995-01-01

    ICEM CFD is a CAD based grid generation package that supports multiblock structured, unstructured tetrahedral and unstructured hexahedral grids. Major development efforts have been spent to extend ICEM CFD's multiblock structured and hexahedral unstructured grid generation capabilities. The modules added are: a parametric grid generation module and a semi-automatic hexahedral grid generation module. A fully automatic version of the hexahedral grid generation module for around a set of predefined objects in rectilinear enclosures has been developed. These modules will be presented and the procedures used will be described, and examples will be discussed.

  12. Distribution System Reliability Analysis for Smart Grid Applications

    NASA Astrophysics Data System (ADS)

    Aljohani, Tawfiq Masad

    Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. To address its reliability concerns, the power utilities and interested parties have spent extensive amount of time and effort to analyze and study the reliability of the generation and transmission sectors of the power grid. Only recently has attention shifted to be focused on improving the reliability of the distribution network, the connection joint between the power providers and the consumers where most of the electricity problems occur. In this work, we will examine the effect of the smart grid applications in improving the reliability of the power distribution networks. The test system used in conducting this thesis is the IEEE 34 node test feeder, released in 2003 by the Distribution System Analysis Subcommittee of the IEEE Power Engineering Society. The objective is to analyze the feeder for the optimal placement of the automatic switching devices and quantify their proper installation based on the performance of the distribution system. The measures will be the changes in the reliability system indices including SAIDI, SAIFI, and EUE. The goal is to design and simulate the effect of the installation of the Distributed Generators (DGs) on the utility's distribution system and measure the potential improvement of its reliability. The software used in this work is DISREL, which is intelligent power distribution software that is developed by General Reliability Co.

  13. An Off-Grid Turbo Channel Estimation Algorithm for Millimeter Wave Communications.

    PubMed

    Han, Lingyi; Peng, Yuexing; Wang, Peng; Li, Yonghui

    2016-01-01

    The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave) frequency spectrum for future communication networks. To compensate for the severe propagation attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter and receiver to provide large array gains via directional beamforming. To achieve such array gains, channel estimation (CE) with high resolution and low latency is of great importance for mmWave communications. However, classic super-resolution subspace CE methods such as multiple signal classification (MUSIC) and estimation of signal parameters via rotation invariant technique (ESPRIT) cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids with high probability, and it results in power leakage and severe reduction of the CE performance. A new model is first proposed to formulate the off-grid problem. The new model divides the continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo CE (IOTCE) algorithm is proposed to renew and upgrade the CE between the integral grid part and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed sensing (CS) method called improved turbo compressed channel sensing (ITCCS). It iteratively updates the soft information between the linear minimum mean square error (LMMSE) estimator and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of the proposed method, and the results show that it enhances the angle detection

  14. An Off-Grid Turbo Channel Estimation Algorithm for Millimeter Wave Communications.

    PubMed

    Han, Lingyi; Peng, Yuexing; Wang, Peng; Li, Yonghui

    2016-09-22

    The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave) frequency spectrum for future communication networks. To compensate for the severe propagation attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter and receiver to provide large array gains via directional beamforming. To achieve such array gains, channel estimation (CE) with high resolution and low latency is of great importance for mmWave communications. However, classic super-resolution subspace CE methods such as multiple signal classification (MUSIC) and estimation of signal parameters via rotation invariant technique (ESPRIT) cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids with high probability, and it results in power leakage and severe reduction of the CE performance. A new model is first proposed to formulate the off-grid problem. The new model divides the continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo CE (IOTCE) algorithm is proposed to renew and upgrade the CE between the integral grid part and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed sensing (CS) method called improved turbo compressed channel sensing (ITCCS). It iteratively updates the soft information between the linear minimum mean square error (LMMSE) estimator and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of the proposed method, and the results show that it enhances the angle detection

  15. FermiGrid - experience and future plans

    SciTech Connect

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Timm, S.; Yocum, D.; /Fermilab

    2007-09-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and the Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.

  16. Smart Grid Integrity Attacks: Characterizations and Countermeasures

    SciTech Connect

    Annarita Giani; Eilyan Bitar; Miles McQueen; Pramod Khargonekar; Kameshwar Poolla

    2011-10-01

    Real power injections at loads and generators, and real power flows on selected lines in a transmission network are monitored, transmitted over a SCADA network to the system operator, and used in state estimation algorithms to make dispatch, re-balance and other energy management system [EMS] decisions. Coordinated cyber attacks of power meter readings can be arranged to be undetectable by any bad data detection algorithm. These unobservable attacks present a serious threat to grid operations. Of particular interest are sparse attacks that involve the compromise of a modest number of meter readings. An efficient algorithm to find all unobservable attacks [under standard DC load flow approximations] involving the compromise of exactly two power injection meters and an arbitrary number of power meters on lines is presented. This requires O(n2m) flops for a power system with n buses and m line meters. If all lines are metered, there exist canonical forms that characterize all 3, 4, and 5-sparse unobservable attacks. These can be quickly detected in power systems using standard graph algorithms. Known secure phase measurement units [PMUs] can be used as countermeasures against an arbitrary collection of cyber attacks. Finding the minimum number of necessary PMUs is NP-hard. It is shown that p + 1 PMUs at carefully chosen buses are sufficient to neutralize a collection of p cyber attacks.

  17. Optimizing grid computing configuration and scheduling for geospatial analysis: An example with interpolating DEM

    NASA Astrophysics Data System (ADS)

    Huang, Qunying; Yang, Chaowei

    2011-02-01

    Many geographic analyses are very time-consuming and do not scale well when large datasets are involved. For example, the interpolation of DEMs (digital evaluation model) for large geographic areas could become a problem in practical application, especially for web applications such as terrain visualization, where a fast response is required and computational demands exceed the capacity of a traditional single processing unit conducting serial processing. Therefore, high performance and parallel computing approaches, such as grid computing, were investigated to speed up the geographic analysis algorithms, such as DEM interpolation. The key for grid computing is to configure an optimized grid computing platform for the geospatial analysis and optimally schedule the geospatial tasks within a grid platform. However, there is no research focused on this. Using DEM interoperation as an example, we report our systematic research on configuring and scheduling a high performance grid computing platform to improve the performance of geographic analyses through a systematic study on how the number of cores, processors, grid nodes, different network connections and concurrent request impact the speedup of geospatial analyses. Condor, a grid middleware, is used to schedule the DEM interpolation tasks for different grid configurations. A Kansas raster-based DEM is used for a case study and an inverse distance weighting (IDW) algorithm is used in interpolation experiments.

  18. Global Electricity Trade Network: Structures and Implications

    PubMed Central

    Ji, Ling; Jia, Xiaoping; Chiu, Anthony S. F.; Xu, Ming

    2016-01-01

    Nations increasingly trade electricity, and understanding the structure of the global power grid can help identify nations that are critical for its reliability. This study examines the global grid as a network with nations as nodes and international electricity trade as links. We analyze the structure of the global electricity trade network and find that the network consists of four sub-networks, and provide a detailed analysis of the largest network, Eurasia. Russia, China, Ukraine, and Azerbaijan have high betweenness measures in the Eurasian sub-network, indicating the degrees of centrality of the positions they hold. The analysis reveals that the Eurasian sub-network consists of seven communities based on the network structure. We find that the communities do not fully align with geographical proximity, and that the present international electricity trade in the Eurasian sub-network causes an approximately 11 million additional tons of CO2 emissions. PMID:27504825

  19. Global Electricity Trade Network: Structures and Implications.

    PubMed

    Ji, Ling; Jia, Xiaoping; Chiu, Anthony S F; Xu, Ming

    2016-01-01

    Nations increasingly trade electricity, and understanding the structure of the global power grid can help identify nations that are critical for its reliability. This study examines the global grid as a network with nations as nodes and international electricity trade as links. We analyze the structure of the global electricity trade network and find that the network consists of four sub-networks, and provide a detailed analysis of the largest network, Eurasia. Russia, China, Ukraine, and Azerbaijan have high betweenness measures in the Eurasian sub-network, indicating the degrees of centrality of the positions they hold. The analysis reveals that the Eurasian sub-network consists of seven communities based on the network structure. We find that the communities do not fully align with geographical proximity, and that the present international electricity trade in the Eurasian sub-network causes an approximately 11 million additional tons of CO2 emissions. PMID:27504825

  20. Grid Logging: Best Practices Guide

    SciTech Connect

    Tierney, Brian L; Tierney, Brian L; Gunter, Dan

    2008-04-01

    The purpose of this document is to help developers of Grid middleware and application software generate log files that will be useful to Grid administrators, users, developers and Grid middleware itself. Currently, most of the currently generated log files are only useful to the author of the program. Good logging practices are instrumental to performance analysis, problem diagnosis, and security auditing tasks such as incident tracing and damage assessment. This document does not discuss the issue of a logging API. It is assumed that a standard log API such as syslog (C), log4j (Java), or logger (Python) is being used. Other custom logging API or even printf could be used. The key point is that the logs must contain the required information in the required format. At a high level of abstraction, the best practices for Grid logging are: (1) Consistently structured, typed, log events; (2) A standard high-resolution timestamp; (3) Use of logging levels and categories to separate logs by detail and purpose; (4) Consistent use of global and local identifiers; and (5) Use of some regular, newline-delimited ASCII text format. The rest of this document describes each of these recommendations in detail.

  1. Grid-coordinate generation program

    USGS Publications Warehouse

    Cosner, Oliver J.; Horwich, Esther

    1974-01-01

    This program description of the grid-coordinate generation program is written for computer users who are familiar with digital aquifer models. The program computes the coordinates for a variable grid -used in the 'Pinder Model' (a finite-difference aquifer simulator), for input to the CalComp GPCP (general purpose contouring program). The program adjusts the y-value by a user-supplied constant in order to transpose the origin of the model grid from the upper left-hand corner to the lower left-hand corner of the grid. The user has the options of, (1.) choosing the boundaries of the plot; (2.) adjusting the z-values (altitudes) by a constant; (3.) deleting superfluous z-values and (4.) subtracting the simulated surfaces from each other to obtain the decline. Output of this program includes the fixed format CNTL data cards and the other data cards required for input to GPCP. The output from GPCP then is used to produce a potentiometric map or a decline map by means of the CalComp plotter.

  2. Towards High Performance Discrete-Event Simulations of Smart Electric Grids

    SciTech Connect

    Perumalla, Kalyan S; Nutaro, James J; Yoginath, Srikanth B

    2011-01-01

    Future electric grid technology is envisioned on the notion of a smart grid in which responsive end-user devices play an integral part of the transmission and distribution control systems. Detailed simulation is often the primary choice in analyzing small network designs, and the only choice in analyzing large-scale electric network designs. Here, we identify and articulate the high-performance computing needs underlying high-resolution discrete event simulation of smart electric grid operation large network scenarios such as the entire Eastern Interconnect. We focus on the simulator's most computationally intensive operation, namely, the dynamic numerical solution for the electric grid state, for both time-integration as well as event-detection. We explore solution approaches using general-purpose dense and sparse solvers, and propose a scalable solver specialized for the sparse structures of actual electric networks. Based on experiments with an implementation in the THYME simulator, we identify performance issues and possible solution approaches for smart grid experimentation in the large.

  3. Correlations and Functional Connections in a Population of Grid Cells

    PubMed Central

    Roudi, Yasser

    2015-01-01

    We study the statistics of spike trains of simultaneously recorded grid cells in freely behaving rats. We evaluate pairwise correlations between these cells and, using a maximum entropy kinetic pairwise model (kinetic Ising model), study their functional connectivity. Even when we account for the covariations in firing rates due to overlapping fields, both the pairwise correlations and functional connections decay as a function of the shortest distance between the vertices of the spatial firing pattern of pairs of grid cells, i.e. their phase difference. They take positive values between cells with nearby phases and approach zero or negative values for larger phase differences. We find similar results also when, in addition to correlations due to overlapping fields, we account for correlations due to theta oscillations and head directional inputs. The inferred connections between neurons in the same module and those from different modules can be both negative and positive, with a mean close to zero, but with the strongest inferred connections found between cells of the same module. Taken together, our results suggest that grid cells in the same module do indeed form a local network of interconnected neurons with a functional connectivity that supports a role for attractor dynamics in the generation of grid pattern. PMID:25714908

  4. Optimizing Grid Patterns on Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1984-01-01

    CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.

  5. Spaceflight Operations Services Grid (SOSG)

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Thigpen, William W.

    2004-01-01

    In an effort to adapt existing space flight operations services to new emerging Grid technologies we are developing a Grid-based prototype space flight operations Grid. This prototype is based on the operational services being provided to the International Space Station's Payload operations located at the Marshall Space Flight Center, Alabama. The prototype services will be Grid or Web enabled and provided to four user communities through portal technology. Users will have the opportunity to assess the value and feasibility of Grid technologies to their specific areas or disciplines. In this presentation descriptions of the prototype development, User-based services, Grid-based services and status of the project will be presented. Expected benefits, findings and observations (if any) to date will also be discussed. The focus of the presentation will be on the project in general, status to date and future plans. The End-use services to be included in the prototype are voice, video, telemetry, commanding, collaboration tools and visualization among others. Security is addressed throughout the project and is being designed into the Grid technologies and standards development. The project is divided into three phases. Phase One establishes the baseline User-based services required for space flight operations listed above. Phase Two involves applying Gridlweb technologies to the User-based services and development of portals for access by users. Phase Three will allow NASA and end users to evaluate the services and determine the future of the technology as applied to space flight operational services. Although, Phase One, which includes the development of the quasi-operational User-based services of the prototype, development will be completed by March 2004, the application of Grid technologies to these services will have just begun. We will provide status of the Grid technologies to the individual User-based services. This effort will result in an extensible

  6. Spaceflight Operations Services Grid (SOSG)

    NASA Technical Reports Server (NTRS)

    Bradford, Robert N.; Thigpen, William W.

    2004-01-01

    In an effort to adapt existing space flight operations services to new emerging Grid technologies we are developing a Grid-based prototype space flight operations Grid. This prototype is based on the operational services being provided to the International Space Station's Payload operations located at the Marshall Space Flight Center, Alabama. The prototype services will be Grid or Web enabled and provided to four user communities through portal technology. Users will have the opportunity to assess the value and feasibility of Grid technologies to their specific areas or disciplines. In this presentation descriptions of the prototype development, User-based services, Grid-based services and status of the project will be presented. Expected benefits, findings and observations (if any) to date will also be discussed. The focus of the presentation will be on the project in general, status to date and future plans. The End-use services to be included in the prototype are voice, video, telemetry, commanding, collaboration tools and visualization among others. Security is addressed throughout the project and is being designed into the Grid technologies and standards development. The project is divided into three phases. Phase One establishes the baseline User-based services required for space flight operations listed above. Phase Two involves applying Gridlweb technologies to the User-based services and development of portals for access by users. Phase Three will allow NASA and end users to evaluate the services and determine the future of the technology as applied to space flight operational services. Although, Phase One, which includes the development of the quasi-operational User-based services of the prototype, development will be completed by March 2004, the application of Grid technologies to these services will have just begun. We will provide status of the Grid technologies to the individual User-based services. This effort will result in an extensible

  7. Synergistic inhibition behavior between indigo carmine and cetyl trimethyl ammonium bromide on carbon steel corroded in a 0.5 M HCl solution

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Tian, Ningchen; Li, Xiuying; Zhang, Lingzhi; Wu, Ling; Huang, Yan

    2015-12-01

    This work reports on a newly observed synergistic inhibition between indigo carmine and cetyl trimethyl ammonium bromide (CTAB) on 1045 carbon steel (CS) corroded in a 0.5 M HCl solution. The results of electrochemical measurements showed that CTAB could change indigo carmine in a manner that would accelerate corrosion and produce an effective inhibitor. The maximal protection efficiency was significantly greater than 0.985, with the concentration of the combination inhibitors reaching approximately 5 × 10-5 M. The microstructure of the CS corrosion surface demonstrated that the indigo disulfonate anions and cetyltrimethylammonium cations were adsorbed simultaneously on the CS surface to protect it from corrosion. Diffusion coefficient analysis and the surface concentration profiles of the corrosive species were used to investigate the synergistic effect of the indigo carmine/CTAB combination inhibitors, and the results demonstrate the existence of synergy.

  8. Towards a vitrification-based cryopreservation protocol for the coral Pocillopora damicornis L.: Tolerance of tissue balls to 4.5 M cryoprotectant solutions.

    PubMed

    Feuillassier, Lionel; Masanet, Patrick; Romans, Pascal; Barthélémy, Dominique; Engelmann, Florent

    2015-10-01

    In this study, we tested the tolerance of tissue balls (TBs, 100-400 μm in diameter) from the coral Pocillopora damicornis produced using mechanical excision to exposure to cryoprotectant (CPA) solutions. TBs were treated for 20 min at room temperature with individual, binary, ternary or quaternary CPA solutions with a total molarity from 2.0 to 5.0M. Four CPAs were used: ethylene glycol (EG), dimethylsulfoxide (Me2SO), methanol (Met) and glycerol (Gly). In some experiments, the molarity of the CPA solutions was increased and decreased in a stepwise manner. The tolerance of TBs following CPA treatment was evaluated using two parameters. The Tissue Ball Regression (expressed in μm/h) measured the diameter regression of TBs over time. The % Undamaged TBs quantified the proportion of TBs, which remained intact over time after the CPA treatment. TBs tolerated exposure to binary solutions with a total molarity of 4.0 M containing 2.0 M EG+2.0 M Met and 2.0 MEG+2.0 M Gly. TBs displayed tolerance to ternary solutions with a total molarity up to 3.0 M, containing each CPA at 1.0 M. Quaternary solutions with a total molarity of 4.0M containing each CPA at 1.0 M were not tolerated by TBs. When the molarity of the CPA solutions was increased and decreased in a stepwise manner, TBs withstood exposure to a CPA solution with a total molarity of 4.5 M, containing 1.5 M EG+1.5 M Gly+1.5 M Me(2)SO. This study confirmed the interest of using TBs to test CPA solutions, with the objective of developing a vitrification-based cryopreservation protocol.

  9. Towards a vitrification-based cryopreservation protocol for the coral Pocillopora damicornis L.: Tolerance of tissue balls to 4.5 M cryoprotectant solutions.

    PubMed

    Feuillassier, Lionel; Masanet, Patrick; Romans, Pascal; Barthélémy, Dominique; Engelmann, Florent

    2015-10-01

    In this study, we tested the tolerance of tissue balls (TBs, 100-400 μm in diameter) from the coral Pocillopora damicornis produced using mechanical excision to exposure to cryoprotectant (CPA) solutions. TBs were treated for 20 min at room temperature with individual, binary, ternary or quaternary CPA solutions with a total molarity from 2.0 to 5.0M. Four CPAs were used: ethylene glycol (EG), dimethylsulfoxide (Me2SO), methanol (Met) and glycerol (Gly). In some experiments, the molarity of the CPA solutions was increased and decreased in a stepwise manner. The tolerance of TBs following CPA treatment was evaluated using two parameters. The Tissue Ball Regression (expressed in μm/h) measured the diameter regression of TBs over time. The % Undamaged TBs quantified the proportion of TBs, which remained intact over time after the CPA treatment. TBs tolerated exposure to binary solutions with a total molarity of 4.0 M containing 2.0 M EG+2.0 M Met and 2.0 MEG+2.0 M Gly. TBs displayed tolerance to ternary solutions with a total molarity up to 3.0 M, containing each CPA at 1.0 M. Quaternary solutions with a total molarity of 4.0M containing each CPA at 1.0 M were not tolerated by TBs. When the molarity of the CPA solutions was increased and decreased in a stepwise manner, TBs withstood exposure to a CPA solution with a total molarity of 4.5 M, containing 1.5 M EG+1.5 M Gly+1.5 M Me(2)SO. This study confirmed the interest of using TBs to test CPA solutions, with the objective of developing a vitrification-based cryopreservation protocol. PMID:26188079

  10. Probabilistic Learning by Rodent Grid Cells

    PubMed Central

    Cheung, Allen

    2016-01-01

    Mounting evidence shows mammalian brains are probabilistic computers, but the specific cells involved remain elusive. Parallel research suggests that grid cells of the mammalian hippocampal formation are fundamental to spatial cognition but their diverse response properties still defy explanation. No plausible model exists which explains stable grids in darkness for twenty minutes or longer, despite being one of the first results ever published on grid cells. Similarly, no current explanation can tie together grid fragmentation and grid rescaling, which show very different forms of flexibility in grid responses when the environment is varied. Other properties such as attractor dynamics and grid anisotropy seem to be at odds with one another unless additional properties are assumed such as a varying velocity gain. Modelling efforts have largely ignored the breadth of response patterns, while also failing to account for the disastrous effects of sensory noise during spatial learning and recall, especially in darkness. Here, published electrophysiological evidence from a range of experiments are reinterpreted using a novel probabilistic learning model, which shows that grid cell responses are accurately predicted by a probabilistic learning process. Diverse response properties of probabilistic grid cells are statistically indistinguishable from rat grid cells across key manipulations. A simple coherent set of probabilistic computations explains stable grid fields in darkness, partial grid rescaling in resized arenas, low-dimensional attractor grid cell dynamics, and grid fragmentation in hairpin mazes. The same computations also reconcile oscillatory dynamics at the single cell level with attractor dynamics at the cell ensemble level. Additionally, a clear functional role for boundary cells is proposed for spatial learning. These findings provide a parsimonious and unified explanation of grid cell function, and implicate grid cells as an accessible neuronal population

  11. Best Practices In Overset Grid Generation

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Gomez, Reynaldo J., III; Rogers, Stuart E.; Buning, Pieter G.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Grid generation for overset grids on complex geometry can be divided into four main steps: geometry processing, surface grid generation, volume grid generation and domain connectivity. For each of these steps, the procedures currently practiced by experienced users are described. Typical problems encountered are also highlighted and discussed. Most of the guidelines are derived from experience on a variety of problems including space launch and return vehicles, subsonic transports with propulsion and high lift devices, supersonic vehicles, rotorcraft vehicles, and turbomachinery.

  12. Carbon/Carbon Grids For Ion Sources

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.

    1995-01-01

    Ion-extraction grids made of carbon/carbon composites used in spacecraft ion engines and industrial ion sources in place of molybdenum grids. In principle, carbon/carbon grids offer greater extraction efficiency and longer life. Grid fabricated by mechanical drilling, laser drilling, or electrical-discharge machining of array of holes in sheet of carbon/carbon. Advantages; better alignment and slower erosion.

  13. The National Grid Project: A system overview

    NASA Technical Reports Server (NTRS)

    Gaither, Adam; Gaither, Kelly; Jean, Brian; Remotigue, Michael; Whitmire, John; Soni, Bharat; Thompson, Joe; Dannenhoffer,, John; Weatherill, Nigel

    1995-01-01

    The National Grid Project (NGP) is a comprehensive numerical grid generation software system that is being developed at the National Science Foundation (NSF) Engineering Research Center (ERC) for Computational Field Simulation (CFS) at Mississippi State University (MSU). NGP is supported by a coalition of U.S. industries and federal laboratories. The objective of the NGP is to significantly decrease the amount of time it takes to generate a numerical grid for complex geometries and to increase the quality of these grids to enable computational field simulations for applications in industry. A geometric configuration can be discretized into grids (or meshes) that have two fundamental forms: structured and unstructured. Structured grids are formed by intersecting curvilinear coordinate lines and are composed of quadrilateral (2D) and hexahedral (3D) logically rectangular cells. The connectivity of a structured grid provides for trivial identification of neighboring points by incrementing coordinate indices. Unstructured grids are composed of cells of any shape (commonly triangles, quadrilaterals, tetrahedra and hexahedra), but do not have trivial identification of neighbors by incrementing an index. For unstructured grids, a set of points and an associated connectivity table is generated to define unstructured cell shapes and neighboring points. Hybrid grids are a combination of structured grids and unstructured grids. Chimera (overset) grids are intersecting or overlapping structured grids. The NGP system currently provides a user interface that integrates both 2D and 3D structured and unstructured grid generation, a solid modeling topology data management system, an internal Computer Aided Design (CAD) system based on Non-Uniform Rational B-Splines (NURBS), a journaling language, and a grid/solution visualization system.

  14. The State of NASA's Information Power Grid

    NASA Technical Reports Server (NTRS)

    Johnston, William E.; Vaziri, Arsi; Tanner, Leigh Ann; Feiereisen, William J.; Thigpen, William; Biegel, Bryan (Technical Monitor)

    2001-01-01

    This viewgraph presentation transfers the concept of the power grid to information sharing in the NASA community. An information grid of this sort would be characterized as comprising tools, middleware, and services for the facilitation of interoperability, distribution of new technologies, human collaboration, and data management. While a grid would increase the ability of information sharing, it would not necessitate it. The onus of utilizing the grid would rest with the users.

  15. Smart Grid Status and Metrics Report

    SciTech Connect

    Balducci, Patrick J.; Weimar, Mark R.; Kirkham, Harold

    2014-07-01

    To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. It measures 21 metrics to provide insight into the grid’s capacity to embody these characteristics. This report looks across a spectrum of smart grid concerns to measure the status of smart grid deployment and impacts.

  16. The fundamentals of adaptive grid movement

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.

    1990-01-01

    Basic grid point movement schemes are studied. The schemes are referred to as adaptive grids. Weight functions and equidistribution in one dimension are treated. The specification of coefficients in the linear weight, attraction to a given grid or a curve, and evolutionary forces are considered. Curve by curve and finite volume methods are described. The temporal coupling of partial differential equations solvers and grid generators was discussed.

  17. Fractal characteristics of ozonometric network

    NASA Technical Reports Server (NTRS)

    Gruzdev, Alexander N.

    1994-01-01

    The fractal (correlation) dimensions are calculated which characterize the distribution of stations in the ground-based total ozone measuring network and the distribution of nodes in a latitude-longitude grid. The dimension of the ground-based ozonometric network equals 1.67 +/- 0.1 with an appropriate scaling in the 60 to 400 km range. For the latitude-longitude grid two scaling regimes are revealed. One regime, with the dimension somewhat greater than one, is peculiar to smaller scales and limited from a larger scale by the latitudinal resolution of the grid. Another scaling regime, with the dimension equal 1.84, ranges up to 15,000 km scale. The fact that the dimension of a measuring network is less than two possesses problems in observing sparse phenomena. This has to have important consequences for ozone statistics.

  18. Grid cells correlation structure suggests organized feedforward projections into superficial layers of the medial entorhinal cortex.

    PubMed

    Tocker, Gilad; Barak, Omri; Derdikman, Dori

    2015-12-01

    Navigation requires integration of external and internal inputs to form a representation of location. Part of this integration is considered to be carried out by the grid cells network in the medial entorhinal cortex (MEC). However, the structure of this neural network is unknown. To shed light on this structure, we measured noise correlations between 508 pairs of simultaneous previously recorded grid cells. We differentiated between pure grid and conjunctive cells (pure grid in Layers II, III, and VI vs. conjunctive in Layers III and V--only Layer III was bi-modal), and devised a new method to classify cell pairs as belonging/not-belonging to the same module. We found that pairs from the same module show significantly more correlations than pairs from different modules. The correlations between pure grid cells decreased in strength as their relative spatial phase increased. However, correlations were mostly at 0 time-lag, suggesting that the source of correlations was not only synaptic, but rather resulted mostly from common input. Given our measured correlations, the two functional groups of grid cells (pure vs. conjunctive), and the known disorganized recurrent connections within Layer II, we propose the following model: conjunctive cells in deep layers form an attractor network whose activity is governed by velocity-controlled signals. A second manifold in Layer II receives organized feedforward projections from the deep layers, giving rise to pure grid cells. Numerical simulations indicate that organized projections induce such correlations as we measure in superficial layers. Our results provide new evidence for the functional anatomy of the entorhinal circuit-suggesting that strong phase-organized feedforward projections support grid fields in the superficial layers.

  19. ASCR Science Network Requirements

    SciTech Connect

    Dart, Eli; Tierney, Brian

    2009-08-24

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2009 ESnet and the Office of Advanced Scientific Computing Research (ASCR), of the DOE Office of Science, organized a workshop to characterize the networking requirements of the programs funded by ASCR. The ASCR facilities anticipate significant increases in wide area bandwidth utilization, driven largely by the increased capabilities of computational resources and the wide scope of collaboration that is a hallmark of modern science. Many scientists move data sets between facilities for analysis, and in some cases (for example the Earth System Grid and the Open Science Grid), data distribution is an essential component of the use of ASCR facilities by scientists. Due to the projected growth in wide area data transfer needs, the ASCR supercomputer centers all expect to deploy and use 100 Gigabit per second networking technology for wide area connectivity as soon as that deployment is financially feasible. In addition to the network connectivity that ESnet provides, the ESnet Collaboration Services (ECS) are critical to several science communities. ESnet identity and trust services, such as the DOEGrids certificate authority, are widely used both by the supercomputer centers and by collaborations such as Open Science Grid (OSG) and the Earth System Grid (ESG). Ease of use is a key determinant of the scientific utility of network-based services. Therefore, a key enabling aspect for scientists beneficial use of high

  20. Décrypthon grid - grid resources dedicated to neuromuscular disorders.

    PubMed

    Bard, N; Bolze, R; Caron, E; Desprez, F; Heymann, M; Friedrich, A; Moulinier, L; Nguyen, N H; Poch, O; Toursel, T

    2010-01-01

    Thanks to the availability of computational grids and their middleware, a seamless access to computation and storage resources is provided to application developers and scientists. The Décrypthon project is one example of such a high performance platform. In this paper, we present the architecture of the platform, the middleware developed to facilitate access to several servers deployed in France, and the data center for integrating large biological datasets over multiple sites, supported by a new query language and integration of various tools. The SM2PH project represents an example of a biological application that exploits the capacities of the Décrypthon grid. The goal of SM2PH is a better understanding of mutations involved in human monogenic diseases, their impact on the 3D structure of the protein and the subsequent consequences for the pathological phenotypes. PMID:20543432