Science.gov

Sample records for 5-mm planning target

  1. Is 5 mm MMLC suitable for VMAT-based lung SBRT? A dosimetric comparison with 2.5 mm HDMLC using RTOG-0813 treatment planning criteria for both conventional and high-dose flattening filter-free photon beams.

    PubMed

    Subramanian, Shanmuga V; Subramani, Vellaiyan; Thirumalai Swamy, Shanmugam; Gandhi, Arun; Chilukuri, Srinivas; Kathirvel, Murugesan

    2015-01-01

    The aim of this study is to assess the suitability of 5 mm millennium multileaf collimator (MMLC) for volumetric-modulated arc therapy (VMAT)-based lung stereotactic body radiotherapy (SBRT). Thirty lung SBRT patient treatment plans along with their planning target volumes (ranging from 2.01 cc to 150.11 cc) were transferred to an inhomogeneous lung phantom and retrospectively planned using VMAT technique, along with the high definition multileaf collimator (HDMLC) and MMLC systems. The plans were evaluated using Radiation Therapy Oncology Group (RTOG-0813) treatment planning criteria for target coverage, normal tissue sparing, and treatment efficiency for both the MMLC and HDMLC systems using flat and flattening filter-free (FFF) photon beams. Irrespective of the target volumes, both the MLC systems were able to satisfy the RTOG-0813 treatment planning criteria without having any major deviation. Dose conformity was marginally better with HDMLC. The average conformity index (CI) value was found to be 1.069 ± 0.034 and 1.075 ± 0.0380 for HDMLC and MMLC plans, respectively. For the 6 MV FFF beams, the plan was slightly more conformal, with the average CI values of 1.063 ± 0.029 and 1.073 ± 0.033 for the HDMLC and MMLC plans, respectively. The high dose spillage was the maximum for 2 cc volume set (3% for HDMLC and 3.1% for MMLC). In the case of low dose spillage, both the MLCs were within the protocol of no deviation, except for the 2 cc volume set. The results from this study revealed that VMAT-based lung SBRT using 5 mm MMLC satisfies the RTOG-0813 treatment planning criteria for the studied target size and shapes. PMID:26219006

  2. Is smaller better? Comparison of 3-mm and 5-mm leaf size for stereotactic radiosurgery: A dosimetric study

    SciTech Connect

    Chern, Shyh-shi . E-mail: Richard.Chern@hci.utah.edu; Leavitt, Dennis D.; Jensen, Randy L.; Shrieve, Dennis C.

    2006-11-15

    Purpose: To perform a dosimetric comparison of a minimal 3-mm leaf width multileaf collimator (MLC) and a minimal 5-mm MLC in dynamic conformal arc stereotactic radiosurgery for treatment of intracranial lesions. Methods and Materials: The treatment plans of 23 patients previously treated for intracranial lesions in our institution were redone using the BrainSCAN, version 5.3, stereotactic radiosurgery treatment planning system (BrainLAB). For each case, two dynamic conformal arc plans were generated: one using a minimal 3-mm micro-MLC (BrainLAB, Novalis) and one using a minimal 5-mm MLC (Varian Millennium). All arc parameters were the same in each of the two plans, except for the collimator angle settings. The collimator angle settings were optimized for each arc in each plan. A peritumoral rind structure (1 cm) was created to evaluate normal tissue sparing immediately adjacent to the target volume. Conformity indexes (CIs) were calculated for each plan. The dependence of normal tissue sparing and target conformity on target volume (TV) was determined. Results: The TV was 0.14-36.32 cm{sup 3} (median, 5.90). The CI was 1.22-2.60 (median, 1.51) for the 3-mm micro-MLC and 1.23-2.69 (median, 1.60) for the 5-mm MLC. Despite this small difference, it was a statistically significant increase (p < 0.0001) for the 5-mm MLC compared with the 3-mm micro-MLC. Improved normal tissue sparing was demonstrated using the 3-mm micro-MLC compared with the 5-mm MLC by examining the peritumoral rind volumes (PRVs) receiving 50% (PRV{sub 5}), 80% (PRV{sub 8}), and 90% (PRV{sub 9}) of the prescription dose. The reduction in the PRV{sub 5}, PRV{sub 8}, and PRV{sub 9} for the 3-mm micro-MLC compared with the 5-mm MLC was 13.5%, 12.9%, and 11.5%, respectively. The CI decreased with a larger TV, as did the difference in the CIs between the 3-mm micro-MLC and 5-mm MLC. A reduction in the PRV increased with larger TVs. Conclusion: The 3-mm micro-MLC provided better target conformity and

  3. Laparoscopic 5-mm Trocar Site Herniation and Literature Review

    PubMed Central

    Minikel, Laura; Zaritsky, Eve

    2011-01-01

    Objective: To evaluate the evidence for fascial closure of 5-mm laparoscopic trocar sites. Methods: We conducted electronic database searches of PubMed and the Cochrane Library for articles published between November 2008 and December 2010. We used the keywords trocar hernia, trocar-site hernia, laparoscopic hernia, trocar port-site hernia, laparoscopic port-site hernia. Prospective and retrospective case series, randomized trials, literature reviews, and randomized animal studies of trocar hernias on abdominal wall defects from gynecologic, urologic, and general surgery literature were reviewed. The Cochrane Database was reviewed for pertinent studies. Metaanalysis was not possible due to the significant heterogeneity between studies and lack of randomized trials large enough to assess the incidence of this rare complication. Results: Trocar-site hernias are a rare but known complication of laparoscopic surgery. Trocar size ≥10mm is associated with an increased rate of hernia development. Currently, the accepted gynecologic surgical practice is closure of fascial incisions ≥10mm, while incisions <10mm do not require closure. However, large prospective and retrospective case series reports from general surgery and urology literature support nonclosure of blunt or radially dilating trocars in paramedian sites. Expert opinion and small case reports suggest that in cases of prolonged manipulation of 5-mm trocar sites the surgeon should consider fascial closure, because extension of the initial incision may have occurred. Conclusion: There is no evidence to recommend routine closure of 5-mm trocar incisions; the choice should continue to be left to the discretion of the individual surgeon. PMID:21902958

  4. Elongated beamlets: a simple technique for segment and MU reduction for sMLC IMRT delivery on accelerators utilizing 5 mm leaf widths.

    PubMed

    Price, R A; Paskalev, K; McNeeley, S; Ma, C-M

    2005-10-01

    The focus of this work is to demonstrate the effects of using an elongated beamlet to achieve similar dose conformity as achieved with a square beamlet while reducing the number of segments and subsequent MU required. A series of 10 patients were planned for IMRT delivery to the prostate using minimum beamlet sizes of 5x5 mm2 (default scheme), 10x5 mm2 with the short axis parallel to the prostate-rectum interface (scheme 1), and 10x5 mm2 with the short axis perpendicular to the prostate-rectum interface (scheme 2). All other parameters between plans were left unchanged. Plans were appropriately normalized and evaluated for R65, R40, conformity index, total number of segments and MU. All plans were generated using the Corvus inverse planning system. The average number of segments in this study decreased by approximately 49% for both schemes 1 and 2. The subsequent number of MU required decreased by approximately 34.6%. The resultant modified modulation scaling factor (MSFmod) decreased by approximately 34.3%. Additionally, we found that each isodose distribution using scheme 2 would still meet our clinical acceptance criteria with no visible degradation in the dose distribution as compared with the default scheme. In conclusion, we have demonstrated that it is possible to achieve similar results as those obtained using a 5x5 mm2 beamlet with respect to target coverage and critical structure sparing by using strategically oriented elongated beamlets. This technique directly translates to a decreased MSF(mod) allowing for decreased leakage dose to the patient, a decreased risk of exceeding secondary shielding limits in pre-existing vaults, and shorter treatment times. PMID:16177479

  5. NOTE: Elongated beamlets: a simple technique for segment and MU reduction for sMLC IMRT delivery on accelerators utilizing 5 mm leaf widths

    NASA Astrophysics Data System (ADS)

    Price, R. A., Jr.; Paskalev, K.; McNeeley, S.; Ma, C.-M.

    2005-10-01

    The focus of this work is to demonstrate the effects of using an elongated beamlet to achieve similar dose conformity as achieved with a square beamlet while reducing the number of segments and subsequent MU required. A series of 10 patients were planned for IMRT delivery to the prostate using minimum beamlet sizes of 5 × 5 mm2 (default scheme), 10 × 5 mm2 with the short axis parallel to the prostate rectum interface (scheme 1), and 10 × 5 mm2 with the short axis perpendicular to the prostate rectum interface (scheme 2). All other parameters between plans were left unchanged. Plans were appropriately normalized and evaluated for R65, R40, conformity index, total number of segments and MU. All plans were generated using the Corvus inverse planning system. The average number of segments in this study decreased by approximately 49% for both schemes 1 and 2. The subsequent number of MU required decreased by approximately 34.6%. The resultant modified modulation scaling factor (MSFmod) decreased by approximately 34.3%. Additionally, we found that each isodose distribution using scheme 2 would still meet our clinical acceptance criteria with no visible degradation in the dose distribution as compared with the default scheme. In conclusion, we have demonstrated that it is possible to achieve similar results as those obtained using a 5 × 5 mm2 beamlet with respect to target coverage and critical structure sparing by using strategically oriented elongated beamlets. This technique directly translates to a decreased MSFmod allowing for decreased leakage dose to the patient, a decreased risk of exceeding secondary shielding limits in pre-existing vaults, and shorter treatment times.

  6. Optimized planning target volume margin in helical tomotherapy for prostate cancer: Is there a preferred method?

    NASA Astrophysics Data System (ADS)

    Cao, Yuan Jie; Lee, Suk; Chang, Kyung Hwan; Shim, Jang Bo; Kim, Kwang Hyeon; Jang, Min Sun; Yoon, Won Sup; Yang, Dae Sik; Park, Young Je; Kim, Chul Yong

    2015-07-01

    We compare the dosimetrical differences between plans generated for helical tomotherapy by using the 2D or 3D the margining technique for the treatment of prostate cancer. Ten prostate cancer patients were included in this study. For 2D plans, the planning target volume (PTV) was created by adding 5 mm (lateral/anterior-posterior) to the clinical target volume (CTV). For 3D plans, a 5-mm margin was added not only lateral/anterior-posterior, but also superior-inferior, to the CTV. Various dosimetrical indices, including the prescription isodose to target volume (PITV) ratio, conformity index (CI), homogeneity index (HI), target coverage index (TCI), modified dose homogeneity index (MHI), conformation number (CN), critical organ scoring index (COSI), and quality factor (QF) were determined to compare the different treatment plans. Differences between the 2D and the 3D PTV indices were not significant except for the CI (p = 0.023). 3D margin plans (11195 MUs) resulted in higher (13.0%) monitor units than 2D margin plans (9728 MUs). There were no significant differences in any organs at risk (OARs) between the 2D and the 3D plans. Overall, the average dose for the 2D plan was slightly lower than that for the 3D plan dose. Compared to the 2D plan, the 3D plan increased the average treatment time by 1.5 minutes; however, this difference was not statistically significant (p = 0.082). We confirmed that the 2D and the 3D margin plans were not significantly different with regard to various dosimetric indices such as the PITV, CI, and HI for PTV and the OARs with tomotherapy.

  7. Project Plan Remote Target Fabrication Refurbishment Project

    SciTech Connect

    Bell, Gary L; Taylor, Robin D

    2009-08-01

    In early FY2009, the DOE Office of Science - Nuclear Physics Program reinstated a program for continued production of {sup 252}Cf and other transcurium isotopes at the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). The FY2009 major elements of the workscope are as follows: (1) Recovery and processing of seven transuranium element targets undergoing irradiation at the High Flux Isotope Reactor (HFIR) at ORNL; (2) Development of a plan to manufacture new targets for irradiation beginning in early- to mid-FY10 to supply irradiated targets for processing Campaign 75 (TRU75); and (3) Refurbishment of the target manufacturing equipment to allow new target manufacture in early FY10 The {sup 252}Cf product from processing Campaign 74 (recently processed and currently shipping to customers) is expected to supply the domestic demands for a period of approximately two years. Therefore it is essential that new targets be introduced for irradiation by the second quarter of FY10 (HFIR cycle 427) to maintain supply of {sup 252}Cf; the average irradiation period is {approx}10 HFIR cycles, requiring about 1.5 calendar years. The strategy for continued production of {sup 252}Cf depends upon repairing and refurbishing the existing pellet and target fabrication equipment for one additional target production campaign. This equipment dates from the mid-1960s to the late 1980s, and during the last target fabrication campaign in 2005- 2006, a number of component failures and operations difficulties were encountered. It is expected that following the target fabrication and acceptance testing of the targets that will supply material for processing Campaign 75 a comprehensive upgrade and replacement of the remote hot-cell equipment will be required prior to subsequent campaigns. Such a major refit could start in early FY 2011 and would take about 2 years to complete. Scope and cost estimates for the repairs described herein were developed, and

  8. The effect of multileaf collimator leaf width on the radiosurgery planning for spine lesion treatment in terms of the modulated techniques and target complexity

    PubMed Central

    2014-01-01

    Purpose We aim to evaluate the effects of multileaf collimator (MLC) leaf width (5 mm vs. 2.5 mm) on the radiosurgery planning for the treatment of spine lesions according to the modulated techniques (intensity-modulated radiotherapy [IMRT] vs. volumetric-modulated arc therapy [VMAT]) and the complexity of the target shape. Methods For this study, artificial spinal lesions were contoured and used for treatment plans. Three spinal levels (C5, T5, and L2 spines) were selected, and four types of target shapes reflecting the complexity of lesions were contoured. The treatment plans were performed using 2.5-mm and 5-mm MLCs, and also using both static IMRT and VMAT. In total, 48 treatment plans were established. The efficacy of each treatment plan was compared using target volume coverage (TVC), conformity index (CI), dose gradient index (GI), and V30%. Results When the 5-mm MLC was replaced by the 2.5-mm MLC, TVC and GI improved significantly by 5.68% and 6.25%, respectively, while CI did not improve. With a smaller MLC leaf width, the improvement ratios of the TVC were larger in IMRT than VMAT (8.38% vs. 2.97%). In addition, the TVC was improved by 14.42-16.74% in target type 4 compared to the other target types. These improvements were larger in IMRT than in VMAT (27.99% vs. 6.34%). The V30% was not statistically different between IMRT and VMAT according to the MLC leaf widths and the types of target. Conclusion The smaller MLC leaf width provided improved target coverage in both IMRT and VMAT, and its improvement was larger in IMRT than in VMAT. In addition, the smaller MLC leaf width was more effective for complex-shaped targets. PMID:24606890

  9. Treatment planning for molecular targeted radionuclide therapy.

    PubMed

    Siantar, Christine Hartmann; Vetter, Kai; DeNardo, Gerald L; DeNardo, Sally J

    2002-06-01

    Molecular targeted radionuclide therapy promises to expand the usefulness of radiation to successfully treat widespread cancer. The unique properties of radioactive tags make it possible to plan treatments by predicting the radiation absorbed dose to both tumors and normal organs, using a pre-treatment test dose of radiopharmaceutical. This requires a combination of quantitative, high-resolution, radiation-detection hardware and computerized dose-estimation software, and would ideally include biological dose-response data in order to translate radiation absorbed dose into biological effects. Data derived from conventional (external beam) radiation therapy suggests that accurate assessment of the radiation absorbed dose in dose-limiting normal organs could substantially improve the observed clinical response for current agents used in a myeloablative regimen, enabling higher levels of tumor control at lower tumor-to-normal tissue therapeutic indices. Treatment planning based on current radiation detection and simulations technology is sufficient to impact on clinical response. The incorporation of new imaging methods, combined with patient-specific radiation transport simulations, promises to provide unprecedented levels of resolution and quantitative accuracy, which are likely to increase the impact of treatment planning in targeted radionuclide therapy. PMID:12136519

  10. 12 CFR 952.4 - Targeted Community Lending Plan

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Targeted Community Lending Plan 952.4 Section... SHEET ITEMS COMMUNITY INVESTMENT CASH ADVANCE PROGRAMS § 952.4 Targeted Community Lending Plan Each Bank shall develop and adopt an annual Targeted Community Lending Plan pursuant to § 944.6 of this chapter....

  11. 12 CFR 952.4 - Targeted Community Lending Plan

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Targeted Community Lending Plan 952.4 Section... SHEET ITEMS COMMUNITY INVESTMENT CASH ADVANCE PROGRAMS § 952.4 Targeted Community Lending Plan Each Bank shall develop and adopt an annual Targeted Community Lending Plan pursuant to § 944.6 of this chapter....

  12. 12 CFR 952.4 - Targeted Community Lending Plan

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 8 2012-01-01 2012-01-01 false Targeted Community Lending Plan 952.4 Section... SHEET ITEMS COMMUNITY INVESTMENT CASH ADVANCE PROGRAMS § 952.4 Targeted Community Lending Plan Each Bank shall develop and adopt an annual Targeted Community Lending Plan pursuant to § 944.6 of this chapter....

  13. 12 CFR 952.4 - Targeted Community Lending Plan

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 8 2013-01-01 2013-01-01 false Targeted Community Lending Plan 952.4 Section... SHEET ITEMS COMMUNITY INVESTMENT CASH ADVANCE PROGRAMS § 952.4 Targeted Community Lending Plan Each Bank shall develop and adopt an annual Targeted Community Lending Plan pursuant to § 944.6 of this chapter....

  14. Mars - Subsurface properties from observed longitudinal variation of the 3.5-mm brightness temperature

    NASA Technical Reports Server (NTRS)

    Epstein, E. E.; Andrew, B. H.; Briggs, F. H.; Jakosky, B. M.; Palluconi, F. D.

    1983-01-01

    Extensive 3.5-mm measurements are reported which show a variation in the brightness temperature of Mars, with the Central Meridian Longitude that is generally in phase with the variation at 2.8 cm and is opposite in sign from the variations at 20 microns. It is pointed out that the phase result is not unexpected, since 3.5 mm is longer than the wavelength at which the phase behavior is expected to change. The result that the 3.5-mm rotation curve amplitude is larger than the amplitudes at both 20 microns and 2.8 cm, however, is unexpected. This result, it is noted, can be explained as a consequence of subsurface scattering from rocks smaller than 1.5 cm in radius. A correlation of subsurface scatterers with the location of the high-thermal inertial regions would be consistent with the hypothesis that rock abundance predominates in determining the thermal inertia.

  15. Surgical Management of Tibial Plateau Fractures With 3.5 mm Simple Plates

    PubMed Central

    Bagherifard, Abolfazl; Jabalameli, Mahmoud; Hadi, Hosseinali; Rahbar, Mohammad; Minator Sajjadi, Mohammadreza; Jahansouz, Ali; Karimi Heris, Hossein

    2016-01-01

    Background Tibial plateau fractures can be successfully fixed utilizing 3.5 mm locking plates. However, there are some disadvantages to using these plates. Objectives In the current prospective study, we investigated the outcome of treating different types of tibial plateau fractures with 3.5 mm simple plates which, to our knowledge, has not been evaluated in previous studies. Materials and Methods Between 2011 and 2013, 32 patients aged 40 ± 0.2 years underwent open reduction and internal fixation for tibial plateau fractures with 3.5 mm simple plates. The patients were followed for 16.14 ± 2.1 months. At each patient’s final visit, the articular surface depression, medial proximal tibial angle, and slope angle were measured and compared with measurements taken early after the operation. The functional outcomes were measured with the WOMAC and Lysholm knee scores. Results The mean union time was 13 ± 1.2 weeks. The mean knee range of motion was 116.8° ± 3.3°. The mean WOMAC and Lysholm scores were 83.5 ± 1.8 and 76.8 ± 1.6, respectively. On the early postoperative and final X-rays, 87.5% and 84% of patients, respectively, had acceptable reduction. Medial proximal tibial and slope angles did not change significantly by the last visit. No patient was found to have complications related to the type of plate. Conclusions In this case series study, the fixation of different types of tibial plateau fractures with 3.5 mm simple non-locking and non-precontoured plates was associated with acceptable clinical, functional, and radiographic outcomes. Based on the advantages and costs of these plates, the authors recommend using 3.5 mm simple plates for different types of tibial plateau fractures.

  16. LIFE Target Fabrication Research Plan Sept 2008

    SciTech Connect

    Miles, R; Biener, J; Kucheyev, S; Montesanti, R; Satcher, J; Spadaccini, C; Rose, K; Wang, M; Hamza, A; Alexander, N; Brown, L; Hund, J; Petzoldt, R; Sweet, W; Goodin, D

    2008-11-10

    The target-system for the baseline LIFE fast-ignition target was analyzed to establish a preliminary estimate for the costs and complexities involved in demonstrating the technologies needed to build a prototype LIFE plant. The baseline fast-ignition target upon which this analysis was developed is shown in Figure 1.0-1 below. The LIFE target-system incorporates requirements for low-cost, high throughput manufacture, high-speed, high accuracy injection of the target into the chamber, production of sufficient energy from implosion and recovery and recycle of the imploded target material residue. None of these functions has been demonstrated to date. Existing target fabrication techniques which lead to current 'hot spot' target costs of {approx}$100,000 per target and at a production rate of 2/day are unacceptable for the LIFE program. Fabrication techniques normally used for low-cost, low accuracy consumer products such as toys must be adapted to the high-accuracy LIFE target. This will be challenge. A research program resulting is the demonstration of the target-cycle technologies needed for a prototype LIFE reactor is expected to cost {approx}$51M over the course of 5 years. The effort will result in targets which will cost an estimated $0.23/target at a rep-rate of 20 Hz or about 1.73M targets/day.

  17. 12 CFR 1292.4 - Targeted Community Lending Plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 10 2014-01-01 2014-01-01 false Targeted Community Lending Plan. 1292.4 Section 1292.4 Banks and Banking FEDERAL HOUSING FINANCE AGENCY HOUSING GOALS AND MISSION COMMUNITY INVESTMENT CASH ADVANCE PROGRAMS § 1292.4 Targeted Community Lending Plan. Each Bank shall develop and...

  18. Low-Friction Minilaparoscopy Outperforms Regular 5-mm and 3-mm Instruments for Precise Tasks

    PubMed Central

    Firme, Wood A.; Lima, Diego L.; de Paula Lopes, Vladmir Goldstein; Montandon, Isabelle D.; Filho, Flavio Santos; Shadduck, Phillip P.

    2015-01-01

    Background and Objectives: Therapeutic laparoscopy was incorporated into surgical practice more than 25 y ago. Several modifications have since been developed to further minimize surgical trauma and improve results. Minilaparoscopy, performed with 2- to 3-mm instruments was introduced in the mid 1990s but failed to attain mainstream use, mostly because of the limitations of the early devices. Buoyed by a renewed interest, new generations of mini instruments are being developed with improved functionality and durability. This study is an objective evaluation of a new set of mini instruments with a novel low-friction design. Method: Twenty-two medical students and 22 surgical residents served as study participants. Three designs of laparoscopic instruments were evaluated: conventional 5 mm, traditional 3 mm, and low-friction 3 mm. The instruments were evaluated with a standard surgical simulator, emulating 4 exercises of various complexities, testing grasping, precise 2-handed movements, and suturing. The metric measured was time to task completion, with 5 replicates for every combination of instrument–exercise–participant. Results: For all 4 tasks, the instrument design that performed the best was the same in both the medical student and surgical resident groups. For the gross-grasping task, the 5-mm conventional instruments performed best, followed by the low-friction mini instruments. For the 3 more complex and precise tasks, the low-friction mini instruments outperformed both of the other instrument designs. Conclusion: In standard surgical simulator exercises, low-friction minilaparoscopic instruments outperformed both conventional 3- and 5-mm laparoscopic instruments for precise tasks. PMID:26390530

  19. Video-assisted thoracoscopic thymectomy using 5-mm ports and carbon dioxide insufflation.

    PubMed

    Petersen, René Horsleben

    2016-01-01

    The continuous development and refinement of minimally invasive approaches to thymectomy over the last two decades has potential benefits for patients in terms of better cosmesis, less postoperative pain, shorter length of stay, earlier return to daily activities, less bleeding and fewer complications overall with similar outcomes regarding survival, recurrence of thymoma and complete remission (CR) for myasthenia gravis patients. A variety of different approaches have been described previously. This is a detailed description of video-assisted thoracoscopic thymectomy using three 5 mm ports, carbon dioxide (CO2) insufflation and bipolar electrocoagulation (LigaSure). PMID:26904432

  20. Video-assisted thoracoscopic thymectomy using 5-mm ports and carbon dioxide insufflation

    PubMed Central

    2016-01-01

    The continuous development and refinement of minimally invasive approaches to thymectomy over the last two decades has potential benefits for patients in terms of better cosmesis, less postoperative pain, shorter length of stay, earlier return to daily activities, less bleeding and fewer complications overall with similar outcomes regarding survival, recurrence of thymoma and complete remission (CR) for myasthenia gravis patients. A variety of different approaches have been described previously. This is a detailed description of video-assisted thoracoscopic thymectomy using three 5 mm ports, carbon dioxide (CO2) insufflation and bipolar electrocoagulation (LigaSure). PMID:26904432

  1. Succession Planning and Targeted Leadership Development

    ERIC Educational Resources Information Center

    Wallin, Desna; Cameron, Don W.; Sharples, Kent

    2005-01-01

    A growing number of colleges and boards of trustees are looking to the future by embracing succession planning as the key to assuring college sustainability in an environment that requires global thinking, strategic planning and political savvy. Once confined to the corporate world or to family businesses, and limited to the CEO, succession…

  2. The Intrinsic Shape of Sagittarius A* at 3.5 mm Wavelength

    NASA Astrophysics Data System (ADS)

    Ortiz-León, Gisela N.; Johnson, Michael D.; Doeleman, Sheperd S.; Blackburn, Lindy; Fish, Vincent L.; Loinard, Laurent; Reid, Mark J.; Castillo, Edgar; Chael, Andrew A.; Hernández-Gómez, Antonio; Hughes, David H.; León-Tavares, Jonathan; Lu, Ru-Sen; Montaña, Alfredo; Narayanan, Gopal; Rosenfeld, Katherine; Sánchez, David; Schloerb, F. Peter; Shen, Zhi-qiang; Shiokawa, Hotaka; SooHoo, Jason; Vertatschitsch, Laura

    2016-06-01

    The radio emission from Sgr A{}\\ast is thought to be powered by accretion onto a supermassive black hole of ∼ 4× {10}6 {M}ȯ at the Galactic Center. At millimeter wavelengths, Very Long Baseline Interferometry (VLBI) observations can directly resolve the bright innermost accretion region of Sgr A{}\\ast . Motivated by the addition of many sensitive long baselines in the north–south direction, we developed a full VLBI capability at the Large Millimeter Telescope Alfonso Serrano (LMT). We successfully detected Sgr A{}\\ast at 3.5 mm with an array consisting of six Very Long Baseline Array telescopes and the LMT. We model the source as an elliptical Gaussian brightness distribution and estimate the scattered size and orientation of the source from closure amplitude and self-calibration analysis, obtaining consistent results between methods and epochs. We then use the known scattering kernel to determine the intrinsic two-dimensional source size at 3.5 mm: (147+/- 7 μ {{as}})× (120+/- 12 μ {{as}}), at position angle 88^\\circ +/- 7^\\circ east of north. Finally, we detect non-zero closure phases on some baseline triangles, but we show that these are consistent with being introduced by refractive scattering in the interstellar medium and do not require intrinsic source asymmetry to explain.

  3. 40 CFR 35.9020 - Planning targets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9020 Planning... expenditures by each estuary program and are directly related to the activities that are to be carried out...

  4. 40 CFR 35.9020 - Planning targets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9020 Planning... expenditures by each estuary program and are directly related to the activities that are to be carried out...

  5. 40 CFR 35.9020 - Planning targets.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9020 Planning... expenditures by each estuary program and are directly related to the activities that are to be carried out...

  6. 40 CFR 35.9020 - Planning targets.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9020 Planning... expenditures by each estuary program and are directly related to the activities that are to be carried out...

  7. 40 CFR 35.9020 - Planning targets.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... STATE AND LOCAL ASSISTANCE Financial Assistance for the National Estuary Program § 35.9020 Planning... expenditures by each estuary program and are directly related to the activities that are to be carried out...

  8. Assessing the Performance of 5mm White LED Light Sources forDeveloping-Country Applications

    SciTech Connect

    Mills, Evan

    2007-05-03

    Some white light-emitting diode (LED) light sources haverecently attained levels of efficiency and cost that allow them tocompete with fluorescent lighting for off-grid applications in thedeveloping world. Additional attributes (optics, size, ruggedness, andservice life) make them potentially superior products. Enormousreductions in energy use and greenhouse-gas emissions are thus possible,and system costs can be much lower given the ability to downsize thecharging and energy storage components compared to a fluorescentstrategy. However, there is a high risk of "market-spoiling" if inferiorproducts are introduced and result in user dissatisfaction. Completesystems involve the integration of light sources and optics, energysupply, and energy storage. A natural starting point for evaluatingproduct quality is to focus on the individual light sources. This reportdescribes testing results for batches of 10 5mm white LEDs from 26manufacturers. Efficacies and color properties are presented.

  9. Three-degree-of-freedom ultrasonic motor using a 5-mm-diameter piezoelectric ceramic tube.

    PubMed

    Mingsen Guo; Junhui Hu; Hua Zhu; Chunsheng Zhao; Shuxiang Dong

    2013-07-01

    A small three-degree-of-freedom ultrasonic motor has been developed using a simple piezoelectric lead zirconate titanate (PZT)-tube stator (OD 5 mm, ID 3 mm, length 15 mm). The stator drives a ball-rotor into rotational motion around one of three orthogonal (x-, y-, and z-) axes by combing the first longitudinal and second bending vibration modes. A motor prototype was fabricated and characterized; its performance was superior to those of previous motors made with a PZT ceramic/metal composite stator of comparable size. The method for further improving the performance was discussed. The motor can be further miniaturized and it has potential to be applied to medical microrobots, endoscopes or micro laparoscopic devices, and cell manipulation devices. PMID:25004511

  10. Absolute brightness temperature measurements at 3.5-mm wavelength. [of sun, Venus, Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Ulich, B. L.; Rhodes, P. J.; Davis, J. H.; Hollis, J. M.

    1980-01-01

    Careful observations have been made at 86.1 GHz to derive the absolute brightness temperatures of the sun (7914 + or - 192 K), Venus (357.5 + or - 13.1 K), Jupiter (179.4 + or - 4.7 K), and Saturn (153.4 + or - 4.8 K) with a standard error of about three percent. This is a significant improvement in accuracy over previous results at millimeter wavelengths. A stable transmitter and novel superheterodyne receiver were constructed and used to determine the effective collecting area of the Millimeter Wave Observatory (MWO) 4.9-m antenna relative to a previously calibrated standard gain horn. The thermal scale was set by calibrating the radiometer with carefully constructed and tested hot and cold loads. The brightness temperatures may be used to establish an absolute calibration scale and to determine the antenna aperture and beam efficiencies of other radio telescopes at 3.5-mm wavelength.

  11. Postoperative blunt trauma to 7.5 mm scleral pocket wounds.

    PubMed

    Stevens, J D; Claoué, C M; Steele, A D

    1994-05-01

    Two patients received blunt trauma to the operated eye after phacoemulsification cataract surgery. Both patients had a three-step 7.5 mm chord width, 3.0 mm long, curving incision, extending from sclera into clear cornea. One patient had rupture of the scleral tunnel and horizontal suture 20 days after surgery. The intraocular lens was dislocated into and along the scleral tunnel. The second patient had direct trauma four days after surgery, resulting in cheese-wiring of the horizontal nylon 10-0 suture and wound leakage but no other sequelae. Blunt trauma after scleral pocket phacoemulsification cataract surgery may result in clinical wound dehiscence if sufficient force is sustained. PMID:8064613

  12. A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy.

    PubMed

    Yang, Joon-Mo; Chen, Ruimin; Favazza, Christopher; Yao, Junjie; Li, Chiye; Hu, Zhilin; Zhou, Qifa; Shung, K Kirk; Wang, Lihong V

    2012-10-01

    We have created a 2.5-mm outer diameter integrated photo-acoustic and ultrasonic mini-probe which can be inserted into a standard video endoscope's instrument channel. A small-diameter focused ultrasonic transducer made of PMN-PT provides adequate signal sensitivity, and enables miniaturization of the probe. Additionally, this new endoscopic probe utilizes the same scanning mirror and micromotor-based built-in actuator described in our previous reports; however, the length of the rigid distal section of the new probe has been further reduced to ~35 mm. This paper describes the technical details of the mini-probe and presents experimental results that both quantify the imaging performance and demonstrate its in vivo imaging capability, which suggests that it could work as a mini-probe for certain clinical applications. PMID:23188360

  13. Combined Recipe for Clinical Target Volume and Planning Target Volume Margins

    SciTech Connect

    Stroom, Joep; Gilhuijs, Kenneth; Vieira, Sandra; Chen, Wei; Salguero, Javier; Moser, Elizabeth; Sonke, Jan-Jakob

    2014-03-01

    Purpose: To develop a combined recipe for clinical target volume (CTV) and planning target volume (PTV) margins. Methods and Materials: A widely accepted PTV margin recipe is M{sub geo} = aΣ{sub geo} + bσ{sub geo}, with Σ{sub geo} and σ{sub geo} standard deviations (SDs) representing systematic and random geometric uncertainties, respectively. On the basis of histopathology data of breast and lung tumors, we suggest describing the distribution of microscopic islets around the gross tumor volume (GTV) by a half-Gaussian with SD Σ{sub micro}, yielding as possible CTV margin recipe: M{sub micro} = ƒ(N{sub i}) × Σ{sub micro}, with N{sub i} the average number of microscopic islets per patient. To determine ƒ(N{sub i}), a computer model was developed that simulated radiation therapy of a spherical GTV with isotropic distribution of microscopic disease in a large group of virtual patients. The minimal margin that yielded D{sub min} <95% in maximally 10% of patients was calculated for various Σ{sub micro} and N{sub i}. Because Σ{sub micro} is independent of Σ{sub geo}, we propose they should be added quadratically, yielding for a combined GTV-to-PTV margin recipe: M{sub GTV-PTV} = √([aΣ{sub geo}]{sup 2} + [ƒ(N{sub i})Σ{sub micro}]{sup 2}) + bσ{sub geo}. This was validated by the computer model through numerous simultaneous simulations of microscopic and geometric uncertainties. Results: The margin factor ƒ(N{sub i}) in a relevant range of Σ{sub micro} and N{sub i} can be given by: ƒ(N{sub i}) = 1.4 + 0.8log(N{sub i}). Filling in the other factors found in our simulations (a = 2.1 and b = 0.8) yields for the combined recipe: M{sub GTV-PTV} = √((2.1Σ{sub geo}){sup 2} + ([1.4 + 0.8log(N{sub i})] × Σ{sub micro}){sup 2}) + 0.8σ{sub geo}. The average margin difference between the simultaneous simulations and the above recipe was 0.2 ± 0.8 mm (1 SD). Calculating M{sub geo} and M{sub micro} separately and adding them linearly overestimated PTVs by on

  14. A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery

    PubMed Central

    Ferhanoglu, Onur; Yildirim, Murat; Subramanian, Kaushik; Ben-Yakar, Adela

    2014-01-01

    Towards developing precise microsurgery tools for the clinic, we previously developed image-guided miniaturized devices using low repetition rate amplified ultrafast lasers for surgery. To improve the speed of tissue removal while reducing device diameter, here we present a new 5-mm diameter device that delivers high-repetition rate laser pulses for high speed ultrafast laser microsurgery. The device consists of an air-core photonic bandgap fiber (PBF) for the delivery of high energy pulses, a piezoelectric tube actuator for fiber scanning, and two aspheric lenses for focusing the light. Its inline optical architecture provides easy alignment and substantial size reduction to 5 mm diameter as compared to our previous MEMS-scanning devices while realizing improved intensity squared (two-photon) lateral and axial resolutions of 1.16 μm and 11.46 μm, respectively. Our study also sheds light on the maximum pulse energies that can be delivered through the air-core PBF and identifies cladding damage at the input facet of the fiber as the limiting factor. We have achieved a maximum energy delivery larger than 700 nJ at 92% coupling efficiency. An in depth analysis reveals how this value is greatly affected by possible slight misalignments of the beam during coupling and the measured small beam pointing fluctuations. In the absence of these imperfections, self-phase modulation becomes the limiting factor for the maximum energy delivery, setting the theoretical upper bound to near 2 μJ for a 1-m long, 7-μm, air-core PBF. Finally, the use of a 300 kHz repetition rate fiber laser enabled rapid ablation of 150 µm x 150 µm area within only 50 ms. Such ablation speeds can now allow the surgeons to translate the surgery device as fast as ~4 mm/s to continuously remove a thin layer of a 150 µm wide tissue. Thanks to a high optical transmission efficiency of the in-line optical architecture of the device and improved resolution, we could successfully perform ablation of

  15. A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery.

    PubMed

    Ferhanoglu, Onur; Yildirim, Murat; Subramanian, Kaushik; Ben-Yakar, Adela

    2014-07-01

    Towards developing precise microsurgery tools for the clinic, we previously developed image-guided miniaturized devices using low repetition rate amplified ultrafast lasers for surgery. To improve the speed of tissue removal while reducing device diameter, here we present a new 5-mm diameter device that delivers high-repetition rate laser pulses for high speed ultrafast laser microsurgery. The device consists of an air-core photonic bandgap fiber (PBF) for the delivery of high energy pulses, a piezoelectric tube actuator for fiber scanning, and two aspheric lenses for focusing the light. Its inline optical architecture provides easy alignment and substantial size reduction to 5 mm diameter as compared to our previous MEMS-scanning devices while realizing improved intensity squared (two-photon) lateral and axial resolutions of 1.16 μm and 11.46 μm, respectively. Our study also sheds light on the maximum pulse energies that can be delivered through the air-core PBF and identifies cladding damage at the input facet of the fiber as the limiting factor. We have achieved a maximum energy delivery larger than 700 nJ at 92% coupling efficiency. An in depth analysis reveals how this value is greatly affected by possible slight misalignments of the beam during coupling and the measured small beam pointing fluctuations. In the absence of these imperfections, self-phase modulation becomes the limiting factor for the maximum energy delivery, setting the theoretical upper bound to near 2 μJ for a 1-m long, 7-μm, air-core PBF. Finally, the use of a 300 kHz repetition rate fiber laser enabled rapid ablation of 150 µm x 150 µm area within only 50 ms. Such ablation speeds can now allow the surgeons to translate the surgery device as fast as ~4 mm/s to continuously remove a thin layer of a 150 µm wide tissue. Thanks to a high optical transmission efficiency of the in-line optical architecture of the device and improved resolution, we could successfully perform ablation of

  16. In vitro biomechanical comparison of six different fixation methods following 5-mm sagittal split advancement osteotomies.

    PubMed

    Oguz, Y; Watanabe, E R; Reis, J M; Spin-Neto, R; Gabrielli, M A; Pereira-Filho, V A

    2015-08-01

    The sagittal split ramus osteotomy (SSRO) is a surgical technique used widely to treat many congenital and acquired mandibular discrepancies. Stabilization of the osteotomy site and the potential for skeletal relapse after the procedure are still major problems. The aim of this study was to compare the mechanical stability of six methods of rigid fixation in SSRO using a biomechanical test model. Sixty polyurethane replicas of human hemimandibles were divided into six groups. In group I, the osteotomies were fixed with two four-hole titanium miniplates; in group II, with one four-hole miniplate; in group III, with one four-hole miniplate+a bicortical screw; in group IV, with a grid miniplate; in group V, with a four-hole locking miniplate; and in group VI, with a six-hole miniplate. A linear load in the premolar region was applied to the hemimandibles. The resistance forces (N) needed to displace the distal segment by 1, 3, and 5mm were recorded and the data transmitted from the load cell to a computer. One-way analysis of variance with Tukey's post hoc test was performed to compare the means between groups. For the three displacement conditions, there was a strong tendency for the 2.0-mm plate+screw and the grid plate to have higher values. PMID:25840861

  17. High performances of very long (13.5mm) tapered laser emitting at 975 nm

    NASA Astrophysics Data System (ADS)

    Resneau, P.; Garcia, M.; Lecomte, M.; Robert, Y.; Vinet, E.; Parillaud, O.; Krakowski, M.; Boiko, D. L.

    2016-03-01

    Mode-locked semiconductor laser technology is a promising technology candidate considered by European Space Agency (ESA) for optical metrology systems and other space applications in the context of high-precision optical metrology, in particular for High Accuracy Absolute Long Distance Measurement. For these applications, we have realised a multi-section monolithic-cavity tapered laser diode with a record cavity length of 13.5 mm. The laser operates at 975 nm wavelength. It is designed for the emission of ultra-short optical pulses (<1 ps) at a repetition rate of 3 GHz with an average optical power of 600 mW. It is based on a MOVPE grown laser structure with Aluminium free active region enabling high optical gain, low internal losses and low series resistance. The first results obtained under CW pumping of such centimetre-long laser at 20 °C heatsink temperature show the lasing threshold current as low as 1.27 A and the differential external efficiency as high as 0.55 W/A.

  18. Development of a 13C-optimized 1.5-mm high temperature superconducting NMR probe

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Vijaykumar; Hooker, Jerris W.; Withers, Richard S.; Nast, Robert E.; Brey, William W.; Edison, Arthur S.

    2013-10-01

    We report a 1.5-mm NMR probe based on high temperature superconductors operating at 14.1 T optimized for 13C detection. The probe has a total sample volume of about 35 microliters (μL) with an active volume of 20 μL and provides exceptional mass sensitivity for 13C detection. The probe also has excellent 1H sensitivity and employs a 2H lock; 15N irradiation capability can be added in the future. The coils are cooled to about 20 K using a standard Agilent cryogenic refrigeration system, and the sample temperature is regulated near room temperature. The coil design considerations are discussed in detail. This probe is ideal for directly detected 13C NMR experiments for natural products chemistry and metabolomics applications, for which 35 μL is an optimal sample volume. The outstanding 13C sensitivity of this probe allowed us to directly determine the 13C connectivity on 1.1 mg of natural abundance histidine using an INADEQUATE experiment. We demonstrated the utility of this probe for 13C-based metabolomics using a synthetic mixture of common natural abundance metabolites whose concentrations ranged from 1 to 5 mM (40-200 nmol).

  19. Development of a 13C-Optimized 1.5-mm High Temperature Superconducting NMR Probe

    PubMed Central

    Ramaswamy, Vijaykumar; Hooker, Jerris W.; Withers, Richard S.; Nast, Robert E.; Brey, William W.; Edison, Arthur S.

    2013-01-01

    We report a 1.5-mm NMR probe based on high temperature superconductors operating at 14.1 T optimized for 13C detection. The probe has a total sample volume of about 35 microliters (μL) with an active volume of 20 μL and provides exceptional mass sensitivity for 13C detection. The probe also has excellent 1H sensitivity and employs a 2H channel lock; 15N irradiation capability can be added in the future. The coils are cooled to about 20 K using a standard Agilent cryogenic refrigeration system, and the sample temperature is regulated near room temperature. The coil design considerations are discussed in detail. This probe is ideal for directly detected 13C NMR experiments for natural products chemistry and metabolomics applications, for which 35 μL is an optimal sample volume. The outstanding 13C sensitivity of this probe allowed us to directly determine the 13C connectivity on 1.1 mg of natural abundance histidine using an INADEQUATE experiment. We demonstrated the utility of this probe for 13C-based metabolomics using a synthetic mixture of common natural abundance metabolites whose concentrations ranged from 1 to 5 mM (40 to 200 nmol). PMID:23969086

  20. Morphological evaluation of eccentric sets guide-plates of dcp-l 4.5 mm

    PubMed Central

    Borges, José Humberto de Souza; da Silva Filho, Antonio Lisboa; Pereira Neto, Francisco; Daher, Walter Rodrigo; de Mesquita, Alessandro Queiroz; Freitas, Anderson

    2012-01-01

    Objective To carry out isolated and comparative evaluations of the measurements of the set eccentric guide plates used in 4.5mm surgical implants, and to determine the effect of these measurements on compression strength. Methods Four eccentric guides, four large dynamic compression plates (L-DCP) from four local manufacturers, and a Vonder® 200 mm caliper brand were used. Five standard parameter measurements were created for the set eccentric guide-plate, which were identified as A to E. Four sets were made, using materials of the same factory, and identified as groups I to IV. The analyses were performed by measuring all the parameters from a ventral view of the plate, with the eccentric guide placed in the plate hole. Results Groups I and II showed the same values for all the parameters. All the groups showed the same measurements for E = 8.15 e B = 3.60. Group III: A = 8.10mm, C = 3.25mm, D = 1.25mm. Group IV: A = 7.00mm, C = 3.10mm, D = 0.30mm. Maximum compression force was (F Max.): Group I 80.58 N, Group. II: F Max. 81.63 N, Group. III: F Max. 36.32N, Group. IV: F Max. 37.52N Conclusion The measurements evaluated show a lack of standardization in the manufacture of orthopedic instruments and its effects on the values for compression strength. Level of Evidence: Level III, analytical study. PMID:24453573

  1. Controlling the length of plasma waveguide up to 5 mm, produced by femtosecond laser pulses in atomic clustered gas.

    PubMed

    Mohamed, Walid Tawfik; Chen, Guanglong; Kim, Jaehoon; Tao, Geng Xiao; Ahn, Jungkwen; Kim, Dong Eon

    2011-08-15

    We report the observation of longitudinally uniform plasma waveguide with a controlled length of up to nearly 5 mm, in argon clustered gas jet. This self-channeling plasma is obtained using a 35 mJ, 30 fs FWHM pulse as a pump laser pulse to create the plasma channel. A 1 mJ pulse of the same laser is used for probing the plasma channels using interferometric diagnostics. The radial distribution of the electron density confirms the formation of a plasma waveguide. Clustered argon enhances the absorption efficiency of femtosecond pulses which enables the use of pump pulses of only 35 mJ, approximately 10 times less energy than required for heating conventional gas targets. The plasma channel length is controlled by the laser focus point (F), the laser intensity (I), the pump-probe delay time (t) and the laser height from a nozzle (z). The variation of the electron density for these parameters is also studied. We found that the highest density of 1.2 x 10(19) cm(-3) was obtained at I = 5.2 x 10(16) W/cm(2), z = 2 mm and t = 7.6 ns. It was demonstrated that by using a clustered jet, both the plasma waveguide length and the plasma density could be controlled. PMID:21934955

  2. The Filipino male as a target audience in family planning.

    PubMed

    Vitug, W

    1986-01-01

    Since the official launching of the Philippine Population Program in 1970, family planning campaigns have substantially addressed themselves to women. The suggestion to devote equal, if not more, attention to men as family planning targets had been raised by Dr. Mercado as early as 1971. It was not until 1978, that the deliberate inclusion of males as a target audience in family planning became a matter of policy. The Population Center Foundation (PCF), from 1979 to 1982, carried out research projects to determine the most suitable approaches and strategies to reach Filipino men. The objectives of the PCF's Male Specific Program are: 1) to test alternative schemes in promoting male family planning methods through pilot-testing of family planning clinics for men, 2) to develop teaching materials geared toward specific segments of the male population, 3) to undertake skills training in male-specific motivational approaches for program professionals, and 4) to assess the extent of the husband's role in family planning. An important finding of 1 study was that most outreach workers were female stood in the way of the motivation process, thus hampering the campaign. While the consultative motivational skills training improved knowledge, attitudes, and skills of outreach workers with regard to vasectomy and the motivation process, there were certain predispositions that were hindering the fieldworkers' effectiveness in motivating target clients. Overall, in-depth, 1-to-1 motivation in dealing with men is needed to strengthen internalization of family planning values. PMID:12280740

  3. Planning and visualization methods for effective bronchoscopic target localization

    NASA Astrophysics Data System (ADS)

    Gibbs, Jason D.; Taeprasarsit, Pinyo; Higgins, William E.

    2012-02-01

    Bronchoscopic biopsy of lymph nodes is an important step in staging lung cancer. Lymph nodes, however, lie behind the airway walls and are near large vascular structures - all of these structures are hidden from the bronchoscope's field of view. Previously, we had presented a computer-based virtual bronchoscopic navigation system that provides reliable guidance for bronchoscopic sampling. While this system offers a major improvement over standard practice, bronchoscopists told us that target localization- lining up the bronchoscope before deploying a needle into the target - can still be challenging. We therefore address target localization in two distinct ways: (1) automatic computation of an optimal diagnostic sampling pose for safe, effective biopsies, and (2) a novel visualization of the target and surrounding major vasculature. The planning determines the final pose for the bronchoscope such that the needle, when extended from the tip, maximizes the tissue extracted. This automatically calculated local pose orientation is conveyed in endoluminal renderings by a 3D arrow. Additional visual cues convey obstacle locations and target depths-of-sample from arbitrary instantaneous viewing orientations. With the system, a physician can freely navigate in the virtual bronchoscopic world perceiving the depth-of-sample and possible obstacle locations at any endoluminal pose, not just one pre-determined optimal pose. We validated the system using mediastinal lymph nodes in eleven patients. The system successfully planned for 20 separate targets in human MDCT scans. In particular, given the patient and bronchoscope constraints, our method found that safe, effective biopsies were feasible in 16 of the 20 targets; the four remaining targets required more aggressive safety margins than a "typical" target. In all cases, planning computation took only a few seconds, while the visualizations updated in real time during bronchoscopic navigation.

  4. Targeting Low Career Confidence Using the Career Planning Confidence Scale

    ERIC Educational Resources Information Center

    McAuliffe, Garrett; Jurgens, Jill C.; Pickering, Worth; Calliotte, James; Macera, Anthony; Zerwas, Steven

    2006-01-01

    The authors describe the development and validation of a test of career planning confidence that makes possible the targeting of specific problem issues in employment counseling. The scale, developed using a rational process and the authors' experience with clients, was tested for criterion-related validity against 2 other measures. The scale…

  5. Strike planning against a target base with a value structure

    SciTech Connect

    Chrzanowski, P.L.

    1992-04-21

    With the signing of the Strategic Arms Reduction Treaty (START) and, with the end of the Cold War, two questions arise. How large should force reductions be in a START-II accord How much can the major nuclear powers reduce their nuclear arms and still maintain strategic stability. The results of the analysis presented here are summarized by the following five statements: (1) In the development of target lists, it is important to prioritize. A standard approach is to identify a break-point in the list of installations, to target only those facilities that are above the break-point, and to assign as many weapons as necessary to key installations to achieve damage goals. As an alternative, a systematic method is suggested here that uses the concept of target value. First, an ordinal list of targets must be developed. Then, values can be assigned to targets in a way that leads to reasonable set of targeting priorities and to a useful figure of merit to assess strike effectiveness. (2) Two complementary observations can be made, based on an analysis of optimum attack tactics against a target base with a value structure: It is not practical to size the stockpile based on the number of targets in the target set because a small change in the damage goal for the strike results in large change to the required inventory. By prioritizing targets, it is possible to make large reductions in the force structure while causing only small reductions in the expected target value damaged. (3) Prudence dictates building into strike plans hedges against degraded weapon performance. (4) The impact of defenses on the required offensive inventory depends on details about the management of defensive systems. (5) If timely information can be obtained about damage to targets so that follow-on weapons can be allocated only to undamaged targets, the number of weapons required to achieve the specified damage coal can be reduced significantly.

  6. Strike planning against a target base with a value structure

    SciTech Connect

    Chrzanowski, P.L.

    1992-04-21

    With the signing of the Strategic Arms Reduction Treaty (START) and, with the end of the Cold War, two questions arise. How large should force reductions be in a START-II accord? How much can the major nuclear powers reduce their nuclear arms and still maintain strategic stability. The results of the analysis presented here are summarized by the following five statements: (1) In the development of target lists, it is important to prioritize. A standard approach is to identify a break-point in the list of installations, to target only those facilities that are above the break-point, and to assign as many weapons as necessary to key installations to achieve damage goals. As an alternative, a systematic method is suggested here that uses the concept of target value. First, an ordinal list of targets must be developed. Then, values can be assigned to targets in a way that leads to reasonable set of targeting priorities and to a useful figure of merit to assess strike effectiveness. (2) Two complementary observations can be made, based on an analysis of optimum attack tactics against a target base with a value structure: It is not practical to size the stockpile based on the number of targets in the target set because a small change in the damage goal for the strike results in large change to the required inventory. By prioritizing targets, it is possible to make large reductions in the force structure while causing only small reductions in the expected target value damaged. (3) Prudence dictates building into strike plans hedges against degraded weapon performance. (4) The impact of defenses on the required offensive inventory depends on details about the management of defensive systems. (5) If timely information can be obtained about damage to targets so that follow-on weapons can be allocated only to undamaged targets, the number of weapons required to achieve the specified damage coal can be reduced significantly.

  7. Target Volume Delineation for Partial Breast Radiotherapy Planning: Clinical Characteristics Associated with Low Interobserver Concordance

    SciTech Connect

    Petersen, Ross P.; Truong, Pauline T. Kader, Hosam A.; Berthelet, Eric; Lee, Junella C.; Hilts, Michelle L.; Kader, Adam S.; Beckham, Wayne A.; Olivotto, Ivo A.

    2007-09-01

    Purpose: To examine variability in target volume delineation for partial breast radiotherapy planning and evaluate characteristics associated with low interobserver concordance. Methods and Materials: Thirty patients who underwent planning CT for adjuvant breast radiotherapy formed the study cohort. Using a standardized scale to score seroma clarity and consensus contouring guidelines, three radiation oncologists independently graded seroma clarity and delineated seroma volumes for each case. Seroma geometric center coordinates, maximum diameters in three axes, and volumes were recorded. Conformity index (CI), the ratio of overlapping volume and encompassing delineated volume, was calculated for each case. Cases with CI {<=}0.50 were analyzed to identify features associated with low concordance. Results: The median time from surgery to CT was 42.5 days. For geometric center coordinates, variations from the mean were 0.5-1.1 mm and standard deviations (SDs) were 0.5-1.8 mm. For maximum seroma dimensions, variations from the mean and SDs were predominantly <5 mm, with the largest SDs observed in the medial-lateral axis. The mean CI was 0.61 (range, 0.27-0.84). Five cases had CI {<=}0.50. Conformity index was significantly associated with seroma clarity (p < 0.001) and seroma volume (p < 0.002). Features associated with reduced concordance included tissue stranding from the surgical cavity, proximity to muscle, dense breast parenchyma, and benign calcifications that may be mistaken for surgical clips. Conclusion: Variability in seroma contouring occurred in three dimensions, with the largest variations in the medial-lateral axis. Awareness of clinical features associated with reduced concordance may be applied toward training staff and refining contouring guidelines for partial breast radiotherapy trials.

  8. Impact of Increasing Margin Around the Lumpectomy Cavity to Define the Planning Target Volume for 3D Conformal External Beam Accelerated Partial Breast Irradiation

    SciTech Connect

    Cox, Brett W.; Horst, Kathleen C. Thornton, Sherri; Dirbas, Frederick M.

    2007-01-01

    The purpose of this study was to evaluate the dose to normal tissues as a function of increasing margins around the lumpectomy cavity in accelerated partial breast irradiation (APBI) using 3D-conformal radiotherapy (3DCRT). Eight patients with Stage 0-I breast cancer underwent treatment planning for 3DCRT APBI. The clinical target volume (CTV) was defined as a 15-mm expansion around the cavity limited by the chest wall and skin. Three planning target volumes (PTV1, PTV2, PTV3) were generated for each patient using a 0, 5-, and 10-mm expansion around the CTV, for a total margin of 15, 20, and 25 mm. Three treatment plans were generated for every patient using the 3 PTVs, and dose-volume analysis was performed for each plan. For each 5-mm increase in margin, the mean PTV:total breast volume ratio increased 10% and the relative increase in the mean ipsilateral breast dose was 15%. The mean volume of ipsilateral breast tissue receiving 75%, 50%, and 25% of the prescribed dose increased 6% to 7% for every 5 mm increase in PTV margin. Compared to lesions located in the upper outer quadrant, plans for medially located tumors revealed higher mean ipsilateral breast doses and 20% to 22% more ipsilateral breast tissue encompassed by the 25% IDL. The use of 3DCRT for APBI delivers higher doses to normal breast tissue as the PTV increases around the lumpectomy cavity. Efforts should be made to minimize the overall PTV when this technique is used. Ongoing studies will be necessary to determine the clinical relevance of these findings.

  9. Evaluation of the Planning Target Volume in the Treatment of Head and Neck Cancer With Intensity-Modulated Radiotherapy: What Is the Appropriate Expansion Margin in the Setting of Daily Image Guidance?

    SciTech Connect

    Chen, Allen M.; Farwell, D. Gregory; Luu, Quang; Donald, Paul J.; Perks, Julian; Purdy, James A.

    2011-11-15

    Purpose: To compare patterns of disease failure among patients treated with intensity-modulated radiotherapy (IMRT) in conjunction with daily image-guided radiotherapy (IGRT) for head and neck cancer, according to the margins used to expand the clinical target volume (CTV) to create a planning target volume (PTV). Methods and Materials: Two-hundred and twenty-five patients were treated with IMRT for squamous cell carcinoma of the head and neck. Daily IGRT scans were acquired using either kilovoltage or megavoltage volumetric imaging prior to each delivered fraction. The first 95 patients were treated with IMRT with 5-mm CTV-to-PTV margins. The subsequent 130 patients were treated using 3-mm PTV expansion margins. Results: Two-year estimates of overall survival, local-regional control, and distant metastasis-free survival were 76%, 78%, and 81%, respectively. There were no differences with respect to any of these endpoints among patients treated with 5-mm and 3-mm PTV expansion margins (p > 0.05, all). The 2-year local-regional control rate for patients treated with IMRT with 5-mm and 3-mm PTV margins was 78% and 78%, respectively (p = 0.96). Spatial evaluation revealed no differences in the incidences of marginal failures among those treated with 5-mm and 3-mm PTV margins. Conclusions: The use of 3-mm PTV expansion margins appears adequate and did not increase local-regional failures among patients treated with IMRT for head and neck cancer. These data demonstrate the safety of PTV reduction of less than 5 mm and support current protocols recommending this approach in the setting of daily IGRT.

  10. Generic Planning Target Margin for Rectal Cancer Treatment Setup Variation

    SciTech Connect

    Robertson, John M. Campbell, Jonathon P.; Yan Di

    2009-08-01

    Purpose: To calculate the generic planning target margin (GPTM) for patients receiving radiation therapy (RT) for rectal cancer placed in a prone position with a customized cradle for small-bowel exclusion. Methods and Materials: A total of 25 consecutive rectal cancer patients were treated for 25 or 28 fractions in a prone position using a cradle to maximize small bowel exclusion. Treatment planning computed tomography (CT) scans were used to create orthogonally digitally reconstructed radiographs (DRRs) for portal image registration, which were compared with daily portal images from an electronic portal-imaging device (EPID). Translation values needed to align the DRRs and EPIDs were recorded for the superior to inferior (SI), right to left (RL), and anterior to posterior (AP) directions, and used to calculate the GPTM using the four-parameter model. Age, weight, and body mass index were tested compared with the setup variation using a Pearson correlation and a t test for significance. Gender versus setup variation was compared with a t test. Results: A total of 1,723 EPID images were reviewed. The GPTM was 10 mm superior, 8 mm inferior, 7 mm RL and 10 mm AP. Age and gender were unrelated to setup variation. Weight was significantly associated with systematic AP variation (p < 0.05). BMI was significantly associated with systematic SI (p < 0.05) and AP (p < 0.01) variation and random RL variation (p < 0.05). Conclusions: The GPTM for rectal cancer is asymmetric with a maximum of 10 mm in the superior, anterior and posterior dimensions. Body mass index may effect setup variation. Research using advanced treatment planning should include these margins in the planning target volume definition.

  11. Final work plan for targeted sampling at Webber, Kansas.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2006-05-01

    This Work Plan outlines the scope of work for targeted sampling at Webber, Kansas (Figure 1.1). This activity is being conducted at the request of the Kansas Department of Health and Environment (KDHE), in accordance with Section V of the Intergovernmental Agreement between the KDHE and the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). Data obtained in this sampling event will be used to (1) evaluate the current status of previously detected contamination at Webber and (2) determine whether the site requires further action. This work is being performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. Argonne has issued a Master Work Plan (Argonne 2002) that describes the general scope of and guidance for all investigations at former CCC/USDA facilities in Kansas. The Master Work Plan, approved by the KDHE, contains the materials common to investigations at all locations in Kansas. This document should be consulted for complete details of the technical activities proposed at the former CCC/USDA facility in Webber.

  12. Automated planning of ablation targets in atrial fibrillation treatment

    NASA Astrophysics Data System (ADS)

    Keustermans, Johannes; De Buck, Stijn; Heidbüchel, Hein; Suetens, Paul

    2011-03-01

    Catheter based radio-frequency ablation is used as an invasive treatment of atrial fibrillation. This procedure is often guided by the use of 3D anatomical models obtained from CT, MRI or rotational angiography. During the intervention the operator accurately guides the catheter to prespecified target ablation lines. The planning stage, however, can be time consuming and operator dependent which is suboptimal both from a cost and health perspective. Therefore, we present a novel statistical model-based algorithm for locating ablation targets from 3D rotational angiography images. Based on a training data set of 20 patients, consisting of 3D rotational angiography images with 30 manually indicated ablation points, a statistical local appearance and shape model is built. The local appearance model is based on local image descriptors to capture the intensity patterns around each ablation point. The local shape model is constructed by embedding the ablation points in an undirected graph and imposing that each ablation point only interacts with its neighbors. Identifying the ablation points on a new 3D rotational angiography image is performed by proposing a set of possible candidate locations for each ablation point, as such, converting the problem into a labeling problem. The algorithm is validated using a leave-one-out-approach on the training data set, by computing the distance between the ablation lines obtained by the algorithm and the manually identified ablation points. The distance error is equal to 3.8+/-2.9 mm. As ablation lesion size is around 5-7 mm, automated planning of ablation targets by the presented approach is sufficiently accurate.

  13. Strategic targeting of advance care planning interventions: the Goldilocks phenomenon.

    PubMed

    Billings, J Andrew; Bernacki, Rachelle

    2014-04-01

    Strategically selecting patients for discussions and documentation about limiting life-sustaining treatments-choosing the right time along the end-of-life trajectory for such an intervention and identifying patients at high risk of facing end-of-life decisions-can have a profound impact on the value of advance care planning (ACP) efforts. Timing is important because the completion of an advance directive (AD) too far from or too close to the time of death can lead to end-of-life decisions that do not optimally reflect the patient's values, goals, and preferences: a poorly chosen target patient population that is unlikely to need an AD in the near future may lead to patients making unrealistic, hypothetical choices, while assessing preferences in the emergency department or hospital in the face of a calamity is notoriously inadequate. Because much of the currently studied ACP efforts have led to a disappointingly small proportion of patients eventually benefitting from an AD, careful targeting of the intervention should also improve the efficacy of such projects. A key to optimal timing and strategic selection of target patients for an ACP program is prognostication, and we briefly highlight prognostication tools and studies that may point us toward high-value AD interventions. PMID:24493203

  14. Optimized Planning Target Volume for Intact Cervical Cancer

    SciTech Connect

    Khan, Alvin; Jensen, Lindsay G.; Sun Shuai; Song, William Y.; Yashar, Catheryn M.; Mundt, Arno J.; Zhang Fuquan; Jiang, Steve B.; Mell, Loren K.

    2012-08-01

    Purpose: To model interfraction clinical target volume (CTV) variation in patients with intact cervical cancer and design a planning target volume (PTV) that minimizes normal tissue dose while maximizing CTV coverage. Methods and Materials: We analyzed 50 patients undergoing external-beam radiotherapy for intact cervical cancer using daily online cone-beam computed tomography (CBCT). The CBCTs (n = 972) for each patient were rigidly registered to the planning CT. The CTV was delineated on the planning CT (CTV{sub 0}) and the set of CBCTs ({l_brace}CTV{sub 1}-CTV{sub 25}{r_brace}). Manual (n = 98) and automated (n = 668) landmarks were placed over the surface of CTV{sub 0} with reference to defined anatomic structures. Normal vectors were extended from each landmark, and the minimum length required for a given probability of encompassing CTV{sub 1}-CTV{sub 25} was computed. The resulting expansions were used to generate an optimized PTV. Results: The mean (SD; range) normal vector length to ensure 95% coverage was 4.3 mm (2.7 mm; 1-16 mm). The uniform expansion required to ensure 95% probability of CTV coverage was 13 mm. An anisotropic margin of 20 mm anteriorly and posteriorly and 10 mm superiorly, inferiorly, and laterally also would have ensured a 95% probability of CTV coverage. The volume of the 95% optimized PTV (1470 cm{sup 3}) was significantly lower than both the anisotropic PTV (2220 cm{sup 3}) and the uniformly expanded PTV (2110 cm{sup 3}) (p < 0.001). For a 95% probability of CTV coverage, normal lengths of 1-3 mm were found along the superior and lateral regions of CTV{sub 0}, 5-10 mm along the interfaces of CTV{sub 0} with the bladder and rectum, and 10-14 mm along the anterior surface of CTV{sub 0} at the level of the uterus. Conclusion: Optimizing PTV definition according to surface landmarking resulted in a high probability of CTV coverage with reduced PTV volumes. Our results provide data justifying planning margins to use in practice and

  15. Dosimetric evaluation of planning target volume margin reduction for prostate cancer via image-guided intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Hwang, Taejin; Kang, Sei-Kwon; Cheong, Kwang-Ho; Park, Soah; Yoon, Jai-Woong; Han, Taejin; Kim, Haeyoung; Lee, Meyeon; Kim, Kyoung-Joo; Bae, Hoonsik; Suh, Tae-Suk

    2015-07-01

    The aim of this study was to quantitatively estimate the dosimetric benefits of the image-guided radiation therapy (IGRT) system for the prostate intensity-modulated radiation therapy (IMRT) delivery. The cases of eleven patients who underwent IMRT for prostate cancer without a prostatectomy at our institution between October 2012 and April 2014 were retrospectively analyzed. For every patient, clinical target volume (CTV) to planning target volume (PTV) margins were uniformly used: 3 mm, 5 mm, 7 mm, 10 mm, 12 mm, and 15 mm. For each margin size, the IMRT plans were independently optimized by one medical physicist using Pinnalce3 (ver. 8.0.d, Philips Medical System, Madison, WI) in order to maintain the plan quality. The maximum geometrical margin (MGM) for every CT image set, defined as the smallest margin encompassing the rectum at least at one slice, was between 13 mm and 26 mm. The percentage rectum overlapping PTV (%V ROV ), the rectal normal tissue complication probability (NTCP) and the mean rectal dose (%RD mean ) increased in proportion to the increase of PTV margin. However the bladder NTCP remained around zero to some extent regardless of the increase of PTV margin while the percentage bladder overlapping PTV (%V BOV ) and the mean bladder dose (%BD mean ) increased in proportion to the increase of PTV margin. Without relatively large rectum or small bladder, the increase observed for rectal NTCP, %RDmean and %BD mean per 1-mm PTV margin size were 1.84%, 2.44% and 2.90%, respectively. Unlike the behavior of the rectum or the bladder, the maximum dose on each femoral head had little effect on PTV margin. This quantitative study of the PTV margin reduction supported that IG-IMRT has enhanced the clinical effects over prostate cancer with the reduction of normal organ complications under the similar level of PTV control.

  16. Automated Target Planning for FUSE Using the SOVA Algorithm

    NASA Technical Reports Server (NTRS)

    Heatwole, Scott; Lanzi, R. James; Civeit, Thomas; Calvani, Humberto; Kruk, Jeffrey W.; Suchkov, Anatoly

    2007-01-01

    IRUs and four reaction wheels. Over time through various failures, the satellite has been left with one reaction wheel on the vehicle skew axis and two gyros. To remain operational, a control scheme has been implemented using the magnetic torque rods and the remaining momentum wheel.[2] As a consequence, there are attitude regions where there is insufficient torque authority to overcome environmental disturbances (e.g. gravity gradient torques). The situation is further complicated by the fact that these attitude regions shift inertially with time as the spacecraft moves through earth s magnetic field during the course of its orbit. Under these conditions, the burden of planning targets and target-to-target slew maneuvers has increased significantly since the beginning of the mission.[3] Individual targets must be selected so that the magnetic field remains roughly aligned with the skew wheel axis to provide enough control authority to the other two orthogonal axes. If the field moves too far away from the skew axis, the lack of control authority allows environmental torques to pull the satellite away from the target and can potentially cause it to tumble. Slew maneuver planning must factor the stability of targets at the beginning and end, and the torque authority at all points along the slew. Due to the time varying magnetic field geometry relative to any two inertial targets, small modifications in slew maneuver timing can make large differences in the achievability of a maneuver.

  17. Final work plan for targeted investigation at Hilton, Kansas.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2007-08-28

    This Work Plan outlines the scope of a targeted investigation to update the status of carbon tetrachloride contamination in groundwater associated with grain storage operations at Hilton, Kansas. The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), operated a grain storage facility in Hilton during the 1950s and 1960s. At the time of the CCC/USDA operation in Hilton, grain storage facilities (CCC/USDA and private) were located along the both sides of the former Union Pacific railroad tracks (Figure 1.1). The main grain storage structures were on or near the railroad right-of-way. The proposed targeted investigation, to be conducted by Argonne National Laboratory on the behalf of CCC/USDA, will supplement Argonne's Phase I and Phase II investigations in 1996-1997. The earlier investigations erroneously focused on an area east of the railroad property where the CCC/USDA did not operate, specifically on a private grain storage facility. In addition, the investigation was limited in scope, because access to railroad property was denied (Argonne 1997a,b). The hydrogeologic system at Hilton is potentially complex.

  18. Texas Quality Workforce Planning: 1993 Key Industries and Targeted Occupations for Texas' 24 Quality Work Force Planning Regions.

    ERIC Educational Resources Information Center

    Texas State Dept. of Commerce, Austin.

    In 1993, Texas' 24 quality work force planning committees used a state-developed targeted occupations planning methodology to identify key industries and targeted occupations with the greatest potential for job openings in their respective regions. Between 11 and 20 key industries (13.5 on average) were identified for each region. The following 10…

  19. Washout/rainout contribution in wet deposition estimated by 0.5 mm precipitation sampling/analysis

    NASA Astrophysics Data System (ADS)

    Aikawa, Masahide; Hiraki, Takatoshi

    A precipitation dataset collected on a 0.5 mm precipitation basis was studied. The parameters analyzed in this study were the pH (i.e., H + concentration), electric conductivity (EC), and SO42- and NO3- concentrations. The NO3- concentration clearly decayed with an increase of the precipitation amount, while a larger variation was observed in the SO42- concentration even when the precipitation amount increased. Assuming that the decaying NO3- concentration (0.70 μg ml -1) was the result of the rainout process, the estimates were: annual total deposition, 3252 mg m -2 yr -1; rainout process, 1092 mg m -2 yr -1; and rainout/total, 34%. The estimates for SO42- were: annual total deposition, 4687 mg m -2 yr -1; rainout process, 2096 mg m -2 yr -1; and rainout/total, 45%.

  20. Verification of Planning Target Volume Settings in Volumetric Modulated Arc Therapy for Stereotactic Body Radiation Therapy by Using In-Treatment 4-Dimensional Cone Beam Computed Tomography

    SciTech Connect

    Takahashi, Wataru; Yamashita, Hideomi; Kida, Satoshi; Masutani, Yoshitaka; Sakumi, Akira; Ohtomo, Kuni; Nakagawa, Keiichi; Haga, Akihiro

    2013-07-01

    Purpose: To evaluate setup error and tumor motion during beam delivery by using 4-dimensional cone beam computed tomography (4D CBCT) and to assess the adequacy of the planning target volume (PTV) margin for lung cancer patients undergoing volumetric modulated arc therapy for stereotactic body radiation therapy (VMAT-SBRT). Methods and Materials: Fifteen lung cancer patients treated by single-arc VMAT-SBRT were selected in this analysis. All patients were treated with an abdominal compressor. The gross tumor volumes were contoured on maximum inspiration and maximum expiration CT datasets from 4D CT respiratory sorting and merged into internal target volumes (ITVs). The PTV margin was isotropically taken as 5 mm. Registration was automatically performed using “pre-3D” CBCT. Treatment was performed with a D95 prescription of 50 Gy delivered in 4 fractions. The 4D tumor locations during beam delivery were determined using in-treatment 4D CBCT images acquired in each fraction. Then, the discrepancy between the actual tumor location and the ITV was evaluated in the lateral, vertical, and longitudinal directions. Results: Overall, 55 4D CBCT sets during VMAT-SBRT were successfully obtained. The amplitude of tumor motion was less than 10 mm in all directions. The average displacements between ITV and actual tumor location during treatment were 0.41 ± 0.93 mm, 0.15 ± 0.58 mm, and 0.60 ± 0.99 mm for the craniocaudal, left-right, and anteroposterior directions, respectively. The discrepancy in each phase did not exceed 5 mm in any direction. Conclusions: With in-treatment 4D CBCT, we confirmed the required PTV margins when the registration for moving target was performed using pre-3D CBCT. In-treatment 4D CBCT is a direct method for quantitatively assessing the intrafractional location of a moving target.

  1. Monte Carlo Simulations for Dosimetry in Prostate Radiotherapy with Different Intravesical Volumes and Planning Target Volume Margins

    PubMed Central

    Lv, Wei; Yu, Dong; He, Hengda; Liu, Qian

    2016-01-01

    In prostate radiotherapy, the influence of bladder volume variation on the dose absorbed by the target volume and organs at risk is significant and difficult to predict. In addition, the resolution of a typical medical image is insufficient for visualizing the bladder wall, which makes it more difficult to precisely evaluate the dose to the bladder wall. This simulation study aimed to quantitatively investigate the relationship between the dose received by organs at risk and the intravesical volume in prostate radiotherapy. The high-resolution Visible Chinese Human phantom and the finite element method were used to construct 10 pelvic models with specific intravesical volumes ranging from 100 ml to 700 ml to represent bladders of patients with different bladder filling capacities during radiotherapy. This series of models was utilized in six-field coplanar 3D conformal radiotherapy simulations with different planning target volume (PTV) margins. Each organ’s absorbed dose was calculated using the Monte Carlo method. The obtained bladder wall displacements during bladder filling were consistent with reported clinical measurements. The radiotherapy simulation revealed a linear relationship between the dose to non-targeted organs and the intravesical volume and indicated that a 10-mm PTV margin for a large bladder and a 5-mm PTV margin for a small bladder reduce the effective dose to the bladder wall to similar degrees. However, larger bladders were associated with evident protection of the intestines. Detailed dosimetry results can be used by radiation oncologists to create more accurate, individual water preload protocols according to the patient’s anatomy and bladder capacity. PMID:27441944

  2. Assessment of Planning Target Volume Margins for Intensity-Modulated Radiotherapy of the Prostate Gland: Role of Daily Inter- and Intrafraction Motion

    SciTech Connect

    Tanyi, James A.; He, Tongming; Summers, Paige A.; Mburu, Ruth G.; Kato, Catherine M.; Rhodes, Stephen M.; Hung, Arthur Y.; Fuss, Martin

    2010-12-01

    Purpose: To determine planning target volume margins for prostate intensity-modulated radiotherapy based on inter- and intrafraction motion using four daily localization techniques: three-point skin mark alignment, volumetric imaging with bony landmark registration, volumetric imaging with implanted fiducial marker registration, and implanted electromagnetic transponders (beacons) detection. Methods and Materials: Fourteen patients who underwent definitive intensity-modulated radiotherapy for prostate cancer formed the basis of this study. Each patient was implanted with three electromagnetic transponders and underwent a course of 39 treatment fractions. Daily localization was based on three-point skin mark alignment followed by transponder detection and patient repositioning. Transponder positioning was verified by volumetric imaging with cone-beam computed tomography of the pelvis. Relative motion between the prostate gland and bony anatomy was quantified by offline analyses of daily cone-beam computed tomography. Intratreatment organ motion was monitored continuously by the Calypso (registered) System for quantification of intrafraction setup error. Results: As expected, setup error (that is, inter- plus intrafraction motion, unless otherwise stated) was largest with skin mark alignment, requiring margins of 7.5 mm, 11.4 mm, and 16.3 mm, in the lateral (LR), longitudinal (SI), and vertical (AP) directions, respectively. Margin requirements accounting for intrafraction motion were smallest for transponder detection localization techniques, requiring margins of 1.4 mm (LR), 2.6 mm (SI), and 2.3 mm (AP). Bony anatomy alignment required 2.1 mm (LR), 9.4 mm (SI), and 10.5 mm (AP), whereas image-guided marker alignment required 2.8 mm (LR), 3.7 mm (SI), and 3.2 mm (AP). No marker migration was observed in the cohort. Conclusion: Clinically feasible, rapid, and reliable tools such as the electromagnetic transponder detection system for pretreatment target localization

  3. Career Education on Target. District Articulation Plan. Sample Packet.

    ERIC Educational Resources Information Center

    Orange County Public Schools, Orlando, FL.

    This packet contains the career education articulation plan for the Orange County, Florida, Public Schools. Components include the following: (1) career education goals for grades K-2, 3-5, 6-8, and 9-12; (2) an articulated career education plan specifying goals for attitudes and appreciation, self-awareness, career awareness, educational…

  4. Planning Post-Primary Education: Taking Targets to Task

    ERIC Educational Resources Information Center

    Lewin, K.M.

    2005-01-01

    The Millennium Development Goals (MDGs) have shaped much educational target setting by governments and their development partners to the extent that they have focused on just two of the commitments-universal enrolment and completion of primary schooling, and gender equality in primary and secondary school access and achievement. A consequence is…

  5. Differential Evolution Optimization for Targeting Spacecraft Maneuver Plans

    NASA Technical Reports Server (NTRS)

    Mattern, Daniel

    2016-01-01

    Previous analysis identified specific orbital parameters as being safer for conjunction avoidance for the TDRS fleet. With TDRS-9 being considered an at-risk spacecraft, a potential conjunction concern was raised should TDRS-9 fail while at a longitude of 12W. This document summarizes the analysis performed to identify if these specific orbital parameters could be targeted using the remaining drift-termination maneuvers for the relocation of TDRS-9 from 41W longitude to 12W longitude.

  6. Plan demographics, participants' saving behavior, and target-date fund investments.

    PubMed

    Park, Youngkyun

    2009-05-01

    This analysis explores (1) whether plan demographic characteristics would affect individual participant contribution rates and target-date fund investments and (2) equity glide paths for participants in relation to plan demographics by considering target replacement income and its success rate. PLAN DEMOGRAPHIC CHARACTERISTICS IN PARTICIPANT CONTRIBUTION RATES: This study finds empirical evidence that 401(k) plan participants' contribution rates differ by plan demographics based on participants' income and/or tenure. In particular, participants in 401(k) plans dominated by those with low income and short tenure tend to contribute less than those in plans dominated by participants with high income and long tenure. Future research will explore how participant contribution behavior may also be influenced by incentives provided by employers through matching formulae. PLAN DEMOGRAPHIC CHARACTERISTICS IN TARGET-DATE FUND INVESTMENTS: The study also finds empirical evidence that participants' investments in target-date funds with different equity allocations differ by plan demographics based on participants' income and/or tenure. In particular, target-date fund users with 90 percent or more of their account balances in target-date funds who are in 401(k) plans dominated by low-income and short-tenure participants tend to hold target-date funds with lower equity allocations, compared with their counterparts in plans dominated by high-income and long-tenure participants. Future research will focus on the extent to which these characteristics might influence the selection of target-date funds by plan sponsors. EQUITY GLIDE PATHS: Several stylized equity glide paths as well as alternative asset allocations are compared for participants at various starting ages to demonstrate the interaction between plan demographics and equity glide paths/asset allocations in terms of success rates in meeting various replacement income targets. The equity glide path/asset allocation providing

  7. Embodied Moving-Target Seeking with Prediction and Planning

    NASA Astrophysics Data System (ADS)

    Oses, Noelia; Hoffmann, Matej; Koene, Randal A.

    We present a bio-inspired control method for moving-target seeking with a mobile robot, which resembles a predator-prey scenario. The motor repertoire of a simulated Khepera robot was restricted to a discrete number of 'gaits'. After an exploration phase, the robot automatically synthesizes a model of its motor repertoire, acquiring a forward model. Two additional components were introduced for the task of catching a prey robot. First, an inverse model to the forward model, which is used to determine the action (gait) needed to reach a desired location. Second, while hunting the prey, a model of the prey's behavior is learned online by the hunter robot. All the models are learned ab initio, without assumptions, work in egocentric coordinates, and are probabilistic in nature. Our architecture can be applied to robots with any physical constraints (or embodiment), such as legged robots.

  8. Collaborative effects-based planning using adversary models and target set optimization

    NASA Astrophysics Data System (ADS)

    Pioch, Nicholas J.; Daniels, Troy; Pielech, Bradford

    2004-08-01

    The Strategy Development Tool (SDT), sponsored by AFRL-IFS, supports effects-based planning at multiple levels of war through three core capabilities: plan authoring, center of gravity (COG) modeling and analysis, and target system analysis. This paper describes recent extensions to all three of these capabilities. The extended plan authoring subsystem supports collaborative planning in which a user delegates elaboration of objectives to other registered users. A suite of collaboration tools allows planners to assign planning tasks, submit plan fragments, and review submitted plans, while a collaboration server transparently handles message routing and persistence. The COG modeling subsystem now includes an enhanced adversary modeling tool that provides a lightweight ontology for building temporal causal models relating enemy goals, beliefs, actions, and resources across multiple types of COGs. Users may overlay friendly interventions, analyze their impact on enemy COGs, and automatically incorporate the causal chains stemming from the best interventions into the current plan. Finally, the target system analysis subsystem has been extended with option generation tools that use network-based optimization algorithms to select candidate target set options to achieve specified effects.

  9. Final work plan for targeted investigation at Inman, Kansas.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2007-11-05

    In 1997, low levels of carbon tetrachloride (below the maximum contaminant level [MCL] of 5 {micro}g/L) were detected in groundwater at Inman, Kansas, by the Kansas Department of Health and Environment (KDHE). The 1997 KDHE sampling was conducted under the U.S. Department of Agriculture (USDA) private well sampling program. The Commodity Credit Corporation (CCC), a USDA agency, operated a grain storage facility in Inman from 1954 to 1965. Carbon tetrachloride is the contaminant of primary concern at sites associated with former CCC/USDA grain storage operations. Inman is located in southwest McPherson County, approximately 10 mi southwest of the city of McPherson (Figure 1.1). To determine whether the former CCC/USDA facility at Inman is a potential contaminant source and its possible relationship to the contamination in groundwater, the CCC/USDA has agreed to conduct an investigation at Inman, in accordance with the Intergovernmental Agreement between the KDHE and the Farm Service Agency of the USDA. For this work plan, Argonne compiled historical data related to the previous investigations and grain storage operations at Inman. Through a review of documents acquired from all available sources, other potential contaminant source areas (in addition to the former CCC/USDA facility) have been identified as (1) the commercial grain storage structures northwest of Inman, along the railroad right-of-way, and (2) small former private grain storage facilities west of Main Street and near the former CCC/USDA facility at the southern edge of Inman (Figure 1.2). Previous investigations and the potential source areas are discussed in Section 2.

  10. Use of target-date funds in 401(k) plans, 2007.

    PubMed

    Copeland, Craig

    2009-03-01

    WHAT THEY ARE: Target-date funds (also called "life-cycle" funds) are a type of mutual fund that automatically rebalances its asset allocation following a predetermined pattern over time. They typically rebalance to more conservative and income-producing assets as the participant's target date of retirement approaches. WHY THEY'RE IMPORTANT AND GROWING: Of the 401(k) plan participants in the EBRI/ICI 401(k) database who were found to be in plans that offeredtarget-date funds, 37 percent had at least some fraction of their account in target-date funds in 2007. Target-date funds held about 7 percent of total assets in 401(k) plans and the use of these funds is expected to increase in the future. The Pension Protection Act of 2006 made it easier for plan sponsors to automatically enroll new workers in a 401(k) plan, and target-date funds were one of the types of approved funds specified for a "default" investment if the participant does not elect a choice. BRI/ICI 401(K) DATABASE: This study uses the unique richness of the data in the EBRI/ICI Participant-Directed Retirement Plan Data Collection Project, which has almost 22 million participants, to examine the choices and characteristics of participants whose plans offer target-date funds. EFFECT OF AGE, SALARY, JOB TENURE, AND ACCOUNT BALANCE: Younger workers are significantly more likely to invest in target-date funds than are older workers: Almost 44 percent of participants under age 30 had assets in a target-date fund, compared with 27 percent of those 60 or older. Target-date funds appeal to those with lower incomes, little time on the job, and with few assets. On average, target-date fund investors are about 2.5 years younger than those who do not invest in target-date funds, have about 3.5 years less tenure, make about $11,000 less in salary, have $25,000 less in their account, and are in smaller plans. EFFECT OF AUTOMATIC ENROLLMENT: While the EBRI/ICI database does not contain specific information on whether

  11. A method for deriving a 4D-interpolated balanced planning target for mobile tumor radiotherapy

    SciTech Connect

    Roland, Teboh; Hales, Russell; McNutt, Todd; Wong, John; Simari, Patricio; Tryggestad, Erik

    2012-01-15

    Purpose: Tumor control and normal tissue toxicity are strongly correlated to the tumor and normal tissue volumes receiving high prescribed dose levels in the course of radiotherapy. Planning target definition is, therefore, crucial to ensure favorable clinical outcomes. This is especially important for stereotactic body radiation therapy of lung cancers, characterized by high fractional doses and steep dose gradients. The shift in recent years from population-based to patient-specific treatment margins, as facilitated by the emergence of 4D medical imaging capabilities, is a major improvement. The commonly used motion-encompassing, or internal-target volume (ITV), target definition approach provides a high likelihood of coverage for the mobile tumor but inevitably exposes healthy tissue to high prescribed dose levels. The goal of this work was to generate an interpolated balanced planning target that takes into account both tumor coverage and normal tissue sparing from high prescribed dose levels, thereby improving on the ITV approach. Methods: For each 4DCT dataset, 4D deformable image registration was used to derive two bounding targets, namely, a 4D-intersection and a 4D-composite target which minimized normal tissue exposure to high prescribed dose levels and maximized tumor coverage, respectively. Through definition of an ''effective overlap volume histogram'' the authors derived an ''interpolated balanced planning target'' intended to balance normal tissue sparing from prescribed doses with tumor coverage. To demonstrate the dosimetric efficacy of the interpolated balanced planning target, the authors performed 4D treatment planning based on deformable image registration of 4D-CT data for five previously treated lung cancer patients. Two 4D plans were generated per patient, one based on the interpolated balanced planning target and the other based on the conventional ITV target. Plans were compared for tumor coverage and the degree of normal tissue sparing

  12. Comparison of the holding power of 3.5-mm cortical versus 4.0-mm cancellous orthopedic screws in the pelvis of immature dogs (cadavers).

    PubMed

    Sardinas, J C; Kraus, K H; Sisson, R D

    1995-02-01

    A 3.5-mm cortical orthopedic screw was compared with a 4.0-mm cancellous screw for maximal load to failure in the pelvis of immature dogs. The pelvis from young cadavers (7 to 13 months old) was divided into hemipelves and used for testing of the 2 screw types. Two sites in each hemipelvis were used, mid-shaft of the ilium and mid-sacrum, including the wing of the ilium. The screws were extracted, and maximal load to failure and mode of failure were recorded. Maximal load to failure per millimeter of engaged thread was calculated. In either pelvic site, the 4.0-mm cancellous screw required a significantly (P < 0.05) higher pullout force per millimeter of engaged screw threads than did the 3.5-mm cortical bone screw. PMID:7717594

  13. UAVs Task and Motion Planning in the Presence of Obstacles and Prioritized Targets.

    PubMed

    Gottlieb, Yoav; Shima, Tal

    2015-01-01

    The intertwined task assignment and motion planning problem of assigning a team of fixed-winged unmanned aerial vehicles to a set of prioritized targets in an environment with obstacles is addressed. It is assumed that the targets' locations and initial priorities are determined using a network of unattended ground sensors used to detect potential threats at restricted zones. The targets are characterized by a time-varying level of importance, and timing constraints must be fulfilled before a vehicle is allowed to visit a specific target. It is assumed that the vehicles are carrying body-fixed sensors and, thus, are required to approach a designated target while flying straight and level. The fixed-winged aerial vehicles are modeled as Dubins vehicles, i.e., having a constant speed and a minimum turning radius constraint. The investigated integrated problem of task assignment and motion planning is posed in the form of a decision tree, and two search algorithms are proposed: an exhaustive algorithm that improves over run time and provides the minimum cost solution, encoded in the tree, and a greedy algorithm that provides a quick feasible solution. To satisfy the target's visitation timing constraint, a path elongation motion planning algorithm amidst obstacles is provided. Using simulations, the performance of the algorithms is compared, evaluated and exemplified. PMID:26610522

  14. Target Allocation Methodology for China's Provinces: Energy Intensity in the 12th FIve-Year Plan

    SciTech Connect

    Ohshita, Stephanie; Price, Lynn

    2011-03-21

    Experience with China's 20% energy intensity improvement target during the 11th Five-Year Plan (FYP) (2006-2010) has shown the challenges of rapidly setting targets and implementing measures to meet them. For the 12th FYP (2011-2015), there is an urgent need for a more scientific methodology to allocate targets among the provinces and to track physical and economic indicators of energy and carbon saving progress. This report provides a sectoral methodology for allocating a national energy intensity target - expressed as percent change in energy per unit gross domestic product (GDP) - among China's provinces in the 12th FYP. Drawing on international experience - especially the European Union (EU) Triptych approach for allocating Kyoto carbon targets among EU member states - the methodology here makes important modifications to the EU approach to address an energy intensity rather than a CO{sub 2} emissions target, and for the wider variation in provincial energy and economic structure in China. The methodology combines top-down national target projections and bottom-up provincial and sectoral projections of energy and GDP to determine target allocation of energy intensity targets. Total primary energy consumption is separated into three end-use sectors - industrial, residential, and other energy. Sectoral indicators are used to differentiate the potential for energy saving among the provinces. This sectoral methodology is utilized to allocate provincial-level targets for a national target of 20% energy intensity improvement during the 12th FYP; the official target is determined by the National Development and Reform Commission. Energy and GDP projections used in the allocations were compared with other models, and several allocation scenarios were run to test sensitivity. The resulting allocations for the 12th FYP offer insight on past performance and offer somewhat different distributions of provincial targets compared to the 11th FYP. Recommendations for reporting

  15. SU-E-T-139: Dynamic Conformal Arcs Vs. VMAT for Stereotactic Lung Target Treatment Planning

    SciTech Connect

    Hershberger, J; Morales, M; Ding, G

    2014-06-01

    Purpose: To investigate if Dynamic Conformal Arcs (DCA) can be used to achieve similar target coverage and conformality as that of using VMAT for Stereotactic Body Radiation Therapy (SBRT) for Lung cases. Methods: We retrospectively re-planned 11 patients that were treated with SBRT for lung tumors using only a single conformal arc, broken into three or four arc segments and weighted differentially in order to achieve the dosimetric constraints as outlined in RTOG 0915 protocol. These re-plans of using DCA were compared with those of using VMAT in terms of the Planning Tumor Volume (PTV) coverage goals, Maximum Dose 2 cm away (D {sub 2}cm), High Dose Spillage, Intermediate Dose Spillage, Lung volume getting 5 Gy (V{sub 5}), and number of monitor units (MU). Results: Of the 11 cases, only three DCA plans failed the D{sub 2}cm parameter, and one VMAT plan failed. None of the 11 patients failed the High Dose Spillage in either technique. For Intermediate Dose Spillage, one DCA plan failed and none failed for VMAT plans. The average V{sub 5} for DCA was 10.5 percent, with VMAT reporting 11.7 percent. The average number of MU for DCA and VMAT were 2605 and 3451, respectively. Conclusion: DCA is able to achieve very similar treatment planning goals as that of using VMAT in treating SBRT Lung tumors in most cases with simplicity. In addition, the DCA technique produces an acceptable plan with lower V{sub 5} in less MU when dose to OAR concerns are at minimum. However, DCA has shown its limitations when the target is close to multiple OAR.

  16. UAVs Task and Motion Planning in the Presence of Obstacles and Prioritized Targets

    PubMed Central

    Gottlieb, Yoav; Shima, Tal

    2015-01-01

    The intertwined task assignment and motion planning problem of assigning a team of fixed-winged unmanned aerial vehicles to a set of prioritized targets in an environment with obstacles is addressed. It is assumed that the targets’ locations and initial priorities are determined using a network of unattended ground sensors used to detect potential threats at restricted zones. The targets are characterized by a time-varying level of importance, and timing constraints must be fulfilled before a vehicle is allowed to visit a specific target. It is assumed that the vehicles are carrying body-fixed sensors and, thus, are required to approach a designated target while flying straight and level. The fixed-winged aerial vehicles are modeled as Dubins vehicles, i.e., having a constant speed and a minimum turning radius constraint. The investigated integrated problem of task assignment and motion planning is posed in the form of a decision tree, and two search algorithms are proposed: an exhaustive algorithm that improves over run time and provides the minimum cost solution, encoded in the tree, and a greedy algorithm that provides a quick feasible solution. To satisfy the target’s visitation timing constraint, a path elongation motion planning algorithm amidst obstacles is provided. Using simulations, the performance of the algorithms is compared, evaluated and exemplified. PMID:26610522

  17. Computer-assisted targeted therapy (CATT) for prostate radiotherapy planning by fusion of CT and MRI

    NASA Astrophysics Data System (ADS)

    Chappelow, Jonathan; Both, Stefan; Viswanath, Satish; Hahn, Stephen; Feldman, Michael; Rosen, Mark; Tomaszewski, John; Vapiwala, Neha; Patel, Pratik; Madabhushi, Anant

    2010-02-01

    In this paper, we present a comprehensive, quantitative imaging framework for improved treatment of prostate cancer via computer-assisted targeted therapy (CATT) to facilitate radiotherapy dose escalation to regions with a high likelihood of disease presence. The framework involves identification of high likelihood prostate cancer regions using computer-aided detection (CAD) classifier on diagnostic MRI, followed by mapping of these regions from MRI onto planning computerized tomography (CT) via image registration. Treatment of prostate cancer by targeted radiotherapy requires CT to formulate a dose plan. While accurate delineation of the prostate and cancer can provide reduced exposure of benign tissue to radiation, as well as a higher dose to the cancer, CT is ineffective in localizing intraprostatic lesions and poor for highlighting the prostate boundary. MR imagery on the other hand allows for greatly improved visualization of the prostate. Further, several studies have demonstrated the utility of CAD for identifying the location of tumors on in vivo multi-functional prostate MRI. Consequently, our objective is to improve the accuracy of radiotherapy dose plans via multimodal fusion of MR and CT. To achieve this objective, the CATT framework presented in this paper comprises the following components: (1) an unsupervised pixel-wise classifier to identify suspicious regions within the prostate on diagnostic MRI, (2) elastic image registration to align corresponding diagnostic MRI, planning MRI, and CT of the prostate, (3) mapping of the suspect regions from diagnostic MRI onto CT, and (4) calculation of a modified radiotherapy plan with escalated dose for cancer. Qualitative comparison of the dose plans (with and without CAD) over a total of 79 2D slices obtained from 10 MR-CT patient studies, suggest that our CATT framework could help in improved targeted treatment of prostate cancer.

  18. Condensation heat transfer characteristics of R410A-oil mixture in 5 mm and 4 mm outside diameter horizontal microfin tubes

    SciTech Connect

    Huang, Xiangchao; Ding, Guoliang; Hu, Haitao; Zhu, Yu.; Gao, Yifeng; Deng, Bin

    2010-10-15

    Condensation heat transfer characteristics of R410A-oil mixture in 5 mm and 4 mm outside diameter horizontal microfin tubes were investigated experimentally. The experimental condensing temperature is 40 C, and nominal oil concentration range is from 0% to 5%. The test results indicate that the presence of oil deteriorates the heat transfer. The deterioration effect is negligible at nominal oil concentration of 1%, and becomes obvious with the increase of nominal oil concentration. At 5% nominal oil concentration, the heat transfer coefficient of R410A-oil mixture is found to have a maximum reduction of 25.1% and 23.8% for 5 mm and 4 mm tubes, respectively. The predictabilities of the existing condensation heat transfer correlations were verified with the experimental data, and Yu and Koyama correlation shows the best predictability. By replacing the pure refrigerant properties with the mixture's properties, Yu and Koyama correlation has a deviation of -15% to + 20% in predicting the local condensation heat transfer coefficient of R410A-oil mixture. (author)

  19. Target motion predictions for pre-operative planning during needle-based interventions.

    PubMed

    op den Buijs, Jorn; Abayazid, Momen; de Korte, Chris L; Misra, Sarthak

    2011-01-01

    During biopsies, breast tissue is subjected to displacement upon needle indentation, puncture, and penetration. Thus, accurate needle placement requires pre-operative predictions of the target motions. In this paper, we used ultrasound elastography measurements to non-invasively predict elastic properties of breast tissue phantoms. These properties were used in finite element (FE) models of indentation of breast soft tissue phantoms. To validate the model predictions of target motion, experimental measurements were carried out. Breast tissue phantoms with cubic and hemispherical geometries were manufactured and included materials with different elastic properties to represent skin, adipose tissue, and lesions. Ultrasound was used to track the displacement of the target (i.e., the simulated lesion) during indentation. The FE model predictions were compared with ultrasound measurements for cases with different boundary conditions and phantom geometry. Maximum errors between measured and predicted target motions were 12% and 3% for the fully supported and partially supported cubic phantoms at 6.0 mm indentation, respectively. Further, FE-based parameter sensitivity analysis indicated that increasing skin elastic modulus and reducing the target depth location increased the target motion. Our results indicate that with a priori knowledge about the geometry, boundary conditions, and linear elastic properties, indentation of breast tissue phantoms can be accurately predicted with FE models. FE models for pre-operative planning in combination with robotic needle insertions, could play a key role in improving lesion targeting for breast biopsies. PMID:22255554

  20. Radiotherapy beyond cancer: Target localization in real-time MRI and treatment planning for cardiac radiosurgery

    SciTech Connect

    Ipsen, S.; Blanck, O.; Rades, D.; Oborn, B.; Bode, F.; Liney, G.; Hunold, P.; Schweikard, A.; Keall, P. J.

    2014-12-15

    Purpose: Atrial fibrillation (AFib) is the most common cardiac arrhythmia that affects millions of patients world-wide. AFib is usually treated with minimally invasive, time consuming catheter ablation techniques. While recently noninvasive radiosurgery to the pulmonary vein antrum (PVA) in the left atrium has been proposed for AFib treatment, precise target location during treatment is challenging due to complex respiratory and cardiac motion. A MRI linear accelerator (MRI-Linac) could solve the problems of motion tracking and compensation using real-time image guidance. In this study, the authors quantified target motion ranges on cardiac magnetic resonance imaging (MRI) and analyzed the dosimetric benefits of margin reduction assuming real-time motion compensation was applied. Methods: For the imaging study, six human subjects underwent real-time cardiac MRI under free breathing. The target motion was analyzed retrospectively using a template matching algorithm. The planning study was conducted on a CT of an AFib patient with a centrally located esophagus undergoing catheter ablation, representing an ideal case for cardiac radiosurgery. The target definition was similar to the ablation lesions at the PVA created during catheter treatment. Safety margins of 0 mm (perfect tracking) to 8 mm (untracked respiratory motion) were added to the target, defining the planning target volume (PTV). For each margin, a 30 Gy single fraction IMRT plan was generated. Additionally, the influence of 1 and 3 T magnetic fields on the treatment beam delivery was simulated using Monte Carlo calculations to determine the dosimetric impact of MRI guidance for two different Linac positions. Results: Real-time cardiac MRI showed mean respiratory target motion of 10.2 mm (superior–inferior), 2.4 mm (anterior–posterior), and 2 mm (left–right). The planning study showed that increasing safety margins to encompass untracked respiratory motion leads to overlapping structures even in the

  1. SU-E-T-428: Dosimetric Impact of Multileaf Collimator Leaf Width On Single and multiple Isocenter Stereotactic IMRT Treatment Plans for multiple Brain Tumors

    SciTech Connect

    Giem, J; Algan, O; Ahmad, S; Ali, I; Young, J; Hossain, S

    2014-06-01

    Purpose: To assess the impacts that multileaf collimator (MLC) leaf width has on the dose conformity and normal brain tissue doses of single and multiple isocenter stereotactic IMRT (SRT) plans for multiple intracranial tumors. Methods: Fourteen patients with 2–3 targets were studied retrospectively. Patients treated with multiple isocenter treatment plans using 9 to 12 non-coplanar beams per lesion underwent repeat planning using single isocenter and 10 to 12 non-coplanar beams with 2.5mm, 3mm and 5mm MLC leaf widths. Brainlab iPlan treatment planning system for delivery with the 2.5mm MLC served as reference. Identical contour sets and dose-volume constraints were applied. The prescribed dose to each target was 25 Gy to be delivered over 5 fractions with a minimum of 99% dose to cover ≥ 95% of the target volume. Results: The lesions and normal brains ranged in size from 0.11 to 51.67cc (median, 2.75cc) and 1090 to 1641cc (median, 1401cc), respectively. The Paddick conformity index for single and multiple isocenter (2.5mm vs. 3mm and 5mm MLCs) was (0.79±0.08 vs. 0.79±0.07 and 0.77±0.08) and (0.79±0.09 vs. 0.77±0.09 and 0.76±0.08), respectively. The average normal brain volumes receiving 15 Gy for single and multiple isocenter (2.5mm vs. 3mm and 5mm MLCs) were (3.65% vs. 3.95% and 4.09%) and (2.89% vs. 2.91% and 2.92%), respectively. Conclusion: The average dose conformity observed for the different leaf width for single and multiple isocenter plans were similar, throughout. However, the average normal brain volumes receiving 2.5 to 15 Gy were consistently lower for the 2.5mm MLC leaf width, especially for single isocenter plans. The clinical consequences of these integral normal brain tissue doses are still unknown, but employing the use of the 2.5mm MLC option is desirable at sparing normal brain tissue for both single and multiple isocenter cases.

  2. PLANS FOR WARM DENSE MATTER EXPERIMENTS AND IFE TARGET EXPERIMENTS ON NDCX-II

    SciTech Connect

    Waldron, W.L.; Barnard, J.J.; Bieniosek, F.M.; Friedman, A.; Henestroza, E.; Leitner, M.; Logan, B.G.; Ni, P.A.; Roy, P.K.; Seidl, P.A.; Sharp, W.M.

    2008-09-22

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) is currently developing design concepts for NDCX-II, the second phase of the Neutralized Drift Compression Experiment, which will use ion beams to explore Warm Dense Matter (WDM) and Inertial Fusion Energy (IFE) target hydrodynamics. The ion induction accelerator will consist of a new short pulse injector and induction cells from the decommissioned Advanced Test Accelerator (ATA) at Lawrence Livermore National Laboratory (LLNL). To fit within an existing building and to meet the energy and temporal requirements of various target experiments, an aggressive beam compression and acceleration schedule is planned. WDM physics and ion-driven direct drive hydrodynamics will initially be explored with 30 nC of lithium ions in experiments involving ion deposition, ablation, acceleration and stability of planar targets. Other ion sources which may deliver higher charge per bunch will be explored. A test stand has been built at Lawrence Berkeley National Laboratory (LBNL) to test refurbished ATA induction cells and pulsed power hardware for voltage holding and ability to produce various compression and acceleration waveforms. Another test stand is being used to develop and characterize lithium-doped aluminosilicate ion sources. The first experiments will include heating metallic targets to 10,000 K and hydrodynamics studies with cryogenic hydrogen targets.

  3. Ecosystem Services in Conservation Planning: Targeted Benefits vs. Co-Benefits or Costs?

    PubMed Central

    Chan, Kai M. A.; Hoshizaki, Lara; Klinkenberg, Brian

    2011-01-01

    There is growing support for characterizing ecosystem services in order to link conservation and human well-being. However, few studies have explicitly included ecosystem services within systematic conservation planning, and those that have follow two fundamentally different approaches: ecosystem services as intrinsically-important targeted benefits vs. substitutable co-benefits. We present a first comparison of these two approaches in a case study in the Central Interior of British Columbia. We calculated and mapped economic values for carbon storage, timber production, and recreational angling using a geographical information system (GIS). These ‘marginal’ values represent the difference in service-provision between conservation and managed forestry as land uses. We compared two approaches to including ecosystem services in the site-selection software Marxan: as Targeted Benefits, and as Co-Benefits/Costs (in Marxan's cost function); we also compared these approaches with a Hybrid approach (carbon and angling as targeted benefits, timber as an opportunity cost). For this analysis, the Co-Benefit/Cost approach yielded a less costly reserve network than the Hybrid approach (1.6% cheaper). Including timber harvest as an opportunity cost in the cost function resulted in a reserve network that achieved targets equivalently, but at 15% lower total cost. We found counter-intuitive results for conservation: conservation-compatible services (carbon, angling) were positively correlated with each other and biodiversity, whereas the conservation-incompatible service (timber) was negatively correlated with all other networks. Our findings suggest that including ecosystem services within a conservation plan may be most cost-effective when they are represented as substitutable co-benefits/costs, rather than as targeted benefits. By explicitly valuing the costs and benefits associated with services, we may be able to achieve meaningful biodiversity conservation at lower cost

  4. Monte Carlo Treatment Planning for Molecular Targeted Radiotherapy within the MINERVA System

    SciTech Connect

    Lehmann, J; Siantar, C H; Wessol, D E; Wemple, C A; Nigg, D; Cogliati, J; Daly, T; Descalle, M; Flickinger, T; Pletcher, D; DeNardo, G

    2004-09-22

    The aim of this project is to extend accurate and patient-specific treatment planning to new treatment modalities, such as molecular targeted radiation therapy, incorporating previously crafted and proven Monte Carlo and deterministic computation methods. A flexible software environment is being created that allows planning radiation treatment for these new modalities and combining different forms of radiation treatment with consideration of biological effects. The system uses common input interfaces, medical image sets for definition of patient geometry, and dose reporting protocols. Previously, the Idaho National Engineering and Environmental Laboratory (INEEL), Montana State University (MSU), and Lawrence Livermore National Laboratory (LLNL) had accrued experience in the development and application of Monte Carlo-based, three-dimensional, computational dosimetry and treatment planning tools for radiotherapy in several specialized areas. In particular, INEEL and MSU have developed computational dosimetry systems for neutron radiotherapy and neutron capture therapy, while LLNL has developed the PEREGRINE computational system for external beam photon-electron therapy. Building on that experience, the INEEL and MSU are developing the MINERVA (Modality Inclusive Environment for Radiotherapeutic Variable Analysis) software system as a general framework for computational dosimetry and treatment planning for a variety of emerging forms of radiotherapy. In collaboration with this development, LLNL has extended its PEREGRINE code to accommodate internal sources for molecular targeted radiotherapy (MTR), and has interfaced it with the plug-in architecture of MINERVA. Results from the extended PEREGRINE code have been compared to published data from other codes, and found to be in general agreement (EGS4 - 2%, MCNP - 10%)(Descalle et al. 2003). The code is currently being benchmarked against experimental data. The interpatient variability of the drug pharmacokinetics in MTR

  5. Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system.

    PubMed

    Lehmann, Joerg; Hartmann Siantar, Christine; Wessol, Daniel E; Wemple, Charles A; Nigg, David; Cogliati, Josh; Daly, Tom; Descalle, Marie-Anne; Flickinger, Terry; Pletcher, David; Denardo, Gerald

    2005-03-01

    The aim of this project is to extend accurate and patient-specific treatment planning to new treatment modalities, such as molecular targeted radiation therapy, incorporating previously crafted and proven Monte Carlo and deterministic computation methods. A flexible software environment is being created that allows planning radiation treatment for these new modalities and combining different forms of radiation treatment with consideration of biological effects. The system uses common input interfaces, medical image sets for definition of patient geometry and dose reporting protocols. Previously, the Idaho National Engineering and Environmental Laboratory (INEEL), Montana State University (MSU) and Lawrence Livermore National Laboratory (LLNL) had accrued experience in the development and application of Monte Carlo based, three-dimensional, computational dosimetry and treatment planning tools for radiotherapy in several specialized areas. In particular, INEEL and MSU have developed computational dosimetry systems for neutron radiotherapy and neutron capture therapy, while LLNL has developed the PEREGRINE computational system for external beam photon-electron therapy. Building on that experience, the INEEL and MSU are developing the MINERVA (modality inclusive environment for radiotherapeutic variable analysis) software system as a general framework for computational dosimetry and treatment planning for a variety of emerging forms of radiotherapy. In collaboration with this development, LLNL has extended its PEREGRINE code to accommodate internal sources for molecular targeted radiotherapy (MTR), and has interfaced it with the plugin architecture of MINERVA. Results from the extended PEREGRINE code have been compared to published data from other codes, and found to be in general agreement (EGS4-2%, MCNP-10%) (Descalle et al 2003 Cancer Biother. Radiopharm. 18 71-9). The code is currently being benchmarked against experimental data. The interpatient variability of the

  6. Repeated 1-cm Resolution Topographic and 2.5-mm Resolution Photomosiac Surveys of Benthic Communities and Fine Scale Bedforms in Monterey Canyon

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Hobson, B.; Thomas, H. J.; Henthorn, R.; Martin, E. J.; Bird, L.; Risi, M.; Troni, G.; Paull, C. K.; Rock, S.; Padial, J. A.; Hammond, M. M.

    2014-12-01

    The Monterey Bay Aquarium Research Institute has developed a low altitude, ROV-based seafloor mapping system that combines lidar laser ranging, multibeam sonar, and stereo photographic imagery. When operated at a 3-m altitude, this system maps seafloor topography with a 1-cm lateral resolution and simultaneously collects 2.5-mm resolution color photography. We have twice mapped an 80-m by 80-m area of a chemosynthetic clam community located at 2850-m depth in the Monterey Canyon axis. Both the topography and the photomosaics resolve changes in the clam community over a six-month interval. Many individual animals have moved, and tracks of those animals are visible in the lidar topography. No other changes in the seafloor at this site can be discerned. We have also performed single surveys of bedforms and scours at both 1850-m and 2850-m depths in Monterey Canyon. The highest resolution bathymetry data are collected using a 3DatDepth SL1 lidar laser scanner. This system has a 30° field of view and ranges continuously, achieving a 1 cm sounding spacing at a 3 m altitude and 0.3 m/s speed. Bathymetry data are also collected using a 400-kHz Reson 7125 multibeam sonar. This configuration produces 512 beams across a 135° wide swath; each beam has a 0.5° acrosstrack by 1.0° alongtrack angular width. At a 3-m altitude, the nadir beams have a 2.5 cm acrosstrack and 5 cm alongtrack footprint. Dual Prosilica GX1920 2.4 Mpixel color cameras provide color stereo photography of the seafloor. Illumination is provided by dual xenon strobes. The camera housings have been fitted with corrective optics achieving a 90° field of view with less than 1% distortion. At a 3-m altitude the raw image pixels have a 2.5 mm resolution. Position and attitude data are provided by a Kearfott SeaDevil Inertial Navigation System (INS) integrated with a 300 kHz Teledyne RD Instruments Doppler velocity log (DVL). A separate Paroscientific pressure sensor is mounted adjacent to the INS. The INS

  7. Data fusion for planning target volume and isodose prediction in prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Nouranian, Saman; Ramezani, Mahdi; Mahdavi, S. Sara; Spadinger, Ingrid; Morris, William J.; Salcudean, Septimiu E.; Abolmaesumi, Purang

    2015-03-01

    In low-dose prostate brachytherapy treatment, a large number of radioactive seeds is implanted in and adjacent to the prostate gland. Planning of this treatment involves the determination of a Planning Target Volume (PTV), followed by defining the optimal number of seeds, needles and their coordinates for implantation. The two major planning tasks, i.e. PTV determination and seed definition, are associated with inter- and intra-expert variability. Moreover, since these two steps are performed in sequence, the variability is accumulated in the overall treatment plan. In this paper, we introduce a model based on a data fusion technique that enables joint determination of PTV and the minimum Prescribed Isodose (mPD) map. The model captures the correlation between different information modalities consisting of transrectal ultrasound (TRUS) volumes, PTV and isodose contours. We take advantage of joint Independent Component Analysis (jICA) as a linear decomposition technique to obtain a set of joint components that optimally describe such correlation. We perform a component stability analysis to generate a model with stable parameters that predicts the PTV and isodose contours solely based on a new patient TRUS volume. We propose a framework for both modeling and prediction processes and evaluate it on a dataset of 60 brachytherapy treatment records. We show PTV prediction error of 10:02+/-4:5% and the V100 isodose overlap of 97+/-3:55% with respect to the clinical gold standard.

  8. Brain Malignancy Steering Committee clinical trials planning workshop: Report from the Targeted Therapies Working Group

    PubMed Central

    Alexander, Brian M.; Galanis, Evanthia; Yung, W.K. Alfred; Ballman, Karla V.; Boyett, James M.; Cloughesy, Timothy F.; Degroot, John F.; Huse, Jason T.; Mann, Bhupinder; Mason, Warren; Mellinghoff, Ingo K.; Mikkelsen, Tom; Mischel, Paul S.; O'Neill, Brian P.; Prados, Michael D.; Sarkaria, Jann N.; Tawab-Amiri, Abdul; Trippa, Lorenzo; Ye, Xiaobu; Ligon, Keith L.; Berry, Donald A.; Wen, Patrick Y.

    2015-01-01

    Glioblastoma is the most common primary brain malignancy and is associated with poor prognosis despite aggressive local and systemic therapy, which is related to a paucity of viable treatment options in both the newly diagnosed and recurrent settings. Even so, the rapidly increasing number of targeted therapies being evaluated in oncology clinical trials offers hope for the future. Given the broad range of possibilities for future trials, the Brain Malignancy Steering Committee convened a clinical trials planning meeting that was held at the Udvar-Hazy Center in Chantilly, Virginia, on September 19 and 20, 2013. This manuscript reports the deliberations leading up to the event from the Targeted Therapies Working Group and the results of the meeting. PMID:25165194

  9. Femtosecond laser written 16.5 mm long glass-waveguide amplifier and laser with 5.2 dB cm-1 internal gain at 1534 nm

    NASA Astrophysics Data System (ADS)

    Hoyo, J.; Berdejo, V.; Toney Fernandez, T.; Ferrer, A.; Ruiz, A.; Valles, J. A.; Rebolledo, M. A.; Ortega-Feliu, I.; Solis, J.

    2013-10-01

    A 16.5 mm long, heavily doped erbium-ytterbium phosphate glass-waveguide amplifier was fabricated by the femtosecond laser (fs-laser) inscription technique. The femtosecond laser inscription of waveguides was carried out at 500 kHz repetition rate using a 0.68 NA aspheric lens. The energy deposition profile in the dielectric material was initially simulated using a generalized adaptive fast-Fourier evolver (GAFFE) algorithm. The size and shape of the guiding structures were carefully controlled by the slit shaping technique to reduce the coupling losses, with achievable values down to less than 0.1 dB. Rigorous simulations of the response of the active waveguides were carried out to optimize their performance as optical amplifiers. A maximum of 8.6 dB internal gain at 1534 nm was obtained upon bidirectional laser pumping at 976 nm, leading to a gain per unit length of 5.2 dB cm-1. Laser action was also achieved for both ring and linear cavity configurations.

  10. The value of family planning user profiles in better targeting of family planning: the case of Vanuatu.

    PubMed

    Foy, D

    1993-07-01

    Modern reversible contraceptive methods currently approved in Vanuatu are: oral hormonal contraceptives (OCs), the intrauterine device (IUD), and condoms. These are used by about 9% of all women in childbearing age. A study was undertaken to determine profiles of average current modern FP users in order to identify some of the factors influencing FP use and facilitate better program management. FP records from 3 hospitals were reviewed in 1992, and user profiles were constructed in terms of age, parity, and length of use for the OC and the IUD (used nationally by 60% and 3)% of all modern methods users, respectively). The results involving 513 current OC and 438 IUD users showed that 61% of OC and 6% of IUD user groups were aged 22-30 years and had 2 or 3 children. The 1st finding was that few women with just 1 child use either OCs or the IUD; they represent a potentially under-served target group for the FP programs. Service providers could specifically counsel such women and their partner on planned parenthood and through targeted health education material. The 2nd finding was that the average length of use of the IUD was significantly longer than that of OCs. In a country where access to FP services is frequently difficult and having children (even for single women) socially acceptable, the decision to discontinue OCs is often made by default. In contrast, discontinuation of an IUD requires a more active decision to be made, usually to have another child or because of unacceptable side effects. Hence, the significantly shorter length of use of OCs compared to IUDs by FP users. This finding underlines the importance of promoting IUDs among parous women in Vanuatu. The FP user profiles can be valuable for program planners by identifying groups using FP services, and any significant differences in the pattern of use among acceptors. PMID:8356742

  11. Distal third humeri fractures treated using the Synthes™ 3.5-mm extra-articular distal humeral locking compression plate: clinical, radiographic and patient outcome scores

    PubMed Central

    Lewis, James; Rao, Prasad; Parfitt, Dan; Mohanty, Khitish; Ghandour, Adel

    2014-01-01

    Background Conventional management protocols for distal humeral extra-articular fractures (e.g. conservative, double columnar plating) are often associated with complications. We aimed to describe our experience of using the Synthes™ 3.5-mm extra-articular distal humeral locking compression plate for treatment of extra-articular distal humeral fractures. Methods We prospectively studied 23 consecutive patients who underwent fixation, in a tertiary trauma centre, over 2 years. Data, including patient demographics, duration of follow-up, patient satisfaction, visual analogue score (VAS), Oxford Elbow Score, and final outcome on discharge, were collected and analyzed. Results Of the 23 patients (12 males, 11 females; mean age 47.5 years; range 18 years to 89 years), all fractures united radiologically and clinically after the index procedure, with a mean time to fracture union of 15.7 weeks (range 9 weeks to 34 weeks) and a mean time to discharge of 17.8 weeks (range 13 weeks to 34 weeks). Oxford Elbow Score was 36.5 (range 11 to 48) at 4.6 months postoperatively; at 20 months follow-up, it was 40 (range 14 to 48) and the VAS was 8.5 (range 5 to 10). One patient had radial nerve neuropraxia pre-operatively, and one postoperatively, and both recovered uneventfully 3 months postoperatively. Neither superficial, nor deep infections were observed in this cohort. Conclusions The present study reports satisfactory outcome with the usage of the Synthes plate for extra-articular fracture management. It has become the technique of choice in our centre because it provides excellent results.

  12. High-sensitivity 86 GHz (3.5 mm) VLBI Observations of M87: Deep Imaging of the Jet Base at a Resolution of 10 Schwarzschild Radii

    NASA Astrophysics Data System (ADS)

    Hada, Kazuhiro; Kino, Motoki; Doi, Akihiro; Nagai, Hiroshi; Honma, Mareki; Akiyama, Kazunori; Tazaki, Fumie; Lico, Rocco; Giroletti, Marcello; Giovannini, Gabriele; Orienti, Monica; Hagiwara, Yoshiaki

    2016-02-01

    We report on results from new high-sensitivity, high-resolution 86 GHz (3.5 mm) observations of the jet base in the nearby radio galaxy M87, obtained by the Very Long Baseline Array in conjunction with the Green Bank Telescope. The resulting image has a dynamic range exceeding 1500 to 1, the highest ever achieved for this jet at this frequency, resolving and imaging a detailed jet formation/collimation structure down to ∼10 Schwarzschild radii ({R}{{s}}). The obtained 86 GHz image clearly confirms some important jet features known at lower frequencies, i.e., a jet base with a wide opening angle, a limb-brightened intensity profile, a parabola-shape collimation profile and a counter jet. The limb-brightened structure is already well developed at \\lt 0.2 mas (\\lt 28 {R}{{s}}, projected) from the core, where the corresponding apparent opening angle becomes as wide as ∼100°. The subsequent jet collimation near the black hole evolves in a complicated manner; there is a “constricted” structure at tens of {R}{{s}} from the core, where the jet cross section is locally shrinking. We suggest that external pressure support from the inner part of the radiatively inefficient accretion flow may be dynamically important in shaping/confining the footprint of the magnetized jet. We also present the first 86 GHz polarimetric experiment using very long baseline interferometry for this source, where a highly polarized (∼20%) feature is detected near the jet base, indicating the presence of a well-ordered magnetic field. As a by-product, we additionally report a 43/86 GHz polarimetric result for our calibrator 3C 273, suggesting an extreme rotation measure near the core.

  13. Fuel and core testing plan for a target fueled isotope production reactor.

    SciTech Connect

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-12-01

    In recent years there has been an unstable supply of the critical diagnostic medical isotope 99Tc. Several concepts and designs have been proposed to produce 99Mo the parent nuclide of 99Tc, at a commercial scale sufficient to stabilize the world supply. This work lays out a testing and experiment plan for a proposed 2 MW open pool reactor fueled by Low Enriched Uranium (LEU) 99Mo targets. The experiments and tests necessary to support licensing of the reactor design are described and how these experiments and tests will help establish the safe operating envelop for a medical isotope production reactor is discussed. The experiments and tests will facilitate a focused and efficient licensing process in order to bring on line a needed production reactor dedicated to supplying medical isotopes. The Target Fuel Isotope Reactor (TFIR) design calls for an active core region that is approximately 40 cm in diameter and 40 cm in fuel height. It contains up to 150 cylindrical, 1-cm diameter, LEU oxide fuel pins clad with Zircaloy (zirconium alloy), in an annular hexagonal array on a {approx}2.0 cm pitch surrounded, radially, by a graphite or a Be reflector. The reactor is similar to U.S. university reactors in power, hardware, and safety/control systems. Fuel/target pin fabrication is based on existing light water reactor fuel fabrication processes. However, as part of licensing process, experiments must be conducted to confirm analytical predictions of steady-state power and accident conditions. The experiment and test plan will be conducted in phases and will utilize existing facilities at the U.S. Department of Energy's Sandia National Laboratories. The first phase is to validate the predicted reactor core neutronics at delayed critical, zero power and very low power. This will be accomplished by using the Sandia Critical Experiment (CX) platform. A full scale TFIR core will be built in the CX and delayed critical measurements will be taken. For low power experiments

  14. Targeting climate diversity in conservation planning to build resilience to climate change

    USGS Publications Warehouse

    Heller, Nicole E.; Kreitler, Jason R.; Ackerly, David; Weiss, Stuart; Recinos, Amanda; Branciforte, Ryan; Flint, Lorraine E.; Flint, Alan L.; Micheli, Elisabeth

    2015-01-01

    Climate change is raising challenging concerns for systematic conservation planning. Are methods based on the current spatial patterns of biodiversity effective given long-term climate change? Some conservation scientists argue that planning should focus on protecting the abiotic diversity in the landscape, which drives patterns of biological diversity, rather than focusing on the distribution of focal species, which shift in response to climate change. Climate is one important abiotic driver of biodiversity patterns, as different climates host different biological communities and genetic pools. We propose conservation networks that capture the full range of climatic diversity in a region will improve the resilience of biotic communities to climate change compared to networks that do not. In this study we used historical and future hydro-climate projections from the high resolution Basin Characterization Model to explore the utility of directly targeting climatic diversity in planning. Using the spatial planning tool, Marxan, we designed conservation networks to capture the diversity of climate types, at the regional and sub-regional scale, and compared them to networks we designed to capture the diversity of vegetation types. By focusing on the Conservation Lands Network (CLN) of the San Francisco Bay Area as a real-world case study, we compared the potential resilience of networks by examining two factors: the range of climate space captured, and climatic stability to 18 future climates, reflecting different emission scenarios and global climate models. We found that the climate-based network planned at the sub-regional scale captured a greater range of climate space and showed higher climatic stability than the vegetation and regional based-networks. At the same time, differences among network scenarios are small relative to the variance in climate stability across global climate models. Across different projected futures, topographically heterogeneous areas

  15. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation.

    PubMed

    Unkelbach, Jan; Menze, Bjoern H; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  16. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    NASA Astrophysics Data System (ADS)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  17. A Biomechanical Comparison of Three 1.5-mm Plate and Screw Configurations and a Single 2.0-mm Plate for Internal Fixation of a Mandibular Condylar Fracture

    PubMed Central

    Aquilina, Peter; Parr, William C.H.; Chamoli, Uphar; Wroe, Stephen; Clausen, Philip

    2014-01-01

    The most stable pattern of internal fixation for mandibular condyle fractures is an area of ongoing discussion. This study investigates the stability of three patterns of plate fixation using readily available, commercially pure titanium implants. Finite element models of a simulated mandibular condyle fracture were constructed. The completed models were heterogeneous in bone material properties, contained approximately 1.2 million elements and incorporated simulated jaw adducting musculature. Models were run assuming linear elasticity and isotropic material properties for bone. No human subjects were involved in this investigation. The stability of the simulated condylar fracture reduced with the different implant configurations, and the von Mises stresses of a 1.5-mm X-shaped plate, a 1.5-mm rectangular plate, and a 1.5-mm square plate (all Synthes (Synthes GmbH, Zuchwil, Switzerland) were compared. The 1.5-mm X plate was the most stable of the three 1.5-mm profile plate configurations examined and had comparable mechanical performance to a single 2.0-mm straight four-hole plate. This study does not support the use of rectangular or square plate patterns in the open reduction and internal fixation of mandibular condyle fractures. It does provide some support for the use of a 1.5-mm X plate to reduce condylar fractures in selected clinical cases. PMID:25136411

  18. SUPERCONDUCTING LINAC UPGRADE PLAN FOR THE SECOND TARGET STATION PROJECT AT SNS

    SciTech Connect

    Kim, Sang-Ho; Doleans, Marc; Galambos, John D; Howell, Matthew P; Mammosser, John

    2015-01-01

    The beam power of the Linac for the Second Target Station (STS) at the Spallation Neutron Source (SNS) will be doubled to 2.8 MW. For the energy upgrade, seven additional cryomodules will be installed in the reserved space at the end of the linac tunnel to produce linac output energy of 1.3 GeV. The cryomodules for STS will have the same physical length but will incorporate some design changes based on the lessons learned from operational experience over the last 10 years and from the high beta spare cryomodule developed in house. The average macro-pulse beam current for the STS will be 38 mA which is about a 40 % increase from the present beam current for 1.4 MW operation. Plans for the new cryomodules and for the existing cryomodules to support higher beam current for the STS are presented in this paper.

  19. Evaluation of clinical margins via simulation of patient setup errors in prostate IMRT treatment plans

    SciTech Connect

    Gordon, J. J.; Crimaldi, A. J.; Hagan, M.; Moore, J.; Siebers, J. V.

    2007-01-15

    This work evaluates: (i) the size of random and systematic setup errors that can be absorbed by 5 mm clinical target volume (CTV) to planning target volume (PTV) margins in prostate intensity modulated radiation therapy (IMRT); (ii) agreement between simulation results and published margin recipes; and (iii) whether shifting contours with respect to a static dose distribution accurately predicts dose coverage due to setup errors. In 27 IMRT treatment plans created with 5 mm CTV-to-PTV margins, random setup errors with standard deviations (SDs) of 1.5, 3, 5 and 10 mm were simulated by fluence convolution. Systematic errors with identical SDs were simulated using two methods: (a) shifting the isocenter and recomputing dose (isocenter shift), and (b) shifting patient contours with respect to the static dose distribution (contour shift). Maximum tolerated setup errors were evaluated such that 90% of plans had target coverage equal to the planned PTV coverage. For coverage criteria consistent with published margin formulas, plans with 5 mm margins were found to absorb combined random and systematic SDs{approx_equal}3 mm. Published recipes require margins of 8-10 mm for 3 mm SDs. For the prostate IMRT cases presented here a 5 mm margin would suffice, indicating that published recipes may be pessimistic. We found significant errors in individual plan doses given by the contour shift method. However, dose population plots (DPPs) given by the contour shift method agreed with the isocenter shift method for all structures except the nodal CTV and small bowel. For the nodal CTV, contour shift DPP differences were due to the structure moving outside the patient. Small bowel DPP errors were an artifact of large relative differences at low doses. Estimating individual plan doses by shifting contours with respect to a static dose distribution is not recommended. However, approximating DPPs is acceptable, provided care is taken with structures such as the nodal CTV which lie close

  20. Estimated limits of IMRT dose escalation using varied planning target volume margins

    NASA Astrophysics Data System (ADS)

    Goulet, Christopher C.; Herman, Michael G.; Hillman, David W.; Davis, Brian J.

    2008-07-01

    To estimate the limits of dose escalation for prostate cancer as a function of planning target volume (PTV) margins, the maximum achievable dose (MAD) was determined through iterative plan optimizations from data sets of 18 patients until the dose constraints for rectum, bladder and PTV could no longer be met. PTV margins of 10, 5 and 3 mm yielded a mean MAD of 83.0 Gy (range, 73.8-108.0 Gy), 113.1 Gy (range, 90.0-151.2 Gy) and 135.9 Gy (range, 102.6-189.0 Gy), respectively. All comparisons of MAD among margin groups were statistically significant (P < 0.001). Comparison of prostate volumes of 30-50 mL (n = 8) with volumes of 51-70 mL (n = 7) and 71-105 mL (n = 3) showed an inverse relationship with MAD. Decreases in PTV margin significantly decreased the PTV overlap of the rectum (P < 0.001 for all margin comparisons). With decreases in the PTV margin and maintenance of identical dose constraints, doses well above those currently prescribed for treatment of localized prostate cancer appear feasible. However, the dose escalation suggested by these findings is a theoretical estimate, and additional dose constraints will likely be necessary to limit toxicity to normal tissue.

  1. 3D Ultrasound Can Contribute to Planning CT to Define the Target for Partial Breast Radiotherapy

    SciTech Connect

    Berrang, Tanya S.; Truong, Pauline T. Popescu, Carmen; Drever, Laura; Kader, Hosam A.; Hilts, Michelle L.; Mitchell, Tracy; Soh, S.Y.; Sands, Letricia; Silver, Stuart; Olivotto, Ivo A.

    2009-02-01

    Purpose: The role of three-dimensional breast ultrasound (3D US) in planning partial breast radiotherapy (PBRT) is unknown. This study evaluated the accuracy of coregistration of 3D US to planning computerized tomography (CT) images, the seroma contouring consistency of radiation oncologists using the two imaging modalities and the clinical situations in which US was associated with improved contouring consistency compared to CT. Materials and Methods: Twenty consecutive women with early-stage breast cancer were enrolled prospectively after breast-conserving surgery. Subjects underwent 3D US at CT simulation for adjuvant RT. Three radiation oncologists independently contoured the seroma on separate CT and 3D US image sets. Seroma clarity, seroma volumes, and interobserver contouring consistency were compared between the imaging modalities. Associations between clinical characteristics and seroma clarity were examined using Pearson correlation statistics. Results: 3D US and CT coregistration was accurate to within 2 mm or less in 19/20 (95%) cases. CT seroma clarity was reduced with dense breast parenchyma (p = 0.035), small seroma volume (p < 0.001), and small volume of excised breast tissue (p = 0.01). US seroma clarity was not affected by these factors (p = NS). US was associated with improved interobserver consistency compared with CT in 8/20 (40%) cases. Of these 8 cases, 7 had low CT seroma clarity scores and 4 had heterogeneously to extremely dense breast parenchyma. Conclusion: 3D US can be a useful adjunct to CT in planning PBRT. Radiation oncologists were able to use US images to contour the seroma target, with improved interobserver consistency compared with CT in cases with dense breast parenchyma and poor CT seroma clarity.

  2. Carcinoma ex-pleomorphic adenoma of the salivary glands has a high risk of progression when the tumor invades more than 2.5 mm beyond the capsule of the residual pleomorphic adenoma.

    PubMed

    Rito, Miguel; Fonseca, Isabel

    2016-03-01

    Carcinoma ex-pleomorphic adenoma (CPA) is subclassified based on the extent of penetration of the malignant component beyond the fibrous capsule of the pre-existing pleomorphic adenoma (PA). These subclasses are considered to be prognostically significant since the non-invasive/minimally invasive groups have an excellent outcome. Nevertheless, there is no consensus as to the cutoff value to distinguish between minimal and wide invasion, even though the 2005 WHO classification defines 1.5 mm as cutoff. The objective of this study is to evaluate a consecutive series of CPA, in order to establish what the effect is of the extent of extra-capsular invasion on prognosis. Fifty-eight cases of CPA were reviewed to obtain demographic and pathological information. Extent of invasion was measured. Eleven cases were non-invasive, 9 had ≤1.5 mm invasion, and for the remainder, the depth of invasion ranged between 2.5 and >10 mm. Distant metastases or death did not occur in the first two groups. In the group with ≥2.5 mm invasion, 15 patients had progressive disease and 9 of them died. The minimum extent of invasion associated with tumor progression and death was 2.5 mm. Two histologically non-invasive carcinomas had regional lymph node metastasis. CPA with ≤1.5 mm depth of invasion has good prognosis. Nevertheless, the lymph node metastases found in two cases of this group question the concept that intracapsular/minimally invasive CPA has a prognosis similar to that of PA. The minimum extent of invasion associated with death was 2.5 mm, which is at variance with findings in other recent series. Thirteen cases with depth of invasion exceeding 2.5 mm did well, confirming that additional factors should be considered in the clinical management of these patients. PMID:26638158

  3. Integrating respiratory-gated PET-based target volume delineation in liver SBRT planning, a pilot study

    PubMed Central

    2014-01-01

    Background To assess the feasibility and benefit of integrating four-dimensional (4D) Positron Emission Tomography (PET) – computed tomography (CT) for liver stereotactic body radiation therapy (SBRT) planning. Methods 8 patients with 14 metastases were accrued in the study. They all underwent a non-gated PET and a 4D PET centered on the liver. The same CT scan was used for attenuation correction, registration, and considered the planning CT for SBRT planning. Six PET phases were reconstructed for each 4D PET. By applying an individualized threshold to the 4D PET, a Biological Internal Target Volume (BITV) was generated for each lesion. A gated Planning Target Volume (PTVg) was created by adding 3 mm to account for set-up margins. This volume was compared to a manual Planning Target Volume (PTV) delineated with the help of a semi-automatic Biological Target Volume (BTV) obtained from the non-gated exam. A 5 mm radial and a 10 mm craniocaudal margins were applied to account for tumor motion and set-up margins to create the PTV. Results One undiagnosed liver metastasis was discovered thanks to the 4D PET. The semi-automatic BTV were significantly smaller than the BITV (p = 0.0031). However, after applying adapted margins, 4D PET allowed a statistically significant decrease in the PTVg as compared to the PTV (p = 0.0052). Conclusions In comparison to non-gated PET, 4D PET may better define the respiratory movements of liver targets and improve SBRT planning for liver metastases. Furthermore, non respiratory-gated PET exams can both misdiagnose liver metastases and underestimate the real internal target volumes. PMID:24885897

  4. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 1, Final report

    SciTech Connect

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-04-01

    This report describes background research for preparation of a plan for development of whole-building energy targets for new commercial buildings. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research development, and technology transfer activities with other interested organizations are actively pursued.

  5. Targeting "Plan Colombia": A Critical Analysis of Ideological and Political Visual Narratives by the Beehive Collective and the Drug Enforcement Administration Museum

    ERIC Educational Resources Information Center

    Erler, Carolyn

    2008-01-01

    This article compares the Beehive Collective's "Plan Colombia" to a museum exhibition representing the official U.S. position on Plan Colombia. Through a dialectical (Kellner & Share, 2007; Greene, 1988) reading of "Plan Colombia" and "Target America," I examine how each uses visual narrative to promote a particular reading of Plan Colombia.…

  6. Connecticut's Value-Based Insurance Plan Increased The Use Of Targeted Services And Medication Adherence.

    PubMed

    Hirth, Richard A; Cliff, Elizabeth Q; Gibson, Teresa B; McKellar, M Richard; Fendrick, A Mark

    2016-04-01

    In 2011 Connecticut implemented the Health Enhancement Program for state employees. This voluntary program followed the principles of value-based insurance design (VBID) by lowering patient costs for certain high-value primary and chronic disease preventive services, coupled with requirements that enrollees receive these services. Nonparticipants in the program, including those removed for noncompliance with its requirements, were assessed a premium surcharge. The program was intended to curb cost growth and improve health through adherence to evidence-based preventive care. To evaluate its efficacy in doing so, we compared changes in service use and spending after implementation of the program to trends among employees of six other states. Compared to employees of other states, Connecticut employees were similar in age and sex but had a slightly higher percentage of enrollees with chronic conditions and substantially higher spending at baseline. During the program's first two years, the use of targeted services and adherence to medications for chronic conditions increased, while emergency department use decreased, relative to the situation in the comparison states. The program's impact on costs was inconclusive and requires a longer follow-up period. This novel combination of VBID principles and participation requirements may be a tool that can help plan sponsors increase the use of evidence-based preventive services. PMID:27044964

  7. Image Guidance-Based Target Volume Margin Expansion in IMRT of Head and Neck Cancer.

    PubMed

    Srivastava, Shiv P; Cheng, Chee-Wai; Das, Indra J

    2016-02-01

    This study quantifies the setup uncertainties to optimize the planning target volume (PTV) margin based on daily image guidance, its dosimetric impact, and radiobiological implication for intensity-modulated radiation therapy (IMRT) in head and neck cancer. Ten patients were retrospectively chosen who had been treated with IMRT and with daily image-guided radiation therapy (IGRT). The daily setup errors of the 10 patients from on-board imaging for the entire treatment were analyzed. Planning target volumes were generated by expanding the clinical target volumes (CTVs) with 0 to 10 mm margins. The IMRT plans with the same dose-volume constraints were created in an Eclipse treatment planning system. The effect of volume expansion was analyzed with biological indices such as tumor control probability, normal tissue complication probability (NTCP), and equivalent uniform dose. Analysis of 906 daily setup corrections using daily IGRT showed that 98% of the daily setups are within ± 5 mm. The relative increase in PTV-CTV volume from 0 to 10 mm margins provides nearly 4-fold volume increase and is linearly related to monitor unit (MU). The increase in MU is about 5%/mm margin increase. The relative increase in NTCP of parotids from 5 to 10 mm margins is 3.2 ± 1.15. Increase in PTV margin increases extra tissue volume with a corresponding increase in MU for treatment and NTCP values. Even a small margin increase (eg, 1 mm) may result in increase of more than 20% in relative extra volume and 15% in NTCP value of organs at risk (OARs). With image guidance, the setup uncertainty could be achieved within ± 5 mm for 98% of the treatments, and a margin <5 mm for PTV may seem desirable to reduce the extra tissue irradiated, but at the expense of a more demanding setup accuracy. PMID:25432930

  8. Planning a Target Renewable Portfolio using Atmospheric Modeling and Stochastic Optimization

    NASA Astrophysics Data System (ADS)

    Hart, E.; Jacobson, M. Z.

    2009-12-01

    A number of organizations have suggested that an 80% reduction in carbon emissions by 2050 is a necessary step to mitigate climate change and that decarbonization of the electricity sector is a crucial component of any strategy to meet this target. Integration of large renewable and intermittent generators poses many new problems in power system planning. In this study, we attempt to determine an optimal portfolio of renewable resources to meet best the fluctuating California load while also meeting an 80% carbon emissions reduction requirement. A stochastic optimization scheme is proposed that is based on a simplified model of the California electricity grid. In this single-busbar power system model, the load is met with generation from wind, solar thermal, photovoltaic, hydroelectric, geothermal, and natural gas plants. Wind speeds and insolation are calculated using GATOR-GCMOM, a global-through-urban climate-weather-air pollution model. Fields were produced for California and Nevada at 21km SN by 14 km WE spatial resolution every 15 minutes for the year 2006. Load data for 2006 were obtained from the California ISO OASIS database. Maximum installed capacities for wind and solar thermal generation were determined using a GIS analysis of potential development sites throughout the state. The stochastic optimization scheme requires that power balance be achieved in a number of meteorological and load scenarios that deviate from the forecasted (or modeled) data. By adjusting the error distributions of the forecasts, the model describes how improvements in wind speed and insolation forecasting may affect the optimal renewable portfolio. Using a simple model, we describe the diversity, size, and sensitivities of a renewable portfolio that is best suited to the resources and needs of California and that contributes significantly to reduction of the state’s carbon emissions.

  9. Defining the Clinical Target Volume for Bladder Cancer Radiotherapy Treatment Planning

    SciTech Connect

    Jenkins, Peter; Anjarwalla, Salim; Gilbert, Hugh; Kinder, Richard

    2009-12-01

    Purpose: There are currently no data for the expansion margin required to define the clinical target volume (CTV) around bladder tumors. This information is particularly relevant when perivesical soft tissue changes are seen on the planning scan. While this appearance may reflect extravesical extension (EVE), it may also be an artifact of previous transurethral resection (TUR). Methods and Materials: Eighty patients with muscle-invasive bladder cancer who had undergone radical cystectomy were studied. All patients underwent preoperative TUR and staging computed tomography (CT) scans. The presence and extent of tumor growth beyond the outer bladder wall was measured radiologically and histopathologically. Results: Forty one (51%) patients had histologically confirmed tumor extension into perivesical fat. The median and mean extensions beyond the outer bladder wall were 1.7 and 3.1 mm, respectively. Thirty five (44%) patients had EVE, as seen on CT scans. The sensitivity and specificity of CT scans for EVE were 56% and 79%, respectively. False-positive results were infrequent and not affected by either the timing or the amount of tissue resected at TUR. CT scans consistently tended to overestimate the extent of EVE. Tumor size and the presence of either lymphovascular invasion or squamoid differentiation predict a greater extent of EVE. Conclusions: In patients with radiological evidence of extravesical disease, the CTV should comprise the outer bladder wall plus a 10-mm margin. In patients with no evidence of extravesical disease on CT scans, the CTV should be restricted to the outer bladder wall plus a 6-mm margin. These recommendations would encompass microscopic disease extension in 90% of cases.

  10. Implementation of a target volume design function for intrafractional range variation in a particle beam treatment planning system

    PubMed Central

    Inaniwa, T; Miki, K; Shirai, T; Noda, K

    2014-01-01

    Objective: Treatment planning for charged particle therapy in the thoracic and abdominal regions should take account of range uncertainty due to intrafractional motion. Here, we developed a design tool (4Dtool) for the target volume [field-specific target volume (FTV)], which accounts for this uncertainty using four-dimensional CT (4DCT). Methods: Target and normal tissue contours were input manually into a treatment planning system (TPS). These data were transferred to the 4Dtool via the picture archiving and communication system (PACS). Contours at the reference phase were propagated to other phases by deformable image registration. FTV was calculated using 4DCT on the 4Dtool. The TPS displays FTV contours using digital imaging and communications in medicine files imported from the PACS. These treatment parameters on the CT image at the reference phase were then used for dose calculation on the TPS. The tool was tested in single clinical case randomly selected from patients treated at our centre for lung cancer. Results: In this clinical case, calculation of dose distribution with the 4Dtool resulted in the successful delivery of carbon-ion beam at the reference phase of 95% of the prescribed dose to the clinical target volume (CTV). Application to the other phases also provided sufficient dose to the CTV. Conclusion: The 4Dtool software allows the design of the target volume with consideration to intrafractional range variation and is now in routine clinical use at our institution. Advances in knowledge: Our alternative technique represents a practical approach to four-dimensional treatment planning within the current state of charged particle therapy. PMID:25168286

  11. Clinical Evaluation of Stereotactic Target Localization Using 3-Tesla MRI for Radiosurgery Planning

    SciTech Connect

    MacFadden, Derek; Zhang Beibei; Brock, Kristy K.; Hodaie, Mojgan; Laperriere, Normand; Schwartz, Michael; Tsao, May; Stainsby, Jeffrey; Lockwood, Gina; Mikulis, David; Menard, Cynthia

    2010-04-15

    Purpose: Increasing the magnetic resonance imaging (MRI) field strength can improve image resolution and quality, but concerns remain regarding the influence on geometric fidelity. The objectives of the present study were to spatially investigate the effect of 3-Tesla (3T) MRI on clinical target localization for stereotactic radiosurgery. Methods and Materials: A total of 39 patients were enrolled in a research ethics board-approved prospective clinical trial. Imaging (1.5T and 3T MRI and computed tomography) was performed after stereotactic frame placement. Stereotactic target localization at 1.5T vs. 3T was retrospectively analyzed in a representative cohort of patients with tumor (n = 4) and functional (n = 5) radiosurgical targets. The spatial congruency of the tumor gross target volumes was determined by the mean discrepancy between the average gross target volume surfaces at 1.5T and 3T. Reproducibility was assessed by the displacement from an averaged surface and volume congruency. Spatial congruency and the reproducibility of functional radiosurgical targets was determined by comparing the mean and standard deviation of the isocenter coordinates. Results: Overall, the mean absolute discrepancy across all patients was 0.67 mm (95% confidence interval, 0.51-0.83), significantly <1 mm (p < .010). No differences were found in the overall interuser target volume congruence (mean, 84% for 1.5T vs. 84% for 3T, p > .4), and the gross target volume surface mean displacements were similar within and between users. The overall average isocenter coordinate discrepancy for the functional targets at 1.5T and 3T was 0.33 mm (95% confidence interval, 0.20-0.48), with no patient-specific differences between the mean values (p >.2) or standard deviations (p >.1). Conclusion: Our results have provided clinically relevant evidence supporting the spatial validity of 3T MRI for use in stereotactic radiosurgery under the imaging conditions used.

  12. SU-E-T-319: The Effect of Slice Thickness On IMRT Planning

    SciTech Connect

    Srivastava, S; Das, I; Cheng, C

    2014-06-01

    Purpose: The accuracy of volume estimated of a treatment planning system is investigated in this study. In addition, the effect of slice thickness on IMRT planning is also studied. Methods: The accuracy in volume determination was investigated using a water phantom containing various objects with known volumes ranging from 1–100cm{sup 3}. The phantom was scanned with different slice thickness (1–10 mm). The CT data sets were sent to Eclipse TPS for contour delineation and volume calculation. The effect of slice thickness on IMRT planning was studied using a commercial phantom containing four different shaped objects. The phantom was scanned with different slice thickness (1–5 mm). IMRT plans were generated for the different CT datasets to calculate TCP, homogeneity (HI) and conformity indices (CI). Results: The variability of volumes with CT slice thickness was significant especially for small volume structures. The minimum and maximum error in the volume estimation is in the range of −2.3% to 92%. On the other hand, with increasing slice thickness, the PTV mean dose and TCP values decreases. Maximum variation of ∼5% was observed in mean dose and ∼2% in TCP with slice thickness change from 1–5 mm. The relative decrease in target volume receiving 95% of prescribed dose is ∼5% slice thickness change from 1–5 mm. HI increases up to 163% and CI decreases by 4% between 1–5 mm slice thickness change, producing highly inhomogeneous and least conformal plan. Conclusion: Accuracy of volume estimation is dependent on CT slice thickness and the contouring algorithm in a TPS. During TPS commissioning and for all clinical protocols, evaluation of volume should be included to provide the limit of accuracy in DVH calculation. A smaller slice thickness provides superior dosimetry with improved TCP values. Thus, the smallest possible slice thickness should be used for IMRT planning.

  13. Graves' disease radioiodine-therapy: Choosing target absorbed doses for therapy planning

    SciTech Connect

    Willegaignon, J. Sapienza, M. T.; Coura-Filho, G. B.; Buchpiguel, C. A.; Watanabe, T.; Traino, A. C.

    2014-01-15

    Purpose: The precise determination of organ mass (m{sub th}) and total number of disintegrations within the thyroid gland (A{sup ~}) are essential for thyroid absorbed-dose calculations for radioiodine therapy. Nevertheless, these parameters may vary according to the method employed for their estimation, thus introducing uncertainty in the estimated thyroid absorbed dose and in any dose–response relationship derived using such estimates. In consideration of these points, thyroid absorbed doses for Graves’ disease (GD) treatment planning were calculated using different approaches to estimating the m{sub th} and the A{sup ~}. Methods: Fifty patients were included in the study. Thyroid{sup 131}I uptake measurements were performed at 2, 6, 24, 48, 96, and 220 h postadministration of a tracer activity in order to estimate the effective half-time (T{sub eff}) of {sup 131}I in the thyroid; the thyroid cumulated activity was then estimated using the T{sub eff} thus determined or, alternatively, calculated by numeric integration of the measured time-activity data. Thyroid mass was estimated by ultrasonography (USG) and scintigraphy (SCTG). Absorbed doses were calculated with the OLINDA/EXM software. The relationships between thyroid absorbed dose and therapy response were evaluated at 3 months and 1 year after therapy. Results: The average ratio (±1 standard deviation) betweenm{sub th} estimated by SCTG and USG was 1.74 (±0.64) and that between A{sup ~} obtained by T{sub eff} and the integration of measured activity in the gland was 1.71 (±0.14). These differences affect the calculated absorbed dose. Overall, therapeutic success, corresponding to induction of durable hypothyroidism or euthyroidism, was achieved in 72% of all patients at 3 months and in 90% at 1 year. A therapeutic success rate of at least 95% was found in the group of patients receiving doses of 200 Gy (p = 0.0483) and 330 Gy (p = 0.0131) when m{sub th} was measured by either USG or SCTG and A

  14. Hydrides of CeNi/sub 5/, MmNi/sub 5/, Ca/sub 0/ /sub 2/(Ce/sub 0/ /sub 65/Mm/sub 0/ /sub 35/)/sub 0/ /sub 8/Ni/sub 5/, Ca/sub 0/ /sub 2/Ce/sub 0/ /sub 8/Ni/sub 5/, Ca/sub 0/ /sub 2/Mm/sub 0/ /sub 8/Ni/sub 5/, and mixed CeNi/sub 5//MmNi/sub 5/

    SciTech Connect

    Lakner, J.F.; Chow, T.S.

    1982-09-01

    Six intermetallic alloys (CeNi/sub 5/, MmNi/sub 5/, Ca/sub 0/ /sub 2/(Ce/sub 0/ /sub 65/Mm/sub 0/ /sub 35/)/sub 0/ /sub 8/Ni/sub 5/, Ca/sub 0/ /sub 2/Ce/sub 0/ /sub 8/Ni/sub 5/, Ca/sub 0/ /sub 2/Mm/sub 0/ /sub 8/Ni/sub 5/, and a mixed alloy, CeNi/sub 5//MmNi/sub 5/) were investigated with respect to their suitability to provide high hydrogen capacity and their potential for use in providing substantial hydrogen pressure at both low and high temperatures. A second phase of our investigation dealt with ball-milling and hydriding and dehydriding cycles to produce fine particles for use in hydride powder transfer studies. A summary of several Van't Hoff plots is also included for hydride-forming alloys.

  15. Designing Targets for Elective Nodal Irradiation in Lung Cancer Radiotherapy: A Planning Study

    SciTech Connect

    Kepka, Lucyna; Tatro, Daniel; Moran, Jean M.; Quint, Leslie E.; Hayman, James A.; Ten Haken, Randall K.; Kong Fengming

    2009-04-01

    Purpose: To assess doses received by mediastinal and hilar lymph node stations (LNS) delineated according to published recommendations when 'standard' two-dimensional (2D) elective fields are applied and to assess doses to critical structures when fields are designed using 2D and three-dimensional (3D) treatment planning for elective irradiation. Methods and Materials: LNS were delineated on axial CT scans according to existing recommendations. For each case and tumor location, 2D anteroposterior-posteroanterior (AP-PA) elective fields were applied using the AP-PA CT topograms. From the 2D portal fields, 3D dose distributions were then calculated to particular LNS. Next, 3D plans were prepared for elective nodal irradiation for tumors of different lobes. Doses for critical structures were compared for 2D and 3D plans. Results: LNS 1/2R, 1/2L, 3A, 3P, 5, 6, and 8 were not adequately covered in a substantial part of plans by standard 2D portals when guidelines for delineation were strictly followed. The magnitude of the lack of coverage increased with margin application. There was a trend for a higher yet probably still safe dose delivered to lung for 3D plans compared with 2D plans with a prescription dose of 45 Gy. Conclusions: 2D fields did not entirely cover LNS delineated according to the recommendations for 3D techniques. A strict adherence to these guidelines may lead to larger portals than traditionally constructed using 2D methods. Some modifications for clinical implementation are discussed.

  16. Disseminating Information and Soliciting Input during Planned Organizational Change: Implementers' Targets, Sources, and Channels for Communicating.

    ERIC Educational Resources Information Center

    Lewis, Laurie K.

    1999-01-01

    Examines implementers' use of channels to disseminate information to and solicit input from staff members during planned change. Assesses how communication was differently directed to paid and volunteer staff and the degree to which channel use is predictive of implementers' assessments of success of change efforts. Discusses potential…

  17. Impact of 18FDG-PET/CT on biological target volume (BTV) definition for treatment planning for non-small cell lung cancer patients

    NASA Astrophysics Data System (ADS)

    Devic, Slobodan; Tomic, Nada; Faria, Sergio; Dean, Geoffrey; Lisbona, Robert; Parker, William; Kaufman, Chris; Podgorsak, Ervin B.

    2007-02-01

    This work represents our effort to test feasibility of FDG-based PET/CT on target volume delineation in radiotherapy treatment planning of NSCLC patients. Different methods have been developed to enable more precise target outlining using PET: Qualitative Visual Method, CTV=2.5 SUV units, linear SUV threshold function method, and CTV=40% Iso of Maximum Uptake Value. We are proposing reconstruction of three biological target volumes: necrotic BTV (same as PTV created by radiation oncologist using CT data), proliferating BTV (based on PET signal to background ratio 1:3) and hypoxic BTV (based on PET signal to background ratio of 1:19). Two IMRT plans were created and compared to the conventional treatment plan: "conservative" IMRT plan delivers 52.5 Gy to the necrotic BTV and 65 Gy to the hypoxic BTV; "radical" IMRT plan delivers 30 Gy to necrotic BTV, 52.5 Gy to proliferating BTV and 65 Gy to hypoxic BTV. Use of BTVs in IMRT plans is attractive because it increases dose to targets considered to need higher doses. It reduces considerably dose to heart and spinal cord, organs considered to limit dose escalation approaches in NSCLC treatment. "Conservative" IMRT approach can be understood as a PET/CT-based concomitant boost to the tumor expressing the highest FDG uptake. "Radical" plan implies deviation from the traditional uniform dose target coverage approach, with the intention of achieving better surrounding tissue sparing and ultimately allowing for dose escalation protocols relying on biologically based treatment planning.

  18. Impact of [{sup 11}C]Methionine Positron Emission Tomography for Target Definition of Glioblastoma Multiforme in Radiation Therapy Planning

    SciTech Connect

    Matsuo, Masayuki; Miwa, Kazuhiro; Tanaka, Osamu; Shinoda, Jun; Nishibori, Hironori; Tsuge, Yusuke; Yano, Hirohito; Iwama, Toru; Hayashi, Shinya; Hoshi, Hiroaki; Yamada, Jitsuhiro; Kanematsu, Masayuki; Aoyama, Hidefumi

    2012-01-01

    Purpose: The purpose of this work was to define the optimal margins for gadolinium-enhanced T{sub 1}-weighted magnetic resonance imaging (Gd-MRI) and T{sub 2}-weighted MRI (T{sub 2}-MRI) for delineating target volumes in planning radiation therapy for postoperative patients with newly diagnosed glioblastoma multiforme (GBM) by comparison to carbon-11-labeled methionine positron emission tomography ([{sup 11}C]MET-PET) findings. Methods and Materials: Computed tomography (CT), MRI, and [{sup 11}C]MET-PET were separately performed for radiation therapy planning for 32 patients newly diagnosed with GBM within 2 weeks after undergoing surgery. The extent of Gd-MRI (Gd-enhanced clinical target volume [CTV-Gd]) uptake and that of T{sub 2}-MRI of the CTV (CTV-T{sub 2}) were compared with the extent of [{sup 11}C]MET-PET (CTV--[{sup 11}C]MET-PET) uptake by using CT--MRI or CT--[{sup 11}C]MET-PET fusion imaging. We defined CTV-Gd (x mm) and CTV-T{sub 2} (x mm) as the x-mm margins (where x = 0, 2, 5, 10, and 20 mm) outside the CTV-Gd and the CTV-T{sub 2}, respectively. We evaluated the relationship between CTV-Gd (x mm) and CTV-- [{sup 11}C]MET-PET and the relationship between CTV-T{sub 2} (x mm) and CTV-- [{sup 11}C]MET-PET. Results: The sensitivity of CTV-Gd (20 mm) (86.4%) was significantly higher than that of the other CTV-Gd. The sensitivity of CTV-T{sub 2} (20 mm) (96.4%) was significantly higher than that of the other CTV-T{sub 2} (x = 0, 2, 5, 10 mm). The highest sensitivity and lowest specificity was found with CTV-T{sub 2} (x = 20 mm). Conclusions: It is necessary to use a margin of at least 2 cm for CTV-T{sub 2} for the initial target planning of radiation therapy. However, there is a limit to this setting in defining the optimal margin for Gd-MRI and T{sub 2}-MRI for the precise delineation of target volumes in radiation therapy planning for postoperative patients with GBM.

  19. The effect of image-guided radiation therapy on the margin between the clinical target volume and planning target volume in lung cancer

    SciTech Connect

    Liang, Jun; Li, Minghui; Zhang, Tao; Han, Wei; Chen, Dongfu; Hui, Zhouguang; Lv, Jima; Zhang, Zhong; Zhang, Yin; Zhang, Liansheng; Zheng, Rong; Dai, Jianrong; Wang, Luhua

    2014-02-15

    Introduction: This study aimed to evaluate the effect of image-guided radiation therapy (IGRT) on the margin between the clinical target volume (CTV) and planning target volume (PTV) in lung cancer. Methods: The CTV and PTV margin were determined in three dimensions by four radiation oncologists using a standard method in 10 lung cancer patients, and compared to consensus values. Transfer error was measured using a rigid phantom containing gold markers. Systematic error and random error set up errors were calculated in three dimensions from pre-treatment and post-treatment cone beam CT scans. Finally, the margin between the CTV and PTV was corrected for set up error and calculated. Results: The margins between the CTV and PTV with IGRT (and without IGRT) were 0.88 cm (0.96 cm), 0.99 cm (1.08 cm) and 1.28 cm (1.82 cm) in the anterior and posterior (AP), left and right (LR) and superior and inferior (SI) directions, respectively. Images from two other patients verified the validity of the corrected margin. The target delineation errors of the radiation oncologists are considered to be the largest compared with the set up errors. The application of IGRT reduced the set up errors and the margins between CTV and PTV. Conclusions: The delineation errors of radiation oncologists are the most important factor to consider for the margin between CTV and PTV for lung cancer. IGRT can reduce the margins by reducing the set up errors, especially in the SI direction. Further research is required to assess whether the reduction in the margin is solely based on set up errors.

  20. The effect of image-guided radiation therapy on the margin between the clinical target volume and planning target volume in lung cancer

    PubMed Central

    Liang, Jun; Li, Minghui; Zhang, Tao; Han, Wei; Chen, Dongfu; Hui, Zhouguang; Lv, Jima; Zhang, Zhong; Zhang, Yin; Zhang, Liansheng; Zheng, Rong; Dai, Jianrong; Wang, Luhua

    2014-01-01

    IntroductionThis study aimed to evaluate the effect of image-guided radiation therapy (IGRT) on the margin between the clinical target volume (CTV) and planning target volume (PTV) in lung cancer. MethodsThe CTV and PTV margin were determined in three dimensions by four radiation oncologists using a standard method in 10 lung cancer patients, and compared to consensus values. Transfer error was measured using a rigid phantom containing gold markers. Systematic error () and random error () set up errors were calculated in three dimensions from pre-treatment and post-treatment cone beam CT scans. Finally, the margin between the CTV and PTV was corrected for set up error and calculated. ResultsThe margins between the CTV and PTV with IGRT (and without IGRT) were 0.88 cm (0.96 cm), 0.99 cm (1.08 cm) and 1.28 cm (1.82 cm) in the anterior and posterior (AP), left and right (LR) and superior and inferior (SI) directions, respectively. Images from two other patients verified the validity of the corrected margin. The target delineation errors of the radiation oncologists are considered to be the largest compared with the set up errors. The application of IGRT reduced the set up errors and the margins between CTV and PTV. ConclusionsThe delineation errors of radiation oncologists are the most important factor to consider for the margin between CTV and PTV for lung cancer. IGRT can reduce the margins by reducing the set up errors, especially in the SI direction. Further research is required to assess whether the reduction in the margin is solely based on set up errors. PMID:26229633

  1. Development of whole-building energy design targets for commercial buildings: Phase 1, Planning: Volume 2, Technical report

    SciTech Connect

    Crawley, D.B.; Briggs, R.S.; Jones, J.W.; Seaton, W.W.; Kaufman, J.E.; Deringer, J.J.; Kennett, E.W.

    1987-08-01

    This is the second volume of the Phase 1 report and discusses the 10 tasks performed in Phase 1. The objective of this research is to develop a methodology for setting energy design targets to provide voluntary guidelines for the buildings industry. The whole-building energy targets project is being conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to encourage the construction of energy-efficient buildings by informing designers and owners about cost-effective goals for energy use in new commercial buildings. The outcome of this research will be a flexible methodology for setting such targets. The tasks are listed and discussed in this report as follows: Task 1 - Develop Detailed Project Goals and Objectives; Task 2 - Establish Buildings-Industry Liaison; Task 3 - Develop Approaches to the Energy Targets Model, Building Operations, and Climate; Task 4 - Develop an Approach for Treating Economic Considerations; Task 5 - Develop an Approach for Treating Energy Sources; Task 6 - Collect Energy-Use Data; Task 7 - Survey Energy Expert Opinion; Task 8 - Evaluation Procedure Specification and Integration; Task 9 - Phase 1 Report Development; and Task 10 - Phase 1 Review Planning.

  2. Sparing Healthy Tissue and Increasing Tumor Dose Using Bayesian Modeling of Geometric Uncertainties for Planning Target Volume Personalization

    SciTech Connect

    Herschtal, Alan; Te Marvelde, Luc; Mengersen, Kerrie; Foroudi, Farshad; Eade, Thomas; Pham, Daniel; Caine, Hannah; Kron, Tomas

    2015-06-01

    Objective: To develop a mathematical tool that can update a patient's planning target volume (PTV) partway through a course of radiation therapy to more precisely target the tumor for the remainder of treatment and reduce dose to surrounding healthy tissue. Methods and Materials: Daily on-board imaging was used to collect large datasets of displacements for patients undergoing external beam radiation therapy for solid tumors. Bayesian statistical modeling of these geometric uncertainties was used to optimally trade off between displacement data collected from previously treated patients and the progressively accumulating data from a patient currently partway through treatment, to optimally predict future displacements for that patient. These predictions were used to update the PTV position and margin width for the remainder of treatment, such that the clinical target volume (CTV) was more precisely targeted. Results: Software simulation of dose to CTV and normal tissue for 2 real prostate displacement datasets consisting of 146 and 290 patients treated with a minimum of 30 fractions each showed that re-evaluating the PTV position and margin width after 8 treatment fractions reduced healthy tissue dose by 19% and 17%, respectively, while maintaining CTV dose. Conclusion: Incorporating patient-specific displacement patterns from early in a course of treatment allows PTV adaptation for the remainder of treatment. This substantially reduces the dose to healthy tissues and thus can reduce radiation therapy–induced toxicities, improving patient outcomes.

  3. Comparison of pencil beam–based homogeneous vs inhomogeneous target dose planning for stereotactic body radiotherapy of peripheral lung tumors through Monte Carlo–based recalculation

    SciTech Connect

    Ohtakara, Kazuhiro; Hoshi, Hiroaki

    2015-10-01

    This study was conducted to ascertain whether homogeneous target dose planning is suitable for stereotactic body radiotherapy (SBRT) of peripheral lung cancer under appropriate breath-holding. For 20 peripheral lung tumors, paired dynamic conformal arc plans were generated by only adjusting the leaf margin to the planning target volume (PTV) edge for fulfilling the conditions such that the prescription isodose surface (IDS) encompassing exactly 95% of the PTV (PTV D{sub 95}) corresponds to 95% and 80% IDS, normalized to 100% at the PTV isocenter under a pencil beam (PB) algorithm with radiologic path length correction. These plans were recalculated using the x-ray voxel Monte Carlo (XVMC) algorithm under otherwise identical conditions, and then compared. Lesions abutting the parietal pleura or not were defined as edge or island tumors, respectively, and the influences of the target volume and its location relative to the chest wall on the target dose were examined. The median (range) leaf margin required for the 95% and 80% plans was 3.9 mm (1.3 to 5.0) and −1.2 mm (−1.8 to 0.1), respectively. Notably, the latter was significantly correlated negatively with PTV. In the 80% plans, the PTV D{sub 95} was slightly higher under XVMC, whereas the PTV D{sub 98} was significantly lower, irrespective of the dose calculation algorithm used. Other PTV and all gross tumor volume doses were significantly higher, while the lung doses outside the PTV were slightly lower. The target doses increased as a function of PTV and were significantly lower for island tumors than for edge tumors. In conclusion, inhomogeneous target dose planning using smaller leaf margin for a larger tumor volume was deemed suitable in ensuring more sufficient target dose while slightly reducing lung dose. In addition, more inhomogeneous target dose planning using <80% IDS (e.g., 70%) for PTV covering would be preferable for island tumors.

  4. The optimization of intensity modulated radiotherapy in cases where the planning target volume extends into the build-up region.

    PubMed

    Nguyen, T B; Hoole, A C F; Burnet, N G; Thomas, S J

    2009-04-21

    A common clinical problem in IMRT, especially when treating head and neck cases, is that the clinical target volume (CTV) stops short of the skin surface, whilst the margin for geometric uncertainties may take the planning target volume (PTV) to the skin surface or beyond. In these cases, optimization leads to over-dosing of the skin, unless the planner resorts to procedural tricks to avoid this, such as the use of pretend bolus or reduction of the PTV followed by adding 'flash' after optimization. This paper describes a method of avoiding the need for these tricks by using a multiple-isocentre CTV-based objective function. This enables plans to be produced that will give good coverage of the CTV for all the geometrical uncertainties that would have been covered by the PTV without causing the problem of over-dosing the skin. Eight isocentre shifts, equally distributed on the surface of a sphere with a radius equal to the CTV-PTV margin, are shown to be adequate for the optimization process. The resulting fluence maps are much simpler than those resulting from PTV optimization and will therefore be simpler to deliver. The method also permits better sparing of organs at risk such as the spinal cord. PMID:19336846

  5. [Update of planning tables of cholesterol-lowering therapy orientated to achieve LDL therapeutic targets].

    PubMed

    Masana, Luis; Plana, Núria

    2015-01-01

    This is the third update of a planning-table for use in cholesterol-lowering therapy, so as to obtain LDLc objectives. This is an easy to use laptop tool to help choose the best statin or combination therapy (statin plus ezetimibe) depending on the current LDL concentration of the patient, and the LDLc objective to achieve. It is based on a colour code that indicates the drugs that are efficient enough to help patients to achieve their LDL goal. Along with the table, recommendations are given for the best strategy in order to implement the optimal therapy in a maximum of two clinical encounters. PMID:25865752

  6. PACE-90 water and solute transport calculations for 0.01, 0.1, and 0. 5 mm/yr infiltration into Yucca Mountain; Yucca Mountain Site Characterization Project

    SciTech Connect

    Dykhuizen, R.C.; Eaton, R.R.; Hopkins, P.L.; Martinez, M.J.

    1991-12-01

    Numerical results are presented for the Performance Assessment Calculational Exercise (PACE-90). One- and two-dimensional water and solute transport are presented for steady infiltration into Yucca Mountain. Evenly distributed infiltration rates of 0.01, 0.1, and 0.5 mm/yr were considered. The calculations of solute transport show that significant amounts of radionuclides can reach the water table over 100,000 yr at the 0.5 mm/yr rate. For time periods less than 10,000 yr or infiltrations less than 0.1 mm/yr very little solute reaches the water table. The numerical simulations clearly demonstrate that multi-dimensional effects can result in significant decreases in the travel time of solute through the modeled domain. Dual continuum effects are shown to be negligible for the low steady state fluxes considered. However, material heterogeneities may cause local amplification of the flux level in multi-dimensional flows. These higher flux levels may then require modeling of a dual continuum porous medium.

  7. SU-E-T-379: Concave Approximations of Target Volume Dose Metrics for Intensity- Modulated Radiotherapy Treatment Planning

    SciTech Connect

    Xie, Y; Chen, Y; Wickerhauser, M; Deasy, J

    2014-06-01

    Purpose: The widely used treatment plan metric Dx (mimimum dose to the hottest x% by volume of the target volume) is simple to interpret and use, but is computationally poorly behaved (non-convex), this impedes its use in computationally efficient intensity-modulated radiotherapy (IMRT) treatment planning algorithms. We therefore searched for surrogate metrics that are concave, computationally efficient, and accurately correlated to Dx values in IMRT treatment plans. Methods: To find concave surrogates of D95—and more generally, Dx values with variable x values—we tested equations containing one or two generalized equivalent uniform dose (gEUD) functions. Fits were obtained by varying gEUD ‘a’ parameter values, as well as the linear equation coefficients. Fitting was performed using a dataset of dose-volume histograms from 498 de-identified head and neck IMRT treatment plans. Fit characteristics were tested using a crossvalidation process. Reported root-mean-square error values were averaged over the cross-validation shuffles. Results: As expected, the two-gEUD formula provided a superior fit, compared to the single-gEUD formula. The best approximation uses two gEUD terms: 16.25 x gEUD[a=0.45] – 15.30 x gEUD[a=1.75] – 0.69. The average root-mean-square error on repeated (70/30) cross validation was 0.94 Gy. In addition, a formula was found that reasonably approximates Dx for x between 80% and 96%. Conclusion: A simple concave function using two gEUD terms was found that correlates well with PTV D95s for these head and neck treatment plans. More generally, a formula was found that represents well the Dx for x values from 80% to 96%, thus providing a computationally efficient formula for use in treatment planning optimization. The formula may need to be adjusted for other institutions with different treatment planning protocols. We conclude that the strategy of replacing Dx values with gEUD-based formulas is promising.

  8. From anatomical to biological target volumes: the role of PET in radiation treatment planning

    PubMed Central

    Schinagl, D A X; Kaanders, J H A M; Oyen, W J G

    2006-01-01

    Progress in radiation oncology requires a re-evaluation of the methods of target volume delineation beyond anatomical localization. New molecular imaging techniques for tumour visualisation such as positron emission tomography (PET) provide insight into tumour characteristics and can be complementary to the anatomical data of computed tomography or magnetic resonance imaging. In this review, three issues are discussed: First, can PET identify a tumour more accurately? Second, can biological tumour characteristics be visualised? Third, can intratumoural heterogeneity of these characteristics be identified? PMID:17114062

  9. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 408: Bomblet Target Area, Tonopah Test Range, Nevada

    SciTech Connect

    NSTec Environmental Management

    2006-10-01

    This Streamlined Approach for Environmental Restoration Plan provides the details for the closure of Corrective Action Unit (CAU) 408, Bomblet Target Area. CAU 408 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996. One Corrective Action Site (CAS) is included in CAU 408: {lg_bullet} CAS TA-55-002-TAB2, Bomblet Target Areas Based on historical documentation, personnel interviews, process knowledge, site visits, aerial photography, multispectral data, preliminary geophysical surveys, and the results of data quality objectives process (Section 3.0), clean closure will be implemented for CAU 408. CAU 408 closure activities will consist of identification and clearance of bomblet target areas, identification and removal of depleted uranium (DU) fragments on South Antelope Lake, and collection of verification samples. Any soil containing contaminants at concentrations above the action levels will be excavated and transported to an appropriate disposal facility. Based on existing information, contaminants of potential concern at CAU 408 include explosives. In addition, at South Antelope Lake, bomblets containing DU were tested. None of these contaminants is expected to be present in the soil at concentrations above the action levels; however, this will be determined by radiological surveys and verification sample results. The corrective action investigation and closure activities have been planned to include data collection and hold points throughout the process. Hold points are designed to allow decision makers to review the existing data and decide which of the available options are most suitable. Hold points include the review of radiological, geophysical, and analytical data and field observations.

  10. Final work plan : targeted groundwater sampling and monitoring well installation for potential site reclassification at Barnes, Kansas.

    SciTech Connect

    LaFreniere, L. M.

    2006-07-11

    This ''Work Plan'' outlines the scope of work for a targeted groundwater sampling investigation and monitoring well installation at Barnes, Kansas. This activity is being conducted at the request of the Kansas Department of Health and Environment (KDHE), in accordance with the intergovernmental agreement between the KDHE and the Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA). Data resulting from the proposed work will be used to determine the hydraulic gradient near the former CCC/USDA facility, delineate the downgradient carbon tetrachloride plume, and determine additional monitoring requirements at Barnes. The overall goal is to establish criteria for monitoring leading to potential site reclassification. The proposed work will be performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy (DOE). The Farm Service Agency of the USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance with environmental site characterization and remediation at former CCC/USDA grain storage facilities. Argonne issued a ''Master Work Plan'' (Argonne 2002) to provide general guidance for all investigations at former CCC/USDA facilities in Kansas. The ''Master Work Plan'', approved by the KDHE, contains the materials common to investigations at all locations in Kansas. This document must be consulted for the complete details of plans for this work associated with the former CCC/USDA facility at Barnes.

  11. Age Targeting of Voluntary Medical Male Circumcision Programs Using the Decision Makers’ Program Planning Toolkit (DMPPT) 2.0

    PubMed Central

    Kripke, Katharine; Opuni, Marjorie; Schnure, Melissa; Sgaier, Sema; Castor, Delivette; Reed, Jason; Stover, John

    2016-01-01

    Background Despite considerable efforts to scale up voluntary medical male circumcision (VMMC) for HIV prevention in priority countries over the last five years, implementation has faced important challenges. Seeking to enhance the effect of VMMC programs for greatest and most immediate impact, the U. S. President’s Plan for AIDS Relief (PEPFAR) supported the development and application of a model to inform national planning in five countries from 2013–2014. Methods and Findings The Decision Makers’ Program Planning Toolkit (DMPPT) 2.0 is a simple compartmental model designed to analyze the effects of client age and geography on program impact and cost. The DMPPT 2.0 model was applied in Malawi, South Africa, Swaziland, Tanzania, and Uganda to assess the impact and cost of scaling up age-targeted VMMC coverage. The lowest number of VMMCs per HIV infection averted would be produced by circumcising males ages 20–34 in Malawi, South Africa, Tanzania, and Uganda and males ages 15–34 in Swaziland. The most immediate impact on HIV incidence would be generated by circumcising males ages 20–34 in Malawi, South Africa, Tanzania, and Uganda and males ages 20–29 in Swaziland. The greatest reductions in HIV incidence over a 15-year period would be achieved by strategies focused on males ages 10–19 in Uganda, 15–24 in Malawi and South Africa, 10–24 in Tanzania, and 15–29 in Swaziland. In all countries, the lowest cost per HIV infection averted would be achieved by circumcising males ages 15–34, although in Uganda this cost is the same as that attained by circumcising 15- to 49-year-olds. Conclusions The efficiency, immediacy of impact, magnitude of impact, and cost-effectiveness of VMMC scale-up are not uniform; there is important variation by age group of the males circumcised and countries should plan accordingly. PMID:27410966

  12. Sci—Fri AM: Mountain — 06: Optimizing planning target volume in lung radiotherapy using deformable registration

    SciTech Connect

    Hoang, P; Wierzbicki, M

    2014-08-15

    A four dimensional computed tomography (4DCT) image is acquired for all radically treated, lung cancer patients to define the internal target volume (ITV), which encompasses tumour motion due to breathing and subclinical disease. Patient set-up error and anatomical motion that is not due to breathing is addressed through an additional 1 cm margin around the ITV to obtain the planning target volume (PTV). The objective of this retrospective study is to find the minimum PTV margin that provides an acceptable probability of delivering the prescribed dose to the ITV. Acquisition of a kV cone beam computed tomography (CBCT) image at each fraction was used to shift the treatment couch to accurately align the spinal cord and carina. Our method utilized deformable image registration to automatically position the planning ITV on each CBCT. We evaluated the percentage of the ITV surface that fell within various PTVs for 79 fractions across 18 patients. Treatment success was defined as a situation where at least 99% of the ITV is covered by the PTV. Overall, this is to be achieved in at least 90% of the treatment fractions. The current approach with a 1cm PTV margin was successful ∼96% of the time. This analysis revealed that the current margin can be reduced to 0.8cm isotropic or 0.6×0.6×1 cm{sup 3} non-isotropic, which were successful 92 and 91 percent of the time respectively. Moreover, we have shown that these margins maintain accuracy, despite intrafractional variation, and maximize CBCT image guidance capabilities.

  13. Impact of Manual and Automated Interpretation of Fused PET/CT Data on Esophageal Target Definitions in Radiation Planning

    SciTech Connect

    Hong, Theodore S. Killoran, Joseph H.; Mamede, Marcelo; Mamon, Harvey J.

    2008-12-01

    Purpose: We compare CT-only based esophageal tumor definition with two PET/CT based methods: (1) manual contouring and (2) a semiautomated method based on specific thresholds. Methods and Materials: Patients with esophageal cancer treated at Brigham and Women's Hospital from 2003 to 2006 were identified. CT-based tumor volumes were compared with manual PET/CT-based volumes and semiautomated PET-based tumor volumes. Differences were scored as (1) minor if the superior or inferior extent of the primary tumor (or both) differed by 1-2 cm and (2) major if the difference was > 2 cm or if different noncontiguous nodal regions were identified as being grossly involved. Results: Comparing CT-based gross tumor volumes (GTVs) to manually defined PET/CT-based GTVs, use of PET changed volumes for 21 of 25 (84%) patients: 12 patients (48%) exhibited minor differences, whereas for 9 patients (36%), the differences were major. For 4 (16%) patients, the major difference was due to discrepancy in celiac or distant mediastinal lymph node involvement. Use of automated PET volumes changed the manual PET length in 14 patients (56%): 8 minor and 6 major. Conclusions: The use of PET/CT in treatment planning for esophageal cancer can affect target definition. Two PET-based techniques can also produce significantly different tumor volumes in a large percentage of patients. Further investigations to clarify the optimal use of PET/CT data in treatment planning are warranted.

  14. Ground-based LiDAR integration with avalanche control operations: target planning and assessment of control effectiveness

    NASA Astrophysics Data System (ADS)

    Deems, J. S.; LeWinter, A.; Gadomski, P. J.; Finnegan, D. C.

    2015-12-01

    The varying distribution of snow depth in avalanche starting zones exerts a strong influence on avalanche potential and character. Extreme depth changes over short distances are common, especially in wind-affected, above-treeline environments. Snow depth also affects the ease of avalanche triggering. Experience shows that avalanche reduction efforts are often more successful when targeting shallow trigger point areas near deeper slabs with explosives or ski cutting. We are exploring the use of high resolution snow depth and depth change maps from differential LiDAR scans to quantify loading patterns for use in both pre-control planning and in post-control assessment. We present results from our ongoing work at the Arapahoe Basin and Aspen Highlands ski areas in Colorado, USA, and from a new collaboration with the Colorado Department of Transportation. At Arapahoe Basin we have tested rapid snow depth product generation for use in planning placement of explosives for artificial avalanche triggering. At Aspen Highlands we have explored measurement of minimum disturbance depth from bootpacking. In a new application, we are assessing avalanche hazard reduction with new Gazex exploder arrays on Loveland and Berthoud Passes.

  15. MO-C-17A-06: Online Adaptive Re-Planning to Account for Independent Motions Between Multiple Targets During Radiotherapy of Lung Cancer

    SciTech Connect

    Liu, F; Tai, A; Ahunbay, E; Gore, E; Johnstone, C; Li, X

    2014-06-15

    Purpose: To quantify interfractional independent motions between multiple targets in radiotherapy (RT) of lung cancer, and to study the dosimetric benefits of an online adaptive replanning method to account for these variations. Methods: Ninety five diagnostic-quality daily CTs acquired for 9 lung cancer patients treated with IGRT using an in-room CT (CTVision, Siemens) were analyzed. On each daily CT set, contours of the targets (GTV, CTV, or involved nodes) and organs at risk were generated by populating the planning contours using an auto-segmentation tool (ABAS, Elekta) with manual editing. For each patient, an IMRT plan was generated based on the planning CT with a prescription dose of 60 Gy in 2Gy fractions. Three plans were generated and compared for each daily CT set: an IGRT (repositioning) plan by copying the original plan with the required shifts, an online adaptive plan by rapidly modifying the aperture shapes and segment weights of the original plan to conform to the daily anatomy, and a new fully re-optimized plan based on the daily CT using a planning system (Panther, Prowess). Results: The daily deviations of the distance between centers of masses of the targets from the plans varied daily from -10 to 8 mm with an average −0.9±4.1 mm (one standard deviation). The average CTV V100 are 99.0±0.7%, 97.9±2.8%, 99.0±0.6%, and 99.1±0.6%, and the lung V20 Gy 928±332 cc, 944±315 cc, 917±300 cc, and 891±295 cc for the original, repositioning, adaptive, and re-optimized plans, respectively. Wilcoxon signed-rank tests show that the adaptive plans are statistically significantly better than the repositioning plans and comparable with the reoptimized plans. Conclusion: There exist unpredictable, interfractional, relative volume changes and independent motions between multiple targets during lung cancer RT which cannot be accounted for by the current IGRT repositioning but can be corrected by the online adaptive replanning method.

  16. Epithermal Neutron Observations and Lunar South Pole Targeting for LCROSS Impact Planning using the Lunar Reconnaissance Orbiter (LRO), Lunar Exploring Neutron Detector (LEND)

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I.; Boynton, W. V.; Chin, G.; Colaprete, A.; Evans, L. G.; Garvin, J.; Harshman, K.; Litvak, R.; Malakhov, A.; Milikh, G. M.; Nandikotkur, G.; Sagdeev, R.; Sanin, A. B.; Smith, D. E.; Starr, R. D.; Trombka, J.

    2009-01-01

    LCROSS impact targeting and planning efforts included quantifying South Polar epithermal neutron flux depressions in early LEND mapped results to maximize the expected plume Hydrogen (H) yield. Epithermal neutron surface fluxes are a key geochemical indicator of surface Hydrogen (H) concentration inferred to be elevated in polar permanent shadow regions (PSR). LCROSS impact target regions were delineated as (PSR) using illumination modeling of polar topography. To quantify targets potential yield for LCROSS, LEND epithermal neutron flux observations were integrated over LCROSS targets of interest and compared to background observations. Discussion will define methods review impact prior estimates and contrast post impact results.

  17. Assistance to neurosurgical planning: using a fuzzy spatial graph model of the brain for locating anatomical targets in MRI

    NASA Astrophysics Data System (ADS)

    Villéger, Alice; Ouchchane, Lemlih; Lemaire, Jean-Jacques; Boire, Jean-Yves

    2007-03-01

    Symptoms of neurodegenerative pathologies such as Parkinson's disease can be relieved through Deep Brain Stimulation. This neurosurgical technique relies on high precision positioning of electrodes in specific areas of the basal ganglia and the thalamus. These subcortical anatomical targets must be located at pre-operative stage, from a set of MRI acquired under stereotactic conditions. In order to assist surgical planning, we designed a semi-automated image analysis process for extracting anatomical areas of interest. Complementary information, provided by both patient's data and expert knowledge, is represented as fuzzy membership maps, which are then fused by means of suitable possibilistic operators in order to achieve the segmentation of targets. More specifically, theoretical prior knowledge on brain anatomy is modelled within a 'virtual atlas' organised as a spatial graph: a list of vertices linked by edges, where each vertex represents an anatomical structure of interest and contains relevant information such as tissue composition, whereas each edge represents a spatial relationship between two structures, such as their relative directions. The model is built using heterogeneous sources of information such as qualitative descriptions from the expert, or quantitative information from prelabelled images. For each patient, tissue membership maps are extracted from MR data through a classification step. Prior model and patient's data are then matched by using a research algorithm (or 'strategy') which simultaneously computes an estimation of the location of every structures. The method was tested on 10 clinical images, with promising results. Location and segmentation results were statistically assessed, opening perspectives for enhancements.

  18. Sci—Thur PM: Planning and Delivery — 04: Respiratory margin derivation and verification in partial breast irradiation

    SciTech Connect

    Quirk, S; Conroy, L; Smith, WL

    2014-08-15

    Partial breast irradiation (PBI) following breast-conserving surgery is emerging as an effective means to achieve local control and reduce irradiated breast volume. Patients are planned on a static CT image; however, treatment is delivered while the patient is free-breathing. Respiratory motion can degrade plan quality by reducing target coverage and/or dose homogeneity. A variety of methods can be used to determine the required margin for respiratory motion in PBI. We derive geometric and dosimetric respiratory 1D margin. We also verify the adequacy of the typical 5 mm respiratory margin in 3D by evaluating plan quality for increasing respiratory amplitudes (2–20 mm). Ten PBI plans were used for dosimetric evaluation. A database of volunteer respiratory data, with similar characteristics to breast cancer patients, was used for this study. We derived a geometric 95%-margin of 3 mm from the population respiratory data. We derived a dosimetric 95%-margin of 2 mm by convolving 1D dose profiles with respiratory probability density functions. The 5 mm respiratory margin is possibly too large when 1D coverage is assessed and could lead to unnecessary normal tissue irradiation. Assessing margins only for coverage may be insufficient; 3D dosimetric assessment revealed degradation in dose homogeneity is the limiting factor, not target coverage. Hotspots increased even for the smallest respiratory amplitudes, while target coverage only degraded at amplitudes greater than 10 mm. The 5 mm respiratory margin is adequate for coverage, but due to plan quality degradation, respiratory management is recommended for patients with respiratory amplitudes greater than 10 mm.

  19. Dosimetric Effects of Magnetic Resonance Imaging-assisted Radiotherapy Planning: Dose Optimization for Target Volumes at High Risk and Analytic Radiobiological Dose Evaluation.

    PubMed

    Park, Ji-Yeon; Suh, Tae Suk; Lee, Jeong-Woo; Ahn, Kook-Jin; Park, Hae-Jin; Choe, Bo-Young; Hong, Semie

    2015-10-01

    Based on the assumption that apparent diffusion coefficients (ADCs) define high-risk clinical target volume (aCTVHR) in high-grade glioma in a cellularity-dependent manner, the dosimetric effects of aCTVHR-targeted dose optimization were evaluated in two intensity-modulated radiation therapy (IMRT) plans. Diffusion-weighted magnetic resonance (MR) images and ADC maps were analyzed qualitatively and quantitatively to determine aCTVHR in a high-grade glioma with high cellularity. After confirming tumor malignancy using the average and minimum ADCs and ADC ratios, the aCTVHR with double- or triple-restricted water diffusion was defined on computed tomography images through image registration. Doses to the aCTVHR and CTV defined on T1-weighted MR images were optimized using a simultaneous integrated boost technique. The dosimetric benefits for CTVs and organs at risk (OARs) were compared using dose volume histograms and various biophysical indices in an ADC map-based IMRT (IMRTADC) plan and a conventional IMRT (IMRTconv) plan. The IMRTADC plan improved dose conformity up to 15 times, compared to the IMRTconv plan. It reduced the equivalent uniform doses in the visual system and brain stem by more than 10% and 16%, respectively. The ADC-based target differentiation and dose optimization may facilitate conformal dose distribution to the aCTVHR and OAR sparing in an IMRT plan. PMID:26425053

  20. Distance-to-Agreement Investigation of Tomotherapy's Bony Anatomy-Based Autoregistration and Planning Target Volume Contour-Based Optimization

    SciTech Connect

    Suh, Steve; Schultheiss, Timothy E.

    2013-03-01

    Purpose: To compare Tomotherapy's megavoltage computed tomography bony anatomy autoregistration with the best achievable registration, assuming no deformation and perfect knowledge of planning target volume (PTV) location. Methods and Materials: Distance-to-agreement (DTA) of the PTV was determined by applying a rigid-body shift to the PTV region of interest of the prostate from its reference position, assuming no deformations. Planning target volume region of interest of the prostate was extracted from the patient archives. The reference position was set by the 6 degrees of freedom (dof)—x, y, z, roll, pitch, and yaw—optimization results from the previous study at this institution. The DTA and the compensating parameters were calculated by the shift of the PTV from the reference 6-dof to the 4-dof—x, y, z, and roll—optimization. In this study, the effectiveness of Tomotherapy's 4-dof bony anatomy–based autoregistration was compared with the idealized 4-dof PTV contour-based optimization. Results: The maximum DTA (maxDTA) of the bony anatomy-based autoregistration was 3.2 ± 1.9 mm, with the maximum value of 8.0 mm. The maxDTA of the contour-based optimization was 1.8 ± 1.3 mm, with the maximum value of 5.7 mm. Comparison of Pearson correlation of the compensating parameters between the 2 4-dof optimization algorithms shows that there is a small but statistically significant correlation in y and z (0.236 and 0.300, respectively), whereas there is very weak correlation in x and roll (0.062 and 0.025, respectively). Conclusions: We find that there is an average improvement of approximately 1 mm in terms of maxDTA on the PTV going from 4-dof bony anatomy-based autoregistration to the 4-dof contour-based optimization. Pearson correlation analysis of the 2 4-dof optimizations suggests that uncertainties due to deformation and inadequate resolution account for much of the compensating parameters, but pitch variation also makes a statistically significant

  1. Dosimetric Comparison of 3-Dimensional Planning Techniques Using an Intravaginal Multichannel Balloon Applicator for High-Dose-Rate Gynecologic Brachytherapy

    SciTech Connect

    Park, Sang-June Chung, Melody; Demanes, D. Jeffrey; Banerjee, Robyn; Steinberg, Michael; Kamrava, Mitchell

    2013-11-15

    Purpose: To study the dosimetric differences of various channel combinations of the Capri vaginal applicator. Methods and Materials: The Capri consists of a single central channel (R1), an inner array of 6 channels (R2), and an outer array of 6 channels (R3). Three-dimensional plans were simulated for 6 channel arrangements (R1, R2, R12, R13, R23, and R123). Treatment plans were optimized to the applicator surface or 5-mm depth while minimizing dose to organs at risk (OARs: bladder, rectum, sigmoid, and urethra). The clinical target volume (CTV) was defined as a 5-mm circumferential shell extending 4 cm in length around the applicator. Clinical target volume coverage (D{sub mean}, D{sub 90}, V{sub 100}, and V{sub 150}) and OAR doses (D{sub 0.1} {sub cm{sup 3}}, D{sub 1} {sub cm{sup 3}}, D{sub 2} {sub cm{sup 3}}, and D{sub mean}) were compared. A comparison between the Capri (R123) and a conventional single-channel applicator was also done. Statistical significance (P value <.05) was evaluated with a 2-tailed t test. Results: When prescribing to 5-mm depth, CTV coverage using all 13 channels (R123) versus a single channel (R1) was similar; however, when prescribing to the surface there were differences (P<.0001) in all CTV metrics except for the V{sub 150}. The R1 plans had higher doses to all OARs compared with R123 plans (P<.007). Doses to OARs were not significantly different between R23 and R123 plans (P=.05-.95), and CTV coverage differences were on the order of 1%. Capri R123 plans provided slightly lower CTV D{sub 90} and D{sub mean} but equivalent OAR doses with smaller standard deviations compared with conventional cylinder plans for both prescriptions. Conclusions: The Capri multichannel applicator provides equivalent target coverage at 5-mm depth, with significantly reduced dose to OARs relative to using a single channel. Optimal plans can be achieved using R12 (lowest V{sub 150}) or R123 or R23 (lowest OAR doses)

  2. The experimental plan for cryogenic layered target implosions on the National Ignition Facility - The inertial confinement approach to fusion

    SciTech Connect

    Edwards, M. J.; Lindl, J. D.; Spears, B. K.; Weber, S. V.; Atherton, L. J.; Bleuel, D. L.; Bradley, D. K.; Callahan, D. A.; Cerjan, C. J.; Clark, D; Collins, G. W.; Fair, J. E.; Fortner, R. J.; Glenzer, S. H.; Haan, S. W.; Hammel, B. A.; Hamza, A. V.; Hatchett, S. P.; Izumi, N.; Jacoby, B.

    2011-05-15

    Ignition requires precisely controlled, high convergence implosions to assemble a dense shell of deuterium-tritium (DT) fuel with {rho}R>{approx}1 g/cm{sup 2} surrounding a 10 keV hot spot with {rho}R {approx} 0.3 g/cm{sup 2}. A working definition of ignition has been a yield of {approx}1 MJ. At this yield the {alpha}-particle energy deposited in the fuel would have been {approx}200 kJ, which is already {approx}10 x more than the kinetic energy of a typical implosion. The National Ignition Campaign includes low yield implosions with dudded fuel layers to study and optimize the hydrodynamic assembly of the fuel in a diagnostics rich environment. The fuel is a mixture of tritium-hydrogen-deuterium (THD) with a density equivalent to DT. The fraction of D can be adjusted to control the neutron yield. Yields of {approx}10{sup 14-15} 14 MeV (primary) neutrons are adequate to diagnose the hot spot as well as the dense fuel properties via down scattering of the primary neutrons. X-ray imaging diagnostics can function in this low yield environment providing additional information about the assembled fuel either by imaging the photons emitted by the hot central plasma, or by active probing of the dense shell by a separate high energy short pulse flash. The planned use of these targets and diagnostics to assess and optimize the assembly of the fuel and how this relates to the predicted performance of DT targets is described. It is found that a good predictor of DT target performance is the THD measurable parameter, Experimental Ignition Threshold Factor, ITFX {approx} Y x dsf {sup 2.3}, where Y is the measured neutron yield between 13 and 15 MeV, and dsf is the down scattered neutron fraction defined as the ratio of neutrons between 10 and 12 MeV and those between 13 and 15 MeV.

  3. Comparison of planning target volumes based on three-dimensional and four-dimensional CT imaging of thoracic esophageal cancer

    PubMed Central

    Wang, Wei; Li, Jianbin; Zhang, Yingjie; Shao, Qian; Xu, Min; Fan, Tingyong; Wang, Jinzhi

    2016-01-01

    Background and purpose To investigate the definition of planning target volumes (PTVs) based on four-dimensional computed tomography (4DCT) compared with conventional PTV definition and PTV definition using asymmetrical margins for thoracic primary esophageal cancer. Materials and methods Forty-three patients with esophageal cancer underwent 3DCT and 4DCT simulation scans during free breathing. The motions of primary tumors located in the proximal (group A), middle (group B), and distal (group C) thoracic esophagus were obtained from the 4DCT scans. PTV3D was defined on 3DCT using the tumor motion measured based on 4DCT, PTV conventional (PTVconv) was defined on 3DCT by adding a 1.0 cm margin to the clinical target volume, and PTV4D was defined as the union of the target volumes contoured on the ten phases of the 4DCT images. The centroid positions, volumetric differences, and dice similarity coefficients were evaluated for all PTVs. Results The median centroid shifts between PTV3D and PTV4D and between PTVconv and PTV4D in all three dimensions were <0.3 cm for the three groups. The median size ratios of PTV4D to PTV3D were 0.80, 0.88, and 0.71, and PTV4D to PTVconv were 0.67, 0.73, and 0.76 (χ2=−3.18, −2.98, and −3.06; P=0.001, 0.003, and 0.002) for groups A, B, and C, respectively. The dice similarity coefficients were 0.87, 0.90, and 0.81 between PTV4D and PTV3D and 0.80, 0.84, and 0.83 between PTV4D and PTVconv (χ2 =−3.18, −2.98, and −3.06; P=0.001, 0.003, and 0.002) for groups A, B, and C, respectively. The difference between the degree of inclusion of PTV4D in PTV3D and that of PTV4D in PTVconv was <2% for all groups. Compared with PTVconv, the amount of irradiated normal tissue for PTV3D was decreased by 11.81% and 11.86% in groups A and B, respectively, but was increased by 2.93% in group C. Conclusion For proximal and middle esophageal cancer, 3DCT-based PTV using asymmetrical margins provides good coverage of PTV4D; however, for distal

  4. The effect of the target-organ geometric complexity on the choice of delivery between RapidArc and sliding-window IMRT for nasopharyngeal carcinoma

    SciTech Connect

    Kan, Monica W.K.; Leung, Lucullus H.T.; Yu, Peter K.N.

    2013-10-01

    We attempted to assess the effect of target-organ geometric complexity on the plan quality of sliding-window intensity-modulated radiotherapy (IMRT), double-arc (RA2), and triple-arc (RA3) RapidArc volumetric-modulated arc radiotherapy for nasopharyngeal carcinoma (NPC). Plans for 9-field sliding-window IMRT, RA2, and RA3 were optimized for 36 patients with NPC ranging from T1 to T4 tumors. Initially the patients were divided into 2 groups, with group A representing the most simple early stage (T1 and T2) cases, whereas group B represented the more complex advanced cases (T3 and T4). Evaluation was performed based on target conformity, target dose homogeneity, organ-sparing capability, and delivery efficiency. Based on the plan quality results, a subgroup of advanced cases, group B2, representing the most demanding task was distinguished and reported separately from the rest of the group B cases, B1. Detailed analysis was performed on the anatomic features for each group of cases, so that planners can easily identify the differences between B1 and B2. For the group A cases, RA3 plans were superior to the IMRT plans in terms of organ sparing, whereas target conformity and dose homogeneity were similar. For the group B1 cases, the RA3 plans produced almost equivalent plan quality as the IMRT plans. For the group B2 cases, for most of which large target volumes were adjacent to (5 mm or less) and wrapping around the brain stem, RA2 and RA3 were inferior to the IMRT regarding both target dose homogeneity and conformity. RA2 plans were slightly inferior to IMRT and RA3 plans for most cases. The plan comparison results depend on the target to brain stem distances and the target sizes. The plan quality results together with the anatomic information may allow the evaluation of the 3 treatment options before actual planning.

  5. Importance of protocol target definition on the ability to spare normal tissue: An IMRT and 3D-CRT planning comparison for intraorbital tumors

    SciTech Connect

    Hein, Patrick A.; Gladstone, David J.; Bellerive, Marc R.; Hug, Eugen B. . E-mail: Eugen.B.Hug@hitchcock.org

    2005-08-01

    Purpose: We selected five intraorbital tumor sites that are frequently found in clinical practice in children diagnosed with orbital rhabdomyosarcoma and performed three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated photon radiotherapy (IMRT) planning. Results of target coverage and doses to critical structures were compared. The goal of this study was to evaluate and to document realistic expectations as to organ-sparing capabilities of modern radiation therapy planning technologies with a focus on lens-sparing irradiation. Furthermore, we investigated potential added benefits of IMRT compared with 3D-CRT and the influence of protocol volume criteria definitions on the ability to obtain normal tissue dose sparing using the orbit as an example of a complex anatomic site. Methods and Materials: The five intraorbital tumor sites were placed retrobulbar, temporal, nasal, in the upper inner and upper outer quadrant, the latter two more complex in shape. Gross tumor volume (GTV), clinical target volume (CTV), and planning target volume (PTV) were defined in image-fused computed tomography and magnetic resonance data sets. 3D-CRT and IMRT photon plans, using equal beam angles and collimation for direct comparison, were designed to 45 Gy prescription dose according to Intergroup Rhabdomyosarcoma Study Group-D9602 (IRSG-D9602) protocol (Intergroup Rhabdomyosarcoma Study V [IRS-V] protocol) for Stage I, Clinical Group 3 orbital rhabdomyosarcoma. To compare the impact of changed target definitions in IMRT planning, additional IMRT plans were generated using modified volume and dose coverage criteria. The minimum dose constraint (95%) of the PTV was substituted by a required minimum volume coverage (95%) with the prescribed dose. Dose-volume histograms (DVHs) were obtained, including target volumes, lens, optic nerves, optic chiasm, lacrimal gland, bony orbit, pituitary gland, frontal and temporal lobes. Results: Protocol target volume coverage criteria

  6. Towards sustainable settlement growth: A new multi-criteria assessment for implementing environmental targets into strategic urban planning

    SciTech Connect

    Schetke, Sophie; Haase, Dagmar; Koetter, Theo

    2012-01-15

    For nearly one decade, the German political and research-agenda has been to a large extent determined by the ongoing question of how to limit the expansion of settlement areas around cities in order to preserve natural resources, make settlement growth more sustainable and to strengthen the re-use of existing inner-urban areas (see a.o. Koetter et al. 2009a, 2010; Schetke et al. 2009, 2010b). What is already under discussion within the international literature are the recommendations of the German Council for Sustainability to quantitatively reduce the daily greenfield consumption from the current rate of over 100 ha per day to a rate of 30 ha per day in 2020 and to bring urban infill development up to a ratio of 3:1 with greenfield development (German Council for Sustainability, 2004).). This paper addresses the added value beyond those abstract political targets and presents an innovative, multi-criteria assessment (MCA) of greenfield and infill sites to evaluate their sustainability and resource efficiency. MCA development and its incorporation into a Decision Support System (DSS) were accomplished by utilising a stakeholder-driven approach. The resulting tool can be applied in preparing and revising land-use plans. The paper presents the concept and the development process of the MCA-DSS. Test runs with planners prove that the evaluation of potential housing sites using individually weighted environmental indicators helps to identify those strategies of housing development that accord most closely with sustainability goals. The tests further show that the development of greenfield sites generally exhibits less sustainability than that of infill sites. - Highlights: Black-Right-Pointing-Pointer This paper presents an innovative, multi-criteria assessment (MCA) of greenfield and infill sites. Black-Right-Pointing-Pointer The MCA evaluates sustainability and resource efficiency of potential housing sites in a stakeholder-driven approach. Black

  7. Defining the Optimal Planning Target Volume in Image-Guided Stereotactic Radiosurgery of Brain Metastases: Results of a Randomized Trial

    SciTech Connect

    Kirkpatrick, John P.; Wang, Zhiheng; Sampson, John H.; McSherry, Frances; Herndon, James E.; Allen, Karen J.; Duffy, Eileen; Hoang, Jenny K.; Chang, Zheng; Yoo, David S.; Kelsey, Chris R.; Yin, Fang-Fang

    2015-01-01

    Purpose: To identify an optimal margin about the gross target volume (GTV) for stereotactic radiosurgery (SRS) of brain metastases, minimizing toxicity and local recurrence. Methods and Materials: Adult patients with 1 to 3 brain metastases less than 4 cm in greatest dimension, no previous brain radiation therapy, and Karnofsky performance status (KPS) above 70 were eligible for this institutional review board–approved trial. Individual lesions were randomized to 1- or 3- mm uniform expansion of the GTV defined on contrast-enhanced magnetic resonance imaging (MRI). The resulting planning target volume (PTV) was treated to 24, 18, or 15 Gy marginal dose for maximum PTV diameters less than 2, 2 to 2.9, and 3 to 3.9 cm, respectively, using a linear accelerator–based image-guided system. The primary endpoint was local recurrence (LR). Secondary endpoints included neurocognition Mini-Mental State Examination, Trail Making Test Parts A and B, quality of life (Functional Assessment of Cancer Therapy-Brain), radionecrosis (RN), need for salvage radiation therapy, distant failure (DF) in the brain, and overall survival (OS). Results: Between February 2010 and November 2012, 49 patients with 80 brain metastases were treated. The median age was 61 years, the median KPS was 90, and the predominant histologies were non–small cell lung cancer (25 patients) and melanoma (8). Fifty-five, 19, and 6 lesions were treated to 24, 18, and 15 Gy, respectively. The PTV/GTV ratio, volume receiving 12 Gy or more, and minimum dose to PTV were significantly higher in the 3-mm group (all P<.01), and GTV was similar (P=.76). At a median follow-up time of 32.2 months, 11 patients were alive, with median OS 10.6 months. LR was observed in only 3 lesions (2 in the 1 mm group, P=.51), with 6.7% LR 12 months after SRS. Biopsy-proven RN alone was observed in 6 lesions (5 in the 3-mm group, P=.10). The 12-month DF rate was 45.7%. Three months after SRS, no significant change in

  8. Determination of Internal Target Volume for Radiation Treatment Planning of Esophageal Cancer by Using 4-Dimensional Computed Tomography (4DCT)

    SciTech Connect

    Chen, Xiaojian; Lu, Haijun; Tai, An; Johnstone, Candice; Gore, Elizabeth; Li, X. Allen

    2014-09-01

    Purpose: To determine an efficient strategy for the generation of the internal target volume (ITV) for radiation treatment planning for esophageal cancer using 4-dimensional computed tomography (4DCT). Methods and Materials: 4DCT sets acquired for 20 patients with esophageal carcinoma were analyzed. Each of the 4DCT sets was binned into 10 respiratory phases. For each patient, the gross tumor volume (GTV) was delineated on the 4DCT set at each phase. Various strategies to derive ITV were explored, including the volume from the maximum intensity projection (MIP; ITV{sub M}IP), unions of the GTVs from selected multiple phases ITV2 (0% and 50% phases), ITV3 (ITV2 plus 80%), and ITV4 (ITV3 plus 60%), as well as the volumes expanded from ITV2 and ITV3 with a uniform margin. These ITVs were compared to ITV10 (the union of the GTVs for all 10 phases) and the differences were measured with the overlap ratio (OR) and relative volume ratio (RVR) relative to ITV10 (ITVx/ITV10). Results: For all patients studied, the average GTV from a single phase was 84.9% of ITV10. The average ORs were 91.2%, 91.3%, 94.5%, and 96.4% for ITV{sub M}IP, ITV2, ITV3, and ITV4, respectively. Low ORs were associated with irregular breathing patterns. ITV3s plus 1 mm uniform margins (ITV3+1) led to an average OR of 98.1% and an average RVR of 106.4%. Conclusions: The ITV generated directly from MIP underestimates the range of the respiration motion for esophageal cancer. The ITV generated from 3 phases (ITV3) may be used for regular breathers, whereas the ITV generated from 4 phases (ITV4) or ITV3 plus a 1-mm uniform margin may be applied for irregular breathers.

  9. SU-E-T-504: Usefulness of CT-MR Fusion in Radiotherapy Planning for Prostate Cancer Patient with Bilateral Hip Replacements

    SciTech Connect

    He, R.; Giri, Shankar; Kumar, P.; Hu, Y.; Suggs, J.; Yang, C.

    2014-06-01

    Purpose: Target localization of prostate for Intensity Modulated Radiation Therapy (IMRT) in patients with bilateral hip replacements is difficult due to artifacts in Computed Tomography (CT) images generated from the prostheses high Z materials. In this study, Magnetic Resonance (MR) images fused with CT images are tested as a solution. Methods: CT images of 2.5 mm slice thickness were acquired on a GE Lightspeed scanner with a flat-topped couch for a prostate cancer patient with bilateral hip replacements. T2 weighted images of 5 mm separation were acquired on a MR Scanner. After the MR-CT registration on a radiotherapy treatment planning system (Eclipse, Varian), the target volumes were defined by the radiation oncologists on MR images and then transferred to CT images for planning and dose calculation. The CT Hounsfield Units (HU) was reassigned to zero (as water) for artifacts. The Varian flat panel treatment couch was modeled for dose calculation accuracy with heterogeneity correction. A Volume Matrix Arc Therapy (VMAT) and a seven-field IMRT plans were generated, each avoiding any beam transversing the prostheses; the two plans were compared. The superior VMAT plan was used for treating the patient. In-vivo dosimetry was performed using MOSFET (Best Canada) placed in a surgical tube inserted into the patient rectum during therapy. The measured dose was compared with planned dose for MOSFET location. Results: The registration of MR-CT images and the agreement of target volumes were confirmed by three physicians. VMAT plan was deemed superior to IMRT based on dose to critical nearby structures and overall conformality of target dosing. In-vivo measured dose compared with calculated dose was -4.5% which was likely due to attenuation of the surgical tube surrounding MOSFET. Conclusion: When artifacts are present on planning CT due to bilateral hip prostheses, MR-CT image fusion is a feasible solution for target delineation.

  10. Poster — Thur Eve — 64: Preliminary investigation of arc configurations for optimal sparing of normal tissue in hypofractionated stereotactic radiotherapy (HF-SRT) of multiple brain metastases using a 5mm interdigitating micro-multileaf collimator

    SciTech Connect

    Leavens, C; Wronski, M; Lee, YK; Ruschin, M; Soliman, H; Sahgal, A

    2014-08-15

    Purpose: To evaluate normal tissue sparing in intra-cranial HF-SRT, comparing various arc configurations with the Synergy Beam Modulator (SynBM) and Agility linacs, the latter incorporating leaf interdigitation and backup jaws. Methods: Five patients with multiple brain metastases (BMs), (5 BMs (n=2), 3 BMs (n=3)) treated with HF-SRT using 25 Gy (n=2) or 30 Gy (n=3) in 5 fractions, were investigated. Clinical treatment plans used the SynBM. Each patient was retrospectively re-planned on Agility, employing three planning strategies: (A) one isocenter and dedicated arc for each BM; (B) a single isocenter, centrally placed with respect to BMs; (C) the isocenter and arc configuration used in the SynBM plan, where closely spaced (<5cm) BMs used a dedicated isocenter and arcs. Agility plans were normalized for PTV coverage and heterogeneity. Results and Conclusion: Strategy A obtained the greatest improvements over the SynBM plan, where the maximum OAR dose, and mean dose to normal brain (averaged for all patients) were reduced by 55cGy and 25cGy, respectively. Strategy B was limited by having a single isocenter, hence less jaw shielding and increased MLC leakage. The maximum OAR dose was reduced by 13cGy, however mean dose to normal brain increased by 84cGy. Strategy C reduced the maximum OAR dose and mean dose to normal brain by 32cGy and 9cGy, respectively. The results from this study indicate that, for intra-cranial HF-SRT of multiple BMs, Agility plans are equal or better than SynBM plans. Further planning is needed to investigate dose sparing using Strategy A and the SynBM.

  11. Improvements in dose calculation accuracy for small off-axis targets in high dose per fraction tomotherapy

    SciTech Connect

    Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding; Rosenfeld, Anatoly B.; Tome, Wolfgang A.

    2012-08-15

    Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed 'Super Sampling' involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receiving a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.

  12. Windowless gas targets for neutron production

    NASA Astrophysics Data System (ADS)

    Iverson, Erik. B.; Lanza, Richard C.; Lidsky, L. M.

    1997-02-01

    A windowless deuterium gas target has been constructed for either monoenergetic or white neutron production with a 900 KeV deuteron accelerator. The target is capable of operation at 100 mbar target pressure, and can admit a beam of 5 mm transverse extent. This target is further being modified by the inclusion of an intermittent valve arrangement to reduce the flow rates in the higher pressure stages. This valve should allow operation at up to 1000 mbar with low duty factor beams.

  13. MO-A-BRD-08: Radiosurgery Beyond Cancer: Real-Time Target Localization and Treatment Planning for Cardiac Radiosurgery Under MRI Guidance

    SciTech Connect

    Ipsen, S; Blanck, O; Oborn, B; Bode, F; Liney, G; Keall, P

    2014-06-15

    Purpose: Atrial fibrillation (AF) is the most common cardiac arrhythmia, affecting >2.5M Americans and >4.5M Europeans. AF is usually treated with minimally-invasive, time consuming catheter ablation techniques. Radiosurgery of the pulmonary veins (PV) has been proposed for AF treatment, however is challenging due to the complex respiratory and cardiac motion patterns. We hypothesize that an MRI-linac could solve the difficult real-time targeting and adaptation problem. In this study we quantified target motion ranges on cardiac MRI and analyzed the dosimetric benefits of margin reduction assuming real-time MRI tracking was applied. Methods: For the motion study, four human subjects underwent real-time cardiac MRI under free breathing. The target motion on coronal and axial cine planes was analyzed using a template matching algorithm. For the planning study, an ablation line at each PV antrum was defined as target on an AF patient scheduled for catheter ablation. Various safety margins ranging from 0mm (perfect tracking) to 8mm (untracked motion) were added to the target defining the PTV. 30Gy single fraction IMRT plans were then generated. Finally, the influence of a 1T magnetic field on treatment beam delivery was calculated using the Geant4 Monte Carlo algorithm to simulate the dosimetric impact of MRI guidance. Results: The motion study showed the mean respiratory motion of the target area on MRI was 8.4mm (SI), 1.7mm (AP) and 0.3mm (LR). Cardiac motion was small (<2mm). The planning study showed that with increasing safety margins to encompass untracked motion, dose tolerances for OARs such as the esophagus and airways were exceeded by >100%. The magnetic field had little impact on the dose distribution. Conclusion: Our results indicate that real-time MRI tracking of the PVs seems feasible. Accurate image guidance for high-dose AF radiosurgery is essential since safety margins covering untracked target motion will result in unacceptable treatment plans.

  14. Intensity-Modulated Radiation Therapy Versus 3D Conformal Radiotherapy for Postoperative Gynecologic Cancer: Are They Covering the Same Planning Target Volume?

    PubMed Central

    Patil, Nikhilesh; D'souza, David; Millman, Barbara; Yaremko, Brian P; Leung, Eric; Whiston, Frances; Hajdok, George; Wong, Eugene

    2016-01-01

    Background and Purpose: This study compares dosimetric parameters of planning target volume (PTV) coverage and organs at risk (OAR) sparing when postoperative radiotherapy for gynecologic cancers is delivered using volumetric modulated arc therapy (VMAT) versus a four-field (4FLD) box technique. Material and Methods: From July to December 2012, women requiring postoperative radiation for gynecologic cancers were treated with a standardized VMAT protocol. Two sets of optimized 4FLD plans were retrospectively generated: one based on standard anatomical borders (4FLD) and one based on the clinical target volume (CTV) created for VMAT with a 2 cm expansion guiding field border placement (4FLD+2). Ninety-five percent isodose curves were generated to evaluate PTV coverage. Results: VMAT significantly improved dose conformity compared with 4FLD and 4FLD+2 plans (p < 0.001) and provided additional coverage of the PTV posteriorly and superiorly, corresponding to coverage of the presacral and proximal iliac vessels. There was a significant reduction in dose to all OARs with VMAT, including a 58% reduction in the volume of the small bowel receiving more than 45 Gy (p=0.005). Conclusions: Despite treating a larger volume, radiotherapy using a 4FLD technique is less homogenous and provides inferior coverage of the PTV compared with VMAT. With meticulous treatment planning and delivery, VMAT effectively encompasses the PTV and minimizes dose to OARs. PMID:26973802

  15. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation.

    PubMed

    Magro, G; Molinelli, S; Mairani, A; Mirandola, A; Panizza, D; Russo, S; Ferrari, A; Valvo, F; Fossati, P; Ciocca, M

    2015-09-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo(®) TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus(®) chamber. An EBT3(®) film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification. PMID:26301623

  16. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation

    NASA Astrophysics Data System (ADS)

    Magro, G.; Molinelli, S.; Mairani, A.; Mirandola, A.; Panizza, D.; Russo, S.; Ferrari, A.; Valvo, F.; Fossati, P.; Ciocca, M.

    2015-09-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo® TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus® chamber. An EBT3® film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification.

  17. High-Frequency Jet Ventilation for Complete Target Immobilization and Reduction of Planning Target Volume in Stereotactic High Single-Dose Irradiation of Stage I Non-Small Cell Lung Cancer and Lung Metastases

    SciTech Connect

    Fritz, Peter; Kraus, Hans-Joerg; Muehlnickel, Werner; Sassmann, Volker; Hering, Werner; Strauch, Konstantin

    2010-09-01

    Purpose: To demonstrate the feasibility of complete target immobilization by means of high-frequency jet ventilation (HFJV); and to show that the saving of planning target volume (PTV) on the stereotactic body radiation therapy (SBRT) under HFJV, compared with SBRT with respiratory motion, can be predicted with reliable accuracy by computed tomography (CT) scans at peak inspiration phase. Methods and Materials: A comparison regarding different methods for defining the PTV was carried out in 22 patients with tumors that clearly moved with respiration. A movement span of the gross tumor volume (GTV) was defined by fusing respiration-correlated CT scans. The PTV enclosed the GTV positions with a safety margin throughout the breathing cycle. To create a PTV from CT scans acquired under HFJV, the same margins were drawn around the immobilized target. In addition, peak inspiration phase CT images (PIP-CTs) were used to approximate a target immobilized by HFJV. Results: The resulting HFJV-PTVs were between 11.6% and 45.4% smaller than the baseline values calculated as respiration-correlated CT-PTVs (median volume reduction, 25.4%). Tentative planning by means of PIP-CT PTVs predicted that in 19 of 22 patients, use of HFJV would lead to a reduction in volume of {>=}20%. Using this threshold yielded a positive predictive value of 0.89, as well as a sensitivity of 0.94 and a specificity of 0.5. Conclusions: In all patients, SBRT under HFJV provided a reliable immobilization of the GTVs and achieved a reduction in PTVs, regardless of patient compliance. Tentative planning facilitated the selection of patients who could better undergo radiation in respiratory standstill, both with greater accuracy and lung protection.

  18. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 408: Bomblet Target Area Tonopah Test Range (TTR), Nevada, Revision 1

    SciTech Connect

    Mark Krauss

    2010-03-01

    This Streamlined Approach for Environmental Restoration Plan addresses the actions needed to achieve closure of Corrective Action Unit (CAU) 408, Bomblet Target Area (TTR). Corrective Action Unit 408 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. Corrective Action Unit 408 comprises Corrective Action Site TA-55-002-TAB2, Bomblet Target Areas. Clean closure of CAU 408 will be accomplished by removal of munitions and explosives of concern within seven target areas and potential disposal pits. The target areas were used to perform submunitions related tests for the U.S. Department of Energy (DOE). The scope of CAU 408 is limited to submunitions released from DOE activities. However, it is recognized that the presence of other types of unexploded ordnance and munitions may be present within the target areas due to the activities of other government organizations. The CAU 408 closure activities consist of: • Clearing bomblet target areas within the study area. • Identifying and remediating disposal pits. • Collecting verification samples. • Performing radiological screening of soil. • Removing soil containing contaminants at concentrations above the action levels. Based on existing information, contaminants of potential concern at CAU 408 include unexploded submunitions, explosives, Resource Conservation Recovery Act metals, and depleted uranium. Contaminants are not expected to be present in the soil at concentrations above the action levels; however, this will be determined by radiological surveys and verification sample results.

  19. Planning Evaluation of C-Arm Cone Beam CT Angiography for Target Delineation in Stereotactic Radiation Surgery of Brain Arteriovenous Malformations

    SciTech Connect

    Kang, Jun; Huang, Judy; Gailloud, Philippe; Rigamonti, Daniele; Lim, Michael; Bernard, Vincent; Ehtiati, Tina; Ford, Eric C.

    2014-10-01

    Purpose: Stereotactic radiation surgery (SRS) is one of the therapeutic modalities currently available to treat cerebral arteriovenous malformations (AVM). Conventionally, magnetic resonance imaging (MRI) and MR angiography (MRA) and digital subtraction angiography (DSA) are used in combination to identify the target volume for SRS treatment. The purpose of this study was to evaluate the use of C-arm cone beam computed tomography (CBCT) in the treatment planning of SRS for cerebral AVMs. Methods and Materials: Sixteen consecutive patients treated for brain AVMs at our institution were included in this retrospective study. Prior to treatment, all patients underwent MRA, DSA, and C-arm CBCT. All images were coregistered using the GammaPlan planning system. AVM regions were delineated independently by 2 physicians using either C-arm CBCT or MRA, resulting in 2 volumes: a CBCT volume (VCBCT) and an MRA volume (V{sub MRA}). SRS plans were generated based on the delineated regions. Results: The average volume of treatment targets delineated using C-arm CBCT and MRA were similar, 6.40 cm{sup 3} and 6.98 cm{sup 3}, respectively (P=.82). However, significant regions of nonoverlap existed. On average, the overlap of the MRA with the C-arm CBCT was only 52.8% of the total volume. In most cases, radiation plans based on V{sub MRA} did not provide adequate dose to the region identified on C-arm CBCT; the mean minimum dose to V{sub CBCT} was 29.5%, whereas the intended goal was 45% (P<.001). The mean volume of normal brain receiving 12 Gy or more in C-arm CBCT-based plans was not greater than in the MRA-based plans. Conclusions: Use of C-arm CBCT images significantly alters the delineated regions of AVMs for SRS planning, compared to that of MRA/MRI images. CT-based planning can be accomplished without increasing the dose to normal brain and may represent a more accurate definition of the nidus, increasing the chances for successful obliteration.

  20. A Treatment Planning Study of Stereotactic Body Radiotherapy for Atrial Fibrillation

    PubMed Central

    Kotecha, Rupesh; Sharma, Naveen; Andrews, Martin; Stephans, Kevin L; Oberti, Carlos; Lin, Sara; Wazni, Oussama; Tchou, Patrick; Saliba, Walid I; Suh, John

    2016-01-01

    Purpose: To explore the feasibility of using stereotactic body radiotherapy (SBRT) to irradiate the antra of the four pulmonary veins while protecting nearby critical organs, such as the esophagus. Materials and Methods: Twenty patients who underwent radiofrequency catheter ablation for atrial fibrillation were selected. For each patient, the antra of the four pulmonary veins were identified as the target volumes on a pre-catheterization contrast or non-contrast CT scan. On each CT scan, the esophagus, trachea, heart, and total lung were delineated and the esophagus was identified as the critical organ. For each patient, three treatment plans were designed with 0, 2, and 5 mm planning margins around the targets while avoiding overlap with a planning organ at risk volume (PRV) generated by a 2 mm expansion of the esophagus. Using three non-coplanar volumetric modulated arcs (VMAT), 60 plans were created to deliver a prescription dose of 50 Gy in five fractions, following the SBRT dose regimen for central lung tumors. With greater than 97% of the planning target volumes (PTV) receiving the prescription doses, we examined dosimetry to 0.03 cc and 5 cc of the esophagus PRV volume as well as other contoured structures. Results: The average PTV-0 mm, PTV-2 mm, and PTV-5 mm volumes were 3.05 ± 1.90 cc, 14.70 ± 5.00 cc, and 40.85 ± 10.20 cc, respectively. With three non-coplanar VMAT arcs, the average conformality indices (ratio of prescription isodose volume to the PTV volume) for the PTV-0 mm, PTV-2 mm and PTV-5 mm were 4.81 ± 2.0, 1.71 ± 0.19, and 1.23 ± 0.08, respectively. Assuming patients were treated under breath-hold with 2 mm planning margins to account for cardiac motion, all plans met esophageal PRV maximum dose limits < 50 Gy to 0.03 cc and 16 plans (80%) met < 27.5 Gy to 5 cc of the esophageal PRVs. For PTV-5 mm plans, 18 plans met the maximum dose limit < 50 Gy to 0.03 cc and only two plans met the maximum dose limit < 27.5 Gy to 5 cc of the

  1. SU-E-T-425: Spherical Dose Distributions for Radiosurgery Using a Standardized MLC Plan

    SciTech Connect

    Popple, R; Brezovich, I; Wu, X; Fiveash, J

    2014-06-01

    Purpose: To investigate a standardized MLC treatment plan to generate small spherical dose distributions. Methods: The static virtual cone plan comprised six table positions with clockwise and counterclockwise arcs having collimator angles 45 and 135 degrees, respectively, at each position. The central two leaves of a 2.5 mm leaf width MLC were set to a constant gap. Control points were weighted proportional to the sine of the gantry angle. Plans were created for the 10 MV flattening-filter-free beam of a TrueBeam STx (Varian Medical Systems) with gaps of 1, 1.5, 2, and 3 mm and were delivered to a phantom containing radiochromic film. Dose was calculated using the Eclipse AAA (Varian Medical Systems). A dynamic plan in which the table and gantry moved simultaneously with 1.5 mm gap was also created and delivered using the TrueBeam developer mode. Results: The full-width-half-max (FWHM) varied with leaf gap, ranging from 5.2 to 6.2 mm. Calculated FWHM was smaller than measured by 0.7 mm for the 1 mm gap and ≤ 0.4 mm for the larger gaps. The measured-to-calculated dose ratio was 0.93, 0.96, 1.01, and 0.99 for 1 mm, 1.5 mm, 2 mm, and 3 mm gaps, respectively. The dynamic results were the same as the static. The position deviations between the phantom target position and the center of the dose distribution were < 0.4 mm. Conclusion: The virtual cone can deliver spherical dose distributions suitable for radio surgery of small targets such as the trigeminal nerve. The Eclipse AAA accurately calculates the expected dose, particularly for leaf gap ≥ 1.5 mm. The measured dose distribution is slightly larger than the calculation, which is likely due to systematic leaf position error, isocenter variation due to gantry sag and table eccentricity, and inaccuracy in MLC leaf end modeling.

  2. Audio-Visual Biofeedback Does Not Improve the Reliability of Target Delineation Using Maximum Intensity Projection in 4-Dimensional Computed Tomography Radiation Therapy Planning

    SciTech Connect

    Lu, Wei; Neuner, Geoffrey A.; George, Rohini; Wang, Zhendong; Sasor, Sarah; Huang, Xuan; Regine, William F.; Feigenberg, Steven J.; D'Souza, Warren D.

    2014-01-01

    Purpose: To investigate whether coaching patients' breathing would improve the match between ITV{sub MIP} (internal target volume generated by contouring in the maximum intensity projection scan) and ITV{sub 10} (generated by combining the gross tumor volumes contoured in 10 phases of a 4-dimensional CT [4DCT] scan). Methods and Materials: Eight patients with a thoracic tumor and 5 patients with an abdominal tumor were included in an institutional review board-approved prospective study. Patients underwent 3 4DCT scans with: (1) free breathing (FB); (2) coaching using audio-visual (AV) biofeedback via the Real-Time Position Management system; and (3) coaching via a spirometer system (Active Breathing Coordinator or ABC). One physician contoured all scans to generate the ITV{sub 10} and ITV{sub MIP}. The match between ITV{sub MIP} and ITV{sub 10} was quantitatively assessed with volume ratio, centroid distance, root mean squared distance, and overlap/Dice coefficient. We investigated whether coaching (AV or ABC) or uniform expansions (1, 2, 3, or 5 mm) of ITV{sub MIP} improved the match. Results: Although both AV and ABC coaching techniques improved frequency reproducibility and ABC improved displacement regularity, neither improved the match between ITV{sub MIP} and ITV{sub 10} over FB. On average, ITV{sub MIP} underestimated ITV{sub 10} by 19%, 19%, and 21%, with centroid distance of 1.9, 2.3, and 1.7 mm and Dice coefficient of 0.87, 0.86, and 0.88 for FB, AV, and ABC, respectively. Separate analyses indicated a better match for lung cancers or tumors not adjacent to high-intensity tissues. Uniform expansions of ITV{sub MIP} did not correct for the mismatch between ITV{sub MIP} and ITV{sub 10}. Conclusions: In this pilot study, audio-visual biofeedback did not improve the match between ITV{sub MIP} and ITV{sub 10}. In general, ITV{sub MIP} should be limited to lung cancers, and modification of ITV{sub MIP} in each phase of the 4DCT data set is recommended.

  3. SU-E-J-70: Feasibility Study of Dynamic Arc and IMRT Treatment Plans Utilizing Vero Treatment Unit and IPlan Planning Computer for SRS/FSRT Brain Cancer Patients

    SciTech Connect

    Huh, S; Lee, S; Dagan, R; Malyapa, R; Mendenhall, N; Mendenhall, W; Ho, M; Hough, D; Yam, M; Li, Z

    2014-06-01

    Purpose: To investigate the feasibility of utilizing Dynamic Arc (DA) and IMRT with 5mm MLC leaf of VERO treatment unit for SRS/FSRT brain cancer patients with non-invasive stereotactic treatments. The DA and IMRT plans using the VERO unit (BrainLab Inc, USA) are compared with cone-based planning and proton plans to evaluate their dosimetric advantages. Methods: The Vero treatment has unique features like no rotational or translational movements of the table during treatments, Dynamic Arc/IMRT, tracking of IR markers, limitation of Ring rotation. Accuracies of the image fusions using CBCT, orthogonal x-rays, and CT are evaluated less than ∼ 0.7mm with a custom-made target phantom with 18 hidden targets. 1mm margin is given to GTV to determine PTV for planning constraints considering all the uncertainties of planning computer and mechanical uncertainties of the treatment unit. Also, double-scattering proton plans with 6F to 9F beams and typical clinical parameters, multiple isocenter plans with 6 to 21 isocenters, and DA/IMRT plans are evaluated to investigate the dosimetric advantages of the DA/IMRT for complex shape of targets. Results: 3 Groups of the patients are divided: (1) Group A (complex target shape), CI's are same for IMRT, and DGI of the proton plan are better by 9.5% than that of the IMRT, (2) Group B, CI of the DA plans (1.91+/−0.4) are better than cone-based plan, while DGI of the DA plan is 4.60+/−1.1 is better than cone-based plan (5.32+/−1.4), (3) Group C (small spherical targets), CI of the DA and cone-based plans are almost the same. Conclusion: For small spherical targets, cone-based plans are superior to other 2 plans: DS proton and DA plans. For complex or irregular plans, dynamic and IMRT plans are comparable to cone-based and proton plans for complex targets.

  4. Accuracy in Parameter Estimation for Targeted Effects in Structural Equation Modeling: Sample Size Planning for Narrow Confidence Intervals

    ERIC Educational Resources Information Center

    Lai, Keke; Kelley, Ken

    2011-01-01

    In addition to evaluating a structural equation model (SEM) as a whole, often the model parameters are of interest and confidence intervals for those parameters are formed. Given a model with a good overall fit, it is entirely possible for the targeted effects of interest to have very wide confidence intervals, thus giving little information about…

  5. Consideration of optimal isodose surface selection for target coverage in micro-multileaf collimator-based stereotactic radiotherapy for large cystic brain metastases: comparison of 90%, 80% and 70% isodose surface-based planning

    PubMed Central

    Ohtakara, K; Hayashi, S; Tanaka, H; Hoshi, H

    2012-01-01

    Objective This study aims to compare dynamic conformal arc (DCA) plans based on different-percentage isodose surfaces (IDSs), normalised to 100% at the isocentre, for target coverage (TC; dose prescription) in stereotactic radiotherapy for large cystic brain metastases. Methods The DCA plans were generated for 15 targets (5 spherical models and 10 metastatic brain lesions) based on 90%, 80% and 70% IDSs for dose prescription to attain ≥99% TC values using the Novalis Tx platform. These plans were optimised mainly by leaf margin and/or collimator angle adjustment, while similar arc arrangements were used. Results TC values were equivalent among the three plans. Conformity index values were similar between the 80% and 70% plans, while they were worse in the 90% plans. Mean doses (Dmean) of the interior 3 mm rind structure were highest in the 70% plans, followed by the 80% plans and lowest in the 90% plans. Dmean of the exterior 3 mm rind structure and the ratio of 50%/100% isodose volumes (Paddick's gradient index values) were highest in the 90% plans, followed by 80% and lowest in the 70% plans. Conclusions These results suggest that the 70% IDS plans might be beneficial for both tumour control and reducing toxicity to surrounding normal tissue if appropriate dose conformity and precise treatment set-up are ensured. The 90% IDS plans are unfavourable in view of inferior dose gradient outside the target and should be limited to cases in which the target dose homogeneity is given the highest priority. PMID:22422384

  6. Feasibility and robustness of dose painting by numbers in proton therapy with contour-driven plan optimization

    SciTech Connect

    Barragán, A. M. Differding, S.; Lee, J. A.; Sterpin, E.; Janssens, G.

    2015-04-15

    Purpose: To prove the ability of protons to reproduce a dose gradient that matches a dose painting by numbers (DPBN) prescription in the presence of setup and range errors, by using contours and structure-based optimization in a commercial treatment planning system. Methods: For two patients with head and neck cancer, voxel-by-voxel prescription to the target volume (GTV{sub PET}) was calculated from {sup 18}FDG-PET images and approximated with several discrete prescription subcontours. Treatments were planned with proton pencil beam scanning. In order to determine the optimal plan parameters to approach the DPBN prescription, the effects of the scanning pattern, number of fields, number of subcontours, and use of range shifter were separately tested on each patient. Different constant scanning grids (i.e., spot spacing = Δx = Δy = 3.5, 4, and 5 mm) and uniform energy layer separation [4 and 5 mm WED (water equivalent distance)] were analyzed versus a dynamic and automatic selection of the spots grid. The number of subcontours was increased from 3 to 11 while the number of beams was set to 3, 5, or 7. Conventional PTV-based and robust clinical target volumes (CTV)-based optimization strategies were considered and their robustness against range and setup errors assessed. Because of the nonuniform prescription, ensuring robustness for coverage of GTV{sub PET} inevitably leads to overdosing, which was compared for both optimization schemes. Results: The optimal number of subcontours ranged from 5 to 7 for both patients. All considered scanning grids achieved accurate dose painting (1% average difference between the prescribed and planned doses). PTV-based plans led to nonrobust target coverage while robust-optimized plans improved it considerably (differences between worst-case CTV dose and the clinical constraint was up to 3 Gy for PTV-based plans and did not exceed 1 Gy for robust CTV-based plans). Also, only 15% of the points in the GTV{sub PET} (worst case) were

  7. Improving superficial target delineation in radiation therapy with endoscopic tracking and registration

    SciTech Connect

    Weersink, R. A.; Qiu, J.; Hope, A. J.; Daly, M. J.; Cho, B. C. J.; DaCosta, R. S.; Sharpe, M. B.; Breen, S. L.; Chan, H.; Jaffray, D. A.

    2011-12-15

    Purpose: Target delineation within volumetric imaging is a critical step in the planning process of intensity modulated radiation therapy. In endoluminal cancers, endoscopy often reveals superficial areas of visible disease beyond what is seen on volumetric imaging. Quantitatively relating these findings to the volumetric imaging is prone to human error during the recall and contouring of the target. We have developed a method to improve target delineation in the radiation therapy planning process by quantitatively registering endoscopic findings contours traced on endoscopic images to volumetric imaging. Methods: Using electromagnetic sensors embedded in an endoscope, 2D endoscopic images were registered to computed tomography (CT) volumetric images by tracking the position and orientation of the endoscope relative to a CT image set. Regions-of-interest (ROI) in the 2D endoscopic view were delineated. A mesh created within the boundary of the ROI was projected onto the 3D image data, registering the ROI with the volumetric image. This 3D ROI was exported to clinical radiation treatment planning software. The precision and accuracy of the procedure was tested on two solid phantoms with superficial markings visible on both endoscopy and CT images. The first phantom was T-shaped tube with X-marks etched on the interior. The second phantom was an anatomically correct skull phantom with a phantom superficial lesion placed on the pharyngeal surface. Markings were contoured on the endoscope images and compared with contours delineated in the treatment planning system based on the CT images. Clinical feasibility was tested on three patients with early stage glottic cancer. Image-based rendering using manually identified landmarks was used to improve the registration. Results: Using the T-shaped phantom with X-markings, the 2D to 3D registration accuracy was 1.5-3.5 mm, depending on the endoscope position relative to the markings. Intraobserver standard variation was 0.5

  8. Quantification of Trade-Off Between Parotid Gland Sparing and Planning Target Volume Underdosages in Clinically Node-Negative Head-and-Neck Intensity-Modulated Radiotherapy

    SciTech Connect

    Kruijf, Wilhelmus de . E-mail: kruijf.de.w@bvi.nl; Heijmen, Ben; Levendag, Peter C.

    2007-05-01

    Purpose: To quantify the trade-off between parotid gland sparing and planning target volume (PTV) underdosages for head-and-neck intensity-modulated radiotherapy. Methods and Materials: A planning study was performed for 4 patients with either soft palate or tonsil tumors treated with external radiotherapy up to 46 Gy. The trade-off between underdosages in the PTV and sparing of the parotid glands was investigated by systematically varying the optimization objectives for the inverse planning. A new way of presenting dose-volume information allows easy detection of small PTV subvolumes with underdosages that cannot be assessed in conventional cumulative dose-volume histograms. A simple radiobiological model to estimate the control probability for an electively irradiated neck level was developed. Results: The average dose to the parotid glands can decrease by >10 Gy by allowing the PTV to be underdosed in such a way that the radiobiological model predicts a decrease in subclinical disease control probability of (typically) 1% to a few percent. Conclusion: The trade-off between parotid gland sparing and underdosages in the PTV has been quantified by the use of an alternative method to present dose-volume information and by the use of a radiobiological model to predict subclinical disease control probability.

  9. Enabling implementation of the Global Vaccine Action Plan: developing investment cases to achieve targets for measles and rubella prevention.

    PubMed

    Thompson, Kimberly M; Strebel, Peter M; Dabbagh, Alya; Cherian, Thomas; Cochi, Stephen L

    2013-04-18

    Global prevention and control of infectious diseases requires significant investment of financial and human resources and well-functioning leadership and management structures. The reality of competing demands for limited resources leads to trade-offs and questions about the relative value of specific investments. Developing investment cases can help to provide stakeholders with information about the benefits, costs, and risks associated with available options, including examination of social, political, governance, and ethical issues. We describe the process of developing investment cases for globally coordinated management of action plans for measles and rubella as tools for enabling the implementation of the Global Vaccine Action Plan (GVAP). We focus on considerations related to the timing of efforts to achieve measles and rubella goals independently and within the context of ongoing polio eradication efforts, other immunization priorities, and other efforts to control communicable diseases or child survival initiatives. Our analysis suggests that the interactions between the availability and sustainability of financial support, sufficient supplies of vaccines, capacity of vaccine delivery systems, and commitments at all levels will impact the feasibility and timing of achieving national, regional, and global goals. The timing of investments and achievements will determine the net financial and health benefits obtained. The methodology, framing, and assumptions used to characterize net benefits and uncertainties in the investment cases will impact estimates and perceptions about the value of prevention achieved overall by the GVAP. We suggest that appropriately valuing the benefits of investments of measles and rubella prevention will require the use of integrated dynamic disease, economic, risk, and decision analytic models in combination with consideration of qualitative factors, and that synthesizing information in the form of investment cases may help

  10. Evaluation of targeting errors in ultrasound-assisted radiotherapy

    PubMed Central

    Wang, Michael; Rohling, Robert; Duzenli, Cheryl; Clark, Brenda; Archip, Neculai

    2014-01-01

    A method for validating the start-to-end accuracy of a 3D ultrasound-based patient positioning system for radiotherapy is described. A radiosensitive polymer gel is used to record the actual dose delivered to a rigid phantom after being positioned using 3D ultrasound guidance. Comparison of the delivered dose with the treatment plan allows accuracy of the entire radiotherapy treatment process, from simulation to 3D ultrasound guidance, and finally delivery of radiation, to be evaluated. The 3D ultrasound patient positioning system has a number of features for achieving high accuracy and reducing operator dependence. These include using tracked 3D ultrasound scans of the target anatomy acquired using a dedicated 3D ultrasound probe during both the simulation and treatment sessions, automatic 3D ultrasound-to-ultrasound registration, and use of infra-red LED (IRED) markers of the optical position sensing system for registering simulation CT to ultrasound data. The mean target localization accuracy of this system was 2.5mm for four target locations inside the phantom, compared to 1.6mm obtained using the conventional patient positioning method of laser alignment. Since the phantom is rigid, this represents the best possible set-up accuracy of the system. Thus, these results suggest that 3D ultrasound-based target localization is practically feasible and potentially capable of increasing the accuracy of patient positioning for radiotherapy in sites where day-to-day organ shifts are greater than 1mm in magnitude. PMID:18723271

  11. Evaluation of targeting errors in ultrasound-assisted radiotherapy.

    PubMed

    Wang, Michael; Rohling, Robert; Duzenli, Cheryl; Clark, Brenda; Archip, Neculai

    2008-12-01

    A method for validating the start-to-end accuracy of a 3-D ultrasound (US)-based patient positioning system for radiotherapy is described. A radiosensitive polymer gel is used to record the actual dose delivered to a rigid phantom after being positioned using 3-D US guidance. Comparison of the delivered dose with the treatment plan allows accuracy of the entire radiotherapy treatment process, from simulation to 3-D US guidance, and finally delivery of radiation, to be evaluated. The 3-D US patient positioning system has a number of features for achieving high accuracy and reducing operator dependence. These include using tracked 3-D US scans of the target anatomy acquired using a dedicated 3-D ultrasound probe during both the simulation and treatment sessions, automatic 3-D US-to-US registration and use of infrared LED (IRED) markers of the optical position-sensing system for registering simulation computed tomography to US data. The mean target localization accuracy of this system was 2.5 mm for four target locations inside the phantom, compared with 1.6 mm obtained using the conventional patient positioning method of laser alignment. Because the phantom is rigid, this represents the best possible set-up accuracy of the system. Thus, these results suggest that 3-D US-based target localization is practically feasible and potentially capable of increasing the accuracy of patient positioning for radiotherapy in sites where day-to-day organ shifts are greater than 1 mm in magnitude. PMID:18723271

  12. Nighttime assaults: using a national emergency department monitoring system to predict occurrence, target prevention and plan services

    PubMed Central

    2012-01-01

    Background Emergency department (ED) data have the potential to provide critical intelligence on when violence is most likely to occur and the characteristics of those who suffer the greatest health impacts. We use a national experimental ED monitoring system to examine how it could target violence prevention interventions towards at risk communities and optimise acute responses to calendar, holiday and other celebration-related changes in nighttime assaults. Methods A cross-sectional examination of nighttime assault presentations (6.01 pm to 6.00 am; n = 330,172) over a three-year period (31st March 2008 to 30th March 2011) to English EDs analysing changes by weekday, month, holidays, major sporting events, and demographics of those presenting. Results Males are at greater risk of assault presentation (adjusted odds ratio [AOR] 3.14, 95% confidence intervals [CIs] 3.11-3.16; P < 0.001); with male:female ratios increasing on more violent nights. Risks peak at age 18 years. Deprived individuals have greater risks of presenting across all ages (AOR 3.87, 95% CIs 3.82-3.92; P < 0.001). Proportions of assaults from deprived communities increase midweek. Female presentations in affluent areas peak aged 20 years. By age 13, females from deprived communities exceed this peak. Presentations peak on Friday and Saturday nights and the eves of public holidays; the largest peak is on New Year’s Eve. Assaults increase over summer with a nadir in January. Impacts of annual celebrations without holidays vary. Some (Halloween, Guy Fawkes and St Patrick’s nights) see increased assaults while others (St George’s and Valentine’s Day nights) do not. Home nation World Cup football matches are associated with nearly a three times increase in midweek assault presentation. Other football and rugby events examined show no impact. The 2008 Olympics saw assaults fall. The overall calendar model strongly predicts observed presentations (R2 = 0.918; P < 0

  13. A New Brain Positron Emission Tomography Scanner With Semiconductor Detectors for Target Volume Delineation and Radiotherapy Treatment Planning in Patients With Nasopharyngeal Carcinoma

    SciTech Connect

    Katoh, Norio; Yasuda, Koichi; Shiga, Tohru; Hasegawa, Masakazu; Onimaru, Rikiya; Shimizu, Shinichi; Bengua, Gerard; Ishikawa, Masayori; Tamaki, Nagara; Shirato, Hiroki

    2012-03-15

    Purpose: We compared two treatment planning methods for stereotactic boost for treating nasopharyngeal carcinoma (NPC): the use of conventional whole-body bismuth germanate (BGO) scintillator positron emission tomography (PET{sub CONV}WB) versus the new brain (BR) PET system using semiconductor detectors (PET{sub NEW}BR). Methods and Materials: Twelve patients with NPC were enrolled in this study. [{sup 18}F]Fluorodeoxyglucose-PET images were acquired using both the PET{sub NEW}BR and the PET{sub CONV}WB system on the same day. Computed tomography (CT) and two PET data sets were transferred to a treatment planning system, and the PET{sub CONV}WB and PET{sub NEW}BR images were coregistered with the same set of CT images. Window width and level values for all PET images were fixed at 3000 and 300, respectively. The gross tumor volume (GTV) was visually delineated on PET images by using either PET{sub CONV}WB (GTV{sub CONV}) images or PET{sub NEW}BR (GTV{sub NEW}) images. Assuming a stereotactic radiotherapy boost of 7 ports, the prescribed dose delivered to 95% of the planning target volume (PTV) was set to 2000 cGy in 4 fractions. Results: The average absolute volume ({+-}standard deviation [SD]) of GTV{sub NEW} was 15.7 ml ({+-}9.9) ml, and that of GTV{sub CONV} was 34.0 ({+-}20.5) ml. The average GTV{sub NEW} was significantly smaller than that of GTV{sub CONV} (p = 0.0006). There was no statistically significant difference between the maximum dose (p = 0.0585) and the mean dose (p = 0.2748) of PTV. The radiotherapy treatment plan based on the new gross tumor volume (PLAN{sub NEW}) significantly reduced maximum doses to the cerebrum and cerebellum (p = 0.0418) and to brain stem (p = 0.0041). Conclusion: Results of the present study suggest that the new brain PET system using semiconductor detectors can provide more accurate tumor delineation than the conventional whole-body BGO PET system and may be an important tool for functional and molecular radiotherapy

  14. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans

    SciTech Connect

    Bazalova-Carter, Magdalena; Qu, Bradley; Palma, Bianey; Jensen, Christopher; Maxim, Peter G. E-mail: BWLoo@Stanford.edu; Loo, Billy W. E-mail: BWLoo@Stanford.edu; Hårdemark, Björn; Hynning, Elin

    2015-05-15

    Purpose: The aim of this work was to develop a treatment planning workflow for rapid radiotherapy delivered with very high-energy electron (VHEE) scanning pencil beams of 60–120 MeV and to study VHEE plans as a function of VHEE treatment parameters. Additionally, VHEE plans were compared to clinical state-of-the-art volumetric modulated arc therapy (VMAT) photon plans for three cases. Methods: VHEE radiotherapy treatment planning was performed by linking EGSnrc Monte Carlo (MC) dose calculations with inverse treatment planning in a research version of RayStation. In order to study the effect of VHEE treatment parameters on VHEE dose distributions, a MATLAB graphical user interface (GUI) for calculation of VHEE MC pencil beam doses was developed. Through the GUI, pediatric case MC simulations were run for a number of beam energies (60, 80, 100, and 120 MeV), number of beams (13, 17, and 36), pencil beam spot (0.1, 1.0, and 3.0 mm) and grid (2.0, 2.5, and 3.5 mm) sizes, and source-to-axis distance, SAD (40 and 50 cm). VHEE plans for the pediatric case calculated with the different treatment parameters were optimized and compared. Furthermore, 100 MeV VHEE plans for the pediatric case, a lung, and a prostate case were calculated and compared to the clinically delivered VMAT plans. All plans were normalized such that the 100% isodose line covered 95% of the target volume. Results: VHEE beam energy had the largest effect on the quality of dose distributions of the pediatric case. For the same target dose, the mean doses to organs at risk (OARs) decreased by 5%–16% when planned with 100 MeV compared to 60 MeV, but there was no further improvement in the 120 MeV plan. VHEE plans calculated with 36 beams outperformed plans calculated with 13 and 17 beams, but to a more modest degree (<8%). While pencil beam spacing and SAD had a small effect on VHEE dose distributions, 0.1–3 mm pencil beam sizes resulted in identical dose distributions. For the 100 MeV VHEE pediatric

  15. Towards automated planning for unsealed source therapy.

    PubMed

    Schreibmann, Eduard; Fox, Tim

    2012-01-01

    The purpose of this study was to develop and validate a technique for unsealed source radiotherapy planning that combines the segmentation and registration tasks of single-photon emission tomography (SPECT) and computed tomography (CT) datasets. The segmentation task is automated by an atlas registration approach that takes advantage of a hybrid scheme using a diffeomorphic demons algorithm to warp a standard template to the patient's CT. To overcome the lack of common anatomical features between the CT and SPECT datasets, registration is achieved through a narrow band approach that matches liver contours in the CT with the gradients of the SPECT dataset. Deposited dose is then computed from the SPECT dataset using a convolution operation with tracer-specific deposition kernels. Automatic segmentation showed good agreement with manual contouring, measured using the dice similarity coefficient and ranging from 0.72 to 0.87 for the liver, 0.47 to 0.93 for the kidneys, and 0.74 to 0.83 for the spinal cord. The narrow band registration achieved variations of less 0.5 mm translation and 1° rotation, as measured with convergence analysis. With the proposed combined segmentation-registration technique, the uncertainty of soft-tissue target localization is greatly reduced, ensuring accurate therapy planning. PMID:22766948

  16. Changes in the planning target volume and liver volume dose based on the selected respiratory phase in respiratory-gated radiation therapy for a hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Baek, Seong-Min

    2013-11-01

    The aim of this study was to quantitatively analyze the changes in the planning target volume (PTV) and liver volume dose based on the respiratory phase to identify the optimal respiratory phase for respiratory-gated radiation therapy for a hepatocellular carcinoma (HCC). Based on the standardized procedure for respiratory-gated radiation therapy, we performed a 4-dimensional computed tomography simulation for 0 ˜ 90%, 30 ˜ 70%, and 40 ˜ 60% respiratory phases to assess the respiratory stability (S R ) and the defined PTV i for each respiratory phase i. A treatment plan was established, and the changes in the PTV i and dose volume of the liver were quantitatively analyzed. Most patients (91.5%) passed the respiratory stability test (S R = 0.111 ± 0.015). With standardized respiration training exercises, we were able to minimize the overall systematic error caused by irregular respiration. Furthermore, a quantitative analysis to identify the optimal respiratory phase revealed that when a short respiratory phase (40 ˜ 60%) was used, the changes in the PTV were concentrated inside the center line; thus, we were able to obtain both a PTV margin accounting for respiration and a uniform radiation dose within the PTV.

  17. Work plan : targeted investigation to assess current conditions associated with the carbon tetrachloride plume downgradient from the former CCC/USDA facility at Milford, Nebraska.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2008-07-09

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) formerly operated a grain storage facility at Milford, Nebraska. In May 2008, the CCC/USDA directed the Environmental Science Division of Argonne National Laboratory, as its technical consultant, to develop a work plan for a targeted investigation at the Milford site. The purpose of the targeted investigation is to assess the current extent and configuration of the carbon tetrachloride plume downgradient from the former CCC/USDA facility and proximal to the banks of the Big Blue River, which borders the area of concern to the east, southeast, and northeast. In 1995, carbon tetrachloride contamination was detected by the Nebraska Department of Health and Human Services in a private drinking water well and a livestock well 1.25 mi south of Milford (Figure 1.1). The Trojan drinking water well is located directly downgradient (approximately 300 ft east) of the former CCC/USDA facility. Low levels of carbon tetrachloride contamination were also found in the Troyer livestock well, approximately 1,200 ft north of the former CCC/USDA facility.

  18. Validation of 3DVH estimated DVH metrics for prostate VMAT plans

    NASA Astrophysics Data System (ADS)

    Arumugam, Sankar; Xing, Aitang; Young, Tony; Thwaites, David; Holloway, Lois

    2015-01-01

    The accuracy of 3DVH (Sun Nuclear Corporation, USA) reported DVH metrics for target volumes and Organs at Risk (OARs) for two Prostate Volumetric Modulated Arc Therapy (VMAT) plans was studied. The accuracy of 3DVH estimated DVH metrics in the presence of Multi Leaf Collimator (MLC) systematic errors was also tested with error introduced plans calculated in Pinnacle. The results of the study show that the DVH metrics estimated by 3DVH for error-free plans agree with the TPS calculation within 3%. The D95 to PTV was shown to be sensitive in detecting studied MLC errors. However the accuracy of 3DVH estimated DVH metrics for Target Volumes and OARs in the presence of MLC errors for VMAT prostate plans has limitations with this small data set. Although for most situations values matched within 3% for small MLC errors, there was up to a 9.8% difference between the TPS and 3DVH in the presence of a simulated 5mm MLC positioning error. Further study with more plans including other treatment sites is required to fully assess the performance of 3DVH in detecting potential clinical delivery errors.

  19. Improved target volume definition for precision radiotherapy planning of meningiomas by correlation of CT and dynamic, Gd-DTPA-enhanced FLASH MR imaging.

    PubMed

    Schad, L R; Blüml, S; Debus, J; Scharf, J; Lorenz, W J

    1994-10-01

    In this methodological paper the authors report a fast, T1-weighted gradient-echo sequence (FLASH) for dynamic, Gd-DTPA-enhanced magnetic resonance (MR) imaging of meningiomas and its application in precision radiotherapy planning. Indications for radiotherapy included unresected tumors, tumor remaining after surgery, and recurrences. The patient's head was fixed in a stereotactic localization system which is usable at the CT, MR and the linear accelerator installations. By phantom measurements different materials (steel, aluminum, titanium, plastic, wood, ceramics) used for the stereotactic system were tested for mechanical stability and geometric MR image distortion. All metallic stereotactic rings (closed rings made of massive metal) led to a more or less dramatic geometric distortion and signal cancellation in the MR images. The best properties--nearly no distortion and high mechanic stability--are provided by a ceramic ring. If necessary, the remaining geometric MR image distortion can be 'corrected' (reducing displacements to the size of a pixel) by calculations based on modeling the distortion as a fourth order two-dimensional polynomial. The target volume was defined in dynamic, T1-weighted FLASH MR images, which were measured before, during, and after the controlled intravenous infusion of 0.1 mmol/kg body weight Gd-DTPA. The stereotactic localization technique allows the precise transfer of the target volume information from MR onto CT data to provide a map of the radiation attenuation coefficient for dose calculation. In genera, the superior soft tissue contrast of MR showed an excellent tumor delineation, especially in regions, such as the base of the skull, where the target often was obscured in CT images.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7878213

  20. Sci—Sat AM: Stereo — 06: Dosimetric Comparison of 3D Conformai, Flattened and Flattening Filter-Free TrueBeam RapidArc Planning for Lung SBRT

    SciTech Connect

    Jiang, Runqing; Zhan, Lixin; Osei, Ernest

    2014-08-15

    The major advantages of the VMAT SBRT plans compared to the conventional 3D conformai plan include faster delivery and improved target dose conformity. This study quantifies the dosimetric differences among 3D conformai plan; flattened beam and flattening filter-free (FFF) beam RapidArc Plans for lung SBRT. Five early stage lung cancer patients with various tumor positions and sizes previously treated with 3D non-coplanar SBRT were randomly selected. 4DCT was used for each patient to determine the internal target volume. Abdominal compression was applied to minimize respiratory motion for SBRT patients. For treatment planning, a 5 mm margin was given to the ITV to generate a planning target volume. The prescription dose was 48 Gy in 4 fractions and normalized to 95% of the PTV. Organs at risk (OAR) included spinal cord, esophagus, heart, trachea, bilateral lung, and great vessels. Optimization constraints were set to meet the criteria of the RTOG-0915 protocol. All VMAT plans were optimized with the RapidArc technique using two full arcs in Eclipse treatment planning system. The RapidArc SBRT plans with flattened 6MV beam and 6MV FFF beam were generated and dosimetric results were compared with the previous treated 3D non-coplanar plans. RapidArc plans demonstrated better conformity to target, sharper dose fall-off in normal tissues and lower dose to normal lung and other OARs than the 3D conformai plans. RapidArc SBRT for FFF beam showed comparable target conformity, adequate tumor dose, and clinically acceptable DVHs of OARs to flattened beams and significantly reduced treatment delivery time.

  1. Accuracy of relocation, evaluation of geometric uncertainties and clinical target volume (CTV) to planning target volume (PTV) margin in fractionated stereotactic radiotherapy for intracranial tumors using relocatable Gill-Thomas-Cosman (GTC) frame.

    PubMed

    Das, Saikat; Isiah, Rajesh; Rajesh, B; Ravindran, B Paul; Singh, Rabi Raja; Backianathan, Selvamani; Subhashini, J

    2011-01-01

    The present study is aimed at determination of accuracy of relocation of Gill-Thomas-Cosman frame during fractionated stereotactic radiotherapy. The study aims to quantitatively determine the magnitudes of error in anteroposterior, mediolateral and craniocaudal directions, and determine the margin between clinical target volume to planning target volume based on systematic and random errors. Daily relocation error was measured using depth helmet and measuring probe. Based on the measurements, translational displacements in anteroposterior (z), mediolateral (x), and craniocaudal (y) directions were calculated. Based on the displacements in x, y and z directions, systematic and random error were calculated and three-dimensional radial displacement vector was determined. Systematic and random errors were used to derive CTV to PTV margin. The errors were within ± 2 mm in 99.2% cases in anteroposterior direction (AP), in 99.6% cases in mediolateral direction (ML), and in 97.6% cases in craniocaudal direction (CC). In AP, ML and CC directions, systematic errors were 0.56, 0.38, 0.42 mm and random errors were 1.86, 1.36 and 0.73 mm, respectively. Mean radial displacement was 1.03 mm ± 0.34. CTV to PTV margins calculated by ICRU formula were 1.86, 1.45 and 0.93 mm; by Stroom's formula they were 2.42, 1.74 and 1.35 mm; by van Herk's formula they were 2.7, 1.93 and 1.56 mm (AP, ML and CC directions). Depth helmet with measuring probe provides a clinically viable way for assessing the relocation accuracy of GTC frame. The errors were within ± 2 mm in all directions. Systematic and random errors were more along the anteroposterior axes. According to the ICRU formula, a margin of 2 mm around the tumor seems to be adequate. PMID:21587166

  2. SU-E-T-300: Spatial Variations of Multiple Off-Axial Targets for a Single Isocenter SRS Treatment Plan in ExacTrac 6D Robotic Couch System

    SciTech Connect

    Kim, S; Tseng, T

    2014-06-01

    Purpose: To evaluate the spatial variations of multiple off-axial targets for a single isocenter stereotactic radiosurgery (SRS) treatment plan in ExacTrac 6D robotic couch system (BrainLab AG). Methods: Five metallic ball bearing (BB) markers were placed sparsely in 3D off-axial locations (non-coplanar) inside a skull phantom as the representatives of multiple targets mimicking multiple brain metastases. The locations of the BB markers were carefully chosen to minimize overlapping of each other in a port imaging detector plane. The skull phantom was immobilized by a frameless mask and CT scanned with a BrainLab Head and Neck Localizer using a GE Optima MDCT scanner. The CT images were exported to iPlan software (BrainLab AG) and a multiple target PTV was drawn by combining all the contours of the BBs. The margin of the MLC opening was selected as 3 mm expansion outward. Two coplanar arc beams were placed to generate a single isocenter SRS plan to treat the PTV. The arc beams were delivered using Novalis Tx system with portal imaging acquisition mode per 10% temporal resolution. The locations of the BBs were visualized and analyzed with respect to the MLC aperture in the treatment plan similar to the Winston-Lutz test. Results: All the BBs were clearly identified inside the MLC openings. The positional errors for the BBs were overall less than 1 mm along the rotational path of the two arcs. Conclusion: This study verified that the spatial deviations of multiple off-axial targets for a single isocenter SRS treatment plan is within sub-millimeter range in ExacTrac 6D robotic couch system. Accompanied with the Winston-Lutz test, this test will quality-assure the spatial accuracies of the isocenter as well as the positions of multiple off-axial targets for the SRS treatment using a single isocenter multiple target treatment plan.

  3. Poster — Thur Eve — 66: Robustness Assessment of a Novel IMRT Planning Method for Lung Radiotherapy

    SciTech Connect

    Ahanj, M.; Bissonnette, J.-P.; Heath, E.; McCann, C.

    2014-08-15

    Conventional radiotherapy treatment planning for lung cancer accounts for tumour motion by increasing the beam apertures. We recently developed an IMRT planning strategy which uses reduced beam apertures in combination with an edge enhancing boost of 110% of the prescription dose to the volume that corresponds to the portion of the CTV that moves outside of the reduced beam. Previous results showed that this approach ensures target coverage while reducing lung dose. In the current study, we evaluate the robustness of this boost volume approach to changes in respiratory motion, including amplitude and phase weight variations. ITV and boost volume plans were generated for 5 NSCLC patients with respiratory motion amplitudes ranging from 1 to 2 cm. A standard 5mm PTV margin was used for all plans. The ORBIT treatment planning tool was used to plan and accumulate dose over 10 respiratory phases defined by the 4DCT datasets. For the phase weight variation study, dose was accumulated for three scenarios: equally-weighted-phases, higher weight assigned to exhale phases and higher weight assigned to inhale phases. For the amplitude variation study, a numerical phantom was used to generate 4DCT datasets corresponding to 7 mm, 10 mm and 14 mm motion amplitudes. Preliminary results found that delivered plans for all phase weight scenarios were clinically acceptable. When normalized to mean lung dose, the boost volume plan delivered 5% more dose to the CTV which indicates the potential for dose escalation using this approach.

  4. Dosimetric comparison of treatment plans based on free breathing, maximum, and average intensity projection CTs for lung cancer SBRT

    SciTech Connect

    Tian Yuan; Wang Zhiheng; Ge Hong; Zhang Tian; Cai Jing; Kelsey, Christopher; Yoo, David; Yin Fangfang

    2012-05-15

    Purpose: To determine whether there is a CT dataset may be more favorable for planning and dose calculation by comparing dosimetric characteristics between treatment plans calculated using free breathing (FB), maximum and average intensity projection (MIP and AIP, respectively) CTs for lung cancer patients receiving stereotactic body radiation therapy (SBRT). Methods: Twenty lung cancer SBRT patients, treated on a linac with 2.5 mm width multileaf-collimator (MLC), were analyzed retrospectively. Both FB helical and four-dimensional CT scans were acquired for each patient. Internal target volume (ITV) was delineated based on MIP CTs and modified based on both ten-phase datasets and FB CTs. Planning target volume (PTV) was then determined by adding additional setup margin to ITV. The PTVs and beams in the optimized treatment plan based on FB CTs were copied to MIP and AIP CTs, with the same isocenters, MLC patterns and monitor units. Mean effective depth (MED) of beams, and some dosimetric parameters for both PTVs and most important organ at risk (OAR), lung minus PTV, were compared between any two datasets using two-tail paired t test. Results: The MEDs in FB and AIP plans were similar but significantly smaller (Ps < 0.001) than that in MIP plans. Minimum dose, mean dose, dose covering at least 90% and 95% of PTVs in MIP plans were slightly higher than two other plans (Ps < 0.008). The absolute volume of lung minus PTV receiving greater than 5, 10, and 20 Gy in MIP plans were significantly smaller than those in both FB and AIP plans (Ps < 0.008). Conformity index for FB plans showed a small but statistically significantly higher. Conclusions: Dosimetric characteristics of AIP plans are similar to those of FB plans. Slightly better target volume coverage and significantly lower low-dose region ({<=}30 Gy) in lung was observed in MIP plans. The decrease in low-dose region in lung was mainly caused by the change of lung volume contoured on two datasets rather than the

  5. Coregistration of Prechemotherapy PET-CT for Planning Pediatric Hodgkin's Disease Radiotherapy Significantly Diminishes Interobserver Variability of Clinical Target Volume Definition

    SciTech Connect

    Metwally, Hussein; Courbon, Frederic; David, Isabelle; Filleron, Thomas; Blouet, Aurelien; Rives, Michel; Izar, Francoise; Zerdoud, Slimane; Plat, Genevieve; Vial, Julie; Robert, Alain; Laprie, Anne

    2011-07-01

    Purpose: To assess the interobserver variability in clinical target volume (CTV) definitions when using registered {sup 18}F-labeled deoxyglucose positron emission tomography (FDG-PET-CT) versus side-by-side image sets in pediatric Hodgkin's disease (HD). Methods and Materials: Prechemotherapy FDG-PET-CT scans performed in the treatment position were acquired from 20 children (median age, 14 years old) with HD (stages 2A to 4B) and registered with postchemotherapy planning CT scans. The patients had a median age of 14 years and stages of disease ranging between 2A and 4B. Image sets were coregistered using a semiautomatic coregistration system. The biological target volume was defined on all the coregistered images as a guide to defining the initial site of involvement and to avoid false-positive or negative results. Five radiation oncologists independently defined the CTV for all 20 patients: once using separate FDG-PET-CT images as a guide (not registered) to define CTVa and once using the registered FDG-PET-CT data to define CTVb. The total volumes were compared, as well as their coefficients of variation (COV). To assess the interobserver variability, the percentages of intersection between contours drawn by all observers for each patient were calculated for CTVa and for CTVb. Results: The registration of a prechemotherapy FDG-PET-CT scan caused a change in the CTV for all patients. Comparing CTVa with CTVb showed that the mean CTVb increased in 14 patients (range, 0.61%-101.96%) and decreased in 6 patients (range, 2.97%-37.26%). The COV for CTVb significantly decreased for each patient; the mean COVs for CTVa and CTVb were 45% (21%-65%) and 32% (13%-57%), respectively (p = 0.0004). The percentage of intersection among all CTVbs for the five observers increased significantly by 89.77% (1.99%-256.41%) compared to that of CTVa (p = 0.0001). Conclusions: High observer variability can occur during CT-based definition of CTVs for children diagnosed with HD

  6. Treatment planning for prostate focal laser ablation in the face of needle placement uncertainty

    SciTech Connect

    Cepek, Jeremy Fenster, Aaron; Lindner, Uri; Trachtenberg, John; Davidson, Sean R. H.; Haider, Masoom A.; Ghai, Sangeet

    2014-01-15

    Purpose: To study the effect of needle placement uncertainty on the expected probability of achieving complete focal target destruction in focal laser ablation (FLA) of prostate cancer. Methods: Using a simplified model of prostate cancer focal target, and focal laser ablation region shapes, Monte Carlo simulations of needle placement error were performed to estimate the probability of completely ablating a region of target tissue. Results: Graphs of the probability of complete focal target ablation are presented over clinically relevant ranges of focal target sizes and shapes, ablation region sizes, and levels of needle placement uncertainty. In addition, a table is provided for estimating the maximum target size that is treatable. The results predict that targets whose length is at least 5 mm smaller than the diameter of each ablation region can be confidently ablated using, at most, four laser fibers if the standard deviation in each component of needle placement error is less than 3 mm. However, targets larger than this (i.e., near to or exceeding the diameter of each ablation region) require more careful planning. This process is facilitated by using the table provided. Conclusions: The probability of completely ablating a focal target using FLA is sensitive to the level of needle placement uncertainty, especially as the target length approaches and becomes greater than the diameter of ablated tissue that each individual laser fiber can achieve. The results of this work can be used to help determine individual patient eligibility for prostate FLA, to guide the planning of prostate FLA, and to quantify the clinical benefit of using advanced systems for accurate needle delivery for this treatment modality.

  7. [The practical theory of occupational health planning: Part One--The theoretical background of the target population setting and needs assessment procedures (OPST research report 2)].

    PubMed

    Jahng, D J; Hashimoto, H; Furuki, K

    1996-09-01

    The OPSS is an 8 stage program which was developed as a practical tool for occupational health services planning. This paper examines the theoretical aspects of the first two stages. The OPSS is a planning tool with a theoretical grounding in OHP (The practical theory of Occupational Health Planning). The target population setting has two functions. The first is to establish the physician's first-hypothesis to design a program. The other is deciding the group which has an occupational health problem in a company. The Needs Assessment helps to clarify the physician's hypothesis, which may be weak due to the limited knowledge of various demands of the employees and senior management. On the other hand, the risks and needs vary according to what kind of expert looks at a situation. To date, occupational physicians have been limited to their medical background in determining only risks and needs. However, understanding the various stakeholders in a particular environment means that any project will be more relevant to all concerned. Another limitation of the occupational physicians hypothesis can be the lack of objective data to support it. This makes it difficult to persuade senior management to sign on to a program. The Needs Assessment procedure with OHQ steps is useful in a number of ways. The Observation step allows for finding risks and needs from various situations in the company from the occupational physician's viewpoint (prehypothesis setting). Hearing is for understanding the subject's demands and finding common themes in the company (final hypothesis setting). Finally, the questionnaire step is for providing objectivity of these common themes and quantitative data for the next Priority Setting procedure. The BITOP (Budget, Information, Time, Order, key Person) has been proposed as a way to diagnose the structural and functional aspects of an organization's procedures. Budget tracks the financial flow through the organization, while Information identifies

  8. SU-E-J-76: Incorporation of Ultrasound Elastography in Target Volume Delineation for Partial Breast Radiotherapy Planning: A Comparative Study

    SciTech Connect

    Juneja, P; Harris, E; Bamber, J

    2014-06-01

    Purpose: There is substantial observer variability in the delineation of target volumes for post-surgical partial breast radiotherapy because the tumour bed has poor x-ray contrast. This variability may result in substantial variations in planned dose distribution. Ultrasound elastography (USE) has an ability to detect mechanical discontinuities and therefore, the potential to image the scar and distortion in breast tissue architecture. The goal of this study was to compare USE techniques: strain elastography (SE), shear wave elastography (SWE) and acoustic radiation force impulse (ARFI) imaging using phantoms that simulate features of the tumour bed, for the purpose of incorporating USE in breast radiotherapy planning. Methods: Three gelatine-based phantoms (10% w/v) containing: a stiff inclusion (gelatine 16% w/v) with adhered boundaries, a stiff inclusion (gelatine 16% w/v) with mobile boundaries and fluid cavity inclusion (to mimic seroma), were constructed and used to investigate the USE techniques. The accuracy of the elastography techniques was quantified by comparing the imaged inclusion with the modelled ground-truth using the Dice similarity coefficient (DSC). For two regions of interest (ROI), the DSC measures their spatial overlap. Ground-truth ROIs were modelled using geometrical measurements from B-mode images. Results: The phantoms simulating stiff scar tissue with adhered and mobile boundaries and seroma were successfully developed and imaged using SE and SWE. The edges of the stiff inclusions were more clearly visible in SE than in SWE. Subsequently, for all these phantoms the measured DSCs were found to be higher for SE (DSCs: 0.91–0.97) than SWE (DSCs: 0.68–0.79) with an average relative difference of 23%. In the case of seroma phantom, DSC values for SE and SWE were similar. Conclusion: This study presents a first attempt to identify the most suitable elastography technique for use in breast radiotherapy planning. Further analysis will

  9. Impact of treatment planning target volumen (PTV) size on radiation induced diarrhoea following selenium supplementation in gynecologic radiation oncology - a subgroup analysis of a multicenter, phase III trial

    PubMed Central

    2013-01-01

    Background In a previous analysis (Int J Radiat Oncol Biol Phys 70:828-835,2010), we assessed whether an adjuvant supplementation with selenium (Se) improves Se status and reduces the radiation-induced side-effects of patients treated by adjuvant radiotherapy (RT) for cervical and uterine cancer. Now, a potential relation between the planning target volume (PTV) of the RT and the Se effect concerning radiation induced diarrhoea was evaluated in detail. Methods Whole blood Se concentrations had been measured in patients with cervical (n=11) and uterine cancer (n=70) after surgical treatment, during, and at the end of RT. Patients with initial Se concentrations of less than 84 μg/l were categorized as Se-deficient and randomized before RT to receive Se (as sodium selenite) per os on the days of RT, or to receive no supplement during RT. Diarrhoea was graded according to the Common Toxicity Criteria system (CTC, Version 2a). The evaluation of the PTV of the RT was ascertained with the help of a specialised computer-assisted treatment planning software used for radiation planning procedure. Results A total of 81 patients had been randomized for the initial supplementation study, 39 of which received Se [selenium group, SeG] and 42 serving as controls [control group, CG]. Mean Se levels did not differ between SeG and CG upon study initiation, but were significantly higher in the SeG compared to the CG at the end of RT. The actuarial incidence of at least CTC 2 radiation induced diarrhoea in the SeG was 20.5% compared to 44.5% in the CG (p=0.04). The median PTV in both groups was 1302 ml (916–4608). With a PTV of <= 1302 ml (n=41) the actuarial incidence of at least CTC 2 diarrhoea in the SeG was 22.3% (4 of 18 patients) compared to 34.8% (8 of 23 patients) in the CG (p=0.50). In patients with a PTV of > 1302 ml (n=40) the actuarial incidence of at least CTC 2 diarrhoea in the SeG was 19.1% (4 of 21 patients) versus 52.6% (10 of 19 patients) in the CG (p=0

  10. Computing Proton Dose to Irregularly Moving Targets

    PubMed Central

    Phillips, Justin; Gueorguiev, Gueorgui; Shackleford, James A.; Grassberger, Clemens; Dowdell, Stephen; Paganetti, Harald; Sharp, Gregory C.

    2014-01-01

    Purpose While four-dimensional computed tomography (4DCT) and deformable registration can be used to assess the dose delivered to regularly moving targets, there are few methods available for irregularly moving targets. 4DCT captures an idealized waveform, but human respiration during treatment is characterized by gradual baseline shifts and other deviations from a periodic signal. This paper describes a method for computing the dose delivered to irregularly moving targets based on 1D or 3D waveforms captured at the time of delivery. Methods The procedure uses CT or 4DCT images for dose calculation, and 1D or 3D respiratory waveforms of the target position at time of delivery. Dose volumes are converted from their Cartesian geometry into a beam-specific radiological depth space, parameterized in 2D by the beam aperture, and longitudinally by the radiological depth. In this new frame of reference, the proton doses are translated according to the motion found in the 1D or 3D trajectory. These translated dose volumes are weighted and summed, then transformed back into Cartesian space, yielding an estimate of the dose that includes the effect of the measured breathing motion. The method was validated using a synthetic lung phantom and a single representative patient CT. Simulated 4DCT was generated for the phantom with 2 cm peak-to-peak motion. Results A passively-scattered proton treatment plan was generated using 6 mm and 5 mm smearing for the phantom and patient plans, respectively. The method was tested without motion, and with two simulated breathing signals: a 2 cm amplitude sinusoid, and a 2 cm amplitude sinusoid with 3 cm linear drift in the phantom. The tumor positions were equally weighted for the patient calculation. Motion-corrected dose was computed based on the mid-ventilation CT image in the phantom and the peak exhale position in the patient. Gamma evaluation was 97.8% without motion, 95.7% for 2 cm sinusoidal motion, and 95.7% with 3 cm drift in the

  11. Computing proton dose to irregularly moving targets

    NASA Astrophysics Data System (ADS)

    Phillips, Justin; Gueorguiev, Gueorgui; Shackleford, James A.; Grassberger, Clemens; Dowdell, Stephen; Paganetti, Harald; Sharp, Gregory C.

    2014-08-01

    Purpose: While four-dimensional computed tomography (4DCT) and deformable registration can be used to assess the dose delivered to regularly moving targets, there are few methods available for irregularly moving targets. 4DCT captures an idealized waveform, but human respiration during treatment is characterized by gradual baseline shifts and other deviations from a periodic signal. This paper describes a method for computing the dose delivered to irregularly moving targets based on 1D or 3D waveforms captured at the time of delivery. Methods: The procedure uses CT or 4DCT images for dose calculation, and 1D or 3D respiratory waveforms of the target position at time of delivery. Dose volumes are converted from their Cartesian geometry into a beam-specific radiological depth space, parameterized in 2D by the beam aperture, and longitudinally by the radiological depth. In this new frame of reference, the proton doses are translated according to the motion found in the 1D or 3D trajectory. These translated dose volumes are weighted and summed, then transformed back into Cartesian space, yielding an estimate of the dose that includes the effect of the measured breathing motion. The method was validated using a synthetic lung phantom and a single representative patient CT. Simulated 4DCT was generated for the phantom with 2 cm peak-to-peak motion. Results: A passively-scattered proton treatment plan was generated using 6 mm and 5 mm smearing for the phantom and patient plans, respectively. The method was tested without motion, and with two simulated breathing signals: a 2 cm amplitude sinusoid, and a 2 cm amplitude sinusoid with 3 cm linear drift in the phantom. The tumor positions were equally weighted for the patient calculation. Motion-corrected dose was computed based on the mid-ventilation CT image in the phantom and the peak exhale position in the patient. Gamma evaluation was 97.8% without motion, 95.7% for 2 cm sinusoidal motion, 95.7% with 3 cm drift in the

  12. Two-phase flow model for energetic proton beam induced pressure waves in mercury target systems in the planned European Spallation Source

    NASA Astrophysics Data System (ADS)

    Barna, I. F.; Imre, A. R.; Rosta, L.; Mezei, F.

    2008-12-01

    Two-phase flow calculations are presented to investigate the thermo-hydraulical effects of the interaction between 2 ms long 1.3 GeV proton pulses with a closed mercury loop which can be considered as a model system of the target of the planned European Spallation Source (ESS) facility. The two-fluid model consists of six first-order partial differential equations that present one dimensional mass, momentum and energy balances for mercury vapor and liquid phases are capable to describe quick transients like cavitation effects or shock waves. The absorption of the proton beam is represented as instantaneous heat source in the energy balance equations. Densities and internal energies of the mercury liquid-vapor system is calculated from the van der Waals equation, but general method how to obtain such properties using arbitrary equation of state is also presented. A second order accurate high-resolution shock-capturing numerical scheme is applied with different kind of limiters in the numerical calculations. Our analysis show that even 75 degree temperature heat shocks cannot cause considerable cavitation effects in mercury.

  13. SU-E-T-389: Effect of Interfractional Shoulder Motion On Low Neck Nodal Targets for Patients Treated Using Volume Modulated Arc Therapy (VMAT)

    SciTech Connect

    Casey, K; Wong, P; Tung, S

    2014-06-01

    Purpose: To quantify the dosimetric impact of interfractional shoulder motion on targets in the low neck for head and neck patients treated with volume modulated arc therapy (VMAT). Methods: Three patients with head and neck cancer were selected. All three required treatment to nodal regions in the low neck in addition to the primary tumor. The patients were immobilized during simulation and treatment with a custom thermoplastic mask covering the head and shoulders. One VMAT plan was created for each patient utilizing two full 360° arcs. A second plan was created consisting of two superior VMAT arcs matched to an inferior static AP supraclavicular field. A CT-on-rails alignment verification was performed weekly during each patient's treatment course. The weekly CT images were registered to the simulation CT and the target contours were deformed and applied to the weekly CT. The two VMAT plans were copied to the weekly CT datasets and recalculated to obtain the dose to the low neck contours. Results: The average observed shoulder position shift in any single dimension relative to simulation was 2.5 mm. The maximum shoulder shift observed in a single dimension was 25.7 mm. Low neck target mean doses, normalized to simulation and averaged across all weekly recalculations were 0.996, 0.991, and 1.033 (Full VMAT plan) and 0.986, 0.995, and 0.990 (Half-Beam VMAT plan) for the three patients, respectively. The maximum observed deviation in target mean dose for any individual weekly recalculation was 6.5%, occurring with the Full VMAT plan for Patient 3. Conclusion: Interfractional variation in dose to low neck nodal regions was quantified for three head and neck patients treated with VMAT. Mean dose was 3.3% higher than planned for one patient using a Full VMAT plan. A Half-Beam technique is likely a safer choice when treating the supraclavicular region with VMAT.

  14. Production Target Design Report

    SciTech Connect

    Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard

    2015-07-28

    The Northstar 99Mo production target, a cylindrical length of 100Mo rod, has evolved considerably since its first conception.  The cylinder was very early sliced into disks to increase the heat transfer area, first to 1 mm thick disks then to the current 0.5 mm thick.  The coolant was changed early in the target development from water to helium to eliminate corrosion and dissolution.  The diameter has increased from initially 6 mm to 12 mm, the current diameter of the test target now at ANL, to nominally 28 mm (26-30.6 mm, depending upon optimal beam spot size and shape).  The length has also changed to improve the production to cost ratio, so now the target is nominally 41 mm long (excluding coolant gaps between disks), and irradiated on both ends.  This report summarizes the current status of the plant target design.

  15. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    SciTech Connect

    Aslian, Hossein; Sadeghi, Mahdi; Mahdavi, Seied Rabie; Babapour Mofrad, Farshid; Astarakee, Mahdi; Khaledi, Navid; Fadavi, Pedram

    2013-09-01

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer.

  16. Improving plan quality and consistency by standardization of dose constraints in prostate cancer patients treated with CyberKnife.

    PubMed

    Descovich, Martina; Carrara, Mauro; Morlino, Sara; Pinnaduwage, Dilini S; Saltiel, Daniel; Pouliot, Jean; Nash, Marc B; Pignoli, Emanuele; Valdagni, Riccardo; Roach, Mack; Gottschalk, Alexander R

    2013-01-01

    Treatment plans for prostate cancer patients undergoing stereotactic body radiation therapy (SBRT) are often challenging due to the proximity of organs at risk. Today, there are no objective criteria to determine whether an optimal treatment plan has been achieved, and physicians rely on their personal experience to evaluate the plan's quality. In this study, we propose a method for determining rectal and bladder dose constraints achievable for a given patient's anatomy. We expect that this method will improve the overall plan quality and consistency, and facilitate comparison of clinical outcomes across different institutions. The 3D proximity of the organs at risk to the target is quantified by means of the expansion-intersection volume (EIV), which is defined as the intersection volume between the target and the organ at risk expanded by 5 mm. We determine a relationship between EIV and relevant dosimetric parameters, such as the volume of bladder and rectum receiving 75% of the prescription dose (V75%). This relationship can be used to establish institution-specific criteria to guide the treatment planning and evaluation process. A database of 25 prostate patients treated with CyberKnife SBRT is used to validate this approach. There is a linear correlation between EIV and V75% of bladder and rectum, confirming that the dose delivered to rectum and bladder increases with increasing extension and proximity of these organs to the target. This information can be used during the planning stage to facilitate the plan optimization process, and to standardize plan quality and consistency. We have developed a method for determining customized dose constraints for prostate patients treated with robotic SBRT. Although the results are technology specific and based on the experience of a single institution, we expect that the application of this method by other institutions will result in improved standardization of clinical practice. PMID:24036869

  17. Image-guided system with miniature robot for precise positioning and targeting in keyhole neurosurgery.

    PubMed

    Joskowicz, L; Shamir, R; Freiman, M; Shoham, M; Zehavi, E; Umansky, F; Shoshan, Y

    2006-07-01

    This paper describes a novel image-guided system for precise automatic targeting in minimally invasive keyhole neurosurgery. The system consists of the MARS miniature robot fitted with a mechanical guide for needle, probe or catheter insertion. Intraoperatively, the robot is directly affixed to a head clamp or to the patient's skull. It automatically positions itself with respect to predefined targets in a preoperative CT/MRI image following an anatomical registration with an intraoperative 3D surface scan of the patient's facial features and registration jig. We present the system architecture, surgical protocol, custom hardware (targeting and registration jig), and software modules (preoperative planning, intraoperative execution, 3D surface scan processing, and three-way registration). We also describe a prototype implementation of the system and in vitro registration experiments. Our results indicate a system-wide target registration error of 1.7 mm (standard deviation = 0.7 mm), which is close to the required 1.0-1.5 mm clinical accuracy in many keyhole neurosurgical procedures. PMID:17038306

  18. Poster — Thur Eve — 32: Stereotactic Body Radiation Therapy for Peripheral Lung Lesion: Treatment Planning and Quality Assurance

    SciTech Connect

    Wan, Shuying; Oliver, Michael; Wang, Xiaofang

    2014-08-15

    Stereotactic body radiation therapy (SBRT), due to its high precision for target localizing, has become widely used to treat tumours at various locations, including the lungs. Lung SBRT program was started at our institution a year ago. Eighteen patients with peripheral lesions up to 3 cm diameter have been treated with 48 Gy in 4 fractions. Based on four-dimensional computed tomography (4DCT) simulation, internal target volume (ITV) was delineated to encompass the respiratory motion of the lesion. A margin of 5 mm was then added to create the planning target volume (PTV) for setup uncertainties. There was no expansion from gross tumour volume (GTV) to clinical target volume (CTV). Pinnacle 9.6 was used as the primary treatment planning system. Volumetric modulated arc therapy (VMAT) technique, with one or two coplanar arcs, generally worked well. For quality assurance (QA), each plan was exported to Eclipse 10 and dose calculation was repeated. Dose volume histograms (DVHs) of the targets and organs at risk (OARs) were then compared between the two treatment planning systems. Winston-Lutz tests were carried out as routine machine QA. Patient-specific QA included ArcCheck measurement with an insert, where an ionization chamber was placed at the centre to measure dose at the isocenter. For the first several patients, and subsequently for the plans with extremely strong modulation, Gafchromic film dosimetry was also employed. For each patient, a mock setup was scheduled prior to treatments. Daily pre- and post-CBCT were acquired for setup and assessment of intra-fractional motion, respectively.

  19. Whole Brain Irradiation With Hippocampal Sparing and Dose Escalation on Multiple Brain Metastases: A Planning Study on Treatment Concepts

    SciTech Connect

    Prokic, Vesna; Wiedenmann, Nicole; Fels, Franziska; Schmucker, Marianne; Nieder, Carsten; Grosu, Anca-Ligia

    2013-01-01

    Purpose: To develop a new treatment planning strategy in patients with multiple brain metastases. The goal was to perform whole brain irradiation (WBI) with hippocampal sparing and dose escalation on multiple brain metastases. Two treatment concepts were investigated: simultaneously integrated boost (SIB) and WBI followed by stereotactic fractionated radiation therapy sequential concept (SC). Methods and Materials: Treatment plans for both concepts were calculated for 10 patients with 2-8 brain metastases using volumetric modulated arc therapy. In the SIB concept, the prescribed dose was 30 Gy in 12 fractions to the whole brain and 51 Gy in 12 fractions to individual brain metastases. In the SC concept, the prescription was 30 Gy in 12 fractions to the whole brain followed by 18 Gy in 2 fractions to brain metastases. All plans were optimized for dose coverage of whole brain and lesions, simultaneously minimizing dose to the hippocampus. The treatment plans were evaluated on target coverage, homogeneity, and minimal dose to the hippocampus and organs at risk. Results: The SIB concept enabled more successful sparing of the hippocampus; the mean dose to the hippocampus was 7.55 {+-} 0.62 Gy and 6.29 {+-} 0.62 Gy, respectively, when 5-mm and 10-mm avoidance regions around the hippocampus were used, normalized to 2-Gy fractions. In the SC concept, the mean dose to hippocampus was 9.8 {+-} 1.75 Gy. The mean dose to the whole brain (excluding metastases) was 33.2 {+-} 0.7 Gy and 32.7 {+-} 0.96 Gy, respectively, in the SIB concept, for 5-mm and 10-mm hippocampus avoidance regions, and 37.23 {+-} 1.42 Gy in SC. Conclusions: Both concepts, SIB and SC, were able to achieve adequate whole brain coverage and radiosurgery-equivalent dose distributions to individual brain metastases. The SIB technique achieved better sparing of the hippocampus, especially when a10-mm hippocampal avoidance region was used.

  20. Planned orphanhood.

    PubMed

    Landau, R

    1999-07-01

    Medical technology, which today makes it possible to bear a child after death, enables planned orphanhood. The first part of this paper will discuss the medical innovations in human conception, the psycho-social aspects of the wish for children from the genes of someone who is no longer alive, and the ensuing orphanhood and its implications. The second part will discuss the ethical issues relating to planned orphanhood: Who are involved in the matter of planned orphanhood? Is the decision to produce a planned orphan a private or public matter? Whose responsibility is the birth and bringing up of the planned orphan? To whom does society have more responsibility - the children who already exist or future children? And can planned orphanhood be regarded as a justification for wrongful conception? The last part of the paper will examine the judicial aspects of planned orphanhood in Israel and elsewhere and discuss the application of the principles of human dignity, human welfare, and justice. The paper argues for discouraging planned orphanhood so as to avoid violating the principles of human dignity and liberty, human welfare, and human justice, from the perspectives of both those who are involved in the process in general and the orphan who is the target of the medical intervention in particular. Its aim is to encourage deep and comprehensive public discussion of this issue in all its aspects. PMID:10414828

  1. Quality assurance for a treatment planning system in scanned ion beam therapy.

    PubMed

    Jäkel, O; Hartmann, G H; Karger, C P; Heeg, P; Rassow, J

    2000-07-01

    Conformal radiation therapy using dynamic beam delivery systems like scanned ion beams requires concise quality assurance procedures for the complete treatment planning process. For the heavy ion therapy facility at GSI, Darmstadt, a quality assurance program for the treatment planning system (TPS) has been developed. It covers the development and updating of software, data protection and safety, and the application of soft- and hardware. The tests also apply to the geometrical precision of imaging devices and the geometrical and dosimetrical verification of dose distributions in different phantoms. The quality assurance program addresses acceptance and constancy tests of the treatment planning program. Results of the acceptance tests served as a basis for its governmental approval. Two main results of the acceptance tests are representative for the overall performance of the system. (1) The geometrical uncertainty that could be achieved for the target point definition, setup accuracy, field contouring, and field alignment is typically 1.5 mm. The uncertainty for the setup verification using digitally reconstructed radiographs (DRR's) is limited to 2 mm. (2) The mean deviations between measured and planned dose values is 3% for standardized cases in a water phantom and up to 6% for more complicated treatment configurations. PMID:10947262

  2. SU-E-J-231: Comparison of 3D Angiogram and MRI in Delineating the AVM Target for Frameless Stereotactic Radiosurgery

    SciTech Connect

    Avkshtol, V; Tanny, S; Reddy, K; Chen, C; Parsai, E

    2014-06-01

    Purpose: Stereotactic radiation therapy (SRT) provides an excellent alternative to embolization and surgical excision for the management of appropriately selected cerebral arteriovenous malformations (AVMs). The currently accepted standard for delineating AVMs is planar digital subtraction angiography (DSA). DSA can be used to acquire a 3D data set that preserves osseous structures (3D-DA) at the time of the angiography for SRT planning. Magnetic resonance imaging (MRI) provides an alternative noninvasive method of visualizing the AVM nidus with comparable spatial resolution. We utilized 3D-DA and T1 post-contrast MRI data to evaluate the differences in SRT target volumes. Methods: Four patients underwent 3D-DA and high-resolution MRI. 3D T1 post-contrast images were obtained in all three reconstruction planes. A planning CT was fused with MRI and 3D-DA data sets. The AVMs were contoured utilizing one of the image sets at a time. Target volume, centroid, and maximum and minimum dimensions were analyzed for each patient. Results: Targets delineated using post-contrast MRI demonstrated a larger mean volume. AVMs >2 cc were found to have a larger difference between MRI and 3D-DA volumes. Larger AVMs also demonstrated a smaller relative uncertainty in contour centroid position (1 mm). AVM targets <2 cc had smaller absolute differences in volume, but larger differences in contour centroid position (2.5 mm). MRI targets demonstrated a more irregular shape compared to 3D-DA targets. Conclusions: Our preliminary data supports the use of MRI alone to delineate AVM targets >2 cc. The greater centroid stability for AVMs >2 cc ensures accurate target localization during image fusion. The larger MRI target volumes did not result in prohibitively greater volumes of normal brain tissue receiving the prescription dose. The larger centroid instability for AVMs <2 cc precludes the use of MRI alone for target delineation. We recommend incorporating a 3D-DA for these patients.

  3. Sensitivity of postplanning target and OAR coverage estimates to dosimetric margin distribution sampling parameters

    SciTech Connect

    Xu Huijun; Gordon, J. James; Siebers, Jeffrey V.

    2011-02-15

    {omega}{sub eff} and {delta}. Results: The accuracy of coverage estimates depends on angular and radial DMD sampling parameters {omega} or {omega}{sub eff} and {delta}, as well as the employed sampling technique. Target |{Delta}Q|<1% and OAR |{Delta}Q|<3% can be achieved with sampling parameters {omega} or {omega}{sub eff}=20 deg., {delta}=1 mm. Better accuracy (target |{Delta}Q|<0.5% and OAR |{Delta}Q|<{approx}1%) can be achieved with {omega} or {omega}{sub eff}=10 deg., {delta}=0.5 mm. As the number of sampling points decreases, the isotropic sampling method maintains better accuracy than fixed angular sampling. Conclusions: Coverage estimates for post-planning evaluation are essential since coverage values of targets and OARs often differ from the values implied by the static margin-based plans. Finer sampling of the DMD enables more accurate assessment of the effect of geometric uncertainties on coverage estimates prior to treatment. DMD sampling with {omega} or {omega}{sub eff}=10 deg. and {delta}=0.5 mm should be adequate for planning purposes.

  4. The impact of breathing motion versus heterogeneity effects in lung cancer treatment planning

    SciTech Connect

    Rosu, Mihaela; Chetty, Indrin J.; Tatro, Daniel S.; Haken, Randall K. ten

    2007-04-15

    The purpose of this study is to investigate the effects of tissue heterogeneity and breathing-induced motion/deformation on conformal treatment planning for pulmonary tumors and to compare the magnitude and the clinical importance of changes induced by these effects. Treatment planning scans were acquired at normal exhale/inhale breathing states for fifteen patients. The internal target volume (ITV) was defined as the union of exhale and inhale gross tumor volumes uniformly expanded by 5 mm. Anterior/posterior opposed beams (AP/PA) and three-dimensional (3D)-conformal plans were designed using the unit-density exhale (''static'') dataset. These plans were further used to calculate (a) density-corrected (''heterogeneous'') static dose and (b) heterogeneous cumulative dose, including breathing deformations. The DPM Monte Carlo code was used for dose computations. For larger than coin-sized tumors, relative to unit-density plans, tumor and lung doses increased in the heterogeneity-corrected plans. In comparing cumulative and static plans, larger normal tissue complication probability changes were observed for tumors with larger motion amplitudes and uncompensated breathing-induced hot/cold spots in lung. Accounting for tissue heterogeneity resulted in average increases of 9% and 7% in mean lung dose (MLD) for the 6 MV and 15 MV photon beams, respectively. Breathing-induced effects resulted in approximately 1% and 2% average decreases in MLD from the static value, for the 6 and 15 MV photon beams, respectively. The magnitude of these effects was not found to correlate with the treatment plan technique, i.e., AP/PA versus 3D-CRT. Given a properly designed ITV, tissue heterogeneity effects are likely to have a larger clinical significance on tumor and normal lung treatment evaluation metrics than four-dimensional respiratory-induced changes.

  5. Localization accuracy from automatic and semi-automatic rigid registration of locally-advanced lung cancer targets during image-guided radiation therapy

    SciTech Connect

    Robertson, Scott P.; Weiss, Elisabeth; Hugo, Geoffrey D.

    2012-01-15

    Purpose: To evaluate localization accuracy resulting from rigid registration of locally-advanced lung cancer targets using fully automatic and semi-automatic protocols for image-guided radiation therapy. Methods: Seventeen lung cancer patients, fourteen also presenting with involved lymph nodes, received computed tomography (CT) scans once per week throughout treatment under active breathing control. A physician contoured both lung and lymph node targets for all weekly scans. Various automatic and semi-automatic rigid registration techniques were then performed for both individual and simultaneous alignments of the primary gross tumor volume (GTV{sub P}) and involved lymph nodes (GTV{sub LN}) to simulate the localization process in image-guided radiation therapy. Techniques included ''standard'' (direct registration of weekly images to a planning CT), ''seeded'' (manual prealignment of targets to guide standard registration), ''transitive-based'' (alignment of pretreatment and planning CTs through one or more intermediate images), and ''rereferenced'' (designation of a new reference image for registration). Localization error (LE) was assessed as the residual centroid and border distances between targets from planning and weekly CTs after registration. Results: Initial bony alignment resulted in centroid LE of 7.3 {+-} 5.4 mm and 5.4 {+-} 3.4 mm for the GTV{sub P} and GTV{sub LN}, respectively. Compared to bony alignment, transitive-based and seeded registrations significantly reduced GTV{sub P} centroid LE to 4.7 {+-} 3.7 mm (p = 0.011) and 4.3 {+-} 2.5 mm (p < 1 x 10{sup -3}), respectively, but the smallest GTV{sub P} LE of 2.4 {+-} 2.1 mm was provided by rereferenced registration (p < 1 x 10{sup -6}). Standard registration significantly reduced GTV{sub LN} centroid LE to 3.2 {+-} 2.5 mm (p < 1 x 10{sup -3}) compared to bony alignment, with little additional gain offered by the other registration techniques. For simultaneous target alignment, centroid LE as low

  6. Planning law and public health at an impasse in Australia: the need for targeted law reforms to improve local food environments to reduce overweight and obesity.

    PubMed

    Mills, Caroline

    2014-09-01

    Australia's high rates of overweight and obesity, and the associated increased population risk of non-communicable diseases, pose a challenge to policymakers across sectors beyond the health portfolio. In the last decade, strategies to promote healthy lifestyles and address non-communicable diseases have increasingly interested urban planners in Australia and internationally. However, Australian planning laws continue to operate largely without regard to public health goals, thus limiting the ability of communities to shape healthy built environments. In recent years, local governments have increasingly taken on responsibility for improving public health through community-based initiatives; however, their efforts are hindered by their limited capacity to influence planning priorities under current State-legislated planning schemes. This article considers the emerging body of research exploring the impact of urban planning on health and non-communicable diseases in Australia. It is contended that planning law in Australia is out of step with the evidence of planning's potential impact on health, and reforms are required to ensure consistency with public health priorities. PMID:25341327

  7. Continuous Monitoring and Intrafraction Target Position Correction During Treatment Improves Target Coverage for Patients Undergoing SBRT Prostate Therapy

    SciTech Connect

    Lovelock, D. Michael; Messineo, Alessandra P.; Cox, Brett W.; Kollmeier, Marisa A.; Zelefsky, Michael J.

    2015-03-01

    Purpose: To compare the potential benefits of continuous monitoring of prostate position and intervention (CMI) using 2-mm displacement thresholds during stereotactic body radiation therapy (SBRT) treatment to those of a conventional image-guided procedure involving single localization prior to treatment. Methods and Materials: Eighty-nine patients accrued to a prostate SBRT dose escalation protocol were implanted with radiofrequency transponder beacons. The planning target volume (PTV) margin was 5 mm in all directions, except for 3 mm in the posterior direction. The prostate was kept within 2 mm of its planned position by the therapists halting dose delivery and, if necessary, correcting the couch position. We computed the number, type, and time required for interventions and where the prostate would have been during dose delivery had there been, instead, a single image-guided setup procedure prior to each treatment. Distributions of prostate displacements were computed as a function of time. Results: After the initial setup, 1.7 interventions per fraction were required, with a concomitant increase in time for dose delivery of approximately 65 seconds. Small systematic drifts in prostate position in the posterior and inferior directions were observed in the study patients. Without CMI, intrafractional motion would have resulted in approximately 10% of patients having a delivered dose that did not meet our clinical coverage requirement, that is, a PTV D95 of >90%. The posterior PTV margin required for 95% of the dose to be delivered with the target positioned within the PTV was computed as a function of time. The margin necessary was found to increase by 2 mm every 5 minutes, starting from the time of the imaging procedure. Conclusions: CMI using a tight 2-mm displacement threshold was not only feasible but was found to deliver superior PTV coverage compared with the conventional image-guided procedure in the SBRT setting.

  8. A precision translation stage for reproducing measured target volume motions.

    PubMed

    Litzenberg, Dale W; Hadley, Scott W; Lam, Kwok L; Balter, James M

    2007-01-01

    The development of 4D imaging, treatment planning and treatment delivery methods for radiation therapy require the use of a high-precision translation stage for testing and validation. These technologies may require spatial resolutions of 1 mm, and temporal resolutions of 2-30 Hz for CT imaging, electromagnetic tracking, and fluoroscopic imaging. A 1D programmable translation stage capable of reproducing idealized and measured anatomic motions common to the thorax has been design and built to meet these spatial and temporal resolution requirement with phantoms weighing up to 27 kg. The stage consists of a polycarbonate base and table, driven by an AC servo motor with encoder feedback by means of a belt-coupled precision screw. Complex motions are possible through a programmable motion controller that is capable of running multiple independent control and monitoring programs concurrently. Programmable input and output ports allow motion to be synchronized with beam delivery and other imaging and treatment delivery devices to within 2.0 ms. Average deviations from the programmed positions are typically 0.2 mm or less, while the average typical maximum positional errors are typically 0.5 mm for an indefinite number of idealized breathing motion cycles and while reproducing measured target volume motions for several minutes. PMID:17712294

  9. The dosimetric impact of daily setup error on target volumes and surrounding normal tissue in the treatment of prostate cancer with intensity-modulated radiation therapy

    SciTech Connect

    Algan, Ozer; Jamgade, Ambarish; Ali, Imad; Christie, Alana; Thompson, J. Spencer; Thompson, David; Ahmad, Salahuddin; Herman, Terence

    2012-01-01

    The purpose of this study was to evaluate the impact of daily setup error and interfraction organ motion on the overall dosimetric radiation treatment plans. Twelve patients undergoing definitive intensity-modulated radiation therapy (IMRT) treatments for prostate cancer were evaluated in this institutional review board-approved study. Each patient had fiducial markers placed into the prostate gland before treatment planning computed tomography scan. IMRT plans were generated using the Eclipse treatment planning system. Each patient was treated to a dose of 8100 cGy given in 45 fractions. In this study, we retrospectively created a plan for each treatment day that had a shift available. To calculate the dose, the patient would have received under this plan, we mathematically 'negated' the shift by moving the isocenter in the exact opposite direction of the shift. The individualized daily plans were combined to generate an overall plan sum. The dose distributions from these plans were compared with the treatment plans that were used to treat the patients. Three-hundred ninety daily shifts were negated and their corresponding plans evaluated. The mean isocenter shift based on the location of the fiducial markers was 3.3 {+-} 6.5 mm to the right, 1.6 {+-} 5.1 mm posteriorly, and 1.0 {+-} 5.0 mm along the caudal direction. The mean D95 doses for the prostate gland when setup error was corrected and uncorrected were 8228 and 7844 cGy (p < 0.002), respectively, and for the planning target volume (PTV8100) was 8089 and 7303 cGy (p < 0.001), respectively. The mean V95 values when patient setup was corrected and uncorrected were 99.9% and 87.3%, respectively, for the PTV8100 volume (p < 0.0001). At an individual patient level, the difference in the D95 value for the prostate volume could be >1200 cGy and for the PTV8100 could approach almost 2000 cGy when comparing corrected against uncorrected plans. There was no statistically significant difference in the D35 parameter

  10. Design of the NIF Cryogenic Target System

    SciTech Connect

    Gibson, C; Baltz, J; Malsbury, T; Atkinson, D; Brugmann, V; Coffield, F; Edwards, O; Haid, B; Locke, S; Shiromizu, S; Skulina, K

    2008-06-10

    The United States Department of Energy has embarked on a campaign to conduct credible fusion ignition experiments on the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory in 2010. The target assembly specified for this campaign requires the formation of a deuterium/tritium (DT) fuel ice layer in a 2 mm diameter capsule at the center of a 9 mm long by 5 mm diameter cylinder, called a hohlraum. The ice layer must be formed and maintained at temperatures below 20 K. At laser shot time, the target is positioned at the center of the NIF target chamber, aligned to the laser beams and held stable to less than 7 {micro}m rms. We have completed the final design of the Cryogenic Target System and are integrating the devices necessary to create, characterize and position the cryogenic target for ignition experiments. These designs, with supporting analysis and prototype test results, will be presented.

  11. Validation of Planning Target Volume Margins by Analyzing Intrafractional Localization Errors for 14 Prostate Cancer Patients Based on Three-Dimensional Cross-Correlation between the Prostate Images of Planning CT and Intrafraction Cone-Beam CT during Volumetric Modulated Arc Therapy

    PubMed Central

    Shiraishi, Kenshiro; Futaguchi, Masahiko; Haga, Akihiro; Sakumi, Akira; Sasaki, Katsutake; Yamamoto, Kentaro; Igaki, Hiroshi; Ohtomo, Kuni; Yoda, Kiyoshi; Nakagawa, Keiichi

    2014-01-01

    Time-averaged intreatment prostate localization errors were calculated, for the first time, by three-dimensional prostate image cross-correlation between planning CT and intrafraction kilovoltage cone-beam CT (CBCT) during volumetric modulated arc therapy (VMAT). The intrafraction CBCT volume was reconstructed by an inhouse software after acquiring cine-mode projection images during VMAT delivery. Subsequently, the margin between a clinical target volume and a planning target volume (PTV) was obtained by applying the van Herk and variant formulas using the calculated localization errors. The resulting PTV margins were approximately 2 mm in lateral direction and 4 mm in craniocaudal and anteroposterior directions, which are consistent with the margin prescription employed in our facility. PMID:24977167

  12. Validation of planning target volume margins by analyzing intrafractional localization errors for 14 prostate cancer patients based on three-dimensional cross-correlation between the prostate images of planning CT and intrafraction cone-beam CT during volumetric modulated arc therapy.

    PubMed

    Shiraishi, Kenshiro; Futaguchi, Masahiko; Haga, Akihiro; Sakumi, Akira; Sasaki, Katsutake; Yamamoto, Kentaro; Igaki, Hiroshi; Ohtomo, Kuni; Yoda, Kiyoshi; Nakagawa, Keiichi

    2014-01-01

    Time-averaged intreatment prostate localization errors were calculated, for the first time, by three-dimensional prostate image cross-correlation between planning CT and intrafraction kilovoltage cone-beam CT (CBCT) during volumetric modulated arc therapy (VMAT). The intrafraction CBCT volume was reconstructed by an inhouse software after acquiring cine-mode projection images during VMAT delivery. Subsequently, the margin between a clinical target volume and a planning target volume (PTV) was obtained by applying the van Herk and variant formulas using the calculated localization errors. The resulting PTV margins were approximately 2 mm in lateral direction and 4 mm in craniocaudal and anteroposterior directions, which are consistent with the margin prescription employed in our facility. PMID:24977167

  13. Evaluation of three types of reference image data for external beam radiotherapy target localization using digital tomosynthesis (DTS)

    SciTech Connect

    Godfrey, Devon J.; Ren Lei; Yan Hui; Wu, Q.; Yoo Sua; Oldham, M.; Yin Fangfang

    2007-08-15

    Digital tomosynthesis (DTS) is a fast, low-dose three-dimensional (3D) imaging approach which yields slice images with excellent in-plane resolution, though low plane-to-plane resolution. A stack of DTS slices can be reconstructed from a single limited-angle scan, with typical scan angles ranging from 10 deg. to 40 deg. and acquisition times of less than 10 s. The resulting DTS slices show soft tissue contrast approaching that of full cone-beam CT. External beam radiotherapy target localization using DTS requires the registration of on-board DTS images with corresponding reference image data. This study evaluates three types of reference volume: original reference CT, exact reference DTS (RDTS), and a more computationally efficient approximate reference DTS (RDTS{sub approx}), as well as three different DTS scan angles (22 deg., 44 deg., and 65 deg.) for the DTS target localization task. Three-dimensional mutual information (MI) shared between reference and on-board DTS volumes was computed in a region surrounding the spine of a chest phantom, as translations spanning {+-}5 mm and rotations spanning {+-}5 deg. were simulated along each dimension in the reference volumes. The locations of the MI maxima were used as surrogates for registration accuracy, and the width of the MI peaks were used to characterize the registration robustness. The results show that conventional treatment planning CT volumes are inadequate reference volumes for direct registration with on-board DTS data. The efficient RDTS{sub approx} method also appears insufficient for MI-based registration without further refinement of the technique, though it may be suitable for manual registration performed by a human observer. The exact RDTS volumes, on the other hand, delivered a 3D DTS localization accuracy of 0.5 mm and 0.5 deg. along each axis, using only a single 44 deg. coronal on-board DTS scan of the chest phantom.

  14. Usability testing of Avoiding Diabetes Thru Action Plan Targeting (ADAPT) decision support for integrating care-based counseling of pre-diabetes in an electronic health record

    PubMed Central

    Chrimes, Dillon; Kushniruk, Andre; Kitos, Nicole R.

    2014-01-01

    Purpose Usability testing can be used to evaluate human computer interaction (HCI) and communication in shared decision making (SDM) for patient-provider behavioral change and behavioral contracting. Traditional evaluations of usability using scripted or mock patient scenarios with think-aloud protocol analysis provide a to identify HCI issues. In this paper we describe the application of these methods in the evaluation of the Avoiding Diabetes Thru Action Plan Targeting (ADAPT) tool, and test the usability of the tool to support the ADAPT framework for integrated care counseling of pre-diabetes. The think-aloud protocol analysis typically does not provide an assessment of how patient-provider interactions are effected in “live” clinical workflow or whether a tool is successful. Therefore, “Near-live” clinical simulations involving applied simulation methods were used to compliment the think-aloud results. This complementary usability technique was used to test the end-user HCI and tool performance by more closely mimicking the clinical workflow and capturing interaction sequences along with assessing the functionality of computer module prototypes on clinician workflow. We expected this method to further complement and provide different usability findings as compared to think-aloud analysis. Together, this mixed method evaluation provided comprehensive and realistic feedback for iterative refinement of the ADAPT system prior to implementation. Methods The study employed two phases of testing of a new interactive ADAPT tool that embedded an evidence-based shared goal setting component into primary care workflow for dealing with pre-diabetes counseling within a commercial physician office electronic health record (EHR). Phase I applied usability testing that involved “think-aloud” protocol analysis of 8 primary care providers interacting with several scripted clinical scenarios. Phase II used “near-live” clinical simulations of 5 providers

  15. SU-E-J-222: Feasibility Study of MRI-Only Proton Therapy Planning

    SciTech Connect

    Spadea, M; Izquierdo, D; Catana, C; Collins-Fekete, C; Bortfeld, T; Seco, J

    2015-06-15

    Purpose: To assess the dosimetric equivalence of MRI based proton planning vs. single energy x-ray CT. Methods: 8 glioblastoma patients were imaged with CT and MRI after surgical resection. T1-weighted 3DMPRAGE was used to delineate the GTV, which was subsequently rigidly registered to the CT volume. A pseudoCT was generated from the aligned MRI by combining segmentation and atlas-based approaches. The spatial resolution both for pseudo- and real CT was 0.6×0.6×2.5mm. Three orthogonal proton beams were simulated on the pseudoCT. Two co-planar beams were set on the axial plane. The third one was planned parallel to the cranio-caudal (CC) direction. Each beam was set to cover the GTV at 98% of the nominal dose (18Gy). The proton plan was copied and transferred to the real CT, including aperture/compensator geometry. Dose comparison between pseudoCT and CT plan was performed beam-by-beam by quantifying the range shift of dose profile on each slice of the GTV. The GTV’s V{sub 98} was computed for the CT. Results: For beams in axial plane the median absolute value of the range shift was 0.3mm, with 0.9mm and 1.4mm as 95th percentile and maximum, respectively. Worst scenarios were found for the CC beam, where we measured 1.1mm (median), 2.7mm (95thpercentile) and 5mm (maximum). Regardless the direction, beams passing through the surgical site, where metal (Titanium MRI-compatible) staples were present, were mostly affected by range shift. GTV’s V{sub 98} for CT was not lower than 99.3%. Conclusion: The study showed the clinical feasibility of an MRI-alone proton plan. Advantages include the possibility to rely on better soft tissue contrast for target and organs at risk delineation without the need of further CT scan and image registration. Additional investigation is required in presence of metal implants along the beam path and to account for partial volume effects due to slice thickness.

  16. Comparison between target margins derived from 4DCT scans and real-time tumor motion tracking: Insights from lung tumor patients treated with robotic radiosurgery

    SciTech Connect

    Descovich, Martina McGuinness, Christopher; Kannarunimit, Danita; Chen, Josephine; Pinnaduwage, Dilini; Pouliot, Jean; Kased, Norbert; Gottschalk, Alexander R.; Yom, Sue S.

    2015-03-15

    Purpose: A unique capability of the CyberKnife system is dynamic target tracking. However, not all patients are eligible for this approach. Rather, their tumors are tracked statically using the vertebral column for alignment. When using static tracking, the internal target volume (ITV) is delineated on the four-dimensional (4D) CT scan and an additional margin is added to account for setup uncertainty [planning target volume (PTV)]. Treatment margins are difficult to estimate due to unpredictable variations in tumor motion and respiratory pattern during the course of treatment. The inability to track the target and detect changes in respiratory characteristics might result in geographic misses and local tumor recurrences. The purpose of this study is to develop a method to evaluate the adequacy of ITV-to-PTV margins for patients treated in this manner. Methods: Data from 24 patients with lesions in the upper lobe (n = 12), middle lobe (n = 3), and lower lobe (n = 9) were included in this study. Each patient was treated with dynamic tracking and underwent 4DCT scanning at the time of simulation. Data including the 3D coordinates of the target over the course of treatment were extracted from the treatment log files and used to determine actual target motion in the superior–inferior (S–I), anterior–posterior (A–P), and left–right (L–R) directions. Different approaches were used to calculate anisotropic and isotropic margins, assuming that the tumor moves as a rigid body. Anisotropic margins were calculated by separating target motion in the three anatomical directions, and a uniform margin was calculated by shifting the gross tumor volume contours in the 3D space and by computing the percentage of overlap with the PTV. The analysis was validated by means of a theoretical formulation. Results: The three methods provided consistent results. A uniform margin of 4.5 mm around the ITV was necessary to assure 95% target coverage for 95% of the fractions included

  17. Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans

    SciTech Connect

    Siebers, Jeffrey V. . E-mail: jsiebers@vcu.edu; Keall, Paul J.; Wu Qiuwen; Williamson, Jeffrey F.; Schmidt-Ullrich, Rupert K.

    2005-10-01

    Purpose: The purpose of this study is to determine dose delivery errors that could result from random and systematic setup errors for head-and-neck patients treated using the simultaneous integrated boost (SIB)-intensity-modulated radiation therapy (IMRT) technique. Methods and Materials: Twenty-four patients who participated in an intramural Phase I/II parotid-sparing IMRT dose-escalation protocol using the SIB treatment technique had their dose distributions reevaluated to assess the impact of random and systematic setup errors. The dosimetric effect of random setup error was simulated by convolving the two-dimensional fluence distribution of each beam with the random setup error probability density distribution. Random setup errors of {sigma} = 1, 3, and 5 mm were simulated. Systematic setup errors were simulated by randomly shifting the patient isocenter along each of the three Cartesian axes, with each shift selected from a normal distribution. Systematic setup error distributions with {sigma} = 1.5 and 3.0 mm along each axis were simulated. Combined systematic and random setup errors were simulated for {sigma} = {sigma} = 1.5 and 3.0 mm along each axis. For each dose calculation, the gross tumor volume (GTV) received by 98% of the volume (D{sub 98}), clinical target volume (CTV) D{sub 90}, nodes D{sub 90}, cord D{sub 2}, and parotid D{sub 50} and parotid mean dose were evaluated with respect to the plan used for treatment for the structure dose and for an effective planning target volume (PTV) with a 3-mm margin. Results: Simultaneous integrated boost-IMRT head-and-neck treatment plans were found to be less sensitive to random setup errors than to systematic setup errors. For random-only errors, errors exceeded 3% only when the random setup error {sigma} exceeded 3 mm. Simulated systematic setup errors with {sigma} = 1.5 mm resulted in approximately 10% of plan having more than a 3% dose error, whereas a {sigma} = 3.0 mm resulted in half of the plans having

  18. Key Beliefs for Targeted Interventions to Increase Physical Activity in Children: Analyzing Data from an Extended Version of the Theory of Planned Behaviour

    PubMed Central

    Bélanger-Gravel, A.; Godin, G.

    2010-01-01

    Given the high prevalence of overweight and low levels of physical activity among children, a better understanding of physical activity behaviour is an important step in intervention planning. This study, based on the theory of planned behaviour, was conducted among 313 fifth graders and their parents. Children completed a computer-based questionnaire to evaluate theoretical constructs and behaviour. Additional information was obtained from parents by means of a questionnaire. Correlates of children's physical activity were intention and self-identity. Determinants of intention were self-efficacy, self-identity, and attitude. Parental variables were mediated through cognitions. Among girls, practicing sedentary activities was an additional negative determinant of intention. Key beliefs of boys and girls were related to time management and difficulties associated with physical activity. For girls, social identification as an active girl was another important belief related to positive intention. This study provides theory-based information for the development of more effective interventions aimed at promoting physical activity among children. PMID:20652005

  19. SU-E-J-72: Geant4 Simulations of Spot-Scanned Proton Beam Treatment Plans

    SciTech Connect

    Kanehira, T; Sutherland, K; Matsuura, T; Umegaki, K; Shirato, H

    2014-06-01

    Purpose: To evaluate density inhomogeneities which can effect dose distributions for real-time image gated spot-scanning proton therapy (RGPT), a dose calculation system, using treatment planning system VQA (Hitachi Ltd., Tokyo) spot position data, was developed based on Geant4. Methods: A Geant4 application was developed to simulate spot-scanned proton beams at Hokkaido University Hospital. A CT scan (0.98 × 0.98 × 1.25 mm) was performed for prostate cancer treatment with three or four inserted gold markers (diameter 1.5 mm, volume 1.77 mm3) in or near the target tumor. The CT data was read into VQA. A spot scanning plan was generated and exported to text files, specifying the beam energy and position of each spot. The text files were converted and read into our Geant4-based software. The spot position was converted into steering magnet field strength (in Tesla) for our beam nozzle. Individual protons were tracked from the vacuum chamber, through the helium chamber, steering magnets, dose monitors, etc., in a straight, horizontal line. The patient CT data was converted into materials with variable density and placed in a parametrized volume at the isocenter. Gold fiducial markers were represented in the CT data by two adjacent voxels (volume 2.38 mm3). 600,000 proton histories were tracked for each target spot. As one beam contained about 1,000 spots, approximately 600 million histories were recorded for each beam on a blade server. Two plans were considered: two beam horizontal opposed (90 and 270 degree) and three beam (0, 90 and 270 degree). Results: We are able to convert spot scanning plans from VQA and simulate them with our Geant4-based code. Our system can be used to evaluate the effect of dose reduction caused by gold markers used for RGPT. Conclusion: Our Geant4 application is able to calculate dose distributions for spot scanned proton therapy.

  20. PTV-based IMPT optimization incorporating planning risk volumes vs robust optimization

    SciTech Connect

    Liu Wei; Li Xiaoqiang; Zhu, Ron. X.; Mohan, Radhe; Frank, Steven J.; Li Yupeng

    2013-02-15

    Purpose: Robust optimization leads to intensity-modulated proton therapy (IMPT) plans that are less sensitive to uncertainties and superior in terms of organs-at-risk (OARs) sparing, target dose coverage, and homogeneity compared to planning target volume (PTV)-based optimized plans. Robust optimization incorporates setup and range uncertainties, which implicitly adds margins to both targets and OARs and is also able to compensate for perturbations in dose distributions within targets and OARs caused by uncertainties. In contrast, the traditional PTV-based optimization considers only setup uncertainties and adds a margin only to targets but no margins to the OARs. It also ignores range uncertainty. The purpose of this work is to determine if robustly optimized plans are superior to PTV-based plans simply because the latter do not assign margins to OARs during optimization. Methods: The authors retrospectively selected from their institutional database five patients with head and neck (H and N) cancer and one with prostate cancer for this analysis. Using their original images and prescriptions, the authors created new IMPT plans using three methods: PTV-based optimization, optimization based on the PTV and planning risk volumes (PRVs) (i.e., 'PTV+PRV-based optimization'), and robust optimization using the 'worst-case' dose distribution. The PRVs were generated by uniformly expanding OARs by 3 mm for the H and N cases and 5 mm for the prostate case. The dose-volume histograms (DVHs) from the worst-case dose distributions were used to assess and compare plan quality. Families of DVHs for each uncertainty for all structures of interest were plotted along with the nominal DVHs. The width of the 'bands' of DVHs was used to quantify the plan sensitivity to uncertainty. Results: Compared with conventional PTV-based and PTV+PRV-based planning, robust optimization led to a smaller bandwidth for the targets in the face of uncertainties {l_brace}clinical target volume [CTV

  1. Retinoic acid signaling targets Hox genes during the amphioxus gastrula stage: insights into early anterior-posterior patterning of the chordate body plan.

    PubMed

    Koop, Demian; Holland, Nicholas D; Sémon, Marie; Alvarez, Susana; de Lera, Angel Rodriguez; Laudet, Vincent; Holland, Linda Z; Schubert, Michael

    2010-02-01

    Previous studies of vertebrate development have shown that retinoic acid (RA) signaling at the gastrula stage strongly influences anterior-posterior (A-P) patterning of the neurula and later stages. However, much less is known about the more immediate effects of RA signaling on gene transcription and developmental patterning at the gastrula stage. To investigate the targets of RA signaling during the gastrula stage, we used the basal chordate amphioxus, in which gastrulation involves very minimal tissue movements. First, we determined the effect of altered RA signaling on expression of 42 genes (encoding transcription factors and components of major signaling cascades) known to be expressed in restricted domains along the A-P axis during the gastrula and early neurula stage. Of these 42 genes, the expression domains during gastrulation of only four (Hox1, Hox3, HNF3-1 and Wnt3) were spatially altered by exposure of the embryos to excess RA or to the RA antagonist BMS009. Moreover, blocking protein synthesis with puromycin before adding RA or BMS009 showed that only three of these genes (Hox1, Hox3 and HNF3-1) are direct RA targets at the gastrula stage. From these results we conclude that in the amphioxus gastrula RA signaling primarily acts via regulation of Hox transcription to establish positional identities along the A-P axis and that Hox1, Hox3, HNF3-1 and Wnt3 constitute a basal module of RA action during chordate gastrulation. PMID:19914237

  2. Increasing organizational energy conservation behaviors: Comparing the theory of planned behavior and reasons theory for identifying specific motivational factors to target for change

    NASA Astrophysics Data System (ADS)

    Finlinson, Scott Michael

    Social scientists frequently assess factors thought to underlie behavior for the purpose of designing behavioral change interventions. Researchers commonly identify these factors by examining relationships between specific variables and the focal behaviors being investigated. Variables with the strongest relationships to the focal behavior are then assumed to be the most influential determinants of that behavior, and therefore often become the targets for change in a behavioral change intervention. In the current proposal, multiple methods are used to compare the effectiveness of two theoretical frameworks for identifying influential motivational factors. Assessing the relative influence of all factors and sets of factors for driving behavior should clarify which framework and methodology is the most promising for identifying effective change targets. Results indicated each methodology adequately predicted the three focal behaviors examined. However, the reasons theory approach was superior for predicting factor influence ratings compared to the TpB approach. While common method variance contamination had minimal impact on the results or conclusions derived from the present study's findings, there were substantial differences in conclusions depending on the questionnaire design used to collect the data. Examples of applied uses of the present study are discussed.

  3. SU-E-J-75: Importance of 4DCT for Target Volume Definition in Stereotactic Lung Radiotherapy

    SciTech Connect

    Goksel, E; Cone, D; Kucucuk, H; Senkesen, O; Yilmaz, M; Aslay, I; Tezcanli, E; Garipagaoglu, M; Sengoz, M

    2014-06-01

    Purpose: We aimed to investigate the importance of 4DCT for lung tumors treated with SBRT and whether maximum intensity projection (MIP) and free breathing (FB) images can compansate for tumor movement. Methods: Six patients with primary lung cancer and 2 patients with lung metastasis with a median age of 69.5 (42–86) were included. Patients were positioned supine on a vacuum bag. In addition to FB planning CT images, 4DCT images were obtained at 3 mm intervals using Varian RPM system with (Siemens Somatom Sensetion 64). MIP series were reconstructed using 4DCT images. PTV-FB and PTV-MIP (GTV+5mm) volumes were contoured using FB and MIP series, respectively. GTVs were defined on each of eight different breathing phase images and were merged to create the ITV. PTV-4D was generated with a 5 mm margin to ITV. PTV-MIP and PTV-4D contours were copied to FB CT series and treatment plans for PTV-MIP and PTV-FB were generated using RapidArc (2 partial arc) technique in Eclipse (version 11, AAA algorithm). The prescription dose was 5600cGy in 7 fractions. ITV volumes receiving prescription dose (%) and V95 for ITV were calculated for each treatment plan. Results: The mean PTV-4B, PTV-MIP and PTV-FB volumes were 23.2 cc, 15.4cc ve 11cc respectively. Median volume of ITV receiving the prescription dose was 34.6% (16.4–70 %) and median V95 dose for ITV was 1699cGy (232cGy-5117cGy) in the plan optimized for PTV-FB as the reference. When the plan was optimized for PTV-MIP, median ITV volume receiving the prescription dose was 67.15% (26–86%) and median V95 dose for ITV was 4231cGy (1735cGy-5290cGy). Conclusion: Images used in lung SBRT are critical for treatment quality; FB and MIP images did not compensate target movement, therefore 4DCT images should be obtained for all patients undergoing lung SBRT or the safety margins should be adjusted.

  4. PlanJury: probabilistic plan evaluation revisited

    NASA Astrophysics Data System (ADS)

    Witte, M.; Sonke, J.-J.; van Herk, M.

    2014-03-01

    Purpose: Over a decade ago, the 'Van Herk margin recipe paper' introduced plan evaluation through DVH statistics based on population distributions of systematic and random errors. We extended this work for structures with correlated uncertainties (e.g. lymph nodes or parotid glands), and considered treatment plans containing multiple (overlapping) dose distributions (e.g. conventional lymph node and hypo-fractionated tumor doses) for which different image guidance protocols may lead to correlated errors. Methods: A command-line software tool 'PlanJury' was developed which reads 3D dose and structure data exported from a treatment planning system. Uncertainties are specified by standard deviations and correlation coefficients. Parameters control the DVH statistics to be computed: e.g. the probability of reaching a DVH constraint, or the dose absorbed at given confidence in a (combined) volume. Code was written in C++ and parallelized using OpenMP. Testing geometries were constructed using idealized spherical volumes and dose distributions. Results: Negligible stochastic noise could be attained within two minutes computation time for a single target. The confidence to properly cover both of two targets was 90% for two synchronously moving targets, but decreased by 7% if the targets moved independently. For two partially covered organs at risk the confidence of at least one organ below the mean dose threshold was 40% for synchronous motion, 36% for uncorrelated motion, but only 20% for either of the organs separately. Two abutting dose distributions ensuring 91% confidence of proper target dose for correlated motions led to 28% lower confidence for uncorrelated motions as relative displacements between the doses resulted in cold spots near the target. Conclusions: Probabilistic plan evaluation can efficiently be performed for complicated treatment planning situations, thus providing important plan quality information unavailable in conventional PTV based evaluations.

  5. Poster — Thur Eve — 13: Inter-Fraction Target Movement in Image-Guided Radiation Therapy of Prostate Cancer

    SciTech Connect

    Cui, Congwu; Zeng, Grace G.

    2014-08-15

    We investigated the setup variations over the treatment courses of 113 patients with intact prostate treated with 78Gy/39fx. Institutional standard bladder and bowel preparation and image guidance protocols were used in CT simulation and treatment. The RapidArc treatment plans were optimized in Varian Eclipse treatment planning system and delivered on Varian 2100X Clinacs equipped with On-Board Imager to localize the target before beam-on. The setup variations were calculated in terms of mean and standard deviation of couch shifts. No correlation was observed between the mean shift and standard deviation over the treatment course and patient age, initial prostate volume and rectum size. The mean shifts in the first and last 5 fractions are highly correlated (P < 10{sup −10}) while the correlation of the standard deviations cannot be determined. The Mann-Kendall tests indicate trends of the mean daily Ant-Post and Sup-Inf shifts of the group. The target is inferior by ∼1mm to the planned position when the treatment starts and moves superiorly, approaching the planned position at 10th fraction, and then gradually moves back inferiorly by ∼1mm in the remain fractions. In the Ant-Post direction, the prostate gradually moves posteriorly during the treatment course from a mean shift of ∼2.5mm in the first fraction to ∼1mm in the last fraction. It may be related to a systematic rectum size change in the progress of treatment. The biased mean shifts in Ant-Post and Sup-Inf direction of most patients suggest systematically larger rectum and smaller bladder during the treatment than at CT simulation.

  6. SU-E-T-533: Evaluation of Dose Calculation Accuracy for Small Elongated Targets On the Edge Linac

    SciTech Connect

    Qin, Y; Wen, N; Snyder, K; Huang, Y; Zhao, B; Bellon, M; Li, H; Song, K; Kim, J; Gordon, J; Chetty, I

    2014-06-01

    Purpose: To evaluate output factors and dose calculation accuracy on a novel SRS linear accelerator, the Edge (Varian), for treatments of small, elongated targets using flattening filter free (FFF) beam. Methods: Total scatter/output factors (OF’s) for 24 elongated, small, high definition multi-leaf collimator (HDMLC)-defined fields were measured on the Edge machine using 6X FFF beam. 3 detectors were used in water tank: CC01 ion chamber (active volume 10cc), stereotactic photon diode (SFD) (active diameter 0.6mm, active thickness 0.06mm), Edge detector (active volume 0.0019cc). The 24 MLC apertures have widths ranging from 5 to 20mm and length/width ratio from 0.25 to 5. Readings were cross calibrated with CC04 at field size 3×3 cm. A beam model was developed using commissioning measurements for treatment planning in Eclipse (AAA, version 11). One representative patient case (IMRT, target volume 0.2cc, 4×4×14mm) was calculated using AAA 11 and delivered on the Edge. Results: Due to volume averaging effects, CC01 readings were 11.2±0.9% lower than SFD readings for 5mm field sizes. The Edge diode showed a uniform over-response of 2.6±0.7% compared to SFD. Calculation using AAA v11 showed the best agreement with SFD measurements (2.4±1.7% lower than SFD). The largest difference between AAA v11 and SFD occurs at 5mm field sizes. For the patient plan, dose delivered on Edge was measured to be 2.2% higher than AAA v11 calculation. Conclusion: Cross-calibrated SFD output measurements presented the best agreement with commissioned AAA v11 beam model. Field sizes smaller than 1cm posed challenges to both the detectors and the calculation algorithm. For the representative patient with small elongated target, AAA v11 and measurements agreed within ~2% on the Edge linac. Although encouraging, a more comprehensive study is required to validate the overall algorithmic accuracy.

  7. Windowless gas targets for neutron production

    NASA Astrophysics Data System (ADS)

    Iverson, Erik B.

    A windowless deuterium gas target has been constructed for high yield production of either monoenergetic or white fast neutrons. The operation of this target has been demonstrated on a 900 keV deuteron accelerator. The target is capable of operation at 100 mbar target pressure, and can admit a low duty factor beam of 5 mm transverse extent. The target employs an intermittent valve arrangement to reduce the flow rates in the higher pressure stages of a differentially pumped vacuum system. This valve allows operation at much greater target pressures for low duty factor beams than would otherwise be the case. Neutron yield measurements validated the functionality of the target system. This target will make possible considerable advances in methods of non-destructive testing and evaluation which employ fast neutrons, whether mono-energetic or otherwise. It is further suited to use as a thermal neutron source, with the addition of an appropriate moderator. The development of this target system has not only provided a functioning and valuable piece of equipment for use in further research, but has also investigated the technological limitations and functional requirements of implementing such a system in a practical setting. (Copies available exclusively from MIT Libraries, Rm. 14- 0551, Cambridge, MA 2139-4307. Ph. 617-253-5668; Fax 617- 253-1690.)

  8. Ballistic Experiments with Titanium and Aluminum Targets

    SciTech Connect

    Gogolewski, R.; Morgan, B.R.

    1999-11-23

    During the course of the project we conducted two sets of fundamental experiments in penetration mechanics in the LLNL Terminal Ballistics Laboratory of the Physics Directorate. The first set of full-scale experiments was conducted with a 14.5mm air propelled launcher. The object of the experiments was to determine the ballistic limit speed of 6Al-4V-alloy titanium, low fineness ratio projectiles centrally impacting 2024-T3 alloy aluminum flat plates and the failure modes of the projectiles and the targets. The second set of one-third scale experiments was conducted with a 14.5mm powder launcher. The object of these experiments was to determine the ballistic limit speed of 6Al-4V alloy titanium high fineness ratio projectiles centrally impacting 6Al-4V alloy titanium flat plates and the failure modes of the projectiles and the target. We employed radiography to observe a projectile just before and after interaction with a target plate. Early on, we employed a non-damaging ''soft-catch'' technique to capture projectiles after they perforated targets. Once we realized that a projectile was not damaged during interaction with a target, we used a 4-inch thick 6061-T6-alloy aluminum witness block with a 6.0-inch x 6.0-inch cross-section to measure projectile residual penetration. We have recorded and tabulated below projectile impact speed, projectile residual (post-impact) speed, projectile failure mode, target failure mode, and pertinent comments for the experiments. The ballistic techniques employed for the experiments are similar to those employed in an earlier study.

  9. Stereotactic Body Radiotherapy for Primary Lung Cancer at a Dose of 50 Gy Total in Five Fractions to the Periphery of the Planning Target Volume Calculated Using a Superposition Algorithm

    SciTech Connect

    Takeda, Atsuya; Sanuki, Naoko; Kunieda, Etsuo Ohashi, Toshio; Oku, Yohei; Takeda, Toshiaki; Shigematsu, Naoyuki; Kubo, Atsushi

    2009-02-01

    Purpose: To retrospectively analyze the clinical outcomes of stereotactic body radiotherapy (SBRT) for patients with Stages 1A and 1B non-small-cell lung cancer. Methods and Materials: We reviewed the records of patients with non-small-cell lung cancer treated with curative intent between Dec 2001 and May 2007. All patients had histopathologically or cytologically confirmed disease, increased levels of tumor markers, and/or positive findings on fluorodeoxyglucose positron emission tomography. Staging studies identified their disease as Stage 1A or 1B. Performance status was 2 or less according to World Health Organization guidelines in all cases. The prescribed dose of 50 Gy total in five fractions, calculated by using a superposition algorithm, was defined for the periphery of the planning target volume. Results: One hundred twenty-one patients underwent SBRT during the study period, and 63 were eligible for this analysis. Thirty-eight patients had Stage 1A (T1N0M0) and 25 had Stage 1B (T2N0M0). Forty-nine patients were not appropriate candidates for surgery because of chronic pulmonary disease. Median follow-up of these 49 patients was 31 months (range, 10-72 months). The 3-year local control, disease-free, and overall survival rates in patients with Stages 1A and 1B were 93% and 96% (p = 0.86), 76% and 77% (p = 0.83), and 90% and 63% (p = 0.09), respectively. No acute toxicity was observed. Grade 2 or higher radiation pneumonitis was experienced by 3 patients, and 1 of them had fatal bacterial pneumonia. Conclusions: The SBRT at 50 Gy total in five fractions to the periphery of the planning target volume calculated by using a superposition algorithm is feasible. High local control rates were achieved for both T2 and T1 tumors.

  10. SU-E-T-318: The Effect of Patient Positioning Errors On Target Coverage and Cochlear Dose in Stereotactic Radiosurgery Treatment of Acoustic Neuromas

    SciTech Connect

    Dellamonica, D.; Luo, G.; Ding, G.

    2014-06-01

    Purpose: Setup errors on the order of millimeters may cause under-dosing of targets and significant changes in dose to critical structures especially when planning with tight margins in stereotactic radiosurgery. This study evaluates the effects of these types of patient positioning uncertainties on planning target volume (PTV) coverage and cochlear dose for stereotactic treatments of acoustic neuromas. Methods: Twelve acoustic neuroma patient treatment plans were retrospectively evaluated in Brainlab iPlan RT Dose 4.1.3. All treatment beams were shaped by HDMLC from a Varian TX machine. Seven patients had planning margins of 2mm, five had 1–1.5mm. Six treatment plans were created for each patient simulating a 1mm setup error in six possible directions: anterior-posterior, lateral, and superiorinferior. The arcs and HDMLC shapes were kept the same for each plan. Change in PTV coverage and mean dose to the cochlea was evaluated for each plan. Results: The average change in PTV coverage for the 72 simulated plans was −1.7% (range: −5 to +1.1%). The largest average change in coverage was observed for shifts in the patient's superior direction (−2.9%). The change in mean cochlear dose was highly dependent upon the direction of the shift. Shifts in the anterior and superior direction resulted in an average increase in dose of 13.5 and 3.8%, respectively, while shifts in the posterior and inferior direction resulted in an average decrease in dose of 17.9 and 10.2%. The average change in dose to the cochlea was 13.9% (range: 1.4 to 48.6%). No difference was observed based on the size of the planning margin. Conclusion: This study indicates that if the positioning uncertainty is kept within 1mm the setup errors may not result in significant under-dosing of the acoustic neuroma target volumes. However, the change in mean cochlear dose is highly dependent upon the direction of the shift.

  11. Offline multiple adaptive planning strategy for concurrent irradiation of the prostate and pelvic lymph nodes

    SciTech Connect

    Qi, Peng; Xia, Ping; Pouliot, Jean; Roach, Mack

    2014-02-15

    Purpose: Concurrent irradiation of the prostate and pelvic lymph nodes (PLNs) can be challenging due to the independent motion of the two target volumes. To address this challenge, the authors have proposed a strategy referred to as Multiple Adaptive Planning (MAP). To minimize the number of MAP plans, the authors’ previous work only considered the prostate motion in one major direction. After analyzing the pattern of the prostate motion, the authors investigated a practical number of intensity-modulated radiotherapy (IMRT) plans needed to accommodate the prostate motion in two major directions simultaneously. Methods: Six patients, who received concurrent irradiation of the prostate and PLNs, were selected for this study. Nine MAP-IMRT plans were created for each patient with nine prostate contours that represented the prostate at nine locations with respect to the PLNs, including the original prostate contour and eight contours shifted either 5 mm in a single anterior-posterior (A-P), or superior-inferior (S-I) direction, or 5 mm in both A-P and S-I directions simultaneously. From archived megavoltage cone beam CT (MV-CBCT) and a dual imaging registration, 17 MV-CBCTs from 33 available MV-CBCT from these patients showed large prostate displacements (>3 mm in any direction) with respect to the pelvic bones. For each of these 17 fractions, one of nine MAP-IMRT plans was retrospectively selected and applied to the MV-CBCT for dose calculation. For comparison, a simulated isocenter-shifting plan and a reoptimized plan were also created for each of these 17 fractions. The doses to 95% (D95) of the prostate and PLNs, and the doses to 5% (D5) of the rectum and bladder were calculated and analyzed. Results: For the prostate, D95 > 97% of the prescription dose was observed in 16, 16, and 17 of 17 fractions for the MAP, isocenter-shifted, and reoptimized plans, respectively. For PLNs, D95 > 97% of the prescription doses was observed in 10, 3, and 17 of 17 fractions for

  12. SU-E-T-539: Fixed Versus Variable Optimization Points in Combined-Mode Modulated Arc Therapy Planning

    SciTech Connect

    Kainz, K; Prah, D; Ahunbay, E; Li, X

    2014-06-01

    Purpose: A novel modulated arc therapy technique, mARC, enables superposition of step-and-shoot IMRT segments upon a subset of the optimization points (OPs) of a continuous-arc delivery. We compare two approaches to mARC planning: one with the number of OPs fixed throughout optimization, and another where the planning system determines the number of OPs in the final plan, subject to an upper limit defined at the outset. Methods: Fixed-OP mARC planning was performed for representative cases using Panther v. 5.01 (Prowess, Inc.), while variable-OP mARC planning used Monaco v. 5.00 (Elekta, Inc.). All Monaco planning used an upper limit of 91 OPs; those OPs with minimal MU were removed during optimization. Plans were delivered, and delivery times recorded, on a Siemens Artiste accelerator using a flat 6MV beam with 300 MU/min rate. Dose distributions measured using ArcCheck (Sun Nuclear Corporation, Inc.) were compared with the plan calculation; the two were deemed consistent if they agreed to within 3.5% in absolute dose and 3.5 mm in distance-to-agreement among > 95% of the diodes within the direct beam. Results: Example cases included a prostate and a head-and-neck planned with a single arc and fraction doses of 1.8 and 2.0 Gy, respectively. Aside from slightly more uniform target dose for the variable-OP plans, the DVHs for the two techniques were similar. For the fixed-OP technique, the number of OPs was 38 and 39, and the delivery time was 228 and 259 seconds, respectively, for the prostate and head-and-neck cases. For the final variable-OP plans, there were 91 and 85 OPs, and the delivery time was 296 and 440 seconds, correspondingly longer than for fixed-OP. Conclusion: For mARC, both the fixed-OP and variable-OP approaches produced comparable-quality plans whose delivery was successfully verified. To keep delivery time per fraction short, a fixed-OP planning approach is preferred.

  13. MAGAT gel and EBT2 film-based dosimetry for evaluating source plugging-based treatment plan in Gamma Knife stereotactic radiosurgery.

    PubMed

    Natanasabapathi, Gopishankar; Subbiah, Vivekanandhan; Kale, Shashank Sharad; Rath, Goura Kishor; Senthilkumaran, S; Thulkar, Sanjay; Subramani, Vellaiyan; Laviraj, M A; Bisht, Raj Kishor; Mahapatra, A K

    2012-01-01

    This work illustrates a procedure to assess the overall accuracy associated with Gamma Knife treatment planning using plugging. The main role of source plugging or blocking is to create dose falloff in the junction between a target and a critical structure. We report the use of MAGAT gel dosimeter for verification of an experimental treatment plan based on plugging. The polymer gel contained in a head-sized glass container simulated all major aspects of the treatment process of Gamma Knife radiosurgery. The 3D dose distribution recorded in the gel dosimeter was read using a 1.5T MRI scanner. Scanning protocol was: CPMG pulse sequence with 8 equidistant echoes, TR = 7 s, echo step = 14 ms, pixel size = 0.5mm × 0.5mm, and slice thickness of 2 mm. Using a calibration relationship between absorbed dose and spin-spin relaxation rate (R2), we converted R2 images to dose images. Volumetric dose comparison between treatment planning system (TPS) and gel measurement was accomplished using an in-house MATLAB-based program. The isodose overlay of the measured and computed dose distribution on axial planes was in close agreement. Gamma index analysis of 3D data showed more than 94% voxel pass rate for different tolerance criteria of 3%/2 mm, 3%/1 mm and 2%/2 mm. Film dosimetry with GAFCHROMIC EBT 2 film was also performed to compare the results with the calculated TPS dose. Gamma index analysis of film measurement for the same tolerance criteria used for gel measurement evaluation showed more than 95% voxel pass rate. Verification of gamma plan calculated dose on account of shield is not part of acceptance testing of Leksell Gamma Knife (LGK). Through this study we accomplished a volumetric comparison of dose distributions measured with a polymer gel dosimeter and Leksell GammaPlan (LGP) calculations for plans using plugging. We propose gel dosimeter as a quality assurance (QA) tool for verification of plug-based planning. PMID:23149780

  14. Is a Clinical Target Volume (CTV) Necessary in the Treatment of Lung Cancer in the Modern Era Combining 4-D Imaging and Image-guided Radiotherapy (IGRT)?

    PubMed Central

    Kilburn, Jeremy M; Lucas, John T; Soike, Michael H; Ayala-Peacock, Diandra N; Blackstock, Arthur W; Hinson, William H; Munley, Michael T; Petty, William J

    2016-01-01

    Objective: We hypothesized that omission of clinical target volumes (CTV) in lung cancer radiotherapy would not compromise control by determining retrospectively if the addition of a CTV would encompass the site of failure. Methods: Stage II-III patients were treated from 2009-2012 with daily cone-beam imaging and a 5 mm planning target volume (PTV) without a CTV. PTVs were expanded 1 cm and termed CTVretro. Recurrences were scored as 1) within the PTV, 2) within CTVretro, or 3) outside the PTV. Locoregional control (LRC), distant control (DC), progression-free survival (PFS), and overall survival (OS) were estimated. Result: Among 110 patients, Stage IIIA 57%, IIIB 32%, IIA 4%, and IIB 7%. Eighty-six percent of Stage III patients received chemotherapy. Median dose was 70 Gy (45-74 Gy) and fraction size ranged from 1.5-2.7 Gy. Median follow-up was 12 months, median OS was 22 months (95% CI 19-30 months), and LRC at two years was 69%. Fourteen local and eight regional events were scored with two CTVretro failures equating to a two-year CTV failure-free survival of 98%. Conclusion: Omission of a 1 cm CTV expansion appears feasible based on only two events among 110 patients and should be considered in radiation planning. PMID:26929893

  15. SU-E-T-351: Verification of Monitor Unit Calculation for Lung Stereotactic Body Radiation Therapy Using a Secondary Independent Planning System

    SciTech Connect

    Tsuruta, Y; Nakata, M; Higashimura, K; Nakamura, M; Miyabe, Y; Akimoto, M; Ono, T; Mukumoto, N; Ishihara, Y; Matsuo, Y; Mizowaki, T; Hiraoka, M

    2014-06-01

    Purpose: To compare isocenter (IC) dose between X-ray Voxel Monte Carlo (XVMC) and Acuros XB (AXB) as part of an independent verification of monitor unit (MU) calculation for lung stereotactic body radiation therapy (SBRT) using a secondary independent treatment planning system (TPS). Methods: Treatment plans of 110 lesions from 101 patients who underwent lung SBRT with Vero4DRT (Mitsubishi Heavy Industries, Ltd., Japan, and BrainLAB, Feldkirchen, Germany) were evaluated retrospectively. Dose distribution was calculated with X-ray Voxel Monte Carlo (XVMC) in iPlan 4.5.1 (BrainLAB, Feldkirchen, Germany) on averaged intensity projection images. A spatial resolution and mean variance were 2 mm and 2%, respectively. The clinical treatment plans were transferred from iPlan to Eclipse (Varian Medical Systems, Palo Alto, CA, USA), and doses were recalculated with well commissioned AXB ver. 11.0.31 while maintaining the XVMC-calculated MUs and beam arrangement. Dose calculations were made in the dose-to-medium dose reporting mode with the calculation grid size of 2.5 mm. The mean and standard deviation (SD) of the IC dose difference between XVMC and AXB were calculated. The tolerance level was defined as |mean|+2SD. Additionally, the relationship between IC dose difference and the size of planning target volume (PTV) or computed tomography (CT) value of internal target volume (ITV) was evaluated. Results: The mean±SD of the IC dose difference between XVMC and AXB was −0.32±0.73%. The tolerance level was 1.8%. Absolute IC dose differences exceeding the tolerance level were observed in 3 patients (2.8%). There were no strong correlations between IC dose difference and PTV size (R=−0.14) or CT value of ITV (R=−0.33). Conclusion: The present study suggested that independent verification of MU calculation for lung SBRT using a secondary TPS is useful.

  16. Will weight loss cause significant dosimetric changes of target volumes and organs at risk in nasopharyngeal carcinoma treated with intensity-modulated radiation therapy?

    SciTech Connect

    Chen, Chuanben; Fei, Zhaodong; Chen, Lisha; Bai, Penggang; Lin, Xiang; Pan, Jianji

    2014-04-01

    This study aimed to quantify dosimetric effects of weight loss for nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). Overall, 25 patients with NPC treated with IMRT were enrolled. We simulated weight loss during IMRT on the computer. Weight loss model was based on the planning computed tomography (CT) images. The original external contour of head and neck was labeled plan 0, and its volume was regarded as pretreatment normal weight. We shrank the external contour with different margins (2, 3, and 5 mm) and generated new external contours of head and neck. The volumes of reconstructed external contours were regarded as weight during radiotherapy. After recontouring outlines, the initial treatment plan was mapped to the redefined CT scans with the same beam configurations, yielding new plans. The computer model represented a theoretical proportional weight loss of 3.4% to 13.7% during the course of IMRT. The dose delivered to the planning target volume (PTV) of primary gross tumor volume and clinical target volume significantly increased by 1.9% to 2.9% and 1.8% to 2.9% because of weight loss, respectively. The dose to the PTV of gross tumor volume of lymph nodes fluctuated from −2.0% to 1.0%. The dose to the brain stem and the spinal cord was increased (p < 0.001), whereas the dose to the parotid gland was decreased (p < 0.001). Weight loss may lead to significant dosimetric change during IMRT. Repeated scanning and replanning for patients with NPC with an obvious weight loss may be necessary.

  17. Target-Rich Environment

    ERIC Educational Resources Information Center

    Perna, Mark C.

    2005-01-01

    Target marketing is defining school enrollment goals and then developing a strategic plan to accomplish those goals through the use of specific communication vehicles and community focus. It is critical to reach the right audience, with the right message, at the right time, for the right cost. In this brief article, the author describes several…

  18. Future Fixed Target Facilities

    SciTech Connect

    Melnitchouk, Wolodymyr

    2009-01-01

    We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

  19. Accurate guidance for percutaneous access to a specific target in soft tissues: preclinical study of computer-assisted pericardiocentesis.

    PubMed

    Chavanon, O; Barbe, C; Troccaz, J; Carrat, L; Ribuot, C; Noirclerc, M; Maitrasse, B; Blin, D

    1999-06-01

    In the field of percutaneous access to soft tissues, our project was to improve classical pericardiocentesis by performing accurate guidance to a selected target, according to a model of the pericardial effusion acquired through three-dimensional (3D) data recording. Required hardware is an echocardiographic device and a needle, both linked to a 3D localizer, and a computer. After acquiring echographic data, a modeling procedure allows definition of the optimal puncture strategy, taking into consideration the mobility of the heart, by determining a stable region, whatever the period of the cardiac cycle. A passive guidance system is then used to reach the planned target accurately, generally a site in the middle of the stable region. After validation on a dynamic phantom and a feasibility study in dogs, an accuracy and reliability analysis protocol was realized on pigs with experimental pericardial effusion. Ten consecutive successful punctures using various trajectories were performed on eight pigs. Nonbloody liquid was collected from pericardial effusions in the stable region (5 to 9 mm wide) within 10 to 15 minutes from echographic acquisition to drainage. Accuracy of at least 2.5 mm was demonstrated. This study demonstrates the feasibility of computer-assisted pericardiocentesis. Beyond the simple improvement of the current technique, this method could be a new way to reach the heart or a new tool for percutaneous access and image-guided puncture of soft tissues. Further investigation will be necessary before routine human application. PMID:10414543

  20. SU-E-J-43: Deformed Planning CT as An Electron Density Substitute for Cone-Beam CT

    SciTech Connect

    Mishra, K; Godley, A

    2014-06-01

    Purpose: To confirm that deforming the planning CT to the daily Cone-Beam CTs (CBCT) can provide suitable electron density for adaptive planning. We quantify the dosimetric difference between plans calculated on deformed planning CTs (DPCT) and daily CT-on-rails images (CTOR). CTOR is used as a test of the method as CTOR already contains accurate electron density to compare against. Methods: Five prostate only IMRT patients, each with five CTOR images, were selected and re-planned on Panther (Prowess Inc.) with a uniform 5 mm PTV expansion, prescribed 78 Gy. The planning CT was deformed to match each CTOR using ABAS (Elekta Inc.). Contours were drawn on the CTOR, and copied to the DPCT. The original treatment plan was copied to both the CTOR and DPCT, keeping the center of the prostate as the isocenter. The plans were then calculated using the collapsed cone heterogeneous dose engine of Prowess and typical DVH planning parameters used to compare them. Results: Each DPCT was visually compared to its CTOR with no differences observed. The agreement of the copied CTOR contours with the DPCT anatomy further demonstrated the deformation accuracy. The plans calculated using CTOR and DPCT were compared. Over the 25 plan pairs, the average difference between them for prostate D100, D98 and D95 were 0.5%, 0.2%, and 0.2%; PTV D98, D95 and mean dose: 0.3%, 0.2% and 0.3%; bladder V70, V60 and mean dose: 1.1%, 0.7%, and 0.2%; and rectum mean dose: 0.3%. (D100 is the dose covering 100% of the target; V70 is the volume of the organ receiving 70 Gy). Conclusion: We observe negligible difference between the dose calculated on the DPCT and the CTOR, implying that deformed planning CTs are a suitable substitute for electron density. The method can now be applied to CBCTs. Research version of Panther provided by Prowess Inc. Research version of ABAS provided by Elekta Inc.

  1. Impact of grid size on uniform scanning and IMPT plans in XiO treatment planning system for brain cancer.

    PubMed

    Rana, Suresh; Zheng, Yuanshui

    2015-01-01

    sizes of 1, 1.5, 2, and 2.5 mm; these dosimetric results were then compared with that of 3 mm grid size. Phantom study results: There was no distinct trend exhibiting the dependence of grid size on dose calculation accuracy when calculated point dose of different grid sizes were compared to the measured point (TLD) doses. On average, the calculated point dose was higher than the measured dose by 1.49% and 2.63% for the right and left TLDs, respectively. The gamma analysis showed very minimal differences among planar dose distributions of various grid sizes, with percentage of points meeting gamma index criteria 1% and 1 mm to be from 97.92% to 99.97%. The gamma evaluation using 2% and 2mm criteria showed both the IMPT and USPT plans have 100% points meeting the criteria. Patient study results: In USPT, there was no very distinct relationship between the absolute difference in mean planning target volume (PTV) dose and grid size, whereas in IMPT, it was found that the decrease in grid size slightly increased the PTV maximum dose and decreased the PTV mean dose and PTVD99% . For the PTV doses, the average differences were up to 0.35 Gy (RBE) and 1.47 Gy (RBE) in the USPT and IMPT plans, respectively. Dependency on grid size was not very clear for the organs at risk (OARs), with average difference ranged from -0.61 Gy (RBE) to 0.53 Gy (RBE) in the USPT plans and from -0.83 Gy (RBE) to 1.39 Gy (RBE) in the IMPT plans. In conclusion, the difference in the calculated point dose between the smallest grid size (1 mm) and the largest grid size (3 mm) in phantom for USPT was typically less than 0.1%. Patient study results showed that the decrease in grid size slightly increased the PTV maximum dose in both the USPT and IMPT plans. However, no distinct trend was obtained between the absolute difference in dosimetric parameter and dose calculation grid size for the OARs. Grid size has a large effect on dose calculation efficiency, and use of 2 mm or less grid size can increase the

  2. TH-C-BRD-10: An Evaluation of Three Robust Optimization Approaches in IMPT Treatment Planning

    SciTech Connect

    Cao, W; Randeniya, S; Mohan, R; Zaghian, M; Kardar, L; Lim, G; Liu, W

    2014-06-15

    Purpose: Various robust optimization approaches have been proposed to ensure the robustness of intensity modulated proton therapy (IMPT) in the face of uncertainty. In this study, we aim to investigate the performance of three classes of robust optimization approaches regarding plan optimality and robustness. Methods: Three robust optimization models were implemented in our in-house IMPT treatment planning system: 1) L2 optimization based on worst-case dose; 2) L2 optimization based on minmax objective; and 3) L1 optimization with constraints on all uncertain doses. The first model was solved by a L-BFGS algorithm; the second was solved by a gradient projection algorithm; and the third was solved by an interior point method. One nominal scenario and eight maximum uncertainty scenarios (proton range over and under 3.5%, and setup error of 5 mm for x, y, z directions) were considered in optimization. Dosimetric measurements of optimized plans from the three approaches were compared for four prostate cancer patients retrospectively selected at our institution. Results: For the nominal scenario, all three optimization approaches yielded the same coverage to the clinical treatment volume (CTV) and the L2 worst-case approach demonstrated better rectum and bladder sparing than others. For the uncertainty scenarios, the L1 approach resulted in the most robust CTV coverage against uncertainties, while the plans from L2 worst-case were less robust than others. In addition, we observed that the number of scanning spots with positive MUs from the L2 approaches was approximately twice as many as that from the L1 approach. This indicates that L1 optimization may lead to more efficient IMPT delivery. Conclusion: Our study indicated that the L1 approach best conserved the target coverage in the face of uncertainty but its resulting OAR sparing was slightly inferior to other two approaches.

  3. 26 CFR 1.430(i)-1 - Special rules for plans in at-risk status.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... target normal cost for a plan in at-risk status. Paragraph (e) of this section describes rules regarding how the funding target and the target normal cost are determined for a plan that has been in at-risk..., including the current plan year, then the target normal cost for the plan is the at-risk target normal...

  4. 26 CFR 1.430(i)-1 - Special rules for plans in at-risk status.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... target normal cost for a plan in at-risk status. Paragraph (e) of this section describes rules regarding how the funding target and the target normal cost are determined for a plan that has been in at-risk..., including the current plan year, then the target normal cost for the plan is the at-risk target normal...

  5. 26 CFR 1.430(i)-1 - Special rules for plans in at-risk status.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... target normal cost for a plan in at-risk status. Paragraph (e) of this section describes rules regarding how the funding target and the target normal cost are determined for a plan that has been in at-risk..., including the current plan year, then the target normal cost for the plan is the at-risk target normal...

  6. Prostate Planning Treatment Volume Margin Calculation Based on the ExacTrac X-Ray 6D Image-Guided System: Margins for Various Clinical Implementations

    SciTech Connect

    Alonso-Arrizabalaga, Sara Brualla Gonzalez, Luis; Rosello Ferrando, Juan V.; Pastor Peidro, Jorge; Lopez Torrecilla, Jose; Planes Meseguer, Domingo; Garcia Hernandez, Trinidad

    2007-11-01

    Purpose: To assess the prostate motion from day-to-day setup, as well as during irradiation time, to calculate planning target volume (PTV) margins. PTV margins differ depending on the clinical implementation of an image-guided system. Three cases were considered in this study: daily bony anatomy match, center of gravity of the implanted marker seeds calculated with a limited number of imaged days, and daily online correction based on implanted marker seeds. Methods and Materials: A cohort of 30 nonrandomized patients and 1,330 pairs of stereoscopic kV images have been used to determine the prostate movement. The commercial image guided positioning tool employed was ExacTrac X-Ray 6D (BrainLAB AG, Feldkirchen, Germany). Results: Planning target volume margins such that a minimum of 95% of the prescribed dose covers the clinical target volume for 90% of the population are presented. PTV margins based on daily bony anatomy match, including intrafraction correction, would be 11.5, 13.5, and 4.5 mm in the anterior-posterior, superior-inferior, and right-left directions, respectively. This margin can be further reduced to 8.1, 8.6, and 4.8 mm (including intrafraction motion) if implanted marker seeds are used. Finally, daily on line correction based on marker seeds would result in the smallest of the studied margins: 4.7, 6.2, and 1.9 mm. Conclusion: Planning target volume margins are dependent on the local clinical use of the image-guided RT system available in any radiotherapy department.

  7. A planning target volume margin formula for hypofractionated intracranial stereotactic radiotherapy under cone beam CT image guidance with a six-degrees-of-freedom robotic couch and a mouthpiece-assisted mask system: a preliminary study

    PubMed Central

    Kunishima, N; Yamamoto, K; Yoda, K

    2014-01-01

    Objective: A planning target volume (PTV) margin formula for hypofractionated intracranial stereotactic radiotherapy (SRT) has been proposed under cone beam CT (CBCT) image guidance with a six-degrees-of-freedom (6-DOF) robotic couch. Methods: CBCT-based registration using a 6-DOF couch reportedly led to negligibly small systematic positioning errors, suggesting that each in-treatment positioning error during the treatment courses for the patients employing this combination was predominantly caused by a random gaussian process. Under this assumption, an anisotropic PTV margin for each axis was formulated based on a gaussian distribution model. 19 patients with intracranial lesions who underwent additional post-treatment CBCT were consecutively selected, to whom stereotactic hypofractionated radiotherapy was delivered by a linear accelerator equipped with a CBCT imager, a 6-DOF couch and a mouthpiece-assisted mask system. Time-averaged patient-positioning errors during treatment were estimated by comparing the post-treatment CBCT with the reference planning CT images. Results: It was suggested that each histogram of the in-treatment positioning error in each axis would approach each single gaussian distribution with a mean of zero. The calculated PTV margins in the x, y and z directions were 0.97, 1.30 and 0.88 mm, respectively. Conclusion: The empirical isotropic PTV margin of 2 mm used in our facility for intracranial SRT was consistent with the margin calculated by the proposed gaussian model. Advances in knowledge: We have proposed a PTV margin formula for hypofractionated intracranial SRT under CBCT image guidance with a 6-DOF robotic couch. PMID:25029296

  8. Frame-Based Immobilization and Targeting for Stereotactic Body Radiation Therapy

    SciTech Connect

    Murray, Bryan C. . E-mail: bryan.murray@utsouthwestern.edu; Forster, Kenneth; Timmerman, Robert

    2007-07-01

    Frame-based stereotactic body radiation therapy (SBRT), such as that conducted with Elekta's Stereotactic Body Frame, can provide an extra measure of precision in the delivery of radiation to extracranial targets, and facilitates secure patient immobilization. In this paper, we review the steps involved in optimal use of an extra-cranial immobilization device for SBRT treatments. Our approach to using frame-based SBRT consists of 4 steps: patient immobilization, tumor and organ motion control, treatment/planning correlation, and daily targeting with pretreatment quality assurance. Patient immobilization was achieved with the Vac-Loc bag, which uses styrofoam beads to conform to the patient's shape comfortably within the body frame. Organ and motion control was assessed under fluoroscopy and controlled via a frame-mounted abdominal pressure plate. The compression screw was tightened until the diaphragmatic excursion range was < 1 cm. Treatment planning was performed using the Philips Pinnacle 6.2b system. In this treatment process, a 20 to 30 noncoplanar beam arrangement was initially selected and an inverse beam weight optimization algorithm was applied. Those beams with low beam weights were removed, leaving a manageable number of beams for treatment delivery. After planning, daily targeting using computed tomography (CT) to verify x-, y-, and z-coordinates of the treatment isocenter were used as a measure of quality assurance. We found our daily setup variation typically averaged < 5 mm in all directions, which is comparable to other published studies on Stereotactic Body Frame. Treatment time ranged from 30 to 45 minutes. Results demonstrate that patients have experienced high rates of local control with acceptable rates of severe side effects-by virtue of the tightly constrained treatment fields. The body frame facilitated comfortable patient positioning and quality assurance checks of the tumor, in relation to another set of independent set of coordinates

  9. Sputter target

    DOEpatents

    Gates, Willard G.; Hale, Gerald J.

    1980-01-01

    The disclosure relates to an improved sputter target for use in the deposition of hard coatings. An exemplary target is given wherein titanium diboride is brazed to a tantalum backing plate using a gold-palladium-nickel braze alloy.

  10. SU-E-J-125: A Novel IMRT Planning Technique to Spare Sacral Bone Marrow in Pelvic Cancer Patients

    SciTech Connect

    McGuire, S; Bhatia, S; Sun, W; Menda, Y; Ponto, L; Gross, B; Buatti, J

    2015-06-15

    Purpose: Develop an IMRT planning technique that can preferentially spare sacral bone marrow for pelvic cancer patients. Methods: Six pelvic cancer patients (two each with anal, cervical, and rectal cancer) were enrolled in an IRB approved protocol to obtain FLT PET images at simulation, during, and post chemoradiation therapy. Initially, conventional IMRT plans were created to maintain target coverage and reduce dose to OARs such as bladder, bowel, rectum, and femoral heads. Simulation FLT PET images were used to create IMRT plans to spare bone marrow identified as regions with SUV of 2 or greater (IMRT-BMS) within the pelvic bones from top of L3 to 5mm below the greater trochanter without compromising PTV coverage or OAR sparing when compared to the initial IMRT plan. IMRT-BMS plans used 8–10 beam angles that surrounded the subject. These plans were used for treatment. Retrospectively, the same simulation FLT PET images were used to create IMRT plans that spared bone marrow located in the sacral pelvic bone region (IMRT-FAN) also without compromising PTV coverage or OAR sparing. IMRT-FAN plans used 16 beam angles every 12° anteriorly from 90° – 270°. Optimization objectives for the sacral bone marrow avoidance region were weighted to reduce ≥V10. Results: IMRT-FAN reduced dose to the sacral bone marrow for all six subjects. The average V5, V10, V20, and V30 differences from the IMRT-BMS plan were −2.2 ± 1.7%, −11.4 ± 3.6%, −17.6 ± 5.1%, and −19.1 ± 8.1% respectively. Average PTV coverage change was 0.5% ± 0.8% from the conventional IMRT plan. Conclusion: An IMRT planning technique that uses beams from the anterior and lateral directions reduced the volume of sacral bone marrow that receives ≤10Gy while maintaining PTV coverage and OAR sparing. Additionally, the volume of sacral bone marrow that received 20 or 30 Gy was also reduced.

  11. SU-E-T-574: Novel Chance-Constrained Optimization in Intensity-Modulated Proton Therapy Planning to Account for Range and Patient Setup Uncertainties

    SciTech Connect

    An, Y; Liang, J; Liu, W

    2015-06-15

    Purpose: We propose to apply a probabilistic framework, namely chanceconstrained optimization, in the intensity-modulated proton therapy (IMPT) planning subject to range and patient setup uncertainties. The purpose is to hedge against the influence of uncertainties and improve robustness of treatment plans. Methods: IMPT plans were generated for a typical prostate patient. Nine dose distributions are computed — the nominal one and one each for ±5mm setup uncertainties along three cardinal axes and for ±3.5% range uncertainty. These nine dose distributions are supplied to the solver CPLEX as chance constraints to explicitly control plan robustness under these representative uncertainty scenarios with certain probability. This probability is determined by the tolerance level. We make the chance-constrained model tractable by converting it to a mixed integer optimization problem. The quality of plans derived from this method is evaluated using dose-volume histogram (DVH) indices such as tumor dose homogeneity (D5% – D95%) and coverage (D95%) and normal tissue sparing like V70 of rectum, V65, and V40 of bladder. We also compare the results from this novel method with the conventional PTV-based method to further demonstrate its effectiveness Results: Our model can yield clinically acceptable plans within 50 seconds. The chance-constrained optimization produces IMPT plans with comparable target coverage, better target dose homogeneity, and better normal tissue sparing compared to the PTV-based optimization [D95% CTV: 67.9 vs 68.7 (Gy), D5% – D95% CTV: 11.9 vs 18 (Gy), V70 rectum: 0.0 % vs 0.33%, V65 bladder: 2.17% vs 9.33%, V40 bladder: 8.83% vs 21.83%]. It also simultaneously makes the plan more robust [Width of DVH band at D50%: 2.0 vs 10.0 (Gy)]. The tolerance level may be varied to control the tradeoff between plan robustness and quality. Conclusion: The chance-constrained optimization generates superior IMPT plan compared to the PTV-based optimization with

  12. SU-E-T-450: Dosimetric Impact of Rotational Error On Multiple-Target Intensity-Modulated Radiosurgery (IMRS) with Single-Isocenter

    SciTech Connect

    Jang, S; Huq, M

    2014-06-01

    Purpose: Evaluating the dosimetric-impact on multiple-targets placed away from the isocenter-target with varying rotational-error introduced by initial setup uncertainty and/or intrafractional-movement Methods: CyberKnife-Phantom was scanned with the Intracranial SRS-protocol of 1.25mm slice-thickness and the multiple-targets(GTV) of 1mm and 10mm in diameter were contoured on the Eclipse. PTV for distal-target only was drawn with 1mm expansion around the GTV to find out how much margin is needed to compensate for the rotational-error. The separation between the isocenter-target and distal-target was varied from 3cm to 7cm. RapidArc-based IMRS plans of 16Gy single-fraction were generated with five non-coplanar arcs by using Varian TrueBeam-STx equipped with high resolution MLC leaves of 2.5mm at center and with dose-rate of 1400MU/min at 6MV for flatteringfilter- free(FFF). An identical CT image with intentionally introduced 1° rotational-error was registered with the planning CT image, and the isodose distribution and Dose-Volume-Histogram(DVH) were compared with the original plans. Additionally, the dosimetric-impact of rotational error was evaluated with that of 6X photon energy which was generated with the same target-coverage. Results: For the 1mm-target with 6X-FFF, PTV-coverage(D100) of the distal-target with 1° rotational-error decreased from 1.00 to 0.35 as the separation between isocenter-target and distal-target increased from 3cm to 7cm. However, GTV-coverage(D100) was 1.0 except that of 7cm-separation(0.55), which resulted from the 1mm-margin around the distal-target. For 6X photon, GTV-coverage remained at 1.0 regardless of the separation of targets, showing that the dosimetric-impact of rotational error depends on the degree of rotational-error, separation of targets, and dose distribution around targets. For 10mm-target, PTV-coverage of distaltarget located 3cm-away was better than that of 1mm-target(0.93 versus 0.7) and GTV-coverage was 1

  13. SU-E-T-461: Validation of Planning Algorithms in Dynamic Conformal Arc in IPlan Using ArcCHECK and 3DVH

    SciTech Connect

    Lei, Y; Zhang, Q; Li, S; Morgan, B; Driewer, J; Zhou, S

    2014-06-01

    Purpose: To study the effect of limited angular resolution of pencil beam calculation (PBC) on dynamic conformal arc plan (DCAP) in iPlan (BrainLab) using the ArcCHECK sytem and 3DVH software (Sun Nuclear Corporation). Methods: Four DCAPs were generated in iPlan RT Dose 4.5 treatment planning system on the ArcCHECK cylindrical phantom with central planning target volume (PTV). A cylindrical shell structure (SHELL) 2.85cm from phantom surface and 1.5 mm thickness was created to simulate the ArcCHECK diode array. Planned doses were calculated using both Monte Carlo calculation (MCC) and PBC algorithms, and exported to 3DVH software for global and target based comparisons using the 3Dgamma index. Four additional DCAPs were created and calculated on patient CT images and mapped onto the ArcCHECK phantom for measurement using a Varian TrueBeam STx. The measurements were compared against both MC and PB calculation using gamma index analysis. Results: For the ArcCHECK phantom, the dose distribution agreement quantified with 3D-gamma index is better (average-gamma (<γ>)=99.9%vs.79.1% and 96.8%vs45.7%, p=0.0294, 0.0286 for gamma (2mm,2%) and (1mm,1%) criteria respectively using Mann-Whitney U test) in the PTV than in the SHELL. The measurements show better agreement with MCC than the PB (<γ>=100%vs.86.7%, 99.6%vs.72.3%, 85.5%vs.50.8%, p=0.021, 0.026, 0.029 for gamma (3mm,3%), (2mm,2%) and (1mm,1%) criteria using Mann-Whitney U test respectively). The effect due to limited (10 degree) angular resolution of the PBC was observed, and it can be one of the possible reasons for poor agreement between measurement and PB calculation. Conclusion: The PBC of iPlan shows poor peripheral dose calculation accuracy for dynamic conformal arc plans due to limited angular resolution, but it performs well in the area close to target volume without considering heterogeneity. Since the user cannot change the 10 degree angular resolution of PBC, MCC is more appropriate for dynamic conformal

  14. Maximum-Intensity Volumes for Fast Contouring of Lung Tumors Including Respiratory Motion in 4DCT Planning

    SciTech Connect

    Rietzel, Eike Liu, Arthur K.; Chen, George T.Y.; Choi, Noah C.

    2008-07-15

    Purpose: To assess the accuracy of maximum-intensity volumes (MIV) for fast contouring of lung tumors including respiratory motion. Methods and Materials: Four-dimensional computed tomography (4DCT) data of 10 patients were acquired. Maximum-intensity volumes were constructed by assigning the maximum Hounsfield unit in all CT volumes per geometric voxel to a new, synthetic volume. Gross tumor volumes (GTVs) were contoured on all CT volumes, and their union was constructed. The GTV with all its respiratory motion was contoured on the MIV as well. Union GTVs and GTVs including motion were compared visually. Furthermore, planning target volumes (PTVs) were constructed for the union of GTVs and the GTV on MIV. These PTVs were compared by centroid position, volume, geometric extent, and surface distance. Results: Visual comparison of GTVs demonstrated failure of the MIV technique for 5 of 10 patients. For adequate GTV{sub MIV}s, differences between PTVs were <1.0 mm in centroid position, 5% in volume, {+-}5 mm in geometric extent, and {+-}0.5 {+-} 2.0 mm in surface distance. These values represent the uncertainties for successful MIV contouring. Conclusion: Maximum-intensity volumes are a good first estimate for target volume definition including respiratory motion. However, it seems mandatory to validate each individual MIV by overlaying it on a movie loop displaying the 4DCT data and editing it for possible inadequate coverage of GTVs on additional 4DCT motion states.

  15. An efficient Volumetric Arc Therapy treatment planning approach for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT)

    SciTech Connect

    Shen, Jin; Bender, Edward; Yaparpalvi, Ravindra; Kuo, Hsiang-Chi; Basavatia, Amar; Hong, Linda; Bodner, William; Garg, Madhur K.; Kalnicki, Shalom; Tomé, Wolfgang A.

    2015-10-01

    An efficient and simple class solution is proposed for hippocampal-avoidance whole-brain radiation therapy (HA-WBRT) planning using the Volumetric Arc Therapy (VMAT) delivery technique following the NRG Oncology protocol NRG-CC001 treatment planning guidelines. The whole-brain planning target volume (PTV) was subdivided into subplanning volumes that lie in plane and out of plane with the hippocampal-avoidance volume. To further improve VMAT treatment plans, a partial-field dual-arc technique was developed. Both the arcs were allowed to overlap on the in-plane subtarget volume, and in addition, one arc covered the superior out-of-plane sub-PTV, while the other covered the inferior out-of-plane subtarget volume. For all plans (n = 20), the NRG-CC001 protocol dose-volume criteria were met. Mean values of volumes for the hippocampus and the hippocampal-avoidance volume were 4.1 cm{sup 3} ± 1.0 cm{sup 3} and 28.52 cm{sup 3} ± 3.22 cm{sup 3}, respectively. For the PTV, the average values of D{sub 2%} and D{sub 98%} were 36.1 Gy ± 0.8 Gy and 26.2 Gy ± 0.6 Gy, respectively. The hippocampus D{sub 100%} mean value was 8.5 Gy ± 0.2 Gy and the maximum dose was 15.7 Gy ± 0.3 Gy. The corresponding plan quality indices were 0.30 ± 0.01 (homogeneity index), 0.94 ± 0.01 (target conformality), and 0.75 ± 0.02 (confirmation number). The median total monitor unit (MU) per fraction was 806 MU (interquartile range [IQR]: 792 to 818 MU) and the average beam total delivery time was 121.2 seconds (IQR: 120.6 to 121.35 seconds). All plans passed the gamma evaluation using the 5-mm, 4% criteria, with γ > 1 of not more than 9.1% data points for all fields. An efficient and simple planning class solution for HA-WBRT using VMAT has been developed that allows all protocol constraints of NRG-CC001 to be met.

  16. Neutronics performance and decay heat calculation of a solid target for a spallation neutron source

    NASA Astrophysics Data System (ADS)

    Nio, D.; Ooi, M.; Takenaka, N.; Furusaka, M.; Kawai, M.; Mishima, K.; Kiyanagi, Y.

    2005-08-01

    A solid target is expected to give higher neutron intensity than a liquid target of mercury at a spallation neutron source with a power of around 1 MW. We have studied the neutronic performance of a target-moderator-reflector assembly with a tungsten solid target. It is found that the neutron intensities from moderators were higher in the solid target system than in the mercury liquid target. However, the tungsten target required cladding to prevent tungsten from the corrosion of cooling water. A tungsten target with tantalum cladding has been already developed although tantalum has high decay heat. Therefore, we estimated the decay heat of the target and found that the decay heat of 0.5 mm thick tantalum was still high. We need a thinner tantalum or new cladding materials. It was revealed that adoption of a thinner tantalum or new cladding material such as chrome nitride reduced the decay heat effectively.

  17. Target capture and target ghosts

    NASA Astrophysics Data System (ADS)

    Auerbach, Steven P.

    1996-05-01

    Optimal detection methods for small targets rely on whitened matched filters, which convolve the measured data with the signal model, and whiten the result with the noise covariance. In real-world implementations of such filters, the noise covariance must be estimated from the data, and the resulting covariance estimate may be corrupted by presence of the target. The resulting loss in SNR is called 'target capture'. Target capture is often thought to be a problem only for bright targets. This presentation shows that target capture also arises for dim targets, leading to an SNR loss which is independent of target strength and depends on the averaging method used to estimate the noise covariance. This loss is due to a 'coherent beat' between the true noise and that portion of the estimated noise covariance due to the target. This beat leads to 'ghost targets', which diminish the target SNR by producing a negative target ghost at the target's position. A quantitative estimate of this effect will be given, and shown to agree with numerical results. The effect of averaging on SNR is also discussed for data scenes with synthetic injected targets, in cases where the noise covariance is estimated using 'no target' data. For these cases, it is shown that the so-called 'optimal' filter, which uses the true noise covariance, is actually worse than a 'sub-optimal' filter which estimates the noise from scene. This apparent contradiction is resolved by showing that the optimal filter is best if the same filter is used for many scenes, but is outperformed by a filter adapted to a specific scene.

  18. SU-D-19A-06: The Effect of Beam Parameters On Very High-Energy Electron Radiotherapy: A Planning Study

    SciTech Connect

    Palma, B; Bazalova, M; Qu, B; Loo, B; Maxim, P; Hardemark, B; Hynning, E

    2014-06-01

    Purpose: We evaluated the effect of very high-energy electron (VHEE) beam parameters on the planning of a lung cancer case by means of Monte Carlo simulations. Methods: We simulated VHEE radiotherapy plans using the EGSnrc/BEAMnrc-DOSXYZnrc code. We selected a lung cancer case that was treated with 6MV photon VMAT to be planned with VHEE. We studied the effect of beam energy (80 MeV, 100 MeV, and 120 MeV), number of equidistant beams (16 or 32), and beamlets sizes (3 mm, 5 mm or 7 mm) on PTV coverage, sparing of organs at risk (OARs) and dose conformity. Inverse-planning optimization was performed in a research version of RayStation (RaySearch Laboratories AB) using identical objective functions and constraints for all VHEE plans. Results: Similar PTV coverage and dose conformity was achieved by all the VHEE plans. The 100 MeV and 120 MeV VHEE plans were equivalent amongst them and were superior to the 80 MeV plan in terms of OARs sparing. The effect of using 16 or 32 equidistant beams was a mean difference in average dose of 2.4% (0%–7.7%) between the two plans. The use of 3 mm beamlet size systematically reduced the dose to all the OARs. Based on these results we selected the 100MeV-16beams-3mm-beamlet-size plan to compare it against VMAT. The selected VHEE plan was more conformal than VMAT and improved OAR sparing (heart and trachea received 125% and 177% lower dose, respectively) especially in the low-dose region. Conclusion: We determined the VHEE beam parameters that maximized the OAR dose sparing and dose conformity of the actually delivered VMAT plan of a lung cancer case. The selected parameters could be used for the planning of other treatment sites with similar size, shape, and location. For larger targets, a larger beamlet size might be used without significantly increasing the dose. B Palma: None. M Bazalova: None. B Hardemark: Employee, RaySearch Americas. E Hynning: Employee, RaySearch Americas. B Qu: None. B Loo Jr.: Research support, Ray

  19. Two-dimensional inverse planning and delivery with a preclinical image guided microirradiator

    SciTech Connect

    Stewart, James M. P.; Lindsay, Patricia E.; Jaffray, David A.

    2013-10-15

    Purpose: Recent advances in preclinical radiotherapy systems have provided the foundation for scaling many of the elements of clinical radiation therapy practice to the dimensions and energy demanded in small animal studies. Such systems support the technical capabilities to accurately deliver highly complex dose distributions, but methods to optimize and deliver such distributions remain in their infancy. This study developed an optimization method based on empirically measured two-dimensional dose kernel measurements to deliver arbitrary planar dose distributions on a recently developed small animal radiotherapy platform.Methods: A two-dimensional dose kernel was measured with repeated radiochromic film measurements for the circular 1 mm diameter fixed collimator of the small animal radiotherapy system at 1 cm depth in a solid water phantom. This kernel was utilized in a sequential quadratic programming optimization framework to determine optimal beam positions and weights to deliver an arbitrary desired dose distribution. The positions and weights were then translated to a set of stage motions to automatically deliver the optimized dose distribution. End-to-end efficacy of the framework was quantified through five repeated deliveries of two dosimetric challenges: (1) a 5 mm radius bullseye distribution, and (2) a “sock” distribution contained within a 9 × 13 mm bounding box incorporating rectangular, semicircular, and exponentially decaying geometric constructs and a rectangular linear dose gradient region. These two challenges were designed to gauge targeting, geometric, and dosimetric fidelity.Results: Optimization of the bullseye and sock distributions required 2.1 and 5.9 min and utilized 50 and 77 individual beams for delivery, respectively. Automated delivery of the resulting optimized distributions, validated using radiochromic film measurements, revealed an average targeting accuracy of 0.32 mm, and a dosimetric delivery error along four line

  20. Targeted Cleaning.

    ERIC Educational Resources Information Center

    Frank, David J.

    1998-01-01

    Discusses the creation of an effective carpet vacuuming program by combining area usage assessment and vacuuming requirements with a scheduling plan. Also explains vacuum cleaner suction and filtration and how it makes custodian work more efficient. A complementary article discusses creating an effective floor-maintenance plan for resilient…

  1. Proton pencil beam scanning for mediastinal lymphoma: the impact of interplay between target motion and beam scanning

    NASA Astrophysics Data System (ADS)

    Zeng, C.; Plastaras, J. P.; Tochner, Z. A.; White, B. M.; Hill-Kayser, C. E.; Hahn, S. M.; Both, S.

    2015-04-01

    The purpose of this study was to assess the feasibility of proton pencil beam scanning (PBS) for the treatment of mediastinal lymphoma. A group of 7 patients of varying tumor size (100-800 cc) were planned using a PBS anterior field. We investigated 17 fractions of 1.8 Gy(RBE) to deliver 30.6 Gy(RBE) to the internal target volume (ITV). Spots with σ ranging from 4 mm to 8 mm were used for all patients, while larger spots (σ = 6-16 mm) were employed for patients with motion perpendicular to the beam (⩾5 mm), based on initial 4-dimensional computed tomography (4D CT) motion evaluation. We considered volumetric repainting such that the same field would be delivered twice in each fraction. The ratio of extreme inhalation amplitude and regular tidal inhalation amplitude (free-breathing variability) was quantified as an indicator of potential irregular breathing during the scanning. Four-dimensional dose was calculated on the 4D CT scans based on the respiratory trace and beam delivery sequence, implemented by partitioning the spots into separate plans on each 4D CT phase. Four starting phases (end of inhalation, end of exhalation, middle of inhalation and middle of exhalation) were sampled for each painting and 4 energy switching times (0.5 s, 1 s, 3 s and 5 s) were tested, which resulted in 896 dose distributions for the analyzed cohort. Plan robustness was measured for the target and critical structures in terms of the percent difference between ‘delivered’ dose (4D-evaluated) and planned dose (calculated on average CT). It was found that none of the patients exhibited highly variable or chaotic breathing patterns. For all patients, the ITV D98% was degraded by <2% (standard deviations ˜ 0.1%) when averaged over the whole treatment course. For six out of seven patients, the average degradation of ITV D98% per fraction was within 5% . For one patient with motion perpendicular to the beam (⩾5 mm), the degradation of ITV D98% per fraction was up to 15%, which

  2. Powder Metallurgy Fabrication of Molybdenum Accelerator Target Disks

    SciTech Connect

    Lowden, Richard Andrew; Kiggans Jr., James O.; Nunn, Stephen D.; Parten, Randy J.

    2015-12-01

    Powder metallurgy approaches for the fabrication of accelerator target disks are being examined to support the development of Mo-99 production by NorthStar Medical Technologies, LLC. An advantage of powder metallurgy is that very little material is wasted and at present, dense, quality parts are routinely produced from molybdenum powder. The proposed targets, however, are thin wafers, 29 mm in diameter with a thickness of 0.5 mm, with very stringent dimensional tolerances. Although tooling can be machined to very high tolerance levels, the operations of powder feed, pressing and sintering involve complicated mechanisms, each of which affects green density and shrinkage, and therefore the dimensions and shape of the final product. Combinations of powder morphology, lubricants and pressing technique have been explored to produce target disks with minimal variations in thickness and little or no distortion. In addition, sintering conditions that produce densities for optimum target dissolvability are being determined.

  3. Dispersion of Projectile and Target Debris Upon Penetration of Thin Targets

    NASA Astrophysics Data System (ADS)

    Gwynn, D.; Bernhard, R. P.; See, T. H.; Horz, F.

    1996-03-01

    We continue to conduct penetration experiments of thin foils to support the development of cosmic-dust flight instruments that utilize thin films for the measurement of particle trajectories, or for the potential soft capture of hypervelocity impactors for subsequent compositional analysis upon retrieval to Earth. Each experiment is equipped with a witness plate, mounted to the rear of the target and fabricated from soft Aluminum-1100, ~30 x 30 cm in size and ranging from 2 to 5 mm thick; these witness plates essentially simulate the rear wall of a capture cell onto which the projectile material will plate out, including material that is being dislodged from the penetrated foil itself. Using compositionally contrasting projectile and foil materials in the laboratory, such as soda-lime glass impactors and aluminum targets, one produces two distinct populations of craters on the witness plates.

  4. GPU-based ultrafast IMRT plan optimization

    NASA Astrophysics Data System (ADS)

    Men, Chunhua; Gu, Xuejun; Choi, Dongju; Majumdar, Amitava; Zheng, Ziyi; Mueller, Klaus; Jiang, Steve B.

    2009-11-01

    The widespread adoption of on-board volumetric imaging in cancer radiotherapy has stimulated research efforts to develop online adaptive radiotherapy techniques to handle the inter-fraction variation of the patient's geometry. Such efforts face major technical challenges to perform treatment planning in real time. To overcome this challenge, we are developing a supercomputing online re-planning environment (SCORE) at the University of California, San Diego (UCSD). As part of the SCORE project, this paper presents our work on the implementation of an intensity-modulated radiation therapy (IMRT) optimization algorithm on graphics processing units (GPUs). We adopt a penalty-based quadratic optimization model, which is solved by using a gradient projection method with Armijo's line search rule. Our optimization algorithm has been implemented in CUDA for parallel GPU computing as well as in C for serial CPU computing for comparison purpose. A prostate IMRT case with various beamlet and voxel sizes was used to evaluate our implementation. On an NVIDIA Tesla C1060 GPU card, we have achieved speedup factors of 20-40 without losing accuracy, compared to the results from an Intel Xeon 2.27 GHz CPU. For a specific nine-field prostate IMRT case with 5 × 5 mm2 beamlet size and 2.5 × 2.5 × 2.5 mm3 voxel size, our GPU implementation takes only 2.8 s to generate an optimal IMRT plan. Our work has therefore solved a major problem in developing online re-planning technologies for adaptive radiotherapy.

  5. GPU-based ultrafast IMRT plan optimization.

    PubMed

    Men, Chunhua; Gu, Xuejun; Choi, Dongju; Majumdar, Amitava; Zheng, Ziyi; Mueller, Klaus; Jiang, Steve B

    2009-11-01

    The widespread adoption of on-board volumetric imaging in cancer radiotherapy has stimulated research efforts to develop online adaptive radiotherapy techniques to handle the inter-fraction variation of the patient's geometry. Such efforts face major technical challenges to perform treatment planning in real time. To overcome this challenge, we are developing a supercomputing online re-planning environment (SCORE) at the University of California, San Diego (UCSD). As part of the SCORE project, this paper presents our work on the implementation of an intensity-modulated radiation therapy (IMRT) optimization algorithm on graphics processing units (GPUs). We adopt a penalty-based quadratic optimization model, which is solved by using a gradient projection method with Armijo's line search rule. Our optimization algorithm has been implemented in CUDA for parallel GPU computing as well as in C for serial CPU computing for comparison purpose. A prostate IMRT case with various beamlet and voxel sizes was used to evaluate our implementation. On an NVIDIA Tesla C1060 GPU card, we have achieved speedup factors of 20-40 without losing accuracy, compared to the results from an Intel Xeon 2.27 GHz CPU. For a specific nine-field prostate IMRT case with 5 x 5 mm(2) beamlet size and 2.5 x 2.5 x 2.5 mm(3) voxel size, our GPU implementation takes only 2.8 s to generate an optimal IMRT plan. Our work has therefore solved a major problem in developing online re-planning technologies for adaptive radiotherapy. PMID:19826201

  6. 23 CFR 1200.25 - Improvement plan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Improvement plan. 1200.25 Section 1200.25 Highways... Implementation and Management of the Highway Safety Program § 1200.25 Improvement plan. If a review of the Annual... improvement plan. This plan will detail strategies, program activities, and funding targets to meet...

  7. Quantitative Analysis of Extracapsular Extension of Metastatic Lymph Nodes and its Significance in Radiotherapy Planning in Head and Neck Squamous Cell Carcinoma

    SciTech Connect

    Ghadjar, Pirus; Schreiber-Facklam, Heide; Graeter, Ruth; Evers, Christina; Simcock, Mathew; Geretschlaeger, Andreas; Blumstein, Norbert M.; Zbaeren, Peter; Zimmer, Yitzhak; Wilkens, Ludwig; Aebersold, Daniel M.

    2010-03-15

    Purpose: We performed a histopathologic analysis to assess the extent of the extracapsular extension (ECE) beyond the capsule of metastatic lymph nodes (LN) in head and neck cancer to determine appropriate clinical target volume (CTV) expansions. Methods and Materials: All tumor-positive LN of 98 patients who underwent a neck dissection with evidence of ECE in at least one LN were analyzed by a single pathologist. The largest diameters of all LN, and in the case of ECE, the maximal linear distance, from the capsule to the farthest extent of tumor or tumoral reaction were recorded. Results: A total of 231 LN with ECE and 200 tumor-positive LN without ECE were analyzed. The incidence of ECE was associated with larger LN size (p < 0.001). Of all tumor-positive LN with a diameter of < 10 mm or < 5 mm, 105/220 (48%) nodes or 17/59 (29%) nodes, respectively, showed evidence of ECE. The mean and median extent values of ECE were 2 and 1 mm (range, 1-10 mm) and the ECE was <= 5 mm in 97% and <= 3 mm in 91% of the LN, respectively. Overall, the extent of ECE was significantly correlated with larger LN size (Spearman's correlation coefficient = 0.21; p = 0.001). Conclusions: The incidence of ECE is associated with larger LN size. However, ECE is found in a substantial number of LN with a diameter of < 10 mm. The use of 10-mm CTV margins around the gross tumor volume seems appropriate to account for ECE in radiotherapy planning of head and neck cancer.

  8. Anatomic Boundaries of the Clinical Target Volume (Prostate Bed) After Radical Prostatectomy

    SciTech Connect

    Wiltshire, Kirsty L.; Brock, Kristy K.; Haider, Masoom A.; Zwahlen, Daniel; Kong, Vickie; Chan, Elisa; Moseley, Joanne; Bayley, Andrew; Catton, Charles; Chung, Peter W.M.; Gospodarowicz, Mary; Milosevic, Michael; Kneebone, Andrew; Warde, Padraig; Menard, Cynthia

    2007-11-15

    Purpose: We sought to derive and validate an interdisciplinary consensus definition for the anatomic boundaries of the postoperative clinical target volume (CTV, prostate bed). Methods and Materials: Thirty one patients who had planned for radiotherapy after radical prostatectomy were enrolled and underwent computed tomography and magnetic resonance imaging (MRI) simulation prior to radiotherapy. Through an iterative process of consultation and discussion, an interdisciplinary consensus definition was derived based on a review of published data, patterns of local failure, surgical practice, and radiologic anatomy. In validation, we analyzed the distribution of surgical clips in reference to the consensus CTV and measured spatial uncertainties in delineating the CTV and vesicourethral anastomosis. Clinical radiotherapy plans were retrospectively evaluated against the consensus CTV (prostate bed). Results: Anatomic boundaries of the consensus CTV (prostate bed) are described. Surgical clips (n = 339) were well distributed throughout the CTV. The vesicourethral anastomosis was accurately localized using central sagittal computed tomography reconstruction, with a mean {+-} standard deviation uncertainty of 1.8 {+-} 2.5 mm. Delineation uncertainties were small for both MRI and computed tomography (mean reproducibility, 0-3.8 mm; standard deviation, 1.0-2.3); they were most pronounced in the anteroposterior and superoinferior dimensions and at the superior/posterior-most aspect of the CTV. Retrospectively, the mean {+-} standard deviation CTV (prostate bed) percentage of volume receiving 100% of prescribed dose was only 77% {+-} 26%. Conclusions: We propose anatomic boundaries for the CTV (prostate bed) and present evidence supporting its validity. In the absence of gross recurrence, the role of MRI in delineating the CTV remains to be confirmed. The CTV is larger than historically practiced at our institution and should be encompassed by a microscopic tumoricidal dose.

  9. Relationship Between Pelvic Organ-at-Risk Dose and Clinical Target Volume in Postprostatectomy Patients Receiving Intensity-Modulated Radiotherapy

    SciTech Connect

    Stanic, Sinisa; Mathai, Mathew; Cui Jing; Purdy, James A.; Valicenti, Richard K.

    2012-04-01

    Purpose: To investigate dose-volume consequences of inclusion of the seminal vesicle (SV) bed in the clinical target volume (CTV) for the rectum and bladder using biological response indices in postprostatectomy patients receiving intensity-modulated radiotherapy (IMRT). Methods and Materials: We studied 10 consecutive patients who underwent prostatectomy for prostate cancer and subsequently received adjuvant or salvage RT to the prostate fossa. The CTV to planning target volume (PTV) expansion was 7 mm, except posterior expansion, which was 5 mm. Two IMRT plans were generated for each patient, including either the prostate fossa alone or the prostate fossa with the SV bed, but identical in all other aspects. Prescription dose was 68.4 Gy in 1.8-Gy fractions prescribed to {>=}95% PTV. Results: With inclusion of the SV bed in the treatment volume, PTV increased and correlated with PTV-bladder and PTV-rectum volume overlap (Spearman {rho} 0.91 and 0.86, respectively; p < 0.05). As a result, the dose delivered to the bladder and rectum was higher (p < 0.05): mean bladder dose increased from 11.3 {+-} 3.5 Gy to 21.2 {+-} 6.6 Gy, whereas mean rectal dose increased from 25.8 {+-} 5.5 Gy to 32.3 {+-} 5.5 Gy. Bladder and rectal equivalent uniform dose correlated with mean bladder and rectal dose. Inclusion of the SV bed in the treatment volume increased rectal normal tissue complication probability from 2.4% to 4.8% (p < 0.01). Conclusions: Inclusion of the SV bed in the CTV in postprostatectomy patients receiving IMRT increases bladder and rectal dose, as well as rectal normal tissue complication probability. The magnitude of PTV-bladder and PTV-rectal volume overlap and subsequent bladder and rectum dose increase will be higher if larger PTV expansion margins are used.

  10. LIQUID TARGET

    DOEpatents

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  11. A study on repainting strategies for treating moderately moving targets with proton pencil beam scanning at the new Gantry 2 at PSI

    NASA Astrophysics Data System (ADS)

    Zenklusen, S. M.; Pedroni, E.; Meer, D.

    2010-09-01

    Treating moving targets using a scanning gantry for proton therapy is a promising but very challenging, not yet clinically demonstrated treatment modality. The interference of organ motion with the sequence of the beam delivery produces uncontrolled dose inhomogeneities within the target. One promising approach to overcome this difficulty is to increase the speed of scanning in order to apply the dose repeatedly (so-called repainting). To obtain sufficiently high scanning speeds a new, technologically improved gantry—Gantry 2—has been designed and is currently under construction at PSI. As there are many possible repainting strategies, the way repainting will be implemented on Gantry 2 will depend on the result of a careful analysis of the various treatment delivery strategies available. To achieve this aim, and prior to the start of experimental work with Gantry 2, simulations of dose distribution errors due to organ motion under various beam delivery strategies were investigated. The effects of motion on the dose distribution were studied for moderate motion amplitudes (5 mm) for spherical target volumes in a homogeneous medium and with homogeneous dose. In total over 200 000 dose distributions have been simulated and analyzed and selected results are discussed. From the obtained results we are confident to be able to treat moderately moving targets on Gantry 2 using repainted pencil-beam spot scanning. Continuous line scanning seems to be the most elegant solution; it provides higher repainting rates and produces superior results but is probably more difficult to realize. For larger motion amplitudes, continuous line scanning still shows good results, but we plan anyways to use a gating system for these cases, not only to reduce the inhomogeneity within the target volume but also to reduce safety margins.

  12. LAKE PONTCHARTRAIN ESTUARY CONSERVATION PLAN

    EPA Science Inventory

    The Nature Conservancy will conduct a series of a least four science expert workshops to develop a Site Conservation Plan for the Lake Pontchartrain Estuary and adjacent wetlands. The objective of the Site Conservation Plan is to identify conservation targets, threats or stresse...

  13. Rotating Target Development for SNS Second Target Station

    SciTech Connect

    McManamy, Thomas J; Rennich, Mark J; Crawford, Roy K; Geoghegan, Patrick J; Janney, Jim G

    2010-01-01

    A rotating target for the second target station (STS) at SNS has been identified as an option along with a mercury target. Evaluation of the rotating target alternative for STS has started at 1.5 MW which is considered an upper bound for the power. Previous preconceptual design work for a 3 MW rotating target is being modified for the lower power level. Transient thermal analysis for a total loss of active water cooling has been done for a simplified 2D model of the target and shielding monolith which shows that peak temperatures are well below the level at which tungsten vaporization by steam could exceed site boundary dose limits. Design analysis and integration configuration studies have been done for the target-moderator-reflector assembly which maximizes the number of neutron beam lines and provides for replacement of the target and moderators. Target building hot cell arrangement for this option will be described. An option for operation in rough vacuum without a proton beam window using Ferro fluid seals on a vertical shaft is being developed. A full scale prototypic drive module based on the 3 MW preconceptual design has been fabricated and successfully tested with a shaft and mock up target supplied by the ESS-Bilbao team. Overall planning leading to decision between mercury and the rotating target in 2011 will be discussed

  14. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    SciTech Connect

    Martin, Peter R.; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-07-15

    tumor was consistently greater when using spherical tumor shapes as opposed to no shape assumption. However, an assumption of spherical tumor shape for RMSE = 3.5 mm led to a mean overestimation of tumor sampling probabilities of 3%, implying that assuming spherical tumor shape may be reasonable for many prostate tumors. The authors also determined that a biopsy system would need to have a RMS needle delivery error of no more than 1.6 mm in order to sample 95% of tumors with one core. The authors’ experiments also indicated that the effect of axial-direction error on the measured tumor burden was mitigated by the 18 mm core length at 3.5 mm RMSE. Conclusions: For biopsy systems with RMSE ≥ 3.5 mm, more than one biopsy core must be taken from the majority of tumors to achieveP ≥ 95%. These observations support the authors’ perspective that some tumors of clinically significant sizes may require more than one biopsy attempt in order to be sampled during the first biopsy session. This motivates the authors’ ongoing development of an approach to optimize biopsy plans with the aim of achieving a desired probability of obtaining a sample from each tumor, while minimizing the number of biopsies. Optimized planning of within-tumor targets for MRI-3D TRUS fusion biopsy could support earlier diagnosis of prostate cancer while it remains localized to the gland and curable.

  15. AMMONIA MONITORING NEAR 1.5 MM WITH DIODE LASER ABSORPTION SENSORS. (R827123)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. New Strategies for 0.5 mm Resolution, High Sensitivity, Multi- Radionuclide Imaging

    SciTech Connect

    Levin, Craig S.

    2015-02-28

    This project constitutes a 0.5-millimeter resolution radionuclide detector system built from CZT. (1) A novel dual-crystal photon detector module design with cross-strip electrode patterns was developed; (2) The module mechanical assembly was built; (3) A data acquisition (DAQ) chain for the module was produced; (4) A software tool was developed to incorporate novel time and energy measurement calibration techniques. (5) A small multi-detector prototype of the radionuclide imaging system was built from this module for system-level characterizations.

  17. Use of 5-mm-diameter implants: Periotest values related to a clinical and radiographic evaluation.

    PubMed

    Aparicio, C; Orozco, P

    1998-12-01

    A modified design of the original Brånemark implant consisting of a cp. Titanium 5.0-mm-diameter self-tapping implant threaded up to the marginal platform has been proposed for specific indications. From February 1992 to November 1995, a total of 185 machined screw implants (Nobel Biocare, Gothenburg, Sweden) were installed in 45 patients to withstand 58 prostheses. Of these, 91 were 3.75-mm diameter and 94 were 5.0-mm wide. Most of the implants were placed in type B and C bone quantity and type 2 and 3 bone quality. A retrospective evaluation with regard to indications, marginal bone remodelling, Periotest values (PTv) and survival rate is presented. PTv and radiographic measurements were made at abutment connection and repeated 3, 6 and 12 months later and thereafter every year. The follow-up ranged from 16 to 55 months (mean 32.9 months) post-loading. Three patients with 8 5.0-mm implants dropped-out of the study at different stages. Out of the wide implants, 1 was expelled during the healing period; 3 were found mobile at the abutment connection; 1 lost its osseointegration suddenly after 2 years of function; 4 belonging to 1 patient did not meet the success criteria due to continuous marginal bone loss. The cumulative success rate of 5.0-mm implants (CSR) after 1 year of function was 97.2% for upper jaws and 88.4% in mandibles, whereas the CSR in maxilla after 48 months was 97.2% and 83.4% in mandibles. The obtained PTv from 5.0-mm-wide fixtures in maxilla and mandibles were respectively 1.1 and 0.6 units lower than those obtained PTv for 3.75-mm-diameter implants in the same patients. The hypothesis that there are differences in the damping capacity of the bone surrounding a 5.0-mm-wide implant compared to the 3.75-mm-diameter implant is supported by the PTv results. PMID:11429941

  18. Visualization study of enhanced flash boiling of R-22 with 5 mm steel and glass spheres

    SciTech Connect

    Nutter, D.W.; O`Neal, D.L.

    1998-10-01

    This paper presents the qualitative results and discussion from an experimental investigation of passive enhanced flash boiling of R-22 (an HCFC) from a small vessel. A bench-top experimental apparatus was used to conduct enhanced flash boiling tests with 5.0 mm diameter steel and glass spheres placed at the base of the glass vessel. Sixty-second experiments were conducted with initial refrigerant amounts of 0.23 kg and 0.68 (0.5 lbm and 1.5 lbm), exiting orifices of 1.59 mm and 5.56 mm in diameter (0.063 in. and 0.219 in.), and with an initial pressure of 840 kPa (122 psia). The experiments were designed to simulate the flash boiling process that occurs within the refrigerant accumulator of air-source heat pumps during the reverse-cycle defrost. Results from the visualization study include a complete description of the flashing process with added steel and glass spheres. It was also shown that the enhancement method significantly increased the rate of total vapor production by 24--55% when exposed to a rapid depressurization.

  19. Time-Adjusted Internal Target Volume: A Novel Approach Focusing on Heterogeneity of Tumor Motion Based on 4-Dimensional Computed Tomography Imaging for Radiation Therapy Planning of Lung Cancer

    SciTech Connect

    Nishibuchi, Ikuno; Kimura, Tomoki; Nakashima, Takeo; Ochi, Yusuke; Takahashi, Ippei; Doi, Yoshiko; Kenjo, Masahiro; Kaneyasu, Yuko; Ozawa, Syuichi; Murakami, Yuji; Wadasaki, Koichi; Nagata, Yasushi

    2014-08-01

    Purpose: To consider nonuniform tumor motion within the internal target volume (ITV) by defining time-adjusted ITV (TTV), a volume designed to include heterogeneity of tumor existence on the basis of 4-dimensional computed tomography (4D-CT). Methods and Materials: We evaluated 30 lung cancer patients. Breath-hold CT (BH-CT) and free-breathing 4D-CT scans were acquired for each patient. The tumors were manually delineated using a lung CT window setting (window, 1600 HU; level, −300 HU). Tumor in BH-CT images was defined as gross tumor volume (GTV), and the sum of tumors in 4D-CT images was defined as ITV-4D. The TTV images were generated from the 4D-CT datasets, and the tumor existence probability within ITV-4D was calculated. We calculated the TTV{sub 80} value, which is the percentage of the volume with a tumor existence probability that exceeded 80% on ITV-4D. Several factors that affected the TTV{sub 80} value, such as the ITV-4D/GTV ratio or tumor centroid deviation, were evaluated. Results: Time-adjusted ITV images were acquired for all patients, and tumor respiratory motion heterogeneity was visualized. The median (range) ITV-4D/GTV ratio and median tumor centroid deviation were 1.6 (1.0-4.1) and 6.3 mm (0.1-30.3 mm), respectively. The median TTV{sub 80} value was 43.3% (2.9-98.7%). Strong correlations were observed between the TTV{sub 80} value and the ITV-4D/GTV ratio (R=−0.71) and tumor centroid deviation (R=−0.72). The TTV images revealed the tumor motion pattern features within ITV. Conclusions: The TTV images reflected nonuniform tumor motion, and they revealed the tumor motion pattern features, suggesting that the TTV concept may facilitate various aspects of radiation therapy planning of lung cancer while incorporating respiratory motion in the future.

  20. Target localization accuracy in a respiratory phantom using BrainLAB ExacTrac and 4DCT imaging.

    PubMed

    Matney, Jason E; Parker, Brent C; Neck, Daniel W; Henkelmann, Greg; Rosen, Isaac I

    2011-01-01

    This study evaluated the accuracy of measuring the motion of an internal target using four-dimensional computed tomography (4DCT) scanning and the BrainLAB ExacTrac X-ray imaging system. Displacements of a metal coil implanted in a commercial respiratory phantom were measured in each system and compared to the known motion. A commercial respiratory motion phantom containing a metal coil as a surrogate target was used. Phantom longitudinal motions were sinusoidal with a 4.0 second period and amplitudes ranging from 5-25 mm. We acquired 4DCT and ExacTrac images of the coil at specified respiratory phases and recorded the coordinates of the coil ends. Coil displacement relative to the 0% phase (full-inhale) position were computed for the ExacTrac and 4DCT imaging systems. Coil displacements were compared to known displacements based on the phantom's sinusoidal motion. Coil length distortion due to 4DCT phase binning was compared to the known physical length of the coil (31 mm). The maximum localization error for both coil endpoints for all motion settings was 3.5 mm for the 4DCT and 0.8 mm for the ExacTrac gating system. Coil length errors measured on the 4DCT were less than 0.8 mm at end inhale/exhale phases, but up to 8.3 mm at mid-inhalation phases at the largest motion amplitude (25 mm). Due to the fast image acquisition time (100 ms), no coil distortion was observable in the ExacTrac system. 4DCT showed problems imaging the coil during mid-respiratory phases of higher velocity (phases 20%-30% and 70%-80%) due to distortion caused by residual motion within the 4DCT phase bin. The ExacTrac imaging system was able to accurately localize the coil in the respiratory phantom over all phases of respiration. For our clinic, where end-respiration phases from 4DCT may be used for treatment planning calculations, the ExacTrac system is used to measure internal target motion. With the ExacTrac system, planning target size and motion uncertainties are minimized, potentially

  1. Genesis Preliminary Examination Plans

    NASA Technical Reports Server (NTRS)

    McNamara, K. M.; Stansbery, E. K.

    2004-01-01

    The purpose of preliminary examination of the Genesis sample collectors is to provide information on the condition and availability of collector materials to the science community as a basis for allocation requests. Similarly, the information will be used by the Genesis Sample Allocation sub-committee of CAPTEM to determine the optimum allocation scheme, and by the Genesis Curator to determine the processing sequence for allocation production. The plan includes a decision process and detailed examination and documentation protocol for whole arrays and individual collectors (wafers, concentrator targets, bulk metallic glass, gold foil, and polished aluminum). It also includes a plan for communicating the information obtained to the scientific community. The plan does not include a detailed plan for preliminary examination of the SRC lid foil collectors, the process for removal of individual collectors from their frames, or for the subsequent subdivision of collector materials for allocation.

  2. Participatory Planning.

    ERIC Educational Resources Information Center

    DeJong, William S.

    1980-01-01

    A synopsis of a Planning Assistance Kit designed by the Council of Educational Facility Planners (CEFP) and Educational Facilities Laboratories (EFL) to assist local communities in participatory planning. (MLF)

  3. Planning Diseases.

    ERIC Educational Resources Information Center

    Gabel, Medard

    1984-01-01

    To solve societal problems, both local and global, a global approach is needed. Serious diseases that are crippling present-day problem solving and planning are discussed, and the characteristics of a healthy, effective planning approach are described. (RM)

  4. Cassini science planning process

    NASA Technical Reports Server (NTRS)

    Paczkowski, Brian G.; Ray, Trina L.

    2004-01-01

    The mission design for Cassini-Huygens calls for a four-year orbital survey of the Saturnian system and the descent into the Titan atmosphere and eventual soft-landing of the Huygens probe. The Cassini orbiter tour consists of 76 orbits around Saturn with 44 close Titan flybys and 8 targeted icy satellite flybys. The Cassini orbiter spacecraft carries twelve scientific instruments that will perform a wide range of observations on a multitude of designated targets. The science opportunities, frequency of encounters, the length of the Tour, and the use of distributed operations pose significant challenges for developing the science plan for the orbiter mission. The Cassini Science Planning Process is the process used to develop and integrate the science and engineering plan that incorporates an acceptable level of science required to meet the primary mission objectives far the orbiter. The bulk of the integrated science and engineering plan will be developed prior to Saturn Orbit Insertion (Sol). The Science Planning Process consists of three elements: 1) the creation of the Tour Atlas, which identifies the science opportunities in the tour, 2) the development of the Science Operations Plan (SOP), which is the conflict-free timeline of all science observations and engineering activities, a constraint-checked spacecraft pointing profile, and data volume allocations to the science instruments, and 3) an Aftermarket and SOP Update process, which is used to update the SOP while in tour with the latest information on spacecraft performance, science opportunities, and ephemerides. This paper will discuss the various elements of the Science Planning Process used on the Cassini Mission to integrate, implement, and adapt the science and engineering activity plans for Tour.

  5. Comprehensive Planning.

    ERIC Educational Resources Information Center

    Pavlenko, Victor V.

    Comprehensive planning, defined as the work of those who engage in efforts, within a delimited geographic area, to identify and order the physical, social, and economic relationships of that area, is discussed in the four sections of this paper. Section I, Introduction, describes what "planning" and "comprehensive planning" are. In Section II, Why…

  6. Fire Plans

    ERIC Educational Resources Information Center

    Power, June

    2011-01-01

    Many libraries have disaster recovery plans, but not all have prevention and action plans to prepare for an emergency in advance. This article presents the author's review of the prevention and action plans of several libraries: (1) Evergreen State College; (2) Interlochen Public Library; (3) University of Maryland, Baltimore-Marshall Law Library;…

  7. Tackling Targets.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    This document is designed to help British training and enterprise councils (TECs) and further education (FE) colleges develop and implement strategies for achieving the National Targets for Education and Training (NTET), which were developed by the Confederation of British Industry in 1992 and endorsed by the British government. The findings from…

  8. Novel 3-D laparoscopic magnetic ultrasound image guidance for lesion targeting

    PubMed Central

    Sindram, David; McKillop, Iain H; Martinie, John B; Iannitti, David A

    2010-01-01

    Objectives: Accurate laparoscopic liver lesion targeting for biopsy or ablation depends on the ability to merge laparoscopic and ultrasound images with proprioceptive instrument positioning, a skill that can be acquired only through extensive experience. The aim of this study was to determine whether using magnetic positional tracking to provide three-dimensional, real-time guidance improves accuracy during laparoscopic needle placement. Methods: Magnetic sensors were embedded into a needle and laparoscopic ultrasound transducer. These sensors interrupted the magnetic fields produced by an electromagnetic field generator, allowing for real-time, 3-D guidance on a stereoscopic monitor. Targets measuring 5 mm were embedded 3–5 cm deep in agar and placed inside a laparoscopic trainer box. Two novices (a college student and an intern) and two experts (hepatopancreatobiliary surgeons) targeted the lesions out of the ultrasound plane using either traditional or 3-D guidance. Results: Each subject targeted 22 lesions, 11 with traditional and 11 with the novel guidance (n = 88). Hit rates of 32% (14/44) and 100% (44/44) were observed with the traditional approach and the 3-D magnetic guidance approach, respectively. The novices were essentially unable to hit the targets using the traditional approach, but did not miss using the novel system. The hit rate of experts improved from 59% (13/22) to 100% (22/22) (P < 0.0001). Conclusions: The novel magnetic 3-D laparoscopic ultrasound guidance results in perfect targeting of 5-mm lesions, even by surgical novices. PMID:21083797

  9. Depth-targeted transvascular drug delivery by using annular-shaped photomechanical waves

    NASA Astrophysics Data System (ADS)

    Akiyama, Takuya; Sato, Shunichi; Ashida, Hiroshi; Terakawa, Mitsuhiro

    2011-02-01

    Laser-based drug delivery is attractive for the targeting capability due to high spatial controllability of laser energy. Recently, we found that photomechanical waves (PMWs) can transiently increase the permeability of blood vessels in skin, muscle and brain of rats. In this study, we examined the use of annular-shaped PMWs to increase pressure at target depths due to superposition effect of pressure waves. This can increase the permeability of blood vessels located in the specific depth regions, enabling depth-targeted transvascular drug delivery. Annular PMWs were produced by irradiating a laser-absorbing material with annular-shaped pulsed laser beams that were produced by using an axicon lens. We first examined propagation and pressure characteristics of annular PMWs in tissue phantoms and confirmed an increased pressure at a target depth, which can be controlled by changing laser parameters. We injected Evans blue (EB) into a rat tail vein, and annular PMWs (inner diameter, 3 mm; outer diameter, 5 mm) were applied from the myofascial surface of the anterior tibialis muscle. After perfusion fixation, we observed fluorescence originating from EB in the tissue. We observed intense fluorescence at a target depth region of around 5 mm. These results demonstrate the capability of annular PMWs for depth-targeted transvascular drug delivery.

  10. Overview of Target Fabrication in Support of Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Schroen, Diana; Breden, Eric; Florio, Joseph; Grine-Jones, Suzi; Holt, Randy; Krych, Wojtek; Metzler, James; Russell, Chris; Stolp, Justin; Streit, Jonathan; Youngblood, Kelly

    2004-11-01

    Sandia National Laboratories has succeeded in making its pulsed power driver, the Z machine, a valuable testbed for a great variety of experiments. These experiments include ICF, weapon physics, Equation of State and astrophysics. There are four main target types: Dynamic Hohlraum, Double Pinch, Fast Igniter and EOS. The target sizes are comparable to projected NIF sizes. For example, capsules up to 5 mm have been fielded. This talk will focus on the assembly challenges and the use of foams to create these targets. For many targets, diagnostics and capsules are embedded in the foams, and foam dopants have been added. It is the 14 mg/cc foam target with an embedded capsule (containing deuterium) that has reproducibly produced thermonuclear neutrons. For all target types, the characterization and documentation has had to develop to ensure understanding of target performance. To achieve the required resolution we are using a Nikon automated microscope and a custom OMEGA/NIF target assembly system. Our drive for quality has lead us develop a management system that been registered to ISO 9001.

  11. Target assembly

    DOEpatents

    Lewis, Richard A.

    1980-01-01

    A target for a proton beam which is capable of generating neutrons for absorption in a breeding blanket includes a plurality of solid pins formed of a neutron emissive target material disposed parallel to the path of the beam and which are arranged axially in a plurality of layers so that pins in each layer are offset with respect to pins in all other layers, enough layers being used so that each proton in the beam will strike at least one pin with means being provided to cool the pins. For a 300 mA, 1 GeV beam (300 MW), stainless steel pins, 12 inches long and 0.23 inches in diameter are arranged in triangular array in six layers with one sixth of the pins in each layer, the number of pins being such that the entire cross sectional area of the beam is covered by the pins with minimum overlap of pins.

  12. Recce mission planning

    NASA Astrophysics Data System (ADS)

    York, Andrew M.

    2000-11-01

    The ever increasing sophistication of reconnaissance sensors reinforces the importance of timely, accurate, and equally sophisticated mission planning capabilities. Precision targeting and zero-tolerance for collateral damage and civilian casualties, stress the need for accuracy and timeliness. Recent events have highlighted the need for improvement in current planning procedures and systems. Annotating printed maps takes time and does not allow flexibility for rapid changes required in today's conflicts. We must give aircrew the ability to accurately navigate their aircraft to an area of interest, correctly position the sensor to obtain the required sensor coverage, adapt missions as required, and ensure mission success. The growth in automated mission planning system capability and the expansion of those systems to include dedicated and integrated reconnaissance modules, helps to overcome current limitations. Mission planning systems, coupled with extensive integrated visualization capabilities, allow aircrew to not only plan accurately and quickly, but know precisely when they will locate the target and visualize what the sensor will see during its operation. This paper will provide a broad overview of the current capabilities and describe how automated mission planning and visualization systems can improve and enhance the reconnaissance planning process and contribute to mission success. Think about the ultimate objective of the reconnaissance mission as we consider areas that technology can offer improvement. As we briefly review the fundamentals, remember where and how TAC RECCE systems will be used. Try to put yourself in the mindset of those who are on the front lines, working long hours at increasingly demanding tasks, trying to become familiar with new operating areas and equipment, while striving to minimize risk and optimize mission success. Technical advancements that can reduce the TAC RECCE timeline, simplify operations and instill Warfighter

  13. Shot Planning and Analysis Tools

    SciTech Connect

    Casey, A; Beeler, R; Conder, A; Fallejo, R; Flegel, M; Hutton, M; Jancaitis, K; Lakamsani, V; Potter, D; Reisdorf, S; Tappero, J; Whitman, P; Carr, W; Liao, Z

    2011-07-25

    Shot planning and analysis tools (SPLAT) integrate components necessary to help achieve a high over-all operational efficiency of the National Ignition Facility (NIF) by combining near and long-term shot planning, final optics demand and supply loops, target diagnostics planning, and target fabrication requirements. Currently, the SPLAT project is comprised of two primary tool suites for shot planning and optics demand. The shot planning component provides a web-based interface to selecting and building a sequence of proposed shots for the NIF. These shot sequences, or 'lanes' as they are referred to by shot planners, provide for planning both near-term shots in the Facility and long-term 'campaigns' in the months and years to come. The shot planning capabilities integrate with the Configuration Management Tool (CMT) for experiment details and the NIF calendar for availability. Future enhancements will additionally integrate with target diagnostics planning and target fabrication requirements tools. The optics demand component is built upon predictive modelling of maintenance requirements on the final optics as a result of the proposed shots assembled during shot planning. The predictive models integrate energetics from a Laser Performance Operations Model (LPOM), the status of the deployed optics as provided by the online Final Optics Inspection system, and physics-based mathematical 'rules' that predict optic flaw growth and new flaw initiations. These models are then run on an analytical cluster comprised of forty-eight Linux-based compute nodes. Results from the predictive models are used to produce decision-support reports in the areas of optics inspection planning, optics maintenance exchanges, and optics beam blocker placement advisories. Over time, the SPLAT project will evolve to provide a variety of decision-support and operation optimization tools.

  14. Men and Family Planning. Worldwatch Paper 41.

    ERIC Educational Resources Information Center

    Stokes, Bruce

    This monograph focuses on men's potentially positive role in family planning. In addition, it identifies reasons why so few organized family planning programs have targeted men as clients and why men have so often played a peripheral or negative role in family planning. The document is presented in seven chapters. Chapter I introduces the topic…

  15. Localization Accuracy of the Clinical Target Volume During Image-Guided Radiotherapy of Lung Cancer

    SciTech Connect

    Hugo, Geoffrey D.; Weiss, Elisabeth; Badawi, Ahmed; Orton, Matthew

    2011-10-01

    Purpose: To evaluate the position and shape of the originally defined clinical target volume (CTV) over the treatment course, and to assess the impact of gross tumor volume (GTV)-based online computed tomography (CT) guidance on CTV localization accuracy. Methods and Materials: Weekly breath-hold CT scans were acquired in 17 patients undergoing radiotherapy. Deformable registration was used to propagate the GTV and CTV from the first weekly CT image to all other weekly CT images. The on-treatment CT scans were registered rigidly to the planning CT scan based on the GTV location to simulate online guidance, and residual error in the CTV centroids and borders was calculated. Results: The mean GTV after 5 weeks relative to volume at the beginning of treatment was 77% {+-} 20%, whereas for the prescribed CTV, it was 92% {+-} 10%. The mean absolute residual error magnitude in the CTV centroid position after a GTV-based localization was 2.9 {+-} 3.0 mm, and it varied from 0.3 to 20.0 mm over all patients. Residual error of the CTV centroid was associated with GTV regression and anisotropy of regression during treatment (p = 0.02 and p = 0.03, respectively; Spearman rank correlation). A residual error in CTV border position greater than 2 mm was present in 77% of patients and 50% of fractions. Among these fractions, residual error of the CTV borders was 3.5 {+-} 1.6 mm (left-right), 3.1 {+-} 0.9 mm (anterior-posterior), and 6.4 {+-} 7.5 mm (superior-inferior). Conclusions: Online guidance based on the visible GTV produces substantial error in CTV localization, particularly for highly regressing tumors. The results of this study will be useful in designing margins for CTV localization or for developing new online CTV localization strategies.

  16. Takeover targets

    SciTech Connect

    Jeffs, E.

    1995-11-01

    The latest chapter in the saga of privatization of the British Electricity Supply Industry has been the growing number of take-over bids for the Regional Electricity Companies (RECs). With privatization, the Scottish generators entered a large number of direct power supply contracts to large industrial consumers in England. The RECs also have diversified into other utility services including gas and cable television; some are also looking at overseas contracts in planning and installing electricity distribution systems in developing countries. Those seeking to take over RECs are mainly American utilities.

  17. Accelerator target

    SciTech Connect

    Schlyer, D.J.; Ferrieri, R.A.; Koehler, C.

    1999-06-29

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression. 5 figs.

  18. Accelerator target

    DOEpatents

    Schlyer, David J.; Ferrieri, Richard A.; Koehler, Conrad

    1999-01-01

    A target includes a body having a depression in a front side for holding a sample for irradiation by a particle beam to produce a radioisotope. Cooling fins are disposed on a backside of the body opposite the depression. A foil is joined to the body front side to cover the depression and sample therein. A perforate grid is joined to the body atop the foil for supporting the foil and for transmitting the particle beam therethrough. A coolant is circulated over the fins to cool the body during the particle beam irradiation of the sample in the depression.

  19. Systems engineering management plans.

    SciTech Connect

    Rodriguez, Tamara S.

    2009-10-01

    The Systems Engineering Management Plan (SEMP) is a comprehensive and effective tool used to assist in the management of systems engineering efforts. It is intended to guide the work of all those involved in the project. The SEMP is comprised of three main sections: technical project planning and control, systems engineering process, and engineering specialty integration. The contents of each section must be tailored to the specific effort. A model outline and example SEMP are provided. The target audience is those who are familiar with the systems engineering approach and who have an interest in employing the SEMP as a tool for systems management. The goal of this document is to provide the reader with an appreciation for the use and importance of the SEMP, as well as provide a framework that can be used to create the management plan.

  20. A Study on Target Positioning Error and Its Impact on Dose Variation in Image-Guided Stereotactic Body Radiotherapy for the Spine

    SciTech Connect

    Kim, Siyong Jin, Hosang; Yang, Huey; Amdur, Robert J.

    2009-04-01

    Purpose: To investigate the amount of target positioning error and evaluate its dosimetric impact during image-guided stereotactic body radiotherapy for single-fraction spine treatment. Methods and Materials: A prescription dose of 15 Gy and five to nine coplanar intensity-modulated beams were used. The patient was immobilized with a custom-fit vacuum mold, and the target was localized with a volumetric cone-beam CT image. A robotic couch with six degrees of freedom was used for target adjustment. For evaluation a cone-beam CT image was obtained at the end of treatment. Both target positioning error and its dosimetric impact were investigated for the first 9 cases. Results: For cases studied, translational errors were 0.9 {+-} 0.5 mm (lateral), 1.2 {+-} 0.9 mm (longitudinal), 0.7 {+-} 0.6 mm (vertical), and 1.8 {+-} 1.0 mm (vector), and rotational errors were 1.6 deg. {+-} 1.3 deg. (pitch), 0.8 deg. {+-} 0.9 deg. (roll), and 0.8 deg. {+-} 0.4{sup o} (yaw). For the clinical target volume, D{sub 95} (dose to 95% of target volume), D{sub 90}, D{sub max}, and D{sub mean} were evaluated. Only 1 case showed significant dose variations, reaching up to 18% in D{sub 95}. The spinal cord dose was evaluated by observing D{sub 0.1} (dose to 0.1 cm{sup 3}), D{sub 0.5}, D{sub 1.0}, and D{sub max}. Although 1 case showed a dose change reaching up to 30% in D{sub max}, cord dose was within the planning tolerance limit in all but 2 cases (3% higher in one and 0.4% higher in the other). Conclusion: The implemented image-guided stereotactic body radiotherapy provides precise target localization. However, despite reasonably precise spatial precision, dosimetric perturbation can be significant because of both extremely steep dose gradients and close distances between the target and the spinal cord.

  1. Transition Planning

    ERIC Educational Resources Information Center

    Statfeld, Jenna L.

    2011-01-01

    Post-school transition is the movement of a child with disabilities from school to activities that occur after the completion of school. This paper provides information about: (1) post-school transition; (2) transition plan; (3) transition services; (4) transition planning; (5) vocational rehabilitation services; (6) services that are available…

  2. Expedition Planning.

    ERIC Educational Resources Information Center

    Ewert, Alan

    Planning an expedition, particularly an expedition to climb Mount McKinley, can appear monumental. Not only must the obvious items like food, equipment and personnel be carefully planned, but attention must also focus on "insignificant" items like applications and reservations which, if forgotten, could mean the difference between a successful or…

  3. Toward 3D-guided prostate biopsy target optimization: an estimation of tumor sampling probabilities

    NASA Astrophysics Data System (ADS)

    Martin, Peter R.; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-03-01

    Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided "fusion" prostate biopsy aims to reduce the ~23% false negative rate of clinical 2D TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsy still yields false negatives. Therefore, we propose optimization of biopsy targeting to meet the clinician's desired tumor sampling probability, optimizing needle targets within each tumor and accounting for uncertainties due to guidance system errors, image registration errors, and irregular tumor shapes. We obtained multiparametric MRI and 3D TRUS images from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D surfaces that were registered to 3D TRUS. We estimated the probability, P, of obtaining a tumor sample with a single biopsy. Given an RMS needle delivery error of 3.5 mm for a contemporary fusion biopsy system, P >= 95% for 21 out of 81 tumors when the point of optimal sampling probability was targeted. Therefore, more than one biopsy core must be taken from 74% of the tumors to achieve P >= 95% for a biopsy system with an error of 3.5 mm. Our experiments indicated that the effect of error along the needle axis on the percentage of core involvement (and thus the measured tumor burden) was mitigated by the 18 mm core length.

  4. A study of IMRT planning parameters on planning efficiency, delivery efficiency, and plan quality

    SciTech Connect

    Mittauer, Kathryn; Lu Bo; Yan Guanghua; Kahler, Darren; Amdur, Robert; Liu Chihray; Gopal, Arun

    2013-06-15

    Purpose: To improve planning and delivery efficiency of head and neck IMRT without compromising planning quality through the evaluation of inverse planning parameters.Methods: Eleven head and neck patients with pre-existing IMRT treatment plans were selected for this retrospective study. The Pinnacle treatment planning system (TPS) was used to compute new treatment plans for each patient by varying the individual or the combined parameters of dose/fluence grid resolution, minimum MU per segment, and minimum segment area. Forty-five plans per patient were generated with the following variations: 4 dose/fluence grid resolution plans, 12 minimum segment area plans, 9 minimum MU plans, and 20 combined minimum segment area/minimum MU plans. Each plan was evaluated and compared to others based on dose volume histograms (DVHs) (i.e., plan quality), planning time, and delivery time. To evaluate delivery efficiency, a model was developed that estimated the delivery time of a treatment plan, and validated through measurements on an Elekta Synergy linear accelerator. Results: The uncertainty (i.e., variation) of the dose-volume index due to dose calculation grid variation was as high as 8.2% (5.5 Gy in absolute dose) for planning target volumes (PTVs) and 13.3% (2.1 Gy in absolute dose) for planning at risk volumes (PRVs). Comparison results of dose distributions indicated that smaller volumes were more susceptible to uncertainties. The grid resolution of a 4 mm dose grid with a 2 mm fluence grid was recommended, since it can reduce the final dose calculation time by 63% compared to the accepted standard (2 mm dose grid with a 2 mm fluence grid resolution) while maintaining a similar level of dose-volume index variation. Threshold values that maintained adequate plan quality (DVH results of the PTVs and PRVs remained satisfied for their dose objectives) were 5 cm{sup 2} for minimum segment area and 5 MU for minimum MU. As the minimum MU parameter was increased, the number of

  5. Respiratory-gated segment reconstruction for radiation treatment planning using 256-slice CT-scanner during free breathing

    NASA Astrophysics Data System (ADS)

    Mori, Shinichiro; Endo, Masahiro; Kohno, Ryosuke; Minohara, Shinichi; Kohno, Kazutoshi; Asakura, Hiroshi; Fujiwara, Hideaki; Murase, Kenya

    2005-04-01

    The conventional respiratory-gated CT scan technique includes anatomic motion induced artifacts due to the low temporal resolution. They are a significant source of error in radiotherapy treatment planning for the thorax and upper abdomen. Temporal resolution and image quality are important factors to minimize planning target volume margin due to the respiratory motion. To achieve high temporal resolution and high signal-to-noise ratio, we developed a respiratory gated segment reconstruction algorithm and adapted it to Feldkamp-Davis-Kress algorithm (FDK) with a 256-detector row CT. The 256-detector row CT could scan approximately 100 mm in the cranio-caudal direction with 0.5 mm slice thickness in one rotation. Data acquisition for the RS-FDK relies on the assistance of the respiratory sensing system by a cine scan mode (table remains stationary). We evaluated RS-FDK in phantom study with the 256-detector row CT and compared it with full scan (FS-FDK) and HS-FDK results with regard to volume accuracy and image noise, and finally adapted the RS-FDK to an animal study. The RS-FDK gave a more accurate volume than the others and it had the same signal-to-noise ratio as the FS-FDK. In the animal study, the RS-FDK visualized the clearest edges of the liver and pulmonary vessels of all the algorithms. In conclusion, the RS-FDK algorithm has a capability of high temporal resolution and high signal-to-noise ratio. Therefore it will be useful when combined with new radiotherapy techniques including image guided radiation therapy (IGRT) and 4D radiation therapy.

  6. PLUTONIUM-238 PRODUCTION TARGET DESIGN STUDIES

    SciTech Connect

    Hurt, Christopher J; Wham, Robert M; Hobbs, Randall W; Owens, R Steven; Chandler, David; Freels, James D; Maldonado, G Ivan

    2014-01-01

    A new supply chain is planned for plutonium-238 using existing reactors at the Oak Ridge National Laboratory (ORNL) and Idaho National Laboratory (INL) and existing chemical recovery facilities at ORNL. Validation and testing activities for new irradiation target designs have been conducted in three phases over a 2 year period to provide data for scale-up to production. Target design, qualification, target fabrication, and irradiation of fully-loaded targets have been accomplished. Data from post-irradiation examination (PIE) supports safety analysis and irradiation of future target designs.

  7. astroplan: Observation Planning for Astronomers

    NASA Astrophysics Data System (ADS)

    Morris, Brett

    2016-03-01

    Astroplan is an observation planning package for astronomers. It is an astropy-affiliated package which began as a Google Summer of Code project. Astroplan facilitates convenient calculation of common observational quantities, like target altitudes and azimuths, airmasses, and rise/set times. Astroplan also computes when targets are observable given various extensible observing constraints, for example: within a range of airmasses or altitudes, or at a given separation from the Moon. Astroplan is taught in the undergraduate programming for astronomy class, and enables observational Pre- MAP projects at the University of Washington. In the near future, we plan to implement scheduling capabilities in astroplan on top of the constraints framework.

  8. Third Floor Plan, Second Floor Plan, First Floor Plan, Ground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Third Floor Plan, Second Floor Plan, First Floor Plan, Ground Floor Plan, West Bunkhouse - Kennecott Copper Corporation, On Copper River & Northwestern Railroad, Kennicott, Valdez-Cordova Census Area, AK

  9. Southwest elevation, roof plan, site plan & main floor plan, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Southwest elevation, roof plan, site plan & main floor plan, loft plan, section looking east, north window head detail - Richard Buckminster Fuller & Anne Hewlett Fuller Dome Home, 407 South Forest Avenue, Carbondale, Jackson County, IL

  10. A comparison of HDR near source dosimetry using a treatment planning system, Monte Carlo simulation, and radiochromic film

    SciTech Connect

    Amoush, Ahmad; Luckstead, Marcus; Lamba, Michael; Elson, Howard; Kassing, William

    2013-07-01

    This study aimed to investigate the high-dose rate Iridium-192 brachytherapy, including near source dosimetry, of a catheter-based applicator from 0.5 mm to 1 cm along the transverse axis. Radiochromic film and Monte Carlo (MC) simulation were used to generate absolute dose for the catheter-based applicator. Results from radiochromic film and MC simulation were compared directly to the treatment planning system (TPS) based on the American Association of Physicists in Medicine Updated Task Group 43 (TG-43U1) dose calculation formalism. The difference between dose measured using radiochromic film along the transverse plane at 0.5 mm from the surface and the predicted dose by the TPS was 24%±13%. The dose difference between the MC simulation along the transverse plane at 0.5 mm from the surface and the predicted dose by the TPS was 22.1%±3%. For distances from 1.5 mm to 1 cm from the surface, radiochromic film and MC simulation agreed with TPS within an uncertainty of 3%. The TPS under-predicts the dose at the surface of the applicator, i.e., 0.5 mm from the catheter surface, as compared to the measured and MC simulation predicted dose. MC simulation results demonstrated that 15% of this error is due to neglecting the beta particles and discrete electrons emanating from the sources and not considered by the TPS, and 7% of the difference was due to the photon alone, potentially due to the differences in MC dose modeling, photon spectrum, scoring techniques, and effect of the presence of the catheter and the air gap. Beyond 1 mm from the surface, the TPS dose algorithm agrees with the experimental and MC data within 3%.

  11. A high power beam-on-target test of liquid lithium target for RIA.

    SciTech Connect

    Nolen, J.; Reed, C.; Novick, V.; Specht, J.; Plotkin, P.; Momozaki,Y.; Gomes, I.

    2005-08-29

    Experiments were conducted to demonstrate the stable operation of a windowless liquid lithium target under extreme thermal loads that are equivalent to uranium beams from the proposed Rare Isotope Accelerator (RIA) driver linac. The engineering and safety issues accompanying liquid lithium systems are first discussed. The liquid metal technology knowledge base generated primarily for fast reactors, and liquid metal cooled fusion reactors, was applied to the development of these systems in a nuclear physics laboratory setting. The use of a high energy electron beam for simulating a high power uranium beam produced by the RIA driver linac is also described. Calculations were performed to obtain energy deposition profiles produced by electron beams at up to a few MeV to compare with expected uranium beam energy deposition profiles. It was concluded that an experimental simulation using a 1-MeV electron beam would be a valuable tool to assess beam-jet interaction. In the experiments, the cross section of the windowless liquid lithium target was 5 mm x 10 mm, which is a 1/3rd scale prototype target, and the velocity of the liquid lithium was varied up to 6 m/s. Thermal loads up to 20 kW within a beam spot diameter of 1mm were applied on the windowless liquid lithium target by the 1-MeV electron beam. The calculations showed that the maximum power density and total power deposited within the target, from the electron beam, was equivalent to that of a 200-kW, 400-MeV/u uranium beam. It was demonstrated that the windowless liquid lithium target flowing at velocities as low as 1.8 m/s stably operated under beam powers up to 20 kW without disruption or excessive vaporization.

  12. Polarized tritium target development

    SciTech Connect

    Jones, C.E.; Fedchak, J.A.; Kowalczyk, R.S.

    1995-08-01

    Work began on the development of a completely sealed polarized tritium target for experiments at CEBAF. Because of the similarities between optical pumping of tritium and hydrogen, all prototype work is done with hydrogen. We constructed a test station for filling glassware with hydrogen, where we can dissociate molecular hydrogen and monitor the purity of the gas. A simple two-cell glass system was constructed, consisting of a region in which the molecular hydrogen is dissociated with an RF discharge and a region where the atoms can be optically pumped. So far, a clean discharge was obtained in the glassware. With this system, we plan to investigate ways to eliminate the discharge from the optical pumping region and test the quality of the discharge once the pumping cell is coated with drifilm.

  13. NFE--Planning and Organizing for Action. Courier No. 27.

    ERIC Educational Resources Information Center

    ASPBAE Courier Service, 1983

    1983-01-01

    This issue contains six articles, reports, and essays on planning and organizing nonformal education in the Asian-South Pacific area. A chapter reprinted from "Planning Nonformal Education" discusses the need for planning, past efforts, and five steps in a strategy suggested for planning locally-oriented and target-specific nonformal educational…

  14. Sensitivity in error detection of patient specific QA tools for IMRT plans

    NASA Astrophysics Data System (ADS)

    Lat, S. Z.; Suriyapee, S.; Sanghangthum, T.

    2016-03-01

    The high complexity of dose calculation in treatment planning and accurate delivery of IMRT plan need high precision of verification method. The purpose of this study is to investigate error detection capability of patient specific QA tools for IMRT plans. The two H&N and two prostate IMRT plans with MapCHECK2 and portal dosimetry QA tools were studied. Measurements were undertaken for original and modified plans with errors introduced. The intentional errors composed of prescribed dose (±2 to ±6%) and position shifting in X-axis and Y-axis (±1 to ±5mm). After measurement, gamma pass between original and modified plans were compared. The average gamma pass for original H&N and prostate plans were 98.3% and 100% for MapCHECK2 and 95.9% and 99.8% for portal dosimetry, respectively. In H&N plan, MapCHECK2 can detect position shift errors starting from 3mm while portal dosimetry can detect errors started from 2mm. Both devices showed similar sensitivity in detection of position shift error in prostate plan. For H&N plan, MapCHECK2 can detect dose errors starting at ±4%, whereas portal dosimetry can detect from ±2%. For prostate plan, both devices can identify dose errors starting from ±4%. Sensitivity of error detection depends on type of errors and plan complexity.

  15. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.

    2012-05-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440

  16. National Ignition Facility Target Chamber

    SciTech Connect

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-10-05

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  17. Statistical modeling of interfractional tissue deformation and its application in radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Vile, Douglas J.

    In radiation therapy, interfraction organ motion introduces a level of geometric uncertainty into the planning process. Plans, which are typically based upon a single instance of anatomy, must be robust against daily anatomical variations. For this problem, a model of the magnitude, direction, and likelihood of deformation is useful. In this thesis, principal component analysis (PCA) is used to statistically model the 3D organ motion for 19 prostate cancer patients, each with 8-13 fractional computed tomography (CT) images. Deformable image registration and the resultant displacement vector fields (DVFs) are used to quantify the interfraction systematic and random motion. By applying the PCA technique to the random DVFs, principal modes of random tissue deformation were determined for each patient, and a method for sampling synthetic random DVFs was developed. The PCA model was then extended to describe the principal modes of systematic and random organ motion for the population of patients. A leave-one-out study tested both the systematic and random motion model's ability to represent PCA training set DVFs. The random and systematic DVF PCA models allowed the reconstruction of these data with absolute mean errors between 0.5-0.9 mm and 1-2 mm, respectively. To the best of the author's knowledge, this study is the first successful effort to build a fully 3D statistical PCA model of systematic tissue deformation in a population of patients. By sampling synthetic systematic and random errors, organ occupancy maps were created for bony and prostate-centroid patient setup processes. By thresholding these maps, PCA-based planning target volume (PTV) was created and tested against conventional margin recipes (van Herk for bony alignment and 5 mm fixed [3 mm posterior] margin for centroid alignment) in a virtual clinical trial for low-risk prostate cancer. Deformably accumulated delivered dose served as a surrogate for clinical outcome. For the bony landmark setup

  18. Breast MRI in Invasive Lobular Carcinoma: A Useful Investigation in Surgical Planning?

    PubMed

    Parvaiz, Muhammad Asad; Yang, Peiming; Razia, Eisha; Mascarenhas, Margaret; Deacon, Caroline; Matey, Pilar; Isgar, Brian; Sircar, Tapan

    2016-01-01

    Magnetic resonance imaging (MRI) is highly sensitive in detecting invasive lobular carcinoma (ILC) of the breast. In our institution, patients who are deemed to be suitable for breast conserving surgery (BCS) with unifocal small ILC on standard imaging are offered breast MRI to exclude multifocal and larger ILC. Our study investigates the usefulness of breast MRI in ILC. A prospective cohort study over a 58-month period, including all consecutive patients with ILC having breast MRI. Primary objective was to find out the proportion of ILC patients where preoperative MRI caused a change in the surgical treatment. Secondary objectives included finding mastectomy rate (initial & final), re-operation rate, cancer size correlation with different imaging modalities and final histopathology, loco-regional recurrence and disease-free survival. A total of 334 bilateral breast MRI were performed including 72 (21.5%) MRI for ILC patients. All these MRI were carried out within 2 week of patients given the diagnosis (median 5.5 days). Age range was 24-83 (median 56.5) years. Nineteen of 72 ILC patients (26.4%) had a change in their planned operation from BCS to a different operation owing to MRI findings (seven patients with multifocal cancers, 10 with significantly larger size of the cancer and two with contralateral malignancy). Initial mastectomy rate was 31.9%, final mastectomy rate was 36.1% and re-operation rate in BCS group was 18.3%. MRI correlated better with ILC histopathology cancer size than mammogram and ultrasound scans. There was no statistically significant difference (p = 0.999) between the cancer size on histology (median 23 mm) and MRI (median 25 mm). However, mammogram (median 17 mm) and ultrasound (median 14.5 mm) scans showed cancer sizes significantly different to final histology cancer size (p = 0.0008 and p = 0.0021 respectively). Over a 44 months median follow-up (range 27-85), 95.8% disease-free survival and 98.6% overall survival have been observed

  19. XUV spectroscopy of laser plasma from molecular coated metal targets

    NASA Astrophysics Data System (ADS)

    Papanyan, Valeri O.; Nersisyan, Gagik T.; Tittel, Frank K.

    1999-12-01

    Metal targets covered by micrometer layers of metal- phthalocyanines or fullerenes are studied here. An increase in XUV yield due to the optimized absorption of the laser field is reported. Effects of high-temperature plasma rapid expansion (velocity about 106 cm/s) were observed. Moderate power nanosecond and picosecond neodymium lasers are used to produce an incident intensity of 1011 to 1013 W/cm2 on the targets. The plasma electron density was measured by fitting observed spectral profiles to the theoretical profiles. Collisional, Doppler, and Stark broadening mechanisms were considered in the calculations. Our measurement technique permits us to determine the electron density and temperature dependence on distances from the target surface from 1 mm (where Ne approximately equals 1018 cm-3 and Te approximately equals 14 eV are measured for aluminum plasma) up to approximately 5 mm (where Ne targets is greater by a factor of approximately 1.5 than measured from bulk solid metal targets.

  20. XUV spectroscopy of laser plasma from molecular coated metal targets

    NASA Astrophysics Data System (ADS)

    Papanyan, Valeri O.; Nersisyan, Gagik T.; Tittel, Frank K.

    1999-10-01

    Metal targets covered by micrometer layers of metal- phthalocyanines are studied here. An increase in EUV yield due to optimized absorption of the laser field is reported. Effects of high-temperature plasma rapid expansion (velocity about 106 cm/s) were observed. Moderate power nanosecond and picosecond neodymium lasers are used to product an incident intensity of 1011 to 1013 W/cm2 on the targets. The plasma electron density was measured by fitting observed spectral profiles to theoretical profiles. Collisional, Doppler, and Stark broadening mechanisms were considered in the calculations. Our measurement technique makes it possible to determine the electron density and temperature dependence on distances from the target surface from 1 mm (where Ne equals 2.0 (+/- 0.5)1018 cm-3 and Te equals 14 eV are measured for aluminum plasma) up to approximately 5 mm (where Ne targets is greater by a factor of approximately 1.5 than measured from bulk solid metal targets.

  1. Planning tools for modulated electron radiotherapy

    SciTech Connect

    Surucu, Murat; Klein, Eric E.; Mamalui-Hunter, Maria; Mansur, David B.; Low, Daniel A.

    2010-05-15

    Purpose: To develop tools to plan modulated electron radiotherapy (MERT) and to compare the MERT plans to conventional or intensity modulated radiotherapy (IMRT) treatment plans. Methods: Monte Carlo dose calculations of electron fields shaped with the inherent photon multileaf collimators (MLCs) were investigated in this study. Treatment plans for four postmastectomy breast cancer patients were generated using MERT. The distances from the patient skin surfaces to the distal planning target volume surfaces were computed along the beam axis direction to determine the physical depth. Electron beam energies were selected to provide target coverage at these depths and energy bins were generated. A custom built MERT treatment planning graphical user interface (MERTgui) was used to shape the electron bins into deliverable electron segments. Monte Carlo dose distribution simulations were performed using the MLC-defined segments generated from the MERTgui. A custom built superposition gui was used to combine doses for each segment using relative weights and final MERT treatment plans were compared to the conventional or IMRT treatment plans. In addition, a demonstration of combined MERT and IMRT treatment plans was performed. Results: The MERT treatment plans provided acceptable target organ coverage in all cases. Relative to 3D conventional or IMRT treatment plans, the MERT plans predicted lower heart doses in all cases; average of the heart D{sub 20} of all plans was reduced from 14.1 to 3.3 Gy. The contralateral breast and contralateral lung doses decreased substantially with MERT planning compared to IMRT (on average, contralateral breast heart D{sub 20} was reduced from 8.7 to 0.7 Gy and contralateral lung D{sub 20} was reduced from 8.4 to 1.2 Gy with MERT). Ipsilateral lung D{sub 20} was lower with MERT than with the conventional plans (44.6 vs 29.2 Gy with MERT), but greater when compared against IMRT treatment plans (25.4 vs 28.9 Gy with MERT). A MERT and IMRT

  2. The Cairo plan.

    PubMed

    Brown, L R

    1994-01-01

    The Plan of Action which arose from the 1994 International Conference on Population and Development calls for stabilizing the population of the world at 7.8 billion by the year 2050. This plan reflects the sense of urgency born of a knowledge that the resources of the world are already being strained by human demands. For example, marine biologists believe that the ocean fisheries would sustain a catch of 100 million tons a year. This level was reached in 1989. If the biologists are correct, the seafood catch per person will continue to decline until population stabilizes, and seafood prices will continue to increase. Water use from underground aquifers is already exceeding aquifer recharge rates leading to a fall in water tables. Therefore, world irrigation growth has slowed significantly. In addition, farmers have fully exploited the capacity of some crops to benefit from fertilization in major food producing areas of North America, Europe, and China. Thus, the only way that the needs of 90 million additional people each year will be met will be by reducing total per capital consumption. The Plan of Action is ambitious and right on target. Its first goal is to meet the family planning needs of the 120 million women who do not have access to services. It also acknowledges the fact that gender inequality is a leading cause of high fertility and calls for increased educational opportunities for girls. PMID:12318866

  3. TU-A-12A-06: Intra-Observer Variability in Delineation of Target Volumes in Breast Radiotherapy and Its Effect On Accuracy of Deformation Measurements

    SciTech Connect

    Juneja, P; Harris, E; Bonora, M; Evans, P

    2014-06-15

    Purpose: In breast radiotherapy, the target volume may change during treatment and need adaptation of the treatment plan. This is possible for both tumour bed (TB) and whole breast (WB) target volumes. Delineation of the target (to detect changes) is also subject to uncertainty due to intra- and inter-observer variability. This work measured the uncertainty, due to intraobserver variability, in the quantification of tissue deformation. Methods: Datasets consisting of paired prone and supine CT scans of three patients were used. Significant deformation in target volumes is expected between prone and supine patient positions. The selected cases had 1) no seroma, 2) some seroma, and 3) large seroma. The TB and WB were outlined on each dataset three times by one clinician. Delineation variability was defined as the standard deviations of the distances between observer outlines. For each target volume and each case, tissue deformation between prone and supine delineations was quantified using the Dice similarity coefficient (DSC) and the average surface distance (ASD). The uncertainty in the tissue deformation (due to delineation variability) was quantified by measuring the ranges of DSC and ASD using all combinations of pairs of outlines (9 pairs). Results: For the TB, the range of delineation variability was 0.44-1.16 mm. The deformation, DSC and ASD, (and uncertainty in measurement) of the TB between prone and supine position of the cases were: 1) 0.21 (0.17-0.28) and 12.4 mm (11.8-13 mm); 2) 0.54 (0.51-0.57) and 3.3 mm (3.1-3.5 mm); 3) 0.62 (0.61-0.64) and 4.9 mm (4.6-5.2 mm). WB deformation measurements were subject to less uncertainty due to delineation variability than TB deformation measurements. Conclusion: For the first time, the uncertainty, due to observer variability, in the measurement of the deformation of breast target volumes was investigated. Deformations in these ranges would be difficult to detect. This work was supported in part by Cancer Research

  4. Family planning in Singapore.

    PubMed

    Kanagaratnam, K

    1968-01-01

    Since the initial voluntary efforts of the Singapore Family Planning Association in 1949, family planning in Singapore has made important progress. This effort extended over the years until the end of 1965 when the government accepted full responsibility for family planning on a national scale. In September 1965, the government announced a 5-year National Family Planning Program with the goal of reducing the birthrate from 32/1000 in 1964 to below 20/1000 by 1970. This would result in a growth rate of not more than 1.5%. The government program aims at reaching 60% of married women in the reproductive age range of 15-45. It is estimated that out of 450,000 in this age range, some 300,000 are married. The target is 180,000 in 5 years. The Singapore Family Planning & Population Board was established by an Act of Parliament and charged with responsibility for the implementation of the 5-year plan. The national program offers a menu card of all family planning methods except abortion. Initial focus was on the IUD as the method of choice for 80%. Oral contraception (OC) was the preferred alternative for the remaining 20%. Other conventonal methods also were available. A few months after the plan began in 1966, the IUD became unacceptable to Singapore women. Its side effects of bleeding, cramps, perforation, and pregnancy were exaggerated by rumors. By the middle of 1966, attendance and acceptors in the national program had declined. Emphasis in the national program was changed to OCs, which now are the mainstay of family planning. Currently, nearly 65% of the acceptors use OCs. The program also demonstrates the importance, especially in urban areas, of the tremendous impact of a postpartum family planning service. Over 70% of the births in Singapore take place at the Kandang Kerbau Maternity Hospitals. Government midwives deliver another 5%. All these women are contacted by a team of family planning workers in the postpartum period and are offered family planning. Nearly

  5. PST and PARR: Plan specification tools and a planning and resource reasoning shell for use in satellite mission planning

    NASA Technical Reports Server (NTRS)

    Mclean, David; Yen, Wen

    1989-01-01

    Plan Specification Tools (PST) are tools that allow the user to specify satellite mission plans in terms of satellite activities, relevent orbital events, and targets for observation. The output of these tools is a set of knowledge bases and environmental events which can then be used by a Planning And Resource Reasoning (PARR) shell to build a schedule. PARR is a reactive planning shell which is capable of reasoning about actions in the satellite mission planning domain. Each of the PST tools and PARR are described as well as the use of PARR for scheduling computer usage in the multisatellite operations control center at Goddard Space Flight Center.

  6. Snakes: An Integrated Unit Plan.

    ERIC Educational Resources Information Center

    Lawrence, Lisa

    This document presents an integrated unit plan on snakes targeting second grade students. Objectives of the unit include developing concepts of living things, understanding the contribution and importance of snakes to the environment, and making connections between different disciplines. The unit integrates the topic of snakes into the areas of…

  7. 810 Future plans

    SciTech Connect

    Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C. ); Lindenbaum, S.J. City Coll., New York, NY ); Chan, C.S.; Kramer, M.A. ); Hallman, T.J.; Madansky, L. ); Bonner, B.E.; Buchanan, J.A.

    1990-03-27

    It is believed that a good bet for finding the Quark-Gluon Plasma at AGS energies is with the heaviest projectiles on the heaviest target, i.e. Au on Au. One of the likely signatures of the plasma is strangeness enhancement. Al Saulys has shown what it's like to find {Delta} and K{degree} with Si projectiles. Our Monte Carlo simulations show track densities 4 times higher for Au projectiles. In addition, the Au beam itself produces 30 times more ionization. Thus the present TPC's will be limited to only a few hundred ions per sec. This paper discusses plans for these experiments and modification to TPC. 9 figs.

  8. Strategic Planning.

    ERIC Educational Resources Information Center

    Vivelo, Frank Robert

    1992-01-01

    Describes the future environment facing community colleges, addressing the service population, demands for accountability and quality, and the need for currency. Identifies seven areas a strategic plan should address (e.g., mission, student success, instructional quality, resource development, diversity, operational efficiency, and community…

  9. Motor Planning.

    PubMed

    Wong, Aaron L; Haith, Adrian M; Krakauer, John W

    2015-08-01

    Motor planning colloquially refers to any process related to the preparation of a movement that occurs during the reaction time prior to movement onset. However, this broad definition encompasses processes that are not strictly motor-related, such as decision-making about the identity of task-relevant stimuli in the environment. Furthermore, the assumption that all motor-planning processes require processing time, and can therefore be studied behaviorally by measuring changes in the reaction time, needs to be reexamined. In this review, we take a critical look at the processes leading from perception to action and suggest a definition of motor planning that encompasses only those processes necessary for a movement to be executed-that is, processes that are strictly movement related. These processes resolve the ambiguity inherent in an abstract goal by defining a specific movement to achieve it. We propose that the majority of processes that meet this definition can be completed nearly instantaneously, which means that motor planning itself in fact consumes only a small fraction of the reaction time. PMID:24981338

  10. Planning Facilities.

    ERIC Educational Resources Information Center

    Flynn, Richard B., Ed.; And Others

    1983-01-01

    Nine articles give information to help make professionals in health, physical education, recreation, dance, and athletics more knowledgeable about planning facilities. Design of natatoriums, physical fitness laboratories, fitness trails, gymnasium lighting, homemade play equipment, indoor soccer arenas, and dance floors is considered. A…

  11. Strategic Planning.

    ERIC Educational Resources Information Center

    Groff, Warren H.

    1983-01-01

    Reviews the strategic elements of an institutional plan: assessment of the external environment, auditing of institutional strengths and weaknesses, and matching of institutional strengths with external opportunities through the process of strategic goal setting. Urges community colleges to take action-oriented, dynamic, purposeful steps to shape…

  12. Clinicopathologic Analysis of Microscopic Extension in Lung Adenocarcinoma: Defining Clinical Target Volume for Radiotherapy

    SciTech Connect

    Grills, Inga S.; Fitch, Dwight L.; Goldstein, Neal S.; Yan Di; Chmielewski, Gary W.; Welsh, Robert J.; Kestin, Larry L.

    2007-10-01

    Purpose: To determine the gross tumor volume (GTV) to clinical target volume margin for non-small-cell lung cancer treatment planning. Methods: A total of 35 patients with Stage T1N0 adenocarcinoma underwent wedge resection plus immediate lobectomy. The gross tumor size and microscopic extension distance beyond the gross tumor were measured. The nuclear grade and percentage of bronchoalveolar features were analyzed for association with microscopic extension. The gross tumor dimensions were measured on a computed tomography (CT) scan (lung and mediastinal windows) and compared with the pathologic dimensions. The potential coverage of microscopic extension for two different lung stereotactic radiotherapy regimens was evaluated. Results: The mean microscopic extension distance beyond the gross tumor was 7.2 mm and varied according to grade (10.1, 7.0, and 3.5 mm for Grade 1 to 3, respectively, p < 0.01). The 90th percentile for microscopic extension was 12.0 mm (13.0, 9.7, and 4.4 mm for Grade 1 to 3, respectively). The CT lung windows correlated better with the pathologic size than did the mediastinal windows (gross pathologic size overestimated by a mean of 5.8 mm; composite size [gross plus microscopic extension] underestimated by a mean of 1.2 mm). For a GTV contoured on the CT lung windows, the margin required to cover microscopic extension for 90% of the cases would be 9 mm (9, 7, and 4 mm for Grade 1 to 3, respectively). The potential microscopic extension dosimetric coverage (55 Gy) varied substantially between the stereotactic radiotherapy schedules. Conclusion: For lung adenocarcinomas, the GTV should be contoured using CT lung windows. Although a GTV based on the CT lung windows would underestimate the gross tumor size plus microscopic extension by only 1.2 mm for the average case, the clinical target volume expansion required to cover the microscopic extension in 90% of cases could be as large as 9 mm, although considerably smaller for high-grade tumors

  13. Setup Variations in Radiotherapy of Anal Cancer: Advantages of Target Volume Reduction Using Image-Guided Radiation Treatment

    SciTech Connect

    Chen Yijen; Suh, Steve; Nelson, Rebecca A.; Liu An; Pezner, Richard D.; Wong, Jeffrey Y.C.

    2012-09-01

    Purpose: To define setup variations in the radiation treatment (RT) of anal cancer and to report the advantages of image-guided RT (IGRT) in terms of reduction of target volume and treatment-related side effects. Methods and Materials: Twelve consecutive patients with anal cancer treated by combined chemoradiation by use of helical tomotherapy from March 2007 to November 2008 were selected. With patients immobilized and positioned in place, megavoltage computed tomography (MVCT) scans were performed before each treatment and were automatically registered to planning CT scans. Patients were shifted per the registration data and treated. A total of 365 MVCT scans were analyzed. The primary site received a median dose of 55 Gy. To evaluate the potential dosimetric advantage(s) of IGRT, cases were replanned according to Radiation Therapy Oncology Group 0529, with and without adding recommended setup variations from the current study. Results: Significant setup variations were observed throughout the course of RT. The standard deviations for systematic setup correction in the anterior-posterior (AP), lateral, and superior-inferior (SI) directions and roll rotation were 1.1, 3.6, and 3.2 mm, and 0.3 Degree-Sign , respectively. The average random setup variations were 3.8, 5.5, and 2.9 mm, and 0.5 Degree-Sign , respectively. Without daily IGRT, margins of 4.9, 11.1, and 8.5 mm in the AP, lateral, and SI directions would have been needed to ensure that the planning target volume (PTV) received {>=}95% of the prescribed dose. Conversely, daily IGRT required no extra margins on PTV and resulted in a significant reduction of V15 and V45 of intestine and V10 of pelvic bone marrow. Favorable toxicities were observed, except for acute hematologic toxicity. Conclusions: Daily MVCT scans before each treatment can effectively detect setup variations and thereby reduce PTV margins in the treatment of anal cancer. The use of concurrent chemotherapy and IGRT provided favorable

  14. Marketing Academic Libraries: A Necessary Plan.

    ERIC Educational Resources Information Center

    Dodsworth, Ellen

    1998-01-01

    To coordinate an academic-library marketing effort effectively, a comprehensive plan is essential. A traditional marketing plan consists of four activities: determining what to promote, defining target audiences, choosing type of outreach, and evaluating program. Suggestions for promotional activities, forms of publicity, and examples from the…

  15. Gates Fund Creates Plan for College Completion

    ERIC Educational Resources Information Center

    Gose, Ben

    2008-01-01

    The Bill & Melinda Gates Foundation plans to spend several hundred million dollars over the next five years to double the number of low-income young people who complete a college degree or certificate program by age 26. Foundation officials described the ambitious plan to an exclusive group of education leaders, citing 2025 as a target goal. If…

  16. Reflected Deck Plan, Reflected Roof Plan, Deck Plan Bridgeport ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Reflected Deck Plan, Reflected Roof Plan, Deck Plan - Bridgeport Covered Bridge, Spanning South Fork of Yuba River at bypassed section of Pleasant Valley Road (originally Virginia Turnpike) in South Yuba River State Park , Bridgeport, Nevada County, CA

  17. Energy planning and management plan

    SciTech Connect

    1996-01-01

    This paper contains printed copies of 60FR 53181, October 12, 1995 and 60 FR 54151. This is a record of decision concerning the Western Area Power Administration`s final draft and environmental impact statement, and Energy Planning and Management Program.

  18. TH-C-12A-11: Target Correlation of a 3D Surface Surrogate for Left Breast Irradiation Using the Respiratory-Gated Deep-Inspiration Breath-Hold Technique

    SciTech Connect

    Rong, Y; Walston, S

    2014-06-15

    Purpose: To evaluate the use of 3D optical surface imaging as a new surrogate for respiratory motion gated deep-inspiration breath-hold (DIBH) technique for left breast cancer patients. Methods: Patients with left-sided breast cancer after lumpectomy or mastectomy were selected as candidates for DIBH technique for their external beam radiation therapy. Treatment plans were created on both free breathing (FB) and DIBH CTs to determine whether DIBH was beneficial in reducing heart doses. The Real-time Position Management (RPM) system was used to acquire patient's breathing trace during DIBH CT acquisition and treatment delivery. The reference 3D surface models from FB and DIBH CTs were generated and transferred to the “AlignRT” system for patient positioning and real-time treatment monitoring. MV Cine images were acquired for each beam as quality assurance for intra-fractional position verification. The chest wall excursions measured on these images were used to define the actual target position during treatment, and to investigate the accuracy and reproducibility of RPM and AlignRT. Results: Reduction in heart dose can be achieved for left-sided breast patients using DIBH. Results showed that RPM has poor correlation with target position, as determined by the MV Cine imaging. This indicates that RPM may not be an adequate surrogate in defining the breath-hold level when used alone. Alternatively, the AlignRT surface imaging demonstrated a better correlation with the actual CW excursion during DIBH. Both the vertical and magnitude real-time deltas (RTDs) reported by AlignRT can be used as the gating parameter, with a recommend threshold of ±3 mm and 5 mm, respectively. Conclusion: 3D optical surface imaging serves as a superior target surrogate for the left breast treatment when compared to RPM. Working together with the realtime MV Cine imaging, they ensure accurate patient setup and dose delivery, while minimizing the imaging dose to patients.

  19. A case study of IMRT planning (Plan B) subsequent to a previously treated IMRT plan (Plan A)

    NASA Astrophysics Data System (ADS)

    Cao, F.; Leong, C.; Schroeder, J.; Lee, B.

    2014-03-01

    Background and purpose: Treatment of the contralateral neck after previous ipsilateral intensity modulated radiation therapy (IMRT) for head and neck cancer is a challenging problem. We have developed a technique that limits the cumulative dose to the spinal cord and brainstem while maximizing coverage of a planning target volume (PTV) in the contralateral neck. Our case involves a patient with right tonsil carcinoma who was given ipsilateral IMRT with 70Gy in 35 fractions (Plan A). A left neck recurrence was detected 14 months later. The patient underwent a neck dissection followed by postoperative left neck radiation to a dose of 66 Gy in 33 fractions (Plan B). Materials and Methods: The spinal cord-brainstem margin (SCBM) was defined as the spinal cord and brainstem with a 1.0 cm margin. Plan A was recalculated on the postoperative CT scan but the fluence outside of SCBM was deleted. A further modification of Plan A resulted in a base plan that was summed with Plan B to evaluate the cumulative dose received by the spinal cord and brainstem. Plan B alone was used to evaluate for coverage of the contralateral neck PTV. Results: The maximum cumulative doses to the spinal cord with 0.5cm margin and brainstem with 0.5cm margin were 51.96 Gy and 45.60 Gy respectively. For Plan B, 100% of the prescribed dose covered 95% of PTVb1. Conclusion: The use of a modified ipsilateral IMRT plan as a base plan is an effective way to limit the cumulative dose to the spinal cord and brainstem while enabling coverage of a PTV in the contralateral neck.

  20. SU-C-303-06: Treatment Planning Study for Non-Invasive Cardiac Arrhythmia Ablation with Scanned Carbon Ions in An Animal Model

    SciTech Connect

    Eichhorn, A; Constantinescu, A; Prall, M; Kaderka, R; Durante, M; Graeff, C; Lehmann, H I; Takami, M; Packer, D L; Lugenbiel, P; Thomas, D; Richter, D; Bert, C

    2015-06-15

    Purpose: Scanned carbon ion beams might offer a non-invasive alternative treatment for cardiac arrhythmia, which are a major health-burden. We studied the feasibility of this procedure in an animal model. The underlying treatment planning and motion mitigation strategies will be presented. Methods: The study was carried out in 15 pigs, randomly distributed to 3 target groups: atrioventricular node (AVN, 8 animals with 25, 40, and 55 Gy target dose), left ventricular free-wall (LV, 4 animals with 40 Gy) and superior pulmonary vein (SPV, 3 animals with 40 Gy). Breathing motion was suppressed by repeated enforced breathholds at end exhale. Cardiac motion was mitigated by an inhomogeneous rescanning scheme with up to 15 rescans. The treatment planning was performed using the GSI in-house software TRiP4D on cardiac-gated 4DCTs, applying a range-considering ITV based on an extended CTV. For AVN and SPV isotropic 5 mm margins were applied to the CTV, while for the LV 2mm+2% range margins were used. The opposing fields for AVN and LV targets were optimized independently (SFUD), while SPV treatments were optimized as IMPT deliveries, including dose restrictions to the radiosensitive AVN. Results: Median value of D{sub 95} over all rescanning simulations was 99.1% (AVN), 98.0% (SPV) and 98.3% (LV) for the CTV and 94.7% (AVN) and 92.7% (SPV) for the PTV, respectively. The median D{sub 5}-D{sub 95} was improved with rescanning compared to unmitigated delivery from 13.3 to 6.5% (CTV) and from 23.4 to 11.6% (PTV). ICRP dose limits for aorta, trachea, esophagus and skin were respected. The maximal dose in the coronary arteries was limited to 30 Gy. Conclusion: We demonstrated the feasibility of a homogeneous dose delivery to different cardiac structures in a porcine model using a time-optimized inhomogeneous rescanning scheme. The presented treatment planning strategies were applied in a pig study with the analysis ongoing. Funding: This work was supported in part by the

  1. IPNS enriched uranium booster target

    SciTech Connect

    Schulke, A.W. Jr.

    1985-01-01

    Since startup in 1981, IPNS has operated on a fully depleted /sup 238/U target. With the booster as in the present system, high energy protons accelerated to 450 MeV by the Rapid Cycling Synchrotron are directed at the target and by mechanisms of spallation and fission of the uranium, produce fast neutrons. The neutrons from the target pass into adjacent moderator where they slow down to energies useful for spectroscopy. The target cooling systems and monitoring systems have operated very reliably and safely during this period. To provide higher neutron intensity, we have developed plans for an enriched uranium (booster) target. HETC-VIM calculations indicate that the target will produce approx.90 kW of heat, with a nominal x5 gain (k/sub eff/ = 0.80). The neutron beam intensity gain will be a factor of approx.3. Thermal-hydraulic and heat transport calculations indicate that approx.1/2 in. thick /sup 235/U discs are subject to about the same temperatures as the present /sup 238/U 1 in. thick discs. The coolant will be light demineralized water (H/sub 2/O) and the coolant flow rate must be doubled. The broadening of the fast neutron pulse width should not seriously affect the neutron scattering experiments. Delayed neutrons will appear at a level about 3% of the total (currently approx.0.5%). This may affect backgrounds in some experiments, so that we are assessing measures to control and correct for this (e.g., beam tube choppers). Safety analyses and neutronic calculations are nearing completion. Construction of the /sup 235/U discs at the ORNL Y-12 facility is scheduled to begin late 1985. The completion of the booster target and operation are scheduled for late 1986. No enriched uranium target assembly operating at the projected power level now exists in the world. This effort thus represents an important technological experiment as well as being a ''flux enhancer''.

  2. Design of a distributed radiator target for inertial fusion driven from two sides with heavy ion beams

    SciTech Connect

    Tabak, M.; Callahan-Miller, D.

    1997-11-10

    We describe the status of a distributed radiator heavy ion target design. In integrated calculations this target ignited and produced 390-430 MJ of yieldwhen driven with 5.8-6.5 MJ of 3-4 GeV Pb ions. The target has cylindrical symmetry with disk endplates. The ions uniformly illuminate these endplates in a 5mm radius spot. We discuss the considerations which led to this design together with some previously unused design features: low density hohlraum walls in approximate pressure balance with internal low-Z fill materials, radiationsymmetry determined by the position of the radiator materials and particle ranges, and early time pressure symmetry possibly influenced by radiation shims. We discuss how this target scales to lower input energy or to lower beam power. Variant designs with more realistic beam focusing strategies are also discussed. We show the tradeoffs required for targets which accept higher particle energies.

  3. A transverse electron target for heavy ion storage rings

    SciTech Connect

    Geyer, Sabrina Meusel, Oliver; Kester, Oliver

    2015-01-09

    Electron-ion interaction processes are of fundamental interest for several research fields like atomic and astrophysics as well as plasma applications. To address this topic, a transverse electron target based on the crossed beam technique was designed and constructed for the application in storage rings. Using a sheet beam of free electrons in crossed beam geometry promises a good energy resolution and gives access to the interaction region for spectroscopy. The produced electron beam has a length of 10 cm in ion beam direction and a width in the transverse plane of 5 mm. Therewith, electron densities of up to 10{sup 9} electrons/cm{sup 3} are reachable in the interaction region. The target allows the adjustment of the electron beam current and energy in the region of several 10 eV to a few keV. Simulations have been performed regarding the energy resolution for electron-ion collisions and its influence on spectroscopic measurements. Also, the effect on ion-beam optics due to the space charge of the electron beam was investigated. Presently the electron target is integrated into a test bench to evaluate its performance for its dedicated installation at the storage rings of the FAIR facility. Therefore, optical diagnostics of the interaction region and charge state analysis with a magnetic spectrometer is used. Subsequently, the target will be installed temporarily at the Frankfurt Low-Energy Storage Ring (FLSR) for further test measurements.

  4. Targeting and Localization for Mars Rover Operations

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.; Crockett, Thomas; Fox, Jason M.; Joswig, Joseph C.; Norris, Jeffrey S.; Rabe, Kenneth J.

    2008-01-01

    A design and a partially developed application framework were presented for improving localization and targeting for surface spacecraft. The program has value for the Mars Science Laboratory mission, and has been delivered to support the Mars Exploration Rovers as part of the latest version of the Maestro science planning tool. It also has applications for future missions involving either surface-based or low-altitude atmospheric robotic vehicles. The targeting and localization solutions solve the problem of how to integrate localization estimate updates into operational planning tools, operational data product generalizations, and flight software by adding expanded flexibility to flight software, the operations data product pipeline, and operations planning tools based on coordinate frame updates during a planning cycle.

  5. Radiation Treatment Planning Using Positron Emission and Computed Tomography for Lung and Pharyngeal Cancers: A Multiple-Threshold Method for [{sup 18}F]Fluoro-2-Deoxyglucose Activity

    SciTech Connect

    Okubo, Mitsuru; Nishimura, Yasumasa; Nakamatsu, Kiyoshi; Okumura, Masahiko R.T.; Shibata, Toru; Kanamori, Shuichi; Hanaoka, Kouhei R.T.; Hosono, Makoto

    2010-06-01

    Purpose: Clinical applicability of a multiple-threshold method for [{sup 18}F]fluoro-2-deoxyglucose (FDG) activity in radiation treatment planning was evaluated. Methods and Materials: A total of 32 patients who underwent positron emission and computed tomography (PET/CT) simulation were included; 18 patients had lung cancer, and 14 patients had pharyngeal cancer. For tumors of <=2 cm, 2 to 5 cm, and >5 cm, thresholds were defined as 2.5 standardized uptake value (SUV), 35%, and 20% of the maximum FDG activity, respectively. The cervical and mediastinal lymph nodes with the shortest axial diameter of >=10 mm were considered to be metastatic on CT (LNCT). The retropharyngeal lymph nodes with the shortest axial diameter of >=5 mm on CT and MRI were also defined as metastatic. Lymph nodes showing maximum FDG activity greater than the adopted thresholds for radiation therapy planning were designated LNPET-RTP, and lymph nodes with a maximum FDG activity of >=2.5 SUV were regarded as malignant and were designated LNPET-2.5 SUV. Results: The sizes of gross tumor volumes on PET (GTVPET) with the adopted thresholds in the axial plane were visually well fitted to those of GTV on CT (GTVCT). However, the volumes of GTVPET were larger than those of GTVCT, with significant differences (p < 0.0001) for lung cancer, due to respiratory motion. For lung cancer, the numbers of LNCT, LNPET-RTP, and LNPET-2.5 SUV were 29, 28, and 34, respectively. For pharyngeal cancer, the numbers of LNCT, LNPET-RTP, and LNPET-2.5 SUV were 14, 9, and 15, respectively. Conclusions: Our multiple thresholds were applicable for delineating the primary target on PET/CT simulation. However, these thresholds were inaccurate for depicting malignant lymph nodes.

  6. Which bowel preparation is best? Comparison of a high-fibre diet leaflet, daily microenema and no preparation in prostate cancer patients treated with radical radiotherapy to assess the effect on planned target volume shifts due to rectal distension

    PubMed Central

    Zarkar, A; Southgate, E; Nightingale, P; Webster, G

    2013-01-01

    Objective: We evaluated and compared a high-fibre diet leaflet, daily microenema and no preparation to establish how best to achieve consistent bowel preparation in prostate cancer patients being treated with radical radiotherapy. Methods: 3 cohorts of 10 patients had different dietary interventions: no bowel preparation, high-fibre diet information leaflet and daily microenemas. The available cone beam CT (CBCT) scans of each patient were used to quantify interfractional changes in rectal distension (measured using average cross-sectional area—CSA), prostate shifts relative to bony anatomy compared with that at CT planning scan and rates of geometric miss (i.e. shifts of ≥5 mm). 85 CBCT scans were available in the pre-leaflet cohort, 89 scans in the post-leaflet, and 89 scans in the post-enema group. Results: Mean rectal CSA in the post-enema group was reduced compared with both pre-leaflet (p=0.010) and post-leaflet values (p=0.031). The magnitude of observed mean prostate shifts was significantly reduced in the post-enema group compared with the pre-leaflet group (p=0.014). The proportion of scans showing geometric miss (i.e. shift >5 mm) in the post-enema group (31%) was significantly lower than in the pre-leaflet (62%, p<0.001) or post-leaflet groups (56%, p<0.001). Conclusion: This study indicates microenema to be an effective measure to achieve reduction in rectal CSA, prostate shift and reduce geometric miss of ≥5 mm. A further prospective randomised study is advocated to validate the results. Advances in knowledge: The use of microenema is effective in reducing prostate shift and rectal CSA, consequently decreasing the incidence of geographical miss. PMID:23995876

  7. Particle production of a graphite target system for the intensity frontier

    SciTech Connect

    Ding, X.; Kirk, H.; McDonald, K. T.

    2015-05-03

    A solid graphite target system is considered for an intense muon and/or neutrino source in support of physics at the intensity frontier. We previously optimized the geometric parameters of the beam and target to maximize particle production at low energies by incoming protons with kinetic energy of 6.75 GeV and an rms geometric emittance of 5 mm-mrad using the MARS15(2014) code. In this study, we ran MARS15 with ROOT-based geometry and also considered a mercury-jet target as an upgrade option. The optimization was extended to focused proton beams with transverse emittances from 5 to 50 mm-mrad, showing that the particle production decreases slowly with increasing emittance. We also studied beam-dump configurations to suppress the rate of undesirable high-energy secondary particles in the beam.

  8. Targeted molecular imaging in oncology.

    PubMed

    Yang, David J; Kim, E Edmund; Inoue, Tomio

    2006-01-01

    Improvement of scintigraphic tumor imaging is extensively determined by the development of more tumor specific radiopharmaceuticals. Thus, to improve the differential diagnosis, prognosis, planning and monitoring of cancer treatment, several functional pharmaceuticals have been developed. Application of molecular targets for cancer imaging, therapy and prevention using generator-produced isotopes is the major focus of ongoing research projects. Radionuclide imaging modalities (positron emission tomography, PET; single photon emission computed tomography, SPECT) are diagnostic cross-sectional imaging techniques that map the location and concentration of radionuclide-labeled radiotracers. 99mTc- and 68Ga-labeled agents using ethylenedicysteine (EC) as a chelator were synthesized and their potential uses to assess tumor targets were evaluated. 99mTc (t1/2 = 6 hr, 140 keV) is used for SPECT and 68Ga (t1/2 = 68 min, 511 keV) for PET. Molecular targets labeled with Tc-99m and Ga-68 can be utilized for prediction of therapeutic response, monitoring tumor response to treatment and differential diagnosis. Molecular targets for oncological research in (1) cell apoptosis, (2) gene and nucleic acid-based approach, (3) angiogenesis (4) tumor hypoxia, and (5) metabolic imaging are discussed. Numerous imaging ligands in these categories have been developed and evaluated in animals and humans. Molecular targets were imaged and their potential to redirect optimal cancer diagnosis and therapeutics were demonstrated. PMID:16485568

  9. Multicriteria optimization informed VMAT planning

    SciTech Connect

    Chen, Huixiao; Craft, David L.; Gierga, David P.

    2014-04-01

    We developed a patient-specific volumetric-modulated arc therapy (VMAT) optimization procedure using dose-volume histogram (DVH) information from multicriteria optimization (MCO) of intensity-modulated radiotherapy (IMRT) plans. The study included 10 patients with prostate cancer undergoing standard fractionation treatment, 10 patients with prostate cancer undergoing hypofractionation treatment, and 5 patients with head/neck cancer. MCO-IMRT plans using 20 and 7 treatment fields were generated for each patient on the RayStation treatment planning system (clinical version 2.5, RaySearch Laboratories, Stockholm, Sweden). The resulting DVH of the 20-field MCO-IMRT plan for each patient was used as the reference DVH, and the extracted point values of the resulting DVH of the MCO-IMRT plan were used as objectives and constraints for VMAT optimization. Weights of objectives or constraints of VMAT optimization or both were further tuned to generate the best match with the reference DVH of the MCO-IMRT plan. The final optimal VMAT plan quality was evaluated by comparison with MCO-IMRT plans based on homogeneity index, conformity number of planning target volume, and organ at risk sparing. The influence of gantry spacing, arc number, and delivery time on VMAT plan quality for different tumor sites was also evaluated. The resulting VMAT plan quality essentially matched the 20-field MCO-IMRT plan but with a shorter delivery time and less monitor units. VMAT plan quality of head/neck cancer cases improved using dual arcs whereas prostate cases did not. VMAT plan quality was improved by fine gantry spacing of 2 for the head/neck cancer cases and the hypofractionation-treated prostate cancer cases but not for the standard fractionation–treated prostate cancer cases. MCO-informed VMAT optimization is a useful and valuable way to generate patient-specific optimal VMAT plans, though modification of the weights of objectives or constraints extracted from resulting DVH of MCO

  10. Multicriteria optimization informed VMAT planning.

    PubMed

    Chen, Huixiao; Craft, David L; Gierga, David P

    2014-01-01

    We developed a patient-specific volumetric-modulated arc therapy (VMAT) optimization procedure using dose-volume histogram (DVH) information from multicriteria optimization (MCO) of intensity-modulated radiotherapy (IMRT) plans. The study included 10 patients with prostate cancer undergoing standard fractionation treatment, 10 patients with prostate cancer undergoing hypofractionation treatment, and 5 patients with head/neck cancer. MCO-IMRT plans using 20 and 7 treatment fields were generated for each patient on the RayStation treatment planning system (clinical version 2.5, RaySearch Laboratories, Stockholm, Sweden). The resulting DVH of the 20-field MCO-IMRT plan for each patient was used as the reference DVH, and the extracted point values of the resulting DVH of the MCO-IMRT plan were used as objectives and constraints for VMAT optimization. Weights of objectives or constraints of VMAT optimization or both were further tuned to generate the best match with the reference DVH of the MCO-IMRT plan. The final optimal VMAT plan quality was evaluated by comparison with MCO-IMRT plans based on homogeneity index, conformity number of planning target volume, and organ at risk sparing. The influence of gantry spacing, arc number, and delivery time on VMAT plan quality for different tumor sites was also evaluated. The resulting VMAT plan quality essentially matched the 20-field MCO-IMRT plan but with a shorter delivery time and less monitor units. VMAT plan quality of head/neck cancer cases improved using dual arcs whereas prostate cases did not. VMAT plan quality was improved by fine gantry spacing of 2 for the head/neck cancer cases and the hypofractionation-treated prostate cancer cases but not for the standard fractionation-treated prostate cancer cases. MCO-informed VMAT optimization is a useful and valuable way to generate patient-specific optimal VMAT plans, though modification of the weights of objectives or constraints extracted from resulting DVH of MCO-IMRT or

  11. Development on dynamic nuclear polarized targets.

    SciTech Connect

    Penttila, S. I.

    2002-01-01

    Our interest in understanding the spin content of the nucleon has left its marks on the recent development, of the dynamic nuclear polarized (DNP) targets. This can be seen from the targets developed at CERN and SLAC for the measurement of the polarized spin structure functions in deep inelastic scattering. The results of the experiments indicated that less than 30% of the nucleon spin is carried by the quarks. This unpredicted small value initiated planning of new polarized target experiments to determine the gluon polarization on the nucleon using polarized real photons and polarized 'LiD targets. In several facilities very intense polarized photon beams are available at a wide energy range. During the next few years these photon beanis with DNP targets will be used to test the fundamental GDH sum rule. Other DNP target developments are also discussed.

  12. Aviation spectral camera infinity target simulation system

    NASA Astrophysics Data System (ADS)

    Liu, Xinyue; Ming, Xing; Liu, Jiu; Guo, Wenji; Lv, Gunbo

    2014-11-01

    With the development of science and technology, the applications of aviation spectral camera becoming more widely. Developing a test system of dynamic target is more important. Aviation spectral camera infinity target simulation system can be used to test the resolution and the modulation transfer function of camera. The construction and work principle of infinity target simulation system were introduced in detail. Dynamic target generator based digital micromirror device (DMD) and required performance of collimation System were analyzed and reported. The dynamic target generator based on DMD had the advantages of replacing image convenient, size small and flexible. According to the requirement of tested camera, by rotating and moving mirror, has completed a full field infinity dynamic target test plan.

  13. Effect of prosthodontic planning on lateral occlusion scheme: a comparison between conventional and digital planning

    PubMed Central

    ABDUO, Jaafar; BENNAMOUN, Mohammed; TENNANT, Marc; McGEACHIE, John

    2015-01-01

    Recently, digital wax-up is proposed as a tool to aid prosthodontic planning. However, there are no data about the effect of prosthodontic planning on lateral occlusion scheme. Objective : This study aims to evaluate the impact of conventional and digital prosthodontic planning on lateral occlusion scheme. Material and Methods : Dental models of 10 patients were collected. All models had Angle Class I occlusion and were undergoing prosthodontic treatment that would influence the lateral occlusion scheme. Each set of models had received both conventional wax-up and digital wax-up. In relation to the lateral occlusion scheme, the following variables were evaluated: the prevalence of the different lateral occlusion scheme, number of contacting teeth and percentage of each contacting tooth. Four excursive positions on the working side were included: 0.5, 1.0, 2.0 and 3.0 mm from the maximal intercuspation position. Results : The lateral occlusion scheme of the two wax-up models was subjected to alterations following excursion. There was a tendency for the prevalence of canine-guided occlusion to increase and for the prevalence of group function occlusion to decrease with increasing excursion. The number of contacting teeth was decreasing with the increasing magnitude of excursion. For the 0.5 mm and 1.0 mm positions, the two wax-ups had significantly greater contacts than the pre-treatment models, while at the 2.0 mm and 3.0 mm positions, all the models were similar. For all models, canines were the most commonly contacting teeth, followed by the teeth adjacent to them. No difference was observed between the two wax-ups in relation to the number of contacting teeth. Conclusion : Although the prosthodontic planning had influenced the pattern of the lateral occlusion scheme and contacts, there was no difference between the conventional and digital prosthodontic planning. PMID:26018312

  14. National Ignition Facility: Experimental plan

    SciTech Connect

    Not Available

    1994-05-01

    As part of the Conceptual Design Report (CDR) for the National Ignition Facility (NIF), scientists from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester`s Laboratory for Laser Energetics (UR/LLE), and EG&G formed an NIF Target Diagnostics Working Group. The purpose of the Target Diagnostics Working Group is to prepare conceptual designs of target diagnostics for inclusion in the facility CDR and to determine how these specifications impact the CDR. To accomplish this, a subgroup has directed its efforts at constructing an approximate experimental plan for the ignition campaign of the NIF CDR. The results of this effort are contained in this document, the Experimental Plan for achieving fusion ignition in the NIF. This group initially concentrated on the flow-down requirements of the experimental campaign leading to ignition, which will dominate the initial efforts of the NIF. It is envisaged, however, that before ignition, there will be parallel campaigns supporting weapons physics, weapons effects, and other research. This plan was developed by analyzing the sequence of activities required to finally fire the laser at the level of power and precision necessary to achieve the conditions of an ignition hohlraum target, and to then use our experience in activating and running Nova experiments to estimate the rate of completing these activities.

  15. Targeted therapies for cancer

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000902.htm Targeted therapies for cancer To use the sharing features on ... cells so they cannot spread. How Does Targeted Therapy Work? Targeted therapy drugs work in a few ...

  16. 4D tumor centroid tracking using orthogonal 2D dynamic MRI: Implications for radiotherapy planning

    SciTech Connect

    Tryggestad, Erik; Flammang, Aaron; Shea, Steven M.; Hales, Russell; Herman, Joseph; Lee, Junghoon; McNutt, Todd; Roland, Teboh; Wong, John

    2013-09-15

    Purpose: Current pretreatment, 4D imaging techniques are suboptimal in that they sample breathing motion over a very limited “snapshot” in time. Heretofore, long-duration, 4D motion characterization for radiotherapy planning, margin optimization, and validation have been impractical for safety reasons, requiring invasive markers imaged under x-ray fluoroscopy. To characterize 3D tumor motion and associated variability over durations more consistent with treatments, the authors have developed a practical dynamic MRI (dMRI) technique employing two orthogonal planes acquired in a continuous, interleaved fashion.Methods: 2D balanced steady-state free precession MRI was acquired continuously over 9–14 min at approximately 4 Hz in three healthy volunteers using a commercial 1.5 T system; alternating orthogonal imaging planes (sagittal, coronal, sagittal, etc.) were employed. The 2D in-plane pixel resolution was 2 × 2 mm{sup 2} with a 5 mm slice profile. Simultaneous with image acquisition, the authors monitored a 1D surrogate respiratory signal using a device available with the MRI system. 2D template matching-based anatomic feature registration, or tracking, was performed independently in each orientation. 4D feature tracking at the raw frame rate was derived using spline interpolation.Results: Tracking vascular features in the lung for two volunteers and pancreatic features in one volunteer, the authors have successfully demonstrated this method. Registration error, defined here as the difference between the sagittal and coronal tracking result in the SI direction, ranged from 0.7 to 1.6 mm (1σ) which was less than the acquired image resolution. Although the healthy volunteers were instructed to relax and breathe normally, significantly variable respiration was observed. To demonstrate potential applications of this technique, the authors subsequently explored the intrafraction stability of hypothetical tumoral internal target volumes and 3D spatial probability

  17. CEBAF Commissioning and Future Plans

    SciTech Connect

    Grunder, Hermann A.

    1996-01-01

    With first beam on target in July 1994 , the Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, Virginia began capitalizing on years of planning and work to create a laboratory devoted to the exploration of matter that interacts through the strong force, which holds the quarks inside the proton and binds protons and neutrons into the nucleus. This event is made more remarkable in that the accelerator is available to physicists on schedule and within cost. The success of the project is due largely to a reasoned approach to its planning and the extraordinary work of scores of talented and motivated individuals.

  18. Graphical Planning Of Spacecraft Missions

    NASA Technical Reports Server (NTRS)

    Jeletic, J. F.; Ruley, L. T.

    1991-01-01

    Mission Planning Graphical Tool (MPGT) computer program provides analysts with graphical representations of spacecraft and environmental data used in planning missions. Designed to be generic software tool configured to analyze any specified Earth-orbiting spacecraft mission. Data presented as series of overlays on top of two-dimensional or three-dimensional projection of Earth. Includes spacecraft-orbit tracks, ground-station-antenna masks, solar and lunar ephemerides, and coverage by Tracking Data and Relay Satellite System (TDRSS). From graphical representations, analyst determines such spacecraft-related constraints as communication coverage, infringement upon zones of interference, availability of sunlight, and visibility of targets to instruments.

  19. Succession planning.

    PubMed

    Catanzaro, Thomas E

    2006-03-01

    This article provides the reader with an appreciation of the diverse elements that go into a buy-sell, affiliation, or merger situation for veterinary practices. In the changing market place of American veterinary medicine, old paradigms no longer hold comfort. The generational differences are briefly explored herein as well as the new economic realities. A few examples are offered to illustrate just how much variability exists in the current business of veterinary medicine and the subsequent practice transitions needed to enhance value. Functioning models are explored, as well as affiliation and merger options. Practice valuation is discussed in general terms, referencing the cutting-edge factors. The six-point summary provides almost all practices a solid operational base for daily operations and succession planning. PMID:16442447

  20. Diagnostic reasoning and treatment planning: II. Treatment.

    PubMed

    Nurcombe, B

    1987-12-01

    The concepts of therapy-oriented and problem-oriented plans are discussed and their advantages and disadvantages considered. Goal-directed planning is proposed as an alternative to intuitive decision making. Goal-directed planning involves the abstraction of pivotal problems from a diagnostic formulation, the restatement of problems as goals, the selection of appropriate therapy, the designation of a target date, the stipulation of objectives, the selection of methods of evaluation and the monitoring of progress. Systematic goal-directed planning fosters teamwork, promotes accountability, obviates therapeutic drift and enhances outcome evaluation. Its chief disadvantage is its unfamiliarity. PMID:3502386

  1. 3 MW Solid Rotating Target Design

    SciTech Connect

    McManamy, Thomas J; Gallmeier, Franz X; Rennich, Mark J; Ferguson, Phillip D; Janney, Jim G

    2010-01-01

    A rotating solid target design concept is being developed for potential use at the second SNS target station (STS). A long pulse beam (~ 1 msec) at 1.3 GeV and 20 Hz is planned with power levels at or above 1 MW. Since the long pulse may give future opportunities for higher power, this study is looking at 3 MW to compare the performance of a solid rotating target to a mercury target. Unlike the case for stationary solid targets at such powers this study indicates that a rotating solid target, when used with large coupled hydrogen moderators, has neutronic performance equal to or better than that with a mercury target, and the solid target has a greatly increased lifetime. Design studies have investigated water cooled tungsten targets with tantalum cladding approximately 1.2 m in diameter, and 70mm thick. Operating temperatures are low ( < 150 C) with mid-plane, top and bottom surface cooling. In case of cooling system failure, the diameter gives enough surface area to remove the decay heat by radiation to the surrounding reflector assemblies while keeping the peak temperatures below approximately 700 C. This temperature should mitigate potential loss of coolant accidents and subsequent steam, tungsten interaction which has a threshold of approximately 800 C. Design layouts for the sealing systems and potential target station concepts have been developed.

  2. The Marketing Plan: An Integrative Device for Teaching Marketing Management.

    ERIC Educational Resources Information Center

    Berdine, W. R.; Petersen, James C.

    1980-01-01

    The importance of the marketing plan is stressed as an integrative device for teaching marketing management, and a structure is presented to assist students in designing a marketing plan. Components of this plan include marketing objectives, targeting market and buying motives, external environment and competition, product, price, and promotion.…

  3. Strategic Planning and the Marketing Process: Library Applications.

    ERIC Educational Resources Information Center

    Wood, Elizabeth J.

    1983-01-01

    Illustrates how basic principles of marketing and strategic market planning can be applied to libraries and discusses some concepts of strategic planning (organization mission, objectives and goals, growth strategy, program portfolio plan) and marketing (opportunity analysis, target market selection, marketing mix strategy, marketing systems…

  4. Approaching Rock Target No. 1

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D stereo anaglyph image was taken by the Mars Exploration Rover Spirit front hazard-identification camera after the rover's first post-egress drive on Mars Sunday. Engineers drove the rover approximately 3 meters (10 feet) from the Columbia Memorial Station toward the first rock target, seen in the foreground. The football-sized rock was dubbed Adirondack because of its mountain-shaped appearance. Scientists plan to use instruments at the end of the rover's robotic arm to examine the rock and understand how it formed.

  5. TARGET Publication Guidelines | Office of Cancer Genomics

    Cancer.gov

    Like other NCI large-scale genomics initiatives, TARGET is a community resource project and data are made available rapidly after validation for use by other researchers. To act in accord with the Fort Lauderdale principles and support the continued prompt public release of large-scale genomic data prior to publication, researchers who plan to prepare manuscripts containing descriptions of TARGET pediatric cancer data that would be of comparable scope to an initial TARGET disease-specific comprehensive, global analysis publication, and journal editors who receive such manuscripts, are stron

  6. Target lifetimes in natural resource management

    NASA Astrophysics Data System (ADS)

    Greer, Jerry D.

    1991-12-01

    The relative degree of success of any intelligence gathering mission is a function of a number of limiting factors. Sensor design (resolution and sensitivity), platform stability, image interpreter skills, and the certainty about where to look both in the target area and in the resultant data are critical. These factors are either under the control of or are a part of the observer. Equally critical is the absolute time available to gain a position of vantage and to collect the emitted or reflected electromagnetic radiation associated with the target of interest. This is in part a function of how long the target is in a position to be observed. Target lifetime is that period of time during which data about a target may be collected. It is the time during which a target may be observed without statistically significant changes occurring in its character or location. In military intelligence, priority targets include such categories as weapon systems, troop numbers and strengths, staging areas, transportation systems, and obstacles to movement. In collecting data about natural resources, some interest in similar subjects is shared but others are added because the interest is in very complex ecosystems composed of a large number of targets. Some natural resource target lifetimes are identical to targets of military interest. Others are significantly different and range from those extremely brief, such as the few seconds required for a fire to ignite, up to 6000 years for the position of a Bristlecone pine tree. A critical evaluation of natural resource target attributes reveals both strong similarities and great differences between military targets of interest and those important in resource management. It appears that intelligence gathering efforts in natural resource management can build upon knowledge and principles about target lifetimes from military sources. However, mission planners must determine and consider the various lifetimes of targets unique in the area

  7. Planning Resource Guide.

    ERIC Educational Resources Information Center

    RP Group of California Community Colleges, Santa Ana.

    The Planning Resource Guide by the RP Group of California Community Colleges was created to provide practical planning assistance. It contains four sections, including: (1) a basic conceptual framework for planning; (2) common planning definitions for colleges; (3) planning steps and samples of planning structures; and (4) suggestions for linking…

  8. Electrically charged targets

    DOEpatents

    Goodman, Ronald K.; Hunt, Angus L.

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  9. Polarized internal target apparatus

    DOEpatents

    Holt, R.J.

    1984-10-10

    A polarized internal target apparatus with a polarized gas target of improved polarization and density (achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms) is described.

  10. Polarized internal target apparatus

    DOEpatents

    Holt, Roy J.

    1986-01-01

    A polarized internal target apparatus with a polarized gas target of improved polarization and density achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms.

  11. JWST planning and scheduling operations and concepts

    NASA Astrophysics Data System (ADS)

    Kinzel, Wayne M.

    2010-07-01

    The James Webb Space Telescope (JWST) will be a large infrared space observatory in orbit about the Sun-Earth second Lagrange Point. This paper provides an overview of the expected operational requirements imposed by the observatory's basic science activities (imaging, spectroscopy, coronography) and the operational issues associated with interleaving periodic engineering activities (Wave Front Sensing & Control activities, Momentum Unloads, and orbit Station Keeping) with the science observations. The planning and scheduling operations must maximize the overall science integration time while meeting the mission and observer specified constraints. The "Observation," "Visit," and Observation Template constructs are explained in the context of providing an interface to the Observer that provides the ability to specify complex observations, such as mosaics and cluster targets, while also minimizing specification errors and allowing planning and scheduling flexibility of the observations. The expected nominal planning and scheduling process including the creation and maintenance of the Long Range Plan (~1.25 year duration), the Short Term Schedules (~ three weeks), and the on-board Observation Plan (< 10 days) is described. The event-driven on-board operations of JWST and how the planning and scheduling process monitors and reacts to the onboard execution of the Observation Plan are described. Finally, the methods employed to allow for robust interfacing of scheduled real-time operations (for example, Station Keeping) with the Observation Plan and unplanned, but expected, modifications to the Observation Plan (for example, Target of Opportunity) are described.

  12. Conservation Planning for Ecosystem Services

    PubMed Central

    Chan, Kai M. A; Shaw, M. Rebecca; Cameron, David R; Underwood, Emma C; Daily, Gretchen C

    2006-01-01

    Despite increasing attention to the human dimension of conservation projects, a rigorous, systematic methodology for planning for ecosystem services has not been developed. This is in part because flows of ecosystem services remain poorly characterized at local-to-regional scales, and their protection has not generally been made a priority. We used a spatially explicit conservation planning framework to explore the trade-offs and opportunities for aligning conservation goals for biodiversity with six ecosystem services (carbon storage, flood control, forage production, outdoor recreation, crop pollination, and water provision) in the Central Coast ecoregion of California, United States. We found weak positive and some weak negative associations between the priority areas for biodiversity conservation and the flows of the six ecosystem services across the ecoregion. Excluding the two agriculture-focused services—crop pollination and forage production—eliminates all negative correlations. We compared the degree to which four contrasting conservation network designs protect biodiversity and the flow of the six services. We found that biodiversity conservation protects substantial collateral flows of services. Targeting ecosystem services directly can meet the multiple ecosystem services and biodiversity goals more efficiently but cannot substitute for targeted biodiversity protection (biodiversity losses of 44% relative to targeting biodiversity alone). Strategically targeting only biodiversity plus the four positively associated services offers much promise (relative biodiversity losses of 7%). Here we present an initial analytical framework for integrating biodiversity and ecosystem services in conservation planning and illustrate its application. We found that although there are important potential trade-offs between conservation for biodiversity and for ecosystem services, a systematic planning framework offers scope for identifying valuable synergies. PMID

  13. THE RELATIONSHIP BETWEEN REAL-TIME AND TIME-INTEGRATED COARSE (2.5-10MM), INTERMEDIATE (1-2.5MM), AND FINE (<2.5MM) PARTICULATE MATTER IN THE LOS ANGELES BASIN

    EPA Science Inventory

    Population exposure to ambient particulate matter (PM) has received considerable attention due to the association between ambient particulate concentrations and mortality. Current toxicological and epidemiological studies and controlled human and animal exposures suggest that a...

  14. Floor-plan radar

    NASA Astrophysics Data System (ADS)

    Falconer, David G.; Ueberschaer, Ronald M.

    2000-07-01

    Urban-warfare specialists, law-enforcement officers, counter-drug agents, and counter-terrorism experts encounter operational situations where they must assault a target building and capture or rescue its occupants. To minimize potential casualties, the assault team needs a picture of the building's interior and a copy of its floor plan. With this need in mind, we constructed a scale model of a single- story house and imaged its interior using synthetic-aperture techniques. The interior and exterior walls nearest the radar set were imaged with good fidelity, but the distal ones appear poorly defined and surrounded by ghosts and artifacts. The latter defects are traceable to beam attenuation, wavefront distortion, multiple scattering, traveling waves, resonance phenomena, and other effects not accounted for in the traditional (noninteracting, isotropic point scatterer) model for radar imaging.

  15. Strategies for automatic online treatment plan reoptimization using clinical treatment planning system: A planning parameters study

    SciTech Connect

    Li, Taoran; Wu, Qiuwen; Zhang, You; Vergalasova, Irina; Lee, W. Robert; Yin, Fang-Fang; Wu, Q. Jackie

    2013-11-15

    Purpose: Adaptive radiation therapy for prostate cancer using online reoptimization provides an improved control of interfractional anatomy variations. However, the clinical implementation of online reoptimization is currently limited by the low efficiency of current strategies and the difficulties associated with integration into the current treatment planning system. This study investigates the strategies for performing fast (∼2 min) automatic online reoptimization with a clinical fluence-map-based treatment planning system; and explores the performance with different input parameters settings: dose-volume histogram (DVH) objective settings, starting stage, and iteration number (in the context of real time planning).Methods: Simulated treatments of 10 patients were reoptimized daily for the first week of treatment (5 fractions) using 12 different combinations of optimization strategies. Options for objective settings included guideline-based RTOG objectives, patient-specific objectives based on anatomy on the planning CT, and daily-CBCT anatomy-based objectives adapted from planning CT objectives. Options for starting stages involved starting reoptimization with and without the original plan's fluence map. Options for iteration numbers were 50 and 100. The adapted plans were then analyzed by statistical modeling, and compared both in terms of dosimetry and delivery efficiency.Results: All online reoptimized plans were finished within ∼2 min with excellent coverage and conformity to the daily target. The three input parameters, i.e., DVH objectives, starting stage, and iteration number, contributed to the outcome of optimization nearly independently. Patient-specific objectives generally provided better OAR sparing compared to guideline-based objectives. The benefit in high-dose sparing from incorporating daily anatomy into objective settings was positively correlated with the relative change in OAR volumes from planning CT to daily CBCT. The use of the

  16. More Accurate Definition of Clinical Target Volume Based on the Measurement of Microscopic Extensions of the Primary Tumor Toward the Uterus Body in International Federation of Gynecology and Obstetrics Ib-IIa Squamous Cell Carcinoma of the Cervix

    SciTech Connect

    Xie, Wen-Jia; Wu, Xiao; Xue, Ren-Liang; Lin, Xiang-Ying; Kidd, Elizabeth A.; Yan, Shu-Mei; Zhang, Yao-Hong; Zhai, Tian-Tian; Lu, Jia-Yang; Wu, Li-Li; Zhang, Hao; Huang, Hai-Hua; Chen, Zhi-Jian; Li, De-Rui; Xie, Liang-Xi

    2015-01-01

    Purpose: To more accurately define clinical target volume for cervical cancer radiation treatment planning by evaluating tumor microscopic extension toward the uterus body (METU) in International Federation of Gynecology and Obstetrics stage Ib-IIa squamous cell carcinoma of the cervix (SCCC). Patients and Methods: In this multicenter study, surgical resection specimens from 318 cases of stage Ib-IIa SCCC that underwent radical hysterectomy were included. Patients who had undergone preoperative chemotherapy, radiation, or both were excluded from this study. Microscopic extension of primary tumor toward the uterus body was measured. The association between other pathologic factors and METU was analyzed. Results: Microscopic extension toward the uterus body was not common, with only 12.3% of patients (39 of 318) demonstrating METU. The mean (±SD) distance of METU was 0.32 ± 1.079 mm (range, 0-10 mm). Lymphovascular space invasion was associated with METU distance and occurrence rate. A margin of 5 mm added to gross tumor would adequately cover 99.4% and 99% of the METU in the whole group and in patients with lymphovascular space invasion, respectively. Conclusion: According to our analysis of 318 SCCC specimens for METU, using a 5-mm gross tumor volume to clinical target volume margin in the direction of the uterus should be adequate for International Federation of Gynecology and Obstetrics stage Ib-IIa SCCC. Considering the discrepancy between imaging and pathologic methods in determining gross tumor volume extent, we recommend a safer 10-mm margin in the uterine direction as the standard for clinical practice when using MRI for contouring tumor volume.

  17. Time-resolved measurements of desorbed gas during 1-MeV K+ pulsedbeam deposition in a stainless steel target

    SciTech Connect

    Bieniosek, F.M.; Prost, L.R.; Seidl, P.A.; Molvik, A.W.; KireeffCovo, M.

    2007-01-01

    Measurements were made of the density, species and velocity of the desorbed gas cloud on intense K{sup +} beam bombardment of a stainless steel target. RGA measurements indicate that the gas cloud consists of predominantly H{sub 2}. Energy analyzer measurements of doubly-ionized beam ions show that the ratio of hydrogen gas production to beam density was approximately 3000 at normal incidence. Optical measurements of the evolution of the gas cloud during the beam pulse show a distribution with an average expansion velocity of about 0.5 mm/{micro}s. Comparison is made with a simple model of the gas cloud behavior.

  18. Game Plan

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    Industry proposals for the Crew Exploration Vehicle that NASA plans as a replacement for the space shuttle are due next week, but the agency's new chief says it might be necessary to slow the CEV procurement at first to speed it up later. After a quick trip to Kennedy Space Center for briefings on getting the space shuttle back in operation, Michael D. Griffin sat down with his growing staff last week to begin work on modifying the CEV procurement. "We are going to rethink our entire program in that area," he said during an inaugural press conference Apr. 18. The proposals due May 2 are being prepared in response to NASA's call for a "risk-reduction flight effort" in 2008 that would lead to delivery of a human-rated CEV in 2014. But Griffin was co-leader on an independent study in 2004 that recommended a way to get the CEV flying astronauts in 2010, the year President Bush has set as a deadline for retiring the space shuttle fleet. In that study, produced for The Planetary Society, Griffin and his team called for development of a 13-15-ton "Block 1" CEV limited to low Earth orbit (LEO) that would be launched atop a single space shuttle solid rocket motor (SRM), with a new cryogenic upper stage based on existing rocket engine technology, Under this approach, NASA would develop a "Block 2" CEV later for human exploration beyond LEO.

  19. The Individual Education Plan: A Gendered Assessment Practice?

    ERIC Educational Resources Information Center

    Hirsh, Asa

    2012-01-01

    The focus of this study is gendered differences and similarities in the distribution of individual education plan (IEP) targets given to pupils in Swedish schools. IEP writing is seen as part of teachers' formal assessment practice. Through qualitative content analysis of data, two main target types emerged: "learning targets," related to school…

  20. Complete fabrication of target experimental chamber and implement initial target diagnostics to be used for the first target experiments in NDCX-1

    SciTech Connect

    Bieniosek, F.M.; Bieniosek, F.M.; Dickinson, M.R.; Henestroza, E.; Katayanagi, T.; Jung, J.Y.; Lee, C.W.; Leitner, M.; Ni, P.; Roy, P.; Seidl, P.; Waldron, W.; Welch, D.

    2008-06-09

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) has completed the fabrication of a new experimental target chamber facility for future Warm Dense Matter (WDM) experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. This achievement provides to the HIFS-VNL unique and state-of-the-art experimental capabilities in preparation for the planned target heating experiments using intense heavy ion beams.

  1. Roof Plans: Section "CC", Roof Plan; Roof Framing Plans: Section ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Roof Plans: Section "C-C", Roof Plan; Roof Framing Plans: Section "C-C", Section "D-D"; Roof Framing Sections: Cross Section "G-G", Cross Section "H-H" - Fort Washington, Fort Washington Light, Northeast side of Potomac River at Fort Washington Park, Fort Washington, Prince George's County, MD

  2. Dual Target Design for CLAS12

    NASA Astrophysics Data System (ADS)

    Alam, Omair; Gilfoyle, Gerard; Christo, Steve

    2015-10-01

    An experiment to measure the neutron magnetic form factor (GnM) is planned for the new CLAS12 detector in Hall B at Jefferson Lab. This form factor will be extracted from the ratio of the quasielastic electron-neutron to electron-proton scattering off a liquid deuterium (LD2) target. A collinear liquid hydrogen (LH2) target will be used to measure efficiencies at the same time as production data is collected from the LD2 target. To test target designs we have simulated CLAS12 and the target geometry. Electron-nucleon events are produced first with the QUasiElastic Event Generator (QUEEG) which models the internal motion of the nucleons in deuterium.1 The results are used as input to the CLAS12 Monte Caro code gemc; a Geant4-based program that simulates the particle's interactions with each component of CLAS12 including the target material. The dual target geometry has been added to gemc including support structures and cryogenic transport systems. A Perl script was written to define the target materials and geometries. The output of the script is a set of database entries read by gemc at runtime. An initial study of the impact of this dual-target structure revealed limited effects on the electron momentum and angular resolutions. Work supported by the University of Richmond and the US Department of Energy.

  3. Pallidal targeting with the COMPASS system.

    PubMed

    Alterman, R L; Kall, B; Beric, A; Sterio, D; Kelly, P J

    1997-01-01

    The authors describe their initial experience with the new pallidotomy targeting software for the COMPASS system. As COMPASS permits window and contrast settings to be changed at any time, multiple imaging modalities can be employed for targeting. This feature allowed the incorporation of fast-spin echo/inversion recovery (FSE/IR) magnetic resonance images (MRI) into the planning protocol. COMPASS has now been employed for 33 consecutive pallidotomies over the last year (July 96-June 97). A statistically significant reduction in the number of microelectrode recording trajectories required to physiologically localize sensorimotor globus pallidus interna (GPi) is noted in these cases as compared to the 41 cases performed in the previous year with a different computer planning system. The authors conclude that the COMPASS system accurately and efficiently targets the internal pallidum when FSE/IR MRI is employed. Nevertheless, pallidotomy should not be performed without neurophysiological localization. PMID:9711736

  4. An Analysis of Plan Robustness for Esophageal Tumors: Comparing Volumetric Modulated Arc Therapy Plans and Spot Scanning Proton Planning

    PubMed Central

    Warren, Samantha; Partridge, Mike; Bolsi, Alessandra; Lomax, Anthony J.; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A.

    2016-01-01

    Purpose Planning studies to compare x-ray and proton techniques and to select the most suitable technique for each patient have been hampered by the nonequivalence of several aspects of treatment planning and delivery. A fair comparison should compare similarly advanced delivery techniques from current clinical practice and also assess the robustness of each technique. The present study therefore compared volumetric modulated arc therapy (VMAT) and single-field optimization (SFO) spot scanning proton therapy plans created using a simultaneous integrated boost (SIB) for dose escalation in midesophageal cancer and analyzed the effect of setup and range uncertainties on these plans. Methods and Materials For 21 patients, SIB plans with a physical dose prescription of 2 Gy or 2.5 Gy/fraction in 25 fractions to planning target volume (PTV)50Gy or PTV62.5Gy (primary tumor with 0.5 cm margins) were created and evaluated for robustness to random setup errors and proton range errors. Dose–volume metrics were compared for the optimal and uncertainty plans, with P<.05 (Wilcoxon) considered significant. Results SFO reduced the mean lung dose by 51.4% (range 35.1%-76.1%) and the mean heart dose by 40.9% (range 15.0%-57.4%) compared with VMAT. Proton plan robustness to a 3.5% range error was acceptable. For all patients, the clinical target volume D98 was 95.0% to 100.4% of the prescribed dose and gross tumor volume (GTV) D98 was 98.8% to 101%. Setup error robustness was patient anatomy dependent, and the potential minimum dose per fraction was always lower with SFO than with VMAT. The clinical target volume D98 was lower by 0.6% to 7.8% of the prescribed dose, and the GTV D98 was lower by 0.3% to 2.2% of the prescribed GTV dose. Conclusions The SFO plans achieved significant sparing of normal tissue compared with the VMAT plans for midesophageal cancer. The target dose coverage in the SIB proton plans was less robust to random setup errors and might be unacceptable for

  5. Quasar target selection fiber efficiency

    SciTech Connect

    Newberg, H.; Yanny, B.

    1996-05-01

    We present estimates of the efficiency for finding QSOs as a function of limiting magnitude and galactic latitude. From these estimates, we have formulated a target selection strategy that should net 80,000 QSOs in the north galactic cap with an average of 70 fibers per plate, not including fibers reserved for high-redshift quasars. With this plan, we expect 54% of the targets to be QSOs. The North Galactic Cap is divided into two zones of high and low stellar density. We use about five times as many fibers for QSO candidates in the half of the survey with the lower stellar density as we use in the half with higher stellar density. The current plan assigns 15% of the fibers to FIRST radio sources; if these are not available, those fibers would be allocated to lower probability QSO sources, dropping the total number of QSOs by a small factor (5%). We will find about 17,000 additional quasars in the southern strips, and maybe a few more at very high redshift. Use was made of two data sets: the star and quasar simulated test data generated by Don Schneider, and the data from UJFN plate surveys by Koo (1986) and Kron (1980). This data was compared to results from the Palomar-Green Survey and a recent survey by Pat Osmer and collaborators.

  6. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  7. Magnetically attached sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1994-01-01

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly.

  8. Human target acquisition performance

    NASA Astrophysics Data System (ADS)

    Teaney, Brian P.; Du Bosq, Todd W.; Reynolds, Joseph P.; Thompson, Roger; Aghera, Sameer; Moyer, Steven K.; Flug, Eric; Espinola, Richard; Hixson, Jonathan

    2012-06-01

    The battlefield has shifted from armored vehicles to armed insurgents. Target acquisition (identification, recognition, and detection) range performance involving humans as targets is vital for modern warfare. The acquisition and neutralization of armed insurgents while at the same time minimizing fratricide and civilian casualties is a mounting concern. U.S. Army RDECOM CERDEC NVESD has conducted many experiments involving human targets for infrared and reflective band sensors. The target sets include human activities, hand-held objects, uniforms & armament, and other tactically relevant targets. This paper will define a set of standard task difficulty values for identification and recognition associated with human target acquisition performance.

  9. Results of JET operation with continuous carbon and beryllium X-point target plates

    NASA Astrophysics Data System (ADS)

    Lowry, C. G.; Ady, W. N.; Campbell, D. J.; Carman, P.; Clement, S.; Deksnis, E. B.; Gondhalekar, A.; Harbour, P. J.; Horton, L.; Janeschitz, G.; Lesourd, M.; Lingertat, J.; Pick, M. A.; Saibene, G.; Summers, D. D. R.; Thomas, P. R.

    1992-12-01

    The 1991/92 JET experimental campaign assessed the performance of three different toroidally continuous X-point target plates. The main differences were in the tile material, beryllium and carbon, and the presence of exposed edges. These three configurations have been tested up to power levels in excess of 22 MW and with gas fuelling at the X-point and in the midplane. With the beryllium a radiating divertor was achieved by puffing deuterium into the X-point region, while rapid ELMs resulted from deuterium puffing on the carbon target. The investigation into the importance of small edges, up to 1.5 mm, yielded some interesting results. Although the surface temperature rise was substantially reduced by eliminating exposed tile edges, the onset of the carbon bloom was not delayed by a similar amount. In this paper a model is presented which can explain this and other features of the bloom.

  10. Flat gain cross-section of 1.5 mm amplifier in Er3+-doped oxyfluoride glass-ceramics

    NASA Astrophysics Data System (ADS)

    Méndez-Ramos, J.; Tikhomirov, V. K.; Seddon, A. B.; Rodríguez, V. D.

    2004-07-01

    Room temperature emission and absorption spectra corresponding respectively to the 4I13/2 4I15/2 transitions of the Er3+ in oxyfluoride glass-ceramics, 32(SiO2) 9(AlO1.5) 31.5(CdF2) 18.5(PbF2) 5.5(ZnF2): 3.5(ErF3) mol%, and its parent precursor glass, have been measured. The concentration of Er3+ ions has been estimated at 1.06 × 1021 ions/cm3 from a molar density measurement. The radiative lifetime rad of the emitting level 4I13/2 was obtained from the experimental absorption oscillator strength. The stimulated emission cross-section has been calculated based on the experimental spontaneous emission spectrum using the Füchtbauer-Ladenburg equation. Using the measured absorption and calculated stimulated emission cross-sections, the wavelength dependence of the net gain cross-section, as a function of population inversion of the excited 4I13/2 and ground 4I15/2 states, has been computed. In the glass-ceramic sample, gain was found to be almost flat in the range 1.50 to 1.56 μm, corresponding to S- and C-bands of telecommunications, for population inversion between 0.8 to 1.0.

  11. Hanford Site Development Plan

    SciTech Connect

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. ); Yancey, E.F. )

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

  12. FLIR target screening

    NASA Technical Reports Server (NTRS)

    Aggarwal, R.

    1982-01-01

    Methods for the segmentation and recognition of individual targets sensed with forward looking infrared detectors are discussed. Particular attention is given to an adaptive multi-scenario target screener.

  13. Plasma sheath driven targets

    NASA Astrophysics Data System (ADS)

    Brownell, J. H.; Freeman, B. L.

    1980-02-01

    Plasma focus driven target implosions are simulated using hydrodynamic-burn codes. Support is given to the idea that the use of a target in a plasma focus should allow 'impedance matching' between the fuel and gun, permitting larger fusion yields from a focus-target geometry than the scaling laws for a conventional plasma focus would predict.

  14. An actionable climate target

    NASA Astrophysics Data System (ADS)

    Geden, Oliver

    2016-05-01

    The Paris Agreement introduced three mitigation targets. In the future, the main focus should not be on temperature targets such as 2 or 1.5 °C, but on the target with the greatest potential to effectively guide policy: net zero emissions.

  15. High Power Cryogenic Targets

    SciTech Connect

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  16. Predicting target vessel location on robot-assisted coronary artery bypass graft using CT to ultrasound registration

    SciTech Connect

    Cho, Daniel S.; Linte, Cristian; Chen, Elvis C. S.; Bainbridge, Daniel; Wedlake, Chris; Moore, John; Barron, John; Patel, Rajni; Peters, Terry

    2012-03-15

    {sub 2}. Conclusions: The authors proposed a method to measure and validate peri-operative shifts of the heart during RA-CABG. In vitro and clinical validation studies were conducted and yielded a TRE in the order of 5 mm for all cases. As the desired clinical accuracy imposed by this procedure is on the order of one intercostal space (10-15 mm), our technique suits the clinical requirements. The authors therefore believe this technique has the potential to improve the pre-operative planning by updating peri-operative migration patterns of the heart and, consequently, will lead to reduced conversion to conventional open thoracic procedures.

  17. Liner target interaction experiments on Pegasus II

    SciTech Connect

    Hockaday, M.P.; Chrien, R.E.; Bartsch, R.

    1995-09-01

    The Los Alamos High Energy Density Physics program uses capacitively driven low voltage, inductive-storage pulse power to implode cylindrical targets for hydrodynamics experiments. Once a precision driver liner was characterized an experimental series characterizing the aluminum target dynamics was performed. The target was developed for shock-induced quasi-particle ejecta experiments including holography. The concept for the Liner shock experiment is that the driver liner is used to impact the target liner which then accelerates toward a collimator with a slit in it. A shock wave is set up in the target liner and as the shock emerges from the back side of the target liner, ejecta are generated. By taking a laser hologram the particle distribution of the ejecta are hoped to be determined. The goal for the second experimental series was to characterize the target dynamics and not to measure and generate the ejecta. Only the results from the third shot, Pegasus II-26 fired April 26th, 1994, from the series is discussed in detail. The second experimental series successfully characterized the target dynamics necessary to move forward towards the planned quasi-ejecta experiments.

  18. Cylindrical target Li-beam-driven hohlraum experiments

    SciTech Connect

    Derzon, M.S.; Aubert, J.; Chandler, G.A.

    1998-06-01

    The authors performed a series of experiments on the Particle Beam Fusion Accelerator II (PBFA II) in May, 1994, and obtained a brightness temperature of 61 {+-} 2 eV for an ion-beam heated hohlraum. The hohlraum was a 4-mm-diameter, right-circular cylinder with a 1.5-mm-thick gold wall, a low-density CH foam fill, and a 1.5- or 3-mm-diameter diagnostic aperture in the top. The nominal parameters of the radially-incident PBFA II Li ion beam were 9 MeV peak energy ({approximately}10 MeV at the gas cell) at the target at a peak power of 2.5 {+-} 0.3 TW/cm{sup 2} and a 15 ns pulse width. Azimuthal variations in intensity of a factor of 3, with respect to the mean, were observed. Nonuniformities in thermal x-ray emission across the area of the diagnostic hole were also observed. Time-dependent hole-closure velocities were measured: the time-averaged velocity of {approximately}2 cm/{micro}s is in good agreement with sound speed estimates. Unfolded x-ray spectra and brightness temperatures as a function of time are reported and compared to simulations. Hole closure corrections are discussed with comparisons between XRD and bolometer measurements. Temperature scaling with power on target is also presented.

  19. Targets for the National Ignition Campaign

    SciTech Connect

    Atherton, L J

    2007-09-07

    . The ablator capsule has a 5 mm diameter hole laser drilled to permit removal of the mandrel and introduction of the DT fuel. A 10 mm diameter fill tube is bonded to the capsule to enable filling with the DT gas. These components must then be assembled to tolerances of approximately 5-10 microns, with comprehensive characterization and metrology. The DT ice is formed through controlled seeding, aided by beta decay of the tritium to help smooth the layer, and differential heating of the hohlraum to counteract the effects of natural convection. We present an overview of the technologies for target fabrication, assembly and metrology and advances in growth and imaging of DT ice layers. The sum of these efforts represents a quantum leap in target precision, characterization, manufacturing rate and flexibility over current state-of-the-art.

  20. 42 CFR 457.310 - Targeted low-income child.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Targeted low-income child. 457.310 Section 457.310... (CONTINUED) STATE CHILDREN'S HEALTH INSURANCE PROGRAMS (SCHIPs) ALLOTMENTS AND GRANTS TO STATES State Plan Requirements: Eligibility, Screening, Applications, and Enrollment § 457.310 Targeted low-income child....

  1. 42 CFR 457.310 - Targeted low-income child.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Targeted low-income child. 457.310 Section 457.310... (CONTINUED) STATE CHILDREN'S HEALTH INSURANCE PROGRAMS (SCHIPs) ALLOTMENTS AND GRANTS TO STATES State Plan Requirements: Eligibility, Screening, Applications, and Enrollment § 457.310 Targeted low-income child....

  2. 42 CFR 457.310 - Targeted low-income child.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Targeted low-income child. 457.310 Section 457.310... (CONTINUED) STATE CHILDREN'S HEALTH INSURANCE PROGRAMS (SCHIPs) ALLOTMENTS AND GRANTS TO STATES State Plan Requirements: Eligibility, Screening, Applications, and Enrollment § 457.310 Targeted low-income child....

  3. 42 CFR 457.310 - Targeted low-income child.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Targeted low-income child. 457.310 Section 457.310... (CONTINUED) STATE CHILDREN'S HEALTH INSURANCE PROGRAMS (SCHIPs) ALLOTMENTS AND GRANTS TO STATES State Plan Requirements: Eligibility, Screening, Applications, and Enrollment § 457.310 Targeted low-income child....

  4. 42 CFR 457.310 - Targeted low-income child.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Targeted low-income child. 457.310 Section 457.310... (CONTINUED) STATE CHILDREN'S HEALTH INSURANCE PROGRAMS (SCHIPs) ALLOTMENTS AND GRANTS TO STATES State Plan Requirements: Eligibility, Screening, Applications, and Enrollment § 457.310 Targeted low-income child....

  5. A novel method for vaginal cylinder treatment planning: a seamless transition to 3D brachytherapy

    PubMed Central

    Wu, Vincent; Wang, Zhou; Patil, Sachin

    2012-01-01

    Purpose Standard treatment plan libraries are often used to ensure a quick turn-around time for vaginal cylinder treatments. Recently there is increasing interest in transitioning from conventional 2D radiograph based brachytherapy to 3D image based brachytherapy, which has resulted in a substantial increase in treatment planning time and decrease in patient through-put. We describe a novel technique that significantly reduces the treatment planning time for CT-based vaginal cylinder brachytherapy. Material and methods Oncentra MasterPlan TPS allows multiple sets of data points to be classified as applicator points which has been harnessed in this method. The method relies on two hard anchor points: the first dwell position in a catheter and an applicator configuration specific dwell position as the plan origin and a soft anchor point beyond the last active dwell position to define the axis of the catheter. The spatial location of various data points on the applicator's surface and at 5 mm depth are stored in an Excel file that can easily be transferred into a patient CT data set using window operations and then used for treatment planning. The remainder of the treatment planning process remains unaffected. Results The treatment plans generated on the Oncentra MasterPlan TPS using this novel method yielded results comparable to those generated on the Plato TPS using a standard treatment plan library in terms of treatment times, dwell weights and dwell times for a given optimization method and normalization points. Less than 2% difference was noticed between the treatment times generated between both systems. Using the above method, the entire planning process, including CT importing, catheter reconstruction, multiple data point definition, optimization and dose prescription, can be completed in ~5–10 minutes. Conclusion The proposed method allows a smooth and efficient transition to 3D CT based vaginal cylinder brachytherapy planning. PMID:23349650

  6. Understanding health insurance plans

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000879.htm Understanding health insurance plans To use the sharing features on this ... plan for you and your family. Types of Health Insurance Plans Depending on how you get your health ...

  7. Maintenance Business Plans.

    ERIC Educational Resources Information Center

    Adams, Matt

    2002-01-01

    Discusses maintenance business plans, statements which provide accountability for facilities maintenance organizations' considerable budgets. Discusses the plan's components: statement of plan objectives, macro and detailed description of the facility assets, maintenance function descriptions, description of key performance indicators, milestone…

  8. CASP9 Target Classification

    PubMed Central

    Kinch, Lisa N.; Shi, Shuoyong; Cheng, Hua; Cong, Qian; Pei, Jimin; Mariani, Valerio; Schwede, Torsten; Grishin, Nick V.

    2011-01-01

    The Critical Assessment of Protein Structure Prediction round 9 (CASP9) aimed to evaluate predictions for 129 experimentally determined protein structures. To assess tertiary structure predictions, these target structures were divided into domain-based evaluation units that were then classified into two assessment categories: template based modeling (TBM) and template free modeling (FM). CASP9 targets were split into domains of structurally compact evolutionary modules. For the targets with more than one defined domain, the decision to split structures into domains for evaluation was based on server performance. Target domains were categorized based on their evolutionary relatedness to existing templates as well as their difficulty levels indicated by server performance. Those target domains with sequence-related templates and high server prediction performance were classified as TMB, while those targets without identifiable templates and low server performance were classified as FM. However, using these generalizations for classification resulted in a blurred boundary between CASP9 assessment categories. Thus, the FM category included those domains without sequence detectable templates (25 target domains) as well as some domains with difficult to detect templates whose predictions were as poor as those without templates (5 target domains). Several interesting examples are discussed, including targets with sequence related templates that exhibit unusual structural differences, targets with homologous or analogous structure templates that are not detectable by sequence, and targets with new folds. PMID:21997778

  9. Wake Shield Target Protection

    SciTech Connect

    Valmianski, Emanuil I.; Petzoldt, Ronald W.; Alexander, Neil B.

    2003-05-15

    The heat flux from both gas convection and chamber radiation on a direct drive target must be limited to avoid target damage from excessive D-T temperature increase. One of the possibilities of protecting the target is a wake shield flying in front of the target. A shield will also reduce drag force on the target, thereby facilitating target tracking and position prediction. A Direct Simulation Monte Carlo (DSMC) code was used to calculate convection heat loads as boundary conditions input into ANSYS thermal calculations. These were used for studying the quality of target protection depending on various shapes of shields, target-shield distance, and protective properties of the shield moving relative to the target. The results show that the shield can reduce the convective heat flux by a factor of 2 to 5 depending on pressure, temperature, and velocity. The protective effect of a shield moving relative to the target is greater than the protective properties of a fixed shield. However, the protective effect of a shield moving under the drag force is not sufficient for bringing the heat load on the target down to the necessary limit. Some other ways of diminishing heat flux using a protective shield are discussed.

  10. Higher-dimensional targeting

    SciTech Connect

    Kostelich, E.J. ); Grebogi, C. Department of Mathematics and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 ); Ott, E. Department of Electrical Engineering, University of Maryland, College Park, Maryland 20742 ); Yorke, J.A. )

    1993-01-01

    This paper describes a procedure to steer rapidly successive iterates of an initial condition on a chaotic attractor to a small target region about any prespecified point on the attractor using only small controlling perturbations. Such a procedure is called targeting.'' Previous work on targeting for chaotic attractors has been in the context of one- and two-dimensional maps. Here it is shown that targeting can also be done in higher-dimensional cases. The method is demonstrated with a mechanical system described by a four-dimensional mapping whose attractor has two positive Lyapunov exponents and a Lyapunov dimension of 2.8. The target is reached by making very small successive changes in a single control parameter. In one typical case, 35 iterates on average are required to reach a target region of diameter 10[sup [minus]4], as compared to roughly 10[sup 11] iterates without the use of the targeting procedure.

  11. Preferred Provider Organization (PPO) Plans

    MedlinePlus

    ... up/change plans About Medicare health plans Medicare Advantage Plans + Share widget - Select to show Subcategories Getting ... plan? About Medicare health plans , current subcategory Medicare Advantage Plans , current page Medicare Medical Savings Account (MSA) ...

  12. Health Maintenance Organization (HMO) Plan

    MedlinePlus

    ... up/change plans About Medicare health plans Medicare Advantage Plans + Share widget - Select to show Subcategories Getting ... plan? About Medicare health plans , current subcategory Medicare Advantage Plans , current page Medicare Medical Savings Account (MSA) ...

  13. Medicare Special Needs Plan (SNP)

    MedlinePlus

    ... up/change plans About Medicare health plans Medicare Advantage Plans + Share widget - Select to show Subcategories Getting ... plan? About Medicare health plans , current subcategory Medicare Advantage Plans , current page Medicare Medical Savings Account (MSA) ...

  14. 11. Strategic planning.

    PubMed

    2014-05-01

    There are several types of planning processes and plans, including strategic, operational, tactical, and contingency. For this document, operational planning includes tactical planning. This chapter examines the strategic planning process and includes an introduction into disaster response plans. "A strategic plan is an outline of steps designed with the goals of the entire organisation as a whole in mind, rather than with the goals of specific divisions or departments". Strategic planning includes all measures taken to provide a broad picture of what must be achieved and in which order, including how to organise a system capable of achieving the overall goals. Strategic planning often is done pre-event, based on previous experience and expertise. The strategic planning for disasters converts needs into a strategic plan of action. Strategic plans detail the goals that must be achieved. The process of converting needs into plans has been deconstructed into its components and includes consideration of: (1) disaster response plans; (2) interventions underway or planned; (3) available resources; (4) current status vs. pre-event status; (5) history and experience of the planners; and (6) access to the affected population. These factors are tempered by the local: (a) geography; (b) climate; (c) culture; (d) safety; and (e) practicality. The planning process consumes resources (costs). All plans must be adapted to the actual conditions--things never happen exactly as planned. PMID:24785808

  15. Environmental Management System Plan

    SciTech Connect

    Fox, Robert; Thorson, Patrick; Horst, Blair; Speros, John; Rothermich, Nancy; Hatayama, Howard

    2009-03-24

    DOE Orders and associated policies establish goals and sustainable stewardship practices that are protective of environmental, natural, and cultural resources, and take a life cycle approach that considers aspects such as: (1) Acquisition and use of environmentally preferable products; (2) Electronics stewardship; (3) Energy conservation, energy efficiency, and renewable energy; (4) Pollution prevention, with emphasis on toxic and hazardous chemical and material reduction; (5) Procurement of efficient energy and water consuming materials and equipment; (6) Recycling and reuse; (7) Sustainable and high-performance building design; (8) Transportation and fleet management; and (9) Water conservation. LBNL's approach to sustainable environmental stewardship required under Order 450.1A poses the challenge of implementing its EMS in a compliance-based, performance-based, and cost-effective manner. In other words, the EMS must deliver real and tangible business value at a minimal cost. The purpose of this plan is to describe Berkeley Lab's approach for achieving such an EMS, including an overview of the roles and responsibilities of key Laboratory parties. This approach begins with a broad-based environmental policy consistent with that stated in Chapter 11 of the LBNL Health and Safety Manual (PUB-3000). This policy states that Berkeley Lab is committed to the following: (1) Complying with applicable environmental, public health, and resource conservation laws and regulations. (2) Preventing pollution, minimizing waste, and conserving natural resources. (3) Correcting environmental hazards and cleaning up existing environmental problems, and (4) Continually improving the Laboratory's environmental performance while maintaining operational capability and sustaining the overall mission of the Laboratory. A continual cycle of planning, implementing, evaluating, and improving processes will be performed to achieve goals, objectives, and targets that will help LBNL carry out

  16. Digital tomosynthesis (DTS) for verification of target position in early stage lung cancer patients

    SciTech Connect

    Sörnsen de Koste, John R. van; Dahele, Max; Senan, Suresh; Weide, Lineke van der; Slotman, Ben J.; Verbakel, Wilko F. A. R.; Mostafavi, Hassan

    2013-09-15

    -CBCT difference was 0.8 mm (1 SD = 0.6 mm) and for a 35° arc the mean was 2.4 mm (1 SD = 1.7 mm). DTS plus triangulation using nonoverlapping-arcs increased accuracy in Z-direction for tested arc lengths ≤55° (P < 0.01). Overlapping arcs increased accuracy in Y-direction for tumors with motion >4 mm (P < 0.02) but increased Z-direction accuracy was only observed with 55° total gantry rotation. The 95th percentile deviations with this overlapping technique in X-, Y-, and Z-directions were 1.3, 2.0, and 2.5 mm, respectively. For the five patients with mobile tumors where DTS + triangulation was performed with 45° intervals, the pooled deviation from online CBCT correction showed, for X-, Y-, and Z-directions, mean of 1.1 mm, standard deviations (SD) of 0.9, 1.0, and 0.9 mm, respectively. The mean + 2 SD was <3 mm for each direction.Conclusions: Short-arc DTS verification of time averaged lung tumor position is feasible using free-breathing kV projection data and the AvIP of the 4DCT as a reference. Observed differences between DTS and online CBCT registration with AvIP were ≤3 mm (mean + 2 SD), however, the increased temporal resolution of DTS + triangulation also identified short period deviations from the average target position on the CBCT. Short-arc DTS appears promising for intrafraction tumor position monitoring during stereotactic lung radiotherapy delivered with a rotational technique.

  17. 26 CFR 1.430(d)-1 - Determination of target normal cost and funding target.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 5 2014-04-01 2014-04-01 false Determination of target normal cost and funding...), and 430(h)(5). Section 430 and this section apply to single employer defined benefit plans (including... 106 of the Pension Protection Act of 2006 (PPA '06), Public Law 109-280 (120 Stat. 780)), then...

  18. 26 CFR 1.430(d)-1 - Determination of target normal cost and funding target.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 5 2012-04-01 2011-04-01 true Determination of target normal cost and funding...), and 430(h)(5). Section 430 and this section apply to single employer defined benefit plans (including... 106 of the Pension Protection Act of 2006 (PPA '06), Public Law 109-280 (120 Stat. 780)), then...

  19. Bar coded retroreflective target

    DOEpatents

    Vann, Charles S.

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  20. A single plan solution to chest wall radiotherapy with bolus?

    PubMed Central

    Ordonez-Sanz, C; Bowles, S; Hirst, A

    2014-01-01

    Objective: Radiotherapy treatments of post-mastectomy chest walls are complex, requiring treatment close to skin, necessitating bolus use. Commonly used 5- and 10-mm-thick boluses develop full skin dose, needing removal for the latter half of treatment and requiring two treatment plans to be generated. Can a thinner bolus be used for all treatment fractions, requiring only one plan? Methods: Investigation of doses received using (A) a half-time 10-mm-thick Vaseline® bolus (current situation); (B) a brass mesh (Whiting & Davis, Attleboro Falls, MA) and (C) 3- and 5-mm Superflab™ (Mick Radio-Nuclear Instruments, Mount Vernon, NY) for 6 and 15 MV. Dosimetric measurements in Barts WT1 solid water and an anthropomorphic phantom, using ionization chambers and thermoluminescent dosemeters, were used to study the effect of different bolus regimes on the photon depth–dose curves (DDCs) and skin doses. Results: Measured skin doses for the current 10-mm-thick Vaseline bolus, brass mesh and 3-mm bolus were compared (5 mm bolus has been rejected). The brass mesh has the least effect on the DDC, with changes <0.7% for depths greater than dmax. Brass mesh conforms superiorly to skin surfaces. Measurements on an anthropomorphic phantom demonstrate an increased skin dose compared with our current treatment protocol. Conclusion: Brass mesh has the smallest effect on the DDC, whilst sufficiently increasing surface dose. It can be removed at any fraction, based on a clinical decision, without the need for generating a new plan. Treating with one plan significantly reduces planning times. Advances in knowledge: Quantification of skin doses required and achieved from wax-on/wax-off treatment compared with alternative available breast boluses. PMID:24646288

  1. Inertial Confinement fusion targets

    NASA Technical Reports Server (NTRS)

    Hendricks, C. D.

    1982-01-01

    Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques were devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems, and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented.

  2. HYDROGEN ISOTOPE TARGETS

    DOEpatents

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  3. MI high power operation and future plans

    SciTech Connect

    Kourbanis, Ioanis; /Fermilab

    2008-09-01

    Fermilab's Main Injector on acceleration cycles to 120 GeV has been running a mixed mode operation delivering beam to both the antiproton source for pbar production and to the NuMI[1] target for neutrino production since 2005. On January 2008 the slip stacking process used to increase the beam to the pbar target was expanded to include the beam to the NuMI target increasing both the beam intensity and power. The current high power MI operation will be described along with the near future plans.

  4. Infrared target array development

    NASA Astrophysics Data System (ADS)

    Scott, E. A.

    1980-04-01

    The US Army Yuma Proving Ground (USAYPG) was requested to develop and acquire a series of infrared targets with controllable thermal signatures to support the test and evaluation of the Target Acquisition Designation System/Pilot Night Vision System (TADS/PNVS) subsystems of the Advanced Attack Helicopter (AAH) Fire Control System. Prior to this development effort, no capability beyond the use of real-scene targets existed at USAYPG to provide thermally active targets with characteristic signatures in the infrared band. Three targets were acquired: (1) a detection target; (2) a recognition target; and (3) a laser scoring board. It is concluded that design goals were met and the system was delivered in time to perform its function. The system provides sufficient thermal realism and has advanced the state-of-the-art of infrared imaging system test and evaluation. It is recommended that the Field Equivalent Bar Target (FEBT) system be validated as a potential test standard and that environmentally 'hardened' targets be acquired for continued thermal sight testing.

  5. Targeting the tumor microenvironment

    SciTech Connect

    Kenny, P.A.; Lee, G.Y.; Bissell, M.J.

    2006-11-07

    Despite some notable successes cancer remains, for the most part, a seemingly intractable problem. There is, however, a growing appreciation that targeting the tumor epithelium in isolation is not sufficient as there is an intricate mutually sustaining synergy between the tumor epithelial cells and their surrounding stroma. As the details of this dialogue emerge, new therapeutic targets have been proposed. The FDA has already approved drugs targeting microenvironmental components such as VEGF and aromatase and many more agents are in the pipeline. In this article, we describe some of the 'druggable' targets and processes within the tumor microenvironment and review the approaches being taken to disrupt these interactions.

  6. Planning for Disaster.

    ERIC Educational Resources Information Center

    Lewis, Steven

    1996-01-01

    Disaster recovery planning need not be expensive nor complete to be effective. Systematic planning involves several crucial steps, including outlining the final plan, understanding the nature of a disaster's effects and the stages of disaster recovery, prioritizing appropriately, and learning how to test the plan in a practical way for the…

  7. 34 CFR Plans - Contents

    Code of Federal Regulations, 2010 CFR

    1997-07-01

    ... 34 Education 2 1997-07-01 1997-07-01 false Contents Plans State Plans ASSISTANCE TO STATES FOR THE...-General § 300.111 Content of plan. Each State plan must contain the provisions required in §§ 300.121-300.154. State Plans—Contents...

  8. Master Plan for Facilities.

    ERIC Educational Resources Information Center

    Glass, Thomas E.

    1998-01-01

    Contains a planning prospectus a consultant group might utilize in serving the planning needs of a medium size school district. Includes the types of tasks and data which need to be performed and analyzed for the effective completion of a facility planning effort. Planning prospectus content was obtained from Tuba City School District, Arizona's…

  9. Energy Management Plan.

    ERIC Educational Resources Information Center

    Tasmania Dept. of Education, Hobart (Australia). Facilities Services Section.

    This report presents an overview of the energy management plan for Tasmanian schools designed to minimize the costs of all forms of energy usage within these facilities. The policy and objectives of the plan are provided along with details of the plan itself and its current status. Appendices contain an extract from Asset Management Plan for Real…

  10. STARS MDT-II targets mission

    SciTech Connect

    Sims, B.A.; White, J.E.

    1997-08-01

    The Strategic Target System (STARS) was launched successfully on August 31, 1996 from the Kauai Test Facility (KTF) at the Pacific Missile Range Facility (PMRF). The STARS II booster delivered a payload complement of 26 vehicles atop a post boost vehicle. These targets were designed and the mission planning was achieved to provide for a dedicated mission for view by the Midcourse Space Experiment (MSX) Satellite Sensor Suite. Along with the MSX Satellite, other corollary sensors were involved. Included in these were the Airborne Surveillance Test Bed (AST) aircraft, the Cobra Judy sea based radar platform, Kwajalein Missile Range (KMR), and the Kiernan Reentry Measurements Site (KREMS). The launch was a huge success from all aspects. The STARS Booster flew a perfect mission from hardware, software and mission planning respects. The payload complement achieved its desired goals. All sensors (space, air, ship, and ground) attained excellent coverage and data recording.

  11. Circular on planned parenthood, 1987.

    PubMed

    1987-01-01

    In 1987 fourteen units of the Government of Henan issued a Circular stating that: "Planned parenthood must be publicized deep into the grass roots and among the people, and importance must be attached to results." The Circular stresses: "In the propaganda drive, it is necessary to successfully grasp three key links: 1. It is necessary to disseminate intensively the important directive on population problems that is contained in the report of the 13th CPC National Congress and the seriousness of the population situation of our country and province so that the cadres and the masses can understand the relationship between population control and the achievement of the strategic target of the three big steps, understand the reason for carrying out planned parenthood, understand that the one-child policy is still advocated, and conscientiously carry out planned parenthood. 2. It is essential to succeed in propagating knowledge of contraception, sterilization, childbirth, and child care and in conducting ideological education for those who undergo operations and for their family members. 3. It is imperative to visit those who have undergone operations and to help them solve practically their difficulties in making a living." The Circular concludes by demanding that under the unified leadership of party committees and governments at all levels, the propaganda drive be carried out by relying on the efforts of all of society. In conjunction with their own work, departments, including the propaganda, education, public health, and cultural departments, must carry out propaganda and education for planned parenthood. PMID:12346601

  12. Action Planning in Young Children's Tool Use

    ERIC Educational Resources Information Center

    Cox, Ralf F. A.; Smitsman, Ad W.

    2006-01-01

    Tool use consists of at least two coupled phases of activities, involving multi-step problem solving. It therefore provides an interesting window on the development of planning in goal-directed behavior. This study investigated 2-year-olds' and 3-year-olds' hand use in picking up and subsequently using a tool for displacing a target-object towards…

  13. Interagency Plan for Children with Special Needs.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Health and Mental Hygiene, Baltimore.

    The Interagency Plan for Children with Special Needs for Maryland residents has three major purposes: (1) to set priorities for developing or expanding services required by special needs children and their families; (2) to ensure that resources targeted for special needs children are administered effectively by increasing interagency coordination…

  14. Maine DOE/EPSCoR: 5-year planning grant

    SciTech Connect

    Hawk, B.

    1992-09-28

    Maine EPSCoR has developed a five year plan to further improve Maine`s research and education capacity in the field of Energy. The initiatives of this Energy Education and Research Plan are integrated with other major science policy initiatives in the state, specifically the state`s Science and Technology Strategic Plan (1992), the NSF Statewide Systemic Initiative (1992), and the Report of the Maine Commission on Comprehensive Energy Planning. The plan was developed with the support of US Department of Energy and State of Maine funds. The planning process was led by the Maine DOE EPSCoR planning committee of Maine EPSCoR. Researchers, educators, and business people assisted the committee in the development of the plan. This plan draws from priorities established by focus groups, the strengths and weaknesses revealed by the resource assessment, and the suggestions offered in the solicited research and education briefs. The plan outlines strategies for the improvement of energy education, communication networks, support of individual research, and the formation of collaborative research groups in targeted areas. Five energy-related areas have been targeted for possible development of collaborative research groups: Energy Technology Research, Energy and the Environment, the Gulf of Maine and Its Watershed, the Human Genome, and Renewable Energy. The targeted areas are not boundaries limiting the extent of collaborations to be pursued but represent research themes through which the state`s resources can be combined and improved.

  15. Target visibility for multiple maneuvering target tracking

    NASA Astrophysics Data System (ADS)

    Sabordo, Madeleine G.; Aboutanios, Elias

    2015-05-01

    We present a recursion of the probability of target visibility and its applications to analysis of track life and termination in the context of Global Nearest Neighbour (GNN) approach and Probability Hypothesis Density (PHD) filter. In the presence of uncertainties brought about by clutter; decisions to retain a track, terminate it or initialise a new track are based on probability, rather than on distance criterion or estimation error. The visibility concept is introduced into a conventional data-association-oriented multitarget tracker, the GNN; and a random finite set based-tracker, the PHD filter, to take into account instances when targets become invisible or occluded by obstacles. We employ the natural logarithmof the Dynamic Error Spectrum to assess the performance of the trackers with and without probability of visibility incorporated. Simulation results show that the performance of the GNN tracker with visibility concept incorporated is significantly enhanced.

  16. Moving target exploitation

    NASA Astrophysics Data System (ADS)

    Johnson, Bruce L.; Grayson, Timothy P.

    1998-08-01

    The understanding of maneuvering forces is invaluable to the warfighter, as it enhances understanding of enemy force structure and disposition, provides cues to potential enemy actions, and expedites targeting of time critical targets. Airborne ground moving target indicator (GMTI) radars are a class of highly-effective, all-weather, wide-area senors that aid in the surveillance of these moving ground vehicles. Unfortunately conventional GMTI radars are incapable of identifying individual vehicles, and techniques for exploiting information imbedded within GMTI radar reports are limited. The Defense Advanced Research Projects Agency (DARPA) Moving Target Exploitation (MTE) program is working to mitigate these deficiencies by developing, integrating, and evaluating a suite of automated and semi-automated technologies to classify moving targets and units, and to provide indications of their activities. These techniques include: aid in the interpretation of GMTI data to provide moving force structure analysis, automatic tracking of thousands of moving ground vehicles, 1-D target classification based upon high-range- resolution (HRR) radar profiles, and 2-D target classification based upon moving target imaging (MTIm) synthetic aperture radar (SAR). This paper shall present the MTE concept and motivation and provide an overview of results to date.

  17. Segmented Target Design

    NASA Astrophysics Data System (ADS)

    Merhi, Abdul Rahman; Frank, Nathan; Gueye, Paul; Thoennessen, Michael; MoNA Collaboration

    2013-10-01

    A proposed segmented target would improve decay energy measurements of neutron-unbound nuclei. Experiments like this have been performed at the National Superconducting Cyclotron Laboratory (NSCL) located at Michigan State University. Many different nuclei are produced in such experiments, some of which immediately decay into a charged particle and neutron. The charged particles are bent by a large magnet and measured by a suite of charged particle detectors. The neutrons are measured by the Modular Neutron Array (MoNA) and Large Multi-Institutional Scintillation Array (LISA). With the current target setup, a nucleus in a neutron-unbound state is produced with a radioactive beam impinged upon a beryllium target. The resolution of these measurements is very dependent on the target thickness since the nuclear interaction point is unknown. In a segmented target using alternating layers of silicon detectors and Be-targets, the Be-target in which the nuclear reaction takes place would be determined. Thus the experimental resolution would improve. This poster will describe the improvement over the current target along with the status of the design. Work supported by Augustana College and the National Science Foundation grant #0969173.

  18. Knowing Your Learning Target

    ERIC Educational Resources Information Center

    Moss, Connie M.; Brookhart, Susan M.; Long, Beverly A.

    2011-01-01

    No matter what we decide students need to learn, not much will happen until students understand what they are supposed to learn during a lesson and set their sights on learning it. Crafting learning targets for each lesson and deliberately sharing them with students is one way to give students the direction they need. Targets that tell students…

  19. Online Planning Algorithm

    NASA Technical Reports Server (NTRS)

    Rabideau, Gregg R.; Chien, Steve A.

    2010-01-01

    AVA v2 software selects goals for execution from a set of goals that oversubscribe shared resources. The term goal refers to a science or engineering request to execute a possibly complex command sequence, such as image targets or ground-station downlinks. Developed as an extension to the Virtual Machine Language (VML) execution system, the software enables onboard and remote goal triggering through the use of an embedded, dynamic goal set that can oversubscribe resources. From the set of conflicting goals, a subset must be chosen that maximizes a given quality metric, which in this case is strict priority selection. A goal can never be pre-empted by a lower priority goal, and high-level goals can be added, removed, or updated at any time, and the "best" goals will be selected for execution. The software addresses the issue of re-planning that must be performed in a short time frame by the embedded system where computational resources are constrained. In particular, the algorithm addresses problems with well-defined goal requests without temporal flexibility that oversubscribes available resources. By using a fast, incremental algorithm, goal selection can be postponed in a "just-in-time" fashion allowing requests to be changed or added at the last minute. Thereby enabling shorter response times and greater autonomy for the system under control.

  20. Distributed Operations Planning

    NASA Technical Reports Server (NTRS)

    Fox, Jason; Norris, Jeffrey; Powell, Mark; Rabe, Kenneth; Shams, Khawaja

    2007-01-01

    Maestro software provides a secure and distributed mission planning system for long-term missions in general, and the Mars Exploration Rover Mission (MER) specifically. Maestro, the successor to the Science Activity Planner, has a heavy emphasis on portability and distributed operations, and requires no data replication or expensive hardware, instead relying on a set of services functioning on JPL institutional servers. Maestro works on most current computers with network connections, including laptops. When browsing down-link data from a spacecraft, Maestro functions similarly to being on a Web browser. After authenticating the user, it connects to a database server to query an index of data products. It then contacts a Web server to download and display the actual data products. The software also includes collaboration support based upon a highly reliable messaging system. Modifications made to targets in one instance are quickly and securely transmitted to other instances of Maestro. The back end that has been developed for Maestro could benefit many future missions by reducing the cost of centralized operations system architecture.

  1. Large area 3-D optical coherence tomography imaging of lumpectomy specimens for radiation treatment planning

    NASA Astrophysics Data System (ADS)

    Wang, Cuihuan; Kim, Leonard; Barnard, Nicola; Khan, Atif; Pierce, Mark C.

    2016-02-01

    Our long term goal is to develop a high-resolution imaging method for comprehensive assessment of tissue removed during lumpectomy procedures. By identifying regions of high-grade disease within the excised specimen, we aim to develop patient-specific post-operative radiation treatment regimens. We have assembled a benchtop spectral-domain optical coherence tomography (SD-OCT) system with 1320 nm center wavelength. Automated beam scanning enables "sub-volumes" spanning 5 mm x 5 mm x 2 mm (500 A-lines x 500 B-scans x 2 mm in depth) to be collected in under 15 seconds. A motorized sample positioning stage enables multiple sub-volumes to be acquired across an entire tissue specimen. Sub-volumes are rendered from individual B-scans in 3D Slicer software and en face (XY) images are extracted at specific depths. These images are then tiled together using MosaicJ software to produce a large area en face view (up to 40 mm x 25 mm). After OCT imaging, specimens were sectioned and stained with HE, allowing comparison between OCT image features and disease markers on histopathology. This manuscript describes the technical aspects of image acquisition and reconstruction, and reports initial qualitative comparison between large area en face OCT images and HE stained tissue sections. Future goals include developing image reconstruction algorithms for mapping an entire sample, and registering OCT image volumes with clinical CT and MRI images for post-operative treatment planning.

  2. A Heavy Ion Inertial Fusion Target with a Large Beam Spot

    NASA Astrophysics Data System (ADS)

    Callahan-Miller, Debra A.; Tabak, Max

    2000-10-01

    Because the achievable beam spot size for a heavy ion accelerator appropriate for heavy ion inertial fusion is uncertain, it is important to have a portfolio of target designs that cover the possible parameter space. While we have demonstrated that very high gains can be achieved with small spots [1], we are now concentrating on targets with larger spots and lower gains. Integrated Lasnex calculations of a target that is a hybrid between the ``end radiator'' [2] and the ``distributed radiator'' [3] predict that gain 60 is achievable from 6.7 MJ of beam energy in a 4.5 mm radius beam spot. Since accelerators are efficient (η ~ 25-35%), gain 60 is still adequate to get the η G > 10 required by the reactor. This ``hybrid'' target increases the beam spot radius by 66% over the distributed radiator target with an energy penalty of only 15%. [1] D. A. Callahan-Miller, M. Tabak, Phys. Plasmas, 7, 2083 (2000). [2] D. D.-M. Ho, J. A. Harte, M. Tabak, Nuc. Fusion, 38, 701 (1998). [3] M. Tabak, D. Callahan-Miller, Phys. Plasmas, 5, 1895 (1998).

  3. Penetration experiments in aluminum and Teflon targets of widely variable thickness

    NASA Technical Reports Server (NTRS)

    Hoerz, F.; Cintala, Mark J.; Bernhard, R. P.; See, T. H.

    1994-01-01

    The morphologies and detailed dimensions of hypervelocity craters and penetration holes on space-exposed surfaces faithfully reflect the initial impact conditions. However, current understanding of this postmortem evidence and its relation to such first-order parameters as impact velocity or projectile size and mass is incomplete. While considerable progress is being made in the numerical simulation of impact events, continued impact simulations in the laboratory are needed to obtain empirical constraints and insights. This contribution summarizes such experiments with Al and Teflon targets that were carried out in order to provide a better understanding of the crater and penetration holes reported from the Solar Maximum Mission (SMM) and the Long Duration Exposure Facility (LDEF) satellites. A 5-mm light gas gun was used to fire spherical soda-lime glass projectiles from 50 to 3175 microns in diameter (D(sub P)), at a nominal 6 km/s, into Al (1100 series; annealed) and Teflon (Teflon(sup TFE)) targets. Targets ranged in thickness (T) from infinite halfspace targets (T approx. equals cm) to ultrathin foils (T approx. equals micron), yielding up to 3 degrees of magnitude variation in absolute and relative (D(sub P)/T) target thickness. This experimental matrix simulates the wide range in D(sub P)/T experienced by a space-exposed membrane of constant T that is being impacted by projectiles of widely varying sizes.

  4. Advanced Targeted Nanomedicine

    PubMed Central

    Arachchige, Mohan C M; Reshetnyak, Yana K.; Andreev, Oleg A.

    2015-01-01

    Targeted drug delivery has been the major topic in drug formulation and delivery. As nanomedicine emerges to create nano scale therapeutics and diagnostics, it is still essential to embed targeting capability to these novel systems to make them useful. Here we discuss various targeting approaches for delivery of therapeutic and diagnostic nano materials in view of search for more universal methods to target diseased tissues. Many diseases are accompanied with hypoxia and acidosis. Coating nanoparticles with pH Low Insertion Peptides (pHLIPs) increases efficiency of targeting acidic diseased tissues. It has been showing promising results to create future nanotheranostics for cancer and other diseases which are dominating in the present world. PMID:25615945

  5. Dosimetric Evaluation of a Simple Planning Technique for Improving Intensity-Modulated Radiotherapy for Nasopharyngeal Cancer

    PubMed Central

    Xie, Wen-Jia; Xie, Liang-Xi

    2015-01-01

    Purpose To evaluate the dosimetric outcomes of a simple planning technique for improving intensity-modulated radiotherapy (IMRT) for nasopharyngeal cancer (NPC). Methods For 39 NPC cases, generally acceptable original plans were generated and were improved by the two planning techniques, respectively: (1) a basal-dose-compensation (BDC) technique, in which the treatment plans were re-optimized based on the original plans; (2) a local-dose-control (LDC) technique, in which the original plans were re-optimized with constraints for hot and cold spots. The BDC, original, and LDC plans were then compared regarding homogeneity index (HI) and conformity index (CI) of planning target volumes (PTVs), organ-at-risk (OAR) sparing and monitor units (MUs) per fraction. The whole planning times were also compared between the BDC and LDC plans. Results The BDC plans had superior HIs / CIs, by 13-24% / 3-243%, respectively, over the original plans. Compared to the LDC plans, the BDC plans provided better HIs only for PTVnx (the PTV of nasopharyngeal primary tumor) by 11% and better CIs for all PTVs by 2-134%. The BDC technique spared most OARs, by 1-9%. The average MUs of the BDC, original, and LDC plans were 2149, 2068 and 2179, respectively. The average whole planning times were 48 and 69 minutes for the BDC and LDC plans, respectively. Conclusions For the IMRT of nasopharyngeal cancer, the BDC planning technique can improve target dose homogeneity, conformity and OAR sparing, with better planning efficiency. PMID:26132167

  6. Surgical planning for horizontal strabismus using Support Vector Regression.

    PubMed

    Almeida, João Dallyson Sousa de; Silva, Aristófanes Corrêa; Teixeira, Jorge Antonio Meireles; Paiva, Anselmo Cardoso; Gattass, Marcelo

    2015-08-01

    Strabismus is a pathology which affects about 4% of the population, causing esthetic problems (reversible at any age) and irreversible sensory disorders, altering the vision mechanism. Many techniques can be applied to settle the muscular balance, thus eliminating strabismus. However, when the conservative treatment is not enough, the surgical treatment is adopted, applying recoils or resections to the ocular muscles affected. The factors involved in the surgical strategy in cases of strabismus are complex, demanding both theoretical knowledge and experience from the surgeon. So, the present work proposes a methodology based on Support Vector Regression to help the physician with decision related to horizontal strabismus surgeries. The efficiency of the method at the indication of the surgical plan was evaluated through the average difference between the values that it provided and the values indicated by the specialists. In the planning of medial rectus muscles surgeries, the average error was 0.5mm for recoil and 0.7 for resection. For lateral rectus muscles, the mean error was 0.6 for recoil and 0.8 for resection. The results are promising and prove the feasibility of the use of Support Vector Regression in the indication of strabismus surgeries. PMID:26093785

  7. Status and Plans for the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Green, R. F.

    2006-08-01

    The Large Binocular Telescope (LBT) is in commissioning, with the initiation of science operations planned for 2007. The telescope contains two 8.4-m diameter borosilicate honeycomb primary mirrors, supported actively to control bending modes. The secondary mirrors will provide adaptive optics correction through rapid modulation of the surface of a Zerodur face sheet 91 cm in diameter and 1.5 mm thick. The initial complement of facility instruments comprises capabilities used in pairs on common fields of view. The Large Binocular Cameras are wide-field 36 Mpix mosaics at prime focus optimized for blue and for red performance. The Multi-Object Double Spectrographs will be fed at straight-through Gregorian foci through custom cut focal plane masks. The ambitious LUCIFER near-IR spectrographs at bent Gregorian will have exchangeable cold focal plan masks. Ultimately, two instruments will combine the two beams through Fizeau interferometry. One, LBTI, is optimized for mid-IR, and will have a nulling capability for coronagraphic work. The other, LINC-NIRVANA, will employ three levels of adaptive correction to achieve interferometric resolution down to 1 micron. The 23-m tip-to-tip dimension affords resolution as good as 10 mas. LBTO is supported by a consortium of institutions from Arizona, Italy, Germany, and the U.S. It is truly an international project and the first of the next generation of large ground-based telescopes.

  8. Proceedings of the workshop on polarized targets in storage rings

    SciTech Connect

    Holt, R.J.

    1984-08-01

    Polarization phenomena have played an increasingly important part in the study of nuclei and nucleons in recent years. Polarization studies have been hampered by the relatively few and rather fragile polarized targets which are presently available. The concept of polarized gas targets in storage rings opens a much wider range of possibilities than is available in the external target geometry. This novel method will represent a considerable advance in nuclear physics and will continue to receive much attention in plans for future facilities. An internal, polarized-target station is being planned for the cooler ring at the Indiana University Cyclotron Facility. Internal targets are compatible with recent designs of electron accelerators proposed by the Massachusetts Institute of Technology and the Southeastern Universities Research Association. The key to nuclear-science programs based on internal targets pivots on recent developments in polarized atomic beam methods, which include the more recent laser-driven polarized targets. The workshop drew together a unique group of physicists in the fields of high-energy, nuclear and atomic physics. The meeting was organized in a manner that stimulated discussion among the 58 participants and focused on developments in polarized target technology and the underlying atomic physics. An impressive array of future possibilities for polarized targets as well as current developments in polarized target technology were discussed at the workshop. Abstracts of individual items from the workshop were prepared separately for the data base.

  9. Site Development Planning Handbook

    SciTech Connect

    1981-01-01

    The Handbook provides facility managers and site planners at DOE organizations responsible for planning site developments and facilities utilization a step-by-step planning checklist to ensure that planners at each site are focusing on Department-wide goals and objectives. It begins with a brief discussion of a site development-by-objectives program design to promote, recognize, and implement opportunities for improvements in site utilization through planning. Additional information is included on: assembling existing data, plans, programs, and procedures; establishing realistic objectives; identifying site problems, opportunities; and development needs; determining priorities among development needs; developing short and long-range plans; choosing the right development solutions and meeting minimum legal site restrictions; presenting the plan; implementing elements of the plan; monitoring and reporting plan status; and modifying development program plans. (MCW)

  10. Technology Planning: Thinking Strategically for Planning.

    ERIC Educational Resources Information Center

    Westbrook, Kathleen C.

    1993-01-01

    Sound educational planning is essential in an era faced with declining resources, increasing accountability demands, and reluctance to fund higher taxation requests. Planners are seriously challenged by shift from an industrial to a paperless, technological society. This article compares long-range and strategic planning approaches, describes…

  11. Adult Basic Skills: Developing a Local Action Plan.

    ERIC Educational Resources Information Center

    Basic Skills Agency, London (England).

    This document presents advice from the United Kingdom's Basic Skills Agency regarding developing local action plans. The first 20% of the document defines basic skills and discusses the following action plan components: (1) an estimate of the area's need for basic skills training; (2) a target to reduce the area's estimated scale of need; (3)…

  12. Planning for Applications of Communications Satellites in Education.

    ERIC Educational Resources Information Center

    O'Connell, William K.

    This report of a project to develop and test a prototype system for the delivery of continuing education (CE) to two defined target groups of registered dietitians includes user needs, alternative approaches, the operational plan, the management plan, and personnel. Major tasks involved in the project are described: (1) development,…

  13. Indiana AIDS Prevention Plan, 1986. Version 1.0.

    ERIC Educational Resources Information Center

    Indiana State Board of Health, Indianapolis.

    The Indiana statewide Acquired Immune Deficiency Syndrome (AIDS) prevention plan focuses on community education efforts targeted for specific high risk groups as well as health care and other professionals. Plans are summarized for dissemination of information to the following groups: risk groups, physicians, dental health, nursing, ancillary…

  14. Allegany Ballistics Lab: sensor test target system

    NASA Astrophysics Data System (ADS)

    Eaton, Deran S.

    2011-06-01

    Leveraging the Naval Surface Warfare Center, Indian Head Division's historical experience in weapon simulation, Naval Sea Systems Command commissioned development of a remote-controlled, digitally programmable Sensor Test Target as part of a modern, outdoor hardware-in-the-loop test system for ordnance-related guidance, navigation and control systems. The overall Target system design invokes a sciences-based, "design of automated experiments" approach meant to close the logistical distance between sensor engineering and developmental T&E in outdoor conditions over useful real world distances. This enables operating modes that employ broad spectrum electromagnetic energy in many a desired combination, variably generated using a Jet Engine Simulator, a multispectral infrared emitter array, optically enhanced incandescent Flare Simulators, Emitter/Detector mounts, and an RF corner reflector kit. As assembled, the recently tested Sensor Test Target prototype being presented can capably provide a full array of useful RF and infrared target source simulations for RDT&E use with developmental and existing sensors. Certain Target technologies are patent pending, with potential spinoffs in aviation, metallurgy and biofuels processing, while others are variations on well-established technology. The Sensor Test Target System is planned for extended installation at Allegany Ballistics Laboratory (Rocket Center, WV).

  15. Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time

    SciTech Connect

    Wild, Esther Bangert, Mark; Nill, Simeon; Oelfke, Uwe

    2015-05-15

    Purpose: The authors investigated the potential of optimized noncoplanar irradiation trajectories for volumetric modulated arc therapy (VMAT) treatments of nasopharyngeal patients and studied the trade-off between treatment plan quality and delivery time in radiation therapy. Methods: For three nasopharyngeal patients, the authors generated treatment plans for nine different delivery scenarios using dedicated optimization methods. They compared these scenarios according to dose characteristics, number of beam directions, and estimated delivery times. In particular, the authors generated the following treatment plans: (1) a 4π plan, which is a not sequenced, fluence optimized plan that uses beam directions from approximately 1400 noncoplanar directions and marks a theoretical upper limit of the treatment plan quality, (2) a coplanar 2π plan with 72 coplanar beam directions as pendant to the noncoplanar 4π plan, (3) a coplanar VMAT plan, (4) a coplanar step and shoot (SnS) plan, (5) a beam angle optimized (BAO) coplanar SnS IMRT plan, (6) a noncoplanar BAO SnS plan, (7) a VMAT plan with rotated treatment couch, (8) a noncoplanar VMAT plan with an optimized great circle around the patient, and (9) a noncoplanar BAO VMAT plan with an arbitrary trajectory around the patient. Results: VMAT using optimized noncoplanar irradiation trajectories reduced the mean and maximum doses in organs at risk compared to coplanar VMAT plans by 19% on average while the target coverage remains constant. A coplanar BAO SnS plan was superior to coplanar SnS or VMAT; however, noncoplanar plans like a noncoplanar BAO SnS plan or noncoplanar VMAT yielded a better plan quality than the best coplanar 2π plan. The treatment plan quality of VMAT plans depended on the length of the trajectory. The delivery times of noncoplanar VMAT plans were estimated to be 6.5 min in average; 1.6 min longer than a coplanar plan but on average 2.8 min faster than a noncoplanar SnS plan with comparable

  16. SU-E-J-221: A Novel Expansion Method for MRI Based Target Delineation in Prostate Radiotherapy

    SciTech Connect

    Ruiz, B; Feng, Y; Shores, R; Fung, C

    2015-06-15

    Purpose: To compare a novel bladder/rectum carveout expansion method on MRI delineated prostate to standard CT and expansion based methods for maintaining prostate coverage while providing superior bladder and rectal sparing. Methods: Ten prostate cases were planned to include four trials: MRI vs CT delineated prostate/proximal seminal vesicles, and each image modality compared to both standard expansions (8mm 3D expansion and 5mm posterior, i.e. ∼8mm) and carveout method expansions (5mm 3D expansion, 4mm posterior for GTV-CTV excluding expansion into bladder/rectum followed by additional 5mm 3D expansion to PTV, i.e. ∼1cm). All trials were planned to total dose 7920 cGy via IMRT. Evaluation and comparison was made using the following criteria: QUANTEC constraints for bladder/rectum including analysis of low dose regions, changes in PTV volume, total control points, and maximum hot spot. Results: ∼8mm MRI expansion consistently produced the most optimal plan with lowest total control points and best bladder/rectum sparing. However, this scheme had the smallest prostate (average 22.9% reduction) and subsequent PTV volume, consistent with prior literature. ∼1cm MRI had an average PTV volume comparable to ∼8mm CT at 3.79% difference. Bladder QUANTEC constraints were on average less for the ∼1cm MRI as compared to the ∼8mm CT and observed as statistically significant with 2.64% reduction in V65. Rectal constraints appeared to follow the same trend. Case-by-case analysis showed variation in rectal V30 with MRI delineated prostate being most favorable regardless of expansion type. ∼1cm MRI and ∼8mm CT had comparable plan quality. Conclusion: MRI delineated prostate with standard expansions had the smallest PTV leading to margins that may be too tight. Bladder/rectum carveout expansion method on MRI delineated prostate was found to be superior to standard CT based methods in terms of bladder and rectal sparing while maintaining prostate coverage

  17. Nuclear target development

    SciTech Connect

    Greene, J.P.; Thomas, G.E.

    1995-08-01

    The Physics Division operates a target development laboratory that produces thin foil targets needed for experiments performed at the ATLAS and Dynamitron accelerators. Targets are not only produced for the Physics Division but also for other divisions and occasionally for other laboratories and universities. In the past year, numerous targets were fabricated by vacuum evaporation either as self-supporting foils or on various substrates. Targets produced included Ag, Au, {sup 10,11}B, {sup 138}Ba, Be, {sup 12}C, {sup 40}Ca, {sup 116}Cd, {sup 155,160}Gd, {sup 76}Ge, In, LID, {sup 6}LiH, Melamine, Mg, {sup 142,150}Nd, {sup 58}Ni, {sup 206,208}Pb, {sup 194}Pt, {sup 28}Si, {sup 144,148}Sm, {sup 120,122,124}Sn, Ta, {sup 130}Te, ThF{sub 4}, {sup 46,50}Ti, TiH, U, UF{sub 4}, {sup 182}W and {sup 170}Yb. Polypropylene and aluminized polypropylene, along with metallized Mylar were produced for experiments at ATLAS. A number of targets of {sup 11}B of various thickness were made for the DEP 2-MeV Van de Graff accelerator. An increased output of foils fabricated using our small rolling mill included targets of Au, C, {sup 50}Cr, Cu, {sup 155,160}Gd, Mg, {sup 58}Ni, {sup 208}Pb, {sup 105,110}Pd. Sc, Ti, and {sup 64,66}Zn.

  18. SU-E-T-626: Accuracy of Dose Calculation Algorithms in MultiPlan Treatment Planning System in Presence of Heterogeneities

    SciTech Connect

    Moignier, C; Huet, C; Barraux, V; Loiseau, C; Sebe-Mercier, K; Batalla, A; Makovicka, L

    2014-06-15

    Purpose: Advanced stereotactic radiotherapy (SRT) treatments require accurate dose calculation for treatment planning especially for treatment sites involving heterogeneous patient anatomy. The purpose of this study was to evaluate the accuracy of dose calculation algorithms, Raytracing and Monte Carlo (MC), implemented in the MultiPlan treatment planning system (TPS) in presence of heterogeneities. Methods: First, the LINAC of a CyberKnife radiotherapy facility was modeled with the PENELOPE MC code. A protocol for the measurement of dose distributions with EBT3 films was established and validated thanks to comparison between experimental dose distributions and calculated dose distributions obtained with MultiPlan Raytracing and MC algorithms as well as with the PENELOPE MC model for treatments planned with the homogenous Easycube phantom. Finally, bones and lungs inserts were used to set up a heterogeneous Easycube phantom. Treatment plans with the 10, 7.5 or the 5 mm field sizes were generated in Multiplan TPS with different tumor localizations (in the lung and at the lung/bone/soft tissue interface). Experimental dose distributions were compared to the PENELOPE MC and Multiplan calculations using the gamma index method. Results: Regarding the experiment in the homogenous phantom, 100% of the points passed for the 3%/3mm tolerance criteria. These criteria include the global error of the method (CT-scan resolution, EBT3 dosimetry, LINAC positionning …), and were used afterwards to estimate the accuracy of the MultiPlan algorithms in heterogeneous media. Comparison of the dose distributions obtained in the heterogeneous phantom is in progress. Conclusion: This work has led to the development of numerical and experimental dosimetric tools for small beam dosimetry. Raytracing and MC algorithms implemented in MultiPlan TPS were evaluated in heterogeneous media.

  19. Investigation of metallic and metallic glass hollow spheres for fusion target application

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kendall, J. M.; Wang, T. G.; Johnson, W. L.

    1982-01-01

    The first successful formation of submillimeter and millimeter spherical shells of tin and of a gold-lead-antimony alloy by means of the hollow-jet instability technique developed by Kendall is reported. Examination of tin specimens by SEM reveals that surface quality varies from poor to excellent. Whereas the metal is employed only as a convenient and inexpensive material, the gold alloy is important in that it is hard, has a high atomic number, and may be solidified into the amorphous state through the provision of a modest cooling rate. AuPbSb spherules up to 1.5 mm in diameter are produced using LN2 or chilled methanol as a coolant. It is found that these amorphous samples possess a superb surface smoothness compatible with fusion target requirements. It is noted that hollow spheres currently made of this alloy have an average outside diameter of 2000 microns.

  20. Spallation neutron source target station design, development, and commissioning

    NASA Astrophysics Data System (ADS)

    Haines, J. R.; McManamy, T. J.; Gabriel, T. A.; Battle, R. E.; Chipley, K. K.; Crabtree, J. A.; Jacobs, L. L.; Lousteau, D. C.; Rennich, M. J.; Riemer, B. W.

    2014-11-01

    The spallation neutron source target station is designed to safely, reliably, and efficiently convert a 1 GeV beam of protons to a high flux of about 1 meV neutrons that are available at 24 neutron scattering instrument beam lines. Research and development findings, design requirements, design description, initial checkout testing, and results from early operation with beam are discussed for each of the primary target subsystems, including the mercury target, neutron moderators and reflector, surrounding vessels and shielding, utilities, remote handling equipment, and instrumentation and controls. Future plans for the mercury target development program are also briefly discussed.

  1. Radiological Assessment of Target Debris in the National Ignition Facility

    SciTech Connect

    Khater, H; Brereton, S

    2009-05-19

    Activation of the Be-Cu or Ge-doped CH capsules is insignificant. DU generates higher dose rates than Au during the first day following a 20 MJ shot. Au produces higher dose rates after longer wait-periods. Contribution from activated target materials to the overall dose environment inside the Target Chamber is small. Fission gases generated from the use of DU will significantly decay away within one day after a 20 MJ shot. A typical wait period of 5 days is planned for all maintenance activities after 20 MJ shots, resulting in a significant reduction in hazards present inside the Target Bay due to the use of proposed target materials.

  2. Immunogenicity of targeted lentivectors

    PubMed Central

    Goyvaerts, Cleo; Kurt, De Groeve; Lint, Sandra Van; Heirman, Carlo; Van Ginderachter, Jo A.; De Baetselier, Patrick; Raes, Geert; Thielemans, Kris; Breckpot, Karine

    2014-01-01

    To increase the safety and possibly efficacy of HIV-1 derived lentivectors (LVs) as an anti-cancer vaccine, we recently developed the Nanobody (Nb) display technology to target LVs to antigen presenting cells (APCs). In this study, we extend these data with exclusive targeting of LVs to conventional dendritic cells (DCs), which are believed to be the main cross-presenting APCs for the induction of a TH1-conducted antitumor immune response. The immunogenicity of these DC-subtype targeted LVs was compared to that of broad tropism, general APC-targeted and non-infectious LVs. Intranodal immunization with ovalbumin encoding LVs induced proliferation of antigen specific CD4+ T cells, irrespective of the LVs' targeting ability. However, the cytokine secretion profile of the restimulated CD4+ T cells demonstrated that general APC targeting induced a similar TH1-profile as the broad tropism LVs while transduction of conventional DCs alone induced a similar and less potent TH1 profile as the non-infectious LVs. This observation contradicts the hypothesis that conventional DCs are the most important APCs and suggests that the activation of other APCs is also meaningful. Despite these differences, all targeted LVs were able to stimulate cytotoxic T lymphocytes, be it to a lesser extent than broad tropism LVs. Furthermore this induction was shown to be dependent on type I interferon for the targeted and non-infectious LVs, but not for broad tropism LVs. Finally we demonstrated that the APC-targeted LVs were as potent in therapy as broad tropism LVs and as such deliver on their promise as safer and efficacious LV-based vaccines. PMID:24519916

  3. Not planning a sustainable transport system

    SciTech Connect

    Finnveden, Göran Åkerman, Jonas

    2014-04-01

    The overall objective of the Swedish transport policy is to ensure the economically efficient and sustainable provision of transport services for people and business throughout the country. More specifically, the transport sector shall, among other things, contribute to the achievement of environmental quality objectives in which the development of the transport system plays an important role in the achievement of the objectives. The aim of this study is to analyse if current transport planning supports this policy. This is done by analysing two recent cases: the National Infrastructure Plan 2010–2021, and the planning of Bypass Stockholm, a major road investment. Our results show that the plans are in conflict with several of the environmental quality objectives. Another interesting aspect of the planning processes is that the long-term climate goals are not included in the planning processes, neither as a clear goal nor as factor that will influence future transport systems. In this way, the long-term sustainability aspects are not present in the planning. We conclude that the two cases do not contribute to a sustainable transport system. Thus, several changes must be made in the processes, including putting up clear targets for emissions. Also, the methodology for the environmental assessments needs to be further developed and discussed. - Highlights: • Two cases are studied to analyse if current planning supports a sustainable transport system. • Results show that the plans are in conflict with several of the environmental quality objectives. • Long-term climate goals are not included in the planning processes. • Current practices do not contribute to a sustainable planning processes. • Methodology and process for environmental assessments must be further developed and discussed.

  4. A Treatment Planning Analysis of Inverse-Planned and Forward-Planned Intensity-Modulated Radiation Therapy in Nasopharyngeal Carcinoma

    SciTech Connect

    Poon, Ian M Xia Ping; Weinberg, Vivien; Sultanem, Khalil; Akazawa, Clayton C.; Akazawa, Pamela C.; Verhey, Lynn; Quivey, Jeanne Marie; Lee, Nancy

    2007-12-01

    Purpose: To compare dose-volume histograms of target volumes and organs at risk in 57 patients with nasopharyngeal carcinoma (NPC) with inverse- (IP) or forward-planned (FP) intensity-modulated radiation treatment (IMRT). Methods and Materials: The DVHs of 57 patients with NPC with IMRT with or without chemotherapy were reviewed. Thirty-one patients underwent IP IMRT, and 26 patients underwent FP IMRT. Treatment goals were to prescribe a minimum dose of 66-70 Gy for gross tumor volume and 59.4 Gy for planning target volume to greater than 95% of the volume. Multiple selected end points were used to compare dose-volume histograms of the targets, including minimum, mean, and maximum doses; percentage of target volume receiving less than 90% (1-V90%), less than 95% (1-V95%), and greater than 105% (1-V105%). Dose-volume histograms of organs at risk were evaluated with characteristic end points. Results: Both planning methods provided excellent target coverage with no statistically significant differences found, although a trend was suggested in favor of improved target coverage with IP IMRT in patients with T3/T4 NPC (p = 0.10). Overall, IP IMRT statistically decreased the dose to the parotid gland, temporomandibular joint, brain stem, and spinal cord overall, whereas IP led to a dose decrease to the middle/inner ear in only the T1/T2 subgroup. Conclusions: Use of IP and FP IMRT can lead to good target coverage while maintaining critical structures within tolerance. The IP IMRT selectively spared these critical organs to a greater degree and should be considered the standard of treatment in patients with NPC, particularly those with T3/T4. The FP IMRT is an effective second option in centers with limited IP IMRT capacity. As a modification of conformal techniques, the human/departmental resources to incorporate FP-IMRT should be nominal.

  5. Probabilistic objective functions for margin-less IMRT planning

    NASA Astrophysics Data System (ADS)

    Bohoslavsky, Román; Witte, Marnix G.; Janssen, Tomas M.; van Herk, Marcel

    2013-06-01

    We present a method to implement probabilistic treatment planning of intensity-modulated radiation therapy using custom software plugins in a commercial treatment planning system. Our method avoids the definition of safety-margins by directly including the effect of geometrical uncertainties during optimization when objective functions are evaluated. Because the shape of the resulting dose distribution implicitly defines the robustness of the plan, the optimizer has much more flexibility than with a margin-based approach. We expect that this added flexibility helps to automatically strike a better balance between target coverage and dose reduction for surrounding healthy tissue, especially for cases where the planning target volume overlaps organs at risk. Prostate cancer treatment planning was chosen to develop our method, including a novel technique to include rotational uncertainties. Based on population statistics, translations and rotations are simulated independently following a marker-based IGRT correction strategy. The effects of random and systematic errors are incorporated by first blurring and then shifting the dose distribution with respect to the clinical target volume. For simplicity and efficiency, dose-shift invariance and a rigid-body approximation are assumed. Three prostate cases were replanned using our probabilistic objective functions. To compare clinical and probabilistic plans, an evaluation tool was used that explicitly incorporates geometric uncertainties using Monte-Carlo methods. The new plans achieved similar or better dose distributions than the original clinical plans in terms of expected target coverage and rectum wall sparing. Plan optimization times were only about a factor of two higher than in the original clinical system. In conclusion, we have developed a practical planning tool that enables margin-less probability-based treatment planning with acceptable planning times, achieving the first system that is feasible for clinical

  6. 7 CFR 1450.207 - Conservation plan, forest stewardship plan, or equivalent plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Conservation plan, forest stewardship plan, or... plan, forest stewardship plan, or equivalent plan. (a) The producer must implement a conservation plan, forest stewardship plan, or equivalent plan that complies with CCC guidelines and is approved by...

  7. 7 CFR 1450.207 - Conservation plan, forest stewardship plan, or equivalent plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Conservation plan, forest stewardship plan, or... plan, forest stewardship plan, or equivalent plan. (a) The producer must implement a conservation plan, forest stewardship plan, or equivalent plan that complies with CCC guidelines and is approved by...

  8. 7 CFR 1450.207 - Conservation plan, forest stewardship plan, or equivalent plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Conservation plan, forest stewardship plan, or... plan, forest stewardship plan, or equivalent plan. (a) The producer must implement a conservation plan, forest stewardship plan, or equivalent plan that complies with CCC guidelines and is approved by...

  9. 7 CFR 1450.207 - Conservation plan, forest stewardship plan, or equivalent plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Conservation plan, forest stewardship plan, or... plan, forest stewardship plan, or equivalent plan. (a) The producer must implement a conservation plan, forest stewardship plan, or equivalent plan that complies with CCC guidelines and is approved by...

  10. Comparison of computer-assisted planning and manual planning for depth electrode implantations in epilepsy.

    PubMed

    Nowell, Mark; Sparks, Rachel; Zombori, Gergely; Miserocchi, Anna; Rodionov, Roman; Diehl, Beate; Wehner, Tim; Baio, Gianluca; Trevisi, Gianluca; Tisdall, Martin; Ourselin, Sebastien; McEvoy, Andrew W; Duncan, John

    2016-06-01

    OBJECT The objective of this study was to evaluate the clinical utility of multitrajectory computer-assisted planning software (CAP) to plan stereoelectroencephalography (SEEG) electrode arrangements. METHODS A cohort of 18 patients underwent SEEG for evaluation of epilepsy at a single center between August 2013 and August 2014. Planning of electrodes was performed manually and stored using EpiNav software. CAP was developed as a planning tool in EpiNav. The user preselects a set of cerebral targets and optimized trajectory constraints, and then runs an automated search of potential scalp entry points and associated trajectories. Each trajectory is associated with metrics for a safety profile, derived from the minimal distance to vascular structures, and an efficacy profile, derived from the proportion of depth electrodes that are within or adjacent to gray matter. CAP was applied to the cerebral targets used in the cohort of 18 previous manually planned implantations to generate new multitrajectory implantation plans. A comparison was then undertaken for trajectory safety and efficacy. RESULTS CAP was applied to 166 electrode targets in 18 patients. There were significant improvements in both the safety profile and efficacy profile of trajectories generated by CAP compared with manual planning (p < 0.05). Three independent neurosurgeons assessed the feasibility of the trajectories generated by CAP, with 131 (78.9%) of 166 trajectories deemed suitable for implementation in clinical practice. CAP was performed in real time, with a median duration of 8 minutes for each patient, although this does not include the time taken for data preparation. CONCLUSIONS CAP is a promising tool to plan SEEG implantations. CAP provides feasible depth electrode arrangements, with quantitatively greater safety and efficacy profiles, and with a substantial reduction in duration of planning within the 3D multimodality framework. PMID:26636383

  11. USGS aerial resolution targets.

    USGS Publications Warehouse

    Salamonowicz, P.H.

    1982-01-01

    It is necessary to measure the achievable resolution of any airborne sensor that is to be used for metric purposes. Laboratory calibration facilities may be inadequate or inappropriate for determining the resolution of non-photographic sensors such as optical-mechanical scanners, television imaging tubes, and linear arrays. However, large target arrays imaged in the field can be used in testing such systems. The USGS has constructed an array of resolution targets in order to permit field testing of a variety of airborne sensing systems. The target array permits any interested organization with an airborne sensing system to accurately determine the operational resolution of its system. -from Author

  12. Target size matters: target errors contribute to the generalization of implicit visuomotor learning.

    PubMed

    Reichenthal, Maayan; Avraham, Guy; Karniel, Amir; Shmuelof, Lior

    2016-08-01

    The process of sensorimotor adaptation is considered to be driven by errors. While sensory prediction errors, defined as the difference between the planned and the actual movement of the cursor, drive implicit learning processes, target errors (e.g., the distance of the cursor from the target) are thought to drive explicit learning mechanisms. This distinction was mainly studied in the context of arm reaching tasks where the position and the size of the target were constant. We hypothesize that in a dynamic reaching environment, where subjects have to hit moving targets and the targets' dynamic characteristics affect task success, implicit processes will benefit from target errors as well. We examine the effect of target errors on learning of an unnoticed perturbation during unconstrained reaching movements. Subjects played a Pong game, in which they had to hit a moving ball by moving a paddle controlled by their hand. During the game, the movement of the paddle was gradually rotated with respect to the hand, reaching a final rotation of 25°. Subjects were assigned to one of two groups: The high-target error group played the Pong with a small ball, and the low-target error group played with a big ball. Before and after the Pong game, subjects performed open-loop reaching movements toward static targets with no visual feedback. While both groups adapted to the rotation, the postrotation reaching movements were directionally biased only in the small-ball group. This result provides evidence that implicit adaptation is sensitive to target errors. PMID:27121580

  13. Multiple shell fusion targets

    DOEpatents

    Lindl, J.D.; Bangerter, R.O.

    1975-10-31

    Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

  14. Target-detection strategies

    NASA Astrophysics Data System (ADS)

    Schachter, Bruce J.

    2013-04-01

    Hundreds of simple target-detection algorithms were tested on mid- and long-wave forward-looking infrared images. Each algorithm is briefly described. Indications are given as to which performed well. Most of these simple algorithms are loosely derived from standard tests of the difference of two populations. For target detection, these are populations of pixel grayscale values or features derived from them. The statistical tests are implemented in the form of sliding triple window filters. Several more elaborate algorithms are also described with their relative performances noted. They utilize neural networks, deformable templates, and adaptive filtering. Algorithm design issues are broadened to cover system design issues and concepts of operation. Since target detection is such a fundamental problem, it is often used as a test case for developing technology. New technology leads to innovative approaches for attacking the problem. Eight inventive paradigms, each with deep philosophical underpinnings, are described in relation to their effect on target detector design.

  15. Target Heart Rate Calculator

    MedlinePlus

    ... My Saved Articles » My ACS » + - Text Size Target Heart Rate Calculator Compute your best workout Enter your age ... is your age? years. How to Check Your Heart Rate Right after you stop exercising, take your pulse: ...

  16. Drug Plan Coverage Rules

    MedlinePlus

    ... works with other insurance Find health & drug plans Drug plan coverage rules Note Call your Medicare drug ... shingles vaccine) when medically necessary to prevent illness. Drugs you get in hospital outpatient settings In most ...

  17. Developing the plan

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The basic sequence in the planning development process is discussed. Alternative ways of satisfying estimated needs, and the selection of an alternative are described along with the development of a plan to implement the selected alternative.

  18. Disaster Recovery Planning.

    ERIC Educational Resources Information Center

    Wilkins, Jeannine W.

    1985-01-01

    Every school needs an effective disaster recovery plan that is flexible, comprehensive and designed to take into account unexpected disasters. Presents guidelines for preparing such a plan, with immediate and long-range recovery procedures. (MD)

  19. My Reproductive Life Plan

    MedlinePlus

    ... Information For... Media Policy Makers My Reproductive Life Plan Language: English Español (Spanish) Recommend on Facebook Tweet ... use with their patients. How to Make a Plan First, think about your goals for school, for ...

  20. Advance Care Planning.

    PubMed

    Stallworthy, Elizabeth J

    2013-04-16

    Advance care planning should be available to all patients with chronic kidney disease, including end-stage kidney disease on renal replacement therapy. Advance care planning is a process of patient-centred discussion, ideally involving family/significant others, to assist the patient to understand how their illness might affect them, identify their goals and establish how medical treatment might help them to achieve these. An Advance Care Plan is only one useful outcome from the Advance Care Planning process, the education of patient and family around prognosis and treatment options is likely to be beneficial whether or not a plan is written or the individual loses decision making capacity at the end of life. Facilitating Advance Care Planning discussions requires an understanding of their purpose and communication skills which need to be taught. Advance Care Planning needs to be supported by effective systems to enable the discussions and any resulting Plans to be used to aid subsequent decision making. PMID:23586906

  1. Planning for Office Automation.

    ERIC Educational Resources Information Center

    Mick, Colin K.

    1983-01-01

    Outlines a practical approach to planning for office automation termed the "Focused Process Approach" (the "what" phase, "how" phase, "doing" phase) which is a synthesis of the problem-solving and participatory planning approaches. Thirteen references are provided. (EJS)

  2. Networking and Institutional Planning.

    ERIC Educational Resources Information Center

    Riggs, Donald E.

    1987-01-01

    Explores the impact of networks and shared library resources on the library planning process. Environmental scanning techniques, the need for cooperative planning, and the formulation of strategies to achieve networking goals are discussed. (CLB)

  3. Advance Care Planning

    MedlinePlus

    ... Division of Geriatrics and Clinical Gerontology Division of Neuroscience FAQs Funding Opportunities Intramural Research Program Office of ... Is Advance Care Planning? Advance care planning involves learning about the types of decisions that might need ...

  4. Prescriptions and Insurance Plans

    MedlinePlus

    MENU Return to Web version Prescriptions and Insurance Plans Prescriptions and Insurance Plans Getting a prescription filled is usually easy. But because of the high cost of prescription medicines, most insurance ...

  5. Human Resource Planning

    ERIC Educational Resources Information Center

    Hoffman, W. H.; Wyatt, L. L.

    1977-01-01

    By using the total resource approach, we have focused attention on the need to integrate human resource planning with other business plans and highlighted the importance of a productivity strategy. (Author)

  6. Planning your pregnancy

    MedlinePlus

    ... March of Dimes Premature Birth Report Card Grades Cities, Counties; Focuses on Racial and Ethnic Disparities March ... Pregnancy > Before or between pregnancies > Planning your pregnancy Planning your pregnancy E-mail to a friend Please ...

  7. Comprehensive Interpretive Planning.

    ERIC Educational Resources Information Center

    Kohen, Richard; Sikoryak, Kim

    1999-01-01

    Discusses interpretive planning and provides information on how to maximize a sense of ownership shared by managers, staff, and other organizational shareholders. Presents practical and effective plans for providing interpretive services. (CCM)

  8. High pressure gas target

    NASA Astrophysics Data System (ADS)

    Gelbart, W.; Johnson, R. R.; Abeysekera, B.

    2012-12-01

    Compact, high pressure, high current gas target features all metal construction and semi-automatic window assembly change. The unique aspect of this target is the domed-shaped window. The Havar alloy window is electron beam welded to a metal ring, thus forming one, interchangeable assembly. The window assembly is sealed by knife-edges locked by a pneumatic toggle allowing a quick, in situ window change.

  9. SETI target selection.

    NASA Astrophysics Data System (ADS)

    Latham, D. W.; Soderblom, D. R.

    1995-06-01

    The NASA High Resolution Microwave Survey consists of two complementary elements: a Sky Survey of the entire sky to a moderate level of sensitivity; and a Targeted Search of nearby stars, one at